
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. C. Guiducci, présidente du jury
Prof. Y. Leblebici, Dr A. Pantazi, directeurs de thèse

Prof. G. Indiveri, rapporteur
Dr E. Eleftheriou, rapporteur

Prof. P. Ienne, rapporteur

Unsupervised Learning of
Phase-Change-Based Neuromorphic Systems

THÈSE NO 8129 (2017)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 15 DÉCEMBRE 2017
À LA FACULTÉ DES SCIENCES ET TECHNIQUES DE L'INGÉNIEUR

LABORATOIRE DE SYSTÈMES MICROÉLECTRONIQUES
PROGRAMME DOCTORAL EN MICROSYSTÈMES ET MICROÉLECTRONIQUE

Suisse
2017

PAR

Stanislaw Andrzej WOZNIAK

Dedicated to my parents and my wife.

Abstract

Neuromorphic systems provide brain-inspired methods of computing. In a neuromorphic ar-

chitecture, inputs are processed by a network of neurons receiving operands through synaptic

interconnections, tuned in the process of learning. Neurons act simultaneously as asyn-

chronous computational and memory units, which leads to a high degree of parallelism.

Furthermore, owing to developments in novel materials, memristive devices were proposed

for area- and energy-efficient mixed digital-analog implementation of neurons and synapses.

In this dissertation, we propose neuromorphic architectures based on phase-change mem-

ristors combined with biologically-inspired synaptic learning rules, and we experimentally

demonstrate their pattern- and feature-learning capabilities.

Firstly, by exploiting the physical properties of phase-change devices, we propose neuro-

morphic building blocks comprising phase-change-based neurons and synapses operating

according to an unsupervised local learning rule. At the same time, we introduce multiple

enhancements for pattern learning: an integration threshold for the phase-change soma to

ensure noise-robust operation; selective synaptic depression mechanism to limit negative

impact of asymmetric conductance response of phase-change synapses during the learning;

WTA (Winner-Take-All) mechanism with level-tuned neurons that decreases power consump-

tion in comparison to the classic lateral inhibition WTA; and learning WTA that enhances

the quality of pattern visualization. Experimental results demonstrate the capabilities of the

proposed architectures. In particular, a neuron with phase-change synapses was shown to

learn and re-learn patterns of correlated activity. Furthermore, an all-phase-change neuron

with a record number of 1M synapses successfully detected and visualized weakly-correlated

patterns. Lastly, a network of all-phase-change neurons operating with level-tuned neurons

accurately learned multiple patterns.

Secondly, to scale-up the proposed architectures, we identify the need to improve the knowl-

edge representation to learn features rather than patterns. We determine the key role of

the feedback links for controlling the learning process, and combine intraneuronal with in-

terneuronal feedback. Intraneuronal feedback determines what each neuron learns, whereas

interneuronal feedback determines how information is distributed between the neurons.

We propose two feature-learning architectures: an architecture with interneuronal feedback

to the learning rule, and an architecture inspired by the biological observation of synaptic

competition for learning-related proteins. Furthermore, we introduce a model of synaptic

i

Abstract

competition that guides the learning as well as detects novelty in the input, which is then

used to dynamically adjust the size of the network. In a series of benchmarks for different

feature types, synaptic competition outperformed other common methods, simultaneously

adjusting the network to the optimal size. Finally, it was the only method that succeeded

for a challenging dataset that violates the common machine learning assumption on the

independent and identically-distributed input presentation.

To conclude, we proposed phase-change-based neuromorphic architectures and we realized

them in a large-scale prototype platform. The experimental results demonstrate pattern- and

feature-learning capabilities and constitute an important step towards designing unsupervised

online learning neuromorphic systems.

Keywords: neuromorphic systems, phase-change memristors, spiking neural networks, WTA,

STDP, correlation detection, unsupervised online learning, feature extraction, independent

components, synaptic competition.

ii

Zusammenfassung

Neuromorphe Systeme stellen ein vom Gehirn inspiriertes Berechnungsmodell dar. In einer

neuromorphen Architektur werden Eingaben durch ein Netzwerk von Neuronen bearbei-

tet und die Verarbeitungslogik wird durch gelernte synaptische Verbindungen repräsentiert.

Neuronen dienen gleichzeitig als asynchrone Rechnen- und Speichereinheiten, was zu ei-

nem hohen Grad an Parallelität führt. Durch die Entwicklung neuartiger Materialien konnten

memristive Flächen- und Energie-effiziente digital-analoge Implementierungen von Neuro-

nen und Synapsen entwickelt werden. In dieser Dissertation, schlagen wir Phasenwechsel-

Memristoren-basierte neuromorphe Architekturen mit biologisch inspirierten Lernregeln vor,

und wir zeigen in Experimenten deren Fähigkeiten, Muster und Merkmale zu lernen.

Unter Ausnutzung der physikalischen Eigenschaften von Phasenwechselzellen schlagen wir

zunächst neuromorphe Bausteine vor, die aus Phasenwechsel-Neuronen und Synapsen be-

stehen, die mit einer lokalen unbeaufsichtigten Lernregel betrieben werden. Gleichzeitig

stellen wir mehrere Verbesserungen für das Musterlernen vor: ein Phasenwechsel-Soma

mit Integrationsschwelle, das robust gegen Rauschen ist; ein selektiv synaptisches Depres-

sionsverfahren zur Begrenzung der negativen Auswirkungen der asymmetrischen Leitfähig-

keitsreaktion von Phasenwechsel-Synapsen; ein Winner-Take-All (WTA)-Mechanismus mit

Ebenen-abgestimmten Neuronen, das den Energieverbrauch verringert; und Lernen-WTA,

welches die Qualität der Mustervisualisierung verbessert. Experimentelle Ergebnisse zeigen

die Fähigkeiten der vorgeschlagenen Architekturen. Insbesondere wurde ein Neuron mit

Phasenwechsel-Synapsen verwendet, um Muster korrelierter Aktivität zu lernen. Weiterhin

wurde ein Phasenwechsel-Neuron mit einer Rekordzahl von 1M Synapsen gezeigt, das erfolg-

reich schwach korrelierte Muster erkennen und visualisieren konnte. Schließlich lernte ein

Netzwerk von vollständig Phasenwechsel- und Ebenen-abgestimmten Neuronen mehrere

Muster.

Zweitens zeigen wir im Hinblick auf die Skalierung der vorgeschlagenen Architekturen, dass

es notwendig ist, die Wissensrepräsentation zu verbessern, um Merkmale anstatt Muster zu

lernen. Wir stellen die Schlüsselrolle von Rückkopplungen zur Steuerung des Lernprozes-

ses heraus, und wir kombinieren Intra- mit Inter-neuronaler Rückkopplung. Interneuronale

Rückkopplung bestimmt, was jedes Neuron lernt, während intraneuronale Rückkopplung

bestimmt, wie die Information zwischen den Neuronen verteilt ist. Wir stellen zwei Architek-

turen für das Merkmals-Lernen vor: eine mit interneuronaler Rückkopplung zur Lernregel

iii

Zusammenfassung

und eine, die durch biologische Beobachtung der synaptischen Konkurrenz lernbezogener

Proteine inspiriert ist. Weiterhin stellen wir ein Modell der synaptischen Konkurrenz für das

Lernen vor, das basierend auf Neuheiten in den Eingaben die Netzwerkgröße dynamisch

anpasst. In einer Reihe von Benchmarks zeigen wir, dass die synaptische Konkurrenz andere

Methoden übertrifft, wobei gleichzeitig das Netzwerk auf die optimale Größe angepasst wurde.

Schließlich war sie die einzige Methode, die für einen anspruchsvollen Datensatz erfolgreich

war, der nicht unabhängige und gleich verteilte Eingaben hat.

In Zusammenfassung, schlagen wir Phasenwechsel-basierte neuromorphe Architekturen vor

und implementierten sie als Prototyp. Die experimentellen Resultate zeigen Muster- und

Merkmals-Lernen und sind ein wichtiger Schritt im Entwurf von unüberwachtem Online-

Lernen in neuromorphen Systemen.

Stichwörter: neuromorphe Systeme, Phasenwechsel-Memristoren, gepulste neuronale Netze,

WTA, STDP, Korrelationserkennung, unüberwachtes Online-Lernen, Merkmal-Extraktion,

unabhängige Komponente, synaptische Konkurrenz.

iv

Contents

Abstract (English/Deutsch) i

List of figures ix

List of tables xiii

1 Introduction 1

1.1 Brain-inspired computing . 1

1.1.1 Designing neural networks . 3

1.1.2 Learning . 5

1.2 Towards neuromorphic systems . 7

1.2.1 The impact of neuromorphic research . 9

1.3 Overview of the thesis . 10

1.3.1 Research objective and strategy . 10

1.3.2 Outline . 11

1.3.3 Publications . 11

1.3.4 Notation . 13

2 Spiking neural networks 15

2.1 Spiking neural network architecture . 15

2.2 Information coded in the spikes . 16

2.2.1 Rate coding . 16

2.2.2 Temporal coding . 17

2.3 Operation of a spiking neuron . 20

2.3.1 Synapses . 20

2.3.2 Neuron soma . 21

2.3.3 Spiking threshold . 22

2.3.4 STDP learning mechanism . 24

2.3.5 Simplified STDP . 25

2.4 Spiking neuron as a computational primitive . 26

2.5 Operation of a spiking neural network . 29

v

Contents

3 Phase-change-based spiking neurons 31

3.1 Phase-change technology . 31

3.1.1 Operation of a phase-change cell . 32

3.1.2 Crossbars of phase-change cells . 33

3.1.3 An experimental platform with GST phase-change cells 34

3.2 Phase-change-based synapses . 37

3.2.1 Types of phase-change synapse designs . 37

3.2.2 STDP for PCM synapses . 41

3.2.3 Asymmetric STDP for 1-PCM synapses . 41

3.3 Phase-change-based neurons . 43

3.3.1 Noise-robust phase-change neurons . 45

3.4 Conclusions . 46

4 Architectures for pattern learning 47

4.1 Learning a correlated pattern . 47

4.1.1 Learning results . 48

4.1.2 Relearning results . 49

4.2 Learning a weakly correlated pattern . 50

4.2.1 Results for an all-phase-change neuron . 51

4.2.2 Towards accurate weakly correlated pattern visualization 54

4.2.3 An architecture using A-STDP with selective depression 55

4.2.4 Results for A-STDP with selective depression 57

4.3 Learning multiple correlated patterns . 59

4.3.1 WTA with level-tuned neurons . 59

4.3.2 Multiple pattern learning results . 61

4.3.3 Enhanced multiple overlapping pattern learning 64

4.4 Conclusions . 65

5 Knowledge representation 67

5.1 Scaling up neural network architectures . 67

5.1.1 Relationship to k-NN statistical model . 68

5.1.2 Knowledge representation in deep networks 69

5.2 Feature types . 70

5.3 Explicit feature learning using matrix factorization 72

5.3.1 Vector Quantization . 72

5.3.2 Principal Components Analysis . 73

5.3.3 Non-negative Matrix Factorization . 74

5.4 Implicit feature learning in neural networks . 75

5.4.1 Autoencoder . 75

5.4.2 Restricted Boltzmann Machine . 77

5.4.3 Dendritic inhibition . 78

vi

Contents

6 Architectures for feature learning 79

6.1 Feedback in spiking neural networks . 79

6.2 Analytic interpretation of intraneuronal feedback 81

6.2.1 A-STDP . 81

6.2.2 Simplified STDP . 82

6.2.3 Inverted A-STDP . 83

6.3 Feedback to the learning mechanism . 83

6.3.1 Feature learning A-STDP . 84

6.3.2 Orthogonal feature learning results . 86

6.3.3 Generalization of the feature learning architecture 86

6.4 Feedback between the synapses . 88

6.4.1 Synaptic competition . 88

6.4.2 Incorporating synaptic competition into the learning 91

6.4.3 Dynamically-sized network . 91

6.4.4 Orthogonal feature learning results . 92

6.4.5 Independent feature learning results . 97

6.5 Learning features from non-IID datasets . 101

6.5.1 Dataset presentation assumptions . 101

6.5.2 Non-IID independent feature learning results 102

6.5.3 Discussion on the stability of representation 104

6.6 Conclusions . 104

7 Conclusions and future work 107

7.1 Future work . 109

Bibliography 111

Curriculum Vitae 119

vii

List of Figures
1.1 Abstraction levels for studying the brain . 2

1.2 Technology stack of neural network design . 4

1.3 Taking inspiration from the brain . 8

2.1 A layer of spiking neurons . 15

2.2 Sample spike trains and their interpretation using different coding schemes . . 17

2.3 Examples of input correlations . 18

2.4 Correlated inputs for varying correlation coefficient c 19

2.5 A spiking neuron . 20

2.6 The membrane leakage vs. temporal characteristics of the input 23

2.7 Spiking thresholds for operation with and without integration 23

2.8 Learning using Spike-Timing-Dependent Plasticity 24

2.9 Simplified STDP rule . 26

2.10 Applications of a spiking neuron . 27

2.11 Single layer spiking neural network with feedback links 29

3.1 A phase-change mushroom cell . 32

3.2 Memristive crossbar . 34

3.3 Experimental platform . 35

3.4 I-V characteristic of a typical phase-change cell 35

3.5 Characterization of GST phase-change cells . 36

3.6 Conductance response after application of multiple pulses 37

3.7 1-PCM synapse . 38

3.8 2-PCM synapse . 39

3.9 Multi-memristive synapse . 40

3.10 Asymmetric STDP for 1-PCM synapses . 42

3.11 Experimental realization of A-STDP . 43

3.12 Neuron soma hardware implementations . 43

3.13 Operation of a phase-change neuron . 44

3.14 The firing frequency of an LIF and a phase-change neuron 46

4.1 An architecture for learning correlated patterns 47

4.2 Inputs with correlation coded information about the patterns 48

4.3 Weights of a learned neuron . 49

ix

List of Figures

4.4 A single neuron relearning correlated patterns using A-STDP 50

4.5 Weakly correlated inputs . 51

4.6 Comparison of LIF and PCth soma applied for pattern detection 52

4.7 Pattern detection assessment using cross-correlation 53

4.8 Weakly correlated pattern visualization . 53

4.9 Weight snapshots for weakly correlated inputs . 54

4.10 A-STDP weights post-processing for c = 0.2 . 54

4.11 Neuron architecture for A-STDP with selective depression 55

4.12 Determining qth for selective potentiation . 56

4.13 Weakly correlated pattern visualization with selective depression 57

4.14 Comparison of pattern visualization for c = 0.2 and c = 1.0 58

4.15 WTA operation in a network . 59

4.16 Enabling level-tuned neurons . 60

4.17 An all-phase-change neural network detecting two correlated groups 62

4.18 An all-phase-change neural network learning two patterns 63

4.19 Learning three overlapping patterns . 65

5.1 Scaling up improves accuracy . 68

5.2 Scaling up approaches in SNNs and ANNs . 69

5.3 Weather dataset . 70

5.4 Swimmer dataset . 70

5.5 Bars dataset . 71

5.6 An example of matrix factorization . 72

5.7 Different matrix factorizations of the Weather dataset 73

5.8 Projection matrix . 74

5.9 Autoencoder . 75

5.10 Features learned using an ANN autoencoder . 76

5.11 Restricted Boltzmann Machine . 77

5.12 Features learned using an RBM . 78

5.13 Features learned using dendritic inhibition . 78

6.1 Feedback schemes in SNNs . 80

6.2 Spatio-temporal patterns arriving at a neuron . 81

6.3 Operation of inverted A-STDP . 83

6.4 Patterns are decomposed into features defined by sequences of operations . . . 84

6.5 Features learned using feedback to the learning 86

6.6 Feature learning results for the Swimmer dataset 87

6.7 Feature learning results for the Bars dataset . 88

6.8 Competition mechanisms in front and behind the neurons 89

6.9 Synaptic competition example . 90

6.10 Synaptic competition incorporated into the learning 91

6.11 An example of representation overflow . 92

6.12 Synaptic competition operation in a dynamically-sized network 93

x

List of Figures

6.13 Assessment of the features learned from the Swimmer dataset 95

6.14 Features learned from the Swimmer dataset . 96

6.15 Feature detection for the Swimmer dataset . 96

6.16 Orthogonal features for the Bars . 97

6.17 Network size for the Bars dataset . 98

6.18 Assessment of the features learned from the Bars dataset 99

6.19 Features learned from the Bars dataset . 99

6.20 Feature detection for the Bars dataset . 100

6.21 More realistic dataset presentation . 101

6.22 Non-IID Bars dataset . 102

6.23 Assessment of the features learned from the non-IID Bars dataset 103

6.24 Features learned from the non-IID Bars dataset 103

6.25 Feature detection for the non-IID Bars dataset . 103

xi

List of Tables
3.1 Comparison of PCM synapse types . 40

4.1 Accuracy for the pattern visualization task . 58

6.1 Analytic interpretation of A-STDP . 82

6.2 Analytic interpretation of simplified STDP . 83

6.3 Effective operation of a neuron in a neuronal module 85

6.4 Spiking accuracy and F-scores for the Swimmer dataset 97

6.5 Spiking accuracy and F-scores for the Bars dataset 100

6.6 Spiking accuracy and F-scores for the non-IID Bars dataset 104

xiii

1 Introduction

Neuromorphic systems are computing systems whose design takes inspiration from the

brain [Mead, 1990]. The aim of neuromorphic design is to provide an alternative to the

conventional von Neumann computing architecture. Although von Neumann-based machines

excel at fast and accurate solving of well-defined mathematical problems and algorithms,

they remain in stark contrast to humans in terms of cognitive capabilities. A human brain is

able to perform complex cognitive tasks, while consuming ≈ 20W and occupying ≈ 1500cm3.

With the advance of technology, von Neumann computers matched human capabilities in

areas traditionally associated with higher intelligence such as Chess (IBM DeepBlue in 1996),

Jeopardy (IBM Watson in 2011) or Go (DeepMind AlphaGo in 2017). Nevertheless, this trend

applies to a limited group of tasks that require specially-crafted algorithms and often run

on supercomputers consuming significant amount of energy: IBM Watson used 80kW for

playing Jeopardy. Therefore, it is appealing to explore the operating principles of the brain to

develop neuromorphic systems that could complement the existing von Neumann computers

by efficiently processing cognitive workloads.

In this chapter, we first provide a condensed top-level overview of the current understanding

of the brain and describe it in relation to neural network modeling and learning. In Sec. 1.2,

we discuss different principles behind the neuromorphic systems design and its impact on

other research fields. Then, in Sec. 1.3, we state the research objectives, the scope of the thesis,

and we list the publications stemming from this work.

1.1 Brain-inspired computing

In neurobiology, the brain is studied at various levels of abstraction, from the dynamics of

chemical processes to the emergence of cognitive functions [Woźniak et al., 2015], as schemat-

ically illustrated on five abstraction levels [Markram, 2012] in Fig. 1.1. On the molecular level,

the brain is a complex assembly of components. From computational perspective, synapses

are of particular importance as they provide means for electrical and chemical transmission

of information. On the cellular level, the basic information processing units are nervous cells

1

Chapter 1. Introduction

called neurons. A neuron may be divided into the following parts: dendrites, cell soma and an

axon, that respectively collect, process, and emit pieces of information. The information is

transmitted in form of voltage spikes conveyed between the neurons through the synapses.

Groups of interconnected neurons form neural circuits, called neural networks, which pro-

vide more complex computational capabilities. Large neural networks, connected to other

networks or nerves from the senses, form brain regions that specialize in different cognitive

functions, such as vision (visual cortex), memory (hippocampus) or emotions (amygdala).

Interactions between the regions on the level of the whole organ give rise to higher cognitive

functions, such as behavior planning, abstract thinking, or general intelligence.

Whole organ

Regions

Circuits

Cellular

Molecular

Vision, hearing, memory

Intelligence, induction, behavior

Computational neuroscience

ANNs

GPU

Cognitive skills

Machine learning

SNNs

Cognititive systemsCognititive models

Neurobiology

Increasing level of modeling abstraction

In
cr

ea
si

n
g

le
ve

lo
fp

ro
ce

ss
in

g
ab

st
ra

ct
io

n Synaptic reliability
Types of synapses

Asynchronous

Neurotransmitters

t x fact(x)

Deep LearningCognitive simulations

Neuromorphic HW

Digital-analog

AcceleratorsSynapse DNA

Neuron
axon

dendrite

Network

TPU

soma

Whole org

Figure 1.1: Abstraction levels for studying the brain Vertical direction: the operation of the
brain is analyzed at various scales that correspond to different levels of processing abstractions
in the brain. Horizontal direction: brain-inspired models are developed with a varying level of
modeling abstraction.

Computational capabilities of the brain are modeled in different disciplines at a varying level of

detail. In computational neuroscience, the focus is to understand the information processing

in the brain. Research-oriented models are developed on each level of abstraction to search

for important factors that could improve our understanding of how the brain operates. For

instance, on the molecular level, researchers analyze the impact of neurotransmitters on

the learning [Izhikevich, 2006], or the reliability of the synapses [Harris et al., 2012]. On the

circuits and the cellular level, the activity of the neurons and the evolution of their synaptic

2

1.1. Brain-inspired computing

weights is studied using biologically-feasible abstraction of a Spiking Neural Network (SNN)

model [Gerstner et al., 2014]. On higher levels, basic cognitive skills are modeled using top-

down mathematical models of cognition, which may be also mapped to the SNN framework

[Eliasmith et al., 2012].

Contrary to the brain-oriented research in computational neuroscience, in machine learning

the focus is on applications. The main model is an Artificial Neural Network (ANN), which

has some degree of structural resemblance to the brain structure on the circuits and the

cellular level, but limited functional resemblance in terms of the execution model and the

learning mechanisms. Biological details are of little importance: rather than taking inspiration

from molecular details to enhance the models, the effort in ANNs is put into speeding up

the execution by matching their structure to general-purpose (GPUs) or special-purpose

(TPUs [Jouppi et al., 2017]) accelerators. Nevertheless, the machine learning approach to

neural networks modeling developed in the field of deep learning led to many important

and practically applicable models. Furthermore, recently it was shown to implement basic

cognitive functions, such as generating textual captions for images [Vinyals et al., 2015], or

solving question and answering tasks [Weston et al., 2014]. Owing to this rapid progress, the

notion of neural networks in computer science and engineering is nowadays often identified

with the ANN model.

Lastly, neuromorphic computing is a research field that is in-between computational neuro-

science and machine learning in terms of the modeling abstraction. Its focus is on applications,

but the significance of the computational aspects in the brain is not underestimated. In com-

parison to the brain, ANNs still require significantly more power, in particular when it comes

to learning that is often executed on supercomputers. Neuromorphic computing postulates to

go beyond the accelerators and to re-think the computing architectures based on the insights

from computational neuroscience. It also focuses on exploring more efficient and flexible

learning approaches by using SNNs coupled with biologically-inspired learning mechanisms.

1.1.1 Designing neural networks

The SNN and ANN classes comprise a large variety of models, architectures and techniques,

which may often be reused for both classes. Therefore, we propose to visualize them similarly

to a network protocol stack in a technology stack of neural network design [Woźniak et al.,

2015] presented in Fig. 1.2. We discuss now briefly the design choices on each layer of the

stack.

Initially, the neuron type is chosen from the ANN or the SNN class. Within the ANN class,

a basic binary neuron was first introduced in 1943 [McCulloch and Pitts, 1943] in form y =
fact(w x), where fact is a logical threshold function. The threshold value is often called a

bias and denoted with b. Nowadays, an explicit formulation with the bias is typically used:

y = fact(w x +b), and the activation function is often a sigmoid function: fact(z) = 1
1+e−z , or

a piece-wise linear (rectified linear) function: fact(z) = (z)+, where (z)+ = max(0, z). Within

3

Chapter 1. Introduction

NEURON

TYPE

NETWORK

TYPE

PARAMETERS

INPUT-
OUTPUT

ANN
binary, sigmoid, rectified linear, . . .

SNN
LIF, Izhikevitch’s model,. . .

LAYOUT

layered, sparse, recurrent,. . .

STRUCTURES

autoencoder, LSTM, soft-max,. . .

LEARNING STYLE

supervised, unsupervised,. . .

MODEL PARAMETERS

weights, connections,. . .

ENCODING TYPE

rate, spike-timing, population,. . .

EXECUTION TYPE

single pass, time series, stateful,. . .

Figure 1.2: Technology stack of neural network design There are many neural network mod-
eling techniques and design choices that build on top of both ANNs and SNNs. Adapted
from [Woźniak et al., 2015]. Reprinted with permission of Springer.

the SNN class, many models were proposed, inspired by the description of the neuronal

membrane dynamics provided in 1952 [Hodgkin and Huxley, 1952]. These models may be

classified into various classes incorporating different biological phenomena [Gerstner et al.,

2012]. Nevertheless, the most popular implementation is the Leaky Integrate-and-Fire (LIF)

neuron. It is a basic approximation of the behavior of a biological neuron, in which when

information collected from the dendrites surpasses a given threshold, a spike of voltage is

emitted on the axon. This simple approach, extended with a moving threshold, won the INCF

competition by predicting 60% of the neuronal activity recorded from real neurons [Gerstner

and Naud, 2009]. It was also shown to be a more general model than the ANN neuron, as the

ANN model may be considered as an averaged stateless approximation of the SNN model

under certain additional assumptions [Dayan and Abbott, 2005]. Although the SNN neurons

are more expressive, the ANN neurons are more popular, because they are simple to simulate

and provide computational capabilities sufficient for many practical applications.

The next design choice is to determine the aspects of the network. The most common ap-

proach is to have a layered feed-forward neural network, with full connectivity between adja-

cent layers, forming a directed acyclic graph. If a network exhibits loops, the model becomes

a recurrent neural network (RNN). An RNN can be considered equivalent to a feed-forward

network, if we unroll it in time into a network that has one layer for each time step [Minsky and

Papert, 1969] [Rumelhart et al., 1985]. Next, additional structural motifs are often introduced

to precondition the network for particular tasks. For instance, spatial invariance may be pro-

vided by convolutions, which are groups of weights forming filters that are moved around the

input; or soft-max structures may be used to provide class assignment probability estimates

4

1.1. Brain-inspired computing

for classification problems by arranging neurons into groups and normalizing their activities

using the soft-max function.

Then, the parameters of the network should be defined. The most commonly tuned parame-

ters are the synaptic weights and the biases of the neurons, but in general all aspects of the

design may be treated as parameters [Almási et al., 2016]. This includes the network structure

and the types of the neurons. The neurons may be added or removed, and the computational

properties of a neuron may change, all of which may be tuned for instance using evolutionary

algorithms [Ferreira, 2006] or other learning approaches that will be discussed in Sec. 1.1.2.

Lastly, input-output signals should be structured according to the particular design and the

characteristics of the task. In ANNs, the inputs are vectors of floating-point values. In SNNs,

they are streams of dirac pulses representing voltage spikes. A temporal signal may be passed

to a stateless ANN as a series of input snapshots if the state in not relevant for the task,

or otherwise as an input snapshot accompanied by a moving window of the input history.

Alternatively, a stateful SNN model may be applied for such task. The inputs in SNNs may

convey information in various forms, such as the rate or the timing [Borst and Theunissen,

1999], discussed in detail in Chapter 2.

1.1.2 Learning

A neural network model is just a meta-model for a particular task it is designed for. It is

not useful until the model of that particular task is reflected in the values of the network

parameters. The appropriate values of the parameters may be inferred from a set of examples,

called the training set, in the process of learning. Therefore, learning may be perceived as

a data-driven process of delivering feedback to the model parameters. The learning results

depend on the quality of the training data, but also on how well-directed is the learning

feedback:

• undirected – learning through evolution. In this case, random changes happen any-

where in the model in any direction, and their fitness is assessed through the global

performance of the entire model. Such learning occurs on the molecular level of the or-

ganisms in the DNA, and the global feedback is the survival of the organism. Undirected

feedback delivers typically low amount of feedback (survival) at a low rate (lifetime).

• directed – following gradual steps along a particular direction. The ability to determine

the direction in which each parameter should be changed when feedback is received

enables much more rapid learning. For instance, the ANN backpropagation algorithm

[Hinton, 1986] estimates the error-minimizing gradients for all the parameters each time

feedback is received. For this task the algorithm relies firstly on a differentiable network

model, and secondly on neurons with monotonous activation functions. Consequently,

all the model parameters are adjusted proportionally to their contribution to the error

multiplied by a learning rate α. In practice, learning using backpropagation is faster

than learning through evolution by a factor of the number of the model parameters.

5

Chapter 1. Introduction

• exact – providing values from an analytic solution. Closed-form solutions providing the

optimal model parameters may be used for some particular neural models proposed

within the framework of reservoir computing [Lukoševičius and Jaeger, 2009] and Ex-

treme Learning Machines (ELMs) [Almási et al., 2016]. In ELMs the intermediate network

layers comprise non-linear neurons with random weights and the last layer comprises

linear output neurons with parameters calculated using a closed-form solution. Further-

more, instant exact learning is also an active area of research in deep learning, known

under the term of one-shot learning. It may be implemented through combination of a

gradually learning network with an instantly learning external memory [Graves et al.,

2016].

Based on the source of the feedback, learning approaches are commonly classified as [Almási

et al., 2016]:

• supervised – extrinsic error calculation. The direction of the parameter changes is

determined based on the error stemming from feedback delivered from outside of the

model. The training dataset D = {(x (k), y (k))} comprises an explicit split into the input

vectors x (k), annotated with respective target values y (k), called the labels. The labels are

compared to the activations of the system f (x (k)) to minimize a supervised loss function

Ls(f (x (k)), y (k)). The amount of feedback depends on the size of the dataset D . The rate

of feedback is proportional to the number of different labels that typically determines

the dimensionality of the output layer of the network.

• unsupervised – intrinsic error calculation. Labeling is usually a manual and time-

consuming process, so most of the generally available data is not labeled. For unlabeled

datasets, the direction of parameter changes may be directed through the error calcu-

lated by the network itself based on the input vector x (k) only. For instance, a network

may minimize a reconstruction loss Lu(f (x (k)), g (f (x (k)))), which may be understood

as learning an association or correlation between the input attributes. The amount of

feedback depends on the size of the dataset D . The rate of feedback is proportional to

the variability of the input vectors x (k) that is typically larger than of the labels y (k). On

the other hand, the feedback from the input is not “distilled” to the most meaningful

signal for solving a particular task.

Supervised learning may be formulated as a special case of unsupervised learning.

Assuming that the unsupervised input is x (k)
u := (x (k)

s , y (k)
s), let the y (k)

s be passed through

fu in an unchanged form: fu((x (k)
s , y (k)

s)) = (f (x (k)
s), y (k)

s), and let gu return only the labels

g (f (x (k)
s), y (k)

s) = y (k)
s . Then, it is possible to define an unsupervised loss: Lu((a,b),c) :=

L(a,c), so that the unsupervised learning loss becomes equivalent to the supervised

learning loss: Lu(fu(x (k)
u), gu(fu(x (k)

u))) = Ls(f (x (k)
s), y (k)

s).

• reinforcement – delayed feedback from the environment. Reinforcement learning is

based on the idea of having an agent interact with its environment. The agent chooses

an action that yields delayed probabilistic feedback in the form of rewards from the

environment. The goal of the learning is to maximize the total reward function. Using

6

1.2. Towards neuromorphic systems

these principles, an interesting result was obtained in [Mnih et al., 2013], where a deep

network learned to play Atari2600 games using as input what is visible on the video

screen, along with the reward information on the points scored in the game.

Based on the spatial extent of the feedback, learning approaches may also be classified as

[Almási et al., 2016]:

• global – parameter changes require deliberate invocation of external routines, as in

backpropagation or genetic algorithms. Typically such algorithms take as an input a

complete stable state of the network, which cannot be executed until the routines have

finished processing the feedback and adjusting the model parameters.

• local – neurons and synapses modify themselves. Routines adjusting the parameters are

built into each part of the network, which enables them to change independently from

a global state. Such an approach is suspected to be the base of learning in the brain,

although it might also include a global signaling mechanism through neuromodulators.

For instance, dopamine alters the learning in the entire brain within an opportunity

window of 15-25 seconds after its release [Izhikevich, 2006].

Lastly, we may consider the temporal extent of the feedback stemming from the learning

[Almási et al., 2016]:

• offline – the training phase is separate from the model execution. Parameters are

determined so as to comply with the problem knowledge available at a certain point in

time, and then they stay fixed during the use of the model. Most ANNs trained with the

backpropagation algorithm use this approach.

• online – there is no clear boundary between the training phase and the model execution.

This is common to biologically inspired local learning algorithms. It is also related to

unsupervised learning as the data observed during execution is typically unlabeled.

Offline learning is suited for applications, in which the ground truth does not change. For

instance, in character recognition, the characters are expected to remain the same over time,

even if new words appear. However, in many problems, such as spam classification, or rec-

ommender systems, accuracy will be reduced over time, as the messages, or user preferences,

evolve and concepts drift away from their initial definitions.

1.2 Towards neuromorphic systems

Taking inspiration from the brain may provide capabilities beyond the conventional von

Neumann architecture that can be classified into two categories: structural and functional.

The structural aspects include the type of the architecture and its area and energy efficiency.

The functional aspects include the ability to autonomously solve complex cognitive tasks that

may include executing loosely-formulated tasks, processing unstructured data, and learning

from scarce unpreprocessed examples.

7

Chapter 1. Introduction

From the structural point of view, the basic blocks of the von Neumann architecture include a

computational unit connected to the memory. This architecture is increasingly challenged

by the limited throughput between the physically separated memory and computing unit.

In contrast, neurons in the brain perform operations asynchronously, and synapses directly

receive relevant operands from a network of synaptic interconnections, as schematically

illustrated in Fig. 1.3a. Furthermore, chips are designed as planes, whereas the brain is a dense

3D structure. In consequence, simulating 5 s of brain activity would take around 500 s and

need 1.4 MW of power if the state-of-the-art supercomputers are used [Modha et al., 2011].

Focusing on the structural aspects leads to the development of architectures such as massively

parallel accelerators or computational memory [Gallo et al., 2017]. The idea of computational

memory is to enrich the memory with computational capabilities, so that the basic operations

are directly executed within it. The computational unit may send only the control signals to

reduce the load on the bus. This can enhance the existing functionality of the von Neumann

architecture, while maintaining compatibility with current computing systems.

von Neumann architecture brain-inspired architecture

Computation MemoryBus

(a)

(b)

Fill the circle

void FillCircle(Point c, float r)
{

}

vs.

for (int y=-r; y <= r; y++)

}

for (int x=-r; x <= r; x++)
if (x*x + y*y <= r*r)

DrawRGB(c.x+x, c.y+y, 0, 0, 0);

formal algorithmic procedure unstructured cognitive taskvs.

Figure 1.3: Taking inspiration from the brain (a) Structural aspects impact the area and
energy efficiency. (b) Functional aspects determine the kind of tasks that may be handled.

From the functional point of view, von Neumann computers are suited to the formulation of

the problems as mathematical and numerical procedures that involve quite long sequences

of base operations, schematically illustrated in Fig. 1.3b. These base operations, such as

multiplication or division, have a complex logical character which is “obscured by our long and

almost instinctive familiarly with them”, as noted in [Von Neumann, 1958]. Because the errors

are superimposed during each operation, digital systems with high precision are required

to execute such programs. In contrast, the brain operates in a mixed digital-analog manner

that provides a variety of base operations. Solving cognitive tasks often involves processing

ambiguous inputs and autonomously seeking a context-dependent interpretation that does

not have to rely on the strict logic and high-precision arithmetic. John von Neumann argued

that: “When we talk mathematics, we may be discussing a secondary language, built on the

8

1.2. Towards neuromorphic systems

primary language truly used by the central nervous system.” [Von Neumann, 1958] Although

the exact understanding of the computational logic of the brain is still an open research topic,

it is commonly reduced to applying the SNN or the ANN model. Owing to the algorithmic

advances, robust functional models of ANNs may obtain higher accuracy than the traditional

mathematical models. For instance, in case of speech recognition, recurrent ANNs [Graves

et al., 2013] surpassed the state-of-the-art hidden Markov models.

Lastly, neuromorphic systems consider both the structural and the functional aspects of the

design. Several approaches have been explored to develop the structures for neuromorphic

architectures using mixed analog-digital technologies [Benjamin et al., 2014] [Qiao et al., 2015],

microprocessor based systems [Schemmel et al., 2010] [Furber et al., 2013], large-scale net-

works of neurosynaptic core chips [Akopyan et al., 2015], and memristor-based neuromorphic

circuits [Kim et al., 2015] [Wang et al., 2016]. These structures are often combined with the

functional model of an SNN, which is particularly predestined for an efficient mixed digital-

analog implementation. The asynchronous communication using all-or-none spikes enables

noise-robust implementation in form of voltage spikes that may be send reliably over long

distances between the neurons. Simultaneously, an analog implementation of the synapses

and the neuron soma is much more efficient than digital design using transistors [Kuzum et al.,

2012]. Moreover, owing to developments in the field of nanomaterials, further benefits in area

efficiency and power dissipation can be gained by using memristive devices for the neuro-

synaptic realization [Serrano-Gotarredona et al., 2013]. Specifically, neurons and synapses

can be implemented using memristive circuit elements in which the device conductance

represents the potential in the neuron soma [Tuma et al., 2016b] [Pantazi et al., 2016] or the

synaptic weight [Kuzum et al., 2012] [Burr et al., 2014] [Garbin et al., 2015] [Woźniak et al.,

2016] [Sidler et al., 2017] [Eryilmaz et al., 2014] [Kim et al., 2015].

1.2.1 The impact of neuromorphic research

Neuromorphic systems research is a multidisciplinary field that involves designing hardware

architectures, advancing learning algorithms’ development and understanding the aspects of

computational neuroscience. Therefore, intermediate results from the neuromorphic systems

research may contribute to these disciplines.

From the hardware design perspective, the technological challenges with further scaling

of the clock frequencies and reducing the sizes of transistors require to follow alternative

paths. Taking inspiration from the structural aspects of the brain is one of such paths, that

may provide additional computational capabilities while increasing the energy-efficiency.

Advancements in the neuromorphic systems may lead to incorporation of neuromorphic co-

processors in the common computing architectures, or even fully replace them for particular

cognitive applications.

From the learning algorithms perspective, development of unsupervised learning algorithms,

such as the ones in the brain, is essential for the progress of machine learning. Currently,

9

Chapter 1. Introduction

most of the learning systems are trained using offline supervised methods, whereas humans

primarily learn in an online unsupervised manner. Prof. Yann LeCun provides a following

comparison: “If intelligence was a cake, unsupervised learning would be the cake, supervised

learning would be the icing on the cake, and reinforcement learning would be the cherry on

the cake. We know how to make the icing and the cherry, but we don’t know how to make the

cake.” Taking inspiration from the functioning of the brain may advance the unsupervised

learning capabilities, and enable novel use cases that could utilize the massive amounts of

unstructured and unlabeled data all around us.

From the computational neuroscience perspective, building neuromorphic systems provides

validation of the neuroscientific models. Information about what works in neuromorphic

systems suggests what may be the next important neuroscientific research direction. Building

neuromorphic models provides a feedback loop between the two disciplines: it enables to

verify the utility of neuroscientific hypotheses, which then contribute to development of novel

neuromorphic architectures.

1.3 Overview of the thesis

In this section, we discuss the focus of the thesis, present its outline and list the resulting

publications. Lastly, brief remarks on the notation are provided.

1.3.1 Research objective and strategy

The research objective of the thesis is to propose mixed analog-digital neuromorphic architec-

tures based on the SNN model. In particular, the work aims at providing an efficient hardware

implementation of neuromorphic systems for which we utilize phase-change memristors.

Simultaneously, it aims at learning meaningful knowledge from the inputs in an online un-

supervised manner. Here, the focus is set on developing biologically-inspired local learning

rules to implement pattern- and feature-learning capabilities.

The research strategy followed in the thesis involves multiple iterations between the structural

and the functional aspects of the neuromorphic design. Therefore, we call our approach an

algorithmic and hardware co-design. We start from well-established solutions: a single-layered

SNN model on the algorithmic front, and phase-change technology on the hardware front.

Then, we combine the two to obtain building blocks of a mixed digital-analog neuromorphic

system. We follow a pragmatic approach, in which we are willing to accept trade-offs between

the hardware design and the faithfulness of the SNN model implementation, in order to limit

the hardware complexity. To develop online unsupervised learning with local implementation,

we seek inspiration in well-established approaches: biologically-inspired local learning rules,

and commercially successful deep learning ANNs. Based on obtained insights, we explore

possibilities to enrich the functionality of the state-of-the-art SNNs to reach and go beyond un-

10

1.3. Overview of the thesis

supervised learning capabilities of ANNs. Simultaneously, we always experimentally validate

proposed designs.

1.3.2 Outline

The main content of the thesis is organized in five chapters, grouped into two themes, each of

which begins with theory and ends with experimental hardware demonstrations.

The first theme, comprising three chapters, focuses on implementing conventional pattern

learning approaches in a neuromorphic system. In Chapter 2, we introduce the details of

the SNN model, which is used as the logical model in our neuromorphic implementation.

In Chapter 3, we introduce phase-change memristors. The chapter is primarily hardware-

oriented and involves device characterization. In Chapter 4, we build phase-change-based

neuromorphic architectures that combine the elements from the previous chapters. The

chapter focuses on hardware experiments and algorithmic improvements that tailor the SNN

model for a phase-change implementation.

The second theme, comprising two chapters, focuses on extending the algorithmic models

of SNNs with more versatile learning capabilities. In Chapter 5, we discuss the theory of

knowledge representation in SNNs in comparison to deep learning ANNs. We identify the

need to improve the knowledge representation in SNNs. In Chapter 6, we propose algorithmic

advancements for SNNs that improve their knowledge representation. We co-design the

computational aspects together with the prototype hardware, so as to utilize the properties of

the phase-change technology for efficient implementation. We demonstrate experimental

results for each proposed design.

Chapter 7 summarizes both parts of the thesis, and presents future research directions.

1.3.3 Publications

The contents of this thesis reflects a body of scientific work that was presented at multiple

conferences and published in many journals. Chapter 1 is based on a conference paper [C1]

and its extended journal version [J1]. Chapter 2 partially refers also to these papers, and to

a journal paper [J3]. Neuromorphic building blocks proposed in papers [C2], [C4], [J2], [J3]

are described together in Chapter 3, whereas architectures and results from these papers are

described in Chapter 4. Chapter 5 extends the conference paper [C3]. Chapter 6 extends the

contributions from two conference papers [C3] and [C5]. Furthermore, the work resulted in

patent applications [P1], [P2], [P3] and [P4].

11

Chapter 1. Introduction

Conference papers

[C1] S. Woźniak, A.-D. Almási, V. Cristea, Y. Leblebici, and T. Engbersen, “Review of ad-

vances in neural networks: Neural design technology stack,” in Proceedings of ELM-2014

Volume 1. Springer, 2015, pp. 367–376.

[C2] S. Woźniak, T. Tuma, A. Pantazi, and E. Eleftheriou, “Learning spatio-temporal pat-

terns in the presence of input noise using phase-change memristors,” in 2016 IEEE

International Symposium on Circuits and Systems (ISCAS). IEEE, 2016, pp. 365–368.

[C3] S. Woźniak, A. Pantazi, Y. Leblebici, and E. Eleftheriou, “Neuromorphic system with

phase-change synapses for pattern learning and feature extraction,” in 2017 Interna-

tional Joint Conference on Neural Networks (IJCNN). IEEE, 2017.

[C4] S. Sidler, A. Pantazi, S. Woźniak, Y. Leblebici, and E. Eleftheriou, “Unsupervised learning

using phase-change synapses and complementary patterns,” in 2017 ENNS Interna-

tional Conference on Artificial Neural Networks (ICANN). 2017.

[C5] S. Woźniak, A. Pantazi, Y. Leblebici, and E. Eleftheriou, “Feature learning using synap-

tic competition in a dynamically-sized neuromorphic architecture,” in International

Conference on Rebooting Computing (ICRC). (Accepted), IEEE, 2017.

Journal papers

[J1] A.-D. Almási, S. Woźniak, V. Cristea, Y. Leblebici, and T. Engbersen, “Review of advances

in neural networks: Neural design technology stack,” Neurocomputing, vol. 174 A, pp.

31–41, 2016.

[J2] A. Pantazi, S. Woźniak, T. Tuma, and E. Eleftheriou, “All-memristive neuromorphic

computing with level-tuned neurons,” Nanotechnology, vol. 27, no. 35, p. 355205, 2016.

[J3] S. Woźniak, A. Pantazi, S. Sidler, N. Papandreou, Y. Leblebici, and E. Eleftheriou, “Neuro-

morphic architecture with 1M memristive synapses for detection of weakly correlated

inputs,” IEEE Transactions on Circuits and Systems II: Express Briefs, pp. 1–1, 2017.

Patent applications

[P1] A. Pantazi, S. Wozniak, and T. Tuma, “Neuromorphic architecture with multiple coupled

neurons using internal state neuron information,” U.S. Patent App. 15/189 449, Jun. 22,

2016.

[P2] S. Wozniak and A. Pantazi, “Neuromorphic architecture for unsupervised pattern detec-

tion and feature learning,” U.S. Patent App. 15/264 081, Sep. 13, 2016.

[P3] S. Sidler, S. Wozniak, and A. Pantazi, “Neuromorphic architecture for unsupervised

classification tasks using information from complementary patterns,” U.S. Patent App.

15/680 140, Aug. 17, 2017.

12

1.3. Overview of the thesis

[P4] S. Wozniak and A. Pantazi, “Neuromorphic architecture for feature learning using a

spiking neural network,” U.S. Patent App. 15/725 320, Oct. 5, 2017.

1.3.4 Notation

The notation used in the thesis is a compromise between different conventions. For instance,

a weight w associated with a directed connection from neuron i to neuron j is denoted as wi j

in ANNs and machine learning literature, but we convert it to w j i notation from SNNs and

control theory literature. In many places we simplify the neuroscientific notation, omitting

commonly used subscripts to make place for indices used for identifying variables of neurons

operating in a network. Whenever possible, we retain common conventions. For instance, to

denote physical quantities we use the common identifiers in their capitalized version, such as

voltage V , resistance R, and conductance G .

We use the remaining italic capital letters to denote sets, e.g. S or X . With X Q we denote

a subset of X induced by a set of indicies Q: X Q = {xi ∈ X : i ∈ Q}. By X Q
k we denote a k-th

element of this set, assuming that its elements are sorted using an ordering obvious from the

context, such as the index-based natural ordering of the xi elements.

We use small italic letters, e.g. f , g , x, w , to denote functions and variables. The parameters of

a function are often skipped if they are obvious from the context, for instance: f (t) might be

written as f .

We use roman letters to denote operators, such as differentiation dx
dt , and selected functions,

such as variance Var(g), or probability density function Pr(y = 1). For binary random variables,

we skip “= 1” in the notation, so that it becomes: Pr(y).

Lastly, to indicate that data is a vector or a matrix of scalars, we use bold italic letters. For

instance, x (i) ∈Rm is an m-dimensional vector of scalar values, where i is the index identifying

it within a dataset D of scalar vectors D = {x (1), x (2), . . .}. A matrix of scalar values is denoted as

W and its elements are denoted as W j i . Depending from the context, we denote the weights

of neurons as functions w j i (t), values of scalar vectors w i , or values of scalar matrices W j i . In

many cases these notations can be used interchangeably, but in selected fragments a particular

notation may be preferred for improved understanding.

13

2 Spiking neural networks

This chapter provides background information on the SNN model, which is the logical model

of operation of the neuromorphic systems proposed in the thesis. In Sec. 2.1 we present a

common SNN architecture with a layer of spiking neurons, which we explain step by step

throughout the rest of this chapter. We begin by discussing the input to the system in Sec. 2.2.

Next, we describe in detail a single spiking neuron in Sec. 2.3, listing its parts, their functions,

and their operating principles. Then, we focus on possible applications of a single neuron in

Sec. 2.4. Lastly, we discuss the operation of a layer of neurons interconnected with a feedback

mechanism.

2.1 Spiking neural network architecture

A general diagram of a single layer of spiking neurons is presented in Fig. 2.1. It illustrates a

common architecture in which n neurons N1, . . . , Nn share the same m inputs x1, . . . , xm , that

receive input information in form of the input spikes xi , and emit computation results in form

of the output spikes y j . To differentiate computation in a group of neurons receiving exactly

the same input information, feedback links are added between the neurons.

y1

t

x1

xi

xm

Input spikes

N1

Nn

w11

wnm

... ...

Output spikes

N j

Synaptic weights

Neurons

Feedback

y j

yn

In

t

Figure 2.1: A layer of spiking neurons Input spikes from m inputs arrive at synapses w j i of n
neurons emitting output spikes on n outputs.

15

Chapter 2. Spiking neural networks

A set of input spikes observed over some period of time on input xi is called a spike train and

denoted as a function of time xi (t). The variables of the model at a specific time instance tk ,

such as an input spike x1(tk) = 1 or lack of an output spike y1(tk) = 0, are often written with

the time omitted in the notation, because in most cases the network activity is analyzed at a

particular snapshot tk .

2.2 Information coded in the spikes

The input and the output spikes of the SNN model are assumed to be all-or-none binary events.

These spikes are used for interneuron communication and carry information through the

shear fact of their appearance, whereas their amplitude and width are neglected. Interneuron

spikes are often considered as diracs δ and drawn as vertical segments or dots. We primarily

use a convention of drawing a dot with a supporting vertical segment below. The dot in this

convention makes it easy to notice a spike, while the height of the supporting segment may

be used to visualize an analog value. Although interneuron spikes are assumed to be binary,

intraneuron spikes of potentials, which appear later in the text, may convey information in

their amplitude. For simplicity, we assume that all spike-like signals or potentials observed in

the model are called spikes and visualized using aforementioned convention.

In the next subsections we discuss means of coding information for interneuron communica-

tion with binary spikes. From a variety of coding schemes [Gerstner and Kistler, 2002] [Elia-

smith, 2013], we focus on two most commonly used: rate coding and temporal coding.

2.2.1 Rate coding

A single spike train may code information in the frequency of spike appearance, called the

spiking rate. This insight is inspired by biological experiments, in which the muscle contraction

was determined to be proportional to the spiking frequency at the nerves controlling the

muscles [Adrian and Zotterman, 1926]. Rate coding assumes that all the information is

contained in the rate and the exact timing of the spikes is neglected. Sample spike trains are

illustrated in Fig. 2.2a and their values decoded using rate coding are provided in Fig. 2.2b.

The rate is typically calculated as the number of spikes observed in a given sampling window

Ts , and then 0-1 normalized w.r.t. to the maximum possible spiking rate. The choice of the

sampling window affects the accuracy of the calculated rate. A small sampling window is

sensitive to the alignment of spikes that occur at the boundaries of the window, as illustrated

for the input x8, where the rate is underestimated in the first window, and is overestimated

in the second window. Large sampling window enables more accurate rate estimation, but

it also increases the response time of a system, because longer spike trains are required for

communicating a single value.

A group of spike trains may independently code the same information in form of regular

periodic spikes: for instance the inputs x2 and x3 code the value 0.5. Such temporal relation

16

2.2. Information coded in the spikes

of the spikes may impact the operation of a system. Despite the assumption that timing is

neglected, the system may learn this regularity rather than the rate. Therefore, in rate-based

systems it is common to explicitly reduce the regularity of input spikes [Querlioz et al., 2011].

A viable approach involves adding jitter – small timing deviations, to the timing of the spikes,

as illustrated for the inputs x4 and x5. Another popular approach is to generate the spikes

using Poisson processes with their mean rate equal to the desired spiking rate [Song et al.,

2000]. This results in a random arrival time of the spikes, as illustrated for the input x6.

Besides encoding information independently in each input, a group of spike trains may jointly

code a single piece of information. In population coding, multiple neurons may provide

information about a single value with a higher accuracy than a single neuron, or detect signals

of higher frequency than their individual maximum spiking frequency. In the latter case,

the population coding provides means for neuronal processing of signals going beyond the

Nyquist-Shannon limit of a single neuron [Tuma et al., 2016b].

x1

x2

x3

Ts Ts t

x4

x5

1.0

x6

x7

x8

0.5

0.5

0.3

0.3

0.3

0.2

0.1, 0.3
bursts

jitter

(a) Spike trains
Sampling window

(b) Rate coding

Visualization

(c) Time-to-spike coding

1.0

1.0

1.0

0.8

0.8

0.7, 0.5

0.3, 0.9

0.0, 1.0

VisualizationValue Value

Figure 2.2: Sample spike trains and their interpretation using different coding schemes
(a) Spike trains x1, . . . , x8 plotted for a period of two sampling windows Ts . Maximum 10
spikes may appear within Ts . (b) Values decoded assuming rate coding, accompanied by a
visualization in form of gray-scale pixels. Two values are provided if the decoded value is not
consistent across the sampling windows. (c) Values decoded assuming time-to-spike coding.
The beginning of each sampling window was treated as the reference time for the calculation.

2.2.2 Temporal coding

A single spike train may also code information in the timing of the spike appearance. One of

the arguments behind this insight is that the response time of the nervous system is relatively

short in comparison to the time required for collecting enough spikes to calculate an accurate

spiking rate estimate [Van Rullen et al., 1998]. Therefore, the time-to-spike, also called the

rank order of the inputs, may convey the complete information. For instance, the strongest

activated neuron may respond first, thus representing the highest value, as illustrated in

17

Chapter 2. Spiking neural networks

Fig. 2.2c. An important aspect of time-to-spike coding is to determine the reference time,

because the values are calculated relatively to it. It is common to define it as an on-set of a

stimulus [Van Rullen et al., 1998]. A point of reference may also be provided by a burst of

spikes, such as one in x7 or x8, or an on-set of neural oscillations.

Information contained in the input correlations

Information may be also contained in the relative co-occurrence of the spikes within a pop-

ulation of neurons, which avoids the need to determine the point of reference. To quantify

the co-occurrence, a Pearson cross-correlation coefficient c may be calculated in a pair-wise

manner for any two spike trains xi (t) and x j (t) [Gütig et al., 2003]:

c = corr(xi (t), x j (t)) = Cov(xi (t), x j (t))√
Var(xi (t))Var(x j (t))

(2.1)

Examples of temporally-correlated inputs are illustrated in Fig. 2.3a and their respective

pair-wise cross-correlation coefficients are visualized in form of a cross-correlation matrix in

Fig. 2.3b. Inputs x1 and x2 are correlated with c = 1 and form a perfectly correlated pair of

inputs. In general, a subset of inputs of any size may form a correlated group characterized

by high intra-group correlation coefficients and low inter-group correlation coefficients. For

instance, assuming an inter-group c threshold larger than 0.75, the inputs {x3, x4, x5} may

form a single weakly correlated group with c < 1. Visually this corresponds to a dark square

cluster in the cross-correlation matrix. The group formed by the remaining inputs with low

pair-wise correlation coefficients is referred to as uncorrelated inputs with c ≈ 0, and visually

corresponds to a cluster with a dark diagonal in the cross-correlation matrix.

x1

x2

x3

t

x4

x5

x6

x7

x8
x1 x2 x3 x4 x5 x6 x7 x8

x1

x2

x3

x4

x5

x6

x7

x8

(a) Spike trains (b) Cross-correlation matrix

c = 1

c < 1

c ≈ 0

Figure 2.3: Examples of input correlations (a) Presented spike trains x1, . . . , x8 may be clus-
tered into three groups: perfectly correlated (c = 1), weakly correlated (c < 1) and uncorrelated
(c ≈ 0). (b) A cross-correlation matrix for inputs x1, . . . , x8 with c values visualized using the
brightness. The three groups of inputs are marked with red squares.

18

2.2. Information coded in the spikes

Generating a dataset with a correlated pattern

In a system operating in a universe of input attributes U = {1, . . . ,m}, a pattern of correlated

attributes Q, visualized as a binary image with a set of on-pixels Q ⊂U and off-pixels N ⊂U ,

illustrated in Fig. 2.4a, may be represented at the inputs xi through correlated activity. The

attributes corresponding to Q form a correlated group of inputs X Q = {xi : i ∈ Q}, called

the pattern inputs, whereas the inputs X N = {xi : i ∈ N }, called the noise inputs, remain

uncorrelated. To generate the corresponding spike trains xi (t), assuming discrete time slots

ΔT for the spikes, Bernoulli trials may be performed using the following probabilities [Gütig

et al., 2003]:

Pr(yQ) = rQΔT (2.2)

Pr(X Q
i |yQ) =�

c +Pr(X Q
i |¬yQ) (2.3)

Pr(X Q
i |¬yQ) = rNΔT (1−�

c) (2.4)

Pr(X N
i) = rNΔT (2.5)

where rQ is the rate of correlated activity at the pattern inputs, rN is the rate of noise, each

input xi ∈ X is treated as a random variable representing a spike appearance at a particular

input, and yQ is a random variable representing pattern appearance, which corresponds

to the arrival of correlated spikes at the pattern inputs. If the pattern appears (a Bernoulli

trial returns yQ = 1 for Eq. 2.2), the inputs belonging to the correlated group spike (Eq. 2.3).

However, depending from c, these inputs can also spike in uncorrelated manner (Eq. 2.4), as

illustrated in Fig. 2.4b. Generating spikes using conditional Bernoulli trials in Eq. 2.3 and Eq.

2.4 was shown to produce a group of inputs with the pairwise correlation coefficients equal

to c [Gütig et al., 2003]. Simultaneously, independent Bernoulli trials for X N
i in Eq. 2.5 result

in generation of uncorrelated Poissonian noise on the uncorrelated inputs.

(b) Sample spikes for c =
0.10.20.30.40.50.60.70.80.91

∈ N

(a) Pattern Q

∈Q X N
i = 1 X N

i = 0X Q
i = 1 X Q

i = 0

U

Figure 2.4: Correlated inputs for varying correlation coefficient c (a) Pattern Q determines
which inputs form a correlated group of pattern inputs X Q and which inputs are uncorrelated
noise inputs X N . (b) Sample spikes generated using Bernoulli trials based on Eq. 2.3 and
Eq. 2.5, assuming an appearance of the pattern yQ = 1.

The information contained in the correlated arrival of the pattern inputs may become domi-

nated by the information contained in the rates [Moraitis et al., 2017], analogously to the issue

of the timing information impacting the information in the rate coding. To ensure that the

system learns only from the timing, the same mean rate may be used for all the inputs, which

19

Chapter 2. Spiking neural networks

implies rQ = rN [Woźniak et al., 2016]. Alternatively, it is possible to have the information

coded simultaneously in both the rate and the timing, but learn either from the rate or the

timing [Moraitis et al., 2017].

2.3 Operation of a spiking neuron

A spiking neuron [Woźniak et al., 2017b], illustrated in Fig. 2.5, receives spikes from the inputs

x1, . . . , xm . An input spike xi that arrives at a synapse with synaptic weight w j i is weighted by

the value of the synaptic weight and forms a post-synaptic potential q j i = xi w j i . The post-

synaptic potentials travel to the neuron soma which aggregates them into a total post-synaptic

potential TPSP j =∑
i q j i and integrates into a membrane potential Vj . When the membrane

potential crosses a threshold value Vth, an output spike is emitted by the neuron on its output

y j , and the membrane potential is reset. The membrane potential might also be reset by a

feedback mechanism, connecting N j with other neurons, and preventing emission of output

spikes. Simultaneously, the relative timing of the output and the input spikes, Δt j i = t post
j −t pre

i ,

is used by a Spike-Timing-Dependent Plasticity (STDP) learning mechanism to adjust the

synaptic weights [Gütig et al., 2003]. In the next subsections, we discuss in detail the parts of

the neuron, following the travel of information from the input spikes through the synapses,

the neuronal soma, the output spikes, and then back to the synapses in form of STDP weight

adjustments.

+

STDP

w j 1

w j m

w j 2

TPSP j

Vj

t pre
1

t post
j

Δwi = f (wi ,Δti)

y j =Vj >Vth

Neuron somat
x1

x2

xm

...
reset

q j 1

q j m = xm w j m

q j 2

Input spikes

N1

Nn

w11

wnm

... ...

Output spikes

...N j

Synaptic weights

Neurons

Input spik Feedback mechanism

Figure 2.5: A spiking neuron Input spikes from m inputs arrive at the synapses w j i that learn
by adjusting their weights using STDP plasticity rule.

2.3.1 Synapses

A synapse processes the input spikes to provide post-synaptic potential q j i , and the magnitude

of this potential depends on the synaptic conductance, called the weight w j i . Contrary to

unbounded floating-point weights in an ANN model, a weight of an SNN model is assumed to

be a uni-polar bounded value. These assumptions stem from the observations of biological

neurons. Firstly, a synapse is a physical part of a neuron that may not exceed its physical limits.

Therefore, it is common to assume that its value is bounded between the minimum and the

20

2.3. Operation of a spiking neuron

maximum conductance. Secondly, there are two categories of synapses: excitatory, which

tend to provide positive potential q from a pre-synaptic excitatory neuron to the post-synaptic

neuron soma, and inhibitory, which tend to provide negative potential q from a pre-synaptic

inhibitory neuron to the post-synaptic neuron soma [Parisien et al., 2008]. Each synapse is

uni-polar, because its type is determined by the type of the pre-synaptic neuron. Uni-polar

operation of synapses and neurons is not limiting the computational capabilities of SNNs,

as is it possible to transform between the bi-polar and the uni-polar models [Parisien et al.,

2008].

In this work, similarly to many others [Querlioz et al., 2011] [Diehl and Cook, 2015], we assume

that the synapses corresponding to the inputs x1, . . . , xm are excitatory only and we assume

that their weights are in 0-1 normalized range. The inhibitory output synapses of inhibitory

neurons typically have a special modulatory effect on the activity of the excitatory neurons.

We rely on this effect for the operation of the feedback mechanism, and we discuss them later

in Sec 2.5.

2.3.2 Neuron soma

Neuron soma stores information accumulated from the synapses in the membrane potential

Vj and emits output spikes if Vj crosses the spiking threshold Vth. A biologically-realistic

operation of the neuron soma in a non-linear Leaky Integrate-and-Fire (LIF) model considers

the in- and out-flow of the charges, and is formulated using a differential equation [Song et al.,

2000]:

τ
dVj

dt
=Vrest −Vj +Gex j (t)(Eex j −Vj)+Gin j (t)(Ein j −Vj) (2.6)

where Vrest = −70mV is the resting potential, towards which all biological neurons tend to

converge when there is no input; Eex j , Ein j are the electric potentials at the excitatory and the

inhibitory synaptic inputs; and Gex j , Gin j are time-dependent conductances of the exicitatory

and the inhibitory synaptic inputs, that determine the change in Vj proportionally to the

difference of the potentials in the soma and at the synapses. Alternatively, it is possible to

perform a series of variable substitutions and to rescale the membrane potential, so that

the resting potential vanishes and the integrate-and-fire model is reduced to a standard

form [Gerstner et al., 2014]:

dVj

dt
= d(Vj)+ I (t) (2.7)

where d is a non-linear function of the membrane potential that incorporates the effects of the

leak, and I (t) is a time-dependent function corresponding to the aggregated synaptic current

from all the inputs at time t .

21

Chapter 2. Spiking neural networks

In this work, we use the standard form equation in discrete simulations with a time step ΔT :

Vj :=Vj +ΔVj , ΔVj = d(Vj)ΔT + I (t)ΔT (2.8)

We define the aggregated input over ΔT as TPSP j = I (t)ΔT and we assume that Vj decays with

a time constant τ towards 0: d(Vj) =−Vj /τ. The final equation used in simulations is then:

ΔVj =−ΔT

τ
Vj +TPSP j (2.9)

This formulation reflects the basic principles of the operation of an LIF neuron: storing

information in a leaky membrane potential and accumulating information aggregated from

the inputs. On the other hand, the transformation in Eq. 2.7 combined with our assumptions

does not provide biologically realistic values. Therefore, we use auxiliary units for the variables

TPSP j and Vj .

2.3.3 Spiking threshold

When the membrane potential Vj crosses the spiking threshold Vth, a neuron emits an output

spike and the membrane potential Vj is reset to its resting potential Vrest. For a neuron

associated to a particular pattern of interest, the spiking threshold Vth should be low enough

for the neuron to spike when that pattern appears at the input, but high enough to avoid

spiking for input noise.

The choice of the spiking threshold involves understanding the interplay between the mem-

brane leakage τ and the temporal characteristic of the input. Fig. 2.6 illustrates the evolution

of the membrane potential Vj in a function of the membrane leakage τ for two different

temporal characteristics of an input pattern consisting 100 spikes. If the arrival of the pattern

is distributed over a short period of time, the impact of the leaky integration is limited, as

illustrated in Fig. 2.6a. There are many acceptable choices for the spiking threshold, such as

Vth = 40, and even a system that does not implement integration would detect the pattern,

because the TPSP(3×ΔT) = 44 crosses this threshold. Such threshold is likely to be high

enough for the neuron to spike only for this pattern and not for the noise. If the arrival of the

pattern is distributed over a long period of time, as in Fig. 2.6b, the choice of τ becomes a

critical prerequisite for the choice of the spiking threshold. For the low values of τ, spiking

threshold would have to be set to Vth < 10, which might result in false positive spiking even

after a few non-pattern noise inputs. For τ> 1.56, the same threshold of 40 works consistently

for both the case in Fig. 2.6a and in Fig. 2.6b. The correct choice of τ enables to use a single

spiking threshold value that is robust to the temporal distribution of the input pattern. Fig.

2.7 illustrates the maximum possible Vth for a system with leaky integration, versus a system

that only checks the momentary value of the TPSP. Properly tuned leaky integration provides

means for consistent choice of the spiking threshold.

22

2.3. Operation of a spiking neuron

(a) (b)

Figure 2.6: The membrane leakage vs. temporal characteristics of the input The pattern
for which the neuron should spike comprises 100 spikes, normally distributed over time t .
Membrane potential plots V are calculated for membrane leakage τ= 1.5i , where i is indicated
on each curve. (a) For a pattern distributed over a short period of time (5×ΔT) the value of
the membrane potential is relatively high (V = 52) already for the lowest τ. (b) For a pattern
distributed over a long period of time (44×ΔT) the value of the membrane potential reaches
higher V values only for the larger τ.

0 10 20 30 40 50
0

20

40

60

80

100

M
ax

im
um

 a
cc

ep
ta

bl
e

V
th

Temporal spread of the pattern ()× T

with leaky integration =1.510

without integration

Figure 2.7: Spiking thresholds for operation with and without integration Maximum Vth

values, corresponding to the maximum V observed during a series of trials, in which 100 input
spikes formed a pattern that was temporally spread over a given period of time. For integration
with a properly adjusted τ, there are many possible levels of Vth robust to the temporal spread
of the pattern. Without integration, the Vth required to spike for a temporally-spread pattern
quickly decreases to low levels, that makes it impossible to choose a noise-robust Vth.

Spiking threshold may be automatically adjusted following a biologically-plausible homeo-

static plasticity mechanism [Marder and Goaillard, 2006]. In this approach, a mean firing

output rate of the neuron is calculated over a given period of time and compared to a prede-

fined target output firing rate. If the observed rate is above/below the target rate, the threshold

is decreased/increased [Querlioz et al., 2011]. However, the important choice of the target

output firing rate might not be obvious in the unsupervised learning setting.

23

Chapter 2. Spiking neural networks

2.3.4 STDP learning mechanism

Crossing the spiking threshold Vth results in a neuronal firing at time t post
j that provides

feedback to the synapses, which may adjust their weights w j i using STDP, as illustrated in Fig.

2.5. Based on experiments with biological neurons [Markram et al., 1997], it was discovered

that the relative difference of the timing of the pre- and post-synaptic spikes Δt j i = t post
j − t pre

i

determines the direction and the magnitude of the synaptic conductance change Δw j i . The

plot of this conductance change, sometimes called the STDP curve, is often approximated

using two exponentially decaying functions f+ and f− with parameters A+, τ+ and A−, τ−:

Δw = A± e−|Δt |/τ± [Song et al., 2000], plotted in Fig. 2.8a.

w j i

Causal case (potentiation f+):

Acausal case (depression f−):

(a)

-5

0

5
×10−3

f+

-0.1 -0.05 0 0.05 0.1
Δt (s)

Δ
w

f−

(b)

N jNi

Figure 2.8: Learning using Spike-Timing-Dependent Plasticity (a) A common approxima-
tion of the biological STDP curve using two exponentially decaying functions. The direction
and the magnitude of the synaptic weight change Δw depends from the relative timing of
the pre- and post-synaptic spikes observed at the synapse. (b) When a pre-synaptic spike is
followed by a post-synaptic spike, STDP reflects this causal relationship through potentiation.
When the order of spikes is reversed, the acausal appearance of spikes leads to depression.

The shape of the STDP curve may be interpreted as capturing the causality of the inputs, as

illustrated in Fig. 2.8b. If a synapse w j i of a neuron N j observes an input spike, followed by an

output spike of the neuron N j , there might be a causal relationship between the information

coming from Ni and the activation of N j . The evidence from this observation is captured in

the synaptic weight w j i through weight increase f+, called Long-Term Potentiation (LTP). In

the acausal case, in which the order of the spikes is reversed, the input spike at a synapse w j i

arrives after the output spike of N j , so the information from Ni might be irrelevant for the

activation of N j . The evidence from this observation is captured through weight decrease

f−, called Long-Term Depression (LTD). In the process of learning, the synapses are typically

increased and decreased multiple times before they collect enough evidence and reach a

steady state. Lastly, the exponentially-decaying shape of LTP and LTD might be interpreted as

a temporal coherence prior, which states that the closer in time the events occur, the stronger

is the evidence that they might be associated [Bengio et al., 2013], thus the larger the weight

change.

24

2.3. Operation of a spiking neuron

Weight change Δw j i depends also from the value of the weight itself, because the synaptic

conductance is bounded, as discussed in Sec. 2.3.1. Weight dependence may be encompassed

in the STDP mechanism either implicitly by clipping the weights to their bounds after an appli-

cation of a weight-independent f± [Song et al., 2000], or explicitly through weight-dependent

updates [Gütig et al., 2003]. In this work, we will use an explicit weight-dependent STDP

formulation in form:

Δw j i = f (w j i ,Δt j i) =
⎧⎨
⎩

f+(w j i ,Δt j i) if Δt j i ≥ 0

f−(w j i ,Δt j i) if Δt j i < 0
(2.10)

There are multiple approaches to the algorithmic execution of the weight updates Δw j i : on the

pre- and the post-synaptic spikes [Song et al., 2000], on the pre-synaptic spikes only [Brader

et al., 2007] or on the post-synaptic spikes only [Querlioz et al., 2011]. In most of this work,

we use the pre- and the post-synaptic convention for the STDP logic, formulated in Alg.

1 [Woźniak et al., 2017b], which is executed on each pre- and post-synaptic spike. In a neuron

N j , S denotes the set of inputs that receive an input spike at each time instance t . The variable

t post
j stores the last time of a post-synaptic spike of the neuron N j , and t pre

i stores the last time

of a pre-synaptic spike arriving at each synapse w j i . In the presence of a post-synaptic spike,

potentiation f+ is applied to all synapses that contributed to the neuron spiking (line 5). If

there is no post-synaptic spike, arriving pre-synaptic spikes may lead to depression if they

occur closely after a post-synaptic spike (line 8).

Algorithm 1 STDP

1: S = {i : xi = 1}
2: if y j = 1 then

3: t post
j ← t

4: ∀i∈S t pre
i ← t

5: ∀i w j i ← w j i + f+(w j i , t post
j − t pre

i)
6: else
7: ∀i∈S t pre

i ← t

8: ∀i∈S w j i ← w j i + f−(w j i , t post
j − t pre

i)

Alg. 1 captures the main principle of STDP operation, but it does not account for multiple

temporally close pre-synaptic spike events. To solve this issue and to collect the evidence from

a series of temporally close pre-synaptic spikes, we use an auxiliary variable for each synapse

which modulates the final weight change based on all the observed spikes [Song et al., 2000].

2.3.5 Simplified STDP

Other STDP-like learning mechanisms were proposed for SNN models, such as so-called

simplified STDP learning rule [Bichler et al., 2012a]. This rule, illustrated in Fig. 2.9a, is

executed on a post-spike only: LTP with a fixed magnitude α+ is performed for the synapses

25

Chapter 2. Spiking neural networks

that observed input spikes within a time period TLTP prior to the post-spike, or otherwise

LTD with a fixed magnitude α− is performed. Therefore, the choice between LTP and LTD

is a function of the past history before a post-spike. Sometimes this rule is schematically

illustrated in an STDP-like Δw j i plot in Fig. 2.9b, in which LTD stretches to ±∞. This learning

mechanism has different semantics than the pre- and post-spike STDP. The key difference is

that it treats lack of input preceding a post-spike as an acausal evidence that should result in

depression. Its simplicity enables straightforward implementation as a learning mechanism

in neuromorphic systems [Querlioz et al., 2011] [Bichler et al., 2012a] [Bichler et al., 2012b]

and we also use it in selected experiments.

+

Learning

w j 1

w j m

w j 2

TPSP j

Vj

t pre
1

t post
j

Δw j i = f (w j i ,Δt j i)

y j =Vj >Vth

Neuron N jt
x1

x2

xm

... reset

TLTP

Δt j i

LTDLTD

LTP

Δw j i TLTP

−∞ +∞

(b)(a)

α+

α−

xm

T

Figure 2.9: Simplified STDP rule (a) The rule is executed on post-spikes and considers only the
past history before a post-spike. Lack of input is treated as an acausal evidence and results in
LTD. (a) The synaptic weight w j i is potentiated by a fixed magnitude α+ when Δt j i ∈ [0,TLTP],
or otherwise it is depressed by a fixed magnitude α−. Figure adapted from [Woźniak et al.,
2017a], © 2017 IEEE.

2.4 Spiking neuron as a computational primitive

The learning mechanism enables a spiking neuron to learn a certain representation of a

pattern Q, whose appearance might be detected afterwards through observation of the output

spikes. Therefore, a single spiking neuron, illustrated in Fig. 2.10, is a computational primitive

that provides a memory w j i of a pattern Q that can be used for pattern visualization, and emits

output spikes y j that can be used for pattern detection. We discuss now both applications in

more detail.

Pattern visualization

In the pattern visualization task, illustrated in Fig. 2.10a, the neuron N j is expected to provide

a reconstruction of the pattern Q in its weights w j i . The pattern Q may correspond to an asso-

ciation between any categorical attributes of the input, because an input xi might represent

any piece of information, such as color, sound, text, or an abstract concept. However, image

patterns are intuitively well-understood and can be concisely presented in the plots, so we use

them throughout the rest of this thesis. Simultaneously, we abstract from the aspects of visual

26

2.4. Spiking neuron as a computational primitive

+

w j 1

w j m

w j 2

TPSP j

Vj
y j =Vj >Vth

Neuron somat
x1

x2

xm

...
reset

(a) Pattern visualization (b) Pattern detection

w j i xQ
ivs. Q

FN TN

vs.

TP

R

FP

Q R
xi

y j

xm

Figure 2.10: Applications of a spiking neuron (a) In pattern visualization, the neuron is
expected to reconstruct the pattern in its synaptic weights w j i . (b) In pattern detection, the
neuron is expected to detect the presence of the pattern in the input by emitting output spikes.

sensory information processing, such as invariance to translation or rotation, keeping in mind

the original abstract categorical nature of the inputs.

Depending from how information about the pattern Q is encoded in the inputs, learning an

accurate reconstruction of Q might be a challenging task. Therefore, a reconstruction error

may be calculated between the synaptic weights w j i and the scalar vector xQ
i of the reference

values for the pattern Q, which for a binary pattern Q correspond to 1 when i ∈ Q, or to 0

otherwise. The most common approach is to calculate a Mean Squared Error:

MSE = 1

m

m∑
i=1

(w j i −xQ
i)2 (2.11)

Additionally, we define an MSE for a subset of input attributes S:

MSE(S) = 1

|S|
∑
i∈S

(w j i −xQ
i)2 (2.12)

For the universe of input attributes U = {1, . . . ,m}, MSE(U) = MSE. Lastly, because we use 0-1

normalized weights, we may use MSE to define visualization accuracy as: A(S) = 1−MSE(S),

which is reported in percentage points.

Using a neuron for pattern visualization is limited to particular synthetic cases only. In a

highly-integrated dedicated neuromorphic hardware, or in a biological system, it might be

difficult and inefficient to retrieve the values of all the weights. Moreover, the information

read from a single neuron may provide only partial information on the pattern, as discussed

further in Chapter 5. Lastly, the low MSE of a stored pattern may not be the right criterion for

27

Chapter 2. Spiking neural networks

the assessment. The corresponding neuron may still fail to detect the pattern, for instance if

its spiking threshold is high and the input contains only partial information about the pattern.

Pattern detection

In the pattern detection task, illustrated in Fig. 2.10b, the neuron N j is expected to detect

the presence of the pattern in the input by spiking if the pattern Q appears at the inputs xi ,

and refrain from spiking if a different pattern R appears. There are multiple approaches of

assessing the spiking behavior of the neuron, which are often defined based on the following

categories of output spikes, marked in Fig. 2.10b:

• TP (True Positive) – a neuron correctly spikes for the pattern Q,

• FP (False Positive) – a neuron incorrectly spikes for a different pattern R,

• FN (False Negative) – a neuron incorrectly does not spike for the pattern Q,

• TN (True Negative) – a neuron correctly does not spike for a different pattern R.

Spiking accuracy is defined as:

Accuracy = TP+TN

TP+FP+FN+TN
(2.13)

which can be intuitively interpreted as the number of “the correct responses” over the total

number of “the decisions that had to be taken”. Depending on the distribution of the input

patterns, the calculated accuracy might be misleading. Assume that the input comprises 1

appearance of the pattern Q and 99 appearances of an irrelevant pattern. If the neuron does

not spike at all, the accuracy is: Accuracy = 0+99
1+99 = 99%.

F-score measure provides in such case a more accurate assessment. It is a normalized har-

monic mean of precision, defined as TP/(TP+FP), and of recall, defined as TP/(TP+FN):

F-score = 2

(TP
TP+FP)−1 + (TP

TP+FN)−1
= 2TP

2TP+FP+FN
(2.14)

The calculation of the accuracy or the F-score requires prior knowledge on the exact timing of

the pattern appearances and their assignment to particular classes, which might be difficult to

define for patterns encoded in jittered or temporally-spread spikes. A more general approach

involves calculation of Pearson cross-correlation from Eq. 2.1 between the output spike train

y j (t) and each of the input spike trains xi (t) [Pantazi et al., 2016]. The correct behavior of the

neuron corresponds to a high input-output cross-correlation for the inputs corresponding to

the pattern Q.

In cognitive applications, assessing output spikes is much more natural than inspecting the

synaptic weights. For instance, observation of a moving animal is in fact an indirect obser-

vation of the output spikes emitted by the neurons connected to the muscles, whereas the

28

2.5. Operation of a spiking neural network

information in the weights remains hidden to the observer. Because interneuron commu-

nication is realized using spikes, the contents of the weights may significantly differ from a

low-MSE representation of any pattern Q, given that the neuron emits the proper spikes.

2.5 Operation of a spiking neural network

A spiking neural network comprises multiple spiking neurons communicating with each other

through the synapses. We constrain our analysis to a single layer of neurons, for which we

are able to provide concrete insights, as the computation properties of a multi-layer spiking

neural network are not well understood. In particular, we consider a single layer network of

excitatory spiking neurons N1, . . . , Nn interconnected through feedback links, illustrated in Fig.

2.11a. The neurons are connected to the same inputs x1, . . . , xm and operate using the same

spiking neuron model, described in Sec. 2.3. Therefore, without additional interneuronal

feedback, they would learn the same information.

Inputs

N1

Nn

w11

wnm

... ...

Outputs

N j

(a) A single layer of neurons

Neurons

N1

Nn

...

N j
N−

Inhibitory
neuron

x1

xi

xm

y1

y j

yn

(b) Lateral inhibition

Feedback
links

Figure 2.11: Single layer spiking neural network with feedback links (a) Excitatory neurons
N1, . . . , Nn are interconnected with feedback links, which foster divergent activity in the neu-
rons. (b) Feedback links often implement the lateral inhibition mechanism, in which an
additional inhibitory neuron N− inhibits the excitatory neurons.

A common biologically-feasible interneuronal feedback scheme is lateral inhibition, illustrated

in Fig. 2.11b. In this scheme, an additional inhibitory neuron N− receives input from the

excitatory neurons N1, . . . , Nn and when a particular neuron N j becomes active, N− sends

inhibitory feedback through inhibitory synapses to all the neurons. Because learning is

triggered by spikes, as discussed in Sec. 2.3.4, and neuron N j is able to spike, whereas the

activity of the other neurons is attenuated, the neurons learn different information despite

using the same learning mechanism. Finally, the scheme is consistent with the statement

that neurons communicate through synapses, as all the communication is realized through

excitatory and inhibitory synapses.

In practical realizations of SNNs, it is common to implement lateral inhibition in a simplified

implicit form of a Winner-Take-All (WTA) architecture [Maass, 2000] [Nessler et al., 2009]

[Querlioz et al., 2011]. The dynamics of lateral inhibition is simplified to instantly choosing

the first neuron that spikes as the winner and resetting the membrane potentials of the others.

29

Chapter 2. Spiking neural networks

The simplification assumes that from neurons N1 . . . Nn with membrane voltages V1, . . . ,Vn

that crossed the spiking thresholds of these neurons, only one neuron is allowed to spike

(y j = 1). This is formulated [Maass, 2000] as:

(y1, . . . , yn) = WTA(V1, . . . ,Vn) (2.15)

if Vj = max(V1, . . . ,Vn) then y j = 1, else y j = 0. (2.16)

If multiple neurons have the same membrane potential, a tie resolution strategy needs to be

applied. A possible solution is to choose the winner with the lowest index.

A single layer of neurons in the WTA architecture may provide many important computational

capabilities. Sometimes it is generalized to a k-WTA architecture, in which up to k winning

neurons are allowed to spike simultaneously [Maass, 2000]. The classic WTA corresponds

then to 1-WTA. Furthermore, a soft version of k-WTA, in which the output of a spiking neuron

is a floating-point value representing its rank in the neural competition, was theoretically

proven to approximate any arbitrary continuous function [Maass, 2000], even if all the neurons

operate using a linear neuron soma model. The discussed computational properties and the

conceptual simplicity of WTA makes it a popular choice for designing SNN architectures.

30

3 Phase-change-based spiking neurons

The information on the SNNs in the previous chapter provides a theoretical model for the

operation of a spiking neuromorphic system. In this chapter, we develop a mixed digital-

analog hardware implementation of a neuron tailored for phase-change technology. We begin

with an introduction to phase-change technology in Sec. 3.1, where we discuss challenges

stemming from the properties of phase-change devices. We describe a neuromorphic platform

used to experimentally validate our designs, and we perform its characterization. Next, we

proceed in steps to implement a synapse, a neuron, and an entire network using phase-change

devices, providing simulation and experimental results at each step. In Sec. 3.2, we propose a

phase-change-based synapse combined with a variation of the STDP learning rule. Lastly, in

Sec. 3.3, we discuss a phase-change-based implementation of a neuronal soma. We analyze

its behavior during operation with noisy inputs, and we propose a noise-robust phase-change

neuron soma. All elements combined provide a complete basic functionality of a spiking

neuron in an efficient neuromorphic implementation.

3.1 Phase-change technology

Phase-change technology explores the physical properties of phase-change materials to build

memristive devices. These devices have been extensively studied in the context of memory

applications, therefore a single phase-change memristive device is often called a phase-change

memory cell (PCM cell) or simply a cell. Advantages of PCM cells include high scalability

down to nm-scale, CMOS compatibility, low latency on the order of ns, and non-volatile

analog storage capability [Burr et al., 2010]. With proper programming [Papandreou et al.,

2011], a single nanodevice provides multiple intermediate resistive states that are used to

build multi-level memory cells. This increases the storage density in the context of digital

memories for von Neumann architectures. However, it is possible to directly use the analog

properties of phase-change devices to design power- and area-efficient elements of a neuro-

morphic system, such as nm-scale synapses, orders of magnitude smaller than their μm-scale

biological counterparts. To use the analog properties of PCM, we need to understand in detail

its operation.

31

Chapter 3. Phase-change-based spiking neurons

3.1.1 Operation of a phase-change cell

In a phase-change cell, information is stored in the structural configuration of the phase-

change material. The phase-change material can be in the amorphous phase that has low

electrical conductance, or in the crystalline phase, which has high electrical conductance. The

conductance of the entire cell depends on the volume, the relative configuration of the two

phases, and the cell design. In this work we focus on mushroom-type cells [Close et al., 2010],

although other more sophisticated designs are possible, such as projected cells [Koelmans

et al., 2015].

A mushroom type phase-change cell is schematically illustrated in Fig. 3.1a. The phase-change

material is situated between a wide top electrode and a narrow bottom electrode. The material

in the amorphous phase forms a dome-shaped structure of height ua at the bottom electrode.

The conductance of the cell is typically inversely proportional to ua : in a low conductance

state, a cell will have a large volume of the amorphous phase measured by high values of ua ,

and vice versa.

Initial ua (nm)

(a) (b)

(c)

High conductance

1

50

100 20
30

40
50

60

-30
-20
-10

0

pw (ns)

Low conductance

reset pulse

crystallizing pulse

Top electrode

Bottom electrode

ua

crystalline

amorphous

Tint > Tmelt

Tcryst < Tint < Tmelt

Low conductance

Tamb

High conductance

Tint

Gradual

Abrupt

pw

Δ
u

a
(n

m
)

Crystal
growth

Figure 3.1: A phase-change mushroom cell (a) The conductance of the cell depends on the
relative configuration of the crystalline and the amorphous phase. The amorphous phase
forms a dome-shaped structure of height ua situated at the bottom electrode. (b) Phase
transition is induced through application of pulses that heat up the phase-change material.
A crystallizing pulse gradually increases the crystalline phase and shrinks the amorphous
dome. A reset pulse abruptly recreates the amorphous dome. (c) Simulation of crystal growth
as a function of initial dome height ua and applied pulse width pw . The vertical axis was
deliberately inverted to show the crystal growth, which corresponds to negative Δua . Subfigure
adapted from [Woźniak et al., 2016], © 2016 IEEE.

32

3.1. Phase-change technology

A change of the phase-change configuration is induced through a voltage pulse applied to

the electrodes of the cell, as illustrated in Fig. 3.1b. A pulse with high power that heats up

the phase-change material above its melting temperature Tmelt is called a reset pulse. An

abrupt cut-off of the reset pulse quenches the material into an amorphous phase, and the

cell is switched into a low-conductance state. The resulting conductance is independent of

the number of applied reset pulses and is only a function of the applied current. A pulse with

an amplitude that heats the phase-change material below the melting temperature Tmelt, but

above the crystallization temperature Tcryst is called a crystallizing pulse. A crystallizing pulse

causes progressive crystallization that affects the entire interior of the dome, but primarily the

region near the interface of the two phases of the material, gradually reducing the height ua of

the dome. In consequence, the cell can be in a range of analog states, depending on the ua .

For interfacial crystal growth, the dynamics of the crystallization process is modeled using

following equations [Sebastian et al., 2014]:

dua

dt
=−vg (Tint(ua)), ua(0) = ua0

Tint(ua) = Rth(ua)Pinp +Tamb

(3.1)

The change of ua is a function of the crystal growth velocity vg , which depends on the material

and on Tint, the temperature at the interface between the two phases. Simultaneously, the

temperature at the interface depends recursively from ua . As ua is decreased, the current

flowing through the device increases and raises the temperature Tint. Rth denotes the thermal

resistance across the cell, Pinp is the power of the applied pulse, and Tamb is the ambient

temperature.

Results from a numerical simulation of Eq. 3.1 depicted in Fig. 3.1c illustrate how ua evolves

upon the application of a single crystallizing pulse of a given width [Woźniak et al., 2016].

Focusing on the initial ua , for a large amorphous dome height, the crystal growth velocity at

the interface is relatively low owing to low temperature. It increases rapidly once ua is in the

vicinity of the cell hotspot. Then, as the dome becomes smaller and the resistance of the cell

decreases, the temperature at the interface is reduced and the crystal growth speed is also

decreased. Focusing on the pulse width, longer pulses result in a larger change of the dome

height. The concrete relationship depends on the type of the phase-change material and the

particular cell design.

3.1.2 Crossbars of phase-change cells

To scale up the number of cells, phase-change devices can be aligned into a crossbar structure,

illustrated in Fig. 3.2a. The rows and the columns of the crossbar form a grid in which the cells

are located at the cross-points, as depicted in Fig. 3.2b. A cell is addressed by issuing a pulse

on the proper row and column, corresponding to the cell location in the grid.

33

Chapter 3. Phase-change-based spiking neurons

...

...

Bottom

Phase-change material:Top
crystalline (high G)
amorphous (low G)

electrode

electrode
(a) (b)

Word line (WL)

(c)
Bit line (BL)

Gating
transistor

...

Figure 3.2: Memristive crossbar (a) Crossbar structure. (b) Phase-change memory cells are
situated at the intersections of the rows and the columns of the crossbar. (c) In 1T1R design
each cell is gated with a transistor. To access a cell, voltage is applied on a respective word line,
and the pulses are issued afterwards on a respective bit line. Figure adapted from [Woźniak
et al., 2017c], © 2017 IEEE.

The advantages of aligning phase-change cells into a crossbar include:

• High area-efficiency – phase-change cells are densely aligned in the crossbar. Com-

bined with the capability to store analog values in the cells, such crossbars provide

efficient means of storing information in comparison to transistor-based registers.

• Programmable non-volatile storage – the stored values are non-volatile and can be

reprogrammed by modulating the pulses flowing through the cells. The programming

and reading logic can be implemented outside of the crossbar and shared between

multiple cells.

• CMOS-compatibilty – the cells can be manufactured and coupled with a standard

CMOS design.

• Computational capabilities – the crossbar structure can be used to efficiently perform

certain operations using Kirchhoff’s laws. In particular, if a row with cell conductances

[G1, . . . ,Gm] = g is enabled and pulses [x1, . . . , xm] = x are issued to all the columns in that

row, the crossbar approximates g · x computation. Further computational capabilities

of crossbars are explored in the field of computational memory [Gallo et al., 2017].

Depending on the conductance of the other cells in the crossbar, the current may flow through

the other cells of the crossbar, leading to a phenomena called sneak current [Burr et al., 2017].

To prevent the current from following the sneak paths, the cells are often gated with a transistor,

as illustrated in Fig. 3.2c and referred to as 1T1R design. To access a cell, voltage is applied to

the transistor connected to the particular word line, and the pulses are issued afterwards to

the top electrode connected to a respective bit line.

3.1.3 An experimental platform with GST phase-change cells

We use an experimental setup to validate our results in the rest of this work. The setup

comprises mushroom-type cells with doped-chalcogenide alloy, Ge2Sb2Te5 (GST), as the

34

3.1. Phase-change technology

phase-change material. A cross-sectional tunneling electron microscopy (TEM) image of the

phase-change cell is shown in Fig. 3.3a. The cells are aligned into two 2 Mcells memristive

arrays in 1T1R design using FET transistors, and integrated in a prototype chip [Close et al.,

2010], illustrated in Fig. 3.3b. The chip is fabricated in 90 nm CMOS technology and con-

tains cell addressing and programming circuitry, as well as an on-chip 8-bit analog-to-digital

converter (ADC) for reading out the conductance. The phase-change chip is mounted on an

FPGA-based platform [Papandreou et al., 2011], shown in Fig. 3.3c. The platform comprises

pulse generators and two FPGAs to control the operation of the entire setup.

Logic / ADC

2
Mcells

2
Mcells

c-GST

a-GST

2 mm

1
m

m
Chip support

Base board

board
Power
supply
units

ADC
units

FPGA Board #2 FPGA Board #1
DAC units

REF units

(a) (b) (c)

TE

BE

In
su

la
to

r

Figure 3.3: Experimental platform (a) TEM image of a GST phase-change mushroom cell.
(b) Cells are integrated into a 2×2 Mcells prototype chip in 90 nm CMOS technology. (c) Base
board with FPGAs for controlling the pulses applied to the cells. Figure adapted from [Woźniak
et al., 2017b], © 2017 IEEE.

Characterization

A current-voltage (I-V) characteristic of a phase-change cell is illustrated in Fig. 3.4 [Pantazi

et al., 2016]. Initially, the cell is in an OFF state, in which the current increases with the applied

voltage. A cell in the amorphous state follows the least conductive path, whereas a cell in the

0 0.5 1 1.5 2

100

102

Voltage (V)

C
u

rr
en

t(
μ

A
)

10−2

ON state

OFF state

threshold
switching

Crystalline

Amorphous

Figure 3.4: I-V characteristic of a typical phase-change cell In an OFF state, voltage increases
along a path dependent on the phase-change configuration. After threshold switching, con-
ductance of a cell in an ON state rapidly increases, which is used for programming. Adapted
from [Pantazi et al., 2016], © IOP Publishing. Reproduced with permission.

35

Chapter 3. Phase-change-based spiking neurons

crystalline configuration follows the highly conductive path. If the phase-change configuration

is in an intermediate state, the cell follows and intermediate path. This property enables to

read an analog value stored in the phase-change configuration. Changing the phase-change

configuration relies on the threshold switching property: the voltage is increased until the cell

switches from the OFF state to an ON state, in which the cell conductance rapidly increases.

The phase-change material heats up and the cell is programmed as described in Sec. 3.1.1.

We analyzed the impact of various programming pulses by characterizing the conductance

response for a randomly selected subset of 400 cells from the prototype chip [Pantazi et al.,

2016]. We applied crystallizing pulses with constant current I = 130μA, followed by read pulses

with constant voltage Vread = 200mV. Fig. 3.5a illustrates the cell conductance as a function

of the width of the crystallizing pulse plotted for different initial conditions and averaged

over all the cells. We observe gradual conductance increase in function of the applied pulse

duration. The effective change in conductance depends on the actual cell state and the more

the cell is crystallized, the smaller the conductance increase. Fig. 3.5b illustrates the crystal

growth in the experimental setup, presented as a conductance change ΔG . Its non-linear

response follows the shape predicted by the simulations: similar non-linearity is observed for

cross-sections of Fig. 3.1c, with ua corresponding to the initial conductance G0.

(a)

100 200 300 400 500
Pulse width (ns)

0

10

20

30

40

50

Δ
G

(μ
S)

0 100 200 300 400 500
0

10

20

30

40

50

60

Pulse width (ns)

C
o

n
d

u
ct

an
ce

(μ
S)

(b)

0
0

Figure 3.5: Characterization of GST phase-change cells (a) Cell conductance response in
function of the crystallizing pulse width pw . Subfigure from [Pantazi et al., 2016], © IOP
Publishing. Reproduced with permission. (b) Crystal growth dynamics illustrated using
conductance change ΔG plot. Subfigure from [Woźniak et al., 2016], © 2016 IEEE.

We analyzed the cell conductance in terms of the conductance variability by consecutive

application of fixed-width pulses to 1000 cells [Woźniak et al., 2017c]. Fig. 3.6a shows the

conductance response for crystallizing pulses with a width ranging from 50 ns to 500 ns. The

response is non-linear and the variability is illustrated with the standard deviation error bars.

Fig. 3.6b presents a histogram of device conductances after a given number np of crystallizing

pulses with constant pulse width pw = 50ns.

The results of the characterization were used to build a model of a phase-change cell. The

model is based on a look-up table of the averaged values of conductance response for a given

pulse width. In this work we relied on this model for rapid development of the algorithms and

for the selection of the appropriate pulse widths for the experiments.

36

3.2. Phase-change-based synapses

(a) (b)

Figure 3.6: Conductance response after application of multiple pulses (a) Conductance
response G = f (np) for consecutive applications of constant-width pulses. (b) Inter-device
variability after application of np pulses with pw = 50ns. Figure from [Woźniak et al., 2017c],
© 2017 IEEE.

3.2 Phase-change-based synapses

Synapses are the basic memory element in a spiking neuron model. Their functionality

involves storing a value from a predefined range and adjusting this value in the process of

learning. These requirements can be fulfilled in many ways, for instance by using digital

logic with transistor-based registers. However, memristive devices, such as the phase-change

cells, offer the capability to implement a synapse using a single analog nanodevice at a lower

complexity than using a pure transistor-based approach [Kuzum et al., 2012].

On the other hand, phase-change-based synaptic implementation involves multiple chal-

lenges. Firstly, the general operation mode of the phase-change with gradual conductance

increase and abrupt conductance decrease, discussed in Sec. 3.1.1, needs to be considered

while designing the architecture of the system. Secondly, the design has to address the proper-

ties of the hardware that include non-linear response of the cells, stochastic operation and

production variability, characterized for our experimental platform in Sec. 3.1.3. In the next

section, we discuss different types of synapse designs that address these challenges.

3.2.1 Types of phase-change synapse designs

Different designs were proposed to address the challenges of a hardware neuromorphic

synapse implementation. First, we describe an approach using one PCM device per synapse.

Next, we discuss the trend to use multiple PCM devices per synapse in 2-PCM and multi-PCM

designs. Finally, we compare the advantages and disadvantages of particular PCM synapse

types, and explain our synapse type choice for use in the further experiments.

1-PCM synapse

In 1-PCM synapse [Kuzum et al., 2012] a single device is used to represent the synaptic weight,

as illustrated in Fig. 3.7. The weight is stored in the phase configuration of the device. Weight

37

Chapter 3. Phase-change-based spiking neurons

increase is realized through application of crystallizing pulses that gradually crystallize the cell

during synaptic potentiation, whereas weight decrease is realized through application of reset

pulses that abruptly reamorphize the phase-change material at each synaptic depression.

The dynamics of the 1-PCM synapse follows the dynamics of a phase-change cell, described

in Sec. 3.1.1. Therefore, the disadvantages of the 1-PCM design follow from the limitations of

the phase-change technology and include asymmetric and non-linear conductance response,

stochastic operation and high variability.

On the other hand, 1-PCM synapse is the most compact and straightforward design. Its

advantages include using a small number of devices for a given number of synapses, low

synapse complexity, and direct implementation in form of a memristive crossbar. In conse-

quence, 1-PCM design directly inherits the advantages of the crossbar, such as area-efficiency

and additional computational capabilities, discussed in Sec. 3.1.2. In particular, the vector

multiplication capability may be used to accelerate the computation of the weighted sum of

the synaptic inputs xi and the synaptic weights wi for the computation of TPSP in a spiking

neuron model illustrated in Fig. 2.1 (page 15).

weight

Single device

reset pulse

crystallizing pulse
weight increase

weight decrease

Figure 3.7: 1-PCM synapse Crystallizing pulses gradually increase the weight during synaptic
potentiation, whereas a reset pulse reamorphizes the cell at each synaptic depression event.

2-PCM synapse

A 2-PCM synapse [Suri et al., 2011] addresses the asymmetric conductance response challenge

by using two devices per synapse. The devices, denoted as positive and negative, are connected

in a differential configuration illustrated in Fig. 3.8. A gradual synaptic weight increase is

realized through application of a crystallizing pulse to the positive device with conductance G+.

Similarly, a gradual synaptic weight decrease is realized through application of a crystallizing

pulse to the negative device with conductance G−. The effective weight of the synapse is

calculated as the difference between the two conductances G+ and G−. Therefore, the synapse

avoids the abrupt characteristics of the reset pulses during most of its operation.

However, if a series of weight increases is interleaved with a series of weight decreases, a

positive or negative cell may reach the state of the maximum crystallization, and the synapse

38

3.2. Phase-change-based synapses

will become saturated. A saturated synapse changes its weight in a single direction if a single

device is saturated (e.g. G+ =Gmax =⇒ ΔG < 0), or does not change its weight at all if both

devices become saturated (G+ =G− =Gmax =⇒ ΔG = 0). Therefore, an additional mechanism

of conductance rebalancing [Burr et al., 2014] needs to be triggered when saturation occurs. It

involves reading the weight of the synapse, resetting both cells, and crystallizing only one of

the cells to correspond to the given weight.

The differential configuration results in a more complicated non-linear behavior of the synapse.

From the operation principles of phase-change cells, described in Sec. 3.1.1, we know that

the conductance response is a non-linear function of the state of the cell. With two cells

per synapse, the conductance response of a synapse with value G is a non-linear function

of the state of both G+ and G− cell, which may store different pairs of values as long as

G+−G− =G . Still, this design is successfully applied for hardware realizations of SNNs [Sidler

et al., 2017] [Tuma et al., 2016a] and ANNs [Burr et al., 2014].

weight increase

weight decrease

weight

Positive device

Negative device

crystallizing pulse

crystallizing pulse

G+

G−

G+−G−

+

−

Figure 3.8: 2-PCM synapse Two devices are combined in a differential configuration. Weight
increase and decrease are gradual owing to application of crystallizing pulses only.

Multi-PCM synapse

Using multiple memristive devices per synapse provides more capabilities to address various

challenges of the hardware implementation at the expense of increased area and complexity.

A schematic illustration is shown in Fig. 3.9, in which the particular programming logic and

the weight read-out depends on the design.

A multi-PCM design with cell selection based on modular arithmetic implements cumulative

synaptic depression without the need for conductance rebalancing [Boybat et al., 2017].

Furthermore, it may provide a close to linear synaptic response and reduce the magnitude

of weight uncertainty stemming from inherent phase-change cell’s stochasticity. Lastly, it

increases the dynamic range of the synapse beyond the range of a single cell.

Even though the study is performed for phase-change devices, some concepts are applicable

to other technologies. The capability to increase the dynamic range is particularly important

for bi-stable memristive devices, such as HfOx /TiOx -based cells. A multi-memristive synapse

39

Chapter 3. Phase-change-based spiking neurons

weight increase

weight decrease

weight

G1

GnG

f (G1, . . . ,GnG)
...

Logic

Figure 3.9: Multi-memristive synapse Additional capabilities are available at the expense of
increased area and complexity.

comprising nG parallel bi-stable memristive devices provides nG +1 synaptic conductance lev-

els [Bill and Legenstein, 2014]. Stochasticity of these devices becomes a positive factor, which

is exploited for the learning. During application of programming pulses, they increasingly

switch their state with probability dependent on the magnitude of the applied current.

Comparison of PCM synapse types

A summary of the advantages and disadvantages of the particular synapse types is provided

in Tab. 3.1. The operation of 1-PCM synapse follows the stochastic non-linear phase-change

dynamics with asymmetric conductance response. Multi-PCM synapses aim to reduce the

impact of these properties. In 2-PCM design, the asymmetric conductance response is ad-

dressed. In designs with more cells, it is possible to improve additional characteristics, such as

to linearize the conductance response or to reduce the stochasticity of a synapse.

Synapse type 1-PCM 2-PCM Multi-PCM
Low synapse stochasticity × × �
Linear synapse response × × �

High dynamic range × × �
Cumulative synaptic depression × � �

Low synapse complexity � × ×
High synapse area-efficiency � × ×

Direct TPSP calculation using a crossbar � ∼ ∼

Table 3.1: Comparison of PCM synapse types A checkmark �indicates that a design provides
the particular feature. A crossmark × indicates lack of the particular feature. A tilde ∼ in the
last row indicates that a design may to some extent benefit from the use of a crossbar.

The motivation behind the multi-PCM designs is a bottom-up approach with an assumption

that reliable synapses lead to a reliable neuromorphic system. However, improving the syn-

thetic specification of a synapse significantly increases its complexity and may have limited

practical impact on the operation of the entire system. The biological synapses are well-known

40

3.2. Phase-change-based synapses

for their unreliable operation. In many cases the transmission reliability might be as low as

between 10% and 30% [Harris et al., 2012] [Gerstner and Kistler, 2002], which implies also lim-

ited learning reliability. Therefore, in this work we postulate to use imperfect 1-PCM synapses

and compensate for the phase-change imperfections on the system level, for instance in the

learning rule.

3.2.2 STDP for PCM synapses

The synaptic weight modifications in the SNN model are determined by the plasticity learning

rule, such as STDP, discussed in Sec. 2.3.4. These weight modifications are relative to the

current weight, and the two basic operations are weight incrementation and decrementation.

There are several ways of implementing these operations in neuromorphic systems.

For certain types of memristive devices, such as oxide-based memristors, the programming

pulse reaching a memristive device may be a superposition of specially-designed waveforms

[Querlioz et al., 2011]. The shape of these waveforms determines the learning curve and may

be tuned to a desired characteristic, such as the STDP curve [Serrano-Gotarredona et al., 2013].

In realizations using phase-change cells, it is possible to approximate the reference STDP curve

from Fig. 2.8 by translating the Δt to the crystallizing pulse width in 2-PCM synapse [Tuma

et al., 2016a]. In 1-PCM synapse, an abrupt reset characteristics discards the initial state during

the weight decrease. A solution that applies reset pulses with varying amplitude was proposed

to reproduce the gradual shape of the STDP curve for weight decrease [Kuzum et al., 2012].

However, the amplitude of these pulses depends on the initial state of the synapse. Therefore,

a single synaptic weight decrement involves reading synaptic state and applying a reset pulse

with an amplitude calculated as a function of that state and the magnitude of the desired

decrementation. This depression logic needs to be then implemented for each synapse.

3.2.3 Asymmetric STDP for 1-PCM synapses

We propose an STDP learning rule suitable for use with 1-PCM synapses. The potentation of

a synapse is realized through application of variable-width crystallizing pulses and relies on

the accumulative characteristic of the phase-change devices, whereas depression is realized

through an application of a reset pulse. The synaptic weight adjustment is expressed in a

general form:

Δw j i = f (w j i ,Δt j i)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f+(w j i ,Δt j i) if Δt j i ∈[0,TLTP]

−w j i if Δt j i ∈[−TLTD,0)

0 otherwise,

(3.2)

where TLTP is the long-term potentiation period and TLTD is the long-term depression period.

Weight adjustments occur only during a learning window in the temporal vicinity of post-

41

Chapter 3. Phase-change-based spiking neurons

synaptic spikes, delimited by TLTD and TLTP, highlighted in Fig. 3.10a. In the potentiation part,

the relative timing of pulses Δt j i is mapped to the pulse width of the crystallizing pulses, so

that the weight adjustment f+ corresponds to the shape of the classic STDP in Fig. 2.8. In the

depression part, the f− is a straight line, rather than a symmetric exponential curve of the

classic STDP. Therefore, we call our approach asymmetric STDP (A-STDP). A-STDP complies

with the mode of operation of a phase-change device, in which the conductance is gradually

increased in an accumulative fashion and decreased by the reset pulse to a fixed value.

(b)

0

0.5

1

-1
-0.8
-0.6
-0.4
-0.2

0
0.2

Ini
tia

l w

-1 -0.5 0 0.5 1 1.5
 t (s)

 w

(a) TLTD TLTP

-1 -0.5 0 0.5 1 1.5
-0.2

-0.1

0

0.1

0.2

 t (s)

 w

Cell reset

-1.5

f+

f

-0.1 0 0.1 0
0.5

1-5

0

5

x 10-3

 t (s)

Ini
tia

l w

 w

(c)

Figure 3.10: Asymmetric STDP for 1-PCM synapses (a) The crystallizing pulse widths are
mapped to Δt to reproduce the shape of the STDP curve for potentiation f+. Reset pulse is
applied for depression f−. (b) A 3D plot of A-STDP weight adjustments calculated using crystal
growth simulation for different initial weights. Subfigure from [Woźniak et al., 2016], © 2016
IEEE. (c) A 3D plot of the classic STDP. Weight adjustments are bounded by the dynamic range
of the synapses.

The effect of STDP weight adjustment f is a function of the current weight value w j i , which is

typically omitted in the STDP plots. A 3D plot in Fig. 3.10b is calculated based on the crystal-

growth dynamics simulation introduced in Sec. 3.1.1 and visualizes the impact of the cell reset

on synaptic weights operating with A-STDP in function of an initial weight. The common

2D STDP plot in Fig. 3.10a is a cross-section for a given initial condition, here for w0 = 0.2.

In general, for any implementation of STDP with constrained weights, the magnitude of the

weight changes will be constrained near their minimum and maximum values to maintain

the weights within their bounds. This is illustrated for 0-1 normalized weights and the classic

STDP in Fig. 3.10c.

An experimental realization of the A-STDP is presented in Fig. 3.11a. Multiple curves are

plotted for different initial conductance G0, where each curve is obtained by averaging weight

adjustments of 400 cells in the experimental platform described in Sec. 3.1.3. In Fig. 3.11b,

a simplified version of A-STDP is presented, in which the duration of the crystallizing pulse

during potentiation is fixed to pw = 100ns. In neuromorphic systems, it is common to reduce

the complexity of the design by simplifying the shape of the STDP curve [Bichler et al., 2012a].

42

3.3. Phase-change-based neurons

-1 -0.5 0 0.5 1
-60

-40

-20

0

20

40

 t (s)

 G
 (

S
)

0

0

0

0

0

0

0

G = 0.39
G = 2.04
G = 10.67
G = 23.83
G = 36.58
G = 44.80
G = 50.97

(a) (b)

-1 -0.5 0 0.5 1
-60

-40

-20

0

20

G0 = 0.39

G0 = 2.04

G0 = 10.67

G0 = 23.83

G0 = 36.58

G0 = 44.80

G0 = 50.97

 t (s)

 G
 (

S
)

Figure 3.11: Experimental realization of A-STDP (a) A-STDP weight change plot based on
the experimental data with weights mapped to phase-change cell conductances. Multiple
curves are plotted for different initial conductance G0. (b) Simplified version of A-STDP, in
which a constant-width pulse is applied during potentiation f+. Figure from [Woźniak et al.,
2016], © 2016 IEEE.

3.3 Phase-change-based neurons

The synapses need to be combined with a neuronal soma to form a neuron. Different imple-

mentations are possible for the neuronal soma, including CMOS [Wu et al., 2015] and FPGA

designs [Shimada and Torikai, 2015]. The classic approach for LIF implementation [Gütig

et al., 2003] involves an RC circuit, illustrated in Fig. 3.12a. The capacitor C performs the

integration and corresponds to the membrane potential V . The resistance R provides the leak

term τ, which is crucial for limiting false positive neuronal spiking for the noise, as discussed

in Sec. 2.3. The current I coming from the synapses is charging the capacitor, thus increasing

+

A-STDP

w1

wm

w2

TPSP

V

t pre
1

t post

Δwi = f (wi ,Δti)

y =V >Vth

Neuron somat
x1

x2

xm

...
reset

q1

qm = xm wm

q2

(a) LIF (b) Phase-change

I

R

C

V

V

(c) Phase-change with
integration threshold

V

Figure 3.12: Neuron soma hardware implementations (a) LIF implementation using a ca-
pacitor C and a resistance R. (b) A phase-change neuron soma implementation. (c) A phase-
change neuron implementation with an integration threshold.

43

Chapter 3. Phase-change-based spiking neurons

the voltage V . The LIF neuron is the most commonly used model, as it is easily simulated in

software using differential equations as well as implemented in hardware.

Having implemented the synapses using 1-PCM, it is appealing to explore the possibility

to use phase-change devices also for the neuronal soma. A basic idea for a phase-change

(PC) neuron is to use the phase configuration of a phase-change device to represent the

membrane potential V [Tuma et al., 2016b], as illustrated in Fig. 3.12b. The current coming

from the synapses is mapped proportionally to the width of the crystallizing pulses, thus

modifying the conductance of the phase-change device. The conductance of the phase-

change device is denoted as V , because its magnitude corresponds to the membrane voltage

V of the spiking neuron model. In consequence, the membrane potential V for the phase-

change neuron is measured in Siemens rather than in Volts, which might seem confusing. A

different nomenclature could be introduced, but we keep using the term membrane potential

V , as it is commonly used to denote the value accumulated in the soma.

An experimental characterization of the membrane potential V is plotted in Fig. 3.13a [Pantazi

et al., 2016]. Next, assuming a spiking threshold of 40μS we determine the number of pulses

required to reach the spiking threshold in Fig. 3.13b [Pantazi et al., 2016]. When the neuron

reaches the threshold, an output spike is emitted and the phase-change cell of the neuron

soma is reset. The neuron continues to integrate and spike, with a frequency that is an

approximately linear function of the crystallizing pulse width.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

Number of pulses

C
o

n
d

u
ct

an
ce

(μ
S)

Threshold

0 100 200 300 400 500
0

5

10

15

20

N
u

m
b

er
o

fp
u

ls
es

to
fi

re

0

0.1

0.2

0.3

0.4

F
ir

in
g

fr
eq

u
en

cy
(a

.u
.)

Pulse width (ns)

(a) (b)

100 ns
150 ns
300 ns
600 ns

0
0

10C
o

Figure 3.13: Operation of a phase-change neuron (a) Conductance characterization of a
phase-change neuronal soma after application of a given number of crystallizing pulses with
I = 130μA. Values averaged over 400 cells. (b) Average firing rate of a phase-change neuron as
a function of repeating application of constant-width crystallizing pulses. The firing rate is
an approximately linear function of the crystallizing pulse width. From [Pantazi et al., 2016],
© IOP Publishing. Reproduced with permission.

The phase-change neurons have multiple unique advantages. Firstly, the non-volatile charac-

ter of the membrane potential allows for low frequency and low power operation of a neuron,

which might become important for long-term operation, e.g. in an IoT device. Secondly,

phase-change devices exhibit intrinsic stochasticity [Tuma et al., 2016b], which might be used

in particular applications relying on the stochastic activation of the neurons. Lastly, it might

44

3.3. Phase-change-based neurons

be advantageous to have a uniform design utilizing a phase-change crossbar for both the

synapses and the neurons.

On the other hand, the phase-change neuron implementation inherits the characteristics

of a phase-change device. Owing to the asymmetric conductance response, the membrane

potential in Fig. 3.13a cannot be gradually decreased. In consequence, the PC neuron lacks the

gradual leak term τ and may emit false positive spikes for noisy inputs. The asymmetry issue

can be addressed in an analogous way as described in Sec. 3.2 for the phase-change synapses –

through the use of two or more devices. However, similarly to the 1-PCM approach we followed

for the synapses, we use a 1-PCM neuronal soma and compensate for the asymmetry at a

different stage to achieve noise-robust operation.

3.3.1 Noise-robust phase-change neurons

We propose a noise-robust phase-change neuron with integration threshold (PCth) [Woźniak

et al., 2017c], illustrated in Fig. 3.12c, in which a thresholding unit is added before the in-

tegration stage. We explain the functionality of the PCth neuron in comparison to the LIF

neuron.

An LIF neuron, introduced in Sec. 2.3, does not fire for a low magnitude TPSP owing to the

decay of the V , following Eq. 2.9 (page 22). The low magnitude TPSP typically corresponds to

activation of non-pattern inputs with low weights that result in low qi values, so we denote it as

noise TPSPN . Continuous contribution from TPSPN over a period of time ΔT is compensated

by the leak term and stabilizes the membrane potential V at an equilibrium level VN . This

prevents the emission of false positive spikes for the noise, as VN <Vth.

Maintaining a proper level of VN for a given application requires tuning the leak time constant

τ. Repeated arrival of TPSPN each ΔT stabilizes the membrane potential at a voltage denoted

as VN , which implies that ΔVN = 0 over ΔT . Solving Eq. 2.9 for TPSPN using ΔVN = 0, we get:

TPSPN =VN
ΔT

τ
(3.3)

Let us denote the highest possible magnitude of the TPSP stemming from the noise as TPSPmax
N .

The maximum membrane potential VN should not cross the spiking threshold Vth. Therefore,

the border condition for TPSPmax
N is:

TPSPmax
N =Vth

ΔT

τ
(3.4)

The firing frequency of an LIF neuron in function of the input magnitude for different values of

the leak term τ is plotted in Fig. 3.14a [Woźniak et al., 2017c]. The TPSPmax
N of the input above

which an LIF neuron with τ= 0.1,Vth = 13,ΔT = 0.05 will fire is for equal to TPSPmax
N = 6.5.

45

Chapter 3. Phase-change-based spiking neurons

(a) (b)

VN <Vth

TPSPN < TPSPthTPSPmax
N

Figure 3.14: The firing frequency of an LIF and a phase-change neuron (a) An LIF neuron
with Vth = 13 for varying τ. (b) A phase-change (PC) neuron with Vth = 30.8μS, and a phase-
change neuron with integration threshold (PCth) with TPSPth = 6.1. Figure from [Woźniak
et al., 2017c], © 2017 IEEE.

The frequency response of a standard phase-change (PC) neuron is illustrated in Fig. 3.14b

[Woźniak et al., 2017c], where the TPSP range of 1 to 13 is mapped linearly to a pw range of

50 ns to 500 ns. The leak term of the LIF neuron offsets the slope of the firing frequency to

higher input magnitudes, as depicted in Fig. 3.14a. In a phase-change neuron, to achieve a

similar effect on the shape of the slope, we introduce an integration threshold TPSPth in PCth,

illustrated in Fig. 3.14b.

The PCth neuron is noise-robust, as it eliminates noise by integrating only values of TPSP >
TPSPth. The firing frequency of a phase-change neuron with integration threshold in Fig. 3.14b

is similar to the response of a neuron with a leak, but instead of tuning τ, TPSPth is tuned to be

above TPSPmax
N . For input encoding, in which the true positive signals cluster into correlated

patterns, such as in the correlated group encoding described in Sec. 2.2.2, PCth performs as

well as an LIF neuron for the noisy inputs. The neuron operation in an SNN architecture will

be demonstrated in the next section.

3.4 Conclusions

An implementation of the basic theoretical primitives of the spiking model was discussed

in the context of neuromorphic hardware. In particular, phase-change memristors were

considered for an analog design of synapses and neurons. A 1-PCM synapse with an A-STDP

learning mechanism was proposed along with a noise-robust phase-change neuron with

integration threshold, which provide the building blocks for an all-phase-change-based SNN.

Owing to technological constraints, these blocks differ to some extent from the theoretical

SNN model, described in Chapter 2. In the remaining parts of the thesis, we utilize these

phase-change-based building blocks for concrete applications to experimentally validate their

operation.

46

4 Architectures for pattern learning

In this chapter, we propose phase-change-based neuromorphic architectures for pattern

learning and experimentally demonstrate their operation. In Sec. 4.1, we show how to learn

patterns from correlated inputs using a single LIF neuron with phase-change-based synapses

operating according to the A-STDP rule. Next, in Sec. 4.2, we extend this approach to an

all-phase-change implementation of a neuron, with a record number of 1M phase-change

synapses, learning from a more challenging weakly-correlated input. Lastly, in Sec. 4.3, we

implement a network of all-phase-change spiking neurons, for which we propose a WTA

feedback scheme with level-tuned neurons as an alternative to the lateral inhibition WTA. We

use it to experimentally demonstrate simultaneous learning of multiple patterns.

4.1 Learning a correlated pattern

We propose a neuromorphic phase-change-based architecture for learning a correlated pattern

from parallel input spike trains [Woźniak et al., 2016]. The architecture, illustrated in Fig. 4.1,

comprises an array of m synapses of 1-PCM type, discussed in Sec. 3.2, coupled with an

LIF neuron soma, implemented as described in Sec. 2.3.2. The synapses learn based on the

relative timing of the pre- and post-synaptic spikes using the A-STDP introduced in Sec. 3.2.3.

+

A-STDP

w1

wm

w2

TPSP

V

t pre
1

t post

Δwi = f (wi ,Δti)

y =V >Vth

Neuron somat
x1

x2

xm

...
reset

xm

Figure 4.1: An architecture for learning correlated patterns 1-PCM phase-change synapses
operating using A-STDP are coupled with an LIF neuron. Figure adapted from [Woźniak et al.,
2017b], © 2017 IEEE.

47

Chapter 4. Architectures for pattern learning

We apply the proposed architecture for the task of learning a correlated pattern Q from

temporally-coded input. In particular, we use three 20×20-pixel binary patterns Q1,Q2,Q3

corresponding to the images of letters ‘I’, ‘B’, and ‘M’. The information about each pattern

is present in the input for a 60s time interval, as schematically illustrated in Fig. 4.2. Fol-

lowing the dataset generation scheme from Sec. 2.2.2, the synapses corresponding to the

pattern pixels receive mutually correlated spikes with c = 1 at time instances drawn from a

Poisson distribution with a rate rQ = 1Hz. The remaining synapses receive uncorrelated spikes

representing Poissonian noise with a rate rN = 1Hz.

X Q1

0 10 60 70· · ·
Time (s)

X Q2In
p

u
ts

120 130· · ·

X Q3

0

Figure 4.2: Inputs with correlation coded information about the patterns The correlated
group with c = 1, corresponding to the pattern inputs X Q changes each 60s. The pattern and
the noise inputs have equal rates of 1Hz. For each pattern, sample 50 correlated inputs X Q

and 50 noise inputs X N are plotted and displayed in an arbitrarily sorted order to visualize the
correlated nature of the inputs forming vertical lines and the changes of the correlated group.

We provided the inputs consecutively row by row to 400 phase-change synapses of the pro-

posed architecture. The operation of synapses was simulated using the model from Sec. 3.1.1

as well as realized experimentally using the platform described in Sec. 3.1.3. In the experiment,

we mapped the synaptic weights to a 10μS−60μS range of conductance, and used crystallizing

pulses with I = 70μA and width of 100ns−200ns.

4.1.1 Learning results

The inputs appearing during the first 60s increasingly lead to emission of post-synaptic spikes

during the pattern appearance. The arrival of the correlated pattern concurrently activates

a large number of synapses that provide a significant contribution in increasing the mem-

brane potential above the threshold Vth and trigger a neuron-firing event. Therefore, the

temporally correlated inputs increasingly gain control of the neuron firing, and the corre-

sponding synapses increase their weight owing to the feedback mechanism. This results in a

progressive increase in the crystallization of the correlated group of phase-change synapses

for each appearance of the image pattern at inputs xi ∈ X Q . Conversely, the uncorrelated

synapses are subject to negative feedback as acausal input-firing events at xi ∈ X N trigger

depression [Woźniak et al., 2016].

48

4.1. Learning a correlated pattern

The visualization of the weights from the experimental realization at t = 60s, shown in Fig.

4.3a, demonstrates that the neuron captured the pattern from the inputs. Fig. 4.3b illustrates

the distribution of the normalized synaptic conductances of the 1-PCM synapses. The bi-

modal distribution correctly corresponds to the group of uncorrelated noise inputs X N and

correlated pattern inputs X Q1 . The shape of the modes is impacted by the variability of the

phase-change devices, most of which saturate at conductance ≈ 39μS that corresponds to

wi ≈ 0.84.

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

Synaptic weight

N
u

m
b

er
o

fs
yn

ap
se

s

Uncorrelated Correlated

(a) (b)

X N X Q1

Figure 4.3: Weights of a learned neuron (a) Visualization of the weights at time t = 60s.
(b) A histogram illustrating the bi-modal distribution of the weights of 1-PCM synapses using
A-STDP. The shape of the modes is impacted by the variability of the phase-change devices.
Figure adapted from [Woźniak et al., 2016], © 2016 IEEE.

4.1.2 Relearning results

Starting from t = 60s and then from t = 120s, the input distribution changes and different

inputs receive the correlated spikes. Uncorrelated spike arrival at inputs that used to belong to

the correlated group xi ∈ X Q1 \ X Q2 leads to depression of the respective synapses, whereas

correlated spike arrival at inputs that used to receive noise xi ∈ X N1 ∩X Q2 leads to potentiation.

In consequence, the neuron constantly re-learns the statistics of the input distribution.

The re-learning progress is illustrated in Fig. 4.4 [Woźniak et al., 2016]. Fig. 4.4a shows the

time-lapse snapshots. Specifically, the first row shows the synaptic input signals; the second

row shows the weight of the corresponding synapses from the software simulation that is

based on the effective amorphous thickness ua , and the last row shows the experimental

realization in which the synaptic weight is encoded in the phase-change cell conductance G .

Fig. 4.4b shows the evolution of the average conductance of the synapses corresponding to

the pattern pixels in comparison to the average conductance of the synapses corresponding

to noise inputs. The set of the synapses for which the mean is calculated is changed every

60s-period to reflect the ground truth distribution. Because some inputs remain correlated

X Qk ∩ X Qk+1 = �, re-learning patterns Q2 and Q3 proceeds faster than learning the initial

pattern Q1.

We assess the quality of the learned patterns by calculating visualization MSE, defined in Eq.

2.11. The values are plotted in Fig. 4.4c and the averaged MSE over each pattern’s second half

49

Chapter 4. Architectures for pattern learning

(b)
0.65 s 30.25 s 59.85 s 61.2 s 89.35 s 117.45 s 121.6 s 150.5 s 179.35 s t (s)

(a)
In

pu
t

Ha
rd

w
ar

e
So

ftw
ar

e
'I' input pattern

(c)

'B' input pattern 'M' input pattern

Weights Weights Weights

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
0

10

20

30

40

50

Time (s)

C
on

du
ct

an
ce

 G
 (

S
)

I-B-M
Noise

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
0

0.1

0.2

M
S

E

Figure 4.4: A single neuron relearning correlated patterns using A-STDP (a) Snapshots of
the input signals and synaptic weights in the software simulation and in the hardware experi-
ment at times indicated on the t-axis. (b) Average conductance of the synapses corresponding
to the input images in comparison to the average conductance of the synapses corresponding
to noise inputs. (c) MSE of synaptic weights versus expected input pattern at each moment in
time. Figure from [Woźniak et al., 2016], © 2016 IEEE.

of the exposition time for the three patterns is 0.96%. The results show that the architecture

is capable of learning and re-learning temporally-correlated patterns through the feedback

provided by neuronal activation and operation of A-STDP.

4.2 Learning a weakly correlated pattern

In a more realistic setting, the information about the pattern may not appear in the form of

perfectly correlated spikes. Therefore, in this section we consider inputs containing informa-

tion in a form of weakly correlated spikes with correlation coefficient c < 1. The uncorrelated

noise appears then also on the pattern inputs X Q , as illustrated for c = 0.2 in Fig. 4.5a for 50

pattern inputs and 50 noise inputs.

Learning from weakly correlated inputs containing information about a pattern Q, such as

one illustrated in Fig. 4.5b, is challenging both for the neuron soma and the synapses. In the

perfectly correlated case, the synapses at inputs X Q receive complete information about the

50

4.2. Learning a weakly correlated pattern

(c)

c = 1.0
(a)

X Q

0 10

In
p

u
ts

Time (s)

c = 0.2

X Q

0 10

In
p

u
ts

Time (s)

(b)

X N X N

(d)

Figure 4.5: Weakly correlated inputs (a) The pattern inputs X Q receive uncorrelated noise for
c < 1. Subfigure adapted from [Woźniak et al., 2017c], © 2017 IEEE. (b) The reference pattern
Q . (c) For c = 1, correlated inputs contain the complete information about the pattern. (d) For
c = 0.2, correlated inputs contain incomplete and inconsistent information about the pattern.

pattern during correlated activity, as illustrated in Fig. 4.5c. In the weakly correlated case,

the information about the pattern is incomplete and inconsistent over time, as illustrated in

Fig. 4.5d. In consequence, when the pattern appears at the input, fewer pattern synapses are

activated and the TPSP observed by the neuron soma is lower than in the highly correlated

case. Simultaneously, an arrival of an uncorrelated spike on a highly potentiated pattern input

xi ∈ X Q leads to a high TPSP contribution to the membrane voltage V , even though there

is no pattern appearing at this time instance. Therefore, to provide high spiking accuracy, a

noise-robust neuron soma implementation becomes essential.

In the rest of this section, we consider learning from weakly correlated inputs using two noise-

robust neuron soma implementations. We assess them on the tasks of pattern detection and

pattern visualization, introduced in Sec. 2.4. Next, we discuss how to improve the visualization

accuracy for weakly correlated inputs. We present an architecture for high-accuracy weakly

correlated pattern visualization and compare the experimental results.

4.2.1 Results for an all-phase-change neuron

We execute an experiment to compare weakly correlated pattern learning capabilities of

two noise-robust neuron soma implementations: an LIF and a phase-change neuron with

integration threshold (PCth), introduced in Sec. 3.3.1. The experimental setup consists of

a single neuron with 106 phase-change synapses operating according to A-STDP, as in the

architecture from Fig. 4.1 (page 47). The LIF neuron soma is emulated in software, as discussed

in Sec. 2.3.2. The PCth neuron soma is implemented using one additional phase-change

device, so that the neuron is an all-phase-change neuron using 106+1 cells from the prototype

platform described in Sec. 3.1.3.

51

Chapter 4. Architectures for pattern learning

The inputs comprise weakly correlated information about a 1000×1000-pixel image from

Fig. 4.5b. The size of the correlated group corresponding to the pattern is |X Q | = 203,143.

The pattern and the noise appear with equal rates: rQ = rN = 1Hz, ΔT = 50ms. Consecutive

steps of operation of the neuromorphic architecture for c = 0.2 are shown in Fig. 4.6. The

spikes appearing at the inputs of a neuron are modulated by the synaptic weights (Fig. 4.6a),

and contribute to the synaptic output (Fig. 4.6b), which is integrated into the membrane

potential (Fig. 4.6c). We may formally interpret the values using notation from Sec. 2.2.2.

When no pattern is appearing (¬Y), the system observes activity generated by the noise

and receives on average |X Q |Pr(X Q
i |¬yQ)+|X N |Pr(X N

i) input spikes. This results in a noise

component of TPSP, denoted by TPSPN in Fig. 4.6b, which should not cause a spike in a

properly tuned noise-robust neuron soma. For the LIF we use Vth = 13, τ= 0.15, and for the

PCth we use Vth = 30.8μS, TPSPth = 6.1. Lastly, Fig. 4.6d demonstrates that both neuron soma

implementations become selective to the weakly correlated pattern.

Sy
n

ap
ti

c
Sy

n
ap

se
s

O
u

tp
u

t
N

eu
ro

n
o

u
tp

u
t

so
m

a
sp

ik
es

VN

TPSPN

(b)

(a)

(c)

(d)

O s

Figure 4.6: Comparison of LIF and PCth soma applied for pattern detection c = 0.2, |X Q | =
203,143, |U | = 1M (a) The inputs are weighted by synaptic weights, which evolve over time
according to A-STDP. (b) TPSP observed by both types of neurons is very similar. (c) V differs
between the neurons, because the noise is handled differently. (d) After some initial time, the
pattern appearance consistently drives the neuronal activity of both types of neurons. Figure
from [Woźniak et al., 2017c], © 2017 IEEE.

52

4.2. Learning a weakly correlated pattern

To assess the pattern detection capabilities, we calculate the cross-correlation between in-

put spiking and neuron firing for the correlation coefficients c = 1 and c = 0.2. The cross-

correlations plotted in Fig. 4.7 are the same for both implementations, and demonstrate that

even for c = 0.2 the neuronal firing is driven exclusively by the pattern inputs. The correlation

to the noise inputs is near zero. Therefore, we conclude that both LIF and PCth provide a

noise-robust neuron soma implementation that enables reliable weakly correlated pattern

detection with A-STDP.

c = 1.0 c = 0.2

Figure 4.7: Pattern detection assessment using cross-correlation After an initial period of
learning, the LIF and the PCth fire at exactly the same time instances, correlated with the
activation of the pattern inputs. The cross-correlation calculated for 400s of operation is the
same for both neurons. For improved visualization, the values are presented for the first 50
X Q inputs and the first 50 X N inputs. Figure from [Woźniak et al., 2017c], © 2017 IEEE.

To assess pattern visualization capabilities, we plot the synaptic weight evolution of the PCth

neuron for c = 0.2 in Fig. 4.8a. The pattern weights reach high values, but are frequently

depressed, similarly to the sample weight in Fig. 4.6a. The neuronal firing remains unaffected

after such weight resets because on the average (bold lines) the synaptic weights corresponding

to the pattern have a higher value than those corresponding to the noise. Nevertheless, a

complete pattern reconstruction is difficult, and the final weights, visualized in Fig. 4.8b, store

a rudimentary image of the reference pattern Q from Fig. 4.5b.

(b)(a)

Figure 4.8: Weakly correlated pattern visualization c = 0.2 (a) Weight evolution plot. Thin
lines: 100 sample weights corresponding to pattern inputs (red to yellow) and noise inputs
(blue to green). Bold lines: means. (b) Final weights visualization. Figure from [Woźniak et al.,
2017c], © 2017 IEEE.

53

Chapter 4. Architectures for pattern learning

4.2.2 Towards accurate weakly correlated pattern visualization

An accurate visualization of a weakly correlated pattern might be essential in applications

that require a deeper insight than just detecting the appearance of the pattern. In this section,

we demonstrate that an accurate information about the entire pattern is indeed collected

throughout the course of learning in the synaptic weights operating using A-STDP. For fast

computation, we convey the analysis using a 100×100-pixel image presented in Fig. 4.9a.

(b)(a)

t

Figure 4.9: Weight snapshots for weakly correlated inputs (a) The reference pattern Q. (b)
Weights’ snapshots from a simulation of an LIF neuron operating with A-STDP for c = 0.2.

We analyze the weight evolution in a simulation using LIF and A-STDP operating for weakly

correlated inputs with c = 0.2 for a period of 100s. Fig. 4.9b presents obtained weights’

snapshots that contain distorted memories of the pattern Q. We notice that the highly-

potentiated synapses contain subsets of the correct pattern Q, and these subsets vary between

the snapshots. Therefore, the information about the entire pattern is a function of the history

of the weights, and it may be retrieved through post-processing the weights’ evolution.

Pattern visualizations calculated using various post-processing approaches are presented in

Fig. 4.10. In particular, visualizations in Fig. 4.10a were obtained by averaging the values of

0 0.25 0.5 0.75 1

60%

80%

100%

FP FN

Avg.

Avg.
20 snapshots

Max

False
positives

False
negatives

wth = 0.35

99.8% / 98.5% 90.7% / 29.0%95.4% / 100%

97.0% / 98.6%

97.2% / 89.0%

97.5% / 91.4%

wth

(a)

(b)

(c)

A
(U

)

Optimum

wth = 0.75 wth = 0.95

Figure 4.10: A-STDP weights post-processing for c = 0.2 In each case two visualization
accuracy values are reported: A(U) / A(Q). (a) Averaging the weights enables to reconstruct
the pattern. (b) Maximum operation reconstructs the pattern, but results in high background
noise levels. (c) Thresholding applied to the results of the maximum operation obtains the
highest A(U) accuracy. The choice of the threshold wth is an optimization problem.

54

4.2. Learning a weakly correlated pattern

the synaptic weights over the entire experiment, or just over a given number of snapshots,

and performing 0-1 normalization. The drawback of the calculation of an average is that a

high dynamic range is required to accurately sum multiple snapshots, i.e. 20 snapshots with

8-bit resolution require a 13-bit accumulator. A simple alternative is to save the maximum of

the weights, which provides a high-accuracy reconstruction of the pattern, but also captures

the background noise, as illustrated in Fig. 4.10b. To remove the noise, thresholding can be

applied, as depicted in Fig. 4.10c. The threshold wth impacts the final accuracy and its choice

is an optimization problem: lower thresholds provide a reconstruction of the entire pattern at

the expense of allowing noisy pixels (false positive pixels); whereas higher thresholds provide

partial reconstruction of the pattern (false negative pixels) with no noise.

The results demonstrate that with weights post-processing a high-accuracy pattern visual-

ization is possible for a neuron operating with A-STDP. On the other hand, the discussed

approaches introduce additional complexity to the system and require to double the number

of memory elements to store intermediate post-processing results, which limits their practical

applicability.

4.2.3 An architecture using A-STDP with selective depression

We propose a variant of A-STDP directly capable of accurately visualizing weakly correlated

patterns using 1-PCM synapses [Woźniak et al., 2017c]. We introduce a selective depression

mechanism that uses a threshold qth on the synaptic output qi to prevent depression of

highly potentiated inputs. Because learning is performed on spike arrival, the value of qi is

available as an intermediate result behind a synapse receiving a spike. The implementation

becomes straightforward if we move the A-STDP execution behind the synapses, as illustrated

in Fig. 4.11. Then, in the learning logic, we prevent the application of reset pulses to the

synapses corresponding to the inputs with qi ≥ qth. These inputs typically correspond to the

pattern owing to their spiking probabilities. When a neuron spikes for a pattern appearance

Y , the probability of a pattern input spiking, and thus potentiation, is higher than for a noise

+

A-STDP

w1

wm

w2

TPSP

V

t pre
1

t post

Δwi = f (wi ,Δti)

y =V >Vth

Neuron somat
x1

x2

xm

...
reset

xm

q1

qm = xm wm

q2

Figure 4.11: Neuron architecture for A-STDP with selective depression A-STDP execution is
moved behind the synapses to enable thresholding whilst avoiding additional explicit read of
the weights.

55

Chapter 4. Architectures for pattern learning

input: Pr(X Q
i |yQ) > Pr(X N

i), whereas during depression it is lower: Pr(X Q
i |¬yQ) < Pr(X N

i). In

consequence, the probability that a synapse is potentiated multiple consecutive times prior to

a depression is higher for pattern inputs than for noise inputs.

The number of consecutive potentiations of the synapses corresponding to the pattern inputs

depends mainly on the timing parameters of the learning rule and the correlation coefficient.

For instance, in Fig. 4.12a we plot the distribution of consecutive potentiations obtained in

the pattern detection experiment in Sec. 4.2.1. The distribution is bi-modal, with median

number of potentiations equal to 2 for noise inputs, and equal to 8 for pattern inputs. The

pattern inputs can be clearly distinguished as receiving 5 or more potentiations. The higher

number of potentiations leads to a separation of the synaptic weights’ values of the correlated

inputs from the noise. This separation enables the selection of an appropriate synaptic output

threshold qth for the selective depression mechanism.

(a)

(b)

qth = 0.5

f+

qth = 0.5

(c)

Figure 4.12: Determining qth for selective potentiation (a) The maximum number of consec-
utive potentiations is higher for the synapses corresponding to the pattern inputs than for the
synapses corresponding to the noise inputs. (b) Distributions of synaptic conductances after
application of the median number of potentiating pulses for the noise inputs np = 2 and for
the pattern inputs np = 8. (c) Asymmetric STDP implementation for phase-change synapses.
For the synaptic potentiation, we use crystallizing pulses with I = 130μA and pw = 50ns,
whereas for the depression we use reset pulses with I = 450μA. Selective depression with
qth = 0.5 corresponds to limiting the depression ΔG to 27.5μS. Figure from [Woźniak et al.,
2017c], © 2017 IEEE.

56

4.2. Learning a weakly correlated pattern

However, in a phase-change synaptic implementation, the potentiation f+ also involves

the inter-device variability. In Fig. 4.12b, we plot the distribution of phase-change synaptic

conductances for a subset of 1000 devices after a given number of potentiations np . Based

on the characterization results, an appropriate value for the selective depression threshold

qth is 0.5 (normalized). The noise synapses do not reach this threshold, whereas the pattern

synapses will eventually cross it and remain potentiated. Fig. 4.12c illustrates the region in

the A-STDP response in which the selective depression threshold prevents the depression of

highly potentiated synapses.

A-STDP with selective depression is similar to the threshold-based post-processing in form

(maxt wi (t)) > wth, that finds the weights that were potentiated above wth at some point

in time. Performing that post-processing corresponds to reverting the application of the

depression events for the synaptic weights that were potentiated to a high value in the past,

whereas A-STDP with selective depression prevents such depression events from occurring.

4.2.4 Results for A-STDP with selective depression

We experimentally implement A-STDP with selective depression using 106 phase-change

synapses in a single neuron [Woźniak et al., 2017c]. We extend the algorithm described in

Sec. 4.2.1 to introduce the selective depression parameter qth, and to analyze the impact of

selective depression for inputs with correlation coefficients c = 0.2 and c = 1. Specifically, the

regular A-STDP with LIF neuron soma is compared with an A-STDP extended with selective

depression for qth = 0.5 coupled with a PCth neuron soma. We use the same setup and the

1000×1000-pixel image as in the previous experiment from Sec. 4.2.1.

The synaptic weight evolution for c = 0.2 with selective depression is plotted in Fig. 4.13. If a

synapse collects sufficient evidence that an input belongs to the correlated group, measured

by crossing qth, it converges to a high value. As a result, pattern reconstruction improves in

comparison to regular A-STDP operation, although because of the device variability also a few

synapses corresponding to the noise converge to high values.

Figure 4.13: Weakly correlated pattern visualization with selective depression Weight evo-
lution plot for c = 0.2 with qth = 0.5. Thin lines: 100 sample weights corresponding to pattern
inputs (red to yellow) and noise inputs (blue to green). Bold lines: means. Figure from [Woź-
niak et al., 2017c], © 2017 IEEE.

57

Chapter 4. Architectures for pattern learning

The pattern visualizations and weight histograms at t = 400s are compared for c = 0.2 and

c = 1 using A-STDP with and without selective depression, as illustrated in Fig. 4.14. For weakly

correlated inputs, regular A-STDP (see Fig. 4.14a) cannot visualize the pattern well. A-STDP

with selective depression (see Fig. 4.14b) performs better and provides a clearly separated

distribution of the final weights that yields a high-contrast visualization of the pattern Q.

For highly correlated inputs, we analyze whether the use of selective depression impacts

performance. As shown in Fig. 4.14c-d, both approaches reconstruct the pattern, but in the

case of selective depression a few noise synapses cross the qth threshold. To quantitatively

assess the performance, we calculate the overall visualization accuracy A(U) and the pattern

accuracy A(Q), defined in Sec. 2.4. The values are presented in Table 4.1. A-STDP with

selective depression outperforms regular A-STDP by 62.7 percentage points for c = 0.2 pattern

reconstruction, while maintaining a similar overall and the same pattern accuracy for c = 1.

(c)

(d)

(a)

(b)

c = 0.2 c = 1

Figure 4.14: Comparison of pattern visualization for c = 0.2 and c = 1.0 Pattern visualization
for c = 0.2: (a) regular A-STDP (using an LIF neuron soma), (b) A-STDP with selective depres-
sion (using a PCth neuron soma). Pattern visualization for c = 1.0: Both (c) A-STDP, and (d)
A-STDP with selective depression, learn the entire pattern. Figure from [Woźniak et al., 2017c],
© 2017 IEEE.

Table 4.1: Accuracy for the pattern visualization task Overall (A(U)) and for the correlated
pattern inputs only (A(Q)). Table from [Woźniak et al., 2017c], © 2017 IEEE.

c = 0.2 c = 1
A(U) A(Q) A(U) A(Q)

A-STDP 83.6% 20.8% 98.5% 95.5%
with sel. depr. 94.9% 83.5% 97.0% 95.5%

With 106 phase-change synapses, our experimental realization of a neuron is the largest to

date in terms of the number of synapses. It has two orders of magnitude more synapses than

the average for a biological neuron equal to 104, and the nanoscale phase-change synapses

58

4.3. Learning multiple correlated patterns

are over an order of magnitude smaller than the microscale biological synapses. This is a

demonstration that neuromorphic systems provide capabilities to go beyond what is observed

in the nature in terms of the size of a neuron.

4.3 Learning multiple correlated patterns

A single neuron provides capabilities for pattern learning and re-learning. However, they

are practically constrained to handling one pattern at-a-time, because a neuron has a single

binary output. A natural extension for handling multiple patterns at-a-time is to use multiple

outputs from a network of spiking neurons in a WTA architecture, described in Sec. 2.5. In this

section, we discuss how to implement such network using phase-change neurons operating

with phase-change synapses. Firstly, we introduce a power-efficient WTA architecture with

level-tuned neurons as an alternative to the classic lateral inhibition WTA, and demonstrate

results from an all-phase-change implementation of a neuromorphic SNN. Secondly, we

propose a learning mechanism that incorporates the WTA results to ensure consistent high

quality pattern visualization during operation of A-STDP in a WTA architecture.

4.3.1 WTA with level-tuned neurons

WTA with level-tuned neurons aims to improve the efficiency of a phase-change-based SNN

for operation with temporally coded inputs in comparison to lateral inhibition WTA, discussed

in Sec. 2.5. The feedback evoked within a neuron is moved from resetting the membrane

potential Vj in lateral inhibition to gating the neuronal inputs of level-tuned neurons.

A neuromorphic architecture implementing lateral inhibition WTA, presented in Fig. 4.15a,

may operate as follows: on an arrival of a correlated group of inputs, signals pass through

Inputs

N1

Nn

w11

wnm

... ...

Outputs

N j

Neurons

(a) Lateral inhibition

N−

Inputs

N1

Nn

w11

wnm

... ...

Outputs

N j

Neurons

(b) Level-tuned neurons

N 0primary neuroninhibitory neuron

Figure 4.15: WTA operation in a network (a) In lateral inhibition, all neurons are enabled by
default and then a disabled, except from the winning neuron. (b) All level-tuned neurons are
disabled by default and then the winning neuron is enabled by the primary neuron.

59

Chapter 4. Architectures for pattern learning

all the m synapses of all the n neurons (nm read pulses). Then, n neurons increase their

membrane potential Vj (n crystallzing pulses), which is compared with spiking threshold

Vth (n read pulses). Next, assuming that at least one neuron crossed its threshold, the lateral

inhibition mechanism picks a single winner and resets the membrane potentials of all neurons

(n amorphizing pulses). The neurons activated in the network prior to the inhibition are

highlighted in Fig. 4.15a, and the number of pulses required during operation is (nm +n)pR +
npC +np A , where pR , pC , p A denotes a read, crystallizing and amorphizing (reset) pulse

respectively.

A neuromorphic architecture implementing WTA with level-tuned neurons operates in an

opposite manner to lateral inhibition: the key idea is to have all the neurons disabled by default

and enable them based on the activation of an additional primary neuron. On an arrival of

a correlated group of inputs, signals pass through m synapses of the primary neuron (m

read pulses). Based on the level of its TPSP0, particular neurons in the network are activated.

Assuming a 1-WTA mode (a single winner), one neuron will be activated: the signal will travel

through its synapses (m read pulses), increase the membrane potential (1 crystallizing pulse),

which compared with the spiking threshold (1 read pulse) may lead to an output spike and

consecutive membrane potential reset (1 amorphizing pulse). The neurons activated in the

network are highlighted in Fig. 4.15b, and the number of required pulses is (2m+1)pR +1pC +
1p A . This is less than for the lateral inhibition, and the advantage of the level-tuned WTA

increases with the size of the network.

The wining neuron N j is activated at time tX based on the level L0(tX) = TPSP0(tX) of the

primary neuron, provided that it satisfies L0(tX) ∈< l min
j , l max

j >, as illustrated in Fig. 4.16. The

level L0 is typically characteristic of a given pattern. However, it may happen that different

Primary neuron N 0

Level-tuned

... ...

...

N1 active N2 active

TPSP0

N1

Level-tuned
N2

l min
1 l min

2 l max
2l max

1

Figure 4.16: Enabling level-tuned neurons The level of TPSP0 of a primary neuron is used to
enable the regular neurons. Adapted from [Pantazi et al., 2016], © IOP Publishing. Reproduced
with permission.

60

4.3. Learning multiple correlated patterns

patterns X and Y will evoke the same level of the primary neuron: L0(tX) = L0(tY). If we

treat L0 as a hashing function, this situation resembles the problem of hashing collision. The

solution might be to change the function L from the calculation of TPSP to a different one,

which again corresponds to the challenge of determining the optimal hashing function.

4.3.2 Multiple pattern learning results

We experimentally demonstrate operation of an architecture comprising two level-tuned

neurons and one primary neuron [Pantazi et al., 2016]. The neurons are all-phase-change

with 1-PCM synapses and a phase-change-based soma, implemented in the experimental

platform described in Sec. 3.1.3. Constant-width 100ns crystallizing pulses are used for A-

STDP and variable-width 100ns−1000ns crystallizing pulses are used for the phase-change

soma. The inputs receive spikes with temporally-coded information about two patterns,

where the patterns appear in form of correlated groups with a mean rate of rQ = 1Hz, and the

remaining inputs receive Poissonian noise with a mean rate of rN = 1Hz.

Firstly, we consider a system with 400 inputs receiving two synthetic patterns comprising

correlated groups of 50 inputs and 30 inputs with c = 1, illustrated in Fig. 4.17a. For improved

readability, only 150 inputs are visualized. After an initial period of learning, the level TPSP0

of the primary neuron becomes different for each pattern, and enables either the first or the

second level-tuned neuron. The neurons learn the respective patterns and correctly spike

during their appearance. The system maintains the performance also for weakly correlated

inputs. Fig. 4.17b illustrates operation for two patterns of 50 inputs with c = 1 and 50 inputs

with c = 0.6. The neurons correctly detect all respective pattern appearances.

Secondly, we consider a system with 10000 inputs receiving two correlated groups correspond-

ing to two overlapping image patterns, visible in the input snapshots in Fig. 4.18a. The primary

neuron learns the overall input statistics that comprises both patterns, as visualized in the

snapshots in Fig. 4.18b(1) and in the mean weights plot in Fig. 4.18c(1). Then, it selectively

enables the level-tuned neurons, which learn only particular patterns, as visualized in the

snapshots in Fig. 4.18b(2-3) and in the mean weights plots in Fig. 4.18c(2-3). At t ≈ 95s, the

level-tuned neurons contain an accurate representations of the patterns. However, occasional

drops in the conductance corresponding to the common part of the patterns may occur ow-

ing to the asymmetric conductance response of 1-PCM synapses. The level-tuned neurons

continue to spike accurately for each of the patterns, and quickly relearn the entire patterns.

Nevertheless, in the next section we propose to enhance the learning mechanism in order to

consistently maintain the accurate representation.

61

Chapter 4. Architectures for pattern learning

(a)

(b)

40 41 42 43 44 45 46 47 48 49 50
0

50

100

150

In
pu

t s
pi

ke
s

40 41 42 43 44 45 46 47 48 49 50
0

20

40

TP
S

P
0

Primary neuron

40 41 42 43 44 45 46 47 48 49 50
Time (s)

O
ut

pu
t

sp
ik

es

Level-tuned neuron
Level-tuned neuron

40 41 42 43 44 45 46 47 48 49 50
0

50

100

150
In

pu
t s

pi
ke

s

40 41 42 43 44 45 46 47 48 49 50
0

20

40

TP
S

P
0

Primary neuron

40 41 42 43 44 45 46 47 48 49 50
Time (s)

O
ut

pu
t

sp
ik

es

Level-tuned neuron
Level-tuned neuron

N1

N2

N1

N2

Figure 4.17: An all-phase-change neural network detecting two correlated groups (a) After
an initial period of learning (not shown in the figure), the level-tuned neurons correctly
spike when respective correlated groups appear at the input. (b) The system maintains the
performance for weakly correlated inputs, where one of the groups is correlated with c = 0.6.
Adapted from [Pantazi et al., 2016], © IOP Publishing. Reproduced with permission.

62

4.3. Learning multiple correlated patterns

Level-tuned neuron

Primary neuron

Level-tuned neuron

Sy
na

pt
ic

 w
ei

gh
ts

Sy
na

pt
ic

 w
ei

gh
ts

Sy
na

pt
ic

 w
ei

gh
ts

N
eu

ro
n

O
ut

pu
t

N
eu

ro
n

O
ut

pu
t

N
eu

ro
n

O
ut

pu
t

0 20 40 60 80 100 120 140 160 180

0 20 40 60 80 100 120 140 160 180

20 40 60 80 100 120 140 160 180

1

2

3

Input pattern

Time (s)
0 20 40 60 80 100 120 140 160 180

(a)

(b)

0 20 40 60 80 100 120 140 160 180
0

20

40

Time (s)

C
on

du
ct

an
ce

 (
S

)

IBM
Watson
Noise

0 20 40 60 80 100 120 140 160 180
0

20

40

Time (s)

C
on

du
ct

an
ce

 (
S

)

IBM
Watson
Noise

0 20 40 60 80 100 120 140 160 180
0

20

40

Time (s)

C
on

du
ct

an
ce

 (
S

)

IBM
Watson
Noise

1

2

3

(c)

Time (s)

Time (s)

Time (s)

IBM
Watson

N0

N1

N2

Level-tuned neuron N1

Primary neuron N0

Level-tuned neuron N2

Common part

Figure 4.18: An all-phase-change neural network learning two patterns After an initial
period of learning, each neuron correctly spikes on appearance of the respective pattern. The
weights provide high-quality visualization of each pattern, although there are occasional drops
in the conductance of the common part of the patterns (marked in a snapshot). Adapted
from [Pantazi et al., 2016], © IOP Publishing. Reproduced with permission.

63

Chapter 4. Architectures for pattern learning

4.3.3 Enhanced multiple overlapping pattern learning

Independently from the WTA scheme used, depression artifacts may arise in a network of

neurons operating with A-STDP owing to the asymmetric conductance response of 1-PCM

synapses. Assume that a neuron N j spikes on an observation of a pattern X . If a different

overlapping pattern Y appears shortly afterwards within the depression window TLTD of the

A-STDP, the 1-PCM synapses will undergo an abrupt depression. Y might be a correlated

pattern with a significant overlap with X : X ∩Y = �. The neuron N j would normally spike for

such pattern and potentiate its synapses. However, if the WTA mechanism blocks the spiking

of neuron N j , a depression of the common part is executed instead, as marked in Fig. 4.18b(2).

Algorithm 2 [Woźniak et al., 2017b] provides a solution tailored for learning multiple spatially

overlapping patterns with phase-change synapses and A-STDP. Specifically, to avoid depres-

sion of the parts overlapping with other patterns, the depression (line 8) is only executed if

none of the other neurons are spiking. In consequence, at a post-synaptic spike event only the

winning neuron (y j = 1) will learn, leading to a post-spike learning WTA.

Algorithm 2 Enhanced multiple pattern learning

1: S = {i : xi = 1}
2: if y j = 1 then

3: t post
j ← t

4: ∀i∈S t pre
i ← t

5: ∀i w j i ← w j i + f+(w j i , t post
j − t pre

i)
6: else
7: ∀i∈S t pre

i ← t

8: if ∀k yk = 0 then ∀i∈S w j i ← w j i + f−(w j i , t post
j − t pre

i)

We simulate and experimentally implement a level-tuned WTA architecture with 3 neurons

with 1-PCM synapses using A-STDP with learning WTA from Alg. 2. Synaptic weights are

initialized to low values, which correspond to the amorphous state of the cells. The initializa-

tion is performed by applying a reset pulse with a current of I = 450μA followed by a single

accumulation pulse with I = 130μA applied for a duration of pw = 100ns.

The input spikes presented to the network contain information about three patterns of letters

‘I’, ‘B’, ‘M’, used also in Sec. 4.1. The patterns appear in a random order at time instances drawn

from Possion distribution with rate of 1 Hz. The high value pixels of the patterns correspond

to correlated groups of spikes, and the remaining non-pattern inputs receive Poissonian noise

with an average rate of 1 Hz. After a 600 s period of network activity, the synaptic weights are

visualized in Fig. 4.19. Throughout the learning, no common part depression events occurred

and the final results show that the neurons learn high-quality pattern reconstructions for

overlapping patterns. Specifically, Fig. 4.19a presents the synaptic weights obtained using

the look-up table simulation and Fig. 4.19b presents the synaptic weights as experimentally

measured from the cells’ conductance. Fig. 4.19c shows the distribution of the final weights

64

4.4. Conclusions

for neuron N1 for the simulation and the experimental implementation. Due to variability, the

distribution of the weights in the experimental cells is not perfectly aligned with the simulation,

but this does not affect the result as it remains bi-modal.

(c)

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

Distribution of synaptic weights for N1

N
u

m
b

er
o

fs
yn

ap
se

s

simulation
experiment

(a)

(b)

Figure 4.19: Learning three overlapping patterns The final weights: (a) simulation, (b) ex-
periment. (c) A histogram with comparison of the final weights of the neuron N1 for the
simulation and the experiment.

4.4 Conclusions

In this chapter we presented how to combine the neuromorphic phase-change-based building

blocks, introduced in Chapter 3, to construct neuromorphic architectures for pattern learning.

We demonstrated one-at-a-time pattern learning and re-learning in a single neuron with

1-PCM synapses using A-STDP. The system successfully learned the patterns purely from the

temporally-coded information. Next, we scaled up the neuron to a record number of 1M

phase-change synapses and applied it for weakly correlated pattern learning. The neuron was

implemented using both LIF and phase-change-based neuron soma and achieved high pattern

detection accuracy. Based on the analysis of the weights evolution, we extended A-STDP with

the selective depression mechanism, that provided high quality pattern visualization of weakly

correlated patterns.

By combining multiple all-phase-change neurons, we constructed a single layer phase-change-

based network to support learning multiple patterns in parallel. In particular, we proposed an

energy-efficient WTA scheme with level-tuned neurons that uses an additional primary neuron

to control the activation of the regular neurons. We demonstrated learning of highly and

weakly correlated patterns. Lastly, we addressed the negative impact of the 1-PCM asymmetric

conductance response on the quality of the pattern reconstructions, by introducing a modified

A-STDP logic with learning WTA.

All the contributions were validated in a set of experiments executed using physical cells in an

experimental hardware platform. The proposed architectures demonstrate the applicability of

phase-change neuronomorphic hardware for pattern learning.

65

5 Knowledge representation

The experimental results presented in the previous chapter validate phase-change technology

as a candidate for implementing classic architectures of SNN neuromorphic systems. However,

the basic SNN architectures of today have limited capabilities for tackling complex cognitive

problems. In this chapter, we first discuss in Sec. 5.1 the challenges of scaling up the single-

layered SNN architecture, and compare it to the ANN deep learning architectures. We identify

the need to improve the internal representation learned in SNNs to involve learning features

rather than memorizing patterns. Next, in Sec. 5.2, we provide intuitive understanding of

features and assumptions behind different feature types. In Sec. 5.3, we demonstrate how

these assumptions lead to explicit optimization constraints in a mathematical formulation

of feature learning as matrix factorization. Lastly, in Sec. 5.4, we discuss how similar feature

learning functionality arises implicitly in the ANN architectures.

5.1 Scaling up neural network architectures

Practical applications usually require to scale up the size of a neural network to provide

high accuracy pattern detection. For instance, in case of hand-written digit recognition, at

least 10 neurons are required to distinguish the digits from ‘0’ to ‘9’. However, owing to the

variation of the writing style, typically more neurons are required for reliable detection. Fig.

5.1 illustrates hand-written digits test set pattern detection accuracy for a popular MNIST

dataset of 28×28-pixel patterns, comprising 60000 training patterns and 10000 test patterns.

In SNNs [Querlioz et al., 2011] [Diehl and Cook, 2015], it is common to scale up the network

size while maintaining the same single-layered WTA architecture. Adding new neurons results

in an increase of the width of the network, as illustrated in Fig. 5.2a. In consequence, a

network of n neurons is able to memorize n templates of different writing styles of various

digits. Because multiple neurons correspond to a particular digit, the test phase involves

counting how many neurons from each class respond to a given input and choosing the class

with the largest response. With an increasing number of neurons, the system is able to store

more templates and better capture the variability of the input patterns.

67

Chapter 5. Knowledge representation

1-L (d)

1-L (d)

1-L (d)
1-L (c)

1-L (c)

1-L (c) k = 3 (a)

1-L (a)

2-L (a)
3-L (a) 4-L 6-L (b)

M
N

IS
T

te
st

se
ta

cc
u

ra
cy

Number of units

SNN
ANN
k-NN

Figure 5.1: Scaling up improves accuracy In SNNs, typically the number of neurons is scaled
up while maintaining the single layer (1-L) architecture. Such networks typically do not
surpass the pattern detection accuracy of a k-NN approach. In ANNs, additional neurons are
often arranged in multiple layers (n-L). Reported values originate from: (a) [LeCun et al., 1998],
(b) [Cireşan et al., 2010], (c) [Querlioz et al., 2011], (d) [Diehl and Cook, 2015].

5.1.1 Relationship to k-NN statistical model

For a layer size of n equal to the training set size, a 1-L SNN can theoretically memorize the

entire training set. This resembles the operation of a k-nearest-neighbor (k-NN) statistical

model [LeCun et al., 1998], in which all the training patterns are stored in the model without

any learning. Evaluating the model for a new input involves assigning it to the class with the

largest response among k best-matching known patterns. The matching criterion is typically

an Euclidean distance between the inputs xi and the weights w j i of the units j of the model:

argmin
j

∑
i

(xi −w j i)2 (5.1)

We rewrite the sum as:

∑
i

(x2
i −2xi w j i +w2

j i) = 2(
1

2

∑
i

x2
i −

∑
i

xi w j i + 1

2

∑
i

w2
j i) (5.2)

We invert the direction of the optimization and ignore the x2
i term, which is independent of j

and does not change the optimization result:

argmax
j

∑
i

xi w j i − 1

2

∑
i

w2
j i (5.3)

Lastly, we notice resemblance to an SNN model discussed in Sec. 2.3. The first term corre-

sponds to the variable contribution of the input – TPSP, and the second term is a fixed offset

of a unit j , which may be incorporated into a spiking threshold Vth, j = 1
2

∑
i w2

j i . Using this

analogy, the maximization becomes:

argmax
j

TPSP j −Vth, j (5.4)

68

5.1. Scaling up neural network architectures

Finding k units with the highest TPSP j in comparison to their spiking thresholds is similar

to operation of a k-WTA SNN architecture. Therefore, an analysis of k-NN accuracy, such as

3-NN plotted in Fig. 5.1, may bring insights into the accuracy limits of single-layered SNNs.

None of the 1-layered SNNs in Fig. 5.1 surpasses the accuracy of 3-NN, which is surpassed by

all of the 2 or more layered ANNs.

N1

Nn

...

N j

Layer 1

N (1)
1

N (1)
n1

...

N (1)
j

N (l)
1

N (l)
nl

N (l)
j

N (2)
1

N (2)
n2

N (2)
j

Layer 1 Layer 2 Layer l

...
...

...

(a) (b)

Weights – templates: Weights – characteristic parts:

Figure 5.2: Scaling up approaches in SNNs and ANNs (a) In single-layered SNNs, the width of
the network is increased: n neurons learn n templates. (b) In ANNs, the depth of the network
is increased: nk neurons in layer k learn nk parts, which can be combined to 2nk patterns.

5.1.2 Knowledge representation in deep networks

In ANNs [LeCun et al., 1998] [Cireşan et al., 2010], it is common to scale up the network by

increasing the number of layers that increases the depth of the network, which is reflected in

the name of deep learning. Already a 2-layer ANN with 310 neurons achieves 95.3% accuracy

and surpasses the 95.0% accuracy of a 1-layer SNN with 6400 neurons. This is possible because

of a different internal knowledge representation. Rather than memorizing a subset of the

patterns in form of templates, ANNs learn abstractions of the data that comprise characteristic

parts of the patterns, called features. This leads to a feature-based representation [Bengio

et al., 2013], illustrated in Fig. 5.2b, in which nk neurons in layer k learn nk parts, which

can be combined in 2nk ways to form the patterns. Beside an exponentially higher storage

efficiency of the parts-based implementation, it also enables generalization of the knowledge:

new inputs may be interpreted as a combination of the parts that was never observed during

the training.

The knowledge from an ANN can be translated into an SNN by porting the weights [O’Connor

et al., 2013], or the algorithms [Neftci et al., 2013], which leads to improved accuracy of SNNs.

However, it is interesting to explore the properties of native spike-timing-dependent learning

in SNNs for feature extraction, which is the subject of Chapter 6. Before this, we discuss in

detail the nature of the features and the mathematical foundations of feature learning.

69

Chapter 5. Knowledge representation

5.2 Feature types

To provide intuitive understanding of the features, we begin by analyzing a dataset comprising

three simplistic binary patterns illustrated in Fig. 5.3a. We call it the Weather dataset as the

patterns symbolically represent weather conditions. We colorize the patterns and superimpose

them in Fig. 5.3b. In consequence, we distinguish five characteristic regions, that may form sets

of input attributes corresponding to the features illustrated in Fig. 5.3c. Sets F1 and F5 capture

the unique characteristics of the patterns and F2 captures the common part. Each pattern

from Fig. 5.3a can be represented as a combination of these features. On an abstract level, the

decomposition into the features F1-F5 improves the understanding of the weather conditions

that may involve clouds F2, bright clouds F1, light rain F3, sun F4 and thunderstorm F5. Based

on such representation, the system is able to “understand” previously unseen conditions

involving e.g. sun during a thunderstorm or a thunderstorm accompanied only by a light

rain. We will use this simple dataset to illustrate the operation of various algorithms, although

quantitative assessments require larger datasets.

(a)

⋃

=⋃

=⋃

=⋃

F1

(b)

(c)
F2

F3

F4

F5

Unique: Common:

Figure 5.3: Weather dataset (a) Three patterns representing weather conditions. (b) Superpo-
sition of all the patterns indicates possible features. (c) Manual decomposition of each pattern
into parts-based features. Figure adapted from [Woźniak et al., 2017b], © 2017 IEEE.

The Swimmer [Donoho and Stodden, 2004] is a larger dataset of a type similar to the Weather

dataset. It contains 32×32-pixel patterns that consist of a simplistic body and four limbs

in four possible positions, as in samples presented in Fig. 5.4a. It is used to illustrate parts-

based feature extraction, because the ground truth in Fig. 5.4b consists non-overlapping parts,

that can be combined to form any of the input patterns. Mathematically, a non-overlapping

(a)

(b)

Figure 5.4: Swimmer dataset (a) Samples. (b) Ground truth decomposition into 17 orthogonal
features.

70

5.2. Feature types

parts-based representation corresponds to finding orthogonal components of the inputs,

because each pair of vectors representing the features satisfies xFi · xF j = 0. A basic statistical

technique extracting orthogonal components from a dataset is Principal Components Analysis

(PCA) [Bengio et al., 2013]; therefore we will call these features PCA-like.

However, other types of features may be appropriate for different data. The Bars dataset

[Földiak, 1990] contains 8×8-pixel patterns with horizontal and vertical bars, appearing with

probability 1
8 at 8 horizontal and 8 vertical positions, as in samples presented in Fig. 5.5a. It is

used to illustrate independent component extraction: the ground truth in Fig. 5.5b contains

all unique bars, which are statistically independent components of the input. The features

formed by independent components are not orthogonal, as the bars can overlap. A basic

statistical technique extracting independent components, without orthogonality constraint,

is Independent Component Analysis (ICA) [Bengio et al., 2013], so we will call these features

ICA-like.

It is also possible to extract PCA-like features for the ICA-like Bars dataset, illustrated in Fig.

5.5c. Such features comprise 64 individual pixels corresponding to all the possible cross-points

between the bars. Theoretically, these are valid features, but we call them degenerated features,

because they only permute the inputs.

(a)

(b)

(c)

Figure 5.5: Bars dataset (a) Samples. (b) Ground truth decomposition into independent
components: 8 horizontal bars and 8 vertical bars. (c) Decomposition into 64 orthogonal
features.

Feature-based representations may significantly reduce the number of neurons in a network

in comparison to a pattern-based representation. Only 17 neurons are required to represent

all 44 = 256 patterns from the Swimmer dataset using PCA-like features and 16 neurons are

required to represent ≈ 216 = 65536 patterns from the Bars dataset using ICA-like features.

Lastly, more feature types are analyzed in detail in the field of representation learning [Bengio

et al., 2013]. A particular representation can be obtained using various methods, but more in-

terestingly a particular method with additional constraints can obtain various representations,

as discussed in the next section.

71

Chapter 5. Knowledge representation

5.3 Explicit feature learning using matrix factorization

To interpret how representation constraints shape the type of the features, we formulate the

task of feature learning as a constrained matrix factorization problem from linear algebra.

Matrix factorization provides a mathematical framework, in which we can explicitly state all

the assumptions behind a feature-based representation, and observe their consequences for

the type of representation, factoring out the impact of neuronal dynamics on the learning

process. On the other hand, we keep in mind that this analysis is constrained to the outputs

being a linear superposition of the inputs whereas in neural networks the neural activations

are a non-linear function of the inputs [Bengio et al., 2013].

Feature learning is formulated in the matrix factorization framework as follows [Lee and

Seung, 1999]: a dataset in a matrix D is approximated as D ≈ W H , where W is a matrix of

basis vectors that correspond to the features, multiplied by encodings H , as illustrated in

Fig. 5.6. A typical matrix factorization implementation adjusts W and H with the number

of features n given as an input parameter. Optimization is performed to obtain the best

approximation D ≈W H , measured by a divergence D(D ||W H) between the dataset and the

feature-based reconstruction. Constraints are introduced to achieve particular properties of

the features. Throughout the rest of this section, we discuss a few popular sets of constraints

and their impact on the representation.

· · ·

D W

p
at

te
rn

1

p
at

te
rn

2

p
at

te
rn

3

400×3 400×5

0
1
1
0
1

0
0
1
1
1

1
0
1
1
0

5×3

≈ H×

fe
at

u
re

1

fe
at

u
re

5

i

m

i

m
j n

j

n

k d

k d

1 1

1

1

1

1

Figure 5.6: An example of matrix factorization Three 20×20-pixel patterns from the Weather
dataset factorized into 5 features. Figure adapted from [Woźniak et al., 2017b], © 2017 IEEE.

5.3.1 Vector Quantization

Vector Quantization (VQ) is an approach to lossy compression, which may be formulated as

a matrix factorization [Lee and Seung, 1999]. Each pattern in D is represented by a single

best-matching prototype in W . In consequence, H is a binary matrix with a single non-zero

value per column, so that:

W j i ∈R, H k j ∈ {0,1},
∑

j
H k j = 1 (5.5)

72

5.3. Explicit feature learning using matrix factorization

Assuming n = 3, a matrix W obtained for the Weather dataset using this approach is illus-

trated in Fig. 5.7a. It contains the original patterns. Such representation using prototypes is

analogous to a 1-WTA operation of a single-layered SNN: H k j ∈ {0,1} corresponds to using a

spiking neuron model, and
∑

j H k j = 1 corresponds to the 1-WTA mechanism. To obtain a

true feature-based representation multiple features should be activated, which corresponds

to relaxing the
∑

j H k j = 1 constraint.

(a) (b)

(c)

Figure 5.7: Different matrix factorizations of the Weather dataset (a) Vector Quantization
with n = 3. (b) Principal Components Analysis with n = 3. (c) Non-negative Matrix Factoriza-
tion with n = 8.

5.3.2 Principal Components Analysis

Principal Components Analysis (PCA) is a statistical approach providing an alternative orthog-

onal basis for representation of the dataset D , in which the basis vectors are oriented towards

the highest directions of data variation [Lee and Seung, 1999]. Ignoring the order of the basis

vectors, a result of PCA is a matrix factorization with orthogonality constraint on the column

vectors w j∗ = [W j 1, . . . ,W j m] of W :

W j i ∈R, H k j ∈R, ∀ j1 = j2 w j1∗ ·w j2∗ = 0 (5.6)

The disadvantage of PCA is that the features involve negative values and lack direct intuitive

interpretability, as illustrated for the Weather dataset in Fig. 5.7b for n = 3. However, in

comparison to storing prototypes in VQ, PCA indeed provides the features with many non-

zero values in the encoding H .

The advantage of orthogonal features is an easy calculation of the encoding H . For a factoriza-

tion D ≈W H , the encoding H = P D is typically calculated using a projection matrix P =W −1,

which in general requires an inversion of matrix W . In the particular case of orthogonal

features, based on the canonical definition of an orthogonal matrix I =W W �, left multiplying

by W −1 we obtain W −1 = W �. In consequence, the encoding H may be calculated using a

transpose P =W � of the features, as illustrated in Fig. 5.8. The calculation becomes similar to

a feed-forward operation of a neural network for a sequence of input patterns, where each

column of H corresponds to a single response of the network for a particular input pattern

from D . Although the depicted features are PCA-like, they are different from the typical PCA

features in Fig. 5.3b. Therefore, we continue searching for additional constraints that would

result in interpretable features.

73

Chapter 5. Knowledge representation

P

...

× = H

feature 1

feature 5

5×400

D

p
at

te
rn

1

p
at

te
rn

2

p
at

te
rn

3

400×3

0
1
1
0
1

0
0
1
1
1

1
0
1
1
0

5×3

Figure 5.8: Projection matrix Calculation of the encoding H using a projection matrix P is
similar to the feed-forward operation of a neural network. For the depicted features of the
Weather dataset, the projection matrix P is a transpose of the features matrix W .

5.3.3 Non-negative Matrix Factorization

Non-negative matrix factorization (NMF) [Lee and Seung, 1999] is a matrix factorization that

aims to provide features with high interpretability. It takes inspiration from neural networks

and introduces non-negativity constraint for the features and the encodings. It assumes that W

corresponds to synaptic weights of a neural network and H corresponds to neural activations.

In biology, the synapses do not change the sign of their synaptic weights. Simultaneously, the

neural activations have no physical sense for negative values, because they correspond to the

firing frequency in Hz. Therefore, the features are found by minimizing D(D ||W H) subject to:

W j i ≥ 0, H k j ≥ 0 (5.7)

Local NMF (LNMF) [Feng et al., 2002] is a variant of NMF, which additionally maximizes

feature orthogonality, as well as encoding sparsity and information content of the features.

Constraints are formulated in terms of U =W �W and V = H�H . Orthogonality is maximized

by min
∑

i = j U i j , which is equivalent to minimization of the dot product w a∗ ·w b∗ for any two

feature learning neurons a and b. Encoding sparsity is maximized indirectly by min
∑

i U i i ,

which can be interpreted as minimizing ||w a∗||2 to evenly distribute the weights’ values. This

avoids solutions consisting of multiple degenerated features having few non-zero weights,

more of which would be required to represent an input, thus decreasing the encoding sparsity.

Lastly, information content of the features is maximized by max
∑

i V i i , which corresponds to

maximizing squared activities
∑

i j (H i j)2.

We apply LNMF optimization for the Weather dataset using an iterative algorithm proposed

in [Feng et al., 2002] with a divergence D(A||B) =∑
i , j (Ai j log

Ai j

B i j
− Ai j +B i j) [Lee and Seung,

2001] for n = 8. The obtained features are illustrated in Fig. 5.7c, and they finally correspond

to the features from the manual decomposition in Sec. 5.2. Key constraints that led to these

easily-interpretable parts-based features include orthogonality and non-negativity.

74

5.4. Implicit feature learning in neural networks

5.4 Implicit feature learning in neural networks

The representation constraints are rarely stated in an explicit form in neural networks applied

for feature learning. Some of them may be hidden behind the neuron model, the structure of

the network, the operation of the learning rule and the feedback mechanism. In case of ANNs

trained with backpropagation, additional constraints in form of regularization terms may

be added to the learning optimization problem [Bengio et al., 2013], but in our opinion this

provides a false impression of control over the constraints. Therefore, we refer to the neural

networks as implicit feature learning models. In the rest of this section, we present examples

of feature learning ANN architectures.

5.4.1 Autoencoder

An ANN Autoencoder (AE) [Bengio et al., 2013] poses the feature learning task as minimizing

the reconstruction error in an architecture comprising an encoder fθ that encodes the input

into code H , and a respective decoder gθ′ that reconstructs the input from the code, as

depicted in Fig. 5.9. Encoder’s parameters θ and decoder’s parameters θ′ are typically found

by solving the following optimization problem using the backpropagation algorithm:

θ∗,θ
′∗ = argmin

θ,θ′

1

d

d∑
k=1

L(x (k), gθ′(fθ(x (k)))) (5.8)

where x (k) are the input vectors corresponding to the d patterns from the dataset D , gθ′(fθ(x (k))

is an input reconstruction function and L is a loss function between an input vector and its

reconstruction.

N E
1

N E
n

...

N E
j

N D
1

N D
m

N D
2

Encoder fθ

... ...

Code Decoder gθ′

N D
j

x1

x2

xm

x3

wnm

w11
h1

h2

hn

y1

y2

ym

y3

Input Output
Input vector x (1) Reconstruction

w ′
m

w ′
11

Figure 5.9: Autoencoder Encoder fθ encodes the input into code H , and a respective decoder
gθ′ reconstructs the input from the code.

Encoder and decoder may use a multi-layered ANN [Hinton and Salakhutdinov, 2006], but

we focus on a case with a single layer using a squared loss function. The parameters θ =
{W ,b} and θ′ = {W ′,b′} contain the weights of the layers and the biases of the ANN neurons,

corresponding to the spiking thresholds of the SNN neurons. Such autoencoders are known to

75

Chapter 5. Knowledge representation

produce PCA-like features [Bengio et al., 2013], because the reconstruction error is minimized

if the forward pass of the decoder operates similarly to the projection in PCA, discussed in Sec.

5.3.2, so that W ′ = SW � up to a scaling matrix S [Bourlard, 2000].

In ANN community it is common to use so called tied weights autoencoders, in which W ′ =W �.

The exact equality is supposed to force the autoencoder to develop non-PCA-like features,

because the decoder loses the scaling ability [Bengio et al., 2013]. Still, in some cases au-

toencoders with tied weights may learn PCA-like features [Vincent et al., 2010]. In Fig. 5.10a

we illustrate the features obtained from a tied weights autoencoder for the Weather dataset.

Except for a few neurons that remain inactive, the features correspond to the ones obtained

using PCA in Fig. 5.3b. In Fig. 5.10b we illustrate the features obtained for the Bars dataset.

The maxima of the features lie at the intersections of the bars, which bears some resemblance

to the PCA-like features for the Bars dataset in Fig. 5.5c. Nevertheless, the features in both

5.10a and 5.10b lack intuitive interpretablility.

(b)

(d)

(a)

(c)

. . .

. . .

Figure 5.10: Features learned using an ANN autoencoder (a) Weather dataset for n = 20. (b)
Bars dataset for n = 100. (c) Weather dataset for n = 20, λ= 0.05. (d) Bars dataset for n = 400,
λ= 0.05.

To improve the interpretability of the features, we apply the insight from NMF to constrain the

weights to non-negative values. We introduce a regularization term into the optimization Eq.

5.8 to penalize the negative weights:

θ∗,θ
′∗ = argmin

θ,θ′

1

d

d∑
k=1

L(x (k), gθ′(fθ(x (k))))+λ
∑
j ,i

(w j i)− (5.9)

where λ is the magnitude of the penalty, and (z)− =−min(z,0) is the negative part of a number.

The features obtained using this approach for λ = 0.05 are illustrated in Fig. 5.10c for the

Weather dataset and in Fig. 5.10d for the Bars dataset. Those features correspond to the

PCA-like features in Fig. 5.3c and Fig. 5.5c.

76

5.4. Implicit feature learning in neural networks

5.4.2 Restricted Boltzmann Machine

A Restricted Boltzmann Machine (RBM) [Hinton and Salakhutdinov, 2006] is usually depicted

as in Fig. 5.11a. It is said to be an ANN with two layers that form a bipartite graph of visible

input neurons with activations vi in the input layer and hidden feature detectors with activa-

tions h j in the hidden layer. However, to some degree it resembles an SNN, because it uses

stochastic binary neurons that spike with a probability determined by their activation values.

Moreover, if we explicitly visualize the computations performed during learning of an RBM

using a single step of Contrastive Divergence (CD-1), it operates like a three-layer feed-forward

network, presented in Fig. 5.11b.

hD
1

hD
n

...

hD
j

vR
1

vR
m

vR
2

Hidden

... ...

Reconstruction

vR
i

vD
1 := x1

vD
2 := x2

vD
m := xm

vD
i := xi

wnm

w11

wmn

w11

h1

hn

h j

v2

vi

vm

v1
w11

wnm

(a)
Visible

Hidden

...

...

hR
1

hR
n

hR
j

Hidden

...

wnm

w11

(b)

Figure 5.11: Restricted Boltzmann Machine (a) The classic depiction as a bipartite graph of
visible and hidden units. (b) An alternative depiction that unrolls the bi-directional computa-
tions of the CD-1 learning to a feed-forward architecture.

Learning using CD-1 operates as follows: binarized input values xi from a dataset D are con-

sidered to be the initial visible activations vD
i . In RBM nomenclature, the visible units are said

to be clamped to the inputs. Then, activations of the hidden neurons hD
j are calculated and

binarized in a stochastic manner, so that hD
j ∈ {0,1}. Based on the hidden activations, a recon-

struction of the input vR
i is calculated using the same set of weights. This is a consequence of

the bidirectional operation of the connections in an RBM, indicated by the lack of arrow heads

in Fig. 5.11a. Using the weights in the opposite direction is equivalent to using a transposition

of the weight matrix W , which resembles the tied weights of AE in Sec. 5.4.1, or PCA projection

matrix in Sec. 5.3.2. Lastly, the activations of the hidden neurons hR
j are calculated based on

the reconstruction vR
i and the weight adjustments are performed according to:

Δw j i =α(vD
i hD

j − vR
i hR

j) (5.10)

where α is the learning rate. The procedure is repeated for all the patterns from the dataset.

The features learned by an RBM for the Weather and the Bars dataset are illustrated in Fig. 5.12.

They closely resemble the PCA-like features learned by the ANN autoencoder in Fig. 5.10a-b.

77

Chapter 5. Knowledge representation

(b)(a)

. . .

Figure 5.12: Features learned using an RBM (a) Weather dataset for n = 20. (b) Bars dataset
for n = 100.

5.4.3 Dendritic inhibition

Dendritic inhibition [Spratling, 2006] is an ANN architecture developed to learn independent

components. A single layer of rate neurons is coupled with a dendritic inhibition mechanism,

in which the activity of the neurons inhibits the strength of the inputs. The architecture may

operate using bi-polar or uni-polar weights, but we focus on the uni-polar implementation.

The operation of the model involves an iterative calculation of a steady-state competition

solution for each presentation of an input pattern to the network, based on the following

system of equations:

⎧⎨
⎩

y j = ∑m
i=1 w j i x ′

j i

x ′
j i = xi (1−αmaxn

r=1,r = j
wr i

maxm
q=1 wr q

yr

maxn
q=1 yq

)+
(5.11)

where (v)+ is a positive part of v . The input pattern is kept fixed for 25 iterations, in which α is

adjusted from 0 to 6 in 0.25 steps. The final y j values are considered to be a stable state, and

the weights are adjusted according to:

Δw j i = xi −x∑m
p=1 xp

(y j − y)+ (5.12)

Lastly, the weights are clipped to non-negative values and normalized within each neuron:

∀ j ,i w j i := (w j i +Δw j i)+ (5.13)

∀ j
∑

i
w j i ≤ 1 (5.14)

To resolve competition ties and cause bifurcation of the y j values, random weight initialization

is used. Dendritic inhibition applied to the Bars dataset learns the features illustrated in Fig.

5.13, that correctly correspond to the ground-truth decomposition from Fig. 5.5b.

Figure 5.13: Features learned using dendritic inhibition Correct ICA-like features of the Bars.

78

6 Architectures for feature learning

In the previous chapter we motivated the need for learning the features rather than the

patterns. We developed an intuitive understanding of the features and of the mathematical

constraints that lead to their development. Deep learning ANNs that operate using feature-

based representations currently achieve the highest accuracies for the most challenging

datasets. Therefore, learning feature-based representations should be beneficial also for the

SNN architectures, and recently there have been some advancements in unsupervised feature

learning in SNNs [Neftci et al., 2013] [Masquelier and Thorpe, 2010] [Jonke et al., 2017].

In this chapter, we propose SNN feature learning architectures compatible with phase-change

technology. Firstly, in Sec. 6.1, we discuss the key role of feedback for shaping the direction of

learning in SNNs. In Sec. 6.2 we provide a more explicit theoretical analysis of the learning

using feedback within a single neuron. In Sec. 6.3 we propose to introduce 1-bit – a minimum

amount, of additional feedback to the STDP learning rule, and experimentally demonstrate

feature learning capabilities of such architecture using phase-change synapses. In Sec. 6.4

we discuss a biologically-feasible mechanism of synaptic competition that provides feedback

between the synapses of different neurons. We use the result of this feedback to build a

dynamically-sized network architecture and experimentally demonstrate its feature learning

capabilities. Lastly, in Sec. 6.5, we demonstrate that the proposed SNN architecture with

synaptic competition enables to learn the features from datasets with input presentation

distribution that is challenging for most of the machine learning architectures.

6.1 Feedback in spiking neural networks

Feedback links are a critical element for controlling the learning in neuromorphic SNNs.

Because a neuromorphic system is a physical design rather than an abstract mathematical

optimization problem, all representation constraints must be physically implementable in

form of feedback links. In Fig. 6.1 we present various types of feedback links that can be used

in a single layer of spiking neurons.

79

Chapter 6. Architectures for feature learning

(b) (d)(a)

...
...

N1

Nn

N j

(c)

...
...

N1

Nn

N j
...

...

N1

Nn

N j
...

...

N1

Nn

N j

Intraneuronal
feedback

Neuronal
competition

Feedback to the
learning mechanism

Synaptic
competition

Figure 6.1: Feedback schemes in SNNs (a) Intraneuronal feedback marked in N1 is typically
not drawn in network diagrams. It enables learning in neurons. (b) Neuronal competition is
depicted as links between the neurons. It enables divergent learning in a network of neurons.
(c) We propose a scheme that enriches the computational capabilities using 1-bit feedback
links from outputs of neurons to the learning mechanism of other neurons. (d) We also
propose a scheme with feedback between the synapses that leads to synaptic competition.

The most ubiquitous type of feedback is a link from the output of a neuron to its synapses,

marked for N1 in Fig. 6.1a. Because this is an intraneuronal feedback link, it is commonly

concealed inside the depiction of a neuron N j . It may be drawn only in the figures explaining

a single neuron, such as in Fig. 2.5 (page 20), or even entirely omitted. This intraneuronal

feedback provides means for implementing STDP learning mechanism, which in case of a

network with the same type of neurons, leads to learning the same pattern by all of them.

To foster learning different patterns, mechanisms such as WTA or k-WTA are introduced.

They are typically depicted as feedback links between the neurons in Fig. 6.1b, although

the implementation details are usually more intricate, as described for lateral inhibition and

level-tuned neurons in Sec. 4.3.1. These mechanisms lead to neuronal competition for the

patterns, so that the neurons communicate within the network to decide how to split the

inputs. Then, because they operate using regular learning mechanisms, the winning neurons

tend to simply memorize the corresponding inputs.

To advance the learning beyond memorization, we enrich the learning capabilities of the

neurons. We propose to use additional binary feedback links from the outputs of the neurons

to the learning rules of other neurons [Woźniak et al., 2017b], illustrated in Fig. 6.1c. In

consequence, the neurons not only decide how to split the patterns among themselves, but

also how to split the content of these patterns to learn the features, as explained in detail in

Sec. 6.3.

Lastly, we propose an architecture, in which competition is moved from the neurons to the

synapses [Woźniak et al., 2017a], as illustrated in Fig. 6.1d. Synaptic competition arises through

feedback between the synapses of different neurons connected to the same input. It provides

important computational capabilities at the synapses, which enable feature learning using

standard learning mechanisms and without the need for neuronal competition, as explained

in detail in Sec. 6.4.

80

6.2. Analytic interpretation of intraneuronal feedback

6.2 Analytic interpretation of intraneuronal feedback

To explore the computational capabilities of interneuronal feedback, a more explicit under-

standing of the learning through intraneuronal feedback is required. In this section, we

analytically interpret learning in a single neuron, assuming that the inputs are temporally-

coded and the information is conveyed through correlated activity at the inputs. Firstly, we

analyze the operation of A-STDP. Next, we analyze the simplified STDP, described in Sec. 2.3.5,

and the implications of its different learning semantics. Lastly, we consider the conditions

under which the A-STDP can perform similar computation to the simplified STDP.

6.2.1 A-STDP

We provide an interpretation of the operation performed by the intraneuronal feedback in a

single neuron with synapses using A-STDP [Woźniak et al., 2017b]. For improved tractability,

we constrain the analysis to a single potentiation and a single depression, illustrated in Fig. 6.2.

Let X be a set of correlated inputs that appear at time tX and causes the neuron to emit a post-

synaptic spike, and let Y be a set of correlated inputs that appear at later time tY and does not

result in a post-synaptic spike. Assume that there are no other spikes present in the learning

window, so that we can apply the STDP logic from Alg. 1 (page 25). Furthermore, consider

all possible spatial relationships between the sets X and Y in the universe U = {1, . . . ,m} of

input attributes, as presented in a Venn diagram in Fig. 6.2b. In this context, we formulate the

weight adjustments evoked at tX and tY separately for each subset of synapses in Tab. 6.1.

(a) Temporal relationship

X

Y

tX

tY

(b) Spatial relationship

X

Y

U

X \ Y
X ∩Y

Y \ X(X ∪Y)′

t

+

A-STDP

w1

w2

TPSP

V

t pre
1

t post

Δwi = f (wi ,Δti)

y =V >Vth

Neuron soma

t

x1

x2

reset

q1

w3

x3 ... q3

x1
x2

x3

Figure 6.2: Spatio-temporal patterns arriving at a neuron (a) The neuron spikes for a pattern
X , and does not spike for a consecutive pattern Y . (b) A Venn diagram of all possible spatial
relationships between the correlated patterns X and Y . Figure adapted from [Woźniak et al.,
2017b], © 2017 IEEE.

81

Chapter 6. Architectures for feature learning

i ∈ w j i at time tX w j i at time tY

(X ∪Y)′ w j i := w j i (t0)+ f+(w j i (t0), tX − t pre
i) no spikes: w j i := w j i (t0)

Y \ X = w j i (t0) as: tX − t pre
i ∉ [−TLTD,TLTP] w j i := w j i (tX)+ f−(w j i (tX), tX − tY)

X ∩Y w j i := w j i (t0)+ f+(w j i (t0), tX − tX) = w j i (tX)−w j i (tX) = 0
X \ Y = w j i (t0)+ f+(w j i (t0), 0) no spikes: w j i := w j i (tX)

Table 6.1: Analytic interpretation of A-STDP The effective weight adjustments for all possible
spatial relationships between X and Y . Table from [Woźniak et al., 2017b], © 2017 IEEE.

Let us define a set of inputs that correspond to the synapses that were potentiated as a result of

two patterns, X and Y , appearing within an STDP learning window as P j (X Y) = {i : Δw j i > 0}.

Then, based on the potentiation and depression events marked in bold in Tab. 6.1, we conclude

that a spiking neuron firing for pattern X and using A-STDP performs a set minus operation

P j (X Y) = X \ Y when the pattern Y appears in the depression part of the learning window

[Woźniak et al., 2017b].

This analytic interpretation complies with the pattern learning results. In case of learning a

perfectly correlated pattern in Sec. 4.1.1, the neuron spikes for inputs containing a pattern, and

remains inactive for the inputs with noise. Executing \ operation corresponds to removing the

noise from the representation stored in the weights, and leads to correctly learning a denoised

pattern. In case of learning multiple patterns in Sec. 4.3, the common part depression artifacts

are a direct consequence of executing X \ Y operation, which depresses the weights at X ∩Y .

6.2.2 Simplified STDP

Simplified STDP is an STDP-like learning rule that has different semantics than the classic

STDP, as discussed in Sec. 2.3.5. To analyze its operation, similarly to the previous section, we

consider an arrival of a pattern X at tX followed by an arrival of a pattern Y at tY . We assume

that tY − tX > TLTP. Because the learning is performed on the post-spikes only, we also assume

that the neuron emits post-spikes for both patterns.

We formulate the respective weight adjustments at tX and tY in Tab. 6.2. The arrival of

the pattern X triggers LTP with a fixed magnitude α+ at the synapses corresponding to the

inputs i ∈ X = (X ∩Y)∪ (X \ Y), and LTD with a fixed magnitude α− at all other synapses.

Similarly, the arrival of the pattern Y triggers LTP at the synapses corresponding to the inputs

i ∈ Y = (Y \ X)∪ (X ∩Y), and LTD at all other synapses.

We compare the final weights with respect to the initial weights. The weights that do not

belong to any of the patterns are strongly depressed. The weights corresponding to the unique

parts of patterns X and Y remain around their initial values, depending from the ratio of

the parameters α− and α+. The set of the synapses that increases their weights the most is:

argmax{i } w j i (tY)−w j i (t0) = X ∩Y . Therefore, we conclude that the simplified STDP rule has

a propensity to preform X ∩Y operation.

82

6.3. Feedback to the learning mechanism

i ∈ w j i at time tX w j i at time tY

(X ∪Y)′ w j i := w j i (t0)−α− w j i := w j i (t0)−2α−
Y \ X as: tX − t pre

i ∉ [−TLTP,0] w j i := w j i (t0)−α−+α+
X ∩Y w j i := w j i (t0)+α+ w j i := w j i (t0)+2α+
X \ Y as: tX − t pre

i ∈ [−TLTP,0] w j i := w j i (t0)+α+−α−

Table 6.2: Analytic interpretation of simplified STDP The effective weight adjustments for all
possible spatial relationships between X and Y .

6.2.3 Inverted A-STDP

Here, we consider the conditions under which the A-STDP may have similar semantics to

the simplified STDP and perform the X ∩Y operation. We propose to invert the logic of the

LTD in the pre- and post-spike STDP Alg. 1 (page 25) from operating on inputs i ∈ S that

received spikes to operating on the complement of the inputs i ∉ S, as illustrated in Fig. 6.3. In

consequence, the realized operation becomes P j (X Y ′) = X \ Y ′ = X ∩Y . We refer to this mode

of A-STDP operation as inverted A-STDP [Woźniak et al., 2017b].

Standard logic

X

Y

tX

tY

Inverted logic

P j (X Y ′) = X ∩Y

P j (X Y) = X \ Y

t

x1

x2

x3 ...

X

Y

tX

tY
t

x1

x2

x3 ...

LTP

LTDtXt

x3

LTP

LTD

Figure 6.3: Operation of inverted A-STDP In comparison to the standard logic, the inverted
logic applies depression to the complement of the pattern Y , which results in X ∩Y operation.

6.3 Feedback to the learning mechanism

As discussed above, the choice of a particular variant of the STDP learning mechanism de-

termines the type of the operation performed by a neuron. In this section, we propose to

enrich the computational capabilities of a neuron by using different modes of STDP operation,

controlled by additional feedback to the learning mechanism [Woźniak et al., 2017b]. We

use the least amount of feedback possible – 1 bit, which may be implemented similarly to

communicating 1-bit inhibitory signal of lateral inhibition to the soma of that neuron. That

single bit of feedback provides possibility to switch between two modes of STDP learning.

To determine which two modes of learning would be useful for feature extraction, we analyze

the manual decomposition of the Weather features from Fig. 5.3 (page 70). Firstly, in Fig. 6.4a

83

Chapter 6. Architectures for feature learning

we formulate the computation of each feature as a sequence of two base operations: \ and

∩. Secondly, in Fig. 6.4b we propose a network architecture with WTA applied to neuronal

modules Mk , that enables multiple neurons in the module to become active for a single

pattern. We use modules with four feature-learning neurons capable of operating using two

operations, assigned to extract the PCA-like features matching the manual decomposition.

x1

x2

xm

...

WTA modules(a) (b)D

X

Z

Y

N1 N2 N3 N4

N j Nn

N5 N6 N7 N8

· · ·

· · ·

M1

M2

Ml

Y ∩X ∩Z

X ∩Y ∩Z

Z ∩X ∩Y

Y ∩X \ Z

X ∩Y \ Z

Z ∩X \ Y

=

=

=

Y \ X \ Z

X \ Y \ Z

Z \ X \ Y

(Y \ X)∩Z

(X \ Y)∩Z

(Z \ X)∩Y

Z

Figure 6.4: Patterns are decomposed into features defined by sequences of operations
(a) Each PCA-like feature of the Weather dataset is obtained using two operations: \ and ∩.
(b) WTA mechanism applied to neuronal modules consisting of multiple neurons; here mod-
ules with four neurons are depicted. Figure adapted from [Woźniak et al., 2017b], © 2017
IEEE.

6.3.1 Feature learning A-STDP

We implement a learning mechanism capable of switching between \ and ∩ operation through

the proposed concept of feedback to the learning. We base it on the standard A-STDP logic

that provides the \ operation, discussed in Sec. 6.2.1, and the inverted A-STDP logic that

provides the ∩ operation, discussed in Sec. 6.2.3. Feature learning A-STDP that combines

both \ and ∩ operation is formulated in Alg. 3 [Woźniak et al., 2017b]. The \ operation is

implemented according to the depression characteristics of the A-STDP (lines 10 and 11). The

inverted A-STDP logic (lines 7 and 8) is enabled if any neuron Nk connected to the neuron N j

with a feedback link activates that link (line 6).

The structure of the feedback connectivity is defined by the set invert j , and determines the

type of operation executed by each feature learning neuron. If k ∈ invert j , then an activation

zk of a neuron Nk provides feedback to the learning rule of the feature learning neuron N j .

For instance, for the Weather dataset we use an architecture from Fig. 6.4b with three neuronal

modules M1, M2 and M3, that are sensitive to patterns X , Y and Z , respectively. We assume

that the values zk ,k = 1. . . l , correspond to the outputs of l pattern-learning neurons using Alg.

2, so that zk = 1 provides information about an appearance a pattern X , Y or Z . For module

M1 the feedback connectivity is structured as in Tab. 6.3. If inverted A-STDP is never enabled,

as for N1, then such a neuron will keep executing the \ operation in the A-STDP learning

window, extracting the unique part of a pattern. If inverted A-STDP is always enabled, as for

84

6.3. Feedback to the learning mechanism

Algorithm 3 Feature learning A-STDP

1: S = {i : xi = 1}
2: if y j = 1 then

3: t post
j ← t

4: ∀i∈S t pre
i ← t

5: if not learned j then ∀i w j i ← w j i + f+(w j i , t post
j − t pre

i)
6: else if ∃k∈invert j zk = 1 then

7: ∀i∉S t pre
i ← t

8: ∀i∉S w j i ← w j i + f−(w j i , t post
j − t pre

i)
9: else

10: ∀i∈S t pre
i ← t

11: ∀i∈S w j i ← w j i + f−(w j i , t post
j − t pre

i)

N2, then such a neuron will eventually extract the common part. Other features are extracted

as combinations of the operations. The effective operation of the neurons within the module

learning X for patterns Y and Z appearing in the depression window is presented in the last

column of Tab. 6.3, and is consistent with the feature definitions in Fig. 6.4a. Similar feedback

structure is defined for modules M2 and M3.

Neurons N j ∈ M1 invert j Effective operation
N1 � X \ Y \ Z
N2 {2,3} X ∩Y ∩Z
N3 {3} (X \ Y)∩Z
N4 {2} X ∩Y \ Z

Table 6.3: Effective operation of a neuron in a neuronal module Inverted STDP is enabled
in different cases for different neurons. This table contains inversions for neurons in module
M1 learning X , based on the spiking of neurons responsive to Y and Z . Inversions lead to
execution of a different sequence of operations by each neuron. Table from [Woźniak et al.,
2017b], © 2017 IEEE.

However, even if we successfully extract a particular feature, A-STDP potentiation in line 5 of

the algorithm will gradually re-potentiate the entire pattern. For example, re-appearance of

the pattern X at the input results in a gradual re-learning of the entire pattern X and forgetting

the insights from the cross-pattern feedback between X and Y . Therefore, after the neuron

has learned a certain pattern, we disable the potentiation in line 5 of the algorithm. Allowing

only depression enables the extraction of the features through the feedback mechanism. The

learned j criterion can be determined using various approaches, such as elapsed training time

or convergence of the values of the weights to their upper bounds. Alternatively, we can track

the maximum values of TPSP j to indirectly reason about the state of the weights. If the neuron

has learned, TPSP j exhibits high instantaneous values, and then we disable the potentiation.

85

Chapter 6. Architectures for feature learning

6.3.2 Orthogonal feature learning results

The feature learning architecture with feedback to the learning mechanism was both simulated

and realized experimentally [Woźniak et al., 2017b] using the platform described in Sec. 3.1.3.

Learning was executed for 600 s with 12 feature learning neurons having 1600 synapses of

1-PCM type per neuron. The synapses utilized the feature learning A-STDP from Alg. 3.

As illustrated in Fig. 6.5, all features of the Weather dataset were discovered in both cases.

Even though the experimental results exhibit variability due to the intrinsic hardware cell

characteristics, the features can be clearly distinguished from the synaptic weights.

(a) Simulation (b) Experiment

Figure 6.5: Features learned using feedback to the learning Synaptic weights obtained using
feature extracting neurons in: (a) simulation using a model of the phase-change synapse,
(b) experiment using phase-change devices. Figure from [Woźniak et al., 2017b], © 2017 IEEE.

The features are of PCA-like type, so the functionality of the proposed feature learning algo-

rithm involves application of an orthogonality constraint. The orthogonality constraint is

realized through the \ operation in the sequences of operations defined in Tab. 6.3. When

a pattern Y appears at the input and the neuron receiving feedback to the learning rule cal-

culates the feature X ∩Y , other neurons perform X \ Y operation. The \ operation removes

any potential overlap between what is learned by the neurons operating in either of the two

A-STDP modes: (X ∩Y)∩ (X \ Y) = �, thus ensuring pairwise orthogonality of the weights.

Based on this insight, it might be interesting to explore alternative versions of Alg. 3 to extract

other types of features using different operations than {\,∩}, as discussed in the next section.

6.3.3 Generalization of the feature learning architecture

In this section, we generalize the proposed feature learning architecture with feedback to the

learning mechanism for application to different types of features and to larger datasets. We

demonstrate operation of a scaled-up version of this architecture in a simulation using Swim-

mer and Bars datasets, introduced in Sec. 5.2. The results are compared to the ones obtained

from NFM and LNMF matrix factorization, described in Sec. 5.3.3, and ANN autoencoder,

described in Sec. 5.4.1.

86

6.3. Feedback to the learning mechanism

We propose a scaled-up version of the architecture with feedback to the learning mechanism,

as its direct application to a larger dataset would require many neurons. For a dataset with d

patterns, the architecture from Fig. 6.4b grows vertically to d neurons. Then, each pattern can

be combined with d −1 remaining patterns in 2 ways (\ or ∩), that corresponds to growing the

size of the architecture horizontally. The total number of neurons would be d ·2(d−1). However,

we notice that many combinations yield empty features, as already visible for 3 patterns in

Fig. 6.4a. Therefore we constrain the size of the network vertically and horizontally to nv and

nh neurons respectively. The architecture extracts features not from the entire set, but rather

from nv random patterns. Then, in horizontal dimension, we use random values for invert j ,

which corresponds to having random feedback connectivity between the neurons. To further

avoid empty features, we stop the algorithm when the smallest feature was found.

To obtain the benchmark results, we use 150 basis vectors in case of NMF and LNMF, and 150

neurons in case of feature extracting SNN and ANN autoencoder. We apply our architecture in

{\,∩} version with nv = 15 and nh = 10, LNMF and ANN autoencoder, trained for 104 epochs

with α = 0.1, λ = 0.01 and squared loss, to 100 samples from the Swimmer dataset. To test

the functionality of the architectures in a comparable manner, we execute them in software

without incorporating weights’ variability. For each algorithm we find features that best match

the ground truth in terms of L2 norm. We report ground-truth feature visualization accuracy

using MSE. All methods find the correct features, presented in Fig. 6.6. Our approach exactly

matches the ground truth (MSE = 0), because of how the algorithm works: it either discovers

the correct sequence of set operations that leads to the proper feature, or does not, in which

case a very sharp suboptimal feature is found. LNMF achieves MSE = 0.12 and autoencoder

MSE = 0.02.

(a)

(b)

(c)

(d)

Figure 6.6: Feature learning results for the Swimmer dataset (a) Ground truth decomposi-
tion. Best matching features: (b) {\,∩} feature learning SNN, (c) LNMF, (d) autoencoder. Figure
adapted from [Woźniak et al., 2017b], © 2017 IEEE.

For the Bars dataset we use our algorithm, LNMF and NMF, and present the results in Fig.

6.7. LNMF method fails as it attempts to extract features with orthogonality constraint. NMF,

which does not use this constraint, successfully extracts all the features with MSE = 0.19. The

{\,∩} version of our algorithm fails similarly to LNMF, as it also extracts PCA-like features.

Therefore, we consider another variant of our algorithm, by replacing the orthogonalizing \

operation with _ representing no operation. The {_,∩} version of the algorithm can obtain

87

Chapter 6. Architectures for feature learning

features without the orthogonality constraint, and for nv = 75, nh = 2 successfully extracts

with no error all the ICA-like features. The capability to extract ICA-like features using only the

∩ operation suggests that the simplified STDP might be used for independent feature learning,

which will be explored in the next section.

(a)

(b)

(c)

(d)

Figure 6.7: Feature learning results for the Bars dataset (a) Ground truth decomposition.
Best matching features: (b) LNMF, (c) NMF, (d) {_,∩} feature learning SNN. Figure adapted
from [Woźniak et al., 2017b], © 2017 IEEE.

The presented results illustrate the applicability of the architecture with feedback to the learn-

ing mechanism for extraction of PCA-like and ICA-like features. The architecture can be

implemented using efficient phase-change-based neuromorphic hardware, and its computa-

tional properties may be adjusted through the choice of the base operations and the feedback

connectivity structure. This could enable extracting other feature types, beyond the ones

demonstrated in this section. Nevertheless, the architecture uses more neurons than the

number of features it extracts, so it is appealing to explore alternative forms of feedback that

could lead to more compact architectures with feature-learning capabilities.

6.4 Feedback between the synapses

Most of the feedback schemes, such as those illustrated in Fig. 6.1a-c, consider feedback

links inside and between the neurons, which lead to neuronal competition. However, it is

possible to explore competition schemes at earlier stages. Biological insights suggest that

interactions between synapses of different neurons play a role in the learning [Sajikumar

et al., 2014]. Moreover, we can use the results of these interactions to guide the forming of

connections to new neurons, and develop more flexible network architectures that do not

require an a priori specified network size [Woźniak et al., 2017a]. Throughout this section,

we introduce the concept of synaptic competition, incorporate it into the learning rule, and

propose a dynamically-sized network architecture. Lastly, we describe the implementation

and present experimental results of learning PCA-like and ICA-like features.

6.4.1 Synaptic competition

We introduce a model of synaptic competition [Woźniak et al., 2017a] that is schematically

illustrated in Fig. 6.8a in analogy to the neuronal competition using lateral inhibition at the

88

6.4. Feedback between the synapses

neurons. In biology, synaptic competition is a consequence of the dynamics at the synapses,

which compete for learning-related proteins [Sajikumar et al., 2014]. Owing to limited re-

sources around an axon, not all of the synapses connected to the same pre-synaptic axon will

be able to increase their weights during learning.

Inputs

N1

Nn

w11

wnm

... ...

Outputs

N j

Synaptic weights

Neurons

N1

Nn

...

N j

(b) Neuronal competition

N−

N1

Nn

...

N j

(a) Synaptic competition

Input

Axon

Dendrites

Limited
resources

w j i
v j i

xi

Lateral
inhibition

c j i

Inhibitory
neuron

x1

xi

xm

y1

y j

yn

Figure 6.8: Competition mechanisms in front and behind the neurons (a) Synaptic compe-
tition is a consequence of limited resources in front of the neurons. (b) Neuronal competition
is a consequence of inhibitory activity behind the neurons. Figure adapted from [Woźniak
et al., 2017a], © 2017 IEEE.

In comparison to neuronal competition in Fig. 6.8b that leads to neuronal WTA dynamics,

the competition occurs at an earlier stage: before the neurons. We take inspiration from this,

and introduce a simplified synaptic competition model with instantaneous effect that leads

to synaptic WTA dynamics. Our model assumes that from all the synapses connected to the

same input, only one is allowed to increase its weight. We determine this synapse, called the

winning synapse, as the one having the highest post-synaptic potential v j i at the dendrite.

The competition result c j i is determined as:

(c1i , . . . ,cmi) = WTA(v1i , . . . , vmi) (6.1)

if v j i = max(v1i , . . . , vmi) then c j i = 1, else c j i = 0. (6.2)

The semantics of the WTA function in synaptic competition is the same as in neuronal compe-

tition: an index corresponding to the maximum value is chosen as the winner. In case of a tie,

the synapse with the lowest index becomes the winner.

In biological neurons, the potentials at the different parts of the neuron: the synapses, par-

ticular segments of the dendrites and the soma, may be analyzed separately owing to their

capacitive properties [Stuart et al., 2016, p. 443]. In our simplified model, we assume that the

resting potential at a dendrite is 0 and then we propose to use two approaches to determine

the potential v j i . First, using only the charge induced by an axonal spike xi in the pre-synaptic

neuron, denoted with ‘A’: v A
j i = w j i xi . Second, considering both an axonal spike ‘A’ in the

pre-synaptic neuron, and a back propagating action potential (bAP) [Sjöström and Häusser,

89

Chapter 6. Architectures for feature learning

2006] in the post-synaptic neuron, denoted with ‘B’. We assume that the contribution of a

bAP corresponds to the binary value of the post-synaptic neuronal activation y j ; therefore,

v AB
j i = w j i xi y j . This does not aim to directly correspond to in vivo observations: analyzing

the dynamics of bAPs on the voltages across the compartments of a neuron is a wide research

topic [Sjöström and Häusser, 2006] [Sjöström et al., 2008].

We illustrate the results of synaptic competition for three sample neurons by visualizing c j i

values in Fig. 6.9. The input pattern consists of three bars, similarly to the Bars dataset. With

neurons having the weights presented in the figure, the pattern activates neurons N1 and N3.

In the process of synaptic competition, the synapses with the highest weights in each neuron

will become the winners. In the c AB
j i case, there is one tie between the synapses of neurons N1

and N3 competing for an input in the middle of the pattern (marked by a red circle), but it is

resolved based on the lowest-index principle and the synapse from N1 wins. In the c A
j i case,

there is additionally one tie between the synapses of the neurons N2 and N3, and the synapse

from N2 wins. The results of synaptic competition c A
j i or c AB

j i constitute then the inputs to the

respective neurons N j .

N1

N3

w11

w3m

...
N2

Weights

Input

c AB
j i c A

j i

Figure 6.9: Synaptic competition example The results of synaptic competitions are visualized
in form of c j i matrices for each neuron. Values are proportional to their brightness. Figure
adapted from [Woźniak et al., 2017a], © 2017 IEEE.

Lastly, we notice that there is a conceptual similarity between the proposed synaptic competi-

tion mechanism and the dendritic inhibition from Sec. 5.4.3, as both approaches use feedback

that affects the synaptic inputs. In dendritic inhibition, a system of equations is optimized

to find a stable state of inhibited input values x ′
j i and neural activations y j . The inhibited

input values x ′
j i are then discarded, because they just provide means for obtaining activations

yi . These activations are then used by a dedicated learning rule, combined with weights

normalization. In contrast to this approach, synaptic competition is simple to compute and

directly returns the competition result c j i using the WTA function. The neuronal activations

y j are calculated in the classic way, without a need to optimize a system of equations. Finally,

the competition results c j i are further utilized by the learning mechanism.

90

6.4. Feedback between the synapses

6.4.2 Incorporating synaptic competition into the learning

In the architecture with synaptic competition, we incorporate the results of competition c j i

into the learning using simplified STDP, described in Sec. 2.3.5. LTP is performed only for

the weights of the winning synapses (c j i = 1), whereas the weights that lose in the synaptic

competition (c j i = 0) remain unchanged. LTD operation is the same as in simplified STDP:

synapses that do not observe input spikes in TLTP undergo LTD.

For simplicity of the analysis, we assume that the periods between appearances of different

patterns are larger than TLTP, and that the patterns’ spikes arrive all at once, so that we

can visualize the weights’ adjustments solely based on the current input. In Fig. 6.10, we

illustrate the operation of the simplified STDP rule in a network of three neurons with synaptic

competition. Next to the initial weights, the results of synaptic competition are presented and

denoted with c j i , as in this particular case they are identical for both v A
j i and v AB

j i formulation.

The synaptic weight adjustments are visualized for neuron N3 for the simplified STDP and

for the simplified STDP with synaptic competition. The simplified STDP performs either LTP

or LTD, which leads to gradual overriding of the neuron’s knowledge with the current input,

whereas with synaptic competition the non-winning synapses remain unchanged.

N1

N3

w11

w3m

...
N2

Weights

Input

c j i

LTP

LTD

STDP:

synaptic comp.:

change

STDP with

no

Figure 6.10: Synaptic competition incorporated into the learning Comparison of synaptic
weights’ adjustments for N3 using simplified STDP with and without synaptic competition.
Figure adapted from [Woźniak et al., 2017a], © 2017 IEEE.

6.4.3 Dynamically-sized network

The synaptic weights of all neurons in the network form a representation of the knowledge that

together with the input information guides the learning. For example, in ANN autoencoders

discussed in Sec. 5.4.1, the information how well the network matches the inputs is quantified

by the reconstruction error, which is then used by backpropagation to adjust the weights. With

synaptic competition, it is possible to obtain some insight into how well the representation

in an SNN matches the input by observing the course of the competition. If a particular

synapse clearly wins a competition with a high v j i , this suggests that the specific input is

well represented in the network. However, if none of the synapses is able to clearly win in the

competition, this suggests that the input is poorly represented. Contrary to ANN autoencoders,

91

Chapter 6. Architectures for feature learning

we do not treat this information as error, but rather consider it as a novelty that cannot be

represented by the network. We call this novelty representation overflow [Woźniak et al., 2017a].

We propose to capture the representation overflow by introducing the concept of an overflow

neuron and a dynamically-sized network [Woźniak et al., 2017a]. At each point in time, one

additional neuron is denoted as a special overflow neuron N∗
j . Its synaptic weights are fixed to

small, non-zero values (we use 0.05), and its spiking threshold is low and equal to a fraction

of the desired smallest feature size. A low threshold will make the overflow neuron spike

for almost any input and participate in the synaptic competition. In consequence, inputs

that cannot be explained using the current knowledge of the network are diverted to this

additional neuron that focuses on novelty-based learning. Fig. 6.11 illustrates the operation of

a network with regular neurons and an overflow neuron. The overflow neuron N∗
3 participates

in synaptic competition with a regular neuron N2, and captures the representation overflow.

The overflow neuron becomes a regular neuron N3, and another neuron is designated as

an overflow neuron. Finally, to ensure that the representation in the neurons is meaningful,

we perform pruning of the network in a similar way. We disable the neurons that, owing to

depression, represent features smaller than the minimum feature size.

N1

N∗
3

w11

w3m

...
N2

Weights c A
j i

Input

c AB
j i

Figure 6.11: An example of representation overflow for regular neurons N1, N2 and overflow
neuron N∗

3 . Figure adapted from [Woźniak et al., 2017a], © 2017 IEEE.

6.4.4 Orthogonal feature learning results

In this section, we demonstrate the operation of the introduced feature learning architecture

with synaptic competition in a dynamically-sized network. Firstly, we provide a manual step-

by-step analysis of learning PCA-like orthogonal features from the Weather dataset based on

the v A
j i synaptic potential formulation. Then, we use the Swimmer dataset to execute a larger

benchmark between various approaches and we implement the proposed architecture in the

prototype platform.

An analysis for the Weather dataset

To develop a better understanding of the operation of the proposed architecture with synaptic

competition in a dynamically-sized network, we provide a complete example of learning the

92

6.4. Feedback between the synapses

features from the Weather dataset in Fig. 6.12. A series of six patterns is presented to the

network in the order illustrated in Fig. 6.12a. We assume that the inputs are noise-free and the

temporal distance between the patterns is larger than TLTP. The operation of the network is

illustrated in Fig. 6.12b. For each input, the first column depicts the competition results c A
j i ,

and the top right corner is used to indicate neuronal spiking. The color of the c A
j i indicates

LTP (blue) or LTD (red). We assume full LTP and LTD: α+ = 1 and α− = 1. The second column

depicts the final weights of a neuron N j . The last neuron N∗
n is always an overflow neuron.

(a) Inputs

c A
j i

There is no novelty,
so the neuron N∗

2
remains the overflow neuron.

(c) The final representation

t

c A
j i N1 N1c A

j i

N∗
1

N∗
2 N∗

2

N∗
3

N∗
4

N1c A
j i N1c A

j i N1c A
j i

N1 N2 N3 N4 N5

(b) Network

N∗
6

Figure 6.12: Synaptic competition operation in a dynamically-sized network (a) Inputs
presented to the system. (b) Operation of a network for each input. The last neuron is always
an overflow neuron. (c) The final representation comprises five regular neurons N1, . . . , N5,
and an overflow neuron added after the final step. The overflow neuron will remain inactive,
as there is no further novelty in the input patterns.

We explain step-by-step the operation of the network in Fig. 6.12b. The network initially has

only one neuron N∗
1 that is an overflow neuron. When the first pattern appears, the synapses

of the overflow neuron win all the inputs and undergo LTP that stores that pattern. The neuron

becomes a regular neuron N1 and an overflow neuron N∗
2 is added to the network. If the same

pattern reappears, the synapses of N1 again win all the inputs and neuron N1 spikes, whereas

the overflow neuron N∗
2 remains an overflow neuron. Next, when a different pattern appears,

the synapses of the regular neuron N1 win a significant part of the input. However, because

the pattern is different, the total number of active inputs in N1 do not result in neuronal

93

Chapter 6. Architectures for feature learning

spiking and LTD is applied to the winning inputs. Simultaneously, novel parts of the pattern

are captured by the overflow neuron N∗
2 . It becomes a regular neuron N2 and another overflow

neuron N∗
3 is added. The learning continues until all the patterns are decomposed into the

features and no further novelty is present in the inputs. The final representation is illustrated

in Fig. 6.12c. It corresponds to the ground-truth decomposition of the Weather dataset into

PCA-like features from Fig. 5.3 with a difference that it comprises non-redundant features

only. Moreover, owing to lack of neuronal WTA mechanism, all respective feature neurons

correctly become active when the feature is present in the input.

Experiments for the Swimmer dataset

To validate the operation of synaptic competition on a larger scale, we use 400 patterns from

the Swimmer dataset and compare the performance of orthogonal feature learning between

an SNN with synaptic competition, an SNN with neuronal competition using simplified STDP,

and a feature learning ANN with dendritic inhibition from Sec. 5.4.3.

We implement the v A
j i version of synaptic competition both in software and in hardware (HW)

using the neuromorphic platform described in Sec. 3.1.3. Synaptic weights are mapped to a

2μS−55μS conductance range of 2048 phase-change cells. For LTD we use reset pulses with

I = 450μA and for LTP we use crystallizing pulses with I = 130μA applied for a duration of

200ns. The hardware results are obtained from a single experiment, whereas the software

results for all the methods are averaged over 10 trials with different random-number generator

seeds. For software simulations of synaptic competition and neuronal competition we use the

simplified STDP with LTP α+ = 0.1 and LTD α− = 0.2. In dendritic inhibition, the magnitude

of the weight adjustment is defined by the appropriate formulas in Sec. 5.4.3. For neuronal

competition and dendritic inhibition, the network size is set to 18 neurons.

For synaptic competition, we use an adaptive spiking threshold to control the neuronal firing.

Specifically, the spiking threshold linearly increases over time: starting from an initial value

Vth(t0) (we use 3) at the initial time t0, it reaches a final value Vth(te) (we use 3.4) at a predefined

time te . The motivation behind this approach is that the lower initial thresholds enable the

neurons to learn by more frequent spiking. However, at a later stage, the neurons should

become more selective and spike only for the inputs that closely correspond to their weights.

For lateral inhibition, we choose a trivial spiking threshold of 0, as the WTA mechanism en-

sures that at most one neuron will spike. This choice is possible owing to our simplifying

assumptions that each time there is an input, it corresponds to a pattern. In other implemen-

tations, especially with noisy inputs and irregular input pattern presentation, it is important

to determine the correct threshold, as discussed in Sec. 2.3.3.

Firstly, we assess the results based on the number of features found and the feature visual-

ization MSE per neuron, plotted in Fig. 6.13. The number of features found is calculated

by assigning each neuron to a specific feature using the approach presented in [Spratling,

94

6.4. Feedback between the synapses

0 100 200 300 400
0

5

10

15

20
(a)

N
um

be
r

of
 fe

at
ur

es
 fo

un
d

Input pattern appearances

Lateral inh.
Dendritic inh.
Synaptic comp.
Synaptic comp. (HW)

0 100 200 300 400
0

5

10

15

20

M
S

E
 p

er
 n

eu
ro

n

Input pattern appearances

(b)

Lateral inh.
Dendritic inh.
Synaptic comp.
Synaptic comp. (HW)

Figure 6.13: Assessment of the features learned from the Swimmer dataset (a) Synaptic
competition learns all 17 features, whereas the other approaches learn only 1. (b) The mean
square error of the learned representation vs. the ground truth.

2006]. Specifically, a neuron is considered to have learned a feature if the sum of the weights

corresponding to the feature is at least twice that of the sum of weights corresponding to

any other feature and the minimum weight corresponding to the learned feature is larger

than the average of all neuron’s weights. The MSE per neuron is calculated as an average of

the MSE of all neurons in a network, where individual MSE for neuron j is the MSE of the

best-matching feature x (k): argmink
∑

i (w j i −x (k)
i)2, where x (k) are the target ground-truth

features. As plotted in Fig. 6.13a, synaptic competition with v A
j i correctly learns all 17 ground-

truth features of the Swimmer dataset, whereas the remaining approaches learn only 1 feature:

the swimmer’s body. The MSE per neuron in Fig. 6.13b decreases throughout the learning for

all the methods. For synaptic competition it reaches ≈ 0. For the other methods it oscillates

around 2, because they learn to correctly capture the swimmer’s body, but not to distinguish

different limb positions. This is illustrated in the visualization of the final weights in Fig.

6.14a-b, in which beside the sharp body, shadows of multiple limbs are captured. Synaptic

competition learns the correct ground truth features both in software and in hardware, as

illustrated in Fig. 6.14c-d.

Secondly, in Fig. 6.15, we report the feature detection results based on the spiking accuracy

and F-score. We do this in an online manner using a moving window of the last 100 input

pattern appearances. The accuracy is calculated as the percentage of the neurons that are

activated correctly for the observed input, defined in Eq. 2.13. However, because the sizes of

TP and TN classes are imbalanced (a few features appear simultaneously), a system that never

spikes achieves a relatively high accuracy. Therefore, we also calculate the F-score, defined in

Eq. 2.14. This provides a more accurate assessment than the accuracy, as high TN values do

not skew the F-score, as discussed in Sec. 2.4. The values reported for lateral inhibition and

dendritic inhibition are a direct consequence of the learned representations: because there

are no neurons fulfilling the assignment criteria to any of the 16 limb positions, each time

95

Chapter 6. Architectures for feature learning

(a) (b)

(c) (d)

Figure 6.14: Features learned from the Swimmer dataset (a) lateral inhibition, (b) dendritic
inhibition, (c) synaptic competition, (d) synaptic competition (HW).

0 100 200 300 400
70

75

80

85

90

95

100
(a)

A
cc

ur
ac

y
[%

]

Input pattern appearances

Lateral inh.
Dendritic inh.
Synaptic comp.
Synaptic comp. (HW)

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

F
1

sc
or

e

Input pattern appearances

(b)

Lateral inh.
Dendritic inh.
Synaptic comp.
Synaptic comp. (HW)

Figure 6.15: Feature detection for the Swimmer dataset Assessment of the activity of the
networks: (a) accuracy, (b) F-score.

a pattern appears none of the 4 limbs will be properly recognized (FN = 4). Simultaneously,

there will be no activity for the remaining limb positions, yielding a high true negative value

(TN = 12). Lastly, the activation of any neuron is treated as a true positive detection of the

swimmer’s body (TP = 1). The accuracy calculated using Eq. 2.13 is: 1+12
1+4+12 ≈ 76.5%, and the

F-score from Eq. 2.14 is: 2
2+4 ≈ 0.333. On the other hand, synaptic competition achieves the

maximum possible feature detection accuracy and F-score, as also summarized in Tab. 6.4.

96

6.4. Feedback between the synapses

Table 6.4: Spiking accuracy and F-scores for the Swimmer dataset

Accuracy F-score

Lateral inh. 76.5% 0.333
Dendritic inh. 76.5% 0.333
Synaptic comp. 100% 1.0
Synaptic comp. (HW) 100% 1.0

6.4.5 Independent feature learning results

The comparison provided in the previous section was performed for PCA-like orthogonal

features, which are not commonly supported by lateral inhibition and dendritic inhibition.

Therefore, it would be appealing to compare the performance of synaptic competition on

the ICA-like Bars dataset with the other methods executed with optimally-tuned parameters.

Therefore, the rest of this section is structured as follows: firstly, we discuss the possibility

to learn ICA-like features with synaptic competition. Secondly, we determine the optimal

network sizes for the other methods. Lastly, we present the benchmark results and visualize

the learned features.

Learning different types of features with synaptic competition

The computational capabilities of synaptic competition may be adjusted through the choice of

the potential v j i . Changing the form of the v j i leads to introduction of additional constraints

that provide different learning functionality. In the previous section, we used v A
j i = w j i xi

formulation to learn PCA-like features from the Weather and the Swimmer dataset. For the

Bars dataset, the same formulation leads to learning only either 8 horizontal or 8 vertical bars.

If we skip the minimum feature constraint, synaptic competition yields a result presented

in Fig. 6.16. These 64 pixels form the orthogonal PCA-like features of the Bars dataset, cor-

responding to Fig. 5.5c. Therefore, we conclude that synaptic competition with v A
j i leads to

PCA-like orthogonalization of the representation. However, if we use v AB
j i = w j i xi y j formula-

tion, the computation performed by the network changes. We use this form to extract the Bars

throughout the rest of this section.

Figure 6.16: Orthogonal features for the Bars Synaptic competition with dendritic potential
defined as v A

j i learns PCA-like features from the Bars.

97

Chapter 6. Architectures for feature learning

An optimal network size

In synaptic competition, the representation overflow mechanism dynamically adjusts the

network size to the complexity of the dataset. Fig. 6.17a illustrates the evolution of the network

size for the Bars dataset, averaged over 10 trials, as a function of input appearances. In all cases,

the network size converges to 16 neurons corresponding to the target number of features.

0 200 400 600 800 1000
0

5

10

15

20

A
ve

ra
ge

 n
um

be
r

of
 n

eu
ro

ns

Input pattern appearances

(a)

Synaptic comp.

16 17 18 19 20 21 22
14

15

16

A
ve

ra
ge

 n
um

be
r

of
 b

ar
s

fo
un

d

Number of neurons

(b)

Lateral inh.
Dendritic inh.

Figure 6.17: Network size for the Bars dataset (a) The architecture used with synaptic com-
petition and Vth(t) ∈ [5,7] dynamically adjusts the size of the network to 16 neurons. (b) The
average number of bars found after 10 trials with 1000 input appearances as a function of
network size for lateral and dendritic inhibition. Figure adapted from [Woźniak et al., 2017a],
© 2017 IEEE.

For the other methods with fixed network size, we determine the smallest optimal number

of neurons. A necessary condition to learn k features for a network of size n is that n ≥ k.

However, n should also be as small as possible. Therefore, in Fig. 6.17b, we plot the number

of correctly extracted features by lateral inhibition and dendritic inhibition after 1000 input

pattern presentations as a function of the network size, starting from n = 16. Results were av-

eraged over 10 trials. With an increasing size of the network, performance of lateral inhibition

improves, whereas dendritic inhibition performs best for 18 and 19 neurons. The smallest

number of neurons for which both methods perform well is 18 neurons, and we use it in the

subsequent experiments.

Benchmark results

We execute the benchmark for 1000 samples from the Bars dataset using the experimental

setup previously described in Sec. 6.4.4. All approaches find all 16 bars, as illustrated in Fig.

6.18a. In consequence, the MSE per neuron in Fig. 6.18b in all cases decreases throughout

the learning. Lateral inhibition learns slower than the other methods, as the neuronal WTA

always limits learning to a single neuron. It limits also the fluctuations of the learned weights,

in contrast to dendritic inhibition, for which the weights fluctuate at higher MSE values.

98

6.4. Feedback between the synapses

0 200 400 600 800 1000
0

5

10

15

20
(a)

N
um

be
r

of
 b

ar
s

fo
un

d

Input pattern appearances

Lateral inh.
Dendritic inh.
Synaptic comp.
Synaptic comp. (HW)

0 200 400 600 800 1000
0

5

10

15

20

M
S

E
 p

er
 n

eu
ro

n

Input pattern appearances

(b)

Lateral inh.
Dendritic inh.
Synaptic comp.
Synaptic comp. (HW)

Figure 6.18: Assessment of the features learned from the Bars dataset (a) Number of bars
found: all methods find all bars. (b) The mean square error of the learned representation vs.
the ground truth decreases throughout the learning. Figure adapted from [Woźniak et al.,
2017a], © 2017 IEEE.

The sample visualization of the final weights is presented in Fig. 6.19, where neurons are sorted

to correspond to the ground truth decomposition of the Bars dataset from Fig. 5.5b (page

71). In Fig. 6.19a-b, the remaining neurons are shown below the 16 best matches for lateral

inhibition and dendritic inhibition. Synaptic competition adjusts the size of the network to

exactly 16 neurons, as shown in Fig. 6.19c. Hardware version of the synaptic competition also

correctly adjusts the network to 16 neurons, as shown in Fig. 6.19d.

(a) (b)

(c) (d)

Figure 6.19: Features learned from the Bars dataset (a) lateral inhibition, (b) dendritic inhibi-
tion, (c) synaptic competition, (d) synaptic competition (HW). Figure adapted from [Woźniak
et al., 2017a], © 2017 IEEE.

The accuracy and F-score are plotted in Fig. 6.20. Synaptic competition performs well and

quickly learns to detect the entire dataset, both in software and in hardware (HW). Despite

learning all the bars, classic WTA lateral inhibition performs slightly worse in terms of accuracy

99

Chapter 6. Architectures for feature learning

0 200 400 600 800 1000
80

85

90

95

100
(a)

A
cc

ur
ac

y
[%

]

Input pattern appearances

Lateral inh.
Lateral inh. (n)
Dendritic inh.
Synaptic comp.
Synaptic comp. (HW)

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

F
1

sc
or

e

Input pattern appearances

(b)

Lateral inh.
Lateral inh. (n)
Dendritic inh.
Synaptic comp.
Synaptic comp. (HW)

Figure 6.20: Feature detection for the Bars dataset Assessment of the activity of the networks:
(a) accuracy, (b) F-score. Figure adapted from [Woźniak et al., 2017a], © 2017 IEEE.

and notably worse in terms of F-score. This is a consequence of the operation of the WTA

scheme for the neurons, in which only one neuron is allowed to fire and at most one bar

can be detected. To go beyond this limitation, it is common to introduce a separate testing

phase, where the accuracy is calculated by disabling the lateral inhibition and running the

network without the WTA mechanism [Querlioz et al., 2011]. Here, we propose a different

approach to provide a fair comparison. We compare the membrane potentials Vj before the

application of lateral inhibition and the neuronal thresholds used for synaptic competition.

Then, we generate hypothetical spikes that do not affect the WTA mechanism, and plot

performance curves denoted with (n) – as in this case up to n neurons can potentially spike.

This substantially improves the results for lateral inhibition.

The results are summarized in Tab. 6.5. Synaptic competition consistently provides the highest

feature detection accuracy, both in software and in hardware. Its benefits include simple

computation of the competition results in comparison to dendritic inhibition, and inherent

detection of multiple features in contrast to lateral inhibition.

Table 6.5: Spiking accuracy and F-scores for the Bars dataset Data from [Woźniak et al.,
2017a].

Accuracy F-score

Lateral inh. 92.0% 0.611
Lateral inh. (n) 99.9% 0.997
Dendritic inh. 98.7% 0.954
Synaptic comp. 100% 1.0
Synaptic comp. (HW) 100% 1.0

100

6.5. Learning features from non-IID datasets

6.5 Learning features from non-IID datasets

In this section, we discuss in detail the assumptions behind input presentation in the common

datasets. We propose a more challenging version of the Bars dataset, which aims to resemble

inputs observed in a more realistic online learning setting. The proposed dataset is then used

to compare the performance of ICA-like feature learning using lateral inhibition, dendritic

inhibition and synaptic competition.

6.5.1 Dataset presentation assumptions

In the classic formulation of the Bars dataset, the probability of an appearance of each bar is

independent (I) from the appearance of the other bars in the current and in the previously

observed patterns. Furthermore, the probability remains constant, so the patterns observed

by the learning system are identically-distributed (ID). The dataset presentation therefore

satisfies an independent and identically-distributed (IID) assumption. This assumption is

ubiquitous in the machine learning community, although it is rarely stated in an explicit

form. It follows from the usual training setup, in which the dataset is fixed and the patterns

are drawn from it randomly, which is critical for the correct training of ANNs learned using

backpropagation.

However, the IID assumption might not hold in a setting in which a learning system learns

online through the observation of the environment. For instance, varying the speed of a robot

traveling through exactly the same environment may lead to a different series of observations,

as illustrated in Fig. 6.21. Firstly, in a slowly moving robot, the same or significantly overlapping

viewpoint might be consecutively captured multiple times. Secondly, in a robot traveling at a

variable speed, the change of speed impacts the distribution of the observations.

t1

t2

t3

Q1 Q2 Q3

Figure 6.21: More realistic dataset presentation A robot may move at various speeds in
the same environment, with (t1, t2, t3) being respectively equal to (1,2,3)×ΔT as well as
(1,3,6)×ΔT . The first case corresponds to a typical sequential cycling through a dataset:
(Q1,Q2,Q3). However, in the second case, the observed inputs might be: (Q1,Q1,Q2,Q2,Q2,Q3).
Such change of the training input violates the common IID assumption.

We propose a more challenging version of the Bars dataset that violates the IID assumption.

In particular, we introduce dependence of the input patterns by repeating consecutively each

pattern r times, as illustrated in Fig. 6.22. In terms of the robot example, this corresponds to

101

Chapter 6. Architectures for feature learning

X (t1)

. . .

X (tr)X (t2) X (tr+1) X (t2r)X (tr+2) X (t2r+1) X (t3r)X (t2r+2)

.

Dependent inputs Independent pattern change

Q1 Q1 Q1

X (t1)

Q2 Q2 Q3Q3Q2 Q3

Figure 6.22: Non-IID Bars dataset The patterns repeat r times, which introduces dependence
between the inputs and violates the IID dataset presentation assumption. The patterns remain
independent during a pattern change after r input presentations.

moving slowly at a constant speed through the environment, and the time period required

to “travel” from pattern Qi to another pattern Q j is r ×ΔT . Therefore, inputs X become

dependent for each time period [tnr+1, tnr+r],n ∈N, which may be formulated as:

Pr(X (tnr+1) = xQi , X (tnr+2) = xQi , . . . , X (tnr+r) = xQi) = 1 (6.3)

After r input presentations, the patterns change in a statistically-independent manner:

Pr(X (tnr) = xQi , X (tnr+1) = xQ j) = Pr(X (tnr) = xQi)Pr(X (tnr+1) = xQ j) (6.4)

Because the bars within the patterns are independent, and patterns change in an indepen-

dent manner after r presentations, we still refer to learning from this dataset as extracting

independent features.

6.5.2 Non-IID independent feature learning results

We execute a benchmark for the non-IID Bars dataset with r = 10 using the same setup as

for the classic Bars dataset in the previous section. We increase the number of input pattern

presentations by r , so as to provide the same number of different patterns into the system as

in the classic Bars dataset with 1000 input pattern presentations. All algorithms are executed

in software only. Assessment of the learned representation is presented in Fig. 6.23. As

illustrated in Fig. 6.23a, only synaptic competition finds all the bars. Other methods find more

than half of the bars at any point in time, but the representation fluctuates – the neurons

constantly change their learned representations. Similarly, in Fig. 6.23b, the MSE for these

methods initially drops and then fluctuates. The snapshots of the final weights after 10000

input presentation are illustrated in Fig. 6.24. Lateral inhibition tends to completely forget

some of the bars, and learn duplicate ones, as in Fig. 6.24a. Dendritic inhibition tends to

maintain the shadows of the correct bars together with some other bars, as in Fig. 6.24b.

Synaptic competition accurately captures all the bars in Fig. 6.24c.

Accuracy and F-score are plotted in Fig. 6.25. In comparison to the results for the classic Bars

dataset in Fig. 6.20, where dendritic inhibition performed better than lateral inhibition, for the

102

6.5. Learning features from non-IID datasets

0 2000 4000 6000 8000 10000
0

5

10

15

20
(a)

N
um

be
r

of
 b

ar
s

fo
un

d

Input pattern appearances

Lateral inh.
Dendritic inh.
Synaptic comp.

0 2000 4000 6000 8000 10000
0

5

10

15

20

M
S

E
 p

er
 n

eu
ro

n

Input pattern appearances

(b)

Lateral inh.
Dendritic inh.
Synaptic comp.

Figure 6.23: Assessment of the features learned from the non-IID Bars dataset (a) Number of
bars found – only synaptic competition finds all the bars. (b) MSE of the learned representation
initially decreases, but then fluctuates for lateral and dendritic inhibition.

(a) (b)

(c)

Figure 6.24: Features learned from the non-IID Bars dataset (a) lateral inhibition, (b) den-
dritic inhibition, (c) synaptic competition.

0 2000 4000 6000 8000 10000
80

85

90

95

100
(a)

A
cc

ur
ac

y
[%

]

Input pattern appearances

Lateral inh.
Lateral inh. (n)
Dendritic inh.
Synaptic comp.

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

F
1

sc
or

e

Input pattern appearances

(b)

Lateral inh.

Lateral inh. (n)

Dendritic inh.

Synaptic comp.

Figure 6.25: Feature detection for the non-IID Bars dataset Assessment of the activity of the
networks: (a) accuracy, (b) F-score.

103

Chapter 6. Architectures for feature learning

repeating Bars both methods achieve similar results. Again, synaptic competition performs

better than the other methods. The results are summarized in Tab. 6.6.

Table 6.6: Spiking accuracy and F-scores for the non-IID Bars dataset

Accuracy F-score

Lateral inh. 88.7% 0.335
Lateral inh. (n) 95.2% 0.793
Dendritic inh. 88.8% 0.366
Synaptic comp. 100% 1.0

6.5.3 Discussion on the stability of representation

The reason why synaptic competition succeeds to learn all the non-IID bars where other

methods fail can be explained by the difference in the operation of STDP. In synaptic com-

petition, potentiation is applied only to a subset of particular neuron’s synapses – winning

synapses, illustrated in Fig. 6.10 (page 91). When the network correctly learns particular bars,

reappearance of these bars becomes idempotent: no further weight increases are performed,

as the learned neurons have weights at their maximum, and no other synapses are potenti-

ated. In consequence, after discovering the correct features, weights obtained from synaptic

competition are stable, which is not the case for the other methods.

In lateral inhibition and in dendritic inhibition potentiation is performed for the entire pattern.

If a correctly learned network receives a series of repeating patterns with multiple bars, all

neurons corresponding to that pattern will tend to lose their specificity and learn the entire

pattern. This process is gradual, because of the incremental steps of LTP equal to α+ = 0.1.

However, using the Bars dataset with r repeats, where rα+ is large enough to potentiate

weights to high values, e.g. rα+ = 10×0.1 = 1, leads to significant learning artifacts. In the

classic Bars dataset, synapses nonspecific to a component learned by a particular neuron are

rarely potentiated multiple times in a row. Each time the specific component appears at the

input, the remaining components are changing, which leads to depression of any previously

potentiated nonspecific synapses. Therefore, lateral inhibition and dendritic inhibition rely on

the “canceling-out” effects arising from the IID dataset presentation assumption to maintain

a stable representation.

6.6 Conclusions

In this chapter we addressed the challenge of improving internal representation of SNNs

to learn features rather than patterns. We identified the importance of intraneuronal and

interneuronal feedback for shaping what is learned by the network. First, we analytically

demonstrated that neurons have propensity to execute X ∩Y or X \ Y operation, depending

104

6.6. Conclusions

from the learning rule implementation. Then, we demonstrated that performing these two

operations in different neurons at different point in time leads to development of feature-

based representation in a neural network. Based on this insight, we developed in a bottom-

up manner an architecture that uses 1-bit of additional feedback to the learning rule. We

demonstrated its feature learning capabilities for PCA-like and ICA-like features in simulations

and experiments.

Next, we also proposed a different architecture that takes inspiration from a biologically-

feasible mechanism of synaptic competition. We proposed to simplify its dynamics to a

synaptic competition WTA scheme, similarly to the simplification of lateral inhibition to a

neuronal competition WTA scheme. We introduced a dynamically-sized network architecture

that adjusts its size based on the results of synaptic competition. We demonstrated feature

learning capabilities of this architecture in simulations and experiments, and we compared it

with other feature learning methods. Synaptic competition quickly learned both PCA-like and

ICA-like features, while maintaining optimal network size.

Lastly, we considered a more realistic dataset presentation scheme, in which inputs violate the

common IID assumption. We executed a benchmark for non-IID version of the Bars dataset.

Synaptic competition successfully learned all the features, in contrast to other approaches

that implicitly rely on the IID assumption.

The proposed architectures advance the understanding of the functional aspects of SNNs, and

simultaneously provide means of implementing feature learning capabilities in phase-change-

based neuromorphic systems.

105

7 Conclusions and future work

The research objective of this thesis was to advance the design of mixed analog-digital neu-

romorphic architectures capable of online unsupervised learning. The importance of this

endeavor was discussed in the context of hardware design, machine learning and computa-

tional neuroscience. Neuromorphic designs arise from the confluence of these fields, and

may bring qualitative advancements in the cognitive capabilities of computing systems and

simultaneously improve our understanding of the brain.

To execute the research objective, we built on top of the logical model of spiking neural

networks. We analyzed the common components of an SNN and proposed to implement

them using the physical properties of phase-change memristors. Based on the in-depth

understanding of the phase-change dynamics and the characterization results obtained from a

prototype chip, we demonstrated basic building blocks for phase-change-based neuromorphic

systems. We used the conductance of a single phase-change device to realize a 1-PCM design of

a synapse, and proposed an A-STDP learning rule tailored for the phase-change characteristics.

We also extended a phase-change neuron soma with an integration threshold to obtain a noise-

robust phase-change neuron. In a series of simulations and experiments using a prototype

phase-change chip, we demonstrated the operation of online unsupervised learning in phase-

change-based SNNs. Firstly, we used a neuron with 1-PCM synapses to learn and re-learn

patterns of correlated activity at the inputs. Next, we demonstrated an all-phase-change

experimental realization of a neuron capable of detecting patterns of weakly correlated activity

with pair-wise input cross-correlation coefficient as low as c = 0.2. To provide accurate

weakly correlated pattern visualization for 1-PCM synapses with A-STDP, we proposed the

selective depression mechanism, and we obtained in the experiments over 60 percentage

points accuracy improvement over the regular A-STDP. With 1M phase-change synapses, our

prototype system is the largest phase-change experimental realization of a spiking neuron

to date in terms of the number of synapses. Lastly, we proposed an all-phase-change neural

network capable of learning multiple patterns, and we introduced a power-efficient WTA

scheme with level-tuned neurons as an alternative to the lateral inhibition WTA scheme. To

enhance the quality of the patterns learned using A-STDP, we proposed to apply WTA scheme

107

Chapter 7. Conclusions and future work

also to the learning mechanism. We demonstrated its operation in a multiple pattern learning

experiment.

Furthermore, we analyzed how to advance the learning capabilities of SNNs. We identified the

need to improve the internal knowledge representation by learning features rather than pat-

terns. We discussed the advantages of feature-based representation and introduced different

kinds of features: orthogonal PCA-like features and ICA-like independent components. Then,

we developed a more rigorous understanding of feature learning using a mathematical for-

mulation in form of matrix factorization. We discussed how optimization constraints impact

the type of the features, and we provided intuition on feature learning in neural networks by

analyzing how such constraints are reflected in the ANNs’ design. In the context of SNNs, we

identified the key role of feedback links for shaping the learning process. Firstly, we provided

an analytic interpretation of the intraneuronal feedback stemming from the operation of

STDP rules. Secondly, we proposed a new form of interneuronal feedback to the learning rule.

Through enhancements of A-STDP, we incorporated feature-extraction functionality into a

multi-neuron configuration. We demonstrated the capability to extract PCA- and ICA-like

features, depending from constraints introduced into the algorithm. Thirdly, we proposed an

SNN architecture inspired by the synaptic competition for plasticity-related proteins. In this

architecture, the dynamics of synaptic competition was simplified to a synaptic WTA scheme,

similarly to the simplification of lateral inhibition to a neuronal WTA scheme. The results of

synaptic competition were used to guide the learning as well as to provide means for detecting

novelty, which was used to dynamically adjust the size of the network. In comparison with

lateral inhibition and dendritic inhibition, synaptic competition achieved better performance

on the Bars and the Swimmer dataset. Lastly, for a more challenging non-IID version of the

Bars dataset, only synaptic competition successfully learned the proper features. The pro-

posed model of synaptic competition provides an interesting alternative to the commonly

used neuronal competition. Finally, it opens up new opportunities for further exploration of

the involvement of synapses in the learning.

Throughout the thesis we focused on biologically-inspired learning mechanisms that use

local information for the learning. In consequence, the proposed architectures are suited for

compact hardware implementation, and experimental results using an array of phase-change-

based synapses confirmed their functionality. Simultaneously, the learning was executed in

an online unsupervised manner. Advancing unsupervised learning is critical for making use

of the vast amounts of data around us, most of which is unlabeled. The proposed methodol-

ogy of explicit analysis of the relationship between feedback and representation constrains,

along with the experimental realization, constitute an important step towards incorporating

unsupervised feature-extraction functionality in spiking neural networks.

108

7.1. Future work

7.1 Future work

The contributions of the thesis advanced the state-of-the-art in the phase-change-based

neuromorphic systems and in the learning architectures for SNNs. Still, many open questions

need to be addressed before neuromorphic systems are deployed for practical applications. In

particular, this thesis provides ground for future work on the following topics:

Exploring other feature types

With the Swimmer and the Bars datasets we demonstrated that different types of features

can be extracted from the data, depending on the assumptions in the algorithm. They may

either take a form of explicit optimization constraints or particular design choices, such as the

introduction of feedback to the learning or different forms of feedback in synaptic competition

determined by the definition of v j i . Moreover, these assumptions can be conflicting, as

in the case of PCA-like and ICA-like features, so that the algorithms performing well on

one dataset do not perform well on another, as observed in Sec. 6.4.4. In consequence,

generalization of feature extraction to more complicated applications with diverse datasets

becomes challenging. It poses an open question on the advantages of a particular type of

features or, equivalently, on what the set of the correct assumptions for a particular task is.

One straightforward approach is to continue exploring different types of features, including

a spectrum of “soft” assumptions. Such assumptions may be formulated by defining the

synaptic competition potential as: v j i = γv A
j i + (1−γ)v AB

j i , where γ is a weighting factor.

Multi-layer unsupervised learning

In Sec. 5.1 we discussed that using multiple layers of neurons learning feature-based repre-

sentations is critical for improving the accuracy of SNN-based neuromorphic systems. In this

thesis, we analyzed in depth the operation of single-layered neural networks, and addressed

the challenge of feature learning in single-layer SNNs. In the future work, we envision to

construct unsupervised multi-layer feature-learning SNNs. A possible approach is to explore

the concept of stacking unsupervised SNN layers on top of each other, similarly to the concept

of ANN stacking proposed in Deep Belief Networks (DBNs) [Hinton and Salakhutdinov, 2006].

Developing a complete neuromorphic system

In our research, we used an FPGA-based prototype hardware platform, hosting the phase-

change chip. Through combination of hardware and software elements, it enabled to perform

the characterization of the nanodevices and to realize the functionality of the proposed neu-

romorphic architectures. Nevertheless, it provided limited opportunity to benefit from the

area- and power-efficient structure of neuromorphic systems, because proposed architectures

were mapped to the constraints of the platform. Therefore, developing an integrated hardware

109

Chapter 7. Conclusions and future work

solution with a complete neuromorphic system would provide the final validation of its capa-

bilities and enable comprehensive system-level power consumption assessment. However,

owing to limited possibility to frequently change the hardware design, this step should be

executed only after the requirements of a multi-layer architecture become clear.

110

Bibliography

[Adrian and Zotterman, 1926] Adrian, E. D. and Zotterman, Y. (1926). The impulses produced

by sensory nerve-endings. The Journal of Physiology, 61(2):151–171.

[Akopyan et al., 2015] Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla,

P., Imam, N., Nakamura, Y., Datta, P., Nam, G.-J., Taba, B., Beakes, M., Brezzo, B., Kuang, J. B.,

Manohar, R., Risk, W. P., Jackson, B., and Modha, D. S. (2015). TrueNorth: Design and tool

flow of a 65 mW 1 million neuron programmable neurosynaptic chip. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 34(10):1537–1557.

[Almási et al., 2016] Almási, A.-D., Woźniak, S., Cristea, V., Leblebici, Y., and Engbersen, T.

(2016). Review of advances in neural networks: Neural design technology stack. Neurocom-

puting, 174 A:31–41.

[Bengio et al., 2013] Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learn-

ing: A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 35(8):1798–1828.

[Benjamin et al., 2014] Benjamin, B. V., Peiran Gao, McQuinn, E., Choudhary, S., Chan-

drasekaran, A. R., Bussat, J.-M., Alvarez-Icaza, R., Arthur, J. V., Merolla, P. A., and Boa-

hen, K. (2014). Neurogrid: A mixed-analog-digital multichip system for large-scale neural

simulations. Proceedings of the IEEE, 102(5):699–716.

[Bichler et al., 2012a] Bichler, O., Querlioz, D., Thorpe, S. J., Bourgoin, J.-P., and Gamrat, C.

(2012a). Extraction of temporally correlated features from dynamic vision sensors with

spike-timing-dependent plasticity. Neural Networks, 32:339–348.

[Bichler et al., 2012b] Bichler, O., Suri, M., Querlioz, D., Vuillaume, D., DeSalvo, B., and Gamrat,

C. (2012b). Visual pattern extraction using energy-efficient "2-PCM synapse" neuromorphic

architecture. IEEE Transactions on Electron Devices, 59(8):2206–2214.

[Bill and Legenstein, 2014] Bill, J. and Legenstein, R. (2014). A compound memristive synapse

model for statistical learning through STDP in spiking neural networks. Frontiers in Neuro-

science, 8.

[Borst and Theunissen, 1999] Borst, A. and Theunissen, F. E. (1999). Information theory and

neural coding. Nature Neuroscience, 2(11).

111

Bibliography

[Bourlard, 2000] Bourlard, H. (2000). Auto-association by multilayer perceptrons and singular

value decomposition. Technical Report EPFL-REPORT-82601, IDIAP.

[Boybat et al., 2017] Boybat, I., Le Gallo, M., Nandakumar, S. R., Moraitis, T., Tuma, T., Ra-

jendran, B., Leblebici, Y., Sebastian, A., and Eleftheriou, E. (2017). An efficient synaptic

architecture for artificial neural networks. In 2017 17th Non-Volatile Memory Technology

Symposium (NVMTS). (Submitted), IEEE.

[Brader et al., 2007] Brader, J. M., Senn, W., and Fusi, S. (2007). Learning real-world stimuli in

a neural network with spike-driven synaptic dynamics. Neural Computation, 19(11):2881–

2912.

[Burr et al., 2014] Burr, G., Shelby, R., di Nolfo, C., Jang, J., Shenoy, R., Narayanan, P., Virwani,

K., Giacometti, E., Kurdi, B., and Hwang, H. (2014). Experimental demonstration and

tolerancing of a large-scale neural network (165,000 synapses), using phase-change memory

as the synaptic weight element. In 2014 IEEE International Electron Devices Meeting (IEDM),

pages 29.5.1–29.5.4. IEEE.

[Burr et al., 2010] Burr, G. W., Breitwisch, M. J., Franceschini, M., Garetto, D., Gopalakrishnan,

K., Jackson, B., Kurdi, B., Lam, C., Lastras, L. A., Padilla, A., Rajendran, B., Raoux, S., and

Shenoy, R. S. (2010). Phase change memory technology. Journal of Vacuum Science &

Technology B: Microelectronics and Nanometer Structures, 28(2):223.

[Burr et al., 2017] Burr, G. W., Shelby, R. M., Sebastian, A., Kim, S., Kim, S., Sidler, S., Virwani,

K., Ishii, M., Narayanan, P., Fumarola, A., Sanches, L. L., Boybat, I., Le Gallo, M., Moon, K.,

Woo, J., Hwang, H., and Leblebici, Y. (2017). Neuromorphic computing using non-volatile

memory. Advances in Physics: X, 2(1):89–124.

[Cireşan et al., 2010] Cireşan, D. C., Meier, U., Gambardella, L. M., and Schmidhuber, J.

(2010). Deep, big, simple neural nets for handwritten digit recognition. Neural Comput.,

22(12):3207–3220.

[Close et al., 2010] Close, G., Frey, U., Breitwisch, M., Lung, H., Lam, C., Hagleitner, C., and

Eleftheriou, E. (2010). Device, circuit and system-level analysis of noise in multi-bit phase-

change memory. In 2010 IEEE International Electron Devices Meeting (IEDM), pages 29.5.1–

29.5.4. IEEE.

[Dayan and Abbott, 2005] Dayan, P. and Abbott, L. F. (2005). Theoretical Neuroscience: Com-

putational and Mathematical Modeling of Neural Systems. The MIT Press.

[Diehl and Cook, 2015] Diehl, P. U. and Cook, M. (2015). Unsupervised learning of digit recog-

nition using spike-timing-dependent plasticity. Frontiers in Computational Neuroscience,

9.

[Donoho and Stodden, 2004] Donoho, D. and Stodden, V. (2004). When does non-negative

matrix factorization give a correct decomposition into parts? In Advances in Neural Infor-

mation Processing Systems 16 (NIPS 2003), pages 1141–1148. MIT Press.

112

Bibliography

[Eliasmith, 2013] Eliasmith, C. (2013). How to Build a Brain: A Neural Architecture for Biologi-

cal Cognition. Oxford University Press.

[Eliasmith et al., 2012] Eliasmith, C., Stewart, T. C., Choo, X., Bekolay, T., DeWolf, T., Tang,

Y., and Rasmussen, D. (2012). A large-scale model of the functioning brain. Science,

338(6111):1202–1205.

[Eryilmaz et al., 2014] Eryilmaz, S. B., Kuzum, D., Jeyasingh, R., Kim, S., BrightSky, M., Lam,

C., and Wong, H.-S. P. (2014). Brain-like associative learning using a nanoscale non-volatile

phase change synaptic device array. Frontiers in Neuroscience, 8.

[Feng et al., 2002] Feng, T., Li, S. Z., Shum, H.-Y., and Zhang, H. (2002). Local non-negative

matrix factorization as a visual representation. In The 2nd International Conference on

Development and Learning, pages 178–183. IEEE.

[Ferreira, 2006] Ferreira, C. (2006). Designing neural networks using gene expression pro-

gramming. Applied Soft Computing Technologies: The Challenge of Complexity, pages

517–535.

[Földiak, 1990] Földiak, P. (1990). Forming sparse representations by local anti-Hebbian

learning. Biological Cybernetics, 64(2):165–170.

[Furber et al., 2013] Furber, S. B., Lester, D. R., Plana, L. A., Garside, J. D., Painkras, E., Tem-

ple, S., and Brown, A. D. (2013). Overview of the SpiNNaker system architecture. IEEE

Transactions on Computers, 62(12):2454–2467.

[Gallo et al., 2017] Gallo, M. L., Sebastian, A., Mathis, R., Manica, M., Tuma, T., Bekas, C., Curi-

oni, A., and Eleftheriou, E. (2017). Mixed-precision memcomputing. CoRR, abs/1701.04279.

[Garbin et al., 2015] Garbin, D., Vianello, E., Bichler, O., Azzaz, M., Rafhay, Q., Candelier, P.,

Gamrat, C., Ghibaudo, G., DeSalvo, B., and Perniola, L. (2015). On the impact of OxRAM-

based synapses variability on convolutional neural networks performance. In Proceedings

of the 2015 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH

15), pages 193–198. IEEE.

[Gerstner and Kistler, 2002] Gerstner, W. and Kistler, W. M. (2002). Spiking Neuron Models:

Single Neurons, Populations, Plasticity. Cambridge University Press.

[Gerstner et al., 2014] Gerstner, W., Kistler, W. M., Naud, R., and Paninski, L. (2014). Neuronal

Dynamics: From Single Neurons to Networks and Models of Cognition. Cambridge University

Press.

[Gerstner and Naud, 2009] Gerstner, W. and Naud, R. (2009). How good are neuron models?

Science, 326(5951):379–380.

[Gerstner et al., 2012] Gerstner, W., Sprekeler, H., and Deco, G. (2012). Theory and simulation

in neuroscience. Science, 338(6103):60–65.

113

Bibliography

[Graves et al., 2013] Graves, A., Mohamed, A. R., and Hinton, G. (2013). Speech recognition

with deep recurrent neural networks. In 2013 IEEE International Conference on Acoustics,

Speech and Signal Processing, pages 6645–6649. IEEE.

[Graves et al., 2016] Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-

Barwińska, A., Colmenarejo, S. G., Grefenstette, E., Ramalho, T., Agapiou, J., Badia, A. P.,

Hermann, K. M., Zwols, Y., Ostrovski, G., Cain, A., King, H., Summerfield, C., Blunsom, P.,

Kavukcuoglu, K., and Hassabis, D. (2016). Hybrid computing using a neural network with

dynamic external memory. Nature.

[Gütig et al., 2003] Gütig, R., Aharonov, R., Rotter, S., and Sompolinsky, H. (2003). Learning

input correlations through nonlinear temporally asymmetric Hebbian plasticity. The Journal

of Neuroscience, 23(9):3697–3714.

[Harris et al., 2012] Harris, J., Jolivet, R., and Attwell, D. (2012). Synaptic energy use and supply.

Neuron, 75(5):762–777.

[Hinton, 1986] Hinton, G. E. (1986). Learning distributed representations of concepts. vol-

ume 1, page 12. Amherst, MA.

[Hinton and Salakhutdinov, 2006] Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing

the dimensionality of data with neural networks. Science, 313(5786):504–507.

[Hodgkin and Huxley, 1952] Hodgkin, A. L. and Huxley, A. F. (1952). A quantitative description

of membrane current and its application to conduction and excitation in nerve. The Journal

of Physiology, 117(4):500.

[Izhikevich, 2006] Izhikevich, E. M. (2006). Solving the distal reward problem through linkage

of STDP and dopamine signaling. Cerebral Cortex, 17(10):2443–2452.

[Jonke et al., 2017] Jonke, Z., Legenstein, R., Habenschuss, S., and Maass, W. (2017). Feed-

back inhibition shapes emergent computational properties of cortical microcircuit motifs.

arXiv:1705.07614.

[Jouppi et al., 2017] Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R.,

Bates, S., Bhatia, S., Boden, N., Borchers, A., and others (2017). In-datacenter performance

analysis of a tensor processing unit. arXiv preprint arXiv:1704.04760.

[Kim et al., 2015] Kim, Y., Zhang, Y., and Li, P. (2015). A reconfigurable digital neuromorphic

processor with memristive synaptic crossbar for cognitive computing. ACM Journal on

Emerging Technologies in Computing Systems, 11(4):1–25.

[Koelmans et al., 2015] Koelmans, W. W., Sebastian, A., Jonnalagadda, V. P., Krebs, D., Dell-

mann, L., and Eleftheriou, E. (2015). Projected phase-change memory devices. Nature

Communications, 6:8181.

114

Bibliography

[Kuzum et al., 2012] Kuzum, D., Jeyasingh, R. G. D., Lee, B., and Wong, H.-S. P. (2012). Nano-

electronic programmable synapses based on phase change materials for brain-inspired

computing. Nano Letters, 12(5):2179–2186.

[LeCun et al., 1998] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based

learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

[Lee and Seung, 1999] Lee, D. D. and Seung, H. S. (1999). Learning the parts of objects by

non-negative matrix factorization. Nature, 401(6755):788–791.

[Lee and Seung, 2001] Lee, D. D. and Seung, H. S. (2001). Algorithms for non-negative matrix

factorization. In Advances in Neural Information Processing Systems, pages 556–562.

[Lukoševičius and Jaeger, 2009] Lukoševičius, M. and Jaeger, H. (2009). Reservoir computing

approaches to recurrent neural network training. Computer Science Review, 3(3):127–149.

[Maass, 2000] Maass, W. (2000). On the computational power of Winner-Take-All. Neural

Computation, 12(11):2519–2535.

[Marder and Goaillard, 2006] Marder, E. and Goaillard, J.-M. (2006). Variability, compensation

and homeostasis in neuron and network function. Nature Reviews Neuroscience, 7(7):563–

574.

[Markram, 2012] Markram, H. (2012). The human brain project. Scientific American,

306(6):50–55.

[Markram et al., 1997] Markram, H., Lübke, J., Frotscher, M., and Sakmann, B. (1997). Reg-

ulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science,

275(5297):213–215.

[Masquelier and Thorpe, 2010] Masquelier, T. and Thorpe, S. J. (2010). Learning to recognize

objects using waves of spikes and spike timing-dependent plasticity. In 2010 International

Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE.

[McCulloch and Pitts, 1943] McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the

ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5(4):115–133.

[Mead, 1990] Mead, C. (1990). Neuromorphic electronic systems. Proceedings of the IEEE,

78(10):1629–1636.

[Minsky and Papert, 1969] Minsky, M. and Papert, S. (1969). Perceptrons. MIT Press.

[Mnih et al., 2013] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,

and Riedmiller, M. (2013). Playing Atari with deep reinforcement learning. arXiv preprint

arXiv:1312.5602.

[Modha et al., 2011] Modha, D. S., Ananthanarayanan, R., Esser, S. K., Ndirango, A., Sher-

bondy, A. J., and Singh, R. (2011). Cognitive computing. Communications of the ACM,

54(8):62.

115

Bibliography

[Moraitis et al., 2017] Moraitis, T., Sebastian, A., Boybat, I., Le Gallo, M., Tuma, T., and Elefthe-

riou, E. (2017). Fatiguing STDP: Learning from spike-timing codes in the presence of rate

codes. In 2017 International Joint Conference on Neural Networks (IJCNN). IEEE.

[Neftci et al., 2013] Neftci, E., Das, S., Pedroni, B., Kreutz-Delgado, K., and Cauwenberghs, G.

(2013). Event-driven contrastive divergence for spiking neuromorphic systems. Frontiers in

neuroscience, 7.

[Nessler et al., 2009] Nessler, B., Pfeiffer, M., and Maass, W. (2009). STDP enables spiking neu-

rons to detect hidden causes of their inputs. In Advances in Neural Information Processing

Systems, pages 1357–1365.

[O’Connor et al., 2013] O’Connor, P., Neil, D., Liu, S.-C., Delbruck, T., and Pfeiffer, M. (2013).

Real-time classification and sensor fusion with a spiking deep belief network. Frontiers in

Neuroscience, 7.

[Pantazi et al., 2016] Pantazi, A., Woźniak, S., Tuma, T., and Eleftheriou, E. (2016). All-

memristive neuromorphic computing with level-tuned neurons. Nanotechnology,

27(35):355205.

[Papandreou et al., 2011] Papandreou, N., Pozidis, H., Pantazi, A., Sebastian, A., Breitwisch,

M., Lam, C., and Eleftheriou, E. (2011). Programming algorithms for multilevel phase-

change memory. In 2011 IEEE International Symposium on Circuits and Systems (ISCAS),

pages 329–332. IEEE.

[Parisien et al., 2008] Parisien, C., Anderson, C. H., and Eliasmith, C. (2008). Solving the

problem of negative synaptic weights in cortical models. Neural computation, 20(6):1473–

1494.

[Qiao et al., 2015] Qiao, N., Mostafa, H., Corradi, F., Osswald, M., Stefanini, F., Sumislawska, D.,

and Indiveri, G. (2015). A reconfigurable on-line learning spiking neuromorphic processor

comprising 256 neurons and 128k synapses. Frontiers in Neuroscience, 9.

[Querlioz et al., 2011] Querlioz, D., Bichler, O., and Gamrat, C. (2011). Simulation of a

memristor-based spiking neural network immune to device variations. In 2011 Inter-

national Joint Conference on Neural Networks (IJCNN), pages 1775–1781. IEEE.

[Rumelhart et al., 1985] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1985). Learning

internal representations by error propagation. Technical report, DTIC Document.

[Sajikumar et al., 2014] Sajikumar, S., Morris, R. G. M., and Korte, M. (2014). Competition

between recently potentiated synaptic inputs reveals a winner-take-all phase of synaptic

tagging and capture. Proceedings of the National Academy of Sciences, 111(33):12217–12221.

[Schemmel et al., 2010] Schemmel, J., Bruderle, D., Grubl, A., Hock, M., Meier, K., and Millner,

S. (2010). A wafer-scale neuromorphic hardware system for large-scale neural modeling.

In 2010 IEEE International Symposium on Circuits and Systems (ISCAS), pages 1947–1950.

IEEE.

116

Bibliography

[Sebastian et al., 2014] Sebastian, A., Le Gallo, M., and Krebs, D. (2014). Crystal growth within

a phase change memory cell. Nature Communications, 5.

[Serrano-Gotarredona et al., 2013] Serrano-Gotarredona, T., Masquelier, T., Prodromakis, T.,

Indiveri, G., and Linares-Barranco, B. (2013). STDP and STDP variations with memristors

for spiking neuromorphic learning systems. Frontiers in Neuroscience, 7.

[Shimada and Torikai, 2015] Shimada, N. and Torikai, H. (2015). A novel asynchronous cel-

lular automaton multicompartment neuron model. IEEE Transactions on Circuits and

Systems II: Express Briefs, 62(8):776–780.

[Sidler et al., 2017] Sidler, S., Pantazi, A., Woźniak, S., Leblebici, Y., and Eleftheriou, E. (2017).

Unsupervised learning using phase-change synapses and complementary patterns. In 2017

ENNS International Conference on Artificial Neural Networks (ICANN). (Accepted).

[Sjöström and Häusser, 2006] Sjöström, P. J. and Häusser, M. (2006). A cooperative switch

determines the sign of synaptic plasticity in distal dendrites of neocortical pyramidal

neurons. Neuron, 51(2):227–238.

[Sjöström et al., 2008] Sjöström, P. J., Rancz, E. A., Roth, A., and Häusser, M. (2008). Dendritic

excitability and synaptic plasticity. Physiological Reviews, 88(2):769–840.

[Song et al., 2000] Song, S., Miller, K. D., and Abbott, L. F. (2000). Competitive Hebbian learn-

ing through spike-timing-dependent synaptic plasticity. Nature Neuroscience, 3(9):919–926.

[Spratling, 2006] Spratling, M. W. (2006). Learning image components for object recognition.

Journal of Machine Learning Research, 7(May):793–815.

[Stuart et al., 2016] Stuart, G., Spruston, N., and Häusser, M. (2016). Dendrites. Oxford Uni-

versity Press.

[Suri et al., 2011] Suri, M., Bichler, O., Querlioz, D., Cueto, O., Perniola, L., Sousa, V., Vuillaume,

D., Gamrat, C., and DeSalvo, B. (2011). Phase change memory as synapse for ultra-dense

neuromorphic systems: Application to complex visual pattern extraction. In 2011 IEEE

International Electron Devices Meeting (IEDM), pages 4–4. IEEE.

[Tuma et al., 2016a] Tuma, T., Le Gallo, M., Sebastian, A., and Eleftheriou, E. (2016a). Detect-

ing correlations using phase-change neurons and synapses. IEEE Electron Device Letters,

pages 1–1.

[Tuma et al., 2016b] Tuma, T., Pantazi, A., Le Gallo, M., Sebastian, A., and Eleftheriou, E.

(2016b). Stochastic phase-change neurons. Nature Nanotechnology, 11(8):693–699.

[Van Rullen et al., 1998] Van Rullen, R., Gautrais, J., Delorme, A., and Thorpe, S. (1998). Face

processing using one spike per neurone. Biosystems, 48(1):229–239.

117

Bibliography

[Vincent et al., 2010] Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Manzagol, P.-A.

(2010). Stacked denoising autoencoders: Learning useful representations in a deep network

with a local denoising criterion. The Journal of Machine Learning Research, 11:3371–3408.

[Vinyals et al., 2015] Vinyals, O., Toshev, A., Bengio, S., and Erhan, D. (2015). Show and tell: A

neural image caption generator. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 3156–3164.

[Von Neumann, 1958] Von Neumann, J. (1958). The Computer and the Brain. Mistress Hepsa

Ely Silliman Memorial Lectures: Mistress. Yale University Press.

[Wang et al., 2016] Wang, Q., Kim, Y., and Li, P. (2016). Neuromorphic processors with mem-

ristive synapses: Synaptic interface and architectural exploration. ACM Journal on Emerging

Technologies in Computing Systems, 12(4):1–22.

[Weston et al., 2014] Weston, J., Chopra, S., and Bordes, A. (2014). Memory networks. ArXiv

e-prints.

[Woźniak et al., 2015] Woźniak, S., Almási, A.-D., Cristea, V., Leblebici, Y., and Engbersen,

T. (2015). Review of advances in neural networks: Neural design technology stack. In

Proceedings of ELM-2014 Volume 1, pages 367–376. Springer.

[Woźniak et al., 2017a] Woźniak, S., Pantazi, A., Leblebici, Y., and Eleftheriou, E. (2017a). Fea-

ture learning using synaptic competition in a dynamically-sized neuromorphic architecture.

In International Conference on Rebooting Computing (ICRC). (Accepted), IEEE.

[Woźniak et al., 2017b] Woźniak, S., Pantazi, A., Leblebici, Y., and Eleftheriou, E. (2017b). Neu-

romorphic system with phase-change synapses for pattern learning and feature extraction.

In 2017 International Joint Conference on Neural Networks (IJCNN). IEEE.

[Woźniak et al., 2017c] Woźniak, S., Pantazi, A., Sidler, S., Papandreou, N., Leblebici, Y., and

Eleftheriou, E. (2017c). Neuromorphic architecture with 1M memristive synapses for

detection of weakly correlated inputs. IEEE Transactions on Circuits and Systems II: Express

Briefs, pages 1–1.

[Woźniak et al., 2016] Woźniak, S., Tuma, T., Pantazi, A., and Eleftheriou, E. (2016). Learning

spatio-temporal patterns in the presence of input noise using phase-change memristors. In

2016 IEEE International Symposium on Circuits and Systems (ISCAS), pages 365–368. IEEE.

[Wu et al., 2015] Wu, X., Saxena, V., Zhu, K., and Balagopal, S. (2015). A CMOS spiking neu-

ron for brain-inspired neural networks with resistive synapses and in situ learning. IEEE

Transactions on Circuits and Systems II: Express Briefs, 62(11):1088–1092.

118

Stanisław Woźniak
Curriculum Vitae

� Stanislaw Wozniak
c/o K.Kryszczuk

Badstrasse 5
CH-8134 Adliswil

Switzerland

� +48 600 955 339
� www.swoz.org/cv
� swoz@onet.eu

General Information
Born: 22 May 1986 Marital status: Married Nationality: Polish Swiss permit type: B

Education
Nov 2012 –

Dec 2017
PhD, EPFL (École Polytechnique Fédérale de Lausanne) Lausanne, CH
Dissertation title: Unsupervised Learning of Phase-Change-Based Neuromorphic Systems

Feb–Aug 2015 Visiting student, ETHZ (Eidgenössische Technische Hochschule Zürich) Zürich, CH
2009 – 2010 MSc in Computer Science, PUT (Poznan University of Technology) Poznań, PL
2008 – 2009 Exchange student, Universität Stuttgart Stuttgart, DE
2005 – 2008 BSc in Computer Science, PUT (Poznan University of Technology) Poznań, PL

Professional Experience
Nov 2012 –

Oct 2017
Predoctoral Researcher, IBM Research – Zurich Rüschlikon, CH
Neuromorphic Computing & Services Research

Jul–Oct 2012 Windows Phone SDET Intern, Microsoft Redmond, WA, US
Mar–Jun 2012 IBM “Great Minds” Intern, IBM Research – Zurich Rüschlikon, CH
Jan–Jun 2011 Virtualization Consultant, PUT (Poznan University of Technology) Poznań, PL

Sep 2010 –
Feb 2011

Researcher, WUT (Warsaw University of Technology) Warszawa, PL
SYNAT project: Social network platform for Polish scientists, Graph OLAP

Nov 2009 –
Aug 2010

Project Manager and Java Developer, Volkswagen Poznań, PL
MSc project: Logistics budget simulation tool for VW Transporter & VW Caddy

Feb–Apr 2010 C# ASP.NET Developer, Alliance Technology Poznań, PL

Jun–Aug 2008 co-Architect, MSSQL ETL Developer, Eskulap Poznań, PL
BSc project: Business Intelligence module for Hospital Information System

2007 – 2008 Start-up co-Founder (seed stage MVP), Amnis Media Poznań, PL
Steganography-based DRM for e-publishing

Notable Awards & Accomplishments
2016 IBM A-Level Accomplishement: Service Delivery Analytics with GTS DataHub
2015 IBM Outstanding Accomplishement: Dynamic Automation for GTS
2009 Volkswagen Best Student Scholarship
2008 Polish Ministry of Science & Higher Education Academic Achievement Scholarship
2005 Polish Prime Minister Prof. Marek Belka Achievement Scholarship

Skills
Languages Polish (native), English (fluent), German (advanced), French (basic)

Coding C#, C++, C, CUDA, Java, PHP, XHTML, XPath, SQL, Python, Matlab

119

Publications
[1] S. Woźniak, A. Pantazi, Y. Leblebici, and E. Eleftheriou, “Feature learning using synaptic competi-

tion in a dynamically-sized neuromorphic architecture,” in International Conference on Rebooting
Computing (ICRC). (Accepted), IEEE, 2017.

[2] S. Sidler, A. Pantazi, S. Woźniak, Y. Leblebici, and E. Eleftheriou, “Unsupervised learning using
phase-change synapses and complementary patterns,” in 2017 ENNS International Conference on
Artificial Neural Networks (ICANN), 2017.

[3] S. Woźniak, A. Pantazi, Y. Leblebici, and E. Eleftheriou, “Neuromorphic system with phase-change
synapses for pattern learning and feature extraction,” in 2017 International Joint Conference on Neural
Networks (IJCNN). IEEE, 2017.

[4] S. Woźniak, A. Pantazi, S. Sidler, N. Papandreou, Y. Leblebici, and E. Eleftheriou, “Neuromor-
phic architecture with 1M memristive synapses for detection of weakly correlated inputs,” IEEE
Transactions on Circuits and Systems II: Express Briefs, pp. 1–1, 2017.

[5] A. Pantazi, S. Woźniak, T. Tuma, and E. Eleftheriou, “All-memristive neuromorphic computing
with level-tuned neurons,” Nanotechnology, vol. 27, no. 35, p. 355205, 2016.

[6] S. Woźniak, T. Tuma, A. Pantazi, and E. Eleftheriou, “Learning spatio-temporal patterns in the
presence of input noise using phase-change memristors,” in 2016 IEEE International Symposium on
Circuits and Systems (ISCAS). IEEE, 2016, pp. 365–368.

[7] A.-D. Almási, S. Woźniak, V. Cristea, Y. Leblebici, and T. Engbersen, “Review of advances in neural
networks: Neural design technology stack,” Neurocomputing, vol. 174 A, pp. 31–41, 2016.

[8] S. Woźniak, A.-D. Almási, V. Cristea, Y. Leblebici, and T. Engbersen, “Review of advances in neural
networks: Neural design technology stack,” in Proceedings of ELM-2014 Volume 1. Springer, 2015,
pp. 367–376.

[9] T. Morzy and S. Woźniak, “Prototype OLAP processing system for multidimensional analysis of
graph of the network of interconnections between scientists,” SYNAT Project, Tech. Rep., 2012.

[10] ——, “Methods of networked structures analysis and application in bibliographic and scientific so-
cial networks,” in Methods of Artificial Intelligence in the Processes of Data Acquisition and Preprocessing,
and for Analyzing Network Structures and their Dynamics. SYNAT Project, 2011.

[11] ——, “The analysis of the possibility of using data mining and exploration of the Internet with the
use of social technologies to create multicriteria evaluation environment of Polish scientists and
their dissertations,” SYNAT Project, Tech. Rep., 2010.

Patent Applications
[1] S. Wozniak and A. Pantazi, “Neuromorphic architecture for feature learning using a spiking neural

network,” U.S. Patent App. 15/725 320, Oct. 5, 2017.

[2] S. Sidler, S. Wozniak, and A. Pantazi, “Neuromorphic architecture for unsupervised classification
tasks using information from complementary patterns,” U.S. Patent App. 15/680 140, Aug. 17,
2017.

[3] S. Wozniak and A. Pantazi, “Neuromorphic architecture for unsupervised pattern detection and
feature learning,” U.S. Patent App. 15/264 081, Sep. 13, 2016.

[4] A. Pantazi, S. Wozniak, and T. Tuma, “Neuromorphic architecture with multiple coupled neurons
using internal state neuron information,” U.S. Patent App. 15/189 449, Jun. 22, 2016.

120

