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Abstract
This thesis presents new flexible dynamic stochastic models for the evolution of market prices

and new methods for the valuation of derivatives. These models and methods build on the

recently characterized class of polynomial jump-diffusion processes for which the conditional

moments are analytic.

The first half of this thesis is concerned with modelling the fluctuations in the volatility of stock

prices, and with the valuation of options on the stock. A new stochastic volatility model for

which the squared volatility follows a Jacobi process is presented in the first chapter. The stock

price volatility is allowed to continuously fluctuate between a lower and an upper bound, and

option prices have closed-form series representations when their payoff functions depend

on the stock price at finitely many dates. Truncating these series at some finite order entails

accurate option price approximations. This method builds on the series expansion of the ratio

between the log price density and an auxiliary density, with respect to an orthonormal basis

of polynomials in a weighted Lebesgue space. When the payoff functions can be similarly

expanded, the method is particularly efficient computationally. In the second chapter, more

flexible choices of weighted spaces are studied in order to obtain new series representations

for option prices with faster convergence rates. The option price approximation method can

then be applied to various stochastic volatility models.

The second half of this thesis is concerned with modelling the default times of firms, and

with the pricing of credit risk securities. A new class of credit risk models in which the

firm default probability is linear in the factors is presented in the third chapter. The prices

of defaultable bonds and credit default swaps have explicit linear-rational expressions in

the factors. A polynomial model with compact support and bounded default intensities is

developed. This property is exploited to approximate credit derivatives prices by interpolating

their payoff functions with polynomials. In the fourth chapter, the joint term structure of

default probabilities is flexibly modelled using factor copulas. A generic static framework

is developed in which the prices of high dimensional and complex credit securities can

be efficiently and exactly computed. Dynamic credit risk models with significant default

dependence can in turn be constructed by combining polynomial factor copulas and linear

credit risk models.

Key words: polynomial model, stochastic volatility, option pricing, credit risk, correlated

defaults, credit derivatives
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Résumé

Cette thèse présente des nouveaux modèles stochastiques, dynamiques, et flexibles pour

l’évolution des prix du marché et des nouvelles méthodes de valorisation des produits dérivés.

Ces modèles et méthodes s’appuient sur la classe récemment caractérisée de processus de

diffusion avec sauts polynomial pour lesquels les moments conditionnels sont analytiques.

La première moitié de cette thèse se porte sur la modélisation des fluctuations de la volatilité

des cours des actions et sur l’évaluation des prix des options sur actions. Un nouveau modèle

de volatilité stochastique où le carré de la volatilité suit un processus de type Jacobi est

présenté dans le premier chapitre. La volatilité des cours d’une action est autorisée à fluctuer

continuellement entre une limite inférieure et une limite supérieure, et les prix des options ont

des représentations en série de forme fermée lorsque leurs résultats à échéance dépendent

du cours de l’action à un nombre fini de dates. En tronquant ces séries des approximations

précises des prix des options sont obtenues. Cette méthode s’appuie sur le développement en

série du rapport de vraisemblance entre la densité de probabilité du logarithm du cours de

l’action et une mesure auxiliaire, par rapport à une base orthonormée de polynômes dans un

espace pondéré par cette mesure auxiliaire. Quand le developpement en série de la fonction

de résultat à échance peut aussi être effectuer, cette méthode est particulièrement efficace

computationnellement. Dans le deuxième chapitre, des choix plus souple pour cet espace

pondéré sont étudiés et de nouvelles représentations en série sont obtenues avec des taux

de convergence plus rapides. Cette méthode d’approximation des prix des options peut être

appliquée à divers modèles de volatilité stochastique.

La deuxième moitié de cette thèse se porte sur la modélisation des défaillances des entreprises

et sur l’évaluation des dérivés sur évenements de crédit. Une nouvelle classe de modèles

de risque de crédit pour laquelle la probabilité de défaut d’une entreprise est linéaire en les

facteurs est présentée dans le troisième chapitre. Les prix des obligations et des couvertures de

défaillance ont des expressions explicites données par des fonctions linéaire-rationelles en les

facteurs. Un modèle polynomial plus particulier est étudié pour lequel les facteurs prennent

leurs valeurs dans un hypercube et les taux de défaillance sont bornés. Cette propriété est

exploitée pour approximer les prix des dérivés de crédit en interpolant leurs fonctions de

paiement à échéance avec des polynômes. Dans le quatrième chapitre, les copules à facteurs

sont proposés pour modéliser de manière flexible la structure par échéance des probabilités

de défaillance commune. Un cadre statique générique est développé dans lequel les prix de
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titres de crédit complexes sur de nombreuses entreprises peuvent être calculés efficacement

et exactement. Des modèles dynamiques avec une dépendance importante entre les défaults

peuvent être construits en combinant des copules à facteurs polynomiales avec des modèles

de crédit linéaires.

Mots clefs : modèle polynomial, volatilité stochastique, évaluation du prix des options, risque

de crédit, corrélation entre défauts de paiement, produits de crédit dérivés
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Introduction

The development of adequate models for the dynamical evolution of market prices and inter-

est rates is of strategic importance for the financial and insurance industries. Mathematical

models are nowadays routinely applied to price securities, hedge derivatives, optimize port-

folios, invest pension funds, and evaluate capital requirements. This thesis in Mathematical

finance presents new classes of flexible and tractable stochastic dynamic models for equity

volatility risk and fixed income credit risk, as well as fast and accurate methods to approximate

the prices of derivatives whose values are exposed to these risks.

Mathematical finance, also known as Quantitative finance, is the branch of applied Mathe-

matics concerned with financial markets and the relative valuation of financial securities. A

financial mathematician will typically take the share price of a company as given and use it to

value derivatives of the stock. Derivatives prices are given by the discounted expected value

of their payoffs taken under a risk-neutral measure, an alternative measure equivalent to the

real-world measure. In practice, market imperfections and investor preferences are reflected

in the risk premiums that connect the real-world measure to the risk-neutral measures as

implied from market prices. Therefore, the quality of the computed derivatives prices and

hedging strategies crucially depends the accuracy of the models that describe the dynamical

behavior of the underlying assets, as well as the risk premiums. A particular interest therefore

rises for tractable models capable of parsimoniously reproducing the risk factors dynamics,

and for which efficient numerical solutions exist to price derivatives.

Affine models have been the most extensively studied and applied class of continuous stochas-

tic dynamical models in the past twenty years. An affine model is built upon an affine jump-

diffusion process which is a particular type of semimartingale. The key property of affine

processes is that their characteristic functions are exponential-linear in the initial process

value where the coefficients are given by the solution of Riccati equations that can numeri-

cally be solved efficiently. This enables the use of Fourier transform techniques to value, for

examples, European call and put options with stochastic stock price volatility, and bonds with

stochastic interest rates and credit spreads. However, the tractability that affine processes

exhibit comes at the cost of constrained dynamics. They may therefore face difficulties in

parsimoniously reproducing realistic asset price dynamics.

Polynomial models strictly extend affine models, and are still at the beginning of their devel-

1



Introduction

opment. A polynomial model is built upon a polynomial jump-diffusion process. Formally,

the extended generator of a polynomial process maps any polynomial to a polynomial of the

same or lower degree. As a consequence, polynomial processes admit closed form conditional

moments which are given by the explicit solutions of linear systems of differential equations.

These solutions are polynomials evaluated at the initial process value where the coefficients

are given by the action of a matrix exponential on a vector that can efficiently be calculated

using modern computing capabilities and algorithms. Polynomial processes offer new model-

ing possibilities because their dynamics is strictly more flexible than those of affine processes.

However, their characteristic functions cannot be retrieved explicitly and different methods

must be developed to price financial assets and derivatives.

This thesis presents new stochastic volatility and credit risk polynomial models, and new

option pricing techniques using polynomial approximations and moments.

Chapter 1 presents a model for the stock price in which the volatility of stock returns is allowed

to fluctuate over time between a lower and an upper bound. These fluctuations significantly

affect the distribution of returns and, as a consequence, impact derivatives prices. In this

model the joint density of any finite sequence of log returns admits a series representation

in terms of the Hermite polynomials and the Gaussian distribution. Closed-form series

representations are in turn derived for option prices whose discounted payoffs functions

depend on the asset price trajectory at finitely many dates. This includes European call, put,

and digital options, forward start options, and can be applied to discretely monitored Asian

options. A numerical analysis shows that the price approximations obtained by truncating the

option price series at a finite order become accurate within short CPU time. This chapter is

based on (Ackerer, Filipović, and Pulido 2016).

Chapter 2 refines the option price series representations developed in the first chapter. This

method builds on the series expansion of the ratio between the log price density and some

auxiliary density, with respect to an orthonormal basis of polynomials in a weighted Lebesgue

space. The particular choice of auxiliary density is essential to obtain efficient and accurate

option price approximations. The set of tractable auxiliary density is enlarged from a Gaussian

density to mixture distribution whose components can belong to various parametric density

families. This leads to option price series representations with significantly faster convergence

rates. A natural candidate of auxiliary density for univariate diffusive stochastic volatility

models is the finite Gaussian mixture. Theoretical and numerical arguments show that fast

and precise option price approximations can be obtained for many stochastic volatility models.

This chapter contains material in preparation for submission.

Chapter 3 introduces a class of credit risk models in which the firm default probability is

linear in the factors. The prices of defaultable bonds and credit default swaps are given by

linear-rational expressions in the factors with explicit coefficients. A polynomial model with

compact support is developed for which default intensities are bounded. The price of a CDS

option can in turn be uniformly approximated by polynomials in the factors. Multi-name

2
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models with simultaneous defaults, positively and negatively correlated default intensities,

and stochastic interest rates can be constructed. An empirical study illustrates the versatility

of these models by fitting CDS spread time series. A numerical analysis validates the efficiency

of the option price approximation method. This chapter is based on (Ackerer and Filipović

2016).

Chapter 4 describes a static framework to model dependent defaults for a large number of

firms using factor copulas. This is a different approach from the third chapter in which the

default intensities are correlated but the default times are virtually not. The framework is

generic, as it nests many standard models, and enables parsimonious constructions of high

dimensional models. The prices of complex credit derivatives such as collateral debt obligation

(CDO) and CDO squared can be easily computed because portfolio losses mass functions can

be exactly recovered. This allows the design of models consistently pricing various complex

instruments. Dynamic stochastic credit risk models with substantial default dependence can

in turn be constructed by combining polynomial factor copulas and linear credit risk models.

This chapter is based on (Ackerer and Vatter 2016).

Statement of Originality

I certify that the content of this thesis is my own work, where some parts are the result of

collaborations with my thesis supervisor Prof. Damir Filipović, as well as my co-authors Prof.

Sergio Pulido and Dr. Thibault Vatter. No other person’s work has been used without due

acknowledgement.
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1 The Jacobi Stochastic Volatility Model

In this chapter we introduce a novel stochastic volatility model where the squared volatility

of the asset return follows a Jacobi process. It contains the Heston model as a limit case. We

show that the joint density of any finite sequence of log returns admits a Gram–Charlier A

expansion with closed-form coefficients. We derive closed-form series representations for

option prices whose discounted payoffs are functions of the asset price trajectory at finitely

many time points. This includes European call, put, and digital options, forward start options,

and can be applied to discretely monitored Asian options. In a numerical analysis we find that

the price approximations become accurate within short CPU time.

1.1 Introduction

Stochastic volatility models for asset returns are popular among practitioners and academics

because they can generate implied volatility surfaces that match option price data to a great

extent. They resolve the shortcomings of the Black–Scholes model (Black and Scholes 1973),

where the return has constant volatility. Among the the most widely used stochastic volatility

models is the Heston model (Heston 1993), where the squared volatility of the return follows

an affine square-root diffusion. European call and put option prices in the Heston model

can be computed using Fourier transform techniques, which have their numerical strengths

and limitations; see for instance (Carr and Madan 1999), (Bakshi and Madan 2000), (Duffie,

Filipović, and Schachermayer 2003), (Fang and Oosterlee 2009), and (Chen and Joslin 2012).

In this chapter we introduce a novel stochastic volatility model, henceforth the Jacobi model,

where the squared volatility Vt of the log price X t follows a Jacobi process with values in

some compact interval [vmi n , vmax ]. As a consequence, Black–Scholes implied volatilities are

bounded from below and above by
p

vmi n and
p

vmax . The Jacobi model (Vt , X t ) belongs to

the class of polynomial diffusions studied in (Eriksson and Pistorius 2011), (Cuchiero, Keller-

Ressel, and Teichmann 2012), and (Filipović and Larsson 2016). It includes the Black–Scholes

model as a special case and converges weakly in the path space to the Heston model for

vmax →∞ and vmi n = 0.

5



Chapter 1. The Jacobi Stochastic Volatility Model

We show that the log price XT has a density g that admits a Gram–Charlier A series expansion

with respect to any Gaussian density w with sufficiently large variance. More specifically, the

likelihood ratio function `= g /w lies in the weighted space L2
w of square-integrable functions

with respect to w . Hence it can be expanded as a generalized Fourier series with respect to the

corresponding orthonormal basis of Hermite polynomials H0, H1, . . . . Boundedness of Vt is

essential, as the Gram–Charlier A series of g does not converge for the Heston model.

The Fourier coefficients `n of ` are given by the Hermite moments of XT , `n = E[Hn(XT )].

Due to the polynomial property of (Vt , X t ) the Hermite moments admit easy to compute

closed-form expressions. This renders the Jacobi model extremely useful for option pricing.

Indeed, the price π f of a European option with discounted payoff f (XT ) for some function f

in L2
w is given by the L2

w -scalar product π f = 〈 f ,`〉w =∑
n≥0 fn`n . The Fourier coefficients fn

of f are given in closed-form for many important examples, including European call, put, and

digital options. We approximate π f by truncating the price series at some finite order N and

derive truncation error bounds.

We extend our approach to price exotic options whose discounted payoff f (Y ) depends on

a finite sequence of log returns Y = (X t1 − X0, X t2 − X t1 , . . . , X td − X td−1 ). As in the univariate

case we derive the Gram–Charlier A series expansion of the density g of Y with respect to

a properly chosen multivariate Gaussian density w . Assuming that f lies in L2
w the option

price π f is obtained as a series representation of the L2
w -scalar product in terms of the Fourier

coefficients of f and of the likelihood ratio function ` = g /w given by the corresponding

Hermite moments of Y . Due to the polynomial property of (Vt , X t ) the Hermite moments

admit closed-form expressions, which can be efficiently computed. The Fourier coefficients of

f are given in closed-form for various examples, including forward start options and forward

start options on the underlying return.

Consequently, the pricing of these options is extremely efficient and does not require any

numerical integration. Even when the Fourier coefficients of the discounted payoff function

f are not available in closed-form, e.g. for Asian options, prices can be approximated by

integrating f with respect to the Gram–Charlier A density approximation of g . This boils down

to a numerically feasible integration with respect to the underlying Gaussian density w . In

a numerical analysis we find that the price approximations become accurate within short

CPU time. This is in contrast to the Heston model, for which the pricing of exotic options

using Fourier transform techniques is cumbersome and creates numerical difficulties as

reported in (Kruse and Nögel 2005), (Kahl and Jäckel 2005), and (Albrecher, Mayer, Schoutens,

and Tistaert 2006). In view of this, the Jacobi model also provides a viable alternative to

approximate option prices in the Heston model.

The Jacobi process, also known as Wright–Fisher diffusion, was originally used to model gene

frequencies; see for instance (Karlin and Taylor 1981) and (Ethier and Kurtz 1986). More re-

cently, the Jacobi process has also been used to model financial factors. For example, (Delbaen

and Shirakawa 2002) model interest rates by the Jacobi process and study moment-based
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techniques for pricing bonds. In their framework, bond prices admit a series representation in

terms of Jacobi polynomials. These polynomials constitute an orthonormal basis of eigenfunc-

tions of the infinitesimal generator and the stationary beta distribution of the Jacobi process;

additional properties of the Jacobi process can be found in (Mazet 1997) and (Demni and

Zani 2009). The multivariate Jacobi process has been studied in (Gourieroux and Jasiak 2006)

where the authors suggest it to model smooth regime shifts and give an example of stochastic

volatility model without leverage effect. The Jacobi process has been also applied recently to

model stochastic correlation matrices in (Ahdida and Alfonsi 2013) and credit default swap

indexes in (Bernis and Scotti 2017).

Density series expansion approaches to option pricing were pioneered by (Jarrow and Rudd

1982). They propose expansions of option prices that can be interpreted as corrections to

the pricing biases of the Black–Scholes formula. They study density expansions for the law of

underlying prices, not the log returns, and express them in terms of cumulants. Evidently, since

convergence cannot be guaranteed in general, their study is based on strong assumptions

that imply convergence. In subsequent work, (Corrado and Su 1996) and (Corrado and Su

1997) study Gram–Charlier A expansions of 4th order for options on the S&P 500 index. These

expansions contain skewness and kurtosis adjustments to option prices and implied volatility

with respect to the Black–Scholes formula. The skewness and kurtosis correction terms,

which depend on the cumulants of 3rd and 4th order, are estimated from data. Due to the

instability of the estimation procedure, higher order expansions are not studied. Similar

studies on the biases of the Black–Scholes formula using Gram–Charlier A expansions include

(Backus, Foresi, and Wu 2004) and (Li and Melnikov 2012). More recently, (Drimus, Necula, and

Farkas 2013) and (Necula, Drimus, and Farkas 2015) study related expansions with physicist

Hermite polynomials instead of probabilist Hermite polynomials. In order to guarantee the

convergence of the Gram–Charlier A expansion for a general class of diffusions, (Ait-Sahalia

2002) develop a technique based on a suitable change of measure. As pointed out in (Filipović,

Mayerhofer, and Schneider 2013), in the affine and polynomial settings this change of measure

usually destroys the polynomial property and the ability to calculate moments efficiently. More

recently a similar study has been carried out by (Xiu 2014). Gram–Charlier A expansions, under

a change of measure, are also mentioned in the work of (Madan and Milne 1994), and the

subsequent studies of (Longstaff 1995), (Abken, Madan, and Ramamurtie 1996) and (Brenner

and Eom 1997), where they use these moment expansions to test the martingale property with

financial data and hence the validity of a given model.

The research in this chapter is similar to (Filipović, Mayerhofer, and Schneider 2013) that

provides a generic framework to perform density expansions using orthonormal polynomial

basis in weighted L2 spaces for affine models. They show that a bilateral Gamma density weight

works for the Heston model. However, that expansion is numerically more cumbersome than

the Gram–Charlier A expansion because the orthonormal basis of polynomials has to be

constructed using Gram–Schmidt orthogonalization. In a related paper (Heston and Rossi

2016) study polynomial expansions of prices in the Heston, Hull-White and Variance Gamma

models using logistic weight functions.

7



Chapter 1. The Jacobi Stochastic Volatility Model

The remainder of the chapter is as follows. In Section 1.2 we introduce the Jacobi stochastic

volatility model. In Section 1.3 we derive European option prices based on the Gram–Charlier

A series expansion. In Section 1.4 we extend this to the multivariate case, which forms the basis

for exotic option pricing and contains the European options as special case. In Section 1.5

we give some numerical examples. In Section 1.6 we explain how to efficiently compute the

Hermite moments. All proofs are collected in Section 1.7. In Section 1.8 we conclude.

1.2 Model Specification

We study a stochastic volatility model where the squared volatility follows a Jacobi process. Fix

some real parameters 0 ≤ vmi n < vmax , and define the quadratic function

Q(v) = (v − vmi n)(vmax − v)

(
p

vmax −p
vmi n)2 .

Inspection shows that v ≥Q(v), with equality if and only if v =p
vmi n vmax , and Q(v) ≥ 0 for

all v ∈ [vmi n , vmax ], see Figure 1.1 for an illustration.

We consider the diffusion process (Vt , X t ) given by

dVt = κ(θ−Vt )d t +σ
√

Q(Vt )dW1t

d X t = (r −δ−Vt /2)d t +ρ
√

Q(Vt )dW1t +
√

Vt −ρ2 Q(Vt )dW2t

(1.1)

for real parameters κ > 0, θ ∈ (vmi n , vmax ], σ > 0, interest rate r , dividend yield δ, and ρ ∈
[−1,1], and where W1t and W2t are independent standard Brownian motions on some filtered

probability space (Ω,F ,Ft ,Q). The following theorem shows that (Vt , X t ) is well defined.

Theorem 1.2.1. For any deterministic initial state (V0, X0) ∈ [vmi n , vmax ]×R there exists a

unique solution (Vt , X t ) of (1.1) taking values in [vmi n , vmax ]×R and satisfying∫ ∞

0
1{Vt=v}d t = 0 for all v ∈ [vmi n , vmax ). (1.2)

Moreover, Vt takes values in (vmi n , vmax ) if and only if V0 ∈ (vmi n , vmax ) and

σ2(vmax − vmi n)

(
p

vmax −p
vmi n)2 ≤ 2κmin{vmax −θ,θ− vmi n}. (1.3)

Remark 1.2.2. Property (1.2) implies that no state v ∈ [vmi n , vmax ) is absorbing. It also implies

that conditional on {Vt , t ∈ [0,T ]}, the increments X ti −X ti−1 are non-degenerate Gaussian for

any ti−1 < ti ≤ T as will be shown in the proof of Theorem 1.4.1. Taking vmi n = 0 and the limit

as vmax →∞, condition (1.3) coincides with the known condition that precludes the zero lower

bound for the CIR process, σ2 ≤ 2κθ.

We specify the price of a traded asset by St = eX t . Then
p

Vt is the stochastic volatility of the

8
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0 vmin v∗ vmax

0
vmin

v∗

vmax

vmin v∗ vmax

0

ρ

Figure 1.1 – Variance and correlation
The quadratic variation of the Jacobi model (black line) and of the Heston model (gray line) are displayed in the left panel as a
function of the instantaneous variance. The right panel displays the instantaneous correlation between the processes Xt and
Vt as a function of the instantaneous variance. We denote v∗ =p

vmi n vmax and assumed that ρ < 0.

asset return, d〈X , X 〉t =Vt d t . The cumulative dividend discounted price process e−(r−δ)t St

is a martingale. In other words, Q is a risk-neutral measure. The parameter ρ tunes the

instantaneous correlation between the asset return and the squared volatility,

d〈V , X 〉t√
d〈V ,V 〉t

√
d〈X , X 〉t

= ρ
√

Q(Vt )/Vt .

This correlation is equal toρ if Vt =p
vmi n vmax , see Figure 1.1. In general, we have

√
Q(Vt )/Vt ≤

1. Empirical evidences suggest that ρ is negative when St is a stock price or index. This is

commonly referred as the leverage effect, that is, an increase in volatility often goes along with

a decrease in asset value.

Since the instantaneous squared volatility Vt follows a bounded Jacobi process on the interval

[vmi n , vmax ], we refer to (1.1) as the Jacobi model. For V0 = θ = vmax we have constant volatility

Vt =V0 for all t ≥ 0 and we obtain the Black–Scholes model

d X t = (r −δ−V0/2)d t +
√

V0 dW2t . (1.4)

For vmi n = 0 and the limit vmax →∞ we have Q(v) → v , and we formally obtain the Heston

model as limit case of (1.1),

dVt = κ(θ−Vt )d t +σ
√

Vt dW1t

d X t = (r −δ−Vt /2)d t +
√

Vt

(
ρdW1t +

√
(1−ρ2)dW2t

)
.

(1.5)

In fact, the Jacobi model (1.1) is robust with respect to perturbations, or mis-specifications, of

the model parameters vmi n , vmax and initial state (V0, X0). Specifically, the following theorem

shows that the diffusion (1.1) is weakly continuous in the space of continuous paths with

respect to vmi n , vmax and (V0, X0). In particular, the Heston model (1.5) is indeed a limit case

9



Chapter 1. The Jacobi Stochastic Volatility Model

of our model (1.1).

Consider a sequence of parameters 0 ≤ v (n)
mi n < v (n)

max and deterministic initial states (V (n)
0 , X (n)

0 ) ∈
[v (n)

mi n , v (n)
max ]×R converging to 0 ≤ vmi n < vmax ≤∞ and (V0, X0) ∈ [0,∞)×R as n →∞, re-

spectively. We denote by (V (n)
t , X (n)

t ) and (Vt , X t ) the respective solutions of (1.1), or (1.5) if

vmax =∞. Here is our main convergence result.

Theorem 1.2.3. The sequence of diffusions (V (n)
t , X (n)

t ) converges weakly in the path space to

(Vt , X t ) as n →∞.

As the discounted put option payoff function fput (x) = e−r T
(
ek −ex

)+
is bounded and con-

tinuous on R, it follows from the weak continuity stated in Theorem 1.2.3 that the put option

prices based on (V (n)
t , X (n)

t ) converge to the put option price based on the limiting model

(Vt , X t ) as n →∞. The put-call parity, πcal l −πput = e−δT S0 −e−r T+k , then implies that also

call option prices converge as n →∞. This carries over to more complex path-dependent

options with bounded continuous payoff functional.

Polynomial Property

Moments in the Jacobi model (1.1) are given in closed-form. Indeed, let

G f (v, x) = b(v)>∇ f (v, x)+ 1

2
Tr(a(v)∇2 f (v, x))

denote the generator of (Vt , X t ) with drift vector b(v) and the diffusion matrix a(v) given by

b(v) =
[
κ(θ− v)

r −δ− v/2

]
, a(v) =

[
σ2Q(v) ρσQ(v)

ρσQ(v) v

]
. (1.6)

Observe that a(v) is continuous in the parameters vmi n , vmax , so that for vmi n = 0 and

vmax →∞ we obtain

a(v) →
[
σ2v ρσv

ρσv v

]
,

which corresponds to the generator of the Heston model (1.5). Let Poln be the vector space of

polynomials in (v, x) of degree less than or equal to n. It then follows by inspection that the

components of b(v) and a(v) lie in Pol1 and Pol2, respectively. As a consequence, G maps any

polynomial of degree n onto a polynomial of degree n or less, G Poln ⊂ Poln , so that (Vt , X t ) is

a polynomial diffusion, see (Filipović and Larsson 2016, Lemma 2.2). From this we can easily

calculate the conditional moments of (VT , XT ) as follows. For N ∈N, let M = (N +2)(N +1)/2

denote the dimension of PolN . Let h1(v, x), . . . ,hM (v, x) be a basis of polynomials of PolN and

denote by G the matrix representation of the linear map G restricted to PolN with respect to

this basis.
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1.3. European Option Pricing

Theorem 1.2.4. For any polynomial p ∈ PolN and 0 ≤ t ≤ T we have

E[p(VT , XT )|Ft ] = [h1(Vt , X t ), . . . ,hM (Vt , X t )]e(T−t )G #»p

where #»p ∈RM is the coordinate representation of the polynomial p(v, x) with respect to the basis

h1(v, x), . . . ,hM (v, x).

Proof. See (Filipović and Larsson 2016, Theorem 3.1).

The moment formula in Theorem 1.2.4 is crucial in order to efficiently implement the numeri-

cal schemes described below.

1.3 European Option Pricing

Henceforth we assume that (V0, X0) ∈ [vmi n , vmax ]×R is a deterministic initial state and fix

a finite time horizon T > 0. We first establish some key properties of the distribution of XT .

Denote the quadratic variation of the second martingale component of X t in (1.1) by

Ct =
∫ t

0

(
Vs −ρ2Q(Vs)

)
d s. (1.7)

The following theorem is a special case of Theorem 1.4.1 below.

Theorem 1.3.1. Let ε< 1/(2vmax T ). The distribution of XT admits a density gT (x) on R that

satisfies∫
R

eεx2
gT (x)d x <∞. (1.8)

If

E
[
CT

−1/2−k
]
<∞ (1.9)

for some k ∈N0 then gT (x) and eεx2
gT (x) are uniformly bounded and gT (x) is k-times continu-

ously differentiable on R. A sufficient condition1 for (1.9) to hold for any k ≥ 0 is

vmi n > 0 and ρ2 < 1. (1.10)

The condition that ε < 1/(2vmax T ) is sharp for (1.8) to hold. Indeed, consider the Black–

Scholes model (1.4) where Vt = θ = vmax for all t ≥ 0. Then XT is Gaussian with variance

CT = vmax T . Hence the integral in (1.8) is infinite for any ε≥ 1/(2vmax T ).

1We conjecture that (1.9) holds for any k ≥ 0 also when vmi n = 0 (and κθ > 0) or ρ2 = 1. For the Heston
model (1.5) with Q(v) = v and ρ2 < 1 the conjecture follows from (Dufresne 2001, Theorem 4.1).
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Chapter 1. The Jacobi Stochastic Volatility Model

Since any uniformly bounded and integrable function on R is square integrable on R, as an

immediate consequence of Theorem 1.3.1 we have the following corollary.

Corollary 1.3.2. Assume (1.9) holds for k = 0. Then∫
R

gT (x)2

w(x)
d x <∞ (1.11)

for any Gaussian density w(x) with variance σ2
w satisfying

σ2
w > vmax T

2
. (1.12)

Remark 1.3.3. It follows from the proof that the statements of Theorem 1.3.1 also hold for the

Heston model (1.5) with Q(v) = v and ε= 0. However, the Heston model does not satisfy (1.8)

for any ε> 0. Indeed, otherwise its moment generating function

ĝT (z) =
∫
R

ezx gT (x)d x (1.13)

would extend to an entire function in z ∈C. But it is well known that ĝT (z) becomes infinite

for large enough z ∈R, see (Andersen and Piterbarg 2007). As a consequence, the Heston model

does not satisfy (1.11) for any finite σw . Indeed, by the Cauchy-Schwarz inequality, (1.11)

implies (1.8) for any ε< 1/(4σ2
w ).

We now compute the price at time t = 0 of a European claim with discounted payoff f (XT )

at expiry date T > 0. We henceforth assume that (1.9) holds with k = 0, and we let w(x) be a

Gaussian density with mean µw and variance σ2
w satisfying (1.12). We define the weighted

Lebesgue space

L2
w =

{
f (x) : ‖ f ‖2

w =
∫
R

f (x)2 w(x)d x <∞
}

,

which is a Hilbert space with scalar product

〈 f , g 〉w =
∫
R

f (x)g (x) w(x)d x.

The space L2
w admits the orthonormal basis of generalized Hermite polynomials Hn(x), n ≥ 0,

given by

Hn(x) = 1p
n!

Hn

(
x −µw

σw

)
(1.14)

where Hn(x) are the standard probabilist Hermite polynomials defined by

Hn(x) = (−1)ne
x2

2
d n

d xn e−
x2

2 , (1.15)

see (Feller 1960, Section XVI.1). In particular, deg Hn(x) = n, and 〈Hm , Hn〉w = 1 if m = n and
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zero otherwise.

Corollary 1.3.2 implies that the likelihood ratio function `(x) = gT (x)/w(x) of the density gT (x)

of the log price XT with respect to w(x) belongs to L2
w . We henceforth assume that also the

discounted payoff function f (x) is in L2
w . This hypothesis is satisfied for instance in the case

of European call and put options. It implies that the price, denoted by π f , is well defined and

equals

π f =
∫
R

f (x)gT (x)d x = 〈 f ,`〉w = ∑
n≥0

fn`n , (1.16)

for the Fourier coefficients of f (x)

fn = 〈 f , Hn〉w , (1.17)

and the Fourier coefficients of `(x) that we refer to as Hermite moments

`n = 〈`, Hn〉w =
∫
R

Hn(x)gT (x)d x. (1.18)

We approximate the price π f by truncating the series in (1.16) at some order N ≥ 1 and write

π(N )
f =

N∑
n=0

fn`n , (1.19)

so that π(N )
f → π f as N → ∞. Due to the polynomial property of the Jacobi model, (1.19)

induces an efficient price approximation scheme because the Hermite moments `n are linear

combinations of moments of XT and thus given in closed-form, see Theorem 1.2.4. In par-

ticular, since H0(x) = 1, we have `0 = 1. More details on the computation of `n are given in

Section 1.6.

With the Hermite moments `n available, the computation of the approximation (1.19) boils

down to a numerical integration,

π(N )
f =

N∑
n=0

〈
f ,`n Hn

〉
w =

∫
R

f (x)`(N )(x) w(x)d x, (1.20)

of f (x)`(N )(x) with respect to the Gaussian distribution w(x)d x, where `(N )(x) =∑N
n=0`n Hn(x)

is in closed-form. The integral (1.20) can be computed by quadrature or Monte-Carlo sim-

ulation. In specific cases, we find closed-form formulas for the Fourier coefficients fn and

no numerical integration is needed. This includes European call, put, and digital options, as

shown below.

Remark 1.3.4. Formula (1.20) shows that g (N )
T (x) = `(N )(x)w(x) serves as an approximation

for the density gT (x). In fact, we readily see that g (N )
T (x) integrates to one and converges to gT (x)

in L2
1/w as N →∞. Hence, we have convergence of the Gram–Charlier A series expansion of the
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density of the log price XT in L2
1/w .2 In view of Remark 1.3.3, this does not hold for the Heston

model.

Matching the first moment or the first two moments of w(x) and gT (x), we further obtain

`1 =
∫
R

H1(x)gT (x)d x = 〈H0, H1〉w = 0 if µw = E[XT ],

and similarly,

`1 = `2 = 0 if µw = E[XT ] and σ2
w = var[XT ]. (1.21)

Matching the first moment or the first two moments of w(x) and gT (x) can improve the

convergence of the approximation (1.19). Note however that (1.12) and (1.21) imply var[XT ] >
vmax T /2, so that second moment matching is not always feasible in empirical applications.

Remark 1.3.5. If µw = X0 + (r −δ)T −σ2
w /2, then f0 = ∫

R f (x)w(x)d x is the Black–Scholes

option price with volatilityσBS =σw /
p

T . Because E[XT ] = X0+(r −δ)T −var[XT ]/2, this holds

in particular if the first two moments of w(x) and gT (x) match, see (1.21). In this case, the

higher order terms inπ(N )
f = f0+∑N

n=3 fn`n can be thought of as corrections to the corresponding

Black–Scholes price f0 due to stochastic volatility.

The following result, which is a special case of Theorem 1.4.4 below, provides universal upper

and lower bounds on the implied volatility of a European option with discounted payoff f (XT )

at T and price π f . The implied volatility σIV is defined as the volatility parameter that renders

the corresponding Black–Scholes option price equal to π f .

Theorem 1.3.6. Assume that the discounted payoff function f (log(s)) is convex in s > 0. Then

the implied volatility satisfies
p

vmi n ≤σIV ≤p
vmax .

Examples

We now present examples of discounted payoff functions f (x) for which closed-form formulas

for the Fourier coefficients fn exist. The first example is a call option.3

Theorem 1.3.7. Consider the discounted payoff function for a call option with log strike k,

f (x) = e−r T
(
ex −ek

)+
. (1.22)

2A Gram–Charlier A series expansion of a density function g (x) is formally defined as g (x) =∑
n≥0 cn Hn (x)w(x)

for some real numbers cn , n ≥ 0.
3Similar recursive relations of the Fourier coefficients for the Physicist Hermite polynomial basis can be found

in (Drimus, Necula, and Farkas 2013).
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Its Fourier coefficients fn in (1.17) are given by

f0 = e−r T+µw I0

(
k −µw

σw
;σw

)
−e−r T+kΦ

(
µw −k

σw

)
;

fn = e−r T+µw
1p
n!
σw In−1

(
k −µw

σw
;σw

)
, n ≥ 1.

(1.23)

The functions In(µ;ν) are defined recursively by

I0(µ;ν) = e
ν2

2 Φ(ν−µ);

In(µ;ν) =Hn−1(µ)eνµφ(µ)+νIn−1(µ;ν), n ≥ 1,
(1.24)

whereΦ(x) denotes the standard Gaussian distribution function and φ(x) its density.

The Fourier coefficients of a put option can be obtained from the put-call parity. For digital

options, the Fourier coefficients fn are as follows.

Theorem 1.3.8. Consider the discounted payoff function for a digital option of the form

f (x) = e−r T 1[k,∞)(x).

Its Fourier coefficients fn are given by

f0 = e−r TΦ

(
µw −k

σw

)
;

fn = e−r T

p
n!

Hn−1

(
k −µw

σw

)
φ

(
k −µw

σw

)
, n ≥ 1,

(1.25)

whereΦ(x) denotes the standard Gaussian distribution function and φ(x) its density.

For a digital option with generic payoff 1[k1,k2)(x) the Fourier coefficients can be derived using

Theorem 1.3.8 and 1[k1,k2)(x) = 1[k1,∞)(x)−1[k2,∞)(x).

Error Bounds and Asymptotics

We first discuss an error bound of the price approximation scheme (1.19). For a fixed order

N ≥ 1, the error of the approximation is ε(N ) =π f −π(N )
f =∑∞

n=N+1 fn`n . The Cauchy–Schwarz

inequality implies the following error bound

|ε(N )| ≤
(
‖ f ‖2

w −
N∑

n=0
f 2

n

) 1
2
(
‖`‖2

w −
N∑

n=0
`2

n

) 1
2

. (1.26)

The L2
w -norm of f (x) has an explicit expression, ‖ f ‖2

w = ∫
R f (x)2 w(x)d x, that can be com-

puted by quadrature or Monte–Carlo simulation. The Fourier coefficients fn can be computed

similarly. The Hermite moments `n are given in closed-form. It remains to compute the
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L2
w -norm of `(x). For further use we define

Mt = X0 +
∫ t

0
(r −δ−Vs/2)d s + ρ

σ

(
Vt −V0 −

∫ t

0
κ (θ−Vs)d s

)
, (1.27)

so that, in view of (1.1), the log price X t = Mt +
∫ t

0

√
Vs −ρ2Q(Vs)dW2s . Recall also Ct given

in (1.7).

Lemma 1.3.9. The L2
w -norm of `(x) is given by

‖`‖2
w =

∫
R

gT (x)2

w(x)
d x = E

[
gT (XT )

w(XT )

]
= E

[
φ

(
XT , M̃T ,C̃T

)
φ

(
XT ,µw ,σ2

w
) ]

(1.28)

where φ(x,µ,σ2) is the normal density function in x with mean µ and variance σ2, and the

pair of random variables (M̃T ,C̃T ) is independent from XT and has the same distribution as

(MT ,CT ).

In applications, we compute the right hand side of (1.28) by Monte–Carlo simulation of

(XT , M̃T ,C̃T ) and thus obtain the error bound (1.26).

We next show that the Hermite moments `n decay at an exponential rate under some technical

assumptions.

Lemma 1.3.10. Suppose that (1.10) holds and σ2
w > vmax T . Then there exist finite constants

C > 0 and 0 < q < 1 such that `2
n ≤C qn for all n ≥ 0.

Comparison to Fourier Transform

An alternative dual expression of the price π f in (1.16) is given by the Fourier integral

π f =
1

2π

∫
R

f̂ (−µ− iλ)ĝT (µ+ iλ)dλ, (1.29)

where f̂ (z) and ĝT (z) denote the moment generating functions given by (1.13), respectively.

Here µ ∈R is some appropriate dampening parameter such that e−µx f (x) and eµx gT (x) are

Lebesgue integrable and square integrable on R. Indeed, Lebesgue integrability implies that

f̂ (z) and ĝT (z) are well defined for z ∈ µ+ iR through (1.13). Square integrability and the

Plancherel Theorem then yield the representation (1.29). For example, for the European call

option (1.22) we have f̂ (z) = e−r T+k(1+z)/(z(z +1)) for Re(z) <−1

Option pricing via (1.29) is the approach taken in the Heston model (1.5), for which there

exists a closed-form expression for ĝT (z). It is given in terms of the solution of a Riccati

equation. The computation of π f boils down to the numerical integration of (1.29) along with

the numerical solution of a Riccati equation for every argument z ∈µ+ iR that is needed for

the integration. The Heston model (which entails vmax →∞) does not adhere to the series

representation (1.16) that is based on condition (1.11), see Remark 1.3.3.
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1.4. Exotic Option Pricing

The Jacobi model, on the other hand, does not admit a closed-form expression for ĝT (z). But

the Hermite moments `n are readily available in closed-form. In conjunction with Theo-

rem 1.3.7, the (truncated) series representation (1.16) thus provides a valuable alternative to

the (numerical) Fourier integral approach (1.29) for option pricing. Moreover, the approx-

imation (1.20) can be applied to any discounted payoff function f (x) ∈ L2
w . This includes

functions f (x) that do not necessarily admit closed-form moment generating function f̂ (z) as

is required in the Heston model approach. In Section 1.4, we further develop our approach to

price path dependent options, which could be a cumbersome task using Fourier transform

techniques in the Heston model.

1.4 Exotic Option Pricing

Pricing exotic options with stochastic volatility models is a challenging task. We show that the

price of an exotic option whose payoff is a function of a finite sequence of log returns admits a

polynomial series representation in the Jacobi model.

Henceforth we assume that (V0, X0) ∈ [vmi n , vmax ]×R is a deterministic initial state. Consider

time points 0 = t0 < t1 < t2 < ·· · < td and denote the log returns Yti = X ti −X ti−1 for i = 1, . . . ,d .

The following theorem contains Theorem 1.3.1 as special case where d = 1.

Theorem 1.4.1. Let ε1, . . . ,εd ∈ R be such that εi < 1/(2vmax (ti − ti−1)) for i = 1, . . . ,d. The

random vector (Yt1 , . . . ,Ytd ) admits a density g t1,...,td (y) = g t1,...,td (y1, . . . , yd ) on Rd satisfying∫
Rd

e
∑d

i=1 εi y2
i g t1,...,td (y)d y <∞.

If

E

[
d∏

i=1
(Cti −Cti−1 )−1/2−ni

]
<∞ (1.30)

for all (n1 . . . ,nd ) ∈Nd
0 with

∑d
i=1 ni ≤ k ∈N0, for some k ∈N0, then g t1,...,td (y) and e

∑d
i=1 εi y2

i g t1,...,td (y)

are uniformly bounded and g t1,...,td (y) is k-times continuously differentiable on Rd . Prop-

erty (1.10) implies (1.30) for any k ≥ 0.

Since any uniformly bounded and integrable function on Rd is square integrable on Rd , as an

immediate consequence of Theorem 1.4.1 we have the following corollary.

Corollary 1.4.2. Assume (1.30) holds for k = 0. Then∫
Rd

g t1,...,td (y)2∏d
i=1 wi (yi )

d y <∞

17



Chapter 1. The Jacobi Stochastic Volatility Model

for all Gaussian densities wi (yi ) with variances σ2
wi

satisfying

σ2
wi

> vmax (ti − ti−1)

2
, i = 1, . . . ,d . (1.31)

Remark 1.4.3. There is a one-to-one correspondence between the vector of log returns (Yt1 , . . . ,Ytd )

and the vector of log prices (X t1 , . . . , X td ). Indeed,

X ti = X0 +
i∑

j=1
Yt j .

Hence, a crucial consequence of Theorem 1.4.1 is that the finite-dimensional distributions of the

process X t admit densities with nice decay properties. More precisely, the density of (X t1 , . . . , X td )

is g t1,...,td (x1 −X0, . . . , xd −xd−1).

Suppose that the discounted payoff of an exotic option is of the form f (X t1 , ..., X td ). Assume

that (1.30) holds with k = 0. Set w(y) = w(y1, . . . , yd ) =∏d
i=1 wi (yi ), where wi (y) is a Gaussian

density with mean µwi and variance σ2
wi

satisfying (1.31). Define

f̃ (y) = f̃ (y1, . . . , yd ) = f (X0 + y1, X0 + y1 + y2, . . . , X0 + y1 +·· ·+ yd ).

Then by similar arguments as in Section 1.3 the price of the option is

π f = E[ f (X t1 , ..., X td )] = ∑
n1,...,nd≥0

f̃n1,...,nd`n1,...,nd

where the Fourier coefficients f̃n1,...,nd and the Hermite moments `n1,...,nd are given by

f̃n1,...,nd = 〈 f̃ , Hn1,...,nd 〉w =
∫
Rd

f̃ (y)Hn1,...,nd (y)w(y)d y

and

`n1,...,nd = E[
Hn1,...,nd (Yt1 , . . . ,Ytd )

]
(1.32)

with Hn1,...,nd (y1, . . . , yd ) =∏d
i=1 H (i )

ni
(yi ), where H (i )

ni
(yi ) is the generalized Hermite polynomial

of degree ni associated to parameters µwi and σwi , see (1.14). The price approximation at

truncation order N ≥ 1 is given, in analogy to (1.19), by

π(N )
f =

N∑
n1+···+nd=0

f̃n1,...,nd`n1,...,nd , (1.33)

so that π(N )
f →π f as N →∞.

We now derive universal upper and lower bounds on the implied volatility for the exotic option

18



1.4. Exotic Option Pricing

with discounted payoff function f (X t1 , ..., X td ) and price π f . We denote by

dSBS
t = SBS

t (r −δ)d t +SBS
t σBS dBt (1.34)

the Black–Scholes price process with volatility σBS > 0 where Bt is some Brownian motion.

The Black–Scholes price is defined by

π
σIV

f = E[
f (logSBS

t1
, . . . , logSBS

td
)
]

.

The implied volatility σIV is the volatility parameter σBS that renders the Black–Scholes option

price πσIV

f =π f . The following theorem provides bounds on the values that σIV may take.

Theorem 1.4.4. Assume that f (log(s1), . . . , log(sd )) is convex in (s1, . . . , sd ) ∈ (0,∞)d . Then the

implied volatility satisfies
p

vmi n ≤σIV ≤p
vmax .

Examples

We provide some examples of exotic options on the asset with price St = eX t for which our

method applies.

The payoff of a forward start call option on the underlying return between dates t and T , and

with strike K is (ST /St −K )+ and its discounted payoff function is given by

f̃ (y) = e−r T (
ey2 −K

)+
with the times t1 = t and t2 = T . Note that f̃ (y) = f̃ (y2) only depends on y2, so that this

example reduces to the univariate case. In particular, the Fourier coefficients f̃n coincide with

those of a call option and, as we shall see in Theroem 1.6.3, the forward Hermite moments

`∗n = E[Hn(X t2 −X t1 )] can be computed efficiently. Theorem 1.4.4 applies in particular to the

implied volatility of a forward start call option on the underlying return. This is in contrast

to the Heston model for which the implied volatility explodes (except at the money) when

the time to maturity of the underlying call option decreases to zero, T → t , see (Jacquier and

Roome 2015) for more details.

The payoff of a forward start call option with maturity T , strike fixing date t and proportional

strike K is (ST −K St )+ and its discounted payoff function is given by

f̃ (y) = e−r T (
eX0+y1+y2 −K eX0+y1

)+
with the times t1 = t and t2 = T . In this case the Fourier coefficients have the form

f̃n1,n2 = eX0−r T
∫
R2

ey1 Hn1 (y1)w1(y1)(ey2 −K )+Hn2 (y2)w2(y2)d y1 d y2

= eX0−r T f (0,−∞)
n1

f (0,logK )
n2

= f (0,logK )
n2

σ
n1
wp
n1!

eX0−r T+µw1+σ2
w1

/2,
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Chapter 1. The Jacobi Stochastic Volatility Model

where f (r,k)
n denotes the Fourier coefficient of a call option for interest rate r and log strike

k as in (1.23). Here we have used (1.23)–(1.24) to deduce that f (0,−∞)
n1

= σ
n1
wp
n1!

eµw1+σ2
w1

/2. In

particular no numerical integration is needed. Additionally, the Hermite moments

`n1,n2 = E[Hn1 (Yt1 )Hn2 (Yt2 )]

can be calculated efficiently as explained in Theorem 1.6.3. The pricing of forward start call

options (on the underlying return) in the Black–Scholes model is straightforward. Analytical

expressions for forward start call options (on the underlying return) have been provided in

the Heston model by (Kruse and Nögel 2005). However, these integral expressions involve the

Bessel function of first kind and are therefore rather difficult to implement numerically.

The payoff of an Asian call option with maturity T , discrete monitoring dates t1 < ·· · < td = T ,

and fixed strike K is (
∑d

i=1 Sti /d −K )+ and its discounted payoff function is given by

f̃ (y) = e−r T

(
1

d

d∑
i=1

eX0+∑i
j=1 yi −K

)+
.

Similarly, the payoff of an Asian call option with floating strike is (ST −K
∑d

i=1 Sti /d)+ and its

discounted payoff function is given by

f̃ (y) = e−r T

(
eX0+∑d

j=1 y j − K

d

d∑
i=1

eX0+∑i
j=1 y j

)+
.

The valuation of Asian options with continuously monitoring in the Black–Scholes model has

been studied in (Rogers and Shi 1995) and (Yor 2001) among others.

Remark 1.4.5. The Fourier coefficients may not be available in closed-form for some exotic

options, such as the Asian options. In this case, we compute the multi-dimensional version of

the approximation (1.19) via numerical integration of (1.20) with respect to a Gaussian density

w(x) in Rd . This can be efficiently implemented using Gauss-Hermite quadrature, see for

example (Jäckel 2005). Specifically, denote zm ∈Rd and wm ∈ (0,1) the m-th point and weight

of an d-dimensional standard Gaussian cubature rule with M points. The price approximation

can then be computed as follows

π(N )
f =

∫
Rd

f̃
(
µ+Σz

)
`(N )(µ+Σz

) 1

(2π)
d
2

e−
‖z‖2

2 d z

≈
M∑

m=1
wm f̃m

∑
n1+···+nd≤N

`n1,...,nd

d∏
i=1

1p
ni !

Hni (zm,i )

where µ= (µw1 , . . . ,µwd )>, Σ= diag(σw1 , . . . ,σwd ), f̃m = f̃ (µ+Σzm), and Hn denotes the stan-

dard probabilist Hermite polynomial (1.15). We emphasize that many elements in the above

expression can be precomputed. A numerical example is given for the Asian option in Sec-

tion 1.5.2 below.
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Figure 1.2 – European call option.
Hermite moments `n , Fourier coefficients fn , and approximation prices π(N )

f
with error bounds as functions of the order n

(truncation order N ).

1.5 Numerical Analysis

We analyse the performance of the price approximation (1.19) with closed-form Fourier coeffi-

cients and numerical integration of (1.20) for European call options, forward start and Asian

options. This includes price approximation error, model implied volatility, and computational

time. The model parameters are fixed as: r = δ= X0 = 0, κ= 0.5, θ = V0 = 0.04, vmi n = 10−4,

vmax = 0.08, ρ =−0.5, and σ= 1.

1.5.1 European Call Option

Figure 1.2 displays Hermite moments `n , Fourier coefficients fn , and approximation option

prices π(N )
f for a European call option with maturity T = 1/12 and log strike k = 0 (ATM) as

functions of the truncation order N . The first two moments of the Gaussian density w(x)

match the first two moments of XT , see (1.21).4 We observe that the `n and fn sequences

oscillate and converge toward zero. The amplitudes of these oscillations negatively impact

the speed at which the approximation price sequence converges. The gray lines surrounding

the price sequence are the upper and lower price error bounds computed as in (1.26) and

Lemma 1.3.9, using 105 Monte-Carlo samples. The price approximation converges rapidly.

Table 1.1 reports the implied volatility values and absolute errors in percentage points for the

log strikes k = {−0.1, 0, 0.1} and for various truncation orders. The reference option prices

have been computed at truncation order N = 50. For all strikes the truncation order N = 10 is

sufficient to be within 10 basis points of the reference implied volatility.

Figure 1.3 displays the implied volatility smile for various vmi n and vmax such that
p

vmi n vmax =
θ, and for the Heston model (1.5). We observe that the smile of the Jacobi model approaches

the Heston smile when vmi n is small and vmax is large. Somewhat surprisingly, a relatively

small value for vmax seems to be sufficient for the two smiles to coincide for options around

4In practice, depending on the model parameters, this may not always be feasible, in which case the truncation
order N should be increased.
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Chapter 1. The Jacobi Stochastic Volatility Model

k =−0.1 k = 0 k = 0.1
N IV error IV error IV error

0–2 20.13 2.62 20.09 0.86 20.08 0.83
3 22.12 0.63 19.96 0.73 16.60 2.65
4 23.02 0.27 19.27 0.04 18.88 0.37
5 23.03 0.28 19.27 0.04 18.88 0.37
6 22.93 0.18 19.33 0.10 18.72 0.53
7 22.76 0.01 19.32 0.09 19.11 0.14
8 22.83 0.08 19.22 0.01 19.18 0.07
9 22.82 0.07 19.22 0.01 19.19 0.06
10 22.83 0.08 19.25 0.02 19.22 0.03
15 22.74 0.01 19.23 0.00 19.32 0.07
20 22.75 0.00 19.23 0.00 19.28 0.03
30 22.75 0.00 19.23 0.00 19.25 0.00

Table 1.1 – Implied volatility values and errors.
The values and absolute errors are reported in percentage points, for multiple truncation orders N and log strikes k. The
reference option price is the 100-th truncation order approximation.

the money. Indeed, although the variance process has an unbounded support in the Heston

model, the probability that it will visit values beyond some large threshold can be extremely

small. Figure 1.3 also illustrates how the implied volatility smile flattens when the variance

support shrinks, vmax ↓ θ. In the limit vmax = θ, we obtain the flat implied volatility smile of

the Black–Scholes model. This shows that the Jacobi model lies between the Black–Scholes

model and the Heston model and that the parameters vmi n and vmax offer additional degrees

of flexibility to model the volatility surface.

As reported in Figure 1.4, the Fourier coefficients can be computed in less than a millisecond

thanks to the recursive scheme (1.23)-(1.24). Computing the Hermite moments is more costly,

however they can be used to price all options with the same maturity. The most expensive

task appears to be the construction of the matrix Gn , which however is a one-off. The Hermite

moment `n in turn derives from the vector vn,T = eGn T eπ(0,n) which can be used for any initial

state (V0, X0). Note that specific numerical methods have been developed to compute the

action of the matrix exponential eGn T on the basis vector eπ(0,n), see for example (Al-Mohy

and Higham 2011; Hochbruck and Lubich 1997) and references therein. The running times

were realized with a standard desktop computer using a single 3.5 Ghz 64 bits CPU and the R
programming language.

1.5.2 Forward Start and Asian Options

The left panels of Figure 1.5 display the approximation prices of a forward start call option with

strike fixing time t1 = 1/52 and maturity t2 = 5/52, so that d = 2, and of an Asian call option with

weekly discrete monitoring and maturity four weeks, ti = i /52 for i ≤ d = 4. Both options have
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Figure 1.5 – Forward start and Asian options.
The left panels display the approximation prices as functions of the truncation order N . The right panels display the corre-
sponding Hermite moments for multi-orders n1 +·· ·+nd = 1, . . . ,10.

log strike k = 0. The price approximations at order N have been computed using (1.33). For

the forward start call option, we match the first two moments of wi (yi ) and Yti . For the Asian

call option, we chose σwi =
p

vmax /104+10−4 and µwi = E [X1/52], which is in line with (1.31)

but does not match the first two moments of Yti . The Fourier coefficients are not available in

closed-form for the Asian call option, therefore we integrated its payoff function with respect

to the density approximation using Gaussian cubature as described in Remark 1.4.5. We

observe that with exotic payoffs the price approximation sequence may require a larger order

before stabilizing. For example, for the forward start price approximation it seems necessary

to truncate beyond N = 15 in order to obtain a accurate price approximation.

The right panels of Figure 1.5 display the multi-index Hermite moments `n1,...,nd with multi-

orders n1+·· ·+nd = 1, . . . ,10. Note that there are
(N+d

N

)
Hermite moments `n1,...,nd of total order

n1 +·· ·+nd ≤ N . The dimensionality to be handled may therefore become a computational

challenge. Yet, we observe that a significant proportion of the Hermite moments is negligible

and may simply be set to zero in practice.

1.6 Hermite Moments

We apply Theorem 1.2.4 to describe more explicitly how the Hermite moments `0, . . . ,`N

in (1.18) can be efficiently computed for any fixed truncation order N ≥ 1. We let M = dimPolN
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and π : E → {1, . . . , M } be an enumeration of the set of exponents

E = {(m,n) : m,n ≥ 0; m +n ≤ N }.

The polynomials

hπ(m,n)(v, x) = vm Hn(x), (m,n) ∈ E (1.35)

then form a basis of PolN . In view of the elementary property

H ′
n(x) =

p
n

σw
Hn−1(x), n ≥ 1,

we obtain that the M ×M–matrix G representing G on PolN has at most 7 nonzero elements

in column π(m,n) with (m,n) ∈ E given by

Gπ(m−2,n),π(m,n) =−σ
2m(m −1)vmax vmi n

2(
p

vmax −p
vmi n)2 , m ≥ 2;

Gπ(m−1,n−1),π(m,n) =− σρm
p

nvmax vmi n

σw (
p

vmax −p
vmi n)2 , m,n ≥ 1;

Gπ(m−1,n),π(m,n) = κθm + σ2m(m −1)(vmax + vmi n)

2(
p

vmax −p
vmi n)2 , m ≥ 1;

Gπ(m,n−1),π(m,n) = (r −δ)
p

n

σw
+ σρm

p
n(vmax + vmi n)

σw (
p

vmax −p
vmi n)2 , n ≥ 1;

Gπ(m+1,n−2),π(m,n) =
p

n(n −1)

2σ2
w

, n ≥ 2;

Gπ(m,n),π(m,n) =−κm − σ2m(m −1)

2(
p

vmax −p
vmi n)2

Gπ(m+1,n−1),π(m,n) =−
p

n

2σw
− σρm

p
n

σw (
p

vmax −p
vmi n)2 , n ≥ 1.

Theorem 1.2.4 now implies the following result.

Theorem 1.6.1. The coefficients `n are given by

`n = [h1(V0, X0), . . . ,hM (V0, X0)]eTG eπ(0,n), 0 ≤ n ≤ N , (1.36)

where ei is the i –th standard basis vector in RM .

Remark 1.6.2. The choice of the basis polynomials hπ(m,n) in (1.35) is convenient for our

purposes because: 1) each column of the M ×M-matrix G has at most seven nonzero entries. 2)

The coefficients `n in the expansion of prices (1.16), can be obtained directly from the action of

eGn T on eπ(0,n) as specified in (1.36). In practice, it is more efficient to compute directly this action,

rather than computing the matrix exponential eGn T and then selecting the π(0,n)-column.
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We now extend Theorem 1.6.1 to a multi-dimensional setting. The following theorem provides

an efficient way to calculate multi-dimensional Hermite moments as defined in (1.32). Before

stating the theorem we fix some notation. Set N =∑d
i=1 ni and M = dimPolN . Let G (i )

N be the

matrix representation of the linear map G restricted to PolN with respect to the basis, in row

vector form,

h(i )(v, x) = [h(i )
1 (v, x), . . . ,h(i )

M (v, x)],

with h(i )
π(m,n)(v, x) = vm H (i )

n (x) as in (1.35) where H (i )
n is the generalized Hermite polynomial of

degree n associated to the parameters µwi and σwi , see (1.14). Define the M ×M-matrix A(k,l )

by

A(k,l )
i , j =

H (l )
n (0) if i =π(m,k) and j =π(m,n) for some m,n ∈N

0 otherwise.

Theorem 1.6.3. For any n1, . . . ,nd ∈N0, the multi-dimensional Hermite moment in (1.32) can

be computed through

`n1,...,nd = h(1)(V0,0)

(
d−1∏
i=1

eG (i )
N ∆ti A(ni ,i+1)

)
eG (d)

N ∆td eπ(0,nd ),

where ∆ti = ti − ti−1.

Proof. By an inductive argument it is sufficient to illustrate the case n = 2. Applying the law of

iterated expectation we obtain

`n1,n2 = E[H (1)
n1

(Yt1 )H (2)
n2

(Yt2 )] = E[H (1)
n1

(X t1 −X0)Et1 [H (2)
n2

(X t2 −X t1 )]].

Since the increment X t2 −X t1 does not depend on X t1 we can rewrite, using Theorem 1.2.4,

Et1 [H (2)
n2

(X t2 −X t1 )] = E[H (2)
n2

(X∆t2 ) | X0 = 0,V0 =Vt1 ] = h(2)(Vt1 ,0)v (n2,2)

where v (n2,2) = eG (2)
N ∆t2 eπ(0,n2). Note that this last expression is a polynomial solely in Vt1

h(2)(Vt1 ,0)v (n2,2) =
n2∑

n=0
an V n

t1
, with an = ∑

n+ j≤n2

H (2)
j (0) v (n2,2)

π(n, j ).

Theorem 1.2.4 now implies that the Hermite coefficient is given by

`n1,n2 = E[p(Vt1 , X t1 ) | X0 = 0] = h(1)(V0,0)eG (1)
N ∆t1~p

where ~p is the vector representation in the basis h(1)(v, x) of the polynomial

p(v, x) =
n2∑

n=0
an vn Hn1 (x) = h(1)(v, x)~p.
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We conclude by observing that the coordinates of the vector ~p are given by e>i ~p = an if

i = π(n,n1) for some integer n ≤ n2 and equal to zero otherwise, which in turn shows that

~p = A(n1,2) v (n2,2).

1.7 Proofs

This Section contains the proofs of all theorems and propositions in the main text.

Proof of Theorem 1.2.1

For strong existence and uniqueness of (1.1), it is enough to show strong existence and unique-

ness for the SDE for Vt ,

dVt = κ(θ−Vt )d t +σ
√

Q(Vt )dW1t . (1.37)

Since the interval [0,1] is an affine transformation of the unit ball in R, weak existence of a

[vmi n , vmax ]-valued solution can be deduced from (Larsson and Pulido 2017, Theorem 2.1).

Path-wise uniqueness of solutions follows from (Yamada and Watanabe 1971, Theorem 1).

Strong existence of solutions for the SDE (1.37) is a consequence of path-wise uniqueness and

weak existence of solutions, see for instance (Yamada and Watanabe 1971, Corollary 1).

Now let v ∈ [vmi n , vmax ). The occupation times formula (Revuz and Yor 1999, Corollary VI.1.6)

implies∫ ∞

0
1{Vt=v}σ

2Q(v)d t = 0,
∫ ∞

0
1{Vt=v}κ(θ− v)d t = 0.

For v > vmi n we have σ2Q(v) > 0 and for v = vmi n we have κ(θ− v) > 0, which proves (1.2).

To conclude, Proposition 2.2 in (Larsson and Pulido 2017) shows that Vt ∈ (vmi n , vmax ) if and

only if V0 ∈ (vmi n , vmax ) and condition (1.3) holds.

Proof of Theorem 1.2.3

The proof of Theorem 1.2.3 builds on the following four lemmas.

Lemma 1.7.1. Suppose that Y and Y (n), n ≥ 1, are random variables in Rd for which all

moments exist. Assume further that

lim
n
E[p(Y (n))] = E[p(Y )], (1.38)

for any polynomial p(y) and that the distribution of Y is determined by its moments. Then the

sequence Y (n) converges weakly to Y as n →∞.
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Proof. Theorem 30.2 in (Billingsley 1995) proves this result for the case d = 1. Inspection

shows that the proof is still valid for the general case.

Lemma 1.7.2. The moments of the finite-dimensional distributions of the diffusions (V (n)
t , X (n)

t )

converge to the respective moments of the finite-dimensional distributions of (Vt , X t ). That is,

for any 0 ≤ t1 < ·· · < td <∞ and for any polynomials p1(v, x), . . . , pd (v, x) we have

lim
n
E

[
d∏

i=1
pi (V (n)

ti
, X (n)

ti
)

]
= E

[
d∏

i=1
pi (Vti , X ti )

]
. (1.39)

Proof. Let N =∑d
i=1 deg pi . Throughout the proof we fix a basis h1(v, x), . . . ,hM (v, x) of PolN ,

where M = dimPolN , and for any polynomial p(v, x) we denote by #»p its coordinates with

respect to this basis. We denote by G and G (n) the respective M ×M-matrix representations

of the generators restricted to PolN of (Vt , X t ) and (V (n)
t , X (n)

t ), respectively. We then define

recursively the polynomials qi (v, x) and q (n)
i (v, x) for 1 ≤ i ≤ d by

qd (v, x) = q (n)
d (v, x) = pd (v, x),

qi (v, x) = pi (v, x)[h1(v, x), . . . ,hM (v, x)]e(ti+1−ti )G #     »qi+1, 1 ≤ i < d ,

q (n)
i (v, x) = pi (v, x)[h1(v, x), . . . ,hM (v, x)]e(ti+1−ti )G (n) #     »

q (n)
i+1, 1 ≤ i < d .

As in the proof of Theorem 1.6.3, a successive application of Theorem 1.2.4 and the law of

iterated expectation implies that

E

[
d∏

i=1
pi (Vti , X ti )

]
= E

[
d−1∏
i=1

pi (Vti , X ti )E
[
pd (Vtd , X td ) |Ftd−1

]]
= ·· · = [h1(V0, X0), . . . ,hM (V0, X0)]et1G #»q1.

and similarly,

E

[
d∏

i=1
pi (V (n)

ti
, X (n)

ti
)

]
=

[
h1(V (n)

0 , X (n)
0 ), . . . ,hM (V (n)

0 , X (n)
0 )

]
et1G (n) #    »

q (n)
1 .

We deduce from (1.6) that

lim
n

G (n) =G . (1.40)

Note that this is valid also for the limit case vmax = ∞, that is, Q(v) = v − vmi n . This fact

together with an inductive argument shows that limn

#    »

q (n)
1 = #»q1. This combined with (1.40)

proves (1.39).

Lemma 1.7.3. The finite-dimensional distributions of (Vt , X t ) are determined by their moments.

Proof. The proof of this result is contained in the proof of (Filipović and Larsson 2016, Lemma
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4.1).

Lemma 1.7.4. The family of diffusions (V (n)
t , X (n)

t ) is tight.

Proof. Fix a time horizon N ∈N. We first observe that by (Karatzas and Shreve 1991, Problem

V.3.15) there is a constant K independent of n such that

E[‖(V (n)
t , X (n)

t )− (V (n)
s , X (n)

s )‖4] ≤ K |t − s|2, 0 ≤ s < t ≤ N . (1.41)

Now fix any positive α < 1/4. Kolmogorov’s continuity theorem (see (Revuz and Yor 1999,

Theorem I.2.1)) implies that

E

[(
sup

0≤s<t≤N

‖(V (n)
t , X (n)

t )− (V (n)
s , X (n)

s )‖
|t − s|α

)4]
≤ J

for a finite constant J that is independent of n. The modulus of continuity

∆(δ,n) = sup
{
‖(V (n)

t , X (n)
t )− (V (n)

s , X (n)
s )‖ | 0 ≤ s < t ≤ N , |t − s| < δ

}
thus satisfies

E[∆(δ,n)4] ≤ δα J .

Using Chebyshev’s inequality we conclude that, for every ε> 0,

Q[∆(δ,n) > ε] ≤ E[∆(δ,n)4]

ε4 ≤ δα J

ε4 ,

and thus supnQ[∆(δ,n) > ε] → 0 as δ→ 0. This together with the property that the initial states

(V (n)
0 , X (n)

0 ) converge to (V0, X0) as n →∞ proves the lemma, see (Rogers and Williams 2000,

Theorem II.85.3).5

Remark 1.7.5. Kolmogorov’s continuity theorem (see (Revuz and Yor 1999, Theorem I.2.1)) and

(1.41) imply that the paths of (Vt , X t ) are α-Hölder continuous for any α< 1/4.

Lemmas 1.7.1–1.7.3 imply that the finite-dimensional distributions of the diffusions (V (n)
t , X (n)

t )

converge weakly to those of (Vt , X t ) as n →∞. Theorem 1.2.3 thus follows from Lemma 1.7.4

and (Rogers and Williams 2000, Lemma II.87.3).

5The derivation of the tightness of (V (n)
t , X (n)

t ) from (1.41) is also stated without proof in (Rogers and Williams
2000, Theorem II.85.5). For the sake of completeness we give a short self-contained argument here.
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Proof of Theorem 1.3.7

We claim that the solution of the recursion (1.24) is given by

In(µ;ν) =
∫ ∞

µ
Hn(x)eνxφ(x)d x, n ≥ 0. (1.42)

Indeed, for n = 0 the right hand side of (1.42) equals∫ ∞

µ
H0(x)eνxφ(x)d x = e

ν2

2

∫ ∞

µ−ν
φ(x)d x,

which is I0(µ;ν). For n ≥ 1, we recall that the standard Hermite polynomials Hn(x) satisfy

Hn(x) = xHn−1(x)−H ′
n−1(x). (1.43)

Integration by parts and (1.43) then show that∫ ∞

µ
Hn(x)eνxφ(x)d x =

∫ ∞

µ
Hn−1(x)eνx xφ(x)d x −

∫ ∞

µ
H ′

n−1(x)eνxφ(x)d x

=−Hn−1(x)eνxφ(x)
∣∣∞
µ +

∫ ∞

µ
Hn−1(x)νeνxφ(x)d x.

=Hn−1(µ)eνµφ(µ)+ν
∫ ∞

µ
Hn−1(x)eνxφ(x)d x,

which proves (1.42).

A change of variables, using (1.14) and (1.42), shows

fn = e−r T
∫ ∞

k

(
ex −ek

)
Hn(x)w(x)d x

= e−r T
∫ ∞

k−µw
σw

(
eµw+σw z −ek

)
Hn(µw +σw z)w(µw +σw z)σw d z

= e−r T 1p
n!

∫ ∞
k−µw
σw

(
eµw+σw z −ek

)
Hn(z)φ(z)d z

= e−r T+µw
1p
n!

In

(
k −µw

σw
;σw

)
−e−r T+k 1p

n!
In

(
k −µw

σw
;0

)
.

Formulas (1.23) follow from the recursion formula (1.24).

Proof of Theorem 1.3.8

As before, a change of variables, using (1.14) and (1.42), shows

fn = e−r T
∫ ∞

k
Hn(x)w(x)d x = e−r T

p
n!

∫ ∞
k−µw
σw

Hn(z)φ(z)d z = e−r T

p
n!

In

(
k −µw

σw
;0

)
.
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Formulas (1.25) follow directly from (1.24).

Proof of Lemma 1.3.9

We use similar notation as in the proof of Theorem 1.4.1. In particular, with CT as in (1.7) and

MT as in (1.27), we denote by

GT (x) = (2πCT )−
1
2 exp

(
− (x −MT )2

2CT

)
(1.44)

the conditional density of XT given {Vt : t ∈ [0,T ]}, so that gT (x) = E[GT (x)] is the uncondi-

tional density of XT . Lemma 1.3.9 now follows from observing that GT (x) =φ(x, MT ,CT ) and

w(x) =φ(x,µw ,σ2
w ).

Proof of Lemma 1.3.10

We first recall that by Cramér’s inequality (see for instance (Erdélyi, Magnus, Oberhettinger,

and Tricomi 1953, Section 10.18)) there exists a constant K > 0 such that for all n ≥ 0

e−(x−µw )2/4σ2
w |Hn(x)| = (n!)−1/2e−(x−µw )2/4σ2

w

∣∣∣∣Hn

(
x −µw

σw

)∣∣∣∣≤ K . (1.45)

Additionally, as in the proof Theorem 1.4.1, since 1/4σ2
w < 1/(2vmax T ),

E

[∫
R

e(x−µw )2/4σ2
w GT (x)d x

]
<∞,

where GT (x) is given in (1.44). This implies

E

[∫
R
|Hn(x)|GT (x)d x

]
= E

[∫
R
|Hn(x)|e−(x−µw )2/4σ2

w e(x−µw )2/4σ2
w GT (x)d x

]
≤ KE

[∫
R

e(x−µw )2/4σ2
w GT (x)d x

]
<∞.

We can therefore use Fubini’s theorem to deduce

`n =
∫
R

Hn(x)gT (x)d x = E
[∫

R
Hn(x)GT (x)d x

]
= E[Yn]. (1.46)

We now analyze the term inside the expectation in (1.46). A change of variables shows

Yn =
∫

R
Hn(x)GT (x)d x = (2πn!)−1/2

∫
R
Hn(αy +β)e−y2/2 d y,

where we define α=
p

CT
σw

and β= MT −µw

σw
. We recall that

0 < (1−ρ2)vmi nT ≤CT ≤ vmax T <σw . (1.47)
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The inequalities in (1.47) together with the fact that Vt is a bounded process yield the following

uniform bounds for α,β,

1−q = (1−ρ2)vmi nT

σ2
w

≤α2 ≤ vmax T /σ2
w < 1, |β| ≤ R, (1.48)

with constants 0 < q < 1 and R > 0. Define

xn = (2π)−1/2
∫
R
Hn(αy +β)e−y2/2 d y,

so that

Yn =
∫

R
Hn(x)GT (x)d x = (n!)−1/2xn .

An integration by parts argument using (1.43) and the identity

H ′
n(x) = nHn−1(x)

shows the following recursion formula

xn =βxn−1 − (n −1)(1−α2)xn−2,

with x0 = 1 and x1 =β. This recursion formula is closely related to the recursion formula of

the Hermite polynomials which helps us deduce the following explicit expression

xn = n!
bn/2c∑
m=0

(α2 −1)m

m!(n −2m)!

βn−2m

2m . (1.49)

Recall that

Hn(x) = n!
bn/2c∑
m=0

(−1)m

m!(n −2m)!

xn−2m

2m . (1.50)

By (1.49) and (1.50) we have

xn = n!(1−α2)
n
2

bn/2c∑
m=0

(−1)m

m!(n −2m)!

((1−α2)−
1
2β)n−2m

2m = (1−α2)
n
2 Hn

(
(1−α2)−

1
2β

)
and

`n = E
[

(1−α2)
n
2 n!−

1
2 Hn

(
(1−α2)−

1
2β

)]
.

Cauchy-Schwarz inequality and (1.45) yield

`2
n ≤ E

[
(n!−

1
2 Hn

(
(1−α2)−

1
2β

)
)2

]
E[(1−α2)n] ≤ K 2E

[
exp(β2/(2(1−α2)))

]
E[(1−α2)n]. (1.51)

Inequalities (1.48) and (1.51) imply the existence of constants C > 0 and 0 < q < 1 such that
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`2
n ≤C qn .

Proof of Theorem 1.4.1

In order to shorten the notation we write ∆Zti = Zti − Zti−1 for any process Zt . From (1.1)

we infer that the log price X t = Mt +
∫ t

0

√
Vs −ρ2Q(Vs)dW2s where Mt is defined in (1.27). In

particular the log returns Yti =∆X ti have the form

Yti =∆Mti +
∫ ti

ti−1

√
Vs −ρ2Q(Vs)dW2s .

In view of property (1.2) we infer that ∆Cti > 0 for i = 1, . . . ,d . Motivated by (Broadie and

Kaya 2006), we notice that, conditional on {Vt , t ∈ [0,T ]}, the random variable (Yt1 , . . . ,Ytd ) is

Gaussian with mean vector (∆Mt1 , . . . ,∆Mtd ) and covariance matrix diag(∆Ct1 , . . . ,∆Ctd ). Its

density Gt1,...,td (y) =Gt1,...,td (y1, . . . , yd ) has the form

Gt1,...,td (y) = (2π)−d/2
d∏

i=1
(∆Cti )−1/2 exp

[
−

d∑
i=1

(yi −∆Mti )2

2∆Cti

]
.

Fubini’s theorem implies that g t1,...,td (y) = E[
Gt1,...,td (y)

]
is measurable and satisfies, for any

bounded measurable function f (y),

E
[

f (Yt1 , . . . ,Ytd )
]= E[∫

Rd
f (y)Gt1,...,td (y)d y

]
=

∫
Rd

f (y)g t1,...,td (y)d y.

Hence the distribution of (Yt1 , . . . ,Ytd ) admits the density g t1,...,td (y) on Rd . Dominated conver-

gence implies that g t1,...,td (y) is uniformly bounded and k–times continuously differentiable

on Rd if (1.30) holds. The arguments so far do not depended on εi and also apply to the Heston

model, which proves Remark 1.3.3.

For the rest of the proof we assume, without loss of generality, that εi > 0 for i = 1, . . . ,d .

Observe that the mean vector and covariance matrix of Gt1,...,td (y) admit the uniform bounds

|∆Mti | ≤ K , |∆Cti | ≤ vmax (ti − ti−1),

for some finite constant K . Define ∆i = 1− 2εi∆Cti and δi = 1− 2εi vmax (ti − ti−1). Then

δi ∈ (0,1) and ∆i ≥ δi . Completing the square implies

e
∑d

i=1 εi y2
i Gt1,...,td (y) =

d∏
i=1

(2π∆Cti )−
1
2 exp

[
εi y2

i −
(yi −∆Mti )2

2∆Cti

]

=
d∏

i=1
(2π∆Cti )−

1
2 exp

[
− ∆i

2∆Cti

(
yi −

∆Mti

∆i

)2

+
∆M 2

ti

2∆Cti

(
1

∆i
−1

)]

=
d∏

i=1
(2π∆Cti )−

1
2 exp

[
− ∆i

2∆Cti

(
yi −

∆Mti

∆i

)2

+
εi∆M 2

ti

∆i

]
.

(1.52)
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Integration of (1.52) then gives

∫
Rd

e
∑d

i=1 εi y2
i Gt1,...,td (y)d y =

d∏
i=1

1p
∆i

exp

[
εi∆M 2

ti

∆i

]
≤

d∏
i=1

1√
δi

exp

[
εi K 2

δi

]
.

Hence (1.8) follows by Fubini’s theorem after taking expectation on both sides. We also derive

from (1.52) that

e
∑d

i=1 εi y2
i g t1,...,td (y) = E

[
e

∑d
i=1 εi y2

i Gt1,...,td (y)
]
≤ E

[
d∏

i=1
(2π∆Cti )−

1
2

]
d∏

i=1
exp

[
εi K 2

δi

]
.

Hence e
∑d

i=1 εi y2
i g t1,...,td (y) is uniformly bounded and continuous on Rd if (1.30) holds. In fact,

for this to hold it is enough suppose that (1.30) holds with k = 0. Moreover, (1.10) implies that

∆Cti ≥ (ti − ti−1)(1−ρ2)vmi n > 0 and (1.30) follows.

Proof of Theorem 1.4.4

We assume the Brownian motions Bt and (W1t ,W2t ) in (1.34) and (1.1) are independent. We

denote by π f ,t the time-t price of the exotic option in the Jacobi model.

For any ti−1 ≤ t < ti and given a realization X t1 , . . . , X ti−1 , the time-t Black–Scholes price of the

option is a function πσBS

f (t ,St ) of t and the spot price St defined by

e−r tπ
σBS

f (t , s) = E[
f (X t1 , . . . , X ti−1 , logSBS

ti
, . . . , logSBS

td
) |Ft , SBS

t = s
]

= E[
f
(
X t1 , . . . , X ti−1 , log

(
sRBS

t ,ti

)
, . . . , log

(
sRBS

t ,td

)) |Ft
]

where we write

RBS
t ,ti

= e
(
r−δ− 1

2σ
2
BS

)
(ti−t )+σBS

(
Bti −Bt

)
.

By assumption, we infer that πσBS

f (t , s) is convex in s > 0. Moreover, πσBS

f (t , s) satisfies the

following PDE

rπσBS

f (t , s) =
∂π

σBS

f (t , s)

∂t
+ (r −δ)s

∂π
σBS

f (t , s)

∂s
+ 1

2
σ2

BSs2
∂2π

σBS

f (t , s)

∂s2 (1.53)

and has terminal value satisfying πσBS

f (T,ST ) =π f ,T . Write

π
σBS

f ,t =πσBS

f (t ,St ), Θ
σBS

f ,t =−
∂π

σBS

f (t ,St )

∂t
, ∆

σBS

f ,t =
∂π

σBS

f (t ,St )

∂s
, Γ

σBS

f ,t =
∂2π

σBS

f (t ,St )

∂s2

and d Nt = ρ
√

Q(Vt )dW1t +
√

Vt −ρ2 Q(Vt )dW2t for the martingale driving the asset return
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in (1.1) such that, using (1.53),

d(e−r tπ
σBS

f ,t ) = e−r t
(
−rπσBS

f ,t −ΘσBS

f ,t + (r −δ)St∆
σBS

f ,t + 1

2
Vt S2

t Γ
σBS

f ,t

)
d t +e−r t∆

σBS

f ,t St d Nt

= 1

2
e−r t (Vt −σ2

BS)S2
t Γ

σBS

f ,t d t +e−r t∆
σBS

f ,t St d Nt .

Consider the self-financing portfolio with zero initial value, long one unit of the exotic option,

and short ∆σBS

f ,t units of the underlying asset. LetΠt denote the time-t value of this portfolio.

Its discounted price dynamics then satisfies

d(e−r tΠt ) = d(e−r tπ f ,t )−∆σBS

f ,t

(
d(e−r t St )+e−r t Stδd t

)
= d(e−r tπ f ,t )−∆σBS

f ,t e−r t St d Nt

= d(e−r tπ f ,t )−d(e−r tπ
σBS

f ,t )+ 1

2
e−r t (Vt −σ2

BS)S2
t Γ

σBS

f ,t d t .

Integrating in t gives

e−r TΠT =−π f ,0 +πσBS

f ,0 + 1

2

∫ T

0
e−r t (Vt −σ2

BS)S2
t Γ

σBS

f ,t d t (1.54)

as π f ,T −πσBS

f ,T = 0.

We now claim that the time-0 option price π f ,0 =π f lies between the Black–Scholes option

prices for σBS =p
vmi n and σBS =p

vmax ,

π
p

vmi n

f ,0 ≤π f ≤π
p

vmax

f ,0 . (1.55)

Indeed, let σBS =p
vmi n . Because ΓBS

f ,t ≥ 0 by assumption, it follows from (1.54) that e−r TΠT ≥
−π f ,0 +π

p
vmi n

f ,0 . Absence of arbitrage implies that ΠT must not be bounded away from zero,

hence −π f ,0 +π
p

vmi n

f ,0 ≤ 0. This proves the left inequality in (1.55). The right inequality follows

similarly, whence the claim (1.55) is proved.

A similar argument shows that the Black–Scholes price πσBS

f ,0 is non-decreasing in σBS, whencep
vmi n ≤σIV ≤p

vmax , and the theorem is proved.

1.8 Conclusion

In this chapter we have introduced the Jacobi model and shown that it is a highly tractable

and versatile stochastic volatility model. It contains the Heston stochastic volatility model

as a limit case. The moments of the finite dimensional distributions of the log prices can be

calculated explicitly thanks to the polynomial property of the model. As a result, the series
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approximation techniques based on the Gram–Charlier A expansions of the joint distributions

of finite sequences of log returns allow us to efficiently compute prices of options whose payoff

depends on the underlying asset price at finitely many time points. Compared to the Heston

model, the Jacobi model offers additional flexibility to fit a large range of Black–Scholes implied

volatility surfaces. Our numerical analysis shows that the series approximations of European

call, put and digital option prices in the Jacobi model are computationally comparable to

the widely used Fourier transform techniques for option pricing in the Heston model. The

truncated series of prices, whose computations do not require any numerical integration, can

be implemented efficiently and reliably up to orders that guarantee accurate approximations as

shown by our numerical analysis. The pricing of forward start options, which does not involve

any numerical integration, is significantly simpler and faster than the iterative numerical

integration method used in the Heston model. The minimal and maximal volatility parameters

are universal bounds for Black–Scholes implied volatilities and provide additional stability

to the model. In particular, Black–Scholes implied volatilities of forward start options in the

Jacobi model do not experience the explosions observed in the Heston model. Furthermore,

our density approximation technique in the Jacobi model circumvents some limitations of

the Fourier transform techniques in affine models and allows us to price discretely monitored

Asian options.
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2 Option Pricing with Orthogonal Poly-
nomial Expansions

We refine the series representations for option prices presented in Chapter 1 by letting the

auxiliary density be a mixture distribution. We show how to efficiently compute the polynomial

basis and Fourier coefficients for various choices of mixture components. The log price density

of univariate diffusive stochastic volatility models is given by a Gaussian mixture density with

a continuum of components which can be discretized and then used as auxiliary density to

approximate option prices. We indicate that the computed option price approximations can

be accurate even when the log price density does not belong to the relevant weighted space.

Numerical examples with the Jacobi and Stein-Stein models illustrate the improvement in

approximation accuracy and the applicability of this method to other stochastic volatility

models.

2.1 Introduction

In this chapter we improve the option pricing technique described in Chapter 1 where option

prices have series representations when the likelihood ratio `= g /w of the log price density

g with respect to the auxiliary density w belongs to the weighted Lebesgue space L2
w . In

this case, and when the discounted payoff function f also belongs to L2
w , the corresponding

option price has a series representation of the form π f = ∑
n≥0 fn`n where the coefficients

fn and `n are explicit. An option price approximation is then obtained by truncating this

series at a finite order N . This option price approximation is accurate for a small truncation

order N when the true density g is statistically close to the auxiliary density w . Indeed, the

density w is the initial approximation of g . We thus let the auxiliary density w be a mixture

distribution, that is a convex combination of K component densities vk , in order to gain

flexibility in the construction of w . We show how the orthonormal polynomial basis Hn with

respect to the mixture w can be recursively computed when the orthonormal polynomial

basis of its components are known. The likelihood coefficients `n = 〈`, Hn〉w are then given

explicitly for polynomial models. Similarly, we show that the payoff coefficients fn = 〈 f , Hn〉w

can be efficiently computed when the payoff coefficients f k
m = 〈 f , Hm〉vk are available for each

component k and order m ≤ n. The payoff coefficients are, in particular, given by closed-form
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recursive systems of equations for the European call options with the Gaussian and Gamma

auxiliary densities. As a consequence, we can construct mixture distributions that better

approximate the log price density and, therefore, we can efficiently computed fast converging

option price approximations.

We then study a particular class of stochastic volatility models in which the squared volatility

is given by a polynomial in a univariate polynomial diffusion. This class nests multiple models

of interest having bounded and unbounded volatility support. For examples it includes the

Jacobi, Heston, Stein-Stein, and Hull-White models. We show that the log price distribution

g for these models is given by a Gaussian mixture with an infinite number of components.

Letting w be a finite Gaussian mixture, we show that ` ∈ L2
w under some conditions on the

dynamics of the log price X t and the volatility Vt , and on the parameters of w . Even when `

does not belong to L2
w so that the option price approximation

∑N
n=0 fn`n does not converge

as N →∞, we demonstrate that this series truncated at some finite order N can provide an

accurate approximation of the true price π f . We also provide simple algorithms to construct

the Gaussian mixture to be used as auxiliary density.

We validate our approach on several use cases. In the Jacobi model with a Gaussian auxiliary

density, the accuracy of the option price approximation for a fixed N decreases rapidly as the

upper bound of the volatility support increases. We therefore let the auxiliary density w be a

mixture of two Gaussian distributions whose first two moments are matching the log price

density. We show that the option price series converges significantly faster using this Gaussian

mixture density in comparison to a single Gaussian density. This allows to approximate option

prices rapidly and accurately for any parameters choice. We hence calibrate the Jacobi model

on a volatility surface sample and report a twice smaller implied volatility root mean squared

error than with the Heston model. Next, we approximate the option prices in the Stein-Stein

model using a Gaussian mixture with different number of components and parameters choices,

and compare them to the true option price that can be computed using Fourier techniques.

Despite the fact that the likelihood ratio in the Stein-Stein model does not belong to L2
w when

w is a Gaussian mixture density, we find that our approach still produces accurate option

price approximations.

Section 2.2 discusses the density expansion and option price series representation with an

auxiliary mixture distribution. Section 2.3 presents the polynomial stochastic volatility mod-

els and describe some Gaussian mixture constructions for the auxiliary density. Section 2.4

contains the numerical applications. Alternative moments based methods to construct or-

thonormal polynomial basis can be found in Section 2.5. The proofs are collected in Section 2.6.

Section 2.7 concludes.

2.2 Polynomial Price Series Expansions

We first recap the density expansion approach described in (Filipović, Mayerhofer, and Schnei-

der 2013) along with the option price series representation further developed in Chapter 1. We
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then show how the elements of these option price series can be efficiently computed when the

auxiliary density is a mixture distribution. We conclude the section by giving some examples

of component densities which are convenient to work with.

2.2.1 European Option Price Series Representation

Fix a maturity T > 0 and assume that the log price XT admits a density g (x) at the initial time.

We are interested in computing the option price

π f = E
[

f (XT )
]= ∫

R
f (x)g (x)d x (2.1)

for some discounted payoff function f (x). The expectation is always taken with respect to the

risk-neutral measure. Let w(x) be an auxiliary density measure that dominates g (x)

w(x) = 0 ⇒ g (x) = 0

and denote `(x) the likelihood ratio given by

g (x) = `(x)w(x).

We define the weighted Lebesgue space,

L2
w =

{
f (x) | ‖ f ‖2

w =
∫

E
f (x)2w(x)d x <∞

}
which is a Hilbert space with the scalar product

〈 f , g 〉w =
∫

E
f (x)g (x)w(x)d x.

Assume that the polynomials are dense in L2
w and that the functions `(x) and f (x) are in L2

w .

Then, the option price has the following series representation

π f =
∑

n≥0
fn`n (2.2)

with the likelihood coefficients

`n = 〈`, Hn〉w =
∫

E
Hn(x)g (x)d x, (2.3)

and the payoff coefficients

fn = 〈 f , Hn〉w =
∫

E
Hn(x)w(x)d x, (2.4)

and where Hn(x) denotes the orthonormal polynomials basis of L2
w such that deg Hn(x) = n

and 〈Hm , Hn〉w = 1 if m = n and zero otherwise. In practice we approximate the option price
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by truncating the option price series in (2.2) as follows

π(N )
f =

N∑
n=0

fn`n (2.5)

for some positive integer N . The accuracy of such approximation with a low order N crucially

depends on the statistical distance between the true density and the auxiliary density. For

example if w(x) = g (x) then π f = f0`0 = f0, as `0 = 1 and `n = 0 for all n ≥ 1. The efficiency

of this approach depends on how fast the operations required to compute the coefficients

in (2.3) and (2.4) can be performed.

In what follows we always have in mind that the log price X t , jointly with another process

Zt ∈Rm , has the polynomial property. Fix the order N , this in particular implies that the payoff

coefficients in (2.3) can be computed explicitly as follows

`n = E[Hn(XT )] = (1,H (X0, Z0))eG T ~Hn , n = 0, . . . , N (2.6)

where the polynomials (1,H (x, z)) forms a basis of PolN (R1+m), G is the matrix representation

of the infinitesimal generator of (X t , Zt ) in this basis, and ~Hn is the vector representation of

the polynomial Hn(x) in this basis.

Remark 2.2.1. The options Greeks are computed by differentiating the option price with respect

to one or multiple variables. For the sensitivity analysis we fix the auxiliary density w(x), hence

the basis Hn(x) and the coefficients fn , and let only `(x) through g (x) depend on the perturbed

parameters. The sensitivity of π f with respect to the variable y is hence given by

∂yπ f =
∑

n≥0
`n∂y fn + fn∂y`n

with the partial derivative ∂y = ∂/∂y. The sensitivity of `n with respect to y is given by

∂y`n = (0,∂yH (X0, Z0))eG T ~Hn + (1,H (X0, Z0))∂y eG T ~Hn .

The derivative of the exponential operator eG T with respect to y is given by

∂eG T

∂y
=

∫ 1

0
ex G T ∂G T

∂y
e(1−x)G T d x

as proved in (Wilcox 1967). In particular for the Delta, which is the derivative of option price

with respect to y = exp(X0), we have that ∂y eG T = 0.
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2.2.2 Auxiliary Mixture Distribution

From now on we let the auxiliary density w(x) be a mixture distribution as defined by

w(x) :=
K∑

k=1
ck vk (x)

for some mixture weights ck > 0 satisfying
∑K

k=1 ck = 1, and some mixture components vk (x)

which are also probability densities. To each density vk (x) is associated an orthonormal

polynomial basis H k
n (x), n ≥ 0. Let ak

n and bk
n denote the coefficients that define the recurrence

relation for H k
n (x), which always holds for univariate bases,

xH k
n (x) = bk

n+1H k
n+1(x)+ak

n H k
n (x)+bk

n H k
n−1(x) (2.7)

for all n ≥ 0 with H k
−1 = 0 and H k

0 = 1. We define the following matrices

J k
N =



ak
0 bk

1

bk
1 ak

1 bk
2

. . .
. . .

. . .

bk
N−1 ak

N−1 bk
N

bk
N ak

N

 , for k = 1, . . . ,K .

The recurrence relation (2.7) to construct the orthonormal polynomial basis is explicitly known

for many densities taking values both on compact and unbounded supports, see (Schoutens

2012, Chapter 1) for an overview of them. For example, when vk is a Gaussian density with

mean µk and variance σ2
k , the coefficients in (2.7) are given by ak

n =µk and bk
n =p

nσk .

Remark 2.2.2. The coefficients ak
n and bk

n can be inferred from the basis H k
n (x). Denote αk

n,i

the coefficient in front of the monomial xi of the polynomial H k
n (x). Then by inspection of

Equation (2.7) we have

bk
n+1 =

αk
n,n

αk
n+1,n+1

and ak
n =

αk
n,n−1 −bk

n+1α
k
n+1,n

αk
n,n

.

The following Proposition gives an algorithm to compute the coefficients an and bn in the

recursion of the orthonormal polynomial basis Hn(x) associated with the mixture distribution

w(x),

xHn(x) = bn+1Hn+1(x)+an Hn(x)+bn Hn−1(x)

for all n ≥ 0 with H−1 = 0 and H0 = 1.

Proposition 2.2.3. The recurrence relation coefficients of the mixture distribution are given by
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bn =√
ψn/ψn−1 for n = 1, . . . , N and an =φn/ψn for n = 0, . . . , N −1 where

ψn =
K∑

k=1
ck (zk

n)> zk
n

φn =
K∑

k=1
ck (zk

n)> J k
N zk

n

zk
n+1 = (J k

N −an I )zk
n − (bn)2zk

n−1 for all k = 1, . . . ,K

with zk
−1 = 0, and zk

0 = e1 is the vector whose first coordinate is equal to one and zero otherwise.

This algorithm is fast and performs well numerically. For example, with N ,K ∼ 102, it takes few

milliseconds on a modern CPU to construct the orthonormal basis. There are others moments

based approaches to construct the orthonormal basis, for examples the Gram-Schmidt and

the Mysovskikh algorithms are described in Section 2.5. However these methods are typically

subject to numerical problems and may be slow even for a relatively small order N .

The following proposition shows that the payoff coefficients with respect to the mixture

distribution can efficiently be computed when the corresponding coefficients are known for

the mixture components.

Proposition 2.2.4. The payoff coefficients are equal to

fN = 〈 f , HN 〉w =
K∑

k=1

N∑
n=0

ck qk
N ,n f k

n with f k
n = 〈 f , H k

n 〉vk (2.8)

and where qk
N ∈RN is the vector representation of HN (x) in the basis H k

n (x)

HN (x) =
N∑

n=0
qk

N ,n H k
n (x), k = 1, . . . ,K . (2.9)

The usefulness of this Proposition lies on the premise that the coefficients f k
n can easily be

computed. In a situation where they are numerically costly to compute then one may directly

integrate the payoff function with respect to the following density approximation

w (N )(x) =
N∑

n=0
`n Hn(x)

K∑
k=1

ck vk (x). (2.10)

Remark 2.2.5. The vectors qk
N can be computed efficiently. Let Hk

N ∈ R(N+1)×(N+1) denote the

matrix whose (i , j )-th element is given by the coefficient in front of the monomial x j−1 in the

(i −1)-th polynomial of the basis H k
n (x). Define similarly the matrix HN with respect to the

polynomial basis Hn(x). The matrices Hk
N for k = 1, . . . ,K , and HN are upper triangular. We

are interested in the upper triangular matrix Qk
N ∈R(N+1)×(N+1) for k = 1, . . . ,K whose (i , j )-th

element is equal to qk
j ,i . It is also given by HN = Hk

N Qk
N which forms a triangular system of

equations and can thus be solved efficiently.
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2.2.3 Component Density Examples

In practice, to ensure efficient option prices approximations we need to select components

vk (x) whose orthonormal polynomial basis H k
n (x) and payoff coefficients f k

n can efficiently be

computed. The Gaussian and uniform distributions have been successfully used in Chapter 1

and Chapter 3 respectively. The logistic distribution whose tailed decreases at an exponential-

linear rate is used in (Heston and Rossi 2016) but for which the payoff coefficients are given by

complex expressions involving special functions. The bilateral Gamma distribution of (Küch-

ler and Tappe 2008) was used in (Filipović, Mayerhofer, and Schneider 2013) to accurately

approximate option prices by numerical integration of the discounted payoff function with

respect to the density approximation. However an explicit recursion formula to construct the

orthonormal polynomial basis was not provided.

We study hereinbelow the Gamma distribution whose single tail decays at a polynomial-

exponential-linear rate and for which simple recursive expressions can be derived for the

payoff coefficients. By mixing two Gamma distributions one can obtain a density distribution

on the entire real line. The Gamma distribution on the half-line (ξ,+∞) for some ξ ∈ R is

defined by

vk (x) =1{x>ξ}
βα

Γ(α)
(x −ξ)α−1e−β(x−ξ) (2.11)

for some shape parameterα≥ 1, rate parameter β> 0, and where Γ(α) is the upper incomplete

Gamma function defined by

Γ(α) = Γ(α,0) with Γ(α, z) =
∫ ∞

z
xα−1e−x d x

such that Γ(n) = (n −1)! for any positive integer n. The Gamma distribution vk (x) admits an

orthonormal polynomial basis H k
n (x) given by

H k
n (x) =

√
n!

Γ(α+n)
L α−1

n (β(x −ξ))

where L α−1
n (x) denotes the n-th order generalized Laguerre polynomial with parameter α−1

and defined by

L α−1
n (x) = x−α+1ex

n!

∂n

∂xn (e−x xα−1+n).

The generalized Laguerre polynomials are recursively given by

L α−1
0 (x) = 1

L α−1
1 (x) =α+x

L α−1
n+1 (x) = 2n +α−x

n +1
L α−1

n (x)− n +α−1

n +1
L α−1

n−1 (x) for all n ≥ 1.
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The following theorem shows that the payoff coefficients f k
n can be computed recursively for

the Gamma distribution vk (x).

Theorem 2.2.6. Consider the discounted payoff function of a call option with log strike k,

f (x) = e−r T
(
ex −ek

)+
.

Its payoff coefficients fn are given by

fn =
√

n!

Γ(α+n)

1

Γ(α)

(
eξIα−1

n

(
µ;β−1)+ek Iα−1

n

(
0;β−1)) , n ≥ 0.

with µ= max(0,β(k −ξ)) and where the functions Iα−1
n (µ;ν) are recursively defined by

Iα−1
0 (µ;ν) = (1−ν)−αΓ(α)Γ(α,µ(1−ν)

Iα−1
1 (µ;ν) =αIα−1

0 (µ;ν)+ Iα0 (µ;ν)

Iα−1
n (µ;ν) =

(
2+ α−2

n

)
Iα−1

n−1 (µ;ν)−
(
1+ α−2

n

)
Iα−1

n−2 (µ;ν)

− 1

n

(
Iαn−1(µ;ν)− Iαn−2(µ;ν)

)
, n ≥ 2.

. (2.12)

Note that the calculation of the term Iα−1
n (µ;ν) requires calculations of the terms Iαn−1(µ;ν)

and therefore the dimension of the recursive system grows at the rate n2.

The Gamma distribution on the half-line (−∞,ξ) for some ξ ∈R together with its polynomial

basis and Fourier coefficients can be similarly derived. A Gamma mixture on R can thus be

constructed when K ≥ 2 by letting, for example, the first component support be (−∞,ξ] and

the second [ξ,∞).

2.3 Polynomial Stochastic Volatility Models

We present a class of stochastic volatility models for which the log price distribution is given

by a Gaussian mixture with an infinite number of components. We then describe a simple

methodology to approximate the log price density by a Gaussian mixture with a finite number

of components. The section terminates by studying the option price approximation error

when the likelihood ratio `= g /w does not belong to the weighted space L2
w .

2.3.1 Definition and Basic Properties

We fix a stochastic basis (Ω,F ,Ft ,Q) where Ft is the filtration generated by two independent

Brownian motions W1t and W2t . Let Yt ∈ EY ⊂ R be an autonomous polynomial diffusion
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whose dynamics is given by

dYt = κ(θ−Yt )d t +σ(Yt )dW1t with σ(y)2 =α+ay + Ay2 (2.13)

for some real parameters κ,θ,α, a, A such that for any Y0 ∈ EY a solution of (2.13) taking values

in EY exists. We then define the dynamics of the log price X t as follows

d X t = (r −δ)d t − 1

2
d〈X 〉t +Σ1(Yt )dW1t +Σ2(Yt )dW2t

for the interest rate r , the dividend yield δ≥ 0, and such that Σ1(y)2 +Σ2(y)2 ∈ Polm , Σ2(y)2 ∈
Polm+1, and Σ1(y)σ(y) ∈ Polm+1 for some m ∈N. The process (X t , Zt ) is hence a polynomial

diffusion where Zt = (Yt ,Y 2
t , . . . ,Y m

t ) since Yt is an autonomous polynomial diffusion and so

must be Zt , see (Filipović and Larsson 2017). Some classical stochastic volatility models are

nested in this setup, for examples, the Heston, Jacobi, Stein-Stein, and Hull-White models.

The volatility of the asset log price is Vt =
√

d〈X 〉t /d t =
√
Σ1(Yt )2 +Σ2(Yt )2. The leverage

effect refers to the generally negative correlation between dV 2
t and d X t and is given by

lev(X t ) = d〈V 2, X 〉t√
d〈V 2〉t

√
d〈X 〉t

= Σ1(Yt )√
Σ1(Yt )2 +Σ2(Yt )2

sign
[(
Σ′

1(Yt )Σ1(Yt )+Σ′
2(Yt )Σ2(Yt )

)
σ(Yt )

]
.

(2.14)

The volatility of the volatility of the asset log price is

volvol(X t ) =
√

d〈V 〉t

d t
= 1

2Vt

√
d〈V 2〉t

d t
=

√√√√(
Σ′

1(Yt )Σ1(Yt )+Σ′
2(Yt )Σ2(Yt )

)2
σ(Yt )2

Σ1(Yt )2 +Σ2(Yt )2
(2.15)

The proofs of (2.14)–(2.15) are given in Section 2.6.

We fix a finite time horizon T > 0. The following proposition shows that the distribution of the

log price is given by a Gaussian mixture density with an infinite number of components, see

(McNeil, Frey, and Embrechts 2015, Chapter 6.2).

Proposition 2.3.1. The distribution of XT conditional on the trajectory of W1t on [0,T ] is

normally distributed with mean

MT = X0 + (r −δ)T − 1

2

∫ T

0

(
Σ1(Yt )2 +Σ2(Yt )2)d t +

∫ T

0
Σ1(Yt )dW1t (2.16)

and variance

CT =
∫ T

0
Σ2(Yt )2d t . (2.17)
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Therefore, when it is well defined, the log price density is of the form

g (x) = E
[

(2πCT )−
1
2 exp

(
− (x −MT )2

2CT

)]
. (2.18)

Similar expressions for the log price density have been previously derived in (Lipton and Sepp

2008) and in (Glasserman and Kim 2011). In practice, we want to approximate the log price

density g (x) by a Gaussian mixture density wK (x) with K components that will in turn be used

as auxiliary density to derive option price approximations,

wK (x) =
K∑

k=1
ck

1√
2πσ2

k

exp

(
− (x −µk )2

2σ2
k

)
(2.19)

for some mixture weights ck > 0 such that
∑K

k=1 ck = 1, and some constants µk ∈R and σk > 0

for k = 1, . . . ,K . In Section 2.3.2 we suggest a computationally efficient approach based on

weighted simulations of the first Brownian motion W1t .

From Chapter 1 we known that under certain conditions the likelihood ratio `(x) belongs to a

weighted Lebesgue space L2
wK

where wK is a Gaussian mixture.

Corollary 2.3.2. Assume that there exist two constants C1,C2 > 0 such that

|MT | <C1 and CT <C2 (2.20)

then ` ∈ L2
wK

with wK as defined in (2.19) if σk >C2/2 for some k in 1, . . . ,K . Sufficient condi-

tions for (2.20) to hold are that ymi n < Yt < ymax for all t ≥ 0 and some constants ymi n , ymax ,

and that Σ1(y)/σ(y) ∈ Polm for some m.

2.3.2 Gaussian Mixture Specification

We present an efficient approach to specify Gaussian mixtures for the auxiliary density. It

is based on the discretization of the single source of randomness affecting MT and CT in

(2.16)-(2.17): the trajectory of W1 on [0,T ]. Fix a time grid 0 = t0 < t1 < t2 < ·· · < tn = T with

constant step size ti+1 − ti =∆t . Then, apply a Monte-Carlo approach to obtain K (weighted)

vectors Z (k) ∈Rn of normally distributed Brownian increments

Z (k) ∼ (
∆W1,t1 , . . . ,∆W1,tn

)∼N
(
0n , diag(∆t 1n)

)
(2.21)

where ∆W1,ti =W1,ti −W1,ti−1 . The stochastic differential equations (SDE) of (Yt , Mt ,Ct ) can

then be numerically integrated to obtain K triplets (ck , M (k)
T ,C (k)

T ) where ck is the weight

associated to Z k . We can then let these triplets be the parameters (ck ,µk ,σ2
k ) of the Gaussian

mixture in (2.19).

A standard simulation with standard i.i.d. simulations such that ck = 1/K would be costly

because the number of triplets K required to obtain a good approximation of g (x) may be

46



2.3. Polynomial Stochastic Volatility Models

large. In addition, a large K makes the computation of the coefficients fn and `n compu-

tationally more demanding. Therefore, a weighted Monte-Carlo method appears to be a

more sensible approach to parametrize the Gaussian mixture. For example, one can use an

optimal K -quantization of the multivariate Gaussian distribution. This is a discrete probability

distribution in Rn with K mass points that best approximates the multivariate normal (2.21) in

the L2 sense, we refer to (Pagès and Printems 2003) for more details. The K pairs (ck , Z (k)) can

always be precomputed and loaded on demand since they do not depend on the stochastic

volatility model at hand.

The discretization scheme used to numerically integrate the SDE may also play an important

role. We want a scheme that performs well with a large time step ∆t since we are only

interested in the log price density at time T . Numerical experiments on multiple models

showed that good results can notably be obtained with the Interpolated-Kahl-Jäckel (IJK)

scheme introduced in (Kahl and Jäckel 2006). The IJK scheme boils down to a scheme with

linear interpolation of the drift of the diffusion, consideration for the correlated diffusive

terms, and with a higher order Milstein term. It bears little additional computational cost.

2.3.3 Nonconvergent Option Price Approximations

We provide some explanations why, even when ` ∉ L2
w , the price approximation π(N )

f in (2.5)

can be an accurate approximation of the option price π f . More precisely, we estimate the

option price approximation error.

Assume that instead of considering the true process X t we consider the modified process X τ
t

whose dynamics is

d X τ
t = (r −δ)d t − 1

2
d〈X τ〉t +1{τ>t } (Σ1(Yt )dW1t +Σ2(Yt )dW2t )

where the stopping time τ is defined by

τ= inf{t ≥ 0 : |Mt | ≥C1}∧ inf{t ≥ 0 : Ct ≥C2}

for some positive constants C1 and C2. The event {τ< T } is thought be very unlikely so that

P[XT = X τ
T ] > 1−ε for some small ε > 0. Note that the modified discounted cum-dividend

stock price e−(r−δ)t+X τ
t remains a martingale. As a consequence of this construction, Corol-

lary 2.3.2 applies to the process X τ
t which implies that the option price has a series representa-

tion for some Gaussian mixture density w ,

πτf = E[ f (X τ
T )] =

∞∑
n=0

fn`
τ
n , (2.22)

where the payoff coefficients fn are defined as in (2.4) and the likelihood coefficients `τn are
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defined by

`τn = E[Hn(X τ
T )]. (2.23)

However, we do not know the moments of X τ
T and we will use instead the moments of XT . We

hence obtain the option price approximation

π(N )
f =

N∑
n=0

fn`n ,

which is similar to (2.5) but with the important difference that it will not converge to the true

price π f . The pricing error with this approximation can be decomposed into three terms,∣∣∣π f −π(N )
f

∣∣∣≤ ∣∣E[( f (XT )− f (X τ
t ))1{τ≤T }]

∣∣ (2.24)

+
∣∣∣∣∣πτf − N∑

n=0
fn`

τ
n

∣∣∣∣∣ (2.25)

+
∣∣∣∣∣ N∑
n=0

fn(`n −`τn)

∣∣∣∣∣ . (2.26)

The first error term (2.24) is the difference between the option price with XT and with X τ
T . It

can easily be controlled. For example if | f (x)| is bounded by K on R then we have∣∣E[( f (XT )− f (X τ
T ))1{τ≤T }]

∣∣≤ 2K ε.

The difference between the call option prices can also be bounded by using the put-call parity

given that E[eXT ] = E[eX τ
T ]. The second term (2.25) is the option price approximation error for

the log price X τ
T that converges to zero as N →∞. The third error term (2.26) is the difference

between the option price approximations of XT and X τ
T , that we expect to be small for a low

order N but will typically diverge as N →∞. This last error term can be further divided∣∣∣∣∣ N∑
n=0

fn(`n −`τn)

∣∣∣∣∣=
∣∣∣∣∣E

[
N∑

n=0
fn(Hn(XT )−Hn(X τ

T ))1{τ≤T }

]∣∣∣∣∣
≤

∣∣∣∣∣E
[

N∑
n=0

fn Hn(XT )1{τ≤T }

]∣∣∣∣∣+
∣∣∣∣∣E

[
N∑

n=0
fn Hn(X τ

T )1{τ≤T }

]∣∣∣∣∣ (2.27)

The first term on the right side of (2.27) is precisely the one that is not expected to converge as

N →∞. Applying the Cauchy-Schwarz inequality we derive the upper bound∣∣∣∣∣E
[

N∑
n=0

fn Hn(XT )1{τ≤T }

]∣∣∣∣∣≤√
E[pN (XT )]ε, where pN (x) =

(
N∑

n=0
fn Hn(x)

)2

which can be computed explicitly. In practice, this bound may give an indication to whether

the option price approximation π(N )
f is reasonable.

Remark 2.3.3. A simple trick to stabilize the option price approximation when Corollary 2.3.2
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does not apply is to match the N∗-th moment of the log price and the auxiliary density,

E [X N∗
T ] = ∫

R xN∗
w(x)d x. By doing so, the first N∗ moments of g (x) and w(x) will be of the

same magnitudes which should result in well-behaved values for the `n coefficients. This can

be achieved, for example, by including a component with small mixture weight and which is

used to tune the N∗-th moment.

2.4 Numerical Analysis

In this section we show that a simple Gaussian mixture with two components can be used to

improve the convergence rate of the option price approximations in the Jacobi model. We

use this technique to swiftly calibrate the model on a sample of option prices. We then derive

accurate option price approximations in the Stein-Stein model using Gaussian mixtures with

many components for the auxiliary density.

2.4.1 Jacobi Model

The dynamics of (X t ,Yt ) in the Jacobi model is of the form

dYt = κ(θ−Yt )d t +σ
√

Q(Yt )dW1t

d X t =
(
r −δ− 1

2
Yt

)
d t +ρ

√
Q(Yt )dW1t +

√
Yt −ρ2Q(Yt )dW2t

with the function Q(y) = (y−ymi n )(ymax−y)
(
p

ymax−pymi n )2 . We refer to Chapter 1 for more details on the

model. We illustrate the advantages of using a Gaussian mixture with the Jacobi model

when var[XT ] < ymax T /2 such that the first two moments cannot be matched with a single

Gaussian distribution w1(x) = v1(x) as auxiliary density. We consider here a Gaussian mixture

with two components w2(x) as auxiliary density given by

w2(x) = c1
1√

2πσ2
1

exp

(
− (x −µ1)2

2σ2
1

)
+ (1− c1)

1√
2πσ2

2

exp

(
− (x −µ2)2

2σ2
2

)

for some probability 0 < c1 < 1, some mean parameters µ1,µ2 ∈ R and volatility parameters

σ1,σ2 > 0. We match the the first two moments of XT which gives the following underdeter-

mined system of equations

E[XT ] = c1µ1 + (1− c1)µ2 (2.28)

E[X 2
T ] = c1 (σ2

1 +µ2
1)+ (1− c1) (σ2

2 +µ2
2). (2.29)

We set E[XT ] =µ1 =µ2 such that (2.28) is automatically satisfied and (2.29) rewrites

c1 =
σ2

2 −var[XT ]

σ2
2 −σ2

1

(2.30)
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Figure 2.1 – Auxiliary densities and implied volatility convergence.
The left panel displays the Gausian mixture used asauxiliary density with one (grey) and two (black) components as well as the
log price density approximation at the order N = 100 (light-grey). The right panel displays the implied volatility series for the
corresponding two auxiliary densities for a call option with strike k = 0.

hence it must be that
∣∣σ2

2 −var[XT ]
∣∣< ∣∣σ2

2 −σ2
1

∣∣ and that
(
σ2

2 −var[XT ]
)(
σ2

2 −σ2
1

)≥ 0. We set

σ2 = √
ymax T /2+10−4 so that Corollary 2.3.2 applies which ensures that the option price

expansion will converge to the true price. Then we arbitrarily fix c1 = 95% and solve (2.30) to

get σ1. The reason behind these choices is that, by doing so, the mixture component with

large weight c1 is almost a Gaussian approximation of the log price density since E[XT ] =µ1

and var[XT ] ≈σ2
1. In the following numerical example we use the parameters: r = δ= x0 = 0,

κ= 0.5, θ = Y0 = 0.04, σ= 1, ymi n = 10−4, ymax = 0.36, and T = 1/12. The upper bound on the

volatility support is therefore 60%.

The left panel of Figure 2.1 displays the Gaussian mixture with one and two components used

as auxiliary density along with the log price density approximation (2.10) at the truncation

order N = 100. We expect that g (x) ≈ `(100)(x)w2(x). It is clear from the figure that w1(x)

is a poor approximation of the density g (x) whereas w2(x) appears more sensible. As a

consequence, the implied volatility of a call option with log strike k = 0 converges significantly

faster using w2(x) as auxiliary density as can be seen on the right panel of Figure 2.1. The

call (put) implied volatility is initially overestimated with w1(x) since it has significantly more

weight in the right (left) tail than g (x). This behavior is confirmed in Table 2.1 which reports

the implied volatility error with respect to the approximation at the order N = 100 for call

options with different moneyness and for different truncation order. More problematic, the

option price approximation of the far OTM option is negative between N = 2 and N = 18 with

w1(x).

Equipped with a Gaussian mixture with two components, we calibrate the Jacobi model on

a sample of S&P500 options and compare its suitability to fit the implied volatility surface

with the Heston model. We select all the call and put options available on March 30 2017 with

maturity in 1, 2, 3, or 4 weeks from the OptionMetrics database. With a linear regression we

extract from the put-call parity the risk-free rate r = 1.66% and the dividend yield δ= 1.50%.
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k =−0.1 k = 0 k = 0.1
N K = 1 K = 2 K = 1 K = 2 K = 1 K = 2

0–1 23.59 3.67 26.67 1.02 25.97 3.25
2 3.77 3.67 7.47 1.02 2.88 3.25
3 2.63 1.89 7.36 0.87 - 0.17
4 7.38 1.86 4.03 0.77 - 0.03
5 5.55 1.01 4.00 0.72 - 2.47
6 5.18 0.88 2.57 0.58 - 1.80
7 4.22 0.55 2.55 0.55 - 3.00
8 3.23 0.38 1.78 0.42 - 2.10
9 2.73 0.28 1.77 0.40 - 2.32
10 1.91 0.12 1.30 0.29 - 1.66
11 1.64 0.12 1.29 0.28 - 1.57
12 1.02 0.00 0.98 0.19 - 1.15
13 0.88 0.02 0.97 0.19 - 1.02
14 0.42 0.06 0.76 0.12 - 0.78
15 0.37 0.04 0.75 0.12 - 0.67
16 0.04 0.09 0.60 0.07 - 0.53
17 0.03 0.06 0.59 0.07 - 0.44
18 0.21 0.09 0.48 0.04 5.12 0.38
19 0.18 0.07 0.47 0.03 4.43 0.31
20 0.35 0.08 0.39 0.01 3.12 0.28
30 0.39 0.00 0.15 0.01 0.49 0.04
40 0.15 0.04 0.06 0.01 0.16 0.09
50 0.02 0.04 0.02 0.01 0.32 0.10

Table 2.1 – Implied volatility errors for the Jacobi model.
The reported values are absolute percentage errors with respect to implied volatility approximations obtained at the 100-th
truncation order for call options with different log strikes k. The auxiliary density is a Gaussian mixture with two components
whose two first moments match those of the log price. The ”–” symbol indicates that the implied volatility was not retrievable
because the option price approximation was negative.
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p
θ κ σ ρ

p
Y0

p
ymi n

p
ymax RMSE

Jacobi 0.3035 1.8230 1.4591 -0.8177 0.0728 0.0546 0.3977 0.3102
Heston 0.2519 2.2532 0.7942 -0.6178 0.0732 – – 0.6976

Table 2.2 – Fitted parameters for the Heston and Jacobi models.
The table reports fitted parameters and the implied volatilities root-mean-squared-error (RMSE) in percentage. The models
were calibrated on a subset of S&P500 options with maturity less than one month observed on March 30 2017.

For each maturity we select a sample of 25 call options with a Delta ranging from 5% to 95%.

We denote here πi j , σi j , and νi j the j -th option price, implied volatility, and Vega from the

i -week maturity sample. Similarly π̂i j and σ̂i j denote the model, Jacobi or Heston, option

price and implied volatility. We calibrate the two models to the implied volatility surface by

minimizing the weighted root-mean-square-error (RMSE)√√√√ 1

100

4∑
i=1

25∑
j=1

(
πi j − π̂i j

νi j

)2

.

This criterion is a computationally efficient approximation for the implied volatility surface

RMSE criterion which follows by observing that

σi j − σ̂i j ≈
πi j − π̂i j

νi j
when πi j ≈ π̂i j .

Table 2.2 reports the fitted parameters and Figure 2.2 displays the corresponding implied

volatility surfaces. We observe that the values of κ, θ, and ρ are relatively similar, but the

vol-of-vol parameter σ is almost twice larger for the Jacobi model which suggests that its

volatility process may take large values, close to ymax , within little time. The fitted volatility

support goes, roughly, from 5% to 40% which seems reasonable for this sample. With two

additional parameters, the Jacobi model is able to better fit the implied volatility surface than

the Heston model. Indeed, the resulting RMSE on the implied volatility is twice smaller for

the Jacobi model. In particular, the Jacobi models seems to perform better in capturing the

short-term skew and smile curvature.

2.4.2 Extended Stein-Stein Model

The Stein-Stein model was introduced by (Stein and Stein 1991) and generalized by (Schöbel

and Zhu 1999) to allow for non-zero leverage. Its dynamics is of the form

dYt = κ(θ−Yt )d t +σdW1t

d X t =
(
r −δ− 1

2
Y 2

t

)
d t +ρYt dW1t +

√
1−ρ2Yt dW2t

(2.31)

for some nonnegative constants ρ ∈ (−1,1), κ,θ,δ,r,σ and some deterministic initial values

(X0,Y0) ∈R2. The process X t is the log price, as before, and the process Yt follows an Ornstein-
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Figure 2.2 – Fitted implied volatility surfaces for the Heston and Jacobi models.
The true (dotted light-gray), the Heston (gray), and the Jacobi (black) implied volatility surfaces are displayed for each maturity
as a function of the strike price. The data sample is a subset of S&P500 options with maturity less than one month observed on
March 30 2017.

53



Chapter 2. Option Pricing with Orthogonal Polynomial Expansions

Uhlenbeck process. The volatility process is Vt = |Yt | since Yt can become negative.

The Stein-Stein model has the particularity that (X t ,Yt ,Y 2
t ) is a polynomial model but also

an affine process. This enables the use of standard Fourier techniques to compute option

prices that we use as reference option prices, see for details (Carr and Madan 1999), (Duffie,

Filipović, and Schachermayer 2003), and (Fang and Oosterlee 2009). We approximate option

prices using a Gaussian mixture for the auxiliary density as described in Section 2.3.2. The IJK

scheme applied to the linear volatility dynamics Vt is

Yti+1 = Yti +κ(θ−Yti )∆t +σ∆W1,ti+1 i = 0, . . . ,n −1

such that the discretized conditional mean and variance are given by

MT = X0 − 1

2

n∑
i=1

Y 2
ti
+Y 2

ti−1

2
∆t +ρ

n∑
i=1

Yti∆W1,ti +
1

2
ρσ

n∑
i=1

(∆W 2
1,ti

−∆t )

and

CT = (1−ρ2)
n∑

i=1

Y 2
ti
+Y 2

ti−1

2
∆t .

The time to maturity is T = 1/12 and we use a single step,∆t = T . We therefore use the optimal

quantizers of the univariate normal distribution to approximate the Brownian increment

∆W1∆t . We also approximate option prices using an extended mixture obtained by including

one additional component whose purpose is to adjust the moments of the auxiliary density as

suggested in Remark 2.3.3. This additional component has a fixed weight equal to 5% while

the other component weights are scaled down by 95%, its mean parameter is set equal to zero,

and its variance parameter is computed such that the N∗-th moment of the auxiliary density

and of the log price density are equal. A different number of components K for each auxiliary

density and the first moment of the log price is always matched such that `1 = 0. The reference

parameters are N∗ = 20, r = δ= X0 = k = 0, κ= 0.5, θ = Y0 = 0.2, σ= 0.5, and ρ =−0.5.

Table 2.3 reports the implied volatility errors for a call option with log strike k = 0 for different

K and using the Gaussian mixture and the extended Gaussian mixture as auxiliary density,

respectively denoted GM and GM+. We can see that the implied volatility errors rapidly

become small as the truncation order N increases for all K with the extended mixture and

continue to converge toward π f well after the matched moment N∗. On the other hand, the

implied volatility errors do not appear to converge when K is small with the standard Gaussian

mixture. Note that good option price approximations can be achieved by choosing a large

number of components K even without moment matching.
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K = 3 K = 10 K = 50
N GM GM+ GM GM+ GM GM+

0–1 1.26 0.64 0.01 1.85 0.16 1.95
2 0.75 0.12 0.20 0.24 0.10 0.24
3 0.26 0.02 0.15 0.19 0.16 0.18
4 0.43 0.07 0.09 0.05 0.15 0.05
5 0.08 0.03 0.06 0.03 0.08 0.03
6 0.68 0.06 0.04 0.01 0.03 0.02
7 0.46 0.03 0.01 0.00 0.04 0.01
8 1.27 0.04 0.01 0.01 0.01 0.02
9 1.56 0.03 0.03 0.01 0.00 0.01
10 2.94 0.03 0.04 0.02 0.01 0.03
11 6.06 0.02 0.06 0.01 0.01 0.02
12 8.02 0.02 0.04 0.02 0.01 0.03
13 25.63 0.01 0.05 0.02 0.01 0.02
14 23.63 0.01 0.18 0.02 0.02 0.03
15 – 0.01 0.10 0.02 0.01 0.03
16 – 0.01 0.43 0.02 0.02 0.03
17 – 0.01 0.03 0.02 0.01 0.03
18 – 0.01 1.30 0.02 0.02 0.02
19 – 0.01 0.63 0.02 0.02 0.02
20 – 0.00 3.82 0.02 0.02 0.02
30 – 0.00 – 0.00 0.00 0.00
40 – 0.00 – 0.00 4.65 0.00
50 – 4.34 – 4.60 – 9.96

Table 2.3 – Implied volatility errors for the Stein-Stein model.
The reported values are absolute percentage errors with respect to the implied volatility computed with Fourier technique. The
GM+ column refers to option price approximations obtained with a Gaussian mixture auxiliary density whose 20-th moment
is matching E[X 20

T ]. The ”–” symbol indicates that the implied volatility was not retrievable either because the option price
approximation was negative or because the implied volatility was larger than 99%.
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2.5 Basis Construction with Moments

In this section we present moment-based constructions, alternative to Proposition 2.2.3, for

the orthonormal basis (ONB) Hn(x) of the space L2
w which can also be used when the auxiliary

density w is d-valued. Let π : E → {1, . . . , M } be an enumeration of the set of exponents

E =
{

n ∈Nd : |n| ≤ N
}

for some positive integer N , with π(0) = 1, and such that π(n) ≤π(m) if |n| ≤ |m|. We denote

πi =π−1(i ) ∈Nd where π−1 : {1, . . . , M } → E is the inverse function of π.

A standard approach to construct the ONB is to apply the Gram-Schmidt algorithm outlined

below. First ones constructs the orthogonal basis

u0(x) = 1

ui (x) = xπi −
i−1∑
j=0

〈xπi ,u j 〉w

〈u j ,u j 〉w
u j (x), i ≥ 1

and the ONB is obtained by normalization,

Hi (x) = ui (x)

‖ui‖w
, i ≥ 0.

Another interesting approach to construct an ONB of the space L2
w is as follows. Let M denote

the (M ×M) Gram matrix defined by

Mi+1, j+1 = 〈xπi , xπ j 〉w (2.32)

which is thus symmetric and positive definite. Let M = LL> be the unique Cholesky decompo-

sition of M where L is a lower triangular matrix, and defined the lower triangular S = L−1.

Theorem 2.5.1 ((Mysovskikh 1968)). The polynomials

Hi (x) =
i∑

j=0
Si+1, j+1 xπ j

form an ONB of L2
w .

Remark 2.5.2. The orthonormal basis resulting from the classical Gram-Schmidt described

above may not appear orthogonal numerically because of rounding errors, the procedure is said

to be numerically unstable. To alleviate this issue the modified Gram-Schmidt implementation

is often preferred in practice, the polynomial ui (x) is now computed in multiple steps

u( j+1)
i (x) = u( j )

i (x)− 〈u( j )
i (x),u j 〉w

〈u j ,u j 〉w
u j (x), j = 0, . . . , i −1
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with u(0)
i (x) = xπi and such that ui (x) = u(i )

i (x). Although the two algorithms are equivalent in

exact arithmetic, significant difference can be observed in finite-precision arithmetic.

Remark 2.5.3. The Gram matrix in Equation (2.32) may numerically be singular because of

rounding errors either in the computation in its eigenvalues or its moments. One approach to

avoid this problem is to consider an approximately orthonormal basis in place of the monomial

basis. By doing so, the Gram matrix would be already almost diagonal and thus more likely to

be invertible. This may be achieved, for example, by implementing an algorithm that computes

the ONB for the first j elements by using the ONB of the first j −1 elements enlarged with the

monomial xπ j .

2.6 Proofs

This Section contains the proofs of all theorems and propositions in the main text.

Proof of Proposition 2.2.3

This proof is based on the results in (Fischer and Golub 1992). We first aim to derive a series of

orthogonal monic polynomial basis {hn}n≥0, that is whose leading order coefficient is equal to

one, and then normalize it to obtain the desired basis {Hn}n≥0. The recurrence relation for the

orthogonal monic basis is given by

xhn(x) = hn+1(x)+αnhn(x)+γnhn−1(x) (2.33)

for all n ≥ 0 with h−1 = 0 and h0 = 1, and where the coefficients αn ,γn are given by

αn = 〈h∗
n ,hn〉w

〈hn ,hn〉w
and γn = 〈hn ,hn〉w

〈hn−1,hn−1〉w
(2.34)

for n ≥ 0, and where h∗
n(x) = xhn(x). The orthonormal polynomial basis is then obtained by

normalizing the orthogonal monic basis, that is

Hn(x) = hn(x)√
〈hn ,hn〉w

,

which in view of Equation (2.33) is equivalent to define the recurrence coefficients as follows

an =αn and bn =p
γn .

The inner products in Equation (2.34) are left to be computed. We show that one can actually

compute effectively and accurately the integral 〈p,1〉w for any polynomial of order less than
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2N . First, we recall the Gauss quadrature rule associated with the density vk

〈p,1〉vk =
∫
R

p(x)vk (x)d x =
N∑

i=0
(νk

i 1)2 p(λk
i )

where νk
i is the eigenvector corresponding to the eigenvalue λk

i of the Jacobi matrix J k
N . Those

values however do not need to be computed explicitly. Observe that, the matrix J k
N being

Hermitian, there exists a unitary matrix U k
N whose columns are the normalized eigenvectors

of J k
N and such that

Σk
N := diag(λk

0 , . . . ,λk
N ) = (U k

N )> J k
N U k

N .

Combining the above results we obtain

〈p,1〉w =
K∑

k=1
ck

N∑
i=0

(νk
i 1)2 p(λk

i ) =
K∑

k=1
ck e>1 U k

N p(Σk
N )(U k

N )> e1

=
K∑

k=1
ck e>1 p(J k

N )e1.

Define the vector zk
n as follows

zk
n+1 = hn+1(J k

N )e1 = (J k
N −αn)hn(J k

N )e1 −γnhn−1(J k
N )e1

= (J k
N −αn)zk

ne1 −γn zk
n−1e1

where the second equality follows from Equation (2.33). The inner products then rewrites

〈hn ,hn〉w =
K∑

k=1
ck e>1 hn(J k

N )> hn(J k
N )> e1 =

K∑
k=1

ck (zk
n)> zk

and similarly

〈h∗
n ,hn〉w =

K∑
k=1

ck e>1 hn(J k
N )> (J k

N )> hn(J k
N )> e1 =

K∑
k=1

ck (zk
n)> J k

N zk .
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Proof of Proposition 2.2.4

The proof follows several elementary steps

fN =
∫
R

f (x)HN (x)w(x)d x =
∫
R

f (x)HN (x)
k∑

k=1
ck vk (x)d x

=
K∑

k=1
ck

∫
R

f (x)HN (x)vk (x)d x =
K∑

k=1

N∑
n=0

ck

∫
R

qk
N ,n f (x)H k

n (x)vk (x)d x

=
K∑

k=1

N∑
n=0

ck qk
N ,n 〈 f , H k

n 〉vk

which proves (2.8) and where the third line results from (2.9) which gives the representation of

the polynomial HN (x) in the polynomials basis Hn(x).

Proof of Theorem 2.2.6

We want to compute∫
R

f (x)Ln(x)vk (x)d x =
p

n!p
Γ(α+n)Γ(α)

∫ ∞

µ
(eξ+

x
β −ek )L α−1

n (x) xα−1e−x d x

by a change of variable y =β(x −ξ), with µ= max(0,β(k −ξ)) and vk (x) as in (2.11). We first

show that

Iα−1
n (µ;ν) =

∫ ∞

µ
eνxL α−1

n (x) xα−1e−x d x

satisfies the recursive system (2.12). This directly follows from the recursive relations

L α−1
n (x) =

(
2+ α−2

n

)
L α−1

n−1 (x)− 1

n
x L α−1

n−1 (x)−
(
1+ α−2

n

)
L α−1

n−2 (x)

and the three-point rule

L α−1
n (x) =L α

n (x)−L α
n−1(x)

such that we obtain

Iα−1
n (µ;ν) =

(
2+ α−2

n

)
Iα−1

n−1 (µ;ν)−
(
1+ α−2

n

)
Iα−1

n−2 (µ;ν)− 1

n

(
Iαn−1(µ;ν)− Iαn−2(µ;ν)

)
.

We conclude by computing

Iα−1
0 (µ;ν) =

∫ ∞

µ
xα−1e−(1−ν)x d x = Γ(α)

(1−ν)α

∫ ∞

µ

(1−ν)α

Γ(α)
xα−1e−(1−ν)x d x

= Γ(α)

(1−ν)α

(
1−

∫ µ

0

(1−ν)α

Γ(α)
xα−1e−(1−ν)x )d x

)
= (1−ν)−α

(
Γ(α)−Γ(α,µ(1−ν))

)
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and since L α−1
1 (x) = (α+x) we get that

Iα−1
1 (µ;ν) =

∫ ∞

µ
(α+x)e−(1−ν)x xα−1d x =αIα−1

0 (µ;ν)+ Iα0 (µ;ν)

Proof of Equations (2.14)–(2.15)

The dynamics of the instantaneous variance V 2
t = d〈X 〉t /d t =Σ1(Yt )2 +Σ2(Yt )2 is of the form

dV 2
t = (· · · )d t +2

(
Σ′

1(Yt )Σ1(Yt )+Σ′
2(Yt )Σ2(Yt )

)
σ(Yt )dW1t .

The quadratic covariation between X t and Vt is therefore given by

d〈X ,V 2〉t = 2
(
Σ′

1(Yt )Σ1(Yt )+Σ′
2(Yt )Σ2(Yt )

)
σ(Yt )Σ1(Yt )d t

and the quadratic variation of Vt by

d〈V 2〉t = 4
(
Σ′

1(Yt )Σ1(Yt )+Σ′
2(Yt )Σ2(Yt )

)2
σ(Yt )2d t .

Equation (2.14) directly follows by observing that

2
(
Σ′

1(Yt )Σ1(Yt )+Σ′
2(Yt )Σ2(Yt )

)
σ(Yt )√

4
(
Σ′

1(Yt )Σ1(Yt )+Σ′
2(Yt )Σ2(Yt )

)2
σ(Yt )2

= sign
[
Σ′

1(Yt )Σ1(Yt )+Σ′
2(Yt )Σ2(Yt )σ(Yt )

]
,

and Equation (2.15) follows from the above and

d〈
√

V 2〉t = d〈V 2〉t

4V 2
t

.

Proof of Proposition 2.3.1

Conditional on the trajectory of W1t on [0,T ], the trajectory of Yt is observable and W2t is the

only source of randomness in the dynamics of XT which is thus equivalent to the dynamics

of a Gaussian process with time varying parameters. Hence, its conditional distribution is

given by a normal distribution with mean MT and variance CT as in (2.16) and (2.17). Taking

expectation gives (2.18)

Proof of Corollary 2.3.2

The first part of the proof follows from similar arguments as in Theorem 1.3.1. Note that it is

sufficient to consider only the component of w with the largest variance parameter.

It is clear that CT is bounded when Yt is bounded since Σ2(y)2 is a polynomial. The random
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variable MT is equivalently given by the expression

MT = X0 + (r −δ)T − 1

2

∫ T

0

(
Σ1(Yt )2 +Σ2(Yt )2)d t +

∫ T

0

Σ1(Yt )

σ(Yt )
(dYt −κ(θ−Yt )d t ).

Applying Ito’s lemma we get∫ T

0
Y n

t dYt = 1

n +1
(Y n+1

T −Y n+1
0 )− 1

2

∫ T

0
nY n−1

t
Σ1(Yt )

σ(Yt )
d t

which is bounded and so is MT given that that Σ1(y)/σ(y) and Σ1(Yt )2 +Σ2(Yt )2 are some

polynomials, and that Yt is itself bounded.

2.7 Conclusion

In this chapter, we showed that option price series representations can also be derived in a

tractable way when the auxiliary density is a mixture distribution. We presented methodologies

to specify a Gaussian mixture for the auxiliary density for a class of stochastic volatility models,

and indicate that accurate option price approximations are possible even when the log price

density does not belong to the corresponding weighted space. We then provided numerical

examples that illustrate the performance of this approach.
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3 Linear Credit Risk Models

We introduce a novel class of credit risk models in which the drift of the survival process of

a firm is a linear function of the factors. The prices of defaultable bonds and credit default

swaps (CDS) are linear-rational in the factors. The price of a CDS option can be uniformly

approximated by polynomials in the factors. Multi-name models with simultaneous defaults,

positively and negatively correlated default intensities, and stochastic interest rates can be

constructed. An empirical study illustrates the versatility of these models by fitting CDS spread

time series. A numerical analysis validates the efficiency of the option price approximation

method.

3.1 Introduction

Credit risk is inherent to virtually all financial securities. Breach of contracts caused by the

nonpayment of cash flows, as well as variations in asset values caused by changing default risk,

are omnipresent in financial markets. The underestimation of credit risk before the financial

crisis incited regulators around the globe to force financial institutions to better manage and

report credit risk. The complexity of credit risky portfolios and the securities therein renders

the valuation of credit risk a challenging task that calls for suitable models.

In this chapter we introduce a novel class of flexible and tractable reduced form models for

the term structure of credit risk, the linear credit risk models. We directly specify the survival

process of a firm, that is, its conditional survival probability given the economic background

information. Specifically, we assume a multivariate factor process with a linear drift and let

the drift of the survival process be linear in the factors. Prices of defaultable bonds and credit

default swaps (CDS) are given in closed-form by linear-rational functions in the factors. By

linearity, the same result holds for the prices of CDSs on indices. The implied default intensity

is an explicit linear-rational function of the factors. In contrast, the price of a CDS in an

affine default intensity model is a sum of exponential-affine functions in the factors process

and whose coefficients are given by the solutions of nonlinear ordinary differential equations

which may not be explicit. In addition, the linear credit risk models offer new tractable features
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such as a multi-name model with negatively correlated default intensity.

Within the linear framework we define the linear hypercube (LHC) model which is a single-

firm model. The factor process is diffusive with quadratic diffusion function so that it takes

values in a hypercube whose edges’ length is given by the survival process. The quadratic

diffusion function is concave and bi-monotonic. This feature allows factors to virtually jump

between low and high values. This facilitates the persistence and likelihood of term structure

shifts. The factors’ volatility parameters do not enter the bond and CDS pricing formulas, yet

they impact the volatility of CDS spreads and thus affect CDS option prices. This may facilitate

the joint calibration of credit spread and option price time series. We discuss in detail the

one-factor LHC model and compare it with the one-factor affine default intensity model. We

provide an identifiable canonical representation and the market price of risk specifications

that preserve the linear drift of the factors.

We present a price approximation methodology for European style options on credit risky

underlyings that exploits the compactness of the state space and the closed-form of the

conditional moments of the factor process. First, by the Stone–Weierstrass theorem, any

continuous payoff function on the compact state space can be approximated by a polynomial

to any given level of accuracy. Second, the conditional expectation of any polynomial in the

factors is a polynomial in the prevailing factor values. In consequence, the price of a CDS

option can be uniformly approximated by polynomials in the factors. This method also applies

to the computation of credit valuation adjustments.

We develop multi-name models by letting the survival processes be linear and polynomial

combinations of independent LHC models. Bonds and CDSs are still linear but with respect to

an extended factor representation. These direct extensions can easily accommodate the inclu-

sion of new factors and new firms. Stochastic short rate models with a similar specification as

the survival processes can be introduced while preserving tractability. Simultaneous defaults

can be produced either by introducing a common jump process in the survival processes, or

by a random time change

We perform an empirical and numerical analysis of the LHC model. Assuming a parsimonious

cascading drift structure, we fit two- and three-factor LHC models to the ten-year long time

series of weekly CDS spreads on an investment grade and a high yield firm. The three-factor

model is able to capture the complex term structure dynamics remarkably well and performs

significantly better than the two-factor model. We illustrate the numerical efficiency of the

option pricing method by approximating the prices of CDS options with different moneyness.

Polynomials of relatively low orders are sufficient to obtain accurate approximations for in-

the-money options. Out-of-the money options typically require a higher order. We show that

the CDS option on a homogeneous portfolio can be also approximated efficiently.

We now review some of the related literature. Our approach follows a standard doubly stochas-

tic construction of default times as described in (Elliott, Jeanblanc, and Yor 2000) or (Bielecki

and Rutkowski 2002). The early contributions by (Lando 1998) and (Duffie and Singleton

64



3.1. Introduction

1999) already make use of affine factor processes. In contrast, the factor process in the LHC

model is a strictly non-affine polynomial diffusion, whose general properties are studied in

(Filipović and Larsson 2016). The stochastic volatility models developed in (Hull and White

1987) and Chapter 1 are two other examples of non-affine polynomial models. Factors in

the LHC models have a compact support and can exhibit jump-like dynamics similar to the

multivariate Jacobi process introduced by (Gourieroux and Jasiak 2006). Our approach has

some similarities with the linearity generating process by (Gabaix 2009) and the linear-rational

models by (Filipović, Larsson, and Trolle 2017). These models exploit the tractability of the

factor processes with linear drift and target non default risky asset pricing. To our knowledge,

we are the first to model directly the survival process of a firm with linear drift characteristics.

Options on CDS contracts are complex derivatives and intricate to price. The pricing and

hedging of CDS options in a generic hazard process framework is discussed in (Bielecki, Jean-

blanc, and Rutkowski 2006) and (Bielecki, Jeanblanc, Rutkowski, et al. 2008), and specialised

to the square-root diffusion factor process in (Bielecki, Jeanblanc, and Rutkowski 2011). More

recently (Brigo and El-Bachir 2010) developed a semi-analytical expression for CDS option

prices in the context of a shifted square-root jump-diffusion default intensity model that

was introduced in (Brigo and Alfonsi 2005). Another strand of the literature has focused on

developing market models in the spirit of LIBOR market models. We refer the interested reader

to (Schönbucher 2000), (Hull and White 2003), (Schönbucher 2004), (Jamshidian 2004), and

(Brigo and Morini 2005). Black-Scholes like formulas are then obtained for the prices of CDS

options by assuming, for example, that the underlying CDS spread follows a geometric Brow-

nian motion under the survival measure. Although offering more tractability, this approach

makes it difficult, if not impossible, to consistently valuate multiple instruments exposed to

the same credit risk. (Di Graziano and Rogers 2009) introduced a framework where they ob-

tained explicit expressions which are similar to ours for CDS prices, but under the assumption

that the firm default intensity is driven by a continuous-time finite-state irreducible Markov

chain. Another tractable approach to price multi-name credit derivatives is to model the

dependence between defaults with a copula function, as for examples in (Li 2000) or (Laurent

and Gregory 2005). However these models are by construction static and require repeated

calibration, and they become intractable when combined with stochastic survival processes as

in (Schönbucher and Schubert 2001). The idea of approximating option prices by power series

can be traced back to (Jarrow and Rudd 1982). However, most of the previous literature has

focussed on approximating the transition density function of the underlying process, see for

example (Corrado and Su 1996) and (Filipović, Mayerhofer, and Schneider 2013). In contrast,

we approximate directly the payoff function by a polynomial.

The remainder of the chapter is structured as follows. Section 3.2 presents the linear credit

risk framework. Section 3.3 describes the LHC model and Section 3.4 some extensions. The

numerical and empirical analysis is in Section 3.5. Section 3.6 describes the two-dimensional

Chebyshev interpolation. Section 3.7 provides some additional results on market price of

risk specifications that preserve the linear drift of the factors. The proofs are collected in

Section 3.8. Section 3.9 concludes.
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3.2 The Linear Framework

We introduce the linear credit risk model framework and derive closed-form expressions for

defaultable bond prices and credit default swap spreads. We also discuss the pricing of credit

default swap options, and of credit valuation adjustments.

3.2.1 Survival Process Specification

We fix a stochastic basis (Ω,F ,Ft ,Q), where Ft represents the economic background informa-

tion and Q is the risk-neutral pricing measure. We consider N firms and let Si
t be the survival

process of firm i . This is a right-continuous Ft -adapted and non-increasing positive process

with Si
0 = 1. Let U 1, . . . ,U N be standard uniform random variables which are independent

from F∞ and from each other. For each firm, we define the random time

τi := inf{t ≥ 0 | Si
t ≤Ui },

which is infinity if the set is empty. Let H i
t be the filtration generated by the indicator process

H i
t = 1{τi>t }, which is one as long as firm i has not defaulted by time t , and zero afterwards.

The default time τi is a stopping time in the enlarged filtration Ft ∨H i
t . It is Ft -doubly

stochastic in the sense that

P [τi > t |F∞] =P
[

Si
t >Ui |F∞

]
= Si

t .

The filtration Gt =Ft ∨H 1
t ∨·· ·∨H N

t contains all the information about the occurrence of

firm defaults, as well as the economic background information. Henceforward we omit the

index i of the firm and refer to any of the N firms as long as there is no ambiguity.

In a linear credit risk model the survival process of a firm is defined by

St = a>Yt (3.1)

for some firm specific parameter a ∈ Rn+, and some common factor process (Yt , X t ) taking

values in Rn+×Rm with linear drift of the form

dYt = (c Yt +γX t )d t +d M Y
t (3.2)

d X t = (b Yt +βX t )d t +d M X
t (3.3)

for some c ∈ Rn×n , b ∈ Rm×n , γ ∈ Rn×m , β ∈ Rm×m , m-dimensional Ft -martingale M X
t , and

n-dimensional Ft -martingale M Y
t . The process St being positive and non-increasing, we

necessarily have that its martingale component M S
t = a>M Y

t is of finite variation and thus

purely discontinuous, see (Jacod and Shiryaev 2013, Lemma I.4.14), and that −St− <∆M S
t ≤ 0

because ∆St =∆M S
t . This observation motivates the decomposition of the factor process into

a component X t and a component Yt with finite variation. Although we do not specify further

the dynamics of the factor process at the moment, it is important to emphasize that additional
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conditions should be satisfied to ensure that St is a valid survival process.

Remark 3.2.1. In practice we will consider a componentwise non-increasing process Yt with

Y0 = 1. Survival processes can then easily be constructed by choosing any vector a ∈ Rn+ such

that a>1 = 1.

The linear drift of the process (Yt , X t ) implies that the Ft -conditional expectation of (Yt , X t ) is

linear of the form

E

[(
YT

XT

)
|Ft

]
= eA(T−t )

(
Yt

X t

)
, t ≤ T, (3.4)

where the (m +n)× (m +n)-matrix A is defined by

A =
(

c γ

b β

)
. (3.5)

Remark 3.2.2. If St is absolutely continuous, so that a>d M Y
t = 0 for all t ≥ 0, the corresponding

default intensity λt that derives from the relation St = e−
∫ t

0 λs d s is linear-rational in (Yt , X t ) of

the form

λt =−a>(c Yt +γX t )

St
.

In this framework, the default times are correlated because the survival processes are driven

by common factors. Simultaneous defaults are possible and may be caused by the martingale

components of Yt that forces the survival processes to jump downward at the same time.

Additionally, and to the contrary of affine default intensities models, the linear credit risk

framework allows for negative correlation between default intensities as illustrated by the

following stylized example.

Example 3.2.3. Consider the factor process (Yt , X t ) taking values in R2+×R defined by

dYt = ε

2

((
−1 0

0 −1

)
Yt +

(
−1

1

)
X t

)
d t

d X t =−κX t d t +σ
√

(e−εt −X t )(e−εt +X t )dWt

for some κ> ε> 0, σ> 0, X0 ∈ [−1,1], and Ft -adapted univariate Brownian motion Wt . The

process X t takes values in the interval [−e−εt ,e−εt ] at time t . Define N = 2 survival processes as

follows

S1
t = Y1t and S2

t = Y2t
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so that the implied default intensities of the two firms rewrite

λ1
t =

ε

2

(
1+ X t

Y1t

)
and λ2

t =
ε

2

(
1− X t

Y2t

)
which results in d〈λ1,λ2〉t ≤ 0 and λ1

t ,λ2
t ≤ ε as shown in Section 3.8.

3.2.2 Defaultable Bonds

We consider securities with notional value equal to one and exposed to the credit risk of a

reference firm. We assume a constant risk-free interest rate equal to r such that the time-t

price of the risk-free zero-coupon bond price with maturity T and notional value one is given

by e−r (T−t ). The following result gives a closed-form expression for the price of a defaultable

bond with constant recovery rate at maturity.

Proposition 3.2.4. The time-t price of a defaultable zero-coupon bond with maturity T and

recovery δ ∈ [0,1] at maturity is

BM(t ,T ) = E[
e−r (T−t ) (

1{τ>T } +δ1{τ≤T }
) |Gt

]= (1−δ)BZ(t ,T )+1{τ>t }δe−r (T−t )

where BZ(t ,T ) = e−r (T−t )E
[
1{τ>T } |Gt

]
denotes the time-t price of a defaultable zero-coupon

bond with maturity T and zero recovery. It is of the form

BZ(t ,T ) =1{τ>t }
1

St
ψZ(t ,T )>

(
Yt

X t

)
(3.6)

where the vector ψZ(t ,T ) ∈R1+m is given by

ψZ(t ,T )> = e−r (T−t )
(
a> 0

)
eA(T−t ).

The next result shows that the price of a defaultable bond paying a constant recovery rate at

default can also be retrieved in closed-form.

Proposition 3.2.5. The time-t price of a defaultable zero-coupon bond with maturity T and

recovery δ ∈ [0,1] at default is

BD(t ,T ) = E[
e−r (T−t )

1{τ>T } +δe−r (τ−t )
1{t<τ≤T } |Gt

]= BZ(t ,T )+δCD(t ,T ),

where CD(t ,T ) = E[
e−r (τ−t )

1{t<τ≤T } |Gt
]

denotes the time-t price of a contingent claim paying

one at default if it occurs between dates t and T . It is of the form

CD(t ,T ) =1{τ>t }
1

St
ψD(t ,T )>

(
Yt

X t

)
(3.7)
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where the vector ψD(t ,T ) ∈R1+m is given by

ψD(t ,T )> =−a>
(
c γ

)(∫ T

t
eA∗(s−t )d s

)
(3.8)

where A∗ = A− r Id.

The price of a security whose only cash flow is proportional to the default time is given in the

following corollary. It is of interest to compute the expected accrued interests at default for

some contingent securities such as CDS.

Corollary 3.2.6. The time-t price of a contingent claim paying τ at default if it occurs between

date t and T is of the form

CD∗(t ,T ) = E[
τe−r (τ−t )

1{τ≤T }) |Gt
]=1{τ>t }

1

St
ψD∗(t ,T )>

(
Yt

X t

)
(3.9)

where the vector ψD∗(t ,T )> ∈R1+m is given by

ψD∗(t ,T )> =−a>
(
c γ

)(∫ T

t
s eA∗(s−t )d s

)
. (3.10)

Note the presence of a term s in the integral expression on the right hand side of (3.10) which

is absent in (3.8). The following Lemma shows that pricing formulas (3.7)–(3.9) can further

simplify with an additional condition.

Lemma 3.2.7. Assume that the matrix A∗ is invertible then the vectors in the contingent cash-

flow prices rewrite explicitly as follows

ψD(t ,T )> =−a>
(
c γ

)
A−1
∗

(
eA∗(T−t ) − Id

)
ψD∗(t ,T )> =−a>

(
c γ

)(
(T − t )A−1

∗ eA∗(T−t ) + A−1
∗ (Id t − A−1

∗ )(eA∗(T−t ) − Id)
)

where Id is the (m +n)-dimensional identity matrix.

This is a remarkable result since the prices of contingent cash flows become analytical ex-

pressions composed of basic matrix operations and are thus easily computed. Closed-form

formulas for defaultables securities renders the linear framework appealing for large scale ap-

plications, for example with a large number of firms and contracts, in comparison to standard

affine default intensity models that will require further numerical methods in general. For

illustration, assume that the survival process St is absolutely continuous so that it admits the

default intensity λt as in Remark 3.2.2. Then CD(t ,T ) can be rewritten as

CD(t ,T ) =1{τ>t }

∫ T

t
e−r (u−t )E

[
λue−

∫ u
t λs d s |Ft

]
du.
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With affine default intensity models the expectation to be integrated requires solving Riccati

equations, which have an explicit solution only when the default intensity is driven by a sum

of independent univariate CIR processes. Numerical methods such as finite difference are

usually employed to compute the expectation with time-u cash flow for u ∈ [t ,T ]. The integral

can then only be approximated by means of another numerical method such as quadrature,

that necessitates solving the corresponding ODEs at many different points u. For more details

on affine default intensity models we refer to (Duffie and Singleton 2012), (Filipović 2009),

and (Lando 2009).

3.2.3 Credit Default Swaps

Single-Name CDS

A CDS is an insurance contract that pays at default the realized loss on a reference bond – the

protection leg – in exchange of periodic payments that will stop after default – the premium

leg. We consider the following discrete tenor structure t ≤ T0 < T1 < ·· · < TM and a contract

offering default protection from date T0 to date TM . When t < T0 the contract is usually called

a knock out forward CDS and generates cash flows only if the firm has not defaulted by time

T0. We consider a CDS contract with notional value equal to one. The time-t value of the

premium leg with spread k is given by k Vprem(t ,T0,TM ) where

Vprem(t ,T0,TM ) =Vcoup(t ,T0,TM )+Vai(t ,T0,TM )

is the sum of the value of coupon payments before default

Vcoup(t ,T0,TM ) = E
[

M∑
j=1

e−r (T j−t )(T j −T j−1)1{T j<τ} |Gt

]

and the value of the accrued coupon payment at the time of default

Vai(t ,T0,TM ) = E
[

M∑
j=1

e−r (τ−t )(τ−T j−1)1{T j−1<τ≤T j } |Gt

]
.

The time-t value of the protection leg is

Vprot(t ,T0,TM ) = (1−δ)E
[
e−r (τ−t )

1{T0<τ≤TM } |Gt
]

,

where δ ∈ [0,1] denotes the constant recovery rate at default. The (forward) CDS spread

CDS(t ,T0,TM ) is the spread k that makes the premium leg and the protection leg equal in

value at time t . That is,

CDS(t ,T0,TM ) = Vprot(t ,T0,TM )

Vprem(t ,T0,TM )
.
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Proposition 3.2.8. The values of the protection and premium legs are given by

Vprot(t ,T0,TM ) =1{τ>t }
1

St
ψprot(t ,T0,TM )>

(
Yt

X t

)
(3.11)

Vprem(t ,T0,TM ) =1{τ>t }
1

St
ψprem(t ,T0,TM )>

(
Yt

X t

)
(3.12)

where the vectors ψprot(t ,T0,TM ),ψprem(t ,T0,TM ) ∈R1+m are given by

ψprot(t ,T0,TM ) = (1−δ)
(
ψD(t ,TM )−ψD(t ,T0)

)
,

ψprem(t ,T0,TM ) =
M∑

j=1
(T j −T j−1)ψZ(t ,T j )+ψD∗(t ,TM )−ψD∗(t ,T0)

+TM−1ψD(t ,TM )−
M−1∑
j=1

(T j −T j−1)ψD(t ,T j )−T0ψD(t ,T0).

The CDS spread is given by a readily available linear-rational expression,

CDS(t ,T0,TM ) =1{τ>t }

ψprot(t ,T0,TM )>
(

Yt

X t

)

ψprem(t ,T0,TM )>
(

Yt

X t

) . (3.13)

This is a remarkably simple expression that allows us to see how the factors (Yt , X t ) affect the

CDS spread through the vectors ψprot(t ,T0,TM ) and ψprem(t ,T0,TM ). For comparison, in an

affine default intensity model the two legs Vprot(t ,T0,TM ) and Vprem(t ,T0,TM ) are given as

sums of exponential-affine terms that cannot be simplified further.

Multi-Name CDS

A credit default index swap (CDIS) is an insurance on a reference portfolio of N firms with

equal weight that we assume to be 1/N so that the portfolio total notional is equal to one. The

protection buyer pays a regular premium that is proportional to the current nominal value of

the CDIS. Let δ ∈ [0,1] be the recovery rate determined at inception. Upon default of a firm

the protection seller pays 1−δ to the protection buyer and the notional value of the CDIS

decreases by 1/N . These steps repeat until maturity or until all the firms in the reference

portfolio have defaulted, whichever comes first.
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The CDIS spread simplifies to a double linear-rational expression,

CDIS(t ,T0,TM ) =

∑N
i=11{τi>t } (1/Si

t )ψi
prot(t ,T0,TM )>

(
Yt

X t

)
∑N

i=11{τi>t } (1/Si
t )ψi

prem(t ,T0,TM )>
(

Yt

X t

)

where ψi
prot(t ,T0,TM ) and ψi

prem(t ,T0,TM ) are defined as in Proposition 3.2.8 for the i -th firm.

Unspanned Factors

The characteristics of the martingales M Y
t and M X

t do not appear explicitly in the bond, CDS

and CDIS pricing formulas. This leaves the freedom to specify exogenous factors that feed

into M Y
t and M X

t . Such factors would be unspanned by the term structures of defaultable

bonds and CDS and give rise to unspanned stochastic volatility, as described in (Filipović,

Larsson, and Trolle 2017). They provide additional flexibility for fitting time series of bond

prices and CDS spreads. Furthermore, these unspanned stochastic volatility factors affect

the distribution of the survival and factor processes and therefore can be recovered from the

prices of credit derivatives such as those discussed hereinafter.

3.2.4 CDS Option and CDIS Option

A CDS option with strike spread k is a European call option on the CDS contract exercisable

only if the firm has not defaulted before the option maturity date T0. Its payoff is

1{τ>T0}
(
Vprot(T0,T0,TM )−k Vprem(T0,T0,TM )

)+ = 1{τ>T0}

ST0

(
ψcds(T0,T0,TM ,k)>

(
YT0

XT0

))+
(3.14)

with

ψcds(t ,T0,TM ,k) =ψprot(t ,T0,TM )−kψprem(t ,T0,TM ). (3.15)

Denote VCDSO(t ,T0,TM ,k) the price of the CDS option at time t ,

VCDSO(t ,T0,TM ,k) = E
[

e−r (T0−t )1{τ>T0}

ST0

(
ψcds(T0,T0,TM ,k)>

(
YT0

XT0

))+
|Gt

]

=1{τ>t }
e−r (T0−t )

St
E

[(
ψcds(T0,T0,TM ,k)>

(
YT0

XT0

))+
|Ft

] (3.16)

where the second equality follows directly from Lemma 3.8.1.

The price of a CDS option is therefore equal to the expected positive part of a linear function

of (YT0 , XT0 ), adjusted for time value and realized credit risk. When the characteristic function
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of the process (YT0 , XT0 ) is available such expression can be computed efficiently using Fourier

transform techniques. An alternative method is presented in Section 3.3.2 which is based

on the polynomial approximation of the payoff function and the conditional moments of

(YT0 , XT0 ).

A CDS index option gives the right at time T0 to enter a CDS index contract with strike k and

maturity TM on the firms in the reference portfolio which have not defaulted and, simultane-

ously, to receive the losses realized before the exercise date T0. Denote by VCDISO(t ,T0,TM ,k)

the price of the CDIS option at time t ≤ T0,

VCDISO(t ,T0,TM ,k) =

E

[
e−r (T0−t )

N

(
N∑

i=1

1{τi>T0}

Si
T0

ψi
cds(T0,T0,TM ,k)>

(
YT0

XT0

)
+ (1−δ)1{τi≤T0}

)+
|Gt

]
. (3.17)

Proposition 3.2.9. The price of a CDIS option is given by

VCDISO(t ,T0,TM ,k) = ∑
α∈C

e−r (T0−t )

N
E

[(
N∑

i=1

αi

Si
T0

ψi
cds(T0,T0,TM ,k)>

(
YT0

XT0

)
+ (1−δ)(1−αi )

)+

×
N∏

i=1

(
(Si

T0
)αi (Si

t −Si
T0

)1−αi

Si
t

1{τi>t } + (1{τi≤t })
1−αi

)
|Ft

]
(3.18)

where C = {0,1}N is the set of all possible defaults combinations, with the convention 00 = 0,

and we write α= (α1, . . . ,αN ).

3.2.5 Credit Valuation Adjustment

The unilateral credit valuation adjustment (UCVA) of a position is the present value of losses

resulting from its cancellation when a bilateral counterparty defaults.

Proposition 3.2.10. The time-t price of the UCVA with maturity T and time-u net positive

exposure f (u,Su ,Yu , Xu), for some continuous function f (u, s, y, x), is

UCVA(t ,T ) = E[
e−r (τ−t )

1{t<τ≤T } f (τ,Sτ,Yτ, Xτ) |Gt
]

=1{τ>t }
1

St

∫ T

t
e−r (u−t )E

[
f (u,Su ,Yu , Xu) a>(c Yu +γ>Xu) |Ft

]
du.

where τ is the counterparty default time.

Computing the UCVA therefore boils down to a numerical integration of European style option

prices. As is the case for CDS options, these option prices can be uniformly approximated as

described in Section 3.3.2. We refer to (Brigo, Capponi, and Pallavicini 2014) for a thorough

analysis of bilateral counterparty risk valuation in a doubly stochastic default framework.
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3.3 The Linear Hypercube Model

The linear hypercube (LHC) model is a single-name model, that is n = 1 so that St = Yt ∈ (0,1].

We first present the single-name model and discuss in greater details the one-factor model.

We conclude by developing a methodology to price virtually all credit derivatives within this

class of models.

The LHC model assumes that the survival process is absolutely continuous, as in Remark 3.2.2,

and that the factor process X t is diffusive and takes values in a hypercube whose edges’ length

is given by St . More formally the state space of (St , X t ) is given by

E = {
(s, x) ∈R1+m : s ∈ (0,1] and x ∈ [0, s]m}

.

The dynamics of (St , X t ) is

dSt =−γ>X t d t

d X t = (bSt +βX t )d t +Σ(St , X t )dWt
(3.19)

for some γ ∈Rm+ and some m-dimensional Brownian motion Wt , and where the dispersion

matrix Σ(St , X t ) is given by

Σ(s, x) = diag
(
σ1

√
x1(s −x1), . . . , σm

√
xm(s −xm)

)
(3.20)

with volatility parameters σ1, . . . , σm ≥ 0.

Let (St , X t ) be an E-valued solution of (3.19). It is readily verified that St is non-increasing and

that the parameter γ controls the speed at which it decreases

0 ≤ γ>X t ≤ γ>1St

which implies

0 ≤λt ≤ γ>1 and St ≥ S0e−γ
>1 t > 0 for any t ≥ 0. (3.21)

Note that the default intensity upper bound γ>1 depends on γ, which is estimated from

data. Therefore, a crucial step in the model validation procedure is to verify that the range of

possible default intensities is sufficiently wide. The following theorem gives conditions on the

parameters such that the LHC model (3.19) is well defined.

Theorem 3.3.1. Assume that, for all i = 1, . . . , m,

bi −
∑
j 6=i

β−
i j ≥ 0, (3.22)

γi +βi i +bi +
∑
j 6=i

(γ j +βi j )+ ≤ 0. (3.23)
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dS

dX

dX

dX

dS

(1, 0) (1, 1)

(0, 0)

Figure 3.1 – State space of the LHC model with a single factor.
Illustrations of the inward pointing drift conditions at the state space boundaries. The survival process value is given by the
y-axis and the factor value by the x-axis.

Then for any initial law of (S0, X0) with support in E there exists a unique in law E-valued

solution (St , X t ) of (3.19). It satisfies the boundary non-attainment, for some i = 1, . . . ,m,

1. Xi t > 0 for all t ≥ 0 if Xi 0 > 0 and

bi −
∑
j 6=i

β−
i j ≥

σ2
i

2
, (3.24)

2. Xi t < St for all t ≥ 0 if Xi 0 < S0 and

γi +βi i +bi +
∑
j 6=i

(γ j +βi j )+ ≤−σ
2
i

2
. (3.25)

The state space E is a regular (m +1)-dimensional hyperpyramid. Figure 3.1 shows E when

m = 1 and illustrates the drift inward pointing conditions (3.22)–(3.23) at the boundaries of E .

Remark 3.3.2. One may consider a more generic specification of the process with a dispersion

matrix given by

Σ(s, x) = diag
(
σ1

√
x1(L1s −x1), . . . , σm

√
xm(Lm s −xm)

)
for some positive constants L1, . . . , Lm . Lemma 3.8.3 shows that such model is observationally

equivalent to the above specification.

In Section 3.7 we describe all possible market price of risk specifications under which the drift

function of (St , X t ) remains linear.
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Remark 3.3.3. The instantaneous volatility of Xi t is maximal at the center of its support and

decreases to zero at its boundaries. As a consequence, some factors may alternate visits to the

lower part and upper part of their supports, and therefore may mimic regime-shifting behaviors.

3.3.1 One-Factor LHC Model

The default intensity of the one-factor LHC model, m = 1, has autonomous dynamics of the

form

dλt =
(
λ2

t +βλt +bγ
)

d t +σ
√
λt (γ−λt )dWt .

The diffusion function of λt is the same as the diffusion function of a Jacobi process taking

values in the compact interval [0,γ]. However, the drift of λt includes a quadratic term that is

neither present in Jacobi nor in affine processes.1 Conditions (3.22)–(3.23) in Theorem 3.3.1

rewrite

b ≥ 0 and (γ+b +β) ≤ 0.

That is, the drift of λt is nonnegative at λt = 0 and nonpositive at λt = γ. We can factorize the

drift as

λ2
t +βλt +bγ= (λt −`1)(λt −`2)

for some roots 0 ≤ `1 ≤ γ ≤ `2. This way, the default intensity mean-reverts to `1. The

corresponding original parameters are β=−(`1 +`2) and bγ= `1`2, so that the drift of the

factor X t reads

βSt +B X t = (`1 +`2)

(
`1`2

γ(`1 +`2)
St −X t

)
. (3.26)

As a sanity check we verify that the constant default intensity case λt = γ is nested as a special

case. This is equivalent to have X t = St which can be obtained by specifying the dynamics

d X t =−γX t d t for the factor process and the initial condition X0 = 1. This corresponds to the

roots `1 = 0 and `2 = γ.

The dynamics of the standard one-factor affine model on R+ is

dλt = `2(`1 −λt )d t +σ
√
λt dWt ,

where `2 is the mean-reversion speed and `1 the mean-reversion level. Figure 3.2 shows

the drift and diffusion functions of the default intensity for the one-factor LHC and affine

models. The drift function is affine in the affine model whereas it is quadratic in the LHC

1The Jacobi process has been used in (Delbaen and Shirakawa 2002) to model the short rate in which case the
risk-free bond prices are given by weighted series of Jacobi polynomials in the short rate value.
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0 `1 γ

0

3σ

σ

0 γ

0

Figure 3.2 – Comparison of the one-factor LHC and CIR models.
Drift and diffusion functions of the default intensity for the one-factor LHC model (black line) and affine model (grey line). The
parameter values are `1 = 0.05, `2 = 1, and γ= 0.25. s

model. However, for reasonable parameters values, the drift functions look similar when the

default intensity is smaller than the mean-reversion level `1. On the other hand, the force of

mean-reversion above `1 is smaller and concave in the LHC model. The diffusion function

is strictly increasing and concave for the affine model whereas it has a concave semi-ellipse

shape in the LHC model. The diffusion functions have the same shape on [0,γ/2] but typically

do not scale equivalently in the parameter σ. Note that the parameter γ can always be set

sufficiently large so that the likelihood of λt going above γ/2 is arbitrarily small.

3.3.2 Option Price Approximation

We saw in Sections 3.2.4 and 3.2.5 that the pricing of a CDS option or a UCVA boils down to

computing a Ft -conditional expectation of the form

Φ( f ; t ,T ) = E[
f (ST , XT ) |Ft

]
for some continuous function f (y, x) on E . We now show how to approximate Φ( f ; t ,T )

in analytical form by means of a polynomial approximation of f (y, x). The methodology

presented hereinafter applies to any linear credit risk model which has a compact the state

space E and for which the Ft -conditional higher moments of (YT , XT ) are computable.

To this end, we first recall how the factors moments can be efficiently computed as described

in (Filipović and Larsson 2016). Denote by Poln(E ) the set of polynomials p(s, x) on E of degree

n or less. It is readily seen that the generator of (St , X t ),

G f (s, x) = (−γ>x, (βs +B x)>
)∇ f (s, x)+ 1

2

m∑
i=1

∂2 f (s, x)

∂x2
i

σ2
i xi (s −xi ), (3.27)

is polynomial in the sense that

GPoln(E) ⊂ Poln(E) for any n ∈N.
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Let Nn = (n+1+m
n

)
denote the dimension of Poln(E) and fix a polynomial basis {h1, . . . ,hNn } of

Poln(E). We define the function of (s, x)

Hn(s, x) := (h1(s, x), . . . ,hNn (s, x))>

with values in RNn . There exists a unique matrix representation Gn of G |Poln (E) with respect to

this polynomial basis such that for any p ∈ Poln(E) we can rewrite

G p(s, x) = Hn(s, x)>Gn ~p

where ~p is the coordinate representation of p. (Filipović and Larsson 2016, Theorem (3.1))

then states that for any t ≤ T we have

E
[
p(ST , XT ) |Ft

]= Hn(St , X t )>eGn (T−t )~p. (3.28)

Remark 3.3.4. The choice for the basis Hn(x, s) of Poln(E) is arbitrary and one may simply

consider the monomial basis,

Hn(s, x) = {1, s, x1, . . . , xm , s2, sx1, x2
1 , . . . , xn

m}

in which Gn is block-diagonal. There are efficient algorithms to compute the matrix exponential

eGn (T−t ), see for example (Higham 2008). Note that only the action of the matrix exponential is

required, that is eGn (T−t )~p for some p ∈ Poln(E), for which specific algorithms exist as well, see

for examples (Al-Mohy and Higham 2011) and (Sidje 1998) and references within.

Now let ε> 0. From the Stone-Weierstrass approximation theorem (Rudin 1974, Theorem 5.8)

there exists a polynomial p ∈ Poln(E) for some n such that

sup
(s,x)∈E

∣∣ f (s, x)−p(s, x)
∣∣≤ ε. (3.29)

Combining (3.28) and (3.29) we obtain the desired approximation ofΦ( f ; t ,T ).

Theorem 3.3.5. Let p ∈ Poln(E) be as in (3.29). ThenΦ( f ; t ,T ) is uniformly approximated by

sup
t≤T

∥∥Φ( f ; t ,T )−Hn(St , X t )>eGn (T−t )~p
∥∥

L∞ ≤ ε. (3.30)

The approximating polynomial p in (3.29) needs to be found case by case. We illustrate this

for the CDS option (3.16) in Section 3.5.2 and for the CDIS (3.17) option on an homogenous

portfolio in Section 3.5.3.

Remark 3.3.6. Approximating the payoff function f (s, x) on a strict subset of the state space E

is sufficient to approximate an option price. Indeed, for any times t ≤ u ≤ T the process (Su , Xu)

takes values in

{(s, x) ∈ E : St ≥ s ≥ e−γ
>1(T−t )St } ⊂ E .
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A polynomial approximation on a compact set smaller than E can be expected to be more precise

and, as a result, to produce a more accurate price approximation.

3.4 Extensions

In this section we describe several model extensions. We first construct multi-name models,

then introduce stochastic interest rates, and finally include jumps to generate simultaneous

defaults.

3.4.1 Multi-Name Models

We build upon the LHC model to construct multi-name models with correlated default in-

tensities and which can easily accommodate the inclusion of new factors and firms. Yet this

approach can be applied to other linear credit risk models, as long as they belong to the class

of polynomial models. We consider d independent pairs of processes

(Y 1
t , X 1

t ), . . . , (Y d
t , X d

t ) (3.31)

where each pair (Y j
t , X j

t ) ∈R1+m j

+ is defined as (St , X t ) in Section 3.3. We therefore have that

Yt = (Y 1
t , . . . ,Y d

t ) with Y0 = 1, and X t = (X 1
t , . . . , X d

t ) with X0 ∈ [0,1]m where m = ∑d
i=1 mi . In

the following E denotes the state space of (Yt , X t ) and EY its restriction to Yt .

Denote ht = (h1
t , . . . ,hd

t ) the Rd+-valued process whose j -th component is given by the j -th

factor implied intensity,

h j
t =

γ j >X j
t

Y j
t

where the vector γ j ∈Rm j is the drift parameter of Y j
t as (3.19).

Linear Construction

The survival process of the firm i = 1, . . . , N can be defined as in (3.1), Si
t = a>

i Yt , for some

vector ai ∈Rn+ satisfying a>1 = 1. The implied default intensity λi
t of firm i is a convex sum of

the factor intensities,

λi
t = w i

t
>

ht

with the weights w i
j t = ai j Y j

t /Si
t > 0 satisfying

∑d
j=1 w i

j t = 1.
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Polynomial Construction

We show that polynomial specifications in (Yt , X t ) of the survival process are equivalent to the

linear specification (3.1)–(3.3) with an extended factors representation. Fix an integer n and

define the survival process of each firm i = 1, . . . , N as follows,

Si
t = pi (Yt ) (3.32)

for some polynomial pi (y) ∈ Poln(EY ) which is componentwise non-increasing and positive

on EY , and such that pi (1) = 1. Let Hn(y, x) be a polynomial basis of Poln(E) stacked in a row

vector and of the form

Hn(y, x) = (Hn(y), H∗
n (y, x)) (3.33)

where Hn(y) is itself a polynomial basis of Poln(EY ). Then,

Si
t = a>

i Yt

with the finite variation process Yt = Hn(Yt ), the factor process Xt = H∗
n (Yt , X t ) and where the

vector ai is given by the equation pi (y) = Hn(y) ai . It follows from the polynomial property that

the process (Yt ,Xt ) has a linear drift as in (3.2)–(3.3), where the explicit values for the vector

ai and for the matrix A defining its drift as in (3.5) will depend on the choice of polynomial

basis Hn(y, x).

Example 3.4.1. Take p(y) = yα = ∏d
i=1 yαi

i for some non negative integers α ∈ Nd , then the

implied default intensity of is a linear sum of the factor intensities λt =α>ht .

Remark 3.4.2. The dimension of Hn(y, x) is
(n+d+m

n

)
and may be large depending on the values

of m+d and n. However, given that the pairs (Y i
t , X i

t ) in (3.31) are independent, the conditional

expectation of a monomial rewrites

E

[
d∏

i=1
(Y i

T )αi (X i
T )βi |Ft

]
=

d∏
i=1

E
[

(Y i
T )αi (X i

T )βi |Ft

]
, T > t ,

for some αi ∈N and βi ∈Nm j for all i = 1, . . . ,d. Hence, to compute bonds and CDSs prices we

only need to consider d independent polynomial bases of total size at most equal to
∑d

i=1

(n+1+mi
n

)
.

3.4.2 Stochastic Interest Rates

A stochastic short rate model can be used to model stochastic interest rates while preserving

the model tractability. We denote the discount process D t = exp(−∫ t
0 rsd s) where rs is the

short rate value at time s. Assuming that the short rate is nonnegative, the discount process

has the same properties as the survival process and may thus be modeled in a similar way and,

possibly, with the same factors Yt . More precisely, we assume that D t = a>
r Yt for some ar ∈Rn+.

We follow Section 3.4.1 and let H2(y, x) be a polynomial basis of Pol2(E) which defines a new
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linear credit risk model (Yt ,Xt ) = (H2(Yt ), H∗
2 (Yt , X t )) whose linear drift is given by a matrix

A as in (3.5).

Proposition 3.4.3. The pricing vectors with stochastic interest rates are defined with respect to

(Yt ,Xt ) and given by

ψZ(t ,T )> =
(
a>

Z 0
)

eA (T−t )

where the vector aZ is given by H2(y)>aZ = (a>
r y)(a>y),

ψD(t ,T )> = a>
D

(∫ T

t
eA (s−t )d s

)
, ψD∗(t ,T )> = a>

D

(∫ T

t
s eA (s−t )d s

)
,

where the vector aD is given by H2(y, x) aD = (a>
r y)

(
−a>

(
c y γx

))
for the dynamics (3.2). The

pricing formulas (3.6), (3.7), and (3.9) then apply with r = 0, and a>
Z Yt in place of St .

In practice it can be sufficient to consider a basis strictly smaller than H2(y, x), as the following

example suggests.

Example 3.4.4. Consider two independent LHC models (Y j
t , X j

t ) with m j = 1 for j ∈ {1,2}, and

consider the following linear credit risk model with stochastic interest rate,

D t = Y 1
t and St = νY 1

t + (1−ν)Y 2
t (3.34)

for some constant ν ∈ (0,1). The calculation of bond and CDS prices only requires the subbases

H0(y, x) =
(

y2
1 y1 y2

)
, H1(y, x) =

(
y1x1 y1x2 x1 y2 x2

1 x1x2

)
,

whose total dimension is dim(H(y, x)) = 7 < dim(Pol2(E)) = 15. The drift term of the process

H(Yt , X t ) is

A =



0 0 −2γ1 0 0 0 0

0 0 0 −γ2 −γ1 0 0

b1 0 β1 0 0 −γ1 0

0 b2 0 β2 0 0 −γ1

0 b1 0 0 β1 0 0

σ2
1 0 2b1 −σ2

1 0 0 2β1 0

0 0 0 b1 b2 0 β1 +β2


where the subscripts indicate the LHC model identity. The pricing vectors in this basis are

aZ =
(
ν 1−ν

)
and aD =

(
0 0 −νγ1 −(1−ν)γ2 0 0 0

)
.
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3.4.3 Jumps and Simultaneous Defaults

There are two ways to include jumps in the survival process dynamics that may result in

simultaneous defaults. The first one is to let the martingale part of Yt be driven by a jump

process so that multiple survival processes may jump at the same time. The second is to let

time run with a stochastic clock leaping forward hence producing synchronous jumps in the

factors and the survival processes.

Let (Yt , X t ) be a LHC model as in (3.19) whose parameters γ,β,B satisfy Theorem 3.3.1, and

let Zt be a nondecreasing Lévy process with Lévy measure νZ (dζ) and drift bZ ≥ 0 that is

independent from the natural filtration of the Brownian motion Wt and the uniform random

variables U 1, . . . ,U N .

Jump-Diffusion Model

Assume that ∆Zt ≤ 1, we define the dynamics of the LHC model with jumps as follows

d

(
Yt

X t

)
=

(
0 −γ>
b β

)(
Yt−
X t−

)
d t +

(
0

Σ(Yt−, X t−)

)
dWt −

(
c Yt−+δ>X t−

diag(ν)X t−

)
d Zt

for some c > 0, δ ∈Rm+ , and ν ∈Rm+ such that

c +δ>1 < 1, c +δ>1 ≤ νi ≤ 1, i = 1, . . . ,m (3.35)

and νi < 1 if (3.24) applies, i = 1, . . . ,m (3.36)

Conditions (3.35)–(3.36) ensure that the process always jumps inside its state space. The same

process Zt can affect the dynamics of different (Yt , X t ) processes. Reciprocally, multiple jump

components can be included in the same (Yt , X t ).

The linear credit risk model representation of the model is then as follows,

d

(
Yt

X t

)
=

(
−c −(γ+δE[Z1])>

b β−diag(ν)E[Z1]

)(
Yt−
X t−

)
d t +

(
0

Σ(Yt−, X t−)

)
dWt −

(
c Yt−+δ>X t−

diag(ν)X t−

)
d Nt

with the martingale Nt = Zt −E[Z1]t .

Model with Stochastic Clock

We consider the time-changed process (Ȳt , X̄ t ) = (YZt , XZt ). The survival process in the time-

changed LHC model is similarly defined by

St = Ȳt

82



3.5. Case Studies

with the factor dynamics(
dȲt

d X̄ t

)
= Ā

(
Ȳt

X̄ t

)
d t +

(
0

d M X̄
t

)

where the (m +n)× (m +n)-matrix Ā is now given by

Ā = bZ A+
∫ ∞

0

(
eAζ− Id

)
νZ (dζ) (3.37)

with the matrix A as in Equation (3.5), see (Sato 1999, Chapter 6) and (Filipović and Larsson

2017). The time-changed LHC model remains a linear credit risk model. The background

filtration Ft is now the natural filtration of the process (YZt , XZt ). In general, the matrix Ā

will have to be computed by numerical integration, but in the following example it admits an

explicit expression.

Example 3.4.5. Let Zt be a Gamma process such that νZ (dζ) = γZ ζ
−1e−λZ ζdζ for some con-

stants λZ ,γZ > 0 and bZ = 0. If the eigenvalues of the matrix A have nonpositive real parts, the

drift of the time changed process (YZt , XZt ) is then equal to

Ā =−γZ log
(
Id−Aλ−1

Z

)
. (3.38)

Survival processes built from independent LHC models can be time changed with the same

stochastic clock Zt in order generate simultaneous defaults and thus default correlation.

3.5 Case Studies

We show that LHC models are able to capture complex term structure dynamics and that

option prices can be accurately approximated. First, we fit parsimonious multi-factor models

to CDS data and discuss the estimated parameters and factors. Second, we accurately ap-

proximate the price of CDS options at different moneyness for the three-factor model. The

methodology is then extended to approximate the payoff function of a CDS index option on

homogeneous portfolios.

3.5.1 CDS Calibration

In this section we calibrate the multi-factor LHC model to a high yield firm, Bombardier Inc.,

and also to an investment grade firm, Walt Disney Co., in order to show that the model flexibly

adjusts to different spread levels and dynamics. We also present a fast filtering and calibration

methodology which is specific to linear credit risk models.

83



Chapter 3. Linear Credit Risk Models

all 1 yr 2 yrs 3 yrs 4 yrs 5 yrs 7 yrs 10 yrs
Mean 274.51 144.07 194.80 243.38 279.43 329.40 357.10 373.71

Vol 165.23 156.66 158.95 153.31 147.95 141.14 130.46 121.64
Median 244.76 94.79 145.71 189.55 232.44 295.51 353.01 376.58

Min 28.02 28.02 39.22 59.50 86.64 109.58 146.32 171.29
Max 1288.71 1288.71 1151.92 1092.74 1062.57 1048.33 960.16 887.06

(a) Bombardier Inc.

all 1 yr 2 yrs 3 yrs 4 yrs 5 yrs 7 yrs 10 yrs
Mean 31.01 11.97 17.53 22.74 28.90 34.59 45.00 56.18

Vol 21.85 12.93 15.73 17.18 18.18 18.15 16.13 15.66
Median 26.30 7.70 12.42 17.39 24.31 30.45 42.98 55.58

Min 1.63 1.63 3.24 4.47 5.81 8.18 12.92 17.51
Max 133.02 79.38 102.20 115.19 120.62 126.43 127.22 133.02

(b) Walt Disney Co.

Table 3.1 – CDS spreads summary statistics.
The sample contains 552 weekly observations collected between January 1st 2005 and January 1st 2015 summing up to 3620
CDS spreads in basis point for each firm.

Data

The empirical analysis is based on composite CDS spread data from Markit which are essen-

tially averaged quotes provided by major market makers. At each date we include the available

spreads with the modified restructuring clause on contracts with maturities of 1, 2, 3, 4, 5, 7,

and 10 years. The sample starts on January 1th 2005 and ends on January 1th 2015. The data set

contains 552 weekly observations summing up to 3620 observed CDS spreads for each firm.

Time series of the 1-year, 5-year, and 10-year CDS spreads are displayed in Figure 3.3, as well

as the relative changes on the 5-year versus 1-year CDS spread. The two term-structures of

CDS spreads exhibit important fluctuations of their level, slope, and curvature. The time

series can be split into three time periods. The first period, before the subprime crisis, exhibits

low spreads in contango and low volatility. The second period, during the subprime crisis,

exhibits high volatility with skyrocketing spreads temporarily in backwardation. The crisis

had a significantly larger impact on the high yield firm for which the spreads have more

than quadrupled. The more recent period is characterized by a steep contango and a lot

of volatility. Figure 3.3 also shows that CDS spread changes are strongly correlated across

maturities. Summary statistics are reported in Table 3.1.

Model Specifications

The risk neutral dynamics of each survival process is given by the LHC model of Section 3.3

with two and three factors. We set γ= γ1e1, for some γ1 ≥ 0, and consider a cascading structure
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Figure 3.3 – CDS spreads data.
The first row displays the CDS spreads in basis points for the maturities 1 year (black), 5 years (grey), and 10 years (light-grey).
The second row displays the weekly changes in 1-year versus 5-year CDS spreads.

of the form

d Xi t = κi (θi X(i+1)t −Xi t )d t +σi

√
Xi t (St −Xi t )dWi t (3.39)

for i = 1, . . . , m −1 and

d Xmt = κm(θmSt −Xmt )d t +σm

√
Xmt (St −Xmt )dWmt (3.40)

for some parameters κ,θ,σ ∈Rm+ satisfying

θi ≤ 1− γ1

κi
(3.41)

for i = 1, . . . , m so that conditions (3.22)-(3.23) are satisfied. Indeed, we have that βi i =−κi ,

βi ,i+i = κiθi , and βi j = 0 otherwise, bm = κmθm and bi = 0 otherwise. It directly follows that

0 ≤ bi −
∑
j 6=i

β−
i j =1{i=m}κmθm =1{i=m}βmm

and for i = 1. . . , m

0 ≥ γi +βi i +bi +
∑
j 6=i

(γ j +βi j )+ = γ1 −κi +κiθi = γ1 +βi i +1{i 6=m}βi ,i+1 +1{i=m}bm .
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Chapter 3. Linear Credit Risk Models

The parameter conditions (3.22)-(3.23) therefore boil down to standard linear parameter

constraints when expressed with β and b. They are therefore compatible with a large number

of optimization algorithms.

This specification allows default intensity values to persistently be close to zero over extended

periods of time. It also allows to work with a multidimensional model parsimoniously as the

number of free parameters is equal to 3m+1 whereas it is equal to 3m+m2 for the generic LHC

model. The default intensity is then proportional to the first factor and given by λt = γ1X1t /St .

We denote the two-factor and three-factor linear hypercube cascade models by LHCC(2) and

LHCC(3), respectively. In addition, we estimate a three-factor model with parameter γ1 fixed

that we denote by LHCC(3)∗. This parameter value is fixed so as to be about twice as large as

the estimated γ1 from the LHCC(3) model. We estimate the constrained model in order to

determine whether the choice of the default intensity upper bound is critical for the empirical

results.

We set the risk-free rate equal to the average 5-year risk-free yield over the sample, r = 2.52%.

We make the usual assumption that the recovery rate is equal to δ = 40%. We also use

Lemma 3.2.7 to compute efficiently the CDS spreads, which is justified by the following

Proposition.

Proposition 3.5.1. Assume that r > 0, then the matrix A∗ = A − r Id with A as in (3.5) is

invertible for the cascade LHCC model defined in (3.39)–(3.40) and with γ= γ1e1.

Filtering and Calibration

We present an efficient methodology to filter the factors from the CDS spreads. We recall that

the CDS spread CDS(t ,T0,TM ) is the strike spread that renders the initial values of the CDS

contract equal to zero, we therefore obtain the affine equation

ψcds(t ,T0,TM ,CDS(t ,T0,TM ))>
(

1

Zt

)
= 0

under the assumption that τ> t , and with the normalized factor Zt = X t /St ∈ [0,1]m . There-

fore, in principle we could extract the pseudo factor Zt values from the observation of at

least m spreads with different maturities. The factor (St , X t ) values can then be inferred, for

example, by applying the Euler scheme to compute the survival process value, for example,

and then rescaling the pseudo factor,

Sti = Sti−1 −γ>X ti−1∆t and X ti = Sti Zti (3.42)
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for all the observation dates ti , and with St0 = 1. In practice, we consider all the observable

spreads and minimize the following weighted mean squared error

min
z

1

2

N i∑
k=1

(
ψcds(ti , ti ,T i

k ,CDS(ti , ti ,T i
k ))>

(
1

z

)/
ψprem(ti , ti ,Tk )>

(
1

Zti−1

))2

s.t. 0 ≤ zi ≤ 1, i = 1, . . . ,m

(3.43)

where T i
1 , . . . ,T i

N i are the maturities of the N i observed spreads at date ti , and ti−1 is the

previous observation date. Dividing the CDS price error by an approximation of the CDS

premium leg value gives an accurate approximation of the CDS spread error when Zti ≈ Zti−1 .

The above minimization problem is a linearly constrained quadratic optimization problem

which can be solved virtually instantaneously numerically.

For any parameter set we can extract the observable factor process at each date by recursively

solving (3.43) and applying (3.42). With the parameters and the factor process values we

can in turn compute the difference between the model and market CDS spreads. Therefore,

we numerically search the parameter set that minimizes the aggregated CDS spread root-

mean-squared-error (RMSE) by using the gradient-free Nelder-Mead algorithm together with

a penalty term to enforce the parameter constraints and starting from several randomized

initial parameter sets. Note that we do not calibrate the volatility parameters σi for i = 1, . . . ,m

since CDS spreads do not depend on the martingale components with linear credit risk models

and since the factor process is observable directly from the CDS spreads. The total number

of parameters for LHCC(2), LHCC(3), and LHCC(3)∗ model is therefore equal to 5, 7, and 6

respectively. Equipped with a fast filter and a low dimensional parameter space, the calibration

procedure is swift.

Remark 3.5.2. Alternatively one could estimate the parameters using the generalized method

of moments, performing a quasi-maximum likelihood estimation for example. This can be

implemented in a straightforward manner with the LHC model if the market price of risk

specification preserves the polynomial property of the factors as the real world conditional

moments of (St , X t ) would also then be analytical, see Section 3.7. However this approach comes

at the cost of more parameters and possibly more stringent conditions on them.

Parameters, Fitted Spreads, and Factors

The fitted parameters are reported in Table 3.2. An important observation is that the parameter

constraint in Equation (3.41) is binding for each dimension in all the fitted models. Besides

that, for both firms, it seems that there is some consistency in the calibrated parameter values,

and the calibrated default intensity upper bounds appear large enough to cover the high

spread values observed during the subprime crisis.

The fitted factors extracted from the calibration are used as input to compute the fitted

spreads. With the fitted spreads we compute the fitting errors for each date and maturity. Not
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LHCC(2) LHCC(3) LHCC(3)∗

γ1 0.205 0.201 0.400
κ1 0.546 1.263 1.316
κ2 0.421 0.668 0.884
κ3 0.385 0.668
θ1 0.624 0.841 0.696
θ2 0.512 0.699 0.548
θ3 0.478 0.401

(a) Bombardier Inc.

LHCC(2) LHCC(3) LHCC(3)∗

γ1 0.056 0.064 0.130
κ1 0.167 0.258 0.294
κ2 0.165 0.229 0.280
κ3 0.091 0.212
θ1 0.666 0.753 0.558
θ2 0.662 0.721 0.536
θ3 0.298 0.387

(b) Walt Disney Co.

Table 3.2 – Fitted parameters for the LHC models.

surprisingly the more flexible specification LHCC(3) seems to perform the best. Estimating

the default intensity upper bound γ1 instead of setting an arbitrarily large value improves the

calibration. Table 3.3 reports summary statistics of the errors by maturity. The LHCC(3) model

has the smallest RMSE for each maturity. In particular, its overall RMSE is half the one of the

two-factor model. The LHCC(3)∗ model faces difficulties in reproducing long-term spreads

as, for example, its RMSE is twice as large as the one of the unconstrained LHCC(3) for the

10-year maturity spread for both firms. Figure 3.4 displays the fitted spreads and the RMSE

time series. Again, the LHCC(3) appears to have the smallest level of errors over time. The two

other models do not perform as good during the low spreads period before the financial crisis,

and during the recent volatile period. Overall, the fitted models appear to reproduce relatively

well the observed CDS spread values.

Figure 3.5 shows the estimated factors. They are remarkably similar across the different

specifications. The default intensity explodes and the survival process decreases rapidly

during the financial crisis. The m-th factor controls the long term default intensity level. The

second factors controls the medium term behavior of the term-structure of credit risk in the

three-factor models. The two-factor model requires an almost equal to zero default intensity

to capture the steep contango of the term structure at the end of the sample period, even lower

than before the financial crisis. This seems counterfactual and illustrates the limitations of the

two-factor model in capturing changing dynamics. The m-th factor visits the second half of

its support [0,St ] and appears to stabilize in this region for the three models.
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all 1 yr 2 yrs 3 yrs 4 yrs 5 yrs 7 yrs 10 yrs

LHCC(2)

RMSE 26.24 23.87 31.79 24.13 12.31 24.36 27.70 33.33
Median -0.22 -13.90 -3.16 -1.23 4.63 20.20 -0.17 -18.90

Min -83.96 -64.23 -83.96 -65.09 -22.09 -20.50 -38.64 -79.80
Max 123.86 123.86 43.98 32.90 39.31 57.07 75.58 54.45

LHCC(3)

RMSE 16.10 8.90 19.63 19.46 11.01 17.35 15.93 16.94
Median -0.25 1.14 -7.69 -5.47 1.06 16.46 2.06 -9.42

Min -56.64 -24.62 -56.64 -52.93 -31.01 -0.66 -12.85 -46.56
Max 107.23 107.23 23.86 15.42 20.38 41.61 49.57 31.94

LHCC(3)∗
RMSE 21.87 9.07 23.52 24.01 12.67 16.56 25.15 32.37

Median -0.42 0.02 -4.22 -3.94 -3.12 14.22 -0.66 -4.80
Min -82.13 -24.32 -66.96 -68.24 -32.91 -31.95 -54.44 -82.13
Max 67.51 24.43 25.10 26.16 22.24 42.51 67.51 59.33

(a) Bombardier Inc.

all 1 yr 2 yrs 3 yrs 4 yrs 5 yrs 7 yrs 10 yrs

LHCC(2)

RMSE 2.88 3.09 1.66 2.73 2.82 2.82 2.00 4.30
Median -0.33 -0.13 -0.86 -1.99 -1.40 -0.43 1.40 1.10

Min -12.65 -12.65 -4.15 -5.21 -4.34 -4.32 -5.54 -12.64
Max 8.81 3.58 5.11 8.81 8.70 8.22 4.62 6.43

LHCC(3)

RMSE 1.06 0.85 1.09 1.02 0.89 1.31 1.33 0.75
Median -0.03 0.35 0.19 -0.55 -0.43 0.14 0.70 -0.26

Min -5.57 -4.87 -5.57 -3.53 -3.55 -4.34 -4.62 -1.97
Max 4.94 2.74 4.94 3.58 4.34 3.85 3.53 2.68

LHCC(3)∗
RMSE 1.17 1.02 1.11 0.98 1.15 1.62 1.07 1.12

Median 0.01 0.47 0.35 -0.62 -0.60 -0.06 0.48 -0.02
Min -5.48 -5.45 -5.48 -3.49 -3.78 -4.83 -3.92 -4.65
Max 4.63 2.68 4.49 3.28 4.63 3.98 2.98 4.15

(b) Walt Disney Co.

Table 3.3 – Comparison of CDS spreads fits for the LHC models.
The tables report the minimal, maximal, median, and root mean squared errors in basis point by maturity over the entire time
period for the three different specifications.
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Figure 3.4 – CDS spreads fits and errors.
The first row displays the fitted CDS spreads in basis points with maturities 1 year (black), 5 years (grey), and 10 years (light-
grey) for the three specifications. The second row displays the root-mean-square error (in basis points) computed every day
and aggregated over all the maturities.
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Figure 3.5 – Factors fitted from CDS spreads.
The filtered factors of the three estimated specifications are displayed over time. The first row displays the drift only survival
process, the second row the implied default intensity, and the last row the process Xmt in black and the process X2t in grey for
the three-factor models.
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3.5.2 CDS Option

We describe an accurate and efficient methodology to price CDS options that builds on the

payoff approximation approach presented in Section 3.3.2, and illustrate it with numerical

examples. The model used for the numerical illustration is the one-factor LHC model from

Section 3.3.1 with stylized but still realistic parameters γ = 0.25, `1 = 0.05, `2 = 1, σ = 0.75,

X0 = 0.2, and r = 0 unless otherwise stated.

From Section 3.2.4, we know that the time-t CDS option price with strike spread k is of the

form

VCDSO(t ,T0,TM ,k) =1{τ>t }E
[

f (Z (T0,TM ,k)) |Ft
]

with the payoff function f (z) = e−r (T0−t )z+/St and where the random variable Z (T0,TM ,k) is

defined by

Z (T0,TM ,k) =ψcds(T0,T0,TM ,k)>
(

ST0

XT0

)
(3.44)

with ψcds(T0,T0,TM ,k) as in (3.15). Furthermore, the random variable Z (T0,TM ,k) takes

values in the interval [a,b] with the LHC model which is given by

a =
m+1∑
i=1

min(0,ψcds(T0,T0,TM ,k)i ) and b =
m+1∑
i=1

max(0,ψcds(T0,T0,TM ,k)i ).

We now show how to approximate the payoff function f with a polynomial by truncating

its Fourier-Legendre series, and then how the conditional moments of Z (T0,TM ,k) can be

computed recursively from the conditional moments of (St , X t ).

Let L en(x) denotes the generalized Legendre polynomials taking values on the closed interval

[a,b] and given by

L en(x) =
√

1+2n

2σ2 Len

( x −µ
σ

)
where µ= (a+b)/2, σ= (b−a)/2, and the standard Legendre polynomial Len(x) on [−1,1] are

defined recursively by

Len+1(x) = 2n +1

n +1
x Len(x)− n

n +1
Len−1(x)

with Le0 = 1 and Le1(x) = x. The generalized Legendre polynomials form a complete orthonor-

mal system on [a,b] in the sense that the mean squared error of the Fourier-Legendre series

approximation f (n)(x) of any piecewise continuous function f (x), defined by

f (n)(x) =
n∑

k=0
fn L en(x), where fn =

∫ b

a
f (x)L en(x)d x, (3.45)
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converges to zero,

lim
n→∞

∫ b

a

(
f (x)− f (n)(x)

)2
d x = 0.

The coefficients for the CDS option payoff are closed-form,

fn =1{τ>t }
e−r (T0−t )

St

∫ b

0
z L en(z)d z,

since the integrands are polynomial functions. Note that a similar approach is followed in

Chapter 1 on the unbounded interval R with a Gaussian weight function.

The Ft -conditional moments of Z (T0,TM ,k) can be computed recursively from the condi-

tional moments of (ST0 , XT0 ). Let π : E 7→ {1, . . . , Nn} be an enumeration of the set of exponents

with total order less or equal to n, E = {
α ∈N1+m :

∑1+m
i=1 αi ≤ n

}
. Denote the polynomials

hπ(α)(s, x) = sα1
∏m

i=1 xα1+i

i which form a basis of Poln(E), 1 the (1+m)-dimensional vector of

ones, and ei the (1+m)-dimensional vector whose i -th coordinate is equal to one and zero

otherwise.

Lemma 3.5.3. For all n ≥ 2 we have

E
[

Z (T0,TM ,k)n |Ft
]= ∑

α>1=n

cπ(α) E
[
hπ(α)(ST0 , XT0 ) |Ft

]
where the coefficients cπ(α) are recursively given by

cπ(α) =
1+m∑
i=1

1{αi−1≥0} cπ(α−ei )ψcds(T0,T0,TM ,k)i .

We now report the main numerical findings. We take T0 = 1, TM = T0 +5, and three reference

strike spreads k ∈ {250,300,350} basis points meant to represent in, at, and out of the money

CDS options. The first row in Figure 3.6 shows the payoff approximation f (n)(z) in (3.45) for

the polynomial orders N ∈ {1,5,30} and the strike spreads k ∈ {250,300,350}. A more accurate

approximation of the hockey stick payoff function is naturally obtained by increasing the order

N , especially around the kink. The width of the support [a,b] increases with the strike spread

k, hence the uniform error bound should be expected to be larger for out of the money options.

This is confirmed by the second row of Figure 3.6 that shows the error bound as a function

of the approximation order N . Note that this error bound is typically non tight. The third

row of Figure 3.6 shows the price approximation as a function of the polynomial order, up to

N = 30. The price approximations stabilize rapidly such that a price approximation using the

first N = 10 moments appear to be accurate up to a basis point.

We recall that the volatility parameterσ of the LHC model does not affect the CDS spreads, and

can therefore be used to improve the joint calibration of CDS and CDS options. We illustrate

this in left panel of Figure 3.7 where the CDS option price is displayed as a function of the
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Figure 3.6 – Payoffs and prices approximations of CDS options.
The first row displays the polynomial interpolation of the payoff function approximation with the Fourier-Legendre approach
at the order 1 (light-grey), 5 (grey), and 30 (black). The second and third rows display the price error bound and price approxi-
mation, respectively, as functions of the polynomial interpolation order. The first (second and third) column corresponds to a
CDS option with a strike spread of 250 (300 and 350) basis points. All values are reported in basis points.
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Figure 3.7 – CDS option price sensitivities.
The figure on the left (on the right) display the CDS option price as a function of the volatility parameter (the initial risk factor
position) for the strike spread 250 (black), 300 (grey), and 350 (light-grey). All values are reported in basis points.

volatility parameter for different strike spreads. As expected, the option price is an increasing

function of the volatility parameter. The right panel on same figure also shows that the X0 has

an almost linear impact on the CDS option price.

Note that the dimension of the polynomial basis
(1+m+N

N

)
becomes a programming and com-

putational challenge when both the expansion order N and the number of factors 1+m are

large. For example, for N = 20 and 1+m = 2 the basis has dimension 231 whereas it has

dimension 10’626 when 1+m = 4. In practice, we successfully implemented examples with

1+m = 4 and N = 50 on a standard desktop computer, in which case the basis dimension is

316’251.

Remark 3.5.4. The CDS option payoff function can also be interpolated by means of Chebyshev

polynomials. Details for this approach are given in Section 3.6. However, as discussed in the

Section 3.5.3, the price approximation will typically exhibit more pronounced oscillations.

3.5.3 CDIS Option

We discuss the approximation of the payoff function by means of Chebyshev polynomials

for a CDIS option on a homogeneous portfolio. The reference parameters are the same as in

Section 3.5.2.

Let Nt =∑N
i=01{τi≤t } denote the number of firms which have defaulted by time t . Consider

a CDIS option on an homogeneous portfolio such that Si
t = St for all i = 1, . . . , N for some

reference survival process St . From Proposition 3.2.9 it follows that the time-t price of the
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CDIS option is given by

VCDISO(t ,T0,TM ,k) = e−r (T0−t )

N SN−Nt
t

N−Nt∑
n=0

(
N −Nt

n

)

E

[(
n

ST0

ψcds(T0,T0,TM ,k)>
(

ST0

XT0

)
+ (1−δ)(N −n)

)+
(ST0 )n(St −ST0 )N−Nt−n |Ft

]

with the notable difference that the summation contains at most N +1 terms because the

defaults are symmetric and thus interchangeable. Define the random variable

X (T0,TM ,k) =
m∑

i=1
ψcds(T0,T0,TM ,k)1+i Xi ,T0

the CDIS option price then rewrites

VCDISO(t ,T0,TM ,k) = E[
f (ST0 , X (T0,TM ,k)) |Ft ∨Nt

]
where the bivariate payoff function f (s, x) is given by

f (s, x) = e−r (T0−t )

N SN−Nt
t

[
(1−δ)N (St − s)N−Nt

+
N−Nt∑
n=1

(
N − j

n

)(
nψcds(T0,T0,TM ,k)1s + x + s(1−δ)(N −n)

)+
sn−1(St − s)N−Nt−n

]
.

The Ft -conditional moments of (ST0 , X (T0,TM ,k)) are also linear in the same order moments

of (ST0 , XT0 ) and where the coefficients can be computed recursively in a similar way as in

Section 3.5.2.

The CDIS payoff function is displayed on the left graph in Figure 3.8 for the strike spread

k = 350 bps and N = 125 firms with no initially observed defaults. Note that, since m = 1, we

display directly the factor value XT0 on the horizontal axis. A surprising feature of the payoff

function is that it looks relatively smooth, especially in comparison to the hockey stick payoff

function of the single-name CDS option. It consists of two mostly linear parts which appear to

be curving toward each other at their intersection, in particular near the ST0 axis.

We interpolate the payoff function using Chebyshev polynomials and nodes, the details are

given in Section 3.6. The corresponding pricing error upper bound is reported on the right

graph Figure 3.8, on which we see it decreasing overall with some oscillations. This is because

this approach is a polynomial interpolation of the payoff function at the Chebyshev nodes

which are reset for each N but independently from the payoff function. This is in contrario

to the Fourier-Legendre approximation which aims to minimize deviation from the payoff

function uniformly over the support. As a consequence, price approximation using Chebyshev

interpolation of the payoff function will typically oscillate as well.

Remark 3.5.5. The payoff function f (s, x) could be approximated by truncating at a finite
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3.6. Chebyshev Interpolation
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Figure 3.8 – CDS index option payoff function and Chebyshev error bound.
The figure on the left displays the (FT0 ∨Gt )-conditional CDIS option payoff as a function of the time-T0 survival process and
factor values. The figure on the right reports the corresponding price approximation error bound as a function of the Chebyshev
interpolation order. The payoff and error values are reported in basis points.

order n its two-dimensional Fourier-Legendre series representation as in Section 3.5.2. The

series coefficients are again closed-form since they boil down to sums of integrated polynomials

over compact supports. We used at different method in the example in order to illustrate that

different approaches can result in different price series properties. The choice of Chebyshev

interpolation is motivated by its popularity which partially originates from its straightforward

implementation.

3.6 Chebyshev Interpolation

This section describes how to perform a Chebyshev interpolation of an arbitrary function on

an interval [a,b]× [c,d ] ⊂R. The Chebyshev polynomials of the first kind take values in [−1,1]

but can be shifted and scaled so as to form a basis of [a,b]. In this case they are given by the

following recursion formula,

T a,b
0 (x) = 1

T a,b
1 (x) = x −µ

σ

T a,b
n+1(x) = 2(x −µ)

σ
T a,b

n (x)−T a,b
n−1(x)

with µ= (a+b)/2 and σ= (b−a)/2. The Chebyshev nodes for the interval [a,b] are then given

by

xa,b
j =µ+σcos

(
z j

)
, z j = (1/2+ j )π

N +1
, for j = 0, . . . , N .
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The polynomial interpolation of order N is

pN (s, x) =
N∑

n=0

N∑
m=0

cn,m T a,b
n (s)T c,d

m (x)

where the coefficients are explicit

cn,m = 21{i 6=0}+1{ j 6=0}
N∑

i=0

N∑
j=0

f
(
xa,b

i , xc,d
j

)
cos(n zi )cos(m z j )

(N +1)2 .

The coefficients can be computed in an effective way by applying Clenshaw’s method, or by

applying discrete cosine transform. This straightforward interpolation has the advantage to

prevent the Runge’s phenomena. We refer to (Gaß, Glau, Mahlstedt, and Mair 2015) for more

details on the multidimensional Chebyshev interpolation, and for an interesting financial

application of multivariate function interpolation in the context of fast model estimation or

calibration.

3.7 Market Price of Risk Specifications

We discuss market price of risk (MPR) specifications such that X t has a linear drift also under

the real-world measure P∼Q. This may further facilitate the empirical estimation of the LHC

model.

LetΛ(St , X t ) denote the MPR such that the drift of X t under P becomes

µPt = bSt +βX t +Σ(St , X t )Λ(St , X t ).

It is linear in (St , X t ) of the form

µPt = bPSt +βPX t ,

for some vector bP ∈Rm and matrix βP ∈Rm×m , if and only if

Λi (s, x) =
(
(bP−b)s + (βP−β)x

)
i

σi
p

xi (s −xi )
, i = 1, . . . ,m. (3.46)

In order thatΛ(St , X t ) is well defined and induces an equivalent measure change, that is, the

candidate Radon–Nikodym density process

exp

(∫ t

0
Λ(Su , Xu)dWu − 1

2

∫ t

0
‖Λ(Su , Xu)‖2 du

)
(3.47)

is a uniformly integrable Q-martingale, we need that (St , X t ) does not attain all parts of the

boundary of E . This is clarified by the following theorem, which follows from (Cheridito,

Filipović, and Yor 2005).
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Theorem 3.7.1. The MPRΛ(St , X t ) in (3.46) is well defined and induces an equivalent measure

P∼Qwith Radon-Nikodym density process (3.47) if, for all i = 1, . . . ,m, Xi 0 ∈ (0,S0) and (3.24)–

(3.25) hold for the Q-drift parameters β,b and for the P-drift parameters βP,bP in lieu of β,b.

If, for some i = 1, . . . ,m, βPi j =βi j for all j 6= i and

1. bPi = bi , such that

Λi (s, x) = (βPi i −βi i )
p

xi

σi
p

s −xi
,

then it is enough if Xi 0 ∈ [0,S0) instead of Xi 0 ∈ (0,S0) and (3.22) instead of (3.24) holds

for βi j ,bi , and thus for βPi j ,bPi .

2. bPi −bi =βPi i −βi i , such that

Λi (s, x) = (βPi i −βi i )
p

s −xi

σi
p

xi
,

then it is enough if Xi 0 ∈ (0,S0] instead of Xi 0 ∈ (0,S0) and (3.23) instead of (3.25) holds

for βi j ,bi , and thus for βPi j ,bPi .

The assumption of linear-drift preserving change of measure is often made for parsimony and

to facilitate the empirical estimation procedure. For example, the specification of MPRs that

preserve the affine nature of risk-factors has been theoretically and empirically investigated in

(Duffee 2002), (Duarte 2004), and (Cheridito, Filipović, and Kimmel 2007) among others.

3.8 Proofs

This Section contains the proofs of all theorems and propositions in the main text.

Proof of (3.4)

This follows as in (Filipović, Larsson, and Trolle 2017, Lemma 3).

Proof of Example 3.2.3

The autonomous process X t admits a solution taking values in [−e−εt ,e−εt ] at time t with

ε> 0 and X0 ∈ [−1,1] if and only if κ> ε, see (Filipović and Larsson 2016, Theorem 5.1). The

coordinates of Yt are lower bounded by X t , indeed for i = 1,2 we have

dYi t =− ε
2

(Yi t ±X t )d t ≥− ε
2

(Yi t +e−εt )d t
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The solution of d Zt =−(ε/2)(Zt +e−εt )d t with Z0 = 1 is given by Zt = e−εt which proves that

Yi t ≥ Zt ≥ |X t | for i = 1,2. Finally, by applying Ito’s lemma we obtain

d〈λ1,λ2〉t =−ε
2

4

σ2(e−εt −X t )(e−εt +X t )

Y1t Y2t
≤ 0, t ≥ 0.

Proof of Proposition 3.2.4

Proposition 3.2.4 is an immediate consequence of (3.4) and the following lemma.

Lemma 3.8.1. Let Y be a nonnegative F∞-measurable random variable. For any t ≤ T <∞,

E
[
1{τ>T }Y |Gt

]=1{τ>t }
1

St
E [ST Y |Ft ] .

Note that T <∞ is essential unless we assume that S∞ = 0.

Lemma 3.8.1 follows from (Bielecki and Rutkowski 2002, Corollary 5.1.1). For the convenience

of the reader we provide here a sketch of its proof. As in (Bielecki and Rutkowski 2002, Lemma

5.1.2) one can show that, for any nonnegative random variable Z , we have

E
[
1{τ>t }Z |H t ∨Ft

]=1{τ>t }
1

St
E
[
1{τ>t }Z |Ft

]
.

Setting Z =1{τ>T }Y we can now derive

E
[
1{τ>T }Y |Gt

]= E[
1{τ>t }Y 1{τ>T } |Gt

]=1{τ>t }
1

St
E
[
1{τ>T }Y |Ft

]
=1{τ>t }

1

St
E
[
E
[
1{τ>T } |F∞

]
Y |Ft

]=1{τ>t }
1

St
E [ST Y |Ft ] .

Proof of Proposition 3.2.5

The subsequent proofs build on the following lemma that follows from (Bielecki and Rutkowski

2002, Proposition 5.1.1).

Lemma 3.8.2. Let Zt be a bounded Ft -predictable process. For any t ≤ T <∞,

E
[
1{t<τ≤T }Zτ |Gt

]=1{t<τ}
1

St
E

[∫
(t ,T ]

−ZudSu |Ft

]
.

Note that T <∞ is essential unless we assume that S∞ = 0.

We can now proceed to the proof of Proposition 3.2.5. The value of the contingent cash flow is

given by the expression

CD(t ,T ) = E[
e−r (τ−t )

1{t≤τ≤T } |Gt
]
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By applying Lemma 3.8.2 we get

CD(t ,T ) = 1{τ>t }

St
E

[∫ T

t
−e−r (s−t )dSs |Ft

]
= 1{τ>t }

St

∫ T

t
e−r (s−t )E

[−a>(cYs +γXs) |Ft
]

d s

= 1{τ>t }

St

∫ T

t
e−r (s−t ) −a>

(
c γ

)
eA(s−t )

(
Yt

X t

)
d s

where the second equality comes from the fact that
∫ t

0 e−r u d M S
u is a martingale. The third

equality follows from (3.4).

Proof of Corollary 3.2.6

The value of this contingent bond is given by

CD∗(t ,T ) = E[
τe−r (τ−t )

1{t<τ≤T } |Gt
]= 1{τ>t }

St
E

[∫ T

t
−s e−r (s−t )dSs |Ft

]
and the result follows as in the proof of Proposition 3.2.5.

Proof of Lemma 3.2.7

Observe that for any matrix A and real r we have er eA = ediag(r )+A , and that the matrix expo-

nential integration can be computed explicitly as follows∫ u

0
eAsd s =

∫ u

0
(I + As + A2 s2

2
+ . . . )d s = Iu + A

u2

2
+ A2 u3

6
+ . . .

= A−1 (
eAu − I

)
.

By change of variable u = s − t we obtain∫ T

t
seA∗(s−t )d s =

∫ T−t

0
ueA∗udu + t

∫ T−t

0
eA∗udu,

where the second term on the RHS is given in Lemma 3.2.5. The first term can be derived

using integration by parts∫ T−t

0
ueA∗udu = (T − t )A−1

∗ eA∗(T−t ) − A−1
∗ A−1

∗
(
eA∗(T−t ) − I

)
.

Proof of Proposition 3.2.8

The calculations of the protection leg V i
prot(t ,T0,TM ) and the coupon part V i

coup(t ,T0,TM )

follows from Propositions 3.2.4 and 3.2.5. The accrued interest V i
ai(t ,T0,TM ) is given by the

sum of contingent cash flows and of weighted zero-recovery coupon bonds, and thus its

calculation follows from Propositions 3.2.5 and 3.2.6. The series of contingent cash flow is in
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fact equal to a single contingent payment paying τ at default,

CD∗(t ,TM ) =
M∑

j=1
E
[
τe−r (τ−t )

1{T j−1<τ≤T j } |Gt

]
= E[

τe−r (τ−t )
1{t<τ≤TM } |Gt

]
.

Using the identity1{T j−1<τ≤T j } =1{τ>T j−1}−1{τ>T j } we obtain that the second term of V i
ai(t ,T0,TM )

is given by

−E
[

M∑
j=1

e−r (τ−t )T j−11{T j−1<τ≤T j } |Gt

]
=

M∑
j=1

T j−1
(
CD(t ,T j )−CD(t ,T j−1)

)
= TM−1CD(t ,TM )−T0CD(t ,T0)−

M−1∑
j=1

(T j −T j−1)CD(t ,T j ).

Proof of Proposition 3.2.9

The payoff at time T0 of the CDIS option can always be decomposed into 2N terms by condi-

tioning on all the possible default events

q(α) =
N∏

i=1

[
(1{τi>T0})

αi + (1{τi≤T0})
1−αi

]
(3.48)

for α ∈C = {0,1}N , and with the convention 00 = 0, so that the payoff function rewrites

(
N∑

i=1

1{τi>T0}

Si
T0

ψi
cds(T0,T0,TM ,k)>

(
YT0

XT0

)
+ (1−δ)1{τi≤T0}

)+
=

∑
α∈C

(
N∑

i=1

αi

Si
T0

ψi
cds(T0,T0,TM ,k)>

(
YT0

XT0

)
+ (1−δ)(1−αi )

)+
q(α).

We can apply (Bielecki and Rutkowski 2002, Lemma 9.1.3) to compute the probability

E
[
1{τ1>T0, ...,τN>T0} |FT0 ∨Gt

]= N∏
i=1

1{τi>t }

Si
T0

Si
t

so that by writing (3.48) as a linear combination of indicator functions we obtain

E
[
q(α) |FT0 ∨Gt

]= N∏
i=1

(
(Si

T0
)αi (Si

t −Si
T0

)1−αi

Si
t

1{τi>t } + (1{τi≤t })
1−αi

)

which completes the proof.
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Proof of Theorem 3.3.1

We define the bounded continuous map (S ,X ) : R1+m → R1+m by

S (s, x) = s+∧1, Xi (s, x) = x+
i ∧ s+∧1, i = 1, . . . ,m,

such that (S ,X )(s, x) = (s, x) on E . In a similar vein, extend the dispersion matrix Σ(s, x) to

a bounded continuous mapping Σ((S ,X )(s, x)) on R1+m . The stochastic differential equa-

tion (3.19) then extends to R1+m by

dSt =−γ>X (St , X t )d t

d X t =
(
bS (St )+βX (St , X t )

)
d t +Σ ((S ,X )(St , X t ))dWt .

(3.49)

Since drift and dispersion of (3.49) are bounded and continuous on R1+m , there exists a weak

solution (St , X t ) of (3.49) for any initial law of (S0, X0) with support in E , see (Karatzas and

Shreve 1991, Theorem V.4.22).

We now show that any weak solution (St , X t ) of (3.49) with (S0, X0) ∈ E stays in E ,

(St , X t ) ∈ E for all t ≥ 0. (3.50)

To this end, for i = 1, . . . ,m, note that

Σi i ((S ,X )(s, x)) = 0 for all (s, x) with xi ≤ 0 or xi ≥ s. (3.51)

Conditon (3.22) implies that(
bS (s)+βX (s, x)

)
i ≥ 0 for all (s, x) with xi ≤ 0. (3.52)

For δ,ε> 0 we define

τδ,ε = inf{t ≥ 0 | Xi t ≤−ε and −ε< Xi s < 0 for all s ∈ [t −δ, t )} .

Then on {τδ,ε <∞} we have, in view of (3.51) and (3.52),

0 > Xiτδ,ε −Xiτδ,ε−δ =
∫ τδ,ε

τδ,ε−δ
(
bS (Su)+βX (Su , Xu)

)
i du ≥ 0,

which is absurd. Hence τδ,ε =∞ a.s. and therefore Xi t ≥ 0 for all t ≥ 0. Similarly, conditon (3.23)

implies that

−γ>X (s, x)− (
bS (s)+βX (s, x)

)
i ≥ 0 for all (s, x) with xi ≥ s. (3.53)

Using the same argument as above for St − Xi t in lieu of Xi t , and (3.53) in lieu of (3.52), we

see that St − Xi t ≥ 0 for all t ≥ 0. Finally, note that 0 ≤ γ>X (s, x) ≤ γ>1s+ for all (s, x), and

thus 1 ≥ St ≥ e−γ
>1t > 0 for all t ≥ 0. This proves (3.50) and thus the existence of an E-valued
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solution of (3.19).

Uniqueness in law of the E-valued solution (St , X t ) of (3.19) follows from (Filipović and Larsson

2016, Theorem 4.2) and the fact that E is relatively compact.

The boundary non-attainment conditions (3.24)–(3.25) follow from (Filipović and Larsson

2016, Theorem 5.7(i) and (ii)) for the polynomials p(s, x) = xi and s −xi , for i = 1, . . . ,m.

Proof of Remark 3.3.2

The claim in Remark 3.3.2 follows from the following lemma.

Lemma 3.8.3. The process (St , X t ) with drift as in (3.19) and dispersion matrix given by

diag
(
σ1

√
x1(L1s −x1), . . . , σm

√
xm(Lm s −xm)

)
for some positive constants L1, . . . , Lm is observationally equivalent to the one with Li = 1 for all

i = 1, . . . , m.

Proof. This directly follows by applying the change of variable X ′
i t = Xi t /Li for each i =

1, . . . , m. The dynamics of (St , X ′
t ) then rewrites

dSt =−γ′>X ′
t d t

d X ′
t = (b′St +β′X ′

t )d t +Σ(St , X ′
t )dWt

with

γ′ = diag(L1, . . . , Lm)γ,

b′ = diag(L1, . . . , Lm)b,

β′ = diag(1/L1, . . . , 1/Lm)βdiag(L1, . . . , Lm),

and where the diffusion matrix is given by Equation (3.20).

Proof of Proposition 3.4.3

The time-t price of the zero-coupon zero-recovery bond is now given by

BZ (t ,T ) = E
[

DT

D t
1{τ>T } |Gt

]
= 1{τ>t }

D t St
E [DT ST |Ft ] = 1{τ>t }

(a>
r Yt )(a>Yt )

E
[
(a>

r YT )(a>YT ) |Ft
]

= 1{τ>t }

a>
Z Yt

(
a>

Z 0
)

eA (T−t )

(
Yt

Xt

)
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by applying Lemma 3.8.1. Similarly for contingent cash flows by Lemma 3.8.2 we have

E
[
e−r (τ−t )

1{t≤τ≤T } |Gt
]= f (τ)1{τ>t }

St D t
E

[∫ T

t
− f (s)DsdSs |Ft

]
= 1{τ>t }

(a>
r Yt )(a>Yt )

∫ T

t
f (s)E

[−(a>
r Ys)(cYs +γXs) |Ft

]
d s

= 1{τ>t }

a>
Z Yt

∫ T

t
f (s) a>

D eA (s−t )d s

(
Yt

Xt

)

with f (s) being equal to s or 1, which completes the proof.

Proof of Equation (3.38)

The matrix Ā in Equation (3.37) rewrites

Ā =
∫ ∞

0
(eAt − Id)γZ t−t e−λZ t d t = γZ

∞∑
k=1

Ak

k !

∫ ∞

0
t k−1e−λZ t d t = γZ

∞∑
k=1

Ak

k !

Γ(k)

λk
Z

= γZ

∞∑
k=1

(
Aλ−1

Z

)k

k
=−γZ log

(
Id−Aλ−1

Z

)
where the second line follows from the definition of the matrix exponential, the third from the

definition of the Gamma function and its explicit values for integers, and the last one from the

definition of the matrix logarithm.

Proof of Proposition 3.5.1

The matrix A∗ in the LHCC model is given by

A∗ =


−r −γ1 0 0

0 −(κ1 + r ) κ1θ1 0 · · ·
...

. . .

θm 0 −(κm + r )


and its determinant is therefore equal to

|A∗| = −r

∣∣∣∣∣∣∣∣
−(κ1 + r ) κ1θ1 0 · · ·

...
. . .

0 0 −(κm + r )

∣∣∣∣∣∣∣∣+(−1)m

∣∣∣∣∣∣∣∣∣∣
−γ1 0 0

−(κ1 + r ) κ1θ1 0 · · ·
...

. . .

0 −(κm + r ) κmθm

∣∣∣∣∣∣∣∣∣∣
.

With r > 0, the first element on the right hand side is nonzero with sign equal to (−1)1+m and

the second element also has a sign equal to (−1)1+m . This is because the determinant of a

triangular matrix is equal to the product of its diagonal elements. As a result, the determinant
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of A∗ is nonzero which concludes the proof.

Proof of Lemma 3.5.3

We n-th power of Z (T0,TM ,k) rewrites

Z (T0,TM ,k)n =
(
ψcds(T0,T0,TM ,k)>

(
ST0

XT0

))n

=ψcds(T0,T0,TM ,k)>
(

ST0

XT0

) ∑
α>1=n−1

cπ(α) hπ(α)(ST0 , XT0 )

=
1+m∑
i=1

∑
α>1=n−1

cπ(α)ψcds(T0,T0,TM ,k)i hπ(α+ei )(ST0 , XT0 )

which is a polynomial containing all and only polynomials of degree n, the lemma follows by

rearranging the terms.

3.9 Conclusion

We introduce the class of linear credit risk models in which the background survival probability

of a firm and its factors have a linear drift. The prices of defaultable bonds and CDSs become

linear-rational in the factors. We define the single-name linear hypercube (LHC) model with

diffusive factor process that has quadratic diffusion function and takes values in a compact

state space. These features are employed to develop an efficient European option pricing

methodology. We build upon the LHC model to construct parsimonious and versatile multi-

name models, and to accommodate for stochastic interest rates. We also introduced jumps

in the factors dynamics as well as stochastic clocks to generate simultaneous defaults. An

empirical analysis shows that the LHC model is able to capture the complex CDS term structure

dynamics. The prices of CDS options at different moneyness are accurately approximated.
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4 Dependent Defaults and Losses with
Factor Copula Models

We present a class of flexible and tractable static factor models for the joint term structure

of default probabilities, the factor copula models. These high dimensional models remain

parsimonious with pair copula constructions, and nest numerous standard models as special

cases. With finitely supported random losses, the loss distributions of credit portfolios and

derivatives can be exactly and efficiently computed. Numerical examples on collateral debt

obligation (CDO), CDO squared, and credit index swaption illustrate the versatility of our

framework. An empirical exercise shows that a simple model specification can fit credit index

tranche prices.

4.1 Introduction

This chapter introduces factor copulas to model dependent default times and losses. We

directly specify the joint probability of default times, taking as given the marginal default

probabilities. Specifically, the default times are assumed to be independent conditional on

a latent factor. The joint default probability is given by an explicit expression in terms of

conditional copulas. We show that this specification nests all the standard factor models, such

as the Gaussian, Archimedean, and stochastic correlation models. In addition, our framework

has two main advantages over the existing models. First, the types of dependence between the

default times and the latent factor can be highly heterogeneous across entities. Second, new

simple and flexible models can be constructed using mixtures and cascades of pair copulas.

We present a new approach to compute efficiently and exactly the loss distribution of credit

portfolios and derivatives on these portfolios. In particular, this allows us to compute the

exact payoff distribution of credit portfolio derivatives such as portfolio tranche, collateralized

debt obligation (CDO) squared, and credit index swaption. Conditional on the latent factor,

the realized individual losses are assumed to be independent from each others and from the

default times. This enables us to retrieve the exact portfolio loss distribution using discrete

Fourier transform methods. This contrasts with existing approaches that either compute

the exact loss distribution using slow recursive methods, or compute an approximate loss
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distribution by discretizing its support and then applying Fourier techniques. We also suggest

the Beta-binomial distribution as a flexible mean to specify the loss given default of each

entity.

We explore the versatility of our setup and discuss the impact of different dependence hypoth-

esis on the loss distribution with numerical examples. The discrete Fourier method is shown

to be significantly faster than the recursive method, especially when the dimension of the

latent factor or of the loss support size is large. We construct a simple model for which the

total number of defaults distribution exhibits the features of both highly and little dependent

defaults, namely a bump and a fat tail. We compute the loss distribution of a CDO tranche

and show that the loss distribution of a portfolio of tranches, also known as CDO squared,

may have dramatically different profiles depending on the dependence structure between the

underlying tranches. We illustrate the flexibility of the Beta-binomial models for individual

loss amounts, and show that the specification of individual losses may also critically affect the

portfolio loss distribution.

As an application, we use our approach to fit the market tranche prices on the North America

investment grade credit index series 21. We start by exploring various model specifications

(from standard copulas to multi-factor models), and introduce a mixture with two Gaussian

copulas, parametrized with two correlations and a weight balancing each component. In a

static analysis, we find that the mixture outperforms the other models, as it is the only one

reproducing the prices of both the junior and senior tranches. Fitting this model for all days

in our sample, we further find that the parameters are stable over time. Furthermore, one of

the correlations being almost always equal to one, we repeat the exercise by fixing it to 0.999.

Interestingly, we find similar results, therefore achieving an almost perfect calibration to all

tranches using only two parameters (i.e. the other correlation and the weight).

Although motivated by credit risk applications, we present a generic framework to model

dependent defaults and losses in high dimensions that may be useful in other areas of survival

analysis such as contingent claim pricing in insurance.

We now review some of the related literature. Our approach builds on recent advances on

the high-dimensional modeling of random variables. When dealing with multivariate data,

copulas are attractive, allowing to model separately the marginal distributions and the depen-

dence structure. Unfortunately, few copulas remain practically useful in high-dimensional

settings, because common parametric families are often either too flexible, or not enough. An

example of the former is the elliptical family, whose members have a number of parameters

that grows quadratically with the dimension. Conversely, members of the archimedean family

have a small and fixed number of parameters, independently of the dimension. Recently,

high-dimensional copulas using a factor structure have been constructed independently by

(Oh and Patton 2013; Oh and Patton 2017) and (Krupskii and Joe 2013; Krupskii and Joe 2015).

Such approaches alleviate the curse of dimensionality by considering a smaller set of latent
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variables, conditional upon which the random variables of interest are assumed independent.

Arguably the main difference between the methods presented in (Oh and Patton 2013; Oh

and Patton 2017) and (Krupskii and Joe 2013; Krupskii and Joe 2015) is that copulas proposed

in the former can only be simulated, whereas those in the latter admit closed form expres-

sions. In fact, it can be shown the factor copulas from (Krupskii and Joe 2013; Krupskii and

Joe 2015) are a special case of pair-copula constructions (PCCs). One of the hot topics of

multivariate analysis over the last couple of years, PCCs are flexible representations of the de-

pendence structure underlying a multivariate distribution. Introduced by (Bedford and Cooke

2001; Bedford and Cooke 2002) and popularized by (Aas, Czado, Frigessi, and Bakken 2009),

PCCs are decompositions of a joint distribution by considering pairs of conditional random

variables. For a given joint distribution, such a construction is not unique, but all possible

decompositions can be organized as graphical structures, the so-called PCCs. Assuming the

copula linking default times as in (Krupskii and Joe 2013; Krupskii and Joe 2015), an interesting

aspect of our approach is that it nests the standard models described for instance in (Li 2000;

Burtschell, Gregory, and Laurent 2005; Hofert and Scherer 2011) as special cases. Although

static by construction, our approach can be incorporated in a dynamic doubly stochastic

framework as described in (Schönbucher and Schubert 2001) in order to generate stronger

default correlation than in pure intensity based models.

To recover the loss distribution, recursive techniques with proportional loss given default

have been studied by (Andersen, Sidenius, and Basu 2003; Hull and White 2004), and Fourier

approximations are presented in (Gregory and Laurent 2003; Laurent and Gregory 2005). The

computational performance of the latter approach has been improved for models with a large

number of Gaussian factors in (Glasserman and Suchintabandid 2012) by using a quadratic

approximation technique.

The calibration of tranches on credit portfolios is a daunting task, which is often solved in an

ad-hoc way (e.g., by considering a specific model for each tranche). Significant effort have been

made to develop consistent models, see (Giesecke 2008) for a comparison between top down

and bottom up approaches. Standard copula models generally had limited empirical success

and other frameworks have been developed, see (Hull and White 2006), (Brigo, Pallavicini,

and Torresetti 2007), (Kalemanova, Schmid, and Werner 2007), (Cousin and Laurent 2008),

(Herbertsson 2008), (Fouque, Sircar, and Sølna 2009), (Burtschell, Gregory, and Laurent 2009),

(Filipović, Overbeck, and Schmidt 2011). In this chapter, we develop bottom-up models that

are both simple to calibrate and successful at reproducing all the tranche spreads. Furthermore,

while the valuation of CDO squared has been considered with simulations in (Hull and White

2010),(Guillaume, Jacobs, and Schoutens 2009), this work is the first to derive explicitly the

loss density of a CDO squared in a factor copula framework. We refer to (Brigo, Pallavicini, and

Torresetti 2010) for a technical analysis of valuation methods for structured credit products.

The realized loss at default on corporate loans and bonds is known to be stochastic, volatile,

and negatively correlated with the business cycle. The recovery rates volatility and correlation

with default risk is studied, for example, in (Altman, Resti, and Sironi 2004). These important
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properties and their impact on the valuation of credit derivatives have been investigated by

(Andersen and Sidenius 2004),(Krekel 2008), (Amraoui and Hitier 2008).

The remainder of the chapter is structured as follows. Section 4.2 presents the factor copula

framework. Section 4.3 describes the construction of the individual loss amounts and the

computation of the loss distributions. Section 4.4 contains numerical examples illustrating the

performance of our setup and the impact of different dependence hypothesis. The empirical

analysis is in Section 4.5. Additional results on standard factor copula models are summarized

in Section 4.6. Pricing formulas for tranches, credit index swaps, and credit index swaption

are given in Section 4.7. Section 4.8 contains the proofs. Section 4.9 concludes.

4.2 The Factor Copula Framework

We consider N entities. For each j = 1, . . . , N let p j ,t be a non-decreasing deterministic function

satisfying p j ,0 = 0 and limt→∞ p j ,t = 1 for all 0 < t <∞. We define the default time τ j of entity

j as follows

τ j := inf{t ≥ 0 : U j ≤ p j ,t },

where U j is a uniform random variable on the unit interval. Hence, the function p j ,t is

equivalent to the marginal default probability of entity j

P
[
τ j ≤ t

]=P[
U j ≤ p j ,t

]= p j ,t .

When p j ,t is absolutely continuous with respect to time, it has the following representation

p j ,t = 1−e−
∫ t

0 λ j ,s d s (4.1)

for some non-negative default intensity function λ j ,s .

Note that, in this setup, the random vector U = (U1, . . . , UN ) is the only stochastic object. We

recall that its probability distribution is by construction a copula.

Definition 4.2.1. A copula CU is the probability distribution of a random vector U taking

values on the hypercube [0,1]N and having uniform marginal distributions.

In other words, if for any vector (u1, . . . , uN ) ∈ [0,1]N the random vector U ∈ [0,1]N is such that

P
[
U j ≤ u j

]= u j for each j , then its joint distribution is called a copula and we write

CU (u1, . . . , uN ) =P [U1 ≤ u1, . . . , UN ≤ uN ] . (4.2)

The following lemma shows that for (t1, . . . , tN ) ∈RN+ , there exists a simple expression linking

joint to marginal default probabilities using the copula CU of U .
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Lemma 4.2.2. The joint default probability is given by

P [τ1 ≤ t1, . . . , τN ≤ tN ] =CU
(
p1,t1 , . . . , pN ,tN

)
. (4.3)

A direct construction of high-dimensional copulas amounts at trading-off model complexity

and tractability. This is somewhat problematic, because the usual parametric families contain

either too many (e.g., in the case of implicit copulas extracted from known multivariate

distributions), or too few (e.g., in the case of Archimedean copulas built using a continuous and

nonincreasing N -monotone generator) parameters. Furthermore, as we will show in Section

4.3 when pricing complex financial derivatives, the notion of conditional independence (on a

set of latent factors) allows us to obtain a flexible yet tractable class of models. Hereinafter we

therefore focus on the so-called factor copulas.

4.2.1 One-Factor Copulas

A one-factor copula model is constructed by assuming that there exists a latent factor V

such that, conditional on the realization of V , the coordinates of the random vector U are

independent. Further assuming that V is uniformly distributed on the unit interval1, it means

that

P [U1 ≤ u1, . . . , UN ≤ uN |V = v] =
N∏

j=1
P

[
U j ≤ u j |V = v

]
(4.4)

for any vector (u1, . . . , uN ) ∈ [0,1]N and for any v ∈ [0,1]. The following proposition shows that

such an assumption yields a simple decomposition in terms of bivariate copulas for CU . We

refer to such copula as one-factor copula.

Proposition 4.2.3 (One-factor copula). For j = 1, . . . , N , let CU j ,V denote the joint distribution

of U j and V , that is P
[
U j ≤ u j , V ≤ v

]=CU j ,V (u j , v). If the coordinates of U are independent

conditionally on V , then

CU (u1, . . . , uN ) =
∫

[0,1]

N∏
j=1

CU j |V
(
u j | v

)
d v, (4.5)

where, for all j = 1, . . . , N ,

CU j |V
(
u j | v

)= ∂CU j ,V (u j , v)

∂v

are the so-called h-functions.

The h-functions have been introduced by (Aas, Czado, Frigessi, and Bakken 2009) while

1This is without loss of generality as the latent factor could be mapped to such a V using the probability integral
transform if it was not the case.
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studying the pair-copula decomposition of a general multivariate distribution: if CU j ,V (u j , v) =
P

[
U j ≤ u j ,V ≤ v

]
, then CU j |V

(
u j | v

)=P[
U j ≤ u j |V = v

]
.

Note that CU j ,V (u, v) = uv implies CU (u1, . . . ,uN ) =∏N
j=1 u j . In other words, if U j is indepen-

dent from V , then it is also independent from Uk for all k ∈ {1, . . . , j −1, j +1, . . . , N }, which

means that the coordinates of U depend on each other only through the factor V .

Example 4.2.4. The Gaussian model of (Li 2000) is a one-factor copula obtained by using for

all j

CU j ,V (u j , v ;ρ) =Φ2
(
Φ−1(u j ),Φ−1(v);ρ

)
,

which implies

CU j |V (u j | v ;ρ) =Φ
(
Φ−1(u j )−ρΦ−1(v)

1−ρ2

)
,

and

CU (u1, . . . ,uN ;ρ) =
∫ 1

0

N∏
j=1
Φ

(
Φ−1(u j )−ρΦ−1(v)

1−ρ2

)
d v,

whereΦ(·) is the standard normal distribution andΦ2(·, ·;ρ) is the bivariate normal distribution

with correlation ρ.

Observe that the specification in Proposition 4.2.3 is far more flexible, since one could build

a model using, for each entity, a different bivariate copula, for which countless well-studied

parametric families exist, see (Schepsmeier and Stöber 2014).

Beyond such parametric families, a simple way to increase the modeling flexibility while pre-

serving analytical tractability is to combine different bivariate copulas. Through the following

definition, mixture distributions enrich considerably the one-factor copulas.

Definition 4.2.5. Let K be a positive integer, CU j ,V is a mixed bivariate copula if there exists K

copulas C k
U j ,V , K positive weights wk > 0 such that

∑K
k=1 wk = 1, and

CU j ,V (u j , v) =
K∑

k=1
wkC k

U j ,V (u j , v). (4.6)

One way to interpret this expression is Bayesian, namely assuming that the dependence

between the random variable U j and the factor V is uncertain and follows the distribution

C k
U j ,V with probability wk . The corresponding h-function still has a simple expression, as we

have

CU j |V (u j | v) =
K∑

k=1
wkC k

U j |V (u j | v).
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Of particular interest for risk management applications, the joint distribution of default times

conditional on a subset of realized default times is obtained as a simple modification of

Equation (4.5). Let I = {1, . . . , N } and D ⊂I denote respectively the entire set and a subset of

entities. The following proposition shows that the joint default distribution conditional on the

defaults of all the entities in D also has a simple representation.

Proposition 4.2.6. In a one-factor copula model, the joint default distribution conditional on

τk = tk for k ∈D is

P [τ1 ≤ t1, . . . , τN ≤ tN | τk = tk : k ∈D] =∫
[0,1]

∏
j∈I \D CU j |V

(
p j ,t j | v

) ∏
k∈D cUk ,V

(
pk,tk , v

)
d v∫

[0,1]
∏

k∈D cUk ,V
(
pk,tk , v

)
d v

(4.7)

where

cU j ,V (u, v) =
∂2CU j ,V (u, v)

∂u∂v

is the density of the bivariate copula CU j ,V .

Although the default times are correlated, conditioning on a subset of defaulted entities does

not significantly complexify the expression for the joint distribution of the surviving entities.

The denominator on the right hand side in (4.7) is the copula density of the defaulted entities

evaluated at the default times. This result may be of particular interest to compute the loss

distribution of a credit portfolio conditional on the default time of a specific entity which in

turn could be used to compute the Credit Valuation Adjustment with respect to this entity.

4.2.2 Multi-Factor Copulas

In this section we consider a d-dimensional random vector of latent factors V = (V1, . . . ,Vd ).

We assume that V takes values on the hypercube [0,1]d and has uniform marginal distribu-

tions. The joint distribution of V is by definition a copula that we denote CV . The following

proposition shows that the one-factor framework extends to a multi-factor one.

Proposition 4.2.7 (Multi-factor copula). For j = 1, . . . , N , let CU j ,V denote the joint distribution

of U j and V , that is P
[
U j ≤ u j , V ≤ v

]=CU j ,V (u j , v). If the coordinates of U are independent

conditionally on V , then

CU (u) =
∫

[0,1]d

N∏
j=1

CU j |V
(
u j | v

)
dCV (v) (4.8)

where, for all j = 1, . . . , N ,

CU j |V (u j | v) =
∂dCU j ,V (u j , v)

∂v1 . . . ∂vd
.
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Although (4.8) appears to be similar to (4.5), it is arguably more complicated. The reason is

that, instead of being bivariate, each CU j ,V has dimension d +1. However, the multi-factor

framework simplifies under the assumption of independent latent factors V as shown in

the following proposition. We denote the function composition with the symbol ◦, that is

f (g (x)) = f ◦ g (x) for any real valued functions f and g .

Corollary 4.2.8 (Copulas with independent factors). If CV (v) =∏d
j=1 v j , then

CU (u1, . . . , un) =
∫

[0,1]d

N∏
j=1

CU j |V1 (·|v1)◦ · · · ◦CU j |Vd (u j |vd )d v, (4.9)

where CU j ,Vk is a bivariate copula for j ∈ 1, . . . , d and k = 1, . . . , d.

Note that the recursive decomposition (4.9) is a particular case of pair-copula constructions

(PCCs), as noted in (Krupskii and Joe 2013), which are representations of flexible joint distribu-

tions as cascade products of bivariate copulas and marginals. For more details on the subject,

we refer to (Bedford and Cooke 2001),(Bedford and Cooke 2002), which proposed a graphical

model to help organizing PCCs, or (Aas, Czado, Frigessi, and Bakken 2009), which popularized

them by developing efficient computational algorithms for their inference and simulation.

This construction is interesting for several reasons. First, it is a parsimonious way to model

a complex multivariate dependencies. Second, the hierarchical structure, which can be

represented as a graphical model, has a visual interpretation. Third, because the integrand in

(4.9) is a simple recursion, it can be vectorized in a computationally efficient manner.

Finally, it should be noted that the number of latent factors is also the dimension of the

hypercube on which the product of conditional copulas has to be integrated to retrieve the

joint default probability. One should therefore balance between higher modeling flexibility

and lower computational cost.

4.2.3 Comparison with Standard Factor Models

In this section, we show that standard static models can be rewritten explicitly as factor

copula models. One usually considers a random vector Y = (Y1, . . . , YN ) ∈ RN along with

a deterministic and componentwise non-decreasing vector yt = (y1,t , . . . , yN ,t ) ∈ RN . For

instance, Y can represent the values of N firms and yt the corresponding default barriers2.

The default time τ j of firm j is then defined as the first time its value is below its default barrier,

that is

τ j = inf{t ≥ 0 : Y j ≤ y j t }.

2While firm values and default barriers are usually positive, this can be resolved by using a monotonic transfor-
mation of Y and yt without affecting the results that follow. For instance, with Ỹ = eY and ỹt = e yt , it is clear that

P
[

Y j ≤ y j ,t

]
=P

[
Ỹ j ≤ ỹ j ,t

]
and that the copulas of Y and Ỹ are the same
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Additionally, standard factor models are constructed by decomposing the stochastic behavior

of the firm value into a systemic and an idiosyncratic component. In other words, one assumes

the existence of a random vector X ∈Rd and N variables ε j for j ∈ {1, . . . , N }, such that Y j is a

function X and ε j , that is

Y j = f j (X ,ε j )

for some (d +1)-dimensional function f j taking values on R+.

Let FY j , FX , respectively F−1
Y j

, F−1
X , denote the distributions of Y and X , respectively their

inverse, and FY j |X denote the conditional distribution of Y j given X . The following proposition

shows that any standard factor model is equivalent to a specific factor copula model.

Theorem 4.2.9. A standard factor model is a factor copula model with marginal default proba-

bilities p j ,t = FYi (y j ,t ) and conditional copulas

CU j |V (u | v) = FY j |X (F−1
Y j

(u) | (F−1
X1

(v1), . . . , F−1
XN

(vN )),

for j = 1, . . . , N , and where the copula of V is given by

CV (v) = FX (F−1
X1

(v1), . . . , F−1
XN

(vN )).

Furthermore, if the functions FX and FY j for all j = 1, . . . , N are continuous, then the copulas

CV and CU j |V for all j = 1, . . . , N are unique.

Example 4.2.10. The Gaussian model described in Example 4.2.4 is obtained by writing, for

j ∈ {1, . . . , N }, Y j = ρX +
√

1−ρ2Z j and y j ,t = Φ(p j ,t ) where X , Z1, . . . , ZN are i.i.d. N (0,1)

random variables.

In Section 4.6, we derive the factor copula representation of other popular models such as the

Stochastic correlation, the t-Student, the Archimedean models, and the Gaussian-Mixture.

However, while CU j |V and CV sometimes admit such closed-form expressions, it is clear that

the marginal distributions are irrelevant. Instead, working directly with copulas offers more

modeling flexibility while ensuring tractability.

Having described the construction of the joint distribution of default times, we now turn

our attention toward the second element of our framework: the modeling of the losses given

default. In the next section, we introduce a class of discrete loss distributions which can be

computed in quasi-closed form.
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4.3 Discrete Loss Distributions

We define the time-t loss Lt on a portfolio composed of securities written on N different

obligors as

Lt =
N∑

j=1
` j 1{τ j≤t} =

N∑
j=1

` j 1{U j≤p j t }, (4.10)

where ` j is the possibly random loss amount experienced when obligor j defaults, and 1{τ j≤t}
is the default indicator of obligor j . In this section, we make two assumptions on ` j to preserve

the tractability of the portfolio loss distribution, and to enable efficient numerical techniques.

First, we assume that ` j is V -conditionally independent of both `k for k 6= j and U (or

equivalently τ), that is

P [U ≤ u, `≤ x |V = v] =
N∏

j=1
CU j |V (u j |V = v)P

[
` j ≤ l j |V = v

]
,

with ` = (`1, . . . , `N ), and for any u ∈ [0,1]N , v ∈ [0,1]d and l ∈ RN+ . As in the case of the

joint distribution of default times, the V -conditional probabilities can be arbitrarily specified.

Hence, the conditional independence property does not preclude some dependence between

default rates and loss given default.

Second, as in (Andersen, Sidenius, and Basu 2003),(Andersen and Sidenius 2004),(Hull and

White 2004), we assume that the losses are discrete. More specifically, we let δ ∈ R+ be the

common loss unit, such that each ` j has a discrete support starting at zero and with mesh δ,

that is

` j ∈ {0, δ, 2δ, . . . , m jδ}, j = 1, . . . , N

for some integer m j ∈N. Hence, the portfolio loss distribution also has a discrete support with

the same mesh δ, that is

Lt ∈ {0, δ, 2δ, . . . , Mδ}

where M =∑N
i=1 mi . Although δ is an arbitrary constant, it can be as fine as required in order

to mimick the discreteness of real-world prices. For instance, assuming that the granularity of

prices is in cents (i.e., δ= 0.01$) and that the notional of each contract is 1$, then m j = 100

and M = N ×100.

In the next section, we describe our method to compute the distribution of Lt in quasi-closed

form using discrete Fourier inversion.
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4.3.1 Portfolio Loss Distribution

In this section, we show that the portfolio loss distribution has an almost closed-form expres-

sion that can be efficiently computed numerically. Recall that, for a discrete and finitely sup-

ported random variable X ∈ {0,1, . . . , M } admiting a characteristic function φX (u) = E[
eiuX

]
,

its distribution can be represented as a finite sum

P [X = k] = 1

M +1

M∑
m=0

φX

(
2πm

M +1

)
e−

2πikm
M+1

Therefore, if the characteristic function of the loss distribution admits a closed-form expres-

sion, so does the loss distribution itself. Using the V -conditional independence, the following

proposition shows that the characteristic function of the loss admits a simple expression. To

improve the clarity of the formulas, we work with the normalized losses

` jδ
−1 ∈ {

0,1, . . . ,m j
}

and normalized portfolio loss

Ltδ
−1 ∈ {0,1, . . . , M } .

Proposition 4.3.1. The characteristic function of the normalized portfolio loss Ltδ
−1 is given

by

φLt (u) = E
[

eiuLtδ
−1

]
=

∫
[0,1]d

N∏
j=1

(
1−p j ,t (v)+p j ,t (v)φ` j (u, v)

)
dCV (v), (4.11)

for any time t ≥ 0 and for u ∈ R, where p j ,t (v) = CU j |V (p j ,t | v) is the conditional default

probability of j , p j ,t is the unconditional default probability of j defined by Equation 4.1, and

φ` j (u, v) =
n j∑

k=0
P

[
` j = δk |V = v

]
eiuk (4.12)

the V -conditional characteristic function of ` jδ
−1.

The characteristic function is therefore explicit, up to the integral over the compact set [0,1]d

which can be efficiently computed for reasonably large d using, for example, Legendre quadra-

ture. The following lemma is a reminder that, since the support of the portfolio loss distribu-

tion is discrete and finite, we can compute it without approximation as the discrete Fourier

transform of its the characteristic function.

Lemma 4.3.2. The probability distribution of the portfolio loss is given by

P [Lt = k δ] = 1

M +1

M∑
m=0

φLt

(
µm

)
e−iµkm for k ∈ {0, . . . , M }, (4.13)
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with µ= 2π/(M +1) and φLt (·) is the characteristic function of Ltδ
−1.

Note that calculating directly this distribution is a combinatorial problem whose complexity

is increasing exponentially fast with M . Equipped with Lemma 4.3.2, the computation boils

down to an application of the Fast Fourier Transform (FFT) algorithm, which is of significant

practical importance as long as evaluating the characteristic function is efficient.

As mentioned above, the assumption of loss unit and discretely supported portfolio losses

appears already in (Andersen, Sidenius, and Basu 2003),(Andersen and Sidenius 2004),(Hull

and White 2004), where the distribution is computed without approximation by a recursive

algorithm. However, as will be shown in Section 4.4.1, the computational cost of this recursion

increases much faster with both the support size and the number of factors than that of our

approach.

The discrete Fourier inversion in Lemma 4.3.2 differs from the continuous Fourier inversion

described in (Laurent and Gregory 2005),(Burtschell, Gregory, and Laurent 2009) which aims

to approximate a continuous loss distribution. Since our approach provides quasi-closed

expressions for the loss distribution, its scope is much wider, allowing notably the pricing of

CDO squared and Credit Index Options without simulations.

Remark 4.3.3. When the default intensities are driven by a stochastic process similar expressions

can be derived for the default probabilities, see for example (Schönbucher and Schubert 2001),

however their computations generally require costly numerical techniques such as simulations.

Yet, combining the linear credit risk models described in Chapter 3 and polynomial factor

copulas will result in tractable polynomial models with dependent default times and stochastic

default intensities. Indeed, in that case, the joint default probability rewrites as an integral over

the expectation of a polynomial in a polynomial diffusion which is an analytical expression,

see (Filipović and Larsson 2016). Some examples of polynomial copulas are the Farlie-Gumbel-

Morgenstern copula and other small order polynomial copulas found in (Nelsen 1999), and

Bernstein copulas which can also be used to approximate any copula as discussed in (Sancetta

and Satchell 2004).

In the next section, we show that our framework allows us to price in quasi-closed form

products as complex as tranches on credit portfolios, portfolios of such tranches, or credit

index swaptions. While the market for some is booming (e.g., credit index swaption), other may

have fallen out of fashion (e.g., CDO squared). Therefore, we emphasize that such examples

are meant to illustrate the potential of combining factor copulas with discretely suported

losses given default.

4.3.2 Pricing Multi-Name Credit Derivatives

In this section, we show that the loss distribution of more complex portfolios can also be

retrieved explicitly for any horizon of time. We start with reminders on tranches and CDO
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squared, and derive their loss distributions. We then derive the joint distribution of the total

number of defaulted entities and of the total loss, which is a necessary ingredient to price

credit index swaptions.

Tranches and CDO Squared

A tranche on a credit portfolio is a derivative that pays a fraction of the realized portfolio losses

above the attachment point a and below the detachment point b with 0 ≤ a < b, in exchange

of regular payments functions of the effective tranche width. Define the tranche loss as

T a,b
t := min{max{Lt −a, 0} , b −a} , (4.14)

and denote εa := δ− (a mod δ). The following shows that the knowledge of the probability

distribution of Lt implies that of T a,b
t .

Proposition 4.3.4. The tranche loss T a,b
t has a discrete support and its probability mass func-

tion is given by

P
[
T a,b

t = 0
]
=

ba/δc∑
m=0

P [Lt = mδ] ,

P
[
T a,b

t = b −a
]
=

M∑
m=db/δe

P [Lt = mδ] ,

P
[
T a,b

t = εa +kδ
]
=P [Lt = (k +da/δe)δ] ,

for any k ∈N such that 0 < εa +kδ< b −a, and where bxc (respectively dxe) denotes the closest

integer smaller (respectively larger) than x.

Similarly, a portfolio composed of multiple tranches from (potentially different) portfolios is

known as a CDO squared. As for the tranche, its loss distribution can be computed explicitly,

even when the defaults of obligors composing the different portfolios are assumed to be

dependent. More formally, let us consider K tranches on portfolios written on (potentially

different) obligors. For k ∈ {1 . . . ,K }, we denote by T
ak ,bk

k,t and Lk,t the k-th tranche and

portfolio loss, with ak and bk the k-th tranche attachment and detachment points. The

CDO-squared loss (or simply squared loss) is

Lt =
K∑

k=1
T

ak ,bk

kt .

Assume that for all k, we have

ak mod δ= 0 and bk mod δ= 0. (4.15)
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Then, each of the tranche losses as well as the squared loss have a discrete state space

T
ak ,bk

kt ∈ {0, δ, 2δ, . . . , bk −ak } for k ∈ {1 . . . ,K } ,

Lt ∈ {0, δ, 2δ, . . . , MKδ} ,

where MK =∑K
k=1(bk −ak )/δ.

Corollary 4.3.5. If Equation (4.15) holds for k = 1, . . . ,K , then the characteristic function of the

squared loss is

φLt (u) =
∫
Rd

K∏
k=1

φTkt (u, v)dCV (v)

where

φTkt (u, v) =
(bk−ak )/δ∑

n=1
P

[
T

ak ,bk

kt = nδ |V = v
]

eiun

is the V -conditional characteristic function of Tktδ
−1.

To compute φTkt one may use Proposition 4.3.4 applied to the V -conditional portfolio loss

distribution, namely P [Lkt = mδ |V = v]. Applying Lemma 4.3.2 with Lt replacing Lt , one

finally obtains the distribution of the squared loss. With the distribution of the squared loss,

one can then price derivatives such as tranches on a portfolio of tranches.

Credit Index Swaption

A credit index swaption is an option on a credit index swap. Whereas tranches could be

priced using the portfolio loss distribution only, the optionality embedded in such a option

necessitates the joint distribution of the total number of defaulted entities and of the total

loss, see Section 4.7 for details on the pricing formulas. Letting Nt be the number of defaulted

entities at time t , that is

Nt =
N∑

j=1
1{τ j≤t}, (4.16)

we need P [Nt = n, Lt = δk] for all n = 0, . . . , N , k = 0, . . . , M , and t > 0. The following lemma

provides a generic expression for the joint distribution of (Nt ,Lt ).

Proposition 4.3.6. The joint distribution of (Nt ,Lt ) is given by

P [Nt = n, Lt = δk] =
N∑

j=0

M∑
l=0

φNt ,Lt (µ j ,νl )e−iµn j e−iνkl

(1+N )(1+M)
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with µ= 2π/(M +1), ν= 2π/(N +1), and

φNt ,Lt (x, y) =
∫

[0,1]d

N∏
j=1

(
1−p j ,t (v)+p j ,t (v)φ(x, y, v)

)
dCV (v)

where p j ,t (v) is as in Proposition 4.3.1, and

φ(x, y, v) =
n j∑

k=0
P

[
` j = δk |V = v

]
ei(x+yk).

Note that this results requires a two-dimensional discrete Fourier transform inversion as

described in the proof. One may observe that φ(x, y, v) is the V -conditional characteristic

function of x + y` jδ
−1 evaluated at one, that is

φ(x, y, v) = E
[

ei(x+y` jδ
−1) |V = v

]
,

and that φNt ,Lt (x, y) is the characteristic function of (Nt ,Ltδ
−1) evaluated at (x, y), that is

φNt ,Lt (x, y) = E
[

ei(xNt+yLtδ
−1)

]
.

Remark 4.3.7. When the loss amounts ` j are homogeneous and independent from V , then the

following more direct calculation can be applied

P [Nt = n, Lt = δk] =P [Lt = kδ | Nt = n]P [Nt = n]

where P [Nt = n] can be computed as in Lemma 4.3.2, and where

P [Lt = kδ | Nt = n] =P
[

n∑
j=1

` j = kδ

]

may also be derived using the discrete Fourier transform.

Note that, up to this point, we left unspecified the V -conditional distribution of the loss

amounts. In the next section, we suggest a flexible specification for P
[
` j = δk |V = v

]
for

k ∈ {
0, . . . ,m j

}
and j ∈ {1, . . . , N }, which is required to compute the characteristic function of

the portfolio loss in proposition 4.11 .

4.3.3 Beta-Binomial Loss Amounts

In this section, we assume that the loss amount distribution of each obligor can be dependent

on the default times and others loss amounts. For each j = 1, . . . , N , we let the loss amount ` j

take value in a set of the form

` j ∈ {b jδ, (a j +b j )δ, . . . , (n j a j +b j )δ} ⊂ {0,δ,2δ, . . . ,m jδ}
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with the integers a j ,b j ,n j ∈ N such that n j a j + b j = m j > 0. Note that the two sets are

equivalent when a j = 1 and b j = 0. The Beta-binomial model is obtained by assuming that the

V -conditional distribution of the loss amount increment (` jδ
−1 −b j )/a j is a Beta-binomial

random variable.

Definition 4.3.8 (The Beta-Binomial model). The V -conditional probability of loss is

P
[
` j = (a j k +b j )δ |V = v

]= ∫
[0,1]

P
[

Z = k | p,n j
]
π j

(
p |V = v

)
d p

for any k = 0, . . . , n j , where Z ∼ Bin(n j , p), that is

P
[

X = k | p,n j
]= (

n j

k

)
pk (1−p)n j−k

and with the Beta distribution

π j
(
p |V = v

)= pα(v)−1(1−p)β(v)−1

B(α(v), β(v))

for some functions α : [0,1]d →R+∗ and β : [0,1]d →R+∗.

Conditional on V the number of loss units experienced upon default is the sum of a constant

b j and of k units a j where k follows a Binomial distribution with parameter p and support

0, . . . , n j . In addition, the probability p is random and distributed according to a Beta dis-

tribution with parameters α(v) and β(v). Note that the functions α and β may be obligor

specific.

Although the Beta-binomial specification may look intimidating, it is a well-studied flexible

distribution that nests a large spectrum of distributions such as the Bernouilli (see below), the

discrete uniform (when α= β= 1), and asymptotically the binomial (for large α and β). An

additional important feature is that an explicit expression is available for its probability mass

function

P
[
` j = (a j k +b j )δ |V = v

]= Γ(n j +1)

Γ(k +1)Γ(n j −k +1)

Γ(α(v)+β(v))

Γ(α(v))Γ(β(v))

× Γ(k +α(v))Γ(n j −k +β(v))

Γ(n +α(v)+β(v))
.

for any k = 0, . . . ,n j and where Γ denotes the gamma function. The V -conditional loss amount

mean and variance therefore also have a explicit expression

E
[
` j |V = v

]= (
a j

n jα(v)

α(v)+β(v)
+b j

)
δ
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and

Var
[
` j |V = v

]= n jα(v)β(v)(α(v)+β(v)+n j )

(α(v)+β(v))2(α(v)+β(v)+1)
a j

2δ2.

Remark that the mean loss amount is positively correlated with V when the function v 7→
α(v)/(α(v)+β(v)) is increasing on [0,1].

Example 4.3.9 (Bernouilli model). The loss amount distribution reduces to a Bernoulli when

n j = 1 with probability

p(v) = Γ(α(v)+β(v))

Γ(α(v))
× Γ(1+α(v))

Γ(1+α(v)+β(v))

which can take any value in (0,1) and thus also be arbitrary close to the Dirac delta function.

Example 4.3.10 (Linear Beta-Binomial model). Assume that d = 1 and that the functions

α, bet a are linear such that α(v) = m1 + m2v and β(v) = m3 + m4v where mi > 0 for all

i = 1, . . . , 4. This specification is discussed in further details in Section 4.4.4.

4.4 Numerical Analysis

In this section we illustrate the computational performance of our approach, and numerically

study the properties of selected models with different dependence and loss given default

assumptions.

4.4.1 Computational Performance

We show here that the discrete Fourier transform (DFT) method proposed in Section 4.3

is significantly more efficient that the recursive methods suggested in (Andersen, Sidenius,

and Basu 2003),(Hull and White 2004). Note that for a loss support of size M the DFT is

computationally equivalent to the numerical inversion of (Laurent and Gregory 2005) with M

discretization points, yet the DFT returns the exact loss distribution.

We consider the standard one-factor and two-factor copula models. Figure 4.1 displays the

computing time necessary to retrieve the probability mass function with the DFT and with the

recursive method. The calculations have been performed on a single CPU from a standard

personal computer in the R programming language. The DFT method is significantly faster

than the recursive method in both cases: it takes roughly the same amount of time to retrieve

a distribution with 1000 points with DFT and a 100 points with recursion.

4.4.2 Dependent Defaults with a Mixed Copula

We investigate the joint default probability and the total number of defaults density in a one-

factor copula model with a mixed bivariate copula specification as defined in Equation (4.6).
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Figure 4.1 – Computation performance.
The time in seconds to compute the loss probability mass function is displayed against the loss support size M for the dis-
crete Fourier transform (black line) and recursive (grey line) methods. The one-factor (left panel) and two-factor (right panel)
standard Gaussian copula have been used under the assumption of constant loss given default.

We fix K = 2 and assume that p j ,t = 1−e−λt for j ∈ {1,2} with λ= 5%. Consider the following

copula mixture

CU j ,V (u j , v) = wC C
U j ,V (u j , v)+ (1−w)C G

U j ,V (u j , v)

for j ∈ {1, . . . , N }, for some w ∈ [0,1], and where C C denotes the Clayton copula with parameter

5 and C G the Gaussian copula with parameter 25%. Figure 4.2 displays the probability and

cumulative density functions of joint defaults of two entities for the times 0 ≤ t ≤ 20, and

for the weights w ∈ {0,0.5,1}. The two limit cases therefore correspond to the Gaussian and

Clayton copulas. We observe that the joint probability of default also becomes a mixture of

the two limit cases.

We set N = 125, Figure 4.3 displays the total number of defaults at a 5-years horizon. It is

visually obvious that the distribution of the number of defaults is a mixture of the two limit

components: it has the bump of the Gaussian with parameter ρ = 25% and the fat tail of the

Clayton with parameter 5.

4.4.3 Credit Derivatives

We explore the loss distribution of a large portfolio, a tranche on this portfolio, and a portfolio

of tranches when the underlying tranches are independent and when they depend on the

same factor V . Let N = 1000 and assume that ` j = 1 and λ j t = 0.01 for all j ∈ I and t ≥ 0.

The reference model is the standard one-factor Gaussian copula with correlation parameter

ρ = 25%. All the tranches have for attachment point ak = 100 and detachment point bk = 200.

The CDO squared is composed of 10 tranches so as to have the same loss support as the
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Figure 4.2 – Defaults dependence and copula mixture.
The probability (left panel) and cumulative (right panel) density functions of the joint default are displayed for time horizons
ranging from 1 week to 20 years for three different one-factor models: an equiweighted copula mixture (black line) between a
Gaussian copula with ρ = 0.25 (light-grey line) and a Clayton copula with parameter equal to 5 (grey line).
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Figure 4.3 – Total number of defaults with copula mixture.
The Figure displays the probability (left panel) and cumulative (right panel) density functions of the total number of defaults on
a portfolio of 125 homogeneous entities. We assume that p j ,t = 5% for all j ∈I and consider an equiweighted copula mixture
(black line) between a Gaussian copula with ρ = 0.25 (light-grey line) and a Clayton copula with parameter equal to 5 (grey line).
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Figure 4.4 – Multi-name credit derivatives losses.
The probability (first row) and cumulative (second row) density functions of the loss distribution are displayed for three dif-
ferent derivatives. The first column is concerned with a portfolio of 1000 entities, the second column with a tranche on this
portfolio with attachment point 100 and detachment point 200, and the third column with a portfolio of 10 such tranches
coming from different portfolios with a unique risk factor (black line) and with independent risk factors (grey line).

portfolio.

Figure 4.4 displays the probability and cumulative mass functions of the portfolio, tranche,

and portfolio of tranches at the 5-year horizon. Observe that the tranche loss distribution

has two masses at the beginning and end of its support corresponding the probabilities of no

loss and full loss respectively. These more concentrated masses combined and creates a spiky

pattern in the portfolio of tranches loss distribution.

The CDO squared loss distribution has been computed under the assumption of unique factor

and tranche specific factor. The two resulting loss distributions have dramatically different

profiles. With independent factors the CDO squared appears even less exposed to losses than

the vanilla portfolio. For example, the senior tranches on the pooled portfolio are virtually

riskless. On the other hand, with a unique common factor the CDO squared has a fat tailed

loss distribution and a large probability, about 91%, of having zero losses: when the risk driver

behind all tranches is the same, the diversification benefit almost completely disappears.

Similar results has been obtained (Hull and White 2010) using Monte Carlo simulations.

4.4.4 Stochastic and Correlated Loss Amounts

In this section we investigate the impact of introducing stochastic losses that may be correlated

with the factor V on the loss distribution of a portfolio. We consider the linear Beta-Binomial

model presented in Section 4.3.3 and always assume that a j = 1 and b j = 0.
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Figure 4.5 – Loss distribution and loss amounts dependence.
The probability (first row) and cumulative (second row) density functions of the loss distribution are displayed for three differ-
ent loss amounts specifications. With a standard one-factor copula model with ρ = 0.25, constant marginal default intensity
λ j t = 5%, and a 5-year horizon we consider the linear Beta-Binomial loss amounts with m1 = m3 and m2 = m4 for the values:
m1 = 1 and m2 = 0 (black line), m1 = 1 and m2 = 1 (grey line), m1 = 3 and m2 = 1 (light-grey line), and m1 = 3 and m2 = 5
(dotted light-grey line).

Assume that m3 = m1 and m4 = m2 such that the V -conditional expected loss is

E
[
` j |V = v

]= n j a jδ(m1 +m2(1− v))

2m1 +m2
+b jδ.

In this particular case the expected loss is constant is, that is

E
[
` j

]= ∫ 1

0
E
[
` j |V = v

]
d v = 1

2
,

for any m1 and m2 when a j = 1, b j = 0 and n jδ= 1. Consider the standard one-factor Gaussian

copula with ρ = 0.25, N = 125, λ j = 0.05 for all j ∈I , and with the same loss amount model

as above having an expected loss one half. Figure 4.5 shows that the loss distribution is

significantly affected by the choice of dependence parameters. Compared to the benchmark

case of independent and equi-distributed loss amounts, increasing the dependence on the

factor V also increases the portfolio average loss and tail risk.

4.4.5 Number of Defaults and Loss Dependence

We investigate how dependent individual losses affect the portfolio loss distribution given

a number of realized defaults. We remind that this distribution is required to price credit

swaptions. Consider the usual one-factor homogeneous Gaussian copula with ρ = 0.25, with

default intensities λ j t = 0.05, with N = 125 entities, and for a 5-year horizon. We assume that
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Figure 4.6 – Number of defaults and loss dependence.
The left panel displays the joint probability density of the number of default Nt and the loss Lt . The right panel displays the
expected loss given n defaults, the loss amounts may not depend from the factor V (grey line) or may depend on the factor V
(black line). The reference model is a one-factor homogeneous Gaussian copula with ρ = 0.25, default intensities λ j t = 0.05, a
5-year horizon, and contains N = 125 entities. The loss amount ` j t is zero or one and has an expected value of 50%.

the V -conditional loss amounts ` j is given by

` j =
1 with probability 1− v

0 with probability v

such that E[` j ] = 0.5 for all j ∈I . The left panel on Figure 4.6 displays the probability density

of the joint probability distribution of the number of defaults and loss (Nt ,Lt ) computed as

described in Proposition 4.2.2. We observe that most of the probability mass is concentrated

on a diagonal band near the origin, and that there is little to no mass on the off diagonal parts.

The right panel of Figure 4.6 displays the expected loss given a certain number of default,

that is E [Lt | Nt = n] for n = 0, . . . , 125. This value is increasing with Nt = n as the losses are

expected to increase with the total number of defaults. Several interesting observations can be

made. The marginal rate of losses starts from almost zero at the origin and increases rapidly,

and the conditional expected loss converges to the maximal possible loss. This is in contrast

with the case of independent loss amounts defined byP
[
` j = 0

]=P[
` j = 1

]= 0.5 also displays

on this Figure and where the relation between Nt and Lt is linear.

4.5 Empirical Analysis

In this section, we illustrate our approach by calibrating various factor copula models to credit

index tranche prices.
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Name Attachement Detachment Spread
Equity 0 3 5

Mezzanine 3 7 1
Senior 7 15 1

Super-senior 15 100 0.25

Table 4.1 – Tranches structure on the CDX.NA.IG.21.
The attachment/detachment points and the spread per annum for each of the four tranches are given in percentage.

Equity Mezzanine Senior Super-senior
Mean 15.18 5.92 -0.29 -0.23

Vol 4.10 2.74 1.27 0.22
Min 8.59 1.34 -2.07 -0.53
Max 24.87 13.28 2.82 0.25

Table 4.2 – Summary statistics for the tranches on the CDX.NA.IG.21.
The statistics concern the upfront payments, which are quoted in percentage of the tranche width.

4.5.1 Data

We focus on tranches of the CDX.NA.IG index, which is composed of 125 investment grade

North American companies. Historically, all tranches except the most junior were unfunded.

Similarly as standard swaps, they were quoted with a spread and didn’t include upfront

payments. Since 2009 however, a new set of rules, known as the Big Bang Protocol, was

amended to the International Swaps and Derivatives Association’s master agreement (i.e., the

standardized contract used between dealers and their counterparties). Arguably the most

important was the 100/500 Credit Derivative Initiatives: by standardizing coupons at 1% or 5%

per annum3 with quarterly payments, the rule made the upfront necessary to enter a contract

on any tranche.

Based on liquidity, new series of the CDX.NA.IG index with tenors of 3, 5, 7, and 10 years are

determined every 6 months (in March and September). The series 21, issued in September

2013 with a tenor of 5 years, came along with four standardized tranches, whose spreads and

attachments/detachments points are detailed in Table 4.1. Our sample contains 405 daily

upfront payments for the four tranches, which we summarize in Table 4.2 and display in Figure

4.7. By convention, the market quotes upfronts in percentage of the corresponding tranche

width, which is about thirty times larger for the super-senior than for the equity. Furthermore,

the sign of the upfront is also interesting: since it is negative, one most often receives money

to buy protection on the super-senior tranche, as well as on the senior tranche at the end of

the sample period.

3Although it has since been extended to also include coupons of 0.25% and 10%.

129



Chapter 4. Dependent Defaults and Losses with Factor Copula Models

2013-10 2015-05

0

0.1

0.2

Upfront

Figure 4.7 – Upfronts on CDX.NA.IG.21 tranches.
The time-series of quoted ufront payments are displayed for the equity (black line), mezzanine (grey line), senior (light-grey
line) and super-senior (dotted light-grey line) tranches.

4.5.2 Calibration

Let P ai ,bi , ai and bi for i ∈ {1, . . . ,4} denote the quoted upfronts, and attachments/detachments

points of each tranches. For a model parametrized with θ ⊆Θ⊆ Rl (i.e., l is the number of

parameters), we denote by P ai ,bi (θ) the model price, that is the quantity satisfying

P ai ,bi (θ)(bi −ai )+V ai ,bi
prem (θ) =V ai ,bi

prot (θ),

where bi −ai is the tranche width, and the premium and protection legs are defined as

V ai ,bi
prem (θ) = Sai ,bi Eθ

[
n∑

j=1
e−

∫ T j
0 rs d s(T j −T j−1)

∫ T j

T j−1

b −a −T a,b
t

T j −T j−1
d t

]
,

and

V ai ,bi
prot (θ) = Eθ

[∫ T

0
e−

∫ t
0 rs d sdT

ai ,bi
t

]
,

with 0 = T0 ≤ ·· · ≤ Tn = T the payment dates, T the maturity, and Sai ,bi the tranche spread.

See Section 4.7 for more details.

Assuming r = 0 and a homogeneous portfolio with no recovery (i.e., δ j = 0), we let the default

probability be

p j ,t = 1−e−λt , j ∈ {1, . . . ,125}

whereλ is the credit index swap spread, and the model is calibrated by minimizing the squared
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Figure 4.8 – Models calibration to tranches on the CDX.NA.IG.21.
Using the quoted upfronts on January 6th, 2014, various copulas models are calibrated: the one-factor Gaussian (dotted line),
the one-factor t copula (dashed line), the two-factors Gaussian-Clayton copula (grey line), and the one-factor mixture with two
Gaussians (black line). The shaded area is the bid-ask spread.

pricing error, that is

θ̂ = argmin
θ ⊆Θ

4∑
i=1

(
P ai ,bi −P ai ,bi (θ)

)2
. (4.17)

In our current implementation, (4.17) is solved in two steps. First, we explore the parameter

space to find a good starting value via a differential evolution algorithm. Second, we use the

Nelder-Mead algorithm to refine the solution, enforcing the bounds by means of a parameter

transformation.

4.5.3 Results

In Figure 4.8, we show calibration of various copulas to upfronts quoted on January 6th, 2014.

While the one-factor Gaussian (dotted line) is completely off, both the one-factor t copula

(dashed line) and the two-factors Gaussian-Clayton copula (grey line) perform better but miss

the senior tranche. The only model achieving a perfect fit (i.e., the black line) is the following

one-factor two-Gaussians mixture

CU j ,V (u j , v) = wCρ1

U j ,V (u j , v)+ (1−w)Cρ2

U j ,V (u j , v), j ∈ {1, . . . ,125}

with w ∈ [0,1] and Cρi is a Gaussian copula with parameter ρi for j ∈ {1,2} (i.e., θ = (w,ρ1,ρ2)

andΘ= [0,1]× [−1,1]× [−1,1]).

Repeating (4.17) of the mixture for each day of the sample, we obtain time-series of calibrated

parameters that we display as the plain lines in Figure 4.9. There are two interesting observa-

tions that can be made. First, the parameters do not vary much over time, which indicates

that the model is not over-parametrized and can be reliably estimated. Second, the second

parameter is very close to 1, which means the second component of the mixture describes
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Figure 4.9 – Parameters calibrated on CDX.NA.IG.21 tranches.
The time-series of calibrated parameters are displayed for w (black lines) ρ1 (grey lines) and ρ2 (light-grey lines). The plain
and dotted lines correspond to models with either three (plain) or two (dotted) parameters, that with either θ1 = (w,ρ1,ρ2) or
θ2 = (w,ρ1,0.99).

a comonotonic relationship between the factor and the uniform random variables for each

obligor. In other words, we have

P
[
U j ≤ u j | V = v

]≈
wCρ1

U j |V (u j | v), if u j ≤ v,

wCρ1

U j |V (u j | v)+ (1−w), otherwise
, (4.18)

for j ∈ {1, . . . ,125}. When fixing ρ2 = 0.99 such that (4.18) holds, and calibrating θ = (w,ρ1)

only, similar results were obtained, and the parameters time series are the dotted lines in the

upper-right panel of Figure 4.9.

In the four remaining panels of Figure 4.10, we display a model diagnostic for each of the four

tranches. For each day in the sample period, the pricing errors, namely

P ai ,bi −P ai ,bi (θi ) with

θ1 = (w,ρ1,ρ2)

θ2 = (w,ρ1,0.99)
,

are the black and grey lines respectively for θ1 and θ2, and the bid-ask spread, that is

P ai ,bi

ask −P ai ,bi

bi d ,

are the the light grey lines. As the pricing errors are much lower than the bid-ask spread, the

equity and mezzanine tranches are perfectly calibrated by both models. For the senior tranche

with θ2 and the super-senior tranche however, the pricing errors and the bid-ask spread

have the same order of magnitude. To alleviate this issue, we could switch the target of the

minimization in the right-hand side of (4.17) from percentage of the tranche width to dollar

amount. In other words, by weighting each term of the sum by (bi −ai )2, we would increase

the relative importance of the super-senior tranche in the objective function. Nonetheless, the
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Figure 4.10 – Diagnostic of models calibrated on CDX.NA.IG.21 tranches.
Model diagnostic are displayed with the bid-ask spread (ligh-grey line) and the pricing errors for the model with either three
(black line) or two (grey line) parameters, that with either θ1 = (w,ρ1,ρ2) or θ2 = (w,ρ1,0.99).

pricing error (and the bid-ask spread) are between 10 and 30 times smaller than the upfront

itself.

To summarize, we achieve an almost perfect calibration to all tranches with only two parame-

ters that remain stable over time.

4.6 Standard Copula Models

We derive in this section the factor copula representation of the most popular models that

have been proposed in the literature on multi-name credit risk.

Gaussian copula models. Let us denote the Gaussian copula and h-function by

CG
U ,V (u, v ;ρ) =Φ2

(
Φ−1(u),Φ−1(v);ρ

)
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and

CG
U ;V (u | v ;ρ) =Φ

(
Φ−1(u)−ρΦ−1(v)

1−ρ2

)
,

whereΦ(·) is the standard normal distribution andΦ2(·, ·;ρ) is the bivariate normal distribution

with correlation ρ. For instance, when d = 1 and all bivariate copulas are Gaussian, then a

representation for the joint distribution of default times is the copula of a 1-factor model

Y j =β j X +
√

1−β2
j Z j ,

where X , Z1, . . . , ZN are i.i.d. N (0,1) random variables. In this case, the correlation parameter

for the bivariate copula linking the default of obligor j to the systematic factor is β j . By

considering a unique correlation parameter β j = ρ for j ∈ {1, . . . , N }, (Li 2000) is a special case

of our formulation. Furthermore, when d > 1, then a representation for the joint distribution

of default times is the copula of a d-factor model

Y j =
p∑

i=1
β j ,i Xi +Z j ,

where X1, . . . , Xp , Z1, . . . , ZN are i.i.d. N (0,1) random variables. In this case, the parameters for

the second to d factors are partial correlations, namely

ρU j ,Vk |X1,...,Vk−1 =
Cov(Y j , Xk | X1, . . . , Xk−1)√

V ar (Y j | X1, . . . , Xk−1)
√

V ar (Xk | X1, . . . , Xk−1)
= β j ,k√

1−β2
j ,1 −·· ·−β2

j ,k−1

.

Stochastic correlation models. It is straightforward to build more complex factor models,

stochastic correlations models are obtained by writing

Y j =
(
B jα j + (1−B j )β j

)
X +

√
1− (

B jα j + (1−B j )β j
)2Z j ,

where B j are i.i.d. Bernoulli(b j ) and X , Z1, . . . , ZN as before. For this model, the bivariate

copulas are convex sum of Gaussian copulas, that is

C SC
U j ,V (u j , v ;α j ,β j ,b j ) = b2

j CG
U j ,V (u j , v ;α2

j )+2b j (1−b j )CG
U j ,V (u j , v ;α jβ j )

+ (1−b j )2CG
U j ,V (u j , v ;β2

j ),

and deriving the h-function yields

C SC
U |V (u | v ;α j ,β j ,b j ) = b j CG

U |V (u | v ;α j )+ (1−b j )CG
U |V (u | v ;β j ).
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The t-Student model. Usually, t-student models are specified by considering,

Y j =
p

W
(
β j X +

√
1−β2

j Z j

)
where W is an i.i.d. random variable such than ν/W is χ2(ν) and X , Z1, . . . , ZN as before. Then

the default times are independent conditional on (W, X ) and their conditional probability

distribution is easily derived (see e.g. (Burtschell, Gregory, and Laurent 2009)). Using our

formulation, we obtain an equivalent t-student model by considering the copula and h-

function directly, that is

C t
U ,V (u, v ;ρ,ν) = t2(t−1

ν (u), t−1
ν (v);ρ,ν)

and

C t
U ;V (u, v ;ρ,ν) = tν+1

(
f (u, v)

)
, with f (u, v) = t−1

ν (u)−ρt−1
ν (v)√

(1−ρ2)
(
ν+(t−1

ν (v))2
)

ν+1

,

where tν(·) is the t-student distribution with ν degrees of freedom and t2(·, ·;ρ,ν) is the bivari-

ate t-student distribution with correlation ρ and degrees of freedom ν. Compared to the other

formulation, our alternative only require a one-dimensional integration. Furthermore, using

different degrees of freedom for each bivariate copulas offers additional modeling flexibility

without additional cost.

Archimedean models. One-parameter archimedean copulas are built by considering a con-

tinuous, strictly decreasing and convex generator ψ : [0,1]×Θ→ [0,∞) such that ψ(1;θ) = 0

for all θ ∈Θ, whereΘ represents the parameter space. Using this generator, a bivariate copula

is obtained by writing

Cψ

U ,V (u, v ;θ) =ψ−1 (
ψ(u;θ)+ψ(v ;θ);θ

)
.

For such a copula, the h-function Cψ

U ;V is usually straightforward to derive, and we summarize

the most popular in Table 4.3.

Gaussian mixture models. The Gaussian mixture model from (Li and Liang 2005) is a one-

factor copula mixture as described in Equation 4.6. The bivariate copulas are furthermore

assumed to be Gaussian and equal C k
U j ,V =C k

Ul ,V for any j , l = 1, . . . , N and k = 1, . . . ,K .

4.7 Pricing Formulas

The credit contracts described in this section are composed of two cash-flows series. The

contract buyer pays predefined coupons to the seller at the payments dates 0 = T0 ≤ ·· · ≤ Tn =
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Generator ψ Inverse generator ψ−1 Parameter spaceΘ

Clayton u−θ−1
θ

(1+θu)−1/θ (0,∞)

Gumbel
(− log(u)

)θ exp
(
−u1/θ

)
[1,∞)

Frank − log
(

exp(−θu)−1
exp(−θ)−1

)
− 1
θ

log
(
1+exp(−t )

(
exp(−θ)−1

))
(−∞,∞) \ {0}

Joe − log
(
1− (1−u)θ

)
1− (

1−exp(−u)
)1/θ [1,∞)

Independence − log(u) exp(−u) ∅

Copula C
ψ
U ,V h-function C

ψ
U |V

Clayton
(
u−θ + v−θ −1

)−1/θ
C
ψ
U ,V (u, v ;θ)v−1−θ

Gumbel e
−

(
(− log(u))θ+(− log(v))θ

)1/θ

C
ψ
U ,V (u, v ;θ)

(
(− log(u))θ+(− log(v))θ

)1/θ−1
(− log(v))θ

v log(v)

Frank − 1
θ

log

(
1−e−θ−

(
1−e−uθ

)(
1−e−vθ

)
1−e−θ

)
eθ

(
eθu −1

)
eθu+θv −eθu+θ −eθv+θ +eθv

Joe 1−
(
(1−u)θ + (1− v)θ − (1−u)θ(1− v)θ

)1/θ (
C
ψ
U ,V (u, v ;θ)

)1−θ
(1− v)θ−1(1− (1−u)θ)

Independence uv u

Table 4.3 – Archimedean copulas
Describes the generator ψ, the inverse generator ψ−1, the parameter spaceΘ, the copula C

ψ
U ,V , and the h-function C

ψ
U |V .

T where T is the contract maturity, we call this series of cash-flow the premium leg Vprem.

The contract seller pays default contingent cash-flows to the buyer at the defaults dates when

losses materialize, we call this series of cash-flow the protection leg Vprot. The contract value

for the buyer is then given by Vprot −Vprem. We denote rt the time-t risk-free rate and derive

the contracts values at the initial date.

Tranche. A credit swap on a tranche T a,b with attachment point a and detachment point

b is a protection insuring the loss experienced on the tranche, in exchange of scheduled

premium payments proportional to the remaining size of the tranche. The value of the

protection leg is

Vprot = E
[∫ T

0
e−

∫ t
0 rs d sdT a,b

t

]

where the tranche density T a,b
t is defined in Equation (4.14). The value of the premium leg is

Vprem = Sa,b E

[
n∑

j=1
e−

∫ T j
0 rs d s(T j −T j−1)

∫ T j

T j−1

b −a −T a,b
t

T j −T j−1
d t

]

where Sa,b is the tranche spread. In practice, the above expressions for the two legs are

necessarily approximated by replacing the integrals with sums where quadrature and trapezoid

methods cab be used. Assuming that the short-rate and the default times are uncorrelated,

(Mortensen 2006) used the parsimonious following discretization

Vprot ≈
n∑

j=1
B

(
t j + t j−1

2

)(
E
[
T a,b

t j
−T a,b

t j−1

])
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and

Vprem ≈ Sa,b
n∑

j=1
(t j − t j−1)B(t j )

b −a −
E
[
T a,b

t j
+T a,b

t j−1

]
2


where B(t ) denotes the risk-free bond price with maturity t and notional equal to one.

Credit swap. A credit swap on an index pays the realized losses in exchange for scheduled

premium payments proportional to the number of non-defaulted entities. The value of the

protection leg is

Vprot = E
[

N∑
j=1

e−
∫ τ j

0 rs d s` j

]
= E

[∫ T

0
e−

∫ t
0 rs d sdLt

]

where the total loss Lt is defined in Equation (4.10). The value of the premium leg is

Vprem = S E

[
n∑

j=1
e−

∫ T j
0 rs d s(T j −T j−1)(N −Nt )+

∫ T j

T j−1

e−
∫ u

0 rs d s(u −T j−1)d Nu

]

where S is the index spread and Nt is the time-t total number of default defined in Equa-

tion (4.16).

Credit swaption. A European credit swaption offers the right to enter a credit swap at a

future time 0 < Tm < T at a predefined index spread S∗. In addition, the credit swaption

typically provides default protection between the issuance date 0 and the option maturity Tm .

Denote VCS(Tm) the time-Tm value of the credit swap which follows directly from above. The

time-Tm value of the credit swaption is given by

VCSO = E
[

e−
∫ Tm

0 rs d s
(
VCS(Tm)+ (LTm −L0)

)+]
.

4.8 Proofs

This Section contains the proofs of all theorems and propositions in the main text.

Proof of Lemma 4.2.2

The joint probability of default rewrites

P [τ1 ≤ t1, . . . , τN ≤ tN ] =P[
U1 ≤ p1,t1 , . . . , UN ≤ pN ,tN

]=CU
(
p1,t1 , . . . , pN ,tN

)
where the second line follows by definition of CU .
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Proof of Proposition 4.2.3

Observe that for all j = 1, . . . , N the random vector (U j ,V ) takes values on [0,1]2 and has

uniform marginal densities, this implies that

P
[
U j ≤ u j ,V ≤ v

]=CU j ,V (u j , v)

for some bivariate copulas CU j ,V and any (u j , v) ∈ [0,1]2. Therefore we have

P
[
U j ≤ u j |V = v

]=CU j |V (u j | v)

and by plugging this into Equation (4.5) then integrating with respect to the density fV (v) = v

of V we obtain

CU (u1, . . . , uN ) =
∫ 1

0

N∏
j=1

P
[
U j ≤ u j ,V ≤ v

]
fV (v)d v =

∫ 1

0

N∏
j=1

CU j ,V (u j , v)d v.

The desired expression then follows from Lemma 4.2.2.

Proof of Proposition 4.2.6

We denote UI the vector which contains the coordinates of U which are in I \ D, and UJ

contains the ones which are in D. For readability we assume that the coordinates are ordered

according to U = (UI,UJ). Similarly we group the marginal default probabilities into two

vectors pI and pJ. The size of UI and UJ are respectively given by NI and NJ = N −NI. We

directly write the proof for the multivariate case with V ∈ [0,1]d . The joint default probability

conditional on the default of the k ∈D entities then rewrites

P [τ1 ≤ t1, . . . , τN ≤ tN | τk = tk : k ∈D] =P[
U1 ≤ p1,t1 , . . . , UN ≤ pN ,tN |Uk = pk,tk : k ∈D

]
=

∫
[0,pI]

cUI,UJ (uI, pJ)duI∫
[0,1]NI cUI,UJ (uI, pJ)duI

=
∫

[0,1]d CUI|V (pI | v)cUJ,V (pJ, v)dCV (v)∫
[0,1]d cUJ,V (pJ, v)dCV (v)

.

The second equality comes from the definition of the conditional probability for measures.

The third equality follows from the definition of the factor copula and Fubini’s theorem,∫
[0,x]

cUI,UJ (uI, pJ) duI =
∫

[0,1]d

∏
U j∈UI

∫ x j

0
cU j ,V (u, v) du

∏
U j∈UJ

cU j ,V (u j , v) dCV (v),

along with
∫ x j

0 cU j ,V (u, v)du =CU j |V (x j | v) and CU j |V (1 | v) = 1.
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Alternatively, the same result can be proved by first showing that

P [τ1 ≤ t1, . . . , τN ≤ tN | {τk = tk : k ∈D}∪ {V = v}] =
∫

[0,pI]
cUI,V (x, v)d x cUJ,V (pJ, v) cV (v)∫

[0,1]NI cUI,V (x, v)d x cUJ,V (pJ, v) cV (v)

= ∏
j∈I \D

CU j |V (p j ,t j | v)

and then integrating with respect to the following conditional density

P[V ≤ v | {Uk = pk,tk : k ∈D}] =
∫

[0,v]
∏

j∈D cU j ,V (p j ,t j , x)dCV (x)∫
[0,1]d

∏
j∈D cU j ,V (p j ,t j , x)dCV (x)

.

Proof of Propostion 4.2.7

The V -conditional joint default probability as a similar expression as in Equation (4.4). The

unconditional joint default probability follows by integrating with respect to the joint density

cV (v) of V which gives the expression for CU as dCV (v) = cV (v)d v . Observe now that the joint

distribution of the random vector (U j ,V ) is by construction given by a (1+d)-dimensional

copula CU j ,V for all j ∈I . By definition we must have

CU j ,V (u j , v) =P[
U j ≤ u j , V ≤ v

]= ∫ v1

0
. . .

∫ vd

0
P

[
U j ≤ u j |V = y

]
dP

[
V ≤ y

]
=

∫ v1

0
. . .

∫ vd

0
CU j |V (u j | y)dCV (y)

for all (u j , v) ∈ [0,1]1+d which gives Equation (4.8).

Proof of Corollary 4.2.8

The density of V is given by CV (v) =∏d
j=1 v j , and following (Joe 1996) the conditional copulas

are given by

CU j |V (u j | v) =
∂CU j ,Vk |V−k

(
CU j |V−k (u j | v−k ), vk | v−k

)
∂vk

for any k = 1, . . . , d , and where V−k = (V1, . . . ,Vk−1,Vk+1, . . . ,Vd ) denotes the random vector

V without its k-th coordinate. By iterating the previous equation, the conditional copula

CU j |V (u j | v) can be rewritten as a recursive composition of bivariate linking copulas

CU (u1, . . . , un) =
∫

[0,1]d

N∏
j=1

CU j |V1 (·|v1)◦ · · · ◦CU j |Vd (u j |vd )d v

where CU j ,Vk denotes a bivariate copula for j = 1, . . . , N and k = 1, . . . , d .

139



Chapter 4. Dependent Defaults and Losses with Factor Copula Models

Proof of Theorem 4.2.9

Observe that the random vector U = (FY1 (Y1), . . . , FYN (YN )) and V = (FX1 (X1), . . . , FXd (Xd ))

have uniform margins by construction suggesting that their distributions are given by copulas.

The following theorem proves the existence of CV .

Theorem 4.8.1 (Sklar’s Theorem 1959). FV is a joint distribution with margins FXi for i ∈
{1, · · · ,d} if and only if there exists a copula CV , that is a distribution which is supported in the

unit hypercube and has uniform margins, such that

FX (x1, . . . , xN ) =CV
(
FX1 (x1), . . . , FXN (xN )

)
for all x ∈RN . Moreover, if the margins are continuous, then CV is unique.

For all v ∈ [0,1]d the theorem implies that

CV (v1, . . . , vd ) = FX

(
F−1

X1
(v1), . . . , F−1

Xd
(vd )

)
=P

[
X1 ≤ F−1

X1
(v1), . . . , Xd ≤ F−1

Xd
(vd )

]
=P[

FX1 (X1) ≤ v1, . . . , FXd (Xd ) ≤ vd
]=P [V1 ≤ v1, . . . , Vd ≤ vd ] .

The copula CV is thus the joint distribution of probability integral transforms. The X -conditional

independence of Y implies that

P
[
Y1 ≤ y1t1 , . . . , YN ≤ yN tN | X = x

]= N∏
j=1

FY j |X (y j t j | x),

where FY j |X denotes the distribution of Y j conditional on X such that

P
[
τ j ≤ t j | X = x

]=P[
U j ≤ p j ,t j |V = v

]
,

where v = F̃X (x) := (
FX1 (x1), . . . , FXd (xd )

)
. A copula representation of the above probability

can finally be obtained by applying the conditional equivalent of Sklar’s theorem:

Theorem 4.8.2 (Patton’s Theorem 2002). FY |X is a joint conditional distribution with con-

ditional margins FYi |X for i ∈ {1, · · · , N } if and only if there exists a conditional copula CU |V ,

that is a conditional distribution which is supported in the unit hypercube and has uniform

conditional margins, such that

FY |X
(
y1, . . . , yN | x

)=CU |V (FY1|X (y1 | x), . . . ,FYN |X (yN | x) | FX (x))

for all y ∈ RN and x ∈ R. Moreover, if the conditional margins are continuous, then CU |V is

unique.
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4.8. Proofs

For all u ∈ [0,1]N and v ∈ [0,1]d the theorem implies

CU |V (u1, . . . , uN | v) = FY |X
(
F−1

Y1|X (u1), . . . , F−1
YN |X (uN ) | F̃−1

X (v)
)

=P
[

Y1 ≤ F−1
Y1|X (u1), . . . , YN ≤ F−1

YN |X (uN ) | X = F̃−1
X (v)

]
=P[

FY1|X (Y1 | X ) ≤ uN , . . . , FYN |X (YN | X ) ≤ uN | F̃X (X ) = v
]

=P [U1 ≤ u1, . . . , UN ≤ uN |V = v] .

In other words, the copula CU |V is also the joint conditional distribution of the conditional

probability integral transforms. As such, the joint conditional distribution of default times is

given by

P
[
τ1 ≤ t1, . . . , τN ≤ tN | X = F−1

X (v)
]=P[

U1 ≤ p1,t1 , . . . , UN ≤ pN ,tN |V = v
]

=CU |V
(
p1,t1 , . . . , pN ,tN | v

)
,

which completes the proof.

Proof of Proposition 4.3.1

The default times and the loss amounts being independent conditional on V we have

E
[

eiuLtδ
−1 |V = v

]
= E

[
e

iu
∑N

j=11{τ j ≤t}` jδ
−1

|V = v

]
=

N∏
j=1

E

[
e

iu1{τ j ≤t}` jδ
−1

|V = v

]

Furthermore, by independence of the random variables 1{τ j≤t} and ` j conditional on V we

have

E

[
e

iu1{τ j ≤t}` jδ
−1

|V = v

]
= 1−P[

τ j ≤ t |V = v
]+P[

τ j ≤ t |V = v
]
φ` j (u, v)

where φ` j (u, v) := E
[

eiu` jδ
−1 |V = v

]
denotes the V -conditional characteristic function of

` jδ
−1. We finally apply the tower property

φLt (u) = E
[
E
[

eiuLtδ
−1 |V = v

]]
=

∫
[0,1]d

E
[

eiuLtδ
−1 |V = v

]
dCV (v)

=
∫

[0,1]d

(
1−p j ,t (v)+p j ,t (v)φ` j (u, v)

)
dCV (v)

where CV is the density of X , and p j ,t (v) =CU j |V (p j ,t | v).

Proof of Lemma 4.3.2

The proof is a straightforward application of discrete Fourier transform inversion. Observe

that the random variable Ltδ
−1 has state space {0, 1, . . . , M }. Its discrete Fourier transform is

141



Chapter 4. Dependent Defaults and Losses with Factor Copula Models

given by

Fm =
M∑

k=0
P

[
Ltδ

−1 = k
]

e−i 2πmk
M+1 =φLt

( −2πm

(M +1)

)

where φLt as in Proposition 4.3.1 is the characteristic function of Ltδ
−1. The probability mass

function can be recovered as follows

P [Lt = kδ] = 1

M +1

M∑
m=0

Fmei 2πmk
M+1 .

Equation (4.13) follows by observing that the signs can equivalently be switched between the

complex weights.

Proof of Proposition 4.3.4

The proof of this proposition is immediate from the factor copula construction with propor-

tional losses.

Proof of Corollary 4.3.5

This follows directly from Proposition 4.3.1 and Proposition 4.3.4.

Proof of Proposition 4.3.6

By construction we have

Fx,y : =φNt ,Lt (µx, νy) = E
[

N∏
j=1

exp
{

i1{τ j≤t}(µx +νy` jδ
−1)

}]

= E
[

exp

{
N∑

j=1
i1{τ j≤t}(µx +νy` jδ

−1)

}]
= E

[
e iµxNt+iνyLtδ

−1
]

Using this last expectation and the explicit expressions for µ and ν we obtain

Fx,y =
N∑

j=0

M∑
k=0

P
[
Nt = j ,Lt = δk

]
e i 2π j

N+1 x e i 2πk
M+1 y .

This last expression is the two dimensional discrete Fourier transform of the density of the

variable (Nt ,Ltδ
−1). The density can then immediately be retrieved by applying the inverse

two-dimensional discrete Fourier transform inversion as follows

P
[
Nt = j ,Lt = δk

]= N∑
x=0

M∑
y=0

Fx,y e−i 2πx
N+1 j e−i 2πy

M+1 k .
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4.9 Conclusion

In this chapter we used factor copulas to construct flexible and tractable reduced form models

for dependent default times. Using bivariate copulas as building blocks, we extend our

framework from one-factor to multi-factor specifications, and we show that our approach

nests most standard models as special cases. Furthermore, assuming the distribution of

individual losses given default to be discrete, we propose a method to compute explicitly and

efficiently the distribution of the portfolio loss. This allows us to price complex multi-name

credit derivatives such as credit index swaptions, tranches on a portfolio of loans, and tranches

on a portfolio of tranches.

We illustrate the versatility and computational efficiency of our approach with numerical

examples. In particular, we investigate the impact on the portfolio loss distribution of differ-

ent default dependence assumptions. We also examine how the loss distributions of credit

derivatives, such as tranche and CDO squared, are affected. We calibrate multiple models to

credit index tranche prices. We show that a particular specification achieve almost perfect

calibration to all tranches using only two parameters that are stable over time.
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