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Abstract

Blockchain systems have the potential to decentralise many traditionally centralised
systems. However, scalability remains a key challenge. Without a horizontally
scalable solution, where performance increases by adding more nodes to the sys-
tem, blockchain systems remain unsuitable for ubiquitous use. We design a novel
blockchain system called CHECO. Each node in our system maintains a personal
hash chain, which only stores transactions that the node is involved in. A consensus
is reached on special blocks called checkpoint blocks rather than on all the transac-
tions. Checkpoint blocks are effectively a hash pointer to the personal hash chains;
thus a single checkpoint block may represent an arbitrarily large set of transactions.
We introduce a validation protocol so that any node can check the validity of any
transaction. Since it is a point-to-point protocol, we achieve horizontal scalabil-
ity. We analytically evaluate our system and proof a number of highly desirable
correctness properties. Further, we give a free and open-source implementation
of CHECO and evaluate it experimentally. Our results show a strong indication of
horizontal scalability.



iv



Preface

Since early 2013, the time when I mined my first Bitcoin, I became cautious of the
security and privacy issues surrounding centralised systems and became interested
in building a decentralised society. Following the Snowden revelations, the interest
grew into a desire that has stayed with me ever since. Today, many blockchain
systems are mature, but still not yet ready for ubiquitous use due to the scalability
limitation. Many of us still do not use Bitcoin to purchase everyday goods, online
or offline. This limitation, as well as my ambitions, led me to this thesis, with the
goal of creating a truly horizontally scalable solution.

Many people have supported me in this endeavour which I would like to thank.
My supervisor Dr Johan Pouwelse, your unrivalled enthusiasm and guidance have
kept me motivated and productive. Dr Zhijie Ren, this work would not have been
possible without your invaluable input and the numerous discussions which we
have had. Prof Dick Epema, you taught me a lot about report writing and the use
(and misuse) of mathematical formalism. Members of the Tribler team—Martijn
de Vos, Quinten Stokkink and Chengxin Ma, you have my gratitude for helping me
with the implementation and proofreading my work, and of course the free coffee.
Members of the Cyber Security group—Dr Zekeriya Erkin and Oğuzhan Ersoy, I
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Chapter 1

Introduction

We live in a world where technologies have become vital for our welfare and suc-
cess. The internet, for instance, gave us the ability to efficiently exchange informa-
tion on a global scale. However, in contrast to its original design, the internet and
in particular the world wide web is becoming increasingly centralised. The root
name server in the domain name system, the root certificate authority in our public
key infrastructure, to name a few, carry enormous responsibilities and are a central
point of failure. The same can be said for many other services such are online mar-
ketplaces, cloud services and even our banking system. The 2008 financial crisis is
an example of the banking system making poor choices which resulted in a decline
in consumer wealth in the order of trillions [1] and led to the European debt crisis.

Ironically, during the midst of the financial crisis, Satoshi Nakamoto published
the Bitcoin whitepaper [2]. Which, for the first time, gave us a simple banking
system in the form of a distributed ledger, also known as blockchain. It needs
no central control but still incorruptible with high probability even if there are
malicious parties that aim to undermine the system.

The primary innovation is the consensus mechanism which prevents double
spending but also incentivises anyone (with adequate hardware) to participate and
keep the network running. The double spending problem can be seen as an incon-
sistency issue. For example, C has 5 units of currency in her account. If C can
simultaneously claim that she transferred 5 units toA but also 5 units toB, then the
system is inconsistent. Bitcoin and many of its derivatives (e.g., Litecoin1 and Do-
gecoin2) solve the inconsistency problem with a consensus algorithm. The goal of
the algorithm is to reach agreement on a set of valid transactions. This effectively
eliminates inconsistencies.

In Bitcoin’s case, the consensus algorithm is called proof-of-work (PoW). Where
miners (parties that run the Bitcoin network) collect transactions and compete in
solving a puzzle. The puzzle is easy to verify but difficult to solve. Only the miner
that solves it can generate a valid block containing all the collected transactions.

1https://litecoin.org
2http://dogecoin.com
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The miner is also rewarded with new coins and transaction fees. It is important to
note that every block depends on the previous block. Hence the name blockchain.
This property ensures malicious nodes cannot easily rewrite history if they do not
have a majority of the network’s computing power. Consequently, it is unlikely
for more than one blockchain to exist in the network for a long period of time.
Thus, every party sees a consistent blockchain which solves the double spending
problem.

Bitcoin has had its ups and downs, but overall it has grown into an enormous
system. Its power consumption is as high as the Republic of Ireland [3]. Its market
capitalisation, at the time of writing, is over 60 billion USD and growing (see Fig-
ure 1.1). Many online marketplaces are using Bitcoin. For example, Steam3 and
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Figure 1.1: Market capitalisation and price of Bitcoin, graph is extracted from [4].

Amazon4. Due to its success, people from many different disciplines began inves-
tigating in ways to use blockchain technology. This includes finance [5], health
care [6], logistics [7] and energy [8].

Sadly, as traditional blockchain systems began to gain popularity, their limita-
tions also became apparent. Bitcoin has the infamous 7 transactions per second
upper bound [9], which is due to the fact that blocks are fixed to 1 MB and are
only generated on average every 10 minutes. Since every Bitcoin transaction is at
least 250 bytes, it computes to about 7 transactions per second. Due to this limita-
tion, it is not uncommon to see a long backlog of about 20,000 transactions5. The
backlog even reached 100,000 in May 2017, which meant new transactions would

3https://store.steampowered.com/
4Not directly, but via https://purse.io/.
5https://blockchain.info/unconfirmed-transactions/
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take at least 11 hours to be written to the blockchain [10]. This issue has plagued
the Bitcoin community for some time and is the root cause for the block size de-
bate, which some call a civil war [11]. Parties which are for an increase in block
size argue that a larger block would improve the transaction rate. Parties against
it argue that it would make mining more centralised because blocks take longer to
propagate through the network. It also requires a hard (non-backwards compatible)
fork, which risks consensus failure and devaluation. A recent empirical study by
Croman et al. [12] has shown that increasing the block size or the block interval
may help. But given the bandwidth and latency constraints of today’s network, it is
not possible to have more than 27 transactions per second. To achieve transaction
rates higher than that, it will lead to unfairness for nodes that do not have a good
network connection. Thus, fundamental changes are necessary to run at the scale
of centralised payment processors such as Visa, which is in the order of tens of
thousands transactions per second [13].

The Bitcoin community understands the issue and many proposals exist with
the aim to make Bitcoin more scalable. The most prominent one is Segregated
Witness or SegWit [14]. It moves the signature data to the end of the block and
uses a variable block size up to 4 MB. The effect is that the first 1 MB of the
block is still backwards compatible, thus there is no need for a hard fork. It also
solves the transaction malleability problem [15] which paves the way for off-chain
transactions via the Lightning Network [16]. However, some fear SegWit is not
sufficient and wish to see a hard fork that uses an “Adjustable Blocksize Cap” that
increases the maximum block size even further to 8 MB [17]. The ongoing civil
war resulted in a Bitcoin fork, called Bitcoin Cash [18]. At the time of writing, it
is too early to speculate how these proposals and forks may affect the scalability
properties of Bitcoin. But the conclusion that we can draw from the scalability
debate is that the Bitcoin design is fundamentally not scalable, and it is highly
non-trivial to “patch” the problem.

Moreover, Bitcoin is far from distributed. It is more accurate to say Bitcoin is
made in China [19]. The combination of cheap electronics and electricity has made
China one of the most profitable place to mine Bitcoins. At the time of writing,
China holds about 80% of the hashing power [20], effectively putting it in control
of the 60 billion-dollar ecosystem. If the government decides to flex its totalitarian
muscles, then it would spell the end of the ecosystem.

1.1 Contributions

In this work, we take the advice of Croman et al. [12] and Vukolić [9] and re-
think the blockchain architecture. Our primary insight came from observing the
differences between how value transfer work in the real world and how they work
in early blockchain systems. Take a restaurant owner, for example, most of the
time the customer is honest and pays the bill. There is no need for the customer
or the owner to report the transaction to any central authority because both parties
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are happy with the transaction. On the other hand, if the customer leaves without
paying the bill, then the owner would report the incident to some central authority,
e.g., the police. On the contrary, in blockchain systems, every transaction, regard-
less of whether it is valid or invalid, are sent to the miners, which can be seen as
a collective authority. This consequently leads to limited scalability because every
transaction must be validated by the authority even when most of the transactions
are legitimate.

Using the aforementioned insight, we explore an alternative consensus model
for blockchain systems where transactions themselves do not reach consensus, but
nevertheless verifiable at a later stage by any node in the network. A verified trans-
action is guaranteed to be tamper-proof and irrefutable. Our main contributions are
the following.

• We formally introduce a blockchain system—CHECO6. It uses individual
hash chains and checkpoint blocks on every node to achieve horizontally
scalable in the general case for the first time.

• We formally analyse CHECO to ensure correctness as defined in our system
architecture.

• We provide an implementation and then experiment with up to 1200 nodes,
our results show strong evidence of horizontal scalability.

1.2 Document structure

We begin with the problem description in Chapter 2, it first describes the state-of-
the-art in scalable blockchain systems and their shortcomings, which leads to our
research question. In Chapter 3 we give a formal description of our system model
and architecture. Next, we analyse the correctness and performance of our design
in Chapter 4, this is where we present our key theorems. Implementation and
experimental results are discussed in Chapter 5. Finally, we conclude in Chapter 6
and discuss future work.

6Derived from checkpoint consensus.
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Chapter 2

Problem description

We saw that early blockchain systems face a scalability problem. In particular, the
use PoW is unlikely to reach a transaction rate suitable for ubiquitous use. Many
attempts to fix the scalability problem exist in academia as well as the industry. In
this chapter, we describe the related work and identify their limitations. Then, we
state our research question which aims to overcome some of these.

2.1 Related work

Blockchain research has seen a surge in recent years from both the industry and
academia, this resulted in a myriad of blockchain systems with different approaches
to scalability. To understand the current state-of-the-art, we classify various block-
chain systems by their scalability approach. A summary is given in Table 2.1.

Table 2.1: Summary of the scalability properties of many blockchain systems.
Scalability gets better from left to right.

Not
scalable

Somewhat
scalable

Limited horizontal
scalability

Full horizontal
scalability

Bitcoin [2] Hyperledger [21] Elastico [22] CHECO (this work)
Ethereum [23] ByzCoin [24] OmniLedger [25]
etc. Solidius [26]

2.1.1 Early blockchain systems

This category represents the baseline, which are systems with a probabilistic con-
sensus algorithm. That is, transactions never reach consensus with a probability of
1. Given sufficient computational power, adversaries are able to undo any trans-
action. The typical examples are PoW based systems such as Bitcoin, Ethereum
and other Altcoins. In Bitcoin, nodes compete in solving puzzles. The first node
solves the puzzle has the privilege to create a new block. The level of consensus of
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a block containing many transactions is determined by how deep it is in the Bitcoin
blockchain, which is also called the number of confirmation. The probability of a
block being orphaned drops exponentially as the depth increases [2]. Nevertheless,
the probability of the highest block being orphaned is non-negligible.

The advantage of this approach is that it can be used in a large network. In fact,
prior to Bitcoin, there was no Internet-scale consensus protocol. Bitcoin is also
fault-tolerant because attackers can not outpace honest users in finding new blocks
unless they have a majority of the computational power (assuming reasonable mea-
sures are taken to prevent the selfish mining attack [27]). The disadvantage, how-
ever, is that transactions are never in consensus with a probability of 1—no con-
sensus finality. Hence double spending is possible for transactions that do not have
a large number of confirmations. Furthermore, as we mentioned in Chapter 1, the
performance is limited due to the fact that blocks are of fixed size and are generated
at fixed intervals. Thus early blockchain systems do not scale.

2.1.2 Off-chain transactions and payment networks

Off-chain transactions make use of the following fact. If nodes make frequent
transactions, then it is not necessary to store every transaction on the blockchain,
only the net settlement is necessary. The best examples are Lightning Network [16]
and Duplex Micropayment Channels [28].

Off-chain transaction systems are implemented using multi-signature addresses [29]
and hashed time-locked Bitcoin contracts [30]. In the simplest case, if two parties
wish to make frequent transactions, they open a payment channel in the form of
a multi-signature Bitcoin address (for two parties it would be a 2-of-2 signature
address). Each of the party must also deposit some Bitcoins in the multi-signature
address, which is called the opening transaction. Both parties keep the channel
state which is not broadcasted to the network. The state is updated when the two
parties make new transactions. The protocol disincentivises the parties from broad-
casting old channel states. If this occurs, the counterparty can drain all the Bitcoins
in the channel. To close the channel, the parties simply broadcast the latest net set-
tlement to the Bitcoin network, which is called the closing transaction. Effectively,
only two transactions need to be broadcasted to the Bitcoin network—the opening
and the closing transaction, even if the two parties made thousands or millions of
transactions in between.

The two-party scheme can be extended to a network of channels, which allows
two parties to make off-chain transactions without an open channel as long as they
are connected by nodes that do. For example, if a channel exists between node
A and B, and a channel exists between node B and C, then A can pay C via the
intermediary B. The result is that there is no need to create a payment channel
with every node in the network. If some key nodes, acting as payment hubs, are
well-connected, then nodes can make off-chain transactions to a large number of
other nodes by opening only one channel with a payment hub.

The advantage of such systems is that they act as add-ons to Bitcoin, which
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already has a large number of users. Thus, if enough of the network wish for it
(by setting a new block version), then a large number of users will instantly benefit
from it. Some implementations already exist1, but at the time of writing SegWit is
not activated yet which is a prerequisite for Lightning Network.

On the other hand, payment channel complicates user experience and leads to
centralisation. As we mentioned earlier, each node must deposit some Bitcoins
into a multi-signature account, so the users are responsible for picking a suitable
amount. If the deposit is too low it would not allow large transactions. If the de-
posit is too high the user is locked out of much of its Bitcoins for use outside of
the channel. In addition, the user must proactively check whether the counterparty
has broadcasted an old channel state so that the user does not lose Bitcoins. Fur-
thermore, creating channels with sufficient balance and also keeping it online to
act as a router is expensive. A casual user is not capable of such tasks, thus it
leads to centralisation. Payment channels, in theory, solve the scalability problem
of early blockchain systems, but to the best of our knowledge, its exact scalability
characteristics are not investigated.

2.1.3 Permissioned systems based on Byzantine consensus

This category of systems uses traditional Byzantine consensus algorithms such as
PBFT [31]. In essence, they contain a fixed set of nodes (sometimes called val-
idating peer) that run a Byzantine consensus algorithm to decide on new blocks.
This technique is often used in permissioned systems where the validators must be
predetermined, for example, Hyperledger Fabric [21].

A nice aspect of Byzantine consensus and in particular PBFT is that it can handle
much more transactions than classical blockchain systems. PBFT can, for example,
achieve 10,000 TX/s if the number of validating peer is under 16 [32, Section 5.2].
Further, in contrast to PoW, PBFT consensus is final. That is, transaction history
cannot be re-written if it is already in the blockchain.

The major drawback of Byzantine consensus based systems is that it does not
scale in terms of the number of validating peers. Going back to PBFT, its transac-
tion rate drops to under 5000 TX/s when the number of validating peer is 64 [32,
Section 5.2]. Moreover, the validating peers are predetermined which makes the
system unsuitable for the open internet.

2.1.4 Combining PoW with Byzantine consensus

Recent research has developed a class of hybrid systems which uses PoW for
committee election, and Byzantine consensus algorithms to agree on transactions.
Some examples are ByzCoin [24] and Solidus [26].

This technique overcomes the early blockchain scalability issue by delegating
the transaction validation to the Byzantine consensus protocol (e.g., PBFT in Byz-
Coin [24]) while keeping the permissionless nature by using PoW. A major tradeoff

1For example https://github.com/lightningnetwork/lnd.
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of such systems is that they cannot guarantee correctness when there is a large num-
ber of malicious nodes (but less than a majority). For ByzCoin and Solidus, they
all have some probability to elect more than t Byzantine nodes into the commit-
tee, where t is typically just under a third of the committee size (a lower bound of
Byzantine consensus [33]). This problem is difficult to solve because the commit-
tee is always much smaller than the population size which typically has more than
t Byzantine nodes. Classical blockchain does not have this problem because they
do not use Byzantine consensus. Further, due to the fact that these systems must
reach consensus on all transactions, none of them achieves horizontal scalability.

2.1.5 Sharding

Sharding is a technique to achieve horizontal scalability by grouping nodes into
multiple committees, also known as shards. Nodes within a single shard run a
Byzantine consensus algorithm to agree on a set of transactions that belong to that
specific shard. An inter-shard protocol is needed for transactions that involve nodes
from more than one shard. The number of shards grows linearly with respect to the
total computational power in the network. This scheme achieves horizontal scal-
ability because if every shard commits transactions at the same throughput, then
adding more shard would naturally result in a linear increase of global throughput.
Examples of blockchain systems that use sharding are Elastico [22] and Omni-
Ledger [25].

The biggest limitation of sharding is that it is only optimal if transactions stay in
the same shard. In fact, Elastico cannot atomically process inter-shard transactions.
OmniLedger has an inter-shard transaction protocol but choosing a good shard size
is difficult. A large shard size would make the system less scalable because the
Byzantine consensus algorithm must be run by a large number of nodes. A small
shard size would result in a large number of inter-shard transactions which also
hinder scalability. Furthermore, using smaller shards is a security risk. Every
shard is fault-tolerant up to at most a third of the shard size. If the total number of
malicious nodes remain fixed, then as the shard size decreases, it is more probably
for a shard to fail.

2.1.6 Blockchain without global consensus

Tangle [34], Corda [35] and the original TrustChain [36] avoid the need of global
consensus. In these schemes, every node has their own hash chain. Transactions
between nodes are recorded on their respective chains. This effectively results in
a directed acyclic graph. By avoiding global consensus, this approach achieves
extremely desirable scalability properties similar to BitTorrent [37].

On the other hand, the application and security properties are limited. A mali-
cious node can easily lie to other nodes regarding its own chain by simply present-
ing one version of reality to a set of nodes and another version to a different set.
Thus the network will have a conflicting view on the state of the malicious node.
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Applications such as digital cash can not be implemented on top of such systems
because consistency is needed in solving the double spending problem.

2.2 Research question

We saw in Section 2.1 that the majority of the systems cannot achieve horizontal
scalability. To the best of our knowledge, only the two systems described in Sec-
tion 2.1.5 have experimentally demonstrated horizontal scalability. However, these
techniques rely on sharding; thus the performance highly depends on the trans-
action characteristics and the shard size parameter. Furthermore, all the systems
described in Section 2.1 are complete blockchain systems designed for a concrete
application. We wish to design a blockchain consensus protocol that can be used in
many applications. For example, the accounting of detailed internet traffic in Tri-
bler [36], [38] and decentralised market in Tribler2. Hence our research question
is the following.

How can we design a blockchain consensus protocol that is fault-
tolerant, horizontally scalable, and able to reach global consensus?

To make sense of our research question, we must first explain blockchain con-
sensus protocol. Typical blockchain systems are application specific. For example,
the application in Bitcoin (any many of its derivatives) is digital cash, the applica-
tion in Namecoin is domain name registration [39], and the application in Siacoin
is cloud storage [40]. Underneath these applications lies the blockchain consensus
protocol which has the goal of reaching consensus on transactions or state changes.
In the case of Bitcoin, it is PoW, because it is not concerned with the structure or the
semantics of the transactions. In this work, we focus on the blockchain consensus
protocol rather than any specific application because it is the scalability bottleneck
and is necessary for any blockchain based application.

In the remainder of this section, we expand on our research question and visit
each aspect in detail. At the end of this section, we describe some issues that out
of the scope of this work, which is the result of not focusing on any particular
application.

Global consensus

Having consensus is essential in blockchain systems. It stops many types of ma-
licious activities because the agreed state, or a representation of it, must have the
consent of the honest nodes in the network. For example, if two honest nodes at-
tempt to verify the same transaction, it cannot be the case that one node thinks that
the transaction is valid, but the other thinks it is invalid, as long as the number of
malicious nodes is below the threshold that the system can tolerate.

2https://github.com/Tribler/tribler/blob/devel/Tribler/
community/tradechain/__init__.py
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Fault-tolerance

Similar to many blockchain systems, our system should be unaffected in the pres-
ence of powerful adversaries. In particular, adversaries are Byzantine, meaning that
they can have arbitrary behaviour. Thus anything is possible from simply omitting
messages to colluding with each other to undermine the whole system. As a result,
just like cryptocurrencies, our transactions should be tamper-proof and irrefutable.

Horizontal scalability

To enable ubiquitous use, we demand horizontal scalability. That is, the global
transaction rate should increase as more nodes join the network. BitTorrent [37]
is an example of such a system, where peers interact with each other to exchange
files without any global bottleneck.

Limitations

Since our consensus protocol is application neutral, it does not attempt to prevent
the Sybil attack [41]. A good defence mechanism requires application specific in-
formation. For example, a social network based Sybil defence mechanism uses
random walks in real-world social graphs [42]. Online marketplaces such as Ama-
zon use the rating of buyer and sellers. Cryptocurrencies use PoW to decide on
new blocks. For the same reason, we do not explicitly consider spam or denial of
service attacks because, without a concrete application, it is hard to distinguish a
super active user from an attacker. For this work, we assume that it is the role of
the application developer to find a reputation mechanism or a trust model suitable
for defending against such attacks.
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Chapter 3

System architecture

In this chapter, we break away from the early blockchain paradigm and introduce a
novel system that is application neutral, horizontally scalable and will never have
a block size debate. In particular, our system consists of three protocols—the con-
sensus protocol, the transaction protocol and the validation protocol. It is based
on our prior research on TrustChain [36] at Delft, where every node independently
interacts with each other via their own hash chain1.

We begin our discussion with an intuitive overview of the architecture in Sec-
tion 3.1. Next, we give the formal description, starting with the model and as-
sumptions in Section 3.2, and then the three protocols which make up the complete
system. Finally, we discuss a few variations of our design and their respective
tradeoffs in Section 3.7.

3.1 System overview

Consensus
Protocol

Transaction
Protocol

Validation
Protocol

Extended TrustChain

CHECO

Figure 3.1: The four components of CHECO.

1TrustChain is originally called MultiChain.
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The architecture of CHECO is visualised in Figure 3.1. It consists of one data
structure—Extended TrustChain, and three protocols. The protocols have distinct
roles which are evident from their names. They run concurrently and do not inter-
act with each other. The only synchronization happens on the Extended TrustChain
layer, where all the protocols read and write from it. We first describe each com-
ponent individually, starting with Extended TrustChain, and then explain how they
fit together.

TrustChain and Extended TrustChain

We explain the standard TrustChain first and then the Extended TrustChain. Our
description of the standard TrustChain has a minor difference when compared to
the description in [36], we remark the difference when it occurs.

In TrustChain, every node has a personal hash chain. Initially, the chain only
contains a genesis block generated by the nodes themselves. When node A wishes
to make a transaction (TX) with B, a new TX block is generated for both A and B
and is appended to their respective chains. The TX block must have a valid hash
pointer pointing to the previous block and a reference2 to its pair on B’s chain. An
example of is shown in Figure 3.2.

If every node follows the rules of TrustChain and we only consider hash pointers
and not references, then every chain effectively forms a singly linked list. However,
if a node violates the rules, either by accident or for malicious intent, then a fork
may happen. That is, there may be more than one TX block with a hash pointer
pointing back to the same block. In Figure 3.2, node b (in the middle chain) created
two TX blocks that both point to tb,5. If this is a ledger system it can be seen as a
double spend, where the currency accumulated up until tb,5 is spent twice.

Extended TrustChain introduces a new block type—checkpoint (CP) block. The
primary function of the CP block is to represent the state of a node, in the form of
a hash pointer. A collection of CP blocks from all nodes represents the state of the
whole system. Therefore, nodes need to reach consensus on CP blocks using some
consensus protocol in order to reason about the state, which we explain next. A
visual representation is shown in Figure 3.3.

From this point on, we use TrustChain to mean the Extended TrustChain unless
explicitly clarified.

Consensus protocol

The consensus protocol can be seen as a technique of running infinitely many times
of a Byzantine consensus algorithm3, starting a new execution immediately after

2This definition is different from the original TrustChain definition found in [36]. In the original
definition, a TX block has two outgoing edges which are hash pointers to the two parties involved in
the transaction. This work uses one outgoing edge and a reference.

3More accurately it is an asynchronous common subset (ACS) algorithm, which we describe in
Section 3.4.1.
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Figure 3.2: A TrustChain example with three nodes. Every block is denoted by
ti,j , where i is the node ID and j is the sequence number of the block. The arrows
represent hash pointers and the dotted lines represent references. The blocks at the
ends of the dotted lines are pairs of each other. The red block behind tb,6 indicates
a fork. Blocks of index 0 (e.g. tb,0) are genesis blocks.
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Figure 3.3: An example of Extended TrustChain. The circles represent CP blocks,
they also have hash pointers (arrow) but do not have references (dotted line). Note
that the sequence number counter does not change, it is shared with TX blocks. CP
blocks of index 0 (e.g. cb,0) are genesis blocks.
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the previous one is completed. Nodes create new CP blocks at the end of every
execution. This approach is necessary because blockchain systems always need to
reach consensus on new values proposed by the nodes in the system, or CP blocks
in our case.

The communication complexity of Byzantine consensus algorithms typically
grows polynomially w.r.t the number of nodes, which prohibits us from running
it on a large network. For example, one of the most recent works tested with up to
104 nodes and the algorithm took almost 6 minutes to complete [32]. Thus, at the
beginning of every Byzantine consensus algorithm execution, we randomly elect a
set of nodes—called facilitators—to collect CP blocks from every other node and
use those blocks as the input to the Byzantine consensus algorithm, and then run it.
After the algorithm completes, the facilitators output a set of CP blocks which we
call the consensus result, which is then propagated to the network. Using the result,
nodes are allowed to create new CP blocks, and then the next algorithm execution
begins.

Transaction and validation protocols

The TX protocol is a simple request and response protocol. The nodes exchange
one round of messages and create new TX blocks on their respective chains. Thus,
as we mentioned before, one transaction should result in two TX blocks.

The consensus and transaction protocol by themselves do not provide a mech-
anism to detect malicious behaviour such as tampering the TrustChain. Thus, we
need a validation protocol to counteract such behaviour. When a node wishes to
validate one of its transactions, it asks the counterparty for the agreed fragment
of the transaction. Which is a fragment of the counterparty’s chain beginning and
ending with CP blocks but contains the TX block belonging to that transaction,
and the CP blocks must be in consensus. Upon the counterparty’s response, the
node checks whether the CP blocks are in some consensus result and some other
conditions. The transaction is valid if these conditions are satisfied. Intuitively,
this works because it is hard (because a cryptographically secure hash function is
collision resistant) to create a different chain that begins and ends with the same
two CP blocks.

The complete system

The complete system is essentially the concurrent composition of the three proto-
cols above; all making use the Extended TrustChain data structure.

Our sub-protocol design gives us the highly desirable non-blocking property. In
particular, we do not need to “freeze” the state of the chain for some communi-
cation to complete in order to create a block. For instance, a node may start the
consensus protocol, and while it is running, create new transactions and validate
old transactions. By the time the consensus protocol is done, the new CP block is
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added to whatever state the chain is in. It is not necessary to lock the chain while
the consensus protocol is running and then unlock it afterwards.

3.2 Model and assumptions

This section and the ones following it give a technical explanation of CHECO. For
notational clarity, we use the following convention (adapted from [32]) for most of
this work.

• Lower case (e.g., x) denotes a scalar object or a tuple.

• Upper case (e.g., X) denotes a set or a constant.

• Sans serif (e.g., fn(·)) denotes a function.

• Monospace (e.g., ack) denotes message type.

Further, we use a||b to denote the concatenation of the binary representations of a
and b.

We assume purely asynchronous channels with eventual delivery. Thus in no
stage of our protocol do we make timing assumptions. The adversary has full
control of the delivery schedule and the ordering of all messages.

Further, we assume there exists a Public Key Infrastructure (PKI), and nodes are
identified by their unique and permanent public key. Finally, we use the random
oracle (RO) model, i.e. calls to the random oracle are denoted by H : {0, 1}∗ →
{0, 1}λ, where {0, 1}∗ denotes the space of finite binary strings and λ is the secu-
rity parameter. Under the RO model, the probability of successfully computing the
inverse of H(·) is negligible with respect to λ [43].

In our model, we consider N nodes, which is the population size. n of them
are facilitators, t nodes are malicious and the inequality n ≥ 3t + 1 must hold.
This inequality is from the work of Pease, Shostak and Lamport, where they show
a network of n nodes cannot reach Byzantine agreement for t ≥ n/3 [33]. Further,
the inequality N ≥ n + t must also hold so that there are enough honest nodes
in the network to run the consensus protocol; the exact reason becomes apparent
in Section 3.4.3.

Our threat model is as follows. We use a restricted version of the adaptive cor-
ruption model. The first restriction is that corrupted node can only change across
rounds. That is, if a round has started, the corrupted nodes cannot change until the
next round. The second restriction is that the adversary, presumably controlling
all the corrupted nodes, is forgetful. Namely, the adversary may learn the internal
state such as the private key of a corrupted node, but if the node recovers, then the
adversary must forget the private key. This restriction is realistic because otherwise
the adversary can eventually learn all the private keys and sabotage the system.
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3.3 Extended TrustChain

The primary data structure used in our system is the Extended TrustChain. Each
node u has a public and private key pair—pku and sku, and a chain Bu. The chain
consist of blocksBu = {bu,i : i ∈ {0, . . . , h−1}}, where bu,i is the ith block of u,
and h is the height of the block (i.e. h = |Bu|). We use bu,h−1 to denote the latest
block. There are two types of blocks, TX blocks and CP blocks. If Tu is the set of
all TX blocks in Bu and Cu is the set of all CP blocks is Bu, then Tu ∪ Cu = Bu
and Tu ∩ Cu = ∅. The notation bu,i is generic over the block type.

Definition 1. Transaction block
The TX block is a six-tuple, i.e.

tu,i = 〈H(bu,i−1), sequ, txid, pkv,m, sigu〉.

We describe each item in turn.

1. H(bu,i−1) is the hash pointer to the previous block.

2. sequ is the sequence number, which should equal i.

3. txid is the transaction identifier, it should be generated using a cryptograph-
ically secure pseudo-random number generator by the initiator of the trans-
action.

4. pkv is the public key of the counterparty v.

5. m is the transaction message.

6. sigu is the signature created using sku on the concatenation of the binary
representation of the five items above.

The fact that we have no constraint on the content of m is in alignment with our
design goal—application neutrality.

TX blocks come in pairs. In particular, for every TX block

tu,i = 〈H(bu,i−1), sequ, txid, pkv,m, sigu〉

there exist one and only one pair

tv,j = 〈H(bv,j−1), seqv, txid, pku,m, sigv〉,

if they are created by honest nodes running the TX protocol. Note that the txid and
m are the same, and the public keys refer to each other. Thus, given a TX block,
these properties allow us to identify its pair.
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Definition 2. Checkpoint block and genesis block
The CP block is a five-tuple, i.e.

cu,i = 〈H(bu,i−1), sequ,H(Cr), r, sigu〉,

where Cr is the consensus result (which we describe next in Definition 3) in round
r, the other items are the same as the TX block definition.

The genesis block in the chain must be a CP block in the form of

cu,0 = 〈H(⊥), 0,H(⊥), 0, sigu〉,

where H(⊥) can be interpreted as applying the hash function on an empty string.
The genesis block is unique because every node has a unique public and private
key pair.

Definition 3. Consensus result
Our consensus protocol runs in rounds, where the first round is defined to be 1

and it is incremented after every execution of the consensus protocol. The consen-
sus result, output of the consensus protocol, is a tuple, i.e.

Cr = 〈r, C〉,

where C is a set of CP blocks agreed by the facilitators of round r.

Now we define an important property which results from the interleaving nature
of CP and TX blocks. It is used in our validation protocol.

Definition 4. Enclosure and agreed enclosure
If there exist a tuple 〈cu,a, cu,b〉 for a TX block tu,i, where

• cu,a is the closest CP block to tu,i with a lower sequence number and

• cu,b is the closest CP block to tu,i with a higher sequence number,

then 〈cu,a, cu,b〉 is the enclosure of tu,i. Some TX blocks may not have any enclo-
sure, then their enclosure is ⊥. Agreed enclosure is the same as enclosure with an
extra constraint where the CP blocks must be in some consensus result Cr.

Definition 5. Fragment and agreed fragment
If the enclosure of some TX block tu,i is 〈cu,a, cu,b〉, then its fragment Fu,i is

defined as {bu,i : a ≤ i ≤ b}. Similarly, agreed fragment has the same def-
inition as fragment but using agreed enclosure. For convenience, the function
agreed fragment(tu,i) outputs the agreed fragment of tu,i if it exists, otherwise
⊥.
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3.4 Consensus protocol

Our consensus protocol Πc runs on top of the Extended TrustChain. It uses an
unmodified asynchronous common subset (ACS) algorithm as the key building
block. The objectives of the protocol are to allow honest nodes to make progress
(in the form of creating new CP blocks), compute correct the consensus result in
every round and have an unbiased election of facilitators. We formally define the
desired properties below.

Definition 6. TrustChain consensus protocol
A TrustChain consensus protocol is correct if the following holds for every round

r.

1. Agreement: If one correct node outputs a set of facilitators Fr, then every
node outputs Fr

2. Validity: If any correct node outputs Fr, then

(a) |Cr| ≥ N − t4, and

(b) |Fr| = n.

3. Fairness: Every node with a CP block in Cr should have an equal probability
of becoming a member of Fr.

4. Termination: Every correct node eventually outputs some Fr.

These properties are similar to the typical Byzantine consensus properties, but
there are subtle differences. Firstly, they are properties for every node in the net-
work and not just the facilitators. Secondly, they must be satisfied for all rounds
because a failure in one round will lead to failures in subsequent rounds.

Before describing the protocol in detail, we take a brief detour to give back-
ground on ACS as it is the primary building block. Then we move on to describe
the two phases of our consensus protocol—bootstrap phase and consensus phase.

3.4.1 Background on asynchronous common subset

The best way to explain ACS is to contrast it with the typical Byzantine consensus.
We adapt the description from [44, Chapter 17].

Definition 7. Byzantine consensus
There are n nodes, of which at most t might experience Byzantine fault. Node

i starts with an input value vi. The nodes must decide for one of those values,
satisfying the following.

1. Agreement: If a correct node outputs v, then every correct node outputs v.

4 Cr is a tuple but we abuse the notation here by writing |Cr| to mean the number of CP blocks in
the second element of Cr .
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2. Validity: The decision value must be the input value of a correct node.

3. Termination: All correct nodes terminate in finite time.

A node under Byzantine fault means that it can have arbitrary behaviour, for
example, not sending a message or colluding with other Byzantine nodes to un-
dermine the entire system. Note that the decision is on a single value, which is in
contrast to ACS that we describe next.

ACS is an especially useful primitive for blockchain systems. It allows any
party to propose a value and the result is the set union of all the proposed values by
the majority. Concretely, ACS needs to satisfy the following properties (adapted
from [32]).

Definition 8. Asynchronous common subset
There are n nodes, of which at most t might experience Byzantine fault. Node i

starts with a non-empty set of input values Ci. The nodes must decide an output C,
satisfying the following.

1. Agreement: If a correct node outputs C, then every correct node outputs C.

2. Validity: If any correct node outputs a setC, then |C| ≥ n−t andC contains
the input of at least n− 2t nodes.

3. Termination: If n− t nodes receive an input, then all correct nodes produce
an output.

ACS has the nice property of censorship resilience when compared to other con-
sensus algorithms. In PBFT [31], a leader is elected, if the leader is malicious but
follows the protocol, then it can selectively filter values. In contrast, every party
in ACS are involved in the proposal phase, and it guarantees that if n − 2t parties
propose the same value, then it must be in the agreed output. In other words, if
some value is submitted to at least n − 2t nodes, it is guaranteed to be in the con-
sensus result. For a detailed description of ACS, we refer to the HoneyBadgerBFT
work [32]. To understand the remainder of this work, the knowledge of Definition 8
is sufficient.

The main drawback with ACS and also Byzantine consensus algorithms is the
high message complexity. Typically, such protocols have a message complexity of
O(n2), where n is the number of parties. Hence, it may work with a small number
of nodes, but it is infeasible for blockchain systems where thousands of nodes are
involved.

3.4.2 Bootstrap phase

Now we have all the necessary information to describe our consensus protocol.
As with all distributed systems, there must be a bootstrap phase which sets up the
system.
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To bootstrap, imagine that there is some bootstrap oracle that initiates the correct
program on every node, meaning that it satisfied the properties in Definition 6. In
practice, the bootstrap oracle is most likely the software developer that sets up the
system and assigns the facilitators of round 1 in a fair way. This concludes the
bootstrap phase. For any future rounds, the consensus phase is used.

3.4.3 Consensus phase

For any node u, the consensus phase begins when Fr is available and the latest
block is cu,h−1. Note that Fr indicates the facilitators that were elected using
results of round r and are responsible for driving the ACS algorithm in round r+1.
The goal is to reach agreement on a set of new facilitators Fr+1 that satisfies the
four properties in Definition 6.

There are two scenarios in the consensus phase. First, if u is not the facilitator,
it sends 〈cp msg, cu,h−1〉 to all the facilitators. Second, if u is a facilitator, it
waits until N − t messages of type cp msg are received. Invalid messages are
removed. That is blocks with invalid signatures and blocks signed by the same key.
With the sufficient number of cp msg messages, it begins the ACS algorithm and
some C′r+1 should be agreed upon by the end of it. Duplicates and blocks with
invalid signatures are again removed from C′r+1 and we call the final result Cr+1.
We have to remove invalid blocks a second time because the adversary may send
different CP blocks to different facilitators, which results in invalid blocks in the
ACS output, but not in any of the inputs.

The core of the consensus phase is the ACS algorithm. While any algorithm
that solves the ACS problem will work, we use a simplification of HoneyBad-
gerBFT [32] as our ACS algorithm because it is a consensus algorithm designed
for blockchain systems. We do not use the full HoneyBadgerBFT due to the fol-
lowing. First, the transactions in HoneyBadgerBFT are first queued in a buffer
and the main consensus algorithm starts only when the buffer reaches an optimal
size. We do not have an infinite stream of CP blocks, thus buffering is unsuit-
able. Second, HoneyBadgerBFT uses threshold encryption to hide the content of
the transactions. But we do not reach consensus on transactions, only CP blocks,
so hiding CP blocks is meaningless for us.

Continuing, when Fr finish the ACS execution and reach agreement on Cr+1,
they immediately broadcast two messages to all the nodes—first the consensus
message 〈cons msg, Cr+1〉, and second the signature message 〈cons sig, r, sig〉.
The reason for sending cons sig is the following. The channels are not authen-
ticated, and there are no signatures in Cr+1. If a non-facilitator sees some Cr+1, it
cannot immediately trust it because it may have been forged. Thus, to guarantee
authenticity, every facilitator sends an additional message that is the signature of
Cr+1.

Upon receiving Cr+1 and at least n − t valid signatures, u performs two tasks.
First, it creates a new CP block using new cp(Cr+1) (Algorithm 1). Second, it
computes the new facilitators using get facilitator(Cr+1, n) (Algorithm 2), and
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updates its facilitator set to the result. This concludes the consensus phase and
brings us back to the state at the beginning of the consensus phase, so a new round
can be started.

Our protocol has some similarities with synchronizers [44, Chapter 10] because
it is effectively a technique to introduce synchrony in an asynchronous environ-
ment. If we consider the facilitators as a collective authority, then it can be seen as a
synchronizer that sends pulse messages (in the form of cons msg and cons sig)
to indicate the start of a new clock pulse. Every node then sends a completion mes-
sages (in the form of cp msg) to the new collective authority to indicate that they
are ready for the next pulse.

A visual explanation can be found in Appendix A, it walks through the steps
needed for a node to be selected as a facilitator using an example.

Algorithm 1 Function new cp(Cr) runs in the context of the caller u. It creates a
new CP block and appends it to u’s chain.

〈r, 〉 ← Cr
h← |Bu|
cu,h ← 〈H(bu,h−1), h,H(Cr), r, sigu〉
Bu ← Bu ∪ cu,h

Algorithm 2 Function get facilitator(Cr, n) takes the consensus result Cr and an
integer n, then sorts the CP blocks C by the luck value (the λ-expression), and
outputs the smallest n elements.

〈r, C〉 ← Cr
return take(n, sort by(λx.H(Cr||pk of x), C))

3.5 Transaction protocol

The TX protocol Πt, shown in Algorithm 4, is run by all nodes. It is also known
as True Halves, first described informally by Veldhuisen [45, Chapter 3.2]. Nodes
that wish to initiate a transaction calls new tx(pkv,m, txid) (Algorithm 3) with
the intended counterparty v identified by pkv and message m. txid should be a
uniformly distributed random value, i.e. txid ∈R {0, 1}256. Then the initiator
sends 〈tx req, tu,h〉 to v.

A key feature of the TX protocol is that it is non-blocking. At no time in Algo-
rithm 3 or Algorithm 4 do we need to hold the chain state and wait for some mes-
sage to be delivered before committing a new block to the chain. This allows for a
high level of concurrency where we can call new tx(·) and send tx req messages
multiple times without waiting for the corresponding tx resp messages.
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Algorithm 3 Function new tx(pkv,m, txid) generates a new TX block and ap-
pends it to the caller u’s chain. It is executed in the private context of u, i.e. it has
access to the sku and Bu.
h← |Bu|
tu,h ← 〈H(bu,h−1), h, txid, pkv,m, sigu〉
Bu ← Bu ∪ {tu,h}

Algorithm 4 The TX protocol Πt runs in the context of node u.

Upon 〈tx req, tv,j〉 from v
〈 , , txid, pkv,m, 〉 ← tv,j
new tx(pku,m, txid)
store tv,j as the pair of tu,h
send 〈tx resp, tu,h〉 to v

Upon 〈tx resp, tv,j〉 from v
〈 , , txid, pkv,m, 〉 ← tv,j
store tv,j as the pair of the TX with identifier txid

3.6 Validation protocol

The consensus protocol and the transaction protocol do not provide a mechanism
to detect tampering. The validation protocol aims to solve this issue. The protocol
is also a request-response protocol. It assumes that nodes store all the consensus
results as well as the corresponding signatures that they are aware of. Further, we
assume nodes that recovered from a crash or a corruption are able to recover its
missed cons msg and cons sig messages, which can be achieved by querying
other nodes. But before explaining the protocol itself, we first define what it means
for a transaction to be valid.

3.6.1 Validity definition

A transaction can be in one of three states—valid, invalid and unknown. Given a
fragment Fv,j , the validity of the TX block tu,i with its corresponding fragment
Fu,i is captured by the function get validity(tu,i, Fu,i, Fv,j) (Algorithm 5). Note
that tu,i and Fu,i are assumed to be valid, otherwise the node calling the function
would have no point of reference. This assumption is reasonable in practice be-
cause typically the caller is u, so it knows its own TX block and the corresponding
agreed fragment. If the caller is not u, it can always query for the agreed fragment
that contains the transaction of interest from u.

Algorithm 5 works as follows. Before Line 3, we essentially check whether the
fragment is the one that the verifier needs. If it is not, then the verifier cannot
make any decision and return unknown. Such case is possible because the result of
agreed fragment(·) would be ⊥ for new transactions. The next three conditions
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check for tampering or missing blocks, if any of these misconducts are detected,
then the TX is invalid.

We stress that the unknown state means that the verifier does not have enough in-
formation to continue with the validation protocol. If enough information is avail-
able at a later time, then the verifier will output either valid or invalid.

Note that the validity is on a transaction (two TX blocks with the same txid),
rather than on one TX block owned by a single party. It is defined this way because
the malicious sender may create new TX blocks in their own chain but never send
tx req messages. In that case, it may seem that the counterparty, who is honest,
purposefully omitted TX blocks. But in reality, it was the malicious sender who
did not follow the protocol. Thus, in such cases, the whole transaction is marked
as invalid.

Algorithm 5 Function get validity(tu,i, Fu,i, Fv,j) validates the transaction repre-
sented by tu,i. We assume Fu,i is correct and contains tu,i. Fv,j is the correspond-
ing fragment received from v.

1: if Fv,j is not a fragment created in the same round as Fu,i then
2: return unknown
3:

4: 〈 , , txid, pkv,m, 〉 ← tu,i
5: if number of blocks of txid in Fv,j 6= 1 then
6: return invalid
7:

8: tv,j ← the TX block with txid in Fv,j
9: 〈 , , txid′, pku,m′, 〉 ← tv,j

10: if m 6= m′ ∨ txid 6= txid′ then
11: return invalid
12:

13: if tu,i is not signed by pku ∨ tv,j is not signed by pkv then
14: return invalid
15: return valid

3.6.2 Validation protocol

Our validation protocol Πv, shown in Algorithm 6, is designed to classify transac-
tions according to the aforementioned validity definition. If u wishes to validate
some TX with ID txid and counterparty v, it sends 〈vd req, txid〉 to v. The
desired properties of the validation protocol are as follows.

Definition 9. TrustChain validation protocol
A TrustChain validation protocol is correct if the following properties hold.

1. Agreement: If any correct node decides on the validity of a transaction,
except when it is unknown, then all other correct nodes are able to reach the
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same conclusion or output unknown.

2. Validity: The validation protocol outputs the correct result according to the
validity definition above.

3. Liveness: Any valid (invalid) transaction is marked as valid (invalid) even-
tually.

Algorithm 6 Validation protocol Πv which runs in the context of u

Upon 〈vd req, txid〉 from v
tu,i ← the transaction identified by txid
Fu,i ← agreed fragment(tu,i)
send 〈vd resp, txid, Fu,i〉 to v

Upon 〈vd resp, txid, Fv,j〉 from v
tu,i ← the transaction identified by txid
if Fu,i and Fv,j are available and Fu,i is the agreed fragment of tu,i then

set the validity of tu,i to get validity(tu,i, Fu,j , Fv,j)

We make two remarks. First, just like the TX protocol, we do not block any part
of the protocol. Second, suppose some Fv,j validates tu,i, then that does not imply
that tu,i only has one pair tv,j . Our validity requirement only requires that there
is only one tv,j in the correct consensus round. The counterparty may create any
number of fake pairs in later consensus rounds. But these fake pairs only pollutes
the chain of v and can never be validated because the round is incorrect.

3.7 Design variations and tradeoffs

Up to this point, we have discussed our protocol in the context of the model and
assumptions defined in Section 3.2. In this section, we explore a few design vari-
ations, some of them require a relaxed version of our original model. They enable
better performance, allow us to apply our design in the fully permissionless setting
and improves privacy.

3.7.1 Using epidemic protocol to reduce communication cost

One of the final steps in our consensus protocol is to broadcast the consensus result
and signatures to every other node (Section 3.4.3). While this guarantees delivery,
it is wasteful. For example, if every facilitator is honest, a node would receive n
consensus results which are identical when only one is necessary. Furthermore,
realistic networks do not offer a broadcast primitive, i.e. firewalls may block in-
coming messages from certain nodes.

An improvement is to use an epidemic protocol [46] instead, also known as
gossip protocol. Typical epidemic protocols work as follows. Every node buffers
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every message it receives up to some buffer size b. Then it forwards the messages
t number of times. Every time the message is sent to f random neighbours, f
is often called the fan-out. The upside of using an epidemic protocol is that the
communication cost is distributed more evenly between nodes. It is especially true
with a lazy push approach where the node who just received a message would push
the message ID (e.g., digest) to its f random neighbours, and only push the full
message if the neighbour explicitly requests the message [47]. With this, nodes
typically only need to receive one consensus result message instead of n.

A down side of an epidemic protocol is that it usually takes O(logN) time to
infect the whole network, whereas broadcasting is constant time. Another down-
side of some epidemic protocols (e.g., eager push) is that it is difficult to guarantee
delivery. It is particularly the case when the parameters are not chosen correctly
in a network that is only partially connected (but every node is nevertheless reach-
able). If the delivery cannot be guaranteed, then we cannot guarantee liveness in
our consensus protocol because a future facilitator may miss the memo. Picking
parameters are difficult in practice because the network configuration is unknown
and the total number of nodes might also be unknown.

3.7.2 Using timing assumption in the permissionless setting

Our model is purely asynchronous, where we make no timing assumptions any-
where in the protocol. However, in many applications, it is often fine to make tim-
ing assumptions. For example, TCP relies on timeout for its retransmission and the
nLockTime property in Bitcoin transactions makes the transaction unspendable
until some time in the future (either Unix time or block height) [48]. A limitation
of our system is that we use the parameter N in our algorithms, which makes it
unsuitable for the permissionless environment where users can join and leave at
will. In this section we show how making a timing assumption would allow us to
operate in the permissionless setting.

At the start of our consensus phase (Section 3.4.3), facilitators must wait for
N − t cp msg messages, which is the only place where we usedN as a parameter.
To introduce timing, instead of waiting for N − t messages, we wait for some time
D, such that D is sufficiently long for honest nodes to send their CP blocks to the
facilitators. Consequently, this removes the need for a PKI because the collected
CP blocks may be from nodes that nobody has seen in the past. However, choos-
ing the parameter D is difficult and depends on many factors such as the network
condition, message size, and so on. Overestimating it would make agreed frag-
ments much longer than usual, which increases communication costs for valida-
tion. Underestimating it would lead to unfairness where users with a poor internet
connection will have a lower chance to be selected as a facilitator in the next round.
Nevertheless, there is a significant gain for making the timing assumption, and that
is the ability to operate in the permissionless setting which we explain next.

Suppose a new node wish to join the network and the facilitators are known
(this can be done with a public registry). It simply sends its latest CP block to
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Figure 3.4: The chain on the left represents direct chaining of full blocks, where
the digest in “Prev” is simply the digest of the previous full block. The chain on
the right uses compact blocks, represented by the smaller squares. Compact blocks
also form a chain as before, but they each have a hash pointer to the full block,
identified by “Seq” and “Digest”.

the facilitators. Then, in the next round, the node will have a chance to become
a facilitator just like any existing node. To leave the network, nodes simply stop
submitting CP blocks. There is a subtlety here which happens when the node is
elected as a facilitator but still wish to leave. In this case, the node must fulfil its
obligation by completing the consensus protocol, but without proposing its own
CP block before leaving. Otherwise, the n ≥ 3t+ 1 condition may be violated.

3.7.3 Privacy preserving validation protocol using compact blocks

Our approach already has privacy preserving features in comparison to early block-
chain systems. That is, the transactions for each node are only revealed during
the validation protocol. Hence if two nodes never directly or indirectly interact
with each other, their transactions are never revealed. We can take our privacy-
preserving property one step further by introducing another level of hash pointer
indirection. The result is shown in Figure 3.4.

Concretely, we introduce an additional block type, namely compact block. Such
blocks only have three attributes,

1. Seq—the sequence number of the corresponding full block,

2. Digest—the digest of the corresponding full block, and
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3. Prev—the digest of the previous compact block.

Each compact block has a corresponding full block (either a CP block or a TX
block). The relationship is uniquely identified with Seq or Digest. Recall that
our original validation protocol requires the nodes to send the agreed fragment
containing the full blocks. With compact blocks, it is only necessary to send the
compact version of the agreed fragment. The validation then proceeds similarly,
provided that the pair of the to-be-validated TX block is known.

The space saving of this approach depends on the size of the full blocks. If the
full blocks are on average 500 bytes (which is the typical size of Bitcoin transac-
tions [49]), and the compact blocks are 32 + 32 + 8 = 72 bytes (SHA256 digests
are 32 bytes each and we use a 64-bit integer to represent the sequence number),
then the saving in communication cost is 86%.

3.7.4 Optimising validation protocol using cached agreed fragments

One more way to improve the efficiency of the validation protocol is to use a single
agreed fragment to validate multiple transactions. Concretely, for node A, upon
receiving an agreed fragment from node B, rather than validating a single trans-
action, A attempts to validate all transactions performed with B, which are in the
unknown state but also in that fragment.

The benefit of this technique is maximised when a node only transacts with one
other node. In this case, the communication of one fragment is sufficient to validate
all transactions in that fragment. In the opposite extreme, if every transaction that
the node makes is with another unique node, then the caching mechanism would
have no effect.

3.7.5 Total fork detection

The validation algorithm guarantees that there are no forks within a single agreed
fragment, which is sufficient for some applications such as proving the existence
of some information. However, for applications such as digital cash where every
block depends on one or more previous blocks, our scheme is not suitable. For
such applications, we need to guarantee that there are no forks from the genesis
block leading up to the TX block of interest.

We offer two approaches to do total fork detection. First and the easiest solution
is to ask for the complete hash chain of the counterparty. The verifier can be sure
that there are no forks if the following conditions hold.

1. The hash pointers are correct.

2. All the CP blocks are in consensus.

3. The TX of interest is in the chain.
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We use this approach in our prior work on Implicit Consensus [50]. Nodes em-
ploy caching to minimise communication costs, and we call this effect spontaneous
sharding.

The second approach is probabilistic but with only a constant communication
overhead over our current design. For a node, observe that if all of its agreed
fragments has a transaction with an honest node, then the complete chain is effec-
tively validated in a distributed manner. The only way for an attacker to make a
fork is to ensure that the agreed fragment containing the fork has no transactions
with honest nodes. Such malicious behaviour is prevented probabilistically using
a challenge-response protocol as follows. Suppose node A wish to make a trans-
action with node B. A first sends a challenge to B asking it to prove that it holds
a valid agreed fragment between some consensus round specified by A. If B pro-
vides a correct and timely response, then they run the transaction protocol as usual.
Otherwise, A would refuse to make the transaction.

The probability that an honest node catches out a malicious node is

p =
f

r
,

where f is the number of bad agreed fragments and r is the latest round number. If
there are more nodes (say n) trying to make transactions with the malicious node,
then the probability that the malicious node gets caught at least once (denoted by
the random variable X) follows a binomial distribution, i.e.

Pr[X > 0] =
n∑
k=1

(
n

k

)
pk(1− p)n−k.

29





Chapter 4

Analysis of correctness and
performance

In this chapter, we evaluate our system analytically to check whether it correctly
implements the TrustChain consensus protocol (Definition 6) and the TrustChain
validation protocol (Definition 9). Further, we analyse the performance and in
particular the throughput to understand the scalability characteristics. Finally, we
consider the case where the n ≥ 3t+ 1 assumption is violated and show the effect
of it in our system.

4.1 Correctness analysis

Our first objective is to show that our consensus protocol Πc described in Sec-
tion 3.4 is, in fact, a TrustChain consensus protocol defined in Definition 6. Then,
building on top of it, we show that our validation protocol Πv described in Sec-
tion 3.6 conforms to the TrustChain validation protocol defined in Definition 9.
The resulting theorem shows that only using CP blocks in the consensus algorithm
implies consensus on TX blocks.

4.1.1 Correctness of the consensus protocol

We begin our analysis by establishing the four properties in Definition 6, namely
agreement, validity, fairness and termination for an arbitrary round. Using these
results, we use mathematical induction to show that they hold for all rounds.

Lemma 1. If for an arbitrary round r, Fr is known by all correct nodes and one
correct node outputs a list of facilitators Fr+1, then all correct nodes output Fr+1.

Proof. The argument follows from the protocol description. Given that Fr is
known, correct nodes will send CP blocks to all members of Fr. For each facilita-
tor, the ACS algorithm starts independently whenever the facilitator hasN−t valid
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CP blocks (recall from Section 3.4.3 that invalid blocks are ones with an invalid sig-
nature or has a duplicate signature). No honest facilitator can make progress until
n − t honest facilitators start algorithm, but this eventually happens because there
are N − t correct nodes and all correct facilitator eventually receive N − t valid
CP blocks. At the end of ACS, Cr+1 is created and then broadcasted along with the
signature of the facilitators. Due to the agreement property of ACS (Definition 8),
every correct node should receive at least n−t valid signatures on the agreed Cr+1.
Thus they use Cr+1 to generate a new CP block and compute new facilitators. Since
get facilitators(·) is a deterministic algorithm and the input Cr+1 is in agreement,
the output Fr+1 is also in agreement.

Lemma 2. If for an arbitrary round r, Fr is known by all correct nodes and any
correct node outputs Fr+1, then (a) |Cr+1| ≥ N − t and (b) |Fr+1| = n.

Proof. The validity follows from the validity property of ACS and the definition of
our model, namely N ≥ n+ t and n ≥ 3t+ 1. Given Fr, since N ≥ n+ t , there
is at least n nodes that would send their CP block to Fr. From the validity property
of ACS, we know the output must contain the input of at least n − 2t nodes. But
n − t facilitators must have received N − t valid CP blocks, so |Cr+1| ≥ N − t
and this proves (a). Since N − t ≥ (n+ t)− t = n and get facilitators(Cr+1, n)
outputs n items, so |Fr+1| = n and this proves (b).

Lemma 3. If for an arbitrary round r, Fr is known by all correct nodes then every
node with a CP block in Cr+1 should have an equal probability to be elected as a
facilitator in Fr+1.

Proof. We already established that |Cr+1| ≥ N − t ≥ n from Lemma 2. Then
the proof directly follows from the random oracle model. Recall that the luck
value is computed using H(Cr+1||pku). Since pku is unique for every node that
has a CP block in Cr+1, the output of H(·) is uniformly random. As a result,
the output of get facilitators(Cr+1, n) is a random permutation of all the nodes
in Cr+1 truncated to n. Thus, every node has the same probability of becoming a
facilitator.

Lemma 4. If for an arbitrary round r, Fr is known by all correct nodes then every
correct node eventually outputs some Fr+1.

Proof. This follows directly from the properties of the channel (eventual delivery)
and the termination property of ACS. That is, Fr eventually receives all the CP
blocks required to begin ACS, and then ACS eventually terminates. Finally, the
results are eventually disseminated to all the nodes.

From Lemmas 1, 2, 3 and 4, we have shown that the four properties of Defi-
nition 6 holds when assuming the existence of some Fr. Now we need to proof
these properties under the universal quantifier on r. We do this using mathematical
induction.
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Theorem 1. Πc implements a TrustChain consensus protocol (Definition 6).

Proof. We prove using mathematical induction.
In the base case (r = 1), agreement, validity fairness and termination follows

directly from the bootstrap protocol. Note that the result isF1, which represents the
set of facilitators agreed in round 1, are responsible for driving the ACS protocol
in round 2.

For the inductive step, we assume that the four properties hold in round r and
prove that they also hold in round r+1. Using Lemmas 1, 2, 3 and 4, it directly fol-
lows from modus ponens that these properties hold for r+ 1. Due to the principals
of mathematical induction, these properties hold for all r.

4.1.2 Correctness of the validation protocol

Πc ensures consensus on CP blocks and facilitators, which makes it the building
block for reaching consensus on transactions. In this section, we build on top of
Theorem 1 to show that our validation protocol Πv described in Section 3.6 has
the agreement and validity properties of a TrustChain validation protocol defined
in Definition 9.

Theorem 2. Πv satisfies the agreement and validity properties of a TrustChain
validation protocol (Definition 9).

Proof. We proof the agreement property by contradiction. Recall that Fu,i and
tu,i used in Algorithm 5 are valid. Without loss of generality, suppose for some
transaction with TX block t, node u decides valid but node v decides invalid. Then
there exists a fragment F ′ = {. . . , t′, c′} which u received that contains a valid
pair of t—t′. There also exists a fragment F ′′ = {. . . , t′′, c′′}which v received that
does not contain or contains an invalid pair—t′′. In both cases, the get validity(·)
function must have reached Line 3. Due to Theorem 1, we have c′ = c′′, otherwise
the result would be unknown. Since c′(= c′′) = 〈H(t′), . . . 〉 we must have H(t′) =
H(t′′) and t′ 6= t′′ (because t′′ is invalid). In other words, the sender of F ′′ must be
able to create some t′′ that has the same digest as t′. But this is only possible if the
adversary can compute the inverse of H(·) with non-negligible probability. Thus
we have a contradiction and this completes the agreement proof.

Πv directly uses Algorithm 5, which is also the validity definition, so the validity
property is also satisfied.

Theorem 2 shows that agreement on CP blocks would lead to agreement on
TX blocks when the nodes are running the validation protocol. Like in our prior
work [50], we call this behaviour implicit consensus. One of the main advantages
of our scheme over running a consensus algorithm on all the transactions is that the
transaction throughput is no longer dependent on the consensus algorithm—ACS.
This enables horizontal scalability where adding new nodes would lead to higher
global transaction rate. In addition, a convenient consequence of Theorem 2 is
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unforgeability. That is, no adversary can create two chains, F = {. . . , t, c} and
F ′ = {. . . , t′, c}, with correct hash pointers and the same end of chain c with
non-negligible probability.

A stronger version of the validity definition exists. That is, if two honest nodes
make a transaction, then the transaction state is always valid in addition to our
current validity definition. Under our purely asynchronous model, we cannot guar-
antee this stronger version. Since the adversary can delay any message for any
amount of time, it can make sure all tx req messages are delivered in a round
later than the round which the message is sent. Effectively, the pair would always
be in different rounds and the validation protocol would not output valid. We be-
lieve in a relaxed model, i.e. a weakly synchronous model, a stronger validity
definition is possible.

4.1.3 Impossibility of liveness

Theorem 2 is a major result that allows significantly improved performance over
traditional blockchain systems, but it does not have all the properties of a typical
Byzantine consensus problem. Now we show a negative result, where the liveness
property of Definition 9 cannot be attained in Πv, meaning that transactions made
with adversaries cannot always be validated.

Lemma 5. There exists a valid transaction that cannot be eventually validated.

Proof. Suppose nodes u and v correctly performed the TX protocol to create a
transaction. Then when u wants to validate it, it does so by sending vd req mes-
sage to v. v can act maliciously and ignore all vd req message from u, and then
the transaction can never be validated.

Although this is a negative result, it does not put the adversary in an advanta-
geous position. If the adversary is observed to ignore validation requests, then the
honest nodes may prefer not to transact with her in the future. Thus, to stay relevant
in the system, the adversary needs to comply with the protocol.

4.2 Performance analysis

This section aims to answer whether our system is horizontally scalable analyti-
cally. We begin by looking at the communication and time complexity of the con-
sensus protocol Πc, and then the bandwidth requirement for a single transaction.
We build on top of those results to analyse the global throughput.

4.2.1 Communication complexity of the consensus protocol

Πc can be seen as three parts, so the communication complexity is the sum of these
parts. The first part is when every node sends their CP block to all the facilitators,
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which is O(Nn) since there are N nodes and n facilitators. Or simply O(N) if we
consider n as a constant.

The second part is ACS. The communication complexity of ACS is O(n2|v| +
λn3 log n) [32], where |v| is the size of the largest message and λ is the security
parameter (described in Section 3.2). In our system, we wish to understand the
scalability property. Thus we consider the complexity as a function of N rather
than n or λ. Since |v| is at most all the CP blocks from every node, we have
|v| = kN , where k is a constant representing the size of one CP block. Therefore
the communication complexity of ACS in our system is O(N). Since we use a
constant n, O(N) communication complexity also holds for a single facilitator.

The third and final part is the dissemination, where the facilitators broadcast the
consensus result along with their signatures. For the same reason as the first part,
this is also O(N). Thus the combined communication complexity is O(N) for a
constant n.

4.2.2 Duration of the consensus protocol

To make arguments on the duration of Πc, the bandwidth or throughput in our
purely asynchronous model, which are concepts that depend on time, we must
make additional assumptions. Note that the duration we are interested in is not
the same as the time complexity typically used in distributed systems. In the anal-
ysis of distributed algorithms, time complexity is often in terms of the number
of rounds. For example, ACS runs in a constant number of rounds because of
its sub-protocols—reliable broadcast and binary Byzantine consensus—also run in
a constant number of rounds [32]. However, in practice, making a unit of com-
munication always has some overhead associated with it, for example serialising
and writing it to some network socket. Hence, for the remainder of our perfor-
mance analysis, we add the following to our computational model. For every unit
of communication, we assume they take some non-negligible but constant time to
perform. Hence, from our results in Section 4.2.1 and the fact that Πc runs in a
constant number of rounds, it follows that Πc has a duration of O(N).

4.2.3 Communication cost for transactions

Geared with the results above, we are ready to analyse the amount of data required
to be transmitted over a link per transaction, which we call the communication cost
per transaction. To create and then validate a transaction, the communication cost
per transaction is of O(l), where l is the length of the agreed fragment. This result
can be seen from the fact that the largest message by far is the vd resp message,
which contains the agreed fragment. The other messages (tx req, tx resp and
vd req) are constant factors. If we assume that every node performs transactions
at a constant rate of rtx per second, then

l = rtxDc,
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where Dc is the duration of a round of the consensus protocol. But from Sec-
tion 4.2.2, we know that Dc is of O(N); thus the communication cost per trans-
action is O(N). This result is intuitive because round duration would be longer
if there are more CP blocks (more N ), which means that the agreed fragments
are longer (assuming nodes transact at a constant rate). This behaviour is verified
experimentally in Chapter 5.

4.2.4 Linear global throughput

Using our results so far, we can analyse the global throughput. First, we clarify the
bandwidth definition, which is “the data rate at which a network link or a network
path can transfer” [51]. Now, suppose every node has N links which connect
to every other node, every link has a fix bandwidth C and every node makes rtx
transactions per second. Then we have the inequality

NC ≥ rtxl,

where l is the length of the agreed fragment as before. The inequality suggests that
the rate for which transactions and validations are made cannot exceed the total
bandwidth of all the links.

We note that the inequality does not hold if the node is only transacting with a
subset of the population, which is because it cannot use all the bandwidth available
in all the links. In the extreme case, if the node is only transacting with one other
node, then it can only use the bandwidth of one link which is only C. However,
if that is the case, we can intelligently cache the vd resp messages as described
in Section 3.7.4. Hence, we analyse the worst case where every node transacts with
a random node from the population, and a new vd resp must be sent for every
vd req message.

Consider the case where the system is making use of all the bandwidth, i.e.
NC = rtxl. Recall that l is of O(N), which means LHS and RHS both grow
linearly with respect to N . Hence, there exists some rtx that makes use of all
the available bandwidth regardless of N . Finally, if every node in the network is
transacting at rtx per second, then the global throughput (in terms of transactions
per second) is linear w.r.t. the population size N . We also maintain a constant
transaction rate by the same argument if the system is not making use of all the
bandwidth. Both claims are verified experimentally in Chapter 5.

4.3 Effect of a highly adversarial environment

Our last study considers the effect when the number of adversaries is more than
t. This is useful because in practice it is difficult to guarantee that t satisfies n ≥
3t + 1, especially when N is large. Hence we are interested in the probability for
this to happen under our facilitator election process.
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The problem can be formulated as follows. Suppose an urn contains N balls, t
are black (malicious) and N − t are white (honest). If n balls are drawn uniformly
at random without replacement, what is the probability that more than bn−13 c are
black? The random variable X , in this case, is the number of black balls, or the
number of successful events. It follows the hypergeometric distribution since we
pick balls without replacement [52]. Hence, we are interested in the following
probability.

1−
bn−1

3
c∑

k=0

Pr[X = k] = 1−
bn−1

3
c∑

k=0

(
t
k

)(
N−t
n−k
)(

N
n

)
This is not in closed form, but we can visualise the effect in Figure 4.1. We

set the population size N to 2000 and plot the probability of more than bn−13 c
successful events for different numbers of draws. Evidently, if the number of black
balls (traitors) is a third of the population (666 out of 2000) we have about 0.5
probability of electing more than bn−13 c black balls for sufficiently large n. Thus,
we cannot expect the system to function correctly when the expected value is close
to the number of black balls that we can tolerate.
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Figure 4.1: Probability of selecting more than bn−13 c black balls for different value
of t with N fixed at 2000.

On the other hand, due to the fact that hypergeometric distributions have light
tails with “faster-than-exponential fall-off” [52], the probability for picking more
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than bn−13 c black balls when the expected value is much smaller than bn−13 c is
small. We can use tail inequality to bound the probability of picking more than
bn−13 c black balls when only nα are black where 0 ≤ α ≤ bn−13 c/n. The tail
inequality is

Pr[X ≥ E[X] + τn] ≤ e−2τ2n,

where E[X] = nα. We are interested in Pr[X ≥ bn−13 c+ 1], so

τ =
bn−13 c+ 1

n
− α

Putting τ back into the tail inequality we get the following bound.

Pr[X ≥ bn− 1

3
c+ 1] ≤ e−2

( bn−1
3 c+1

n
−α
)2
n

The bound is not tight, but it is useful for picking parameters for a desired level
of fault tolerance. If n is fixed, since 0 ≤ α ≤ bn−13 c/n < (bn−13 c + 1)/n, the
probability is maximum when the squared term is minimum at α = bn−13 c/n. The
probability is minimum when the squared term is maximum at α = 0. Hence, if
n is known, then we can pick a α such that the probability becomes small. On the
other hand, if α is fixed, but small, we may increase n to achieve the same. To
put this into perspective, suppose n = 100 and α = 1/10, i.e. 10% of the nodes
are malicious, then the probability to draw more black balls than the threshold is
9.9× 10−6.
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Chapter 5

Implementation and
experimental results

We evaluate our system experimentally to understand its scalability characteristics
as well as its limitations. Concretely, we give a free and open-source prototype
implementation that runs on a network with over 1000 node. Nodes in our imple-
mentation make transactions autonomously with each other, and then we collect
the results for analysis.

This chapter begins with a description of the implementation in Section 5.1.
Then, we describe our experimental setup in Section 5.2, which includes a dis-
cussion on the system parameters and the physical infrastructure which we use.
Finally, Section 5.3 and onwards follows the same structure as Section 4.2, where
we analyse the performance experimentally.

5.1 Implementation

The prototype implementation can be found on GitHub.

https://github.com/kc1212/checo

It implements the three protocols and the Extended TrustChain discussed in Chap-
ter 3. We also implement two optimisations—privacy preserving validation proto-
col using compact blocks (Section 3.7.3) and optimised validation protocol using
cached agreed fragments (Section 3.7.4). It is written in the event driven paradigm,
using the Python programming language1. We use the Twisted2 library for net-
working.

The structure of the implementation is primarily made up of three modules—
acs, trustchain and node. acs, as its name suggests, implements ACS.
ACS uses erasure code in one of its sub-protocols (reliable broadcast). Thus we

1https://www.python.org/
2https://twistedmatrix.com/
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use the liberasurecode3 library for its Reed-Solomon error correcting code func-
tionality. An implementation detail is that liberasurecode cannot create more than
32 code blocks, which is hard-coded in the source file4, we discuss the effect of this
in Section 5.2. The acs module provides a small interface to the caller to start and
stop the consensus process and also retrieve results. The trustchain module
implements the Extended TrustChain data structure. It also provides the essen-
tial algorithm necessary to interact with Extended TrustChain such as new tx(·),
new cp(·) and agreed fragment(·). Finally, the node module ties everything
together. It implements the consensus protocol, the transaction protocol and the
validation protocol.

Every node keeps a persistent TCP connection with every other node, which
creates a fully connected network for our experiment. It is certainly not ideal in real
world scenarios where nodes may have limited resources (e.g. sockets). But as a
prototype, it is sufficient to run a network of over a thousand nodes and experiment
with it.

Finally, the cryptography primitives we use are SHA256 for hash functions and
Ed25519 for digital signatures. Both of which are provided by libnacl 5.

5.2 Experimental setup

The goal of the experiment is to run CHECO and analyse the communication cost,
the consensus duration and the global throughput. We investigate these properties
under the following parameters.

1. The number of facilitators n ∈ {4, 8, . . . , 32}. The maximum n is 32 be-
cause the limitation in liberasurecode mentioned in Section 5.1, but our re-
sults in Section 5.6 give a good indication of how our system may function
for a larger n.

2. The population size N ∈ {200, 300, . . . , 1200}. The reason why N only
goes up to 1200 is due to our physical setup, which we describe below.

3. The two modes of transaction. The first mode is the fixed-neighbour mode
where nodes only transact with one predetermined node. It minimises the
data volume per validated transaction because agreed fragment can be cached.
The second mode is in the other extreme which we call the random-neighbour
mode, where every transaction is performed with a random node out of the
N nodes in the system. It is unlikely that the agreed fragments can be reused.

3https://github.com/openstack/liberasurecode
4https://github.com/openstack/liberasurecode/blob/

0794b31c623e4cede76d66be730719d24debcca9/include/erasurecode/
erasurecode.h#L35

5https://pypi.python.org/pypi/libnacl
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The experiment is run on the DAS-56. From now on, we use “machines” to re-
fer to DAS-5 nodes and “nodes” to refer to a running instance in our system. On
DAS-5 we use up to 30 machines, for each machine we use up to 40 nodes, which
gives us the aforementioned 1200 number. With this setup, we cannot run more
nodes because the every machine only has 65535 ports available (minus the re-
served ones). But 40 nodes each need 1200 TCP connections which is 48000 TCP
connections per machine and that is inching close to the limit. While it is possible
to have more TCP connections per machine, but it requires additional network in-
terface which is something we do not control on the DAS-5. Nevertheless, running
the system with 1200 nodes gives a good indication of its scalability properties as
we show later.

To coordinate nodes on many different machines, we employ a discovery server
to inform every node the IP addresses and port numbers of every other node. It is
only run before the experiment and is not used during the experiment.

Finally, the transaction rate rtx is fixed at 2 TX/s for every node. This value,
as we show later, creates a bottleneck in extreme cases which helps us understand
the limitations of our design. Since Bitcoin transactions are approximately 500
bytes [49], we use a uniformly random transaction size sampled between 400 and
600 bytes.

5.3 Communication cost for the consensus protocol

The remainder of this chapter follows the same structure as the performance analy-
sis in Section 4.2. We check our analytical results experimentally and demonstrate
horizontal scalability.

Figure 5.1 shows the relationship between the communication cost of the con-
sensus protocol per round and the population size. The most important aspect
is that these results show a linear increase, which reinforces our analytical result
in Section 4.2.1. Note that regardless of whether the transactions are performed
with a random neighbour or with a fixed neighbour, the magnitude of the commu-
nication cost is similar. Both peak at about 100 MB, which is expected because the
consensus protocol is decoupled from the transaction protocol and the validation
protocol. Finally, the rate for which the communication cost increases is higher
when the number of facilitators is higher, which is also expected because the ACS
algorithm has a polynomial term w.r.t. n in its communication complexity.

We are also interested in how communication costs translate to time. Hence, for
the same experiment, we record the duration in seconds and the result is shown
in Figure 5.2. Interestingly, the duration is not entirely linear. We attribute this
behaviour to the extra time needed to hash the CP blocks in the consensus result to
compute the luck value. Since if N increases, every node must also perform more
hash operations. These results do not conform to analytical result in Section 4.2.2.
Nevertheless, the difference is minor, and there are ways to optimise the luck value

6https://www.cs.vu.nl/das5/
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(a) Transactions are with fixed neighbours.
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(b) Transactions are with random neighbours.

Figure 5.1: Experimental result of the communication cost per round for the con-
sensus protocol. The error bars are larger for higher population size or higher
number of facilitators is because rounds take longer thus they are repeated fewer
times.

200 400 600 800 1000 1200
Population size N

0

10

20

30

40

50

60

70

80

Ro
un

d 
du

ra
tio

n 
(s

ec
on

ds
)

facilitators
4
8
12
16
20
24
28
32

(a) Transactions are with fixed neighbours.
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(b) Transactions are with random neighbours.

Figure 5.2: Experimental result of the round duration per round for the consensus
protocol.
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(a) Transactions are with fixed neighbours.
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(b) Transactions are with random neighbours.

Figure 5.3: Experimental result of the communication cost per verified transac-
tion. It has a similar, nearly linear, trend as Figure 5.2. Fluctuation for the fixed-
neighbour mode exists because the cache mechanism is unpredictable.

computation. For example, the luck value can be computed by the facilitators and
are sent with the consensus result. Then the non-facilitator nodes simply use it if
there are enough signatures.

5.4 Communication cost for transaction and validation pro-
tocols

We argued that the communication cost per verified transaction is of O(N) (Sec-
tion 4.2.3). To verify the argument, we plot the relationship between the communi-
cation cost of for every validated transaction and population size in Figure 5.3. We
observe a nearly linear relationship, which is due to the nearly linear relationship
of the communication duration mentioned before. Again, we believe the difference
is minor, and it is possible to remove the extra overhead.

More interestingly, there is a large difference in communication cost between the
two modes of transaction. When transacting with only one neighbour, the commu-
nication cost is low because only one agreed fragment needs to be communicated
for every round to validate all transactions of that round. On the other hand, if
every node is transacting with a random node, then it is likely the case that one
agreed fragment needs to be communicated for every transaction. Hence the com-
munication cost we see in Figure 5.3b is much higher than in Figure 5.3a.

Some fluctuations exist in Figure 5.3a, which is due to our caching mechanism.
We send validation requests at the same rate as transactions. Upon receiving a

43



(remote) agreed fragment, the caching mechanism inspects all the transactions in
the agreed fragment and attempts to verify as many as it can, rather than just the
transaction in the original validation request. However, it may be the case that the
agreed fragments arrive later than the validation request interval. Then it is possible
to have sent two or more validation requests for some transactions in the same local
agreed fragment. In this case, the remote would respond with two or more of the
same agreed fragments, which results in extra (wasted) communication cost, and
this is the source of the fluctuation seen in Figure 5.3a. The result in Figure 5.3b
reinforces our argument. It is a lot more stable because for every transaction it is
almost always the case that a new agreed fragment is needed to validate it.

5.5 Linear global throughput

Finally, the global throughput results are shown in Figure 5.4. Evidently, the
throughput has a linear relationship with the population size. This result is a strong
indication of the horizontal scalability which we aimed to achieve. It also matches
with our analytical result.

Note that the throughput decreases slightly as the number of facilitators in-
creases. This effect is due to the additional communication cost for running ACS
with a high number of facilitators. That is, if the network is congested then the
nodes may not have enough bandwidth to send validation responses timely.

For Figure 5.4a, the magnitude of our throughput may not be self-evident at first
glance. Recall that we fixed our rtx to 2, but how is it possible to have around 4800
transactions per second for 1200 nodes (4 TX/s)? This result is due to the way
validated transactions are calculated. Transactions are between two parties, hence
if every node makes two transactions per second, every node also expects to receive
two transactions per second. Hence, for every node, the TX blocks are created at
4 per second. Validation requests are sent at the same rate, which explains the
magnitude.

The difference in magnitude between Figure 5.4a and Figure 5.4b is caused by
the caching mechanism mentioned earlier. If a new agreed fragment needs to be
transmitted to validate every transaction, then it puts a toll on the network infras-
tructure. The low transaction rate in Figure 5.4b is caused by the fact that the
network infrastructure cannot keep up with our demand. In practice, we do not
expect such behaviour to occur as it is possible to cache agreed fragments.

We demonstrate the bottleneck issue from a different perspective in Figure 5.5.
The graph is plotted by counting the number of transactions and the number of vali-
dated transactions every 5 seconds for one node running in a network of 1200 nodes
and 32 facilitators. In Figure 5.5a, the number of validated transaction changes as
a step function. This means that transactions are validated in bursts, and the valida-
tion protocol can “keep up” with the transactions. Note that the horizontal “lines”
where no new validated transactions are made are on average 76 seconds, this
matches with the round duration result in Figure 5.2a. On the other hand in Fig-
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(b) Transactions are with random neighbours.

Figure 5.4: Global throughput increases as the population increases when every
node transact at the same rate. Using fixed neighbours results in a higher through-
put because of the caching mechanism.
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(a) Transactions are with fixed neighbours.
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Figure 5.5: Demonstration of the network bottleneck. Note that the slope of vali-
dated transactions grows at a slower rate in Figure 5.5b than in Figure 5.5a.
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ure 5.5b, the validation protocol clearly cannot “keep up” with the rate which the
transactions are made. As a result, the global throughput is lower when transacting
with random nodes than only with neighbours.

5.6 Communication cost with varying number of facilita-
tors

Up to this point, we focused on the effect of communication cost, throughput and
so on with respect to the population size. In this section, we consider a varying
number of facilitators, which gives us an insight into our system performance may
perform when the number of facilitators is higher than 32.

Figure 5.6 shows the communication cost of the consensus protocol for varying
numbers of facilitators. There is substantial evidence that the communication cost
grows polynomially. We expect this behaviour because of there are polynomial
terms in the ACS communication complexity—O(n2|v|+λn3 log n), which means
that the rounds would take longer to complete and transactions would take longer
to verify. On the other hand, we get better fault tolerance. Thus a linear increase in
fault tolerance (t) costs a polynomial increase in communication cost.

The same experiment viewed from the perspective of time is shown in Figure 5.7.
Similarly, the duration increases polynomially for a linear increase in fault toler-
ance.
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(a) Transactions are with fixed neighbours.
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(b) Transactions are with random neighbours.

Figure 5.6: The communication cost of the consensus protocol increases polyno-
mially with respect to the number of facilitators as expected from the ACS com-
munication complexity.
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(a) Transactions are with fixed neighbours.
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(b) Transactions are with random neighbours.

Figure 5.7: The consensus duration increases polynomially with respect to the
number of facilitators.
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Chapter 6

Conclusion

In this work, we introduced an application neutral blockchain system which we
call CHECO. We add checkpoint block to the existing TrustChain data structure
to capture the system state. The round based consensus protocol uses ACS as a
building block to reach consensus on checkpoint blocks. The consensus result,
which is a set of checkpoint blocks, lets nodes elect new facilitators and create new
checkpoint blocks. The existing work on True Halves is formalised to act as our
transaction protocol. Finally, we introduce a validation protocol which ensures that
if agreed fragments for some transaction exists, then nodes reach agreement on the
validity of that transaction. The novelty of the validation protocol is that it uses
point-to-point communication, i.e. nodes only validate the transactions of interest,
this enables our horizontal scalability property.

This work answers the research question stated in Section 2.2.

How can we design a blockchain consensus protocol that is fault-
tolerant, horizontally scalable, and able to reach global consensus?

Concretely, fault tolerance is guaranteed if n ≥ 3t+ 1 by using ACS as a building
block. While t may be small compared to the population size N , we show that the
probability for the system to fail is low even when n ≥ 3t+1 does not hold as long
as the proportion of malicious nodes is not close to a third of N . The horizontal
scalability property is demonstrated both analytically and experimentally. Unlike
sharding protocols, the property holds regardless of transaction characteristics and
needs no parameter selection. Finally, we achieve global consensus on transactions
via consensus on checkpoint blocks.

This work is the first step in building a new paradigm for blockchain consensus
protocol. It has the potential to efficiently cultivate trust on the internet in the
presence of faults without a central authority. We hope to improve our design by
building a concrete application on top of it.
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6.1 Future work

While our system has excellent scalability properties, it is not without limitations.
Much of it is from the fact that it does not have a concrete application. We do
not attempt to prevent the Sybil attack, spam or DoS because the accuracy of the
defence depends on the understanding of the application. For instance, without any
application, it would be impossible to distinguish between a very active node from
a spammer because the content of the transaction (m) carry no meaning.

Our experiment is conducted in a somewhat idealised world (DAS-5). We hope
to study our prototype in a more realistic environment. For example, DeterLab [53]
lets users simulate network delay, which is essential for discovering issues that may
only occur in hostile environments. To understand our system further, we hope to
experiment with a real platform with real users such as Tribler [38]. For instance,
the standard TrustChain in Tribler is used for accounting internet traffic between
users, but it has no global consensus. It would be useful to integrate our consensus
protocol into Tribler to prevent misreporting attacks. More importantly, it gives us
an opportunity to observe the characteristics of our system in the real world and
how it evolves with new features or alterations.

The fault tolerance property is adequate for permissioned systems where nodes
have relatively more trust between each other. However, it is not adequate for
permissionless systems, which usually aim to tolerate fault that involves a minority
of the network, which can be just shy of 50%. For future work, we propose the
following two ways to improve fault tolerance. First, use a reputation mechanism
to select facilitators rather than simply selecting them randomly so that faulty nodes
are less likely to be selected. This technique of course heavily depends on the
application, for P2P file sharing systems the reputation score may be the number
of bytes contributed to the network. Second, instead of using ACS we use a proof-
of-stake (PoS) scheme (e.g., Ouroboros [54]) which means that nodes with more
stake in the system get more vote. In an ideal PoS scheme, the system can tolerate
any fault if the majority of the stakeholders are honest.

Finally, as mentioned in Section 3.7.2, we wish to evaluate our system (ana-
lytically and experimentally) in the permissionless settings. It would enable our
protocol to be applied to a much wider range of applications.
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Appendix A

Consensus protocol example

Visualisations of the different stages in the consensus protocol is shown in Figures
A.1 to A.4. The captions detail every step.

ta,5

tb,3

tc,7

Figure A.1: We consider three nodes and begin in a state where some facilitators
Fr−2 just agreed on the consensus result Cr−1 but have not yet propogated it yet.

ta,5

tb,3

tc,7

ca,6

cb,4

cc,8

Figure A.2: The facilitators propogates Cr−1. Upon receiving it, the nodes perform
two tasks: (1) elect new facilitators Fr−1 by selecting the first n nodes ordered
by H(Cr−1||pk), and (2) create new CP blocks—ca,6, cb,4 and cc,8. For example,
ca,6 = 〈H(ta,5), 6,H(Cr−1), r − 1, siga〉.

57



ta,5

ta,7
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tb,6

tb,5

tb,3

tc,7
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ca,6

cb,4

cc,8

Figure A.3: Nodes now send their new CP blocks to the new facilitators Fr−1.
While Fr−1 is trying to reach consensus on a set of CP blocks, nodes carry on
making transactions as usual (concurrently). We remark that the to-be-agreed con-
sensus result Cr is created using CP blocks from the previous round—ca,6, cb,4 and
cc,8.
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Figure A.4: Finally, when Fr−1 decides on Cr (which should contain ca,6, cb,4 and
cc,8) and disseminates it. Nodes compute new facilitators Fr and create new CP
blocks. For example, cc,11 = 〈H(tc,10), 11,H(Cr), r, sigc〉.
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