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Abstract

A non-intrusive reduced basis (RB) method is proposed for parametrized nonlinear structural analysis un-
dergoing large deformations and with elasto-plastic constitutive relations. In this method, a reduced basis
is constructed from a set of full-order snapshots by the proper orthogonal decomposition (POD), and the
Gaussian process regression (GPR) is used to approximate the projection coefficients. The GPR is carried
out in the offline stage with active data selection, and the outputs for new parameter values can be ob-
tained rapidly as probabilistic distributions during the online stage. Due to the complete decoupling of the
offline and online stages, the proposed non-intrusive RB method provides a powerful tool to efficiently solve
parametrized nonlinear problems with various engineering applications requiring multi-query or real-time
evaluations. With both geometric and material nonlinearities taken into account, numerical results are
presented for typical 1D and 3D examples, illustrating the accuracy and efficiency of the proposed method.

Keywords: Reduced basis method, nonlinear structural analysis, proper orthogonal decomposition,
Gaussian process regression, machine learning

1. Introduction1

Models expressed as parametrized nonlinear partial differential equations are widely used in structural2

engineering [20, 38]. In such models, parameters are defined to characterize material properties, loads,3

geometric features, boundary conditions and so on. Especially in the context of multi-query or real-time4

structural analysis, such as structural optimization [14], reliability analysis [29], real-time updating [24] and5

parameter estimation [10], it is required to solve the system for many parameter values.6

The rapid development of computer-aided engineering (CAE) and simulation science during the past7

several decades has enabled high-fidelity simulations for complex engineering structures, for which finite8

element methods (FEMs) [48, 49] are the most popular tools and have been widely studied and used. In9

spite of the increasing computational power, high-fidelity simulations are still too expensive to allow multi-10

query or real-time problems, as a large amount of degrees of freedom (DOFs) are required to accurately solve11

a problem, implying great demands on both CPU time and memory. Due to some intrinsic similarities among12

the solutions at different parameter values, on the other side, repeatable high-fidelity calculations for varying13

parameters are potentially wasting substantial computational resource. To address this issue, reduced order14

modeling (ROM) has been extensively developed for decades, aiming at reducing the computational cost15

with a controlled loss of accuracy. The key idea of ROM is to replace the full-order system with a carefully16

constructed reduced-order model with much smaller dimension, to reduce memory needs and CPU time.17

The reduced basis (RB) method [20, 37, 38, 41] is a powerful and widely used technique for ROM, carried18

out in an offline-online framework. In the offline stage, an RB space, with a significantly smaller dimension19
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than the full-order problem, is spanned by a set of RB functions carefully extracted from a set of high-fidelity20

snapshots obtained at specific parameter locations. The two major approaches for such extraction are the21

Greedy algorithm [13, 37] and the proper orthogonal decomposition (POD) [26, 38], of which the former22

selects a subset of snapshots as basis functions according to some optimality criterion, while the latter23

employs a singular value decomposition (SVD) to the collection of snapshots to recover the RB functions.24

Once the RB space is constructed, the approximated solution for a desired new parameter value is sought25

online as a linear combination of the RB functions. A Galerkin projection is often employed to determine26

the combination coefficients, and referred to as the Galerkin-projection-based approach for the online stage.27

The success of the RB method in decreasing computational cost relies on the decoupling of the offline28

and online stages, ensuring that the online computation is independent of the dimension of the full-order29

model. For a general nonlinear structural problem with non-affine dependence on parameters, however, such30

a full decoupling is often not possible. The assembly of the reduced problem is directly embodied online,31

and both the configuration updating and the nonlinear iteration require the full-order model, which leads32

to a reduced efficiency. The empirical interpolation method (EIM) [2] and its discrete variants [12, 32] have33

been proposed to recover an affine expansion of the differential operator in a non-affine case. However, such34

schemes are problem-dependent and of an intrusive nature, and is often not practical for complex nonlinear35

problems.36

The research on the reduced order modeling for structural analysis began in the 1980’s [36]. Because37

of the complexity in the constitutive relations of solid materials and the nonlinearity due to the large38

deformation, the construction of reduced models is usually challenging for structural problems. However,39

various techniques for reducing different structural models have been proposed, such as the model order40

reduction for nonlinear structural dynamics [1, 25], the reduced basis method for many-parameter structural41

problems [30], the reduced basis method for finite deformation [47], and some hyper-reduction techniques42

for structural analysis [9, 11, 39], etc. Basically all these existing methods are intrusive, and sometimes43

inconvenient for practical applications in engineering.44

In this paper, a non-intrusive RB method is proposed for nonlinear structural analysis. After extracting45

the RB functions from a set of snapshots by POD, a regression-based approach [21] is used to establish a46

mapping from parameter values to projection coefficients onto the RB space. A complete decoupling of offline47

and online stages is ensured by the regression-based approach, as the online solutions only require direct48

outputs from the reduce-order regression model that is trained offline. As an important part of machine49

learning [5, 31], regression methods have been intensively developed in supervised learning. Among the50

existing regression models, the proposed regression-based RB method employs a Gaussian process regression51

(GPR), which infers that the observed input-output pairs follow a prior of Gaussian process, and then makes52

predictions for new parameter values according to the posterior. Based on the work about a Gaussian53

functional regression framework in [33, 34], the Gaussian-type regression was combined with the reduced54

basis method in [35] to predict some quantities of interest of the high-fidelity simulation. In this work,55

however, the GPR is employed to recover the full solution fields of the nonlinear problems. Equipped56

with an active data selection for the training samples, the efficiency of the GPR can be further enhanced.57

Numerical results also indicate that the GPR model shows good performance in both accuracy and efficiency58

of ROM’s for nonlinear structural analysis.59

Following the introduction, the basic equations of nonlinear structural analysis are briefly reviewed in60

Section 2. In Section 3, the regression-based RB method is presented and the procedure is specified. After an61

introduction to the key ideas of GPR, application of GPR to the ROM for structural problems is addressed62

in Section 4, with an active data selection algorithm proposed to enhance efficiency. In Section 5, the63

method is tested and validated by two examples of large deformation analysis, one in 1D and the other in64

3D. Finally, some conclusions are drawn in Section 6.65

For the clarity of the notation, italic bold symbols are adopted in this paper for coordinates, vector fields66

and tensor fields, such as coordinates X, displacement vector field u, strain tensor field E and stress tensor67

field S; and upright bold symbols are used for vectors and matrices in linear algebra, such as regression68

input vector x, collection of outputs y, observed input matrix X, discrete displacement solution uh and the69

snapshot matrix S.70
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2. Nonlinear structural analysis71

2.1. Governing equations72

In the following, a general deformable body is assumed to experience large deformation and a nonlinear73

constitutive response in a Cartesian coordinate system. The governing equations can be correspondingly74

given as follows:75

∇X · (F (u)S) + b = 0 in Ω ,

S = C(E(u)) in Ω ,

u = 0 on ΓD ,

(F (u)S)
T
n̂ = t on ΓN .

(1)

Here the unknown u = u(X) denotes the vector field of the displacement defined with respect to the original76

coordinates X ∈ Ω̄ of the body, where Ω̄ is the undeformed configuration that the body occupies before the77

motion, and Ω ⊂ R3 is the corresponding domain. The motion of the body is shown in Figure 1. Referred78

to as the deformation gradient tensor, the operator F (·) is introduced as79

F (u) = I + ∇Xu , (2)

where I is the unit tensor and ∇X is the gradient operator with respect to the original coordinates X.80

The Green-Lagrange strain tensor field E(·) is defined as the following nonlinear operator acting on the81

displacement field u:82

E(u) =
1

2

[
∇Xu+ (∇Xu)T + (∇Xu)T∇Xu

]
. (3)

Moreover, S denotes the second Piola-Kirchhoff stress field S, which is usually used for large deformation83

analysis, b is a prescribed body force applied on the structure with respect to the undeformed volume, t84

is the prescribed traction with respect to the undeformed surface area and n̂ is the unit outward normal85

vector along ΓN . The constitutive relation of the material can be expressed as a nonlinear operator C which86

maps a tensor field of the Green-Lagrange strain to the corresponding tensor field of second Piola-Kirchhoff87

stresses.88

In this work, two typical nonlinear constitutive relations in structural analysis, hyperelasticity and elasto-89

plasticity, are considered. We refer to [7, 45] for more details about them and a variety of other constitutive90

relations. Moreover, it should be pointed out that only quasi-static problems are taken into account in this91

work, i.e. the problems are assumed to be time-independent.92

Remark 1: In this paper, only problems with homogeneous Dirichlet boundary conditions are discussed,93

as problems with inhomogeneous Dirichlet boundary conditions u = uD on ΓD can be transformed to the94

homogeneous case, i.e. one can define w = u − p with p ∈ [C∞(Ω̄)]3 being a predefined function that95

satisfies the boundary conditions p = uD on ΓD, and solve for w by replacing u with w+p in the problem.96

97

2.2. Nonlinear structural problems and their parametrization98

Combining the governing equations in Subsection 2.1, one has the following weak formulation of a99

nonlinear structural problem, or referred to as the virtual work principle [3, 8]: find u ∈ V such that100 ∫
Ω

C (E(u)) : DE[u](v) dΩ =

∫
Ω

bTv dΩ +

∫
ΓN

tTv dΓ ∀v ∈ V , (4)

where V = {v : Ω̄→ R3 smooth enough, v = 0 on ΓD}, and DE[u](v) stands for the Gâteaux derivative of101

E at u in the direction v and can be expressed explicitly as102

DE[u](v) =
1

2
[∇Xv + (∇Xv)T + (∇Xv)T∇Xu+ (∇Xu)T∇Xv]. (5)
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Figure 1: Motion of a deformable body

Remark 2: To ensure regularity, the solution u to a nonlinear structural problem is considered to belong103

to Sobolev space [W 2,p(Ω)]3 with some p > 3, see [15] for example. In this paper, such considerations are104

irrelevant to the proposed reduced order modelling techniques, so the smoothness of solutions is merely105

described as ’smooth enough’ for simplification.106

Usually, finite elements are adopted to discretize the problem, translating it into finding a solution uh in107

a finite-dimensional space Vh ⊂ V. An incremental formulation is employed for applying external loads onto108

the structure. Within a loading increment, iterative algorithms, such as the Newton-Raphson algorithm and109

the arc-length method [3, 8], can be used to solve the nonlinear algebraic/discrete equations. In this work,110

the total Lagrangian formulation is used as an incremental formulation, in which the discrete equations are111

formulated and updated with respect to the undeformed configuration.112

Furthermore, physical parametrization is taken into account in this paper. Several parameters are113

considered for some characteristics in the constitutive relation and the external loads. Then the parametrized114

nonlinear problem, corresponding to (4), is given as: for any given parameter µ ∈ P ⊂ Rd,115 ∫
Ω

C(E(u(µ));µ) : DE[u(µ)](v) dΩ =

∫
Ω

b(µ)Tv dΩ +

∫
ΓN

t(µ)Tv dΓ ∀v ∈ V , (6)

where P is the parameter domain and d is the total number of parameters. For cases with parameters in116

the geometry, [22, 28] can be referred to for details. After a transformation to the parameter-independent117

reference domain, the treatment will be similar to the strategy for physical parameters.118

3. The reduced basis method for nonlinear structural analysis119

Due to the use of an incremental formulation and iteration algorithms, solving the parametrized nonlinear120

problem (6) by a finite element discretization requires the assembly and solution of a number of linear121

systems. The dimension of such linear systems, denoted by Nh and referred to as the number of degrees122

of freedom (DOFs), is determined by both the underlying mesh and the polynomial order that the finite123

element analysis employs. The high-fidelity solution to a real-world structural problem often requires a124

large number of DOFs and many steps of increments and iterations, implying that the full-order model is125

expensive. Thus a direct numerical approximation of the full-order model is not affordable in many-query126

or real-time context of parametrized nonlinear structural analysis.127

The reduced basis (RB) method is proposed as an efficient and convenient tool for model order reduction.128

It seeks the approximate solution to a parameterized problem in a reduced space spanned by a set of129
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parameter-independent RB functions, constructed from a collection of high-fidelity snapshots at different130

parameter values. The RB functions are either carefully chosen from the snapshots by the Greedy algorithm131

[13, 37, 41], or by principal ingredient analysis of snapshots. The former requires an error estimator/indicator132

for the full-order solution, and picks the snapshot that maximizes the estimator/indicator as a new RB133

function until a criteria is satisfied. However, proper error estimators or indicators for a general nonlinear134

structural problem are unknown, so the latter approach is utilized with the aid of the proper orthogonal135

decomposition (POD) [20, 26, 38], as detailed in the following.136

To evaluate the reduced-order solution for any desired value in the parameter domain, a regression-based137

approach will be introduced to parametrized nonlinear structural analysis, rather than the conventional138

Galerkin-projection-based approach.139

3.1. Full-order solutions and snapshots140

The notion of a solution manifold can be introduced, comprising all the solutions of the parametrized141

problem (6) under variation of the parameters, i.e. M = {u(µ) : µ ∈ P} ⊂ V. Since the exact solutions are142

not available, a discrete counterpart ofM can be considered asMh = {uh(µ) : µ ∈ P} ⊂ Vh, where uh(µ) is143

the high-fidelity full-order solution obtained by finite element analysis, i.e. uh(X;µ) =
∑Nh

i=1(uh(µ))iφi(X).144

Here Nh is the number of DOFs, uh(µ) is an Nh-dimensional vector collecting all the values of the DOFs,145

and φi is the ith basis/shape function. Note that the finite element space Vh is spanned by all the shape146

functions, i.e. Vh = span{φ1,φ2, · · · ,φNh
}. The discrete solution uh(µ) for any parameter µ is calculated147

under a fixed finite element setting.148

To generate an RB space for the nonlinear problem, one considers a collection of Ns snapshots {uh(µ1),149

uh(µ2), · · · ,uh(µNs)} associated with a discrete point-set Θ = {µ1,µ2, · · · ,µNs} ⊂ P in the parameter150

domain. Then a subspace of Vh can be spanned by the snapshots as151

MΘ = span{uh(µ1),uh(µ2), · · · ,uh(µNs)} ⊂ Vh . (7)

The discrete point-set Θ is either a uniform lattice or a collection of generated points over the parameter152

domain P. If Θ is fine enough, MΘ can act as a good representation of Mh.153

To reduce the model, a low-rank approximation Vrb with rank L � min{Nh, Ns} should be found for154

MΘ. Towards this end, the POD is employed in this work to extract RB functions {ψ1,ψ2, · · · ,ψL} from155

snapshots and then span the RB space Vrb as156

Vrb = span{ψ1,ψ2, · · · ,ψL} , (8)

as detailed in next subsection.157

3.2. The proper orthogonal decomposition and the reduced basis space158

Consider a snapshot matrix S ∈ RNh×Ns collecting the DOFs of all snapshots, i.e159

S =
[

uh(µ1) | uh(µ2) | · · · | uh(µNs)
]
. (9)

In the context of nonlinear structural analysis, it is assumed that the number of snapshots is less than that160

of DOFs, i.e. Ns � Nh, to avoid a high cost of preparing full-order snapshots.161

The POD takes advantage of the singular value decomposition (SVD) of matrix S, given as162

S = UΣZT (10)

with U ∈ RNh×Nh and Z ∈ RNs×Ns being orthogonal matrices, i.e. UTU = INh
and ZTZ = INs , and163

Σ = diag{σ1, σ2, · · · , σNs} containing the singular values σ1 ≥ σ2 ≥ · · · ≥ σNs ≥ 0.164

Defined as a subspace of RNh spanned by all the Ns columns of S ∈ RNh×Ns , the column space of S165

is denoted by Col(S). At the algebraic level, one seeks to find the ’best’ approximation of Col(S), in some166

optimal sense, among all L-dimensional subspaces with L ≤ rank(S). Let V ∈ RNh×L denote the first L167

columns of U, and let YL = {W ∈ RNh×L : WTW = IL} represent the set of all L-dimensional orthogonal168
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bases. The projection error of snapshots onto orthogonal bases W ∈ YL in the Euclidean norm can be169

expressed as
∑Ns

i=1 ‖uh(µi)−WWTuh(µi)‖2RNh
.170

The Schmidt-Eckart-Young theorem [17, 38, 42] states that the basis consisting of the first L left singular171

vectors of S minimizes the projection error of snapshots among all the L-dimensional orthogonal bases in172

RNh , and the error can be evaluated by the (L+ 1)th to Nsth singular values, i.e.173

Ns∑
i=1

∥∥∥uh(µi)−VVTuh(µi)
∥∥∥2

RNh
= min

W∈YL

Ns∑
i=1

∥∥∥uh(µi)−WWTuh(µi)
∥∥∥2

RNh
=

Ns∑
i=L+1

σ2
i . (11)

Thus one obtains that Col(S) can be well approximated by Col(V) with a small L if the singular values174

decay rapidly.175

The procedure of the POD is then given as the following algorithm:176

Algorithm 1 POD

Input: Snapshot matrix S, projection error tolerance εPOD

Output: Reduced rank L, matrix V collecting the RB
1: Form the correlation matrix M = STS ∈ RNs×Ns ;
2: Solve the eigenvalue problem for M, i.e. Mxi = σ2

i xi, i = 1, 2, · · · , Ns ;
3: Set vi = 1

σi
Sxi, i = 1, 2, · · · , rank(S) ;

4: Define L ≤ rank(S) as the minimum integer s.t.
∑L

i=1 σ
2
i∑Ns

i=1 σ
2
i

> 1− ε2POD;

5: Define V = [ v1 | v2 | · · · | vL ].

The desired rank L can also be defined directly, rather than determined by the tolerance εPOD.177

Corresponding to the approximation of Col(S) by Col(V) on the algebraic level, function space MΘ is178

hence approximated by Vrb = span{ψ1,ψ2, · · · ,ψL} with the RB functions ψl defined as ψl =
∑Nh

k=1 Vklφk,179

l = 1, 2, · · · , L. It is noticed that there exists a biunique correspondence between the elements in Vrb and180

those in Col(V), i.e. for any wL ∈ RL181

wrb := VwL ∈ Col(V) ⇔ wrb =

Nh∑
k=1

(wrb)kφk =

L∑
l=1

(wL)lψl ∈ Vrb . (12)

3.3. Regression-based approach for reduced-order solutions182

The numerical procedure of the RB method is efficiently carried out in an offline-online framework.183

As discussed, the RB functions are prepared from the high-fidelity snapshots in the parameter-independent184

offline stage. The reduced-order solution for a new parameter is then sought in the online stage. The185

Galerkin-projection-based approach is the most often used for this, i.e. the problem for a new parameter186

value is solved in the RB space Vrb by a standard Galerkin approach.187

However, the Galerkin-projection-based scheme will not significantly save computational cost for a general188

nonlinear structural problem. In addition to compromising the efficiency due to the non-affinity in parameter189

dependence, the structural configuration and matrix assembly have to be updated during all the loading190

increments and iterations when solving nonlinear algebraic equations. Moreover, there may exist convergence191

or updating issues in some complex cases due to the possibility that some configurations in the incremental192

procedure are not represented well in Vrb.193

Therefore, a regression-based approach is proposed to calculate reduced-order solutions for new pa-194

rameters. In this scenario, the projection of a full-order discrete solution uh(µ) onto Col(V) acts as the195

corresponding reduced-order solution at algebraic level,196

urb(µ) = VVTuh(µ) = arg min
wh∈Col(V)

‖uh(µ)−wh‖RNh , (13)
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in which VTuh(µ) = uL(µ) collects the coefficients associated with column bases of V.197

To obtain the projection coefficients uL(µ) for any desired parameter µ ∈ P, one can resort to a nonlinear198

regression π̂ between d = dim(P) inputs and L outputs:199

µ 7→ uL(µ) = VTuh(µ) ≈ π̂(µ) . (14)

This regression model π̂(·) should be constructed from a set of training data D = {(µi,VTuh(µi)) : i =200

1, 2, · · · ,M} during the offline stage, where uh(µi) is the full-order solution for each sample. The model is201

used during the online stage to recover the output π̂(µ∗) for any new input µ∗ ∈ P. Correspondingly, the202

reduced-order solution urb,reg(µ∗) ∈ Vrb is given as203

urb,reg(µ∗) =

L∑
l=1

(π̂(µ∗))lψl =

Nh∑
k=1

(Vπ̂(µ∗))k φk =

Nh∑
k=1

(urb,reg(µ∗))k φk , (15)

where Vπ̂(µ∗) = urb,reg(µ∗) recovers the nodal values of the solution. Once the regression model is obtained,204

the online stage only requires direct outputs from this model, ensuring that the online computation is carried205

out at low cost.206

Algorithm 2 Regression-based RB method for nonlinear structural analysis (algebraic level)

1: Offline stage:
2: Compute Ns full-order snapshots {uh(µ1),uh(µ2), · · · ,uh(µNs)} and form the snapshot matrix S ∈

RNh×Ns ;
3: Perform POD for S and get the L orthogonal bases V ∈ RNh×L;
4: Prepare the training set D = {(µi,VTuh(µi)) : i = 1, 2, · · · ,M};
5: Construct the regression model π̂(·) from D.

6: Online stage:
7: Recover output π̂(µ∗) for a new parameter value µ∗;

8: Evaluate the reduced-order solution urb,reg(µ∗) =
∑Nh

k=1 (Vπ̂(µ∗))k φk.

Remark 3: In some cases, the snapshots for the construction of the RB space can be included into the207

training set and reused as training samples.208

We note the complete decoupling of online and offline stages, and the non-intrusive nature of the209

regression-based RB method. A Gaussian process model is utilized to construct the regression π̂(·), as210

discussed in the following section.211

4. Gaussian process regression model212

In supervised learning, regression is concerned with prediction of continuous quantities of interest by213

constructing a model from a set of observation data. Let D = {(xi, yi) : i = 1, 2, · · · ,M} denote the214

training set of M observations, where each input xi ∈ P ⊂ Rd consists of d entries and lies in the input215

domain P, and yi is the output corresponding to xi. In a Gaussian process regression (GPR) model [40, 46],216

the observed input-output pairs are assumed to follow some unknown regression function f : P → R as217

yi = f(xi), possibly corrupted by noise. The model then infers a probabilistic distribution over functions218

given the data, and uses this distribution to make predictions when given new inputs.219

4.1. Gaussian processes for regression220

A Gaussian process (GP) is a collection of random variables, any finite number of which obeys a joint221

Gaussian distribution. In the case of GPR, let the prior on the regression function be a GP corrupted be222
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an independent Gaussian noise term, i.e. for (x,x′) ∈ P × P,223

f(x) ∼ GP(0, κ(x,x′)) , y = f(x) + ε , ε ∼ N (0, σ2
y) . (16)

There are many different choices for the covariance function κ : P × P → R. A frequently used one is the224

squared exponential (SE) kernel :225

κ(x,x′) = σ2
f exp

(
− 1

2`2
‖x− x′‖2Rd

)
, (17)

containing two hyperparameters: the standard deviation parameter σf and the correlated lengthscale `.226

Another covariance function, that we will use in this work, is the automatic relevance determination (ARD)227

SE kernel:228

κ(x,x′) = σ2
f exp

(
−1

2

d∑
m=1

(xm − x′m)2

`2m

)
, (18)

which considers an individual correlated lengthscale for each input dimension, and allows for differentiated229

relevances of input features to the regression.230

Given a finite number of points in the input domain, a prior joint Gaussian is thus defined for the231

regression outputs:232

y|X ∼ N (0,Ky) , Ky = cov[y|X] = κ(X,X) + σ2
yIM , (19)

where y = {y1, y2, · · · , yM}T, X = [ x1 | x2 | · · · | xM ] and IM is the M -dimensional unit matrix.233

Given a set of M∗ new test inputs denoted by X∗ ∈ Rd×M∗
, predictions of the corresponding noise-234

free outputs f∗ ∈ RM∗
are desired. From the joint density of the observed outputs y and the noise-free235

test outputs f∗, the standard rules for conditioning Gaussians gives the posterior predictive distribution for236

f∗ ∈ RM∗
as follows237

f∗|X∗,X,y ∼ N (m∗,C∗) ,

m∗ = K∗TK−1
y y , C∗ = K∗∗ −K∗TK−1

y K∗ ,
(20)

where K∗∗ = κ(X∗,X∗) and K∗ = κ(X∗,X).238

The values of the hyperparameters θ make significant difference on the predictive performance, with239

θ = {σf , `, σy} for the case of SE kernel and θ = {σf , `1, · · · , `d, σy} for the case of ARD SE kernel.240

In this work, an empirical Bayesian approach of maximizing likelihood is adopted to determine a set of241

optimal values of the parameters. Using a standard gradient-based optimizer, one can estimate the optimal242

hyperparameters θopt via the maximization problem:243

θopt = arg max
θ

log p(y|X) = arg max
θ

{
−1

2
yTK−1

y (θ)y − 1

2
log |Ky(θ)| − M

2
log(2π)

}
, (21)

where p(y|X) is the conditional density function of y given X, also considered as the marginal likelihood.244

The procedure of a GPR is given as the following algorithm.245
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Algorithm 3 GPR

Input: A training set of M observations D = {(xi, yi) : i = 1, 2, · · · ,M}, a chosen kernel function κ(·, ·),
test inputs X∗ ∈ Rd×M∗

Output: Test outputs f∗|X∗,X,y
1: Estimate the optimal hyperparameters θopt by maximizing the likelihood, in each iterative step of which

one needs to
2: Form a covariance matrix Ky = κ(X,X) + σ2

yIM ;

3: Calculate a vector a ∈ RM such that Kya = y;
4: Calculate the likelihood log p(y|X) = − 1

2yTa− 1
2 log |Ky| − M

2 log(2π);
5: Calculate the gradient of the likelihood with respect to the hyperparameters;
6: Set Ky = Ky(θopt) and a = a(θopt) for the optimal hyperparameters;
7: Form correlation matrices K∗∗ = κ(X∗,X∗) and K∗ = κ(X∗,X) for the optimal hyperparameters;
8: Calculate a matrix A∗ ∈ RM×M∗

such that KyA
∗ = K∗;

9: Form the conditioning mean value vector m∗ = K∗Ta and the corresponding covariance matrix C∗ =
K∗∗ −K∗TA∗;

10: Define f∗|X∗,X,y ∼ N (m∗,C∗).

4.2. Gaussian process regression for the reduced basis method of nonlinear structural analysis246

As already mentioned in Section 3, the GPR is utilized in the RB method for nonlinear structural247

analysis. A GP regression model π̂GP : P → RL is constructed for the mapping µ 7→ VTuh(µ).248

For the lth of L entries of π̂GP(·), 1 ≤ l ≤ L, the training data is set as xli = µi, y
l
i = vT

l uh(µi)249

and Dl = {(xli, yli) : i = 1, 2, · · · ,M} for a GPR model, with vl being the jth column of V. For a new250

parameter x∗ = µ∗ ∈ P as test input, the corresponding output π̂GP(µ∗) consists of L independent Gaussian251

distributions, i.e.252

(π̂GP(µ∗))l|Xl,yl ∼ N (ml∗,Cl∗) , l = 1, 2, · · · , L , (22)

where Xl = [ xl1 | xl2 | · · · | xlM ], yj = {yl1, yl2, · · · , ylM}T, ml∗ and Cl∗ for the lth entry of π̂GP(·) are defined253

in the same way as m∗ and C∗ in (20). Correspondingly, the reduced-order discrete solution ũrb,GPR(µ∗)254

collects Nh Gaussian distributions, i.e.255

ũrb,GPR(µ∗) = Vπ̂GP(µ∗) . (23)

The reduced order solution, expressed as a random field over Ω, is given as256

ũrb,GPR(µ∗) =

L∑
l=1

(π̂GP(µ∗))lψl =

Nh∑
k=1

(Vπ̂GP(µ∗))k φk =

Nh∑
k=1

(ũrb,GPR(µ∗))k φk . (24)

For a set of r test samples T = {(µ∗i ,uh(µ∗i )) : i = 1, 2, · · · , r}, µ∗i being the ith test input and uh(µ∗i )257

being the corresponding full-order discrete solution, an average relative error for GPR predictions can be258

defined as259

ε̄t(T ) =
1

r

r∑
i=1

‖uh(µ∗i )− E[ũrb,GPR(µ∗i )]‖RNh

‖uh(µ∗i )‖RNh

=
1

r

r∑
i=1

‖uh(µ∗i )−VE[π̂GP(µ∗i )]‖RNh

‖uh(µ∗i )‖RNh

, (25)

note that the mean values of GPR test outputs are considered as predictions.260

Remark 4: In the context of structural optimization, reliability analysis, etc., gradient-based algorithms261

are used for solving optimization problems, see [14, 18, 29]. These algorithms usually require the derivatives262

of the structural responses with respect to the parameters. In (20), the mean value of GPR output m∗(x∗) =263

E[f(x∗)|X,y] for a new test parameter x∗ is obtained as264

m∗(x∗) = κ(x∗,X)TK−1
y y . (26)
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Correspondingly, the derivative of m∗ with respect to x∗ is thus derived as265

∂m∗(x∗)

∂x∗
=

[
∂κ(x∗,X)

∂x∗

]T

K−1
y y , (27)

which only depends on the parameter location x∗ and is not correlated to any other test points. For a266

nonlinear structural problem, the derivative of test output E[π̂GP(µ∗)] can be calculated for test input µ∗,267

entry by entry, and the response sensitivity derivative expressed as268

∂

∂µ∗
ũrb,GPR(µ∗) = V

∂

∂µ∗
E[π̂GP(µ∗)] . (28)

4.3. Active data selection for training samples269

In the training set D, each input-output pair (µi,V
Tuh(µi)) requires the calculation of full-order solu-270

tion uh(µi) at parameter µi, i = 1, 2, · · · ,M . A large number of training samples M implies substantial271

computation to prepare the training data. For efficiency, one should choose a set of ’optimal’ training272

samples from a pool of parameters, so the full-order solutions are only calculated at a smaller number of273

optimized parameter values without substantial loss of accuracy. Referred to as active data selection, this274

type of selecting technique has been studied and developed in the field of active learning [16, 23, 27, 43, 44].275

In the context of GPR model for nonlinear structural analysis, an active data selection algorithm is given276

as follows, analogous to a scheme of active learning [4, 44].277

Algorithm 4 Selection algorithm for active training data

Input: A parameter pool Ps ⊂ P with a large number of elements – uniform lattice or generated in P,
µ1 ∈ Ps, tolerance tol, M = 1, training set D = ∅ and active parameter set Ptr = {µ1}, test samples
T = {(µ∗i ,uh(µ∗i )) : i = 1, 2, · · · , r} with full-order solutions

Output: GPR model π̂GP(·)
1: Calculate full-order solution uh(µM );
2: Set D = D ∪ {(µM ,VTuh(µM ))};
3: Train a GPR model π̂GP(·) based on D;
4: Calculate average relative error for test samples ε̄t(T );
5: if ε̄t(T ) ≤ tol then
6: Terminate;
7: else
8: Update the parameter pool Ps = Ps \ Ptr;
9: for each µ ∈ Ps do

10: Compute the output π̂GP(µ);
11: Evaluate the error indicator η(µ);
12: end for
13: Choose µM+1 = arg maxµ∈Ps

η(µ);
14: Set M = M + 1, Ptr = Ptr ∪ {µM+1} and go to 1.
15: end if

In the active data selection algorithm, a natural and simple consideration is to use standard deviations
to define the error indicator η(·) for evaluating the regression model π̂GP(·). Here, one choice of η(·) is

η(µ) =

√√√√Nh∑
k=1

L∑
l=1

V 2
kl sd[(π̂GP(µ))l]2 ,

analogous to the error in RNh -norm, and sd[·] denotes the standard deviation of a random variable. Each278

new active training sample is selected from the pool as the maximizer of the standard-deviation-based error279

10



indicator η, and the selection procedure is terminated once a satisfactory prediction quality is achieved.280

Alternatively, a desired training sample number M can be defined in advance.281

Since structural responses with respect to typical structural parameters are usually continuous, even282

smooth in most cases, the GPR is accurate even though it is not as powerful as some more advanced283

methods in regression, such as artificial neural networks (ANNs) [19]. The GPR can provide a natural284

and simple standard-deviation-based error indicator in active data selection, and the conciseness of the285

GPR model guarantees an efficient procedure of data selection and regression during the offline stage. In286

the context of uncertainty quantification, one can take both the uncertainty in the GPR model and the287

uncertainty in parameters into account using the Bayesian theory.288

5. Numerical examples289

In this section, numerical results for two examples, one in 1D and one in 3D, will be presented to validate290

the effectiveness and accuracy of the proposed approach.291

The FLagSHyP MATLAB program is used as high-fidelity solver for the numerical examples. The MAT-292

LAB version of FLagSHyP [6] is a program for the finite element analysis of static nonlinear problems in293

solid mechanics. Its numerical scheme is introduced in [7, 8]. The two example problems, large deformation294

analysis of a trussed frame and that of a twisting column, can also be found in [7] as computational im-295

plementations of the nonlinear finite element method. In these numerical examples, the MATLAB function296

fitrgp is used to construct the GPR models.297

5.1. One-dimensional example: a trussed frame298

The first example is a frame made of a beam and a column. As shown in Figure 2(a), the frame is trussed299

by 596 one-dimensional elements and loaded by a concentrated load on the beam. The number of DOFs300

of the full-order model is Nh = 476. Two types of constitutive relations are considered in this problem:301

one-dimensional strech-based hyperelasticity and hyperelasto-plasticity. We refer to [7] for more details of302

these constitutive laws. The quantities in Figure 2(a) are given as: Young’s modulus E = 210 GPa, unit303

force F0 = 1 N and unit displacement ∆0 = 1 mm. With a uniform Young’s modulus E in the whole304

structure, equilibrium paths, referred to as load-displacement curves, for the two constitutive relations are305

shown in Figure 2(b).306

120

24

2

120

60

10

10

Y/mm

X/mm

m3E

m4E

F = m2F0

D = m1D0

(a)

0 10 20 30 40 50 60 70 80 90 100

Vertical displacement  at the loading node / mm

-300

-200

-100

0

100

200

300

400

500

600

Hyperelasto-plastic

Hyperelastic

(b)

Figure 2: (a) Geometry and input parameters for a trussed frame; (b)Load-displacement curves in both hyperelastic and
hyperelasto-plastic cases.

This problem is parametrized by four parameters: µ1 is the quantitative value of the concentrated load307

measured in N, µ2 is the quantitative value of the downward displacement at the loading node, measured308
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in mm, µ3 is the scaling factor of Young’s modulus of a 10 mm × 10 mm inverted L-shaped zone at the309

beam-column joint, and µ4 is the scaling factor of Young’s modulus of the lower half of column. The loading310

procedure can be either force-controlled or displacement-controlled, i.e., µ1 and µ2 are the two different311

controlling parameters of loading, respectively. For the complementary parts of the zones with parametrized312

Young’s modulus, the modulus is fixed as E. Three parametrized cases will be analyzed as follows.313

Case 1: µ1, hyperelasto-plasticity314

The value of controlling downward deflection ∆ for the loading procedure is considered as the only315

parameter in this case. The concentrated load is applied to the frame by 40 loading increments with the316

arc-length method used, and the size of each increment is determined automatically by the method.317

After this full-order incremental procedure, 40 high-fidelity solutions with different values of µ1 are318

naturally collected, but those at other values of µ1 are not available. It is impractical to get the high-fidelity319

solution at any parameter value. Thus the 40 full-order solutions are used as snapshots for constructing the320

RB space and as training data for the GPR model, i.e. Θ = Ptr. As the 40 training samples are prepared in321

advance, active data selection does not make much difference on the computational efforts for training the322

GPR model, so the data selection algorithm will not be adopted in this case.323

The POD for the 40 snapshots gives L = 5 bases, and a GPR model with an SE kernel is constructed for324

the 5 projection coefficients onto the bases, as shown in Figure 3. In this figure, the prediction curves show325

mean values of the GPR outputs, lying in the interval of 95% confidence level. In Figure 3(f), the vertical326

displacement ∆ at the loading node is extracted from the reduced-order prediction ũrb,GPR(µ1) = Vπ̂GP(µ1)327

for each parameter µ1 in the training samples, matching well with the ’perfect’ identical fitting.328

The average relative error of the projection for Ns = 40 snapshots is 0.0033, calculated as329

ε̄V(Θ) =
1

Ns

Ns∑
i=1

‖uh(µi)−VVTuh(µi)‖RNs

‖uh(µi)‖RNs

, (29)

while the GPR predictions for the training samples Θ = Ptr have an average relative error ε̄t(Θ) = 0.0154330

compared with the corresponding full-order solutions.331

Case 2: µ2, hyperelasto-plasticity332

The load F is considered as parameter µ2 in this case. As shown in Figure 2(b), the equilibrium path for333

hyperelasto-plastic constitutive relation is not monotone, meaning that the displacement field is multi-valued334

with respect to the external load F = µ2. Thus the regressions for increasing and decreasing stages in the335

equilibrium path are carried out separately in this case. Based on 170 training samples, among which 97336

are in the increasing stage and 73 are in the decreasing stage, a regression model is obtained by an ANN,337

based on multi-layer perceptrons (MLPs) [5]. As is well known, the ANN is a powerful tool for nonlinear338

regression, so the regression results by the ANN based on the refined set of training data are considered as a339

reference. Using the proposed algorithm of active data selection, 85 samples are picked from the 170-sample340

set to derive a GPR model. Predictive results by the GPR model are shown in Figure 4. In this figure,341

predictions of the projection coefficients, obtained by both the ANN and the GPR, are plotted versus their342

’exact’ values directly calculated from the full-order solutions. After extracting the vertical displacement343

values from the reduced-order solutions by both regression approaches, the corresponding equilibrium paths344

are compared in Figure 4(f). It can be seen that the results by the GPR match well with those obtained by345

the ANN, even though they are not exactly coincident at some parameter locations in the predictions for346

the 5th coefficient. Confirmed by the fact that GPR achieves the similar accuracy with ANN by using half347

of the training samples, it supports that GPR is a good choice for the regression method in this context.348

Case 3: (µ3, µ4) ∈ [0.5, 1.5]× [0.8, 1.2], hyperelasticity349

The parameters µ3 and µ4 reflect local material properties and vary in a closed set P = [0.5, 1.5]×[0.8, 1.2].350

Under the hyperelastic constitutive relation, the configuration under a fixed load F = 500 N in the first351

increasing stage of equilibrium path (see Figure 2(b)) is taken into account. A Newton-Raphson algorithm352

is employed in loading increments until F = 500 N is reached. From a set snapshots at Ns = 25 randomly353

generated points in P, an RB space of rank L = 5 is constructed. Then the active data selection algorithm354
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is adopted to select M training samples from a pool of 400 randomly generated parameter locations. For355

M = 50, the GPR results for the 1st, 3rd and 5th projection coefficients, i.e. the corresponding entries356

of VTuh, are plotted in Figure 5. During the selection procedure, as M increases, the first 90 parameter357

positions are shown in Figure 6(a). In this case, r = 30 test samples T with an average relative projection358

error ε̄V(T ) = 1.41 × 10−4 are randomly generated to evaluate the prediction quality of the GPR model.359

As can be seen in Figure 6(b), the average relative error of GPR test predictions is decaying rapidly as360

M increases from 10 to 50. When the number of selected training samples increases to 40, the order of361

magnitude of the average relative error decreases to 10−4, showing the accuracy of GPR model and the362

efficiency of active data selection.363

Case 4: (µ2, µ3, µ4) ∈ [0, 530]× [0.5, 1.5]× [0.8, 1.2], hyperelasticity364

Three parameters µ2, µ3 and µ4 are considered in this case. The same full-order samples are used as365

both the snapshots and the training samples, for which the 50 parameter locations for (µ3, µ4) are randomly366

generated in [0.5, 1.5] × [0.8, 1.2], and the 20 locations for µ2 are determined by the arc-length method for367

loading increments. Note that Ns = M = 1000, and the 20 increments lie in the first increasing stage in the368

equilibrium path and are under F = 530 N. Then a reduced-order model is obtained with L = 10 reduced369

bases. For the 20-step loading series at 5 new positions in (µ3, µ4), the relative errors of the corresponding370

reduced order solutions are shown in Figure 7, and their average is ε̄t = 1.13× 10−3.371

5.2. Three-dimensional example: a twisting column372

The second example considers a three-dimensional column under the torsion of a pair of uniformly373

distributed pressure loads p = µ1p0 that are opposite to each other, as illustrated in Figure 8. The stress-374

strain behavior follows a relation of compressible neo-Hookean elasticity [7], with a fixed bulk modulus375

K = 5E0/3 and a parametrized shear modulus G = µ2E0. The units of load and modulus are given as376

p0 = 1 and E0 = 100. Thus the problem is parametrized by µ1 and µ2. The full-order solution of this system377

is obtained via finite element analysis, in which 576 hexahedral elements are employed, Newton-Raphson378

algorithm is used for the iteration and the number of DOFs is Nh = 2700. Taking µ2 = 1.0, twisting379

configurations of the column at different loading stages are shown in Figure 8.380

Case 1: µ1 ∈ ]0, 130[381

The magnitude of pressure load is considered as the only parameter µ1 in this case. High-fidelity solutions382

at 50 loading increments are prepared in advance, with µ1 approaching 130. Ns = 25 of them with even383

sequence numbers are taken as snapshots, from which an RB space of L = 10 dimensions is constructed.384

If projecting all the 50 full-order solutions onto the RB space and using them as training data, a GPR385

model can be trained with an average relative error 1.70× 10−3 of GPR predictive approximations for the386

50 samples. When active data selection is adopted with a predictive error tolerance tol = 4 × 10−3, as387

introduced in Algorithm 4, 28 training samples are selected. The GPR model obtained is shown in Figure388

10(a). In this figure, displacement uX in the X-direction at node B, labelled in Figure 8, is extracted from389

the reduced-order solution ũrb,GPR(·) = Vπ̂GP(·), and plotted versus µ1. The derivative of this displacement390

with respect to µ1, i.e. duX/dµ1, is then calculated from the same GPR model, as discussed in Remark 4,391

and shown in Figure 10(b).392

Case 2: (µ1, µ2) ∈ ]0, 40] × [0.8, 1.2]393

In this case, the parameter pair (µ1, µ2) varies in ]0, 40] × [0.8, 1.2]. Snapshots are calculated at Ns = 25394

randomly picked parameter points to construct an RB space of rank L = 6. From a pool of 10×11 parameter395

locations, 40 are selected as training samples, based on which a GPR model with the ARD SE kernel is396

derived with an average relative error of 2.1 × 10−3 for test samples. As in Figure 11, the 40 selected397

parameter locations are labelled, and the predictive results for uX at node B are plotted.398

Furthermore, three computational times are compared in Figure 12; the time for calculating one full-399

order solution at (µ1, µ2) = (20, 1.0), average time for 40 loops of GPRs in the active data selection, and400

average time for the calculation of 861 predictive outputs for test samples. One can see that the regressions401

are recovered very efficiently, and direct outputs from the GPR model in the online stage are obtained at402

low cost, providing an efficient tool for solving parametrized nonlinear problems.403
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Remark 5: We would like to comment on the comparisons between the conventional RB method based404

on online Galerkin-projections and the regression-based RB method in this paper. In the regression-based405

approach, the regression models have to be constructed in the offline stage, which means more offline406

computational efforts. However, this approach only requires direct outputs to obtain the combination407

coefficients of the RB functions. Compared with the online assemblies and solutions in the conventional RB408

framework, the regression-based one ensures much higher online efficiency, which better meets the demands409

of engineering applications. In the context of structural analysis, the nonlinearities could result into some410

difficulties in the online solutions for the reduced models in the conventional approach, then the accuracy411

of these reduced-order solutions may be unsatisfactory. We would like to refer to [21], in which the online412

accuracy and efficiency are quantitatively compared between these two approaches in a nonlinear example.413

6. Conclusions414

A non-intrusive RB method is proposed for the ROM of parametrized nonlinear structural problems. In415

the framework of this method, an RB space is constructed offline by POD as the low-rank approximation416

to the space spanned by a collection of full-order snapshots. Rather than the conventionally used Galerkin417

projection scheme, a regression-based approach is adopted to determine the reduced-order solution for any418

desired new parameter value. Based on the offline establishment of a GPR model between parameter419

values and projection coefficients, only direct outputs from the model are required during the online stage420

to obtain the reduced-order solutions at new parameter locations. Hence, the regression-based approach421

ensures a full decoupling between offline and online stages, and is non-intrusive. With both the accuracy422

and the efficiency validated by numerical examples, the proposed RB method is shown to be a powerful tool423

for solving parametrized nonlinear structural problems.424

In multi-query and real-time contexts of structural analysis, the proposed scheme is able to reduce the425

model order effectively with a controlled loss of accuracy, and can achieve fast and reliable online calculations426

for desired parameter values, saving the high computational cost of full-order solutions. This provides a427

promising technique for the CAE softwares of large-scale structural systems.428
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Figure 3: Predictive results by the GPR: (a) – (e) Regression results by the GPR for the 5 entries of VTuh; (f) Extracting
vertical displacement ∆ at the loading node from the GPR results.
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Figure 4: Predictive results by the GPR and the ANN: (a) – (e) Comparisons of predictive results by the GPR and the ANN
for the 5 entries of VTuh; (f) Regression results for the load-displacement curve by both the GPR and the ANN.
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Figure 5: Regression results for the 1st, 3rd and 5th entries of VTuh from a GPR model trained by 50 samples selected from
a pool of 400 parameter values.
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Figure 6: (a) Parameters corresponding to the first 90 samples selected from the pool; (b) Average error decay for 30 testing
samples.
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Figure 7: Relative errors of the reduced-order solutions for some test samples compared with the corresponding full-order
solutions (ε̄t = 1.13 × 10−3)
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Figure 10: (a) Regression results for the curve of displacement uX of the labelled node B versus pressure load µ1 = p; (b)
Prediction of uX at node B and its derivative with respect to µ1, both calculated from the GPR model trained by 28 selected
samples.
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Figure 11: Regression results for the surface of displacement uX of the labelled node B versus µ1 and µ2
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of GPRs in active date selection, and average time for 861 GPR predictive outputs for test samples
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