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Abstract
The vast majority of problems that arise in aircraft production and operation require decisions

to be made in the presence of uncertainty. An effective and accurate quantification and control

of the level of uncertainty introduced in the design phase and during the manufacturing and

operation of aircraft vehicles is imperative in order to design robust and risk tolerant systems.

Indeed, the geometrical and operational parameters, that characterize aerodynamic systems,

are naturally affected by aleatory uncertainties due to the intrinsic variability of the manufac-

turing processes and the surrounding environment. Reducing the geometrical uncertainties

due to manufacturing tolerances can be prohibitively expensive while reducing the opera-

tional uncertainties due to atmospheric variability is simply impossible. The quantification of

those two type of uncertainties should be available in reasonable time in order to be effective

and practical in an industrial environment. The objective of this thesis is to develop efficient

and accurate approaches for the study of aerodynamic systems affected by geometric and

operating uncertainties. In order to treat this class of problems we first adapt the Multi Level

Monte Carlo probabilistic approach to tackle aerodynamic problems modeled by Computa-

tional Fluid Dynamics simulations. Subsequently, we propose and discuss different strategies

and extensions of the original technique to compute statistical moments, distributions and

risk measures of random quantities of interest. We show on several numerical examples,

relevant in compressible inviscid and viscous aerodynamics, the effectiveness and accuracy of

the proposed approach. We also consider the problem of optimization under uncertainties.

In this case we leverage the flexibility of our Multi Level Monte Carlo approach in computing

different robust and reliable objective functions and probabilistic constraints. By combining

our approach with single and multi objective evolutionary strategies, we show how to optimize

the shape of transonic airfoils in order to obtain designs whose performances are as insensitive

as possible to uncertain conditions.

Key words: Uncertainty Quantification; Multi Level Monte Carlo; Continuation Multi Level

Monte Carlo; Robust Design Optimization; Reliability-based Design Optimization; Optimiza-

tion Under Uncertainties; Aeronautics; Aerodynamics.
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Résumé
La grande majorité des problèmes qui surgissent dans le cycle de conception, production

et opérations en aéronautique requiert une stratégie décisionnelle prenant en compte des

paramètres d’incertitude. Une quantification précise et ciblée et un contrôle du niveau d’in-

certitude introduit dans la phase de conception et pendant les phases de fabrication de l’avion

sont impératives pour concevoir systèmes robuste avec un niveau de risque contrôlé. Les

paramètres géométriques et opérationnels, qui caractérisent des systèmes aérodynamiques,

sont naturellement influencés par des incertitudes aléatoires en raison de la variabilité in-

trinsèque des procédés de fabrication et de l’environnement dans lequel ils évoluent. La

réduction des incertitudes géométriques en raison des tolérances industrielles peut être

conduire à un prix prohibitif. Pendant que la réduction des incertitudes opérationnelles en

raison des variations atmosphériques locales par exemple, soit impossible. Ajouté à cela, sont

les incertitudes de modèle associées aux paramètres qui apparaissent dans ces modèles. La

quantification de ces incertitudes devrait être disponible dans le temps raisonnable pour être

efficace et pragmatique dans un environnement industriel. L’objectif de cette thèse est de

développer des approches efficaces et précises pour l’étude de la conception des systèmes en

aéronautiques soumis à des incertitudes géométriques et opérationnelles. Pour aboutir à de

telles méthodologies nous adaptons d’abord des techniques probabiliste de Multi-Niveaux

Monte-Carlo dans des simulations de problèmes types de l’aérodynamique. Ensuite, nous

avons proposé, vérifié et validé des stratégies et des extensions différentes de la technique

originale avec aussi l’estimation des moments statistiques, des distributions de probabilité

et des mesures de risque des quantités aléatoires d’intérêt, démontrés par des simulations

des exemples pertinents des écoulements compressibles et l’optimisation des formes des

tuyères, des écoulements aérodynamiques autour des profils d’ailes, en régime complexe

(transsonique), avec l’impact de l’optimisation des paramètres aérodynamiques en tenant

compte des changements induits par la prise en compte des incertitudes quantifiés. Enfin, les

techniques sont appliquées à des cas industriels, avec des données expérimentales complètes,

dont un rotor et la réduction de trainée autour d’un avion complète. Nous considérons aussi

l’incorporation de la quantification des incertitudes dans les processus d’optimisation avec

des algorithmes évolutionnaires, d’abord en mono-objectif et ensuite en multi-objectif. La

flexibilité de notre approche Multi-Niveaux Monte-Carlo dans le calcul des différentes fonc-

tions objectives robustes et fiables et les contraintes probabilistes, prouve d’être une méthode

fiable et convergente. En combinant notre approche avec des méthodes d’optimisation évolu-

tionnaire à objectifs simples ou multiples, nous montrons comment optimiser la forme des
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profils d’ailes transsoniques pour obtenir des conceptions dont les performances sont aussi

imperturbables que possibles aux conditions incertaines.

Mots clefs : Quantification d’Incertitude ; Multi Niveaux Monte Carlo ; Continuation Multi

Niveaux Monte Carlo ; Optimisation Robuste et Conception ; Optimisation avec fiabilité ;

Aéronautique ; Aérodynamique.
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1 Introduction

1.1 The Need for Effective Uncertainty Management in Aeronautics

The increasing availability of computational resources, technological challenges and the need

for speed1 in product development fueled, in the last decades, the wide spread use of Modeling

and Simulation (M&S) tools in design and decision making in the aerospace and defense

industry.

The application of Computational Fluid Dynamics (CFD) simulations can effectively reduce

the Time To Market, reduce the overall product development costs of disruptive technologies,

and provide a better understanding of the operating behavior of aerospace systems. Nowadays,

CFD, together with wind tunnel and flight tests, is definitely an essential tool in aerodynamic

design [Rub94] [JTY05]. Additionally, the use of numerical methods for aerodynamic and

structural design of transport aircraft configurations allows for an appropriate integration of

relevant operational and safety-related features already in the early stage of the development

process [Tin07].

An effective and accurate quantification and control of the level of uncertainty introduced in

the M&S analysis, manufacturing and operation is imperative in order to design robust and

risk tolerant systems. Such quantification should be available in reasonable time in order to

timely respond to the military challenges, reducing the environmental impact of aeronautic

transportation and the fierce industrial competition.

Several scientific, industrial and public institutions have sponsored round-robin studies to

address the issue of accurate and timely effective uncertainty quantification and optimization

under uncertainties in the aeronautic sector. Amongst them is the European Union 7th Frame-

work Programme project UMRIDA (Uncertainty Management for Robust Industrial Design

in Aeronautics) and the NATO Applied Vehicle Technology (AVT) group AVT-252 (Stochastic

1citing Rob Weiss, executive vice president and general manager of advanced development programs with
Lockheed Martin Aeronautics (June 5th, opening plenary session - 2017 AIAA AVIATION Forum, Denver, USA)
when it comes to war-fighting programs and military systems development.

3



Chapter 1. Introduction

Design Optimization for Naval and Aero Military Vehicles) which have both motivated (and

funded) the study presented in this thesis. UMRIDA involves a consortium of 21 partners from

the industrial aeronautics sector, research institutes, universities and small and medium-sized

enterprises (SMEs) and aims at providing guidelines and improve the technology readiness

level (TRL) of uncertainty quantification and robust based design methodologies in aeronauti-

cal industrial design. NATO AVT-252 is willing to promote and demonstrate the capabilities of

stochastic design optimization approaches for real-world fluid, thermal and structural military

system design affected by geometric and operating uncertainties. The aim of this program

is to design configurations that are less sensitive to environmental variability and geometry

imperfections due to manufacturing and aging.

1.2 Forward Propagation of Uncertainties

A possible way to describe and quantify the geometric and operating uncertainties is within

a probabilistic framework. In such a setting, the uncertainties are characterized as random

variables and propagated (forward propagation of uncertainties) into a computational model

in order to quantify their effects onto relevant output quantities of interests such as the

performances of an aerodynamics system.

Among the several forward uncertainty propagation approaches proposed in literature for fluid

dynamics problems, we can distinguish between intrusive and non-intrusive approaches. The

former involve the formulation and solution of a stochastic version of the original deterministic

model, and hence usually require rewriting the simulation code, which is often impractical for

large industrial CFD codes. For this reason, non-intrusive uncertainty propagation techniques

are often preferred as they simply require multiple solutions of the original model and can use

CFD flow solvers as black box.

Within non-intrusive approaches we can discern polynomial/collocation strategies and Monte

Carlo sampling based methodologies. The former class includes methods based on local or

global basis functions that are appropriately employed to approximate the uncertain system

response. Such approaches have been successfully applied to propagate uncertainties in

aerodynamics simulation, see e.g. [HW10] for regression type methods or [LB08] [LWB07] for

stochastic collocation (interpolation) techniques. Although extremely efficient for smooth

response functions and moderate number of uncertain parameters, they typically suffer the

so called curse of dimensionality, i.e. the exponential increase of the cost with the number

of uncertain variables. Moreover, they are not particularly efficient for problems whose

solutions exhibit sharp gradients or discontinuities due to the development of shock waves

and contact discontinuities as in hyperbolic systems of conservation laws (Euler and Navier-

Stokes equations). Such discontinuities propagate into the stochastic space and inhibit the use

of data compression techniques which are based on the regularity of the response function.

Promising alternatives are given by adaptive multi-element [WK05], [FK10], multi wavelet

[LMNP+07] and simplex stochastic collocation methods [WI13]. However so far these methods

4
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have been applied to problems with non-smooth response functions with discontinuities not

aligned with the coordinate axes only with few uncertain parameters and their extensions

to moderate number of uncertain variables is still open. The same can be said to Padé type

rational approximation proposed in [CDI09].

On the other hand, Monte Carlo (MC) sampling based methodologies have a dimension inde-

pendent convergence rate, which is not affected by the presence of possible discontinuities

in the parameter space, however, they are known to have a very slow convergence rate. For

this reason they are generally impractical in complex applications that require the solution

of accurate large scale CFD simulations. One way to improve the efficiency of MC simula-

tions is the Multi Level Monte Carlo (MLMC) approach that has been introduced by Heinrich

[Hei98, HS99] in the context of parametric integration and thereupon extended by Giles [Gil08]

to approximate stochastic differential equations (SDEs) in financial mathematics. The key

idea of MLMC is that one can draw MC samples simultaneously and independently on several

approximations of the problem under investigation on a hierarchy of computational meshes

(levels). By this way, most of the computational effort is transported from the finest level (as in

a standard Monte Carlo approach) to the coarsest one, leading to substantial computational

saving.

In this thesis we consider the Multi Level Monte Carlo approach and propose different ex-

tension of the original methodology in order to compute accurate statistics of quantities of

interest of aerodynamic systems affected by uncertainties. In particular the extension we

propose are effective methodologies for the accurate estimation of central statistical moments,

cumulative distribution function and risk functions that involve Value at Risk (VaR) and Condi-

tional Value at Risk (CVaR). These approaches are tested on benchmark problems and applied

on industrial test cases relevant to turbo machinery and external aerodynamics.

1.3 Optimization Under Uncertainties

From the dawn of aviation, optimization always had a integral part in the aircraft design pro-

cess. Aircraft producers are constantly operating and improving their systems in an industrial

environment characterized by compromises between many competing factors and constraints.

Designs are endlessly modernized and upgraded in order to meet the market requirements,

customers and manufacturer demands, safety protocols and economic constraints.

Additionally, nowadays the ever-increasing demand for aircrafts with better performance,

higher reliability and robustness at lower cost requires optimization techniques seeking opti-

mality under uncertain conditions that may arise during design, manufacture and operation of

the vehicle. The geometric and operating parameters, that characterize aerodynamic systems,

are naturally affected by uncertainties due to the intrinsic variability of the manufacturing

processes and the surrounding environment. Reducing the geometric uncertainties due to

manufacturing tolerances can be prohibitively expensive while reducing the operating un-

certainties due to atmospheric turbulence, for example in external aerodynamics, is simply
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impossible.

Optimization under uncertainty refers to a broad class of methodologies that address the

problem of improving the performance of a system while reducing its variability (robust

design optimization) or increasing its reliability (reliability-based design optimization) under

uncertain conditions.

In this thesis we first extend the MLMC concept to accurately compute central statistical

moments and risk measures in order to efficiently compute robust and reliable objective

functions and probabilistic constraints. Afterwards we propose a complete algorithm based

on MLMC and (single and multi objective) evolutionary strategy to effectively design transonic

airfoils whose performances are as much insensitive as possible to uncertainties.

1.4 Aim

The overall aim of this thesis is to extend the Multi Level Monte Carlo approach in order

to perform accurate uncertainty quantification and optimization of the performances of

aerodynamics systems modeled by Computational Fluid Dynamics (CFD) simulations. In

order to be relevant for industrial problems, our endeavor is to present an accurate and robust

methodology that can be efficiently employed to treat compressible viscous aerodynamic

problems. Additionally, we wish to reduction of the overall computational cost required to

set up and perform an uncertainty analysis in view of time effective decision making and

optimization under uncertainties.

1.5 Thesis Outline

Chapter 2 introduces the problem of uncertainty management in aerodynamic design, defines

different types of geometric and operating uncertainties and justifies the assumptions and

computational models employed in this work.

Chapter 3 introduces the probabilistic framework and presents a review of relevant ap-

proaches for forward propagation of uncertainties.

Chapter 4 presents the Multi Level Monte Carlo method, describes practical aspects and

extensions of the original methodology, that are required in order to effectively perform the

propagation of geometric and operating uncertainties in compressible inviscid aerodynamic

problems.

Chapter 5 describes the Continuation Multi Level Monte Carlo, presents a complete algorithm

and different numerical experiments that show the reliability, robustness and efficiency of the

continuation algorithm with respect to standard Multi Level Monte Carlo and Monte Carlo

approaches. In the second part of the chapter, the Continuation Multi Level Monte Carlo

method is applied in the specific setting of viscous compressible aerodynamics simulations.
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Recommendations are provided in order to build effective Multi Level grid hierarchies for this

class of problems.

Chapter 6 presents an extension of the Multi Level Monte Carlo approach to compute central

statistical moments required to effectively study important features of a random variable

distribution.

Chapter 7 provides a description of a Multi Level approach for the efficient approximation of

parametric expectations. Specifically, this extension of the Multi Level Monte Carlo method

allows an accurate and robust computation of an uncertain system output’s cumulative

distribution function, quantiles and conditional value at risk (CVaR).

Chapter 8 presents the application of Multi Level Monte Carlo methodologies presented in the

previous chapters to large scale industrial problems relevant in turbo machinery and external

aerodynamics.

Chapter 9 concentrates on airfoil design optimization under uncertainties. An effective

algorithm based on the Continuation Multi Level Monte Carlo and Evolutionary Strategies for

single and multi objective robust and reliability based design optimization is introduced and

described. Detailed numerical studies relevant in transonic airfoil design under uncertainties

are presented and discussed.

Chapter 10 concludes the thesis, underlines the addition to state of the art knowledge of the

topic and proposes future research opportunities.
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What we observe is not nature itself, but nature exposed to our method of ques-

tioning.

Werner Karl Heisenberg



2 Uncertainty Management in Aerody-
namic Design

The large majority of problems in aircraft production and operation require decisions made

in the presence of uncertainty. Uncertainty Management (UM) is a branch of Risk Manage-

ment that focuses on the evaluation of risk as the possibility of not matching the design and

performance targets, suffering damage, failure and occurrence of any non-desirable event

by considering all uncertainties affecting the design, development and operation of the sys-

tem. UM includes Uncertainty Quantification (UQ) and Robust/Reliability-based Design

Optimization (RDO/RBDO) techniques.

Deterministic optimization has always been an integral part in aerodynamic design. Nowa-

days the ever-increasing demand for aircrafts with better performance, higher reliability and

robustness at lower cost requires RDO/RBDO techniques capable of seeking optimality under

uncertain conditions that may arise during the conceptualization and the entire lifetime of

the vehicle.

Additionally, in spite of the considerable success and prediction capabilities of Modeling and

Simulation (M&S) tools, their use in high-impact decisions require a rigorous quantification

of the errors and uncertainties introduced to establish objectively their predictive capabilities

[Iac11].

2.1 Flow Models and Aerodynamic Coefficients

In this work we treat the problem of uncertainty propagation in aerodynamic systems operat-

ing in viscous and inviscid flows. We recall hereafter the main models used in this context.
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Chapter 2. Uncertainty Management in Aerodynamic Design

2.1.1 Navier Stokes Equations

The dynamics of compressible viscous flows in a Cartesian coordinate system (x, y, z) can be

described by the Navier Stokes equations in conservative form as:

∂

∂t
W + ∂

∂x
( f I − fV )+ ∂

∂y
(g I − gV )+ ∂

∂z
(hI −hV ) = 0, (2.1)

where W is the vector of state variables:

W =



ρ

ρu

ρv

ρw

ρE


, (2.2)

f I , g I ,hI are the convective inviscid fluxes:

f I =



ρu

ρu2 +p

ρuv

ρuw

u(ρE +p)


, g I =



ρu

ρuv

ρv2 +p

ρv w

v(ρE +p)


, hI =



ρw

ρwu

ρw v

ρw2 +p

w(ρE +p)


(2.3)

with (u, v, w) denoting Cartesian components of the velocity vector u. p denotes the pressure,

ρ the density and E the total energy.

The viscous fluxes fV , gV ,hV are defined as:

fV =



0

τxx

τx y

τxz

(τu)x −qx


, gV =



0

τy x

τy y

τy z

(τu)y −qy


, hV =



0

τzx

τz y

τzz

(τu)z −qz


. (2.4)

In case of Newtonian fluids in local thermodynamic equilibrium the shear stress tensor τ is

defined as:

τi j =µ
[(
∂u j

∂xi
+ ∂ui

∂x j

)
− 2

3
(∇·u)δi j

]
(2.5)

with µ denoting the dynamic viscosity of the fluid and δi j the Kronecker delta.
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2.1. Flow Models and Aerodynamic Coefficients

For a caloric perfect gas, µ is computed from the Sutherland’s law:

µ

µ∞
=

(
T

T∞

)3/2 T∞+S1

T +S1
(2.6)

where µ∞ is the viscosity at the reference temperature T∞ and the constant S1 = 110.3 [K ] for

air.

The heat flux components due to conduction qx , qy , qz are given by the Fourier’s law:

qx =−k
∂T

∂x
, qy =−k

∂T

∂y
, qz =−k

∂T

∂z
(2.7)

where T is the temperature and k the heat conductivity. Under the assumption of constant

Prandtl number (defined as the ratio of momentum diffusivity to thermal diffusivity, for air

Pr = 0.72), the heat conductivity can be computed as:

k = µcp

Pr
(2.8)

where cp is the specific heat at constant pressure1.

Finally to close the system, the pressure p for a caloric perfect gas is obtained as:

p = ρRT with R = 287.0 [J/kg K ] for air (2.9)

2.1.2 Euler Equations

When viscous forces are neglected, such as in inviscid flow, the Navier-Stokes equation in (2.1)

can be simplified and the proprieties of the flow are described by the Euler equations:

∂

∂t
W + ∂

∂x
f I + ∂

∂y
g I + ∂

∂z
hI = 0. (2.10)

In this work we consider as benchmark problems for inviscid flows mainly 2D and quasi-1D

problems.

2D Euler Equations

In the case of 2D problems (2.10) reduce to:

∂

∂t
W + ∂

∂x
f I + ∂

∂y
g I = 0 (2.11)

1The specific heats at constant volume and constant pressure for a caloric perfect gas are obtained from
cv = R

γ−1 and cp = γcv respectively. γ= 1.4 and R = 287.0 [J/kg K ] for air
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and the fluxes are defined as:

W =


ρ

ρu

ρv

ρE

 , f I =


ρu

ρv2 +p

ρuv

u(ρE +p)

 , g I =


ρv

ρvu

ρv2 +p

v(ρE +p)

 , (2.12)

Quasi-1D Euler Equations

In the case of quasi-1D problems (2.10) reduce to:

∂

∂t
W + ∂

∂x
f =Q (2.13)

and with W , f I and Q defined as:

W =


ρA

ρu A

ρE A

 , f I =


ρu A

(ρu2 +p)A

u(ρE +p)A

 , Q =


0

p d A
d x1

0

 (2.14)

In quasi-1D problem, each grid node in the computational grid is associated with a certain

area, denoted with A.

2.1.3 Finite Volume Approximation

In order to solve the above presented non-linear systems of conservation laws (Euler and

Navier-Stokes) we employ in this work different Finite Volume (FV) methods. Since the

probabilistic framework presented hereafter is completely black-box, different techniques

such as Finite Element and Finite Difference methods can be also employed in the same

fashion.

The pivotal feature of numerical methods to approximate compressible flow problems is the

appropriate treatment of discontinuities or sharp gradients that naturally develop due to

shock waves, contact discontinuities and rarefaction waves.

The numerical schemes should hence provide accurate solutions and avoid the creation of

spurious oscillations or the smearing of those discontinuities over a large number of grid

cells. Godunov [God59] showed that, in order to guarantee the monotonicity of the solution at

discontinuities, a numerical scheme can not be of order higher than one (of accuracy). This

implies that, the computational approach should be able to switch from high order of accuracy

in large parts of the domain where the flow field is smooth, to first order in the vicinity of the

discontinuities.

In order to ensures that the discretized equations capture discontinuities it is of primary
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2.1. Flow Models and Aerodynamic Coefficients

importance that the discretization of Navier Stokes and Euler equations satisfies the discrete

version of the conservation laws. The integration of (2.1.1) over a domain D yields to:∫
D

∂

∂t
W dV +

∫
D
∇·F dV = 0 (2.15)

where F = ( f I − fV , g I − gV ,hI −hV ) denotes the flux tensor. The application of the divergence

theorem gives:∫
D

∂

∂t
W dV +

∮
∂D

F ·n dV = 0 (2.16)

where n is the unit normal pointing in the outward direction of the boundary ∂D of the

domain D . The time rate of change of W in the domain D is balanced by the fluxes entering

and leaving at the boundaries ∂D .

The conservation laws are discretized in this work on structured or unstructured grid depend-

ing on the application, the complexity of the geometry and the efficiency of a CFD solver

in approximating the flow problem under investigation. For the sake of explanation, we

restrict ourself in this section to structured grids and solvers, but the same concept can be

applied to unstructured ones. Considering a discrete volume cell denoted with Di , j ,k (with

i , j ,k ∈I ⊂Z3 denoting the address space in the structured grid) then (2.16) is approximated

as:

d

d t

(
W i , j ,kV i , j ,k

)
+F i , j ,k = 0 ∀ i , j ,k ∈I (2.17)

with W i , j ,k denoting an approximation of the average value of the state vector in the cell (in

the cell center), V i , j ,k the volume of the cell and F i , j ,k the net flux leaving the cell. In order to

discriminate the inviscid and viscous fluxes contributions we write F i , j ,k = F i , j ,k
I +F i , j ,k

V .

As (2.17) suggests, the Euler and the Navier Stokes equations can be solved by employing a

separate discretization in space and time (method of lines [RM94]). In a first step the flux

integrals are evaluated on control volumes defined in a computational grid, afterwards the

resulting system of ordinary differential equations are advanced in time, starting from a

specified initial condition. On the other hand, if flow proprieties do not change in time, a

steady-state solution is obtained by solving the governing equations by means of an iterative

process.

In order to approximate the convective flux FI , we employ in this work the second order central

scheme of Jameson Schmidt Turkel (JST) (see [JST81] for more details). Compared to other

more advanced approaches (Roe, HLLC see [Yee89]), the JST combines a satisfactory capability

in capturing shock waves, a fairly rapid convergence to steady state and robustness also on

coarse grids to approximate the convective flux. The latter is a pivotal feature, in order to apply

our probabilistic uncertainty propagation framework, that strongly relies on the convergence

of the flow quantities of interest on a hierarchy of computational grids.
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Turbulence Modeling

Despite the performance and the wide availability of large high performance computers (HPC),

the direct simulation of the Navier Stokes equations (Direct Numerical Simulations, DNS) for

turbulent flows is only limited to simple problems at very low Reynolds number. This is due

to the excessive number of grid points required to achieve an appropriate spatial/temporal

resolution in order to capture the chaotic fluctuations of the flow variables. For this reason,

large scale complex aerodynamic problems at high Reynolds numbers can noways only be

treated with turbulence models of different level of complexity; in this work we apply Favre-

Reynolds Averaged Navier Stokes (F-RANS) models to approximate the turbulent viscous flow

around aerodynamic systems.

By rewriting (2.1) in differential coordinate invariant form, using Einstein notation, we obtain:

∂ρ

∂t
+ ∂

∂xi
(ρui ) = 0

∂

∂t
(ρui )+ ∂

∂x j
(ρui u j ) =− ∂p

∂xi
+ ∂τi j

∂x j

∂

∂t
(ρE)+ ∂

∂x j
(ρu j H) = ∂

∂x j
(uiτi j )+ ∂

∂x j

(
k
∂T

∂x j

) (2.18)

with ui denoting a velocity component of u = (u1,u2,u3), xi a coordinate direction and

H = E + p
ρ = h + 1

2 ui ui the total enthalpy.

In order to approximate turbulent viscous flows and solve (2.18) for the mean value of the flow

quantities we apply the Reynolds averaging and the Favre averaging. Both methodologies are

based on the intuitive decomposition of variables into mean and fluctuating part.

For a general flow quantity q , the Reynolds averaging [Rey94] procedure leads to a decom-

position in mean and turbulent fluctuating part q = q + q
′
. The mean part is obtained as:

q(t ) = lim
∆t−→∞

1

∆t

∫ t+∆t

t
q(s) d s (2.19)

As we are treating compressible flows, where density is not constant, we also apply Favre

density weighted decomposition q = q̃ +q
′′
. The mean Favre average [Fav65] is obtained as:

q̃(t ) = 1

ρ
lim

∆t−→∞
1

∆t

∫ t+∆t

t
ρ(s) q(s) d s (2.20)

where ρ is the Reynolds averaged density.

By applying the Reynolds average to velocity and pressure and the Favre average to the other
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remaining flow quantities we obtain [Bla15]:

∂ρ

∂t
+ ∂

∂xi
(ρũi ) = 0

∂

∂t
(ρũi )+ ∂

∂x j
(ρũi ũ j ) =− ∂p

∂xi
+ ∂

∂x j
(τ̃i j +τF

i j )

∂

∂t
(ρẼ)+ ∂

∂x j
(ρũ j H̃) = ∂

∂x j

(
k
∂T̃

∂x j
−ρ�u ′′

i h ′′ +�τi j u
′′
i −ρ�u ′′

j K

)
+ ∂

∂x j

[
ũi

(
τ̃i j +τF

i j

)] (2.21)

where we denote with τF
i j the Favre averaged Reynolds stress tensor defined as:

τF
i j =−ρ�u ′′

i u
′′
j (2.22)

and the Favre-averaged turbulent kinetic energy

ρK̃ = 1

2
ρ�u ′′

i u
′′
j . (2.23)

Following the Bussinesq eddy-viscosity hypothesis that assume that the turbulent shear stress

is linearly related to the mean rate of strain (as in laminar flows), we can write:

τF
i j =−ρ�u ′′

i u
′′
j = 2µT S̃i j −

(
2µT

3

)
∂ũk

∂xk
δi j − 2

3
ρK̃δi j (2.24)

with S̃i j denoting the averaged strain rate. Thanks to this simplifying assumption, it is now

only required to compute the turbulent viscosity µT in order to close the system of equations.

In this work we employ the Spalart-Allmaras one-equation turbulence model [SA+94] to com-

pute µT . Based on empiricism, arguments of dimensional analysis, Galilean invariance, and

calibrated using experimental measurements on flat-plate boundary layers and mixing layers,

the Spalart-Allmaras turbulence model employs a transport equation for an eddy-viscosity

quantity ν̃:

∂ν̃

∂t
+ ∂

∂x j
(ν̃u j ) =Cb1(1− ft2)S̃ν̃+ 1

σ

{
∂

∂x j

[
(νL + ν̃)

∂ν̃

∂x j

]
+Cb2

∂ν̃

∂x j

∂ν̃

∂x j

}
−

[
Cw1 fw − Cb1

κ2 ft2

](
ν̃

d

)2

+ ft1‖∆u‖2
2

(2.25)

where νL = µL

ρ denotes the laminar kinetic viscosity and d the distance to the closest wall. The
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production, destruction and laminar-turbulent transition terms are obtained from:

S̃ = fv3S + ν̃

κ2d 2 fv2,

fv1 = χ3

χ3 +C 3
v1

, fv2 =
(
1+ χ

Cv2

)−3

, fv3 = (1+χ fv1)(1− fv2)

max(χ,0.001)
,

χ= ν̃

νL
,

fw = g

(
1+C 6

w3

g 6 +C 6
w3

)1/6

, g = r +Cw2(r 6 − r ), r = ν̃

S̃κ2d 2
,

ft1 =Ct1g t exp

(
−Ct2

ω2
t

∆U 2 (d 2 + g 2
t d 2

t )

)
ft2 =Ct3 exp

(−Ct4χ
2) ,

g t = min

[
0.1,

‖∆u‖2

ωt∆xt

]
.

(2.26)

ωt denotes the vorticity at the wall at a trip point, ‖∆u‖2 the 2-norm of the difference between

the velocity at the trip and the actual point, dt the distance to the nearest trip point and ∆xt

the spacing along the wall at the trip point.

The constants are generally set to:

Cb1 = 0.1355, Cb2 = 0.622, Cv1 = 7.1, Cv2 = 5, σ= 2

3
, κ= 0.41

Cw1 = Cb1

κ2 + 1+Cb2

σ
, Cw2 = 0.3, Cw3 = 2, Ct1 = 1, Ct2 = 2, Ct3 = 1.3, Ct4 = 0.5

(2.27)

Finally, the turbulent eddy viscosity is obtained from ν̃ as

µT = fv1ρν̃ (2.28)

We decided to employ this turbulence model, instead of more complex and accurate ap-

proaches, for the same reason presented above for the approximation of convective fluxes.

The Spalart Allmaras provide reasonably accurate prediction of turbulent flows, and in par-

ticular has fast and robust convergence to steady state solutions with moderate wall grid

resolutions.

2.1.4 Aerodynamic Quantities of Interest

In this work we concentrate on the effect of uncertainties on the performances of aerodynamic

system. It is worth defining here the most relevant aerodynamic quantities of interest that will

be considered in the following chapters.

First we introduce the dimensionless numbers that have an essential role in defining the
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behaviour of fluids.

Definition 1. Mach Number is the ratio of the flow velocity and the local speed of sound

M = u

c
(2.29)

In a perfect gas the speed of sound is given by:

c =
√
γ

p

ρ
(2.30)

Definition 2. Reynolds Number is the ratio of inertial forces to viscous forces within a fluid:

Re = ρuLr e f

µ
(2.31)

Lr e f is a characteristic length scale. For the applications presented hereafter Lr e f corresponds

to the chord length of a 2D airfoil or the mean chord length in case of an aircraft wing.

The fluid flowing around an aerodynamic shape generates a local force on each point of the

body. The normal and tangential components of such force are the pressure p and the shear

stress τ. By integrating the force/stress distribution around the surface of the shape under

investigation we obtain a total force F and a moment FM about a reference point (center of

pressure).

The parallel and perpendicular component of F with respect to the free-stream direction M∞
are the lift FL and drag FD forces respectively (See Figure 2.1).

F

FM

FL

FD

α∞

M∞

Figure 2.1 – Aerodynamic forces and moments.

For an aerodynamic shape with surface S we define the following lift, drag and moment
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dimensionless coefficients:

CL = FL

q∞S
, CD = FD

q∞S
, CM = FM

q∞SLr e f
. (2.32)

with q∞ = 1
2 M 2∞γp∞ denoting the dynamic pressure.

Additionally in our simulations we also consider the pressure and skin friction coefficients

defined as:

Cp = p −p∞
q∞

, CF = τ

q∞
. (2.33)

Here the subscript ∞ refers to values far away from the shape where the fluid is assumed

undisturbed.

2.2 Uncertainties in Aerodynamics

In this work we follow the definition of errors and uncertainties proposed by Oberkampf

and Trucano in the SANDIA report on Verification and Validation in Computational Fluid

Dynamics [OT02].

Definition 3. Error is a recognizable deficiency in any phase or activity of modeling and simu-

lation that is not due to lack of knowledge.

Unacknowledged error are blunders or mistakes, such as programming errors, input data

errors, and compiler errors. Acknowledged error are characterized by knowledge of divergence

from an approach or ideal condition that is considered to be a baseline for accuracy such as

finite precision arithmetic in a computer and conversion of PDEs into discrete equations. The

estimation and control of the former is not straightforward while the latter can be measured

as their origins are fully identified.

Definition 4. Uncertainty is a potential deficiency in any phase or activity of the modeling

process that is due to lack of knowledge.

The term uncertainty can be used to identify the estimated amount or percentage by which an

observed or calculated value may differ from the true value but also in term of prediction of

future events and the estimation of the reliability of systems.

In order to establish the quality and validity of decisions made in presence of errors and uncer-

tainties, Verification and Validation (V&V)procedures have been organized and proposed by

authorities and institutions in different engineering fields [Ste16] [DoD08], [OT07], [TDH+04],

[SK00], [ASM09], [ASM06].
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Definition 5. Verification is the process of determining that a model implementation accu-

rately represents the developer’s conceptual description of the model and the solution to the

model.

Definition 6. Validation is the process of determining the degree to which a model is an accu-

rate representation of the real world from the perspective of the intended uses of the model.

Uncertainties are generally classified into two categories: epistemic and aleatory.

Definition 7. Epistemic uncertainties, also known as reducible or model uncertainties, origi-

nate from some level of ignorance or lack of knowledge and can be reduced with an increase

in knowledge, additional experimental data or understanding of complex physical processes.

Examples are turbulence model or chemical gas/fluid assumptions.

Definition 8. Aleatory uncertainties, also known as variability or irreducible uncertainties,

describe the natural inherent variations associated with the physical system or the surrounding

environment and cannot be reduced. Examples are the material properties, the operating

conditions, manufacturing tolerances, etc.

2.3 Epistemic Uncertainties in Aerodynamic Design

The mathematical and numerical models employed to predict the performances of aerody-

namic systems inherently introduce some sort of assumptions and simplifications in order

to reduce the computational efforts and provide converged numerical results for the CFD

simulations. The effect of such simplifications on the accuracy of predicted quantities can be

generally controlled but sometimes can lead to unexpected large discrepancies.

Due to their reasonable computational cost, compared to Large Eddy Simulations (LES) and

Direct Numerical Simulation (DNS), Reynolds-Averaged Navier-Stokes (RANS) turbulence

models are nowadays the only viable option to predict viscous flows around large scale com-

plex aerodynamic shapes. In addition to the Reynolds averaging of the full Navier Stokes

equations, all RANS models introduce some sort of semi-empirical turbulent closure [W+98]

for the transport equations. Hence, the effect of modeling uncertainties and the empiricism of

RANS model due to their flow specific calibration from experimental data should be controlled

and appropriately accounted for simulations used for high impact decisions. The misspecifi-

cation of the turbulence model constants, that have been derived and designed to fit a specific

set of experimental data, which in turn are affected by uncertainties, for a given range of

applications, can lead to large errors. The effect of surface curvature, can also play an impor-

tant role in defining the range of validity of a set of model constants or turbulence models.

Additionally the results of RANS simulations are generally very sensitive to grid and simulation

setup parameters. In order to reduce the dependency of RANS simulation results with respect

to all these above mentioned factors Best Practice Guidelines (BPG) [CW00] [MCM03] and

Verification and Validation (V&V) methodologies [OTH04] [SWCP99], [SWCP01] have been

prosed since the introduction of RANS in industrial design.
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A common practice in aerodynamics simulations is the fixing of transition at a set of locations

in order to compare the results with experimental data, where a trip at a fixed location has

been used. Obviously the location and the eventuality that transition might likely to occur

naturally, could lead to difficulties of interpretation and discrepancies in experimental and

computational results. [ETD07]

Such epistemic uncertainties, whose distributions are generally not available, are usually

treated with interval analysis [Kea96] or with membership functions in a fuzzy logic framework

[MV02, WA03].

2.4 A Taxonomy of Aleatory Uncertainties in Aerodynamic Design

In this work we concentrate on UQ and Optimization under Uncertainty (OUU) of aerody-

namic systems affected by aleatory uncertainties. These uncertainties have to be taken into

account to achieve and guarantee the highest safety standards and to design aerodynamic

systems whose performance is unchanged when exposed to variabilities. Indeed, the geomet-

ric and operating parameters, that characterize aerodynamic systems, are naturally affected

by aleatory uncertainties due to the intrinsic variability of the manufacturing processes and

the surrounding environment. Reducing the geometrical uncertainties due to manufacturing

tolerances can be prohibitively expensive while reducing the operational uncertainties due to

atmospheric turbulence is simply impossible.

We believe it is useful to distinguish these two sources of uncertainties in order to provide

an appropriate description and methodology to treat them in a computational probabilistic

framework.

2.4.1 Operating Uncertainties

With operating uncertainties we denote the natural environmental variability of the flow

surrounding an aerodynamic system.

In external aerodynamic problems the inherent atmospheric fluctuations, the mission flight

profile deviation from design scenarios and transition strip location are the main factors

affecting the flow surrounding an aircraft. For example, the non homogeneous proprieties

of the atmosphere with respect to location (see Figure 2.2 and Figure 2.3), time and wind

directions, are often neglected and the preliminary design of an aircraft is performed using

simplified model such as the standard atmospheres.

In Figure 2.4 we compare the air temperature obtained from the International Standard

Atmosphere (ISA) model [Atm75] and the real atmosphere temperature obtained from the

ERA5 climate reanalysis dataset [Gib97]. We choose three locations on the globe representative

of a international transatlantic flight from Geneva to Miami and compare the temperature

fluctuations the 1st of January 2015 and the 1st of July 2015. As it is possible to observe, up
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Figure 2.2 – Real atmosphere temperature obtained from the ERA5 climate reanalysis dataset.

to 30 degrees Kelvin deviations are present between the model and the real reanalysis data.

Additionally it is worth underline, in particular in Geneva and Greenland, a sensitive seasonal

variation in temperature below 10 km of altitude.

Figure 2.3 – Real atmosphere instantaneous U and V wind component obtained from the ERA5 climate
reanalysis dataset.

On the other hand, in internal aerodynamic problems, the inlet flow profile, inflow/outflow
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Figure 2.4 – Comparison of the Standard Atmosphere (ISA) model with the real atmosphere temperature
obtained from the ERA5 climate reanalysis dataset in three locations of the globe.

boundary conditions and combustion instabilities are generally the main sources of variability

in aircraft engines. Uniform characteristic profiles are generally considered in absence of

appropriate experimental data, but only for few discrete operating points and atmospheric

conditions.

In order to account for those uncertainties in our computational probabilistic framework we

consider the following flow parameters as uncertain:

• Mach number

• Reynolds number

• Angle of Incidence

• Total and Static Temperature

• Total and Static Pressure

Depending on the type of analysis and the goal of a specific set of simulations we prescribe

probability distributions for the above mentioned parameters. Once the distributions are

defined we propagate the input uncertain parameters into the computational model in order

to measure their effects on specific performance indexes or quantity of interest (QoI) relevant

for the problem.
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Even small variations of such parameters during an extended cruise phase can have large

impact on the fuel consumption and the performances of an aircraft during a mission.

2.4.2 Geometric Uncertainties

With geometric uncertainties we denote the variabilities related to the geometry of the aero-

dynamic system. The factors that can affect the external shape of an aircraft or the internal

geometry of an engine are multiple and may appear in different time frames during their

entire lifetime.

Starting from the initial design, a generic parametrization (e.g. Parsec or Bezier parametriza-

tion of an airfoil) of an aerodynamic shape is generally converted to Computer-Aided Design

(CAD) models using appropriate geometrical surface model such as Non-Uniform Ratio-

nal Basis Spline (NURBS). Aircraft wings and turbine/compressor blades are complex 3D

shapes obtained by stacking together many elementary 2D profiles. Some sort of smoothing is

required in order to obtain a final continuous shape.

The CAD model is then imported into Computer-Aided Manufacturing (CAM) environments

and the aerodynamic parts are actually produced and machined through complex manufac-

turing chains in different factories and even countries as in the case of large multinational

aircraft producers. The final parts that fulfill tolerance and quality requirements are than

assembled together.

Alternative machining and manufacturing techniques that differ in terms of cost and accuracy

are applied in order to fulfill the pivotal trade-off in aircraft industrial production between

precision, reliability and manufacturing cost. A detailed study on the influence of tolerances

on aerodynamic surfaces and operating costs can be found in [CKRM02] and [CKR+03].

During their actual lifetime the shape and surface roughness of aircraft wings and turbine/-

compressor blades can change dramatically due to:

• Temporary factors: wing twist under different loadings (aeroelastic), icing.

• Permanent/degrading factors: wear and tear, corrosion, erosion, fouling, impacts with

particle and animals (e.g. hail and birds impacts), maintenance processes (panels, rivets

and hatches).

Figure 2.5 provides an overview of the geometrical aspects that can affect the shape of an

aircraft during design, production and operation.

Practically speaking there will always be uncertainties associated with the location of every

point on the surface of an aerodynamic object designed with parameterized models, produced,

assembled and operating in an inherently uncertain environment.

As the number of possible shape deviations is unlimited and some sort of assumptions are
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needed in order to account for geometric uncertainties in a computational framework, we

consider in this work only a limited set of parameters.

It is worth underline that the range of variability used for the simulations presented in the

following chapters have been derived during the UMRIDA European FP7 collaborative project

thanks to the inputs of industrial aeronautics partners and are representative of manufactur-

ing/assembling tolerances and temporary factors that take place during the operation of an

aircraft.

In order to account for those uncertainties in our computational probabilistic framework we

consider the following geometrical parameters as uncertain:

• Leading edge radius

• Leading and trailing edge sweeps

• Airfoil/Wing thickness

• Pressure/Suction curvature

• Surface Roughness

Small variations of such parameters can have large impact on the fuel consumption and the

performances of an aircraft during its entire lifetime.
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Figure 2.5 – Overview of design, production and operation aspect that can have impact on the shape of
aerodynamic systems.
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2.4.3 Treatment of Geometric Uncertainties

In this work we treat airfoils and aircraft wings affected by geometrical uncertainties due to

manufacturing tolerances, icing, impacts, erosion and wing deflections. Such uncertainties

can be local (as in case of icing) or affect the the entire geometry (as in manufacturing and

deflections due to differential loadings). Depending on the type of uncertainties, the amplitude

of the defects and the problem under investigation, we considered in this work different

methodologies in order to include and integrate the above mentioned geometric uncertainties

in a computational probabilistic framework.

The purpose of a geometric parametrization is to provide an effective and efficient approach to

manipulate the shape of aerodynamic systems using a limited number of coefficients. Masters

et al. [MTR+15] categorize aerodynamic shape parameterizations and distinguish between

constructive and deformative approaches.

The constructive class include methodologies that define airfoil and wing shapes from a set of

parameters and includes splines [BF84], Class-Shape function Transformation (CST) [KB+06]

and the Parameterized Sections (PARSEC) approach [Sob99].

Deformative approaches on the other hand, need an initial airfoil shape and deform it into

a new shape. Examples are the discrete approach of Jameson [Jam88], Hicks-Henne bump

functions [HH78] and the free-form deformation (FFD) [SP86] [Sam04] methods.

In the UQ computational framework presented in this work we apply the Hicks-Henne bumps

to treat local perturbations that arises due to icing, impacts and erosion, the FFD to treat

mainly deformation due to wing deflections and constructive methodologies such as the

PARSEC parametrization to propagate uncertainties due to manufacturing tolerances.

Hicks-Henne From a initial "nominal" airfoil shape (defined as y0 =±S(x0) coordinates),

the Hicks-Henne bump approach add/subtract a linear combination of n basis functions to

its contour to generate a new deformed shape (x0, yD ):

yD = y0 ±
n∑

i=0
ciψi (x0). (2.34)

ci are weighting coefficients and ψi are the sine basis functions defined as:

ψi (x0) = si nti (πxmi
0 ) with mi = ln(0.5)

l n(xM AXi )
(2.35)

where xM AXi is the location of the maximum/minimum of the i-th bump and ti its width.

Even for local perturbations, this approach provides smooth local modifications to the original

airfoil shape (see Figure 2.6) and can be effectively used to propagate uncertainties (such

as geometrical uncertainties due to icing) but also in an optimization framework to design

26



2.4. A Taxonomy of Aleatory Uncertainties in Aerodynamic Design

radical new shapes.
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Figure 2.6 – Leading edge deformation with random Hicks-Henne bumps.

Free-Form Deformation (FFD) The FFD methodology have been first introduced as com-

puter graphics 3D morphing technique [SP86] and afterwards proposed in the context of

aerodynamic optimization [PBL98]. The approach is based on the intuitive idea of expressing

the deformation from an initial nominal shape by the displacement of an embedding control

box. The competitive advantage of this approach is that as the external box is deformed, the

embedded objects are deformed too with the same degree of flexibility. This is particularly

appealing when the FFD approach is applied on CFD grid boundaries. The airfoil/wing shape

and the computational grid surrounding it can be smoothly deformed in just one step.

Considering the local curvilinear coordinates x = (s, t ,u) mapped into the control box (lattice

coordinates), the displacement δ(x) of any point inside the control box is defined as:

x +δ(x) =
l∑

i=1

m∑
j=1

n∑
k+1

B i−1
l−1(s)B j−1

m−1(t )B k−1
n−1(u)

(
P i , j ,k +D i , j ,k

)
(2.36)

where B i−1
l−1(s) is the (i-1)-th Bernstein polynomial of degree l −1 [YMC08]. P i , j ,k and D i , j ,k

are the matrices of original coordinates and displacements for the node points (i , j ,k) of the

control box defined by ncp = l ·m ·n control points.

Starting from the local curvilinear coordinates of the points embedded by the control box and
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the blending functions B , once the external box is deformed (update of D i , j ,k see Figure 2.7),

the location of all nodes inside it are obtained from (2.36).
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Figure 2.7 – Deformation of an airfoil with FFD methodology.

PARSEC The PARSEC approach is a constructive parametrization methodology proposed by

Sobieczky [Sob99] to introduce more engineering relevant and geometrically intuitive airfoil

parameters in the design process. The suction (x, ys) and pressure (x, yp ) side of an airfoil

shape is defined by 6th order polynomials:

ys(x) =
6∑

i=0
si xi−0.5, yp (x) =

6∑
i=0

pi xi−0.5, (2.37)

The free parameters are the PARSEC parameters presented in Table 2.1. The shape of the airfoil

(2.37) is determined by solving the set of 12 (nonlinear) equations for the coefficients si and

pi , i = 1, . . . ,6 given the PARSEC parameters (see right column Table 2.1).

Parameter Symbol Definition

Pressure LE radius Rp p1

Suction LE radius Rs s1

Pressure Crest position Xp y ′
p (Xp ) = 0

Suction Crest position Xs y ′
s(Xs) = 0

Pressure Crest hight Yp yp (Xp )
Suction Crest hight Ys ys(Xs)

Pressure Crest curvature Cp y ′′
p (Xp )

Suction Crest curvature Cs y ′′
s (Xs)

TE angle θs y ′
s(xs = 1) =−t an(θs + θp

2 )

Boat-tail angle θp y ′
p (xp = 1) =−t an(θs − θp

2 )

TE offset YT E yp (xp = 1)
TE thickness ∆YT E ys(xs = 1)− yp (xp = 1)

Table 2.1 – Parsec parameters and definitions (LE= leading edge; TE= trailing edge).
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It is worth underlying that in our framework we set the trailing edge offset YT E and the trailing

edge thickness ∆YT E to zero. Hence the airfoil shapes are identified by 10 parameters as

presented in figure 2.8.

ys

yp xs

xp

Cs

Cp

Rs

Rp

y

xθs

θp

M∞

α∞

RAE2822

Figure 2.8 – PARSEC parameters for a RAE 2822 airfoil.

Thanks to the intuitive nature of such parametrization and the direct link between parameters

and airfoil geometry we are able to prescribe appropriate uncertainties due to manufacturing

tolerances directly to the PARSEC parameters.

Mesh Deformation

For each random geometrical realization obtained by sampling the appropriate coefficients of

the parametrizations presented above we need to perform a CFD simulation in order to com-

pute the performances or QoI of the aerodynamic shape. In order to avoid computationally

demanding and sometimes inappropriate grid re-generation for each realization of the ran-

dom shape, we deform and existing "nominal grid" by solving a linear elasticity problem. The

elasticity problem is solved on the volume grid to accommodate the new boundary definition.

Each edge of the mesh is replaced by a spring with stiffness inversely proportional to the edge

length [Bat90]. By applying Hook’s law, the displacement of node (denoted δi ), surrounded by

ni neighbors nodes, is computed iteratively as:

δk+1
i =

∑ni

j=1κi jδ
k
j∑ni

j=1κi j
(2.38)

and applying the known displacements at the boundaries (see Figure 2.9) resulting from the

difference between the deterministic (reference) shape and a random realization. κi j denotes

the stiffness of the spring between node i and j .

In case of geometrical uncertainties due to manufacturing tolerances we don’t expect large dis-

placements in the volume grid. Other types of geometrical uncertainties (e.g. due to icing) may

promote larger displacements in the volume grid and the edges may cross each other, leading

to negative grid volumes. To overcome such eventuality it is required to include torsional
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springs at the corner between adjacent edges [FDKL98] to prohibit the inter-penetration of

neighboring grid triangles.
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Figure 2.9 – Random geometrical airfoil shapes (scale magnified) and corresponding grid deformation.
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What we observe is not nature itself, but nature exposed to our method of ques-

tioning.

Werner Karl Heisenberg





3 Uncertainty Propagation

In this chapter we introduce the notation and the main ideas of propagation of uncertainties

in aerodynamics simulations followed by a brief overview of polynomial and sampling based

methodologies.

3.1 Probabilistic Framework

As presented in the previous chapter, the geometric and operating parameters that define

the shape of an aerodynamic system and the surrounding environment cannot be defined

deterministically, therefore we treat them as random quantities. Hereafter we characterize

such random quantities by a complete probability space (Ω,Σ,P ), withΩ⊂Rn .

Definition 9. A complete probability space is a mathematical framework that models processes

or experiments that occur randomly. Ω is called sample space and is the set of all possible

outcomes of an experiment, Σ is a non-empty collection of subsets ofΩ called events (σ-algebra)

and the probability measure P :Σ→ [0,1] assigns a probability to each event.

Hence the random quantities are characterized as a random vectorω ∈Rn taking values inΩ

and for which the probability P (ω ∈ B) of any event B ∈Σ is given.

It is worth underlining once and for all that the existence of the above mentioned probability

space will be implicitly assumed without loss of generality and that the probability measure of

the random vectorω is known. We also assume to be able to generate independent samples

from such probability measure.

In this work we mainly consider aerodynamic problems modeled by partial differential equa-

tions (PDEs) defined on a generic physical space D ⊂Rd (i.e. Euler, Navier-Stokes equations).

We denote with x = (x, y, z, t) the set of space/time variables and with p the set of system

parameters. We assume, regardless of the nature of the problem, the availability of a numer-

ical method capable of computing space/time dependent approximations uM (x , p) of the

response u(x , p) of the physical system S(p) in finite computational time given a set of input

33



Chapter 3. Uncertainty Propagation

parameters p:

uM (x , p) ≈ u(x , p) =S(p) (3.1)

where M denotes the discretization parameter corresponding to the number of spatial/tem-

poral degrees of freedom (DOF).

Definition 10. Mathematical and computational models are characterized by dependent and

independent variables. The former represent the output while the latter represent the inputs.

Depending on the context, the dependent variables of mechanical/physical systems are often

called response variables, response functions, response surfaces or simply response.

Within a probabilistic uncertainty propagation framework we seek to compute statistics of the

response u(x , p,ω) =S(p,ω) of the system induced by the randomness in the input dataω.

In other words, the problem of uncertainty propagation consist in quantifying the probability

law of the response u or of a quantity of interest (QoI) Q = f (u) given the distribution of the

random input parametersω (see Fig. 3.1).

u

S

ω

Figure 3.1 – Graphical interpretation of propagation of uncertainties.

In this work we mainly consider finite-volume (FV) solvers for the solution of the Euler and

Navier-Stokes equations that models flows surrounding aerodynamic systems, hence uM (x,ω)

is generally the result of complex CFD simulations.

As mentioned above, the primary objective of uncertainty propagation is the computation of

the probability law or some statistics of the QoI. For a general random variable X :Ω→R, X =
X (ω) defined on the probability space (Ω,Σ,P ) we denote with E[X ] or µX the expected value

of X :

µX = E[X ] =
∫
Ω

X (ω)dP (ω) (3.2)
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Provided the above integral exist and is finite (
∫
Ω |X (ω)|dP (ω) <∞), the expectation operator

has the following proprieties; if Y is another random variable defined on (Ω,Σ,P ):

• X ≥ 0 ⇒ E[X ]

• Y ≤ X ⇒ E[Y ] ≤ E[X ]

• |E[X ]| ≤ E[|X |]

• E[aX +bY ] = aE[X ]+bE[Y ] (Linearity)

We denote with Var [X ] or σ2
X the variance of X ; provided it exist:

σ2
X =Var [X ] =

∫
Ω

(X (ω)−µX )2dP (ω) =
∫
Ω

X (ω)2dP (ω)−µ2
X (3.3)

Among the several methodologies proposed in the literature for UQ in fluid dynamics prob-

lems, we can distinguish between intrusive and non-intrusive UQ approaches.

3.2 Intrusive approaches

The Galerkin polynomial chaos (PC) [GS03] [TLMNE10] [PDL09] is probably the most well

known intrusive approach. The method relies on the assumption that the response of the

system can be written as a combination of polynomial functions of the uncertain parameters

φi (ω) with deterministic coefficients ci ,M (x , p) that depend only on the input variables x and

parameters p:

u(x , p,ω) ≈ uN
M (x , p,ω) =

N∑
i=1

ci ,M (x , p)φi (ω). (3.4)

By replacing the polynomial representation in the governing equations of the problem and

projecting onto the space spanned by the basis functions we obtain a system of equations that

can be solved for the uncertain response. The accuracy and efficiency of the approximation

strongly rely on the regularity of the response function and the appropriate choice of the basis

functions. Additionally such approach requires the formulation and solution of the stochastic

version of the original deterministic model and hence rewriting the simulation code which is

often impractical for large industrial CFD codes.

The basis functions are derived from the Askey scheme family of hypergeometric orthogonal

polynomials [XK02]. Based on the type of the probability distribution of the input parameters

it is possible to choose appropriate sets of basis functions. The optimality of a specific set of

basis with respect to the others originates from their orthogonality with respect to weighting

functions that correspond to the probability density function of the underlying input random
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variables [EB09]. The Hermite polynomials are optimal for normal, Legendre for uniform and

Jacobi for beta distributions. Nonlinear variable transformations to the Askey basis [DKL86]

or numerically generated orthogonal polynomials can be employed in order to treat problems

with correlated input variables or with more complex distributions [WB06].

Considering the complexity of industrial flow solvers, non-intrusive uncertainty propagation

techniques are often preferred as they simply require multiple solutions of the original model

for several values ofω and can use CFD flow solvers as black box.

3.3 Non-intrusive approaches

Non-intrusive uncertainty propagation approaches are designed and conceived to overcome

the above mentioned limitation of intrusive approaches. Instead of solving a stochastic version

of the original model they treat the deterministic solver as a black-box and simply require a

set of simulations for different realizations of the uncertain parameters. Depending on the

choice of inputs and reconstruction of the response of the uncertain system we discriminate

between polynomial/collocation-based and Monte Carlo-based approaches.

3.3.1 Polynomial/Collocation-based approaches

Non-intrusive polynomial chaos (NIPC) approaches rely on the same assumption of intrusive

PC method that the response of a system can be described as a combination of polynomial

functions with random coefficients:

u(x , p,ω) ≈ uN
M (x , p,ω) =

N∑
i=1

ci ,M (x , p)φi (ω). (3.5)

ci ,M (x , p) are the deterministic coefficients andφi (ω) the polynomial basis functions orthonor-

mal with respect to the underlying probability measure, i.e.
∫
Ωφi (ω)φ j (ω) dP (ω) = δi j . The

number of coefficients N required to build a polynomial representation of order k for a system

with d random parameters is N = (d+k)!
d !k ! .

Once the coefficients are obtained, the statistics of the system response are simply computed

as:

E[u(x , p,ω)] ≈ c0

Var [u(x , p,ω)] ≈
p∑

i=1

[
c2

i 〈φ2
i 〉

] (3.6)

It is worth underlying that the expectation of the response is simply the zero-th mode of the

expansion.
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Following the polynomial orthogonality properties of the basis and projecting the response

against each basis function using the L2 inner product, it is possible to compute the unknown

polynomial coefficients in (3.5) as:

ci ,M = 〈uM ,φi 〉
〈φ2

i 〉
= E[uMφi ]

E[φ2
i ]

(3.7)

〈φ2
i 〉 is simply the norm squared of multivariate polynomials and can be computed analytically,

while the multidimensional integral over the support of the weighting function 〈uM ,φi 〉
should be evaluated numerically through sampling, tensor-product quadrature or sparse grid

approaches.

In the sampling approach the integral in (3.7) is estimated by computing the expectation of

(u,φi ) with a large number of random samples. The accuracy will depend, as in the Monte

Carlo (MC) method, on the number of samples used to approximate the expectation. MC

quadrature is appealing for high-dimensional problems, since the convergence rate of the

expectation will be independent of the number of random dimensions [IRG98], [DNP+04].

Considering the large number of samples required (error goes to zero asymptotically as 1/
p

Ns ,

Ns being the number of samples) to obtain accurate estimations, this approach is unfeasible for

problems that require the solution of computationally demanding CFD simulations. In order

to reduce the number of samples required to achieve a prescribed tolerance it is possible to

employ more efficient sampling strategies such as Latin Hypercube Sampling (LHS) [MBC79]

and Quasi Monte Carlo (QMC) sampling [MC95]. The former sampling strategy tries to force

the sampler to draw realizations within equiprobable bins in the parameter range in order

to cover the domain more uniformly. In QMC, low discrepancy deterministic sequences are

generated in order to maximize the uniformity (maximize the space-filling) of points in the

parameter domain (i.e. Halton, Sobol sequences). LHS perform better in terms of sample

distribution but also lead to the same asymptotic convergence rate O(1/
p

Ns) of MC, QMC

sample are more uniformly distributed as one can see in Figure 3.2, and can lead to slightly

better asymptotic convergence rate O(ln(N d
s )/Ns) than MC.

Pseudo-random - Monte Carlo Latin Hypercube Halton points - Quasi Monte Carlo

Figure 3.2 – Pseudo random, LHS and Quasi Random (Halton’s sequence) sample sets (512 points).

The integral in (3.7) can also be computed using numerical tensor-product quadrature. Gauss
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Chapter 3. Uncertainty Propagation

quadrature points, which are the zeros of orthogonal polynomials chosen for the given input

parameters, yield the highest degree of exactness but have the drawback of being not nested,

meaning that the simulations performed to build a specific tensor grid cannot be re-used if

the grid is refined or coarsened. Nested quadrature points such as Clenshaw-Curtis and Fejer

rules overcome this drawback.

If Np points are used in each random variable, Gaussian quadrature can achieve fast rates

N r
p where r relates to the smoothness of the response function (e.g. er ). However the total

number of points in the grid is Ns = N d
p . Hence the effective rate will be N−r /d

s which strongly

degrades as d gets large.

In order to alleviate the so called curse of dimensionality, the multidimensional integrals

can be computed more efficiently using sparse tensor products [Smo63] [XH05] instead of

full-tensor products of quadrature points (See Figure 3.3).

Tensor Grid level = 4, Np = 961 - Fejer rule Sparse Grid level = 4, Np = 129 - Fejer rule

Figure 3.3 – Tensor and Sparse grid based on Fejer nested quadrature points.

The unknown coefficients can be efficiently computed also by solving the linear least squares

(LS) regression problem:

ΦTΦc =ΦT u (3.8)

in order to find a vector of polynomial coefficients c that best match (in a least square sense) a

set of response evaluation u with random inputs [HWB07]. Φ denotes a matrix that contains

N multivariate polynomial terms φi evaluated at the sample ω( j ). The LS problem is over-

determined as it is generally recommended to perform a random oversampling of response

evaluations. Instead of performing a random over-sampling, such approach can be further

improved in accuracy and efficiency by selecting an appropriate set of minimization points

(similar idea of QMC) and by ’enriching’ the regression equations with derivative information

[LWB07].

Instead of computing the coefficients by quadrature (3.7) or regression (3.8), stochastic collo-
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cation (SC) approaches try to build interpolation polynomials on structured grids of colloca-

tion points derived from tensor-products or sparse grids [BNT07]. Essentially, instead of trying

to determine the projection of the system response on a pre-defined polynomial subspace, SC

approaches rely on interpolation and build the approximation and the subspace implicitly

from a set of response evaluations. The objective of SC is to find an approximation u
Nc
M (x ,ω)

such that:

u
Nc
M (x , p,ω(i )) = u(x , p,ω(i )) 1 ≤ i ≤ Nc (3.9)

meaning that the approximation is exact at the Nc collocation points.

In order to build an expansion

uN
M (x , p,ω) =

N∑
i=1

ci (x , p) φi (ω). (3.10)

and fulfilling (3.9), the most natural choice is to consider a vector space of basis functions, like

Lagrange polynomials, that have the propriety:

φi (ω) = Li (ω) =
m∏

k=1
k 6= j

ξ−ξk

ξ j −ξk
=

1 if ξ= ξ j

0 if ξ 6= ξ j

(3.11)

Li (ω) denotes the Lagrange polynomial at the i-th collocation point. By doing so (3.10) can be

rewritten as:

uN
M (x , p,ω) =

N∑
i=1

uM (x , p,ω(i ))Li (ω). (3.12)

Thanks to this propriety of the Lagrange polynomials, the coefficients of the expansion

uM (x, p,ω(i )) are simply the response values of the system evaluated at each of the collo-

cation points ω(i ). The latter are defined on tensor product or Smolyak sparse grids build as

combinations of 1D Clenshaw-Curtis nodes.

Both intrusive and non-intrusive (PC and SC) approaches based on global functions that span

the entire random domain have been successfully applied to propagate input uncertainties in

aerodynamic simulations, see e.g. [HW10] for regression type methods or [LB08, LWB07] for

stochastic collocation (interpolation) techniques. Although extremely efficient for smooth

response functions and moderate number of uncertainty parameters, they typically suffer the

so called curse of dimensionality, i.e. the exponential increase of the cost with the number of

uncertain variables. Moreover, they are not particularly efficient for problems whose solutions

exhibit sharp gradients or discontinuities such as shock waves and contact discontinuities in

hyperbolic systems of conservation laws (Euler and Navier-Stokes equations). Such disconti-

nuities propagate into the stochastic space and inhibit the use of data compression techniques

which are based on the regularity of the response function. Promising alternatives are given
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by adaptive multi-element [WK05, FK10], multi wavelet [LMNP+07] and simplex stochastic

collocation methods [WI13, EDC16]. However so far these methods have been applied to

problems with non-smooth response functions with discontinuities not aligned with the

coordinate axes only with few uncertain parameters and their extensions to moderate number

of uncertain variables is still open. The same can be said to Padé type rational approximation

proposed in [CDI09]. This is the main reason to focus in this work on Monte Carlo (MC) type

methods as we are interested in CFD problems with discontinuous response functions and

several uncertain parameters (of the order of 10 or more).

3.3.2 Monte Carlo based Methods

Monte Carlo (MC) methods are a broad class of approaches that rely on the idea of approxi-

mating statistics of the response variables of a system by simulation. Because of its simplicity,

robustness and dimension independent convergence rate, MC methods can be used to charac-

terize, in principle, any system that has a probabilistic interpretation and are often the easiest

way (sometimes the only feasible one) to solve a wide range of high-dimensional (in terms of

number uncertain parameters) problems.

Definition 11. The MC estimator EMC[Q] for the expectation E[Q] of a QoI Q(ω) =Q(u(·,ω)) is

defined as:

EMC[Q] := 1

N

N∑
i=1

Q(ω(i )) = 1

N

N∑
i=1

Q(i ), (3.13)

whereω(i ) are independent and identically distributed (iid) samples drawn from the probability

measure P and N is the number of samples.

Thanks to the Strong Law of Large Numbers [Rob04], the approximation of EMC[Q] converges

with probability one (converges almost surely) to E[Q] as N →∞ as long as Q is integrable.

Moreover, EMC[Q] is an unbiased estimator:

E[EMC[Q]] = E[Q] (3.14)

where the expectation on the left is with respect to the random sample {ω(1), · · · ,ω(N )}.

The rate of convergence of MC methods can be described by the Central Limit Theorem (CLT)

using the concept of convergence in distribution (weak convergence, size of the error with

some probability). If the variance of Q, denoted with Var [Q], is finite then the CLT asserts

that

p
N

(
EMC[Q]−E[Q]

) =⇒
√
Var [Q]N (0,1) (3.15)

as N →∞, where N (0,1) is a normal random variable with mean zero and unit variance and

=⇒ means convergence in distribution.
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From (3.15), for N large enough, we can derive confidence intervals for the estimator EMC[Q]:

∣∣EMC[Q]−E[Q]
∣∣≤Cα

√
Var [Q]p

N
with probability 1−α (3.16)

where Cα satisfies Φ(Cα) = 1− α
2 with Φ the cumulative distribution function of a standard

normal random variable .

From Eqn. (3.16) we can draw three conclusions:

• the rate of convergence of MC is O(N−1/2),

• for large N the error is normally distributed,

• the complexity of the computation depends solely on Var [Q].

For many practical applications we usually cannot access the exact evaluation of the QoI

and we generally rely on a numerical approximation with a discretization parameter M (e.g.

number of spatial degrees of freedom). Then Q will be approximated by QM = f (uM ) and the

Monte Carlo estimator for E[Q] is:

EMC[QM ] := 1

N

N∑
i=1

QM (ω(i )), (3.17)

MC Complexity Analysis

The accuracy in estimating E[Q] by EMC[QM ] can be quantified by considering the mean square

error (MSE) of the estimator hereafter denoted by MSE [·]:

MSE
[
EMC[QM ]

]
:= E[(EMC[QM ]−E[Q])2] = (E[QM −Q])2︸ ︷︷ ︸

(B-EMC)

+ Var[QM ]

N︸ ︷︷ ︸
(SE-EMC)

. (3.18)

On the right hand side in (3.18) we can isolate two distinct contributions. The first term,

the discretization error or bias (B-EMC), is the squared error in mean between QM and Q and

depends solely on the space discretization parameter M . The second term, the statistical

error(SE-EMC), represents the variance of the estimator and decays inversely with the number

of samples N .

Concerning the space discretization, we assume that we can build a sequence of (converging)

discretizations, indexed by M , for which the error decreases as M increases and the cost for

computing QM increases as M increases with algebraic rates in M .
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A1. There exist cγ,γ> 0 such that the cost to compute one realization QM (ω(i )) is:

C (QM (ω(i ))) ≤ cγMγ, (3.19)

A2. There exist cα,α> 0 such that:

|E[QM −Q]| ≤ cαM−α (3.20)

A3. Var(QM ) is approximately constant w.r.t. M

The actual rates α, γ will heavily depend on the specific problem and QoI considered, the

specific discretization and solvers used.

For instance, for a FV discretization and explicit time integrator of the Euler equations on a

uniform structured mesh with spatial mesh size h = M−1/d (M being the number of degrees

of freedom) and time step ∆t ≈ h = M−1/d , one typically has C (QM ) . h−d∆t−1 = M 1+1/d .

Similarly, for a steady state solution obtained by pseudo time stepping, we expect the number

of iterations needed to reach convergence to be proportional to some power of M leading to

C (QM ). Mγ with γ> 1.

Although theoretical rates might be available for certain classes of problems, in this work α

will always be estimated from calculations.

A sufficient condition to achieve a root mean squared error (RMSE) of order ε for the MC

estimator (3.13) is that both terms in the right hand side of (3.18) are less than ε2

2 . Hence by

choosing:

N ≈ ε−2, M ≈ ε−1/α, (3.21)

the total cost, hereafter denoted by C, of achieving a RMSE of ε is:

CMC =
N∑

i=1
C (QM (ω(i ))). ε−2−γ/α = ε−2ε−γ/α (3.22)

The two factors in (3.22) can be interpreted as follows: ε−2 is the cost to achieve a prescribed

MC error tolerance for a unitary cost per sample and ε−γ/α is the cost of each deterministic

solve on a discretization level that achieves the prescribed tolerance.

MC methods have been proven to be robust and accurate for non smooth problems, never-

theless their very slow convergence rate O(N−1/2) prevents to achieve reasonable estimations

in acceptable time for large scale problems that require the solution of computationally

expensive CFD simulations.

Different strategies have been investigated in the last decades to accelerate MC methods

either by reducing the constant
√
Var [Q] in Eq. (3.16) (variance reduction techniques) or by
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3.3. Non-intrusive approaches

improving the rate 1/
p

N (improved sampling techniques).

The latter class of approaches includes (low-discrepancy) sequences, stratified sampling or

Latin Hypercube Sampling rather than pseudo-random numbers.

Variance Reduction techniques: reduce the numerator term Var [Q] by suitably modifying

the quantity Q in a consistent way (i.e. without changing the expectation).

In the following chapter we will present the Multi Level Monte Carlo variance reduction

technique and detail its application in aerodynamic problems affected by uncertainties.
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If one has really technically penetrated a subject, things that previously seemed

in complete contrast, might be purely mathematical transformations of each other.

John von Neumann



4 Multi Level Monte Carlo Method

As presented in the previous chapter traditional Monte Carlo (MC) type sampling methods

have a dimension independent convergence rate which is not affected by the presence of

possible discontinuities in the parameter space. The very slow convergence rate of MC

methods however makes them impractical in complex applications that require accurate

solutions.

The Multi Level Monte Carlo (MLMC) method has been introduced by Heinrich [Hei98, HS99]

in the context of parametric integration and thereupon extended by Giles [Gil08] to approxi-

mate stochastic differential equations (SDEs) in financial mathematics, as a way to improve

the efficiency of MC simulations. Applications to PDE models with random parameters can be

found in [BLS13, BSZ11, CST13, CGST11, CHAN+14, TSGU13].

The key idea of MLMC is that one can draw MC samples simultaneously and independently on

several approximations of the problem under investigation on a hierarchy of computational

meshes (levels). The expectation of an QoI is computed as a sample average of coarse solutions

corrected by averages of the differences of solutions computed on two consecutive levels

in a hierarchy of computational grids. By this way, most of the computational effort can

transported from the finest level (as in a standard MC approach) to the coarsest one (Fig.4.1).

(a) MC (b) MLMC

Figure 4.1 – Difference between MC and MLMC.

Hereafter we review the Multi Level Monte Carlo (MLMC) method, provide a detailed descrip-

tion on its application on inviscid aerodynamic problems and compare with the MC method,
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on a benchmark airfoil problem affected by operating and geometric uncertainties, in terms

of accuracy and computational complexity.

4.1 Multi Level Monte Carlo

The key idea of MLMC algorithms is that one can draw MC samples simultaneously and

independently on several approximations of the problem under investigation on a hierarchy

of computational grids, called levels, with corresponding number of DOFs M0 < M1 < ... <
ML = M .

The linearity of the expectation operator suggests that the expectation of the QoI on the finest

level can be written as a telescopic sum of the expectation of the QoI on the coarsest level

plus a sum of correction terms adding the difference in expectation between evaluations on

consecutive levels:

E[QML ] = E[QM0 ]+
L∑
`=1

E[QM`
−QM`−1 ] =

L∑
`=0

E[Y`] (4.1)

with Y` =QM`
−QM`−1 and Y0 =QM0 .

Definition 12. The MLMC estimator for E[Q] is:

EMLMC[QM ] :=
L∑
`=0

1

N`

N∑̀
i=1

Y`(ω(i ,`)) =
L∑
`=0

EMC[QM`
−QM`−1 ] with QM−1 = 0 (4.2)

It is important to underline that the correction terms Y` =QM`
−QM`−1 are computed using the

same sample on both levels whereas corrections on different levels are sampled independently.

4.1.1 MLMC Complexity Analysis

The MSE of the MLMC estimator EMLMC[QM ] is given by:

e2
MLMC := E[(EMLMC[QM ]−E[Q])2] = (E[QM −Q])2︸ ︷︷ ︸

(B-EMLMC)

+
L∑
`=0

Var[Y`]

N`︸ ︷︷ ︸
(SE-EMLMC)

(4.3)

As for the MC case the MLMC error presents two contributions: the discretization error or bias

B-EMLMC that is the same as in the MC case and the statistical error SE-EMLMC (variance of the

estimator).

Again, we assume that the sequence of discretizations with parameters M0 < M1 < ... < ML = M

provides errors that decrease algebraically with M` and costs that increase algebraically in M`.

More precisely (A1 and A2 are the same as in MC, whereas A3 is replaced by Ã3):
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A1. There exist cγ,γ> 0 such that the cost C` to compute one sample QM`
at level l is:

C` =C (QM`
(ω(i ))) ≤ cγMγ

`
, (4.4)

A2. There exist cα,α> 0 such that:∣∣E[QM`
−Q]

∣∣≤ cαM−α
` (4.5)

Ã3. There exist cβ,β> 0, with α≥ min(β,γ) such that:

Var[Y`] ≤ cβM−β
`

, (4.6)

It can be shown [Gil08, TSGU13] that under these assumptions, for any ε > 0, there exist

L = L(ε), ML = M and {N`}L
`=0 such that

e2
MLMC < ε2 (4.7)

and the cost to achieve a RMSE of ε is:

CMLMC =
L∑
`=0

N`C`.


ε−2 β> γ,

ε−2(logε)2 β= γ,

ε−2−(γ−β)/α β< γ.

(4.8)

This result clearly shows the importance of the parameter β, that defines the convergence of

the variance of the consecutive differences, in reducing the overall computational cost of the

MLMC with respect to standard MC approach. Comparing (3.22) and (4.8) we immediately

see that for β> γ the computation effort will be primarily on the coarsest levels (the overall

complexity is dominated by the MC sampling on the coarse level and does not "see" the cost of

fine discretization), whereas for β< γ the primary cost will be on the finest levels and for β= γ
it will be spread across all levels. Observe that, even in the worst case β< γ, the complexity of

the MLMC method CMLMC. ε−2−(γ−β)/α improves that of MC method CMC. ε−2−γ/α. Moreover,

it is quite common in applications involving PDEs with random coefficients to have β= 2α. In

such case, the cost of a MLMC simulation for β< γ reduces to CMLMC. ε−γ/α, i.e. it compares

to the cost of a single deterministic simulation on the finest grid and does not "see" the cost of

the MC sampling.

The result (4.8) is not only a theoretical bound on the best complexity achievable with a MLMC

method, but does also provide recipes to select the maximum level L and the number of

samples per level {N`}L
`=0 to achieve a given tolerance ε. We review hereafter one such recipe

from [CHAN+14].
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4.1.2 Practical Aspects of MLMC

Instead of looking at the MSE, we can alternatively require that the MLMC estimator EMLMC[QM ]

achieves the desired tolerance ε with high probability, with a confidence (1−φ):

P
[∣∣EMLMC[QM ]−E[Q]]

∣∣> ε]≤φ, φ¿ 1. (4.9)

This will give, hopefully, a more robust estimator. Exploiting the asymptotic normality of the

estimator EMLMC[QM ] (see [CHAN+14]) we have asymptotically as ε→ 0 and with probability

(1−φ) that:

∣∣EMLMC[QM ]−E[QM ]
∣∣≤Cφ

√
Var [EMLMC[QM ]] (4.10)

where Cχ = Φ−1(1− χ
2 ) and Φ is the cumulative distribution function (CDF) of a standard

normal random variable. Therefore, with probability (1−χ), the total error can be bounded

by:

TErr := ∣∣EMLMC[QM ]−E[Q]
∣∣≤ |E[Q −QM ]|+ ∣∣EMLMC[QM ]−E[QM ]

∣∣
≤|E[Q]−E[QM ]|︸ ︷︷ ︸

B

+Cχ

√
Var [EMLMC[QM ]]︸ ︷︷ ︸

SE

(4.11)

Following [CHAN+14] we introduce a splitting parameter θ ∈ (0,1) and require in our simula-

tions that:

Bi as : B := |E[Q]−E[QM ]| ≤ (1−θ)ε, (4.12a)

St ati st i cal Er r or : SE :=Var [EMLMC[QM ]] =
L∑
`=0

Var [Y`]

N`
≤

(
θε

Cφ

)2

(4.12b)

so that (4.9) is satisfied (at least asymptotically). From (4.5), the bias constraint (4.12a) is

satisfied for:

L : ML ≥
(

(1−θ)ε

cα

)− 1
α

(4.13)

On the other hand, following the optimization argument in [Gil08] (see also [CHAN+14]) and

the Lindeberg Central Limit Theorem in the limit ε→ 0, the statistical error constraint (4.12b)

is satisfied by choosing:

N` =
⌈(

Cφ

θε

)2
√
Var [Y`]

C`

L∑
k=0

√
CkVar [Yk ]

⌉
l = 0,1, . . . ,L. (4.14)

In practice, the bias contribution B, in absence of an exact solution E[Q] of the problem under
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consideration, is approximated as:

B ≈ ∣∣EMC[QL −QL−1]
∣∣ . (4.15)

that is a reasonable estimate of the discretization error for sufficiently fine grids. In the

simulations presented hereafter we have chosen hierarchies of grids for which we could

observe a grid convergence over all levels of discretization (meaning that even the coarsest

mesh resolves the main features of the flow, see e.g. Fig. 4.6).

On the other hand, the statistical error SE (variance of the MLMC estimator Var [EMLMC[QM ]])

is estimated using the level sample variance hereafter denoted as VMC[Y`]:

Var [Y`] ≈ VMC[Y`] = 1

N`−1

N∑̀
n=1

(
Y`(ω(n,`))−EMC[Y`]

)2
(4.16)

as:

SE ≈
L∑
`=0

VMC[Y`]

N`
. (4.17)

4.1.3 MLMC for scalar field QoI

In practical aerodynamics applications we are generally interested in computing QoI Q(x,ω)

that are scalar fields defined on a certain domain D (e.g. pressure coefficient around an airfoil).

We can rewrite (4.3) for a scalar field, in which case we measure the spatial error in the L2

norm (mean-square sense):

e(EMLMC[QM ])2 :=E[‖(EMLMC[QM ]−E[Q])‖2
L2(D)]

=‖E[QM −Q]‖2
L2(D)︸ ︷︷ ︸

(B-EMLMC)

+
L∑
`=0

1

N`
‖Var[Y`]‖L1(D)︸ ︷︷ ︸
(SE-EMLMC)

. (4.18)

with Y` =QM`
(x,ω)−QM`−1 (x,ω).

By doing so we require that:

Bi as : B := ‖E[QM −Q]‖L2(D) ≤ (1−θ)ε, (4.19a)

St ati st i cal Er r or : SE :=Var [EMLMC[QM ]] =
L∑
`=0

‖Var[Y`]‖L1(D)

N`
≤ θ(2−θ)ε2, (4.19b)

so that the MSE ≤ ε2. The parameter θ prescribe the splitting between bias and the statistical

error contributions in the total error. In our applications we choose to prescribe the same

importance to both contributions, hence θ = 0.5.
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Following the same optimization argument used for scalar QoI, it is possible to compute the

optimal number of samples per level as:

N` =
⌈(

1

θ(2−θ)ε2

)√
‖Var[Y`]‖L1(D)

C`

L∑
k=0

√
Ck‖Var[Y`]‖L1(D)

⌉
(4.20)

and the cost of the algorithm with optimal choice of {N`}L
`=0 becomes:

C(εi ,θ,L) =
(

1

θ(2−θ)ε2

)(
L∑
`=0

√
C`‖Var[Y`]‖L1(D)

)2

. (4.21)

4.1.4 MLMC Algorithm

Given a hierarchy of discretizations with M0 < M1 < . . . , from the practical point of view the

standard MLMC algorithm is generally composed of four steps:

1. Theoretical or computational estimation of the problem dependent rates and constants

P = {
cα,α,cβ,β,cγ,γ

}
2. Estimation of Var [Y`] .

3. Estimation of the optimal number of levels L from (4.13) and samples per level N` from

(4.14)

4. Run the hierarchy {0, . . . ,L} with {N`}L
`=0

The splitting parameter is usually taken as θ = 1
2 .

Theoretical estimates for the parameters α and β exist for certain classes of PDEs with random

parameters [BSZ11, CGST11, BLS13, CST13] and depend on the smoothness of the data of

the problem as well as the smoothing proprieties of the differential operator. Conversely the

parameter γ depends on the efficiency of the deterministic solver. For CFD applications as

those addressed in this work, which may feature flows with shocks and for which theoretical

rates might be difficult to establish or might not be available, the rates α, β, γ can always be

estimated numerically. It is worth underlying the importance of estimating numerically also

the constants cα, cβ, cγ as they enter in the choice of the optimal parameters L, {N`}L
`=0, and

affect the total cost of the MLMC algorithm.

The common practice is to compute the rates and the constants by performing an initial

screening over the first few levels {0, . . . ,L} with a predefined number of samples and fit the

rates and constants via a least squares procedure. Here the bias E[Q −QM`
], l = 1, . . . , can be

estimated e.g. by EMC[QM`
−QM`−1 ] and the variance of the differences Var [Y`] by the sample

variance formula on QM`
−QM`−1 .

50



4.1. Multi Level Monte Carlo

Once the set of parameters P is determined from this screening phase, the number of levels

L and the number of samples per level N` can be computed from (4.13) and (4.14) and the

MLMC algorithm on the whole hierarchy 0, . . . ,L can be run and should provide an error

smaller than ε with probability at least 1−φ.

Hereafter we present a modular MLMC algorithm (Algorithm 1) capable of efficiently propa-

gate operating and geometric uncertainties in internal and external aerodynamics problems.

Algorithm 1: Multi Level Monte Carlo with Screening.

SCREENING(N , L)
for `= 0 : L do

for i = 0 : N do
Generate random samples: O(ω(i ,`)) , G(ω(i ,`))
Q(i )

M`
← PROBLEM` (O(ω(i ,`)) , G(ω(i ,`)))

Q(i )
M`−1

← PROBLEM`−1 (O(ω(i ,`)) , G(ω(i ,`)))

Y (i )
`

=Q(i )
M`

−Q(i )
M`−1

estimate {C`} , {|E[Y`]|}, {Var[Y`]} using (4.16)
compute P = {cα,cβ,cγ,α,β,γ} using least squares fit
compute L using (4.13) and N` using (4.14)
return L, {N`}L

`=0

MLMC(L, {N`}L
`=0)

for l = 0 : L do
for i = 0 : N` do

Generate random samples: O(ω(i ,`)) , G(ω(i ,`))
Q(i )

M`
← PROBLEM` (O(ω(i ,`)) , G(ω(i ,`)))

Q(i )
M`−1

← PROBLEM`−1 (O(ω(i ,`)) , G(ω(i ,`)))

Y (i )
`

=Q(i )
M`

−Q(i )
M`−1

compute EMC[Y`]
estimate {|E[Y`]|}, {Var[Y`]} using (4.16) and B using (4.15)

compute TErr= B+Cχ

√∑L
`=0

Var [Y`]
N`

return EMLMC[QM ] =∑L
`=0E

MC[Y`], TErr

Algorithm 1 returns the MLMC estimation EMLMC[QM ] of the expected value of the QoI as well

as an estimation of the associated error TErr= B+Cχ

p
SE.

The notation PROBLEM` denotes a general ’black-box’ solver that computes the QoI of the

problem under investigation given a set of input values at the grid discretization level l . We

denote with O(ω(i ,`)) and G(ω(i ,`)) respectively, the sets of operating and geometric random

input parameters that are provided to the black-box solver. These two sets of input parameters

require a different treatment when we consider CFD problems solved using finite volumes (FV)

methods. The operating O(ω(i ,`)) uncertainties are simply input values for boundary condition

(e.g. far-field Mach number, turbulence intensity, angle of attack), while the geometric ones
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Chapter 4. Multi Level Monte Carlo Method

G(ω(i ,`)) require a grid deformation procedure to adapt the deformation of the boundary

affected by uncertainty.

4.2 MLMC for UQ in Inviscid Aerodynamics

4.2.1 Euler Equations

In this section we consider compressible inviscid flows modeled by the 2D Euler equations in

conservative form as presented in Chapter 2.1.2. The 2D Euler equations are discretized on an

unstructured grid using dual grid (cell-vertex scheme) based finite volume method (Fig.4.2).

The discretized equations are advanced in time using explicit multistage scheme (Runge-

Kutta). Local time-stepping and geometric multi-grid are used for convergence acceleration

to the steady-state solution.

b

b

b b

bbb

b
Ωi

i

j

nij

Figure 4.2 – Primal mesh (black) and control volumes in the dual mesh (blue).

For the purpose of this study, the convective flux will be calculated using a second-order

JST [JST81] scheme for its satisfactory capability in capturing shock waves, a fairly rapid

convergence to steady state and robustness also on coarse grids. The latter is a substantial

feature required for a black box solver to be employed in combination with MLMC. The

efficiency and accuracy of the entire algorithm rely on the hypothesis that the deterministic

error monotonically decays when refining the grid (Eq. (4.5)). It is worth underlining that,

in this chapter, we deliberately choose flow problems modeled by Euler equations because

we can assume, without loss of generality, that the deterministic error in approximating

the QoI under investigation and the variance of Y` =QM`
−QM`−1 decay while refining the

computational grid. The former assumptions can also be applied to flow problems modeled

by Navier-Stokes equations in turbulence regimes, however it is more difficult to ensure a

decay in Var[Y`] and we postpone this discussion in the following section.

As black box solver for our simulations we use the Stanford University Unstructured (SU2)
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4.2. MLMC for UQ in Inviscid Aerodynamics

[PEA+14, PCA+13] computational environment because of its flexibility and capability of being

interfaced with the MLMC algorithm libraries we implemented in PythonTM.

In the following sections we apply the above presented methodology to propagate operating

and geometric uncertainties on 2D transonic airfoils. We consider the symmetric NACA 0012

airfoil and the NASA SC(2)-0012 affected by operating uncertainties due to atmospheric vari-

ability of the surrounding flow and geometric uncertainties due to manufacturing tolerances

and fatigue.

4.2.2 MLMC Grid Hierarchy

As previously stated the MLMC methodology is based on the idea of drawing MC samples on a

hierarchy of computational grids (levels). For inviscid problems, there are no restrictions on

the type of grids or the strategy used to refine them. The only requirement is a grid convergence

over all levels of discretization (meaning that even the coarsest mesh resolves the main features

of the flow affecting the QoI under investigation, see e.g. Fig. 5.16).

Depending on the type of application and the QoI under investigation we might build a

hierarchy of nested computational grids (Fig. 4.3) or refine only a specific boundary (Fig. 4.4)

and re-mesh the domain to economize the total number of grid nodes and at the same time

increase the accuracy in approximating the solution and hence the QoI.
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Figure 4.3 – Nested computational grids; close up view of the leading edge of an airfoil.
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Figure 4.4 – Grids adapted around the airfoil boundary.
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4.2.3 Inviscid transonic test cases: NACA 0012 and NASA SC(2)-0012

In this section we consider the two-dimensional NACA 0012 and the supercritical NASA SC(2)-

0012 airfoils in transonic (Mach M = 0.8) inviscid flow affected by operating and geometric

uncertainties. The former airfoil is known to present a strong shock on the suction side and a

weaker shock on the pressure one, while the latter was designed to delay and alleviate the effect

of wave drag in the transonic speed range. With a flattened upper surface, highly cambered

aft section and a larger leading edge radius, compared to the NACA 0012 airfoil, the NASA

SC(2)-0012 is able to reduce the acceleration of the incoming flow around the surface of the

airfoil and hence weaken the shock wave on the suction side and postpone the shock on the

pressure side (Figure 4.5).

We investigate the effects of geometric and operating uncertainties on the pressure coefficient

Cp profile around the two airfoils using the above introduced MLMC algorithm.

Operational and Geometrical Uncertainties: In the following simulations we consider a

total of 14 uncertain parameters (4 operating and 10 geometric). The nominal values and the

range of uncertainties considered are listed in Table 4.1. All parameters are described with

truncated normal distributions that we identify with TN (µ,σ, a,b), where µ is the location or

mean, σ is the standard deviation, a is the maximum allowed value and b is the minimum one

(in percent with respect to the nominal value). The notation y ∼TN (µ,σ, a,b) denotes a r.v.

with a density function:

p(y) =


0 y < a

1
z

1p
2πσ

e−
(y−µ)2

2σ2 a ≤ y ≤ b and z = ∫ b
a

1p
2πσ

e−
(y−µ)2

2σ2 d y

0 y > b.

(4.22)

The nominal geometric parameters correspond to the PARSEC [Sob98] coefficients of the

NACA 0012 and NASA SC(2)-0012 respectively (see 2.4.3 for a detailed description of the

PARSEC parametrization).

Grid Hierarchy Hereafter we employ a hierarchy composed of 6 hybrid-element O-grids

that wraps around the surface of the airfoils. Quadrilaterals are used in the region adjacent to

the airfoil surface and triangles in the remaining portion of the domain. The first three grid

levels and corresponding deterministic solutions are presented in the following figures (Figure

4.6). We observe that the coarse solutions are only able to capture global flow features and

cannot identify accurately the shock position but are monotonically converging to the exact

solution while refining the grid. At each level we doubled the number of airfoil nodes and

halved the distance of the first grid point from the airfoil surface.
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(b) NASA SC(2)-0012.
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compared with the NASA SC(2)-0012 (black solid lines).

Figure 4.5 – Deterministic solutions for the NACA 0012 and NASA SC(2)-0012 airfoils at M = 0.8.

The number of cells of each grid level and the average computational time needed to achieve

a reduction of the residual of six orders of magnitude in a single run are presented in the

following Table 4.2. We used the same computational grid hierarchy for both airfoils and just

adapted the inner boundary to accommodate the different airfoil shape.

Propagation of Uncertainties We consider three sets of simulations with an increasing num-

ber of uncertainties. First we propagate only operating uncertainties (4 uncertain parameters),

then only the geometric (10 uncertain parameters) and finally all at the same time (14 uncer-

tain parameters). As QoI for our simulations we consider the pressure coefficient Cp around

the profile.
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Name Nominal value Uncertainty

Operational

T∞ Tn = 288.15 [K ] T N (Tn ,2%,110%,90%)
p∞ pn = 101325 [N /m2] T N (pn ,2%,110%,90%)
α αn = 1.25◦ T N (αn ,1%,110%,90%)
M Mn = 0.8 T N (Mn ,2%,110%,90%)

Geometrical

NACA 0012 NASA SC(2)-0012
Rp 0.01458398 0.01710688 T N (RPn ,2.5%,110%,90%)
RS 0.01458398 0.01710689 T N (RSn ,2.5%,110%,90%)
XP 0.30049047 0.39738704 T N (XPn ,2.5%,110%,90%)
XS 0.30049047 0.3973871 T N (XSn ,2.5%,110%,90%)
YP −0.05994286 −0.06064754 T N (YPn ,2.5%,110%,90%)
YS 0.05994286 0.06064754 T N (YSn ,2.5%,110%,90%)
CP 0.44213792 0.43927873 T N (CPn ,2.5%,110%,90%)
CS −0.44213792 −0.43927868 T N (CSn ,2.5%,110%,90%)
θP 8.3763395 10.27242132 T N (θPn ,2.5%,110%,90%)
θS −8.3763395 −10.27241363 T N (θSn ,2.5%,110%,90%)

Table 4.1 – Operational and Geometrical parameters and uncertainties for the NACA 0012 and NASA
SC(2)-0012 problems.
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Figure 4.6 – Grids and realizations for the first three levels in the MLMC hierarchy for the NACA 0012
airfoil.

In the following figures we present respectively the results with only geometric uncertainties

(Figure 4.7) and with all uncertainties (Figure 4.8).
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LEVEL Airfoil nodes Cells Avg. Real Computational Time [s] (CPU)
L0 41 6943 12.4 (32)
L1 81 11115 20.9 (38)
L2 161 19385 26.9 (44)
L3 321 36251 71.1 (50)
L4 641 71477 231.15 (56)
L5 1281 145005 422.0 (64)

Table 4.2 – MLMC grid hierarchy for the NACA 0012 and NASA SC(2)-0012 cases.

Figure 4.7 – Mean Cp profile and a band of uncertainty that corresponds to one standard deviation
(68.27%) for the NACA 0012 and NASA SC(2)-0012 airfoils affected by 10 geometric uncertainties (Rp ,
RS , XP , XS , YP , YS , CP , CS , θP , θS ).

As one should expect, we witness a larger effect on the pressure profile when we consider all

the uncertainties. It is interesting to observe a larger variability for the NACA 0012 in the shock

position on the upper side to the airfoil.

The flattened upper surface together with a larger leading edge radius of the NASA SC(2)-0012,

by reducing the acceleration of the incoming flow before the shock region, seems to reduce

the effect of the operating and geometric uncertainties in affecting the shock position on the

suction side.

In the case with operating and geometric uncertainties (Figure 4.8) we also recognize a benefi-

cial effect of the shape of the supercritical airfoil in reducing the variability on the pressure

side (Figure 4.8).
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Figure 4.8 – Mean Cp profile and a band of uncertainty that corresponds to one standard deviation
(68.27%) for the NACA 0012 and NASA SC(2)-0012 airfoils affected by 4 operating (M , α, T∞, p∞) and
10 geometric uncertainties (Rp , RS , XP , XS , YP , YS , CP , CS , θP , θS ).

Computational Complexity of MLMC and MC We now compare the computational cost

required to achieve a prescribed tolerance using the MLMC algorithm presented above and

the MC method.

First we report the set of rates and constants P = {cα,cβ,cγ,α,β,γ} computed using least

square fit during the screening phase of the MLMC algorithm for the three sets of simulations

with an increasing number of uncertainties. In the last two rows of the table we provide a

theoretical estimation (up to a constant C ) of the cost in function of the tolerance for MLMC

(see Eq. (4.8))and MC (see (3.22)).

Operating (4) Geometric (10) Operating + Geometric (14)

cα 19.65 1652.07 344.91
α 0.67 1.09 0.97

cβ 1474.09 8.27 16456.48
β 1.32 0.87 1.57

cγ 0.001
γ 1.49

CMLMC(ε) C ·ε−2.25 C ·ε−2.56 C ·ε−1.91

CMC(ε) C ·ε−4.22 C ·ε−3.36 C ·ε−3.53

Table 4.3 – MLMC computed rates and constants for the weak error, strong error and computational
cost and theoretical cost models for MLMC and MC methods (obtained with a screening of 100 samples
on 4 levels) for the airfoil problem with increasing number of uncertain parameters.
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By looking at Table 4.3 and the left plot in Figure 4.9, we can observe a significant reduction in

computational complexity of MLMC with respect to MC.

As theoretically predicted in Eq. (4.8), we observe that, for the MLMC method, the total cost

required to achieve a RMSE of ε in the case of β< γ (rate of decay of ‖Var[Y`]‖L1(D) smaller

than the growth rate of the cost to compute one sample at level l ) is proportional to ε−2−(γ−β)/α;

on the other hand, for the MC method, as presented in Eq. (3.22), the total cost is proportional

to ε−2−(γ/α).
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Figure 4.9 – Levels and samples per level N` required to achieve a relative tolerance of 0.01 on the total
error for the Cp profile for the three NACA 0012 uncertainty scenarios.

The levels and number of samples per lever required to achieve a relative tolerance εr = 0.01 for

the case with 4 operating and 14 operating and geometric uncertain parameters are reported

in the right plot on Figure 4.9 together with the number of MC samples required to achieve the

same accuracy. By looking at the latter we can further appreciate the competitive advantage of

MLMC with respect to the MC method: the largest number of simulations are performed on

coarse grids and just few samples are drawn on the finest levels.

4.3 Disadvantages of Standard MLMC

In the previous sections we presented the MLMC approach and an efficient procedure to

perform UQ in aerodynamics problems affected by operating and geometric uncertainties.

The numerical example presented above provides clear indications of the computational

reduction that can be achieved with MLMC with respect to MC.

The main disadvantage of the above presented procedure is that in order to compute the

optimal number of levels and samples per levels required to achieve a prescribed tolerance we
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are required to perform a screening.

For computationally expensive problems, this screening phase, usually not accounted for

in the literature in the total cost analysis of MLMC algorithm, can be quite time consuming.

In particular, if L and N (number of screening levels and samples) are chosen too large the

screening phase might turn out to be more expensive than the overall MLMC simulation

on the optimal hierarchy {0, . . . ,L}. On the other hand, if N and L are chosen too small, the

extrapolation of the convergence ratesα and βmight be quite unreliable leading to a hierarchy

that is not appropriate to achieve a prescribed tolerance or that is far from optimal.

In the next chapter we present an adaptive version of the MLMC, named Continuation-MLMC

that overcomes this problem.
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To overcome the limitations of the standard MLMC algorithm highlighted in the previous

chapter concerning the screeening phase and the estimation of the set of parameters P =
{cα,cβ,cγ,α,β,γ}, that directly affect the computational complexity and the accuracy of the

method (through the appropriate choice of levels and samples per level required to achieve a

prescribed tolerance), we consider here the Continuation Multi Level Monte Carlo (CMLMC)

algorithm proposed in [CHAN+14] and we propose an extension to perform uncertainty quan-

tification in inviscid and viscous aerodynamic problems affected by operating and geometric

uncertain parameters.

5.1 The C-MLMC Method

The key idea of CMLMC is to solve for the QoI with a sequence of decreasing tollerances

ε0 > ε1 > ε2 > ·· · > εMεMεM and progressively improve the estimation of the problem dependent

parameters P that directly control the number of levels and samples per level.

5.1.1 C-MLMC Iterative Procedure

The sequence of decreasing tolerances is constructed as:

εi =
{

(r iE−i
1 r−1

2 )εMεMεM i < iE

(r iE−i
2 r−1

2 )εMεMεM i > iE
(5.1)

where r1,r2 > 1 are parameters that control the computational load and the tolerance decrease

from the initial tolerance ε0 to the desired final one εMεMεM .

The first few iterations i < iE are needed to obtain increasingly accurate estimates of the

problem dependent parameters P while the iterations i > iE prevent redundant computations

due to fluctuations in the estimates of P by solving the problem for a slightly smaller tolerance

than the desired one εMεMεM .
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In (5.1) iE is chosen as

iE =
⌊−log (εMεMεM )+ log (r2)+ log (ε0ε0ε0)

log (r1)

⌋
(5.2)

and corresponds to the iteration at which the problem is solved with tolerance εiE = r−1
2 εMεMεM .

At the i -th iteration of the C-MLMC algorithm, in the presence of an estimate of P ={
cα,α,cβ,β,cγ,γ

}
, C` andVar [Y`], we compute the optimal number of levels, with prescribed

tolerance εi , by solving the following discrete optimization problem and by exhaustive search:

(Li ,θi ) = argmin
L∈[Li−1,...,LM AX ],θ∈(0,1)

s.t . cαM−α
L =(1−θ)εi

CMLMC(εi ,θ,L) (5.3)

using the cost model:

CMLMC(εi ,θ,L) =
(
Cφ

θεi

)2
(

L∑
`=0

√
C`Var [Y`]

)2

(5.4)

obtained with an optimal choice of N`:

N` =
⌈(

Cφ

θε

)2
√
Var [Y`]

C`

L∑
k=0

√
CkVar [Yk ]

⌉
l = 0,1, . . . ,L. (5.5)

It is worth underline that P = {
cα,α,cβ,β,cγ,γ

}
are obtained via a least square procedure

using the samples computed at the previous iterations of the C-MLMC. On the other hand, C`

and Var [Y`] are the actual computed average cost and variance of difference on the levels.

Notice that the constraint cαM−α
L = (1−θ)εi in (5.3) represents the bias constrain and allows

to determine θ as a function of L (and εi ):

θ(εi ,L) = 1− cαM−α
L

εi
(5.6)

Indeed, since cαM−α
L can take only discrete values, for each L that satisfies the bias constraint

B ≤ εi , it is worth taking the largest possible θ = 1− B
εi

so as to relax as much as possible the

statistical error constraint

Var [EMLMC[QM ]] ≤
(
θεi

Cφ

)2

(5.7)

and reduce the overall computational cost. Problem (5.3) is a discrete optimization problem

and can be easily solved by an exaustive search.
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5.1.2 Practical Aspect of C-MLMC

The pivotal feature of the CMLMC with respect to standard MLMC algorithm is that the

parameter set P is computed on-the-fly and updated at each iteration of the algorithm. The

estimation of the parameters that describe the cost (cγ,γ) and the bias (cα,α) is relatively

straightforward since these quantities can be estimated with just few realizations per level. In

practice, on each level, the cost C` is estimated by averaging over the samples the time needed

to obtain a single realization, and the discretization error is estimated as :

B` ≈
∣∣EMC[Q`−Q`−1]

∣∣ . (5.8)

Then a least squares fit over the levels is done to estimate (cγ,γ) and (cα,α).

The estimation of the variances Var [Y`], on the other hand, can be quite inaccurate with a

small sample size. In a standard MLMC such variances are usually computed using a sample

variance estimator VMC[Y`]:

Var [Y`] ≈ VMC[Y`] = 1

N`−1

N∑̀
n=1

(
Y`(ω(n,l ))−EMC[Y`]

)2
(5.9)

At the deepest levels usually we do not have enough realizations to accurately compute VMC[Y`]

(asymptotically accurate only as N` → ∞ ) and estimate the sample sizes N` for the next

iteration, as well as the parameters (cβ,β) needed to extrapolate Var [Y`] and hence N` on

new levels that are added at the next iteration.

5.1.3 Bayesian Update

Collier et al. [CHAN+14] presented an intuitive methodology based on Bayesian updates that

use samples generated on all levels to locally improve the estimation of Var [Y`] using the

bias model E[Y`] ≈ µ̂` := cαM−α
`

and variance model Var [Y`] ≈ λ̂−1
`

:= cβM−β
`

with cα,α,cβ,β

estimated from the previous iteration of the CMLMC algorithm.

The intuitive idea is to describe Y` as a Gaussian random variable N (µ`,λ−1
`

) and perform a

Bayesian update of µ` and λ` based on the collected values Y`(ω(n,l )) and a Normal-Gamma

prior distribution N G (µ̂`,k0,k1λ̂`+1/2,k1) 1 which has maximum in (µ̂`, λ̂`). k0 and k1

are two parameters that represent our "certainty" on µ̂` and λ̂−1
`

. Notice that k0 is non-

dimensional while k1 has the dimension of Var [Q]. Therefore, it is convenient to express k1

in relative terms as k1 = k̃1/Var [QM ], with k̃1 non-dimensional.

1The normal-gamma distribution is a bivariate four-parameter family of continuous probability distributions.
It is the conjugate prior of a normal distribution with unknown mean and precision. Its joint probability density

function is defined as: N G (x,τ|µ,λ,α,β) = βα
p
λ

Γ(α)
p

2π
τα−1/2e−βτe−

λτ(x−µ)2

2 .
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The choice of a Normal distribution to model Y` and a Normal-Gamma prior are for conve-

nience. The Normal distribution depends only on the first two moments so we can rely on

the mean and variance models estimated during the iterations of the algorithm. On the other

hand, the Normal-Gamma prior is conjugate to the Normal distribution (with unknown mean

and precision) and allows to obtain simple and closed formulas to update the parameters.

Indeed, the posterior is also a Normal-Gamma, with maximum at

µM AP
` = N`E

MC[Y`]+k0µ̂`

k0 +N`
and λM AP

` = Ξ1,`− 1
2

Ξ2,`
(5.10)

with:

Ξ1,` =
1

2
+ k̃1λ̂`+

N`

2
, (5.11a)

Ξ2,` = k̃1 + N`−1

2
VMC[Y`]+ k0N`(EMC[Y`]− µ̂`)2

2(k0 +N`)
. (5.11b)

The resulting update formula for Var [Y`] ≈λ−1
`

is then:

VC[Y`] := Ξ2,`

Ξ1,`− 1
2

l > 0 (5.12)

We can easily show that:

N`→∞ =⇒ VC[Y`] → 1

N`−1

N∑̀
n=1

(
Y`(ω(n,l ))−EMC[Y`]

)2
(5.13)

thus recovering the sample variance estimator, whereas

N` = 0 =⇒ VC[Y`] = 1

λ̂`
= cβM−β

`
(5.14)

thus using just the prior model with fitted parameters (cβ, β).

Thanks to the Bernstein–von Mises theorem [VdV00] the posterior distribution becomes

effectively independent of the prior distribution once the amount of information supplied by

a sample of data is large enough.

Finally, following the above arguments, we approximate the variance of the MLMC estimator

as:

Var [EMLMC[QM ]] =
L∑
`=0

Var [Y`]

N`
≈

L∑
`=0

VC[Y`]

N`
(5.15)
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and the total MSE as:

e(EMLMC[QM ]) ≈ EMC[YL]2 +
L∑
`=0

VC[Y`]

N`
. (5.16)

5.1.4 C-MLMC Algorithm

The resulting algorithm is described in Algorithm 2.

Algorithm 2: Continuation Multi Level Monte Carlo.

CMLMC( N , L, LM AX , k0, k1, r1, r2, ε, ε0)
for l = 0 : L do

for i = 0 : N do
Generate random samples: O(ω(i ,`)) , G(ω(i ,`))
Q(i )

M`
← PROBLEM` (O(ω(i ,`)) , G(ω(i ,`)))

Q(i )
M`−1

← PROBLEM`−1 (O(ω(i ,`)) , G(ω(i ,`)))

Y (i )
`

=Q(i )
M`

−Q(i )
M`−1

compute {C`} ,
{∣∣EMC[Y`]

∣∣},
{
VMC[Y`]

}
compute P = {cα,cβ,cγ,α,β,γ} by least squares fit
compute VC[Y`] using (5.12) on all levels l = 0, · · · ,LM AX

compute Iε(ε,ε0,r1,r2) using (5.2)
while i <Iε or TErr> ε do

update εi = εi−1
r1

compute Li (LM AX ,εi ,cα,α,
{
VC[Y`]

}
, {C`}) using (5.3) and θi = 1− cαM−α

L
εi

for l = 0 : Li do
compute N`(εi ,VC[Y`],γ,cγ,θi ) using (5.5)
for i = 0 : N` do

Generate random samples: O(ω(i ,`)) , G(ω(i ,`))
Q(i )

M`
← PROBLEM` (O(ω(i ,`)) , G(ω(i ,`)))

Q(i )
M`−1

← PROBLEM`−1 (O(ω(i ,`)) , G(ω(i ,`)))

Y (i )
`

=Q(i )
M`

−Q(i )
M`−1

update {C`}Li

`=0 ,
{∣∣EMC[Y`]

∣∣}Li

`=0,
{
VMC[Y`]

}Li

`=0

update EMLMC[QM ] =∑L
`=0E

MC[Y`]

compute (cα,α) ← {∣∣EMC[Y`]
∣∣}Li

`=0 using least squares fit

compute (cγ,γ) ← {C`}Li

`=0 using least squares fit

compute (cβ,β) ← {
VMC[Y`]

}Li

`=0 using least squares fit
update P = {cα,cβ,cγ,α,β,γ} and VC[Y`] using (5.12)
estimate B using (5.8) and Var [EMLMC[QM ]] using (5.15)
compute TErr= B+Cφ

√
Var [EMLMC[QM ]]

i = i+1
return EMLMC[QM ], TErr
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5.2 C-MLMC for UQ in Inviscid Aerodynamics

In this section we consider two relevant compressible aerodynamics model problems: a

quasi 1D convergent-divergent Laval nozzle and the 2D transonic RAE-2822 airfoil affected by

operating and geometric uncertainties.

5.2.1 Quasi-1D Model Problem: Flow in a Laval nozzle

For the Laval nozzle we employ the quasi-1D version of the Euler equations presented in

Chapter 2.1.2. For the sake of explanation we report the vector of state variables
−→
W , the

convective flux
−→
F and the source term

−→
Q :

W =


ρA

ρu A

ρE A

 , f I =


ρu A

(ρu2 +p)A

u(ρE +p)A

 , Q =


0

p d A
d x1

0

 (5.17)

In (5.17), A denotes the area of the nozzle, ρ, u and p the density, the velocity and the pressure

of the fluid respectively and E is the total energy.

Since we are considering a quasi-1D problem, each grid node in the computational grid is

associated with a certain area.

A1

A2

Ai+1/2

i

xtConverging Section Diverging Section

Chamber Ambient

Throat

p1  T1 p2 

Figure 5.1 – Geometry and discretization of the convergent-divergent nozzle.

The area distribution over the x-axis corresponds to the Laval nozzle (Fig. 5.1) and it is
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calculated using the relations:

A(x) = 1+ 1

2
(A1 −1)

{
1+ cos

(
πx

xt

)}
0 ≤ x ≤ xt (convergent section)

A(x) = 1+ 1

2
(A2 −1)

{
1− cos

[
π(x −xt )

1−xt

]}
xt ≤ x ≤ 1 (divergent section)

(5.18)

We employ a central scheme with scalar artificial dissipation that computes the convective

fluxes at a face of the control volume from the arithmetic average of the conservative variables

on both sides of the face; to avoid overshoots at shocks, artificial dissipation, similar to the

viscous fluxes, has to be added for stability [JST81]. We choose this simple but efficient

approach, compared to other discretization methods, for its robustness also on coarse grids.

We specifically consider the case of a nozzle with a normal shock in the divergent section

(Laval nozzle flow). The flow accelerates out of the chamber through the converging section

and reaches its maximum subsonic speed at the throat (X t ). After the throat the flow becomes

supersonic, the Mach number increases and the pressure decrease as the area increases

downstream. A normal shock forms in the duct, at Xs , and produces a near-instantaneous

deceleration of the flow to subsonic speed. The subsonic flow then decelerates through the

remainder of the diverging section, the Mach number decreases and pressure increases as the

area increases, and exhausts as a subsonic jet.

Operational and Geometrical Uncertainties: Table 5.1 summarizes the physical and geo-

metrical reference parameters and the uncertainties considered for the nozzle problem. The

uncertainty on the different parameters is modeled as a truncated Gaussian random variable

(see definition in Eq. (4.22)).

Name Nominal value Uncertainty

Operational

P1 P1n = 1.8e5 [Pa] T N (P1n ,2%,110%,90%)
T1 T1n = 288 [K ] T N (T1n ,2%,110%,90%)
p2 p2n = 1.0e5 [Pa] T N (p2n ,2%,110%,90%)
cp cpn = 1005 [J/(kg K )] −
γ γn = 1.4 −

Geometrical

A1 A1n = 1.5 [m2] T N (P1n ,2%,110%,90%)
A2 A2n = 2.0 [m2] T N (P1n ,2%,110%,90%)
X t X t2n = 1/3 [m] −

Table 5.1 – Operational and Geometrical parameters and uncertainties for the Laval nozzle problem.

C-MLMC Settings and Grid Hierarchy: In the following simulations we consider a scalar

QoI, the shock location Xs , and a scalar field QoI, the Mach profile inside the nozzle M(x).
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Fig. 5.2 shows the Mach and pressure profile inside the Laval nozzle for the physical and

geometrical deterministic reference conditions and the location of the shock (Xs) in the

divergent section.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.5

1.0

1.5

2.0

M

Xs = 0.8481

0

20000

40000

60000

80000

100000

120000

140000

160000

p
[P

a]

Figure 5.2 – Deterministic solution (2051 uniform grid nodes) of the Laval nozzle with a normal shock
in the diverging section (Xs = 0.8481).

The hierarchy used for this problem is made up of 7 nested grid levels generated by doubling

the number of nodes starting from the first level composed of 35 nodes:

N` = N0 ∗2l with N0 = 35 (5.19)

The number of nodes and the average computational time needed to achieve a reduction of

the residual of six order of magnitude in a single run are presented in the following Table 5.2.

LEVEL Nodes C T i me[s]
L0 35 0.025
L1 70 0.057
L2 140 0.19
L3 280 0.73
L4 560 2.94
L5 1120 11.5
L6 2240 49.1
L7 4480 147.4

Table 5.2 – MLMC 7-levels grid hierarchy for the nozzle problem.

We prescribe a confidence of 10 % in the weak and strong error models with respect to the

sampled ones (parameters k0 = 0.1 and k1 = 0.1). The parameters that define the computa-
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tional load and the tolerance decrease from the initial to the final tolerance are presented in

the following Table 5.3 for the two QoI considered in this test case.

Parameters QoI Xs QoI M(x)

r1 1.5 1.5
r2 1.15 1.15
ε0 0.5 0.5
εM 0.001 0.01
iE 15 9
k0 0.1 0.1
k1 0.1 0.1

Table 5.3 – Setting for the C-MLMC algorithm for the computation of the scalar QoI Xs and the scalar
field QoI M(x) in the Laval nozzle test case.

The parameter r1 = 1.5 has been chosen so that the cost of the MLMC increases of about 50%

going from tolerance εi to εi+1 < εM . The parameter r2 = 1.15 corresponds to a cost increase

of about 15% at the final iteration.

Propagation of Uncertainties with C-MLMC - scalar QoI Hereafter we present the results

using the C-MLMC method in computing the position of the shock in the divergent section of

the nozzle.

The shock position Xs is computed as the mid-point between the location of the maximum

positive and negative variation in the Mach number between two consecutive grid points

(Figure 5.3):

Xs = 1

2

(
Xd M+ +Xd M−

)
(5.20)

Xd M+ = arg max
xi

(M(xi )−M(xi+1)) i = 0, . . .n −1

Xd M− = arg min
xi

(M(xi )−M(xi−1)) i = 1, . . .n
(5.21)

In Fig.5.4 and Fig.5.5 we present few iterations of the C-MLMC algorithm for the approximation

of the expectation of the shock location in the nozzle with operating uncertainties (P1, T1 and

p2). The first column in Fig.5.4 shows the estimated bias B (Eq. (5.8)) of the estimator and the

corresponding least squares (LS) fit model. In the second column we show the sample variance

of Y` (in red), its LS fit model (dashed blue line) and the Bayesian updated variance model
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Figure 5.3 – Mach number inside the nozzle (black line), Xd M+ (blue circle, maximum of the blue line
(M(xi )−M(xi+1)), Xd M− (red circle, minimum of the red line (M(xi )−M(xi−1)) and approximate shock
position Xs (green square) for different levels.
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Figure 5.4 – C-MLMC iterations (0, 10, 13 and the final 14) for the estimation of E[Xs ] (3 operating
uncertainties, final relative tolerance εr = 0.001). The columns represent, from left to right, the bias,
variance of Y` and cost per level.

VC[Y`] (green line); the fitted asymptotic rate β≈ 2 is consistent with a first order discretization

scheme. The third column displays the cost required to compute one sample at a specific level.

Fig.5.5 shows the number of samples per level prescribed at each iteration of the C-MLMC
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Figure 5.5 – C-MLMC levels and samples per level for iterations 0, 10, 13 and the final 14 for the
estimation of E[Xs ].

algorithm with decreasing tolerance. At the final iteration we also compute the decay rate of

the number of samples N` with the level l , N` ≈ CΥlΥ and check that it corresponds to:

Υ≈ 1

2

(
γ+β)

(5.22)

The first remarkable feature that we can observe in Fig.5.4 is the robustness of the algorithm

in predicting the variance of Y` also with a small number of samples at the finest levels.

As already mentioned in the previous section, estimating Var [Y`] using the sample variance

can be quite inaccurate with a small number of samples. As a result of that, an over estimation

of β and cβ, would result in a smaller number of samples per level than the ones needed

to achieve a prescribed tolerance while an under estimation of them would imply a larger

number of samples and hence a higher cost. The customary screening phase that precedes

a standard MLMC can be the perilous step in the entire UQ analysis and can jeopardize the

theoretical achievable speedup of MLMC with respect to MC or under-predict the final error

thus failing to achieve prescribed tolerance requirements.

In Fig.5.6 we compare the decay rates of the Var [Y`] (estimated by Eq.(5.12)) for the C-MLMC

with the decay rate of Var [Q`] which would influence the performance of simple MC algo-

rithm for three different sets of uncertain parameters. In the first column we consider only the

geometrical uncertainties, in the second one only the operating ones and in the last column

all of them. The second line presents the number of samples N` prescribed at each iteration

of the C-MLMC and the final hierarchy obtained with the final prescribed relative tolerance

on the QoI (εr = 0.001).

Sensitivity of C-MLMC on the choice of parameters k0 and k1 of the Normal-Gamma prior

In order to investigate the robustness of the C-MLMC method, we present here a sensitivity

study of the cost required to achieve a prescribed relative tolerance εr = 0.001 and accuracy

of C-MLMC simulations on the choice of k0 and k1. We compare the C-MLMC results with a

reference solution obtained with 100000 MC samples computed on the finest grid (L7).
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Figure 5.6 – Decay ofVar [Y`] for the C-MLMC (computed with Eq.(5.12) red solid line and LS fit blue
dashed line) and Var [Q`] for MC (black dashed line) for three different sets of uncertain parameters
(final relative tolerance εr = 0.001); lower row: N` for different iterations of the C-MLMC .

The left plot in Figure 5.7 compares the cost (number of levels and number of realizations per

level) of C-MLMC simulations performed with different parameters values. The vertical bars

show the variability in the obtained hierarchies over 10 repetitions of the whole algorithm

with different seeds of the random number generator. They provide a good indicator of the

variability in the cost of the C-MLMC. The simulations performed with k0,k1 = 0.001 mainly

relay on the sampled values of bias and variance of the MLMC estimator at the first iterations

while simulations performed with k0,k1 = 1000 strongly rely on the LS fit models. We observe

that the simulations performed with high confidence in the weak and strong error models

(large values of k0 and k1) appear to be overly conservative, in the sense that they provide

errors much smaller that the prescribed tolerance, at a price of a much higher computational

cost and, often, a higher number of simulations on the finest levels.

The right plot shows that all the simulations performed with different choices of k0 and k1 are

within the prescribe tolerance. Based on this study we choose k0 = 0.1 and k1 = 0.1 in all our

simulations.

Propagation of Uncertainties with C-MLMC - scalar field QoI As suggested in the previous

chapter (see 4.1.3), the MLMC and hence the C-MLMC can be naturally extended to compute

expectation of QoI that are scalar fields Q(x,ω).

Here we consider the expected Mach number profile inside the Laval nozzle under operating

and geometric uncertainties presented in Table 5.1. In Figure 5.8 we show few iterations of

the C-MLMC algorithm for the computation of the Mach profile inside the nozzle for a final
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Figure 5.7 – Sensitivity of the number of levels and samples per level (left plot) and the accuracy of the
final results of the C-MLMC simulation (right plot) on the choice of k0 and k1.

relative tolerance εr = 0.01.

Although the numerical scheme is the same as in the previous test case, here we are looking at

the whole profile of Mach number, which is a discontinuous function due to the presence of

the shock leading to a different optimization of the MLMC and different performances. This

explains the reduced asymptotic rate β ≈ 1.13 observed, as well as the slower decay on N`

with l . Figure 5.10 shows the decay rates of ‖Var[Y`]‖L1(D) (estimated by Eq.(5.12)) for the

C-MLMC and ‖Var[Q`]‖L1(D) for MC for three different sets of uncertain parameters and their

respective hierarchies.

In Figure 5.11 we show the results obtained for the mean of the Mach number profile for the

three different sets of uncertain parameters. It is important to underline that the standard de-

viation (gray area) has been computed during a post-process step using the samples obtained

during the optimization of the hierarchy for the mean value of the Mach profile. We postpone

to Chapter 6 the optimization of the MLMC hierarchy for accurate estimation of statistical

moments and a better methodology to compute variances.

Complexity, Reliability and Robustness of C-MLMC vs MC and MLMC

First we compare the cost and the accuracy of our implementation of C-MLMC with the

classical MLMC with screening procedure (Algorithm 1 in Chapter 4). The screening phase

requires the pivotal choice of the number of investigation levels and samples (L, N ) necessary

to obtain an accurate estimation of the decay rates.
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Figure 5.8 – C-MLMC iterations (0, 11, 12 and the final 13) for the estimation of E[M(x)] (3 operational
uncertainties and 2 geometrical, final relative tolerance εr = 0.01). The columns represent, from left to
right, the bias, variance of Y` and the cost per level.
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Figure 5.9 – C-MLMC levels and samples per level for iterations 0, 11, 12 and the final 13 for the
estimation of E[M(x)].

As already mentioned in the previous chapter, the rates are problem, solver and grid hierarchy

dependent. Additionally the uncertainty range and flow regime (subsonic or supersonic in

compressible flow problem) can dramatically influence those rates. Therefore one is generally

required to perform the screening phase before the actual MLMC simulation each time the

above mentioned features of the problem are modified.

In the existing literature on MLMC this aspect is generally ignored and the cost of the screening

phase not included. We believe that in practical engineering applications, that require the

solution of complex CFD models, this aspect cannot be neglected. A screening phase with

a large number of investigation levels and samples per level is simply unfeasible and can

be extremely computationally intensive. On the other hand, if the prediction of the rates is
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Figure 5.10 – Decay of ‖Var[Y`]‖L1(D) for the C-MLMC (computed with Eq.(5.12) red solid line and LS
fit blue dashed line) and ‖Var[Q`]‖L1(D) for MC (black dashed line) for three different sets of uncertain
parameters (final relative tolerance εr = 0.001); lower row: N` for different iterations of the C-MLMC.
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Figure 5.11 – Mean Mach profile inside the nozzle (red solid line), cloud of uncertainty corresponding
to one standard deviation (grey area) and deterministic solution (black solid line) for three different
sets of uncertain parameters.

inaccurate, one can end up in the best case scenario with an overly conservative hierarchy

that is much more expensive than the one needed to meet the tolerance requirements. In the

worst case one might over-predict the rates and perform a MLMC simulation that does not

meet the required tolerance.
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In Figure 5.12 and Figure 5.13 we compare the cost of MLMC simulations with screening

with our implementation of C-MLMC. We denote with S10x2, S20x3, S40x4 the screening

procedures performed respectively with 10 samples on two levels, 20 samples on three levels

and 40 samples on four levels. The left plots show, in particular for the lower tolerances (Figure

5.12, εr = 0.005), the effect of the screening in the cost of the overall MLMC simulations with

respect to the C-MLMC. The lower vertical bars in the plots represent the inevitable cost of

the screening phases. Additionally we witness in the right plots of Figure 5.12 and Figure 5.13

that MLMC simulations can provide results that are not within the prescribed tolerance. This

phenomenon is due to the inaccurate prediction of the decay rates. C-MLMC on the other

hand, is able to provide accurate results with a cost that is comparable to the MLMC (with

optimal hierarchy) without the screening phase.

Figure 5.12 – Cost (left plot) and accuracy (right plot) of MLMC with screening and C-MLMC for the
computation of the scalar QoI Xs (shock position in the nozzle) with relative tolerance εr = 0.005. The
lower bars in light green, blue and magenta in the left plot represent the cost of the screening phase.

Finally in Figure 5.14 we compare the cost required to achieve a prescribed tolerance with MC

and with our implementation of C-MLMC. For the scalar QoI Xs , as theoretically predicted in

Eq. (4.8), we observe that, for the MLMC method, the total cost required to achieve a RMSE

of ε in the case of β> γ (rate of decay of Var [Y`] greater than the growth rate of the cost to

compute one sample at level l ) is proportional to ε2; on the other hand, for the MC method, as

presented in Eq. (3.22), the total cost is proportional to ε−2−γ/α. For the scalar field QoI M(x),

we are in the case of β< γ and the total cost required to achieve a RMSE of ε for the MLMC

method is proportional to ε2−(γ−β)/α. The results in Fig. 5.14 match nicely these theoretical

estimates.
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Figure 5.13 – Cost (left plot) and accuracy (right plot) of MLMC with screening and C-MLMC for the
computation of the scalar QoI Xs (shock position in the nozzle) with relative tolerance εr = 0.001. The
lower bars in light green, blue and magenta in the left plot represent the cost of the screening phase.
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Figure 5.14 – Cost required to achieve the prescribed tolerance requirements for C-MLMC (blue line)
an MC (black line). The red dashed line represents the cost for a deterministic simulation achieving an
error on the QoI of size ε.

5.2.2 2D Model Problem: Flow around RAE 2822 airfoil

For the RAE 2822 airfoil problem we employ the 2D Euler equations presented in Chapter

2.1.2. Also for this problem, the convective flux is computed using a second-order JST [JST81]

scheme.
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For this specific problem as ’black-box’ 2D Euler equations solver we choose the Stanford

University Unstructured (SU2) [PEA+14, PCA+13] computational environment. The geometry

that we consider here is the well known RAE 2822, a supercritical airfoil which has become a

standard test case for transonic flows [V.A79].

Operational and Geometrical Uncertainties: Table 5.4 summarizes the physical and ge-

ometrical reference parameters and the uncertainties considered for the RAE 2822 airfoil

problem. The uncertainty on the different parameters is modeled as a truncated Gaussian

random variable (see definition in Eq. (4.22)).

Name Nominal value Uncertainty

Operational

α∞ 2.31◦ T N (Tn ,2%,110%,90%)
M∞ 0.729 T N (pn ,2%,110%,90%)
p∞ 101325 [Pa] −
T∞ 288.5 [K ] −

Geometrical

Rp 0.00853 T N (RPn ,2.5%,110%,90%)
RS 0.00839 T N (RSn ,2%,110%,90%)
XP 0.346 T N (XPn ,2%,110%,90%)
XS 0.431 T N (XSn ,2%,110%,90%)
YP −0.058 T N (YPn ,2%,110%,90%)
YS 0.063 T N (YSn ,2%,110%,90%)
CP 0.699 T N (CPn ,2%,110%,90%)
CS −0.432 T N (CSn ,2%,110%,90%)
θP −2.227 T N (θPn ,2%,110%,90%)
θS −11.607 T N (θSn ,2%,110%,90%)

Table 5.4 – Operational and Geometrical parameters and uncertainties for the RAE 2822 airfoil problem.

The nominal geometric parameters correspond to the PARSEC [Sob98] (see definition in 2.4.3)

coefficients of the RAE 2822 airfoil. Fig. 5.15 illustrates the nominal geometry of the RAE 2822

and the meaning of the parameters in Table5.4.

ys

yp xs

xp

Cs

Cp

Rs

Rp

y

xθs

θp

M∞

α∞

RAE2822

Figure 5.15 – Geometry of the RAE 2822 transonic airfoil and PARSEC parameters.
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C-MLMC Settings and Grid Hierarchy: The hierarchy used for this problem is made up of 5

non nested grid levels generated by doubling the number of nodes around the airfoil. Figure

5.16 shows the computational grids, the Mach contour and the pressure coefficient around

the airfoil computed on the first four levels in the MLMC hierarchy and Table 5.5 presents the

features, computational time and number of CPUs required to compute one realization on

each level.

Hereafter the computational cost (CPU time) to compute one sample QM`
at level l is obtained

by multiplying the physical time required to compute the deterministic simulation (τ` ) and

the number of CPUs required to compute that simulation (nC PU
`

).

C` = τ`∗nC PU
` . (5.23)

LEVEL Airfoil nodes Cells τ`[s] (nC PU
`

)
L0 67 5197 14.4 (18)
L1 131 9968 21.4 (22)
L2 259 20850 28.8 (28)
L3 515 47476 64.0 (36)
L4 1027 114857 122.1 (44)
L5 2051 283925 314.2 (56)

Table 5.5 – MLMC 5-levels grid hierarchy for the RAE2822 problem.

In the following subsections we present the results and the performances of the C-MLMC

compared to MC method in computing a scalar QoI (lift coefficient CL) and a scalar field QoI

(pressure coefficient Cp around the airfoil).

The parameters that define the computational cost and the tolerance decrease from the initial

to the final tolerance and the parameters k1, k2 that represent the confidence in the bias

and variance models (see (5.10)) are presented in Table 5.6. The parameter r1 = 1.25 for the

scalar QoI CL and r1 = 1.2 for the scalar field QoI Cp have been chosen so that the cost of the

MLMC increases of about 25% and 20% respectively going from tolerance εi to εi+1 < εM . The

parameter r2 = 1.025 corresponds to a cost increase of about 2.5%2 at the final iteration for the

simulations for the scalar QoI, while just 1%2 increase is prescribed for those for the scalar

field QoI (in case of optimal complexity).

Propagation of Uncertainties with C-MLMC - scalar QoI CL

We consider here as scalar QoI the lift coefficient CL of the RAE 2822 affected by operating and

geometric uncertainties.
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Figure 5.16 – Grids, Mach contour and Cp profile around the RAE2822 airfoil for the first four levels in
the MLMC hierarchy.

We present in Fig.5.17 few iterations of the C-MLMC algorithm for the approximation of the

expectation of the lift coefficient CL for the RAE2822 airfoil with two operating uncertainties
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5.2. C-MLMC for UQ in Inviscid Aerodynamics

Parameters QoI CL QoI Cp

r1 1.25 1.2
r2 1.025 1.01
ε0 0.1 0.2
εM 0.003 0.05
iE 15 7
k0 0.1 0.1
k1 0.1 0.1

Table 5.6 – Settings for the C-MLMC algorithm for the computation of the scalar QoI CL and the scalar
field QoI Cp .
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Figure 5.17 – C-MLMC iterations (0, 11, 14 and the final 15) for the estimation of E[CL] (2 operational
uncertainties and 6 geometrical, final relative tolerance εr = 0.003). The columns represent, from left
to right, the bias, variance of Y`, cost and number of samples per level.

(α∞ and M∞) and six geometric uncertainties (Rs , Rp , xs , xp , ys , yp ). The first column shows

the estimated bias B (Eq. (5.8)) of the estimator and the corresponding LS fit model, the

second column the sample variance of Y` with its Bayesian updated model VC[Y`] and the

third column display the cost. Figure 5.18 presents the number of samples per level prescribed

at each iteration of the C-MLMC algorithm with decreasing tolerance. As for the nozzle case

we observe in Fig.5.17 the robustness of the algorithm in predicting the variance of Y` also

with just five samples at the finest level. It is worth underlying that estimatingVar [Y`] through

a preliminary screening phase based on samples collected only on the first three levels could
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Figure 5.18 – C-MLMC levels and samples per level for iterations 0, 11, 14 and the final 15 for the
estimation of E[CL].

lead to a huge over estimation ofβ and cβ (as it is possible to observe in the first row of Fig.5.17)

and hence a smaller number of samples per level than the ones needed to achieve a prescribed

tolerance.
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Figure 5.19 – Decay of Var [Y`] for the C-MLMC (computed with Eq.(5.12) red solid line and LS fit blue
dashed line) and MC (black dashed line) for three different sets of uncertain parameters (final relative
tolerance εr = 0.003); lower row: N` for different iterations of the C-MLMC .

In Fig.5.19 we compare the decay rates ofVar [Y`] (estimated by Eq.(5.12)) for the C-MLMC

with the decay rate of Var [Q`] (which would influence the performance of a simple MC

algorithm) for three different sets of uncertain parameters. In the first column we consider

only six geometrical uncertainties, in the second one only two operating ones and in the last

column all of them. The second line shows the number of samples N` prescribed at each

iteration of the C-MLMC and the final hierarchy obtained with the final prescribed relative

tolerance on the QoI (εr = 0.003).
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Propagation of Uncertainties with C-MLMC - scalar field QoI Cp (x)

We now consider as scalar field QoI the pressure coefficient Cp (x) around the RAE2822 airfoil

affected by operating and geometric uncertainties.

In the following Figure 5.20 we present the results obtained in different test cases with in-

creasing number of uncertain parameters. As for the case of the nozzle, we recognize a wide

region of uncertainty in correspondence of the shock location on the suction side of the airfoil.

We can observe a higher sensitivity of the pressure coefficient on the suction side due to

operating uncertainties, while the pressure side of the airfoil looks slightly more affected by

geometric uncertainties. Compared to the computation of the scalar QoI CL , we witness a

slower asymptotic decay rate of β, as well as a slower decay on N` with l (Figure 5.21).

Figure 5.20 – Mean Cp profile around the RAE2822 airfoil (red solid line) affected by incrreasing number
of uncertainties, cloud of uncertainty corresponding to one standard deviation and deterministic
solution.

Finally in Figure 5.22 we compare the performances of the C-MLMC and MC method. The

total cost required by MLMC method to achieve a RMSE of ε is proportional to ε2 for the scalar

QoI (lift coefficient CL) and a scalar field QoI (pressure coefficient Cp around the airfoil) as

β> γ while for MC the total cost is proportional to ε−2−γ/α.

Lastly in Figure 5.23 we compare the cost required by our implementation of C-MLMC and MC

method to achieve a RMSE of ε for an increasing number of uncertain parameters. We do not

observe, as theory suggests, an increase in the cost with the number of uncertain parameters.

It is interesting to underline that the simulations performed with operating (resp. operating

+ geometric) uncertainties require less computational time that the simulations with only
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Figure 5.21 – Decay of ‖Var[Y`]‖L1(D) for the C-MLMC (computed with Eq.(5.12) red solid line and LS
fit blue dashed line) and MC (black dashed line) for three different sets of uncertain parameters (final
relative tolerance εr = 0.05); lower row: N` for different iterations of the C-MLMC .
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Figure 5.22 – Cost required to achieve prescribed tolerance requirements for C-MLMC (blue line) an
MC (black line). The red dashed line represents the cost for a deterministic simulation at the finest
level.

geometrical uncertainties. The features and the physics of the problem suggest that the QoI

depends smoothly with respect to the set of operating parameters while the geometrical ones

have a sharper effect leading to an additional cost.

84



5.3. Extension to Turbulent Problems

10−7 10−6 10−5 10−4 10−3 10−2

ε

104

106

108

1010

1012

1014

1016

1018

1020
C
[h
]∗

n
C
P
U

MC - G(10)+O(2)
C-MLMC - G(10)+O(2)
MC - G(10)
C-MLMC - G(10)
MC - G(6)+O(2)
C-MLMC - G(6)+O(2)
MC - G(6)
C-MLMC - G(6)
MC - O(2)
C-MLMC - O(2)
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5.3 Extension to Turbulent Problems

In this section, we revisit the C-MLMC algorithm presented in the previous sections and

particularize it to the specific setting of viscous compressible aerodynamics simulations,

affected by operational and geometrical uncertainties, modeled by Favre Reynolds Average

Navier Stokes (F-RANS) models.

We focus here on the application of the algorithm to a specific external aerodynamics bench-

mark test cases defined during the European Union’s FP7 project UMRIDA (Uncertainty

Management for Robust Industrial Design in Aeronautics (UMRIDA), namely the transonic

RAE 2822 airfoil.

In particular, we detail how we have constructed the grid hierarchy in order to achieve appro-

priate grid convergence rates for the C-MLMC to be effective and we provide a comparison

with a standard Monte Carlo method which shows a huge speedup in terms of computational

complexity.

We consider turbulent compressible flows modeled by the Navier Stokes equations presented

in Chapter 2.1.1. In particular we employ a F-RANS approximation and as turbulence clo-

sure we use the the Spalart-Allmaras turbulence model (with quadratic constitutive relation

[MBWS13] in the CFD++ software environment [GPC+97, CPGP98]). The equations are dis-

cretized on structured grids (finite volume method) and advanced in time using a fully implicit

time stepping scheme. Local time-stepping and algebraic multigrid (AMG) are used for con-

vergence acceleration to the steady-state solution.
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5.3.1 Transonic Airfoil Model Problem: RAE2822

The RAE2822 (UMRIDA BC-02) is a supercritical airfoil which has become a standard test-case

for transonic flows. A detailed description of the airfoil geometry, the original experimental

set-up and a series of simulations can be found in [HBE+13, V.A79]. For this specific problem

we consider as scalar field QoI the pressure coefficient Cp of the RAE 2822 affected by operating

and geometric uncertainties due to fluctuations in the surrounding flow and manufacturing

tolerances. The nominal geometry of the RAE2822 airfoil is defined with a set of PARSEC

parameters [Sob98] (see Chapter 2.4.3). The following table summarizes these parameters and

the operating conditions considered hereafter (corrected flow conditions for case 6 in [V.A79]).

Symbol Reference Value

α∞ 2.31
Operating M∞ 0.729

Rec 6.5 ·106

p∞ [Pa] 101325
T∞ [K ] 288.5

Symbol Design Value

Rs 0.00839
Geometric Rp 0.00853

xs 0.431
xp 0.346
ys 0.063
yp −0.058
Cs −0.432
Cp 0.699
θs −11.607
θp −2.227

Table 5.7 – Geometric and Operating reference parameters for the RAE2822 problem.

Fig. 5.24 illustrates the nominal geometry of the RAE 2822 and the meaning of the parameters

in Table 5.7.

ys

yp xs

xp

Cs

Cp

Rs

Rp

y

xθs

θp

M∞

α∞

RAE-2822

Figure 5.24 – Geometry of the RAE 2822 transonic airfoil and PARSEC parameters that define the
geometry of the airfoil.
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Deterministic results

The proprieties of the 4-levels structured C-grid hierarchy used in the C-MLMC simulations

are presented in the following Table 5.8 and Figure 5.25 along with the average computational

time required to compute one deterministic simulation using CFD++ software environment.

A closeup view of the structured grid in the proximity of the leading edge for level 0 and level 1

is presented in Fig. 5.26.

We ensure that near the boundaries the y+ is between 1 and 2 for all the grid levels to fulfill

the requirements of the Spalart-Allmaras turbulence model. In particular, we increase the

number of nodes in vertical direction with respect to the airfoil (V nodes) but we require the

first grid node to be always placed at the same distance (y+) and distribute the remaining

points following a geometric grow rate. We keep the same resolution in the boundary layer

but increase the density of the grid points just outside of it (Figure 5.26).

In Fig. 5.27 we compare the computational results obtained with the finest grid level (L4) and

experimental measurements [V.A79] and we observe a good agreement.

LEVEL Airfoil nodes V nodes H nodes Cells y+ C T i me[s] (n.cpu)
L0 160 40 20 7722 1−2 13.9 (16)
L1 320 80 40 31442 1−2 49.7 (24)
L2 640 160 80 126882 1−2 336.9 (32)
L3 1280 320 160 509762 1−2 2145.5 (40)
L4 2560 640 320 2043522 1−2 6854.3 (48)

Table 5.8 – MLMC 4-levels grid hierarchy for the RAE2822 problem. C T i me[s] is the real time in
seconds required to compute one deterministic simulation on the prescribed number of cpus.

Stochastic Results using C-MLMC

We now propagate geometric and operating uncertainties in the model to study their effects on

the Cp profile of the airfoil using the C-MLMC approach. We consider operating uncertainties

in the far-field Mach number and angle of attach and geometric uncertainties in the PARSEC

coefficients that define the shapes of the airfoil. In case of geometric uncertainties that affect

the shape of the airfoil, for each random geometry (set of PARSEC coefficients) we deform the

existing grid levels by solving a linear elasticity problem on the volume grid to accommodate

the new boundary definition (Fig. 5.28).

The following Table 5.9 and Fig. 5.29 summarize the operating and geometric parameters and

their uncertainties modeled as truncated Gaussian random variables (see definition in 4.22)).

In Fig. 5.30 we present the stochastic results for the pressure coefficient profile Cp around the

airfoil under operating uncertainties (2 uncertain parameters hereafter denoted as OPER(2)),

geometric uncertainties (8 uncertainties denoted as GEOM(8)) and operating and geometric
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H

V

Figure 5.25 – Details for the structured RAE-2822 grid setting.
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Figure 5.26 – Leading edge closeup view of level 0 and 1 grids for the RAE2822 problem.

uncertainties at the same time (10 uncertainties denoted as OPER(2)+GEOM(8)) presented in

Table 5.9.

The decay rates of deterministic and statistical error computed during the C-MLMC analysis

are α= 0.7, β= 1.06 for the case with only operating uncertainties (OPER(2)) and α= 0.6, β=
1.05 for that with operating and geometric uncertainties (OPER(2)+GEOM(8)).
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Figure 5.27 – Deterministic results for the RAE2822 airfoil.
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Figure 5.28 – Grid deformation to accommodate the geometric uncertainty.

Lastly we present in Fig. 5.31 the level sample sizes at each iteration of the C-MLMC algorithm

to achieve a relative error εr = 0.6% on the L2 norm of the pressure coefficient for the OPER(2)

and OPER(2)+GEOM(8) cases. Additionally we compare the aggregate cost (total CPU time)

required by our implementation of C-MLMC with the MC method to achieve a RMSE of ε.

Notice how the performace of the C-MLMC is only mildly affected by the number of uncertain

parameters. Moreover for the target relative tolerance εr = 0.6% the gain in computational

cost of C-MLMC over MC is about 2 orders of magnitude and is expected to increase even

further if smaller tolerances are prescribed. The results match nicely the theoretical estimates.
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Quantity Reference (r ) Uncertainty T N (µ,σ, XLO , XU P )

α∞ 2.31 T N (r,2%,−2%,+2%)
Operating M∞ 0.729 T N (r,5%,−5%,+5%)

Rec 6.5 ·106 −
p∞ [Pa] 101325 −
T∞ [K ] 288.5 −

Rs 0.00839 T N (r,0.25%,−1%,+1%)
Geometric Rp 0.00853 T N (r,0.25%,−1%,+1%)

xs 0.431 T N (r,0.5%,−1%,+1%)
xp 0.346 T N (r,0.5%,−1%,+1%)
ys 0.063 T N (r,0.5%,−3%,+3%)
yp −0.058 T N (r,0.5%,−3%,+3%)
Cs −0.432 T N (r,0.5%,−1%,+1%)
Cp 0.699 T N (r,0.5%,−1%,+1%)
θs −11.607 −
θp −2.227 −

Table 5.9 – Operating and geometric uncertainties for the RAE2822 stochastic analysis.
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Figure 5.29 – Probability density functions of the operating (red) and geometric (blue suction side and
green pressure side) parameters for the RAE2822 stochastic analysis.

5.4 Summary

In this chapter we have presented the Continuation Multi Level Monte Carlo (C-MLMC) al-

gorithm and its application to inviscid and viscous compressible aerodynamics problems.

The key features of the continuation procedure is that the problem and hierarchy dependent

parameters that control the number of levels and samples per level are computed on the fly
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Figure 5.30 – UQ analysis results for the RAE2822 presenting the mean pressure coefficient profile
around the airfoil and its standard deviation. Experimental data from [V.A79].

using a Bayesian update procedure. By doing so it is possible to reduce the overall computa-

tional cost required to set up and perform an uncertainty analysis (no need for a screening

procedure to compute the bias and variance decay rates). It has been shown in the numerical
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Figure 5.31 – C-MLMC hierarchies for two different sets of uncertain parameters (left) and aggregate
computational cost compared with MC (right). The solid lines in the cost plot are an extrapolated
model based on the rates and constants (α. cα, β,cβ,γ,cγ) fitted in C-MLMC. The red and blue squares
are the actual computed cost and error in the C-MLMC simulations.

examples presented above that the iterative learning of the decay rates leads to a robust and

accurate algorithm also for problems that present sharp discontinuities as those that naturally

arise in compressible inviscid/viscous flow problems.

In this chapter we only focused on the accurate computation of expected values of scalar

and scalar field QoI. In particular, the C-MLMC has been tuned to the computation of such

expectations and the variance have been obtained as a post-processing. Another interesting

question is how to set up the MLMC and C-MLMC for the accurate computation of higher

order moments, quantiles, or the full CFD. Results in this direction will be developed in

Chapter 6 and Chapter 7.
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6 MLMC for Central Statistical Mo-
ments

In the previous Chapters we investigated and applied the Multi Level Monte Carlo and the

Continuation Multi Level Monte Carlo to accurately compute the mean of scalar and scalar

field quantities of interest. In addition to the mean, many important features of random

variable’s distribution, such as dispersion, asymmetry and tailedness can be assessed through

the analysis of statistical moments.

6.1 Introduction: Central Moments

The statistical moments that are computed about the mean are called central moments.

Specifically, the p-th central moment µp of a random variable Q is defined as

µp = E[(Q −µ)p]
, with µ= E[Q] ,

provided the right-hand side exists. Following the definition of µp , the first central moment

(i.e. p = 1) is equal to zero. The second central moment µ2 is the variance (often also denoted

as σ2) and, together with the mean µ= E[Q], is one of the most commonly used quantities to

characterize a random variable.

The third central moment µ3 offers insight into the asymmetry of a random variable’s dis-

tribution about its mean. Specifically, the skewness γ= µ3/
√
µ3

2, which is the standardized

counterpart of the third central moment, is commonly used as a measure of probability distri-

bution’s asymmetry.Indeed, the skewness (or equivalently the third central moment µ3) of a

symmetric distribution about the mean is zero. Negative values of the skewness indicate that

the probability distribution has a left tail that is longer compared to the right one. Analogously,

positive values indicate a longer right tail. A measure of a probability distribution’s asymmetry

is very important in many engineering risk/reliability assessments and financial applications

related to stock prices and assets. In fact, Mandelbrot et al. [Man63] observed that the majority

of financial assets returns are non-normal. This is due to the appearance of extreme events

more likely than predicted by a normal distribution [BG74] and due to the fact that crashes
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occur more often than booms [SW86]. For this reason, investment decisions based only on the

mean and variance cannot discriminate whether a given future event will be more or less likely

to appear on the left or right side of the mean [KL76, PB00]. Applied to investment returns,

negatively skewed distributions indicate greater chance of extremely negative outcomes, while

in positive skewed distributions extremely bad scenarios are not as likely. Assuming a normal

distribution, when in fact data sets are skewed, can lead to the so called skewness risk [CCJ13].

Similar problems arise in many applications across science and technology where decisions

based on a reliability or risk measure need to be taken.

The fourth central moment µ4 and its standardized counterpart, which is known as kurtosis

K ur t =µ4/µ2
2, provide some further important insights into a random variable’s distribution.

In fact, the kurtosis can be used to measure whether the output random variable are heavy-

tailed (high level of kurtosis) or light-tailed (low level of kurtosis) compared to a normal

distribution, for which K ur t = 3. Heavy-tailed distributions are common in problems where

extreme events are likely to appear. Random variables with low levels of kurtosis tend to have

light tails and lack of extreme events. In other words high levels of kurtosis indicate that most

of the variability in the distribution is due to extreme deviations from the mean.

In this Chapter we consider efficient sampling-based estimators for central moments of a QoI

Q output of a complex probabilistic model. We address in particular probabilistic models

that involve differential equations for which typically the random system output Q cannot be

sampled exactly and only approximate sampling can be accessed with a given accuracy (e.g.

by solving the differential equation via some numerical scheme). As a consequence of this

inexact sampling, a bias is introduced that has to be accounted for.

In Chapter 4 we introduced a MLMC estimator for E[Q] of Q, here we extend the MLMC

concepts to the estimation of arbitrary order central moments µp . Specifically, we introduce

and analyze a novel multilevel Monte Carlo method that allows an efficient sampling-based

estimation from inexact/approximate samples. One of the method’s key ingredients is the use

of h-statistics [Dwy37] as unbiased central moment estimators with minimal variance for the

level-wise contributions. That is, instead of the monte carlo (MC) level-wise contributions

that are used in the estimation of the mean (see (4.1) and (4.2)):

EMLMC := EMC
(
Q0

N0,M0

)+ L∑
`=1

(
EMC

(
Q`

N`,M`

)−EMC
(
Q`

N`,M`−1

))
, (6.1)

here we use terms of the form hp
(
Q`

N`,M`

)−hp
(
Q`

N`,M`−1

)
, where hp denotes an appropriate

h-statistic or order p.

Consequently, the MLMC estimator mMLMCp for arbitrary order p central moments considered

here is of the form

mMLMCp = hp
(
Q0

N0,M0

)+ L∑
`=1

(
hp

(
Q`

N`,M`

)−hp
(
Q`

N`,M`−1

))
.
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6.2. Monte Carlo estimation of central moments

We note that a multilevel Monte Carlo estimator for the variance µ2 of a random variable

Q has already been introduced in [BC15]. There the authors define the multilevel Monte

Carlo estimator by telescoping on the unbiased sample variance estimator for the level-wise

contributions. Our approach based on h-statistics thus offers an alternative derivation of

said estimator, which allows for a straightforward complexity analysis in fact. Moreover, the

approach introduced here is easily generalized to arbitrary order central moments, as we will

illustrate in the following. In fact, the results presented here for estimating µp for p ≥ 3 appear

to be novel. Finally, we mention that somewhat related work on multilevel Monte Carlo tech-

niques for arbitrary order central moment estimators can be found in [BC16]. However, there

the authors construct the estimators for p ≥ 3 based on biased estimators for the level-wise

contributions. Consequently, the method introduced in the aforementioned work requires

to carefully control this additional bias. Moreover, the mean squared error analysis is also

affected by this bias, in the sense that the error is quantified using worst-case bounds based

on triangle inequalities. Instead our work, as mentioned earlier already, uses h-statistics for

level-wise contributions, which are unbiased estimators with minimal variance. In fact, these

unbiased estimators can be straightforwardly derived in closed-form, allowing for a possibly

sharper mean squared error bound. The cost of working with unbiased estimators is that deriv-

ing these estimators in closed-form requires somewhat tedious calculations. However, these

calculations can be easily carried out automatically by symbolic computer algebra systems,

such as Maple and Mathematica, as we will describe in the following. Lastly, we present a

complete algorithm and detail how to tune the MLMC method for central moments to achieve

optimal complexity.

In the following sections we present and analyze the sampling-based estimation of central

moments. Specifically, in Sect. 6.2 we first consider the classic Monte Carlo method, before

introducing the novel multilevel Monte Carlo estimator in Sect. 6.3. Following these theoreti-

cal considerations, we discuss various practical aspects and implementation details for the

multilevel Monte Carlo methods in Sect. 6.4. In Sect. 6.5 we demonstrate the effectiveness of

the developed methodology by applying it to a number of selected examples, for which we

estimate the first four statistical central moments. These examples include relevant problems

in compressible aerodynamics, namely a transonic airfoil affected by both operating and

geometric uncertainties.

6.2 Monte Carlo estimation of central moments

The p-th central moment µp ≡µp (Q) of a random variable Q (also known as the p-th moment

about the mean) is given by

µp (Q) := E
[(

Q −E[Q]
)p

]
,

for any p ∈N provided it exists, although the value for p = 1 is trivial (µ1(Q) = 0). Any central

moment can, of course, be expressed in terms of non-centered (so-called raw moments or
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moments about the origin) as a consequence of the binomial theorem and the linearity of the

expected value:

µp (Q) ≡ E
[(

Q −E[Q]
)p

]
=

n∑
j=0

(
p

j

)
(−1)p− jE

[
Q j ]E[Q]p− j .

However, approximating the p-th central moment µp (Q) by a combination of approximated

non-centered moments can be numerically unstable. This may be especially severe if the

central moments are small whereas the raw moments are not. To avoid these numerical

instabilities, we present here Monte Carlo sampling based estimators for central moments

directly. We begin by reviewing classic (single-level) Monte Carlo estimators in the following

section before addressing the multilevel estimators.

6.2.1 Classic ensemble based Monte Carlo estimator

Starting point for the construction of efficient sampling based estimators for central moments

are the so-called h-statistics [Dwy37]. That is, in the classic single-level setting we consider

an i.i.d. sample QN := (Qi )i=1,...,N of size N , where each Qi has the same distribution as

Q. The h-statistic hp ≡ hp (QN ) then is an unbiased estimator of µp (Q), in the sense that

E
[
hp (QN )

] = µp (Q). Moreover, the h-statistic has the favorable property that its variance

Var
[
hp (QN )

]= E[(hp (QN )−µp (Q)
)2] is minimal compared to all other unbiased estimators

[Hal46]. Based on the sample QN of size N , the h-statistic hp (Q) is commonly expressed in

terms of power sums Sa ≡ Sa(QN ) :=∑N
i=1 Qi

a . For example, the first three h-statistics are

h2 =
N S2 −S2

1

(N −1)N
,

h3 =
N 2S3 −3N S2S1 +2S3

1

(N −2)(N −1)N
,

h4 =
(−4N 2 +8N −12

)
S3S1 +

(
N 3 −2N 2 +3N

)
S4 +6N S2S2

1 + (9−6N )S2
2 −3S4

1

(N −3)(N −2)(N −1)N
,

where we have used the shorthand notation hp ≡ hp (QN ) and Sa ≡ Sa(QN ) for brevity (see,

e.g., [Dwy37] for the construction of hp for arbitrary p).

In practice sampling the random variable Q usually requires the solution of a complex problem

(e.g. fluid flow with random initial/boundary conditions, random dynamical system, etc.),

which inevitably involves a discretization step. That is, it is often not possible to sample the

output quantity of interest (QoI) Qi ≡Q(ωi ) exactly, whereωi denotes an i.i.d. realization of the

random input parameters of the underlying complex problem. Instead, we assume that one

can only draw approximate i.i.d. random variables Qi ,M , i = 1, . . . , N , from a random variable

QM , which is a suitable approximation (in a sense made precise below) of the unknown

random variable Q. In this case the natural Monte Carlo (MC) estimator for the p-th central

moment µp (Q) by means of an i.i.d. sample of the approximate, computable random variable
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QN ,M := (
Qi ,M

)
i=1,...,N is simply the h-statistic based on QN ,M :

mMCp := hp (QN ,M ) . (6.2)

That is, there are two levels of approximations: the first one due to approximate sampling

(µp (Q) ≈ µp (QM )) and the second one due to the Monte Carlo error (µp (QM ) ≈ mMCp ). Conse-

quently, the mean squared error of this Monte Carlo estimator is

MSE
(
mMCp

)
:= E

[(
mMCp −µp (Q)

)2
]
= (

µp (QM )−µp (Q)
)2 +Var

[
hp (QN ,M )

]
, (6.3)

from which we identify the bias
∣∣µp (QM )−µp (Q)

∣∣ and the statistical error Var
(
hp (QN ,M )

)
.

Under appropriate assumptions, the statistical error is of order O(N−1) as usual. In fact, for

the first three central moment estimators (h1 ≡ 0 not included), the MC estimator’s variance

reads

Var
(
h2

)= µ4

N
− µ2

2(N −3)

(N −1)N
, (6.4a)

Var
(
h3

)= 3µ3
2

(
3N 2 −12N +20

)
(N −2)(N −1)N

− 3µ4µ2(2N −5)

(N −1)N
+ µ6

N
− µ2

3(N −10)

(N −1)N
, (6.4b)

Var
(
h4

)= 72µ4
2

(
N 2 −6N +12

)
(N −3)(N −2)(N −1)N

+ 16µ2
3µ2

(
N 2 −4N +13

)
(N −2)(N −1)N

− 24µ4µ
2
2(4N −11)

(N −2)(N −1)N
+ 16µ6µ2

(N −1)N
+ µ8

N
− 8µ3µ5

N
− µ2

4(N −17)

(N −1)N
,

(6.4c)

where we have suppressed the arguments of hp ≡ hp (QN ,M ) and µp ≡ µp (QM ) for brevity

again. It is noteworthy that these quantities can be computed (combinatorial problem)

straightforwardly for any p using the Mathematica package mathstatica [RS02], due to the

h-statistic’s power sum representation.

If one assumes that the approximate random variable QM is such that the bias term
∣∣µp (QM )−

µp (Q)
∣∣ decays at a certain rate when increasing the discretization parameter M , then it is

possible to balance the squared bias and statistical error contributions to the MSE in (6.3).

Such a bias assumption is plausible since the bias term is related to the numerical method

(assumed to be consistent) used to approximate the underlying complex system. At the same

time, generating realizations of QM typically becomes more expensive as M increases. The

following result thus quantifies the computational cost to estimate the p-th central moment

by the MC method, when using optimal discretization parameter M and optimal sample size

N to achieve a prescribed accuracy. As a matter of fact, the theoretical result below is the

central moment analog of the standard result for expectations.

Proposition 6.2.1. Let p ∈ N, p ≥ 2, and assume that the 2p-th central moment of QM is

bounded, so that µ2p (QM ) <∞ for M À 1. Furthermore, suppose that there exist constants α

and γ such that
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1. the bias decays with order α> 0, in the sense that
∣∣µp (QM )−µp (Q)

∣∣≤ cαM−α for some

constant cα > 0,

2. the cost to compute each i.i.d. realization of QM is bounded by cost(QM ) ≤ cγMγ for some

constants cγ,γ> 0.

The MC estimator mMCp = hp (QN ,M ) with N = O(ε−2) and M = O(ε−1/α) satisfies MSE
(
mMCp

) =
O(ε2) and the cost associated with computing this estimator is bounded by

cost
(
mMCp

)= N ·cost(QM ) ≤ cε−2−γ/α ,

where c is independent of ε> 0.

Note that the constants appearing in the result above (i.e. c , cα, and cγ) depend on the order p

of the central moment. In fact, also the rates α and γ may depend on p in principle. However,

numerical evidence suggests that the rates may, in fact, not depend on p for a large class of

problems; cf. the numerical studies presented in following Sect. 6.5.

Practical aspect: MSE and unbiased variance estimation

A robust implementation of the MC estimator mMCp should also provide an estimation of the

associated MSE. This is also the first step towards building an adaptive MC algorithm in

which the sample size N and/or the discretization parameter M are progressively increased to

achieve a MSE smaller than a prescribed tolerance. The bias term
∣∣µp (QM )−µp (Q)

∣∣ relates

only to the numerical discretization of the underlying differential problem. Possible ways of

estimating the bias include:

(i) the calculation on a sequence of refined discretizations with parameters M1 < M2 < . . .

and extrapolation of the error;

(ii) error estimations based on a-posteriori error estimators (see e.g. [Ver94], [AO11]) avail-

able for certain type of equations.

We will not detail further this aspect here, as the main goal of this work is on the estimation of

the statistical error. For this, a possibly unbiased estimator for the variance Var
[
hp (QN ,M )

]
based on the same sample QN ,M of size N is needed. We discuss hereafter the derivation of

one such estimator. As we have seen in (6.4), it holds that Var
[
hp (QN ,M )

]=O(1/N ). It is thus

convenient to set Vp := N ·Var
[
hp (QN ,M )

]
and derive unbiased estimators V̂p of Vp . However,

the naive approach of simply replacing µk , for k = 2, . . . ,2p, in (6.4) by its unbiased estimator

hk will not result in an unbiased estimator for Vp , since the statistical error Var
[
hp (QN ,M )

]
depends non-linearly on the central moments. Instead, we do not only substitute hk for µk

but also introduce an additional multiplicative coefficient for each substitution. For example,

inspecting equation (6.4a) suggests to make the ansatz V̂2 = a1h4 +a2h2
2 for p = 2. Similarly,
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6.3. Multilevel Monte Carlo estimation of central moments.

V̂2
N

N
(

(N−1)2N S4−(N 2−3)S2
2

)
+(6−4N )S4

1+4N (2N−3)S2S2
1−4(N−1)2N S3S1

(N−3)(N−2)(N−1)2N 2

V̂3
N

1
(N−5)(N−4)(N−3)(N−2)2(N−1)2N 2

(
−12(3N 2 −15N +20)S6

1

+36N (3N 2 −15N +20)S2S4
1 −24N 2(2N 2 −9N +11)S3S3

1

+3N S2
1

(
(7N 4 −36N 3 +79N 2 −90N +40)S4 −6N (4N 2 −21N +29)S2

2

)
−6N S1

(
(N 3 −3N 2 +6N −8)(N −1)2S5 + (−5N 4 +18N 3 +13N 2 −90N +40)S2S3

)
+N

(
(N −1)2N (N 3 −3N 2 +6N −8)S6 +3(3N 4 −24N 3 +71N 2 −90N +40)S3

2

−3(2N 5 −11N 4 +14N 3 +25N 2 −70N +40)S4S2

− (N 5 +4N 4 −41N 3 +40N 2 +100N −80)S2
3

))
Table 6.1 – Closed-form expressions of the unbiased estimators V̂p /N for Var

[
hp (QN ,M )

] = Vp /N ,
p = 2,3, as polynomial functions of the power sums Sa ≡ Sa(QN ,M ).

(6.4b) implies the ansatz V̂3 = a1h3
2 +a2h2h4+a3h6+a4h2

3 for the case p = 3 and so on. For an

ansatz of this form the expected value of V̂p , E[V̂p ], can be computed as a polynomial function

of the central moments µk , k = 2, . . . ,2p, using mathstatica. Consequently, we can derive

unbiased estimators by equating the coefficients of such polynomial with the corresponding

ones in the expression of E[Vp ].For example, for p = 2 we find

E[V̂2] = µ4(a2 +a1N )

N
+ a2µ

2
2

(
N 2 −2N +3

)
(N −1)N

,

which, after comparing with equation (6.4a), yields a1 = N−1
N 2−2N+3 and a2 = − N−3

N 2−2N+3 . The

unbiased variance estimators V̂p /N of Var
[
hp (QN ,M )

]
obtained by following this procedure

are summarized in Table 6.1, where the final expression has been given directly in terms of the

power sums Sa ≡ Sa(QN ,M ) instead of the h-statistics. For the sake of a clear presentation, we

present the unbiased estimator for the case p = 4 in A.1. It is noteworthy, that although these

formulas are rather lengthy, they are in closed-form, so that they are easily implementable.

6.3 Multilevel Monte Carlo estimation of central moments.

Using the results presented in the previous Section and following the general construction of

MLMC estimators, we introduce the MLMC estimator for the p-th central moment as:

mMLMCp := hp
(
Q0

N0,M0

)+ L∑
`=1

(
hp

(
Q`

N`,M`

)−hp
(
Q`

N`,M`−1

))≡ L∑
`=0

(
hp

(
Q`

N`,M`

)−hp
(
Q`

N`,M`−1

))
,

(6.5)

with the convention that hp
(
Q0

N0,M−1

)≡ 0. Here, the sample Q`
N`,M`

of i.i.d. realizations is given

by Q`
N`,M`

:= (
QM`

(ωi ,`)
)

i=1,...,N`
for any level `. The superscript ` of both samples Q`

N`,M`
and

Q`
N`,M`−1

is used to indicate the correlation across two consecutive levels, which is the key

ingredient for any multilevel Monte Carlo method. Specifically, the realizations of the sample

Q`·,· and those of Q`−1·,· are independent, while the N` realizations of Q`
N`,M`

and Q`
N`,M`−1

are

correlated, in the sense that the approximate quantities of interest computed on the finer
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Chapter 6. MLMC for Central Statistical Moments

discretization (i.e. sample QN`,M`
) and those computed on the coarser discretization (i.e.

samples of QN`,M`−1 ) correspond to the same uncertain inputs. Consequently, the MLMC

estimator’s mean squared error is

MSE
(
mMLMCp

)= (
µp (QML )−µp (Q)

)2 +
L∑
`=0

Var
[
∆`hp

]
, (6.6)

where we have introduced the shorthand notation

∆`hp ≡∆`hp
(
Q`

N`,M`
,Q`

N`,M`−1

)
:= hp

(
Q`

N`,M`

)−hp
(
Q`

N`,M`−1

)
.

The bias term |µp (QML )−µp (Q)| in (6.6) corresponds to the bias of the classic Monte Carlo

method described in Sect. 6.2.1 on discretization level L, cf. equation (6.3). The analysis of the

variancesVar[∆`hp ] and their dependence on N` as well as on the central moments of Q`
N`,M`

and Q`
N`,M`−1

is more cumbersome than for the classic MC estimator. In particular we need to

quantify the correlation between Q`
N`,M`

and Q`
N`,M`−1

. To do so, it is convenient to introduce

both the sample sum and the sample difference of these samples:

X `,+
N`

:= (
X `,+

i

)
i=1,...,N`

with X `,+
i :=QM`

(ωi ,`)+QM`−1 (ωi ,`) ,

X `,−
N`

:= (
X `,−

i

)
i=1,...,N`

with X `,−
i :=QM`

(ωi ,`)−QM`−1 (ωi ,`) .

In other words, we have that X `,+
N`

=Q`
N`,M`

+Q`
N`,M`−1

and X `,−
N`

=Q`
N`,M`

−Q`
N`,M`−1

. Moreover,

we introduce the bivariate power sums Sa,b analogously to the power sums Sa in the previous

Section, that is

Sa,b
(
(Xi )i=1,...,N , (Yi )i=1,...,N

)
:=

N∑
i=1

Xi
aYi

b ,

for any two samples (Xi )i=1,...,N and (Yi )i=1,...,N of the same size N . Then we can compute the

variance Var
(
∆`hp

)
for each level ` as follows:

1. For each `, we express the term ∆`hp ≡ hp
(
Q`

N`,M`

)−hp
(
Q`

N`,M`−1

)
in terms of bivariate

power series Sa,b in X `,+
N`

and X `,−
N`

, that is in terms of

S`a,b ≡ Sa,b

(
X `,+

N`
, X `,−

N`

)
.

This can, of course, be achieved by using the identities Q`
N`,M`

= 1
2

(
X `,+

N`
+ X `,−

N`

)
and

Q`
N`,M`−1

= 1
2

(
X `,+

N`
−X `,−

N`

)
and some algebra.

2. The obtained representation of ∆`hp in terms of these bivariate power sums in X `,+
N`

and X `,−
N`

is then amenable for further treatment by the mathstatica software. In fact,

the software provides an efficient algorithm for treating the combinatorial problem of

computing the desired variances, due to the power series representation.
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6.3. Multilevel Monte Carlo estimation of central moments.

Following this procedure, the first step yields for example

∆`h2 =
N`S`1,1 −S`0,1S`1,0

(N`−1)N`
,

∆`h3 =−
−N`

2S`0,3 −3N`
2S`2,1 +3N`S`0,2S`0,1 +3N`S`2,0S`0,1 +6N`S`1,0S`1,1 −2S`3

0,1 −6S`2
1,0S`0,1

4(N`−2)(N`−1)N`
,

where we have again omitted the arguments for brevity. The same procedure can also be

used to derive close-form expressions for ∆`hp with p ≥ 4, which become rather lengthy and

are thus not presented here for the sake of a clear presentation. Based on these closed-form

expressions for ∆`hp , the required expression of the variance Var
[
∆`hp

]
on level ` then

follows accordingly as

Var
[
∆`h2

]=−
(N`−2)µ2

1,1

(N`−1)N`
+ µ0,2µ2,0

(N`−1)N`
+ µ2,2

N`
, (6.7a)

Var
[
∆`h3

]= 3
(
3N`

2 −12N`+20
)
µ3

0,2

16(N`−2)(N`−1)N`
+

9
(
N`

2 −4N`+8
)
µ2

1,1µ0,2

4(N`−2)(N`−1)N`

+
9
(
N`

2 −4N`+12
)
µ2

2,0µ0,2

16(N`−2)(N`−1)N`
+

9
(
N`

2 −4N`+6
)
µ2

1,1µ2,0

2(N`−2)(N`−1)N`

−+
9(N`−2)µ2,0µ

2
0,2

8(N`−1)N`
+ 9µ4,0µ0,2

16(N`−1)N`
− 9(N`−2)µ2,2µ0,2

8(N`−1)N`

− 3(2N`−5)µ0,4µ0,2

16(N`−1)N`
+

9µ2
1,2

4(N`−1)N`
+ µ0,6

16N`
+ 3µ2,4

8N`

+ 9µ1,2µ3,0

4(N`−1)N`
+ 9µ4,2

16N`
− 3µ0,4µ2,0

8N`
− 3(N`−4)µ1,1µ1,3

4(N`−1)N`

− 9(N`−2)µ1,1µ3,1

4(N`−1)N`
− 3(N`−4)µ0,3µ2,1

8(N`−1)N`
− 9(N`−3)µ2,0µ2,2

8(N`−1)N`

−
(N`−10)µ2

0,3

16(N`−1)N`
−

9(N`−6)µ2
2,1

16(N`−1)N`
,

(6.7b)

where we present Var
[
∆`h4

]
in A.1 for a clearer presentation. Here, µp,q ≡ µp,q

(
X `,+, X `,−)

denotes the bivariate central moment of order (p, q) of X `,+ and X `,−, where the bivariate

central moment is given by

µp,q (X ,Y ) := E
[(

X −E(X )
)p(

Y −E(Y )
)q

]
,

for any two random variables X and Y .

Inspection of the variance expressions forVar
(
∆`hp

)
in (6.7) reveals thatVar

(
∆`hp

)=O(1/N`)

for any fixed `. Setting V`,p := N`Var
(
∆`hp

)
, the mean squared error of the MLMC estimator

mMLMCp can then be written in the somewhat more familiar form

MSE
(
mMLMCp

)= (
µp (QML )−µp (Q)

)2 +
L∑
`=0

V`,p

N`
,
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Chapter 6. MLMC for Central Statistical Moments

which indicates the usual interplay of bias and statistical error. Due to the identities for

the variance expressions, the complexity result for the MLMC estimator for central moments

follows by the same arguments as the ones used in the standard MLMC result; see, e.g., [Gil15a].

In fact, the only difference to the standard MLMC complexity result is that the notion of bias

and variance have to be modified. Then even the formulas for the optimal number of levels

and sample size on each level follow immediately; see Sect. 6.4 for further details.

Proposition 6.3.1. Let p ∈ N, p ≥ 2, and assume that the 2p-th central moment of QM`
is

bounded, so that µ2p (QM`
) <∞, for `≥ 0. Furthermore, suppose that there exist constants α, β,

and γ such that 2α≥ min(β,γ) and

1. the bias decays with order α> 0, in the sense that
∣∣µp (QM`

)−µp (Q)
∣∣≤ cαM`

−α for some

constant cα > 0,

2. the variance V`,p ≡ Var
[
∆`hp

]
N` decays with order β > 0, in the sense that V`,p ≤

cβM`
−β for some constant cβ > 0,

3. the cost to compute each i.i.d. realization of QM`
is bounded by cost(QM`

) ≤ cγM`
γ for

some constants cγ,γ> 0.

For any 0 < ε< e−1, MLMC estimator mMLMCp with maximum level L ∈N0 such that
∣∣µp (QML )−

µp (Q)
∣∣≤ εp

2
and with sample size N` ∈N on level ` given by

N` =
⌈

2

ε2

√
V`,p

cost(QM`
)

L∑
j=0

√
cost(QM j )V j ,p

⌉
, 0 ≤ `≤ L ,

satisfies MSE
(
mMLMCp

)≤ ε2 at a computational cost that is bounded by

cost
(
mMLMCp

)≤ c


ε−2ln(ε−1)

2
, if β= γ ,

ε
−

(
2+ γ−β

α

)
, if β< γ ,

ε−2 , if β> γ ,

where c is independent of ε> 0.

As remarked after Prop. 6.2.1 already, it is also the case for the MLMC estimator that the

appearing constants depend on the order p. It may also be the case that the rates depend on p,

although numerical experiments suggest that this is not the case for a large class of problems;

see Sect. 6.5. Finally, we mention that the proposition above can be stated in terms of the

cost(QM`
) instead of the cost(∆`hp ) due to the availability of the closed-form expressions for

∆`hp , whose evaluation cost is negligible compared to cost(QM`
).
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6.3. Multilevel Monte Carlo estimation of central moments.

6.3.1 Practical aspect: MSE and unbiased level-wise variance estimation

As for the classic Monte Carlo method described in Sect. 6.2.1, also robust implementation

of the MLMC estimator should provide an estimation of the associated MSE. Moreover, esti-

mations of Var
[
∆`hp

]
are further needed to determine the optimal sample size N` on each

level to achieve a prescribed tolerance ε, and we detail hereafter a practical construction

of unbiased estimators for V`,p . Concerning the bias term, the same considerations made

for the classic MC estimator hold here as well. However, since the MLMC estimator already

uses a sequence of discretizations, the situation is somewhat simplified as a natural way to

estimate the bias is |µp (QML )−µp (Q)| ≈ |∆Lhp (QL
NL ,ML

,QL
NL ,ML−1

)|. Conversely, we discuss here

how to construct an unbiased estimator of the variance Var
[
∆`hp

]
on each level `, or equiv-

alently of V`,p ≡Var
[
∆`hp

]
N`, based on the samples Q`

N`,M`
and Q`

N`,M`−1
. Similarly to the

derivation of an unbiased variance estimator for the MC method (cf. Sect. 6.2.1), an unbiased

estimator of the level-wise variance V`,p is not straightforward to construct. In fact, here the

situation is even slightly more complicated due to the highly nonlinear combination of the

bivariate central moments µk,l , cf. the expressions in (6.7). However, also for the bivariate

central moments µk,l there exist unbiased estimators, namely the hk,l -statistic [RS02]. As a

consequence, the procedure to construct unbiased variance estimators described in Sect. 6.2.1

can be followed for the most parts with only minor modifications. Specifically, to construct

unbiased estimators of Var
[
∆`hp

]≡V`,p /N`, we proceed as follows:

1. We make an initial generic ansatz for the estimator V̂`,p of V`,p based upon replacing

the central moments µk,l in (6.7) by their multivariate hk,l -statistics, so that V̂`,p =∑
i ai hmi

pi ,qi
hni

ri ,si
with the same powers mi and ni appearing in (6.7).

2. We compute the expectation E[V̂`,p ] of the considered ansatz explicitly as a polynomial

function of the central moments µk,l . Again, this combinatorial manipulation can be

carried out efficiently using the mathstatica software.

3. We assemble a linear system of equations for the unknown coefficients (ai )i in the

considered ansatz by equating the coefficients in (6.7) with those of E[V̂`,p ]/N`, obtained

by ordering with respect to the central moments µk,l .

4. If the linear system is not uniquely solvable, then we augment the ansatz for the estima-

tor to account for the newly introduced central moment terms by computing E[V̂`,p ]

and repeat steps 2–4.

Obviously, it is also possible to directly consider an ansatz that contains all unique combina-

tions ofµk1
p1,q1

µ
k2
p2,q2

, such that k1(p1+q1)+k2(p2+q2) = 2p. However, the procedure described

above offers the advantage that it may result in a lower dimensional linear system, which

needs to be solved.

We detail here the procedure for p = 2. In view of (6.7a) we first make the initial ansatz

V̂`,2 = a1h2
1,1 +a2h0,2h2,0 +a3h2,2. Next, we compute the expectation of this ansatz, which can
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be written as

E[V̂`,2] = 2a2 +
(
(N`−1)2 +1

)
a3

(N`−1)N`
µ2

1,1 +
a2(N`−1)2 +a3

(N`−1)N`
µ0,2µ2,0 + a1N`+a2 +a3

N`
µ2,2 .

By equating the coefficients of the right-hand side above and those in (6.7a) we then obtain a

linear system of equations for the coefficients a1, a2, and a3. Finally, solving this linear system

yields a1 = N`−1
N`

2−2N`+3
, a2 = N`−1

N`
3−4N`

2+7N`−6
, and a3 = −N`

2+4N`−5
N`

3−4N`
2+7N`−6

. Using these coefficients,

we can eventually express the unbiased sample-based estimator of Var
[
∆`h2

]=V`,2/N` as a

polynomial function of the bivariate power sums as

V̂`,2

N`
= 1(

N`−3
)(

N`−2
)(

N`−1
)2N`

2

(
N`

((−N`
2 +N`+2

)
S`2

1,1

+ (
N`−1

)2(N`S`2,2 −2S`1,0S`1,2

)+ (
N`−1

)
S`0,2(S`2

1,0 −S`2,0)
)
+S`2

0,1

((
6−4N`

)
S`2

1,0

+ (
N`−1

)
N`S`2,0

)
−2N`S`0,1

((
N`−1

)2S`2,1 +
(
5−3N`

)
S`1,0S`1,1

))
,

(6.8)

where Sa,b ≡ Sa,b
(

X `,+
N`

, X `,−
N`

)
for brevity. The same procedure can also be applied to obtain

unbiased estimators for higher order (i.e. for any p ≥ 2) central moments, which become rather

lengthy though. However, we emphasize that the obtained unbiased variance estimators are

in closed-form, so that an efficient implementation is possible. For example, in A.2 we present

the unbiased estimator for the case p = 3, while we refer to our implementation details for the

formula for p = 4.

We reiterate that the procedure introduced here yields unbiased sample-based variance

estimators, which are needed for the practical error control and tuning of the MLMC approach

introduced in this work; see the following Section for details. The fact that theses variance

estimators are unbiased and not just asymptotically unbiased is particularly important on finer

levels `, on which the sample size N` will be small. For example, for p = 2 the bias of the naive

variance estimator, which is obtained by simply replacing the bivariate central momentsµk,l by

the corresponding hk,l -statistics, is (N`
2−4N`+6)µ1,1

2+(3−2N`)µ0,2µ2,0−(N`
2−4N`+3)µ2,2

(N`−1)2N`
2 . Although this

additional bias as a function of the sample size N` is of order O(N`
−2), it may still contribute

to a non-negligible error of the MLMC estimator, in particular due to fine levels for which N`

will be small. Finally, we also emphasize that, as a consequence of being based on unbiased

estimators, the MLMC method for central moments introduced in this work does not come

at the expense of introducing an additional systematic error (i.e. a bias) that needs to be

accounted for, unlike other works on central moment estimators, such as [BC16].

6.3.2 From mean squared errors to confidence intervals

The discussion of both the MC method and the MLMC method above was solely based on

the mean squared error as an accuracy measure. However, for some applications it is often

also desirable to associate confidence intervals (or, equivalently, failure probabilities) to an
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estimator. Specifically, let θ̂ be a generic estimator of the deterministic value θ with mean

squared error given by MSE(θ̂) = E
[
(θ̂−θ)

2]
. For a confidence pc ∈ (0,1), the associated

confidence interval can then be characterized by the value δ> 0, such that

P
(∣∣θ̂−θ∣∣< δ)

≥ pc .

In the absence of any further knowledge of the probability distribution of |θ̂− θ|, a suffi-

cient condition for the length δ of the confidence interval can be derived using Chebyshev’s

inequality:

P
(∣∣θ̂−θ∣∣≤ δ)

≤ MSE(θ̂)

δ2 = 1−pc ⇒ δ=
√

MSE(θ̂)

1−pc
. (6.9)

That is, the confidence interval can be directly linked to the estimator’s mean squared error.

Consequently, the mean squared error based analysis considered in this work can straight-

forwardly be used to quantify confidence regions (or failure probabilities) of estimators. It is

noteworthy however, that the confidence region identified in (6.9) may be rather conservative

due to the use of Chebyshev’s inequality.

6.4 Implementation details and complete algorithm

In this Section, we address important practical aspects needed for the implementation of the

MLMC methodology presented in this Chapter and present a pseudo-code of the complete

MLMC algorithm. In fact, here we present a unified framework for the estimation of both

the expectation E[Q] and any order central moment µp (Q) of a random variable Q subject to

prescribed mean squared error tolerance.

As the central moment µp is trivially zero for p = 1, it will be convenient to denote by mMLMC1

the MLMC estimator for E[Q]. Specifically, equation (6.5) defines the MLMC central moment

estimator for any non-trivial order p > 1. For p = 1 we still use the definition in equation (6.5)

but with a slight abuse of notation by setting h1(QN ,M ) := 1
N

∑N
i=1 Qi ,M to denote the sample

average operator, so that equation (6.5) yields the usual MLMC estimator of the expected value

for p = 1.

In the absence of theoretical estimates for the rates and constants that characterize the bias

and statistical error decays as well as the cost model for the problem under investigation (cf.

Prop. 6.3.1), these rates and constants need to be estimated as they are required to optimally

tune the MLMC method. That is, to be able to compute the optimal number of levels and

sample sizes, a common practice is to perform an initial screening procedure. Such a screening

procedure consists, for example, of the evaluation of a predefined number of N realizations

on few (coarse) levels {0, . . . ,L}. Based on these simulations, it is possible to fit these rates and

constants (e.g. via a least squares procedure), which then determines the models for the bias,

statistical error, and cost per sample.
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Once the rates and constants are determined, the pivotal step for achieving the theoretical

complexity of the MLMC method subject to a prescribed mean squared error tolerance, is the

choice of both the number of levels L and the sample size N` required on each level 0 ≤ `≤ L.

To determine these parameters a precise estimation of the mean squared error (MSE),

MSE = B2 +SE ,

specifically of its two error contributions bias (B) and statistical error (SE), is required as

described in Sect. 6.3. In order to present a general procedure for the unified MLMC approach

to both the expectation and central moments, we recall that

∆`hp = hp
(
Q`

N`,M`

)−hp
(
Q`

N`,M`−1

)
, hp (QN ,M ) =

 1
N

∑N
i=1 Qi ,M , if p = 1 ,

p-th h-statistic , if p > 1 .
(6.10)

In practice the bias contribution B is thus estimated by

B ≈ ∣∣∆Lhp
∣∣ . (6.11)

On the other hand, the statistical error SE is approximated by

SE ≈
L∑
`=0

V`,p

N`
, (6.12)

where V`,p denotes the estimated variance Var
[
∆`hp

]
on level `. Specifically, we use V`,p =

V̂`,p on those levels ` for which simulations have been run during the screening procedure (i.e.

`≤ L). Here, V̂`,p is the unbiased sample-based variance estimator introduced in Sect. 6.3.1.

On levels ` for which no sample exists yet (i.e. for `> L), we extrapolate the fitted model and

use V`,p = cβM`
−β as an estimator.

To achieve a prescribed mean squared error of ε2, we thus require

B ≤
p

1−θε , (6.13a)

SE ≤ θε2 , (6.13b)

where we have additionally introduced a splitting parameter θ ∈ (0,1) to offer the possibility

of weighting the two MSE contributions differently. Specifically, the bias constraint (6.13a) is

satisfied for L ∈N such that

ML ≥
(p

1−θε
cα

)− 1
α

, (6.14)

in view of Prop. 6.3.1(i). Moreover, the theoretical complexity result in Prop. 6.3.1 also suggests

that the statistical error constraint (6.13b) is satisfied with optimal complexity by selecting the
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sample size N` ∈N on level ` as

N` =
⌈

1

θε2

√
V`,p

C`

L∑
k=0

√
CkVk,p

⌉
, `= 0,1, . . . ,L , (6.15)

where C` = cost(QM`
).

In Algorithm 3 we provide a detailed pseudo-code of the full MLMC algorithm, which is based

on the discussion above. There SOLVE` denotes a “black-box” solver that, for a given realiza-

tion ωi of the random parameters, returns the approximation QM`
(ωi ) on the discretization

level `. For the sake of completeness, the pseudo-code also contains a possible screening

Algorithm 3: MLMC Algorithm for the expectation and central moments of order p.

SCREENING(N , L, p, εr , θ)
for `= 0 : L do

for i = 0 : N do
Generate random sample: ωi ,`

QM`
(ωi ,`) ← SOLVE` (ωi ,`)

QM`−1 (ωi ,`) ← SOLVE`−1 (ωi ,`)

∆`hp = hp
(
Q`

N ,M`

)−hp
(
Q`

N ,M`−1

)
, where hp (QN ,M ) as in (6.10)

estimate ε= εr ·mMLMCp [Q]

estimate {C`}L
`=0, V`,p

compute P = {cα,cβ,cγ,α,β,γ} using LS fit
compute L using (6.14) and N` using (6.15)
return L, {N`}L

`=0

MLMC(L, {N`}L
`=0, p)

for `= 0 : L do
for i = 0 : N` do

Generate random sample: ωi ,`

QM`
(ωi ,`) ← SOLVE` (ωi ,`)

QM`−1 (ωi ,`) ← SOLVE`−1 (ωi ,`)

return mMLMCp [Q]

procedure. Eventually, Algorithm 1 returns the MLMC estimator mMLMCp [Q] of the QoI for a

prescribed mean squared error tolerance. We emphasize that the implementation presented

here takes as an input a relative MSE tolerance εr , which is related to the commonly used

absolute MSE tolerance ε via

ε= εr

E[Q] , if p = 1 ,

µp (Q) , if p > 1 .
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central moment µp (Q)

E(Q) p = 2 p = 3 p = 4

1.045058356 2.16660855 5.6966642 31.191899

Table 6.2 – Reference values for the expected value E[Q] and various central moments µp (Q) for the
QoI Q derived form the geometric Brownian motion SDE.

6.5 Numerical Experiments

In this section we apply the introduced Multi Level Monte Carlo technique to various examples.

We begin by scrutinizing the methodology for rather simple toy problems for which exact (or

highly accurate) solutions are easily available; see Sects. 6.5.1 and 6.5.2. Then we move on to

study a more challenging problem in Sect. 6.5.3, namely the one of a transonic airfoil under

operational and/or geometric uncertainties.

6.5.1 Stochastic differential equation model: a financial option

Let us begin with a simple example involving a stochastic differential equation (SDE). Specifi-

cally, we consider the case that the SDE models (example borrowed from [Gil15b]*Sect. 5) a

financial call option with the asset being a geometric Brownian motion, viz.

dS = r S d t +σS dW , S(0) = S0 . (6.16)

Here, r , σ, and S0 are given positive numbers. For this asset we are interested in quantifying

the uncertainties in the “discounted payoff”, so that we set the quantity of interest Q as

Q := e−r T max
(
S(T )−K ,0

)
, (6.17)

where K > 0 denotes the agreed strike price and T > 0 the pre-defined expiration date. Due to

the fact that the solution to (6.16) at time T , i.e. S(T ), is a log-normally distributed random

variable with mean S0er T and variance S0
2e2r T

(
eσ

2T −1
)
, it is straightforward to compute

highly accurate approximations to statistics of Q. In fact, Table 6.2 lists approximated reference

values for the expected value and for the first three central moments of Q corresponding to

the parameter values r = 1
20 , σ= 1

5 , T = 1, K = 10, and S0 = 10. These reference values were

obtained using a high precision numerical quadrature.

For the numerical experiments based on the Multi Level Monte Carlo method that will follow,

we discretize the SDE (6.16) via the Milstein method.

Sn+1
` = Sn

` +δ`r Sn
` +σSn

`

√
δ`ξn + σ2

2
δ`Sn

`

(|ξn |2 −1
)

, S0
` = S0 ,

so that Sn+1
`

≈ S(nδ`), where δ` = 2−`T and (ξn)n≥0 denotes a sequence of i.i.d. standard
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normally distributed random variables. That is, we employ a discretization with a nested grid

hierarchy with M` = T /δ` = 2` DOFs, which corresponds to the number of time steps needed

to integrate the SDE from time t = 0 to the final time T .

In order to validate the MLMC methodology discussed in this Chapter, we provide in Table 6.3

a sample based estimation of the MSE of the MLMC estimators, using 100 independent

repetitions of the algorithm. Specifically, the table offers a comparison between the required

relative root MSE tolerance and the achieved sample based root mean squared error for both

the expected value and the first three central moments for various tolerances. The results

Tol mMLMC1 mMLMC2 mMLMC3 mMLMC4

εr = 0.1 0.0647 0.0857 0.0785 0.0991
εr = 0.05 0.0435 0.0429 0.0415 0.0495
εr = 0.025 0.0237 0.0217 0.0231 0.0223
εr = 0.01 0.0087 0.0099 0.0091 0.0083

Table 6.3 – Sample estimate of relative root MSE based on 100 repetitions of the MLMC algorithm for
computing mMLMCp for different relative tolerance requirements.

in Table 6.3 demonstrate that the MLMC implementation described in the previous Section

does indeed provide estimators that satisfy the tolerance requirement. Additionally, in the top

row of Figure 6.1 we show the actual computed values of these 100 repetitions of the MLMC

algorithm (red circles) compared with the reference solution (green stars). To quantify the

range of the MLMC estimators, we also indicate the 90% confidence intervals based on a

Chebyshev bound (blue bars; see Eq. (6.9)) in these plots.

The bottom row in Figure 6.1 presents the corresponding MLMC hierarchies (both number of

levels and sample size per level) required to achieve prescribed relative tolerance requirements

when estimating the expectation and various central moments of the QoI Q. It is interesting to

observe that the computational cost required to compute central moments is proportional to

that for the expectation up to a multiplicative constant. The latter can be further observed in

Figure 6.2, where we plot the computed bias and variance of the estimators, respectively, for

various tolerance demands. It can be inferred that the decay rate for the estimator’s bias and

variances is the same, while the constants are increasing with increasing p.

6.5.2 Elliptic PDE in two spatial dimensions

We consider a random Poisson equation in two spatial dimensions,

−∆u = f , in D = (0,1)2 , (6.18)

with homogeneous Dirichlet boundary conditions. Here, the forcing term f is given by

f (x) =−K ξ(x1
2 +x2

2 −x1 −x2) ,
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Figure 6.1 – Computed values of 100 repetitions of the MLMC algorithm compared with the reference
solution (first row) and MLMC hierarchies (number of levels and sample size per level) required to
achieve prescribed relative tolerance requirements when estimating the expectation and various central
moments of the QoI Q (second row) for the SDE problem.
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Figure 6.2 – Decay rates for the bias and variances of MLMC estimator with increasing p for the SDE
problem.

with ξ being a non-negative random variable and K > 0 a positive constant. For this forcing

term the solution to the PDE can be computed explicitly and reads u(x1, x2) = K ξx1x2(1−
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central moment µp (Q)

E(Q) p = 2 p = 3 p = 4

1.5 0.75 0.45 1.748863636

Table 6.4 – Reference values for the expected value E[Q] and the first three central moments µp (Q) for
the QoI Q derived form the random Poisson problem.

x1)(1−x2)/2. As quantity of interest we consider the spatial average of the solution, that is

Q :=
∫

D
u d x = K

72
ξ .

This explicit representation of Q in terms of the random input ξ to the PDE model (6.18)

allows us to easily compute the exact mean as well as central moments of Q, which we will

use to verify the numerical experiments that follow. Specifically, here we use ξ ∼ Beta(2,6)

and K = 432. Table 6.4 then lists approximations to the corresponding mean and the first

three central moments of Q. For the numerical experiments based on Multi Level Monte Carlo

method we discretize the PDE (6.18) using a second order finite difference scheme on a regular

grid. That is, we employ a nested grid hierarchy with M` = (5 ·2`−2)2 DOFs, which correspond

to the values of the solution u at grid points that are not on the boundary ∂D .

As for the previous example, in Table 6.5 we present the (sample based) root mean squared er-

rors obtained by repeating the MLMC algorithm for the expectation and central moments 100

times and for various tolerances. Also for this example we find that the MLMC implementation

Tol mMLMC1 mMLMC2 mMLMC3 mMLMC4

εr = 0.1 0.0674 0.0616 0.0587 0.0777
εr = 0.05 0.0350 0.0401 0.0351 0.0259
εr = 0.025 0.0182 0.0183 0.0156 0.0206
εr = 0.01 0.0069 0.0078 0.0062 0.0084

Table 6.5 – Sample estimate of relative root MSE of 100 repetitions of the MLMC estimators mMLMCp for
different relative tolerance requirements.

does indeed satisfy the required tolerance goals.

In the top row of Figure 6.3 the actual computed values for 100 repetitions of the MLMC

algorithm (red circles) are compared with the reference values (green stars). Also for this

example we observe an accurate estimation within the imposed tolerance goal and within the

confidence region (blue bars, 90% confidence; see Eq. (6.9)). In the second row of Figure 6.3

we report the hierarchies required to achieve the prescribed tolerances. As it is possible to

observe the number of levels and samples per level (and hence the cost) increase consistently

with the central moment we are computing. Such can be also inferred by looking at the decays

of the bias and variance of the MLMC estimators for moments presented in Figure 6.4. These

plots moreover confirm the observation from the previous example, namely that the decay
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rates for the estimator’s bias and variance are the same for different values of p, and only the

constants vary.
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Figure 6.3 – Computed values of 100 repetitions of the MLMC algorithm compared with the reference
solution (first row) and MLMC hierarchies (number of levels and sample size per level) required to
achieve prescribed relative tolerance requirements when estimating the expectation and various central
moments of the QoI Q (second row) for the Elliptic PDE problem.
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Figure 6.4 – Decay rates for the bias and variances of MLMC estimator with increasing p for the Elliptic
PDE problem.
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6.5.3 Transonic Airfoil: 2d

We consider hereafter a transonic supercritical RAE-2822 airfoil [HBE+13, V.A79], which has

become a standard test-case for transonic flows, subject to both operating and geometric

uncertainties.

The fluid flowing around an airfoil generates a local force on each point of the body. The

normal and tangential components of such force are the pressure and the shear stress. By

integrating the force and stress distribution around the surface of the airfoil we obtain a total

force F and a moment M about a reference point (so called center of pressure). The parallel

and perpendicular component of F with respect to the free-stream direction M∞ are the lift L

and drag D forces respectively. Figure 2.1 shows a sketch of this concept. For an airfoil shape

with surface S we define the following lift, drag, and moment dimensionless coefficients:

CL = L

q∞S
, CD = D

q∞S
, and CM = M

q∞SLr e f
, (6.19)

respectively. Here, q∞ = 1
2 M 2∞γg p∞ denotes the dynamic pressure and γg = 1.4 is the ratio of

specific heats of the gas. As we are considering 2D normalized airfoils we set the reference

length Lr e f = 1 and the reference surface S = 1.

The nominal geometry of the RAE-2822 airfoil is defined by a set of PARSEC parameters (see

[Sob98] for details). The advantage of the PARSEC approach over other parametrizations (i.e.

Bezier, NURBS, FFD) is that we can easily perturb the geometrical parameters on the suction

and pressure side of the airfoil which are most relevant for the study that follows. Among

other things, Table 6.6 summarizes the geometric definition of the airfoil as well as the set of

operating parameters for three different flow conditions considered here. Specifically, CASE-6

denotes the mild transonic case (corresponding to experimental cases 6 from AGARD [V.A79]),

CASE-S is a subsonic case with M∞ = 0.6, and CASE-R is a higher Reynolds number case.
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Figure 6.5 – Exemplary probability density functions of two uncertain operating input parameters for
the random RAE-2822.

In what follows, we consider the RAE-2822 airfoil in three different operating regimes with in-

creasing number of uncertain parameters. Specifically, we use the letter G to denote stochastic

simulations where we consider only geometric uncertainties (i.e. 10 random input parameters),
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Name Nominal value Uncertainty

Operating

CASE-6 CASE-S CASE-R
Rec 6.5e6 [−] 6.5e6 [−] 10e6 [−] −
M∞ 0.729 [−] 0.6 [−] 0.729 [−] B(4,2,0.05, M∞−0.037)
α∞ 2.31◦ 2.31◦ 2.31◦ B(4,2,0.2,2.16)

Geometric

Rp 8.60311920e −03 U (98%,102%)
Rs 8.36101985e −03 U (98%,102%)
xp 3.44224863e −01 U (98%,102%)
xs 4.31244633e −01 U (98%,102%)
yp −5.88259641e −02 U (98%,102%)
ys 6.30175650e −02 U (98%,102%)

Cp 7.03608884e −01 U (98%,102%)
Cs −4.30110180e −01 U (98%,102%)
θp −2.06545825e +00 U (98%,102%)
θs −1.15335351e +01 U (98%,102%)

Table 6.6 – Operational and geometrical parameters as well as uncertainties for the RAE-2822 airfoil.

O to denote the regime with only operating uncertainties (i.e. two random input parameters,

namely the angle of attackα∞ and the Mach number M∞, see Figure 6.5) and OG to denote the

setting with geometric plus operating uncertainties (i.e. 12 uncertain input parameters). All un-

certainties and reference nominal operating and geometric parameters are presented in Table

6.6. The operating uncertainties are modeled as beta distributions denoted by B(a,b, s, l oc),

where a and b are the distribution parameters. As the beta distribution is defined on the [0,1]

interval, the parameters s and loc are used to scale and shift the distribution’s support, respec-

tively. On the other hand the geometric uncertainties are modeled as uniform distributions,

denoted by U (xlow , xup ) with xlow < xup denoting range of the support. The types and ranges

of uncertainties for this model problem are representative of a flight condition with natural

atmospheric gusts that affect both the angle of attack and the Mach number. Additionally, the

geometrical uncertainties are reasonably accounting for manufacturing tolerances and shape

deformation of a airfoil due to different loadings on an aircraft wing (aeroelastic twist).

For the numerical study that follows we use the MSES collection of programs for the analysis of

airfoils (see [Dre07] for detail) as deterministic ’black-box’ solver. The MSES collection solves

the steady Euler equations with a finite volume discretization over a streamline grid and is

coupled, via the displacement thickness, with a two-equation integral solver for the viscous

regions of the boundary layer and trailing wakes. The performance of this ’black-box’ solver,

when using a 5-levels structured MLMC grid hierarchy, is summarized in Table 6.7. There

the features of the grid levels, along with the average computational time C T i me required to

compute one deterministic simulation (on one CPU) are shown.

Based on the problem description of the uncertain airfoil problem considered here, in the

following study we apply the developed MLMC estimator for central moments to various

aerodynamic performance parameters. In order to present the estimated expectations and
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Level Airfoil nodes Cells C T i me[s]
L0 47 1739 1.9
L1 71 2627 3.2
L2 107 3959 5.7
L3 161 5957 7.5
L4 243 8991 14.7
L5 365 13505 17.9

Table 6.7 – MLMC 5-levels grid hierarchy for the RAE2822 problem.

central moments estimators for the three different cases (CASE-6, CASE-S, and CASE-R) with

increasing number of uncertain parameters (G , O, and OG) in a compact and informative way,

we introduce in Figure 6.6 a set of bars that are designed to provide the relevant information.

Specifically, there the mean, the standard deviation, the skewness, and the kurtosis of different

QoIs related to the airfoil, such as lift coefficient CL , drag coefficient CD , moment coefficient

CM , and lift-drag ratio L/D , are presented. Moreover, we compare the deterministic value (ob-

tained with nominal geometric and operating parameters) of a QoI (dashed black lines) with a

classical mean plus/minus two standard deviation interval (black bars). The red bars identifies

the skewness corrected mean plus/minus two standard deviation, where the skewness correct

mean is given by µ+γ1. Moreover, the triangles define the kurtosis: yellow inward triangles

identify the platykurtic distributions while red outward triangles denote leptokurtic ones. A

distribution is called platykurtic, if the kurtosis K ur t < 3, which means that the distribution

has thinner tails than a Gaussian distribution. Similarly, a distribution is called leptokurtic if

K ur t > 3, which implies fatter tails.

It is interesting to observe in Figure 6.6 the effects of uncertainties on the performance param-

eters in the three different flow conditions. The two transonic cases CASE-6 and CASE-R are

the most sensitive to uncertainties due to the appearance of shock waves in different regions

on the airfoil upper side (see also Figure 6.7). In such cases we additionally notice that the

drag coefficient CD becomes leptokurtic in the presence of both operating and geometric

uncertainties, indicating that the distribution is heavy-tailed. We believe that this is due to the

appearance of separation bubbles in the front part of the airfoil and stronger shock waves, but

further investigations are necessary to confirm this hypothesis. The variability in the forward

part of the airfoil can be observed also in the green Cp plot in Figure 6.7. Further investigation

are needed to confirm this hypothesis.

Additionally, in Figure 6.7 we compare the pressure coefficients Cp of the RAE 2822 airfoil in the

different conditions and uncertainty scenarios introduced above as well as the reconstructed

lift-drag ratio L/D distributions computed from the statistical moments using the Gram–

Charlier series of type A PDF approximation [Wal58]. The latter is a formal series expansions

in terms of a known distribution, most commonly with respect to a Normal distribution. Using
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Figure 6.6 – Airfoil LD PDFs.

this approach, an unknown density f can be approximated by

f̂ (x) := 1√
2πµ2

exp

(
− (x −µ)2

2µ2

)(
1+ µ3

3!µ2
3/2

H3

(
x −µp
µ2

)
+ µ4 −3µ2

2

4!µ2
2 H4

(
x −µp
µ2

))
, (6.20)

where H3(x) = x3 −3x and H4(x) = x4 −6x2 +3 are Hermite polynomials. Although f̂ may

formally not be a proper density as it is not guaranteed to be positive, it nonetheless offers

an easy to compute density approximation, based on the MLMC estimators for µ, µ2, µ3,

and µ4. By looking at the Cp profiles and the reconstructed PDF approximations we can

further observe the sensitivity of the airfoil on operating and geometric parameters in the

three different flow cases as previously noticed in Figure 6.6. It is worth underlining that the

PDF presented here are simply reconstructed from the first four central moments computed

with the MLMC method. The background histograms are obtained from a MC simulation with

1000 samples on the finest level. A more efficient and accurate procedure to compute directly

the PDF and CDF of QoIs will be presented in the forthcoming Chapter 7.

Finally, in Figure 6.8 we present the computational complexity in CPU hours required to

achieve a certain tolerance requirement. Specifically, the complexities of the MLMC method

and the classic MC approach are compared for approximating the expectation and central

moments for the L/D QoI in CASE-6 with both operating and geometric uncertainties. The

dashed lines indicate the computational complexity predicted by the theory. We immediately

observe a significant speedup of the MLMC method compared to the MC method. Practically

speaking, by employing a cluster node with 28 CPUs we are able to compute the first four
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6.6. Summary

Figure 6.7 – Pressure coefficients Cp of the RAE 2822 airfoil in the different conditions and uncertainty
scenarios and the reconstructed lift-drag ratio L/D distributions.

central moments of the airfoil problem and guarantee a relative tolerance of 1% (i.e. εr = 0.01)

in 3.6 [h] with our MLMC implementation, while we would need to invest 14.8 [d ay s] with

the classic MC method.

6.6 Summary

In this chapter we introduced a methodology and algorithmic extension of the Multi Level

Monte Carlo concepts for the efficient computation of central statistical moments. The key

feature of our procedure is the use of h-statistics as unbiased central moment estimators with

minimal variance for the level-wise contributions. It has been shown in the numerical exam-

ples that the proposed MLMC estimator based on h-statistics satisfy the tolerance requirement

and require a computational cost proportional to that for the estimation of expectations (up

to a multiplicative constant). Additionally we observed that the decay rate for the estimator’s

bias and variances is the same for arbitrary order central moment µp , while the constants are

increasing with increasing p.

In the airfoil problem we observed that central moments can provide relevant information

regarding random variable distribution in view of decision making processes and optimization

under uncertainty approaches. We tested a distribution reconstruction approach bases on

series expansion form the statistical moment (Gram-Charlier approximation) and observed

that the approximation of the distribution is not always satisfactory. The reconstruction is not
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Figure 6.8 – Computational complexity of MC and MLMC (in CPU hours) required to achieve a certain
tolerance requirement for the first central moments.

guaranteed to be a proper probability distribution and seems to lead to large inaccuracies

in capturing asymmetric behaviors and heavy tails. In order to overcome these issues, we

present in the following Chapters another extension of the MLMC approach to accurately

approximate distributions and compute risk measures.
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7 MLMC for Distributions and Risk
Measures

In Chapter 4 we introduced a MLMC estimator for computing the expectation E[Q] of a QoI Q

and in Chapter 6 we extend the MLMC concepts to the estimation of arbitrary order central

moments µp [Q] of Q. As presented in Chapter 6, central moments can provide valuable infor-

mation regarding characteristic features of a random variable distribution, such as location,

dispersion, asymmetry, tailedness, etc. However, the analysis of a random system may require,

in some applications, the accurate approximation of its entire distribution (probability density

function or the cumulative function). The reconstruction of the distribution using formal

series expansions from the random variable statistical moments (see Gram-Charlier approxi-

mation [Wal58] used in Chapter 6 for example) is a viable option only for certain classes of

distributions. Indeed, the reconstruction is not guaranteed to be a proper probability dis-

tribution (the reconstructed density may not be positive everywhere) and can lead to large

inaccuracies in capturing heavy tails. Additionally, various decision making processes and

optimization under uncertainty require the knowledge of risk indicators, such as quantiles

(also known as value at risk, VaR) or coherent risk measures [Del00] such as the conditional

value at risk (CVaR, [Roc07]). These indicators cannot be expressed as moments and are hence

usually not easily accessible.

In this Chapter we present a novel MLMC method for the efficient approximation of parametric

expectations. Specifically, here we particularize the MLMC method introduced in [KN17] to

the accurate and robust computation of an uncertain system output’s cumulative distribution

function (CDF), quantiles (Value at Risk, VaR) and conditional value at risk (CVaR) using cubic

splines interpolation operators.

The approach relies on accurately approximating parametric expectations, i.e. expectations

that depend on a parameter uniformly on a given range for the parameter. For a general

function φ and a random variable Q, parametric expectations are defined as follow:

Φ(ϑ) = E(φ(ϑ,Q)
)

(7.1)

In the following sections we will first present how to set up a MLMC analysis for the accurate
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Chapter 7. MLMC for Distributions and Risk Measures

estimation of a general function Φ(ϑ) and its derivatives and subsequently how to define

estimators for the computation of CDFs, VaR and CVaR while each estimated quantity satisfies

a prescribed tolerance goal. Indeed all of these quantities, for a random variable QoI Q, can

be defined as parametric expectations for a specific function φ or derived from a parametric

expectation.

For instance, the CDF corresponds toΦ(ϑ) =P(Q ≤ϑ) = E[
1Q≤ϑ

]
, although, as we will see later

this representation is not the best for MLMC approximations of CDFs and we will actually

resort to an alternative one.

As in the previous chapters, we assume here, that it is not possible to sample from the distribu-

tion of the QoI Q exactly. Instead, we assume that one can only draw approximate i.i.d. random

variables Qi ,M`
, i = 1, . . . , N , from a random variable QM`

, which is a suitable approximation

(in a sense made precise in Chapter 4) of the unknown random variable Q. Hence, we consider

also in this framework a hierarchy of approximations on different levels `, in the sense that

the level ` approximation QM`
corresponds to an approximation of Q with a discretization

parameter M` (number of DOFs) with M0 < M1 < ... < ML = M . Recall that in this work QM`
is

derived from an approximate solution to a stochastic/random partial differential equation

obtained via an appropriate numerical scheme.

Based on this multilevel hierarchy we aim at approximating parametric expectationsΦ(ϑ) =
E
(
φ(ϑ,Q)

)
and its derivatives Φ(m)(ϑ) on some compact interval Θ ⊂ R for a given function

φ :Θ×R→R.

We first detail in the next section the MLMC approximation of parametric expectations and

extend afterwards the approach to the accurate approximation of its derivatives.

7.1 Multi Level Monte Carlo approximation of parametric expecta-

tions

The intuitive idea of this approach is to build a MLMC approximation for parametric expec-

tationsΦ (on the intervalΘ) by first evaluatingΦ in a set of suitably chosen nodes inΘ by a

standard MLMC estimator and then appropriately interpolating the collected values to obtain

an actual function onΘ. Let us denote by

θ := (θ1,θ2, . . . ,θn)T ∈Θn , θ j ∈Θ , 1 ≤ j ≤ n , (7.2)

a uniform deterministic grid (other choices may be possible and the interested reader is

referred to the abstract result in [KN17]) of n ∈N nodes onΘ. Moreover, we denote by f (θ) the

vector with components f (θ j ), j = 1, . . . ,n, for any function f : R→R.

Following the general construction of MLMC estimators presented in Chapter 6, a collection

120



7.1. Multi Level Monte Carlo approximation of parametric expectations

of pointwise MLMC estimators of a function φ is defined as:

Φ̄MLMC(θ) :=
[

L∑
`=0

1

N`

N∑̀
i=1

φ
(
θ j ,Q i

M`

)
−φ

(
θ j ,Q i

M`−1

)]
1≤ j≤n

, (7.3)

with φ(·,QM−1 ) ≡ 0.

The extension of this collection of pointwise estimators by means of interpolation leads to the

MLMC estimator for the functionΦ onΘ. Here we use

PMLMCΦ :=Sn
(
Φ̄MLMC(θ)

)
(7.4)

where Sn denotes a spline interpolation operator of degree k. Different options are possible,

as discussed in [KN17].

Observe that in (7.3) the evaluations
{

Q i
M`

}
, which involve heavy computational models, in

general are the same for all the evaluation points θ j , j = 1, . . . ,n.

The accuracy of the spline interpolation operator Sn depends on the regularity of the function

Φ. In this work we employ cubic splines (k = 3). Hence we can rely on the following lemma

[DBDBM+78] [QSS10]:

Lemma 1 (Cubic spline interpolation operator). The sequence of cubic spline interpolation

operators Sn : Rn → L∞(Θ) based on the set of nodes θ ∈Θn and function evaluations f (θ) ∈Rn ,

satisfies

(a) ‖ f −Sn
(

f (θ)
)‖L∞(Θ) ≤ c1‖ f (4)‖L∞(Θ)n

−4 for any f ∈C 4(Θ),

(b) ‖Sn(θ)‖L∞(Θ) ≤ c2‖θ‖`∞ for any θ ∈Rn ,

for all n ∈N. The constants c1,c2 > 0 are independent of n.

As in the previous chapters, we quantify the error of the MLMC estimator through the mean

square error (MSE). However, in this case, we are approximating a whole function φ(θ), hence

an appropriate function norm is necessary. A natural choice is the L∞(Θ) norm, so that the

MSE reads:

MSE
(
PMLMCΦ

)
:= E

(∥∥PMLMCΦ −Φ∥∥2
L∞(Θ)

)
. (7.5)

The MSE can be decomposed in two main contributions:

MSE
(
PMLMCΦ

)≡ E(∥∥Φ−Sn
(
Φ(θ)

)+Sn
(
Φ(θ)− Φ̄MLMC(θ)

)∥∥2
L∞(Θ)

)
≤ 2

(∥∥Φ−Sn
(
Φ(θ)

)∥∥2
L∞(Θ) +E

(∥∥Sn
(
Φ(θ)− Φ̄MLMC(θ)

)∥∥2
L∞(Θ)

))
.

(7.6)
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The first term on the right hand side, ‖Φ−Sn
(
Φ(θ)

)∥∥2
L∞(Θ) is the interpolation error introduced

by the spline operator, while E
(∥∥Sn

(
Φ(θ)− Φ̄MLMC(θ)

)∥∥2
L∞(Θ)

)
is the MLMC error contribution,

in this specific case, defined for the pointwise estimator Φ̄MLMC(θ).

We can further decompose the MSE into bias and statistical error (variance of the estimator)

contributions:

MSE
(
PMLMCΦ

)≤ 2

(
‖Φ−Sn

(
Φ(θ)

)∥∥2
L∞(Θ) + c2

2E
(
‖Φ(θ)− Φ̄MLMC(θ)‖2

`∞
))

≤ 2
(
‖Φ−Sn

(
Φ(θ)

)∥∥2
L∞(Θ) +2c2

2

∥∥Φ(θ)−E(Φ̄MLMC(θ)
)∥∥2
`∞ +2c2

2Var
(
Φ̄MLMC(θ)

))
,

(7.7)

where we denote by Var(X ) with X ∈Rn a random vector, the quantity:

Var(X ) := E[‖X −E[X ]‖2
L∞(Θ)

]= E[
max

k=1,...,n
(Xk −E[Xk ])2

]
(7.8)

The complexity result for the MLMC estimator PMLMCΦ for parametric expectations follows by

similar arguments as the ones used in the standard MLMC result (see Chapter 4). The main

differences to the standard MLMC complexity result are the notion of bias and statistical error

and the interpolation error contribution introduced by the spline operator:

I = ‖Φ−Sn
(
Φ(θ)

)∥∥
L∞(Θ). (7.9)

The bias term can be finally bounded by:

B = ∥∥Φ(θ)−E(Φ̄MLMC(θ)
)∥∥
`∞ = max

1≤ j≤n

∣∣E(φ(θ j ,Q)−φ(θ j ,QML

)∣∣≤ sup
ϑ∈Θ

∣∣E(φ(ϑ,Q)−φ(ϑ,QML )
)∣∣.

(7.10)

On the other hand, the statistical error (variance of the estimator) term, can be bounded as

follows (see [KN17]):

SE =Var
(
Φ̄MLMC(θ)

)≤ c ln(n)
L∑
`=0

Var
(
φ(θ,QM`

)−φ(θ,QM`−1 )
)

N`

≤ c ln(n)
L∑
`=0

E
(
supϑ∈Θ

∣∣φ(ϑ,QM`
)−φ(ϑ,QM`−1 )

∣∣2
)

N`

(7.11)

We consider now the following proposition.

Proposition 7.1.1. Suppose there exist constants α,β,γ> 0 such that 2α≥ min(β,γ) and:

(a) the bias decays with order α> 0, meaning that

122



7.1. Multi Level Monte Carlo approximation of parametric expectations

supϑ∈Θ
∣∣E(φ(ϑ,Q)−φ(ϑ,QM`

)
)∣∣≤ cαM`

−α,

(b) the variance of the differences decays with order β> 0, meaning that

E
(
supϑ∈Θ

∣∣φ(ϑ,QM`
)−φ(ϑ,QM`−1 )

∣∣2
)
≤ cβM`

−β,

(c) the cost to compute each i.i.d. realization of QM`
is bounded by

cost(QM`
) ≤ cγM`

γ for some constants cγ,γ> 0.

(d) given QM`
, the cost to evaluate φ(θ,QM`

) is negligible w.r.t. the cost of evaluating QM`

for all ` ∈N0 with positive constants cα,cβ,cγ independent of `.

Following Lemma 1, then for any ε> 0 there exists an optimal number of levels L, and sample

sizes {N`}L
`=0 such that the MLMC estimator PMLMCΦ satisfies

E
(∥∥PMLMCΦ −Φ∥∥2

L∞(Θ)

)
=O(ε2) (7.12)

at a computational cost that is bounded by

C
(
PMLMCΦ

)
. ln

(
ε−1)


ε−2ln(ε−1)

2
, if β= γ ,

ε
−

(
2+ γ−β

α

)
, if β< γ ,

ε−2 , if β> γ .

(7.13)

Notice that this complexity results is only slightly worse (l n(ε−1) factor) than the complexity

result for E[Q] stated in Chapter 4.

A practical methodology to compute the optimal number of levels L, and sample sizes {N`}L
`=0

is presented in the following section. For the sake of completeness, it is important to mention

that in this work we assume that the cost to generate a sample on the coarsest level is not dom-

inated by the cost for evaluating φ (valid assumption in problems that require the solution of

a computational intensive model as those treated in this thesis), otherwise a slightly modified

version of the methodology should be used; see [KN17].

7.1.1 Practical aspects: computation of the MSE and optimal hierarchy

A robust and practical implementation of a MLMC estimator for the computation of a para-

metric expectation, should also provide an estimation of the associated bias and variance

terms of the MSE needed to assess that the prescribed tolerance has been met and to optimize

the hierarchy to achieve optimal complexity. We detail here a practical procedure for the MSE

estimation.

In absence of theoretical estimates for the rates and constants that characterize the bias and

variance decays as well as the cost model for the problem under investigation, we can apply

also in this framework the screening procedure presented in the previous Chapters that uses a
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Chapter 7. MLMC for Distributions and Risk Measures

fixed sample size N̄ over L̄ levels. Once the rates and constants are estimated by the screening

procedure, the pivotal step for achieving the theoretical complexity of the MLMC method

subject to a prescribed mean squared error tolerance, is the choice of both the number of

levels L and the sample sizes N` 0 ≤ `≤ L.

To determine these parameters a precise estimation of the mean squared error (MSE) contri-

butions is crucial. As presented above, the MSE for the MLMC estimator PMLMCΦ include three

contributions:

MSE
(
PMLMCΦ

)
.2I 2 +4c2

2 B 2 +4c2
2 SE . (7.14)

Thanks to the properties of the cubic spline interpolation operator Sn , it follows from Lemma

1(a) that the interpolation error can be bounded by (see [QSS10]):

I ≤ c1n−4
∥∥Φ(4)

∥∥
L∞(Θ), c1 = 5

384
if Φ ∈C 4(Θ). (7.15)

As stated above, in this work we assume that the cost to generate a sample on the coarsest

level is not dominated by the cost for evaluating φ. Based on this assumption, we are free

to choose a number of nodes n in the uniform grid for the construction of the pointwise

MLMC estimator Φ̄MLMC(θ) to overkill the interpolation error without effectively affecting the

computational cost. We will also have the benefit of a nicer visualization of the estimated

function. For this reason we don’t consider anymore the contribution of I in the subsequent

analysis.

To achieve a prescribed mean squared error of ε2, we thus require

B ≤ 0.5
p

1−θε , (7.16a)

SE ≤ 0.25 θε2 , (7.16b)

where we have additionally introduced a splitting parameter θ ∈ (0,1) to offer the possibility of

weighting the two MSE contributions differently.

Concerning the bias term, the same considerations made in the previous chapters hold here

as well. Since the MLMC estimator already uses a sequence of discretizations, a natural way to

estimate the bias is:

B ≈ max
1≤ j≤n

∣∣∣∣E(φ(θ j ,QML−1 )−φ(θ j ,QML

))∣∣∣∣. (7.17)

We can then define the bias estimate on all levels as:

B̂` =

max1≤ j≤n

∣∣∣∣E(φ(θ j ,QM`−1 )−φ(θ j ,QM`

))∣∣∣∣, if `≤ L ,

cαM`
−α , if `> L .

(7.18)
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where we use estimate 7.17 on those levels for which simulations have been run during the

screening procedure or a C-MLMC iterative loop (`≤ L). On levels ` for which no sample exists

yet ( for `> L), we extrapolate using the model in Proposition 7.1.1(a), with fitted parameters

cα, α.

With the same spirit we denote the cost of computing one MLMC sample on level ` as:

Ĉ` =
cost(QM`

), if `≤ L ,

cγM`
γ , if `> L .

(7.19)

Finally, the bias constraint (7.16a) is satisfied for L ∈N such that:

ML = argmin
M`∈[M0,...,MLM AX ]
s.t . B̂`≤0.5

p
1−θε

Ĉ` (7.20)

On the other hand, the statistical error SE is approximated by

SE ≈ ln(n)
L∑
`=0

E

(
max1≤ j≤n

∣∣∣∣φ(θ j ,QM`−1 )−φ(θ j ,QM`

)∣∣∣∣2)
N`

≈ ln(n)
L∑
`=0

V̂`,θ

N`
.

(7.21)

Here, V̂`,θ corresponds to the Monte Carlo level sampled second moment S2,MC
`,θ for

max1≤ j≤n

∣∣∣∣φ(θ j ,QML−1 )−φ(θ j ,QML

)∣∣∣∣ on those levels ` for which simulations have been run

during the screening procedure ( ` ≤ L). On the other hand, on levels ` for which no sam-

ple exists yet (i.e. for ` > L), we extrapolate a fitted model by assuming that V̂`,θ ≈ cβM`
−β

(following Proposition 7.1.1(b)). That is, we use the approximation

V̂`,θ =
S2,MC

`,θ , if `≤ L ,

cβM`
−β , if `> L .

(7.22)

Thanks to Proposition 1(a) and (7.16b) we obtain that the statistical error constraint is satisfied

with optimal complexity by selecting the sample size N` ∈N on level ` as

N` =
⌈

1

θε2 ln
(
ε−

1
4

)√
V̂`,θ

Ĉ`

L∑
k=0

√
ĈkV̂k,θ

⌉
, `= 0,1, . . . ,L . (7.23)
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7.2 Multi Level Monte Carlo approximation of derivatives

As we will see hereafter, it is often advantageous to construct a MLMC estimator PMLMCΦ that does

not only have a uniform MSE of order O(ε2), but whose first m derivatives are also accurate

with the same uniform MSE order.

In order to characterize the accuracy in approximating derivatives, we recall additional prop-

erties of the spline interpolation operator [QSS10].

Lemma 2 (Derivatives of the spline interpolation operator). For m ∈N0, m < 4, the sequence

of cubic spline interpolation operators Sn : Rn →C m(Θ) based on the set of nodes θ ∈Θn and

function evaluations f (θ) ∈Rn , satisfies

(a) ‖ f (m) − d m

dϑm Sn
(

f (θ)
)‖L∞(Θ) ≤ c4‖ f (4)‖L∞(Θ)n

−(4−m) for any f ∈C 4(Θ),

(b) ‖ d m

dϑm Sn(θ)‖L∞(Θ) ≤ c5nm‖Sn(θ)‖L∞(Θ) for any θ ∈Rn .

Here, the constants c4,c5 > 0 are independent of n but may depend on m.

As in the previous section, we quantify the error of the MLMC estimator through the mean

squared error (MSE), which can be decomposed as follows:

MSE
( d m

dϑm PMLMCΦ

)
:= E

(∥∥∥∥Φ(m) − d m

dϑm PMLMCΦ

∥∥∥∥2

L∞(Θ)

)

≤ 2

(∥∥∥∥Φ(m) − d m

dϑm Sn
(
Φ(θ)

)∥∥∥∥2

L∞(Θ)
+2E

(∥∥∥∥ d m

dϑm Sn
(
Φ(θ)− Φ̄MLMC(θ)

)∥∥∥∥2

L∞(Θ)

))
(7.24)

Also in this case we identify the interpolation error introduced by the spline operator, and the

MLMC error contribution, defined for the pointwise estimator Φ̄MLMC(θ) on the right hand side

of (7.24). Thanks to Lemma 2(b) we can further manipulate the second term to obtain:

MSE
(
PMLMCΦ

)≤ 2

(∥∥∥∥Φ(m) − d m

dϑm Sn
(
Φ(θ)

)∥∥∥∥2

L∞(Θ)
+2c2

5c2
2n2mE

(
‖Φ(θ)− Φ̄MLMC(θ)‖2

`∞
))

. (7.25)

By further decomposing the MLMC error into bias and statistical error (variance of the esti-

mator) contributions, using the arguments presented in the previous section we finally get:

MSE
(
PMLMCΦ

)≤ 2

(∥∥∥∥Φ(m) − d m

dϑm Sn
(
Φ(θ)

)∥∥∥∥2

L∞(Θ)

+2c2
5c2

2n2m
∥∥Φ(θ)−E(Φ̄MLMC(θ)

)∥∥2
`∞ +2c2

5c2
2n2mVar

(
Φ̄MLMC(θ)

))
.

(7.26)
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The interpolation error contribution introduced by the spline interpolation operator is now

defined as:

I m =
∥∥∥∥Φ(m) − d m

dϑm Sn
(
Φ(θ)

)∥∥∥∥2

L∞(Θ)
. (7.27)

The bias B and statistical errors SE have exactly the same definition as in (7.10) and (7.11) but

now they are multiplied by n2mc2
5 .

Concerning the complexity of the algorithm we state the result from [KN17]:

Proposition 7.2.1. Let m ∈N, m < 4 andφ(ϑ,Q) andΦ(ϑ) = E[
φ(ϑ,Q)

]
satisfy the assumptions

of Proposition 7.1.1, with φ ∈C 4(Θ), then for any ε> 0 there exist an optimal number of levels L

and optimal sample sizes {N`}L
`=0 such that the MLMC estimator PMLMCΦ satisfies

E

(∥∥∥∥Φ(m) − d m

dϑm PMLMCΦ

∥∥∥∥2

L∞(Θ)

)
=O(ε2) (7.28)

and the corresponding computational cost results in

C
(

d m

dϑm PMLMCΦ

)
. ln

(
ε−1)


ε−2 4

4−m ln(ε−1)
2

, if β= γ ,

ε
−

(
2+ γ−β

α

)
4

4−m , if β< γ ,

ε−2 4
4−m , if β> γ .

(7.29)

It can be easily verified that for m = 0 we recover the results obtained in the previous section.

7.2.1 Practical aspects: computation of the MSE and optimal hierarchy

Under these slightly strengthened assumptions, and following exactly the same procedure

presented in Section 7.1.1 we can build a MLMC estimator PMLMCΦ that does not only have a

uniform MSE of order O(ε2), but whose first m derivatives are also accurate with the same

uniform MSE.

As presented above, the MSE for the MLMC estimator PMLMCΦ include three contributions:

MSE
(
PMLMCΦ

)
.2I 2

m +4c2
5c2

2n2mB 2 +4c2
5c2

2n2mSE , (7.30)

Thanks to the properties of the derivatives of the spline operator Sn , it follows from Lemma

2(a) that the interpolation error can be bounded by:

I m = c4n−(4−m)
∥∥Φ(4)

∥∥
L∞(Θ), i f Φ ∈C 4(Θ), with

c4 = 1
24 i f m = 1

c4 = 3
8 i f m = 2

(7.31)
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We choose also here a large number of nodes n in the uniform grid, for the construction

of the pointwise MLMC estimator Φ̄MLMC(θ), to overkill the interpolation error without effec-

tively affecting the computational cost. Also in this setup we do not consider anymore the

contribution of I m in the subsequent analysis.

The MSE reduces to:

MSE
(
PMLMCΦ

)
.4c2

5c2
2n2m

o B 2 +4c2
5c2

2n2m
o SE , (7.32)

where we denote with no = c4‖φ(4)‖L∞(Θ)dε−
1

4−m e the minimum number of nodes in the uni-

form grid required to achieve the prescribed tolerance requirement (see Lemma 2(a)).

Hence, to achieve a prescribed mean squared error of ε2, we require now

B ≤ 0.5
p

1−θ ε

nm
o

, (7.33a)

SE ≤ 0.25 θ
ε2

n2m
o

, (7.33b)

Concerning the bias term, the same considerations made in the previous section holds here as

well, hence we get:

ML = argmin
M`∈[M0,...,MLM AX ]
s.t . B̂`≤0.5

p
1−θ ε

nm
o

Ĉ` , (7.34)

where Ĉ` denotes the cost of computing one MLMC sample on level ` (see 7.19).

On the other hand, the statistical error SE constrain is satisfied with optimal complexity by

selecting the sample size N` ∈N on level ` as

N` =
⌈

n2m
o

θε2 ln(ε−
1

4−m )

√
V̂`,θ

Ĉ`

L∑
k=0

√
ĈkV̂k,θ

⌉
, `= 0,1, . . . ,L . (7.35)

7.3 MLMC estimators for Distributions and Risk Functions

In this section we present different MLMC estimators based on parametric expectations

that can be employed to compute QoI distributions and risk measures using the procedures

introduced in the previous sections. The only practical difference in the following MLMC

estimator is the function φ considered during the computation.
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7.3.1 MLMC estimator for the Cumulative Distribution Function

One of the most commonly used ways to characterize the distribution of a random variable Q

is via its cumulative distribution function (CDF).

Definition 13. The cumulative distribution function (CDF) FQ :R→ [0,1] of a random vari-

able Q, is the function that gives the probability that Q will take a value less than or equal to ϑ:

FQ (ϑ) =P(
Q ≤ϑ)= ∫ ϑ

−∞
fQ (x) d x (7.36)

where fQ denotes the probability density function (PDF) of Q.

The CDF of Q can be written as a parametric expectation in the form:

FQ (ϑ) = E(1Q≤θ) (7.37)

where I denotes the indicator function that it is equal to 1 when Q ≤ϑ, and zero otherwise.

Even if the CDF of a random variable Q can be explicitly expressed as a parametric expectation,

it has been underlined in [KN17] and [GNR15], that the direct MLMC approximation of FQ

is inefficient (rates α and β in Proposition 7.1.1 may deteriorate) due to the discontinuity

introduced by the indicator function. An effective approach to overcome this difficulty intro-

duced in [KN17] seeks at finding an appropriate function GQ :Θ→R such that G ′
Q = FQ . One

candidate that satisfy this requirement is:

GQ (ϑ) = E(
φ(Q −ϑ)

)
, with φ(z) = |z|I (z ≤ 0). (7.38)

By doing so we obtain a function φ that is Lipsschitz continuous and GQ is even more regular

than the actual CDF FQ . In order to accurately compute the CDF up to a prescribed tolerance

we are now required to follow the procedure presented in section 7.2. Practically, we first

construct a MLMC approximation PMLMCG for the function GQ (ϑ) using the procedure presented

in Section 7.2.1 such that also FQ =G ′
Q is accurately approximated up to a prescribed tolerance

requirement.

Following this procedure, one could also obtain a MLMC estimator of the PDF fQ by also

requiring an accurate estimation of the second derivative m = 2 in section 7.2.

7.3.2 MLMC estimator for the Characteristic function

The characteristic function is another convenient and elegant tool to characterize the distribu-

tion of the random variables.

Definition 14. The characteristic function ϕQ (ϑ) : R→ C of a random variable Q is defined
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as:

ϕQ (ϑ) =
∫
R

e iϑx dFQ (x) =
∫
R

e iϑx fQ (x) d x (7.39)

where i is the imaginary unit, FQ is the cumulative distribution function of Q, fQ is the prob-

ability density function (PDF) of Q and the first integral in (7.39) is a generalization of the

Riemann integral known as Riemann–Stieltjes integral.

The characteristic function of a distribution always exists, even when the probability density

function or moment-generating function do not. If the random variable Q admits a probability

density function fQ , then the characteristic function is the Fourier transform of the probability

density function.

It follows from the definition above that the characteristic function can be written as a para-

metric expectation:

ϕQ (ϑ) = E(e iϑQ)
. (7.40)

In order to avoid the treatment of complex-valued functions in our MLMC formulation, we

employ Euler’s formula and get:

ϕQ (ϑ) = E(cos(ϑQ)
)+ iE

(
si n(ϑQ)

)=Φ1(ϑ)+ iΦ2(ϑ). (7.41)

Following the definition of parametric expectation (7.1), Φr (ϑ) := E(φr (ϑ,Q)
)
, r = 1,2 with

φ1(ϑ,Q) = cos(ϑQ), φ2(ϑQ) = si n(ϑ,Q).

We can now write a MLMC estimator PMLMCϕ for the characteristic function ϕQ (ϑ) on a set

Θ⊂R using the methodology presented in the section 7.1 by simultaneously constructing two

multilevel Monte Carlo approximations PMLMCΦ1
and PMLMCΦ2

for the real partΦ1 and imaginary part

Φ2:

PMLMCϕ = PMLMCΦ1
+ iPMLMCΦ2

. (7.42)

It is worth underlining that the two MLMC estimators forΦ1 andΦ2 are built using the same

samples so that the computational overload of approximating two functions simultaneously is

negligible.

7.3.3 MLMC estimator for the simultaneous computation of VaR, CVar and CDF

In addition to characterize a random variable’s distribution from its CDF or its characteristic

function, many decision making process under uncertainty require the knowledge and the

accurate computation of quantiles (or VaR).

Definition 15. Quantiles (also known as value at risk, VaR) are cutpoints dividing the range of
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a probability distribution. The α-quantile qα is given by:

qα =V aRα = F−1
Q (α) ≡ inf{ϑ ∈R : FQ (ϑ) ≥α} α ∈ (0,1). (7.43)

The conditional value at risk (CVaR, also known as excess loss, mean shortfall, tail VaR, average

value at risk or expected shortfall) is another well known risk indicator employed in many

financial and scientific applications, introduced by Rockafellar [RU02] as an extension of VaR.

Definition 16. CVaR is a risk measure defined as the mean of the so called generalized α-tail

distribution:

CV aRα =
∫ ∞

−∞
z dFα

Q (z), Fα
Q =

0, i f z <V aRα(Q)
FQ (z)−α

1−α , i f z ≥V aRα(Q)
α ∈ (0,1). (7.44)

The following procedure, which is taken from [KN17], enables a simultaneous approximation

of the CDF, VaR and CVaR with an accuracy of order ε.

Following a similar argument used for the definition of the MLMC estimator for the CDF, we

can consider now a function HQ :Θ→Rwith τ ∈ (0,1):

HQ (ϑ) = E(
φ(ϑ,Q)

)
, with φ(ϑ,Q) =ϑ+ 1

1−τ (Q −ϑ)+. (7.45)

where (Q −ϑ)+ denotes the positive part, i.e. (Q −ϑ)+ =Q −ϑ if Q ≥ϑ and (Q −ϑ)+ = 0 if Q <ϑ.

Following the procedure presented in section 7.2.1 with m = 1, we obtain a MLMC estimator

PMLMCH (ϑ) for the function HQ (ϑ) and its derivatives with a uniform MSE of order ε2.

In fact considering (7.45) offers the various beneficial proprieties that can be used to estimate

the VaR, CVaR and CDF of Q through the following post-processing procedure.

1. The CDF of Q can be expressed as, FQ (ϑ) = (1−τ)H ′
Q (ϑ)+τ and accurately approximated

by computing the derivative of PMLMCH :

FQ (ϑ) ≈ (1−τ)
d

dϑ
PMLMCH (ϑ)+τ. (7.46)

2. If there exists a unique τ-quantile qτ, then HQ (θ) is strictly convex;

3. The τ-quantile qτ (V aRτ) is available via minimization of PMLMCH (ϑ):

qτ := argmin
ϑ∈R

HQ (ϑ) ≈ argmin
ϑ∈Θ

PMLMCH (ϑ) (7.47)

4. The approximation of CV aRτ on the other hand can be computed as [RU02]:

CV aRτ := min
ϑ∈R

HQ (ϑ) ≈ min
θ∈Θ

PMLMCH (ϑ) (7.48)
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Consequently, a simultaneous estimation of these quantities is possible, once an MLMC

estimator PMLMCH (ϑ) of HQ (ϑ) is accessible.

Following the analysis in [KN17] it can be proved that once we tune the MLMC algorithm

in order to achieve an uniform approximation of H ′
Q (ϑ) with tolerance ε, we also obtain an

approximation of the CDF qτ and CV aRτ that fulfill an accuracy of order ε.

7.4 Numerical Experiments

7.4.1 Stochastic differential equation model: a financial option

Let us consider, as in the previous Chapter 6.5.1, the stochastic differential equation (SDE) of a

financial call option with the asset price modeled as a Geometric Brownian motion:

dS = r S d t +σS dW , S(0) = S0 . (7.49)

Here, r , σ, and S0 are given positive numbers. For this asset we are interested in quantifying

the uncertainties in the "discounted payoff", so that we set the quantity of interest Q as

Q := e−r T max
(
S(T )−K ,0

)
, (7.50)

where K > 0 denotes the agreed strike price and T > 0 the pre-defined expiration date. Due to

the fact that the solution to (6.16) at time T , i.e. S(T ), is a log-normally distributed random

variable with mean S0er T and variance S0
2e2r T

(
eσ

2T −1
)
, it is straightforward to write explicitly

the cumulative distribution function (CDF) of Q as:

FQ (q) =


1
2 + 1

2 erf

(p
2
(
σ2T−2r T+2ln

(
K+er T q

)
−2ln(S0)

)
4σ

p
T

)
, q ≥ 0 ,

0 , q < 0 ,
(7.51)

with erf(z) = 2p
π

∫ z
0 e−s2

d s. Using this CDF formula, it is straightforward to compute highly

accurate reference values to scrutinize the numerical tests that follow. For example, Table

7.1 lists various quantiles and conditional values at risk of Q corresponding to the parameter

values r = 1
20 , σ= 1

5 , T = 1, K = 10, and S0 = 10.
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Figure 7.1 – CDF of Q for the
SDE problem showing an atom
in {0}.

τ qτ = F−1
Q (τ) CVaR

0.5 0.28969248806044 2.07289994377492

0.6 0.79915147910402 2.45589763914500

0.7 1.37357115613536 2.91495294881199

0.8 2.08659501069246 3.51568432394181

0.9 3.15337857121734 4.46029755618034

0.95 4.10793072742060 5.33760617797560

0.99 6.09681496883100 7.22485804514000

Table 7.1 – Quantiles and conditional values at risk for the
quantity of interest associated with the geometric Brownian
motion SDE.

For the numerical experiments based on multilevel Monte Carlo method, the SDE (7.49) is

discretized via the Milstein method (see details in the previous chapter 6.5.1)

In order to validate the MLMC methodology discussed in this chapter we provide in Figure

7.2 the sample based estimated MSE (using 100 independent repetitions of the algorithm)

for VaR (red line), CVaR (blue line) and CDF (green line)of Q compared with the required

absolute MSE tolerance. We specifically considered in this experiment the MLMC estimator

PMLMCH (ϑ) of HQ (ϑ) discussed in 7.3.3. The different plots in Figure 7.2 report the estimated

MSE for different values of τ. We can observe that the MLMC implementation does indeed

satisfy the required tolerance goals for VaR, CVaR and CDF. Additionally we witness that the

implementation is actually quite conservative in particular for the CDF for high value of τ, in

the sense that it produces estimates that are more accurate than required.
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Figure 7.2 – Error vs. tolerance demand for different value of τ for the SDE problem.

In Figure 7.3 we report the hierarchies required to achieve the prescribed tolerances discussed

above. As it is possible to observe the number of levels and samples per level (and hence

the computational cost) increase consistently with τ. Such can be also inferred by looking at

Figure 7.4 where we can observe that the decay rate for the estimator’s bias and variances is

the same, while the constants are increasing with increasing τ.

Notice that Q has a mixed distribution, in the sense that it has a continuous distribution on
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Figure 7.3 – MLMC hierarchies (number of levels and sample size per level) required to achieve pre-
scribed relative tolerance requirements when estimating simultaneously VaR, CVaR and CDF of Q for
different value of τ for the SDE problem.

Figure 7.4 – Decay rates for the bias and variances of MLMC estimator PMLMCH (ϑ) of HQ (ϑ) for different
value of τ for the SDE problem.

(0,∞) and an atom in {0} (see Figure 7.1). This discontinuity does not prevent the use of our

approach but reduces the decay rate of the variance of the estimator β from two, as in the case

of central statistical moment (see Figure 6.2 in the previous Chapter), to one.

7.4.2 Elliptic PDE in two spatial dimensions

We now consider a random Poisson equation in two spatial dimensions,

−∆u = f , in D = (0,1)2 , (7.52)
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with homogeneous Dirichlet boundary conditions. Here, the forcing term f is given by

f (x) =−K ξ(x1
2 +x2

2 −x1 −x2) ,

with ξ being a non-negative random variable and K > 0 a positive constant. For this forcing

term the solution to the PDE can be computed explicitly and reads u(x1, x2) = K ξx1x2(1−
x1)(1−x2)/2. As quantity of interest we consider the spatial average of the solution, that is

Q :=
∫

D
u d x = K

72
ξ .

This explicit representation of Q in terms of the random input ξ to the PDE model (7.52)

allows us to easily compute the exact mean as well as central moments of Q, which we will

use to verify the numerical experiments that follow. Specifically, here we use ξ∼ Beta(2,6) and

K = 432, so that the CDF of Q reads

FQ (q) =


0 , q < 0 ,
q2

(
27216−15120q+3780q2−504q3+35q4−q5

)
46656 , 0 ≤ q < 6 ,

1 , 6 ≤ q .

In fact, using the CDF of Q it is straightforward to compute reference values for the quantiles

and conditional values at risk, as is shown in Table 7.2.
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Figure 7.5 – CDF of Q for the
Elliptic PDE problem.

τ qτ = F−1
Q (τ) CVaR

0.5 1.37093978103957 2.19362427969856

0.6 1.61107689488803 2.36980305732596

0.7 1.88569618239293 2.57820388360315

0.8 2.22516910158006 2.84332656764439

0.9 2.71538966014680 3.23647287923313

0.95 3.12421784154784 3.57085205229115

0.99 3.86018736077886 4.18269815233762

Table 7.2 – Quantiles and conditional values at risk for the
quantity of interest associated with random Poisson equation.

For the numerical treatment with the multilevel Monte Carlo method, the PDE (7.52) is

discretized via a second order finite difference scheme (see details in the previous Chapter

6.5.2).

As for the previous example, we report in Figure 7.6 the hierarchies required to achieve

prescribed tolerances requirements. Also for this problem the number of levels and samples

per level increase consistently with τ.

Figure 7.7 reports the decay rate for the estimator’s bias and variances. The distribution of Q is

continuous in this case (see Figure 7.5) and we observe the same decay rates as obtained for

135



Chapter 7. MLMC for Distributions and Risk Measures

0 1 2 3 4 5 6 7 8

level

101

102

103

104

105

106

107

108

N
le
v
el

τ = 0.7

ε2 =0.5
ε2 =0.1
ε2 =0.05
ε2 =0.025

0 1 2 3 4 5 6 7 8

level

101

102

103

104

105

106

107

108

N
le
v
el

τ = 0.8

0 1 2 3 4 5 6 7 8

level

101

102

103

104

105

106

107

108

N
le
v
el

τ = 0.9

0 1 2 3 4 5 6 7 8

level

101

102

103

104

105

106

107

108

N
le
v
el

τ = 0.95

Figure 7.6 – MLMC hierarchies (number of levels and sample size per level) required to achieve pre-
scribed relative tolerance requirements when estimating simultaneously VaR, CVaR and CDF of Q for
different value of τ for the Elliptic PDE problem.

the estimation of central statistical moment (see Figure 6.4 in the previous Chapter).

Figure 7.7 – Decay rates for the bias and variances of MLMC estimator PMLMCH (ϑ) of HQ (ϑ) for different
value of τ for the Elliptic PDE problem.

7.5 Summary

In this chapter we presented a practical extension of the Multi Level Monte Carlo paradigm

for the accurate computation of parametric expectation and its derivatives based on a cubic

spline interpolation operator and we defined different MLMC estimators for the computation

of CDFs, VaR and CVaR and characteristic functions. Finally we validated the accuracy and

effectiveness of the proposed approach on benchmark problems for which we can compute

highly accurate reference values.
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7.5. Summary

The application of this approach on aerodynamic problems will be provided in the following

two Chapters. In Chapter 8 we will compute the entire CDF of aerodynamic performance

parameters for the NASA Common Research Model wide-body transport aircraft configuration

under operating uncertainties while in Chapter 9 we will leverage the computation of risk

measure in the context of robust and reliability based design optimization of transonic airfoils.
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8 C-MLMC Application to Industrial
Problems

In this section we apply the MLMC and C-MLMC methodologies presented in the previous

chapter to large scale internal and external aerodynamic systems affected by operating uncer-

tainties. Namely we consider the NASA ROTOR-37 and the NASA Common Research Model

(CRM).

8.1 Turbomachinery Model Problem: NASA ROTOR-37

The first problem we consider in this chapter is the well established turbomachinery test case

NASA ROTOR-37 (defined in the UMRIDA project as BC-01), a transonic axial flow compressor.

The rotor has 36 blades and an aspect ratio of 1.19, rotates at 17188.7 [r pm] (1800 [r ad/s]),

leading to a tip-speed of 454 [m/s]. A detailed description of the geometry, the original

experimental set-up and a series of simulations can be found in [Dun98, RM78].

The design parameters of the rotor are summarized in the following Table 8.1:

Quantity Symbol Design Value

Rotor Total Pressure Ratio P2/P1 2.106
Rotor Total Temperature Ratio T2/T1 1.270

Rotor Adiabatic Efficiency ηad 0.877
Mass Flow [kg /s] ṁ 20.188

Table 8.1 – Design values for the NASA ROTOR-37 problem.

8.1.1 Determinsitic results

The computational model (Fig.8.1(b)) consists of one blade with periodic boundary conditions.

The rotation is imposed to the hub and the blade, while the shroud is kept fixed. Total pressure

and total temperature profiles derived from experiments [Dun98] are imposed at the inlet
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boundary and the static pressure is varied at the outlet to change the mass flow.

Shroud

Hub

50% Span

STN1

STN2
STN3

(a) (b)

Figure 8.1 – (a) NASA Rotor 37 and (b) computational model.

The proprieties of the multi-block structured 4-levels grid hierarchy used in the C-MLMC,

generated using NUMERCA Autogrid, are presented in the following Table 8.2 along with the

average computational time required to compute one deterministic simulation using CFD++

software environment.

LEVEL Blade nodes Spanwise nodes Cells y+ C T i me[s] (n.cpu)

L0 113 33 156769 1−2 110 (80)

L1 169 53 536669 1−2 225 (128)

L2 209 73 1244133 1−2 435 (192)

L3 249 93 2241801 1−2 837 (224)

L4 305 113 4253889 1−2 1588 (256)

Table 8.2 – MLMC 4-levels grid hierarchy for the ROTOR-37 problem. C T i me[s] is the real time in
seconds required to compute one deterministic simulation on the prescribed number of cpus.

We ensure an appropriate refinement near the small tip clearance (0.356 [mm]) and that

the y+ is between 1 and 2 near the boundaries, for all the grid levels, to accommodate the

requirements of Spalart-Allmaras turbulence model employed in the CFD simulations. In

Table 8.2 we report the number of nodes set on the blade section and spanwise on each level.

The number of nodes in the perpendicular direction to the blade surface is set proportional

to the number of spanwise nodes, and their distribution has a fixed growth rate. In the Fig.

8.2 we observe a good agreement between the computational results obtained with the finest

grid level (L4) and experimental measurements of Reid and Moore [RM78]. The significant

differences between numerical results and measurements are in the rotor stall region. For this

reason we will only consider operating points before stall conditions (ṁ > 20.5 [kg /s]).
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Figure 8.2 – Experimental and computational compressor maps of the ROTOR-37. The green circles
indicate the design parameters presented in the previous table.

Fig. 8.3 presents the flow features on the suction and pressure side of the blade and at 50% of

the span for the maximum adiabatic efficiency conditions (ηad = 0.876). We distinguish the

bow shock at the leading edge of the blade and a classical λ−shock region (Fig. 8.3(g)) on the

suction side where the shock impacts the boundary layer. Downstream of the shock-boundary

layer interaction we identify a flow separation region. Such separation can be inferred also by

looking at the skin friction (Fig. 8.3(c)), at the boundary layer transition and at the turbulence

index (Fig. 8.3(e)) at the wall. Additionally the boundary layer transition induces a sudden

increase of eddy viscosity (Fig. 8.3(h)).
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(a) Total pressure (Pa) - blade suction side (b) Total pressure (Pa) - blade pressure side

(c) Skin friction - blade suction side (d) Skin friction - blade pressure side

(e) Turb. index - blade suction side (f ) Turb. index - blade pressure side

(g) Mach number - 50% span (h) Eddy viscosity - 50% span

Figure 8.3 – Deterministic results for the ROTOR-37. Left: suction side; right: pressure side.
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8.1.2 Stochastic Results using C-MLMC

After assessing the validity of the CFD model, we now propagate uncertainties to study their

effects on the performances of the rotor using the C-MLMC approach presented in the previous

chapters. We consider operating uncertainties in the inlet total pressure and total temperature

profile and the outlet static pressure. The uncertainties on the parameters are modeled as

truncated Gaussian random variables (see definition in Eq. (4.22)).

The following Table 8.3 summarizes the reference operating parameters and the uncertainties

considered for the following simulations.

Quantity Reference (r ) Uncertainty T N (µ,σ, XLO , XU P )

INLET Ptot 18 pt. profile (see Fig. 8.4) T N (r,1%,−2%,+2%)
Ttot 18 pt. profile (see Fig. 8.4) T N (r,1%,−2%,+2%)

OUTLET po C 1 = 92500.0 [Pa] T N (r,1%,−2%,+2%)
C 2 = 99215.0 [Pa] T N (r,1%,−2%,+2%)

C 3 = 110000.0 [Pa] T N (r,1%,−2%,+2%)

Table 8.3 – Operating uncertainties for the ROTOR-37 stochastic analysis.

Fig. 8.4 depicts the inlet uncertain total pressure and total temperature profiles. The same

random perturbation from the reference profile of the total pressure and temperature is

applied to every point on the inlet (fully correlated perturbation).

Figure 8.4 – Uncertain total pressure and total temperature inlet profiles. The blue line represents the
mean profile (µ), the shaded gray area is one standard deviation (±σ) and the red lines are the upper
and lower boundaries of the uncertain range (XLOW , XU P ).

In Fig. 8.5 we present the stochastic results for the adiabatic efficiency, rotor total pressure ratio,

stage total pressure ratio and mass flow for the ROTOR-37 affected by operating uncertainties

(3 uncertain parameters). For the three analyzed cases (C 1, C 2, C 3 in the mean outlet pressure
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p0) we plot the compressor map with mean ± standard deviation for the four quantities of

interest. We notice that the mean values of ṁ, ηad , P2/P1 and P3/P1 in the stochastic case

are comparable with the deterministic ones, as observed by [LB10, GBMA09]. Additionally we

also observe that the mass flow ṁ is the most sensitive quantity to variations in the operating

parameters as quantified in Table 8.4. The variability of ṁ, ηad , P2/P1 and P3/P1 seems to

increase as we approach the stall conditions.

CASE - po Deterministic Stochastic (% σ) C-MLMC rates

ṁ = 20.8564 [kg /s] ṁ = 20.8621±0.2371 [kg /s] (1.13%)
C 1 = 92500.0 ηad = 0.8756 ηad = 0.8755±0.0009 (0.10%) α= 1.7

[Pa] P2/P1 = 1.9540 P2/P1 = 1.9534±0.0093 (0.47%) β= 2.6
P3/P1 = 1.9255 P3/P1 = 1.9252±0.0105 (0.54%)

ṁ = 20.8564 [kg /s] ṁ = 20.8440±0.2424 [kg /s] (1.16%)
C 2 = 99215.0 ηad = 0.8760 ηad = 0.8758±0.0008 (0.09%) α= 1.6

[Pa] P2/P1 = 1.9813 P2/P1 = 1.9812±0.0113 (0.57%) β= 2.2
P3/P1 = 1.9559 P3/P1 = 1.9558±0.0106 (0.54%)

ṁ = 20.6653 [kg /s] ṁ = 20.6706±0.2777 [kg /s] (1.34%)
C 3 = 110000.0 [Pa] ηad = 0.8726 ηad = 0.8724±0.0010 (0.11%) α= 1.8

[Pa] P2/P1 = 2.0464 P2/P1 = 2.0451±0.0137 (0.67%) β= 2.1
P3/P1 = 2.0204 P3/P1 = 2.0190±0.0135 (0.67%)

Table 8.4 – Deterministic and stochastic results for the ROTOR-37.

In all simulation we have imposed a relative tolerance of 0.5% on the mean value of the mass

flow rate. In Table 8.4 we report in the last column also the estimated rates computed during

the C-MLMC simulation. As it is possible to observe the statistical error decay (β) degrades as

we move closer to the stall region while the lowest deterministic error decay (α) is measured

for the simulation with highest adiabatic efficiency (C 2).

144



8.1. Turbomachinery Model Problem: NASA ROTOR-37

20.2 20.4 20.6 20.8 21.0 21.2
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Figure 8.5 – Experimental, deterministic and stochastic results for the compressor map of the ROTOR-
37. Each red interval correspond to mean ± standard deviation.
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8.2 NASA Common Research Model

In this section we consider the NASA Common Research Model (CRM), an aircraft config-

uration equipped with a contemporary supercritical transonic wing and a fuselage that is

representative of a wide-body commercial transport aircraft. The model has been developed

by NASA in order to answer the scientific and industrial community quest for a modern well-

defined experimental database for the purpose of validation and verification (V&V) of CFD

applications [VDRW08]. Indeed, AIAA Drag Prediction Workshop (DPW) series concentrated

in the last years on the NASA CRM in order to understand and improve the criticalities of CFD

solvers in accurately predicting the drag and moments of complex aircraft configurations.

(a) front view (b) side view

Figure 8.6 – NASA CRM (WBT: wing body tail) geometry.

The CRM is designed for a cruise at Mach M∞ = 0.85 and a corresponding design lift coefficient

of CL = 0.5. We specifically consider in this study the wing-body-tail configuration defined in

the AIAA 5th DPW (see Figure 8.6). The aircraft geometrical parameters of the NASA CRM are

summarized in the following Table 8.5.

Quantity Symbol Design Value

Wing Aspect Ratio AR 9.0
Wing Taper Ratio λw 0.275

Wing Span span 58.7629 [m] (2313.50 [i n])
Reference area Sr e f 383.68955 [m2] (594720.0 [i n2])

Reference chord cREF 7.00532 [m] (275.8 [i n])
X Moment reference center XREF 33.67786 [m] (1325.90 [i n])
Z Moment reference center ZREF 4.51993 [m] (177.95 [i n])

Table 8.5 – NASA CRM geometrical parameters.

8.2.1 Determinsitic results

The computational model for the NASA CRM consists of half aircraft with symmetry boundary

conditions at the symmetry plane and far-field condition imposed on the half sphere (see

Figure 8.6 and 8.7(a)).
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(a) Computational domain for the NASA CRM

(b) grid refinement at the wing fairing inter-
section

(c) grid refinement at the wing tip

Figure 8.7 – NASA CRM computational domain and details of the hybrid unstructured grid.

For this problem we employ a hierarchy of hybrid unstructured grids and ensure an appro-

priate refinement at the wing-fairing and tail-fuselage intersection and at the wing tip (see

Figure 8.6(b)-(c)). Additionally we assure that near the boundaries the y+ is between 1 and 2,

for all the grid levels, to accommodate the requirements of Spalart-Allmaras turbulence model

employed in the CFD simulations. In Table 8.7 we report the number of nodes and the average

CPU time required to perform a deterministic simulation on all levels of the grid hierarchy.

Before performing the actual stochastic analysis we validate the deterministic computational

model with the data available from the AIAA 5th DPW [LLT+13] using the flow conditions

presented in Table 8.6.

In Figure 8.3 we observe a good agreement between the computational results obtained with

the finest grid level (L3) with the other CFD results obtained during the AIAA 5th DPW (pink

region in the figure representative of mean±standard deviation of the CFD results obtained

during the workshop). Additionally we report also the experimental measurements performed
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Quantity Symbol Design Value

Freestream Mach number M∞ 0.85
Chord Reynlods number Rec 5 ·106

Reference Temperature Tr e f 310.928 [K ] (100 [F ])

Lift Coefficient CL 0.5

Table 8.6 – Flow conditions and lift coefficient for the validation of the NASA CRM deterministic
simulations.

at the NASA Langley National Transonic Facility (NTF Test 197, green region in the Figure 8.3)

and the NASA Ames 11-ft transonic wind tunnel (Ames Test 216, blue region in the Figure 8.3)

[RD11] for the prediction of the aircraft total drag coefficient C T
D .

LEVEL Cells y+ C T i me on 280 C PUs
L0 2.3 ·106 1−2 400 [s] (0.11 [h])
L1 5.0 ·106 1−2 825 [s] (0.23 [h])
L2 9.8 ·106 1−2 1250 [s] (0.35 [h])
L3 21.3 ·106 1−2 3200 [s] (0.89 [h])

Table 8.7 – MLMC 3-levels grid hierarchy for the NASA CRM. C T i me[s] is the real time required to
compute one deterministic simulation on 280 CPUs.

Figure 8.8 – Comparison of CFD results obtained with the hybrid unstructured grids used in this
study (black line), other CFD results obtained during the 5th AIAA DPW (pink region representative of
mean±standard deviation) and experimental measurements performed at the NASA Langley National
Transonic Facility (NTF Test 197, green region) and the NASA Ames 11-ft transonic wind tunnel (Ames
Test 216, blue region). On the right we report the moment coefficient obtained with our gird hierarchy.

Figure 8.9 and 8.10 present the flow features (pressure coefficient and skin friction) on flow

around the aircraft at cruise design conditions presented in Table 8.6.
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8.2. NASA Common Research Model

(a) Pressure coefficient -

lower view

(b) Pressure coefficient - up-

per view

(c) Skin friction - lower view (d) Skin friction - upper view

Figure 8.9 – Surface pressure and skin friction coefficient of the NASA CRM at M = 0.85, CL = 0.5 (upper
and lower views).
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(a) Pressure coefficient - side view (b) Skin friction - side view

Figure 8.10 – Surface pressure and skin friction coefficient of the NASA CRM at M = 0.85, CL = 0.5
(upper and lower views).

8.2.2 Stochastic Results using C-MLMC

After assessing the validity of the CFD model we now propagate operating uncertainties to

study their effects on the performances of NASA CRM at different lift conditions using the

C-MLMC methodologies presented in the previous chapters. We consider operating un-

certainties in the farfield Mach number and flow temperature. The uncertainties on these

parameters are modeled as symmetric Beta distributions. The following Table 8.8 summa-

rizes the reference operating parameters and the uncertainties considered for the following

simulations.

Quantity Reference Uncertainty

M∞ 0.85 B(2,2,0.05, M∞−0.025)
Rec 5 ·106 −
Tr e f 310.928 [K ] B(2,2,30,Tr e f −15)

CL 0.3, 0.4, 0.5, 0.55 −

Table 8.8 – Operating uncertainties and lift conditions for the NASA CRM stochastic analysis.

In Figure 8.11 we present the cumulative density function of total drag C T
D , inviscid drag C I

D

(pressure drag components), viscous drag (skin friction drag component) C V
D and moment

coefficient CM for four different lift conditions CL = 0.3, 0.4, 0.5, 0.55 for the NASA CRM under

operating uncertainties. Additionally in Figure 8.12 we present the mean ± two standard

deviation plot for the same coefficient. The total drag coefficient is compared with the experi-

mental results performed at the NASA Langley National Transonic Facility (NTF Run 44, black

circles). All the results are computed with the MLMC methodology presented in Chapter 6 and

7 by imposing a relative tolerance of 0.1% on the variance of the total drag coefficient (and
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terminate the simulations when we achieve at least an absolute error on the approximation

of the CDF lower than 10%). In order to achieve those tolerances we performed a C-MLMC

simulation on the 3-level hierarchy presented in Table 8.7 with an average number of samples

per levels of 200,110,50,10. Hence, each C-MLMC simulation took approximately 72 hours on

280 CPUs.
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Figure 8.11 – Cumulative density function (CDF) of total drag C T
D , inviscid drag C I

D (pressure drag
components), viscous drag (skin friction drag component) C V

D and moment coefficient CM for four
different lift conditions CL = 0.3, 0.4, 0.5, 0.55 for the NASA CRM under operating uncertainties.

In Figure 8.12 we can observe a good agreement of the mean value of the stochastic simulations

with the experimental results. We notice an increase in the variability and absolute value of

the drag as the lift increases mainly due to the pressure drag component. Also the moment

coefficient follows the same trend. On the other hand, the skin friction drag component C V
D

does not seem to significantly vary with the lift coefficient.

8.3 Conclusion and Recommendations

In the previous Chapters we presented the different MLMC approaches and procedure to

perform UQ in inviscid and viscous aerodynamic problems affected by operating and geomet-

ric uncertainties. The numerical examples provide clear indications on the computational

reduction that can be achieved with MLMC with respect to MC. Additionally we proposed in

Chapter 5 a grid hierarchy refinement strategy methodology to design CFD grids in order to

achieve appropriate convergence for the bias and statistical error in MLMC simulations of

viscous flows. In this Chapter we followed such approach and presented two test cases relevant

in turbo-machinery and external aircraft aerodynamics, affected by operating uncertainties.
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Figure 8.12 – Total drag C T
D , inviscid drag C I

D (pressure drag components), viscous drag (skin friction
drag component) C V

D and moment coefficient CM mean±2 standard deviation for four different lift
conditions CL = 0.3, 0.4, 0.5, 0.55 for the NASA CRM under operating uncertainties. The total drag co-
efficient is compared with the experimental results performed at the NASA Langley National Transonic
Facility (NTF Run 44, black circles).

We believe that, at this stage, MLMC can be efficiently applied to provide valuable informa-

tions and quantifications of the variability of large scale aerodynamic systems affected by

uncertainties.

The essential features that one should foresee to efficiently apply the MLMC method to large

scale industrial problems are:

• deterministic grid convergence for the problem under investigation corroborated by a

verification and validation of the CFD results with experimental measurements

• robust numerical solver that provides consistent solutions of the deterministic problem

also on coarse grids,

• appropriate grid hierarchy refinement strategy necessary to achieve optimal complexity

for the C-MLMC.

In our approach we applied a parallel execution of the simulations on a given hierarchy level.

The optimal parallelization of the C-MLMC (level-wise, sample-wise and mesh-wise) and the

optimal allocation of resources at each iteration of the algorithm for large scale problems on

massively parallel HPC is still an open topic. Some ideas of parallelization and load balancing

techniques for "standard" MLMC algorithms have been proposed in [ŠMS12, GDR+16].
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The reasonable man adapts himself to the world; the unreasonable one persists

in trying to adapt the world to himself. Therefore all progress depends on the

unreasonable man.

George Bernard Shaw





9 Airfoil Design Optimization Under
Uncertainty

As presented in the previous chapters, the majority of problems in aircraft production and

operation require decisions made in the presence of uncertainty. For this reason aerodynamic

designs obtained with traditional deterministic optimization techniques seeking only optimal-

ity in a specific set of conditions may have very poor off-design performances or may even be

unreliable. As we will concentrate in this chapter on transonic airfoils affected by uncertainties,

we introduce hereafter the main concepts and features of transonic airfoil design.

9.1 Transonic Airfoil Design

In the early days of aviation, the limitations due to propeller propulsion avoided airplanes

from flying fast enough to encounter transonic/supersonic phenomena. During the Second

World War fighters started reaching transonic speeds and encountered major difficulties in

recovering from dives during maneuvering, controllability issues related to sharp pitching

moment changes with the Mach number and Mach induced changes in control effectiveness.

Since the introduction of jet engines in civil aviation, practically all commercial transports

aircrafts now fly at transonic speeds.

Transonic conditions occur during a flight when there are subsonic and supersonic local flows

in the same flow field surrounding an aircraft. Generally that happens in a range of speeds

between the so called critical Mach number (around Mach 0.72), when some parts of the

airflow start becoming supersonic, and the speed when all of the airflow is supersonic (around

Mach 1.05 in conventional airfoils, see Figure 9.1(a)). At transonic speed, the supersonic

regions of the flow are generally followed by a shock wave, that slows down the flow to subsonic

conditions.

The fuel consumption due to rapid increase of wave and viscous drag with the Mach number

(shocks get stronger and pressure rise through a shock wave thickens the boundary layer)

typically limits the cruise speed of commercial aircrafts. Additionally, as the airflow moving

around an airfoil locally reaches the speed of sound, the region in front of the shock wave
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(a) Transonic flow features and shock progression with
the Mach number, from Aerodynamics for Naval Avia-
tiors [Hur60]

(b) Comparison of conventional and supercritical airfoil
flow field, from Harris [Har90]

(c) Detailed flow field for a supercritical airfoil from Har-
ris [Har90]

Figure 9.1 – Transonic flow features and comparison of conventional and supercritical airfoils.

generates high lift. As the speed increases, shocks get stronger and move rearward, creating

higher lift further back on the lifting bodies (see Figure 9.2). This rearward movement of lift

with the Mach number causes the airfoil to tuck or pitch nose-down and is called Mach tuck.

Figure 9.2 – Pressure profile at Mach 0.7 (left image) with center of pressure about 30% of the chord
and pressure profile at Mach 0.875 (right image) with a center of pressure about 40% of the chord (from
Boeing Airliner July 1959).

Without enough elevator authority to maintain the trim and the cruise altitude, the aircraft

may enter a steep unrecoverable dive [Off04]. To prevent such undesirable and potentially

catastrophic stall aircrafts have been equipped with Mach trimmer devices that varies the

pitch trim automatically with the Mach number and maintain the cruise flight level, larger
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stabilizers powerful enough to correct large trim changes or as in the case of the Concorde,

tanks that move the fuel location in order to change the position of the center of mass to

match the changing location of the center of pressure, hence minimizing the aerodynamic

trim required.

Notwithstanding it is possible to design a shock free airfoil, this situation usually takes place

only for a single combination of Mach number and lift coefficient. For this reasons, many

attempts and research have been concentrated from the 1960s, following the pioneering work

of Whitcomb on supercritical airfoil [Whi74], with the objective of reducing the shock drag and

increase the controllability in a range of Mach number without fully suppressing the shocks.

Supercritical airfoils were designed to achieve higher drag rise Mach number by controlling

the expansion of the flow to supersonic speed and its subsequent recompression without

affecting the lifting performances (see Figure 9.1(c)). Supercritical airfoils generally present

a relatively large leading edge radius to expand the flow in the upper surface and obtaining

more lift than conventional airfoils in the bow part (region near the leading edge). In addition

to that, a flatter upper surface, compared to conventional airfoils, maintains the supersonic

flow along a constant pressure plateau or even slow it down slightly approaching the shock.

Thanks to that, a relatively weak shock is produced (see Figure 9.1(b)). In some cases also

an augmented aft camber (region near the trailing edge) can be employed to produce more

lift than conventional airfoils. In Figure 9.3 we can observe the shape of the NASA-Langley

Whitcomb integral supercritical airfoil compared with the RAE 2822 transonic airfoil and their

relative drag coefficients for different Mach numbers.
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C
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Whitcomb SC RAE 2822

Whitcomb SC

Figure 9.3 – NASA-Langley Whitcomb integral supercritical airfoil and RAE 2882 transonic airfoil shapes
and drag coefficients for different Mach number at fixed lift (CL = 0.5).

Although theoretically superior with respect to conventional airfoils, promising supercritical

sections led to serious problems when actually incorporated into an aircraft wing. Practical
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experiences revealed that some supercritical sections, as shock-free designs, are often very

sensitive to Mach, lift and geometrical uncertainties and hence may perform dramatically

poorly at off-design conditions.

Optimizing a transonic airfoil shape using classical deterministic optimization methodologies

seeking optimality only in a single operating condition generally leads to the appearance of

the so called drag creep, a situation in which the drag increases at Mach numbers below the

designed value. On the other hand, multi-point optimization approaches, seeking optimality

in multiple discrete operating points can alleviate the drag creep phenomenon but are unable

to adequately remedy the problem of localized optimization [LH01].

In the following sections we introduce the notations and the formulations of deterministic

and stochastic design optimization problem treated in this chapter.

9.2 Deterministic Shape Optimization

In a deterministic framework, the airfoil shape optimization problem consists of determining

the set of geometric design parameters x that minimize (or maximize) a prescribed determin-

istic loss (or fitness in case of maximization) function D :Rq →R

SO-DO :


min
x∈Rn

D
[
Qq

d (x, p)
]

s.t Ci
[
Qm

c (x, p)
]≤ ki i = 1, . . . , s

xL ≤ x ≤ xU

(9.1)

where

Qq
d (x, p) = [

Q1
d (x, p), . . . ,Qq

d (x, p)
]

(9.2)

is the vector QoI that enter in the expression of the objective function and

Qm
c (x, p) = [

Q1
c (x, p), . . . ,Qm

c (x, p)
]

(9.3)

is the vector (of dimension m) of QoI subject to s constraints (defined by the functions

Ci :Rm →R, i = 1, . . . , s). p is the vector of system parameters.

The set of design parameters x, defining the shape of the airfoil, is a vector of dimension n,

with n being the number of design variables. xL and xU are lower and upper bounds of the

design variables and the relation xL ≤ x ≤ xU should be interpreted component wise.

In this work we use as design parameters the set of PARSEC parameters or the position of

control box nodes for an FFD box (see 2.4.3 for definitions).
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Definition 17. The feasible design space X is defined as the set X = {x ∈ Rn | Ci
[
Qm

c (x, p)
] ≤

ki , i = 1, . . . , s and xL ≤ x ≤ xU }

The loss function D may involve one QoI or a wighted sum of more QoI Qd as in the case of

multi-point optimization.

We now define with DΦ
[
Qq

d (x, p)
]
, DΦ :Rq →RΦ a vector of loss functions:

DΦ
[
Qq

d (x, p)
]= [

D1
[
Qq

d (x, p)
]

, . . . ,DΦ

[
Qq

d (x, p)
]]

(9.4)

Using the same notation we can generalize (9.1) and define the multi-objective design opti-

mization problem (MO-DO) as :

MO-DO :


P-min

x∈Rn
DΦ

[
Qq

d (x, p)
]

s.t Ci
[
Qm

c (x, p)
]≤ ki i = 1, . . . , s

xL ≤ x ≤ xU

(9.5)

whereΦ is the number of objective functions and P-min denotes all Pareto optimal values of

DΦ on the feasible set X ⊂Rn .

Definition 18. A feasible point x∗ ∈ X is Pareto optimal if and only if there does not exist

another feasible point x ∈ X such that DΦ
[
Qq

d (x, p)
] ≤ DΦ

[
Qq

d (x∗, p)
]
, and Di

[
Qq

d (x, p)
] <

Di
[
Qq

d (x∗, p)
]

for at least one objective (i = 1, . . . ,Φ).

The main difference between SO-DO and MO-DO is that in the latter usually there is no single

solution, but a set of points that fit a predetermined definition for optimum.

In airfoil shape design, one is generally interested in minimizing the drag coefficient of the

airfoil or maximizing its lift-drag ratio. Constraints are generally imposed on the geometry of

the airfoil, in order to achieve a final optimized shape that fulfill specific structural and mission

requirements, and/or on the lift and moment coefficient. Examples of loss functions and

constraints considered in this thesis are provided in the following Table 9.1. We indicate with

L/D (M∞,α∞) the lift coefficient of the airfoil at prescribed Mach number M∞ and angle of attack

α∞, while C
(M∞,C∗

L )
D and C

(M∞,C∗
L )

M respectively denote the drag and momentum coefficient at

prescribed Mach number M∞ and cruise lift coefficient C∗
L .
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Loss Functions Constraints

SO (SP) D [L/D] = L/D (M∞,α∞) geom.

SO (SP) D [CD ] =C
(M∞,C∗

L )
D geom.

SO (MP) D
[
C w

D

]=∑m
i=1 wi ·C (M i

∞,C∗
L )

d geom.

MO D [CD ,CL] = {C
(M∞,C∗

L )
D ,C

(M∞,C∗
L )

L } geom.

Table 9.1 – Deterministic loss functions and constraints for airfoil shape optimization problems. (SP )
indicate deterministic single point optimization problems solved for a single flight Mach number
condition, while (MP ) indicates multi point deterministic optimization problems.

9.3 Shape Optimization Under Uncertainties

The ever-increasing demand for aircrafts with better performance, higher reliability and

robustness at lower cost requires optimization techniques seeking optimality under uncertain

conditions that may arise during design, manufacture and operation of the vehicle. Indeed,

the geometrical and operational parameters, that characterize aerodynamic systems, are

naturally affected by aleatory uncertainties due to the intrinsic variability of the manufacturing

processes and the surrounding environment.

Reducing the geometrical uncertainties due to manufacturing tolerances can be prohibitively

expensive while reducing the operational uncertainties due to atmospheric turbulence in

external aerodynamics is simply impossible.

Optimization under uncertainty (OUU) refers to a broad class of methodologies that address

the following two problems:

• Robust Design Optimization (RDO): focuses on the performances of a system under

perturbations of the design conditions. Prescribed probabilistic measures of robustness

(involving mean, variance or higher moments) as objective functions are used to "robus-

tify" the design. The optimal design should, in this framework, be as much insensitive as

possible to uncertain conditions meaning that its performance should not drop below

a prescribed quality level. The final objective of RDO is to achieve an improvement of

the performance of the system over the entire range of uncertain conditions [LHP02] by

reducing the performance variability (a graphical interpretation of RDO is provided in

Figure 9.4(a)).

• Reliability-based Design Optimization (RBDO): focuses on safety-under-uncertainty

aspects of the system. The most conservative and classical approach for RBDO is the

worst-case analysis (also known as min-max strategy) that seeks a design with the best

worst-case performance [Win94], [HPLL02]. More modern and advanced methodolo-

gies seek the optimization of an objective functions subject to probabilistic constraints

that involve failure probability (quantiles, CVaR) or reliability indexes. The optimal de-
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9.3. Shape Optimization Under Uncertainties

sign has, in this framework, a higher degree of confidence and guarantees a prescribed

minimum level of reliability under uncertain conditions (a graphical interpretation of

RBDO is provided in Figure 9.4(b)).
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Figure 9.4 – Graphical interpretation of robust design optimization (RDO) and reliability-based design
optimization (RBDO).

In this work we present a general framework that can be employed to solve RDO and RBDO

problems depending on the choice of objective functions and constraints.

A general formulation of a single objective optimization problem under uncertainties (SO-

OUU) reads as follows:

SO-OUU :


min
x∈Rn

R
[
Qq

r (x̃(x,ω), p(ψ))
]

s.t Ci
[
Qm

c (x̃(x,ω), p(ψ))
]≤ ki i = 1, . . . , s

xL ≤ x ≤ xU

(9.6)

where

Qq
r (x̃(x,ω), p(ψ)) = [

Q1
r (x̃(x,ω), p(ψ)), . . . ,Qq

r (x̃(x,ω), p(ψ))
]

(9.7)

is the vector of dimension q of QoI affected by uncertainty that enter in the robust loss function

and

Qm
c (x̃(x,ω), p(ψ)) = [

Q1
c (x̃(x,ω), p(ψ)), . . . ,Qm

c (x̃(x,ω), p(ψ))
]

(9.8)

the vector (of dimension m) of QoI affected by uncertainty that are subject to s constraints.

x is the vector of design variables. Its actual realization x̃(x,ω) as well as the vector of system
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parameters p(ψ) may be affected by uncertainties. The design vector belongs to Rn with n

being the number of design variables. We denote the uncertainties by ω ∈Ω and ψ ∈Ψ, where

Ω andΨ are respectively the sample spaces of the design and system variables. R is a robust

loss function (or fitness in case of maximization) involving one or more QoI Qr (e.g. weighted

sum) that has to be optimized. Ci denotes a set of deterministic and probabilistic constraints

(s is the number of constraints) applied on the set of QoI Qm
c . xL and xU are lower and upper

bounds of the design variables.

The loss function R is a measure of robustness/reliability against the uncertainties in the

design and system parameters.

Classical robust optimization approaches generally consider optimizing performance under

’worst-case’ outcomes (min-max formulations). This approach is known to generally produce

overly conservative designs with suboptimal performance in the uncertainty range.

In this work we consider different probabilistic loss functions and constraints that involve the

weighted sums of central statistical moments, Value at Risk (VaR, also known as quantile) and

Conditional Value at Risk (CVaR) of the quantities of interest that have to be optimized.

We now define with RΦ
[
Qq

r (x̃(x,ω), p(ψ))
]

a vector ofΦ robust loss functions:

RΦ
[
Qq

r (x̃(x,ω), p(ψ))
]= [

R1
[
Qq

r (x̃(x,ω), p(ψ))
]

, . . . ,RΦ

[
Qq

r (x̃(x,ω), p(ψ))
]]

(9.9)

We can now further generalize (9.6) and define the multi-objective robust optimization prob-

lem under uncertainties (MO-OUU) as :

MO-RDO :


P-min

x∈Rn
RΦ

[
Qq

r (x̃(x,ω), p(ψ))
]

s.t Ci
[
Qm

c (x̃(x,ω), p(ψ))
]≤ ki i = 1, . . . , s

xL ≤ x ≤ xU

(9.10)

whereΦ is the number of objective functions and P-min denote all Pareto optimal values of

RΦ over X .

9.4 Continuation Multilevel Monte Carlo Evolutionary Algorithm

In this work we employ Single and Multi Objective Covariance Matrix Adaptation Evolutionary

Strategies (CMA-ES) to solve the SO-OUU and MO-OUU problems presented above. We

hereafter introduce the general idea of CMA-ES and we then introduce the modifications

required to treat optimization problems under uncertainty. Finally we present a the full

C-MLMC CMA-ES algorithm.
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9.4.1 Covariance Matrix Adaptation Evolutionary Strategies (CMA-ES)

CMA-ES are a class of stochastic derivative-free evolutionary algorithms for numerical op-

timization of non-linear and non-convex black-box optimization problems introduced by

Hansen [HO01].

Based on the principle of biological evolution, evolutionary algorithms, are characterized

by the repeated interplay of variation and selection operators. At each generation (iteration

of the algorithm) new individuals (candidate solutions) are generated by variation of the

current parental individuals via recombination and possibly mutation. The individuals with

the best fitness (objective function value) are then selected and become the parents in the

next generation. Thanks to this repeated process, individuals with increasingly better fitness

are generated.

In classical ES a new population of λ≥ 2 candidate solutions is sampled at each generation

according to a multivariate normal distribution in Rn , n being the number of design variables:

x(i+1)
k ∼ m(i ) +σ(i )N (0,C (i )) ∼N (m(i ), (σ(i ))2C (i )) for k = 1, . . . ,λ (9.11)

where x(i+1)
k ∈ Rn denotes the k-th individual in generation i +1, m(i ) ∈ Rn the mean of the

distribution at generation i , C (i ) ∈Rn×n is a scaled covariance matrix of the distribution and

σ(i )) ∈R is a scaling parameter (step-size).

The recombination operator is responsible of updating at each generation the mean value

of the distribution (moving the mean of the distribution in the design space). Dependencies

between the n variables in the distribution are represented by a covariance matrix. The

covariance matrix adaptation (CMA) is a method to update the covariance matrix, the mean

and the standard deviation of this distribution at each iteration.

The adaptation of the covariance matrix resembles the approximation of the inverse Hes-

sian matrix in Quasi-Newton methods. The key difference to those methods is that fewer

assumptions on the nature of the underlying objective function are made. Neither derivatives

nor even the function values are required in the CMA-ES approach. Only a ranking between

candidate solutions is exploited to adapt the covariance.

9.4.2 Practical aspects: Evolution meets C-MLMC

We developed and presented in Chapter 5, 6 and 7 a Continuation Multi Level Monte Carlo

(C-MLMC) algorithm capable of efficiently computing statistics of all the required QoI. In a

classical CMA-ES methodology, the deterministic objective function D :Rn →R is computed

by solving the underlying deterministic problem with parameters prescribed by xk . By com-

bining the CMA-ES and our implementation of C-MLMC we are now able to optimally control
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the cost required to compute each individual robust loss function, up to a prescribed tolerance,

in the population of candidate solutions and guarantee a prescribed tolerance on the statistics

of the QoIs that are required to compute the robust/reliable loss functions R : Rn → R and

constraints.

Sorting

At each generation i , once we have performed a C-MLMC simulation for each design x(i )
k , we

sort the candidate solutions according to their robust/reliable loss function:

R
(
x(i )
π(l )

)
≤R

(
x(i )
π(k)

)
l ≤ k (9.12)

where π(·) is the permutation of {1, . . . ,λ} providing the ordering.

Selection and Recombination

In order to update the mean of the distribution for the next generation, we now follow the

procedure of Hansen [Han16]. The new mean is simply the weighted average of the best ξ<λ
candidates:

m(i+1) =
ξ∑

k=1
wk x(i )

π(k) = mi +
ξ∑

k=1
wk (x(i )

π(k) −mi ),
ξ∑

k=1
wk = 1 (9.13)

where wk , k = 1, . . .ξ ∈ R>0 are positive weight. In our implementation we choose wk = 1
ξ

and ξ= 1
4λ to avoid extremely fast convergence of the algorithm towards a local minimum.

Different alternatives for the weights and the number best candidate solutions considered

to update the mean are available depending on the complexity and dimensionality of the

problem.

Adaptation of the covariance

In order to introduce the concept of covariance adaptation, let us consider the population of λ

candidates at generation i +1 and the following unbiased estimator for the covariance matrix

σ(i )2C (i+1):

Ĉ (i+1)
λ

= 1

λ

λ∑
k=1

(
x(i+1)

k −m(i )
)(

x(i+1)
k −m(i )

)T
(9.14)

where T denotes the transpose.

Following the same weighted selection argument used for the mean in (9.13), we can define a
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covariance estimator based only on the best ξ individuals as:

Ĉ (i+1)
ξ

=
ξ∑

k=1
wk

(
x(i+1)
π(k) −m(i )

)(
x(i+1)
π(k) −m(i )

)T
. (9.15)

The key difference between (9.14) and (9.15) is that the former estimates the covariance

between the so called sampled steps x(i+1)
k −m(i ) in the population, while the latter just con-

sider the best (successful) ξ selected steps. Hence, sampling from C (i+1)
ξ

will promote the

reproduction of successful steps.

In order to achieve an effective adaptation of the covariance, information from previous

generations should be included. Indeed, after a sufficient number of generations, the scaled

covariance matrix could be estimated as an average over all generations of the estimates

Ĉ (i+1)/σ(i )2:

C (i+1) = 1

i +1

i∑
j=0

1

σ( j )2
Ĉ ( j+1)
ξ

(9.16)

where the variance σ( j ) has been included in order to make the covariances of different

generations comparable. In (9.16), all generation steps have the same weight. To assign to the

most recent generations a higher weight, exponential smoothing and an appropriate learning

rate 0 < cξ ≤ 1 are introduced:

C (i+1) = (1− cξ)C (i ) + cξ
1

σ(i )2
C (i+1)
ξ

= (1− cξ)C (i ) + cξ
ξ∑

k=1
wk y (i+1)

π(k) y (i+1)T
π(k)

(9.17)

and y (i+1)
π(k) reads as follow:

y (i+1)
π(k) =

x(i+1)
π(k) −m(i )

σ(i )
(9.18)

In our simulation we choose the learning rate for updating the covariance matrix as cξ = ξ
4 .

The covariance matrix update in (9.17) is called rank-ξ-update as the sum of outer products is

of rank min(ξ,n) with probability one [HMK03].

Step size control

The last step required in order to make the C-MLMC CMA-ES algorithm effective is the control

of the step-size σ(i ) (that appears in (9.18)), in other words the scale of the distribution. In

addition to the previously presented adaptation rule, Hansen proposed an approach to control

the step size based on the concept of cumulative step-size control, or cumulative step length
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adaptation (CSA). The interested reader can consult [Han16] for further details. Practically,

the step-size is updated as:

σ(i+1) =σ(i ) exp

 cσ
dσ


∥∥∥p(i+1)

σ

∥∥∥
α(n)

−1

 (9.19)

where α(n) = E‖z‖ with z ∼N (0, I ), dσ ≈ 1 is a damping parameter used to scales the change

magnitude ofσ(i ) and pσ ∈Rn is called evolution path and denotes a sequence of of successive

steps over a number of generations:

p(i+1)
σ = (1− cσ)p(i )

σ +
√

cσ(2− cσ)
λ

4

(
C (i )

)−1/2 m(i+1) −m(i )

σ(i )
. (9.20)

Finally, cσ is a backward time horizon of the evolution path that we choose to be equal to
p

n

9.4.3 C-MLMC CMA-ES Algorithm

In the following Algorithm 4 we denote with imax the maximum number of iterations (genera-

tion) of the algorithm, ε a vector of size imax that defines how the tolerance of the C-MLMC

algorithm should be reduced during the optimization loop.

The same strategy and updates presented above can be effectively applied and extended to

tackle multi objective optimization problems. However, a multi-objective selection approach

should be introduced at the sorting and selection step of the algorithm. We follow the approach

of Igel [IHR07] and apply a non-dominated sorting methodology based on the crowding-

distance.

9.5 Application to Single-Objective Optimization Under Uncertain-

ties

The above presented methodology is now applied to single objective optimization of the

RAE-2822 airfoil under operating and geometric uncertainties. We first introduce the MLMC

grid hierarchy and deterministic solver employed to compute the performances of the airfoil.

Afterwards, we present the single objective optimization problems under uncertainties (solved

with different robust/reliable objective functions) and we compare the results with the solution

of the corresponding deterministic optimization problems.

MLMC Grid Hierarchy and Deterministic Solver In this section we employ a 4-levels struc-

tured grid hierarchy for the C-MLMC simulations. The features of the grid levels are presented

in Table 9.2 along with the average computational time required to compute one deterministic

simulation (on one CPU) using the MSES collection of programs for the analysis of airfoils
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Algorithm 4: C-MLMC CMA-ES for Robust Optimization.

CMA-ES(λ, σ0, m0, iM AX , ε)
Initialize(i = 0, Ci = I , mi = m0 σi =σ0)
while (Stop-criteria) OR i < iM AX do

for k = 1, . . . ,λ do
xk ∼N (mi ,σ2

i Ci )
εi = ε[i ]
C-MLMC(Qq

r , Qm
c , εi , xk )

return Rk
[
Qq

r (x̃k (xk ,ω), p(ψ))
]
, Ck

[
Qm

c (x̃k (xk ,ω), p(ψ))
]

Sort: best ξ candidates out of λ (9.12)
Mean m update based on ξ candidates using (9.13)
Step-size σ update: using (9.19)
Covariance C update using (9.17)
Generation: i = i +1

return ξ candidates

C-MLMC(Qr , Qc , εi , xk )
Apply uncertainties on design xk → x̃k (xk ,ω)
compute C-MLMC iterations iE using (5.2)
while ( j < iE ) AND (ε j > εi ) do

compute (L( j ),θ( j ))
compute {N ( j )

l }L( j )

l=0 to satisfy ε( j )

MLMC(L( j ), {N ( j )
l }L( j )

l=0)
update C-MLMC parameters using (5.12)
j = j +1

return Rk
[
Qr (x̃k (xk ,ω), p(ψ))

]
, Ck

[
Qc (x̃k (xk ,ω), p(ψ))

]

[Dre07]. MSES solves the steady Euler equations with a finite volume discretization over a

streamline grid and is coupled, via the displacement thickness, with a two-equation integral

solver for the viscous regions of the boundary layer and trailing wakes.

LEVEL Airfoil nodes Cells C T i me[s]
L0 47 1739 1.9
L1 71 2627 3.2
L2 107 3959 5.7
L3 161 5957 7.5
L4 243 8991 14.7

Table 9.2 – MLMC 5-levels grid hierarchy for the RAE2822 problem.

9.5.1 Maximization of Lift-Drag Ratio
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Deterministic Single Point Maximization of Lift-Drag ratio at fixed Angle: SP-DO1 An

interesting problem that arises during the preliminary stage of the design process is the

maximization of the lift-drag ratio L/D of the airfoil for a specific combination of angle of

attack and Mach number. We can particularize the SO-DO in (9.1) for a specific cruise Mach

number condition M∞ and angle of attack α∞ (see Table 9.3 column "reference") and define

the following single point deterministic shape optimization problem:

SO-DO1 :

max
x∈X

L/D (M∞,α∞)(x, p)

s.t xL ≤ x ≤ xU

(9.21)

In the feasible design space X , we constrain the shape of the airfoil by requiring enough space

for the fuel/torque box (see Figure 9.5) and the final shape to be at least 75% of the original

section of the RAE-2822.
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Figure 9.5 – Geometrical trapezoid box constraint.

The coordinates of the box vertex are: v1 = (0.13,0.03), v2 = (0.4,0.05), v3 = (0.4,−0.045), v4 =
(0.13,−0.03). This is a reasonable requirement to build an aircraft wing with an appropriate

inner volume to accommodate the fuel tank and a torque box. Additionally such requirement

naturally rejects, from the population of candidate individuals, all degenerate airfoil shapes.

The design parameters x are the PARSEC coefficients (see 2.4.3 for definition).

Robust Single Objective Maximization of Lift-Drag ratio: SO-RDO1 Instead of solving the

optimization problem for a single combination of Mach number and angle of attack, as

in SP-DO1 (see 9.21), we now consider the problem of robustly optimize the shape of the

RAE-2822 airfoil affected by operating (system parameters p(ψ), Mach number and angle of

attack in Table 9.3) and geometric uncertainties (Table 9.4) at the same time. The operating

uncertainties considered in this problem are representative of mild atmospheric gust that an

aircraft may encounter during cruise. The geometric uncertainties, on the other hand, are

representative of manufacturing tolerances.

The geometric uncertain set and the design set are the PARSEC coefficients of the airfoil (see

Table 9.4). All uncertain parameters are modeled as truncated Gaussian random variables (see

definition in Eq. (4.22)).

The design parameters x are the PARSEC parameters in Table 9.4 (column "PARSEC (r)"). In
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Quantity Reference (r ) Uncertainty

α∞ 2.31 T N (r,2%r,−2%r,+2%r )
Operating M∞ 0.730 T N (r,2%r,−2%r,+2%r )

parameters Rec 6.5 ·106 −
p∞ [Pa] 101325 −
T∞ [K ] 288.5 −

Table 9.3 – Operating parameters and uncertainties for the RAE2822 problem.

Quantity PARSEC(r ) Uncertainty Design range

Rs 0.00839 T N (r,1%r,−1%r,+1%r ) [70%r, 130%r ]
Geometric Rp 0.00853 T N (r,1%r,−1%r,+1%r ) [70%r, 130%r ]
parameters xs 0.431 T N (r,1%r,−2%r,+2%r ) [50%r, 150%r ]

xp 0.346 T N (r,1%r,−2%r,+2%r ) [50%r, 150%r ]
ys 0.063 T N (r,1%r,−2%r,+2%r ) [70%r, 130%r ]
yp −0.058 T N (r,1%r,−2%r,+2%r ) [70%r, 130%r ]
Cs −0.432 T N (r,1%r,−1%r,+1%r ) [50%r, 150%r ]
Cp 0.699 T N (r,1%r,−1%r,+1%r ) [50%r, 150%r ]
θs −11.607 − −
θp −2.227 − −

Table 9.4 – PARSEC parameters of the RAE2822 airfoil, and geometric uncertainties applied on the
shape and design range for the geometric parameters.

the actual stage of the airfoil, uncertainty is added to those parameters (see Table 9.4 column

"uncertainty")

Instead of using a deterministic loss function, as in SO-DO1, we consider here a robust loss

function defined as the difference of the mean and the standard deviation of the lift-drag ratio

L/D of the airfoil.

SO-RDO1 :

max
x∈X

R
[
L/D(x̃(x,ω), p(ψ))

]=µL/D (x̃(x,ω), p(ψ))−σL/D (x̃(x,ω), p(ψ))

s.t xL ≤ x ≤ xU

(9.22)

In the feasible design space we constraint, as in the deterministic problem SO-DO1, the shape

of the airfoil by requiring enough space for the fuel/torque box (see Figure 9.5) and the final

shape to be at lease 75% of the original section of the RAE-2822. It is worth underline that the

geometrical constraint is enforced only on the deterministic shape x, not on the perturbed

one x̃.
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Figure 9.6 – Performances of the SO-RDO1 and SO-DO1 airfoil compared with the original RAE-
2822. The upper plots present the uncertain Cp profile of the airfoils under operating and geometric
uncertainties. The lower plots present the L/D variation (mean ± two standard deviations). The
diamond symbol represents the performance of the airfoil at design condition (airfoil operating at
M∞ = 0.730, α∞ = 2.31).

Comparison of Optimized Shapes In Figure 9.6 and Table 9.5 we present the result of the

robust (SO-RDO1) and deterministic (SO-DO1) optimization of the L/D ratio. We can observe

that the deterministically optimized airfoil is able to achieve the best performance at design

condition however the L/D ratio is highly sensitive to small variations of the geometry and

operating conditions.

The robust airfoil is equipped with a relatively large leading edge and much wider pressure side

trailing edge angle. The quasi constant pressure plateau and the large aft chamber, compared

to the SO-DO2, are capable to reduce the L/D dispersion.

RAE2822 SO-DO1 SO-RDO1

M = 0.729
α= 2.31 L/D = 63.2 L/D = 92.8 L/D = 74.5

Fixed Geom.
M =T N (r,2%,−2%,+2%)
α=T N (r,2%,−2%,+2%) L/D = 61.7 L/D = 77.9 L/D = 72.9

Uncertain Geom. ±8.6 (14%) ±8.2 (10.5%) ±2.6 (3.5%)

Table 9.5 – Performances and variabilities (mean ± two standard deviations) of the SO-DO2 and SO-
RDO2 airfoil compared with the original RAE-2822 at design conditions and when they operate in an
uncertain environment.
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9.5.2 Minimization of Drag Coefficient

In a later stage of the design process, when structural considerations are introduced and the

aircraft mission is appropriately defined, we might have tighter geometrical constraints and

we are required to match a specific cruise lift condition.

Deterministic Single Point Minimization of Drag at fixed Lift: SO-DO2 (SP) We can par-

ticularize SO-DO (9.1) problem for a specific cruise Mach number condition M∞ and lift

coefficient C∗
L and define the following single point deterministic shape optimization problem:

SO-DO2 (SP) :

min
x∈X

C
(M∞,C∗

L )
D (x, p)

s.t xL ≤ x ≤ xU

(9.23)

It is worth underline that in order to enforce the C∗
L constraint on each design candidate, we

compute for each of them a converged solution with an initial angle of attach α that we then

gradually increase/decrease in order to match the prescribed lift coefficient.

The constraints in X are now imposed on the thickness of the airfoil in order to attain a shape

capable of matching the required structural requirements. In our simulations we set the

thickness of the airfoil to match exactly that of the original RAE-2822 airfoil (see Figure 9.7 for

comparison of optimal and initial reference RAE2822 airfoil).

Also for this problem, the design parameters x are the PARSEC coefficients (see 2.4.3 for

definition).

As presented in [Dre98], such optimization problems generally lead to airfoil shapes that are

optimal only in a narrow range of Mach numbers (leading to so called localized optimization).

The optimal shape will generally be shock-less and/or will present a bump in a specific

location in order to fill the transitional separation bubble to reduce the drag in the specific

cruise condition. The performance of such shapes degrades quite fast away form the design

conditions as the bump location and the curvature of the airfoil are not able to avoid the shock

and/or fill the separation bubble for other combinations of Mach number and lift coefficient.

Additionally if the geometry of the airfoil is affected by uncertainties due to manufacturing

tolerances and/or temporary factors such as icing or aeroelastic deformation of the wing, the

shape can be ineffective even in the prescribed design conditions.

Figure 9.7 presents the results of single point optimization of the RAE 2822 airfoil for different

cruise Mach number (M = 0.7,0.725,0.75,0.775,0.8) and fixed C∗
L = 0.5.

Multi Point Minimization of Drag at fixed Lift: SO-DO2 (MP) An intuitive approach to

improve off-design performances of transonic airfoils, generally denoted as multi-point opti-
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Figure 9.7 – Single Point optimization of the RAE 2822 airfoil for different cruise Mach number and
fixed C∗

L = 0.5. The thickness of the airfoils is constrained to be the same as the original RAE 2822 airfoil,
while the other PARSEC geometrical parameters are free.

mization, is based on trade off between different design conditions [Cam98] [EP98].

Instead of optimizing an objective function for a single discrete flight condition as in SP-DO1

(9.23), we can consider a weighted linear combination of m flight conditions:

SO-DO2 (MP) :


min
x∈X

m∑
i=1

wi ·C (M i
∞,C∗

L )
D (x, p)

s.t xL ≤ x ≤ xU

(9.24)

The number of m flight conditions, the choice of M i∞ and the wights wi are determined by the

designer in order to fulfill specific performance or mission requirements (no sound theoretical

principles are available for these choices). Empirical sophisticated ways of choosing multi

point flight conditions and their weights can be found in [LKM14].

In this analysis we choose two, three and five equally weighted flight conditions between

M∞ = 0.7 and 0.8 for the design respectively denoted as MPU
2 , MPU

3 , MPU
5 in Figure 9.8. Addi-

tionally we also consider three and five flight conditions weighted using the area underlying

a symmetric beta distribution centered in M∞ = 0.75 (B(2,2,0.1, M∞−0.05)) for the designs

MPβ
3 , MPβ

5 (see Table 9.6).

Figure 9.8 presents the results of the multi point shape optimization of the RAE 2822 airfoil for

different cruise Mach number (M = 0.7,0.725,0.75,0.775,0.8) and fixed C∗
L = 0.5.

A critical discussion is postponed to the next section where these results are also compared to
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MP Design Flight conditions (M i∞) Weights (wi )

MPU
2 0.7, 0.8 0.5, 0.5

MPU
3 0.7,0.75,0.8 1/3, 1/3, 1/3

MPβ
3 0.7,0.75,0.8 0.15625, 0.6875, 0.15625

MPU
5 0.7,0.725,0.75,0.775,0.8 1/5, 1/5, 1/5, 1/5, 1/5

MPβ
5 0.7,0.725,0.75,0.775,0.8 0.04296875, 0.2734375, 0.3671875, 0.2734375, 0.04296875

Table 9.6 – Flight conditions and weight for deterministic multi point optimization.
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Figure 9.8 – Multi Point optimization of the RAE 2822 airfoil for different choices of cruise Mach number
and weights (fixed C∗

L = 0.5). The thickness of the airfoils is constrained to be the same as the original
RAE 2822 airfoil, while the other PARSEC geometrical parameters are free.

those obtained in the OUU case.

Robust and Reliable Single Objective Minimization of Drag: SO-RDO2 Instead of solving

the optimization problem for a single combination of Mach number and lift coefficient, as in

SP-DO2 (see 9.23), or a weighted sum of flight conditions, as in MP-DO2 (see 9.24), we now

consider the problem of optimizing the shape of the RAE-2822 airfoil affected by uncertainties

using different robust and reliable loss functions.

The operating uncertainty, namely the Mach number, is modeled as a beta distribution de-

noted by B(a,b, s, l oc), where a and b are the distribution parameters. As the beta distribution

is defined on the [0,1] interval, the parameters s and loc are used to scale and shift the distri-
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bution’s support, respectively (see Table 9.7).

Quantity Reference (r ) Uncertainty

CL 0.5 −
Operating M∞ 0.75 B(2,2,0.1, M∞−0.05)

parameters Rec 6.5 ·106 −
p∞ [Pa] 101325 −
T∞ [K ] 288.5 −

Table 9.7 – Operating parameters and uncertainties for the RAE2822 problem.

The operating uncertainties considered in this problem are representative of atmospheric

fluctuations during a flight mission (see discussion in 2.4.1). The reference nominal PARSEC

parameters are presented in Table 9.8 together with the design space range for the geometric

parameters. No geometrical uncertainties are considered in this case.

Quantity PARSEC - RAE-2822(r ) Design range

Rs 0.00839 [70%r, 130%r ]
Geometric Rp 0.00853 [70%r, 130%r ]
parameters xs 0.431 [50%r, 150%r ]

xp 0.346 [50%r, 150%r ]
ys 0.063 −
yp −0.058 −
Cs −0.432 [50%r, 150%r ]
Cp 0.699 [50%r, 150%r ]
θs −11.607 [50%r, 150%r ]
θp −2.227 [50%r, 150%r ]

Table 9.8 – PARSEC parameters of the RAE2822 airfoil and feasible design space range for the geometric
parameters.

In order to compare the advantages and effectiveness of different probabilistic loss functions

we consider here the following optimization problem:

SO-RDO2 :

min
x∈X

R
[
CD (x, p(ψ))

]
s.tCL(x, p(ψ)) =C∗

L xL ≤ x ≤ xU

(9.25)

and define the following loss functions:

Comparison of Optimized Shapes In Figure 9.9 we present the pressure coefficient and

shape of the deterministic optimized shapes (SP and MP) and the robust/reliable obtained
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Rµ [CD ] µCD (x̃(x,ω), p(ψ))

Rµ,σ [CD ] µCD (x, p(ψ))+σCD (x̃(x,ω), p(ψ))

Rµ,σ,γ [CD ] µCD (x, p(ψ))+σCD (x, p(ψ))+ (µCD (x, p(ψ)) ·γCD (x, p(ψ))

RV aR90 [CD ] V aR90
CD

(x, p(ψ))

RCV aR90 [CD ] CV aR90
CD

(x, p(ψ))

Table 9.9 – Probabilistic loss functions for problem SO-RDO2.

shapes with different probabilistic loss function (Table 9.9) under operating uncertainties

presented in Table 9.7.

The first observation we can draw from Figure 9.9 is that MP designs are able to effectively

reduce the variability in the pressure coefficient compared to SP designs. Indeed, we can

observe, in particular for MU
5 and Mβ

5 , quasi constant pressure plateau on the suction side

of the airfoils, capable of reducing the intensity of the shock wave. The geometries of MU
5

and Mβ
5 are characterized by relatively large leading edge radius, low curvature suction side

and an increased aft chamber. The pressure profile and the geometry of the airfoil obtained

by minimizing just the expectation of drag coefficient Rµ [CD ] appear very similar to Mβ
5 .

This is indeed justified by the choice of weights in Mβ
5 that mimic an empirical mean on

five flight conditions. On the other hand the airfoils obtained by minimizing the CVaR of

CD RCV aR90 [CD ] as well as those obtained by minimizing the first three statistical moments

Rµ,σ,γ [CD ] seem to promote the development of the shock in the front part of the airfoil in

order to reduce the variability in the aft part of it.
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Figure 9.9 – Pressure coefficient Cp (mean ± two standard deviations) and shape of the RAE 2822 (in
black), the deterministic optimized shapes (SP in red and MP in magenta) and robust/reliable shapes
obtained with different probabilistic loss functions (in green) under operating uncertainties.
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Figure 9.10 – CDF of the drag coefficient CD of the RAE 2822 (in black), the deterministic optimized
shapes (SP in red and MP in magenta) and robust/reliable shape obtained with different probabilistic
loss functions (in green) under operating uncertainties.
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In order to effectively analyze the performances of the deterministic and robust/reliable

optimized shapes in the uncertain environment, we present in Figure 9.10 the CDFs of the

drag coefficient CD computed using the MLMC methodology presented in Chapter 7. We can

observe, as underlined above for the Cp , that MP designs are able to reduce the variability in

the drag coefficient compared to SP designs. The airfoil obtained by minimizing the first three

statistical moments Rµ,σ,γ [CD ] presents an heavy tail on the side of low drag and seems the

most reliable candidate. The airfoil obtained with VaR minimization RV aR90 [CD ] is indeed the

candidate that have the lowest 90%-quantile CD but presents an heavy tail on the side of high

drag. On the other hand, the airfoil obtained with CVaR minimization RCV aR90 [CD ] is able to

effectively control the tail of the distribution at the price of an higher mean value of CD .

9.6 Application to Multi-Objective Optimization Under Uncertain-

ties

In this section, the above presented methodology is applied to multi objective optimization

under uncertainties of the RAE-2822 airfoil.

9.6.1 Optimization of Lift and Drag

Deterministic Multi Objective Optimization of Lift and Drag: MO-DO1 We now consider

two competing objectives to be optimized simultaneously, namely minimize the drag coef-

ficient CD maximize the lift coefficient CL for a specific combination of Mach number and

angle of attack:

MO-DO1 :

P-min
x

{C
(M∞,C∗

L )
D (x, p),−C

(M∞,C∗
L )

L (x, p)}

s.t xL ≤ x ≤ xU

(9.26)

We use as design variables x the position of 15 nodes Free Form Deformation (FFD) box (Figure

9.11 and definition in 2.4.3).

Figure 9.11 – 15 nodes FFD box for the RAE2822.
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Multi Objective Robust Design Optimization of Lift and Drag: MO-RDO1 We now consider

two competing robust objectives to be optimized simultaneously, namely minimize the drag

coefficient CD and its dispersion and maximise the lift coefficient and reduce its dispersion.

We consider, first, only operating uncertainties (see Table 9.3) affecting the flow surrounding

the airfoil and we use as design variables x the Free Form Deformation (FFD) box coefficients

(Figure 9.11).

MO-RDO1 :

P-min
x∈X

{RD
[
CD (x, p(ψ))

]
,RL

[
CL(x, p(ψ))

]
}

s.t xL ≤ x ≤ xU

(9.27)

with:

RD
[
CD (x, p(ψ))

]=µCD (x, p(ψ))+σCD (x, p(ψ))

RL
[
CL(x, p(ψ))

]=−µCL (x, p(ψ))+σCL (x, p(ψ))
(9.28)

We consider as uncertain operating parameters those defined for the single objective problem

SO-RDO2 (see Table 9.3)

In Figure 9.12 we present the results of MO-DO1 and MO-RDO1. For the candidate designs in

the deterministic Pareto set (blue points, with lift coefficient higher and drag coefficient lower

than the original RAE2822) and the RAE-2822 airfoil (black point) we perform an uncertainty

analysis and compute the mean value (red square) and dispersion of the airfoils CD and CL

(red ellipses correspond to two standard deviations) when they are operated in the uncertain

environment. The blue stars represent candidates in the deterministic Pareto set that are very

unstable when operating in the uncertain environment. Small variations in the angle of attack

and Mach number lead to separated flow on the suction side of such airfoils (no ellipse is

drown for those candidates). We perform the same uncertainty analysis also for the candidate

design obtained by solving the MO-RDO1 (yellow points in the robust pareto front indicate the

value of the robust loss function for CL and CD ) and compute the mean value (green square)

and dispersion (green ellipses).

It is interesting to notice in Figure 9.12 a gathering of robust optimal candidates and their

means around CL ≈ 0.75 and CD ≈ 0.011. Such robust candidates have quite similar perfor-

mances and dispersion around the mean.

Multi Objective Robust Design Optimization of Lift and Drag: MO-RDO2 Lastly we con-

sider the multi objective problem of minimizing the drag coefficient CD and its dispersion and

maximizing the lift coefficient and reduce its dispersion with operating (system parameters

p(ψ), Mach number and angle of attack in Table 5.9) and geometric uncertainties at the same

time (Table 5.9 and Table 9.4). In this set of simulations the design parameters x, are PARSEC

parameters (Table 9.4 second column) and in the actual shape of the airfoil, uncertainty is
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Figure 9.12 – Deterministic and Robust Pareto fronts obtained by solving respectively the MO-DO1
and the MO-RDO1. The central plot is a blow-up view of the full Pareto. The red squares are the mean
of CL and CD when the airfoils are operated in the uncertain environment, while the red ellipses are the
dispersion around such mean values (two standard deviations). The green squares are the mean values
of the robust optimal points and the green ellipses are their dispersion around such mean values (two
standard deviations). Finally the black point and grey ellipse correspond to the RAE-2822 airfoil.

added to those parameters.

MO-RDO2 :

P-min
x

{RD
[
CD (x̃(x,ω), p(ψ))

]
,RL

[
CL(x̃(x,ω), p(ψ))

]
}

s.t xL ≤ x ≤ xU

(9.29)

with:

RD
[
CD (x̃(x,ω), p(ψ))

]=µCD (x̃(x,ω), p(ψ))+σCD (x, p(ψ))

RL
[
CL(x̃(x,ω), p(ψ))

]=−µCL (x̃(x,ω), p(ψ))+σCL (x̃(x,ω), p(ψ))
(9.30)

We compare the results with MO-DO1 but in this set of simulations we use the PARSEC

coefficients as design parameters.

In Figure 9.13 we present the results of MO-RDO2 and MO-DO1. We perform, as for the previ-
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Figure 9.13 – Deterministic and Robust Pareto fronts obtained by solving respectively the MO-DO1
(using PARSEC as design parameters) and the MO-RDO2. The central plot is a blow-up view of the full
Pareto. The red squares are the mean of CL and CD when the airfoils are operated in the uncertain envi-
ronment, while the red ellipses are the dispersion around such mean values (two standard deviations).
The green squares are the mean values of the robust optimal points and the green ellipses are their
dispersion around such mean values (two standard deviations).

ous case, an uncertainty analysis for the deterministic and robust candidates that dominate

the original RAE-2822 (with lift coefficient higher and drag coefficient lower) and compute

the mean value (red squares for the deterministic optimal and yellow squares for the robust

optimal candidates) and dispersion of the airfoils CD and CL (red ellipses for the deterministic

and green for robust candidates that correspond to two standard deviations) when they are

operated in the uncertain environment. The blue stars represent candidates in the determin-

istic Pareto set that are very unstable when operating in the uncertain environment. Small

variations in the geometry, angle of attack or Mach number lead to separated flow on the

suction side of such airfoils. We can clearly identify, even better than in the previous case with

only operating uncertainties, a much higher stability of the performances of the robust opti-

mized airfoils when operated in an uncertain environment and when affected by geometrical

uncertainties.
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9.7 Conclusions

In this Chapter we have presented how the MLMC approach can be efficiently integrated in

with an optimization evolutionary strategy algorithm to perform single and multi objective

robust and reliability based design optimization of transonic airfoils affected by a considerable

number of operating and geometric uncertainties.

Thanks to the extensions of MLMC presented in the previous Chapters we can now efficiently

compute loss functions and probabilistic constraints that include central statistical moments

and risk measures. Additionally, by employing the robustness of the C-MLMC approach,

the number of levels and simulations per levels required to achieve a prescribed tolerance

requirement can be computed on the fly for each candidate design in the optimization loop.

We demonstrated with single and multi objective optimization problems that such methodol-

ogy can be efficiently employed to design transonic airfoils that are less sensitive to uncertain-

ties. We believe that the technique has the potential to be extended to more complex problems

as those presented in Chapter 8 where the stability and the reliability of the aerodynamic

system is of crucial importance.
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10.1 Conclusions

In this thesis we analyzed and developed uncertainty quantification methodologies to effi-

ciently study the effect of uncertainties on aerodynamic systems.

We started by extending the Multi Level Monte Carlo approach, proposed by Heinrich [Hei98]

in the context of parametric integration and extended by Giles [Gil08] to approximate stochas-

tic differential equations (SDEs) in financial mathematics, in order to treat aerodynamic

systems, modeled by Computational Fluid Dynamic simulation, affected by operating and

geometric uncertainties.

After assessing the effectiveness of the Multi Level Monte Carlo (MLMC) approach compared

to classical Monte Carlo (MC) method in computing accurate statistics of scalar quantities of

interest, we proposed an extension to estimate scalar field quantities such as the uncertain

pressure profile around airfoils and wings. Following the successful completion of the latter

objective, we investigated the Continuation Multi Level Monte Carlo (C-MLMC) methodology

in order to further reduce the computational time required to set up and perform an uncer-

tainty analysis. The continuation algorithm proved to be a robust and self-tuning approach

that estimates on the fly the optimal number of levels and realizations per level necessary to

meet a prescribed tolerance requirement.

In order to be relevant for realistic industrial applications we revisited the continuation al-

gorithm and particularized to the specific setting of viscous compressible aerodynamic sim-

ulations. We focused on the application of the algorithm to specific external and internal

aerodynamics benchmark test cases and we detailed how to construct an appropriate grid

hierarchy to achieve grid convergence rates for the C-MLMC to be effective.

With the end goal of improving the understanding of the effect of uncertainties on the per-

formances of aerodynamic system we extended the MLMC approach to compute central

statistical moments. In fact, in addition to the mean, many important features of a random
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variable distribution, such as location, dispersion, or asymmetry, can be assessed through the

analysis of statistical moments. Specifically, we introduced a novel multilevel Monte Carlo

method that allows for an efficient sampling-based estimation from inexact/approximate

samples. One of the method’s key ingredients of our approach is the use of h-statistics as

unbiased central moment estimators with minimal variance for the level-wise contributions.

With the same spirit we investigated the MLMC extension to compute parametric expectations.

Specifically, we particularize the MLMC method introduced in [KN17] and detailed how to

effectively set up a MLMC simulation to accurately compute an uncertain system output’s

cumulative distribution function, quantiles and conditional value at risk using cubic splines

interpolation operators.

Finally we combined the above mentioned MLMC/C-MLMC approaches with single and

multi-objective evolutionary algorithm in order to perform shape optimization under un-

certainties. In the context of transonic airfoil shape design, we described how to perform

robust and reliability based design optimization and demonstrated that our methodology can

be efficiently employed to effectively design airfoils that are less sensitive to geometric and

operating uncertainties.

10.2 Perspectives

We hope that the methodologies introduced and investigated in this thesis can boost the

application and further development of accurate and time-effective uncertainty quantification

and robust/reliability-based design optimization techniques in the industrial aeronautic sector.

In order to achieve this objective, we outline some further computational challenges besides

the ones investigated in this thesis and provide some promising perspectives research paths.

In our numerical experiments we applied a parallel execution of the simulations on a given

hierarchy level. The optimal level-wise, sample-wise and mesh-wise parallelization of the

C-MLMC simulations together with an optimal allocation of resources at each iteration of the

algorithm for large scale problems solved on massively parallel HPC is still an open topic. Some

ideas of parallelization and load balancing techniques for "standard" MLMC algorithms have

been proposed in [ŠMS12, GDR+16]. We believe that the combination of these parallelization

techniques and the C-MLMC approach should be the starting point for an effective application

of uncertainty quantification of large scale aeronautic problems in an industrial environment.

In Chapter 6 and Chapter 7 we presented two MLMC extensions for the accurate computation

of central statistical moments, distributions and risk measures. The numerical experiments

provided a clear indication of the effectiveness of out MLMC implementation compared to

a classical Monte Carlo approach. However, the computational cost required to accurately

compute such statistics for large scale industrial problems still remains huge. We believe that

the appropriate combination of MLMC with adaptive importance sampling techniques can

dramatically reduce the computational cost and increase the accuracy of the approximations
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in particular for high statistical moments and tail probabilities. Such is indeed required in

order to apply the C-MLMC/MLMC approach in reliability based design frameworks where

probabilistic loss functions and constraints are computed for each design candidate.

In Chapter 9 we investigated the combination of C-MLMC and the Covariance Matrix Adap-

tation Evolutionary Strategy in the context of shape optimization under uncertainties. Each

candidate design in the evolving population in our algorithm requires a C-MLMC simulation

for the accurate estimation of probabilistic loss functions and constraints. We are convinced

that the tolerance on those simulations can be effectively reduced (and hence the compu-

tational time) by employing bootstrap techniques that provide indication on the tolerance

required to appropriately discriminate the best and the worst candidate design in the popula-

tion.
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A Appendix

A.1 Unbiased variance estimator for p = 4 for MC method

Below we report the closed-form expressions of the unbiased estimators V̂4/N forVar
[
h4(Q N ,M )

]=
V4/N , Sa ≡ Sa(Q N ,M ):

V̂4
N

= 1

(N −7)(N −6)(N −5)(N −4)(N −3)2(N −2)2(N −1)2 N 2
{−72(2N 3 −21N 2 +79N −105)S8

1 +288N (2N 3 −21N 2 +79N −105)S2S6
1

−48(7N 5 −85N 4 +443N 3 −1199N 2 +1734N −1260)S3S5
1 −12(3(17N 5 −167N 4 +505N 3 −61N 2 −1734N +1260)S2

2
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A.2 Unbiased variance estimator on level ` for p = 3
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