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Abstract
In this thesis, we study various aspects of stochastic partial differential equations driven by

Lévy white noise. This driving noise, which is a generalization of Gaussian white noise, can

be viewed either as a generalized random process or as an independently scattered random

measure. After unifying these approaches and establishing appropriate stochastic integral

representations, we show that a necessary and sufficient condition for a Lévy white noise to

have values in S ′(Rd ), the space of tempered Schwartz distributions, is that the underlying

Lévy measure have a positive absolute moment.

In the case of a linear stochastic partial differential equation with a general differential operator

and driven by a symmetric pure jump Lévy white noise, we show that when the mild solution

is locally Lebesgue integrable, then it is equal to the generalized solution, and that a random

field representation exists for the generalized solution if and only if the fundamental solution

of the operator has certain integrability properties. In that case, we show that the random

field representation is equal to the mild solution. For this purpose, a new stochastic Fubini

theorem is proved. These results are applied to the linear stochastic heat and wave equations

driven by a symmetric α-stable noise.

We then study the non-linear stochastic heat equation driven by a general type of Lévy white

noise, possibly with heavy tails and non-summable small jumps. Our framework includes

in particular the α-stable noise. In the case of the equation on the whole space Rd , we show

that the law of the solution that we construct does not depend on the space variable. Then we

show in various domains D ⊂Rd that the solution u to the stochastic heat equation is such

that t 7→ u(t , ·) has a càdlàg version in a fractional Sobolev space of order r <−d
2 . Finally, we

show that x 7→ u(t , x) (respectively t 7→ u(t , x)) at a fixed time (respectively fixed space-point)

has a continuous version under some optimal moment conditions. In the α-stable case, we

show that for the choices of α for which this moment condition is not satisfied, the sample

paths of x 7→ u(t , x) (respectively t 7→ u(t , x)) are unbounded on any non-empty open subset.

Key words: Stochastic partial differential equation, stochastic heat equation, Lévy white noise,

tempered distribution, generalized random process, α-stable noise, fractional Sobolev space,

regularity.
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Résumé
Dans cette thèse, nous étudions différents aspects des équations aux dérivées partielles sto-

chastiques avec bruit blanc de Lévy. Ces bruits blancs de Lévy, qui sont des généralisations du

bruit blanc gaussien, peuvent être vus soit comme un processus généralisé, soit comme une

mesure aléatoire indépendamment répartie. Après avoir unifié ces deux points de vue et établi

des représentations sous forme d’intégrales stochastiques appropriées, nous montrons qu’une

condition nécessaire et suffisante pour qu’un bruit blanc de Lévy soit à valeur dans S ′(Rd ),

l’espace des distributions tempérées de Schwartz, est que la mesure de Lévy sous-jacente ait

un moment absolu d’ordre strictement positif.

Dans le cas d’une équation aux dérivées partielles stochastique linéaire avec un opérateur

différentiel général et un bruit blanc de Lévy symétrique et de saut pur, nous démontrons

que lorsque la solution mild est localement Lebesgue intégrable, alors elle est égale à la

solution généralisée, et que la solution généralisée a une représentation sous forme de champ

aléatoire si et seulement si la solution fondamentale de l’opérateur différentiel vérifie certaines

conditions d’intégrabilité. Dans ce cas, nous démontrons que cette représentation sous forme

de champ aléatoire est égale à la solution mild. Nous aurons besoin dans ces démonstrations

d’un nouveau théorème de Fubini stochastique que nous démontrons. Ces résultats sont

ensuite appliqués au cas de l’équation de la chaleur et des ondes stochastique avec un bruit

α-stable symétrique.

Ensuite, nous étudions l’équation de la chaleur non linéaire avec un bruit blanc de Lévy général

qui peut avoir des queues de distribution épaisses, et des petits sauts non sommables. Notre

cadre d’étude inclus en particulier le bruit α-stable. Dans le cas de l’équation sur l’espace

Rd tout entier, nous démontrons que la loi de la solution construite ne dépend pas de la

variable d’espace. Puis nous démontrons dans différents domaines D ⊂Rd que la solution u

de l’équation de la chaleur stochastique est telle que t 7→ u(t , ·) a une version càdlàg dans un

espace de Sobolev fractionnaire d’ordre r <−d
2 . Finalement, nous démontrons que x 7→ u(t , x)

(respectivement t 7→ u(t , x)) à un instant donné (respectivement à une position d’espace

donnée) a une version continue sous une certaine condition de moment optimale. Dans le cas

α-stable, nous démontrons que pour les choix de α pour lesquels cette condition de moment

n’est pas vérifiée, les trajectoires de x 7→ u(t , x) (respectivement t 7→ u(t , x)) sont non bornées

sur tout ouvert non vide.

Mots clefs : Équation aux dérivées partielles stochastiques, équation de la chaleur stochastique,

bruit blanc de Lévy, distribution tempérée, processus stochastique généralisé, bruit α-stable,

espace de Sobolev fractionnaire, régularité.
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Introduction

Stochastic differential equations and stochastic partial differential equations (SPDEs) have

been an object of interest for mathematicians for several decades (see for example the seminal

work of [69]), and have found applications in many different fields, such as finance (see

[54, 46]), population dynamics or turbulence (see [2, 8, 9]). A stochastic partial differential

equation is a mathematical model that represents the evolution of a system depending on

several variables (often time and space in the case of a physical system) and perturbed by

a random noise. For example, the stochastic heat equation models the evolution of the

temperature in a body subject to random perturbations:

∂u

∂t
(t , x) =∆u(t , x)+σ (u(t , x)) L̇(t , x) , (0.0.1)

where σ is a function that models the non-linear reactions of the system to the perturbations

induced by the noise L̇. This equation is also known as a diffusion equation, an can be used

for example to represent the diffusion of a chemical agent in a solvent. It can also be used in

mathematical finance to model the formation of prices via the evolution of the limit order

book ([46]). Another example is the stochastic wave equation:

∂2u

∂t 2 (t , x) =∆u(t , x)+σ (u(t , x)) L̇(t , x) . (0.0.2)

This equation describes the motion of a vibrating body, driven by the random noise L̇. Again,

the function σ models the non-linear response of the body to the random perturbations. A

famous example in the SPDEs world was provided in [69]: consider a guitar left outdoors in

a sandstorm. The vibrations of the guitar strings are mathematically modeled by the wave

equation in dimension one (the guitar string is ideally represented by a segment of fixed length

without any thickness). It would be too complex to mathematically keep track of every sand

particle in the sandstorm, and they are instead modeled by a random noise L̇. Another more

realistic example is the case of the motion of a strand of DNA in a fluid, perturbed by collisions

with molecules (see [21, p. 39]).

There exist several approaches to solve and study these equations, and arguably the two most

frequent are the Da Prato and Zabczyk approach (see [20]) and the random field approach,

initiated by [69]. The first one considers the solutions to those SPDEs as stochastic processes

1



Introduction

with values in an infinite dimensional Hilbert space. The second one considers solutions as

real-valued random fields. Those two approaches are in fact closely related in many cases (see

[25]), and each point of view emphasizes different characteristics of the solution. In this thesis,

we will mostly consider the random field approach.

The equations (0.0.1) and (0.0.2) have already been extensively studied in the context of

Gaussian noise, usually white in time (i.e. with independent values at different times), and

possibly colored in space (i.e. with possible space correlations). For specific examples, the

interested reader can consult introductions to the subject in [69, 21, 48]. The random field

approach allows to consider sample paths regularity of the solutions, see for example [11, 22,

19, 21] for the stochastic heat and wave equations in various settings.

Lévy noises are a natural generalization of Gaussian noises that allow also for random impulses,

but SPDEs in the context of Lévy noises have only recently been studied, especially with a

random field approach (see [71] for the infinite dimensional approach). In [4], R. Balan has

studied the existence of a solution to various types of SPDEs driven by an α-stable white noise

on a bounded domain, and in [13, 14], C. Chong proved existence results for the stochastic

heat equation with a more general type of noise. The case of a Lévy colored noise has been

investigated in [5].

The main goal of this thesis is to study regularity properties of SPDEs driven by a Lévy white

noise. As one expects, the presence of impulses in the noise creates very different behaviors

for the solution to an SPDE compared to the Gaussian case. For instance, in the case of the

stochastic heat or wave equation with a Gaussian noise, the solution is known to be jointly

Hölder continuous in the space and time variable. With a Lévy noise with impulses, the

solutions have jumps and cannot be jointly continuous. Also, the Gaussian noise allows L2-

integrability conditions, compared to the Lévy case which imposes in general Lp -integrability

conditions, where possibly 0 < p < 2.

In Chapter 1, we introduce the main notations and definitions that will be used throughout

this thesis.

Then, in Chapter 2, we study two definitions of Lévy white noises. The first one uses the notion

of generalized random processes developed in [36], that is, a probability measure on a space

of distributions. For example, the derivative of a well chosen order of a Lévy field is shown to

be a Lévy white noise in that sense. The second definition is as an independently scattered

random measure, and is defined as a random process indexed by a family of sets (see [58]). It

uses a decomposition of the noise related to the Lévy-Itô decomposition for Lévy fields. In

Section 2.3, we show that we can extend a Lévy noise defined as a generalized random process

to an independently scattered random measure (see Theorem 2.3.5). This extension allows us

to use [58] to determine the largest class of deterministic functions that are integrable with

respect to the noise (see Proposition 2.3.7), and in the case of the derivative of a Lévy field, we

establish a stochastic integral representation valid for this class of function. It is interesting to

note that this representation does not exactly correspond to the usual Lévy-Itô decomposition,

2



Introduction

but uses a truncation level for the jumps that depends on the integrand.

In Chapter 3, we study a question that was brought to our attention by M. Unser and J. Fageot

in the Biomedical Imaging Group at EPFL. A Lévy white noise can usually be defined as a

random element in the space of distributions D′(Rd ), and in the particular case of Gaussian

white noise, it is easy to show that this random element takes values in S ′(Rd ), the space

of tempered Schwartz distributions. The question of interest is whether or not the same is

true for any Lévy white noise. We show that this is not the case. Indeed, the positive absolute

moment condition (PAM) was shown to be a sufficient condition in [34], and we prove in

Theorems 3.1.5 and 3.2.7 that this condition is also necessary.

In Chapter 4, we restrict to the case of a linear SPDE, but with a general differential operator

and driven by a Lévy white noise. The equation we study can be written as

Lu = Ẋ ,

where L is some partial differential operator and Ẋ is a Lévy white noise. We study two

different notions of solution. The first notion is defined as a generalized stochastic process,

that is, a random distribution. The second notion is the mild solution, which is a random field

defined as a stochastic integral with respect to the noise. We show in Theorems 4.2.1 and 4.2.5

that when the mild solution is locally Lebesgue integrable, then it is equal to the generalized

solution. Also, in Theorems 4.3.1 and 4.3.4, we show that if the generalized solution has a

random field representation, then this representation must be equal to the mild solution,

and in particular the fundamental solution for the operator L must have some integrability

properties. An important ingredient in the proofs of these results is a new stochastic Fubini

theorem in Theorem 4.2.3. This theorem is only valid for deterministic integrands, but it only

needs a pathwise standard L1 condition (for ω fixed), compared to Theorem A.0.2, where the

conditions also requires to take second moments of the integrand. We then apply these results

to the stochastic heat and wave equations driven by a symmetric α-stable noise in various

dimensions. In particular, we show that the linear stochastic heat equation has a random field

solution if and only if α< 1+ 2
d , where d is the dimension (see Theorem 4.4.5), and that the

linear stochastic wave equation has a random field solution if and only if the dimension d is

no greater than 2.

In Chapter 5, we consider the non-linear stochastic heat equation on bounded domains

D ⊂Rd or on the whole space Rd , driven by Lévy white noises with possibly poor moments

properties. We suppose in particular that the Lévy measure ν of the noise satisfies∫
|z|61

|z|pν(dz) <+∞ and
∫
|z|>1

|z|qν(dz) <+∞ , (0.0.3)

for some p, q such that 0 < p < 1+ 2
d and p

1+(
1+ 2

d −p
) < q 6 p. The condition for |z|6 1 concerns

the summability of the small jumps, and is related to the variation of the underlying Lévy

process, and the condition for |z| > 1 concerns the moments of the large jumps. In particular,

3
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this includes any α-stable noise with α ∈ (0,2). In the presence of jumps, contrary to the

Gaussian case (see [21, 11]), the sample paths of the solution cannot be Hölder continuous

in both variables, due to the discontinuity of the heat kernel at the origin. Instead, we study

the regularity of t 7→ u(t , ·) in a fractional Sobolev space of order r <−d
2 . In Theorems 5.2.7,

5.3.12 and 5.4.6, we prove that t 7→ u(t , ·) has a càdlàg version in a fractional Sobolev space of

order r <−d
2 . The threshold r <−d

2 is optimal, since the solution will not even take values in

a fractional Sobolev space of order r >−d
2 . In the case of Lévy white noise, it is interesting to

note that since the law of the location of the jumps is absolutely continuous with respect to

the Lebesgue measure, under some moment conditions, the solution u(t , ·) ∈ Lq
loc(Rd ) at any

fixed time t . We also study the regularity of t 7→ u(t , x) at fixed x ∈ D , and x 7→ u(t , x) at fixed

t ∈ [0,T ]. Depending on the dimension and the moment properties of the noise, we show that

the behavior of these partial functions can differ widely. In particular, for a fixed time t ∈ [0,T ],

if p 6 2
d and p < 2 in (0.0.3), then the mapping x 7→ u(t , x) has a continuous modification (see

Propositions 5.2.10, 5.3.13 and 5.4.7). The case of a symmetric α-stable noise shows that this

bound is optimal: if α> 2
d , then x 7→ u(t , x) is unbounded on any non-empty open subset of

D (see Propositions 5.3.15 and 5.4.8). For a fixed space-point x ∈ D , if p < 1 in (0.0.3), then the

mapping t 7→ u(t , x) has a continuous modification (see Propositions 5.2.12, 5.3.17 and 5.4.9).

Again, the bound p < 1 is optimal since in the case of an α-stable symmetric noise, if α> 1,

then the mapping t 7→ u(t , x) is unbounded on any non-empty open interval (see Propositions

5.2.14, 5.3.19 and 5.4.11). In the case of the equation on the whole space, we also prove in

Theorem 5.3.6 that the law of the solution does not depend on the space variable.
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1 Notations and main definitions

In this chapter, we introduce the main notations and definitions that will be needed through-

out this manuscript. In a series of inequalities, the letter C or C ′ will denote a generic constant

whose value may vary from one line to the other. For any integer d > 1, and any Borel mea-

surable subset A ⊂Rd , we denote by Lebd (A) its Lebesgue measure. We denote N the set of

positive integers including 0. Also, we will use the notation Rd+ := {
x ∈Rd : xi > 0, 16 i 6 d

}
,

and R∗+ := {x ∈R : x > 0}. For any metric space (E ,m), any r > 0, and any x ∈ E , we denote by

Bx (r ) the open ball of radius r in E centered at x, relative to the metric m. In the following,

S will always denote a measurable subset of Rd . In some particular cases, we will restrict to

the case where S is a disjoint union of orthants of Rd . For any real-valued function g , we

denote g+ = max(g ,0). We say a function f : R→ E is càdlàg if for any t0 ∈ R, limt→t−0 f (t)

exists, and if limt→t+0 f (t ) = f (t0) (càdlàg stands for the French continue à droite, avec limite

à gauche). For any càdlàg function f , and any t0 ∈ R, we write f (t0−) := limt→t−0 f (t), and

∆t0 f := f (t0)− f (t0−). A generalization of the càdlàg property for multiparameter functions

will be introduced later in Definition 1.0.7. For any function f :Rd →R, and any set A ⊂Rd ,

we denote by f |A the restriction of f to the set A.

For any function ϕ :Rd →R sufficiently smooth, and any multi-index α= (α1, . . . ,αd ) ∈Nd , we

write |α| :=∑d
i=1αi , and ϕ(α)(x) = ∂|α|ϕ

∂x
α1
1 ···∂x

αd
d

(x). Also, for any x ∈Rd , xα := xα1
1 · · ·xαd

d .

We denote by (Ω,F ,P) a complete probability space. The space of random variables with finite

p-th moment is denoted Lp (Ω). For p > 1, these spaces are Banach spaces equipped with the

norm ‖ ·‖Lp (Ω) := (E [| · |p ])
1
p . For 0 < p < 1, we equip these spaces with the metric dp (X ,Y ) :=

E [|X −Y |p ], and the resulting metric space is complete. In this case, ‖ ·‖Lp (Ω) := E [| · |p ]. When

p = 0, this space is the space of all random variables, equipped with the metric of convergence

in probability, and we write ‖ · ‖L0(Ω) := E [| · |∧1]. For a random variable X and a probability

measure µ, we write X ∼µ to express the fact that under P, the random variable X has law µ.

A stochastic process is a family of random variables (X t )t∈R+ indexed by time. A random field

is the multiparameter generalization of a stochastic process: it is a family of random variables

(X t )t∈T indexed by T ⊂ Rd , where d > 1. A generalized stochastic process (or generalized

random field) X is a linear map from a space of test functions E (D(Rd ) or S (Rd ) in this thesis,
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Chapter 1. Notations and main definitions

see Section 2.1.1 and Section 2.1.2) to L0(Ω). If, in addition, this map is continuous, then by [69,

Corollary 4.2], it has a version X̃ (i.e. for any ϕ ∈ E ,
〈

X ,ϕ
〉= 〈

X̃ ,ϕ
〉

a.s.) such that for almost

all ω ∈Ω, for any sequence ϕn →ϕ in E as n →+∞,
〈

X̃ ,ϕn
〉

(ω) → 〈
X̃ ,ϕ

〉
(ω). Then, X̃ defines

a random element in D′(Rd ) or S ′(Rd ). In this case, X̃ is called a continuous generalized

stochastic process, or a random distribution.

Remark 1.0.1. There exists several modes of convergence for a sequence of random variables.

Let (Xn) be a sequence of random variables.

(i) We say Xn converges almost surely (a.s.) to X as n →+∞ if there is a set A ∈F such that

P(A) = 1 and for all ω ∈ A, Xn(ω) → X (ω) as n →+∞.

(ii) We say Xn converges in probability to X as n →+∞ if for any ε> 0, P (|Xn −X |> ε) → 0

as n →+∞.

(iii) We say Xn converges in law to X as n →+∞ if for any bounded and continuous function

g :R→R, E
[
g (Xn)

]→ E
[
g (X )

]
as n →+∞.

It is well known that the almost sure convergence implies the convergence in probability, and

the convergence in probability implies convergence in law. If the limit X is a deterministic

constant, then the convergence in law is equivalent to the convergence in probability (see

[31]).

Remark 1.0.2. We say (Xn)n>1 is a Cauchy sequence in law if Xn − Xm converges in law to 0

as n,m →+∞. More precisely, (Xn)n>1 is a Cauchy sequence in law if for any bounded and

continuous function g , for any ε > 0, there is an integer N ∈ N such that for any n,m > N ,

|E[
g (Xn −Xm)

]− g (0)|6 ε. The term Cauchy sequence here is an extension of the usual sense,

since the convergence in law is not metrizable. Then, for any ε > 0, there is a function gε
bounded and continuous such that 1|x|>ε6 gε(x) (see Figure 1.1), and gε(0) = 0. Therefore,

1

−ε ε− ε
2

ε
2

Figure 1.1 – The function gε.

P(|Xn −Xm |> ε)6 E
[
gε(Xn −Xm)

]
.
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We deduce that P(|Xn −Xm |> ε) → 0 as n,m →+∞, and Xn is also a Cauchy sequence in prob-

ability (which is here the usual notion of Cauchy sequence, since the convergence in probability

is metrizable).

The common theme of all the following chapters concerns Lévy processes and Lévy fields. For

the convenience of the reader, we recall their definition, and introduce some of their basic

properties. First, we will need the notion of Poisson random measures.

Definition 1.0.3. Let
(
G ,G ,µ

)
be a measure space, where µ is σ-finite. A Poisson random

measure M on G with intensity measure µ is a family of random variables (M(A))A∈G such that:

(i) For any A ∈G , M(A) is a Poisson random variable with parameter µ(A) (with the con-

vention that if µ(A) =+∞, then M(A) =+∞).

(ii) For any A1, . . . , An disjoint subsets of G, the random variables M(A1), . . . , M(An) are inde-

pendent.

(iii) For any ω ∈Ω, the set function M(·,ω) : A ∈G 7→ M(A)(ω) is a measure.

For a Poisson random measure M with intensity measure µ, we denote by M̃ := M −µ its

compensated Poisson random measure.

It is then possible to construct an integral with respect to a Poisson random measure and

with respect to a compensated Poisson random measure. For the integral of a deterministic

function, we refer to the remarkably clear and detailed constructions in the lecture notes of T.

Kurtz (see [49, Chapter 9]).

We can now introduce Lévy processes. They are a widely studied class of processes, and

are used in many models. A Lévy measure ν is a measure on R such that ν ({0}) = 0 and∫
R

(
1∧|x|2)ν(dx) <+∞.

Definition 1.0.4. A Lévy process (X t )t∈R+ is a real valued stochastic process such that X0 = 0

almost surely, X has stationary and independent increments and X is stochastically continuous

(that is, for any s> 0, |X t −Xs |→ 0 in probability as t → s).

It turns out that any Lévy process has a càdlàg modification.

Proposition 1.0.5. Let X be a Lévy process. Then X has a càdlàg version.

Proof. See [63, Theorem 11.5].

In the following, whenever we introduce a Lévy process, we will always implicitly use this

càdlàg version. For any càdlàg process X , we introduce the jump measure JX by

JX (A) := ] {t > 0 :∆X t 6= 0,and (t ,∆X t ) ∈ A} .

7



Chapter 1. Notations and main definitions

Arguably the most important property of Lévy processes is the Lévy-Itô decomposition, and

the Lévy-Khintchine that results therefrom. It gives a general result about the structure of a

Lévy process, and is often the key to studying sample paths properties. In particular, it allows

us to characterize the law of any Lévy process by only three parameters: a drift, a volatility and

a Lévy measure. More precisely we have the following result.

Theorem 1.0.6. Let X be a Lévy process. Then there exists a triplet (γ,σ,ν) (that we call the

characteristic triplet), where γ ∈R, σ ∈R+ and ν is a measure on R that does not charge {0}, such

that:

(i) For any measurable B ⊂ R, ν(B) = E [JX ([0,1]×B)], and
∫
R

(
1∧|z|2)ν(dz) < +∞ (in

particular, ν is a Lévy measure).

(ii) JX is a Poisson random measure on R+×Rwith intensity measure Leb1 ×ν.

(iii) For any t > 0, the following decomposition holds almost surely:

X t = γt +σWt +
∫ t

0

∫
|z|61

z J̃X (ds, dz)+
∫ t

0

∫
|z|>1

z JX (ds, dz) ,

where W is a standard Brownian motion, J̃X := JX −Lebd ×ν is the compensated jump

measure, and the integrals with respect to JX and J̃X are Poisson and compensated Poisson

integrals as defined in [44, Lemma 12.13]. In addition, the terms of the decomposition are

independent stochastic processes.

We will also need a generalization of Lévy processes to a multiparameter framework. Es-

sentially, we will use Lévy processes as basic mathematical objects from which to define a

noise, formally defined as the distributional derivative of such a process (see Definition 2.2.7).

Formally, the derivative of a sufficiently regular process defines a measure (in the case of

a Lévy process, the associated noise is not quite a measure, but behaves like one in many

ways). When the parameter space is one dimensional (R+ in the case of Lévy processes), this

noise acts on a one dimensional space. Since our study includes stochastic partial differential

equations (and therefore a multiparameter setting), we need to define a multiparameter Lévy

field. A general presentation of this theory of multiparameter Lévy fields can be found in [1];

see also [26].

In the following, for any k ∈ N, 1k (respectively 0k , 2k ) denotes the k-dimensional vector

with coordinates all equal to 1 (respectively to 0, 2). We recall that (Ω,F ,P) is a complete

probability space. Let (X t )t∈Rd+
be a d-parameter random field. For s, t ∈Rd+ with s = (s1, . . . , sd ),

t = (t1, . . . , td ), we say that s 6 t if si 6 ti for all 16 i 6 d , and s < t if si < ti for all 16 i 6 d .

For a6 b ∈Rd+, we define the box ]a,b] = {
t ∈Rd+ : a < t 6 b

}
, and the increment∆b

a X of X over

the box ]a,b] by

∆b
a X = ∑

ε∈{0,1}d

(−1)|ε|Xcε(a,b) , (1.0.1)
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where for any ε ∈ {0,1}d , we write |ε| = ∑d
i=1 εi and cε(a,b) ∈ Rd+ is defined by cε(a,b)i =

ai1{εi=1} +bi1{εi=0}, for all 16 i 6 d . We can check that when d = 1, then ∆b
a X = Xb −Xa . In

fact, for all d > 1,
∫

[a,b]ϕ
(1d )(t )dt =∆b

aϕ. The next definition is a generalization of the càdlàg

property to processes indexed by Rd+. We define the relations R = (R1, ...,Rd ), where Ri is

either6 or >, and a R b if and only if ai Ri bi for all 16 i 6 d .

Definition 1.0.7. Using the terminology in [1] and [66], we say that X is lamp (for limit along

monotone paths) if we have the following:

(i) For all 2d relations R, lim
u→t , tRu

Xu exists.

(ii) If R = (6, ...,6) then X t = lim
u→t , tRu

Xu .

(iii) X t = 0 if ti = 0 for some 16 i 6 d.

We are now ready to give the definition of a Lévy field in Rd+.

Definition 1.0.8. X = (X t )t∈Rd+
is a d-parameter Lévy field if it has the following properties:

(i) X is continuous in probability.

(ii) X is lamp almost surely.

(iii) For any sequence of disjoint boxes ]ak ,bk ], 16 k 6 n, the random variables ∆bk
ak

X are

independent.

(iv) Given two boxes ]a,b] and ]c,d ] in Rd+ such that ]a,b]+ t =]c,d ] for some t ∈ Rd , the

increments ∆b
a X and ∆d

c X are identically distributed.

The jump ∆t X of X at time t is defined by ∆t X = lim
u→t ,u<t

∆t
u X .

This definition coincides with the notion of Lévy process when d = 1. In addition, for all

t = (t1, ..., td ) ∈Rd+, and for all 16 i 6 d , the process X i ,t· = X(t1,...,ti−1, · ,ti+1,...,td ) is a Lévy process

(the notation here means that it is the process in one parameter obtained by fixing all the

coordinates of t except the i -th).

The Brownian sheet is an example of such a d-parameter Lévy field. It is the analog in this

framework of Brownian motion and further properties of this field are detailed in [23], [27],

[47] or [69].

For all t ∈Rd+, X t is an infinitely divisible random variable, and by the Lévy-Khintchine formula

[63, Chapter 2, Theorem 8.1], there exists real numbers γt , σt and a Lévy measure νt such that

E
(
e i uX t

)
= exp

[
i uγt − 1

2
σ2

t u2 +
∫
R

(
e i uz −1− i uz1|z|61

)
νt (dz)

]
. (1.0.2)
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Chapter 1. Notations and main definitions

The triplet (γt ,σt ,νt ) is called the characteristic triplet of X t . Since for all 16 i 6 d and t ∈Rd+,

the process X i ,t defined above is a Lévy process, we deduce that there exists a triplet (γ,σ,ν)

where γ,σ ∈ R and ν is a Lévy measure such that (γt ,σt ,νt ) = (γ,σ,ν)Lebd ([0, t ]). We call

(γ,σ,ν) the characteristic triplet of the Lévy field X . We can now state the multidimensional

analog of the Lévy-Itô decomposition, taken from [1, Theorem 4.6] particularized to the case

of stationary increments (see also [26]).

Theorem 1.0.9. Let X be a d-parameter Lévy field with characteristic triplet (γ,σ,ν). The

following holds:

(i) The jump measure JX defined by JX (B) = #{(t ,∆t X ) ∈ B}, for B in the Borel σ-algebra of

Rd+× (R\{0}), is a Poisson random measure with intensity Lebd ×ν.

(ii) For all t ∈Rd+, we have the decomposition

X t = γLebd ([0, t ])+σWt +
∫

[0,t ]

∫
|z|>1

z JX (ds, dz)+
∫

[0,t ]

∫
|z|61

z J̃X (ds, dz) ,

where W is a Brownian sheet, J̃X = JX −Lebd ×ν is the compensated jump measure,

and the equality holds almost surely. In addition, the terms of the decomposition are

independent random fields.
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2 Definitions and extensions of Lévy
white noises

A noise is a mathematical object that is used in an ordinary differential equation or a partial

differential equation as a source term to model some perturbations of a system. We are

interested here in random perturbations of a system, that are white (in space and time when

we consider an equation with a temporal component). Informally, this means that a white

noise is a stochastic process with independent values at every space-time point. If it is defined,

the integral process of such a noise then has to have independent increments and some

regularity properties. Therefore, it makes sense to study Lévy white noises, and as we will see

in Lemma 2.2.9, they can be defined as the derivatives of Lévy processes and multiparameter

Lévy fields introduced respectively in Definition 1.0.4 and 1.0.8. In addition to the practical

interest of such random perturbations in a context of mathematical modeling, white noises

are rich mathematical objects worthy of study in their own right.

In this chapter, we introduce several pre-existing definitions of Lévy white noises, first as

a probability measure on a space of distributions, and then as an independently scattered

random measure, and we show that they are essentially equivalent. To that end, we present for

convenience a few definitions and useful results about distribution spaces in Section 2.1, and

we introduce Lévy white noises in Section 2.2. In Section 2.3, we prove that the two apparently

different definitions of Lévy white noise are in fact closely related (see Theorem 2.3.5), and we

prove a stochastic integral representation formula in Theorem 2.3.10.

2.1 Spaces of distributions

We will need some classical results and definitions from Laurent Schwartz’s theory of distri-

butions. For a complete presentation of this theory, we refer the reader to [64]. Distributions

in the context of probability theory are also sometimes called generalized functions (see for

example [36]).
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Chapter 2. Definitions and extensions of Lévy white noises

2.1.1 The spaces D(Rd ) and D′(Rd )

In the following, we denote by D(Rd ) the space of C∞ and compactly supported functions.

A sequence (ϕn)n>0 of functions in D(Rd ) converges to 0 in D(Rd ) if there is a compact set

K ⊂Rd such that for all n ∈N, suppϕn ⊂ K , and for any multi-index α ∈Nd ,

sup
x∈K

|ϕ(α)
n (x)|→ 0, as n →+∞ .

We can then define the topological dual of D(Rd ), denoted D′(Rd ), that is the space of contin-

uous linear functionals on D(Rd ). We call it the space of distributions. In particular, a linear

functional T is a distribution if and only if for each compact set K ⊂Rd , there exists a constant

C and an integer p such that for any ϕ ∈D(Rd ) with suppϕ⊂ K ,∣∣〈T,ϕ
〉∣∣6C max

|α|6p
sup
x∈K

∣∣ϕ(α)(x)
∣∣ .

In particular, it is easy to check that any locally integrable function f : Rd → R defines a

distribution via the classical L2(Rd ) inner product:

〈
f ,ϕ

〉
:=

∫
Rd

f (x)ϕ(x)dx , for all ϕ ∈D(Rd ) .

We can then define C , the cylinder σ-algebra on this space, that is the σ-algebra generated by

sets of the form

C =
{

T ∈D′(Rd ) :
〈

T,ϕi
〉 ∈ Bi ,16 i 6 n

}
, (2.1.1)

where n is a positive integer, (ϕi )16i6n is a family of test functions in D(Rd ), and (Bi )16i6n is

a collection of Borel subsets of R. We say a sequence of distributions (Tk )k>0 converges to T in

D′(Rd ) if for any ϕ ∈D(Rd ),
〈

Tk ,ϕ
〉→ 〈

T,ϕ
〉

as k →+∞. In other terms, we equip D′(Rd ) with

the weak-∗ topology. It is then possible to define successive derivatives of a distribution by

duality, and the derivative of any order of a distribution is also a distribution.

Definition 2.1.1. Let T ∈D′(Rd ), and k ∈Nd . Then the functional T (k) defined by〈
T (k),ϕ

〉
:= (−1)|k|

〈
T,ϕ(k)

〉
, for all ϕ ∈D(Rd ) ,

is a distribution called the derivative of order k of T .

2.1.2 The spaces S (Rd ) and S ′(Rd )

The space of Schwartz’s functions, also called rapidly decaying smooth functions, is denoted

by S (Rd ). It is the space of smooth functions such that for any multi-indices α, β ∈Nd ,

sup
x∈Rd

∣∣∣xαϕ(β)(x)
∣∣∣<+∞ .

12



2.1. Spaces of distributions

This explains the term "rapidly decaying", since functions in S (Rd ) and all their derivatives

go to zero at infinity faster than any polynomial. We can define a family of semi-norms Np on

S (Rd ), where for p ∈N:

Np (ϕ) := ∑
|α|,|β|6p

sup
x∈Rd

∣∣∣xαϕ(β)(x)
∣∣∣ , for any ϕ ∈S (Rd ) . (2.1.2)

This family of semi-norms defines a topology on S (Rd ), and a basis of neighborhoods of the

origin for this topology is given by the family({
ϕ ∈S (Rd ) : Np (ϕ) < ε

})
p∈N,ε>0

,

since such a basis is usually given by finite intersections of sets of this form, and for all

p ∈N, ϕ ∈S (Rd ), Np (ϕ)6Np+1(ϕ). Then, a sequence (ϕn)n converges to zero in S (Rd ) if for

all p ∈N, Np (ϕn) → 0 as n →+∞. Similar to the definition of distributions in Section 2.1.1, we

can define the topological dual of S (Rd ), denoted by S ′(Rd ) and called the space of tempered

distributions. In other terms, a tempered distribution is a continuous linear functional on

S (Rd ). Equivalently, a linear functional T on S (Rd ) is a tempered distribution of and only if

there exists C ∈R+ and p ∈N such that for any ϕ ∈S (Rd ),∣∣〈T,ϕ
〉∣∣6CNp (ϕ) .

The topology on the space of tempered distribution is the weak-∗ topology (that is the smallest

topology for which the evaluation maps Eϕ : T 7→ 〈
T,ϕ

〉
are continuous for any ϕ ∈S (Rd )),

and a basis for this topology is given by cylinder sets of the form

O =
n⋂

i=1

{
u ∈S ′(Rd ) :

〈
u,ϕi

〉 ∈ Ai

}
,

where, for all i 6 n, ϕi is an element of S (Rd ), n is an integer and Ai is an open set in R. As in

the case of classical distributions, we can take derivatives of any order of a tempered distribu-

tion (see Definition 2.1.1), and it is easily shown that S ′(Rd ) is stable under differentiation.

Remark 2.1.2. We say that a Borel function f : Rd → R is slowly growing if supt∈Rd | f (t)|(1+
|t |)−α < ∞ for some α > 0. In this case, f defines a tempered distribution by the formula〈

f ,ϕ
〉= ∫

Rd f (t )ϕ(t )dt , for all ϕ ∈S (Rd ).

The previous remark states that a sufficient condition for a function to define a tempered

distribution is that it is slowly growing. However, as tempting as it may sound, this condition

is not necessary. For example, the function x ∈R 7→ ex cos(ex ) is not slowly growing, and since

it is the derivative of the bounded function x 7→ sin(ex ), it defines a tempered distribution.

Furthermore, we have the continuous embedding D(Rd ) ⊂ S (Rd ), and therefore also the

continuous embedding S ′(Rd ) ⊂D′(Rd ).

The space S (Rd ) is particularly convenient for Fourier analysis. We recall the definition of the
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Chapter 2. Definitions and extensions of Lévy white noises

Fourier transform of a function:

Definition 2.1.3. Let ϕ ∈S (Rd ). The Fourier transform F
(
ϕ

)
of ϕ is defined by:

F
(
ϕ

)
(ξ) :=

∫
Rd

e−iξ·xϕ(x)dx , for all ξ ∈Rd .

It turns out that the Fourier transform is a homeomorphism of the space S (Rd ). By duality, it

is then possible to define the Fourier transform of a tempered distribution.

Definition 2.1.4. Let T ∈S ′(Rd ). The Fourier transform F (T ) of T is defined by:〈
F (T ),ϕ

〉
:= 〈

T,F (ϕ)
〉

, for all ϕ ∈S (Rd ) .

2.2 Definitions of Lévy white woise

In the theory of stochastic partial differential equations, the Gaussian white noise on Rd ,

usually denoted Ẇ , plays a fundamental role. It has the advantage of being very well under-

stood, and relatively easy to work with (in general in probability theory, the Gaussian world

is much nicer than its non-Gaussian counterpart). It has several equivalent definitions, but

arguably the most common one is that of a centered Gaussian process indexed by L2(Rd ) (see

for example [59, Chapter I, Definition 1.4]), with covariance given by

cov
(
Ẇ ( f ),Ẇ (g )

)= 〈
f , g

〉
L2(Rd ) for all f , g ∈ L2(Rd ) .

It is easy to check that this is indeed a covariance function. This process is a special case of the

more general class of isonormal processes on a Hilbert space (see [44, p. 251]). Also, it satisfy

the following identity:

E
[(

Ẇ ( f )
)2

]
= ‖ f ‖L2(Rd ) for all f ∈ L2(Rd ) . (2.2.1)

Since D(Rd ) is a subset of L2(Rd ), we can consider the stochastic process
(
Ẇ (ϕ); ϕ ∈D(Rd )

)
.

This process is almost surely linear: let λ ∈R, and ϕ,ψ ∈D(Rd ),

Ẇ (ϕ+λψ) = Ẇ (ϕ)+λẆ (ψ) a.s.

Then, let
(
ϕn

)
be a sequence of functions in D(Rd ) such thatϕn → 0 as n →+∞ in D(Rd ). Then,

by (2.2.1), and since D(Rd ) is continuously embedded in L2(Rd ), we deduce that Ẇ (ϕn) → 0 in

L2(Ω), and therefore in probability. We deduce that Ẇ is a random linear functional on D(Rd )

(see [69, p. 332]), so Ẇ defines a generalized stochastic process. This generalized stochastic

process is continuous in probability, and the space D(Rd ) is nuclear (see [42, §1.5]). Therefore,

we can use [69, Corollary 4.2] to deduce that there is a measurable map also denoted Ẇ :

(Ω,F ) → (
D′(Rd ),C

)
and for any ϕ ∈ D(Rd ), and almost every ω ∈Ω,

〈
Ẇ (ω),ϕ

〉 = Ẇ (ϕ)(ω).

This map is then a random variable with values in D′(Rd ), and the law of this random variable
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2.2. Definitions of Lévy white woise

(which is then a probability measure on D′(Rd )) will be called a Gaussian white noise. With

this simple example in mind, we can proceed to define more general Lévy white noises.

2.2.1 As a probability measure on D′(Rd )

A first definition of Lévy white noise comes from the theory of generalized stochastic pro-

cesses. These processes are in fact random Schwartz distributions, i.e. continuous generalized

stochastic processes. In [36], the authors define a Lévy white noise as a probability measure

on
(
D′(Rd ),C

)
, where d > 1, D′(Rd ) is the space of distributions defined in Section 2.1.1, and

C is the cylinder σ-algebra on this space (see (2.1.1)). The construction of such a measure is

based on an infinite dimensional version of the famous Bochner’s Theorem. We remind the

reader that this theorem states that if a function f :R→C is continuous, positive definite and

such that f (0) = 1, then it is the Fourier transform of a probability measure on (R,B(R)). To

introduce the generalization of this theorem, we will need the notion of nuclear spaces. We do

not develop this notion here, but we refer to [67, Definition 50.1] for the interested reader. In

this thesis, we will only need the following remark:

Remark 2.2.1. The test function spaces D(Rd ) and S (Rd ) are nuclear spaces (see [67, p. 510]).

Definition 2.2.2. Let E be a topological vector space. A continuous function f : E →C is said to

be positive definite if for any n> 1, and any choice of e1, . . . ,en ∈ E and ξ1, . . . ,ξn ∈C,∑
16i , j6n

f (ei −e j )ξi ξ̄ j > 0.

Using this definition, we introduce the infinite dimensional version of Bochner’s Theorem due

to Minlos (see [36, Theorem 2 p.350]).

Theorem 2.2.3 (Minlos-Bochner). Let N be a nuclear space. If µ̂ : N → C is continuous,

positive-definite, and µ̂(0) = 1, then there is a unique probability measure µ on
(
N ′,C (N ′)

)
,

the topological dual of N equipped with its cylinder σ-algebra, such that

µ̂(ϕ) =
∫
N ′

e i〈T,ϕ〉µ(dT ) , for all ϕ ∈N .

Using this powerful theorem, we can then proceed to build a general Lévy white noise, simply

by specifying its characteristic function. In the Gaussian case, one easily shows that for any

ϕ ∈D(Rd ), the Fourier transform of the law of Ẇ is given by

E
[

e i〈Ẇ ,ϕ〉]= e
− 1

2 ‖ϕ‖2
L2(Rd ) , for all ϕ ∈D(Rd ),

and this Fourier transform is easily shown to satisfy the hypothesis of the Minlos-Bochner

theorem. For a reader familiar with the Lévy-Khinchine representation of the law of Lévy

processes (see (1.0.2)), it is therefore natural to define a Lévy white noise as a random variable

15
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Ẋ with values in D′(Rd ) and characteristic function

E
[

e i〈Ẋ ,ϕ〉]= exp

[∫
Rd
Ψ(ϕ(t ))dt

]
, for all ϕ ∈D(Rd ) ,

where for some σ, γ ∈R and some Lévy measure ν,

Ψ(u) = iγu − 1

2
σ2u2 +

∫
R

(
e i zu −1− i zu1|z|61

)
ν(dz) . (2.2.2)

We only need to prove that this characteristic function satisfies the hypothesis of Theorem

2.2.3. This leads to the following definition:

Definition 2.2.4. Let (Ω,F ,P) be a probability space. A Lévy white noise on S with charac-

teristic triplet
(
γ,σ,ν

)
is a measurable mapping Ẋ : (Ω,F ) → (

D′(Rd ),C
)

such that for any

ϕ ∈D(Rd ),

E
[

e i〈Ẋ ,ϕ〉]= exp

[∫
S
Ψ(ϕ(t ))dt

]
,

whereΨ is the Lévy exponent associated to the characteristic triplet
(
γ,σ,ν

)
as in (2.2.2).

To prove the existence of Lévy white noise, we need the following result,

Theorem 2.2.5 ( Chapter III, Theorem 5 in [36] ). For any characteristic triplet
(
γ,σ,ν

)
, where

γ, σ ∈R and ν is a Lévy measure, there exists a unique probability measure µẊ on
(
D′(Rd ),C

)
such that for any ϕ ∈D(Rd ),∫

D ′(Rd )
e i〈T,ϕ〉µẊ (dT ) = exp

[∫
S
Ψ(ϕ(t ))dt

]
,

where Ψ was defined in (2.2.2). Then, (Ω,F ,P) := (
D′(Rd ),C ,µẊ

)
is a probability space, and

we can define the Lévy white noise Ẋ on S with characteristic triplet
(
γ,σ,ν

)
via the formula〈

Ẋ (ω),ϕ
〉= 〈

ω,ϕ
〉

, for all ω ∈Ω and ϕ ∈D(Rd ) .

This construction of Lévy white noise is rather abstract. We only use the fact that a well chosen

probability measure exists on a space of distributions. In the next section, we will construct a

Lévy white noise directly from objects more familiar to probabilists that were introduced in

Definitions 1.0.4 and 1.0.8, namely Lévy processes and Lévy fields.

Derivative of a Lévy field

We recall that a Lévy process (X t )t∈R+ is a real valued stochastic process such that X0 = 0 almost

surely, X has stationary and independent increments and X is stochastically continuous. Every

Lévy process has a càdlàg (right continuous with left limits) modification by Proposition 1.0.5,

and we will always consider such a modification in the following. An important feature of

Lévy processes is the Lévy-Itô decomposition (Theorem 1.0.6): for a Lévy process X there

16



2.2. Definitions of Lévy white woise

exists a unique triplet (γ,σ,ν), where σ> 0, γ ∈ R, and ν is a Lévy measure (in particular, ν

is nonnegative and
∫
R\{0}

(
1∧|z|2)ν(dz) < +∞), such that the jump measure of X (denoted

by JX ) is a Poisson random measure on R+ ×R\{0} with intensity dt ν(dz) and X has the

decomposition X t = γt +σWt +X P
t +X M

t . In this decomposition, W is a standard Brownian

motion,

X P
t =

∫
s∈[0,t ], |z|>1

z JX (ds, dz)

is a compound Poisson process (the term containing the large jumps of X ), and

X M
t =

∫
s∈[0,t ], |z|61

z (JX (ds, dz)− dsν(dz))

is a square integrable martingale (the term containing the small jumps of X ). Since a Lévy

process is càdlàg, it is locally Lebesgue integrable, and defines almost surely an element of

D′(R) via the L2-inner product

〈
X ,ϕ

〉= ∫
R+

X t ϕ(t )dt , for all ϕ ∈D(R).

In particular, its derivative in the sense of distributions makes sense,

Definition 2.2.6. Let X be a Lévy process with characteristic triplet (γ,σ,ν). The derivative of X

is denoted X ′ and is defined by

〈
X ′(ω),ϕ

〉
:=−〈

X (ω),ϕ′〉 :=−
∫
R+

X t (ω)ϕ′(t )dt ,

for all ω ∈Ω and ϕ ∈D(R).

The reader might wonder what the derivative in the sense of distribution of a Lévy process

might have to do with Lévy noise. The answer to this question will be provided in Lemma

2.2.9 for any Lévy process, but we can first study the example of Brownian motion. Let W be a

standard Brownian motion. Then, by definition, for any ϕ ∈D(R),

〈
W ′,ϕ

〉=−〈
W,ϕ′〉=−

∫ +∞

0
Wtϕ

′(t )dt .

However, by Itô’s formula,

Wt ϕ(t ) =
∫ t

0
Wsϕ

′(s)ds +
∫ t

0
ϕ(s)dWs .

Passing to the limit as t →+∞ (the stochastic integral is a martingale bounded in L2(Ω)), since

ϕ has compact support, we get:∫
R+
ϕ(s)dWs =−

∫
R+

Wsϕ
′(s)ds .

By well known results on stochastic integrals with respect to Brownian motion, the left-hand

17



Chapter 2. Definitions and extensions of Lévy white noises

side of the previous equation is a Gaussian random variable with zero mean and variance

‖ϕ‖2
L2(R+)

. Therefore, the derivative of Brownian motion is in fact a Gaussian white noise on

R+. More generally, we will see below that X ′ defines a Lévy white noise on R+ (see Lemma

2.2.9).

To extend this definition to any finite dimension, we use the generalization of the notion

of Lévy process introduced in Definition 1.0.8, where the “time” parameter is in Rd+, with

d > 1. If X is a d-parameter Lévy field, by the lamp property of its sample paths, it is locally

integrable and defines almost surely an element of D′(Rd ) via the L2-inner product. Similar to

the one-dimensional case (see Definition 2.2.6), we can define the derivatives in the sense of

distributions of this random field.

Definition 2.2.7. Let X be a d-parameter Lévy field with characteristic triplet (γ,σ,ν). The d th

cross-derivative of X is denoted X (1d ) and is defined by

〈
X (1d ),ϕ

〉
(ω) := (−1)d 〈

X ,ϕ(1d )〉 (ω) := (−1)d
∫
Rd+

X t (ω)ϕ(1d )(t )dt ,

for ω ∈Ω and ϕ ∈D(Rd ), where we recall that ϕ(1d ) = ∂d

∂t1···∂td
ϕ.

Remark 2.2.8. Given a d-parameter Lévy field X with characteristic triplet (γ,σ,ν) and jump

measure JX , for a suitable class of functions ϕ :Rd+ →R, we can define the stochastic integral∫
Rd+
ϕ(s)dXs := γ

∫
Rd+
ϕ(s)ds +σ

∫
Rd+
ϕ(s)dWs

+
∫
Rd+

∫
|z|>1

zϕ(s)JX (ds, dz)

+
∫
Rd+

∫
|z|61

zϕ(s) J̃X (ds, dz)

= γA1(ϕ)+σA2(ϕ)+ A3(ϕ)+ A4(ϕ) ,

(2.2.3)

where the first integral is a Lebesgue integral, the second integral is a Wiener integral (see [48,

Chapter 2]) and the last two integrals are Poisson integrals (see [44, Lemma 12.13]) with the

space E =Rd+× (R\{0}).

The next lemma relates the definition of the derivative of a d-paramteter Lévy field with the

mapping ϕ→ ∫
Rd+
ϕ(s)dXs . It proves in particular that X (1d ) is in fact a Lévy white noise on Rd+,

as defined in Definition 2.2.4

Lemma 2.2.9. Let X be a d-parameter Lévy field with characteristic triplet (γ,σ,ν) and jump

measure JX . Then, for all ϕ ∈D(Rd ),

〈
X (1d ),ϕ

〉= ∫
Rd+
ϕ(s)dXs .

18



2.2. Definitions of Lévy white woise

Also,

E
[

e i〈X (1d ),ϕ〉]= exp

[∫
Rd+
Ψ(ϕ(t ))dt

]
,

whereΨ is the Lévy exponent associated to the characteristic triplet
(
γ,σ,ν

)
as in (2.2.2), and

X (1d ) is a Lévy white noise on Rd+.

Proof. Generically, if µ is a measure on Rd+ and if x(t ) :=µ([0, t ]), then ∂d

∂t1···∂td
x =µ in D′(Rd ).

Indeed, by (1.0.1), for any ϕ ∈D(Rd ),∫
Rd+
ϕ(s)µ(ds) = (−1)d

∫
Rd+
µ(ds)

∫
Rd+

dtϕ(1d )(t )1t>s

= (−1)d
∫
Rd+

dtϕ(1d )(t )
∫
Rd+
µ(ds)1t>s

= (−1)d
∫
Rd+
ϕ(1d )(t )x(t )dt ,

(2.2.4)

where the second equality requires a Fubini-type theorem.

Notice that for bounded Borel sets, the set function

B 7→ X̃ (B) :=
∫
Rd+
1B (s)dXs

defines an L0(Ω,F ,P)-valued measure (see e.g. [26, Theorem 2.6]), and X t = X̃ ([0, t ]) a.s.

We shall apply the argument in (2.2.4) separately to the four integrals in (2.2.3). For the first

integral, the standard Fubini’s theorem applies. For the second integral, since ϕ ∈ L2(Rd ), it is

well defined, and since it has compact support, we use the stochastic Fubini’s theorem [69,

Theorem 2.6]. For the third integral, let JX P (ds, dz) =1|z|>1 JX (ds, dz) be the jump measure of

the compound Poisson part X P of the Lévy-Itô decomposition of X . Then JX P =∑
i>1δτiδZi ,

where (τi , Zi ) are random elements of Rd+× (R\{0}), and A3(ϕ) = ∑
i>1 Ziϕ(τi ). For a fixed ϕ

with compact support, this is a finite sum, so Fubini’s theorem applies trivially. For the term

A4(ϕ), the integral is a compensated Poisson integral, and we know that it exists (see [44,

Lemma 12.13]) if and only if∫
Rd+

∫
|z|61

(|zϕ(s)|2 ∧|zϕ(s)|) dsν(dz) <+∞ .

Since ϕ ∈ L2(Rd ),∫
Rd+

∫
|z|61

(|zϕ(s)|2 ∧|zϕ(s)|) dsν(dz)6 ‖ϕ‖2
L2

∫
|z|61

z2ν(dz) <+∞ .

For n ∈N, define

A4,n(ϕ) :=
∫
Rd+

∫
1

2n+1 <|z|6 1
2n

zϕ(t ) J̃X (dt , dz)
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=
∫
Rd+

∫
1

2n+1 <|z|6 1
2n

zϕ(t ) JX (dt , dz)

−
∫
Rd+

∫
1

2n+1 <|z|6 1
2n

zϕ(t )dt ν(dz) .

Then A4,n(ϕ) is a sequence of centered independent random variables (the compensated

Poisson integrals are over disjoint sets) in L2(Ω), and we know that

E
((

A2
4,n(ϕ)

))= ∫
Rd+
ϕ(t )2 dt

∫
1

2n+16|z|< 1
2n

z2ν(dz) .

Since ν is a Lévy measure, we see that
∑

n E
((

A2
4,n(ϕ)

))
<∞ and by Kolmogorov’s convergence

criterion (see [31, Theorem 2.5.3]) we deduce that as n →+∞,

∑
06k6n

A4,k (ϕ) →
∫
Rd+

∫
|z|61

zϕ(t ) J̃X (dt , dz) = A4(ϕ) a.s. (2.2.5)

For each n ∈ N, since the Lévy measure ν is finite on compact subsets of Rd+ × [ 1
2n+1 , 1

2n

]
,

Fubini’s theorem applies to the set function B 7→ A4,n(1B ) in the same way it did for A3 and A1.

Therefore, letting

X M ,n
t =

∫
Rd+

∫
1

2n+1 <|z|6 1
2n

z1t>s J̃X (ds, dz) ,

the argument in (2.2.4) implies that

A4,n(ϕ) = (−1)d
∫
Rd+
ϕ(1d )(t )X M ,n

t dt .

By [1, Theorem 4.6] (see also [26, Theorem 2.3]),
∑

06k6n X M ,k
t → X M

t , where X M is the small

jumps part of X , and the convergence is a.s., uniformly on compact subsets of Rd+. Since ϕ has

compact support, (2.2.5) implies that

A4(ϕ) = (−1)d
∫
Rd+
ϕ(1d )(t )X M

t dt ,

which concludes the proof.

We note that the law of a Lévy white noise is entirely characterized by the triplet (γ,σ,ν) (given

that we use the truncation function 1|x|61 in the Lévy-Itô decomposition). Also, X (1d ) has

support in Rd+. It is then easy to define a Lévy white noise on S, where S is a disjoint union of

orthants by gluing independent copies of X (1d ) on each orthant. More precisely, we have the

following result,

Definition 2.2.10. Let S = ⋃k
i=1 Oi ⊂ Rd be a disjoint union of orthants of Rd . For every

16 i 6 k, there is an isomorphism fi : Oi 7→Rd+ (that only changes the sign of some coordinates).

Then let (X i )16i6k be a collection of independent d-parameter Lévy fields on Rd+ with the

same characteristic triplet (γ,σ,ν). Let X : t ∈ S → ∑k
i=1 X i

fi (t )1t∈Oi . This Lévy field defines
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a distribution (by the lamp property), its d th cross-derivative X (1d ) in the sense of Schwartz

distributions is a Lévy white noise on S.

Remark 2.2.11. By Lemma 2.2.9, X (1d ) is a Lévy white noise on S. The Lévy white noise X (1d ) on

S is almost surely a distribution onRd with support in S. Each Lévy field X i has a decomposition

in the form of Theorem 1.0.9 (ii), and we can define a Brownian sheet W on S by W : t ∈
S 7→ Wt = ∑k

i=1 W i
fi (t )1t∈Oi and a Poisson random measure JX on S × (R\{0}) by JX (A ×B) =∑k

i=1 JX i ( fi (A∩Oi )×B). Its intensity measure is dsν(dx), where ds denotes the d-dimensional

Lebesgue measure.

2.2.2 As an independently scattered random measure

A random measure is in general a stochastic process indexed by a family of sets, with some

additivity property. In the following, we introduce the notion of independently scattered

random measure, taken from [58, p.455].

Definition 2.2.12. Let S be a Borel-measurable subset of Rd . An independently scattered

random measure on S is a stochastic process (M(A))A∈L (S) indexed by the set L (S) of Borel-

measurable subsets of Rd such that Lebd (A∩S) <+∞, such that for any sequence (Ai )i∈N of

disjoint sets in L (S), the random variables M(Ai ), i > 0 are mutually independent, and if in

addition ∪i∈NAi ∈L (S), then

M(∪i∈NAi ) = ∑
i∈N

M(Ai ) a.s.,

where the sum converges almost surely.

Specific independently scattered random measures can be built by choosing the distribution

of this stochastic process. Given the title of this thesis, it is therefore natural to expect that

an indefinitely divisible law (closely related to Lévy processes) is a good candidate. This was

indeed done in [58, Proposition 2.1]. More precisely, we have the following result:

Proposition 2.2.13. Let S be a Borel-measurable subset of Rd . For any characteristic triplet

(γ,σ,ν), where γ, σ ∈ R and ν is a Lévy measure, there is an independently scattered random

measure M such that for any A ∈L (S),

E
[

e i uM(A)
]
= exp[Lebd (A∩S)Ψ(u)] , (2.2.6)

where

Ψ(u) = iγu − σ2u2

2
+

∫
R

(
e i uz −1− i uz1|z|61

)
ν(dz) .

Proof. See [58, Proposition 2.1, (a) and (b)]
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2.3 Unification of these definitions and stochastic integral repre-

sentations

The results of this section where obtained in collaboration with Julien Fageot, and most of the

material is taken from [33].

2.3.1 Extension of Lévy white noise to an independently scattered random mea-
sure

Let S be a Borel measurable subset of Rd . In the previous sections, we defined three closely

related objects: Lévy white noise, which is a probability measure on a space of distributions,

the derivative of a Lévy field, and independently scattered random measures (see respectively

Definition 2.2.4, Definition 2.2.7 and Definition 2.2.12). We have already seen in Lemma 2.2.9

that the derivative of a Lévy field X (1d ) on S is in fact a particular example of a Lévy white

noise on S. In the following, we show that a Lévy white noise can be extended to define

an independently scattered random measure M on S such that (2.2.6) holds. To make this

extension, we basically need to prove that we can give meaning to the expression
〈

Ẋ ,1A
〉

,

where A ∈ L (S). This extension will be done in several steps, using regularizations of the

indicator functions. Then, we show that when the Lévy white noise Ẋ is obtained from a Lévy

field (that is, Ẋ = X (1d )), then it has a stochastic integral representation (see Theorem 2.3.10

(iii)).

In the following, let Ẋ be a general Lévy white noise on S, with characteristic triplet (γ,σ,ν).

Definition 2.3.1. Let θ ∈ D(Rd ), θ > 0 and
∫
Rd θ(t)dt = 1. For n ∈N, and t ∈ Rd , let θn(t) =

ndθ(nt ). Then, for all ϕ ∈D(Rd ) and all Borel measurable sets A ⊂Rd , we define〈
Ẋ ,ϕ1A

〉
:= lim

n→+∞
〈

Ẋ ,ϕ · (θn ∗1A)
〉

,

where the limit is in probability.

Proposition 2.3.2. Definition 2.3.1 is well posed. In particular the limit exists and does not

depend on the choice of the mollifier θ. In addition, the characteristic function of the random

variable
〈

Ẋ ,ϕ1A
〉

is given by

Φ〈Ẋ ,ϕ1A〉(ξ) = E[
exp

(
iξ

〈
Ẋ ,ϕ1A

〉)]= exp

(∫
A∩S

Ψ(ξϕ(t ))dt

)
, for all ξ ∈R,

where Ψ is the Lévy exponent of Ẋ as in (2.2.2). Also, for any disjoint Borel measurable sets

A,B ⊂ Rd ,
〈

Ẋ ,ϕ1A∪B
〉 = 〈

Ẋ ,ϕ1A
〉+ 〈

Ẋ ,ϕ1B
〉

almost surely, and
〈

Ẋ ,ϕ1A
〉

and
〈

Ẋ ,ϕ1B
〉

are

independent.

Proof. We first remark that for all n ∈N, the function ϕ · (θn ∗1A) is in D(Rd ), therefore the

random variables Yn = 〈
Ẋ ,ϕ · (θn ∗1A)

〉
are well defined. It suffices to show that the sequence
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(Yn)n∈N is Cauchy in probability. Since the convergence in law to a constant is equivalent to

the convergence in probability to that constant, it suffices to show that Yn −Ym converges

to zero in law as n,m → +∞. Since Ẋ is almost surely linear, for any n,m ∈ N, Yn −Ym =〈
Ẋ ,ϕ · ((θn −θm)∗1A)

〉
, and by definition, we know that for any ξ ∈R,

E
[
exp

(
iξ

〈
Ẋ ,ϕ · ((θn −θm)∗1A)

〉)]= exp

(∫
S
Ψ

(
ξϕ(t ) ((θn −θm)∗1A) (t )

)
dt

)
,

where

Ψ(ξ) = iγξ− σ2ξ2

2
+

∫
|z|61

(
e iξz −1− iξz

)
ν(dz)+

∫
|z|>1

(
e iξz −1

)
ν(dz) .

We treat each of the four terms of the Lévy exponent separately. Since ϕ ∈D(Rd ), there is a

compact set K such that supp ϕ=: K . Then,∣∣∣∣∫
S

iγξϕ(t ) ((θn −θm)∗1A) (t )dt

∣∣∣∣6 |γξ|‖ϕ‖∞ ‖(θn −θm)∗1A‖L1(K ) .

It is well known that for p > 1 and f ∈ Lp (K ), (θn −θm)∗ f → 0 in Lp (K ) as n,m →+∞ (see

[38, Théorème 1.3.14]). Therefore, since 1A ∈ L1(K ), ‖ (θn −θm)∗1A‖L1(K ) → 0 as n,m →+∞.

Similarly,∣∣∣∣∫
S

σ2ξ2ϕ(t )2 (θn −θm)∗1A(t )2

2
dt

∣∣∣∣6 1

2
|σ2ξ2|‖ϕ‖2

∞ ‖(θn −θm)∗1A‖2
L2(K ) . (2.3.1)

Since 1A ∈ L2(K ), ‖ (θn −θm)∗1A‖2
L2(K )

→ 0 as n,m →+∞.

For the third term, by [44, Lemma 5.14],∣∣∣e iξz −1− iξz
∣∣∣6 1

2
|ξz|2 ,

and ∫
S

∫
|z|61

∣∣∣e iξϕ(t )(θn−θm )∗1A(t )z −1− iξϕ(t ) ((θn −θm)∗1A) (t )z
∣∣∣ν(dz)dt

6
1

2
|ξ2|‖ϕ‖2

∞
(∫

|z|61
z2ν(dz)

)
‖(θn −θm)∗1A‖2

L2(K ) dt ,

and we conclude as for (2.3.1). The last term corresponds to the compound Poisson part of the

Lévy-Itô decomposition of the Lévy noise. It is the characteristic function of the random vari-

able Mn,m := ∫
Rd

∫
R zϕ(t ) ((θn −θm)∗1A) (t )N (dt , dz) where N is a Poisson random measure

on S ×Rwith intensity measure dt 1|z|>1ν(dz), and we know that

Mn,m = ∑
i>1

Ziϕ(Ti ) ((θn −θm)∗1A) (Ti ) ,

for some random jump points (Ti , Zi )i>1, and the sum above has finitely many terms (inde-

pendently of m,n) almost surely due to the compactness of the support of ϕ. Indeed, with
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K = suppϕ, we have

E [N (K ×R)] =
∫

K∩S×R
dt1|z|>1ν(dz)6 Lebd (K )

∫
|z|>1

ν(dz) <+∞ ,

since ν is a Lévy measure, and N (K ×R) is the random variables that counts the number of

points Ti that fall in the support of ϕ. By Lebesgue’s differentiation theorem (see [70, Chapter

7, Exercise 2]), (θn −θm)∗1A(t) → 0 as n,m →+∞ for all t ∈ K \H , where H is a subset of Rd

such that Lebd (H) = 0. The random times Ti have an absolutely continuous law. Indeed, for

any Borel set B ⊂Rd ,

P(Ti ∈ B)6P(N (B ×R)> 1)6 Lebd (B ∩S)
∫
|z|>1

ν(dz) . (2.3.2)

Therefore, for all i > 1, P(Ti ∈ H ) = 0 and Mn,m → 0 as n,m →+∞ almost surely, hence also in

law. Therefore (Yn)n∈N is a Cauchy sequence in law, hence in probability (see Remark 1.0.2),

and there exists a random variable Y such that Yn → Y in probability as n →+∞. By checking

the convergence of each term of the decomposition of the Lévy exponent, it is easy to see

using the same estimates as above that for all ξ ∈R,∫
S
Ψ

(
ξϕ(t )θn ∗1A(t )

)
dt →

∫
S
Ψ

(
ξϕ(t )1t∈A

)
dt =

∫
A∩S

Ψ
(
ξϕ(t )

)
dt , as n →+∞ ,

hence

E
[

e iξY
]
= exp

(∫
A∩S

Ψ
(
ξϕ(t )

)
dt

)
.

If θ̃ is an other mollifier, and (Ỹn)n∈N and Ỹ are the associated sequence and limit, it is easy

to see by linearity of Ẋ that Yn − Ỹn → 0 in probability as n →+∞. If A and B are disjoint

Borel measurable sets of Rd , we observe that θn ∗1A∪B = θn ∗1A +θn ∗1B , which proves the

decomposition
〈

Ẋ ,ϕ1A∪B
〉= 〈

Ẋ ,ϕ1A
〉+〈

Ẋ ,ϕ1B
〉

at the limit when n →+∞. Independence

comes from the factorisation of the characteristic function of these random variables.

From the previous definition, it is straightforward to define the random variables
〈

Ẋ ,1A
〉

for any bounded Borel set A. Indeed, it suffices to choose any ϕ ∈ D(Rd ) such that ϕ|A = 1

and set
〈

Ẋ ,1A
〉

:= 〈
Ẋ ,ϕ1A

〉
. This definition does not depend on the choice of ϕ. Indeed,

if ϕ and ψ are two such functions, by linearity of the noise and from the expression of the

characteristic function we get that
〈

Ẋ ,ϕ1A
〉−〈

Ẋ ,ψ1A
〉= 〈

Ẋ ,
(
ϕ−ψ)

1A
〉= 0, almost surely. In

this particular case, we observe that the characteristic function of the noise takes the particular

form

E
[
exp

(
iξ

〈
Ẋ ,1A

〉)]= exp(Lebd (A∩S)Ψ(ξ)) . (2.3.3)

We now extend the definition to a Borel set with finite measure (but not necessarily bounded).

Definition 2.3.3. Let A ⊂Rd be a Borel measurable set such that Lebd (A∩S) <+∞. For n ∈N∗,
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2.3. Unification of these definitions and stochastic integral representations

let An = A∩ [−n,n]d . Then we define〈
Ẋ ,1A

〉
:= lim

n→+∞
〈

Ẋ ,1An

〉
,

where the limit is in probability.

Proposition 2.3.4. Definition 2.3.3 is well posed, in particular the limit exists in probability. In

addition, the characteristic function of the random variable
〈

Ẋ ,1A
〉

is given by

E
[
exp

(
iξ

〈
Ẋ ,1A

〉)]= exp(Lebd (A∩S)Ψ(ξ)) , for all ξ ∈R , (2.3.4)

where ψ is the Levy exponent of Ẋ . Also, for any disjoint Borel measurable sets A,B ⊂Rd , such

that Lebd (A) ,Lebd (B) < +∞,
〈

Ẋ ,1A∪B
〉 = 〈

Ẋ ,1A
〉+ 〈

Ẋ ,1B
〉

almost surely and
〈

Ẋ ,1A
〉

and〈
Ẋ ,1B

〉
are independent.

Proof. From the expression of the characteristic function in (2.3.3) and the fact that An is

a bounded Borel set, it is easy to see that the sequence
(〈

Ẋ ,1An

〉)
n∈N is Cauchy in law (see

Remark 1.0.2), and therefore converges in probability. The expression of the characteristic

function follows from the fact that Lebd (A∩S) <+∞ and an application of the dominated

convergence theorem. The last statement comes directly from an application of Proposition

2.3.2 and the expression of the characteristic functions.

Theorem 2.3.5. The extension of the Lévy white noise Ẋ is an independently scattered random

measure in the sense of Definition 2.2.12.

Proof. Let (An)n∈N be a sequence of disjoint sets in L (S), the set of Borel sets with finite

Lebesgue measure. Let k ∈ N and i1 < ·· · < ik ∈ N. We show that the random variables〈
Ẋ ,1Ai j

〉
, 1 6 j 6 k are independent. By linearity of the noise in Proposition 2.3.4, this

fact is an immediate consequence of (2.3.4) and the additivity of Lebesgue measure. This

proves that
〈

Ẋ ,1An

〉
, n ∈ N is a sequence of independent random variables. If in addition∑

n∈NLebd (An ∩S) <+∞,
⋃

n∈N An ∈L (S) and we need to show that〈
Ẋ ,1⋃

n∈N An

〉= ∑
n∈N

〈
Ẋ ,1An

〉
,

where the series converges almost surely. By the second statement of Proposition 2.3.4, it is

easy to see that for any k ∈N,

〈
Ẋ ,1⋃k

n=1 An

〉
=

k∑
n=1

〈
Ẋ ,1An

〉
. (2.3.5)

By the expression of the characteristic function of the left-hand side of (2.3.5), we see that〈
Ẋ ,1⋃k

n=1 An

〉
→ 〈

Ẋ ,1⋃
n∈N An

〉
in law as k →+∞. By linearity of the noise in Proposition 2.3.4,

it also converges in probability as k →+∞. Therefore the right-hand side of (2.3.5) is a sum of
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Chapter 2. Definitions and extensions of Lévy white noises

independent random variables that converges in probability. By [17, Theorem 5.3.4], the sum

converges almost surely, which concludes the proof.

2.3.2 Stochastic integral representations

Integrals with respect to independently scattered random measures

Let Ẋ be a Lévy white noise on S extended to an independently scattered random measure.

The notion of independently scattered random measure calls for the definition of an integral.

The natural way to define such an integral is to define it first for a class of simple functions

(which are linear combinations of indicator functions of sets in L (S)), and then to extend it

to a class of function as large as possible using a limiting argument. In [58], B. S. Rajput and

J. Rosinski have done this work and entirely characterized the set of deterministic functions

f that are integrable with respect to an independently scattered random measure. In the

following, we recall the definition of this integral and the mentioned characterization. Let

f =∑
i6n fi1Ai , where for i 6 n, Ai ∈L (S), and let A ∈B(Rd ). Then we define〈

Ẋ , f 1A
〉

:= ∑
i6n

fi
〈

Ẋ ,1Ai∩A
〉

.

The following definition was introduced in [58, p. 460].

Definition 2.3.6. A Borel-measurable function f :Rd →R is said to be Ẋ -integrable if there is

a sequence ( fn)n>1 of simple functions such that fn → f almost everywhere as n →+∞, and

such that for any A ∈B(Rd ), the sequence
(〈

Ẋ , fn1A
〉)

n>1 converges in probability as n →+∞.

Then, for any A ∈B(Rd ), 〈
Ẋ , f 1A

〉
:= lim

n→+∞
〈

Ẋ , fn1A
〉

.

The set of Ẋ -integrable functions is denoted L(Ẋ ,S ).

It turns out that Definition 2.3.6 is well-posed (and in particular, the limit does not depend

on the choice of the approximating sequence, see [58, p. 460]). There is in fact a simple

characterization of Ẋ -integrable functions that we recall in the next proposition.

Proposition 2.3.7 (Theorem 2.7 in [58]). Let f : S →R be a Borel measurable function. Then f

is Ẋ -integrable if and only if the following conditions hold:

(i)
∫

S

∣∣γ f (t )+∫
R z f (t )

(
1|z f (t )|61 −1|z|61

)
ν(dz)

∣∣ dt <+∞,

(ii)
∫

S

∣∣σ f (t )
∣∣2 dt <+∞,

(iii)
∫

S×R
(∣∣z f (t )

∣∣2 ∧1
)

dt ν(dz) <+∞.

In addition, the law of
〈

Ẋ , f
〉

is characterized by

E
[

e i〈Ẋ , f 〉]= exp

(∫
S
Ψ( f (t ))dt

)
,
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2.3. Unification of these definitions and stochastic integral representations

whereΨ is the Lévy exponent of Ẋ as defined in (2.2.2).

By Lemma 2.2.9, we know that a Lévy white noise derived from a Lévy field has a stochastic

integral representation. In the next section, we show that the extension of such a noise to an

independently scattered random measure also has such a stochastic integral representation.

Stochastic integral representations of the Lévy white noise

For the remainder of this section we suppose that S is a union of orthants. Let X be a d-

parameter Lévy field on S, with characteristic triplet (γ,σ,ν), jump measure JX , and Lévy-Itô

decomposition as in Theorem 1.0.9. We know by Lemma 2.2.9 that the d-th cross-derivative

of X in the sense of distributions defines a Lévy white noise on S. This Lévy white noise is

denoted by Ẋ , and it can be in turn extended to an independently scattered random measure

that we still denote Ẋ (see Theorem 2.3.5). This extension allows us to use the general theory

of independently scattered random measures developed in [58], and define the set of Ẋ -

integrable functions in Definition 2.3.6. For the reader familiar with stochastic integrals with

respect to Poisson random measures, condition (i i i ) of Proposition 2.3.7 should look familiar

(see for example [44, Lemma 12.13]). It turns out that the class of Ẋ integrable functions f is

exactly the class of functions for which a specific stochastic integral decomposition exists for〈
Ẋ , f

〉
. We also study in the following a stochastic integral representation of

〈
Ẋ , f

〉
related

to the Lévy-Itô decomposition of the underlying Lévy field X . In the next definition, all the

integrals with respect to W are Wiener integrals, the integrals with respect to JX and J̃X are

Poisson integrals and compensated Poisson integrals as defined in [44, Lemma 12.13].

Definition 2.3.8. (i) A Borel measurable function f : S →R is said to be Itô Ẋ -integrable if

the following exists:

I ( f ) :=
∫

S
γ f (t )dt +

∫
S
σ f (t )dWt +

∫
S

∫
|z|61

z f (t ) J̃X (dt , dz)+
∫

S

∫
|z|>1

z f (t )JX (dt , dz) .

The set of Itô Ẋ -integrable functions is denoted by L(I ,S ).

(ii) A Borel measurable function f : S →R is said to be Poisson Ẋ -integrable if the following

exists:

Ĩ ( f ) :=
∫

S

(
γ f (t )+

∫
R

z f (t )
(
1|z f (t )|61 −1|z|61

)
ν(dz)

)
dt +

∫
S
σ f (t )dWt

+
∫

S

∫
|z f (t )|61

z f (t ) J̃X (dt , dz)+
∫

S

∫
|z f (t )|>1

z f (t )JX (dt , dz) .
(2.3.6)

The set of Poisson Ẋ -integrable functions is denoted by L
(
Ĩ ,S

)
.

Remark 2.3.9. The set L(I ,S ) is exactly the class of suitable functions mentioned in Remark

2.2.8, and the decomposition given by the operator I is coincides with the stochastic integral

introduced in (2.2.3).
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Chapter 2. Definitions and extensions of Lévy white noises

We can in fact characterize the domains of the operators I and Ĩ . The following result can be

found in [33, Proposition 4.7].

Theorem 2.3.10. The following holds:

(i) f ∈ L(I ,S ) if and only if γ f ∈ L1(S), σ f ∈ L2(S), and∫
S

∫
|z|>1

(|z f (t )|∧1
)

dt ν(dz)+
∫

S

∫
|z|61

(|z f (t )|2 ∧|z f (t )|) dt ν(dz) <+∞ . (2.3.7)

(ii) L(I ,S ) ⊂ L(Ĩ ,S ), and for all f ∈ L(I ,S ), I ( f ) = Ĩ ( f ) almost surely.

(iii) L(Ĩ ,S ) = L(Ẋ ,S ) and for all f ∈ L(Ĩ ,S ), Ĩ ( f ) = 〈
Ẋ , f

〉
almost surely.

Remark 2.3.11. If γ= 0, then the condition γ f ∈ L1(S) is vacuous. Similarly, if σ= 0, then the

condition σ f ∈ L2(S) is vacuous.

Proof of Theorem 2.3.10. We first prove (i). The deterministic and Wiener integral exist under

the well known conditions γ f ∈ L1(S), σ f ∈ L2(S). By [44, Lemma 12.13], the compensated

Poisson and Poisson integrals exist if and only if (2.3.7) is satisfied. To verify the equality

L(Ẋ ,S ) = L(Ĩ ,S ) in (iii), we can use the existence criteria of the different terms in (2.3.6) (see

[44, Lemma 12.13] for the Poisson and compensated Poisson integrals) to see that a function

f is Ẋ integrable if and only if it is Poisson Ẋ -integrable. Then, let f ∈ L(I ,S ). Condition (ii) of

Proposition 2.3.7 is satisfied. Moreover, we can see that∫
S

∫
|z|>1

(|z f (t )|∧1
)

dt ν(dz)+
∫

S

∫
|z|61

(|z f (t )|2 ∧|z f (t )|) dt ν(dz)

>
∫

S×R
(|z f (t )|2 ∧1

)
dsν(dz) ,

therefore condition (iii) of Proposition 2.3.7 is satisfied. Then,∫
S

∫
R

∣∣z f (t )
∣∣ ∣∣1|z f (t )|61 −1|z|61

∣∣ dt ν(dz)

=
∫

S

∫
|z|>1

∣∣z f (t )
∣∣1|z f (t )|61 dt ν(dz)+

∫
S

∫
|z|61

∣∣z f (t )
∣∣1|z f (t )|>1 dt ν(dz)

6
∫

S

∫
|z|>1

(|z f (t )|∧1
)

dt ν(dz)+
∫

S

∫
|z|61

(|z f (t )|2 ∧|z f (t )|) dt ν(dz) <+∞ ,

(2.3.8)

therefore (i) of Proposition 2.3.7 is satisfied, and the inclusion L(I ,S ) ⊂ L(Ẋ ,S ) = L(Ĩ ,S ) is

satisfied. We then show that I ( f ) = Ĩ ( f ). We can assume without loss of generality that
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2.3. Unification of these definitions and stochastic integral representations

γ=σ= 0. Then,

I ( f ) =
∫

S

∫
|z|61

z f (t ) J̃X (dt , dz)+
∫

S

∫
|z|>1

z f (t )JX (dt , dz)

=
∫

S

∫
|z|61

z f (t )1|z f (t )|61 J̃X (dt , dz)+
∫

S

∫
|z|61

z f (t )1|z f (t )|>1 J̃X (dt , dz)

+
∫

S

∫
|z|>1

z f (t )1|z f (t )|61 JX (dt , dz)+
∫

S

∫
|z|>1

z f (t )1|z f (t )|>1 JX (dt , dz) .

(2.3.9)

By (2.3.8), we can write∫
S

∫
|z|61

z f (t )1|z f (t )|>1 J̃X (dt , dz) =
∫

S

∫
|z|61

z f (t )1|z f (t )|>1 JX (dt , dz)

−
∫

S

∫
|z|61

z f (t )1|z f (t )|>1 dt ν(dz) ,
(2.3.10)

and ∫
S

∫
|z|>1

z f (t )1|z f (t )|61 JX (dt , dz) =
∫

S

∫
|z|>1

z f (t )1|z f (t )|61 J̃X (dt , dz)

+
∫

S

∫
|z|>1

z f (t )1|z f (t )|61 dt ν(dz) .
(2.3.11)

Recombining (2.3.10) and (2.3.11) in (2.3.9), we get

I ( f ) =
∫

S

∫
R

z f (t )1|z f (t )|61 J̃X (dt , dz)+
∫

S

∫
R

z f (t )1|z f (t )|>1 JX (dt , dz)

+
∫

S

∫
R

z f (t )
(
1|z f (t )|61 −1|z|61

)
dt ν(dz) = Ĩ ( f ) .

We finally show that for f ∈ L(Ĩ ,S ),
〈

Ẋ , f
〉= Ĩ ( f ). For f ∈D(Rd ), we can use Lemma 2.2.9 to

deduce that
〈

Ẋ , f
〉= I ( f ), and since D(Rd ) ⊂ L(I ), we get

〈
Ẋ , f

〉= Ĩ ( f ). Then let A ⊂Rd be a

Borel set such that Lebd (A∩S) <+∞. Let (θn)n>1 be a sequence of mollifiers as in Definition

2.3.1. Since for any n ∈ N,
〈

Ẋ , f · (θn ∗1A)
〉 = Ĩ ( f · (θn ∗1A)), and since

〈
Ẋ , f · (θn ∗1A)

〉 →〈
Ẋ , f 1A

〉
in probability as n →+∞, it suffices to show that Ĩ ( f · (θn ∗1A)) → Ĩ ( f 1A) in prob-

ability as n →+∞. In fact, one easily checks that f · (θn ∗1A) and f 1A ∈ L(I ,S ). Therefore

it is enough to show that I ( f · (θn ∗1A)) → I ( f 1A) in probability as n →+∞, and this is ob-

tained using the linearity of I and the convergence in law of each part of the decomposition

of the Lévy exponent as in the proof of Proposition 2.3.2. The same reasoning works to show〈
Ẋ ,1A

〉= Ĩ (1A). To extend the result to simple functions, the problem we have is that each

term of the decomposition of Ĩ is not linear (although we will see that Ĩ is linear). Let α> 0.
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Then, ∫
S×R

z1t∈A1|z|61 J̃X (dt , dz)+
∫

S×R
z1t∈A1|z|>1 JX (dt , dz)

=
∫

S×R
z1t∈A1|z|6α J̃X (dt , dz)+

∫
S×R

z1t∈A1|z|>α JX (dt , dz)

+
∫

S×R
z1t∈A

(
1|z|6α−1|z|61

)
dt ν(dz)

:= IαM (A)+ IαP (A)+Dα(A) .

Let f =∑n
i=1 yi1Ai be a simple function, where for all 16 i 6 n, Lebd (Ai ) <+∞ and |yi | > 0.

Then,

〈
Ẋ , f

〉= n∑
i=1

yi
〈

Ẋ ,1Ai

〉
=

n∑
i=1

yi

(∫
Ai∩S

γdt +
∫

S
σ1Ai (t )dWt + I 1

M (Ai )+ I 1
P (Ai )

)
=

∫
S
γ f (t )dt +

∫
S
σ f (t )dWt +

n∑
i=1

yi

(
I |yi |−1

M (Ai )+ I |yi |−1

P (Ai )+D |yi |−1
(Ai )

)
.

Then,

Ĩ ( f ) =
∫

S

(
γ f (t )+

∫
R

z f (t )
(
1|z f (t )|61 −1|z|61

)
ν(dz)

)
dt

+
∫

S
σ f (t )dWt +

n∑
i=1

yi

(∫
(Ai∩S)×R

z1|z yi |61 J̃X (dt , dz)+
∫

(Ai∩S)×R
z1|z yi |>1 JX (dt , dz)

)
=

∫
S
γ f (t )dt +

∫
S
σ f (t )dWt +

n∑
i=1

yi

(
I |yi |−1

M (Ai )+ I |yi |−1

P (Ai )+D |yi |−1
(Ai )

)
= 〈

Ẋ , f
〉

.

Let f ∈ L(Ẋ ,S). By definition, there is a sequence of simple functions fn such that fn → f

almost everywhere as n →+∞, and
〈

Ẋ , fn
〉 → 〈

Ẋ , f
〉

in probability as n →+∞. The proof

of [58, Theorem 2.7] shows that the sequence ( fn)n>1 can be chosen such that for any n ∈N,

| fn |6 | f |. We only need to show that Ĩ ( fn) → Ĩ ( f ) in probability as n →+∞. We show the

convergence in probability of each part of the decomposition of the stochastic integral. First

we deal with the Gaussian part. By classical properties of Wiener stochastic integration, we get

E

[(∫
S
σ fn(t )dWt −

∫
S
σ f (t )dWt

)2]
=

∫
S
σ2 (

fn(t )− f (t )
)2 dt → 0 as n →+∞ ,

by the dominated convergence theorem. We deduce that
∫

S σ fn(t)dWt →
∫

S σ f (t)dWt in

L2(Ω) as n →+∞, which implies the convergence in probability. Then, we show the conver-

gence of the compensated Poisson term.

I1 :=
∫

S×R
z fn(t )1|z fn (t )|61 J̃X (dt , dz)−

∫
S×R

z f (t )1|z f (t )|61 J̃X (dt , dz)
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2.3. Unification of these definitions and stochastic integral representations

=
∫

S×R
z
(

fn(t )− f (t )
)
1|z f (t )|61 J̃X (dt , dz)+

∫
S×R

z fn(t )1|z fn (t )|61,|z f (t )|>1 J̃X (dt , dz) .

Each of these two integrals exist since∫
S×R

∣∣z (
fn(t )− f (t )

)
1|z f (t )|61

∣∣2 ∧ ∣∣z (
fn(t )− f (t )

)
1|z f (t )|61

∣∣ dtν(dz)

6 4
∫

S×R

∣∣z f (t )1|z f (t )|61
∣∣2 dt ν(dz) ,

and ∫
S×R

∣∣z fn(t )1|z fn (t )|61,|z f (t )|>1
∣∣2 ∧ ∣∣z fn(t )1|z fn (t )|61,|z f (t )|>1

∣∣ dt ν(dz)

6
∫

S×R

∣∣z fn(t )1|z fn (t )|61
∣∣2 dt ν(dz) ,

and ∫
S×R

∣∣z fn(t )1|z fn (t )|61
∣∣2 dt ν(dz) <+∞ ,

by (iii) in Proposition 2.3.7. Furthermore, since these two integrals are compensated Poisson

integrals over disjoint subsets of S ×R, they are independent and their mean is zero. Then,

E
(
I 2

1

)= ∫
S×R

|z( fn(t )− f (t )|21|z f (t )|61 dt ν(dz)

+
∫

S×R
|z fn(t )|21|z fn (t )|61,|z f (t )|>1 dt ν(dz) .

(2.3.12)

Observe that |z( fn(t )− f (t )|21|z f (t )|616 4|z f (t )|21|z f (t )61, and by Proposition 2.3.7 (iii),∫
S×R

|z f (t )|21|z f (t )61 dt ν(dz) <+∞ .

Therefore, by the dominated convergence theorem, we get the convergence to zero of the first

integral on the right-hand side of (2.3.12). Similarly,

|z fn(t )|21|z fn (t )|61,|z f (t )|>161|z f (t )|>1 ,

so again by dominated convergence, the second integral on the right-hand side of (2.3.12)

converges to zero. We deduce that∫
S×R

z fn(t )1|z fn (t )|61 J̃X (dt , dz) →
∫

S×R
z f (t )1|z f (t )|61 J̃X (dt , dz) ,

in L2(Ω) as n → +∞, which implies the convergence in probability. The treatment of the

compound Poisson term goes as follows: let (Ti , Zi ) ∈ S ×R be the random jump points of the

random measure JX . Then,∫
S×R

z fn(t )1|z fn (t )|>1 JX (dt , dz) = ∑
i>1

Zi fn(Ti )1|Zi fn (Ti )|>1 ,
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where the sum is finite almost surely. Indeed, 1|z fn (t )|>1 6 1|z f (t )|>1, therefore JX ({|z fn(t)| >
1})6 JX ({|z f (t )| > 1}) =: N , and N is an almost surely finite random variable, and does not de-

pends on n: indeed, E [N ] = ∫
S×R1|z f (s)|>1 dsν(dz) <+∞ since f ∈ L

(
Ẋ ,S

)
and using Proposi-

tion 2.3.7 (iii). Therefore, since fn → f almost everywhere, and since the law of Ti is absolutely

continuous with respect to Lebesgue measure (see (2.3.2)), we deduce that

∑
i>1

Zi fn(Ti )1|Zi fn (Ti )|>1 →
∑
i>1

Zi f (Ti )1|Zi f (Ti )|>1 =
∫

S×R
z f (t )1|z f (t )|>1 JX (dt , dz) ,

almost surely as n →+∞, which implies the convergence in probability. We then have the

following: 〈
Ẋ , fn

〉= Ĩ ( fn) =: U ( fn)+ ĨW ( fn)+ ĨM ( fn)+ ĨP ( fn) a.s.

Also, we proved that ĨW ( fn)+ ĨM ( fn)+ ĨP ( fn) → ĨW ( f )+ ĨM ( f )+ ĨP ( f ) in probability as n →+∞.

Also,
〈

Ẋ , fn
〉

converges in probability to
〈

Ẋ , f
〉

as n →+∞, hence also in law. From these facts,

we deduce that the deterministic part of the decomposition U ( fn) converges as n →+∞, and

from the expression of the characteristic function,

U ( fn) →U ( f ) :=
∫

S

(
γ f (t )+

(∫
R

z f (t )
(
1|z f (t )|61 −1|z|61

)
ν(dz)

))
dt as n →+∞ .

This concludes the proof.

In general the inclusion L(I ,S) ⊂ L(Ẋ ,S ) is strict. For example, we can consider the case of an

α-stable white noise Ẇ α on Rd , α ∈ (0,2), that is a Lévy white noise on Rd with characteristic

triplet (0,0,να(dx)), where να(dz) = dz
|z|α+1 . By Theorem 2.3.10, a function f : Rd → R is Itô

Ẋ -integrable if and only if (2.3.7) holds. Then, if α 6= 1,∫
|z|>1

(|z f (t )|∧1
)
ν(dz) = 2

∫ +∞

0
|z f (t )|11<z6| f (t )|−11| f (t )|<1

dz

zα+1

+2
∫ +∞

0
1z>| f (t )|−11| f (t )|<1

dz

zα+1

+2
∫ +∞

0
11<z1| f (t )|>1

dz

zα+1

=1| f (t )|<1
2
(| f (t )|− | f (t )|α)

α−1
+ 2

α

(
1| f (t )|<1| f (t )|α+1| f (t )|>1

)
.

Similarly,∫
|z|61

(|z f (t )|2 ∧|z f (t )|)ν(dz) = 2
∫ +∞

0
|z f (t )|21z611| f (t )|<1

dz

zα+1

+2
∫ +∞

0
|z f (t )|1| f (t )|−1<z611| f (t )|>1

dz

zα+1

+2
∫ +∞

0
|z f (t )|21z6| f (t )|−11| f (t )|>1

dz

zα+1

= 2

2−α | f (t )|21| f (t )|<1 +
2

α−1

(| f (t )|α−| f (t )|)1| f (t )|>1
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+ 2

2−α | f (t )|α1| f (t )|>1

Summing those two terms which are always positive, and since α ∈ (0,2), we get that f ∈
L(I ,Rd ) if and only if∫

Rd

∣∣| f (t )|α−| f (t )|∣∣ dt +
∫
Rd

| f (t )|αdt +Lebd
(
{t : | f (t )|> 1}

)<+∞ .

Also, by using Markov’s inequality on the last term, we get that Lebd
(
{t : | f (t )|> 1}

)
6 ‖ f ‖α

Lα(Rd )
.

When α= 1, we obtain∫
|z|>1

(|z f (t )|∧1
)
ν(dz) =−1| f (t )|<1| f (t )| ln(| f (t )|)+2

(
1| f (t )|<1| f (t )|+1| f (t )|>1

)
.

and ∫
|z|61

(|z f (t )|2 ∧|z f (t )|)ν(dz) = 2

2−α | f (t )|21| f (t )|<1 +| f (t )| ln(| f (t )|)1| f (t )|>1

+2| f (t )|1| f (t )|>1 .

Finally, when we obtain that f ∈ L(I ,Rd ) if and only if∫
Rd

∣∣| f (t )|α−| f (t )|∣∣ dt +
∫
Rd

| f (t )|αdt <+∞ when α 6= 1,

and ∫
Rd

∣∣ f (t ) ln
(| f (t )|)∣∣ dt +

∫
Rd

| f (t )|αdt <+∞ when α= 1,

By Theorem 2.3.10 and Proposition 2.3.7, a function f :Rd →R is Poisson Ẋ -integrable if and

only if ∫
Rd

∫
R

(|z f (t )|2 ∧1
)

dt ν(dz) <+∞ .

Then, ∫
R

(|z f (t )|2 ∧1
)
ν(dz) = 2

∫ +∞

0
|z f (t )|21z6| f (t )|−1

dz

zα+1 +2
∫ +∞

0
1| f (t )|−1<z

dz

zα+1

= 2

2−α | f (t )|α+ 2

α
| f (t )|α .

Therefore, we have that L(Ẇ α,Rd ) = Lα(Rd ). Then, if we consider for example α ∈ (0,1) and

f : t 7→ 1
t 1t∈(0,1), then f is Poisson Ẋ -integrable but f is not Itô Ẋ -integrable.
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3 Lévy white noise as a tempered distri-
bution

We have studied in the previous chapter several definitions of Lévy white noise. One of the

points of view that we developed is that of a probability measure on a space of distributions,

or equivalently a random element in D′(Rd ). In the context of SPDEs, one would like to apply

various operators to this noise, for example a fractional laplacian (whose definition uses

Fourier transforms). However, this space of generalized functions is too large, and some of

its elements behave too wildly for Fourier analysis. In the case of Gaussian white noise, it is

already known that it belongs to the nicer space of tempered distributions S ′(Rd ) (see [36, 69]).

The question that is of interest then is whether the same is true for all Lévy white noises. This

question was brought to our attention by J. Fageot and M. Unser from the Biomedical Imaging

Group at EPFL, and was partially answered in [34]. In this article, the authors gave a sufficient

condition for a Lévy white noise to belong to S ′(Rd ), and we show in Theorems 3.1.5 and 3.2.7

that this condition is also necessary. The results exposed in this chapter have been published

in [24] and this chapter is based on this article.

This chapter is organized as follows: In Section 3.1, we treat the one dimensional case by

dealing with each term of the Lévy-Itô decomposition of the noise separately. In particular,

we show that only the compound Poisson part is susceptible not to belong to S ′(Rd ). The

generalization to higher dimensions d > 1 is treated in Section 3.2, and the main result is

stated in Theorem 3.2.7.

3.1 Lévy processes and Lévy white noise in S ′(R)

In this section, we restrict to the one dimensional case, because it is conceptually simpler,

and the notations are lighter. The multidimensional case treated in the next section is not

fundamentally different, but some new ideas have to be introduced. Lévy processes have been

introduced in Definition 1.0.4. We want to study if a Lévy process (and the noise derived from

it) define a tempered distribution. Since every Lévy process has a càdlàg (right continuous with

left limits) modification by Proposition 1.0.5, and we will always consider such a modification

in the following, these processes define a class of locally Lebesgue integrable processes, and
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Chapter 3. Lévy white noise as a tempered distribution

therefore define a classical distribution, that is, for any Lévy process X , the linear functional

defined by the L2-inner product

ϕ 7→ 〈
X ,ϕ

〉
:=

∫
R+

X tϕ(t )dt , ϕ ∈D(R) ,

is an element of D′(R) (see the discussion before Definition 2.2.6). A tempered distribution

is a distribution with somewhat nicer integrability properties. They are sometimes viewed

as distributions with sub-exponential growth, but this view is not quite accurate. Indeed, we

have already seen that the function x 7→ ex cos(ex ) defines a tempered distribution, and has

exponential growth at infinity, as it was explained after Remark 2.1.2. However, it is the very

fast oscillatory behavior of this function at infinity that compensates for the growth at infinity.

For instance, the function x 7→ ex also exhibits exponential growth at infinity, but does not

define a tempered distribution. The proof of this fact is quite simple, but the idea behind

it will be key to the study of Lévy processes as tempered distributions. Suppose that the

function x 7→ ex defines a tempered distribution. By definition, there exists an integer p and a

constant C such that for any ϕ ∈S (R),
∣∣〈exp(·),ϕ

〉∣∣6CNp (ϕ) (the definition of the family of

semi-norms Np was given in (2.1.2)). Then, let θ ∈D(R), θ> 0, and for any n ∈N, and x ∈R,

we define θn(x) := θ(x−n). We can easily estimate that for any p ∈N, Np (θn)6C ′np for some

C ′ > 0. Also, we have

∣∣〈exp(·),θn
〉∣∣= ∣∣∣∣∫

R
exθn(x)dx

∣∣∣∣= ∣∣∣∣∫
R

exθ(x −n)dx

∣∣∣∣= en
∫
R

e yθ(y)dy .

Therefore, if x 7→ ex is a tempered distribution, we must have that en 6C np , for some C >
0 and p ∈ N, which is absurd, and therefore the exponential function is not a tempered

distribution.

An important feature of Lévy processes is the Lévy-Itô decomposition of Theorem 1.0.6. We will

use this decomposition to treat separately each term, and we will see that the only potential

obstacle for X to define a tempered distribution is in its compound Poisson part X P . We

will also see that the growth at infinity of a Lévy process is closely related to the existence of

absolute moments.

For any càdlàg process L, we define the following subset ofΩ:

ΩL = {
ω ∈Ω : L(ω) ∈S ′(R)

}
, (3.1.1)

with the understanding that when L(ω) ∈S ′(R), the continuous linear functional associated

with L(ω) is given by
〈

L(ω),ϕ
〉= ∫

R+ Lt (ω)ϕ(t )dt , for all ϕ ∈S (R). Similarly, we can introduce

the set

ΩL′ = {
ω ∈Ω : L′(ω) ∈S ′(R)

}
, (3.1.2)

where L′ is the derivative in the sense of distributions of L. Since the derivative of a tempered
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3.1. Lévy processes and Lévy white noise in S ′(R)

distribution is also a tempered distribution, we obviously have ΩL ⊂ ΩL′ . The converse

inclusion is also true as we will see in Theorem 3.1.5. We can therefore use the properties of

Lévy processes to study whether or not Lévy white noises are tempered distributions.

3.1.1 The case of a Lévy process with integer moments

Three terms in the Lévy-Itô decomposition have absolute moments of any order, and this

leads to the following proposition. We recall the notion of slowly growing function introduced

in Remark 2.1.2.

Proposition 3.1.1. Let X be a Lévy process with characteristic triplet (γ,σ,ν) and Lévy-Itô

decomposition X t = γt +σWt + X P
t + X M

t . Let Yt = γt +σWt + X M
t . Then Y is slowly growing

a.s., and the setΩY defined as in (3.1.1) (with L there replaced by Y ) has probability one.

Proof. The process Y is a sum of a linear deterministic function, and of two independent

square integrable Lévy processes. In particular, E(|Y1|) < +∞. By the strong law of large

numbers for Lévy processes in [63, Theorem 36.5], t−1Yt → E(Y1) = γ almost surely as t →+∞.

It follows that Y is sublinear and locally bounded (by the càdlàg property) almost surely, so

it is slowly growing. We deduce that Y is a tempered distribution almost surely by Remark

2.1.2.

Proposition 3.1.1 tells us that the only obstacle to X defining a tempered distribution is in

the compound Poisson part of the Lévy-Itô decomposition. In the next section, we study the

growth at infinity of a compound Poisson process.

3.1.2 Growth of a compound Poisson process

In view of Corollary 3.1.1, it remains to determine when a compound Poisson process belongs

to S ′(R). We begin with two key results on the growth of a compound Poisson process. Let

X t =∑Nt

i=1 Zi be a compound Poisson process, where N is a Poisson process with parameter λ

that is independent of the sequence (Zi )i>1 of i.i.d. random variables. Let S0 = 0 and (Sn)n>1

be the sequence of jump times of X and let Tn = Sn −Sn−1. Also, let Yn = XSn =∑n
i=1 Zi . We

first show that on the setΩX , the compound Poisson process is slowly growing.

Proposition 3.1.2. Let X be the compound Poisson process defined above andΩX the set defined

in (3.1.1). There is a set A of probability one such that for all ω ∈ΩX ∩ A, the function t 7→ X t (ω)

is slowly growing.

Remark 3.1.3. We point out that this result relies on more than the piecewise constancy of a

compound Poisson process. Indeed, there exist càdlàg piecewise constant functions in S ′(R)

which are not slowly growing. For example consider the function f that is equal to zero except

on intervals of the form [n,n +2−n[ where it is constant equal to 2
n
2 for all n ∈ N. Then f ∈

L1(R) ⊂S ′(R), but f is clearly not slowly growing.
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Chapter 3. Lévy white noise as a tempered distribution

Proof of Proposition 3.1.2. The main idea is the following. Since X is constant on the interval

[Sn ,Sn+1[ and the jump times are rarely close together, we can build a sequence of random

test functions ϕn supported just to the right of Sn , with a shrinking support, and such that〈
X ,ϕn

〉= XSn for large enough n. The control of
∣∣〈X ,ϕn

〉∣∣ by a norm Np (ϕn) leads to a bound

on XSn , and then on X t since X is piecewise constant.

For n> 1, the jump time Sn has Gamma distribution with parameters n and λ. For k > 1 to be

chosen later, and ϕ ∈D(R) with support in [0,1], ϕ> 0 and
∫
Rϕ= 1, we consider the sequence

ϕn defined by

ϕn(t ) = Sk
nϕ

(
(t −Sn)Sk

n

)
, (3.1.3)

(see the illustration in Figure 3.1). Then

supp(ϕn) ⊂
[

Sn ,Sn + 1

Sk
n

]
, (3.1.4)

and
∫
Rϕn = 1. Furthermore, for any nonnegative integers p and α,β6 p,

sup
t∈R

∣∣∣tαϕ(β)
n (t )

∣∣∣= sup

t∈
[

Sn ,Sn+ 1

Sk
n

]
∣∣∣tαϕ(β)

n (t )
∣∣∣

6
(
Sn + 1

Sk
n

)α
Sk(β+1)

n sup
t∈R

∣∣∣ϕ(β)(t )
∣∣∣ ,

hence,

Np
(
ϕn

)
1Sn>16CNp (ϕ)S(p+1)k+p

n 1Sn>1 , (3.1.5)

where C ∈R is deterministic, nonnegative, and depends only on p. We define the events

An,k =
{

X does not jump in the interval

]
Sn ,Sn + 1

Sk
n

[}
. (3.1.6)

Using the fact that Tn+1 has exponential distribution with parameter λ and that Tn+1 and Sn

are independent, we have

P(Ac
n,k ) =P

{
NSn+ 1

Sk
n

−NSn > 1

}
=P

{
Tn+1 < 1

Sk
n

}
= E

(
1−e

− λ

Sk
n

)
6 E

(
λ

Sk
n

)
.

The Laplace transform of Sn is E
(
e−tSn

)=λn(t +λ)−n , for t > 0. For n> 3, integrating twice

from t to +∞, we obtain

E

(
1

S2
n

)
= λ2

(n −1)(n −2)
, n> 3. (3.1.7)

We deduce that
∑

n E
(
S−2

n

) < +∞. Therefore,
∑

nP
(

Ac
n,2

)
< +∞ and by the Borel-Cantelli
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S1 S2 S3 Sn Sn + 1

Sk
n

Sn+1

ϕn

Figure 3.1 – Example of the function ϕn

Lemma,

P

(
limsup
n→+∞

Ac
n,2

)
= 0,

and the set A = liminfn→+∞ An,2 has probability one. Let ω ∈ A∩ΩX , and N (ω) be such that

for all n>N (ω), ω ∈ An,2. Then for n>N (ω), because of (3.1.4) and (3.1.6),

〈X ,ϕn〉(ω) = XSn (ω)1An,2 (ω)+〈
X ,ϕn

〉
(ω)1Ac

n,2
(ω) = XSn (ω) . (3.1.8)

Since X (ω) is a tempered distribution by definition ofΩX , there is p(ω) ∈N and C (ω) ∈R such

that ∣∣〈X ,ϕn〉(ω)
∣∣1Sn (ω)>16C (ω)Np(ω)

(
ϕn

)
1Sn (ω)>1

6C ′(ω)S3p(ω)+2
n (ω)1Sn (ω)>1 ,

(3.1.9)

by (3.1.5) with k = 2. Because Sn → +∞ a.s., we can choose N (ω) such that Sn(ω) > 1 for

all integers n > N (ω) (replacing A by another almost sure set). From (3.1.8) and (3.1.9), we

deduce that for all ω ∈ A∩ΩX ,∣∣XSn (ω)
∣∣

S3p(ω)+2
n (ω)

6C ′(ω) <+∞ , for all n>N (ω) .

Let n>N (ω) and let t > Sn(ω). There is an integer j > n such that t ∈ [
S j (ω),S j+1(ω)

[
. Then

|X t (ω)| = |XS j (ω)|6C ′(ω)S3p(ω)+2
j (ω)6C ′(ω)t 3p(ω)+2 .

We deduce that

limsup
t→+∞

|X t (ω)|
1+ t 3p(ω)+2

6C ′(ω) <+∞

on the set A∩ΩX . This completes the proof.
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The next proposition recalls properties of the long term behavior of a compound Poisson

process.

Proposition 3.1.4. Let X be the compound Poisson process with jump heights (Zi )i>1 defined

at the beginning of this section.

(i) Suppose that there is a real number p > 0 such that E(|Z1|p ) <+∞. Then there is α> 0

such that

limsup
t→+∞

|X t |
1+ tα

<+∞ a.s.

(ii) Suppose that E(|Z1|p ) =+∞ for every p > 0. Then for any α> 0,

limsup
t→+∞

|X t |
1+ tα

=+∞ a.s.

Proof. We use the notations introduced at the beginning of Section 3.1.2. To prove (i), let

p > 0 be such that E(|Z1|p ) <+∞. If p < 1, then by the law of large numbers of Kolmogorov,

Marcinkiewicz and Zygmund (see [44, Theorem 4.23]), we have n−αYn → 0 a.s., with α= p−1,

so supn>1 n−α|Yn | < +∞ a.s. If p > 1, then by the strong law of large numbers, supn>1 n−1Yn <
+∞. Finally, for p > 0, we combine both cases by setting α= max

(
p−1,1

)
, so that

sup
n>1

|Yn |
1+nα

<+∞ a.s. (3.1.10)

Let t ∈R+. There is an integer k such that t ∈ [Sk ,Sk+1[, so that X t = XSk = Yk and

|X t |
1+ tα

6
|Yk |

1+Sαk
= |Yk |

1+kα
1+kα

1+Sαk
. (3.1.11)

Since Sk is the sum of k i.i.d. exponential random variables with parameter λ> 0, the law of

large numbers tells us that k−1Sk → 1
λ a.s. We deduce from (3.1.11) and (3.1.10) that

limsup
t→+∞

|X t |
1+ tα

<+∞ a.s.,

and (i) is proved.

To prove (ii), suppose that for any p > 0, we have E(|Z1|p ) = +∞. Then according to the

theorem in [44] mentioned above, for any p ∈ ]0,1[, n−1/p Yn does not converge on a set

of positive probability. Since (Yn)n>1 is a sum of i.i.d. random variables, the existence of

a limit at infinity is a tail event. From Kolmogorov’s zero-one law, we deduce that for any

p ∈ ]0,1[, n−1/p Yn does not converge almost surely, and, in particular,

limsup
n→+∞

|Yn |
n1/p

> 0 a.s. . (3.1.12)
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Fix α> 0 and let p1 = 1
α+1 ∈ ]0,1[. By (3.1.12),

limsup
n→+∞

|Yn |
n1/p1

> 0 a.s. (3.1.13)

For t ∈R+, there is an integer k such that t ∈ [Sk ,Sk+1[, so X t = XSk = Yk and

|X t |
1+ tα

>
|Yk |

1+Sαk+1

= |Yk |
1+k1/p1

1+k1/p1

1+Sαk+1

. (3.1.14)

By the strong law of large numbers and the fact that p1
−1 =α+1 >α, we have that

lim
k→∞

1+k1/p1

1+Sαk+1

=+∞ .

Taking the limsup on both sides of (3.1.14) (in fact taking the limit along some subsequence),

we deduce from (3.1.13) that

limsup
t→+∞

|X t |
1+ tα

=+∞ a.s.

3.1.3 Lévy white noise: the general case

Let X be a Lévy process. We have already defined its distributional derivative in Definition

2.2.6, and proved that it is indeed a Lévy white noise in the sense of Definition 2.2.4. Notice

that the law of the Lévy white noise Ẋ is entirely characterized by the triplet (γ,σ,ν) (given

that we use the truncation function 1|z|61 in the Lévy-Itô decomposition).

We now turn to the question of whether or not a Lévy white noise is a tempered distribution.

Similar to (3.1.2), for any Lévy noise Ẋ , we define the set

ΩẊ = {
ω ∈Ω : Ẋ (ω) ∈S ′(R)

}
, (3.1.15)

and we have the following characterization.

Theorem 3.1.5. Let X be a Lévy process with characteristic triplet (γ,σ,ν), and Ẋ the associated

Lévy white noise. ThenΩX =ΩẊ (defined respectively in (3.1.1) and (3.1.15)), and the following

holds:

(i) If there exists η> 0 such that E (|X1|η) <+∞, then P (ΩX ) =P(
ΩẊ

)= 1.

(ii) If E (|X1|η) =+∞ for all η> 0, then P (ΩX ) =P(
ΩẊ

)= 0.

Remark 3.1.6. If E (|X1|η) < +∞ for some η > 0, then we say that X has a positive absolute

moment (PAM). Recall that for η> 0, E (|X1|η) <+∞ if and only if
∫
|x|>1 |z|ην(dz) <+∞ (see [63,
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Chapter 3. Lévy white noise as a tempered distribution

Theorem 25.3]). Hence the condition PAM can be equivalently expressed in terms of the Lévy

measure ν.

Proof. Differentiation maps S ′(R) to itself, hence on ΩX , the Lévy noise Ẋ is a tempered

distribution: ΩX ⊂ΩẊ . We now show that ΩẊ ⊂ΩX . Let ω ∈ΩẊ . Two solutions in D′(R) of

the equation u′ = Ẋ (ω) differ by a constant (see [64, Théorème I, chapter II, §4 p.51]) and

X (ω) is obviously one of them. Therefore, if there is a solution to this equation in S ′(R), then

ω ∈ΩX . To show that such a solution u exists, recall that a distribution is an element of S ′(R)

if and only if it is the derivative of some order of a slowly growing continuous function (see

[64, Théorème VI, chapter VII, §4 p.239]): Ẋ (ω) = g (n) for some continuous slowly growing

function g and some integer n. If n> 1, then u = g (n−1) is a solution in S ′(R) of u′ = Ẋ (ω). If

n = 0, then u(t ) = ∫ t
0 g (s)ds is a slowly growing solution, therefore u ∈S ′(R).

To prove (i), it suffices to show that P(ΩX ) = 1. Let X t = γt +σWt +X M
t +X P

t be the Lévy-Itô

decomposition of X . Since E (|X1|η) <+∞, we have
∫
|z|>1 |z|ην(dz) <+∞ (see Remark 3.1.6).

The jump heights (Zi )i>1 of the compound Poisson part X P are i.i.d., with law λ−11|x|>1ν(dx)

(where λ is a normalizing constant), therefore E (|Z1|η) <+∞. Then we can use Proposition

3.1.1 for the continuous and small jumps terms of the Lévy-Itô decomposition of X , and

Proposition 3.1.4(i) for the large jumps term, to deduce that X is slowly growing. By the càdlàg

property of X and Remark 2.1.2 we conclude that P (ΩX ) = 1.

To prove (ii), it suffices to show that P(ΩX ) = 0. By Proposition 3.1.1,ΩX =ΩX P . Also, since

{ω : t 7→ X P
t (ω) is slowly growing}

∩ {ω : ∀α> 0, limsup
t→+∞

(1+ tα)−1|X P
t | = +∞} =; ,

and under (ii) the second set has probability one by Proposition 3.1.4(ii), we deduce from

Proposition 3.1.2 that P
(
ΩX P ∩ A

)= 0, where A is the almost-sure set defined in Proposition

3.1.2. Therefore, P
(
ΩX P

)=P (ΩX ) = 0.

Corollary 3.1.7. Let X be a Lévy process with characteristic triplet (γ,σ,ν), let Ẋ be the associ-

ated Lévy noise and suppose it has a PAM. Then there is a random tempered distribution S, that

is, a measurable map from (Ω,F ) to
(
S ′(R),B

)
, where B is the Borel σ-field for the weak-∗

topology, such that almost surely, for all ϕ ∈S (R),

〈
S,ϕ

〉= 〈
Ẋ ,ϕ

〉=−
∫
R+

X tϕ
′(t )dt .

In addition, the maps C :ω 7→C (ω) and p :ω 7→ p(ω) such that for all ϕ ∈S (R),∣∣〈S,ϕ
〉∣∣6CNp (ϕ) a.s.

can be chosen to be F -measurable.
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3.2. Lévy fields and Lévy noise in S ′(Rd )

Proof. See Corollary 3.2.9

Remark 3.1.8. An alternate proof of the fact thatΩX ⊃ΩẊ is as follows. We can restrict to the

case where X is a compound Poisson process. We construct here a solution to the equation

u′(ω) = Ẋ (ω) such that u(ω) ∈ S ′(R). Let θ ∈ D(R) be such that θ > 0,
∫
Rθ = 1 and suppθ ⊂

[0,1]. Then letϕ ∈S (R). There exists a functionΦ ∈S (R) such thatϕ=Φ′ if and only if
∫
Rϕ= 0

(consider Φ(x) = ∫ x
−∞ϕ(t)d t for the if part, the other direction is obvious). Then consider the

linear functional A on S (R) defined by

Aϕ(t ) =
∫ t

−∞

(
ϕ(s)−θ(s)

∫
R
ϕ

)
ds .

This functional defines an antiderivative on S (R): for anyϕ ∈S (R), A
(
ϕ′)=ϕ. Also, the reader

can easily check that for all p ∈N,

sup
t∈R

|t |p |Aϕ(t )|6CpNp+2(ϕ) ,

for some constant Cp depending only on p, and therefore, I is a continuous linear functional

with values in S (R). This implies that for ω ∈ΩẊ , we can define a tempered distribution u(ω)

by 〈
u(ω),ϕ

〉=−〈
Ẋ (ω), Aϕ

〉
, for all ϕ ∈S (R) .

This tempered distribution clearly satisfies u′(ω) = Ẋ (ω). By definition of Ẋ , u and X only differ

by a (random) constant, and so X (ω) ∈S ′(R). ThereforeΩẊ ⊂ΩX .

3.2 Lévy fields and Lévy noise in S ′(Rd )

In this section, we consider the same questions as in Section 3.1, but for a generalization of

the notion of Lévy process which was defined in Definition 1.0.8, where the “time” parameter

is in Rd+, with d > 1. A general presentation of this theory of multiparameter Lévy fields can be

found in [1]; see also [26].

Let X be a d parameter Lévy field with characteristic triplet (γ,σ,ν), and let Ẋ be the d-th cross

derivative of X in the sense of distributions, as defined in Definition 2.2.7. As in Section 3.1.3,

note that the law of the multidimensional Lévy white noise Ẋ is entirely characterized by the

triplet (γ,σ,ν) (given that we use the truncation function1|x|61 in the Lévy-Itô decomposition).

We have seen in Lemma 2.2.9 that this definition is equivalent to the definition of Lévy white

noise in Definition 2.2.4.

3.2.1 The case of a p-integrable martingale (p > 1)

We say that a random field M is a multiparameter martingale with respect to a filtration

F= (Ft )t∈Rd+
(see [47, Chapter 7, Section 2 p.233]) if M is F-adapted, integrable, and for all

s 6 t ∈ Rd+, then E(Mt |Fs) = Ms . We will also need the notion of commuting filtration (see
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Chapter 3. Lévy white noise as a tempered distribution

[47, Chapter 7, Section 2, Definition p.233] ). A FiltrationF is said to be commuting if for any

s, t ∈Rd+, and any bounded Ft measurable random variable Y ,

E [Y |Fs] = E [Y |Fs∧t ] ,

where (s ∧ t)i = si ∧ ti . By [47, Theorem 2.1.1 in chapter 7], to show that F is commuting, it

suffices to show that for any s, t ∈Rd+, Fs and Ft are conditionally independent given Fs∧t .

In particular, if X is a d-parameter Lévy field and Ft is the σ-algebra generated by the family

(Xs)s6t , thenF is commuting by the independence of the increments of X (see more details

in the proof of Proposition 3.2.1).

For any lamp random field L, we consider, similarly to (3.1.1), the event

ΩL =
{
ω ∈Ω : L(ω) ∈S ′(Rd )

}
, (3.2.1)

with the understanding that when L(ω) ∈S ′(Rd ), the continuous linear functional associated

with L(ω) is
〈

L(ω),ϕ
〉= ∫

Rd+
Lt (ω)ϕ(t )dt , for all ϕ ∈S (Rd ).

Proposition 3.2.1. Fix p > 1 and let (Mt )t∈Rd+
be a multiparameter martingale with respect to

a commuting filtration (Ft )t∈Rd+
, such that for all t ∈Rd+,

E
(|Mt |p

)
6 (cLebd ([0, t ]))

p
2

for some constant c. Then the setΩM defined as in (3.2.1) has probability one.

Proof. Similar to the one dimensional case, we control the supremum of |t |−α|Mt | as |t |→+∞,

or, equivalently, the supremum of |s|−α|Ms | for s ∈Rd+ \ [0, t ] as mini=1,...,d ti →+∞, and prove

that the limit in probability of this supremum, as all the coordinates of t go to +∞, is zero.

The proof uses the multidimensional analog of Doob’s Lp inequality: Cairoli’s Strong (p, p)

inequality (see [47, Chapter 7, Theorem 2.3.2]). The conditions for this Theorem are stronger

than those required for Doob’s Lp inequality, in particular we need the natural filtration

of M (denoted by
(
F M

t

)
t>0) to be commuting (see [47, Chapter 7, Definition p. 233]). By

[47, Chapter 7, Theorem 2.1.1], it suffices to show that for any s, t ∈ Rd+, F M
s and F M

t are

conditionally independent given F M
s∧t where (s ∧ t )i = si ∧ ti . We will use the independence of

the increments of M to prove this result. Indeed, we can write [0, t ]
⋃

[0, s] = [0, s ∧ t ]
⋃

E1
⋃

E2

where this union is disjoint and E1 (resp. E2) is a finite union of disjoint d-dimensional

boxes in [0, t ] (resp. [0, s]). We then define F 1 = σ
(
∆b

a M : [a,b] ⊂ E1
)

that is the σ-algebra

generated by the random variables of the form ∆b
a M where [a,b] ⊂ E1. Similarly we define

F2 =σ
(
∆b

a M : [a,b] ⊂ E2
)
. Because of the independence of the increments, F 1,F 2 and F M

s∧t

are independent (see illustration in Figure 3.2) and we have:

F M
t =F M

s∧t ∨F 1 and F M
s =F M

s∧t ∨F 2 .
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Fs∧t

F 2

F 1

s ∧ t t

s

Figure 3.2 – Illustration of the commuting property when d = 2.

Then we deduce that for A ∈F M
t , and B ∈F M

s :

P
(

A∩B |F M
s∧t

)= E(
1A1B |F M

s∧t

)
= E(

1AE
(
1B |F M

t

) |F M
s∧t

)
= E(

1AE
(
1B |F M

s∧t

) |F M
s∧t

)=P(
A|F M

s∧t

)
P

(
B |F M

s∧t

)
.

So F M
s and F M

t are conditionally independent given F M
s∧t and the filtration is commuting.

For all i ∈N\{0}, let xi = 2i−1 and x0 = 0. For k = (k1, ...,kd ) ∈Nd , let ak = (xk1 , ..., xkd ), and let

bk = (2k1 , ...,2kd ). We fix k ∈ Nd , k 6= (0, . . . ,0). By using successively Jensen’s inequality and

Cairoli’s inequality, for any α> 0, we have

E

(
sup

s∈[ak ,bk ]

|Ms |
|s|α

)
6

1

|ak |α
E

(
sup
s6bk

|Ms |p
) 1

p

6
cp

|ak |α
E
(|Mbk |p

) 1
p 6

cp
√

c Lebd ([0,bk ])

|ak |α
,

for some constant cp depending only on p and the dimension d , where |ak | and |s| denote

here the Euclidian norm. Since k1 ∨·· ·∨kd > 1, we have |ak |> 2k1∨···∨kd−1, hence

E

(
sup

s∈[ak ,bk ]

|Ms |
|s|α

)
6 cp

p
c2

1
2

d∑
i=1

ki
2−α(k1∨···∨kd−1)6 cp

p
c2α2

−(
α
d − 1

2

) d∑
i=1

ki
.

We choose α = bd
2 c+1. Let t ∈ Rd+ be far enough from the origin (we will consider the limit

as all the coordinates of t go to +∞), and for all 16 i 6 d , let ni be the largest integer such

that 2ni 6 ti and let n = (n1, ...,nd ). We can suppose that ni > 2 for all 16 i 6 n. We write

Ξ for the set of all relations R of the form (r1, ...,rd ), where for all i ∈ {1, ...,d} , ri ∈ {6,>}

and R 6= (6, ...,6). Then [0, tn] ⊂ [0, t ], where tn = (2n1 , ...,2nd ). The complement of the box
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Chapter 3. Lévy white noise as a tempered distribution

[0, tn] in Rd+ is covered by boxes of the form [ak ,bk ], where k ∈Nd and kRn for some R ∈Ξ.

Therefore,

P

(
sup

s∉[0,t ]

|Ms |
|s|α > ε

)
6P

(
sup

s∉[0,tn ]

|Ms |
|s|α > ε

)

6
∑

R∈Ξ

∑
k∈Nd

kRn

P

(
sup

s∈[ak ,bk ]

|Ms |
|s|α > ε

)

6
cp

p
c2α

ε

∑
R∈Ξ

∑
k∈Nd

kRn

2
−(

α
d − 1

2

) d∑
i=1

ki −→
t�+∞ 0,

where t�+∞ means that t1 ∧ ...∧ td →+∞. To check that the limit is indeed zero, one has

that for any fixed R ∈Ξ, at least one of the inequalities in R is ≥. By symmetry, we can suppose

that it is the first inequality. Then

∑
k∈Nd

kRn

2
−(

α
d − 1

2

) d∑
i=1

ki ≤Cα,d

∑
k1>n1

2−(
α
d − 1

2

)
k1 →

n1→+∞ 0.

The result follows since Ξ is a finite set. Then sups∉[0,t ] |s|−α|Ms |→ 0 in probability as t�+∞.

Then,

P

( |Mt |
|t |α −→

|t |→+∞
0

)
= 1 ⇔P

 ⋂
n>1

⋃
k∈N

⋂
t∈Qd

t1∨...∨td>k

{ |Mt |
|t |α 6

1

n

}= 1

⇔∀n> 1, P

 ⋃
k∈N

⋂
t∈Qd

t1∨...∨td>k

{ |Mt |
|t |α 6

1

n

}= 1

⇔∀n> 1, lim
k→+∞

↑P

 ⋂
t∈Qd

t1∨...∨td>k

{ |Mt |
|t |α 6

1

n

}= 1

⇔∀n> 1, lim
k→+∞

↓P
(

sup
t∉[0,(k,...,k)]

|Mt |
|t |α > 1

n

)
= 0,

therefore |t |−α|Mt |→ 0 a.s as |t |→+∞. By the lamp property of M we deduce that M is slowly

growing, and by Remark 2.1.2 we deduce that P(ΩM ) = 1.

Corollary 3.2.2. Let X be a d-parameter Lévy field with characteristic triplet (γ,σ,ν) and Lévy-

Itô decomposition X t = γLebd ([0, t ])+σWt +X P
t +X M

t where X P is the large jump part of the

decomposition and X M is the compensated small jumps part. Let Yt = γLebd ([0, t ])+σWt +X M
t .

Then the setΩY defined in (3.2.1) has probability one.

46



3.2. Lévy fields and Lévy noise in S ′(Rd )

Proof. The random field Ỹ =σW +X M is a sum of two independent square integrable martin-

gales and by a classical result on compensated Poisson integrals and Brownian sheets (see [63,

Propostion 19.5] and [21]),

E
(
Ỹ 2

t

)= (
σ2 +

∫
|z|61

z2ν(dz)

)
Lebd ([0, t ]) ,

where the multiplicative constant is finite since ν is a Lévy measure. Hence Ỹ verifies the

hypothesis of the Proposition 3.2.1 with p = 2, therefore it defines a tempered distribution a.s.

Since Ỹ and Y differ by a slowly growing function, we deduce that Y is a tempered distribution

almost surely.

3.2.2 The compound Poisson sheet

Let X be a d-parameter Lévy field, and define Y = (Yt )t∈Rd+
as in Corollary 3.2.2. By Corollary

3.2.2, for any d-parameter Lévy field X , we have ΩX ∩ΩY =ΩX P ∩ΩY . We shall prove that

ΩX P has probability 0 or 1. In the one dimensional setting, we used the fact that a compound

Poisson process with a PAM is slowly growing a.s (see Proposition 3.1.4(i)). As mentioned in

the Introduction, the same results in a d-dimensional setting are to the best of our knowledge

unavailable, which leads us to find another approach. In the multiparameter case, we will

use properties of stochastic integrals with respect to a Poisson random measure to show that

under a moment condition, a compound Poisson sheet and its associated white noise define

tempered distributions. While this is in principle a special case of [34, Theorem 3], in view of

Corollary 3.2.2, the two statements are in fact equivalent.

Lemma 3.2.3. Let ν be a Lévy measure and M be a Poisson random measure on (R\{0})×Rd+
with intensity measure 1|z|>ην(dz)dt , where η> 0. Suppose that

∫
|z|>η |x|αν(dz) <+∞ for some

α> 0 (PAM ) and consider the compound Poisson sheet Pt =
∫

[0,t ]

∫
|z|>η xM(ds, dz). Then

(i) M almost surely defines a tempered distribution via the formula

〈
M ,ϕ

〉= ∫
Rd+

∫
|z|>η

M(ds, dz)ϕ(s)z , ϕ ∈S (Rd ) . (3.2.2)

(ii) P(ΩP ) = 1 and for all ϕ ∈S (Rd ),

〈
P,ϕ

〉
:=

∫
Rd+

Psϕ(s)ds =
∫
Rd+

∫
|z|>η

M(dt , dz)
∫

[t ,+∞[
dsϕ(s)z , (3.2.3)

(iii) M = P (1d ) in S ′(Rd ), where we recall that P (1d ) = ∂d

∂t1···∂td
P.

Proof. We can suppose without loss of generality that η = 1. Since M is a Poisson random

measure onRd+×(R\{0}) with jumps of size larger than 1, there are (random) points (τi , Zi )i>1 ∈
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Chapter 3. Lévy white noise as a tempered distribution

Rd+× (R\[−1,1]) such that M =∑
i>1δτiδZi . To prove (i), we first need to check that the integral

in (3.2.2) is well defined. Let ϕ ∈S (Rd ). The stochastic integral is a Poisson integral, and it is

well defined (as the limit in probability of Poisson integrals of elementary functions) if and

only if (see [44, Lemma 12.13])∫
|z|>1

∫
Rd+

(∣∣zϕ(t )
∣∣∧1

)
dt ν(dz) <+∞ . (3.2.4)

Let r ∈N. There is a constant C > 1 such that supt∈Rd+
(1+|t |r )|ϕ(t )|6C <+∞. Then

∣∣zϕ(t )
∣∣∧

16 C |z|
1+|t |r ∧1. We write Vd for the volume of the d-dimensional unit sphere. Then, for |z| > 1,

∫
Rd+

(∣∣zϕ(t )
∣∣∧1

)
dt 6

∫
Rd+

(
C |z|

1+|t |r ∧1

)
dt

6 dVd

∫
R+

(
C |z|

1+ur ∧1

)
ud−1 du

6 dVd

(∫ (C |z|−1)
1
r

0
ud−1 du +C |z|

∫ +∞

(C |z|−1)
1
r

ud−1

1+ur du

)

6Vd (C |z|−1)
d
r +dVdC |z|

∫ +∞

(C |z|−1)
1
r

ud−1

1+ur du .

The last integral has to be well defined so we take r > d , and then∫ +∞

(C |z|−1)
1
r

ud−1

1+ur du6
∫ +∞

(C |z|−1)
1
r

ud−1−r du = 1

r −d
(C |z|−1)

d−r
r ,

so ∫
Rd+

(∣∣zϕ(t )
∣∣∧1

)
dt 6Vd (C |z|−1)

d
r + dVdC |z|

r −d
(C |z|−1)

d−r
r .

We deduce that there exists a constant C ′ such that for |z| > 1,∫
Rd+

(∣∣zϕ(t )
∣∣∧1

)
dt 6C ′|z| d

r . (3.2.5)

We then choose r large enough so that d
r 6 α∧ 1

2 , in which case the moment condition

on ν gives us (3.2.4), and therefore the Poisson integral is well defined and a.s. finite. Set

gr (t ) = 1
1+|t |r , t ∈Rd+. Then for r sufficiently large,∫

Rd+

∫
|z|>1

M(dt , dz)gr (t )|z|

is well-defined, since by (3.2.5) and PAM ,∫
|z|>1

∫
Rd+

(∣∣zgr (t )
∣∣∧1

)
dtν(dz) <+∞ .
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Since M =∑
i δτiδZi , 〈

M ,ϕ
〉=∑

i
Ziϕ(τi ) .

Now suppose ϕn → 0 in S (Rd ). Then for large n, |ϕn |6 gr , and

|〈M ,ϕn
〉 | = |∑

i
ϕn(τi )Zi |

6
∑

i
|Zi |gr (τi ) =

∫
Rd+

∫
|z|>1

M(dt , dz)gr (t )|z| < +∞ a.s.

For almost all fixed ω ∈Ω,

ϕn(τi (ω)) → 0 as n →+∞ , |ϕn(τi (ω))|6 gr (τi (ω)) and
∑

i
gr (τi (ω))|Zi (ω)| < +∞ .

By the dominated convergence theorem,〈
M(ω),ϕn

〉=∑
i
ϕn(τi (ω))Zi (ω) → 0 as n →+∞ .

Therefore, the linear functional ϕn 7→ 〈
M(ω),ϕn

〉
is continuous on S (Rd ), and so M(ω) ∈

S ′(Rd ) for a.a. ω ∈Ω.

To prove (ii), we first prove that the Poisson integral on the right hand side of (3.2.3) is well

defined, and we will need the PAM condition. Let ϕ ∈ S (Rd ) and let Φ(t) = ∫
[t ,+∞[ϕ(s)ds.

Then (3.2.3) is well defined if∫
|z|>1

∫
Rd+

(|zΦ(t )|∧1) dt ν(dz) <+∞ . (3.2.6)

Using (3.2.8) in Lemma 3.2.4 below, property (3.2.6) is established in the same way as (3.2.4)

and, as above, the right-hand side of (3.2.3) defines almost surely a tempered distribution. Let

ϕ ∈S (Rd ). Then∫
Rd+

∫
|z|>1

M(dt , dz)
∫

[t ,+∞[
dsϕ(s)z = ∑

i>1

∫
Rd+

Zi1τi∈[0,s]ϕ(s)ds . (3.2.7)

Following the argument in (2.2.4), we want to be able to use Fubini’s theorem to exchange the

sum and the integral in the last expression. For any α ∈N, by the same argument as in the

proof of Lemma 3.2.4 below with β= 0,

sup
t∈Rd+

(1+|t |α)
∫

[t ,+∞[
|ϕ(s)|ds6CN|α|+2d (ϕ) .

As in the proof of (3.2.4), we deduce that∫
|z|>1

∫
Rd+

(∣∣∣∣z ∫
[t ,+∞[

|ϕ(s)|ds

∣∣∣∣∧1

)
dt ν(dz) <+∞ .
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Then
∑

i>1
∫
Rd+

|Zi |1τi∈[0,s]|ϕ(s)|ds <+∞, and by (3.2.7) and Fubini’s Theorem,∫
Rd+

∫
|z|>1

M(dt , dz)
∫

[t ,+∞[
dsϕ(s)z =

∫
Rd+

∑
i>1

Zi1τi∈[0,s]ϕ(s)ds

=
∫
Rd+

Psϕ(s)ds .

This establishes (3.2.3). Property (iii) now follows by replacing ϕ by ϕ(1d ) in (3.2.3).

Lemma 3.2.4. For ϕ ∈S (Rd ), letΦ be the function defined byΦ(t ) = ∫
[t ,+∞)ϕ(s)ds. Let p ∈N,

α,β ∈Nd , such that |α|, |β|6 p. Then for all a ∈Rd , there is C =C (p,d , a) <+∞, such that, for

all ϕ ∈S (Rd ),

sup
t>a

∣∣∣(1+|tα|)Φ(β)(t )
∣∣∣6C ′Np+2d (ϕ) . (3.2.8)

Proof. Let t ∈Rd . ThenΦ(t ) = ∫
Rd+
ϕ(s + t )ds, so

Φ(β)(t ) =
∫
Rd+
ϕ(β)(s + t )ds .

Therefore, ∣∣∣(1+|tα|)Φ(β)(t )
∣∣∣6 (1+|tα|)

∫
Rd+

∣∣∣ϕ(β)(s + t )
∣∣∣ ds

= (1+|tα|)
∫
Rd+

∣∣ϕ(β)(s + t )
∣∣(1+ ∣∣(t + s)α+2d

∣∣)
1+ ∣∣(t + s)α+2d

∣∣ ds

6Np+2d (ϕ)(1+|tα|)
∫
Rd+

1

1+ ∣∣(t + s)α+2d
∣∣ ds

6CNp+2d (ϕ)

for t > a, where C is a constant depending only on p, d and a.

3.2.3 Multidimensional Lévy white noise: the general case

The following lemma extends to d-parameter Lévy fields the property recalled in Remark 3.1.6.

Lemma 3.2.5. Let X be a d-parameter Lévy field with characteristic triplet (γ,σ,ν) and let

α> 0. The following are equivalent:

(i) ∀t ∈Rd+, E (|X t |α) <+∞; (ii) ∃t ∈ (R+\{0})d : E (|X t |α) <+∞; (iii)
∫
|z|>1

|z|αν(dz) <+∞ .

Proof. Clearly, (i) implies (ii). Suppose that (ii) is true for some t in (R+\{0})d . As discussed

just after Definition 1.0.8, the process X i ,t obtained by fixing all coordinates of the parameter

t except the i -th is again a Lévy process with characteristic triplet (γ,σ,ν)
∏

j 6=i t j . By an appli-

cation of [63, Theorem 25.3] we deduce that (
∏

j 6=i ti )
∫
|z|>1 |z|αν(dz) <+∞ and then (iii) is ver-

50



3.2. Lévy fields and Lévy noise in S ′(Rd )

ified. Suppose now that (iii) is true. Let t ∈Rd+, and 16 i 6 d . Since (
∏

j 6=i ti )
∫
|z|>1 |z|αν(dz) <

+∞, another application [63, Theorem 25.3] gives us E(|X i ,t
s |α) <+∞ for all s ∈R+. Since i and

t are taken arbitrarily, we deduce (i).

We need a technical lemma that essentially states that for a compound Poisson sheet X P , there

is a well-chosen sequence
(
ϕn

)
n>1 of test-functions with suitably decreasing compact support

such that X P is constant on supp(ϕn) for n large enough (this was established in dimension

one during the proof of Proposition 3.1.2).

Lemma 3.2.6. Let X P be a d-parameter Lévy field with jump measure JX and characteristic

triplet (0,0,1|z|>1ν), where λ := ∫
|z|>1ν(dz) < +∞. Let L be the compound Poisson process

defined by Lt = X P
(1d−1,t ), and let (Sn)n>1 denote its sequence of jump times. Then for all p ∈N,

there exists a finite non random constant Cp with the following property: for all ω ∈Ω, there

exists a sequence
(
ϕn

)
n>1 of functions (depending on ω) in D(Rd ) such that

Np (ϕn)1Sn>16Cp S3d+4p
n 1Sn>1 , (3.2.9)

and there exists an eventΩ′ such that P(Ω′) = 1 and for all ω ∈Ω′, there exists an integer N (ω)

such that, for all n>N (ω), X P is constant on the support of ϕn and〈
X P ,ϕn

〉
(ω) = LSn (ω) . (3.2.10)

Proof. As in the proof of Proposition 3.1.2, we will construct a sequence
(
ϕn

)
n>1 of functions

with suitably decreasing compact support, and then use a Borel-Cantelli argument to show

that X P is constant on this support. Let ϕ ∈D(Rd ) with suppϕ⊂ [0,1d ] and
∫
Rd ϕ= 1. Similar

to (3.1.3), the sequence
(
ϕn

)
n>1 is defined by

ϕn(t ) = S3d
n ϕ

(
(t1 −1)S3

n , ..., (td−1 −1)S3
n , (td −Sn)S3

n

)
, t ∈Rd ,

so that suppϕn ⊂
[

(1d−1,Sn) ,
(
1+ 1

S3
n

, ...,1+ 1
S3

n
,Sn + 1

S3
n

)]
and

∫
Rd ϕn = 1. Let p ∈N. Then

Np (ϕn)1Sn>1 =
∑

|α|,|β|6p
sup
t∈Rd

∣∣∣tαϕ(β)
n (t )

∣∣∣1Sn>1

= ∑
|α|,|β|6p

sup
t∈[0,(2,...,2,Sn+1)]

tα
∣∣∣ϕ(β)

n (t )
∣∣∣1Sn>1

6
∑

|α|,|β|6p
2

∑d−1
i=1 αi (Sn +1)αd sup

t∈Rd

∣∣∣ϕ(β)
n (t )

∣∣∣1Sn>1

6
∑

|α|,|β|6p
2

∑d−1
i=1 αi (Sn +1)αd S

3
(
d+∑d

i=1βi
)

n Np (ϕ)1Sn>1

6C ′
pNp (ϕ)S3d+4p

n 1Sn>1 ,

for some finite non random constant C ′
p . Therefore (3.2.9) holds and Cp :=C ′

pNp (ϕ) depends
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only on ϕ and p. Let

In,k =
]

(1d−1,Sn) ,

(
1+ 1

Sk
n

, ...,1+ 1

Sk
n

,Sn + 1

Sk
n

)[
,

and let An,k be the event “X P is constant in the box In,k ”. Clearly, (3.2.10) holds on An,k .

Observe that

P(Ac
n,k ) =P{

X P has at least one jump time in the set Jn,k
}

=P{
JX P

(
(R\[−1,1])× Jn,k

)
> 1

}
,

where Jn,k is defined as the following set:

Jn,k =
[

0d ,

(
1+ 1

Sk
n

, ...,1+ 1

Sk
n

,Sn + 1

Sk
n

)[
\[0d , (1d−1,Sn)] = J 1

n,k ∪ J 2
n,k ,

where J 1
n,k and J 2

n,k are disjoint sets defined by (see illustration in Figure 3.3)

J 1
n,k =

{
x ∈Rd

+ : ∀16 i 6 d −1, xi < 1+ 1

Sk
n

, xd 6 Sn ,

and ∃i0 ∈ {1, ...,d −1} s.t. xi0 > 1

}
,

J 2
n,k =

]
(0d−1,Sn) ,

(
1+ 1

Sk
n

, ...,1+ 1

Sk
n

,Sn + 1

Sk
n

)[
.

1 1+ 1

Sk
n

J 1
n,k

In,k

jump point

︷ ︸︸ ︷J 2
n,k

Sn

Sn + 1

Sk
n

Figure 3.3 – Representation of In,k , J 1
n,k and J 2

n,k when d = 2.
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Therefore we can write

P(Ac
n,k ) =P

{
JX P

(
(R\[−1,1])× J 1

n,k

)
+ JX P

(
(R\[−1,1])× J 2

n,k

)
> 1

}
6P

{
JX P

(
(R\[−1,1])× J 1

n,k

)
> 1

}
+P

{
JX P

(
(R\[−1,1])× J 2

n,k

)
> 1

}
.

(3.2.11)

Let F(1d−1,t ) = σ (Xs , s ∈ [0d , (1d−1, t )]) and F(1d−1,∞) = ∨
t∈R+ F(1d−1,t ). We also write H1 ={

x ∈Rd+ : x16 1, ..., xd−16 1
}
. Then, due to the independence of the increments of X P , the

collection of random variables
(

JX P ((R\[−1,1])× A)
)

A⊂Rd+\H1
is independent of F(1d−1,∞). Since

Sn is F(1d−1,∞)-measurable, we deduce that conditionally on Sn , the random variable

JX P

(
(R\[−1,1])× J 1

n,k

)
has a Poisson law with parameter λLebd (J 1

n,k ), where λ := ∫
|z|>1ν(d z). Further, on the event

{Sn > 1},

Lebd

(
J 1

n,k

)
=

d−1∑
j=1

(
d −1

j

)
Sn

(
1

Sk
n

) j (
1+ 1

Sk
n

)d−1− j

6 3d−1S−(k−1)
n .

Indeed, the Lebesgue measure of a subset of J 1
n,k of vectors with exactly j components strictly

greater than one is Sn

(
1

Sk
n

) j (
1+ 1

Sk
n

)d−1− j
, and there are

(d−1
j

)
such subsets. We deduce that

P
{

JX P

(
(R\[−1,1])× J 1

n,k

)
> 1

}
6P {Sn 6 1}+E

(
1Sn>1

(
1−e

−λLebd

(
J 1

n,k

)))
6P {Sn 6 1}+λ3d−1E

(
S−(k−1)

n

)
.

(3.2.12)

We also define a process L̃t = X P
(2d−1,t ). It is a Lévy process with Lévy measure µ(dx) =

2d−11|x|>1ν(dx). Since X P is piecewise constant, L̃ is a piecewise constant Lévy process,

therefore a compound Poisson process (see [63, Theorem 21.2]). On the event {Sn > 1}, we

have

J 2
n,k ⊂ [(0d−1,Sn), (2d−1,Sn +S−k

n )] .

Therefore, if X P has a jump point in J 2
n,k , then L̃ has a jump in

]
Sn ,Sn +S−k

n

[
. Let Gt =

σ (Xu : u ∈ [0, (2d−1, t ]). Then, Sn is a G -stopping time and L̃ is a Lévy process adapted to

the filtration G , so by the strong Markov property, the number of jumps of the process L̂· =
L̃·+Sn − L̃Sn is independent of Sn and has Poisson distribution of parameter 2d−1λt . Therefore
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we can write

P
{

JX P

(
(R\[−1,1])× J 2

n,k

)
> 1

}
6P {Sn 6 1}+P

({
JX P

(
(R\[−1,1])× J 2

n,k

)
> 1

}
∩ {Sn > 1}

)
6P {Sn 6 1}+P

{
L̃ has a jump in

(
Sn ,Sn + 1

Sk
n

)}
=P {Sn 6 1}+P

{
L̂ has a jump in

(
0,

1

Sk
n

)}

=P {Sn 6 1}+E
(

1−exp

[
−2d−1λ

Sk
n

])

6P {Sn 6 1}+E
(

2d−1λ

Sk
n

)
.

(3.2.13)

Using the density of the Gamma distribution, we see that

P {Sn 6 1} =
∫ 1

0

λn

(n −1)!
e−λx xn−1 dx 6

λn

(n −1)!
. (3.2.14)

Integrating the Laplace transform of Sn as in (3.1.7), for n> 4, we see that

E
(
S−3

n

)= λ3

(n −1)(n −2)(n −3)
and E

(
S−2

n

)= λ2

(n −1)(n −2)
. (3.2.15)

Then we get from (3.2.11),(3.2.12), (3.2.13) with k = 3, (3.2.14) and (3.2.15), that for n> 4,

P
(

Ac
n,3

)
6

2λn

(n −1)!
+λ3d−1E

(
1

S2
n

)
+λ2d−1E

(
1

S3
n

)
= 2λn

(n −1)!
+ λ23d−1

(n −1)(n −2)
+ λ32d−1

(n −1)(n −2)(n −3)
,

and we deduce that
∑

n>1P
(

Ac
n,3

)
<∞. By the Borel-Cantelli Lemma,

P

(
limsup
n→+∞

Ac
n,3

)
= 0,

and the setΩ′ = liminf
n→+∞ An,3 has probability one. This completes the proof.

We now return to the question of whether or not a Lévy white noise is a tempered distribution.

Similar to (3.1.15), for any d-dimensional Lévy noise Ẋ , we define the setΩẊ by

ΩẊ =
{
ω ∈Ω : Ẋ (ω) ∈S ′(Rd )

}
, (3.2.16)

and we have the following characterization.

Theorem 3.2.7. Let X be a d-parameter Lévy field with jump measure JX and characteristic
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triplet (γ,σ,ν) and Ẋ the associated Lévy white noise. Then the following holds for the setΩẊ

defined in (3.2.16) and the setΩX defined as in (3.2.1):

(i) If there exists η> 0 such that E
(|X1d |η

)<+∞, then P (ΩX ) =P(
ΩẊ

)= 1.

(ii) If for all η> 0, E
(|X1d |η

)=+∞, then P (ΩX ) =P(
ΩẊ

)= 0.

Remark 3.2.8. By Lemma 3.2.5, the equivalent condition mentioned in Remark 3.1.6 remains

valid in the d-parameter case.

As mentioned in the introduction to this section, the first assertion of Theorem 3.2.7 was

established in [34, Theorem 3] using a different definition of Lévy white noise. In Lemma 2.2.9

earlier, we have shown that the two definitions are equivalent.

Proof of Theorem 3.2.7. To prove (i), by the Lévy-Itô decomposition (Theorem 1.0.9), Corollary

3.2.2 and Lemma 3.2.3(ii), we have P (ΩX ) = 1. Since derivation maps S ′(Rd ) to itself, we

deduce that P
(
ΩẊ

)= 1.

To prove (ii), suppose that Ẋ does not have a PAM. We can use Theorem 1.0.9 to decompose X

into the sum of a continuous part C , a small jumps part X M and a compound Poisson part X P .

By Corollary 3.2.2, P
(
ΩC+X M

)= 1. Then we deduce that for all ω ∈ΩẊ ∩ΩC+X M ,

Ẋ P (ω) = Ẋ (ω)− Ċ (ω)− Ẋ M (ω) = Ẋ (ω)− (
C (ω)+X M (ω)

)(1d )

belongs to S ′(Rd ). The general strategy of the proof is to construct, from the compound

Poisson sheet X P , a compound Poisson process that has the same moment properties, and

show that when Ẋ P ∈S ′(Rd ), this process has polynomial growth at infinity, and this occurs

with probability zero by Proposition 3.1.4(ii).

We first examine the noise Ẋ P associated with the compound Poisson part. The jump measure

JX P (ds, dz) =1|z|>1 JX (ds, dz) of X P is a Poisson random measure on Rd+× (R\{0}) and JX P =∑
i>1δτiδZi , where τi ∈Rd+ and |Zi |> 1. By Lemma 2.2.9, for all ϕ ∈D(Rd ),

〈
Ẋ P ,ϕ

〉= ∫
Rd+

∫
|z|>1

zϕ(t )JX (dt ,dz) = ∑
i>1

Ziϕ(τi ) .

By Lemma 3.2.6, for all ω ∈ Ω, there exists a sequence (ϕn)n>1(ω) of smooth compactly

supported functions such that (3.2.9) holds. Furthermore, there is an event Ω′ ⊂ Ω with

probability one such that there is an integer N (ω) with the property that for all n>N (ω), X P is

constant on the support of ϕn(ω), and (3.2.10) holds. Let L be the compound Poisson process

defined in Lemma 3.2.6 by Lt = X P
(1d−1,t ). We restrict ourselves to ω ∈ΩẊ ∩ΩC+X M ∩Ω′, but

we drop the dependence on ω in the following for simplicity of notation. We write Φn(t) =∫
[t ,+∞)ϕn(s)ds. Let θ ∈ C∞(Rd ) be such that θ = 0 on the set

{
t ∈Rd : t1 ∧ ...∧ td 6−1

}
and

θ = 1 on the set
{

t ∈Rd : t1 ∧ ...∧ td >−1
2

}
and such that all its derivatives are bounded. We give
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here an example of a construction of such a function (taken from [38]): Let E :R−→R defined

by E(x) = e−
1
x if x > 0 and E(x) = 0 otherwise. Then the function F (x) = E(1+ x)E

(−x − 1
2

)
belongs to D(R) with support in ]−1;−1

2 [. We can then set

I (x) =
∫ x
−∞ F (t )dt∫
RF (t )dt

.

I is a smooth function such that I (x) = 0 if x 6 −1, and I (x) = 1 if x > −1
2 . Finally we can

choose

θ = I ⊗ ...⊗ I︸ ︷︷ ︸
d times

.

Then for all n> 1,θΦn ∈D(Rd ) ⊂S (Rd ). So, in particular, for all n> 1, since θ is constant on

Rd+, 〈
Ẋ P ,θΦn

〉= (−1)d 〈
X P , (θΦn)(1d )〉

= (−1)d 〈
X P , (Φn)(1d )〉= 〈

X P ,ϕn
〉= LSn ,

by (3.2.10), and sinceΩẊ ∩ΩC+X M ⊂ΩẊ P , we deduce that∣∣LSn

∣∣6CNp (θΦn) , (3.2.17)

for some real number C and integer p (both depending on ω). For α,β ∈Nd , with |α|, |β|6 p,

we estimate supt∈Rd |tα (θΦn)(β) |. Since all the derivatives of θ are bounded,

sup
t∈Rd

∣∣∣tα (θΦn)(β) (t )
∣∣∣= sup

t>−1d

∣∣∣tα (θΦn)(β) (t )
∣∣∣

= sup
t>−1d

∣∣∣∣∣tα ∑
γ6β

(
β

γ

)
Φ

(γ)
n (t )θ(β−γ)(t )

∣∣∣∣∣
6C1

∑
γ6β

sup
t>−1d

∣∣∣tαΦ(γ)
n (t )

∣∣∣ ,

for some constant C1 depending only on p and θ. By (3.2.8), for some constant C2,

sup
t>−1d

∣∣∣tαΦ(γ)
n (t )

∣∣∣1Sn>16C2Np+2d (ϕn)1Sn>16C3S p̃
n1Sn>1 ,

by (3.2.9), for some constant C3 and p̃ independent of n. Therefore, for any integer p, there is

an integer p̃ and a constant C depending only p and d , such that

Np (θΦn)1Sn>16C S p̃
n1Sn>1 . (3.2.18)

We deduce from (3.2.17) and (3.2.18) that∣∣∣∣∣LSn

S p̃
n

∣∣∣∣∣1Sn>16C1Sn>1 <+∞ .
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As in the proof of Proposition 3.1.2, we deduce that for all ω ∈ΩẊ ∩ΩC+X M ∩Ω′, there exists

p(ω) ∈N and C (ω) ∈R+ such that

limsup
t→+∞

|Lt |(ω)

1+ t p̃(ω)
6C (ω) <+∞ .

Since L is a compound Poisson process with no absolute moment of any positive order

(it has the same Lévy measure as X P ) we can now conclude by Proposition 3.1.4(ii) that

ΩẊ ∩ΩC+X M ∩Ω′ is contained in a set of probability zero. Since P
(
ΩC+X M ∩Ω′)= 1, we deduce

that P
(
ΩẊ

)= 0.

By the fact that the derivative of a tempered distribution is a tempered distribution,ΩX ⊂ΩẊ .

Therefore, P(ΩX ) = 0.

Corollary 3.2.9. Let X be a d-parameter Lévy field with characteristic triplet (γ,σ,ν), let Ẋ

be the associated Lévy noise and suppose it has a PAM. Then there is a random tempered

distribution S, that is, a measurable map from (Ω,F ) to
(
S ′(Rd ),B

)
, where B is the Borel

σ-field for the weak-∗ topology, such that almost surely, for all ϕ ∈S (Rd ),

〈
S,ϕ

〉= 〈
Ẋ ,ϕ

〉= (−1)d
∫
Rd+

X tϕ
(1d )(t )dt .

In addition, the maps C :ω 7→C (ω) and p :ω 7→ p(ω) such that for all ϕ ∈S (Rd ),∣∣〈S,ϕ
〉∣∣6CNp (ϕ) a.s.

can be chosen to be F -measurable.

Proof. We already know from Theorem 3.2.7 that P
(
ΩẊ

)= 1. We define S to be equal to Ẋ (in

S ′(Rd )) on ΩẊ and zero elsewhere. We want to be able to consider S as a measurable map

with values in S ′(Rd ). We recall that a basis for the weak-∗ topology on S ′(Rd ) is given by

cylinder sets of the form

O =
n⋂

i=1

{
u ∈S ′(R) :

〈
u,ϕi

〉 ∈ Ai
}

, (3.2.19)

where, for all i 6 n, ϕi is an element of S (Rd ), n is an integer and Ai is an open set in R. The

σ-field generated by all cylinder sets is called the cylinder σ-algebra and is denoted by C . We

first show that S : (Ω,F ) −→ (
S ′(Rd ),C

)
is measurable. For this, clearly, it suffices to show

that for all cylinder sets O as above, the set S−1 (O) = {ω ∈Ω : S(ω) ∈O} belongs to F . Clearly,

S−1 (O) =
n⋂

i=1

{
ω ∈Ω :

〈
S(ω),ϕi

〉 ∈ Ai
}

.

The map (t ,ω) → X t (ω) is jointly measurable so, by Fubini’s Theorem, the map
〈

S,ϕi
〉

:Ω−→R

is F -measurable and therefore S−1 (O) ∈ F . The Borel σ-field B contains C since every

cylinder set is an open set. The converse inclusion is not immediate: see [29, Proposition
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2.1] for a proof of the equality B = C . This fact is also mentioned in [35, p. 41]. For the

convenience of the reader, we also include a more detailed proof that follows the argument in

[29, Proposition 2.1]. We will first prove what seems to be a well-known fact (but is surprisingly

difficult to find in the literature if one wants to avoid advanced notions of topology on locally

convex vector spaces) that S ′(Rd ) is a separable space. We know that S (Rd ) is separable for

the topology described in Section 2.1.2 (see [56, 10.3.4 p. 176]), that is, there is a countable

dense subset A ⊂ S (Rd ). It is also well known that S (Rd ) ⊂ S ′(Rd ) is dense for the weak-

∗ topology (that is, for any u ∈ S ′(Rd ), there is a sequence un ∈ S (Rd ) such that for all

ϕ ∈S (Rd ),
〈

un ,ϕ
〉→ 〈

u,ϕ
〉

as n →∞, see for example [41, Theorem 11.23]). Let u ∈S ′(Rd ).

There is a sequence (ϕn)n>0 of functions of S (Rd ) such that ϕn → u in S ′(Rd ) as n →+∞.

Then, for each n > 0, there is a sequence (ψn,m)m>0 of functions of A such that for any

p ∈N, Np (ϕn −ψn,m) → 0 as n →+∞. Let ε> 0 and θ ∈S (Rd ).∣∣〈u,θ〉−〈
ψn,m ,θ

〉∣∣6 ∣∣〈u −ϕn ,θ
〉∣∣+ ∣∣〈ϕn −ψn,m ,θ

〉∣∣
We can choose n large enough so that

∣∣〈u −ϕn ,θ
〉∣∣6 ε. Then, since ψn,m → ϕn in S (Rd ),

the convergence is also in L2(Rd ) and for m large enough,
∣∣〈ϕn −ψn,m ,θ

〉∣∣6 ε. We deduce

that there is a sequence of functions ψ̃n in A such that
〈

u − ψ̃n ,θ
〉 → 0 as n →+∞ for any

θ ∈S (Rd ). Therefore, A is dense in S ′(Rd ) for the weak-∗ topology, and S ′(Rd ) is separable.

Following the lines of the proof of [29, Proposition 2.1], we define

M j =
{

u ∈S ′(Rd ) : sup
ϕ∈S (Rd )

|〈u,ϕ
〉 |

N j (ϕ)
6 j

}
.

Then S ′(Rd ) =⋃+∞
j=0 M j . Indeed, the first inclusion S ′(Rd ) ⊃⋃+∞

j=0 M j is obvious. For the other

inclusion, let u ∈S ′(Rd ). By definition, there is a p ∈N and C ∈R, such that for anyϕ ∈S (Rd ),∣∣〈u,ϕ
〉∣∣6CNp (ϕ) .

Since the family of semi norms
(
Np

)
p>0 is increasing, we deduce that for all ϕ ∈S (Rd ),

sup
ϕ∈S (Rd )

|〈u,ϕ
〉 |

Np∨dCe(ϕ)
6 p ∨dCe ,

that is u ∈ Mp∨dCe.

Let k ∈N. We claim that for any u0 ∈ Mk , the countable family of cylinder sets of the form

E k
ε (u0,ϕ1, . . . ,ϕn) =

n⋂
i=1

{
u ∈ Mk :

∣∣〈u,ϕi
〉−〈

u0,ϕi
〉∣∣< ε} ,

where ε ∈Q+, n ∈N andϕi ∈ A, is a basis of neighborhoods of u0 for the restriction of the weak-

∗ topology to Mk , that is, for any neighborhood V of u0 in Mk , there is a set E k
ε (u0,ϕ1, . . . ,ϕn) ⊂

V for some ε ∈ Q+ and some ϕ1, . . . ,ϕn ∈ A. Let V be a neighborhood of u0. By definition
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there is an open set U ⊂ V such that u0 ∈ U . The set U can be written as a union (not

necessarily countable) of sets of the form (3.2.19). Therefore, there is an integer n, functions

ϕ1, . . . ,ϕn ∈S (Rd ) and open sets A1, . . . , An ⊂R such that

u0 ∈O =
n⋂

i=1

{
u ∈S ′(R) :

〈
u,ϕi

〉 ∈ Ai
}⊂V .

Since Ai is an open set, there existsαi > 0 such that B(
〈

u0,ϕi
〉

,αi ) ⊂ Ai , where B(x,r ) denotes

the open ball centered at x of radius r . Let α= mini6nαi . Let ε ∈Q∗+ and ϕ̃1, . . . ,ϕ̃n ∈ A. Let

u ∈ E k
ε (u0,ϕ̃1, . . . ,ϕ̃n).∣∣〈u,ϕi

〉−〈
u0,ϕi

〉∣∣6 ∣∣〈u,ϕi
〉−〈

u,ϕ̃i
〉∣∣+ ∣∣〈u,ϕ̃i

〉−〈
u0,ϕ̃i

〉∣∣+ ∣∣〈u0,ϕ̃i
〉−〈

u0,ϕi
〉∣∣

6 kNk (ϕi − ϕ̃i )+ε+kNk (ϕi − ϕ̃i ) .

We choose ϕ̃i ∈ A such that maxi6n Nk (ϕi − ϕ̃i )6 α
8k and choose ε6 α

4 . Then,

∣∣〈u,ϕi
〉−〈

u0,ϕi
〉∣∣6 α

2
<α .

Therefore, for all i 6 n,
〈

u,ϕi
〉 ∈ Ai , that is, u ∈O and we deduce that E k

ε (u0,ϕ̃1, . . . ,ϕ̃n) ⊂O,

which proves the claim.

Now, let U be an open set for the weak-∗ topology on S ′(Rd ). Let

Ũ := ⋃
u∈∩A∩U

+∞⋃
p=1

⋃
ε∈Q∗+

⋃
n∈N

⋃
Φ∈An

⋃
E p
ε (u,Φ1,...,Φn )⊂U

E k
ε (u,Φ1, . . . ,Φn) . (3.2.20)

We claim that Ũ =U . Only the inclusion U ⊂ Ũ is not obvious. Let u0 ∈U . There is a k ∈N
such that u0 ∈ Mk . Since U is open, it is a neighborhood of u0, and as such, there is an integer

n, functions ϕ1, . . . ,ϕn ∈S (Rd ) and open sets A1, . . . , An ⊂R such that

u0 ∈O =
n⋂

i=1

{
u ∈S ′(R) :

〈
u,ϕi

〉 ∈ Ai
}⊂U .

Then there is ε ∈Q∗+ such that for all i 6 n, B(
〈

u0,ϕi
〉

,ε) ⊂ Ai . The set A is dense in S ′(Rd ),

therefore there is a function ũ ∈ A∩U such that for all i 6 n, |〈u0 − ũ,ϕi
〉 |6 ε

18 . Then ũ ∈ Mk̃

for some k̃ ∈ N. Since the semi-norms Np are increasing, we have that Mp ⊂ Mp+1 for all

p ∈N. Let p = k ∨ k̃. Then ũ,u0 ∈ Mp . Since A is dense in S (Rd ), we can find Φ ∈ An such

that pNp (ϕi −Φi )6 ε
18 , for all i 6 n. Then u0 ∈ E p

ε
3

(ũ,Φ1, . . . ,Φn) ⊂O ⊂U and then u0 ∈ Ũ and

U = Ũ .

Since all the unions in (3.2.20) are countable, we deduce that any open set can be written as a

countable union of cylinder sets, therefore B ⊂C . Since we have already pointed out that the

converse inclusion holds, it follows that, C =B.

Therefore, the map S : (Ω,F ) −→ (
S ′(Rd ),B

)
is measurable, and S defines a random tempered
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distribution.

Furthermore, since the space S (Rd ) is separable (see [56, 10.3.4 p.176]), we let A be a countable

dense subset. Then the measurability of the maps C and p comes from the fact that we can

choose

p(ω) = min

{
p ∈N : sup

ϕ∈A

∣∣〈S,ϕ
〉∣∣

Np (ϕ)
(ω) <+∞

}
,

and

C (ω) = sup
ϕ∈A

∣∣〈S,ϕ
〉∣∣

Np(ω)(ϕ)
(ω) .

Remark 3.2.10. In dimension one, we used the map A in Remark 3.1.8 to give an alternate

proof of the inclusion ΩẊ ⊂ΩX . The analog of this map A in higher dimensions also exists.

Let θ ∈D(R) such that θ> 0, suppθ ⊂ [0,1] and
∫
Rθ = 1. We write θ̃ = θ⊗·· ·⊗θ the d th-order

tensor product of θ with itself: θ̃(s1, . . . , sd ) = θ(s1) · · ·θ(sd ). Let ϕ ∈S (Rd ). Define

Adϕ(t ) =
∫

(−∞,t ]
ds

∫
Rd

dr ∆̃s
r

(
ϕ, θ̃

)
,

where

∆̃s
r

(
ϕ,θ

)= ∑
ε∈{0,1}d

(−1)|ε|ϕ(cε(r, s))θ̃(c1−ε(r, s)) ,

and cε(r, s) was defined just after (1.0.1). It is easy to see that if ϕ = ϕ1 ⊗ ·· · ⊗ϕd , where

ϕ1, . . . ,ϕd ∈ S (R), then Adϕ = (
A1ϕ1

)⊗ ·· · ⊗ (
A1ϕd

)
, where A1 coincides with the map A of

Remark 3.1.8. Then, since A was built as an antiderivative, for such ϕ,

Ad

(
∂dϕ

∂t1 · · ·∂td

)
=ϕ . (3.2.21)

We have already shown that A1 maps continuously S (R) to itself. We equip S (R) ⊗ ·· · ⊗
S (R) with the topology π generated by the family of semi-norms Np1,...,pd (ϕ1 ⊗ ·· · ⊗ϕd ) =∏d

i=1 Npi (ϕi ). Then Ad : S (R)⊗·· ·⊗S (R) →S (R)⊗·· ·⊗S (R) is continuous (and then uni-

formly continuous by linearity). We denote S (R)⊗̂π · · · ⊗̂πS (R) the completion of S (R)⊗·· ·⊗
S (R). By [67, Theorem 51.6], S (R)⊗̂π · · · ⊗̂πS (R) 'S (Rd ), therefore Ad extends (by uniform

continuity) to a continuous linear map from S (Rd ) to itself. Formula (3.2.21) is true by lin-

earity for ϕ ∈ S (R)⊗ ·· ·⊗S (R). Let ϕ ∈ S (Rd ). There is a sequence (ϕn)n>1 of elements of

S (R)⊗ ·· · ⊗S (R) such that ϕn → ϕ in S (Rd ). Since derivation is a continuous map from

S (Rd ) to itself, we deduce that (3.2.21) holds for any ϕ ∈S (Rd ).
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4 Random field solutions to a linear
SPDE driven by Lévy white noise

In this chapter, we study two different notions of solutions to a linear stochastic partial

differential equation driven by Lévy white noise. On the one hand, from the random field

approach to SPDEs, we have the concept of mild solution, which is a random field solution

defined as the convolution of a Green’s function of the differential operator with the noise.

The mild solution is therefore defined as a stochastic integral, and some conditions are

needed for its existence. For example, the simple case of Gaussian white noise requires the

Green’s function to be square integrable. The theory of stochastic integration of deterministic

functions with respect to Lévy white noise has been detailed in Chapter 2. In particular, we

recalled that in [58], Rajput and Rosinski determined the space of integrable deterministic

functions with respect to an independently scattered random measure, and our unification

of these random measures with Lévy white noises (see Section 2.3.1) allows us to use the

integrability criterions of Proposition 2.3.7. On the other hand, from the general theory on

(deterministic) partial differential equations, we have the notion of weak solutions, or solutions

in the sense of distributions. The terms "weak" and "distribution" in the context of probability

theory and stochastic analysis can be confusing, since they are usually used for other notions.

We will instead use the terms generalized solutions and generalized stochastic processes or

random fields, in the spirit of the book [36].

Existence conditions for those two types of solutions are easy to derive, and in this chapter

we are interested in the link between a mild solution and a generalized solution to a linear

stochastic partial differential equation. The questions we study are the following:

(1) When it can be defined, is a mild solution also a generalized solution?

(2) When a generalized solution exists, can it be a mild solution, and under what conditions?

(3) What can be said in the case of the stochastic heat equation, or the stochastic wave

equation, driven by an α-stable noise?

To answer these questions, we first introduce two different notions of solution to a linear SPDE

in Section 4.1. Then, in Section 4.2, we provide an answer to question (1), first in the α-stable
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Chapter 4. Random field solutions to a linear SPDE driven by Lévy white noise

case in Theorem 4.2.1, and then in a more general case in Theorem 4.2.5. To prove these

results, we also establish a new stochastic Fubini theorem in Theorem 4.2.3 that is interesting

in its own right. Then, Section 4.3 deals with question (2), and a necessary condition for the

generalized solution to have a random field representation is given in Theorem 4.3.1 for the

α-stable case, and in Theorem 4.3.4 for a more general case. Finally, Section 4.4 deals with

question (3), where we study applications of these results to the case of the stochastic heat

equation and the stochastic wave equation in various dimensions. The main results can be

found in Theorem 4.4.5 and Theorem 4.4.10.

Let Ẋ be a symmetric pure jump Lévy white noise on S, where S is a Borel measurable subset

of Rd , with characteristic triplet (0,0,ν). We consider the extension of Ẋ (still denoted by Ẋ ) to

an independently scattered random measure (see Section 2.3.1), and we use the integration

theory of deterministic functions with respect to Ẋ (see Definition 2.3.6). The characteristic

triplet is always relative to a truncation function, and as we do throughout all this thesis, we

will use the truncation function z → 1|z|61. More precisely, ν is a symmetric Lévy measure,

and for any measurable set A ⊂ S with finite Lebesgue measure,

E
(
e i uẊ (A)

)
= exp

[
Lebd (A)

∫
R

(
e i uz −1− i uz1|z|61

)
ν(dz)

]
, u ∈R .

We recall that from Definition 2.3.6, the set of functions that are integrable with respect to Ẋ is

denoted L(Ẋ ,S). We consider the stochastic partial differential equation

Lu = Ẋ , (4.0.1)

where L is a partial differential operator with adjoint L∗ (think of L as the heat or wave operator

typically). Let us consider a fundamental solution ρ ∈D′(Rd ) to this equation, that is a solution

to Lρ = δ0 in D′(Rd ). We recall the definition of the convolution between a distribution ρ and

a smooth function with compact support ϕ.

ϕ∗ρ(t ) := 〈
ρ,ϕ(t −·)〉 .

Note that in general, this convolution is a C∞ function. Also, forϕ ∈D(Rd ), we define
〈
ρ̌,ϕ

〉
:=〈

ρ,ϕ̌
〉

, where for all t ∈Rd , ϕ̌(t ) :=ϕ(−t ).

4.1 Notions of solution to a linear SPDE

We introduce two different notions of solutions to the linear SPDE (4.0.1) with associated

fundamental solution ρ. Notice that in this framework, we are only considering the case where

the Green’s function of the operator L is given by a shift of a fundamental solution.
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4.1. Notions of solution to a linear SPDE

4.1.1 Generalized solution

In the following we will need a hypothesis on the fundamental solution ρ of the differential

operator L.

(H1) ρ is such that for any ϕ ∈D(Rd ), the convolution ϕ∗ ρ̌ is in L(Ẋ ,S).

The case where the noise is a symmetric α-stable noise for some α ∈ (0,2) is already quite rich,

and provides some insights into the general theory. In this framework, by the example at the

end of Chapter 2, (H1) becomes

(H1’) ρ is such that for any ϕ ∈D(Rd ), the convolution ϕ∗ ρ̌ is in Lα(S).

We can then define a generalized solution to (4.0.1).

Definition 4.1.1. Assume (H1). The generalized solution to the stochastic partial differential

equation (4.0.1) is the linear functional ugen on D(Rd ) such that for all ϕ ∈D(Rd ),〈
ugen,ϕ

〉
:= 〈

Ẋ ,ϕ∗ ρ̌〉
. (4.1.1)

Remark 4.1.2. The generalized solution is in general not a distribution, since it may not define

a continuous linear functional on D(Rd ). We may require additional properties on ρ to have

this property.

Remark 4.1.3. The functional ugen is a solution to (4.0.1) in the weak sense: for ϕ ∈D(Rd ),〈
Lugen,ϕ

〉= 〈
ugen,L∗ϕ

〉= 〈
Ẋ ,

(
L∗ϕ

)∗ ρ̌〉
.

Also, (
L∗ϕ

)∗ ρ̌(t ) = 〈
ρ̌,L∗ϕ(t −·)〉= 〈

ρ,L∗ϕ(t +·)〉= 〈
δ0,ϕ(t +·)〉=ϕ(t ) ,

Therefore, for all ϕ ∈D(Rd ), 〈
Lugen,ϕ

〉= 〈
Ẋ ,ϕ

〉
.

A generalized solution cannot in general be evaluated pointwise. However, a generalized

function (i.e. a distribution in the sense of Schwartz) can sometimes be represented as a true

function. This is the motivation for the following definition.

Definition 4.1.4. We say a generalized stochastic process u has a random field representation

if there exists a jointly measurable random field (Yt )t∈Rd such that Y has almost surely locally

integrable sample paths, and for any ϕ ∈D(Rd ),

〈
u,ϕ

〉= ∫
Rd

Yt ϕ(t )dt a.s. (4.1.2)
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The generalized stochastic processes that have a random field representation are exactly those

which can be evaluated pointwise. For example, the Dirac distribution δ0 does not have a

random field representation.

4.1.2 Mild solution

Generalized solutions are a useful generalization of classical solutions to a partial differential

equation. However, non-linear operations on generalized functions are in general hard to

define, and we are often interested in finding solutions that can be evaluated pointwise.

One particularly popular type of solution from the SPDE literature is the notion of mild

solution. Essentially, it consists in writing the equation in an integral form, making use of

the fundamental solution. A mild solution is then defined as a fixed point of this integral

formulation of our SPDE. Consequently, this fixed point formulation also gives us a way to

prove the existence of a solution via a Picard iteration scheme. In order to be able to define a

mild solution to (4.0.1), we will need another hypothesis on the fundamental solution ρ.

(H2) For any t ∈Rd , ρ(t −·) ∈ L(Ẋ ,S).

Again, in the case where the noise is a symmetric α-stable noise for some α ∈ (0,2) (H2)

becomes

(H2’) For any t ∈Rd , ρ(t −·) ∈ Lα(S).

Definition 4.1.5. Under hypothesis (H2), we define the mild solution of (4.0.1) via the formula

umild(t ) := 〈
Ẋ ,ρ(t −·)〉 . (4.1.3)

Remark 4.1.6. When it exists, the mild solution is always a random field, while the generalized

solution is defined as a distribution. It might turn out that the generalized solution has a

random field representation, and we can then wonder if this representation is the mild solution.

This question is investigated in the sequel.

The random field umild defined in (4.1.3) has a jointly measurable version. This is a conse-

quence of the following proposition.

Proposition 4.1.7. Let f :Rn ×Rd →R be a Borel measurable function such that for any t ∈Rn ,

f (t , ·) ∈ L
(
Ẋ ,S

)
. For any t ∈Rn , let

u(t ) = 〈
Ẋ , f (t , ·)〉 .

Then the random field u has a jointly measurable version.

Proof. Here, we prove this result for a general Lévy white noise, in particular we do not assume

symmetry nor the fact that σ = γ = 0. The proof of this result can be found in [7, p. 926],

64



4.2. When a mild solution is also a generalized solution

but we reproduce it for the convenience of the reader. By [18, Theorem 3] and by the remark

that follows in [18], the existence of a jointly measurable version of s is equivalent to the

measurability of the map t ∈Rn 7→ u(t ) ∈ L0(Ω), where the topology on L0(Ω) is generated by

the metric of convergence in probability. This map can be factorized as the composition of

ψ1 : t ∈Rn 7→ f (t , ·) ∈ L
(
Ẋ ,S

)
with ψ2 :ϕ ∈ L

(
Ẋ ,S

) 7→ 〈
Ẋ ,ϕ

〉 ∈ L0(Ω). By [58, Theorem 3.3], the

mapping ψ2 is continuous. Since L
(
Ẋ ,S

)
is a separable vector space (see [45, Theorem 2.12]),

it suffices to show that for any g ∈ L
(
Ẋ ,S

)
and r ∈ R∗+, the set

{
t ∈Rn : ‖ f (t , ·)− g (·)‖Ẋ < r

}
is a Borel set, where by definition, ‖ f (t , ·)− g (·)‖Ẋ = inf

{
c > 0 :

∫
Rd Φ

( | f (t ,s)−g (s)|
c

)
ds6 c

}
∈R,

and Φ(r ) = ∣∣γr +∫
R zr

(
1|zr |61 −1|z|61

)
ν(dz)

∣∣+σ2r 2 + ∫
R(|r z|2 ∧1)ν(dz). The function Φ is

continuous (see [58, Lemma 3.1]), therefore by the joint measurability of f , we can deduce

that α(t) = ‖ f (t , ·)− g (·)‖Ẋ is the hitting time of a closed set by a continuous (adapted to

the trivial filtration) process (here t plays the role of ω and c the role of time), therefore it is

measurable.

In particular, we deduce from Proposition 4.1.7 that the mild solution has a jointly measurable

version.

4.2 When a mild solution is also a generalized solution

The two notions of solutions can be related, but are in general not equivalent. The notion of

generalized solution seems more general, but in order to compare the two, we at least need

that the mild solution has locally integrable sample paths since we want to integrate it against

any test function ϕ ∈D(Rd ). We first point out that the generalized and mild solutions depend

on the choice of the fundamental solution ρ. Therefore, once the choice of the fundamental

solution has been made, it makes sense to study the mild solution and the generalized solution.

For the remainder of this section, we fix the choice of a fundamental solution to the operator

L. We recall that the generalized solutions ugen and the mild solution umild (under (H1) and

(H2)) are defined by: 〈
ugen,ϕ

〉
:= 〈

Ẋ ,ϕ∗ ρ̌〉
, for all ϕ ∈D(Rd ) .

and

umild(t ) := 〈
Ẋ ,ρ(t −·)〉 , for all t ∈Rd .

Therefore, in general, if umild has locally integrable sample paths, then for any ϕ ∈D(Rd ),

〈
umild,ϕ

〉
:=

∫
Rd

umild(t )ϕ(t )dt =
∫
Rd

〈
Ẋ ,ρ(t −·)〉ϕ(t )dt .

We see in particular, that if we can exchange the stochastic integral and the Lebesgue integral,

then we get 〈
umild,ϕ

〉=〈
Ẋ ,

∫
Rd
ρ(t −·)ϕ(t )dt

〉
= 〈

Ẋ ,ϕ∗ ρ̌〉= 〈
ugen,ϕ

〉
.
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Therefore, conditional on the validity of the exchange of the order of integration, umild = ugen

in the sense of generalized stochastic processes, and in order to answer the question of when

the mild solution is also the generalized solution, we need a stochastic Fubini theorem.

4.2.1 When a mild solution is also a generalized solution: theα-stable case

We first deal with this question in the case of an α-stable symmetric noise, where many results

are known. Let Ẇ α be an α-stable symmetric Lévy white noise on S, where S is a Borel

measurable subset of Rd , with characteristic triplet (0,0,να), where να(dx) = 1
2|x|α+1 dx. The

characteristic function of Ẇ α is given by

E
(
e i uẆ α(A)

)
= exp

[−Lebd (A) |u|α]
, u ∈R ,

for any measurable set A ⊂ S with finite Lebesgue measure. This notion coincides with that of

a symmetric α-stable random measure developed in [62, §3.3]. Since the skewness parameter

β vanishes, it is well known that a function f :Rd →R is Ẇ α-integrable if and only if f ∈ Lα(S)

(see [62, §3.2] and the example after the proof of Theorem 2.3.10 in Chapter 2).

Theorem 4.2.1. Assume (H2’). Let umild be a jointly measurable version of the mild solution to

(4.0.1) defined in (4.1.3). For any ϕ ∈D(Rd ), let µϕ(dt ) = |ϕ(t )|dt .

(i) If α> 1, and for any ϕ ∈D(Rd ),∫
Rd

(∫
S

∣∣ρ(t − s)
∣∣α ds

) 1
α

µϕ(dt ) <+∞ , (4.2.1)

then umild is the generalized solution to (4.0.1).

(ii) If α= 1, and ρ is such that for any ϕ ∈D(Rd ),∫
Rd
µϕ(dt )

∫
S

ds |ρ(t − s)|
[

1+ log+

(
|ρ(t − s)|∫Rd µϕ(dr )

∫
S dv |ρ(r − v)|(∫

S |ρ(t − v)|dv
)(∫

Rd |ρ(r − s)|µϕ(dr )
))]

<+∞ . (4.2.2)

then umild is the generalized solution to (4.0.1).

(iii) If α< 1, and ρ is such that for any ϕ ∈D(Rd ),∫
S

(∫
Rd

|ρ(t − s)|µϕ(dt )

)α
ds <+∞ , (4.2.3)

then umild is the generalized solution to (4.0.1).

Remark 4.2.2. We also have the following:

(1) Condition (4.2.1) is equivalent to:
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4.2. When a mild solution is also a generalized solution

t 7→ ‖ρ(t −·)‖Lα(S) ∈ L1
loc(Rd ) .

(a) If S =Rd+, and ρ(t ) = 0 for all t ∈Rd \Rd+, then (4.2.1) is equivalent to ρ ∈ Lαloc (Rd+).

(b) If S =R+×Rd−1, and ρ(t , x) = 0 if t < 0, then (4.2.1) is equivalent to

∀t > 0,
∫ t

0

∫
Rd−1

|ρ(s, y)|αds dy <+∞ .

(2) Similarly, condition (4.2.3) is equvivalent to:

for any compact K ⊂Rd ,
∫

S

(∫
K
|ρ(t − s)|dt

)α
ds <+∞ .

(a) If S =Rd+, and ρ(t ) = 0 for all t ∈Rd \Rd+, then (4.2.3) is equivalent to ρ ∈ L1
loc (Rd+).

Proof of Theorem 4.2.1. We begin with (i). As mentioned above, we need a stochastic Fubini

theorem to exchange the Lebesgue integral and the stochastic integral. In the context of

α-stable random measures, much more is known than in the case of a general Lévy noise.

For instance, the book [62] studies α-stable process in general, and everything that we need

about α-stable random measures is detailed in this book with much clarity. More precisely,

[62, Theorem 11.3.2] gives necessary and sufficient conditions for umild to have almost surely

locally integrable sample paths, and [62, Theorem 11.4.1] provides a stochastic Fubini theorem

when those conditions are met. Indeed, since ϕ ∈D(Rd ), the measure µϕ is finite. By (4.2.1)

and [62, Theorem 11.3.2],
∫
Rd |umild(t )|µϕ(dt ) <+∞ a.s (that is, the sample paths of umild are

almost surely locally integrable, and umild defines a generalized random process). By the

stochastic Fubini Theorem in [62, Theorem 11.4.1],∫
Rd

umild(t )ϕ(t )dt =
∫

S

(∫
Rd
ρ(t − s)ϕ(t )dt

)
Ẇ α(ds) = 〈

Ẇα,ϕ∗ ρ̌〉
.

Therefore, for any ϕ ∈D(Rd ),〈
umild,ϕ

〉= 〈
Ẇα,ϕ∗ ρ̌〉=:

〈
ugen,ϕ

〉
,

and therefore umild = ugen.

The proof of (ii) and (iii) follows the same steps, with the difference that the conditions (4.2.2)

and (4.2.3) are necessary to apply [62, Theorem 11.3.2] when α= 1 or α> 1.

The careful reader may wonder if (H1’) is satisfied in these cases, since it is a necessary

condition for the existence of the generalized solution. In fact, (4.2.2) and (4.2.3) immediately

imply Hyposthesis (H1’) when α6 1, and by [65, A.1], (4.2.1) also implies (H1’) when α> 1.
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4.2.2 A Stochastic Fubini Theorem

In this section, we suppose that the driving noise Ẋ is a pure jump symmetric Lévy white noise,

that is, a Lévy white noise with characteristic triplet (0,0,ν), where ν is a symmetric Lévy mea-

sure. We can no longer rely on the pre-existing work on α-stable random measures exposed in

[62], and we need another version of a stochastic Fubini theorem. For convenience, we provide

here a Fubini’s theorem for integrals with respect to this Lévy noise. Such stochastic Fubini

theorems for L0-valued random measures already exist in the literature. For instance, [50,

Corollary 1] is more general (it deals with stochastic integrands), but its assumptions are hard

to check (it relies on a localizing sequence). Furthermore, integration of non-deterministic

processes with respect to Lévy white noises usually relies on a space-time framework, where

the time component is critical for the definition of predictable processes.

Theorem 4.2.3. Let Ẋ be a symmetric pure jump Lévy white noise on S ⊂Rd , with characteristic

triplet (0,0,ν) and jump measure J . Let f : S ×Rn 7→R such that for any t ∈Rn , f (·, t ) ∈ L(Ẋ ,S),

and let µ be a finite measure on Rn . Suppose that∫
Rn

∣∣〈Ẋ , f (·, t )
〉∣∣µ(dt ) <+∞ , a.s. (4.2.4)

Then, for almost all s ∈ S, f (s, ·) ∈ L1(µ), and the functionµ~ f : s 7→ ∫
Rn f (s, t )µ(dt ) is in L(Ẋ ,S),

and ∫
Rn

〈
Ẋ , f (·, t )

〉
µ(dt ) = 〈

Ẋ ,µ~ f
〉

a.s. (4.2.5)

Remark 4.2.4. We emphasize that the~ operation is not commutative. In particular, it involves

a measure and a measurable function whose roles are not interchangeable.

Proof of Theorem 4.2.3. The main probability space is (Ω,F ,P). Since µ is a finite measure,

we can suppose without loss of generality that it is a probability measure on Rn . Let
(
Ω′,F ′,P′)

be a probability space, and (Ti )i>1 be a sequence of i.i.d. random variables on this space

with law µ. We write E′ for the expectation with respect to the probability measure P′. In this

framework, (4.2.4) is equivalent to

E′
(∣∣〈Ẋ , f (·,T1)

〉∣∣)<+∞ P−a.s.

More precisely, there is a setΩ1 ⊂Ω such that P(Ω1) = 1, and for any ω ∈Ω1,

E′
(∣∣〈Ẋ , f (·,T1)

〉
(ω)

∣∣)<+∞ .

By the strong law of large numbers, for any ω ∈ Ω1, there is a set Ω′
1(ω) ⊂ Ω′ such that

P′ (Ω′
1(ω)

)= 1 and for any ω′ ∈Ω′
1(ω),

1

n

n∑
i=1

〈
Ẋ , f (·,Ti (ω′))

〉
(ω) → E′

(〈
Ẋ , f (·,T1)

〉
(ω)

)
as n →+∞ . (4.2.6)
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We define

A = {
(ω,ω′) ∈Ω×Ω′ : (4.2.6) happens

}
.

Then, for ω ∈Ω, let

Aω = {
ω′ ∈Ω′ : (ω,ω′) ∈ A

}
.

By the previous argument, for any ω ∈Ω1, P′ (Aω) = 1, and we deduce that P×P′(A) = 1.

For any n ∈N, s ∈ S and ω′ ∈Ω′, we set fn(s,ω′) = 1
n

∑n
i=1 f (s,Ti (ω′)). Then, fn(·,ω′) ∈ L(Ẋ ,S)

by linearity of this space. For anyω′ ∈Ω′, there is a setΩn(ω′) ⊂Ω such that P
(
Ωn(ω′)

)= 1 and

for any ω ∈Ωn(ω′),
1

n

n∑
i=1

〈
Ẋ , f (·,Ti (ω′))

〉
(ω) = 〈

Ẋ , fn(·,ω′)
〉

(ω) . (4.2.7)

For any ω′ ∈ Ω′, the set Ω∞(ω′) = ⋂+∞
n=1Ωn(ω′) is such that P

(
Ω∞(ω′)

) = 1 and for any ω ∈
Ω∞(ω′), (4.2.7) holds for all n ∈N. We define

B = {
(ω,ω′) ∈Ω×Ω′ : (4.2.7) happens for all n ∈N}

.

Then, for ω′ ∈Ω′, let

Bω′ = {
ω ∈Ω : (ω,ω′) ∈ B

}
.

By the previous argument, for any ω′ ∈Ω′, P
(
Bω′)= 1, and we deduce that

∫
Ω′
P

(
Bω′)

P′(dω′) = 1.

By Fubini’s theorem, we deduce that∫
Ω′

(∫
Ω
1(ω,ω′)∈A∩B P(dω)

)
P′(dω′) =

∫
Ω

(∫
Ω′
1(ω,ω′)∈A∩B P

′(dω′)
)
P(dω) = 1.

Let ω′ ∈Ω. We define

(A∩B)ω
′ = {

ω ∈Ω : (ω,ω′) ∈ A∩B
}

.

Then, by Fubini’s theorem,

0 =
∫
Ω′
P′(dω′)

∫
Ω
P(dω)(1−1(ω,ω′)∈A∩B )

=
∫
Ω′
P′(dω′)

∫
Ω
P(dω)(1−1

ω∈(A∩B)ω
′ )

=
∫
Ω′
P′(dω′)

(
1−P

(
(A∩B)ω

′))
,

and for P′-almost all ω′ ∈Ω′, P
(
(A∩B)ω

′)= 1. In other words, for P′-almost all ω′ ∈Ω′,

1

n

n∑
i=1

〈
Ẋ , f (·,Ti (ω′))

〉
(ω) = 〈

Ẋ , fn(·,ω′)
〉

(ω) → E′
(〈

Ẋ , f (·,T1)
〉

(ω)
)

as n →+∞ ,
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for P-almost all ω ∈Ω. In particular, for P′-almost all ω′ ∈Ω, the sequence of random variables(〈
Ẋ , fn(·,ω′)

〉)
n>1 on (Ω,F ,P) is a Cauchy sequence in probability. By P-a.s. linearity of

Ẋ and the isomorphism property in [58, Theorem 3.4], we deduce that
(

fn(·,ω′)
)

n>1 is a

Cauchy sequence in L(Ẋ ,S). By completeness, for P′-almost all ω′ ∈Ω′, there is a function

f̃ (·,ω′) ∈ L(Ẋ ,S) such that fn(·,ω′) → f̃ (·,ω′) as n →+∞ in L(Ẋ ,S) (see [58] for the definition

of that convergence, in particular, it implies the convergence in measure on compact subsets

of S). By (4.2.4) and [60, Theorem 6], for almost every s ∈ S,
∫
Rd | f (s, t)|µ(dt) < +∞, that is

E′
(| f (s,T1)|) <+∞. By the strong law of large numbers, we deduce that for almost all s ∈ S,

there is a setΩ′
s such that P′(Ω′

s) = 1 and for any ω′ ∈Ω′
s ,

fn(s,ω′) → E′
(

f (s,T1)
)

as n →+∞. (4.2.8)

Let C = {
(s,ω′) ∈ S ×Ω′ : (4.2.8) holds

}
, for s ∈ S, Cs = {

ω′ ∈Ω′ : (s,ω′) ∈C
}
, and for ω′ ∈ Ω′,

Cω′ = {
s ∈ S : (s,ω′) ∈C

}
. Since for almost all s ∈ S, P′ (Cs) = 1, by Fubini’s theorem, we have

0 =
∫

S
ds

∫
Ω′
P(dω′)

(
1−1(s,ω′)∈C

)= ∫
Ω′
P′(dω′)Lebd

((
Cω′)c)

.

We deduce that for almost all ω′ ∈Ω′, (4.2.8) holds for almost every s ∈ S. We can then drop

the dependence in ω′, so that there is a sequence (ti )i>1 of deterministic times (for P) in Rn

such that
1

n

n∑
i=1

f (s, ti ) →µ~ f (s) a.e. in s as n →+∞, (4.2.9)

1

n

n∑
i=1

〈
Ẋ , f (·, ti )

〉=〈
Ẋ ,

1

n

n∑
i=1

f (·, ti )

〉
→

∫
Rd

〈
Ẋ , f (·, t )

〉
µ(dt ) P−a.s., (4.2.10)

as n →+∞, and
1

n

n∑
i=1

f (·, ti ) → f̃ (·) in L(Ẋ ,S) as n →+∞. (4.2.11)

Since convergence in L
(
Ẋ ,S

)
implies convergence almost everywhere along a subsequence

(see [58, p. 466]), by uniqueness of the limit we get from (4.2.9) and (4.2.11) that µ~ f = f̃

almost everywhere (and hence f̃ does not depend onω′), and 1
n

∑n
i=1 f (·, ti ) →µ~ f in L(Ẋ ,S).

Therefore, 〈
Ẋ ,

1

n

n∑
i=1

f (·, ti )

〉
→ 〈

Ẋ ,µ~ f
〉

as n →+∞ , (4.2.12)

in P-probability. By uniqueness of the limit, gathering (4.2.10) and (4.2.12), we deduce that

P-almost surely, (4.2.5) holds.

4.2.3 When a mild solution is also a generalized solution: the general case

In this section, we suppose again that the driving noise Ẋ is a pure jump symmetric Lévy white

noise, that is, a Lévy white noise with characteristic triplet (0,0,ν), where ν is a symmetric

Lévy measure. We can now apply Theorem 4.2.3 to our problem.
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Theorem 4.2.5. Assume (H2). Let umild be a measurable version of the mild solution to (4.0.1)

defined in (4.1.3). Suppose that the sample paths of umild are almost surely locally integrable

with respect to Lebesgue measure. Then umild = ugen in the sense of generalized stochastic

processes.

Proof. By definition, we have the formula

umild(t ) = 〈
Ẋ ,ρ(t −·)〉 .

Let ϕ ∈ D(Rd ), and let µ+
ϕ(dt) := ϕ+(t)dt and µ−

ϕ(dt) := ϕ−(t)dt , where ϕ+ = max(ϕ,0) and

ϕ− = max(−ϕ,0) are, respectively, the positive and negative parts of ϕ. These two measures

are finite, and are the positive and negative part of the signed measure µϕ(dt ) :=ϕ(t )dt . Since

umild has almost surely locally integrable sample paths,∫
Rd

|umild(t )|µ±
ϕ(dt ) <+∞ .

Therefore, we can apply Theorem 4.2.3 separately with the positive and negative part of µϕ,

and recombining them together yields:

〈
umild,ϕ

〉
:=

∫
Rd

umild(t )ϕ(t )dt =
∫
Rd

〈
Ẋ ,ρ(t −·)〉µϕ(dt ) = 〈

Ẋ ,ϕ∗ ρ̌〉= 〈
ugen,ϕ

〉
,

which proves the claim.

Remark 4.2.6. In the α-stable case, we had a necessary and sufficient condition for the sample

paths of the mild solution to be locally integrable. In the general case, we do not have such

precise statement, we only have the necessary condition of [60, Theorem 6].

Again, one might wonder if Hyposthesis (H1) is satisfied, and it turns out that ϕ∗ ρ̌ =µϕ~ f ,

where f (s, t ) := ρ(t − s), and by Theorem 4.2.3, µϕ~ f is Ẋ -integrable, so (H1) is satisfied and

the generalized solution is well defined.

Having almost surely locally integrable sample paths is the minimum requirement for a

stochastic process to be considered as a generalized stochastic process, since we need to be

able to integrate it against any test function. Essentially, Theorem 4.2.5 states that if the mild

solution can be considered as a generalized stochastic process, then it must be equal to the

generalized solution.

4.3 Necessary condition for the existence of a random field solution

We have seen in the previous section, that under the minimum requirement that the mild

solution has locally integrable sample paths (and therefore can be considered as a generalized

stochastic process), it is equal (in the sense of generalized stochastic processes) to the gener-

alized solution. To further investigate the link between these two notions of solutions, one
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can try to answer the following question: when it exists, is the generalized solution "equal" to

the mild solution. Of course, stated that way, this question is ill-posed, since we are trying to

compare two mathematical objects living in different spaces: on the one hand, the generalized

solution is a random linear functional on the space of compactly supported smooth functions,

and on the other hand, the mild solution is a random field. Furthermore, we need hypothesis

(H2) to hold in order to be able to define the mild solution. At the beginning of this chapter ,

we introduced in Definition 4.1.4 the notion of a random field representation of a generalized

stochastic process. Then, stated more precisely, the question we answer in this section is the

following:

"Suppose that (H1) is satisfied. Then, the generalized solution can be defined as in Definition

4.1.1. Suppose also that the generalized solution has a random field representation Y . Then, is

(H2) satisfied, and if so, is Y the mild solution?"

In the case of a Gaussian noise, that can be spatially correlated, this question has already

been investigated under slightly different assumptions in [22, Theorem 11]. Transposed to our

framework, this theorem in particular implies that in the case of an SPDE driven by Gaussian

white noise (in space and time), if the generalized solution has a random field representation,

then the fundamental solution of this SPDE is necessarily square integrable. We extend this

kind of statement to the more general setting of symmetric Lévy white noises.

4.3.1 Necessary condition for the existence of a random field solution: α-stable
case

Again, we first restrict to the case of a symmetric α-stable noise, for some α ∈ (0,2), where the

existing theory is more developed.

Theorem 4.3.1. Assume (H1’). Let ugen be the generalized solution to (4.0.1) defined by (4.1.1).

Suppose that ugen has a random field representation X in the sense of Definition 4.1.2, that is

there exists a jointly measurable random field (X t )t∈Rd such that X has almost surely locally

integrable sample paths, and for any ϕ ∈D(Rd ),

〈
ugen,ϕ

〉= ∫
Rd

X tϕ(t )dt a.s. (4.3.1)

Then, for almost all t ∈Rd , ρ(t −·) ∈ Lα(S) (i.e. (H2’) is satisfied almost everywhere), and

X t =
〈

Ẇ α,ρ(t −·)〉= umild(t ) a.s. a.e. (4.3.2)

Furthermore, for any ψ ∈D(Rd ),

(i) If α> 1, ∫
Rd

(∫
S

∣∣ρ(t − s)
∣∣α ds

) 1
α |ψ(t )|dt <+∞ . (4.3.3)
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(ii) If α= 1,∫
Rd

dt
∫

S
ds |ρ(t − s)ψ(t )|

[
1+ log+

( |ρ(t − s)|∫Rd

∫
S |ρ(r − v)|dv |ψ(r )|dr(∫

S |ρ(t − v)|dv
)(∫

Rd |ρ(r − s)ψ(r )|dr
))]

<+∞ . (4.3.4)

(iii) If α< 1, ∫
S

(∫
Rd

∣∣ρ(t − s)ψ(t )
∣∣ dt

)α
ds <+∞ . (4.3.5)

Remark 4.3.2. Equivalently, under the hypothesis of Theorem 4.3.1, we get instead of (4.3.3)

and (4.3.5) respectively,

t 7→ ‖ρ(t −·)‖Lα(S) ∈ L1
loc(Rd ) , (4.3.6)

and

for any compact K ⊂Rd ,
∫

S

(∫
K
|ρ(t − s)|dt

)α
ds <+∞ . (4.3.7)

In particular, if S = Rd , ‖ρ(t − ·)‖Lα(S) does not depend on t, and (4.3.6) is verified for any

ρ ∈ Lα(S). From (4.3.7), we get that ρ ∈ L1
loc(Rd ). The case of S = R+ ×Rd−1 and the heat

equation is studied in Section 4.4.

Proof of Theorem 4.3.1. There exists a set Ω̃⊂Ω of probability one such that for all ω ∈ Ω̃, the

function t 7→ X t (ω) is locally integrable. Without loss of generality, we can suppose thatΩ= Ω̃.

Let ϕ ∈D(Rd ) be such that ϕ> 0, suppϕ⊂ B(0,1) and
∫
Rd ϕ= 1. For each t ∈Rd and n ∈N, we

define ϕt
n(·) = ndϕ(n(·− t )). Let Y n : (t ,ω) 7→ 〈

X (ω),ϕt
n

〉
. Then,

Y n
t (ω) =

∫
Rd

Xs(ω)ndϕ(n(s − t ))ds =
∫
Rd

Xr+t (ω)ndϕ(nr )dr . (4.3.8)

Consider f : (t , s,ω) 7→ (t + s,ω). The function f is measurable as a map from (Rd ×Rd ×
Ω,B(Rd )⊗B(Rd )⊗F ) to (Rd ×Ω,B(Rd )⊗F ), and Xr+t (ω) = X ◦ f (r, t ,ω). Since X is a jointly

measurable process, and by Fubini’s theorem, we deduce from the second equality in (4.3.8)

that Y n is a jointly measurable process. We define the set

A = {
(t ,ω) :

〈
X (ω),ϕt

n

〉→ X t (ω) as n →+∞}
.

We can write

A = ⋂
n∈N∗

⋃
N∈N

⋂
k>N

{
(t ,ω) :

∣∣∣Y k
t (ω)−X t (ω)

∣∣∣6 1

n

}
,

and since Y n and X are both jointly measurable processes, A ∈ B(Rd )⊗F . By Lebesgue’s

differentiation theorem (see [70, Chapter 7, Exercise 2]), for any ω ∈ Ω,
∫
Rd 1(t ,ω)∈Ac dt = 0.

Then, by Fubini’s theorem,

0 = E
(∫
Rd
1(t ,ω)∈Ac dt

)
=

∫
Rd
P

({
ω : (t ,ω) ∈ Ac}) dt .
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Therefore, there is a non random set Ã ⊂Rd such that Lebd
(

Ã
)= 0 and for all t ∉ Ã,

P
{
ω : (t ,ω) ∈ Ac}= 0,

that is, P
{〈

X ,ϕt
n

〉→ X t as n →+∞}= 1.

By well known properties of a symmetric α-stable noise, for any f ∈ Lα(S) (see for instance

[62, Proposition 3.4.1]),

E
(
e i〈Ẇ α, f 〉)= e−‖ f ‖α

Lα(S) , (4.3.9)

where ‖ f ‖αLα(S) =
∫

S | f (x)|αdx. Therefore,

E
(
e i〈ugen,ϕ〉)= e−‖ϕ∗ρ̌‖

α
Lα = E

(
exp

(
i
∫
Rd

Xsϕ(s)ds

))
. (4.3.10)

Let t0 ∈ Ãc . Then
〈

X ,ϕt0
n

〉→ X t0 almost surely as n →+∞. We define ρt0
n =ϕt0

n ∗ ρ̌ ∈ Lα(S) by

(H1). By (4.3.10), for n,m ∈N,

e−‖ρ
t0
n −ρt0

m‖α
Lα = E

(
exp

(
i
∫
Rd

Xs
(
ϕ

t0
n (s)−ϕt0

m(s)
)

ds

))
→ 1 as n,m →+∞ . (4.3.11)

We deduce that (ρt0
n )n>1 is a Cauchy sequence in Lα(S). By completeness of this space, there is

a function g t0 ∈ Lα(S) such that

ρ
t0
n → g t0 , in Lα(S) as n →+∞ . (4.3.12)

Furthermore, we know from the theory of generalized functions that ϕt0
n → δt0 in D′(Rd ) as

n →+∞. Therefore,

ρ
t0
n → δt0 ∗ ρ̌ , in D′(Rd ) as n →+∞ . (4.3.13)

From (4.3.12) and (4.3.13), we would like to deduce that δt0 ∗ ρ̌ = g t0 in some sense. The

left-hand side of this equality is a generalized function, and the right-hand side is defined as

an element of Lα(S) ⊂ D ′(S). Therefore, the right space to show this equality is D′(S). If this

equality is true, it means that s 7→ ρ(t0 − s) can be considered as a function in Lα(S). To prove

this equality, we need to show that for any θ ∈D(S),
〈
δt0 ∗ ρ̌,θ

〉= 〈
g t0 ,θ

〉
. In the case α> 1, by

Hölder’s inequality,

|〈g t0 −ρt0
n ,θ

〉 |6 ∫
S

∣∣g t0 (s)−ρt0
n (s)

∣∣ |θ(s)|ds6 ‖g t0 −ρt0
n ‖Lα(S)‖θ‖L

α
α−1 (S)

.

Passing to the limit as n →+∞, we get that for all t0 ∈ Ãc , δt0 ∗ρ̌ = g t0 ∈ Lα(S) in D′(S). Then, in

the sense of distributions, ρ̌ = δ−t0 ∗δt0 ∗ ρ̌ = δ−t0 ∗g t0 . Therefore, in the sense of distributions,

ρ is equal to the function t ∈Rd 7→ g t0 (t0 − t), which therefore does not depend on t0, and is

such that for almost all t ∈Rd , δt ∗ ρ̌ = ρ(t −·) ∈ Lα(S). Also, for any t ∈ Ãc ,〈
X ,ϕt

n

〉= 〈
ugen,ϕt

n

〉= 〈
Ẇ α,ϕt

n ∗ ρ̌〉= 〈
Ẇ α,ρt

n

〉
,
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and
〈

X ,ϕt
n

〉→ X t almost surely as n →+∞, and

ρt
n → g t = δt ∗ ρ̌ , in Lα(S) as n →+∞ . (4.3.14)

Then,
〈

Ẇ α,ρt
n

〉→ 〈
Ẇ α,ρ(t −·)〉 in probability as n →+∞. Therefore (4.3.2) holds. Since we

used Hölder’s inequality, this method does not work in the case α < 1, and does not imply

(4.3.3), (4.3.4) or (4.3.5). We therefore develop a different proof that works for any α ∈ (0,2).

If α ∈ (0,2) is arbitrary, we deduce from (4.3.9) and (4.3.11) that
〈

Ẇ α,ρt0
n − g t0

〉 → 0 in law

as n →+∞, and by [44, Lemma 4.7], the convergence is also in probability. By almost sure

linearity, we deduce that
〈

Ẇ α,ρt0
n

〉→ 〈
Ẇ α, g t0

〉
in probability as n →+∞. By uniqueness of

the limit, and since
〈

Ẇ α,ρt0
n

〉= 〈
ugen,ϕt0

n
〉= 〈

X ,ϕt0
n

〉
,

X t0 =
〈

Ẇ α, g t0
〉

, a.s. for any t0 ∈ Ãc .

For any (t , s) ∈Rd ×S, let

g (t , s) = limsup
n→+∞

ρt
n(s) . (4.3.15)

Then (t , s) 7→ g (t , s) is measurable, and for t ∈ Ãc , g (t , ·) = g t (·) almost everywhere. Therefore

X t0 =
〈

Ẇ α, g (t0, ·)〉 , a.s. for any t0 ∈ Ãc .

Let ψ ∈D(Rd ). Then, µψ(dt ) :=ψ(t )dt is a finite signed measure, that we can decompose into

positive and negative parts µ+
ψ and µ−

ψ. Since X is almost surely locally integrable,∫
Rd

|X t |µ+
ψ(dt ) <+∞ , and

∫
Rd

|X t |µ−
ψ(dt ) <+∞ a.s.

By [62, Theorem 11.3.2], if α> 1, we get

∫
Rd

(∫
S

∣∣g (t , s)
∣∣α ds

) 1
α |ψ(t )|dt <+∞ , (4.3.16)

if α= 1, we get∫
Rd

dt
∫

S
ds |g (t , s)ψ(t )|

[
1+ log+

( |g (t , s)|∫Rd

∫
S |g (r, v)|dv |ψ(r )|dr(∫

S |g (t , v)|dv
)(∫

Rd |g (r, s)ψ(r )|dr
))]

<+∞ , (4.3.17)

and if α< 1, we get ∫
S

(∫
Rd

∣∣g (t , s)ψ(t )
∣∣ dt

)α
ds <+∞ . (4.3.18)

By the generalized Minkowsky inequality (see [65, A.1]) and by (4.3.16), when α> 1,

(∫
S

∣∣∣∣∫
Rd

∣∣g (t , s)ψ(t )
∣∣ dt

∣∣∣∣α ds

) 1
α

6
∫
Rd

(∫
S

∣∣g (t , s)
∣∣α ds

) 1
α |ψ(t )|dt <+∞ .

In particular, we see that for almost all s ∈ S, t 7→ g (t , s) is locally integrable (and therefore
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defines a distribution). By [62, Theorem 11.4.1], we can exchange the stochastic integral with

the Lebesgue integral in (4.3.1):∫
Rd

X tµψ(dt ) =
∫
Rd

〈
Ẇ α, g (t , ·)〉ψ(t )dt =

〈
Ẇ α,

∫
Rd
ψ(t )g (t , ·)dt

〉
a.s. (4.3.19)

We define
∫
Rd ψ(t )g (t , s)dt =:ψ~ g (s) (this operation on ψ and g is not commutative). From

(4.3.1) and (4.3.19), we get〈
Ẇ α,ψ~ g

〉−〈
Ẇ α,ψ∗ ρ̌〉= 〈

Ẇ α,ψ~ g −ψ∗ ρ̌〉= 〈
X ,ψ

〉−〈
ugen,ψ

〉= 0 a.s., (4.3.20)

and by (4.3.9), we deduce that ‖ψ~g −ψ∗ ρ̌‖αLα = 0. Then, for any ψ ∈D(Rd ), there is a set Bψ

such that Lebd
(
Bψ

)= 0 and for any s ∈ S \ Bψ, ψ~ g (s) =ψ∗ ρ̌(s). Since D(Rd ) is separable,

there is a countable dense subset D ⊂D(Rd ). Let

B = ⋃
ψ∈D

Bψ , Lebd (B) = 0.

Then, for all s ∈ S \ B , for all ψ ∈ D ,〈
g (·, s),ψ

〉=ψ~ g (s) =ψ∗ ρ̌(s) = 〈
ρ,ψ(s +·)〉= 〈

δs ∗ρ,ψ
〉

.

Since two distributions equal on a dense set are equal everywhere by continuity, we get that

for all s ∈ S \ B , g (·, s) = δs ∗ρ in D′(Rd ). Then, ρ = δ−s ∗ g (·, s) in D′(S), and ρ is a function

depending only on the t ∈ Rd variable, more precisely for almost all t ∈ Rd , ρ(t) = g (t + s, s)

which does not depend on s. Then, for almost all (t , s) ∈Rd ×S, g (t , s) = ρ(t − s). By definition

of g in (4.3.15) and by (4.3.14), we deduce that ρ is a function such that for almost all t ∈Rd ,

ρ(t −·) ∈ Lα(S). Also, from (4.3.16), (4.3.17) and (4.3.18), we get (4.3.3), (4.3.4) and (4.3.5).

Remark 4.3.3. The proof of the result in the case α> 1 proves that the result is still valid in the

case of Gaussian white noise: it is essentially equivalent to taking α= 2.

4.3.2 Necessary condition for the existence of a random field solution: symmetric
pure jump Lévy noise.

We now consider the more general case of a symmetric pure jump Lévy noise Ẋ . Similarly

to the α-stable case, we can obtain a necessary condition for the existence of a random field

solution.

Theorem 4.3.4. Assume (H1). Let ugen be the generalized solution to (4.0.1) defined by (4.1.1).

Suppose that ugen has a random field representation Y in the sense of Definition 4.1.2, that is

there exists a jointly measurable random field (Yt )t∈Rd such that Y has almost surely locally

integrable sample paths, and for any ϕ ∈D(Rd ),

〈
ugen,ϕ

〉= ∫
Rd

Ytϕ(t )dt a.s.
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Then, for almost all t ∈Rd , ρ(t −·) ∈ L
(
Ẋ ,S

)
(i.e. (H2) is satisfied almost everywhere), and

Yt =
〈

Ẋ ,ρ(t −·)〉= umild(t ) a.s. a.e.

Proof. We use the same notations as in the proof of Theorem 4.3.1. By the same reasoning as

in the proof of Theorem 4.3.1, there is a non random set Ã ⊂ Rd such that Lebd
(

Ã
)= 0 and

for all t ∉ Ã, P
{〈

Y ,ϕt
n

〉→ Yt as n →+∞}= 1. Then, as before we define ρt0
n =ϕt0

n ∗ ρ̌ ∈ L(Ẋ ,S).

For n,m ∈N,

E

(
e

i
〈

Ẋ ,ρ
t0
n −ρt0

m

〉)
= E

(
e

i
∫
Rd Ys

(
ϕ

t0
n (s)−ϕt0

m (s)
)

ds
)
→ 1 as n,m →+∞ .

We deduce that
〈

Ẋ ,ρt0
n −ρt0

m
〉

converges to zero in probability. Since Ẋ is symmetric, the linear

mapping f ∈ L(Ẋ ,S) 7→ 〈
Ẋ , f

〉 ∈ L0(Ω) is an isomorphism (see [58, Theorem 3.4]). In particular

the inverse map is continuous, therefore the sequence
(
ρ

t0
n

)
n∈N is Cauchy in L(Ẋ ,S). This

space is complete, therefore there is a function g t0 such that ρt0
n → g t0 in L(Ẋ ,S). For any

(t , s) ∈Rd ×S, let

g (t , s) = limsup
n→+∞

ρt
n(s) .

Then (t , s) 7→ g (t , s) is measurable, and for t ∈ Ãc , g (t , ·) = g t (·) almost everywhere. Also we get

that for almost all t0 ∈Rd , Yt0 =
〈

Ẋ , g t0
〉

almost surely. Also, since Y has almost surely locally

integrable sample paths, for any ψ ∈D(Rd ),∫
Rd

∣∣〈Ẋ , g t 〉∣∣µψ(dt ) <+∞ a.s. ,

where µψ(dt ) = |ψ(t )|dt . By Theorem 4.2.3,∫
Rd

〈
Ẋ , g t 〉ψ(t )dt = 〈

Ẋ ,ψ~ g
〉

a.s.

Therefore, for any ψ ∈D(Rd ),

〈
Ẋ ,ψ~ g

〉= ∫
Rd

〈
Ẋ , g t 〉ψ(t )dt =

∫
Rd

Ytψ(t )dt = 〈
Ẋ , ρ̌∗ψ〉

a.s.,

where the last equality is by Definition 4.1.1. Therefore, for almost every s ∈ S, ψ~ g (s) =
ψ∗ ρ̌(s). We can then conclude as in the proof of Theorem 4.3.1 after (4.3.20).

4.4 Examples

In this section, we give some examples of application of Theorems 4.2.1 and 4.3.1. We focus

on two well known stochastic partial differential equations: the linear heat equation and the

linear wave equation, in various dimensions. We restrict to the case of a symmetric α-stable

noise, as the choice of the parameter α ∈ (0,2) will be enough to capture the different cases.
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Chapter 4. Random field solutions to a linear SPDE driven by Lévy white noise

4.4.1 The stochastic heat equation

Let Ẇ α be an α-stable symmetric noise on R+×Rd . The heat operator H in dimension d is a

constant coefficient partial differential operator given by

H = ∂

∂t
−

d∑
i=1

∂2

∂x2
i

.

A fundamental solution ρH for this operator is given by the formula

ρH (t , x) = 1

(4πt )
d
2

exp

(
−|x|2

4t

)
1t>0 . (4.4.1)

We consider the following Cauchy problem{
Hu = Ẇ α

u(0, ·) = 0
. (4.4.2)

Existence of the generalized solution

We wish to define the generalized solution of this equation associated with the fundamental

solution ρH .

Proposition 4.4.1. For any choice of α ∈ (0,2) and d > 1, the generalized solution to the linear

stochastic heat equation driven by a symmetric α-stable noise is well defined.

Proof. We have to check for which combination of α and d the convolution ϕ∗ ρ̌H is in

Lα(R+×Rd ) for any ϕ ∈D(Rd+1) (see (H1’)). We have that for ϕ ∈D(Rd+1) and (t , x) ∈R×Rd ,

ϕ∗ ρ̌H (t , x) =
∫ +∞

t
ds

∫
Rd

dy
1

(4π(s − t ))
d
2

exp

(
−|y −x|2

4(s − t )

)
ϕ(s, y) .

Since ϕ has compact support, we see from this formula that there is a T ∈R+ such that for any

t > T and x ∈Rd , ϕ∗ ρ̌H (t , x) = 0. Therefore, we need to check that ϕ∗ ρ̌H is in Lα([0,T ]×Rd )

for any T ∈ R+ and ϕ ∈ D(Rd+1). The function ϕ∗ ρ̌H is smooth, so we only need to check

integrability for x in neighborhood of infinity. Then, for some compact K ⊂ Rd , for x large

enough,

|ϕ∗ ρ̌H (t , x)|6 |ϕ|∗ ρ̌H (t , x) =1t6T

∫ T

t
ds

∫
K

dy
1

(4π(s − t ))
d
2

exp

(
−|y −x|2

4(s − t )

)∣∣ϕ(s, y)
∣∣

61t6T ‖ϕ‖∞
∫ T

t
ds

∫
K

dy
1

(4π(T − t ))
d
2

exp

(
− |y −x|2

4(T − t )

)
,

where the second inequality comes from the fact that for |x| large enough, the function

s ∈ [t ,T ] 7→ 1

(4π(s−t ))
d
2

exp
(
− |y−x|2

4(s−t )

)
is non-decreasing and realizes its maximum at s = T . Then,
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using the inequality

|y −x|2> 1

2
|x|2 −|y |2 , (4.4.3)

we get

|ϕ∗ ρ̌H (t , x)|61t6T
‖ϕ‖∞
(4π)

d
2

(T − t )−
d
2 +1

∫
K

dy exp

(
− |y −x|2

4(T − t )

)

61t6T
‖ϕ‖∞
(4π)

d
2

(T − t )−
d
2 +1 exp

(
− |x|2

8(T − t )

)∫
K

exp

(
− |y |2

4(T − t )

)
dy .

We evaluate the integral and deduce that

|ϕ∗ ρ̌H (t , x)|61t6T ‖ϕ‖∞T exp

(
−|x|2

8T

)
. (4.4.4)

From (4.4.4) we deduce that ϕ∗ ρ̌H has compact support in the time variable (uniformly

with respect to the space variable), and has rapid decay in the space variable. Therefore

ϕ∗ ρ̌H ∈ Lα([0,T ]×Rd ) for any α ∈ R+. We deduce that the stochastic linear heat equation

driven by symmetric α-stable noise always has a generalized solution ugen defined by〈
ugen,ϕ

〉
:= 〈

Ẇ α,ϕ∗ ρ̌H
〉

, for all ϕ ∈D(Rd+1). (4.4.5)

Furthermore, from (4.4.4), we get that

‖ϕ∗ ρ̌H‖Lα([0,T ]×Rd )6C‖ϕ‖∞ ,

for some constant C that depends on the support of ϕ. Therefore, if ϕn is a sequence of test

functions in D(Rd+1) such that ϕn → 0 in D(Rd+1), then

E
[

e iξ〈ugen,ϕn〉]= e
−|ξ|α‖ϕn∗ρ̌H‖α

Lα([0,T ]×Rd ) → 1, as n →+∞ .

Therefore,
〈

ugen,ϕn
〉 → 0 in law as n →+∞, and since convergence in law to a constant is

equivalent to the convergence in probability to this constant, we deduce that
〈

ugen,ϕn
〉→ 0

in probability as n → +∞. Therefore, ugen defines a linear functional on D(Rd+1) that is

continuous in probability. The space D(Rd+1) is nuclear (see Remark 2.2.1), so by [69, Corollary

4.2] ugen has an almost surely continuous version (and therefore ugen defines a continuous

generalized stochastic process).

Remark 4.4.2. The previous proof is still valid if we formally replace α by 2, and therefore the

same result is true in the Gaussian case.
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Existence of the mild solution

The criterion for the existence of the mild solution to the linear stochastic heat equation (4.4.2)

is already known (see [4]).

Proposition 4.4.3. The mild solution to the linear stochastic heat equation driven by a sym-

metric α-stable noise exists if and only if

α< 1+ 2

d
. (4.4.6)

In this case,

umild(t , x) := 〈
Ẇ α,ρH (t −·, x −·)〉 . (4.4.7)

Proof. The mild solution of (4.4.2) associated with ρH is well defined if and only if the following

integral is finite for any (t , x) ∈R+×Rd (see (H2’)):∫
R+

ds
∫
Rd

dy ρH (t − s, x − y)α =
∫ t

0
ds

1

(4πs)α
d
2

∫
Rd

dy exp

(
−α|y |

2

4s

)
=

∫ t

0
ds

1

(4πs)
d
2 (α−1)α

d
2

,

and the last integral is finite if and only if

α< 1+ 2

d
.

Then, by Definition 4.1.5,

umild(t , x) := 〈
Ẇ α,ρH (t −·, x −·)〉 .

Existence of a random field solution

We have seen in the previous section that for any α and d , it is possible to define the mild

solution ugen, and that the mild solution umild exists if and only if α< 1+ 2
d . We now apply the

results of Theorem 4.2.1 and Theorem 4.3.1 to learn more about the relations between those

two notions of solution.

Proposition 4.4.4. The generalized solution ugen to the linear stochastic heat equation driven by

a symmetric α-stable noise has a random field representation X if and only if (4.4.6) is satisfied,

and in that case, this random field representation X is equal to umild almost everywhere almost

surely.

Proof. Ifα ∈
(
1,1+ d

2

)
, then from Theorem 4.2.1(i), we deduce that umild is almost surely equal
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to ugen (the condition is immediately verified since µϕ is a finite measure with support in a

compact set). Similarly, for any ϕ ∈D(Rd+1), if α< 1, by (4.4.4), |ρ̌H |∗ |ϕ| ∈ Lα(R+×Rd ), hence

by Theorem 4.2.1(iii), the mild solution of the stochastic heat equation umild is equal to the

generalized solution ugen. The case α= 1 is slightly more involved, since we need to check

condition (4.2.2). Let ϕ ∈D(Rd+1). First, we have∫
R+×Rd

ρH (t − s, x − v)dv = t1t>0 ,

and for any x ∈R+, log+(x)6 | log(x)|, therefore, for t > 0

log+

 ρH (t − s, x − y)
∫
Rd+1

∫
R+×Rd |ρH (u − v,r −w)|dv dw µϕ(du,dr )(∫

R+×Rd ρH (t − v, x −w)dv dw
)(∫

Rd+1 ρH (u − s,r − y)µϕ(du,dr )
)


6
∣∣log

(
ρH (t − s, x − y)

)∣∣+ ∣∣∣∣log

(∫
Rd+1

uµϕ(du,dr )

)∣∣∣∣+ ∣∣log(t )
∣∣

+ ∣∣log
(
ρ̌H ∗|ϕ|(s, y)

)∣∣ .

Hence, to have (4.2.2), we need to check the finiteness of the following integrals:

I I :=
∫
R+×Rd

(
ρ̌H ∗|ϕ|) (s, y)ds dy ,

I2 :=
∫
R+×Rd

(
ρ̌H

∣∣log
(
ρ̌H

)∣∣)∗|ϕ|(s, y)ds dy ,

I3 :=
∫
R+×Rd

(∫
Rd+1

ρH (t − s, x − y)| log(t )ϕ(t , x)|dt dx

)
ds dy ,

I4 :=
∫
R+×Rd

∣∣log
(
ρ̌H ∗|ϕ|(s, y)

)∣∣(ρ̌H ∗|ϕ|) (s, y)ds dy .

The case of I1 has already been treated after (4.4.4), and for I3, we can simply permute the

integrals and get

I3 =
∫
Rd+1

|t1t>0 log(t )ϕ(t , x)|dt dx <+∞ .

For I2 and I4, by the same considerations as for the case α 6= 1, we need to check that for any

ϕ ∈D(Rd+1),

(t , x) ∈R+×Rd 7→ ∣∣ρ̌H log(ρ̌H )
∣∣∗|ϕ|(t , x) ,

and (t , x) ∈R+×Rd 7→ (
ρ̌H ∗|ϕ|) (t , x)

∣∣log(ρ̌H ∗|ϕ|(t , x))
∣∣ ,

are in L1([0,T ]×Rd ) for any T ∈R+. By (4.4.4), we get that
(
ρ̌H ∗|ϕ|)∣∣log(ρ̌H ∗|ϕ|)∣∣ ∈ L1([0,T ]×

Rd ). Then,

∣∣ρ̌H log(ρ̌H )
∣∣∗|ϕ|(t , x) =1t6T

∫ T

t
ds

∫
K

dy
1

(4π(s − t ))
d
2

exp

(
−|y −x|2

4(s − t )

)

×
∣∣∣∣−d

2
log(4π(s − t ))− |y −x|2

4(s − t )

∣∣∣∣ |ϕ(s, y)| .
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We use the triangular inequality and treat each term separately. Again, by continuity (since |ϕ|
is continuous and has compact support), we are only concerned about integrability near a

neighborhood of infinity. By Lemma A.0.5, for |x| large enough,

J1 : =1t6T

∫ T

t
ds

∫
K

dy
π|y −x|2

(4π(s − t ))
d
2 +1

exp

(
−|y −x|2

4(s − t )

)
|ϕ(s, y)|

61t6T ‖ϕ‖∞
∫

K
dy

π|y −x|2
(4π(T − t ))

d
2

exp

(
− |y −x|2

4(T − t )

)
.

Then, using (4.4.3), and letting β= supy∈K |y |,

J161t6T ‖ϕ‖∞
π

(
β+|x|)2

(4π(T − t ))
d
2

exp

(
− |x|2

8(T − t )

)∫
K

exp

( |y |2
4(T − t )

)
dy

61t6T ‖ϕ‖∞π
(
β+|x|)2 exp

(
−|x|2

8T

)
.

We deduce that J1 has rapid decay in the space variable as |x|→+∞ and compact support in

time. Also, since for large x the function s ∈ [t ,T ] 7→ 1

(4π(s−t ))
d
2

exp
(
− |y−x|2

4(s−t )

)
is non-decreasing

and realizes its maximum at s = T , and using (4.4.3),

J2 :=1t6T

∫ T

t
ds

∫
K

dy
1

(4π(s − t ))
d
2

exp

(
−|y −x|2

4(s − t )

)
d

2

∣∣log(4π(s − t ))
∣∣ |ϕ(s, y)|

61t6T
d

2
‖ϕ‖∞ (4π(T − t ))−

d
2

(∫
K

exp

(
− |y −x|2

4(T − t )

)
dy

)(∫ T−t

0

∣∣log(4πs)
∣∣ ds

)
61t6T

d

2
‖ϕ‖∞ exp

(
−|x|2

8T

)∫ T

0

∣∣log(4πs)
∣∣ ds .

We deduce that J2 has rapid decay in the space variable as |x|→+∞ and compact support in

time. Therefore,
∣∣ρ̌H log(ρ̌H )

∣∣∗|ϕ| ∈ L1([0,T ]×Rd ) for any T ∈R+. Hence by Theorem 4.2.1(ii),

the mild solution umild of the stochastic heat equation in the case α= 1 is also equal to ugen.

Furthermore, if ugen has a random field representation Y in the sense of Definition 4.1.2, then,

by Theorem 4.3.1, necessarily ρH ∈ Lα([0,T ]×Rd ) for any T > 0, which is equivalent to (4.4.6),

and the random field representation Y is equal to the mild solution umild almost everywhere

a.s. Therefore, a necessary and sufficient condition for the existence of a random field solution

to the stochastic heat equation (4.4.2) is that α< 1+ 2
d .

We therefore have the following theorem:

Theorem 4.4.5. The generalized solution ugen to the stochastic heat equation (4.4.2) defined by

(4.4.5) always exists. The mild solution umild defined by (4.4.7) exists if and only if

α< 1+ 2

d
, (4.4.8)
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Furthermore, a random field representation X of the generalized solution exists if and only if

(4.4.8) is satisfied and in this case, for almost all (t , x) ∈R+×Rd ,

X t ,x = 〈
Ẇ α,ρH (t −·, x −·)〉= umild(t , x) a.s. a.e.

4.4.2 The stochastic wave equation

We now consider the stochastic wave equation. This is an equation of hyperbolic type, there-

fore we expect different conclusions from the case of the stochastic heat equation in the

previous section. For an overview of this SPDE, see [21]. Let Ẇ α be an α-stable symmet-

ric noise on R+×Rd . The wave operator O in dimension d is a constant coefficient partial

differential operator given by

O = ∂2

∂t 2 −
d∑

i=1

∂2

∂x2
i

.

The fundamental solution of this operator is a function only in dimension one and two. In

dimension one it is given by

ρO
1 (t , x) = 1

2
1|x|6t for all (x, t ) ∈R2 ,

and in dimension two by

ρO
2 (t , x) = 1

2π

1√
t 2 −|x|2

1|x|<t for all (t , x) ∈R×R2 .

In dimension d > 3, the fundamental solution is a distribution that can be characterized by its

Fourier transform in the space variable x.

We consider the following Cauchy problem
Ou = Ẇ α ,

u(0, ·) = 0,
∂u
∂t (0, ·) = 0.

(4.4.9)

When it exists (i.e. under (H1’)), we recall that the generalized solution ugen is given by〈
ugen,ϕ

〉
:= 〈

Ẇ α,ϕ∗ ρ̌O
d

〉
, for all ϕ ∈D(Rd+1). (4.4.10)

Existence of the generalized solution

We first study the existence of the generalized solution in various dimensions d > 1.

Proposition 4.4.6. In any dimension d > 1, the generalized solution ugen to the linear stochastic

wave equation driven by a symmetric α-stable noise always exists.
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Proof. We need to check wether (H1’) is satisfied.

d = 1: We need to check that for any ϕ ∈D(R2), the convolution ϕ∗ ρ̌O
1 is in Lα(R+×R). We get

ϕ∗ ρ̌O
1 (t , x) =

∫ +∞

0
ds

∫ s

−s
dyϕ(s + t , y +x) ,

and we can see from this expression that it is a smooth function with compact support, hence

in Lα(R+×R).

d = 2: Let ϕ ∈D(R3). We check wether or not for some α ∈ (0,2), the function ϕ∗ ρ̌O
2 ∈ Lα(R+×

Rd ). By standard properties of the convolution,ϕ∗ρ̌O
2 is a smooth function. Let (t , x) ∈R+×R2.

Then,

ϕ∗ ρ̌O
2 (t , x) =

∫
R

ds
∫
R2

dyρO
2 (s − t , y −x)ϕ(s, y) .

Since ϕ has compact support and ρO
2 has support in the set {(t , x) ∈R+×R2 : |x|6 t }, we can

write

ϕ∗ ρ̌O
2 (t , x) =1t6T

∫ T

t
ds

∫
Bx (T−t )

dyρO
2 (s − t , y −x)ϕ(s, y) ,

for some T ∈R+, where Bx (r ) is the open ball of radius r centered at x. We see in this expression

that the convolution has compact support in space and time, since if x is far enough from the

support of ϕ, the integrand is zero. We deduce that for any α ∈ (0,2), ϕ∗ ρ̌O
2 ∈ Lα(R+×Rd ), and

the generalized solution to the stochastic linear wave equation in dimension 2 always exists.

d > 3: For anyϕ ∈D(R×Rd ), the functionϕ∗ ρ̌O
d is smooth. Furthermore, for physical reasons,

it is usually more sensible to consider a fundamental solution with support in the light cone,

that is the set {(t , x) ∈ R+ ×Rd : |x| 6 t }. Such fundamental solutions always exist in any

dimension (see [38, Proposition 11.3.1]). By the same type of considerations on the support of

the convolution ϕ∗ ρ̌O
d as in dimension one and two, we see that this function has compact

support, therefore ϕ∗ ρ̌O
d ∈ Lα(R+×Rd ) for any α ∈ (0,2). We deduce that the generalized

solution always exists.

Existence of the mild solution

Proposition 4.4.7. The mild solution to the stochastic wave equation driven by a symmetric

α-stable noise exists only in dimensions one and two regardless of the parameter α ∈ (0,2).

Proof. d = 1: There is a mild solution to the wave equation driven by α-stable noise if and only

if for any (t , x) ∈ R+×R, ρO
1 (t −·, x −·) ∈ Lα(R+×R) (see (H2’)). Therefore, for any T > 0, we

need to check the finiteness of the integral∫ T

0
dt

∫
R

dxρO
1 (t , x)α =

∫ T

0
dt

∫
R

dx
1

2α
1|x|6t = T 2

2α
. (4.4.11)

We deduce that the mild solution exists for any choice of α ∈ (0,2).
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d = 2: The mild solution exists if and only if ρO
2 (t −·, x −·) ∈ Lα(R+×R) for any (t , x) ∈R+×R2

(see (H2’)). We have

‖ρO
2 (t −·, x −·)‖α∨1

Lα(R+×R2) =
∫ t

0
ds

∫
R2

dy
1

(2π)α
(
(t − s)2 −|x − y |2) α2

= 1

(2π)α

∫ t

0
ds

∫
|u|6s

du
1

(s2 −|u|2)
α
2

.

Using a polar coordinates change of variables, we get

‖ρO
2 (t −·, x −·)‖α∨1

Lα(R+×R2) =
1

(2π)α−1

∫ t

0
ds

∫ s

0
dr

r

(s − r )
α
2 (s + r )

α
2

.

This integral is finite if and only if α2 < 1, that is α< 2. We can further evaluate this integral and

we get

‖ρO
2 (t −·, x −·)‖α∨1

Lα(R+×R2) =
1

(2π)α−1

∫ t

0
ds

∫ s

0

dr

2

2r

(s2 − r 2)
α
2

= 1

(2π)α−1

∫ t

0
ds

s2−α

2−α = t 3−α

(2π)α−1(2−α)(3−α)
. (4.4.12)

Therefore, in dimension 2, there is always a mild solution to the linear stochastic wave equation

with α-stable noise.

d > 3: Since fundamental solutions of the wave equation in dimension d > 3 are not functions,

there is no mild solution.

Remark 4.4.8. From this proof, we can deduce the already known result in the Gaussian case

(see [21, p. 46]) that a solution to the linear stochastic wave equation only exists in dimension

one.

Existence of a random field solution

Proposition 4.4.9. The generalized solution ugen to the linear stochastic wave equation driven

by a symmetric α-stable noise has a random field representation if and only if d 6 2, and in that

case, this random field representation is equal to umild almost everywhere almost surely.

Proof. d = 1: We check if the mild solution is equal to the generalized solution solution us-

ing Theorem 4.2.1 and the Remark 4.2.2. If α > 1, it suffices to check that {‖ρO
1 (t − ·, x −

·)‖Lα(R+×R), (t , x) ∈ R+×R} ∈ L1
loc(R+×R), which is the case by (4.4.11). In the case α < 1, we

can check that for any compact K ⊂R2,∫
R+×R

ds dy

(∫
K

dt dx|ρO
1 (t − s, x − y)|

)α
<+∞ .
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Chapter 4. Random field solutions to a linear SPDE driven by Lévy white noise

It is easy to see that the function (s, y) 7→ ∫
K dt dx|ρO

1 (t − s, x − y)| has compact support, which

suffices to prove the claim. In the case α= 1 we check that for any compact set K ⊂R2,

∫
K

dt dx
∫
R+×R

ds dy |ρO
1 (t − s, x − y)|

[
1+

log+

 |ρO
1 (t − s, x − y)|∫K du dr

∫
R+×R dv dw |ρO

1 (u − v,r −w)|(∫
R+×R dv dw |ρO

1 (t − v, x −w)|
)(∫

K |ρO
1 (u − s,r − y)|du dr

)
<+∞ .

(4.4.13)

Indeed,
∫
R+×R dv dw |ρO

1 (t − v, x −w)| = t 2

2 , and
∫

K du dr
∫
R+×R dv dw |ρO

1 (u − v,r −w)| =C for

some constant C depending on K . Therefore, (4.4.13) is bounded by

∫
K

dt dx
∫
R+×R

ds dy |ρO
1 (t − s, x − y)|

[
1+ log+

( |ρO
1 (t − s, x − y)|C

t 2

2

(∫
K |ρO

1 (u − s,r − y)|du dr
))]

.

We have mentionned before that for any x > 0, log+(x)6 | log(x)|. Therefore, we need to check

that the following integrals are finite:

J1 :=
∫

K
dt dx

∫
R+×R

ds dy |ρO
1 (t − s, x − y)| ∣∣log

(
ρO

1 (t − s, x − y)
)∣∣ ,

J2 :=
∫

K
dt dx

∫
R+×R

ds dy |ρO
1 (t − s, x − y)|

∣∣∣∣log

(
t 2

2

)∣∣∣∣ ,

J3 :=
∫

K
dt dx

∫
R+×R

ds dy |ρO
1 (t − s, x − y)|

∣∣∣∣log

(∫
K
|ρO

1 (u − s,r − y)|du dr

)∣∣∣∣ .

By (4.4.11) and integrability of the logarithm near the origin, J2 <+∞. Also, ρO
1 is bounded,

and the integration domain is bounded, so J1 <+∞ and J3 <+∞. Therefore, for any α ∈ (0,2),

the mild solution is equal to the generalized solution.

d = 2: In the case where α> 1, by (4.4.12), (t , x) ∈R+×R2 →‖ρO
2 (t −·, x −·)‖Lα(R+×R2) does not

depend on x and is continuous in the t variable, therefore (4.2.1) is verified, and the mild

solution is equal to the generalized solution.

In the case where α< 1, we know from previous considerations that for any test function ϕ,

|ρ̌O
2 |∗ϕ is smooth with compact support, therefore (4.2.3) is verified, and the mild solution is

equal to the generalized solution.

The caseα= 1 is again more involved, since we need to check the unfriendly expression (4.2.2).

We check that for any compact set K ⊂R3,

∫
K

dt dx
∫
R+×R2

ds dy |ρO
2 (t − s, x − y)|

[
1+

log+

 |ρO
2 (t − s, x − y)|∫K du dr

∫
R+×R2 dv dw |ρO

2 (u − v,r −w)|(∫
R+×R2 dv dw |ρO

2 (t − v, x −w)|
)(∫

K |ρO
2 (u − s,r − y)|du dr

)
<+∞ .

(4.4.14)
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Indeed, by (4.4.12),
∫
R+×R2 dv dw |ρO

2 (t − v, x −w)| =C1t 2, and
∫

K du dr
∫
R+×R2 dv dw |ρO

2 (u −
v,r −w)| =C2 for some constants C1,C2 depending on K . Therefore, (4.4.14) is bounded by

∫
K

dt dx
∫
R+×R2

ds dy |ρO
2 (t − s, x − y)|

[
1+ log+

( |ρO
2 (t − s, x − y)|C2

C1t 2
(∫

K |ρO
2 (u − s,r − y)|du dr

))]
.

We have mentionned before that for any x > 0, log+(x)6 | log(x)|. Therefore, we need to check

that the following integrals are finite:

J̃1 :=
∫

K
dt dx

∫
R+×R2

ds dy |ρO
2 (t − s, x − y)| ∣∣log

(
ρO

2 (t − s, x − y)
)∣∣ ,

J̃2 :=
∫

K
dt dx

∫
R+×R2

ds dy |ρO
2 (t − s, x − y)| ∣∣log

(
C1t 2)∣∣ ,

J̃3 :=
∫

K
dt dx

∫
R+×R2

ds dy |ρO
2 (t − s, x − y)|

∣∣∣∣log

(∫
K
|ρO

2 (u − s,r − y)|du dr

)∣∣∣∣ .

By, (4.4.12) and integrability of the logarithm around the origin, J̃2 <+∞. Then,

J̃1 =
∫

K
dt dx

∫
[0,t ]×R2

ds dy1|y |6s | 1

8π
√

s2 −|y |2
∣∣∣∣log

(
1

s2 −|y |2
)∣∣∣∣<+∞ .

Changing to polar coordinates, we get

J̃1 =
∫

K
dt dx

∫
[0,t ]

ds
∫ s

0
dr | r

4
p

s2 − r 2

∣∣log
(
s2 − r 2)∣∣<+∞ ,

since x →| log(x)||x|− 1
2 is integrable on a neighborhood of the origin.

Finally, by Fubini’s theorem,

J̃3 =
∫
R+×R2

ds dy
∫

K
dt dx |ρO

2 (t − s, x − y)|
∣∣∣∣log

(∫
K
|ρO

2 (u − s,r − y)|du dr

)∣∣∣∣ .

Using the inequality |x log(x)|6 |x| 3
2 , we get

J̃36
∫
R+×R2

ds dy

(∫
K

dt dx |ρO
2 (t − s, x − y)|

) 3
2

6 (Leb3 (K ))
1
2

∫
R+×R2

ds dy
∫

K
dt dx |ρO

2 (t − s, x − y)| 3
2

= (Leb3 (K ))
1
2

∫
K

dt dx
∫
R+×R2

ds dy |ρO
2 (t − s, x − y)| 3

2

= (Leb3 (K ))
1
2

∫
K

dt dx
4t

3
2

5
p

2π
<+∞ ,

where we have used Hölder’s inequality in the second line, and (4.4.12) in the last line. There-

fore, for any α ∈ (0,2), the mild solution is equal to the generalized solution.

87



Chapter 4. Random field solutions to a linear SPDE driven by Lévy white noise

d > 3: By Theorem 4.3.1, there cannot be any random field representation of the generalized

solution, since ρO
d ∉ Lα

(
[0,T ]×Rd

)
.

We summarize these results in the following theorem:

Theorem 4.4.10. The generalized solution ugen to the stochastic wave equation (4.4.9) defined

by (4.4.10) always exists. The mild solution umild defined by (4.4.7) exists if and only if d 6 2.

Furthermore, a random field representation X of the generalized solution exists if and only if

d 6 2, and in this case, for almost all (t , x) ∈R+×Rd ,

X t ,x = 〈
Ẇ α,ρO

d (t −·, x −·)〉= umild(t , x) a.s. a.e.
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5 Some properties of the solution to
the stochastic heat equation driven by
heavy-tailed noise

In the case of the stochastic heat equation with Gaussian noise, the Hölder joint regularity

of the mild solution has been proved in many cases (see [21] for the white noise case, or

[48, 11, 40] for more general cases). In the presence of jumps, already in the linear case,

this type of regularity is not relevant for the study of the mild solution to the stochastic heat

equation. Indeed, due to the singularity of the Gaussian kernel at the origin, each jump of the

noise creates a Dirac mass for the solution. In other terms, the mild solution of this equation

in the linear case is a Dirac mass at each space-time jump point of the noise. Furthermore,

these space-time jump points can form a dense subset of [0,T ]×Rd . Therefore, we study two

other types of regularity of the mild solution
(
u(t , x); (t , x) ∈ [0,T ]×Rd

)
. The first one is the

regularity of t 7→ u(t , ·) viewed as a mapping to a fractional Sobolev space (see Sections 5.2.1,

5.3.2 and 5.4.1), and the second is the regularity of the partial process obtained from u when

fixing either the time or space coordinate.

The results detailed in this chapter will be published in [15].

This chapter is organized as follows: we first briefly introduce in Section 5.1 the stochastic

integral with respect to Lévy white noise for integrands that are no longer deterministic. Then,

Section 5.2 deals with the regularity properties of the mild solution to the stochastic heat

equation on a bounded space interval in dimension one (see Theorem 5.2.7 and Propositions

5.2.10 and 5.2.12). Section 5.3 extends this study to the case of the equation on the whole

space (see Theorem 5.3.12 and Propositions 5.3.13 and 5.3.17), and we prove a result on the

stationarity in the space variable of the mild solution in Theorem 5.3.6. Finally, Section 5.4

studies regularity properties of the solution to the equation on a smooth and bounded domain

in dimensions d > 2 (see Theorem 5.4.6 and Propositions 5.4.7 and 5.4.9).
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Chapter 5. Some properties of the solution to the stochastic heat equation driven by
heavy-tailed noise

5.1 Stochastic integration with respect to Lévy white noises

In Chapter 2, we introduced the notion of Lévy white noise, and using the related notion of

independently scattered random measures (see Theorem 2.3.5), we recalled the construction

of Wiener-type integrals, that is integrals of deterministic functions with respect to these

noises (see Definition 2.3.6). Then, we used those integrals to discuss various questions about

stochastic partial differential equations in linear cases. Indeed, the mild solution of a linear

SPDE is defined as a stochastic convolution of the fundamental solution of the equation

(which is a deterministic function) with the driving Lévy white noise. When there is a temporal

component, in the non-linear case with a multiplicative noise, the mild solutions is defined

via the formula

u(t , x) =
∫ t

0

∫
Rd

G(t − s, x − y)σ
(
u(s, y)

)
L(ds, dy) ,

where L̇ is a Lévy white noise, σ is a measurable function that encodes the non-linearity, and

G is the fundamental solution of the equation. Here the term σ
(
u(s, y)

)
is stochastic, and

we therefore cannot use the Wiener-type integrals. A theory of such stochastic integrals has

been widely studied, first in the purely temporal case with the seminal work of Itô (see [57]

for a modern exposition of this theory). The extension to a spatio-temporal framework is

handled via the notion of Lp -valued random measure, and the integration theory with respect

to such measure is developed in [10]. We introduce here some key features of this integration

theory, and we heavily rely on [12, Chapter 1] for this introduction. We recall that (Ω,F ,P) is

a complete probability space. The predictable σ-field P on Ω×R+ is the σ-field generated

by the continuous processes (viewed as mappings fromΩ×R+). Using the notations of [43,

Chapter II], we define P̃ :=P ⊗B(Rd ), where B(Rd ) is the Borelσ-field on Rd . A random field

u :Ω×R+×Rd →R is said to be predictable if it is P̃ -measurable. Let L̇ be a Lévy white noise,

with characteristic triplet
(
b,ρ,ν

)
, and underlying jump measure J . Stochastic integration of

predictable random fields with respect to Gaussian white noise is well known (see for example

[21]), so we can suppose that b = ρ = 0. Then, for any set A ∈B(R+×Rd ) with finite Lebesgue

measure, by Theorem 2.3.10, we can assume that

L̇(A) =
∫
R+×Rd

∫
|z|61

z1(s,y)∈A J̃ (ds, dy, dz)+
∫
R+×Rd

∫
|z|>1

z1(s,y)∈A J (ds, dy, dz)

=: L̇1(A)+ L̇2(A) ,

In this representation, the set A is not random, and we would like to extend this definition

to any predictable set Ã ∈ P̃ . We suppose additionally that Ã ⊂Ω× [0,k]× [−k,k]d for some

k ∈N. Then, if we denote by (Ti ,Yi , Zi ) the atoms of the Poisson random measure J , since Ã is

almost surely bounded, we can define the following finite sum:

L̇2 (
Ã

)
(ω) := ∑

i>1
Zi (ω)1|Zi |(ω)>11(ω,Ti (ω),Yi (ω))∈Ã , for all ω ∈Ω .

Now, we would like to define L̇1(Ã). More generally, in [43, Chapter II], a theory of integration

of a suitable class of stochastic processes with respect to a compensated Poisson random
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5.1. Stochastic integration with respect to Lévy white noises

measure is exposed. Let (Ht ,x )(t ,x)∈R+×Rd be a predictable random field. For ω ∈Ω, we define

H̃t (ω) = ∑
i>1

Zi (ω)1|Zi (ω)|611Ti (ω)=t HTi (ω),Yi (ω)(ω) . (5.1.1)

Then, adapting from [43, Chapter II, Definition 1.27], we say that H is in Gloc(L̇1) if there exists

a sequence of stopping times Tn , Tn →+∞ a.s. as n →+∞, such that for any t > 0,

E

( ∑
s6t∧Tn

H̃ 2
r

) 1
2

<+∞ . (5.1.2)

Then, for any H in Gloc(L̇1), using [43, Chapter I, Theorem 4.56], there exists a purely discon-

tinuous martingale X such that∆X (the jump process of X ) is indistinguishable from H̃ . Then,

following [43, Chapter I, Definition 1.27], we define∫ t

0

∫
Rd

Hs,y L1(ds, dy) =
∫ t

0

∫
Rd

∫
|z|61

zHs,y J̃ (ds, dy, dz) := X t . (5.1.3)

For Ã ∈ P̃ with Ã ⊂Ω×[0,k]×[−k,k]d for some k ∈N, consider the random field W : (ω, t , x) 7→
W(t ,x)(ω) =1(ω,t ,x)∈Ã . This random field is predictable and we see that W ∈Gloc(L̇1). Indeed,

by (5.1.1)

W̃t (ω) = ∑
i>1
1Ti (ω)=t1(ω,Ti (ω),Yi (ω))∈Ã Zi (ω)1|Zi (ω)|61 .

Also, ∑
s6t

W̃ 2
s (ω) = ∑

i :Ti (ω)6t
1(ω,Ti (ω),Yi (ω))∈A Z 2

i (ω)1|Zi |(ω)61 .

Then, we only need to check (5.1.2).

E

(∑
s6t

W̃ 2
s (·)

) 1
2

6 (
E

[∑
s6t

W̃ 2
s (·)

]) 1
2

6

(
E

[ ∑
i :Ti (·)6t

1(·,Ti (·),Yi (·))∈Ã Z 2
i (·)1|Zi |(·)61

]) 1
2

6

(
E

[ ∑
i :Ti (·)6t

1(Ti (·),Yi (·))∈[0,k]×[−k,k]d Z 2
i (·)1|Zi |(·)61

]) 1
2

6
(∫

[0,k]×[−k,k]d

(∫
|z|61

z2ν(dz)

)
ds dy

) 1
2 <+∞ .

Therefore, the integral of W with respect to L̇1 can be defined as in (5.1.3). Then,

L̇1 (
Ã

)
:=

∫
R+×Rd

∫
|z|61

zW(s,y) J̃ (ds, dy, dz) ,

and L̇
(

Ã
)

:= L̇1
(

Ã
)+ L̇2

(
Ã

)
.
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Then, by [12, Remark 1.4.4], this extension of L̇ is a Lévy basis, and one can proceed with the

construction of a stochastic integral of predictable processes using the Daniell mean as in [12,

Chapter 1, Section 2]. We briefly give the construction of this stochastic integral with respect

to L̇. The space SL of simple predictable random fields is the set of random fields S that can

be written

S(ω, t , x) =
n∑

i=1
ai1Ai ,

where n ∈N, ai ∈R and Ai is a predictable set such that Ai ⊂Ω× [0,ki ]× [−ki ,ki ]d for some

ki ∈N. For such a simple predictable random field, we define∫
R+×Rd

S(s, y)L(ds, dy) :=
n∑

i=1
ai L̇(Ai ) .

Then, for a random field H :Ω×R+×Rd →R and p > 0, the Daniell mean ‖H‖D
p,L is defined by

‖H‖D
p,L := inf

K∈S ↑
L , |H |6K

sup
S∈SL , |S|6K

∥∥∥∥∫
R+×Rd

S(s, y)L(ds, dy)

∥∥∥∥
Lp (Ω)

,

where S
↑

L is the set of positive random fields K : Ω×R+×Rd → R which are the pointwise

supremum of simple predictable random fields. Then, a random fields H :Ω×R+×Rd →R is

Lp -integrable with respect to L̇ if there is a sequence (Sn)n>1 of simple predictable random

fields such that ‖Sn −H‖D
p,L → 0 as n →+∞. Then, the stochastic integral of H with respect to

L̇ is defined by ∫
R+×Rd

H(s, y)L(ds, dy) := lim
n→+∞

∫
R+×Rd

Sn(s, y)L(ds, dy) ,

where the limit is in Lp (Ω) and does not depend on the choice of the sequence Sn . Interest-

ingly, in [16], the authors obtained an explicit characterization of the random fields that are

integrable with respect to a Lévy basis.

Theorem 5.1.1 (Theorem 4.1 and Remark 4.4 in [16]). Let L̇ be a Lévy basis with characteristic

triplet (b,ρ,ν). A predictable random field H : (ω, t , x) 7→ Ht ,x (ω) is L0-integrable with respect to

L̇ if and only if ω-almost surely, H(ω) satisfies the conditions (i)-(iii) of Proposition 2.3.7.

5.2 The SHE driven by heavy-tailed noise: equation on [0,T ]× [0,π]

Fix T>0. We consider the stochastic heat equation driven by a Lévy white noise in [0,T ]× [0,π]

with Dirichlet boundary conditions:
∂u
∂t (t , x) = ∂2u

∂x2 (t , x)+σ(u(t , x))L̇(t , x) , (t , x) ∈ (0,T )× (0,π) ,

u(t ,0) = u(t ,π) = 0, for all t ∈ [0,T ] ,

u(0, x) = 0, for all x ∈ [0,π] ,

(5.2.1)
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where σ :R→R is a Lipschitz function and L is a pure jump Lévy white noise. More precisely,

we suppose that

L(dt , dx) = b dt dx +
∫
|z|61

z J̃ (dt , dx, dz)+
∫
|z|>1

z J (dt , dx, dz)

=: LB (dt , dx)+LM (dt , dx)+LP (dt , dx) ,
(5.2.2)

where b ∈ R, J is a Poisson random measure on [0,∞)× [0,π]×R with intensity dt dxν(dz),

and J̃ is the compensated version of J . The measure ν is a Lévy measure, that is, ν({0}) = 0 and∫
R

(
z2 ∧1

)
ν(dz) <+∞.

The Green’s function of the heat operator on the bounded domain [0,T ]× [0,π] is given by

G(t ; x, y) := 2

π

+∞∑
k=1

sin(kx)sin(k y)e−k2t1t>0 . (5.2.3)

By definition, a mild solution to (5.2.1) is a predictable random field

u = (u(t , x), (t , x) ∈ [0,T ]× [0,π]) ,

such that for all (t , x) ∈ [0,T ]× [0,π],

u(t , x) =
∫ t

0

∫ π

0
G(t − s; x, y)σ(u(s, y))L(ds, dy) . (5.2.4)

Similarly to [14], we then define the random times

τN = inf
{

t > 0 : J
(
[0, t ]× [0,π]× [−N , N ]c) 6= 0

}
.

Also,

E
[

J
(
[0, t ]× [0,π]× [−N , N ]c)]= ∫ t

0

∫ π

0

∫
R
1|z|>N ds dyν(dz) <+∞ . (5.2.5)

Therefore, (τN )N>1 is an increasing sequence of stopping times such that τN > 0 and τN →+∞
almost surely as N →+∞. In fact, we have that for almost all ω ∈Ω, there exists an integer

R(ω) such that for any N > R(ω), τN (ω) > T . We use these stopping times to truncate the

noise, and we can define LN := L1t6τN . Then,

LN (dt , dx) = bN dt dx +
∫
|z|6N

z J̃ (dt , dx, dz) , (5.2.6)

where bN := b −∫
1<|z|6N zν(dz).

Proposition 5.2.1. Let σ : R→ R be a Lipschitz function and let L be a pure jump Lévy white

noise as in (5.2.2). Then there exists, up to modifications, a unique predictable random field

u = (u(t , x) , (t , x) ∈ [0,T ]× [0,π]) such that for any p < 3 and N ∈N,

sup
(t ,x)∈[0,T ]×[0,π]

E
[|u(t , x)|p1t6τN

]<+∞ ,

93



Chapter 5. Some properties of the solution to the stochastic heat equation driven by
heavy-tailed noise

and for any (t , x) ∈ [0,T ]× [0,π],

u(t , x) =
∫ t

0

∫ π

0
G(t − s; x, y)σ(u(s, y))L(ds, dy) a.s. (5.2.7)

Remark 5.2.2. Let uN (t , x) = u(t , x)1t6τN . Then, uN is clearly a mild solution to the truncated

equation:

uN (t , x) =
∫ t

0

∫ π

0
G(t − s; x, y)σ

(
uN (s, y)

)
LN (ds, dy) a.s. (5.2.8)

Proof of Proposition 5.2.1. By [6, (B.5)], we know that G(t ; x, y)6CρH (t , x−y) for any (t , x, y) ∈
[0,T ]× [0,π]2, where ρH is the Gaussian density function ρH (t , x) = 1p

4πt
e−

x2

4t as in (4.4.1) with

d = 1. Also, since [0,π] is a bounded interval, ν ([0,T ]× [0,π]× (−1,1)c ) <+∞ and a.s., there

is only a finite number of jumps larger than 1 in [0,T ]× [0,π]. Consequently, (1) to (4) of

Assumption B of [13] are satisfied, and we can apply [13, Theorem 3.5] to obtain the existence

of a unique predictable random field u satisfying (5.2.7) and

sup
(t ,x)∈[0,T ]×[0,π]

E
[|u(t , x)|21t6τN

]<+∞ , (5.2.9)

for any N ∈N. Since
∫ T

0

∫
Rρ

p
H (t , x)dt dx <+∞ for all p < 3 and the Lévy measure ν satisfies∫

|z|6N |z|pν(dz) <+∞ for any p ∈ [2,3), we can use Theorem A.0.1 to further improve (5.2.9) to

sup
(t ,x)∈[0,T ]×[0,π]

E
[|u(t , x)|p1t6τN

]<+∞

for every p < 3. More precisely, the only step in the proof of [13, Theorem 3.5] where p 6 2

is assumed is the moment estimate given in [13, Lemma 6.1(2)]. We now elaborate how this

estimate can be extended to exponents 2 < p < 3. Because of the stopping time τN , it suffices

to consider the noise LN introduced in (5.2.6). Then, for any predictable processes φ1 and φ2,

E

[∣∣∣∣∫ t

0

∫ π

0
G(t − s; x, y)

(
σ(φ1(s, y))−σ(φ2(s, y))

)
LN (ds, dy)

∣∣∣∣p]
6CE

[∣∣∣∣∫ t

0

∫ π

0
G(t − s; x, y)

(
σ(φ1(s, y))−σ(φ2(s, y))

)
ds dy

∣∣∣∣p]
+CE

[∣∣∣∣∫ t

0

∫ π

0

∫
|z|6N

G(t − s; x, y)
(
σ(φ1(s, y))−σ(φ2(s, y))

)
z J̃ (ds, dy, dz)

∣∣∣∣p]
.

We consider the measure G(t − s; x, y)ds dy in the first integral, and we use Hölder’s inequality

and Theorem A.0.1(iii) for the second to get the upper bound

C

(∫ t

0

∫ π

0
|G(t − s; x, y)|ds dy

)p−1 ∫ t

0

∫ π

0
|G(t − s; x, y)|E[|φ1(s, y)−φ2(s, y)|p ]ds dy

+CE

[(∫ t

0

∫ π

0

∫
|z|6N

|G(t − s; x, y)|2|φ1(s, y)−φ2(s, y)|2|z|2 ds dy ν(dz)

) p
2

]
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+CE

[∫ t

0

∫ π

0

∫
|z|6N

|G(t − s; x, y)|p |φ1(s, y)−φ2(s, y)|p |z|p ds dy ν(dz)

]
.

Similarly, we consider the measure |G(t − s; x, y)|2 ds dy to apply again Hölder’s inequality to

the second term of the sum above, and we get the upper bound

C

(∫ t

0

∫ π

0
|G(t − s; x, y)|ds dy

)p−1 ∫ t

0

∫ π

0
|G(t − s; x, y)|E[|φ1(s, y)−φ2(s, y)|p ]ds dy

+C

(∫ t

0

∫ π

0
|G(t − s; x, y)|2 ds dy

) p
2 −1 ∫ t

0

∫ π

0
|G(t − s; x, y)|2E[|φ1(s, y)−φ2(s, y)|p ]ds dy

+C
∫ t

0

∫ π

0
|G(t − s; x, y)|pE[|φ1(s, y)−φ2(s, y)|p ]ds dy ,

where the constants above do not depend on φ1 and φ2, and we used the fact that∫
|z|6N

|z|pν(dz) <+∞ .

Then, since G(t ; x, y)6CρH (t , x− y) for any (t , x, y) ∈ [0,T ]×[0,π]2, and
∫ T

0

∫
Rρ

p
H (t , x)dt dx <

+∞ for all p < 3 and T > 0, this upper bound becomes

C

(∫ t

0

∫ π

0
ρH (t − s, x − y)ds dy

)p−1 ∫ t

0

∫ π

0
|G(t − s; x, y)|E[|φ1(s, y)−φ2(s, y)|p ]ds dy

+C

(∫ t

0

∫ π

0
ρ2

H (t − s, x − y)ds dy

) p
2 −1 ∫ t

0

∫ π

0
|G(t − s; x, y)|2E[|φ1(s, y)−φ2(s, y)|p ]ds dy

+C
∫ t

0

∫ π

0
|G(t − s; x, y)|pE[|φ1(s, y)−φ2(s, y)|p ]ds dy .

Since |x|26 |x|+ |x|p for all p > 2, we finally get the upper bound

E

[∣∣∣∣∫ t

0

∫ π

0
G(t − s; x, y)

(
σ(φ1(s, y))−σ(φ2(s, y))

)
LN (ds, dy)

∣∣∣∣p]
6C

∫ t

0

∫ π

0
(|G(t − s; x, y)|+ |G(t − s; x, y)|p )E[|φ1(s, y)−φ2(s, y)|p ]ds dy ,

(5.2.10)

which is exactly the needed extension of [13, Lemma 6.1(2)] to complete the proof.

Our setting is much less general than the one of [13, Theorem 3.5], and the proof of this result

simplifies considerably. We provide here a version of this simplified proof for the convenience

of the reader. We will use a classical Picard iteration scheme to prove the existence of a solution

to the truncated equation (5.2.8) and to prove the moment bound (5.2.9). Let u0
N := 0, and for

any n> 0,

un+1
N (t , x) :=

∫ t

0

∫ π

0
G(t − s; x, y)σ

(
un

N (s, y)
)

LN (ds, dy) .
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Then, we define Y n
N := un+1

N −un
N , and by (5.2.10), we have

∥∥Y n
N (t , x)

∥∥p
Lp (Ω)6C

∫ t

0

∫ π

0
(|G(t − s; x, y)|+ |G(t − s; x, y)|p )

∥∥Y n−1
N (s, y)

∥∥p
Lp (Ω) ds dy .

Therefore, we can apply [13, Lemma 6.4, (1)] to the sequence vn(t , x) := ∥∥Y n
N (t , x)

∥∥
Lp (Ω), and

we get that
+∞∑
n=1

sup
(t ,x)∈[0,T ]×[0,π]

∥∥Y n
N (t , x)

∥∥
Lp (Ω) <+∞ .

Therefore, un
N converges to some limit uN in Lp (Ω), uniformly in space and time. Applying

(5.2.10) to φ1 = uN and φ2 = un−1
N , we get that

sup
(t ,x)∈[0,T ]×[0,π]

∥∥∥∥un
N (t , x)−

∫ t

0

∫ π

0
G(t − s; x, y)σ(uN (s, y))LN (ds, dy)

∥∥∥∥
Lp (Ω)

→ 0, as n →+∞ ,

which implies that

uN (t , x) =
∫ t

0

∫ π

0
G(t − s; x, y)σ(uN (s, y))LN (ds, dy) , a.s.

Therefore, uN is a mild solution to (5.2.8), and

sup
(t ,x)∈[0,T ]×[0,π]

E
[|uN (t , x)|p]<+∞ for all p < 3.

The uniqueness statement is an application of (5.2.10) and [13, Lemma 6.4, (3)]. Then, as in the

proof of [13, Theorem 3.5], u := u11�0,τ1�+
∑+∞

N=2 uN1�τN−1,τN � is a mild solution to (5.2.7).

The properties that we consider in the following concern sample path regularity properties

of the mild solution of the stochastic heat equation, and, by stationary convergence of uN

(defined on [0,T ]× [0,π] by (5.2.8)) to u, these properties are identical to those of uN in the

previous proposition for N sufficiently large. The value of the parameter N has no importance

in our study, so we can suppose that N = 1 and drop the dependency in N . Therefore, in the

following, we will always consider the solution to the integral equation

u(t , x) = b
∫ t

0

∫ π

0
G(t − s; x, y)σ(u(s, y)) ds dy

+
∫ t

0

∫ π

0
G(t − s; x, y)σ(u(s, y))LM (ds, dy) ,

(5.2.11)

where LM is the martingale part of the noise as defined in (5.2.2), and the solution to (5.2.4)

will have the same sample path regularity properties as the solution of (5.2.11). Also, for any

p < 3, the solution to (5.2.11) has uniformly bounded moments of order p.

96
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5.2.1 The fractional Sobolev spaces Hr ([0,π])

For any function f ∈ L2 ([0,π]), we can define its Fourier sine coefficients

an( f ) = 2

π

∫ π

0
f (x)sin(nx)dx , n ∈N . (5.2.12)

Then, by Parseval’s identity,
2

π
‖ f ‖2

L2 =
∑

n>1
an( f )2 .

For any r > 0, we define Hr ([0,π]) as the subspace of L2 ([0,π]) such that

‖ f ‖2
Hr

:= ∑
n>1

(
1+n2)r

an( f )2 <+∞ .

It is a Hilbert space for the inner product given by〈
f , g

〉
Hr

:= ∑
n>1

(
1+n2)r

an( f )an(g ) .

For r > 0, we define H−r ([0,π]) as the dual space of Hr ([0,π]), that is, the space of continuous

linear functionals on Hr ([0,π]). Then, for any r > 0, H−r ([0,π]) is isomorphic to the space of

sequences b = (bn)n>1 such that

‖b‖2
H−r

:= ∑
n>1

(
1+n2)−r

b2
n <+∞ .

More precisely, for r > 0 and f ∈ H−r ([0,π]), the coefficients bn are given by bn = f (sin(n·)).

Then, ‖ f ‖H−r = ‖b‖H−r and the duality between H−r ([0,π]) and Hr ([0,π]) is given by〈
b, g

〉= ∑
n>1

bn an(g )6 ‖b‖H−r ‖g‖Hr .

For example, it is easy to check that δx ∈ Hr ([0,π]) for any x ∈ (0,π) and r < −1
2 . Indeed,

δx (sin(n·)) = sin(nx), and for any r <−1
2 ,

‖δx‖2
Hr

= ∑
n>1

(
1+n2)r

sin2(nx)6
∑

n>1

(
1+n2)r <+∞ .

5.2.2 Existence of a càdlàg solution in Hr ([0,π])

In order to motivate why we consider the fractional Sobolev space Hr ([0,π]), we start with a

special case. Suppose that b = 0 and that ν is a symmetric measure with ν(R) <+∞. Then we

can rewrite L =∑
i>1 Ziδ(Ti ,Xi ), and

u(t , x) = ∑
i>1

G(t −Ti ; x, Xi )Ziσ (u(Ti , Xi )) ,

97



Chapter 5. Some properties of the solution to the stochastic heat equation driven by
heavy-tailed noise

where the sum is finite. In this case, it suffices to check whether for fixed i > 1, t 7→G(t−Ti ; ·, Xi )

is càdlàg in Hr ([0,π]). Using the series representation

G(t −Ti ; x, Xi ) = 2

π

+∞∑
k=1

sin(kx)sin(k Xi )e−k2(t−Ti )1t>Ti ,

we immediately see that the function x 7→G(t −Ti ; x, Xi ) belongs to Hr ([0,π]) if and only if

+∞∑
k=1

(1+k2)r sin(k Xi )2e−2k2(t−Ti )1t>Ti <+∞ .

This is the case for any r ∈R if t 6= Ti . However, for t = Ti , we have to restrict to r <−1
2 . For the

càdlàg property, the only point where a problem might appear is at t = Ti . At this point, the

existence of a left limit is obvious since G(t −Ti ; ·, Xi ) = 0 for any t < Ti . For right-continuity,

we use the fact that (1−e−k2h)26 k2εhε for any 0 < ε<−1
2 − r , so

‖G(h; ·, Xi )−G(0; ·, Xi )‖2
Hr

=
+∞∑
k=1

(1+k2)r sin(k Xi )2
(
1−e−k2h

)2

6
+∞∑
k=1

(1+k2)r k2εhε6C hε→ 0 as h → 0.

Therefore, t 7→ u(t , ·) is càdlàg in Hr ([0,π]). For the general case, we first treat the drift term in

the following proposition.

Lemma 5.2.3. Assume that L is pure jump Lévy noise as in (5.2.2) and u be the unique solution

to (5.2.11). Then,

F (t , x) =
∫ t

0

∫ π

0
G(t − s; x, y)σ(u(s, y))ds dy

is jointly continuous in (t , x) ∈ [0,T ]× [0,π]. In particular, for every r 6 0, the process

t 7→ F (t , ·) ,

is continuous in Hr ([0,π]).

Proof. By the series representation of the Green’s function (5.2.3),

F (t , x) = 2

π

+∞∑
k=1

sin(kx)
∫ t

0

∫ π

0
e−k2(t−s) sin(k y)σ(u(s, y))ds dy .

We see that each term of the sum of F is jointly continuous in (t , x). Hence, to give a direct

proof of the continuity of F (which follows from abstract regularity results on the solution of

the heat equation), it suffices to show the uniform convergence of the series. Using Hölder’s

inequality and the fact that u has uniformly bounded moments of any order p < 3, we obtain
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this from

E

[+∞∑
k=1

sup
(t ,x)∈[0,T ]×[0,π]

∣∣∣∣sin(kx)
∫ t

0

∫ π

0
e−k2(t−s) sin(k y)σ(u(s, y))ds dy

∣∣∣∣
]

6C
+∞∑
k=1

E

[
sup

(t ,x)∈[0,T ]×[0,π]

(∫ t

0
e−

5
3 k2(t−s) ds

)3/5 (∫ t

0

∫ π

0
|σ(u(s, y))| 5

2 ds dy

)2/5
]

6C
+∞∑
k=1

(∫ T

0
e−

5
3 k2s ds

)3/5 (∫ T

0

∫ π

0
E[|σ(u(s, y))| 5

2 ]ds dy

)2/5

6C
+∞∑
k=1

1

k
6
5

<+∞ .

Then, to prove the continuity of t 7→ F (t , ·) in Hr ([0,π]), it suffices to show the continuity in

L2([0,π]). Indeed, L2([0,π]) ⊂ Hr ([0,π]), and the embedding is continuous. The continuity

in L2([0,π]) follows from the fact that since [0,T ]× [0,π] is compact, F is in fact uniformly

continuous on this domain.

Case where σ is bounded

We are assuming in this section that σ is bounded. We consider the solution u to (5.2.11) with

b = 0. In order to study the fractional Sobolev regularity of t 7→ u(t , ·), we need to calculate

the sine Fourier coefficients ak (u(t , ·)) defined in (5.2.12). To lighten the notations, in what

follows, we will denote these coefficients ak (t ). Then, by definition, for k > 1,

ak (t ) : = 2

π

∫ π

0
u(t , x)sin(kx)dx

= 2

π

∫ π

0

(∫ t

0

∫ π

0

∫
|z|61

sin(kx)zG(t − s; x, y)σ
(
u(s, y)

)
J̃ (ds, dy, dz)

)
dx .

We want to apply Theorem A.0.2 to be able to exchange the stochastic integral and the Lebesgue

integral. The condition we need to check is the following:∫ π

0
dx

∫ t

0
ds

∫ π

0
dy

∫
|z|61

ν(dz)E
[∣∣zG(t − s; x, y)σ

(
u(s, y)

)
sin(kx)

∣∣2
]
<+∞ . (5.2.13)

Since σ is bounded, and since ν is a Lévy measure, this condition is equivalent to∫ π

0
dx

∫ t

0
ds

∫ π

0
dy

∣∣G(s; x, y)
∣∣2 <+∞ .

Using again [6, (B.5)], we know that G(t ; x, y)6CρH (t , x − y) for any (t , x, y) ∈ [0,T ]× [0,π]2,

and since the heat kernel is in Lp ([0,T ]×R) for any p < 3 (see (4.4.6) and above), we deduce

that (5.2.13) holds. Therefore,

ak (t ) =
∫ t

0

∫ π

0

∫
|z|61

zσ
(
u(s, y)

) 2

π

(∫ π

0
sin(kx)G(t − s; x, y)dx

)
J̃ (ds, dy, dz) .
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From the series representation of G in (5.2.3) and the fact that this series representation

converges uniformly in the x variable, we have that

2

π

∫ π

0
sin(kx)G(t − s; x, y)dx = sin(k y)e−k2(t−s) .

Therefore,

ak (t ) = 2

π
e−k2t

∫ t

0

∫ π

0
σ

(
u(s, y)

)
sin(k y)ek2sLM (ds, dy) . (5.2.14)

Remark 5.2.4. The calculation of the Fourier sine coefficients above is in fact valid in a more

general case: if σ is no longer bounded, but has at most linear growth, then we know by

Proposition 5.2.1 that u has uniformly bounded moments of order 2, and the same reasoning

applies.

In the following, we define

I b
a (k) : =

∫ b

a

∫ π

0
sin(k y)ek2sσ

(
u(s, y)

)
LM (ds, dy)

=
∫ b

a

∫ π

0

∫
|z|61

z sin(k y)ek2sσ
(
u(s, y)

)(
J (ds, dy, dz)− ds dy ν(dz)

)
.

(5.2.15)

By the Bichteler-Jacod inequalities for compensated Poisson random measures (see Theorem

A.0.1(iii)) and by the boundedness of σ, we can estimate the second and fourth moments of

these stochastic integrals:

E
[

I b
a (k)2

]
6C

∫ b

a

∫ π

0
sin2(k y)e2k2sE

[∣∣σ(
u(s, y)

)∣∣2
]

ds dy

6 C̃
∫ b

a

∫ π

0
sin2(k y)e2k2s ds dy ,

(5.2.16)

and

E
[

I b
a (k)4

]
6C

(
E

[(∫ b

a

∫ π

0
sin2(k y)e2k2s

∣∣σ(
u(s, y)

)∣∣2 ds dy

)2]

+
∫ b

a

∫ π

0
sin4(k y)e4k2sE

[∣∣σ(
u(s, y)

)∣∣4
]

ds dy

)
6 C̃

((∫ b

a

∫ π

0
sin2(k y)e2k2s ds dy

)2

+
∫ b

a

∫ π

0
sin4(k y)e4k2s ds dy

)
,

(5.2.17)

where the constant C̃ also accounts for
∫
|z|61 z2ν(dz) and

∫
|z|61 z4ν(dz). Since ν is a Lévy

measure, these integrals are finite.
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Also, for 06 a < b6 c < d 6 T , since σ is bounded,

E

[(
I b

a (k)I d
c ( j )

)2
]
= E

[(∫ d

c

∫ π

0
I b

a (k)sin( j y)e j 2sσ
(
u(s, y)

)
LM (ds, dy)

)2]

6C
∫ d

c

∫ π

0
E
[

I b
a (k)2σ

(
u(s, y)

)2
]

sin2( j y)e2 j 2s ds dy

6C

(∫ b

a

∫ π

0
sin2(k y)e2k2s ds dy

)(∫ d

c

∫ π

0
sin2( j y)e2 j 2s ds dy

)
6C

e2k2b −e2k2a

2k2

e2 j 2d −e2 j 2c

2 j 2 ,

(5.2.18)

where we used the fact that I b
a (k) is Fc -measurable, and (5.2.16) in the second inequality. In

the case where σ is constant, this inequality can be obtained more simply using the indepen-

dence of I b
a (k) and I d

c ( j ).

Proposition 5.2.5. Let L be a pure jump Lévy white noise, and let σ be a bounded and Lipschitz

function. Let u be the mild solution to the stochastic heat equation (5.2.1). Then, for any r <−1
2 ,

the stochastic process (u(t , ·))t>0 has a càdlàg version in Hr ([0,π]).

Proof. By the argument just before Section 5.2.1, we can suppose that u is the solution to

(5.2.11). Furthermore, by Lemma 5.2.3, we may further assume that L = L1 = LM . Then, by

(5.2.14), we have the Fourier sine coefficients of t 7→ u(t , ·)

ak (t ) := 2

π
e−k2t

∫ t

0

∫ π

0
sin(k y)ek2sσ

(
u(s, y)

)
LM (ds, dy) . (5.2.19)

We will use Theorem A.0.3 to show the existence of a càdlàg version of t 7→ u(t , ·). By Lemma

A.0.4, u has a separable version that is jointly continuous in probability, and therefore t 7→
u(t , ·) has a version that is continuous in probability as a process with values in L2([0,π])

(and therefore in Hr ([0,π]) since r < −1
2 ). Then, it suffices to show that for any t ∈ [0,T ],

u(t , ·) ∈ Hr ([0,π]), and that for some δ> 0,

E
[
‖u(t +h, ·)−u(t , ·)‖2

Hr
‖u(t −h, ·)−u(t , ·)‖2

Hr

]
6C h1+δ ,

for any h ∈ (0,1). We first need to check that

+∞∑
k=1

(1+k2)r a2
k (t ) <+∞ , a.s. (5.2.20)

By (5.2.16),

E
[
a2

k (t )
]
6C

∫ t

0

∫ π

0
sin2(k y)e−2k2(t−s) ds dy 6C T ,
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where C is a constant independent of k. Since r <−1
2 , we deduce (5.2.20). Then,

‖u(t +h, ·)−u(t , ·)‖2
Hr

=
+∞∑
k=1

(1+k2)r (ak (t +h)−ak (t ))2 ,

and

‖u(t −h, ·)−u(t , ·)‖2
Hr

=
+∞∑
j=1

(1+ j 2)r (
a j (t −h)−a j (t )

)2 .

Using (5.2.15) and (5.2.19),

ak (t +h)−ak (t ) =− 2

π
e−k2t

[
(1−e−k2h)I t

0(k)−e−k2h I t+h
t (k)

]
a j (t −h)−a j (t ) =− 2

π
e− j 2(t−h)

[
(e− j 2h −1)I t−h

0 ( j )+e− j 2h I t
t−h( j )

]
.

Therefore, using the classical inequality (a +b)26 2(a2 +b2),

‖u(t +h, ·)−u(t , ·)‖2
Hr

‖u(t −h, ·)−u(t , ·)‖2
Hr

6
16

π4

∑
k, j>1

(1+k2)r (1+ j 2)r (|A1( j ,k)|+ |A2( j ,k)|+ |A3( j ,k)|+ |A4( j ,k)|)2

6C
∑

k, j>1
(1+k2)r (1+ j 2)r (

A1( j ,k)2 + A2( j ,k)2 + A3( j ,k)2 + A4( j ,k)2) ,

(5.2.21)

for some constant C , where

A1( j ,k) := e−k2t e− j 2(t−h)(1−e−k2h)(e− j 2h −1)I t
0(k)I t−h

0 ( j ) ,

A2( j ,k) := e−k2t e− j 2(t−h)(1−e−k2h)e− j 2h I t
0(k)I t

t−h( j ) ,

A3( j ,k) := e−k2t e− j 2(t−h)e−k2h(e− j 2h −1)I t+h
t (k)I t−h

0 ( j ) ,

A4( j ,k) := e−k2t e− j 2(t−h)e−k2he− j 2h I t+h
t (k)I t

t−h( j ) .

We treat each of the four terms separately. Intuitively, the last two terms will be the easiest to

deal with. Indeed, we can use (5.2.18), which gives an order h from E
[(

I t+h
t (k)I t−h

0 ( j )
)2

]
and

an order h from (e− j 2h −1) for the term A3. Also, (5.2.18) gives an order h2 from the term A4.

This suggests an order h2 for these two terms. We will see in the following that this is indeed

the case.

A1( j ,k):

E
[

A1( j ,k)2]= e−2k2t e−2 j 2(t−h)(1−e−k2h)2(e− j 2h −1)2E

[(
I t

0(k)I t−h
0 ( j )

)2
]

6Ce−2k2t e−2 j 2(t−h)(1−e−k2h)2(e− j 2h −1)2

×E
[(

I t−h
0 (k)I t−h

0 ( j )
)2 +

(
I t

t−h(k)I t−h
0 ( j )

)2
]

=: Ã1( j ,k)+ Ã2( j ,k) .
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By (5.2.18), we can write

E

[(
I t

t−h(k)I t−h
0 ( j )

)2
]
6C

e2 j 2(t−h) −1

2 j 2

e2k2t −e2k2(t−h)

2k2

6 e2 j 2(t−h) 1−e−2 j 2(t−h)

2 j 2 Ce2k2t 1−e−2k2h

2k2

6C
e2k2t e2 j 2(t−h)

2 j 2 h ,

where we used 1− e−2k2h 6 2k2h and 1− e−2 j 2(t−h) 6 1 in the last inequality. Finally, since

(1−e−k2h)26 1 and (1−e− j 2h)26 j 2h, we deduce that

Ã2( j ,k)6C h2 . (5.2.22)

Also, by the Cauchy-Schwarz inequality,

E

[(
I t−h

0 (k)I t−h
0 ( j )

)2
]
6 E

[
I t−h

0 (k)4
] 1

2
E
[

I t−h
0 ( j )4

] 1
2

. (5.2.23)

By (5.2.17) and subadditivity of the square root,

E
[

I t−h
0 (k)4

] 1
2 6C

((∫ t−h

0

∫ π

0
sin2(k y)e2k2s ds dy

)2

+
∫ t−h

0

∫ π

0
sin4(k y)e4k2s ds dy

) 1
2

6C

e2k2(t−h) −1

2k2 +
(

e4k2(t−h) −1

4k2

) 1
2


6Ce2k2t

e−2k2h −e−2k2t

2k2 +
(

e−4k2h −e−4k2t

4k2

) 1
2


6Ce2k2t

(
1

2k2 + 1

2k

)
.

(5.2.24)

Let 0 < δ < 3
2 , to be chosen later. Then, multiplying each term by (1− e−k2h)2 and using

(1−e−k2h)26 k2h for the first term of the sum, and

(1−e−k2h)2 = (1−e−k2h)
1
2+δ(1−e−k2h)

3
2−δ6 k1+2δh

1
2+δ

for the second term of the sum, we get

(1−e−k2h)2E
[

I t−h
0 (k)4

] 1
2 6Ce2k2t

(
h +k2δh

1
2+δ

)
. (5.2.25)

A similar calculation yields

(1−e− j 2h)2E
[

I t−h
0 ( j )4

] 1
2 6Ce2 j 2(t−h)

(
h + j 2δh

1
2+δ

)
. (5.2.26)
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Then, we combine (5.2.23), (5.2.25) and (5.2.26) to obtain

Ã1( j ,k)6C
(
h2 + j 2δk2δh1+2δ

)
. (5.2.27)

Therefore, (5.2.22) and (5.2.27) give

E
[

A1( j ,k)2]6C
(
h2 + j 2δk2δh1+2δ

)
.

A2( j ,k): We treat this term in a similar way to A1( j ,k):

E
[

A2( j ,k)2]= e−2k2t e−2 j 2(t−h)(1−e−k2h)2e−2 j 2hE
[(

I t
0(k)I t

t−h( j )
)2

]
6Ce−2k2t e−2 j 2(t−h)(1−e−k2h)2e−2 j 2hE

[(
I t−h

0 (k)I t
t−h( j )

)2 + (
I t

t−h(k)I t
t−h( j )

)2
]

=: B1( j ,k)+B2( j ,k) .

In the same way as for the term Ã( j ,k), we get

B1( j ,k)6C h2 . (5.2.28)

We use the Cauchy-Schwarz inequality to deal with the term B2( j ,k):

B2( j ,k)6Ce−2k2t e−2 j 2(t−h)(1−e−k2h)2e−2 j 2hE
[
I t

t−h(k)4] 1
2 E

[
I t

t−h( j )4] 1
2 .

We can deal with the second expectation as in (5.2.24), and we get

E
[
I t

t−h( j )4] 1
2 6Ce2 j 2t

1−e−2 j 2h

2 j 2 +
(

1−e−4 j 2h

4 j 2

) 1
2


6Ce2 j 2t

(
h +

p
h
)

.

Similarly,

E
[
I t

t−h(k)4] 1
2 6Ce2k2t

(
h +

p
h
)

.

Also, for 0 < δ< 1, since (1−e−k2h)26 k2δhδ, we get

B2( j ,k)6C k2δhδ
(
h +

p
h
)2
6C k2δh1+δ . (5.2.29)

By (5.2.28) and (5.2.29),

E
[

A2( j ,k)2]6C k2δh1+δ .
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A3( j ,k): By (5.2.18),

E
[

A3( j ,k)2]= e−2k2t e−2 j 2(t−h)e−2k2h(e− j 2h −1)2E

[(
I t+h

t (k)I t−h
0 ( j )

)2
]

6Ce−2k2t e−2 j 2(t−h)e−2k2h(e− j 2h −1)2 e2 j 2(t−h) −1

2 j 2

e2k2(t+h) −e2k2t

2k2

6C (e− j 2h −1)2 1−e−2 j 2(t−h)

2 j 2

1−e−2k2h

2k2

6C
(e− j 2h −1)2

2 j 2

1−e−2k2h

2k2 .

Then, since (1−e− j 2h)26 j 2h and 1−e−2k2h 6 2k2h, we get

E
[

A3( j ,k)2]6C h2 .

A4( j ,k): Again, by (5.2.18),

E
[

A4( j ,k)2]= e−2k2t e−2 j 2(t−h)e−2k2he−2 j 2hE

[(
I t+h

t (k)I t
t−h( j )

)2
]

6Ce−2k2t e−2 j 2(t−h)e−2k2he−2 j 2h e2 j 2t −e2 j 2(t−h)

2 j 2

e2k2(t+h) −e2k2t

2k2

6C
1−e−2 j 2h

2 j 2

1−e−2k2h

2k2 .

Therefore, as for the previous term we get

E
[

A4( j ,k)2]6C h2 .

Then, for every r <−1
2 , we can pick 0 < δ< 1 such that r +δ<−1

2 . Then,

E
[
‖u(t +h, ·)−u(t , ·)‖2

Hr
‖u(t −h, ·)−u(t , ·)‖2

Hr

]
6C h1+δ .

By Theorem A.0.3, we deduce that (u(t , ·))t>0 has a càdlàg version in Hr ([0,π]) for any r <
−1

2 .

Remark 5.2.6. The result of Proposition 5.2.5 is in fact valid for any random field u whose sine

Fourier coeficients can be written in the form

ak (u(t , ·)) =Ce−k2t
∫ t

0

∫ π

0
sin(k y)ek2s Z (s, y)L(ds, dy) ,

where Z is a predictable and bounded random field.
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General case

If σ is not bounded, we show that the conclusion of Proposition 5.2.5 is still valid.

Theorem 5.2.7. Let σ :R→R be a Lipschitz continuous function, and let L be a pure jump Lévy

white noise. Let u be the mild solution to the stochastic heat equation (5.2.1) constructed in

Proposition 5.2.1. Then, for any r <−1
2 , the stochastic process (u(t , ·))t>0 has a càdlàg version

in Hr ([0,π]).

Remark 5.2.8. Let D be a bounded and smooth domain D ⊂Rd , or D =Rd . In the case of a very

simple noise with only one deterministic jump of size one at position (s, y), the solution u to the

stochastic heat equation on D with this simple noise can be written as

u(t , x) =GD (t − s; x, y) , (t , x) ∈ [0,T ]×D

where GD is the Green’s function for the heat operator on the domain D with Dirichlet boundary

conditions. Then, at t = s, we can formally write u(s, ·) =Cδy , where δy is the Dirac distribution

at y. Then, it is easy to show that δy does not belong to any fractional Sobolev space of order

r > −d
2 . Therefore, the constraint r < −1

2 in Theorem 5.2.7 is optimal, and the constraints

r <−d
2 in Theorems 5.3.12 and 5.4.6 are also optimal.

Proof of Theorem 5.2.7. By the argument just before Section 5.2.1 and by Lemma 5.2.3, we can

suppose that u is the solution to (5.2.11) with L1 = LM . Let σn(u) =σ(u)1|u|6n . We define

un(t , x) =
∫ t

0

∫ π

0
G(t − s; x, y)σn(u(s, y))LM (ds, dy) .

By Remark 5.2.4, the Fourier sine coefficients of t 7→ u(t , ·)−un(t , ·) are given by

ak,n(t ) = 2

π

∫ t

0

∫ π

0
sin(k y)e−k2(t−s) (σ(u(s, y))−σn(u(s, y))

)
LM (ds, dy) .

Therefore, for any t ∈ [0,T ],

‖u(t , ·)−un(t , ·)‖2
Hr

=
+∞∑
k=1

(1+k2)r a2
k,n(t ) . (5.2.30)

For conciseness of the notation, we write σ(u(s, y))−σn(u(s, y)) =σ(n)(s, y). Then, we use the

following identity to rewrite the coefficient ak,n(t ) as a semimartingale:

e−k2(t−s) = 1−
∫ t

s
k2e−k2(t−r ) dr .

Using Theorem A.0.2, we get

ak,n(t ) = 2

π

(∫ t

0

∫ π

0
sin(k y)σ(n)(s, y)LM (ds, dy)
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−
∫ t

0

∫ π

0
sin(k y)

(∫ t

s
k2e−k2(t−r ) dr

)
σ(n)(s, y)LM (ds, dy)

)
= 2

π

(∫ t

0

∫ π

0
sin(k y)σ(n)(s, y)LM (ds, dy)

−
∫ t

0

(∫ r

0

∫ π

0
sin(k y)k2e−k2(t−r )σ(n)(s, y)LM (ds, dy)

)
dr

)
.

Therefore,

∣∣ak,n(t )
∣∣6 2

π

∣∣∣∣∫ t

0

∫ π

0
sin(k y)σ(n)(s, y)LM (ds, dy)

∣∣∣∣
+ 2

π

∫ t

0
k2e−k2(t−r )

∣∣∣∣∫ r

0

∫ π

0
sin(k y)σ(n)(s, y)LM (ds, dy)

∣∣∣∣ dr

6
2

π

∣∣∣∣∫ t

0

∫ π

0
sin(k y)σ(n)(s, y)LM (ds, dy)

∣∣∣∣
+ 2

π
sup

r∈[0,t ]

∣∣∣∣∫ r

0

∫ π

0
sin(k y)σ(n)(s, y)LM (ds, dy)

∣∣∣∣(∫ t

0
k2e−k2(t−r ) dr

)
6C sup

r∈[0,t ]

∣∣∣∣∫ r

0

∫ π

0
sin(k y)σ(n)(s, y)LM (ds, dy)

∣∣∣∣ ,

where C does not depend on k. Then, using Theorem A.0.1(i), we deduce that

E

[
sup

t∈[0,T ]
a2

k,n(t )

]
6C

∫ T

0

∫ π

0
sin2(k y)E

[
σ2

(n)(s, y)
]

ds dy , (5.2.31)

where the constant C includes
∫
|z|61 z2ν(dz). Since ν is a Lévy measure, this integral is finite.

Furthermore, by Hölder’s inequality and Markov’s inequality,

E
[
σ2

(n)(s, y)
]= E[

σ
(
u(s, y)

)2
1|u(s,y)|>n

]
6 E

[
σ

(
u(s, y)

) 8
3

] 3
4 [
P

(|u(s, y)| > n
)] 1

4

6C
(
1+E

[∣∣u(s, y)
∣∣ 8

3

]) 3
4
E
[∣∣u(s, y)

∣∣ 8
3

] 1
4

n
2
3

6
C

n
2
3

(
1+E

[∣∣u(s, y)
∣∣ 8

3

])
.

(5.2.32)

By Proposition 5.2.1, the solution u has uniformly bounded moments in space and time of

any order p < 3, we deduce that

E
[
σ2

(n)(s, y)
]
6

C

n
2
3

, (5.2.33)

for some constant C . By (5.2.31) and (5.2.33), we obtain

E

[
sup

t∈[0,T ]
a2

k,n(t )

]
6

C

n
2
3

.
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By (5.2.30), we deduce that for any r <−1
2 ,

E

[
sup

t∈[0,T ]
‖u(t , ·)−un(t , ·)‖2

Hr

]
6

+∞∑
k=1

(1+k2)rE

[
sup

t∈[0,T ]
a2

k,n(t )

]

6
C

n
2
3

→ 0 as n →+∞ .

Therefore, supt∈[0,T ] ‖u(t , ·)−un(t , ·)‖Hr → 0 in L2(Ω) as n →+∞, and there is a subsequence

(nk )k>0 such that supt∈[0,T ] ‖u(t , ·)−unk (t , ·)‖Hr → 0 almost surely as k →+∞. This means

that unk (t , ·) converges to u(t , ·) in Hr ([0,π]) uniformly in time for any r < −1
2 . Since σnk is

bounded, t 7→ unk (t , ·) has by Proposition 5.2.5 and Remark 5.2.6 a càdlàg version in Hr ([0,π]).

Therefore, t 7→ u(t , ·) has a càdlàg version in Hr ([0,π]) for any r <−1
2 .

Remark 5.2.9. The result of Theorem 5.2.7 is in fact valid for any random field u that can be

written in the form

u(t , x) =C
∫ t

0

∫ π

0
G(t − s; x, y)Z (s, y)L(ds, dy) ,

where Z is a predictable random field such that for some p > 2,

sup
(t ,x)∈[0,T ]×R

E
[|Z (t , x)|p1t6τN

]<∞

for every N ∈N. Indeed, as before it is enough to show the result for

uN (t , x) =C
∫ t

0

∫ π

0
G(t − s; x, y)Z (s, y)LN (ds, dy) ,

and then restrict to N = 1 and b = 0 using Lemma 5.2.3. Replacing σ(n) by Z(n) := Z1|Z |>n in

the proof of Theorem 5.2.7, we can use Hölder’s inequality as in (5.2.32) to get

E
[

Z 2
(n)(s, y)1s6τ1

]
6

(
E
[

Z p (s, y)1s6τ1

]) 2
p
[
P

(
Z (s, y)1s6τ1 > n

)] p−2
p

6
E
[

Z p (s, y)1s6τ1

]
np−2

6
sup(t ,x)∈[0,T ]×RE

[|Z (t , x)|p1t6τ1

]
np−2 .

This bound replaces (5.2.33) and the remainder of the proof carries through.

5.2.3 Continuity in space at a fixed time

We have studied the sample path regularity of the mild solution u constructed in Proposition

5.2.1, with σ globally Lipschitz, viewed as a stochastic process with values in a space of

distributions. However, because of the absolute continuity of the law of the jump locations

of the noise, if we fix a time t and look at the sample path regularity of the solution in space,

then, with probability one, we do not meet any of these jumps. In fact, we will prove in this
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section that for any fixed time t ∈ [0,T ], the paths of the process x 7→ u(t , x) are almost surely

continuous.

Proposition 5.2.10. Let L be a pure jump Lévy white noise with Lévy measure ν, and suppose

that for some 0 < p < 2,
∫
|z|61 |z|pν(dz) <∞. Let t ∈ [0,T ] be fixed. Then the process x 7→ u(t , x)

has a locally γ-Hölder continuous modification for any γ< (
2− (3

2 ∨p
))(3

2 ∨p
)−1

.

Proof. By the argument just before Section 5.2.1, we can suppose that u is the solution to

(5.2.11). By Hölder’s inequality for the drift term, and the Bichteler-Jacod inequality in Theo-

rem A.0.1(ii) for the martingale term, we have for any q ∈ (3
2 ∨p,2

)
,

E
[∣∣u(t , x)−u(t , y)

∣∣q]
6C

∫ t

0

∫ π

0
|G(t − s; x, w)−G(t − s; y, w)|qE[|σ (u(s, w))|q]

ds dw

+C
∫ t

0

∫ π

0

∫
|z|61

|z|q ∣∣G(t − s; x, w)−G(t − s; y, w)
∣∣q
E
[|σ (u(s, w))|q]

ds dw ν(dz) .

Since q > p and since
∫
|z|61 |z|pν(dz) < ∞, we deduce that

∫
|z|61 |z|qν(dz) < ∞. Also, by

Proposition 5.2.1, the mild solution u has a second moment that is uniformly bounded in

space and time. Therefore, since |σ(x)|q 6C
(
1+|x|q)

, we get

E
[∣∣u(t , x)−u(t , y)

∣∣q]
6C

∫ t

0

∫ π

0

∣∣G(t − s; x, w)−G(t − s; y, w)
∣∣q ds dw .

By [6, Lemma B.1, (B.8)], which applies since q > 3
2 , we get

E
[∣∣u(t , x)−u(t , y)

∣∣q]
6C |x − y |3−q .

By Kolmogorov’s continuity criterion (see [44, Theorem 3.23]), we get the result.

Remark 5.2.11. In particular, any α-stable noise with α ∈ (0,2) satisfies the hypothesis of

Proposition 5.2.10 with any p ∈ (α,2).

5.2.4 Continuity in time at a fixed space point

We now look at the regularity of the mild solution in time at a fixed space point.

Proposition 5.2.12. Let L be a pure jump Lévy white noise with Lévy measure ν. Suppose that

for some 0 < p < 1,
∫
|z|61 |z|pν(dz) <∞. Let x ∈ [0,π] be fixed. Then the process t 7→ u(t , x) has

a continuous modification.

Proof. By the argument just before Section 5.2.1, we can suppose that u is the solution to

(5.2.11). By Lemma 5.2.3, (t , x) 7→ F (t , x) = ∫ t
0

∫ π
0 G(t − s; x, y)σ(u(s, y))ds dy is jointly contin-

uous in (t , x) ∈ [0,T ]× [0,π]. Then, regarding the stochastic integral with respect to LM , we
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observe that the jumps of the noise are summable, hence, upon changing the value of b, it is

sufficient to consider the uncompensated process∫ t

0

∫ π

0

∫
R

zG(t − s; x, y)σ(u(s, y))J (ds, dy, dz) = ∑
i>1

Zi G(t −Ti ; x,Yi )σ(u(Ti ,Yi )) , (5.2.34)

where (Ti ,Yi , Zi ) are the jump points of the underlying Poisson random measure J . For any

fixed (x, y) ∈ [0,π]2, x 6= y , we have by [6, (B.7)] that t 7→G(t ; x, y) is a continuous function on

R. We show that the sum in (5.2.34) converges uniformly in t ∈ [0,T ]. To do this we can split

the sum depending on the distance of the jump Yi to x. Indeed, for |x − y |6p
2T , by Lemma

A.0.5, we have

sup
t∈[0,T ]

G(t ; x, y)6 sup
t∈[0,T ]

Cp
t

e−
(x−y)2

4t = C ′

|x − y | ,

for some constant C ′. Also, if |x − y | >p
2T , then

sup
t∈[0,T ]

G(t ; x, y)6 sup
t∈[0,T ]

Cp
t

e−
(x−y)2

4t = Cp
T

e−
(x−y)2

4T .

Since 0 < p < 1,

E

[(∑
i>1

sup
t∈[0,T ]

|Zi G(t −Ti ; x,Yi )σ(u(Ti ,Yi ))|
)p]

6 E

[∑
i>1

|Zi |p |σ(u(Ti ,Yi ))|p sup
t∈[0,T ]

|G(t −Ti ; x,Yi )|p
]

6C sup
(s,y)∈[0,T ]×[0,π]

E
[∣∣σ(

u(s, y)
)∣∣p](∫ T

0

∫ π

0

∫
|z|61

|z|p 1

|x − y |p 1|x−y |6p2(T−s) ds dy ν(dz)

+
∫ T

0

∫ π

0

∫
|z|61

|z|pρH (T − s, x − y)p1|x−y |>p2(T−s) ds dy ν(dz)

)
<+∞ ,

where we used the fact that ρH ∈ Lp ([0,T ]×R) since p < 3 (see (4.4.6) and above), and the fact

that
∫
|z|61 |z|pν(dz) <+∞. This concludes the proof.

Remark 5.2.13. In particular, any α-stable noise with α ∈ (0,1) satisfies the hypothesis of

Proposition 5.2.12. The next section shows that for α> 1, the situation is completely different.

The case of an α-stable noise with 16α< 2

In this section, we consider the stochastic heat equation on [0,T ]× [0,π] with Dirichlet bound-

ary conditions, with additive α-stable noise Lα on [0,T ]× [0,π]. More precisely, Lα is a Lévy

white noise with characteristic triplet (0,0,να), where να(dz) := (c+1z>0 + c−1z<0) 1
|z|α+1 . This

noise then coincides with the notion of α-stable random measure studied in [62].

Proposition 5.2.14. Let α ∈ [1,2), and let u be the mild solution of the stochastic heat equation
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with additive α-stable noise:

u(t , x) =
∫ t

0

∫ π

0
G(t − s; x, y)Lα(ds, dy) .

Then for any x ∈ (0,π), there is a set Nx ⊂ Ω of probability one such that for any ω ∈ Nx ,

t 7→ u(t , x)(ω) is unbounded on any non-empty open interval.

Proof. Fix x ∈ (0,π). Observe that the process (X (t ), t ∈ [0,T ]) defined by

X (t ) = u(t , x) =
∫ t

0

∫ π

0
G(t − s; x, y)Lα(ds, dy)

is an α-stable process given in the "standard form" of [62, (10.1.1)] with the measurable space

E = [0,T ]× [0,π], and the control measure ds dy . Let T ∗ = [t1, t2], with 06 t1 < t2 6 T . We

shall check that the necessary condition [62, (10.2.14)] for sample path boundedness in [62,

Theorem 10.2.3] is not satisfied, in particular, that∫ T

0

∫ π

0

(
sup
t∈T ∗

G(t − s; x, y)

)α
ds dy =+∞ . (5.2.35)

Indeed, observe that the integral is bounded below by∫ t2

t1

∫ π

0
sup

t∈[t1,t2]
G(t − s; x, y)αds dy =

∫ t2−t1

0

∫ π

0
sup

t∈[t1,t2]
G(t − t1 − r ; x, y)αdr dy

=
∫ t2−t1

0

∫ π

0
sup

u∈[0,t2−t1]
G(u − r ; x, y)αdr dy

>
∫ t2−t1

0

∫ x+ε

x−ε
sup

u∈[0,t2−t1]
G(u − r ; x, y)αdr dy

=
∫ t2−t1

0

∫ x+ε

x−ε
sup

v∈[0,t2−t1−r ]
G(v ; x, y)αdr dy

=
∫ t2−t1

0

∫ x+ε

x−ε
sup

v∈[0,s]
G(v ; x, y)αds dy ,

for any fixed ε> 0 such that [x −ε, x +ε] ⊂ (0,π). We now use the representation of the Green’s

function

G(t ; x, y) = 1p
4πt

∑
k∈Z

(
exp

(
− (y −x −2kπ)2

4t

)
−exp

(
− (y +x −2kπ)2

4t

))
given in [6, (B.2)] to see that

G(t ; x, y) = ρH (t , x − y)+H(t ; x, y) ,

where (t , y) 7→ H(t ; x, y) is smooth and bounded on [0,T ]× [x − ε, x + ε] (cf. the proof of

[69, Corollary 3.4]). In particular, for y ∈ [x −ε, x +ε], G(v ; x, y)> ρH (v, x − y)−C0 with some
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constant C0. In view of the study of the maximum of t 7→ ρH (t , x−y) in the proof of Proposition

5.2.12, we have∫ T

0

∫ π

0

(
sup
t∈T ∗

G(t − s; x, y)

)α
ds dy >

∫ t2−t1

0

∫
|x−y |6ε∧ C

2C0
∧p2s

(
C

|x − y | −C0

)α
ds dy =+∞ ,

and (5.2.35) is proved.

Remark 5.2.15. The sample path behaviour in the α-stable case is due to the singularity of the

Lévy measure at the origin. Indeed, we can write

Lα(ds, dy) =
∫
|z|61

z J̃ (ds, dy, dz)+
∫
|z|>1

z J (ds, dy, dz)

= L1
α(ds, dy)+L2

α(ds, dy) .

Since L2
α satisfies the hypothesis of Proposition 5.2.12 (there are no small jumps), the solution

v to the SHE driven by this noise is such that for any x ∈ [0,π], the process t 7→ v(t , x) has

a continuous modification. Let w be solution to the SHE driven by L1
α. Since Proposition

5.2.14 applies to v +w, for any x ∈ [0,π], the process t 7→ w(t , x) is unbounded on any open

interval almost surely. Then, we can extend the result of Proposition 5.2.14 to any noise with a

small jump density comparable to the α-stable case. More precisely, suppose that L is a pure

jump Lévy noise with Lévy measure ν and jump measure J , such that there is δ> 0 such that

ν(dz) = f (z)
|z|α+1 dz on [−δ,δ], and such that f (0) 6= 0. Suppose also that for some 0 < q < 1,

∫ δ

−δ
| f (z)− f (0)|

|z|α+1 |z|q dz <+∞ . (5.2.36)

This condition forces f to be continuous at 0 with a certain regularity at the origin. Then, we

can write

ν(dz) = f (z)− f (0)

|z|α+1 1z∈[−δ,δ] dz + f (0)

|z|α+11z∈[−δ,δ] dz +1z∈[−δ,δ]cν(dz) .

Therefore, we can write

ν(dz)+
(

f (z)− f (0)
)
−

|z|α+1 1z∈[−δ,δ] dz︸ ︷︷ ︸
:=ν1(dz)

=
(

f (z)− f (0)
)
+

|z|α+1 1z∈[−δ,δ] dz︸ ︷︷ ︸
:=ν2(dz)

+ f (0)

|z|α+11z∈[−δ,δ] dz︸ ︷︷ ︸
:=ν3(dz)

+1z∈[−δ,δ]cν(dz)︸ ︷︷ ︸
:=ν4(dz)

.

For 16 i 6 4, let Ji be a Poisson random measure with intensity measure νi . We assume that the

Ji are independent. Let Li be the pure jump Lévy noise associated with Ji . We consider the mild

solution ui to the linear SHE with driving noise Li . Then u1+u has the same law as u2+u3+u4.

By (5.2.36) and Proposition 5.2.12, for any fixed x ∈ [0,π], t 7→ u1(t , x) and t 7→ u2(t , x) have
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a continuous modification. By the same Proposition 5.2.12, since L4 does not have any small

jumps, for any fixed x ∈ [0,π], t 7→ u4(t , x) has a continuous modification. Then, by the same

argument as above for the regularity of t 7→ w(t , x), we deduce that for any x ∈ [0,π], t 7→ u3(t , x)

is unbounded on any open interval. Therefore, for any x ∈ [0,π], t 7→ u(t , x) is unbounded on

any non-empty open interval. For example, this extension includes tempered stable Lévy noise,

i.e. pure jump Lévy noise with Lévy measure ν(dz) = e−λ|z|
|z|α+1 , α ∈ [1,2).

5.3 The SHE driven by heavy-tailed noise: equation on [0,T ]×Rd

In [14], C. Chong proved the existence of a solution to the following stochastic heat equation

(SHE) under some fairly general assumptions on the driving noise. In particular, his results

include the cases of α-stable noises.{
∂u
∂t (t , x) =∆u(t , x)+σ(u(t , x))L̇(t , x) , (t , x) ∈ [0,T ]×Rd ,

u(0, x) = 0, for all x ∈Rd ,
(5.3.1)

where L̇ is a Lévy white noise with characteristic triplet (b,0,ν). More precisely, we suppose

that

L(dt , dx) = b dt dx +
∫
|z|61

z J̃ (dt , dx, dz)+
∫
|z|>1

z J (dt , dx, dz)

=: LB (dt , dx)+LM (dt , dx)+LP (dt , dx) ,
(5.3.2)

where b ∈R, J is a Poisson random measure on [0,∞)×Rd ×Rwith intensity dt dxν(dz), and

J̃ is the compensated version of J . The measure ν is a Lévy measure, that is, ν({0}) = 0 and∫
R

(
z2 ∧1

)
ν(dz) <+∞. We suppose that the following hypothesis hold:

(H3) The function σ :R→R is globally Lipschitz.

(H4) There exists 0 < p < 1+ 2
d and p

1+(
1+ 2

d −p
) < q 6 p such that

∫
|z|61

|z|pν(dz)+
∫
|z|>1

|z|qν(dz) <+∞ .

If p < 1, we assume that

b0 := b −
∫
|z|61

zν(dz) = 0.

The heat kernel for the stochastic heat equation (5.3.1) on this domain is given by the usual

Gaussian density function

ρH (t , x − y) = 1

(4πt )
d
2

e−
|x−y |2

4t .

By definition, a mild solution of (5.3.1) is a predictable random field u such that for any

(t , x) ∈ [0,T ]×Rd ,

u(t , x) =
∫ t

0

∫
Rd
ρH (t − s, x − y)σ

(
u(s, y)

)
L(ds, dy) a.s. (5.3.3)
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In [14], C. Chong introduced a sequence of stopping times to truncate the large jumps of the

noise in a suitable manner. This particular truncation does not delete all the large jumps,

provided they are far enough away from the origin in space. More precisely, let h :Rd →R be

defined by

h : x 7→ 1+|x|η ∀x ∈Rd , (5.3.4)

for some η to be chosen later. Then, for any N ∈N,

τN = inf{t > 0 : J ([0, t ]× {(x, z) : |z| > N h(x)}) > 0} , (5.3.5)

where η has to be chosen. We can then define a truncated noise from (5.3.2), for N > 1,

LN (dt , dx) = b dt dx +
∫
|z|61

z J̃ (dt , dx, dz)+
∫

1<|z|<N h(x)
z J (dt , dx, dz) (5.3.6)

By definition, a mild solution to the truncated equation (5.3.1) where L̇ is replaced by L̇N , is a

predictable random field uN such that for any (t , x) ∈ [0,T ]×Rd ,

uN (t , x) =
∫ t

0

∫
Rd
ρH (t − s, x − y)σ

(
uN (s, y)

)
LN (ds, dy) a.s. (5.3.7)

Proposition 5.3.1. Let L be a Lévy white noise with characteristic triplet (b,0,ν) as in (5.3.2),

σ :R→R, and p, q ∈R+ such that (H3) and (H4) are satisfied. Let η> d
q in (5.3.4). Then for any

N > 1, τN > 0 and τN →+∞ a.s. as N →+∞. Also, for any N > 1, there is a solution uN to

(5.3.7) such that for any N > 1 and R > 0,

sup
(t ,x)∈[0,T ]×[−R,R]d

E
[|uN (t , x)|p]<+∞ . (5.3.8)

Then, the random field u defined by u(t , x)1t6τN = uN (t , x), is a mild solution to (5.3.1).

Proof of Proposition 5.3.1. The existence of the mild solution u is a direct application of [14,

Theorem 3.1]. The moment property (5.3.8) can be deduced from [14, Theorem 3.1] if d > 2,

since in that case, p < 1+ 2
d 6 2. In the case of d = 1 and 2 < p < 3, we need an extension of

[14, Lemma 3.3(2)]. Up to the stopping time τN , the noise L coincides with LN as defined in

(5.3.6). For this noise, combining the arguments given in the proof of [14, Lemma 3.3(2)] and

the proof of Proposition 5.2.1, one obtains

E

[∣∣∣∣∫ t

0

∫
R
ρH (t − s, x − y)

(
σ(φ1(s, y))−σ(φ2(s, y))

)
LN (ds, dy)

∣∣∣∣p]
≤C

∫ t

0

∫
R

(ρH (t − s, x − y)+ρp
H (t − s, x − y))E[|φ1(s, y)−φ2(s, y)|p ]h(y)p−q ds dy ,

for all predictable processes φ1 and φ2 and some constant C > 0 independent thereof. The

remainder of the proof is now identical to that of [14, Theorem 3.1].
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5.3.1 Stationarity of the solution

We recall that the function h :Rd →Rwas defined by h(x) = 1+|x|η for x ∈Rd . We assume that

η> d
q . For any a ∈Rd and N ∈N, we define the family of stopping times τa

N by

τa
N := inf{t > 0 : J ([0, t ]× {(x, z) : |z| > N h(x −a)}) > 0} .

In particular, τ0
N is the same as τN defined in (5.3.5). Since the intensity measure of the Poisson

random measure J is invariant under translation in the space variable, τa
N has the same law

as τN , and the conclusions of [14, Lemma 3.2] are valid for τa
N . In particular, for any N > 1,

almost surely τa
N > 0, and τa

N ↗+∞ as N ↗+∞. Furthermore, by definition, on the event{
t 6 τa

N

}
, L(dt , dx) = La

N (dt , dx), where

La
N (dt , dx) := b dt dx +ρW (dt , dx)+

∫
|z|61

z J̃ (dt , dx, dz)+
∫

1<|z|6N h(x−a)
z J (dt , dx, dz) .

For N ∈N, and a ∈Rd , we now consider the truncated stochastic heat equation{
∂ua

N
∂t (t , x) =∆ua

N (t , x)+σ(ua
N (t , x))L̇a

N (t , x) , (t , x) ∈ [0,T ]×Rd ,

ua
N (0, x) = 0 for all x ∈Rd .

(5.3.9)

More precisely, we say that ua
N is a mild solution to (5.3.9) if for any (t , x) ∈ [0,T ]×Rd ,

ua
N (t , x) =

∫ t

0

∫
Rd
ρH (t − s, x − y)σ

(
ua

N (s, y)
)

La
N (ds, dy) , a.s.

Proposition 5.3.2. Let L be a Lévy white noise with characteristic triplet (b,0,ν) as in (5.3.2),

σ :R→R, and p, q ∈R+ such that (H3) and (H4) are satisfied. Then for any N ∈N and a ∈Rd ,

there is a unique mild solution ua
N to the truncated SHE (5.3.9) such that for any R ∈R+,

sup
(t ,x)∈[0,T ]×[−R,R]d

E
[∣∣ua

N (t , x)
∣∣p]<+∞ .

Proof. This results comes from a simple adaptation to the proof of [14, Theorem 3.1]. Indeed,

the only difference is the shift by a of the truncation function h. The result on the moments is

a direct consequence of [14, Theorem 3.1] if p 6 2, and can be extended to p < 1+ 2
d similarly

to the proof of Proposition 5.3.1.

Lemma 5.3.3. Let a,b ∈Rd , and N ∈N. Then, for any (t , x) ∈ [0,T ]×Rd ,

ua
N (t , x)1t6τa

N∧τb
N
= ub

N (t , x)1t6τa
N∧τb

N
, a.s. (5.3.10)

Proof. First of all, it is clear that on the event {t 6 τa
N ∧τb

N }, we have the equality La
N = Lb

N .

Then, we use the construction of the solutions ua
N and ub

N via a Picard iteration scheme. We
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will in fact show a stronger result, namely that at each step of the scheme,

ua,n
N (t , x)1t6τa

N∧τb
N
= ub,n

N (t , x)1t6τa
N∧τb

N
, a.s. (5.3.11)

We prove this result by induction. For the initialization step, we obviously have ua,0
N (t , x) =

ub,0
N (t , x) = 0 almost surely. Then, suppose that for some n > 0, (5.3.11) holds. Then, by

definition,

ua,n+1
N (t , x)1t6τa

N∧τb
N
=1t6τa

N∧τb
N

∫ t

0

∫
Rd
ρH (t − s, x − y)σ

(
ua,n

N (s, y)
)

La
N (ds, dy)

=1t6τa
N∧τb

N

∫ t

0

∫
Rd
ρH (t − s, x − y)σ

(
ub,n

N (s, y)
)
1s6τa

N∧τb
N

La
N (ds, dy)

=1t6τa
N∧τb

N

∫ t

0

∫
Rd
ρH (t − s, x − y)σ

(
ub,n

N (s, y)
)
1s6τa

N∧τb
N

Lb
N (ds, dy)

=1t6τa
N∧τb

N

∫ t

0

∫
Rd
ρH (t − s, x − y)σ

(
ub,n

N (s, y)
)

Lb
N (ds, dy)

= ub,n+1
N (t , x)1t6τa

N∧τb
N

.

Then, since ua,n
N (t , x) → ua

N (t , x) and ub,n
N (t , x) → ub

N (t , x) as n →+∞ in Lp (Ω), we deduce that

for any (t , x) ∈ [0,T ]×Rd , (5.3.10) holds.

In [22, Definition 5.1], R. Dalang introduced the property (S) for a stochastic process and a

martingale measure, which is a sort of stationarity property in the space variable. In our case,

the noise in not necessarily a martingale measure, but we can use a similar definition:

Definition 5.3.4. We say the family of random fields ua
N has property (S) if the law of the process((

ua
N (t , a +x) , (t , x) ∈ [0,T ]×Rd

)
;
(
La

N ([0, t ]× (a +B)) , (t ,B) ∈ [0,T ]×Bb(Rd )
))

,

does not depend on a.

Lemma 5.3.5. The family of random fields ua
N has property (S).

Proof. Similarly to the proof of Lemma 5.3.3, we prove by induction using the Picard iteration

scheme that for any n ∈N, ua,n
N has the property (S) introduced in Definition 5.3.4, where{

ua,0
N (t , x) := 0, for all (t , x) ∈ [0,T ]×Rd

ua,n+1
N (t , x) := ∫ t

0

∫
Rd ρH (t − s, x − y)σ

(
ua,n

N (s, y)
)

La
N (ds, dy) , for all (t , x) ∈ [0,T ]×Rd

(5.3.12)

In the following, to lighten the notations, we drop the subscript N and assume without loss of

generality that N = 1. For the initialization step, we obviously have ua,0(t , x+a) = 0 = u0,0(t , x).

Then, we assume that ua,n has the property (S). Since ua,n+1 is defined via a stochastic integral

in (5.3.12), we can use the same argument as in [22, Lemma 18], since the proof only relies on

the fact that the noise has a law that is invariant under translation in the space variable.
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Theorem 5.3.6. For any a ∈Rd , the random field (u(t , a +x); (t , x) ∈ [0,T ]×Rd ) has the same

law as the random field (u(t , x); (t , x) ∈ [0,T ]×Rd ).

Proof. By (5.3.10) in Lemma 5.3.3, ua
N (t , a +x)1t6τa

N∧τ0
N
= u0

N (t , a +x)1t6τa
N∧τ0

N
almost surely.

Taking the stationary limit as N →+∞, we get that ua(t , x) = u0(t , x) almost surely for any

(t , x) ∈ [0,T ]×Rd . Also, by the property (S) of the family of random fields (ua
N )a∈Rd (see

Lemma 5.3.5), the random field (ua
N (t , a + x); (t , x) ∈ [0,T ] ×Rd ) has the same law as the

random field (u0
N (t , x); (t , x) ∈ [0,T ]×Rd ). Again, taking the stationary limit as N →+∞, we

get that the random field (ua(t , a +x); (t , x) ∈ [0,T ]×Rd ) has the same law as the random field

(u0(t , x); (t , x) ∈ [0,T ]×Rd ). Therefore, the random field (u0(t , a + x); (t , x) ∈ [0,T ]×Rd ) has

the same law as the random field (u0(t , x); (t , x) ∈ [0,T ]×Rd ).

5.3.2 Existence of a càdlàg solution in Hr,loc (Rd )

In the following, we are interested in the sample path regularity of the solution to (5.3.1). The

mild solution uN to the truncated equation (5.3.7) converges to the mild solution u to the

stochastic heat equation (5.3.3), and the convergence is stationary. In fact, u(t , x) = uN (t , x)

on the event {t 6 τN }. Therefore, the sample path properties of u and uN are the same, and we

can and we will restrict to the study of the regularity of the sample paths of uN . Furthermore,

we can without loss of generality assume that N = 1. Therefore, we suppose that

u(t , x) =
∫ t

0

∫
Rd
ρH (t − s, x − y)σ

(
u(s, y)

)
L1

(
ds, dy

)
,

where L1 is the truncated noise from (5.3.6) with N = 1. Since we are in the context of a noise

with jumps, the local properties of the heat kernel forces the solution to be essentially equal to

a Dirac mass at each jump point. Even in the linear case, under some moment assumptions

on the jumps, the mild solution is a well defined random field, but has infinite value at every

jump point. The situation gets even stranger in the case of an α-stable noise, where the

jumps of the noise are known to form a dense subset of [0,T ]×Rd . Therefore, the classical

pathwise regularity properties that one gets in the case of a Gaussian noise (see for example

[69] and [21]) are not relevant here. Instead, we consider the mild solution u : t 7→ u(t , ·) as a

distribution-valued process in a local fractional Sobolev space, and prove that it has a càdlàg

version in this space.

Definition 5.3.7. The fractional Sobolev space of order r ∈R is denoted Hr (Rd ) and defined by

Hr (Rd ) :=
{

f ∈S ′(Rd ) : ξ 7→ (
1+|ξ|2) r

2 F ( f )(ξ) ∈ L2(Rd )
}

.

This space is equipped with the norm
∥∥ f

∥∥
Hr (Rd ) :=

∥∥∥(1+| · |2)
r
2 F ( f )(·)

∥∥∥
L2(Rd )

.

We also define the local Sobolev space Hr,loc(Rd ):

Hr,loc(Rd ) :=
{

f ∈S ′(Rd ) :
(
∀θ ∈D(Rd ) : θ f ∈ Hr (Rd )

)}
.
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Then, we say that a sequence
(

fn
)

n>1 of elements of Hr,loc(Rd ) converges to f in this space if for

any θ ∈D(Rd ), θ fn → θ f in Hr (Rd ) as n →+∞.

The Fourier transform of a tempered distribution was introduced in Definition 2.1.4. In other

words, the fractional Sobolev space Hr (Rd ) is the space of tempered distributions whose

Fourier transform is a function with sufficient polynomial decay at infinity. Heuristically, we

know that the Fourier transform exchanges regularity with decay at infinity, so the fractional

Sobolev spaces can be understood as a space of function with some regularity properties.

The study of the regularity of u : t 7→ u(t , ·) in Hr,loc(Rd ) follows the same path as for the case of

a bounded interval in dimension one: we first study the case where σ is a bounded function,

then we extend to a more general class of functions.

The case where σ is bounded

We first state a Lemma that allows us to deal with the drift term of u.

Lemma 5.3.8. Let Z be a bounded random field. Let

F (t , x) :=
∫ t

0

∫
Rd
ρH (t − s, x − y)Z (s, y)ds dy .

Then the process t 7→ F (t , ·) is continuous in Hr,loc(Rd ) for any r <−d
2 .

Proof. Let u 6 t ∈ [0,T ], and let x, z ∈Rd . By boundedness of Z , and using [61, Lemma A.2]

and [61, Lemma A.3]

|F (t , x)−F (u, z)|6C

(∫ u

0

∫
Rd

∣∣ρH (t − s, x − y)−ρH (u − s, z − y)
∣∣ ds dy

+
∫ t

u

∫
Rd

∣∣ρH (t − s, x − y)
∣∣ ds dy

)
6C

(∫ u

0

∫
Rd

∣∣ρH (t − s, x − y)−ρH (u − s, x − y)
∣∣ ds dy

+
∫ u

0

∫
Rd

∣∣ρH (u − s, x − y)−ρH (u − s, z − y)
∣∣ ds dy + (t −u)

)
6C

(|t −u| log(|t −u|)+|x − z|+ |t −u|) .

The case t 6 u is similar, and we deduce that F has continuous sample paths. Therefore,

t 7→ F (t , ·) is continuous in H0,loc(Rd ) = L2
loc(Rd ). We deduce in particular that the process

t 7→ F (t , ·) is continuous in Hr,loc(Rd ) for any r <−d
2 .

Proposition 5.3.9. Let L be a pure jump Lévy white noise with Lévy measure ν and jump

measure J such that (H4) is satisfied for some p, q ∈ R. Let σ be a bounded and Lipschitz

function. Let u be the mild solution to the stochastic heat equation (5.3.1) constructed in
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Proposition 5.3.1. Then, for any r <−d
2 , the stochastic process (u(t , ·))t>0 has a càdlàg version

in Hr,loc(Rd ).

Proof. As recalled in the beginning of Section 5.3.2, u is the stationary limit of the solutions to

the truncated equation uN . Therefore, u and uN have the same sample path properties, and

we can suppose without loss of generality that

u(t , x) =
∫ t

0

∫
Rd
ρH (t − s, x − y)σ

(
u(s, y)

)
LN (ds, dy) a.s. ,

where

LN (dt , dx) = b dt dx +
∫
|z|61

z J̃ (dt , dx, dz)+
∫

1<|z|<N (1+|x|η)
z J (dt , dx, dz)

=: b dt dx +LM (dt , dx)+LP
N (dt , dx) .

To make the notations lighter, we suppose also in the following that N = 1. The drift term

has already been dealt with in Lemma 5.3.8, and we can suppose that b = 0. In the following,

we also define Z (s, y) = σ
(
u(s, y)

)
. By boundedness of σ, Z is a bounded random field. We

separate the random field u into three parts, that are each treated separately. Let A > 0.

u(t , x) =
∫ t

0

∫
Rd
ρH (t − s, x − y)Z (s, y)1y∈[−2A,2A]d L1(ds, dy)

+
∫ t

0

∫
Rd
ρH (t − s, x − y)Z (s, y)1y∉[−2A,2A]d LM (ds, dy)

+
∫ t

0

∫
Rd
ρH (t − s, x − y)Z (s, y)1y∉[−2A,2A]d LP

1 (ds, dy)

:= u1(t , x)+u2(t , x)+u3(t , x) .

u1(t , x): Since we are only integrating over a compact set in space, we can use again a stopping

argument and assume that there is no jump larger than 1. Then we rewrite

u1(t , x) =
∫ t

0

∫
Rd

∫
R
ρH (t − s, x − y)Z (s, y)z1|z|611y∈[−2A,2A]d J̃ (ds, dy, dz) .

Let ϕ ∈S (Rd ). Then,

〈
F

(
u1(t , ·)) ,ϕ

〉= 〈
u1(t , ·),F

(
ϕ

)〉= ∫
Rd

u1(t , x)F (ϕ)(x)dx

=
∫
Rd

(∫ t

0

∫
Rd

∫
R
ρH (t − s, x − y)Z (s, y)z1|z|611y∈[−2A,2A]d J̃ (ds, dy, dz)

)
F (ϕ)(x)dx .

We would like to permute the stochastic integral and the Lebesgue integral. We proceed using
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a limiting argument. For any 0 < ε< 1, let

u1
ε(t , x) :=

∫ t

0

∫
Rd

∫
R
ρH (t − s, x − y)Z (s, y)z1ε<|z|611y∈[−2A,2A]d J̃ (ds, dy, dz)

=
∫ t

0

∫
Rd

∫
R
ρH (t − s, x − y)Z (s, y)z1ε<|z|611y∈[−2A,2A]d J (ds, dy, dz)

−
∫ t

0

∫
Rd

∫
R
ρH (t − s, x − y)Z (s, y)z1ε<|z|611y∈[−2A,2A]d ds dy ν(dz) .

Because the integration variable y is in a compact set, and because the jump sizes are bounded

below by ε> 0, the stochastic integral is a sum of an a.s. finite number of elements. Then,∫
Rd

u1
ε(t , x)F (ϕ)(x)dx

=
∫
Rd

(∫ t

0

∫
Rd

∫
R
F (ϕ)(x)ρH (t − s, x − y)Z (s, y)z1ε<|z|611y∈[−2A,2A]d J (ds, dy, dz)

)
dx

−
∫
Rd

(∫ t

0

∫
Rd

∫
R
F (ϕ)(x)ρH (t − s, x − y)Z (s, y)z1ε<|z|611y∈[−2A,2A]d ds dy ν(dz)

)
dx

=
∫ t

0

∫
Rd

∫
R

(∫
Rd

F (ϕ)(x)ρH (t − s, x − y)dx

)
Z (s, y)z1ε<|z|611y∈[−2A,2A]d J (ds, dy, dz)

−
∫ t

0

∫
Rd

∫
R

(∫
Rd

F (ϕ)(x)ρH (t − s, x − y)dx

)
Z (s, y)z1ε<|z|611y∈[−2A,2A]d ds dy ν(dz) ,

where we used a Fubini theorem on the deterministic integral. Then,∫
Rd

F (ϕ)(x)ρH (t − s, x − y)dx =
∫
Rd

e−iξ·y−(t−s)|ξ|2ϕ(ξ)dξ .

Therefore, ∫
Rd

u1
ε(t , x)F (ϕ)(x)dx =

∫
Rd

û1
ε(t ,ξ)ϕ(ξ)dξ , (5.3.13)

where

û1
ε(t ,ξ) :=

∫ t

0

∫
Rd

∫
R

e−iξ·y−(t−s)|ξ|2 Z (s, y)z1ε<|z|611y∈[−2A,2A]d J̃ (ds, dy, dz) . (5.3.14)

Let β ∈ [
p ∨1,

(
1+ 2

d

)∧2
)
. Then, using Hölder’s inequality,

E

[∣∣∣∣∫
Rd

(
u1
ε(t , x)−u1(t , x)

)
F (ϕ)(x)dx

∣∣∣∣β
]

6 E

[(∫
Rd

∣∣u1
ε(t , x)−u1(t , x)

∣∣ ∣∣F (ϕ)(x)
∣∣ dx

)β]

6 E

[∫
Rd

∣∣u1
ε(t , x)−u1(t , x)

∣∣β ∣∣F (ϕ)(x)
∣∣ dx

(∫
Rd

∣∣F (ϕ)(x)
∣∣ dx

)β−1
]

6C
∫
Rd
E
[∣∣u1

ε(t , x)−u1(t , x)
∣∣β]∣∣F (ϕ)(x)

∣∣ dx .

(5.3.15)
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Then, by Theorem A.0.1(ii), and by the boundedness of Z

sup
x∈Rd

E
[∣∣u1

ε(t , x)−u1(t , x)
∣∣β]

= sup
x∈Rd

E

[∣∣∣∣∫ t

0

∫
Rd

∫
R
ρH (t − s, x − y)Z (s, y)z1|z|6ε1y∈[−2A,2A]d J̃ (ds, dy, dz)

∣∣∣∣β
]

6C sup
x∈Rd

∫ t

0

∫
Rd

∫
R
E

[∣∣∣ρH (t − s, x − y)Z (s, y)z1|z|6ε1y∈[−2A,2A]d

∣∣∣β]
ds dy ν(dz)

6C

(∫ t

0

∫
Rd
ρH (s, y)βds dy

)(∫
|z|6ε

|z|βν(dz)

)
.

(5.3.16)

Since β< 1+ 2
d ,

∫ t
0

∫
Rd ρH (s, y)βds dy <+∞, and since β> p,

∫
|z|6ε |z|βν(dz) → 0 as ε→ 0. We

deduce that

sup
x∈Rd

E
[∣∣u1

ε(t , x)−u1(t , x)
∣∣β]

→ 0, as ε→ 0. (5.3.17)

Using (5.3.17) in (5.3.15), we deduce that for any t ∈ [0,T ],∫
Rd

u1
ε(t , x)F (ϕ)(x)dx →

∫
Rd

u1
ε(t , x)F (ϕ)(x)dx , as ε→ 0, in Lβ(Ω) . (5.3.18)

Similar to (5.3.14), we define

û1(t ,ξ) :=
∫ t

0

∫
Rd

∫
R

e−iξ·y−(t−s)|ξ|2 Z (s, y)z1|z|611y∈[−2A,2A]d J̃ (ds, dy, dz) .

Replacing ρH (t − s, x − y) by e−iξ·y−(t−s)|ξ|2 in (5.3.16), we get similarly

sup
ξ∈Rd

E
[∣∣û1

ε(t ,ξ)− û1(t ,ξ)
∣∣β]

6C sup
ξ∈Rd

∫ t

0

∫
Rd

∫
R
E

[∣∣∣e−iξ·y−(t−s)|ξ|2 Z (s, y)z1|z|6ε1y∈[−2A,2A]d

∣∣∣β]
ds dy ν(dz)

6C

(∫ t

0

∫
Rd
1y∈[−2A,2A]d ds dy

)(∫
|z|6ε

|z|βν(dz)

)
.

We deduce that, as for (5.3.18),∫
Rd

û1
ε(t ,ξ)ϕ(ξ)dx →

∫
Rd

û1
ε(t ,ξ)ϕ(ξ)dξ , as ε→ 0, in Lβ(Ω) . (5.3.19)

Using (5.3.13), (5.3.18) and (5.3.19), and by uniqueness of the limit, we deduce that for any

t ∈ [0,T ], almost surely, ∫
Rd

u1(t , x)F (ϕ)(x)dx =
∫
Rd

û1(t ,ξ)ϕ(ξ)dξ .
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In particular,

F
(
u1(t , ·)) (ξ) = e−|ξ|

2t
∫ t

0

∫
Rd

∫
R

e−iξ·y e s|ξ|2 Z (s, y)z1|z|611y∈[−2A,2A]d J̃ (ds, dy, dz)

=: aξ(t ) ,
(5.3.20)

Remark 5.3.10. This calculation for the Fourier transform of x 7→ u1(t , x) is still valid if Z is not

necessarily bounded, but has locally uniformly bounded moments in space and time of order β.

We can then define, for 06 a < b6 T and ξ ∈Rd ,

I b
a (ξ) :=

∫ b

a

∫
Rd

∫
R

e−iξ·y e s|ξ|2 Z (s, y)z1|z|611y∈[−2A,2A]d J̃ (ds, dy, dz) .

In particular,

∥∥u1(t +h, ·)−u1(t , ·)∥∥2
Hr (Rd ) =

∫
Rd

(1+|ξ|2)r
∣∣aξ(t +h)−aξ(t )

∣∣2 dξ ,

and ∥∥u1(t −h, ·)−u1(t , ·)∥∥2
Hr (Rd ) =

∫
Rd

(1+|ξ|2)r
∣∣aξ(t −h)−aξ(t )

∣∣2 dξ .

The function t 7→ e−|ξ|
2t is continuous, and the stochastic integral in aξ(t) exists in L2(Ω).

Therefore, t 7→ aξ(t ) is continuous in L2(Ω). Furthermore,

E
[∣∣aξ(t )

∣∣2
]
6C

1−e−2|ξ|2t

2|ξ|2 6C ,

for some constant C that does not depend on ξ. Therefore, by the dominated convergence

theorem,

E
[∥∥u1(t +h, ·)−u1(t , ·)∥∥2

Hr (Rd )

]
→ 0, as h → 0,

and the process t 7→ u(t , ·) is continuous in L2(Ω) (and therefore in probability) as a process

with values in Hr (Rd ).

We now realize that the situation is very similar to the case of the equation on the bounded

interval [0,π]. In fact, we can do the same estimates that are carried out in the proof of

Proposition 5.2.5 for the case of the equation on a bounded interval in dimension 1, using the

following replacements:

[0,π] ↔ [−2A,2A]d ,

k ↔ ξ ,

sin(k y) ↔ e−iξ·y .

By following exactly the proof of the case of a bounded interval in space as in (5.2.21), we
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deduce that

‖u1(t +h, ·)−u1(t , ·)‖2
Hr (Rd )‖u1(t −h, ·)−u1(t , ·)‖2

Hr (Rd )

6C
∫
Rd

dξ1

∫
Rd

dξ2
(
1+|ξ1|2

)r (
1+|ξ2|2

)r (
A1(ξ1,ξ2)2 + A2(ξ1,ξ2)2

+A3(ξ1,ξ2)2 + A4(ξ1,ξ2)2) ,

for some constant C , and where

A1(ξ1,ξ2) := e−ξ
2
2t e−ξ

2
1(t−h)(1−e−ξ

2
2h)(e−ξ

2
1h −1)I t

0(ξ2)I t−h
0 (ξ1) ,

A2(ξ1,ξ2) := e−ξ
2
2t e−ξ

2
1(t−h)(1−e−ξ

2
2h)e−ξ

2
1h I t

0(ξ2)I t
t−h(ξ1) ,

A3(ξ1,ξ2) := e−ξ
2
2t e−ξ

2
1(t−h)e−ξ

2
2h(e−ξ

2
1h −1)I t+h

t (ξ2)I t−h
0 (ξ1) ,

A4(ξ1,ξ2) := e−ξ
2
2t e−ξ

2
1(t−h)e−ξ

2
2he−ξ

2
1h I t+h

t (ξ2)I t
t−h(ξ1) .

By the same arguments, we deduce that

E
[|A1(ξ1,ξ2)|2]6C

(
h2 +ξ2δ

1 ξ2δ
2 h1+2δ

)
,

E
[|A2(ξ1,ξ2)|2]6Cξ2δ

2 h1+δ ,

E
[|A3(ξ1,ξ2)|2]6C h2 ,

E
[|A4(ξ1,ξ2)|2]6C h2 ,

where δ > 0 can be chosen in the range
(
0, 3

2

)
. Then, choosing δ > 0 such that δ+ r < −d

2

(which is possible since r <−d
2 ), we deduce that

E
[
‖u1(t +h, ·)−u1(t , ·)‖2

Hr (Rd )‖u1(t −h, ·)−u1(t , ·)‖2
Hr (Rd )

]
6C h1+δ .

By Theorem A.0.3, we deduce that (u1(t , ·))t>0 has a càdlàg version in Hr (Rd ) for any r <−d
2 .

u2(t , x) : Let x ∈ [−A, A]. Since y ∉ [−2A,2A]d , the heat kernel is smooth. Let f :Rd →R be a

smooth function. Then, for any a,b ∈Rd such that ai 6 bi for all 16 i 6 d ,

f (b1, . . . ,bd ) = f (a1, . . . , ad )

+
d∑

i=1

∑
16k1<···<ki6d

∫ bk1

ak1

drk1 · · ·
∫ bki

aki

drki ∂xk1
. . .∂xki

f (ck(a,r )) ,
(5.3.21)

where for any k = (k1, . . . ,ki ), with k1 < ·· · < ki , we define (ck(a,r )) j := ai1 j∉k + r j1 j∈k, where

16 j 6 d . This formula is easily proved by induction on the dimension. Then, using this
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formula (5.3.21) with a = (s,−A, . . . ,−A) and b = (t , x), we get

ρH (t − s, x − y) =

0+
d+1∑
i=1

∑
16k1<···<ki6d+1

∫ bk1

ak1

drk1 · · ·
∫ bki

aki

drki∂xk1
. . .∂xki

ρH
(
ck(a,r )− (s, y)

)
=

d∑
i=1

∑
16k1<···<ki6d

∫ t

s
du

∫ xk1

−A
drk1 · · ·

∫ xki

−A
drki∂xk1

. . .∂xki
∂tρH

(
u − s,ck(−A,r )− y

)
,

(5.3.22)

where A := (A, . . . , A). Using (5.3.22), we have

u2(t , x) =
∫ t

0

∫
Rd
ρH (t − s, x − y)Z (s, y)1y∉[−2A,2A]d LM (ds, dy)

=
d∑

i=1

∑
16k1<···<ki6d

∫ t

0
du

∫ xk1

−A
drk1 · · ·

∫ xki

−A
drki(∫ u

0

∫
Rd
∂xk1

. . .∂xki
∂tρH

(
u − s,ck(−A,r )− y

)
Z (s, y)1y∉[−2A,2A]d LM (ds, dy)

)
,

where we have used Theorem A.0.2, since Z is bounded,
∫
|z|61 |z|2ν(dz) < +∞, and since

the heat kernel is smooth for |x − y | > A. We see from this expression that u2 is jointly

continuous in (t , x). By the argument at the end of the proof of Lemma 5.3.8, we deduce that

t 7→ u2(t , ·)1[−A,A]d is continuous in Hr (Rd ) for every r 6 0.

u3(t , x) : This process takes into account only the jumps that are far away from x, but that can

be arbitrarily large. We can write u3 as a sum:

u3(t , x) =
∫ t

0

∫
Rd
ρH (t − s, x − y)Z (s, y)1y∉[−2A,2A]d LP

1 (ds, dy)

= ∑
i>1

ρH (t −Ti , x −Xi )Z (Ti , Xi )Zi1Xi∉[−2A,2A]d ,1<|Zi |<1+|Xi |η ,Ti6t .

We first realize that each term of this sum is jointly continuous in (t , x) ∈ [0,T ]× [−A, A]d . We

show that this sum converges uniformly in (t , x) ∈ [0,T ]× [−A, A]d . We choose A such that

T < A2

2d . Then, by Lemma A.0.5, the maximum of the function t 7→ ρH (t , x −Xi ) is attained at

t = T , since |x −Xi | > A.

sup
t6T,x∈[−A,A]d

ρH (t −Ti , x −Xi )6 sup
x∈[−A,A]d

C

T
d
2

e−
|x−Xi |2

4T

6
C

T
d
2

e−
|p A (Xi )−Xi |2

4T ,
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where p A is the projection on the convex set [−A, A]d . Then, let β= 1∧q . We have

E

(∑
i>1

sup
t6T,x∈[−A,A]d

∣∣ρH (t −Ti , x −Xi )Z (Ti , Xi )Zi1Xi∉[−2A,2A]d ,1<|Zi |<1+|Xi |η ,Ti6t

∣∣)β
6

C

T
βd
2

E

(∑
i>1

∣∣∣∣e− |p A (Xi )−Xi |2
4T Zi1Xi∉[−2A,2A]d ,1<|Zi | ,Ti6T

∣∣∣∣
)β

6
C

T
βd
2

E

[∑
i>1

∣∣∣∣e− |p A (Xi )−Xi |2
4T Zi1Xi∉[−2A,2A]d ,1<|Zi | ,Ti6T

∣∣∣∣β
]

6C
∫ T

0

∫
y∉[−2A,2A]d

∫
|z|>1

|z|βe−β
|p A (y)−y |2

4T ds dy ν(dz) <+∞ .

Therefore, the sum defining u3 converges uniformly in (t , x) ∈ [0,T ]× [−A, A]d , and u3 is

jointly continuous. By the argument at the end of the proof of Lemma 5.3.8, we deduce that

t 7→ u3(t , ·) is continuous in Hr,loc(Rd ) for every r 6 0.

Finally since the choice of A was arbitrary, we conclude that t 7→ u(t , ·) = u1(t , ·)+u2(t , ·)+
u3(t , ·) has a càdlàg version in Hr,loc(Rd ) for every r <−d

2 .

The case where σ is unbounded

We can extend Proposition 5.3.9 to the case whereσ is unbounded but satisfies some additional

assumptions. We start with a result similar to Lemma 5.3.8 to deal with the drift part of the

solution u.

Lemma 5.3.11. Let Z be a random field such that for some ε> 0,

sup
(t ,x)∈[0,T ]×Rd

E
[|Z (t , x)|2+ε]<+∞ .

Let

F (t , x) :=
∫ t

0

∫
Rd
ρH (t − s, x − y)Z (s, y)ds dy .

Then the process t 7→ F (t , ·) is continuous in Hr,loc(Rd ) for any r <−d
2 .

Proof. Let A > 0. We can write

F (t , x) =
∫ t

0

∫
Rd
ρH (t − s, x − y)Z (s, y)1y∈[−2A,2A]d ds dy

+
∫ t

0

∫
Rd
ρH (t − s, x − y)Z (s, y)1y∉[−2A,2A]d ds dy

= F1(t , x)+F2(t , x) .

We deal with each term separately.
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F1(t , x): For ξ ∈Rd ,

F (F1(t , ·))(ξ) =
∫
Rd

e−iξ·x
(∫ t

0

∫
Rd
ρH (t − s, x − y)Z (s, y)1y∈[−2A,2A]d ds dy

)
dx

=
∫ t

0

∫
Rd

e−iξ·y−|ξ|2(t−s)Z (s, y)1y∈[−2A,2A]d ds dy .

Then, we define

F1,n(t , x) =
∫ t

0

∫
y∈[−2A,2A]d

ρH (t − s, x − y)1y∈[−2A,2A]d Zn(s, y)ds dy ,

where Zn(s, y) = Z (s, y)1|Z (s,y)|6n . Then, for (t , x) ∈ [0,T ]×Rd ,

F1(t , x)−F1,n(t , x) =
∫ t

0

∫
y∈[−2A,2A]d

ρH (t − s, x − y)
(
Z (s, y)−Zn(s, y)

)
ds dy ,

and

‖F1(t , ·)−F1,n(t , ·)‖2
Hr

=
∫
Rd

(1+|ξ|2)r
∣∣F (

F1(t , ·)−F1,n(t , ·)) (ξ)
∣∣2 dξ .

Then,

F
(
F1(t , ·)−F1,n(t , ·)) (ξ) =

∫ t

0

∫
y∈[−2A,2A]d

e−iξ·y e−(t−s)|ξ|2 Z(n)(s, y)ds dy ,

where Z(n) := Z1|Z |>n . Then,

e−|ξ|
2(t−s) = 1−

∫ t

s
|ξ|2e−|ξ|

2(t−r ) dr , (5.3.23)

and by Theorem A.0.2, we get

F
(
F1(t , ·)−F1,n(t , ·)) (ξ) =

∫ t

0

∫
y∈[−2A,2A]d

e−iξ·y Z(n)(s, y)ds dy

−
∫ t

0

∫
y∈[−2A,2A]d

e−iξ·y
(∫ t

s
|ξ|2e−|ξ|

2(t−r ) dr

)
Z(n)(s, y)ds dy

=
∫ t

0

∫
y∈[−2A,2A]d

e−iξ·y Z(n)(s, y)ds dy

−
∫ t

0

(∫ r

0

∫
y∈[−2A,2A]d

e−iξ·y |ξ|2e−|ξ|
2(t−r )Z(n)(s, y)ds dy

)
dr .

Therefore,

E
[∣∣F (

F1(t , ·)−F1,n(t , ·)) (ξ)
∣∣]6 E[∣∣∣∣∫ t

0

∫
y∈[−2A,2A]d

e−iξ·y Z(n)(s, y)ds dy

∣∣∣∣]
+E

[∫ t

0
|ξ|2e−|ξ|

2(t−r )
∣∣∣∣∫ r

0

∫
y∈[−2A,2A]d

e−iξ·y Z(n)(s, y)ds dy

∣∣∣∣ dr

]
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6 E
[∣∣∣∣∫ t

0

∫
y∈[−2A,2A]d

e−iξ·y Z(n)(s, y)ds dy

∣∣∣∣]

+E
[

sup
r∈[0,t ]

∣∣∣∣∫ r

0

∫
y∈[−2A,2A]d

e−iξ·y Z(n)(s, y)ds dy

∣∣∣∣
]

×
(∫ t

0
|ξ|2e−|ξ|

2(t−r ) dr

)
6C sup

(s,y)∈[0,T ]×[−2A,2A]d

E
[

Z 2
(n)(s, y)

]
.

Furthermore, by Hölder’s inequality and Markov’s inequality,

E
[

Z 2
(n)(s, y)

]= E[
Z (s, y)21|Z (s,y)|>n

]
6 E

[∣∣Z (s, y)
∣∣2+ε] 2

2+ε [
P

(|Z (s, y)| > n
)] ε

2+ε

6 E
[∣∣Z (s, y)

∣∣2+ε] 2
2+ε E

[∣∣Z (s, y)
∣∣] ε

2+ε

n
ε

2+ε
.

We deduce that

sup
(s,y)∈[0,T ]×[−2A,2A]d

E
[

Z 2
(n)(s, y)

]
6

C

n
ε

2+ε
, (5.3.24)

for some constant C . By (5.3.24), we deduce that

E

[
sup

t∈[0,T ]

∣∣F (
F1(t , ·)−F1,n(t , ·)) (ξ)

∣∣2

]
6

C

n
ε

2+ε
.

We deduce that for any r <−d
2 ,

E

[
sup

t∈[0,T ]
‖F1(t , ·)−F1,n(t , ·)‖2

Hr

]
6

C

n
qε

2+ε
→ 0 as n →+∞ .

Since Zn is bounded, we can apply Lemma 5.3.8 to F1,n , and we deduce that t 7→ F1,n(t , ·) is con-

tinuous in Hr,loc(Rd ) for any r <−d
2 . Then, supt∈[0,T ] ‖F1(t , ·)−F1,n(t , ·)‖Hr (Rd ) → 0 in L2(Ω) as

n →+∞, and there is a subsequence (nk )k>0 such that supt∈[0,T ] ‖F1(t , ·)−F1,nk (t , ·)‖Hr (Rd ) → 0

almost surely as k →+∞. This means that F1,nk (t , ·) converges to F1(t , ·) in Hr (Rd ) uniformly

in time for any r <−d
2 . Therefore, t 7→ F1(t , ·) is continuous in Hr,loc(Rd ) for any r <−d

2 .

F2(t , x): We prove that the function (t , x) 7→ F2(t , x) is jointly continuous on [0,T ]× [−A, A]d .

Indeed, since x ∈ [−A, A]d and y ∉ [−2A,2A]d , the heat kernel is smooth on the domain of

integration. By (5.3.22),

ρH (t − s, x − y) =

=
d∑

i=1

∑
16k1<···<ki6d

∫ t

s
du

∫ xk1

−A
drk1 · · ·

∫ xki

−A
drki∂xk1

. . .∂xki
∂tρH

(
u − s,ck(−A,r )− y

)
,
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where A := (A, . . . , A). Therefore, we have

F2(t , x) =
∫ t

0

∫
Rd
ρH (t − s, x − y)Z (s, y)1y∉[−2A,2A]d ds dy

=
d∑

i=1

∑
16k1<···<ki6d

∫ t

0
du

∫ xk1

−A
drk1 · · ·

∫ xki

−A
drki(∫ u

0

∫
Rd
∂xk1

. . .∂xki
∂tρH

(
u − s,ck(−A,r )− y

)
Z (s, y)1y∉[−2A,2A]d ds dy

)
,

where we have used a Fubini theorem, since Z has uniformly bounded moments of order 2,

and ρH and all its derivatives are smooth and have exponential decay at infinity. Therefore,

(t , x) 7→ F2(t , x) is jointly continuous on [0,T ]×[−A, A]d . By the argument at the end of Lemma

5.3.8, we conclude that t 7→ F2(t , ·) is continuous in Hr,loc(Rd ).

Theorem 5.3.12. Let L be a pure jump Lévy white noise with Lévy measure ν and jump measure

J such that (H4) is satisfied for some p, q ∈R. Let σ be a Lipschitz continuous function. Assume

also that there is γ> 0 with 2γ< q such that |σ(x)|6C (1+|x|γ), for all x ∈R. Let u be the mild

solution to the stochastic heat equation (5.3.1) in Rd constructed in Proposition 5.3.1. Then, for

any r <−d
2 , the stochastic process (u(t , ·))t>0 has a càdlàg version in Hr,loc(Rd ).

Proof. Again, by the stopping time argument just after the proof Proposition 5.3.1, we can

suppose that u is the solution to (5.3.7) with N = 1. By [14, Theorem 3.8], and since |σ(x)|6
C (1+|x|γ), for some ε> 0 with (2+ε)γ6 q ,

sup
t∈[0,T ],x∈Rd

E
[|σ (u(t , x))|2+ε]6C

(
1+E[|u(t , x)|(2+ε)γ])6C

(
1+E[|u(t , x)|q])<+∞ . (5.3.25)

The drift part has already been taken care of in Lemma 5.3.11, so we can suppose that b = 0.

Then, looking at the proof of the joint continuity of u2 and u3 in the proof of Proposition

5.3.9, we realize that we only need that Z (t , x) =σ (u(t , x)) have uniformly bounded moments

of order 2. Indeed, this condition is needed to apply the stochastic Fubini Theorem A.0.2.

Therefore, we can restrict to studying the regularity of the processes u1, where we recall that

u1(t , x) =
∫ t

0

∫
Rd

∫
R
ρH (t − s, x − y)σ

(
u(s, y)

)
z1|z|611y∈[−2A,2A]d J̃ (ds, dy, dz) .

Let σn(u) =σ(u)1|u|6n . We define

u1
n(t , x) =

∫ t

0

∫
y∈[−2A,2A]d

ρH (t − s, x − y)σn(u(s, y))LM (ds, dy) .

Then, for (t , x) ∈ [0,T ]×Rd ,

u1(t , x)−u1
n(t , x) =

∫ t

0

∫
y∈[−2A,2A]d

ρH (t − s, x − y)
(
σ(u(s, y))−σn(u(s, y))

)
LM (ds, dy) ,
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and

‖u1(t , ·)−u1
n(t , ·)‖2

Hr (Rd ) =
∫
Rd

(1+|ξ|2)r
∣∣F (

u1(t , ·)−u1
n(t , ·)) (ξ)

∣∣2
dξ . (5.3.26)

For conciseness of the notation, we write σ(u(s, y))−σn(u(s, y)) =σ(n)(s, y). By Remark 5.3.10,

similarly to (5.3.20),

F
(
u1(t , ·)−u1

n(t , ·)) (ξ) =
∫ t

0

∫
y∈[−2A,2A]d

∫
R

e−iξ·y e−(t−s)|ξ|2σ(n)(s, y)z1|z|61 J̃ (ds, dy, dz)

Then, using (5.3.23), and Theorem A.0.2, we get

F
(
u1(t , ·)−u1

n(t , ·)) (ξ) =
∫ t

0

∫
y∈[−2A,2A]d

e−iξ·yσ(n)(s, y)LM (ds, dy)

−
∫ t

0

∫
y∈[−2A,2A]d

e−iξ·y
(∫ t

s
|ξ|2e−|ξ|

2(t−r ) dr

)
σ(n)(s, y)LM (ds, dy)

=
∫ t

0

∫
y∈[−2A,2A]d

e iξ·yσ(n)(s, y)LM (ds, dy)

−
∫ t

0

(∫ r

0

∫
y∈[−2A,2A]d

e−iξ·y |ξ|2e−|ξ|
2(t−r )σ(n)(s, y)LM (ds, dy)

)
dr .

Therefore,

∣∣F (
u1(t , ·)−u1

n(t , ·)) (ξ)
∣∣6 ∣∣∣∣∫ t

0

∫
y∈[−2A,2A]d

e−iξ·yσ(n)(s, y)LM (ds, dy)

∣∣∣∣
+

∫ t

0
|ξ|2e−|ξ|

2(t−r )
∣∣∣∣∫ r

0

∫
y∈[−2A,2A]d

e−iξ·yσ(n)(s, y)LM (ds, dy)

∣∣∣∣ dr

6
∣∣∣∣∫ t

0

∫
y∈[−2A,2A]d

e−iξ·yσ(n)(s, y)LM (ds, dy)

∣∣∣∣
+ sup

r∈[0,t ]

∣∣∣∣∫ r

0

∫
y∈[−2A,2A]d

e−iξ·yσ(n)(s, y)LM (ds, dy)

∣∣∣∣
×

(∫ t

0
|ξ|2e−|ξ|

2(t−r ) dr

)
6C sup

r∈[0,t ]

∣∣∣∣∫ r

0

∫
y∈[−2A,2A]d

e−iξ·yσ(n)(s, y)LM (ds, dy)

∣∣∣∣ ,

where C does not depend on ξ. Then, using Theorem A.0.1(ii), we deduce that

E

[
sup

t∈[0,T ]

∣∣F (
u1(t , ·)−u1

n(t , ·)) (ξ)
∣∣2

]
6C

∫ T

0

∫
y∈[−2A,2A]d

E
[
σ2

(n)(s, y)
]

ds dy , (5.3.27)

where the constant C includes
∫
|z|61 z2ν(dz). Since ν is a Lévy measure, this integral is finite.

129



Chapter 5. Some properties of the solution to the stochastic heat equation driven by
heavy-tailed noise

Furthermore, by Hölder’s inequality and Markov’s inequality, for ε> 0,

E
[
σ2

(n)(s, y)
]= E[

σ
(
u(s, y)

)2
1|u(s,y)|>n

]
6 E

[∣∣σ(
u(s, y)

)∣∣2+ε] 2
2+ε [

P
(|u(s, y)| > n

)] ε
2+ε

6 E
[∣∣σ(

u(s, y)
)∣∣2+ε] 2

2+ε E
[∣∣u(s, y)

∣∣q] ε
2+ε

n
qε

2+ε
.

As in (5.3.25), the solution u (which is the solution to the truncated equation due to a stopping

time argument) has uniformly bounded moments in space and time order q , and by (5.3.25),

we deduce that

sup
(s,y)∈[0,T ]×[−2A,2A]d

E
[
σ2

(n)(s, y)
]
6

C

n
qε

2+ε
, (5.3.28)

for some constant C . By (5.3.27) and (5.3.28), we obtain

E

[
sup

t∈[0,T ]

∣∣F (
u1(t , ·)−u1

n(t , ·)) (ξ)
∣∣2

]
6

C

n
qε

2+ε
.

By (5.3.26), we deduce that for any r <−d
2 ,

E

[
sup

t∈[0,T ]
‖u1(t , ·)−u1

n(t , ·)‖2
Hr (Rd )

]
6

C

n
qε

2+ε
→ 0 as n →+∞ .

Therefore, supt∈[0,T ] ‖u1(t , ·)−u1
n(t , ·)‖Hr (Rd ) → 0 in L2(Ω) as n →+∞, and there is a subse-

quence (nk )k>0 such that supt∈[0,T ] ‖u1(t , ·)−u1
nk

(t , ·)‖Hr (Rd ) → 0 almost surely as k → +∞.

This means that u1
nk

(t , ·) converges to u1(t , ·) in Hr (Rd ) uniformly in time for any r < −d
2 .

Since σnk is bounded, t 7→ u1
nk

(t , ·) has by Proposition 5.3.9 a càdlàg version in Hr,loc(Rd ), and

t 7→ u1(t , ·) has a càdlàg version in Hr,loc(Rd ). Therefore, t 7→ u(t , ·) has a càdlàg version in

Hr,loc(Rd ) for any r <−d
2 .

5.3.3 Continuity in space at fixed time

Proposition 5.3.13. Let L be a pure jump Lévy white noise with Lévy measure ν and jump

measure J . Suppose there exists p, q ∈ R+ such that (H4) is satisfied. Suppose also that p < 2
d

and p < 2. Furthermore, let σ be a Lipschitz continuous function satisfying

|σ(x)| ≤C (1+|x|γ) , x ∈R , (5.3.29)

for some C > 0 and γ ∈ [0, q/p], and let u be the mild solution of (5.3.1) constructed in Proposi-

tion 5.3.1. Then, for any t ∈ [0,T ], the process x 7→ u(t , x) has a continuous modification.

Proof. By Proposition 5.3.1, there is stationary convergence of the mild solution uN to the
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truncated equation defined in (5.3.7). We recall that

uN (t , x) =
∫ t

0

∫
Rd
ρH (t − s, x − y)σ

(
uN (s, y)

)
LN (ds, dy) ,

and

LN (ds, dy) = b ds dy +
∫
|z|61

z J̃ (ds, dy, dz)+
∫
|z|>1

z1|z|<N (1+|y |η) J (ds, dy, dz) .

Therefore, we can suppose that u = uN for some N > 1, and for conciseness of the notation,

we can suppose without loss of generality that N = 1. As shown in [14, Theorem 3.8],

sup
(t ,x)∈[0,T ]×Rd

E
[|σ(u(t , x))|p]

6C

(
1+ sup

(t ,x)∈[0,T ]×R
E
[|u(t , x)|q])<∞ . (5.3.30)

We prove the claim using different approaches that depend on the value of p.

1 < p < 2 : By the p 6 2
d hypothesis, this can only happen when d = 1, and we write

u(t , x) = A+B ,

where

A := b
∫ t

0

∫
R
ρH (t − s, x − y)σ

(
u(s, y)

)
ds dy

+
∫ t

0

∫
R

∫
|z|61

zρH (t − s, x − y)σ
(
u(s, y)

)
J̃ (ds, dy, dz) ,

B :=
∫ t

0

∫
R

∫
|z|>1

zρH (t − s, x − y)1|z|<1+|y |ησ
(
u(s, y)

)
J (ds, dy, dz) .

(5.3.31)

Also, by (5.3.30), we can use a Kolmogorov continuity-type argument similar to [61, Théorème

2.4.1] to deduce the existence of a continuous modification of A in the space variable x. More

precisely, for x, z ∈Rd ,

E

[∣∣∣∣b ∫ t

0

∫
R

(
ρH (t − s, x − y)−ρH (t − s, z − y)

)
σ

(
u(s, y)

)
ds dy

+
∫ t

0

∫
R

∫
|z|61

z
(
ρH (t − s, x − y)−ρH (t − s, z − y)

)
σ

(
u(s, y)

)
J̃ (ds, dy, dz)

∣∣∣∣p]
6C

(
E

[∣∣∣∣b ∫ t

0

∫
R

(
ρH (t − s, x − y)−ρH (t − s, z − y)

)
σ

(
u(s, y)

)
ds dy

∣∣∣∣p]
+ E

[∣∣∣∣∫ t

0

∫
R

∫
|z|61

z
(
ρH (t − s, x − y)−ρH (t − s, z − y)

)
σ

(
u(s, y)

)
J̃ (ds, dy, dz)

∣∣∣∣p])
.
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Then, using Hölder’s inequality, and (5.3.30),

E

[∣∣∣∣b ∫ t

0

∫
R

(
ρH (t − s, x − y)−ρH (t − s, z − y)

)
σ

(
u(s, y)

)
ds dy

∣∣∣∣p]
6

(∫ t

0

∫
R

∣∣ρH (t − s, x − y)−ρH (t − s, z − y)
∣∣E[∣∣σ(

u(s, y)
)∣∣p]

ds dy

)
×

(∫ t

0

∫
R

∣∣ρH (t − s, x − y)−ρH (t − s, z − y)
∣∣ ds dy

)p−1

6C

(∫ t

0

∫
R

∣∣ρH (t − s, x − y)−ρH (t − s, z − y)
∣∣ ds dy

)p

.

By [61, Lemme A2], we deduce that

E

[∣∣∣∣b ∫ t

0

∫
R

(
ρH (t − s, x − y)−ρH (t − s, z − y)

)
σ

(
u(s, y)

)
ds dy

∣∣∣∣p]
6C |x − z|p . (5.3.32)

Then, using Theorem A.0.1(ii) and (5.3.30),

E

[∣∣∣∣∫ t

0

∫
R

∫
|z|61

z
(
ρH (t − s, x − y)−ρH (t − s, z − y)

)
σ

(
u(s, y)

)
J̃ (ds, dy, dz)

∣∣∣∣p]
6C

∫ t

0

∫
R

∫
|z|61

|z|p ∣∣ρH (t − s, x − y)−ρH (t − s, z − y)
∣∣p
E
[∣∣σ(

u(s, y)
)∣∣p]

ds dy ν(dz)

6C
∫ t

0

∫
R

∣∣ρH (t − s, x − y)−ρH (t − s, z − y)
∣∣p ds dy .

By [61, Lemme A2], we deduce that

E

[∣∣∣∣∫ t

0

∫
R

∫
|z|61

z
(
ρH (t − s, x − y)−ρH (t − s, z − y)

)
σ

(
u(s, y)

)
J̃ (ds, dy, dz)

∣∣∣∣p]

6


C |x − z|p , if p < 3

2 ,

C |x − z| 3
2 log(|x − z|) if p = 3

2 ,

C |x − z|3−p if p > 3
2 .

(5.3.33)

By (5.3.32) and (5.3.33), and the Kolmogorov continuity criterion, we deduce the existence of

a continuous modification of A in the space variable x.

The term B in (5.3.31) is a sum of a possibly infinite number of terms. Each term is continuous

in x. Let β6 q ∧1. Then, by (5.3.30), and using (H4), we get for any x0 ∈R,

E

[
sup

x:|x−x0|≤1

∣∣∣∣∫ t

0

∫
R

∫
|z|>1

zρH (t − s, x − y)1|z|<1+|y |ησ
(
u(s, y)

)
J (ds, dy, dz)

∣∣∣∣β
]

6
∫ t

0

∫
R

∫
|z|>1

|z|β sup
x:|x−x0|≤1

ρH (t − s, x − y)β1|z|<1+|y |ηE
[∣∣σ(

u(s, y)
)∣∣β]

ds dy ν(dz)
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6C
∫ t

0

∫
R

sup
x:|x−x0|≤1

ρH (t − s, x − y)βds dy

6C

(∫ t

0

∫
y :|y−x0|≤1

ρH (t − s,0)βds dy +2
∫ t

0

∫ ∞

x0+1
ρH (t − s, x0 +1− y)βds dy

)
<+∞ .

We deduce that the convergence of the sum defining B(t , x) is uniform in x in a ball around x0,

which proves the claim for 1 < p < 2.

p 6 1 : Then, we write (recall that u is set to uN with N = 1)

u(t , x) = A(t , x)+B(t , x)+C (t , x) ,

where

A(t , x) :=
∫ t

0

∫
Rd

∫
|z|61

zρH (t − s, x − y)σ
(
u(s, y)

)
J (ds, dy, dz) , and

B(t , x) :=
∫ t

0

∫
Rd

∫
|z|>1

zρH (t − s, x − y)1|z|<1+|y |ησ
(
u(s, y)

)
J (ds, dy, dz) , and

C (t , x) := b01p=1

∫ t

0

∫
Rd
ρH (t − s, x − y)σ

(
u(s, y)

)
ds dy ,

where b0 was defined in (H4), and b0 = 0 if p < 1, since p < 2
d . The process C is non-zero only

in the case where d = 1 and p = 1. Then, we can apply [61, Théorème 2.3.2] to conclude that

for any fixed time t , the process x 7→C (t , x) has a continuous modification. The term A is a

sum of a possibly infinite number of terms. Each term is continuous in x because a.s., no

jump time occurs at time t . Then, again by (5.3.30), and using (H4), we get for any x0 ∈R,

E

[(∫ t

0

∫
Rd

∫
|z|61

sup
x:|x−x0|≤1

∣∣zρH (t − s, x − y)σ
(
u(s, y)

)∣∣ J (ds, dy, dz)

)p]

6
∫ t

0

∫
Rd

∫
|z|61

|z|p sup
x:|x−x0|≤1

ρH (t − s, x − y)pE
[∣∣σ(

u(s, y)
)∣∣p]

ds dy ν(dz)

6C
∫ t

0

∫
Rd

sup
x:|x−x0|≤1

ρH (t − s, x − y)p ds dy

6C

(∫ t

0

∫
y :|y−x0|≤1

ρH (t − s,0)p ds dy +
∫ t

0

∫
y :|y−x0|>1

(4π(t − s))−
pd
2 e−

pd(y,Bx0 (1))2

4(t−s) ds dy

)
6C

(∫ t

0

∫
y :|y−x0|≤1

ρH (t − s,0)p ds dy +
∫ t

0

∫
|y |>1

(4π(t − s))−
pd
2 e−

p(|y |−1)2

4(t−s) ds dy

)
<+∞ ,

since p < 2
d , where d(y,Bx0 (1)) is the distance from y to the ball of radius 1 centered at x0. We

deduce that the convergence of the sum defining A(t , x) is uniform in x in a ball around x0,

which proves the continuity of the process x 7→ A(t , x). The continuity of x 7→ B(t , x) for fixed t

was proved after (5.3.33) above.

Remark 5.3.14. For example, in dimension d = 1, if L is an α-stable noise for some α ∈ (0,2)

(with no drift when α< 1), we can choose any p ∈ (
α, 4α

1+α ∧2
)

and q ∈
(

p
4−p ,α

)
, so the previous
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proposition asserts that the sample paths of the mild solution for a fixed time t are always

almost surely continuous in x (when σ satisfies (5.3.29)). Indeed, since p > α and q < α,∫
|z|61 |z|pν(dz) < +∞, and

∫
|z|>1 |z|qν(dz) < +∞. Furthermore, the interval

(
p

4−p ,α
)

is non-

empty if and only if p < 4α
1+α . Note that the condition p

1+(1+ 2
d −p)

< q in (H4) becomes p
4−p < q

since d = 1 here.

The case of an α-stable noise, 2
d 6α< 2

In this section, we suppose that the noise is an α-stable noise Lα on [0,T ]×Rd , for some

α ∈ [ 2
d ,2).

Proposition 5.3.15. Let u be the mild solution of the stochastic heat equation with additive

α-stable noise for some α ∈ [ 2
d ,2):

u(t , x) =
∫ t

0

∫
Rd
ρH (t − s, x − y)Lα(ds, dy) .

For any t ∈ [0,T ], there is a set Nt ⊂Ω of probability one such that for any ω ∈ Nt , x 7→ u(t , x)(ω)

is unbounded on any non-empty open interval.

Proof. Fix t ∈ [0,T ]. Observe that the process (Y (x), x ∈Rd ) defined by

Y (x) = u(t , x) =
∫ t

0

∫
Rd
ρH (t − s, x − y)Lα(ds, dy)

is an α-stable process given in the "standard form" of [62, (10.1.1)] with the measurable space

E = [0,T ]×Rd , and the control measure ds dy . We shall check that the necessary condition [62,

(10.2.14)] for sample path boundedness in [62, Theorem 10.2.3] is not satisfied, in particular

that for any x1 < x2, and X ∗ = [x1, x2]d ,∫ t

0

∫
Rd

(
sup
x∈X ∗

ρH (t − s, x − y)

)α
ds dy =+∞ . (5.3.34)

This integral is bounded below by∫ t

0

∫
X ∗

sup
x∈X ∗

ρH (t − s, x − y)αds dy >
∫ t

0

∫
X ∗

1

(4π(t − s))
αd
2

ds dy =+∞ ,

and (5.3.34) is proved.

Remark 5.3.16. Let u be as in Proposition 5.3.15 with d = 1. Then the interval
[ 2

d ,2
)

is empty

and by Remark 5.3.14, x 7→ u(t , x) is continuous (as for the SHE on a bounded interval (see

Remark 5.2.11)).
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5.3.4 Continuity in time at a fixed space point

Proposition 5.3.17. Let L be a pure jump Lévy white noise with Lévy measure ν and jump

measure J . Suppose there exists p, q ∈ R+ such that (H4) is satisfied, and such that p < 1.

Furthermore, let σ be a Lipschitz continuous function satisfying (5.3.29), and let u be the mild

solution to (5.3.1) constructed in Proposition 5.3.1. Then, for any x ∈Rd , the process t 7→ u(t , x)

has a continuous modification.

Proof. Again, by a stopping time argument, it suffices to show the regularity of uN for any

N > 1. Without loss of generality, we can therefore suppose that u solves

u(t , x) =
∫ t

0

∫
Rd
ρH (t − s, x − y)σ

(
u(s, y)

)
L1(ds, dy) ,

where

L1(ds, dy) = b dt dx +
∫
|z|61

z J̃ (ds, dy, dz)+
∫
|z|>1

z1|z|<1+|y |η J (ds, dy, dz) .

By (H4), and since p < 1, b0 = b −∫
|z|61 zν(dz) = 0. Then,

u(t , x) =
∫ t

0

∫
Rd
ρH (t − s, x − y)σ

(
u(s, y)

)
L1(ds, dy)

=
∫ t

0

∫
Rd

∫
|z|61

zρH (t − s, x − y)σ
(
u(s, y)

)
J (ds, dy, dz)

+
∫ t

0

∫
Rd

∫
|z|>1

zρH (t − s, x − y)1|z|<1+|y |ησ
(
u(s, y)

)
J (ds, dy, dz)

=: A(t , x)+B(t , x) .

For the continuity of the term A, we can use that E[|σ(u(t , x))|p ] is uniformly bounded for

(t , x) ∈ [0,T ]×Rd by (5.3.30), together with [61, Théorème 2.2.2]: hypotheses (H2) and (H3)

there are satisfied, and∫
|z|61

|z|ν(dz) <+∞ and
∫
|z|61

|z| ∣∣log(|z|)∣∣ν(dz) <+∞ ,

which proves (H1)(1) and (H5)(1) there. The term B is a sum of a possibly infinite number

of terms, each of which is a continuous function of t . Let β6 q ∧1. The maximum of the

function t 7→ ρH (t , x) is attained at t = |x|2
2d and is equal to C

|x|d for some constant C . Then,

again using (5.3.30), we obtain

E

(∫ T

0

∫
Rd

∫
|z|>1

sup
r∈[0,T ]

∣∣1s6r zρH (r − s, x − y)1|z|<1+|y |ησ
(
u(s, y)

)∣∣ J (ds, dy, dz)

)β
6

∫ T

0

∫
Rd

∫
|z|>1

|z|β sup
r∈[0,T ]

1s6rρH (r − s, x − y)β1|z|<1+|y |ηE
[∣∣σ(

u(s, y)
)∣∣β]

ds dy ν(dz)
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6C
∫ T

0

∫
Rd

sup
r∈[0,T ]

1s6rρH (r − s, x − y)βds dy

6C

(∫ T

0

∫
|x−y |6p2d(T−s)

C

|x − y |dβ ds dy

+
∫ T

0

∫
|x−y |>p2d(T−s)

ρH (T − s, x − y)βds dy

)
<+∞ .

We deduce that the convergence of the sum defining B(t , x) is uniform in t ∈ [0,T ]. This proves

the continuity statement.

Remark 5.3.18. In particular, any α-stable noise with α ∈ (0,1) satisfies the hypothesis of

Proposition 5.3.17. Indeed, since we must have p > α, the condition p < 1 imposes α < 1.

Conversely, it is immediate to see that for α< 1, one can choose p, q such that (H4) is satisfied.

The next section shows that for α> 1, the situation is completely different.

The case of an α-stable noise, 16α< 2

In this section, we suppose that the noise is an α-stable noise Lα on [0,T ]×Rd , for some

α ∈ [1,2).

Proposition 5.3.19. Let u be the mild solution constructed in Proposition 5.3.1 of the stochastic

heat equation with additive α-stable noise for some α ∈ [1,2):

u(t , x) =
∫ t

0

∫
Rd
ρH (t − s; x − y)Lα(ds, dy) .

For any x ∈Rd , there is a set Nx ⊂Ω of probability one such that for any ω ∈ Nx , t 7→ u(t , x)(ω)

is unbounded on any non-empty open interval.

Proof. Fix x ∈Rd . Observe that the process (Y (t ), t ∈ [0,T ]) defined by

Y (t ) = u(t , x) =
∫ t

0

∫
Rd
ρH (t − s, x − y)Lα(ds, dy)

is an α-stable process given in the "standard form" of [62, (10.1.1)] with the measurable space

E = [0,T ]×Rd , and the control measure ds dy . We shall check that the necessary condition [62,

(10.2.14)] for sample path boundedness in [62, Theorem 10.2.3] is not satisfied, in particular

that for any 06 t1 < t26 T , and T ∗ = [t1, t2],∫ t2

t1

∫
Rd

(
sup
t∈T ∗

ρH (t − s, x − y)

)α
ds dy =+∞ . (5.3.35)

Indeed, observe that the integral is bounded below by∫ t2

t1

∫
Rd

sup
t∈[t1,t2]

ρH (t − s, x − y)αds dy >
∫ t2−t1

0

∫
Rd

sup
v∈[0,s]

ρH (v, x − y)αds dy .
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In view of the study of the maximum of t 7→ ρH (t , x − y) in the proof of Proposition 5.3.17, we

have ∫ t2

t1

∫
Rd

(
sup
t∈T ∗

ρH (t − s, x − y)

)α
ds dy >

∫ t2−t1

0

∫
|x−y |6p2d s

C

|x − y |dα ds dy =+∞ ,

and (5.3.35) is proved.

5.4 The SHE driven by heavy-tailed noise: equation on a smooth

and bounded domain D in dimension d > 2

Let D be a smooth and bounded domain in Rd , where d > 2. We consider the stochastic heat

equation driven by a Lévy white noise in [0,T ]×D with Dirichlet boundary conditions:
∂u
∂t (t , x) =∆u(t , x)+σ(u(t , x))L̇(t , x) , (t , x) ∈ [0,T ]×D ,

u(t , x) = 0, for all (t , x) ∈ [0,T ]×∂D ,

u(0, x) = 0, for all x ∈ D ,

(5.4.1)

where σ is a Lipschitz function and L is a pure jump Lévy white noise. More precisely, we

suppose that

L(dt , dx) = b dt dx +
∫
|z|61

z J̃ (dt , dx, dz)+
∫
|z|>1

z J (dt , dx, dz)

=: LB (dt , dx)+LM (dt , dx)+LP (dt , dx) ,
(5.4.2)

where b ∈R, J is a Poisson random measure on [0,∞)×D ×Rwith intensity dt dxν(dz), and

J̃ is the compensated version of J . The measure ν is a Lévy measure, that is, ν({0}) = 0 and∫
R

(
z2 ∧1

)
ν(dz) <+∞.

(H5) There exists 0 < p < 1+ 2
d such that∫

|z|61
|z|pν(dz) <+∞ .

If p < 1, we assume that

b0 := b −
∫
|z|61

zν(dz) = 0. (5.4.3)

The Green’s function of the heat operator on the bounded domain [0,T ]×D is denoted by

GD (t ; x, y), for all (t , x, y) ∈ [0,T ]×D×D . By definition, a mild solution to (5.4.1) is a predictable

random field u = (u(t , x), (t , x) ∈ [0,T ]×D) such that for all (t , x) ∈ [0,T ]×D ,

u(t , x) =
∫ t

0

∫
D

GD (t − s; x, y)σ(u(s, y))L(ds, dy) . (5.4.4)

Similar to [14], we define the stopping times τN = inf
{

t > 0 : J ([0, t ]×D × [−N , N ]c ) 6= 0
}
. By
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the same calculation as in (5.2.5), (τN )N>1 is an increasing sequence of stopping times such

that τN > 0 and τN →+∞ almost surely as N →+∞. In fact, we have that for almost all ω ∈Ω,

there exists an integer R(ω) such that for any N > R(ω), τN (ω) > T . We use these stopping

times to truncate the noise, and we can define LN := L1t6τN . Then,

LN (dt , dx) = bN dt dx +
∫
|z|6N

z J̃ (dt , dx, dz) , (5.4.5)

where bN := b −∫
1<|z|6N zν(dz).

Proposition 5.4.1. Let σ : R→ R be a Lipschitz function and let L be a pure jump Lévy white

noise as in (5.4.2) such that (H5) is satisfied for some p ∈R. Then there exists, up to modifications,

a unique predictable random field u such that

sup
(t ,x)∈[0,T ]×D

E
[|u(t , x)|p1t6τN

]<+∞ ,

and for any (t , x) ∈ [0,T ]×D,

u(t , x) =
∫ t

0

∫
D

GD (t − s; x, y)σ(u(s, y))L(ds, dy) a.s. (5.4.6)

Proof. By [28, Corollary 3.2.8],

GD (t ; x, y)6
C

t
d
2

e−
|x−y |2

6t . (5.4.7)

Also, since D is a bounded domain, ν ([0,T ]×D × (−1,1)c ) <+∞ and a.s., there is only a finite

number of jumps larger than 1 in [0,T ]×D . Consequently, (1) to (4) of Assumption B of [13] are

satisfied, and we can apply [13, Theorem 3.5] to obtain the existence of a unique predictable

random field u satisfying (5.4.6) and

sup
(t ,x)∈[0,T ]×D

E
[|u(t , x)|p1t6τN

]<+∞ .

Remark 5.4.2. Let uN (t , x) = u(t , x)1t6τN . Then uN is clearly a mild solution to the truncated

equation

uN (t , x) =
∫ t

0

∫
D

GD (t − s; x, y)σ
(
uN (s, y)

)
LN (ds, dy) a.s.

Furthermore, uN → u as N →+∞ almost surely, and the convergence is stationary.

The problems we consider in the following are about sample path regularity properties of the

mild solution of the stochastic heat equation, and, by stationary convergence of uN to u, these

properties are identical to those of uN defined in Remark 5.4.2 for N sufficiently large. The

value of the parameter N has no importance in our study, so we can suppose that N = 1 and
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drop the dependency in N . Therefore, in the following, we will always consider the solution to

the integral equation

u(t , x) = b
∫ t

0

∫
D

GD (t − s; x, y)σ(u(s, y)) ds dy

+
∫ t

0

∫
D

GD (t − s; x, y)σ(u(s, y))LM (ds, dy) ,

(5.4.8)

and the solution to (5.4.4) will have the same sample path regularity properties.

Remark 5.4.3. Since there exists p < 1+ 2
d such that

∫
|z|61 |z|pν(dz) <+∞, for any β ∈ [p,1+ 2

d ),∫
|z|61 |z|βν(dz) <+∞. Therefore, we can apply Proposition 5.4.1 with p =β and we obtain that

the solution u to (5.4.8) has uniformly bounded moments of order β for any β< 1+ 2
d :

sup
(t ,x)∈[0,T ]×D

E
[
|u(t , x)|β1t6τN

]
<+∞ , for any β< 1+ 2

d
. (5.4.9)

5.4.1 The fractional Sobolev spaces Hr (D)

Let D ⊂ Rd be a bounded domain with a smooth boundary in the sense of [51, (7.10) p. 38].

The operator (−∆) on D with vanishing Dirichlet boundary conditions admits a complete

orthonormal system in L2(D) of smooth eigenfunctions
(
Φ j

)
j>1, with eigenvalues

(
λ j

)
j>1.

Then we have the following properties (see for example [69, Chapter V, p. 343]:

∑
j>1

(1+λ j )r <+∞ , for any r <−d

2
, (5.4.10)

and ∥∥Φ j
∥∥∞6C (1+λ j )

α
2 , for any α> d

2
. (5.4.11)

The Green’s function of the heat operator on D has the representation:

GD (t ; x, y) = ∑
j>1

Φ j (x)Φ j (y)e−λ j t , for all x, y ∈ D .

For any function f ∈ L2(D),

f (x) = ∑
j>1

a j ( f )Φ j (x) , for all x ∈ D , (5.4.12)

where a j ( f ) = 〈
f ,Φ j

〉
L2(D). For any r > 0, we define Hr (D) as the set of functions f ∈ L2 (D)

such that

‖ f ‖2
Hr

:= ∑
j>1

(
1+λ j

)r a j ( f )2 <+∞ .
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This is a Hilbert space for the inner product given by〈
f , g

〉
Hr

:= ∑
j>1

(
1+λ j

)r a j ( f )a j (g ) .

For r > 0, we define H−r (D) as the dual space of Hr (D), that is, the space of continuous linear

functionals on Hr (D). Then, for any r > 0, H−r (D) is isomorphic to the space of sequences

b = (bn)n>1 such that

‖b‖2
H−r

:= ∑
j>1

(
1+λ j

)−r b2
j <+∞ .

More precisely, for r > 0 and f ∈ H−r (D), the coefficients b j are given by b j = f (Φ j ). Then

‖ f ‖H−r = ‖b‖H−r and the duality between H−r (D) and Hr (D) is given by〈
b, g

〉= ∑
j>1

b j a j (g )6 ‖b‖H−r ‖g‖Hr .

5.4.2 Existence of a càdlàg solution in Hr (D)

We start with a key proposition, which tells us that the Green’s function of the heat operator

on a bounded domain D essentially has the same singularities as the heat kernel. This result is

taken from [32, Theorem 1].

Proposition 5.4.4. Let ρH be the heat kernel in Rd . Then

GD (t ; x, y) = ρH (t , x − y)+H(t ; x, y) , (5.4.13)

where H is a function such that for any ε > 0, (t , x, y) 7→ H(t ; x, y) is smooth on [0,T ]×D ×
B c
ε (∂D), where Bε(∂D) is the ε-neighborhood of the boundary of D:

Bε(∂D) = ⋃
y∈∂D

(
B(y,ε)∩D

)
,

and the complement is taken in D.

Proof. We will use [32, Theorem 1]. This theorem states that GD can be decomposed into

the sum of the fundamental solution of the heat operator (that is, the heat kernel ρH here)

and a function H . Furthermore, the function H satisfies the estimates (6.1) of [32, Theorem

1] with |x −ξ| replaced by |x −ξ|+d(ξ,∂D). Translated to our setting, replacing ξ by y , since

y is at distance at least ε from the boundary of D, we deduce from (6.1) the smoothness of

(t , x, y) 7→ H(t ; x, y) on [0,T ]×D ×B c
ε (∂D).

Remark 5.4.5. Our definition of fractional Sobolev spaces is based on the spectral powers of

the Dirichlet Laplacian. More precisely, for any r > 0, Hr (D) is the domain of (−∆)
r
2 . We define

several other Sobolev spaces: for m ∈N, as in [51, (1.3) p.3],

H m(D) = {
u : u(α) ∈ L2(D) , for all |α|6m

}
.
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Then, by [51, Définition 9.1 p. 45], for s> 0 and letting m be the smallest even integer such that

m> r ,

H r (D) := [
H m(D),L2(D)

]
1− r

m
,

where the right-hand side is the notation of [51, Definition 2.1 p.12] for interpolation spaces

(and notice that s is an upper (not lower) index). Then as in [51, (11.1) p.60], for r > 0, H r
0 (D) is

defined as the closure of D(D) (the set of C∞ functions with compact support included in D) in

H r (D). Following [39, Definition 8.1], for r > 1
2 , we define H r

B (D) to be the closed subspace of

H r (D) such that its elements are equal to zero on the boundary ∂D. Finally, we point out that

Hr (Rd ) defined in Definition 5.3.7 coincides with the definition of H r (Rd ) in [51, (7.1) p. 35].

Then, for m ∈N, by [51, Definition 2.1 p.12], for θ ∈ [0,1],[
H m

B (D),L2(D)
]
θ = dom

(
Λ1−θ

)
,

for some self-adjoint positive operatorΛ in L2(D) with domain H m
B (D) (see also [51, Remarque

2.3 p.13]). The power in this case is to be understood as the spectral power of the operator. In

particular, we can chooseΛ= (−∆)
m
2 , where ∆ is the Dirichlet Laplacian, and the power m

2 is to

be understood as the composition of partial differential operators (note that the power m
2 is an

integer since m was chosen even). Then, by [39, Théorème 8.1],[
H m

B (D),L2(D)
]
θ = H m(1−θ)

B (D) .

Choosing θ = 1− r
m , we deduce that

H r
B (D) = dom

(
Λ

r
m

)
.

Let f ∈ L2(D) as in (5.4.12). Then,

Λ
r
m f = ∑

j>1
µ

r
m

j a j ( f )Φ j ,

where µ j =λ
m
2
j is the j th eigenvalue ofΛ. The previous sum has a meaning in L2(D) if and only

if ∑
j>1

λr
j

∣∣a j ( f )
∣∣2 <+∞ .

We deduce that

H r
B (D) = dom

(
Λ

r
m

)
= Hr (D) .

Therefore, by [39, Théorème 8.1] and the discussion that follows, Hr (D) ⊂ H r (D), and the

embedding is continuous. In the case where r 6 1
2 , we have by [55, p. 740]

Hr (D) =
{

H r (D) if r < 1
2 ,

H
1
2

00(D) if r = 1
2 ,
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where H
1
2

00(D) is the Lions-Magenes space (see [51, Théorème 11.7]). Also, by [51, Chapitre I,

Théorème 11.7],

H
1
2

00(D) ⊂ H
1
2

0 (D) ,

where the inclusion is continuous. In addition, for any r > 0, H r
0 (D) ⊂ H r (D), where the

inclusion is continuous. Therefore, for any r > 0, Hr (D) ⊂ H r (D), where the inclusion is contin-

uous. Then, by [51, Théorème 9.1], any function u ∈ H r (D) is the restriction to D of a function

ũ ∈ H r (Rd ) = Hr (Rd ) such that by the proof of [51, Théorème 9.2], there is a constant C that

does not depend on u such that ‖ũ‖H r (Rn )6C‖u‖H r (D). Therefore the embedding is continuous.

Finally, for any r > 0, Hr (D) ⊂ H r (D) ⊂ Hr (Rd ), where the embeddings are continuous. By

duality, for any r 6 0, Hr (Rd ) ⊂ H r (D) ⊂ Hr (D), where the embeddings are continuous.

In conclusion, for any r 6 0, if t 7→ u(t , ·) is càdlàg in Hr,loc(Rd ), then for any θ ∈ D(Rd ), t 7→
θ(·)u(t , ·) is càdlàg in Hr (Rd ), hence t 7→ u(t , ·)|D is càdlàg in Hr (D).

Theorem 5.4.6. Let σ : R→ R be a Lipschitz continuous function, and let L be a Lévy white

noise as in (5.4.2) such that (H5) is satisfied for some p > 0. Suppose also that |σ(x)|6C (1+|x|γ)

for some γ < 1
2 + 1

d . Then the solution to the (SHE) defined in Proposition 5.4.1 has a càdlàg

solution in Hr (D) for any r <−d
2 .

Proof. By the stopping time argument exposed after the proof of Proposition 5.4.1, we can

suppose that u satisfies (5.4.8). In the following, we therefore suppose that L = L1 as in (5.4.5).

Also, since γ < 1
2 + 1

d , we deduce that 2γ < 1+ 2
d , and for δ small enough, 2γ+2γδ < 1+ 2

d .

Therefore, by (5.4.9),

sup
(t ,x)∈[0,T ]×D

E
[
σ(u(t , x))2+δ

]
6 sup

(t ,x)∈[0,T ]×D
C

(
1+E

[
|u(t , x)|2γ+2γδ

])
<+∞ . (5.4.14)

Step 1: Let ε> 0, and

uε(t , x) =
∫ t

0

∫
D

GD (t − s; x, y)σ
(
u(s, y)

)
1y∈B c

ε (∂D)L(ds, dy) .

Then, by (5.4.13), we can write

uε(t , x) =
∫ t

0

∫
D
ρH (t − s; x − y)σ

(
u(s, y)

)
1y∈B c

ε (∂D)L(ds, dy)

+
∫ t

0

∫
D

H(t − s; x, y)σ
(
u(s, y)

)
1y∈B c

ε (∂D)L(ds, dy)

=: u1
ε(t , x)+u2

ε(t , x) .

For u1
ε , by (5.4.14), we can follow the proof of the càdlàg property of u1 in the proofs of

Propositions 5.3.9 and 5.3.12 to get that t 7→ u1
ε(t , ·) has a càdlàg version in Hr,loc(Rd ) for any

r < −d
2 , and by Remark 5.4.5, it has a càdlàg version in Hr (D) for any r < −d

2 . Then, since
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(t , x, y) 7→ H(t ; x, y) is smooth on [0,T ]×D ×B c
ε (∂D) by Proposition 5.4.4, we can mimic the

proof of the joint continuity of u2 in the proofs of Propositions 5.3.9 and 5.3.12 to get that

(t , x) 7→ u2
ε(t , x) is jointly continuous. Since D is bounded, we deduce that u2

ε is uniformly

continuous, and then that t 7→ u2
ε(t , ·) is continuous in Hr (D) for any r 6 0. Therefore, t 7→

uε(t , ·) has a càdlàg version in Hr (D) for any r <−d
2 .

Step 2: By definition,

u3
ε(t , x) := u(t , x)−uε(t , x) =

∫ t

0

∫
D

GD (t − s; x, y)σ
(
u(s, y)

)
1y∈Bε(∂D)L(ds, dy) .

Then, ∥∥u3
ε(t , ·)∥∥2

Hr (D) =
∑

k>1
(1+λk )r (

aεk (t )
)2 ,

where

aεk (t ) : =
∫

D
Φk (x)

(
u3
ε(t , x)

)
dx

=
∫

D
Φk (x)

(∫ t

0

∫
D

GD (t − s; x, y)σ
(
u(s, y)

)
1y∈Bε(∂D)L(ds, dy)

)
dx

=
∫

D
Φk (x)

(
b

∫ t

0

∫
D

GD (t − s; x, y)σ
(
u(s, y)

)
1y∈Bε(∂D) ds dy

)
dx

+
∫

D
Φk (x)

(∫ t

0

∫
D

∫
|z|61

GD (t − s; x, y)σ
(
u(s, y)

)
1y∈Bε(∂D) J̃ (ds, dy, dz)

)
dx .

A simple Fubini theorem on the Lebesgue integral allows us to change the order of integration.

For the stochastic integral, we can use a limiting argument similar to the one exposed in the

proof of (5.3.20), with p ∨16β< 1+ 2
d . Therefore,

aεk (t ) =
∫ t

0

∫
D

e−λk (t−s)Φk (y)σ
(
u(s, y)

)
1y∈Bε(∂D)L(ds, dy) .

We use the identity e−λk (t−s) = 1−∫ t
s λk e−λk (t−r ) dr , and Theorem A.0.2:

aεk (t ) =
∫ t

0

∫
D
Φk (y)σ

(
u(s, y)

)
1y∈Bε(∂D)L(ds, dy)

−
∫ t

0

∫
D
Φk (y)

(∫ t

s
λk e−λk (t−r ) dr

)
σ

(
u(s, y)

)
1y∈Bε(∂D)L(ds, dy)

=
∫ t

0

∫
D
Φk (y)σ

(
u(s, y)

)
1y∈Bε(∂D)L(ds, dy)

−
∫ t

0

(∫ r

0

∫
D
Φk (y)λk e−λk (t−r )σ

(
u(s, y)

)
1y∈Bε(∂D)L(ds, dy)

)
dr .
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Therefore,

∣∣aεk (t )
∣∣6 sup

t∈[0,T ]

∣∣∣∣∫ t

0

∫
D
Φk (y)σ

(
u(s, y)

)
1y∈Bε(∂D)L(ds, dy)

∣∣∣∣(1+
∫ t

0
λk e−λk (t−r ) dr

)
6C sup

t∈[0,T ]

∣∣∣∣∫ t

0

∫
D
Φk (y)σ

(
u(s, y)

)
1y∈Bε(∂D)L(ds, dy)

∣∣∣∣ .

Also, using the fact that L(ds, dy) = b ds dy +LM (ds, dy), we have

E

[
sup

t∈[0,T ]

∣∣∣∣∫ t

0

∫
D
Φk (y)σ

(
u(s, y)

)
1y∈Bε(∂D)L(ds, dy)

∣∣∣∣2
]

6C
∫ T

0

∫
D
Φk (y)2E

[∣∣σ(
u(s, y)

)∣∣2
]
1y∈Bε(∂D) ds dy .

Using (5.4.14) and Hölder’s inequality, we deduce that for some δ> 0 small enough,

E

[
sup

t∈[0,T ]

∣∣aεk (t )
∣∣2

]
6C

∫ T

0

∫
D
Φk (y)2E

[∣∣σ(
u(s, y)

)∣∣2
]
1y∈Bε(∂D) ds dy

6C

(∫
D
Φk (y)2+δdy

) 2
2+δ

(Lebd (Bε(∂D)))
δ

2+δ

6C ‖Φk‖
4

2+δ
L2(D)

‖Φk‖
2δ

2+δ∞ (Lebd (Bε(∂D)))
δ

2+δ .

We can now use (5.4.11) with α= d and the fact that ‖Φk‖L2(D) = 1 to get

E

[
sup

t∈[0,T ]

∣∣aεk (t )
∣∣2

]
6C (1+λk )

dδ
2+δ (Lebd (Bε(∂D)))

δ
2+δ .

By (5.4.10), and since r <−d
2 , we can choose δ small enough such that

∑
k>1(1+λk )r+ dδ

2+δ <+∞.

Then,

E

[
sup

t∈[0,T ]

∥∥u3
ε(t , ·)∥∥2

Hr (D)

]
6C (Lebd (Bε(∂D)))

δ
2+δ → 0 as ε→ 0.

We deduce that u3
ε(t , ·) → 0 in Hr (D) uniformly in t ∈ [0,T ].

Step 3: We have

u(t , x) = u1
ε(t , x)+u2

ε(t , x)+u3
ε(t , x) ,

where by Step 1, t 7→ u1
ε(t , ·) has a càdlàg version in Hr,loc(Rd ) for any r <−d

2 , and by Remark

5.4.5, it has a càdlàg version in Hr (D) for any r <−d
2 . Also, t 7→ u2

ε(t , ·) is continuous in Hr (D)

for any r 6 0. By Step 2, u3
ε(t , ·) → 0 in Hr (D) uniformly in t ∈ [0,T ], therefore, t 7→ u(t , ·) has a

càdlàg version in Hr (D).
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5.4.3 Continuity in space at fixed time

Proposition 5.4.7. Let L be a pure jump Lévy white noise as in (5.4.2) with Lévy measure

ν. Suppose that for some 0 < p 6 2
d ,

∫
|z|61 |z|pν(dz) < ∞. Assume as in (5.4.3) that b0 =

b −∫
|z|61 zν(dz) = 0. Let t ∈ [0,T ] be fixed. Then the process x 7→ u(t , x) defined in Proposition

5.4.1 is continuous.

Proof. By the stopping time argument developed after the proof of Proposition 5.4.1, we can

suppose that u is solution to (5.4.8). Since d > 2 and p 6 2
d , the jumps are summable and we

can write:

u(t , x) = ∑
i>1

Zi GD (t −Ti ; x, Xi )σ (u(Ti , Xi )) .

Since a.s., no jumps occurs at time t , each term of this sum is continuous in x, and we now

prove that the convergence is uniform in x on compact sets. Also, by (5.4.7), we can use the

same estimates as in the proof of Proposition 5.3.13 (case p 6 1) for the uniform convergence

of the sum defining the term A, so we deduce that x 7→ u(t , x) is continuous.

Case of anα-stable noise, 2
d 6α< 2.

In this section, we suppose that the noise is an α-stable noise Lα on [0,T ]×D, for some

α ∈ [ 2
d ,2).

Proposition 5.4.8. Let u be the mild solution of the stochastic heat equation with additive

α-stable noise, as defined in Proposition 5.4.1:

u(t , x) =
∫ t

0

∫
D

GD (t − s; x, y)Lα(ds, dy) .

For any t ∈ [0,T ], there is a set Nt ⊂Ω of probability one such that for any ω ∈ Nt , x 7→ u(t , x)(ω)

is unbounded on any non-empty open subset of D.

Proof. Fix t ∈ [0,T ]. Observe that the process (Y (x), x ∈ D) defined by

Y (x) = u(t , x) =
∫ t

0

∫
D

GD (t − s; x, y)Lα(ds, dy)

is an α-stable process given in the "standard form" of [62, (10.1.1)] with the measurable space

E = [0,T ]×D , and the control measure ds dy . We shall check that the necessary condition [62,

(10.2.14)] for sample path boundedness in [62, Theorem 10.2.3] is not satisfied, in particular

that for any x0 ∈ D̊ , and δ such that X ∗ := Bx0 (δ) ⊂ D ,∫ t

0

∫
D

(
sup
x∈X ∗

GD (t − s, x, y)

)α
ds dy =+∞ . (5.4.15)
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By [68, Theorem 2 and Lemma 9], for any x, y ∈ X ∗,

GD (t − s, x, y)>C
e−

|x−y |2
4t

(4πt )
d
2

, (5.4.16)

(instead of this sophisticated estimate, we could use (5.4.13)). Therefore,∫ t

0

∫
D

sup
x∈X ∗

GD (t − s; x, y)αds dy >
∫ t

0

∫
X ∗

sup
x∈X ∗

GD (t − s; x, y)αds dy

>C
∫ t

0

∫
X ∗

1

(4π(t − s))
αd
2

ds dy =+∞ ,

and (5.4.15) is proved.

5.4.4 Continuity in time at a fixed space point

The next result is similar to Propositions 5.2.12 and 5.3.17.

Proposition 5.4.9. Let L be a pure jump Lévy white noise with Lévy measure ν. Suppose that

for some 0 < p < 1,
∫
|z|61 |z|pν(dz) <∞. Assume as in (5.4.3) that b0 = b −∫

|z|61 zν(dz) = 0. Let

x ∈ D be fixed. Then the process t 7→ u(t , x) has a continuous modification.

Proof. Regarding the stochastic integral with respect to LM , we observe that the jumps of

the noise are summable, hence, since b0 = 0, it is sufficient to consider the uncompensated

process∫ t

0

∫
D

∫
R

zGD (t − s; x, y)σ(u(s, y))J (ds, dy, dz) = ∑
i>1

Zi GD (t −Ti ; x,Yi )σ(u(Ti ,Yi )) , (5.4.17)

where (Ti ,Yi , Zi ) are the jump points of the underlying Poisson random measure J . For any

fixed (x, y) ∈ D2, x 6= y , we have by (5.4.13) that t 7→GD (t ; x, y) is a continuous function on R.

We show that the sum in (5.4.17) converges uniformly in t ∈ [0,T ]. To do this we can split the

sum depending on the distance of the jump Yi to x. Indeed, by (5.4.7), for |x − y |6p
3dT , we

have

sup
t∈[0,T ]

GD (t ; x, y)6 sup
t∈[0,T ]

C

t
d
2

e−
(x−y)2

6t = C ′

|x − y |d ,

for some constant C ′. Also, if |x − y | >p
3dT , then

sup
t∈[0,T ]

GD (t ; x, y)6 sup
t∈[0,T ]

C

t
d
2

e−
(x−y)2

6t = C

T
d
2

e−
(x−y)2

6T .

Since 0 < p < 1,

E

[(∑
i>1

sup
t∈[0,T ]

|Zi GD (t −Ti ; x,Yi )σ(u(Ti ,Yi ))|
)p]
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6 E

[∑
i>1

|Zi |p |σ(u(Ti ,Yi ))|q sup
t∈[0,T ]

|G(t −Ti ; x,Yi )|p
]

6C sup
(s,y)∈[0,T ]×D

E
[∣∣σ(

u(s, y)
)∣∣p](∫ T

0

∫
D

∫
|z|61

|z|p 1

|x − y |pd
1|x−y |6p3d(T−s) ds dy ν(dz)

+
∫ T

0

∫
D

∫
|z|61

|z|p 1

(T − s)d p
2

e−
p(x−y)2

6(T−s) 1|x−y |>p3d(T−s) ds dy ν(dz)

)
<+∞ ,

which concludes the proof.

Remark 5.4.10. In particular, any α-stable noise with α ∈ (0,1) satisfies the hypothesis of

Proposition 5.4.9, as occurred in Remarks 5.2.13 and 5.3.18. The next section shows that for

α> 1, the situation is completely different.

The case of an α-stable noise, 16α< 2

In this section, we consider the stochastic heat equation on [0,T ]×D with Dirichlet bound-

ary conditions, with additive α-stable noise Lα on [0,T ]×D. We establish the analog of

Propositions 5.2.14 and 5.3.19

Proposition 5.4.11. Let u be the mild solution of the stochastic heat equation with additive

α-stable noise, 16α< 2:

u(t , x) =
∫ t

0

∫
D

GD (t − s; x, y)Lα(ds, dy) .

Then for any x ∈ D, there is a set Nx ⊂ Ω of probability one such that for any ω ∈ Nx , t 7→
u(t , x)(ω) is unbounded on any non-empty open interval.

Proof. Fix x ∈ D . Observe that the process (X (t ), t ∈ [0,T ]) defined by

X (t ) = u(t , x) =
∫ t

0

∫
D

GD (t − s; x, y)Lα(ds, dy)

is an α-stable process given in the "standard form" of [62, (10.1.1)] with the measurable space

E = [0,T ]×D, and the control measure ds dy . Let T ∗ = [t1, t2], with 0 6 t1 < t2 6 T . We

shall check that the necessary condition [62, (10.2.14)] for sample path boundedness in [62,

Theorem 10.2.3] is not satisfied, in particular, that∫ T

0

∫
D

(
sup
t∈T ∗

GD (t − s; x, y)

)α
ds dy =+∞ . (5.4.18)

Indeed, observe that the integral is bounded below by∫ t2

t1

∫
D

sup
t∈[t1,t2]

GD (t − s; x, y)αds dy =
∫ t2−t1

0

∫
D

sup
t∈[t1,t2]

GD (t − t1 − r ; x, y)αdr dy
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=
∫ t2−t1

0

∫
D

sup
u∈[0,t2−t1]

GD (u − r ; x, y)αdr dy

>
∫ t2−t1

0

∫
Bx (ε)

sup
u∈[0,t2−t1]

GD (u − r ; x, y)αdr dy

=
∫ t2−t1

0

∫
Bx (ε)

sup
v∈[0,t2−t1−r ]

GD (v ; x, y)αdr dy

=
∫ t2−t1

0

∫
Bx (ε)

sup
v∈[0,s]

GD (v ; x, y)αds dy ,

for any fixed ε> 0 such that Bx (ε) ⊂ D . We now use (5.4.16), and the study of the maximum of

t 7→GD (t , x − y) in the proof of Proposition 5.4.9, to get∫ T

0

∫
D

(
sup
t∈T ∗

GD (t − s; x, y)

)α
ds dy >

∫ t2−t1

0

∫
|x−y |6ε∧p2d s

C

|x − y |αd
ds dy =+∞ ,

and (5.4.18) is proved.
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A Appendix

In this appendix, we state some useful theorems using the notations of this thesis. Most of the

time, these theorems will not be stated in their full generality, but will be instead adapted to

our framework.

The first theorem is a result from [52, Theorem 1], and is a series of inequalities for mo-

ments of stochastic integrals with respect to compensated Poisson random measures. These

inequalities are sometimes called Bichteler-Jacod inequalities.

Theorem A.0.1. Let J be a Poisson random measure on R+ ×Rd ×R, d > 1, with intensity

measure dt dxν(dz). Let J̃ be the associated compensated Poisson random measure. Let

H :R+×Rd →R be predictable random field. Assume that∫
[0,t ]×Rd×R

(∣∣H(s, y)z
∣∣2 ∧ ∣∣H(s, y)z

∣∣) ds dy ν(dz) <+∞ .

Then, It (H) := ∫ t
0

∫
Rd

∫
R zH(s, y) J̃(ds, dy, dz) is well defined and we have the following esti-

mates:

(i) If p ∈ (0,2], then

E

[
sup

s∈[0,t ]
|Is(H)|p

]
6CpE

[(∫ t

0

∫
Rd

∫
R
|zH(s, y)|2 ds dy ν(dz)

) p
2

]
.

(ii) If p ∈ [1,2], then

E

[
sup

s∈[0,t ]
|Is(H)|p

]
6CpE

[(∫ t

0

∫
Rd

∫
R
|zH(s, y)|p ds dy ν(dz)

)]
.
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(iii) If p > 2, then

E

[
sup

s∈[0,t ]
|Is(H)|p

]
6CpE

[(∫ t

0

∫
Rd

∫
R
|zH(s, y)|2 ds dy ν(dz)

) p
2

]

+CpE

[(∫ t

0

∫
Rd

∫
R
|zH(s, y)|p ds dy ν(dz)

)]
.

The next result is a stochastic Fubini theorem taken from [3, Theorem 5] for stochastic integrals

with respect to compensated Poisson random measures.

Theorem A.0.2. Let J be a Poisson random measure on R+ ×Rd ×R, d > 1, with intensity

measure dt dxν(dz). Let J̃ be the associated compensated Poisson random measure. Let

H : [0,T ]×Rd ×Rd → R be predictable random field. Let µ be a finite measure on Rd , and

assume that ∫
Rd
µ(dx)

∫ T

0
ds

∫
Rd

dy
∫
R
ν(dz)E

[∣∣zH(s, x, y)
∣∣2

]
<+∞ .

Then, for any 06 t 6 T ,∫
Rd

(∫ t

0

∫
Rd×R

zH(s, x, y) J̃ (ds, dy, dz)

)
µ(dx) =

∫ t

0

∫
Rd×R

(∫
Rd

zH(s, x, y)µ(dx)

)
J̃ (ds, dy, dz) ,

almost surely.

In Chapter 5, we use extensively a sufficient condition for the existence of a càdlàg version of a

stochastic process with values in a Hilbert space. This result can be found in [37, §4, Theorem

1, p.179], which gives a sufficient condition for the absence of discontinuities of the second

kind for a stochastic process with values in a complete metric space. In the case of a Hilbert

space, their result particularizes as follows.

Theorem A.0.3. Let H be an Hilbert space equipped with the norm ‖ · ‖H . Let (X t )t>0 be a

H-valued separable stochastic process that is continuous in probability. Suppose that for any

t > 0 and any 06 h6 t ,

E
[‖X t+h −X t‖2

H ‖X t −X t−h‖2
H

]
6C h1+r ,

for some r > 0. Then the process X has a càdlàg version.

Theorem A.0.3 will be useful to obtain the existence of a càdlàg version of t 7→ u(t , ·) in a

fractional Sobolev space, where u is the mild solution to the stochastic heat equation under

some additional assumptions. We provide the following technical lemma to prove that a

certain type of stochastic integral with respect to a Poisson random measure is continuous in

probability.

Lemma A.0.4. Let D be either [0,π], Rd or a bounded and smooth domain in Rd . Let J be a

Poisson random measure on R+×D ×R, with intensity measure dt dxν(dz), where ν is a Lévy
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measure and
∫
|z|61 |z|βν(dz) <+∞ for some 16β< 1+ 2

d . Let Z be a random field such that

sup
(t ,x)∈[0,T ]×D

E
[∣∣Z (s, y)

∣∣β]
<+∞ .

Then, the random field (t , x) 7→ u(t , x) defined by

u(t , x) =
∫ t

0

∫
D

∫
|z|61

zGD (t − s; x, y)Z (s, y) J̃ (ds, dy, dz) ,

has a separable version that is continuous in probability, where GD is the Green’s function of the

heat operator on the domain D.

Proof. Using [37, Theorem 1], we deduce that u has a separable version, that we will still

denote by u. Let (t , x), (r, z) ∈ [0,T ]×D . We suppose that t > r . Then,

u(t , x)−u(r, z) = u(t , x)−u(r, x)+u(r, x)−u(r, z)

=
∫ r

0

∫
D

∫
|z|61

z
(
GD (t − s; x, y)−GD (r − s; x, y)

)
Z (s, y) J̃ (ds, dy, dz)

+
∫ t

r

∫
D

∫
|z|61

zGD (t − s; x, y)Z (s, y) J̃ (ds, dy, dz)

+
∫ r

0

∫
D

∫
|z|61

z
(
GD (r − s; x, y)−GD (r − s; z, y)

)
Z (s, y) J̃ (ds, dy, dz) .

Therefore,

E
[
|u(t , x)−u(r, z)|β

]
6C (I1 + I2 + I3) ,

where

I1 = E
[∣∣∣∣∫ r

0

∫
D

∫
|z|61

z
(
GD (t − s; x, y)−GD (r − s; x, y)

)
Z (s, y) J̃ (ds, dy, dz)

∣∣∣∣β
]

,

I2 = E
[∣∣∣∣∫ t

r

∫
D

∫
|z|61

zGD (t − s; x, y)Z (s, y) J̃ (ds, dy, dz)

∣∣∣∣β
]

,

I3 = E
[∣∣∣∣∫ r

0

∫
D

∫
|z|61

z
(
GD (r − s; x, y)−GD (r − s; z, y)

)
Z (s, y) J̃ (ds, dy, dz)

∣∣∣∣β
]

.

Using Theorem A.0.1(ii), we get

I16C
∫ r

0

∫
D

∣∣GD (t − s; x, y)−GD (r − s; x, y)
∣∣β ds dy ,

I26C
∫ t

r

∫
D

∣∣GD (t − s; x, y)
∣∣β ds dy ,

I36C
∫ r

0

∫
D

∣∣GD (r − s; x, y)−GD (r − s; z, y)
∣∣β ds dy .
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Since β< 1+ 2
d , (s, y) 7→GD (t − s; x, y) ∈ Lβ([0,T ]×D). Therefore,

I2 → 0, as r → t .

We can rewrite I1 as

I16C
∫ T

0
‖GD (t − s; x, ·)−GD (r − s; x, ·)‖β

Lβ(D)
ds .

Since β > 1, we can use the fact that simple functions are dense in Lβ
(
R,Lβ(D)

)
(see [30,

Chapter III, Corollary 3.8 p. 125]), the proof of [53, Chapter XIII, Corollary 1.2] applies (see also

[19, Proposition 4.1]), and we deduce that

I1 → 0 as r → t .

Also, from Proposition 5.4.4 we can decompose GD (r − s; x, y) = ρH (r − s; x − y)+H (r − s; x, y),

where since x ∈ D is fixed, (s, y) 7→ H(r − s; x, y) is smooth on [0,T ]×D . Therefore,

I36C

(∫ T

0

∫
Rd

∣∣ρH (r − s; x − y)−ρH (r − s; z − y)
∣∣β ds dy

+
∫ T

0

∫
D

∣∣H(r − s; x, y)−H(r − s; z, y)
∣∣β ds dy

)
.

Then, ∫ T

0

∫
Rd

∣∣ρH (r − s; x − y)−ρH (r − s; z − y)
∣∣β ds dy

=
∫
Rd

∥∥ρH (r −·; x − y)−ρH (r −·; z − y)
∥∥β

Lβ([0,T ])
dy ,

and we can conclude as for I1 that∫ r

0

∫
Rd

∣∣ρH (r − s; x − y)−ρH (r − s; z − y)
∣∣β ds dy → 0, as z → x .

The function H is non-zero if and only if D is a bounded domain, and by smoothness of H

and the dominated convergence theorem,∫ r

0

∫
D

∣∣H(r − s; x, y)−H(r − s; z, y)
∣∣β ds dy → 0, as z → x .

Therefore,

I3 → 0 as z → x .

We conclude that u(r, z) → u(t , x) as (r, z) → (t , x) in Lβ(Ω), and therefore u is continuous in

probability.

152



The next result is a technical lemma that we use many times in this thesis: it concerns the

maximum in time of the heat kernel.

Lemma A.0.5. For d > 1, recall that

ρH (t , x) = C

t
d
2

e−
|x|2
4t ,

for some constant C that we do not need to specify here. Then,

(i) If T < |x|2
2d , then

sup
t∈[0,T ]

ρH (t , x) = C

T
d
2

e−
|x|2
4T .

(ii) If T > |x|2
2d , then

sup
t∈[0,T ]

ρH (t , x) = C ′

|x|d ,

for some constant C ′.

Proof. We study the maximum of the function t 7→ ρH (t , x). The derivative of this function is

given by
∂ρH

∂t
(t , x) =C t−

d
2 −2

( |x|2
4

− d

2
t

)
e−

|x|2
4t .

This derivatives cancels if and only if t = |x|2
2d , and is positive for values of t smaller than this

threshold, and negative otherwise. This point is therefore a maximum, and plugging this value

of t in the expression of ρH yields the result.

153





Bibliography

[1] Adler, R. J., Monrad, D., Scissors, R. H., and Wilson, R. Representations, decomposi-

tions and sample function continuity of random fields with independent increments.

Stochastic Process. Appl., 15(1):3–30, 1983.

[2] Allen, E. J. Derivation of stochastic partial differential equations for size- and age-

structured populations. Journal of Biological Dynamics, 3(1):73–86, 2009. PMID:

22880751.

[3] Applebaum, D. Martingale-valued measures, Ornstein-Uhlenbeck processes with jumps

and operator self-decomposability in Hilbert space. In In memoriam Paul-André Meyer:

Séminaire de Probabilités XXXIX, volume 1874 of Lecture Notes in Math., pp. 171–196.

Springer, Berlin, 2006.

[4] Balan, R. M. SPDEs withα-stable Lévy noise: a random field approach. Int. J. Stoch. Anal.,

pp. Art. ID 793275, 22, 2014.

[5] Balan, R. M. Integration with respect to Lévy colored noise, with applications to SPDEs.

Stochastics, 87(3):363–381, 2015.

[6] Bally, V., Millet, A., and Sanz-Solé, M. Approximation and support theorem in Hölder

norm for parabolic stochastic partial differential equations. Ann. Probab., 23(1):178–222,

1995.

[7] Barndorff-Nielsen, O. E. and Basse-O’Connor, A. Quasi Ornstein-Uhlenbeck processes.

Bernoulli, 17(3):916–941, 2011.

[8] Barndorff-Nielsen, O. E., Benth, F. E., and Veraart, A. E. D. Ambit processes and stochastic

partial differential equations. In Advanced mathematical methods for finance, pp. 35–74.

Springer, Heidelberg, 2011.

[9] Barndorff-Nielsen, O. E. and Schmiegel, J. Ambit processes: with applications to tur-

bulence and tumour growth. In Stochastic analysis and applications, volume 2 of Abel

Symp., pp. 93–124. Springer, Berlin, 2007.

[10] Bichteler, K. and Jacod, J. Random measures and stochastic integration. In Theory and

application of random fields (Bangalore, 1982), volume 49 of Lecture Notes in Control and

Inform. Sci., pp. 1–18. Springer, Berlin, 1983.

155



Bibliography

[11] Chen, L. and Dalang, R. C. Hölder-continuity for the nonlinear stochastic heat equation

with rough initial conditions. Stoch. Partial Differ. Equ. Anal. Comput., 2(3):316–352,

2014.

[12] Chong, C. Tempo-Spatial Stochastic Integral Processes: Theory and Applications. Disserta-

tion, Technische Universität München, München, 2015.

[13] Chong, C. Lévy-driven volterra equations in space and time. Journal of Theoretical

Probability, pp. 1–45, 2016.

[14] Chong, C. Stochastic PDEs with heavy-tailed noise. Stochastic Process. Appl., 127(7):2262–

2280, 2017.

[15] Chong, C., Dalang, R. C., and Humeau, T. Paths properties of solutions to the stochastic

heat equation with heavy-tailed noise. In preparation, 2017.

[16] Chong, C. and Klüppelberg, C. Integrability conditions for space-time stochastic integrals:

theory and applications. Bernoulli, 21(4):2190–2216, 2015.

[17] Chung, K. L. A course in probability theory. Academic Press [A subsidiary of Harcourt

Brace Jovanovich, Publishers], New York-London, second edition, 1974. Probability and

Mathematical Statistics, Vol. 21.

[18] Cohn, D. L. Measurable choice of limit points and the existence of separable and measur-

able processes. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 22:161–165, 1972.

[19] Conus, D. The Non-linear Stochastic Wave Equation in High Dimensions: Existence,

Hölder-continuity and Itô-Taylor Expansion. PhD thesis, EPFL, 2008.

[20] Da Prato, G. and Zabczyk, J. Stochastic Equations in Infinite Dimensions. Cambridge

University Press, 1992.

[21] Dalang, R., Khoshnevisan, D., Mueller, C., Nualart, D., and Xiao, Y. A minicourse on

stochastic partial differential equations, volume 1962 of Lecture Notes in Mathematics.

Springer-Verlag, Berlin, 2009. Held at the University of Utah, Salt Lake City, UT, May 8–19,

2006, Edited by Khoshnevisan and Firas Rassoul-Agha.

[22] Dalang, R. C. Extending the martingale measure stochastic integral with applications to

spatially homogeneous s.p.d.e.’s. Electron. J. Probab., 4:no. 6, 29 pp. (electronic), 1999.

[23] Dalang, R. C. Level sets and excursions of the Brownian sheet. In Topics in spatial

stochastic processes (Martina Franca, 2001), volume 1802 of Lecture Notes in Math., pp.

167–208. Springer, Berlin, 2003.

[24] Dalang, R. C. and Humeau, T. Lévy processes and Lévy white noise as tempered distribu-

tions. Ann. Probab., To appear.

156



Bibliography

[25] Dalang, R. C. and Quer-Sardanyons, L. Stochastic integrals for spde’s: a comparison.

Expositiones Mathematicae, 2011.

[26] Dalang, R. C. and Walsh, J. B. The sharp Markov property of Lévy sheets. Ann. Probab.,

20(2):591–626, 1992.

[27] Dalang, R. C. and Walsh, J. B. The sharp Markov property of the Brownian sheet and

related processes. Acta Math., 168(3-4):153–218, 1992.

[28] Davies, E. B. Heat kernels and spectral theory, volume 92 of Cambridge Tracts in Mathe-

matics. Cambridge University Press, Cambridge, 1990.

[29] Dobrushin, R. L. and Minlos, R. A. A study of the properties of generalized Gaussian

random fields. In Problems in mechanics and mathematical physics (Russian), pp. 117–

165. Izdat. “Nauka”, Moscow, 1976.

[30] Dunford, N. and Schwartz, J. T. Linear operators. Part I. Wiley Classics Library. John Wiley

& Sons, Inc., New York, 1988. General theory, With the assistance of William G. Bade and

Robert G. Bartle, Reprint of the 1958 original, A Wiley-Interscience Publication.

[31] Durrett, R. Probability: theory and examples. Cambridge University Press, Cambridge,

4th edition, 2010.

[32] Èı̆del’man, S. D. and Ivasišen, S. D. Investigation of the Green’s matrix of a homogeneous

parabolic boundary value problem. Trudy Moskov. Mat. Obšč., 23:179–234, 1970.
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