Introduction to Disaggregate Demand Models

Michel Bierlaire Virginie Lurkin

Transport and Mobility Laboratory
School of Architecture, Civil and Environmental Engineering
Ecole Polytechnique Fédérale de Lausanne

October 23, 2017

Outline

4 Parameter estimation
(1) Motivation
(5) Applications
(2) Microeconomic consumer theory
(6) Conclusions
(3) Probabilistic choice theory

Demand

Demand $=$ behavior $=$ sequence of choices

Aggregate demand

Aggregate demand

- Homogeneous population
- Identical behavior
- Price (P) and quantity (Q)
- Demand functions: $P=f(Q)$
- Inverse demand: $Q=f^{-1}(P)$

Disaggregate demand

Disaggregate demand

- Heterogeneous population
- Different behaviors
- Many variables:
- Attributes: price, travel time, reliability, frequency, etc.
- Characteristics: age, income, education, etc.
- Complex demand/inverse demand functions.

Discrete choice models

Daniel L. McFadden

- UC Berkeley 1963, MIT 1977, UC Berkeley 1991
- Laureate of The Bank of Sweden Prize in Economic Sciences in Memory of Alfred Nobel 2000
- Owns a farm and vineyard in Napa Valley
- "Farm work clears the mind, and the vineyard is a great place to prove theorems"

Outline

4. Parameter estimation

(1) Motivation
(5) Applications
(2) Microeconomic consumer theory
(6) Conclusions

(3) Probabilistic choice theory

Microeconomic consumer theory

Continuous choice set

- Consumption bundle

$$
Q=\left(\begin{array}{c}
q_{1} \\
\vdots \\
q_{L}
\end{array}\right) ; p=\left(\begin{array}{c}
p_{1} \\
\vdots \\
p_{L}
\end{array}\right)
$$

- Budget constraint

$$
p^{T} Q=\sum_{\ell=1}^{L} p_{\ell} q_{\ell} \leq 1
$$

- No attributes, just quantities

Preferences

Operators \succ, \sim, and \succsim

- $Q_{a} \succ Q_{b}: Q_{a}$ is preferred to Q_{b},
- $Q_{a} \sim Q_{b}$: indifference between Q_{a} and Q_{b},
- $Q_{a} \succsim Q_{b}: Q_{a}$ is at least as preferred as Q_{b}.

Preferences

Rationality

- Completeness: for all bundles a and b,

$$
Q_{a} \succ Q_{b} \text { or } Q_{a} \prec Q_{b} \text { or } Q_{a} \sim Q_{b}
$$

- Transitivity: for all bundles a, b and c,

$$
\text { if } Q_{a} \succsim Q_{b} \text { and } Q_{b} \succsim Q_{c} \text { then } Q_{a} \succsim Q_{c} .
$$

- "Continuity": if Q_{a} is preferred to Q_{b} and Q_{c} is arbitrarily "close" to Q_{a}, then Q_{c} is preferred to Q_{b}.

Utility

Utility function

- Parametrized function:

$$
\widetilde{U}=\widetilde{U}\left(q_{1}, \ldots, q_{L} ; \theta\right)=\widetilde{U}(Q ; \theta)
$$

- Consistent with the preference indicator:

$$
\widetilde{U}\left(Q_{a} ; \theta\right) \geq \widetilde{U}\left(Q_{b} ; \theta\right)
$$

is equivalent to

$$
Q_{a} \succsim Q_{b}
$$

- Unique up to an order-preserving transformation

Optimization

Optimization problem

$$
\max _{Q} \widetilde{U}(Q ; \theta)
$$

subject to

$$
p^{T} Q \leq 1, Q \geq 0
$$

Demand function

- Solution of the optimization problem
- Quantity as a function of prices p and budget I

$$
Q^{*}=f(I, p ; \theta)
$$

Example: Cobb-Douglas

TRANSP-OR
COOLE POLYTICHNIOUE ECOLI POLYTECHNIQUE fedirale de lausanni

Example

Example

Optimization problem

$$
\max _{q_{1}, q_{2}} \widetilde{U}\left(q_{1}, q_{2} ; \theta_{0}, \theta_{1}, \theta_{2}\right)=\theta_{0} q_{1}^{\theta_{1}} q_{2}^{\theta_{2}}
$$

subject to

$$
p_{1} q_{1}+p_{2} q_{2}=I
$$

Lagrangian of the problem:

$$
L\left(q_{1}, q_{2}, \lambda\right)=\theta_{0} q_{1}^{\theta_{1}} q_{2}^{\theta_{2}}+\lambda\left(I-p_{1} q_{1}-p_{2} q_{2}\right)
$$

Necessary optimality condition

$$
\nabla L\left(q_{1}, q_{2}, \lambda\right)=0
$$

Example

Necessary optimality conditions

$$
\begin{aligned}
\theta_{0} \theta_{1} q_{1}^{\theta_{1}-1} q_{2}^{\theta_{2}}-\lambda p_{1} & =0 \\
\theta_{0} \theta_{2} q_{1}^{\theta_{1}} q_{2}^{\theta_{2}-1}-\lambda p_{2} & =0 \\
p_{1} q_{1}+p_{2} q_{2}- & \left(\times q_{1}\right) \\
l & =0 .
\end{aligned}
$$

We have

$$
\begin{aligned}
& \theta_{0} \theta_{1} q_{1}^{\theta_{1}} q_{2}^{\theta_{2}}-\lambda p_{1} q_{1}=0 \\
& \theta_{0} \theta_{2} q_{1}^{\theta_{1}} q_{2}^{\theta_{2}}-\lambda p_{2} q_{2}=0
\end{aligned}
$$

Adding the two and using the third condition, we obtain

$$
\lambda I=\theta_{0} q_{1}^{\theta_{1}} q_{2}^{\theta_{2}}\left(\theta_{1}+\theta_{2}\right)
$$

or, equivalently,

$$
\theta_{0} q_{1}^{\theta_{1}} q_{2}^{\theta_{2}}=\frac{\lambda I}{\left(\theta_{1}+\theta_{2}\right)}
$$

Solution

From the previous derivation

$$
\theta_{0} q_{1}^{\theta_{1}} q_{2}^{\theta_{2}}=\frac{\lambda I}{\left(\theta_{1}+\theta_{2}\right)}
$$

First condition

$$
\theta_{0} \theta_{1} q_{1}^{\theta_{1}} q_{2}^{\theta_{2}}=\lambda p_{1} q_{1} .
$$

Solve for q_{1}

$$
q_{1}^{*}=\frac{I \theta_{1}}{p_{1}\left(\theta_{1}+\theta_{2}\right)}
$$

Similarly, we obtain

$$
q_{2}^{*}=\frac{I \theta_{2}}{p_{2}\left(\theta_{1}+\theta_{2}\right)}
$$

Optimization problem

Demand functions

Product 1

$$
q_{1}^{*}=\frac{l}{p_{1}} \frac{\theta_{1}}{\theta_{1}+\theta_{2}}
$$

Product 2

$$
q_{2}^{*}=\frac{l}{p_{2}} \frac{\theta_{2}}{\theta_{1}+\theta_{2}}
$$

Comments

- Demand decreases with price
- Demand increases with budget
- Demand independent of θ_{0}, which does not affect the ranking
- Property of Cobb Douglas: the demand for a good is only dependent on its own price and independent of the price of any other good.

Demand curve (inverse of demand function)

Indirect utility

Substitute the demand function into the utility

$$
U(I, p ; \theta)=\theta_{0}\left(\frac{I}{p_{1}} \frac{\theta_{1}}{\theta_{1}+\theta_{2}}\right)^{\theta_{1}}\left(\frac{I}{p_{2}} \frac{\theta_{2}}{\theta_{1}+\theta_{2}}\right)^{\theta_{2}}
$$

Indirect utility
Maximum utility that is achievable for a given set of prices and income

In discrete choice...

- only the indirect utility is used
- therefore, it is simply referred to as "utility"

Microeconomic theory of discrete goods

Car choice

- Discrete: what type of car?
- Continuous: how many kilometers per year?

Energy choice

- Discrete: electricity or gas for house heating?
- Continuous: what temperature for the house?

Holidays

- Discrete: what destination?
- Continuous: how long to stay?

Expanding the microeconomic framework

The consumer

- chooses the quantities of continuous goods: $Q=\left(q_{1}, \ldots, q_{L}\right)$
- chooses alternatives in a discrete choice set $i=1, \ldots, j, \ldots, J$
- discrete decision vector: $\left(y_{1}, \ldots, y_{J}\right), y_{j} \in\{0,1\}$.

Utility maximization

Utility

$$
\widetilde{U}\left(Q, y, \tilde{z}^{T} y ; \theta\right)
$$

- Q: quantities of the continuous good
- y : discrete choice
- $\tilde{z}^{T}=\left(\tilde{z}_{1}, \ldots, \tilde{z}_{i}, \ldots, \tilde{z}_{J}\right) \in \mathbb{R}^{K \times J}: K$ attributes of the J alternatives
- θ : vector of parameters

Utility maximization

Optimization problem

$$
\max _{Q, y} \widetilde{U}\left(Q, y, \tilde{z}^{T} y ; \theta\right)
$$

subject to

$$
\begin{aligned}
& p^{T} Q+c^{T} y \leq 1 \\
& y_{j} \in\{0,1\}, \forall j
\end{aligned}
$$

where $c^{T}=\left(c_{1}, \ldots, c_{i}, \ldots, c_{J}\right)$ contains the cost of each alternative.

Solving the problem

- Mixed integer optimization problem
- No optimality condition
- Impossible to directly derive demand functions

Solving the problem

Step 1: condition on the choice of the discrete goods

- Fix the discrete goods, that is select a feasible y.
- The problem becomes a continuous problem in Q.
- Conditional demand functions can be derived:

$$
q_{\ell \mid y}=f\left(I-c^{T} y, p, \tilde{z}^{T} y ; \theta\right)
$$

- $I-c^{T} y$ is the income left for the continuous goods.
- If $I-c^{T} y<0, y$ is declared unfeasible.

Solving the problem

Conditional indirect utility functions
Substitute the demand functions into the utility:

$$
U=U\left(I-c^{T} y, p, \tilde{z} ; \theta\right)
$$

Step 2: Choice of the discrete good

$$
\max _{y} U\left(I-c^{T} y, p, \tilde{z}^{T} y ; \theta\right)
$$

subject to

$$
c^{T} y \leq 1
$$

- Knapsack problem.
- In many practical case, it can be solved by enumeration.

Model for individual n

Choice set

Each feasible y is an alternative i
(Indirect) utility function

$$
\max _{y} U\left(I_{n}-c_{n}^{T} y, p_{n}, \tilde{z}_{n}^{T} y ; \theta_{n}\right)
$$

simplifies to

$$
\max _{i} U_{i n}=U\left(z_{i n}, S_{n} ; \theta\right)
$$

Simple example: mode choice

Attributes

Alternatives	Attributes Travel time (t)	Travel cost (c)
Car (1)	t_{1}	c_{1}
Bus (2)	t_{2}	c_{2}

Utility

$$
\widetilde{U}=\widetilde{U}\left(y_{1}, y_{2}\right)
$$

where we impose the restrictions that, for $i=1,2$,

$$
y_{i}= \begin{cases}1 & \text { if travel alternative } \mathrm{i} \text { is chosen } \\ 0 & \text { otherwise; }\end{cases}
$$

and that only one alternative is chosen: $y_{1}+y_{2}=1$.

Simple example: mode choice

Utility functions

$$
\begin{aligned}
& U_{1}=-\beta_{t} t_{1}-\beta_{c} c_{1} \\
& U_{2}=-\beta_{t} t_{2}-\beta_{c} c_{2}
\end{aligned}
$$

where $\beta_{t}>0$ and $\beta_{c}>0$ are parameters.

Equivalent specification

$$
\begin{aligned}
& U_{1}=-\left(\beta_{t} / \beta_{c}\right) t_{1}-c_{1}=-\beta t_{1}-c_{1} \\
& U_{2}=-\left(\beta_{t} / \beta_{c}\right) t_{2}-c_{2}=-\beta t_{2}-c_{2}
\end{aligned}
$$

where $\beta>0$ is a parameter.

Choice

- Alternative 1 is chosen if $U_{1} \geq U_{2}$.
- Ties are ignored.

Simple example: mode choice

Choice

Alternative 1 is chosen if
Alternative 2 is chosen if

$$
-\beta t_{1}-c_{1} \geq-\beta t_{2}-c_{2}
$$

$$
-\beta t_{1}-c_{1} \leq-\beta t_{2}-c_{2}
$$

or
or

$$
-\beta\left(t_{1}-t_{2}\right) \geq c_{1}-c_{2}
$$

$$
-\beta\left(t_{1}-t_{2}\right) \leq c_{1}-c_{2}
$$

Dominated alternative

- If $c_{2}>c_{1}$ and $t_{2}>t_{1}, U_{1}>U_{2}$ for any $\beta>0$
- If $c_{1}>c_{2}$ and $t_{1}>t_{2}, U_{2}>U_{1}$ for any $\beta>0$

Simple example: mode choice

Trade-off

- Assume $c_{2}>c_{1}$ and $t_{1}>t_{2}$.
- Is the traveler willing to pay the extra cost $c_{2}-c_{1}$ to save the extra time $t_{1}-t_{2}$?
- Alternative 2 is chosen if

$$
-\beta\left(t_{1}-t_{2}\right) \leq c_{1}-c_{2}
$$

or

$$
\beta \geq \frac{c_{2}-c_{1}}{t_{1}-t_{2}}
$$

- β is called the willingness to pay or value of time

Simple example: mode choice

Simple example: mode choice

Outline

4. Parameter estimation

(1) Motivation
(5) Applications
(2) Microeconomic consumer theory (6) Conclusions
(3) Probabilistic choice theory

Behavioral validity of the utility maximization?

Assumptions
Decision-makers

- are able to process information
- have perfect discrimination power
- have transitive preferences
- are perfect maximizers
- are always consistent

Relax the assumptions
Use a probabilistic approach: what is the probability that alternative i is chosen?

Introducing probability

Constant utility

- Human behavior is inherently random
- Utility is deterministic
- Consumer does not maximize utility
- Probability to use inferior alternative is non zero

Niels Bohr
Nature is stochastic

Random utility

- Decision-makers are rational maximizers
- Analysts have no access to the utility used by the decision-maker
- Utility becomes a random variable

Albert Einstein

God does not throw dice

Random utility model

Probability model

$$
P\left(i \mid \mathcal{C}_{n}\right)=\operatorname{Pr}\left(U_{i n} \geq U_{j n}, \forall j \in \mathcal{C}_{n}\right)
$$

Random utility

$$
U_{i n}=V_{i n}+\varepsilon_{i n} .
$$

Random utility model

$$
P\left(i \mid \mathcal{C}_{n}\right)=\operatorname{Pr}\left(V_{i n}+\varepsilon_{i n} \geq V_{j n}+\varepsilon_{j n}, \forall j \in \mathcal{C}_{n}\right)
$$

or

$$
P\left(i \mid \mathcal{C}_{n}\right)=\operatorname{Pr}\left(\varepsilon_{j n}-\varepsilon_{i n} \leq V_{i n}-V_{j n}, \forall j \in \mathcal{C}_{n}\right)
$$

Concrete models

Model derivation

- Assume a distribution for $\varepsilon_{\text {in }}$.
- Derive the probability formula for the choice model.

Probit model

- Assumption: $\varepsilon_{i n}$ are normally distributed.
- Problem: CDF is involved in the model. No closed form.

Logit model
Assumption: $\varepsilon_{i n}$ are i.i.d. extreme value: $\mathrm{EV}(0, \mu)$.

$$
P\left(i \mid \mathcal{C}_{n}\right)=\frac{e^{\mu V_{i n}}}{\sum_{j \in \mathcal{C}_{n}} e^{\mu V_{j n}}}
$$

Choice set

Choice set potentially different for each individual
$\mathcal{C}=\{$ car, train, bus, metro $\}, \mathcal{C}_{n}=\{$ train, bus $\}$

Binary variable for choice set membership: $z_{i n}^{c} \in\{0,1\}$

$$
\begin{aligned}
P\left(i \mid \mathcal{C}_{n}\right)= & \operatorname{Pr}\left(U_{i n} \geq U_{j n}, j \in \mathcal{C}_{n}\right)=\operatorname{Pr}\left(U_{i n}+\ln z_{i n}^{c} \geq U_{j n}+\ln z_{j n}^{c}, j \in \mathcal{C}\right)= \\
& P\left(i \mid z^{c}, \mathcal{C}\right)
\end{aligned}
$$

Logit

$$
P\left(i \mid z^{c}, \mathcal{C}\right)=\frac{z_{i n}^{c} e^{V_{i n}}}{\sum_{j \in \mathcal{C}} z_{j n}^{c} e^{V_{j n}}}
$$

A concrete example: transportation mode choice

Binary choice

- Car
- Train

Utility function for car

$$
\begin{aligned}
V_{i n} & =3.04 \\
& -0.0527 \cdot \text { cost }_{\text {in }} \\
& -2.66 \cdot \text { travelTime }_{\text {in }} \cdot \text { work }_{n} \\
& -2.22 \cdot \text { travelTime }_{i n} \cdot\left(1-\text { work }_{n}\right) \\
& -0.850 \cdot \text { male }_{n} \\
& +0.383 \cdot \text { mainEarner }_{n} \\
& -0.624 \cdot \text { fixedArrivalTime }_{n} .
\end{aligned}
$$

A concrete example: transportation mode choice

Utility function for train

$$
\begin{aligned}
V_{j n}= & -0.0527 \cdot \text { cost }_{j n} \\
& -0.576 \cdot \text { travelTime }_{j n} \\
& +0.961 \cdot \text { firstClass }_{n} .
\end{aligned}
$$

A concrete example: transportation mode choice

Three individuals

	Individual 1	Individual 2	Individual 3
Train cost	40.00	7.80	40.00
Car cost	5.00	8.33	3.20
Train travel time	2.50	1.75	2.67
Car travel time	1.17	2.00	2.55
Gender	M	F	F
Trip purpose	Not work	Work	Not work
Class	Second	First	Second
Main earner	No	Yes	Yes
Arrival time	Variable	Fixed	Variable

A concrete example: transportation mode choice

A concrete example: transportation mode choice

	Individual 2		
Variables	Coef.	Car	Train
Car dummy	3.04	1	0
Cost	-0.0527	8.33	7.80
Tr. time by car (work)	-2.66	2	0
Tr. time by car (not work)	-2.22	0	0
Tr. time by train	-0.576	0	1.75
First class dummy	0.961	0	1
Male dummy	-0.850	0	0
Main earner dummy	0.383	1	0
Fixed arrival time dummy	-0.624	1	0
$V_{\text {in }}$		-2.9600	-0.4581
$P_{n}(i)$		0.0757	0.924
STRANSP-OR			

A concrete example: transportation mode choice

Individual 3			
Variables	Coef.	Car	Train
Car dummy	3.04	1	0
Cost	-0.0527	3.20	40.00
Tr. time by car (work)	-2.66	0	0
Tr. time by car (not work)	-2.22	2.55	0
Tr. time by train	-0.576	0	2.67
First class dummy	0.961	0	0
Male dummy	-0.850	0	0
Main earner dummy	0.383	1	0
Fixed arrival time dummy	-0.624	0	0
$V_{\text {in }}$		-2.4066	-3.6459
SRANSP-OR	$P_{n}(i)$		0.775
TR			0.225

Outline

4. Parameter estimation

(1) Motivation
(5) Applications
(2) Microeconomic consumer theory
(6) Conclusions

(3) Probabilistic choice theory

Parameters

Utility function for train

Data

Sample of individuals n

Stratified sampling

Independent variables: x_{n}
Travel time, travel cost, first class, income, etc.

Dependent variables: $y_{i n}$
Choice: train or car.

Likelihood: one observation

$$
P_{n}(\text { auto } ; \beta)^{y_{\text {auto }, n}} P_{n}(\text { train } ; \beta)^{y_{\text {train }, n}}
$$

Maximum likelihood estimation

Estimators for the parameters
Parameters that achieve the maximum likelihood

$$
\max _{\beta} \prod_{n}\left(P_{n}(\text { auto } ; \beta)^{y_{\text {auto }, n}} P_{n}(\text { train } ; \beta)^{y_{\text {train }, n}}\right)
$$

Log likelihood
Alternatively, we prefer to maximize the log likelihood

$$
\begin{gathered}
\max _{\beta} \ln \prod_{n}\left(P_{n}(\text { auto })^{y_{\text {auto }, n}} P_{n}(\text { train })^{y_{\text {train }, n}}\right)= \\
\max _{\beta} \sum_{n} y_{\text {auto }, n} \ln P_{n}(\text { auto })+y_{\text {train }, n} \ln P_{n}(\text { train })
\end{gathered}
$$

Likelihood

 fédirale de lausanne

Log likelihood

Outline

4. Parameter estimation

(1) Motivation

(5) Applications

(2) Microeconomic consumer theory

(6) Conclusions

(3) Probabilistic choice theory

Using the model

Behavioral model

$$
P\left(i \mid x_{n}, \mathcal{C} ; \theta\right)
$$

What do we do with it?

Aggregate shares

- Prediction about a single individual is of little use in practice.
- Need for indicators about aggregate demand.
- Typical application: aggregate market shares.

Aggregation

Population

- Identify the population T of interest (in general, already done during the phase of the model specification and estimation).
- Obtain x_{n} for each individual n in the population.
- The number of individuals choosing alternative i is

$$
N_{T}(i)=\sum_{n=1}^{N_{T}} P_{n}\left(i \mid x_{n} ; \theta\right)
$$

- The share of the population choosing alternative i is

$$
W(i)=\frac{1}{N_{T}} \sum_{n=1}^{N_{T}} P\left(i \mid x_{n} ; \theta\right)=\mathrm{E}\left[P\left(i \mid x_{n} ; \theta\right)\right]
$$

Aggregation

Population	Alternatives				Total
	1	2	\cdots	J	
1	$P\left(1 \mid x_{1} ; \theta\right)$	$P\left(2 \mid x_{1} ; \theta\right)$	\cdots	$P\left(J \mid x_{1} ; \theta\right)$	1
2	$P\left(1 \mid x_{2} ; \theta\right)$	$P\left(2 \mid x_{2} ; \theta\right)$	\cdots	$P\left(J \mid x_{2} ; \theta\right)$	1
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
N_{T}	$P\left(1 \mid x_{N_{T}} ; \theta\right)$	$P\left(2 \mid x_{N_{T}} ; \theta\right)$	\cdots	$P\left(J \mid x_{N_{T}} ; \theta\right)$	1
Total	$N_{T}(1)$	$N_{T}(2)$	\cdots	$N_{T}(J)$	N_{T}

Large table

When the table has too many rows...
apply sample enumeration.

When the table has too many columns...
apply micro simulation.

Example: interurban mode choice in Switzerland

Sample

- Revealed preference data
- Survey conducted between 2009 and 2010 for PostBus
- Questionnaires sent to people living in rural areas
- Each observation corresponds to a sequence of trips from home to home.
- Sample size: 1723

Model: 3 alternatives

- Car
- Public transportation (PT)
- Slow mode

Example: interurban mode choice in Switzerland

| Parameter
 number | Description | Coeff.
 estimate | Robust
 Asympt.
 std. error | t t-stat |
| ---: | :--- | :---: | :--- | :---: | p-value

Example: interurban mode choice in Switzerland

Parameter number	Description	Robust Coeff. estimate	Asympt. std. error 17 Cte. (Car)	0.792	0.512
18	Income 4-6 KCHF (Car)	-1.02	0.251	1.55	0.12
19	Income 8-10 KCHF (Car)	-0.422	0.223	-1.90	0.00
20	Income 10 KCHF and more (Car)	0.126	0.0697	1.81	0.06
21	Male dummy (Car)	0.291	0.229	1.27	0.20
22	Number of cars in household (Car)	0.939	0.135	6.93	0.00
23	Gasoline cost [CHF], if trip purpose HWH (Car)	-0.164	0.0369	-4.45	0.00
24	Gasoline cost [CHF], if trip purpose other (Car)	-0.0727	0.0224	-3.24	0.00
25	Gasoline cost [CHF], if male (Car)	-0.0683	0.0240	-2.84	0.00
26	French speaking (Car)	0.926	0.190	4.88	0.00
27	Distance [km] (Slow modes)	-0.184	0.0473	-3.90	0.00

Summary statistics

Number of observations	$=1723$
Number of estimated	parameters $=27$
$\mathcal{L}\left(\beta_{0}\right)$	$=-1858.039$
$\mathcal{L}(\hat{\beta})$	$=$
	-792.931
$-2\left[\mathcal{L}\left(\beta_{0}\right)-\mathcal{L}(\hat{\beta})\right]$	$=$
ρ^{2}	$=0.573$
$\bar{\rho}^{2}$	$=$

Example: interurban mode choice in Switzerland

	Male	Female	Unknown gender	Population
Car	64.96%	60.51%	70.88%	62.8%
PT	30.20%	32.52%	25.59%	31.3%
Slow modes	4.83%	6.96%	3.53%	5.88%

Forecasting

Procedure

- Scenarios: specify future values of the variables of the model.
- Recalculate the market shares.

Market shares

	Increase of the cost of gasoline						
	Now	5%	10%	15%	20%	25%	30%
Car	62.8%	62.5%	62.2%	61.8%	61.5%	61.2%	60.8%
PT	31.3%	31.6%	31.9%	32.2%	32.5%	32.8%	33.1%
Slow modes	5.88%	5.90%	5.92%	5.95%	5.97%	6.00%	6.02%

Forecasting

Price optimization

Expected market share

$$
W(i)=\frac{1}{N_{T}} \sum_{n=1}^{N_{T}} P\left(i \mid p_{i n}, x_{n} ; \theta\right)
$$

Expected revenue

$$
R\left(i ; p_{i}\right)=\frac{1}{N_{T}} \sum_{n=1}^{N_{T}} p_{i n} P\left(i \mid p_{i n}, x_{n} ; \theta\right)
$$

Price optimization

$$
\max _{p_{i}} R\left(i ; p_{i}\right)=\frac{1}{N_{T}} \sum_{n=1}^{N_{T}} p_{i n} P\left(i \mid p_{i n}, x_{n} ; \theta\right) .
$$

A simple example

Context

- \mathcal{C} : set of movies
- Population of N individuals
- Competition: staying home watching TV

One theater - homogenous population

Alternatives

- Staying home: $U_{c n}=0+\varepsilon_{c n}$
- My theater: $U_{m n}=-10.0 p_{m}+3+\varepsilon_{m n}$

Logit model
ε_{m} i.i.d. $\operatorname{EV}(0,1)$

Demand and revenues

Heterogeneous population

Two groups in the population

$$
U_{m n}=-\beta_{n} p_{m}+c_{n}
$$

Young fans: $2 / 3$	Others: $1 / 3$
$\beta_{1}=-10, c_{1}=3$	$\beta_{2}=-0.9, c_{2}=0$

Demand and revenues

Two theaters, different types of films

Two theaters, different types of films

Theater m

- Attractive for young people
- Star Wars Episode VII

Theater k

- Not particularly attractive for young people
- Tinker Tailor Soldier Spy

Heterogeneous demand

- Two third of the population is young (price sensitive)
- One third of the population is not (less price sensitive)

Two theaters, different types of films

Data

- Theaters m and k
- $U_{m n}=-10 p_{m}+(4), n=y o u n g$
- $U_{m n}=-0.9 p_{m}, n=$ others
- $U_{k n}=-10 p_{k}+(0), n=y o u n g$
- $U_{k n}=-0.9 p_{k}, n=o$ others

Theater m

- Optimum price m: 0.390
- Young customers: 58%
- Other customers: 36%
- Total demand: 51%
- Revenues: 1.779

Theater k

- Optimum price $k: 1.728$
- Young customers: 0\%
- Other customers: 13\%
- Demand: 4\%
- Revenues: 0.581

Two theaters, same type of films

Theater m

- Expensive
- Star Wars Episode VII

Theater k

- Cheap (half price)
- Star Wars Episode VIII

Heterogeneous demand

- Two third of the population is young (price sensitive)
- One third of the population is not (less price sensitive)

Two theaters, same type of films

Data

- Theaters m and k
- $N=9$
- $R=50$
- $U_{m n}=-10 p+(4), n=$ young
- $U_{m n}=-0.9 p, n=$ others
- $U_{k n}=-10 p / 2+(4), n=y o u n g$
- $U_{k n}=-0.9 p / 2, n=$ others

Theater m

- Optimum price m: 3.582
- Young customers: 0%
- Other customers: 63\%
- Total demand: 21\%
- Revenues: 3.42

Theater k
Closed

Outline

4. Parameter estimation

(1) Motivation
(5) Applications
(2) Microeconomic consumer theory
(6) Conclusions
(3) Probabilistic choice theory FEDIRALE DE LAUSANNE

Conclusion

Demand
Demand is a sequence of choices

Choice
Choice is the result of an optimization problem: utility

Operational choice models Random utility - logit

Parameter estimation
Maximum likelihood estimation
Applications
Market shares prediction - Revenue optimization

