
Online Efficient Bio-Medical Video Transcoding on
MPSoCs Through Content-Aware Workload Allocation

Arman Iranfar∗, Ali Pahlevan∗, Marina Zapater∗, Martin Žagar†, Mario Kovač†, and David Atienza∗
∗Embedded Systems Laboratory (ESL), Swiss Federal Institute of Technology Lausanne (EPFL), Switzerland

†Faculty of Electrical Engineering and Computing Univeristy of Zagreb, Croatia
∗{arman.iranfar, ali.pahlevan, marina.zapater, david.atienza}@epfl.ch

†{martin.zager, mario.kovac}@fer.hr

Abstract—Bio-medical image processing in the field of
telemedicine, and in particular the definition of systems that
allow medical diagnostics in a collaborative and distributed way
is experiencing an undeniable growth. Due to the high quality
of bio-medical videos and the subsequent large volumes of data
generated, to enable medical diagnosis on-the-go it is imperative
to efficiently transcode and stream the stored videos on real
time, without quality loss. However, online video transcoding is
a high-demanding computationally-intensive task and its efficient
management in Multiprocessor Systems-on-Chip (MPSoCs) poses
an important challenge. In this work, we propose an efficient
motion- and texture-aware frame-level parallelization approach
to enable online medical imaging transcoding on MPSoCs for
next generation video encoders. By exploiting the unique char-
acteristics of bio-medical videos and the medical procedure that
enable diagnosis, we split frames into tiles based on their motion
and texture, deciding the most adequate level of parallelization.
Then, we employ the available encoding parameters to satisfy the
required video quality and compression. Moreover, we propose a
new fast motion search algorithm for bio-medical videos that
allows to drastically reduce the computational complexity of
the encoder, thus achieving the frame rates required for online
transcoding. Finally, we heuristically allocate the threads to
the most appropriate available resources and set the operating
frequency of each one. We evaluate our work on an enterprise
multicore server achieving online medical imaging with 1.6x
higher throughput and 44% less power consumption when
compared to the state-of-the-art techniques.

I. INTRODUCTION

Changes in world demographics together with the paradigm
shift towards prevention in healthcare delivery and the im-
provements in medical imaging technology are leading to
a growing demand for multimedia applications for medical
diagnosis as a basis for computer (eHealth) [1] and mobile
healthcare (mHealth). By the end of 2017, 3.4 billion people
worldwide will own a smartphone and half of them will be
using mHealth apps [2]. In 2017, if its potential had been fully
unlocked, mHealth could have saved C99 billion in healthcare
costs in the EU [2]. One of the overarching objectives of the
third EU health program is to contribute to innovative, efficient
and sustainable health systems where medical imaging can
enable a cross-border system for allowing medical diagnostics
to be performed in a collaborative, distributed and mobile
environment [3].

To enable bio-medical diagnosis on-the-go, it is necessary to
centralize the storage of bio-medical videos in highest quality

This work has been partially supported by the EC H2020 MANGO project
(GA No. 671668), the ERC Consolidator Grant COMPUSAPIEN (GA No.
725657), and EuroLab-4-HPC project (GA. No. 671610).

Frame# = 1 (t=0) Frame# = 24 (t=1s)

Frame# = 100 Frame# = 123

Fig. 1. A medical image frame sample, motion, and tiling

possible, and send/share them online while considering the
vast amount of data they represent and the strict quality needed
for diagnostic procedures. In fact, exchanged data in form
of studies consisting of different multimedia content should
be available to users regardless of their current location by
providing them with access to data from their mobile devices.

Enabling online bio-medical video transcoding (i.e., the
real-time decoding and encoding of videos from the format
in which they are stored to the format of the demanded
by the mobile device) is the preliminary requirement of
eHealth realization. This is, however, challenging due to the
complexity of High Efficiency Video Coding (HEVC) [4], as
the most promising standard that achieves the same video
quality as its predecessors while doubling the video compres-
sion. In transcoding, the encoder is approximately 100 times
more complex [5]. The main complexity comes from inter-
prediction, and in particular motion estimation, which is vital
for high compression and online transcoding.

Bio-medical videos have unique features, which make on-
line encoding feasible, if taken into account. Fig. 1 shows 4
bio-medical images extracted from a sample video. As shown,
the useful information concentrates on the center of the image.
Hence, partitioning a frame (i.e., tiling) enables content-
based parallel processing, and per-tile tuning of the encoding
parameters to meet its specific requirements. Moreover, once
tiling is done, the encoder can rely on the given structure
for several next coming frames. This is because, in general,
specialists want to rotate the videos along a certain axis to
better observe an area of interest. In Fig. 1, this is shown in
the two upper images and two lower ones where even after 24
frames (i.e., 1 second) the initial tiling is still valid. Moreover,
the whole frame moves in the same direction (to the right for

the images at the top, and downward for those at the bottom).
In this work, we propose for the first time in literate, a

methodology to exploit the above mentioned unique features
of bio-medical videos, enabling online efficient bio-medical
imaging on Multiprocessor Systems-on-Chip (MPSoCs). In
particular, our main contributions are as follows:
• we propose a content-aware tiling strategy that tunes

encoding complexity for efficient frame parallelization,
• we propose a new fast motion estimation algorithm that

suits well for bio-medical videos resulting in 4x speedup,
• we present a high-throughput thread allocation policy

that increases the number of users served for real-time
eHealth and telemedicine applications achieving 1.6x
higher throughput and 44% less power consumption with-
out any compression degradation and video quality loss.

II. RELATED WORK

A. Multimedia Transcoding

A recent framework for mHealth [6], enables a wide range
of medical software and integrates video transcoding. How-
ever, it is not oriented towards efficient online coding. The
authors in [7] present a patent that describes a new system for
cost-efficient use of imaging devices by hospitals and other
service providers. Based on the fact that it is not necessary to
encode all multimedia data, [8] presents a Big Data based
multimedia transcoding method for telemedicine. However,
none of these works present a content-aware solution.

A multimedia slice transcoding that removes the boundary
fuzzy area is proposed in [9], while a robust dynamic resource
provisioning scheme for transcoding with heterogeneous Qual-
ity of Service (QoS) criteria is proposed in [10]. However,
none of them provides a complete and comprehensive solution
that considers both video contents and diagnostic procedures.

B. Motion Estimation

Research about new motion search algorithms is quite rich
in the literature [11], [12], [13], [14], [15]. Although the
classical full search algorithm [4] provides the best motion
estimation, it is not applicable for real-time and online appli-
cations due to its intolerable runtime overhead. Many other
motion search algorithms with reduced computational com-
plexity at the cost of less encoding efficiency (video quality
in Peak Signal-to-Noise Ratio (PSNR), and compression in
bitrate) have been proposed such as three step search [11],
diamond search [12], cross search [13] one-at-a-time search
[14], and hexagonal-based search [15]. However, none of them
are application-specific. Hence, they are not efficient for bio-
medical video transcoding.

C. Workload Parallelization for Multimedia Applications

Several works have targeted the parallelization of transcod-
ing for multimedia applications. Indeed, video frames can
be clustered as group of pictures (GOPs) and can be inde-
pendently processed providing workload parallelization (e.g.,
[16]). At frame-level, workload parallelization is enabled
through two different schemes by HEVC standard: Wavefront

Motion & Texture
Evaluation

Content-Aware
Re-tiling

Tiling
Finished?

Per-Tile Quality-Aware
Encoding Configuration

Workload
Estimation

Thread Allocation
& DVFS

Compression &
Quality Constraints

Available Resources

No

Yes

Input Frame
With Initial Tiling

D2 D1 C

BA

Fig. 2. Our proposed framework

Parallel Processing (WPP) [17] and tiling. While wavefront
dependencies prevent all partitions from being processed
concurrently, tiles can be regarded as independent threads
providing more parallelization and are leveraged by a few
works [18], [19]. However, none of these works are specifically
targeting bio-medical applications.

III. PROPOSED FRAMEWORK

In this work, we address efficient bio-medical video encod-
ing where several users request videos that need to be online
transcoded in a limited number of resources (i.e., available
cores on a MPSoC). Although significant performance and
power improvements can be reached by introducing hardware
acceleration for parts of the algorithm (e.g., motion estima-
tion), our proposed approach, regardless of the architecture or
application-level optimization, is able to achieve online bio-
medical video transcoding with maximized throughput and
power savings. In this context, once the request of a user for
online transcoding is admitted, the required framerate as well
as the video quality and compression must be also satisfied.

Fig. 2 illustrates the proposed approach for enabling online
bio-medical imaging under constraints of framerate, PSNR,
and bitrate. The goal is to serve a number of users (i.e., doc-
tors), each transcoding one video. For each frame in a video
the motion and texture are evaluated (Subsec. III-A) for every
initial tile (from the last processed frame, or simply a uniform
tiling if no frame has been processed yet). Based on the
knowledge of the motion and texture of different areas of the
frame, we perform the re-tiling of the frame (Subsec. III-B).
Once all tiles are specified, appropriate encoding parameters
are set separately for each tile based on its texture and motion
as well as PSNR and bitrate (Subsec. III-C). The predefined
minimum tile size and the maximum number of tiles within
a frame ensure fast ending of this phase. The workload
corresponding to each tile and its encoding parameters is
estimated via a look-up table (LUT) which is dynamically
updated throughout the encoding process (Subsec. III-D1).
Finally, based on the estimated workload and availability of the
resources (i.e., available processors and operating frequencies
of the platform) we allocate each tile to an available resource
and set the operating frequency to enable real-time energy
efficient video encoding (Subsec. III-D2).

A. Motion and Texture Evaluation

The diversity in luma samples (i.e., achromatic portion of
the image) in a tile as well as the amount of motion play a
major role in the encoding time. Therefore, efficiently tiling

(i.e., splitting a frame in tiles) based on its contents helps
achieving more efficient thread allocation and scheduling.
Moreover, other encoding configuration knobs such as quan-
tization parameter (QP), which influence encoding efficiency
and performance the most, can be tuned more effectively to
save power once the texture and motion of the tiles are known.

The first step for efficient tiling is to quantify the motion
and texture of different partitions of the frame. Hence, starting
from the latest tiling, we can evaluate the diversity of the
texture and the presence of motion. Since this evaluation must
be fast enough to avoid any computational overhead, we use
the coefficient of variation (CV), which is defined as the ratio
of the standard deviation to the mean. Then, we classify the
tile based on a predefined threshold of the texture, as follows:

T =

{ low CV ≤ Tth;l
medium Tth;l < CV ≤ Tth;h
high CV > Tth;h

(1)

In order to obtain a low-overhead measure of the motion
in a tile, we propose a pixel-to-pixel comparison of a limited
number of pixels including four corners, the center, and the
one with the maximum value, as follows:

M = a

4

∑
i=1

xi +bc + gm (2)

where xi, c, and m are booleans for pixel comparisons
respectively at the 4 corners, center and maximum point.
When pixels are equal, booleans are zero. In this formulation,
a , b , and g denote the importance of the comparison for
different coordinates of the tile. Medical images require larger
coefficients for the center and the maximum point. Hence we
choose 1, 3, and 3 for a , b , and g , respectively. Finally, we
define the motion threshold (Mth = 3) based on which a tile
is regarded as high- or low-motion as follows:

Motion =

{
low M < Mth
high M ≥Mth

(3)

In bio-medical imaging, those parts of the frame that contain
useful data move or rotate in the same direction. This fact
implies that only evaluating one initial tile for the motion can
be sufficient to quantify the motion of all remaining tiles. This
also explains why, for all real-life case studies considered, we
can only take into account two levels for the motion.

B. Content-Aware Re-tiling

Based on the existing texture and motion in different parts
of a frame, we split it into different number of tiles. Generally,
most of the frames have the least amount of motion and texture
in the corners and boarders. This is especially true for medical
videos. Therefore, we start re-tiling from the initial tiles in the
corners. If the motion and texture of the tile is low (cf. Section
III-C), we increase the tile size by 25% more pixels first in the
width and then in the height. This value was experimentally
found and represents a trade-off between optimal tile size and
the time it takes to find it. This procedure continues until the

texture or the motion is not low anymore, and we keep the
latest tile’s coordinates.

After having finished the same procedure for all the corners
and from boarders, we start seeking for the remaining tiles on
the center, which more likely contain high motion and high
texture. Since as described in Section III-A the motion in the
center of the medical images is consistent, we only consider
the texture for re-tiling. Here, the size of a tile plays a major
role for encoding time. Therefore, we first extract a tile with
the minimum size allowed and then re-partition the rest of the
pixels such that all tiles are of similar size.

Finally, we limit the minimum number of tiles used for the
high-texture and high-motion area of the frame to 4 based
on our observations on actual bio-medical videos to keep
the parallelization as high as possible, while achieving the
desirable encoding efficiency.

C. Per-Tile Quality-Aware Encoding Configuration

1) Quantization Parameter (QP): QP plays a major role
in encoding efficiency and performance [20]. Thus, selecting
the most appropriate QP can result in lower computational
complexity and yet efficient encoding. In other words, while
smaller QPs are necessary for high-texture tiles, larger QPs
can satisfy the required video quality and compression for the
low texture tiles.

Therefore, we utilize QP equal to 37, 32, and 27 for the low,
medium, and high texture tiles, respectively, as default values.
However, we keep evaluating the outcome video quality (in
PSNR) and compression (in bitrate) and consider two other
extreme QP values (42 and 22). We observe that for very low-
texture tiles QP = 42 can be used to further reduce encoding
time and bitrate without PSNR degradation. Also, for extreme
cases of high-texture tiles QP = 22 should be used to meet
the PSNR constraint. Starting from the default QP values
for different textures, we update the QP selection based on
the measures of the corresponding tile of the previous frame.
Algorithm 1 shows the pseudo code of per-tile quality-aware
QP selection where BRt−∆t , and PSNRt−∆t are the bitrate and
PSNR of the tile of previous frame, PSNRconst , and PSNRmargin
show the constraint of video quality and the margin by which
we can guarantee that further increasing of QP value would
not result in dissatisfaction of PSNR constraint. Finally, M and
T are arrays containing the motion and texture of the tiles in
the frame, respectively.

2) Motion Estimation Search Window Algorithm: In bio-
medical imaging the same motion can be applied to all the
tiles. For instance, in Fig. 1 it is shown that all the tiles

Algorithm 1. Quantization parameter adaptation
Input: 𝑩𝑹𝒕−𝚫𝐭 , 𝑷𝑺𝑵𝑹𝒕−𝚫𝐭 , 𝑴 , 𝑻
Output: QP
1: for each tile with 𝑇 ∈ 𝑻 and 𝑀 ∈ 𝑴

2: if 𝑃𝑆𝑁𝑅𝑡−Δt > 𝑃𝑆𝑁𝑅𝑐𝑜𝑛𝑠𝑡 + 𝑃𝑆𝑁𝑅𝑚𝑎𝑟𝑔𝑖𝑛

3: 𝑄𝑃 ← 𝑄𝑃 + Δ𝑄𝑃
4: else if 𝑃𝑆𝑁𝑅𝑡−Δt < 𝑃𝑆𝑁𝑅𝑐𝑜𝑛𝑠𝑡
5: 𝑄𝑃 ← 𝑄𝑃 − Δ𝑄𝑃
6: else
7: Use default QPs w.r.t 𝑇 ∈ 𝑻 and 𝑀 ∈ 𝑴
8: end if
9: end for

move downward or to the right. Moreover, although the motion
vectors inside different tiles may have different angles, the
motion can still be considered in the same direction to start
the motion prediction and estimation.

Thanks to the unique features of bio-medical images, we
are able to apply efficient motion search algorithms with less
computational overhead. In particular, when the motion is
known to be low, simpler algorithms such as one-at-a-time
search [14] or cross-search [13] can be applied. In particular,
we leverage the cross-search algorithm for the low-motion
tiles of the first frame in a GOP. Then, we use the one-
at-a-time search algorithm for the remaining frames in the
GOP in the direction of the motion vector obtained from
the corresponding tiles of the first frame. This combined
search approach further reduces the motion estimation time
without encoding efficiency degradation. In this work, we
consider search windows of size 64x64, 32x32, 16x16, and
8x8. However, for low-motion tiles, a search window size of
16x16 is sufficient for the first frame in the GOP and it can
be further decreased to 8x8 for the next frames to reduce the
computational complexity of the motion estimation.

On the other hand, for high-motion tiles, more accurate
search algorithms, such as, the Test Zone (TZ) search used in
the HEVC reference software [21], Diamond Search (DS) [12],
and Hexagonal-based search [15] can be used. In particular,
we rely on the Hexagonal-based search algorithm, which can
be applied in two different ways: vertical and horizontal [15].
While both have the same complexity, the former outperforms
the latter when the motion is more horizontal. Since at the
beginning of a GOP the direction of the motion is not
determined yet, we use the rotating Hexagonal-based search
algorithm [15] for the first frame of the GOP. From the second
frame until the last frame of a GOP, however, we either use
the horizontal or vertical Hexagonal-based search algorithms
based on the decision taken for the corresponding tile of the
first frame. Moreover, for each high-motion tile of the first
frame the maximum allowable search window is considered,
while from the second frame smaller values are used to reduce
the computational complexity.

D. Workload Estimation, Thread Allocation and Dynamic
Voltage and Frequency Scaling (DVFS)

1) Workload Estimation: In order to perform the best
thread allocation and DVFS to maximize the number of users
that can be sustained by the target multicore server, while
meeting the required framerate and encoding efficiency, we
use an LUT-based approach. In fact, the LUT-based approach
is very suitable for this context due to the nature of the
proposed re-tiling approach, which includes a limited number
of different attainable tile structures and numbers within a
frame. Moreover, the number of different combinations of the
encoding configurations are limited.

In our proposed framework, we store the histogram of
the CPU time in the LUT and keep updating it throughout
the whole video encoding. We use the stored histograms to
estimate the workload for robust thread allocation and DVFS.

Another important feature of medical imaging application
that makes robust workload estimation possible is the fact that
medical images are classifiable in very limited categories based
on part of the body that is under the study (such as bones, lung
and chest, brain, spinal cord, ligament and tendon, etc). This
feature allows us to use the obtained LUT of one MRI or CT
data to the rest of images in the same class. As a result, CPU
time over/under-estimation below 100 ms is observed when
enough frames have been processed.

2) Thread Allocation and DVFS: In this work, we consider
a Random Access (RA) encoding configuration as the baseline
where B slices allow both intra- and inter-picture predictions
for high PSNR and low bitrate (both of them are requisites
for online bio-medical imaging). We consider GOP of size 8.
We apply the re-tiling and thread allocation strategies once for
a GOP. However, we keep dynamically adjusting the QP for
every frame.

The thread (tile) allocation is performed once at the begin-
ning of each GOP since re-tiling and setting the encoder pa-
rameters are done for the first frame (except for QP under the
conditions discussed in Section III-C1). However, the resulted
encoding time of the performed allocation is readout once a
frame is released and, if it does not equal 1/FPS seconds,
an alternative (and less) complex encoding configuration is
applied to the next frame (only if the operating frequency is
maximum). This alternative encoding configuration includes
using a smaller search window and higher QP for the tiles
recognized as the bottleneck of achieving the 1/FPS seconds
for the previous frame. According to this strategy, the over-
utilization of some of the threads (if any) can be compensated
by under-utilization of the next frame(s), such that the required
framerate (checked every second) can ultimately be satisfied.

As a result, in our allocation strategy, as described in
Algorithm 2, we first determine the minimum number of cores

Algorithm 1. Thread allocation and DVFS

Input: 𝑁𝑢, 𝑁𝑐 , 𝑵𝒕𝒉𝒓 = {𝑵𝒕𝒉𝒓
𝟏 , 𝑵𝒕𝒉𝒓

𝟐 , … 𝑵𝒕𝒉𝒓
𝑵𝒖 }, 𝑻𝒇

𝒊 = {𝑻𝒇,𝟏
𝒊 , 𝑻𝒇,𝟐

𝒊 , … 𝑻
𝒇,𝑵𝒕𝒉𝒓

𝒊
𝒊 }, 𝑭 = {𝒇𝟏, 𝒇𝟐, … 𝒇𝒎𝒂𝒙}, 𝐹𝑃𝑆

Output: Serving maximum number of users and their thread allocation

1: 𝑁𝑐𝑜𝑟𝑒
𝑖 ← (∑ 𝑇𝑓𝑚𝑎𝑥,𝑗

𝑖𝑁𝑡ℎ𝑟
𝑖

𝑗=1) . 𝐹𝑃𝑆 𝑖 ∈ {1, 2, … 𝑁𝑢}

2: 𝑈 ← 𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑢 𝑢𝑠𝑒𝑟𝑠 𝑤. 𝑟. 𝑡 ∑ 𝑺𝒐𝒓𝒕𝑘
𝐴𝑆𝐶(𝑁𝑐𝑜𝑟𝑒

𝑘)
𝑢

𝑘=1
≤ 𝑁𝑐

3: 𝒇𝒐𝒓 𝑗 = 1 ∶ 𝑁𝑡ℎ𝑟
𝑈 // Thread Allocation

4: 𝒇𝒐𝒓 𝑘 = 1 ∶ 𝑁𝑐𝑜𝑟𝑒
𝑈

5: 𝒊𝒇 𝑚𝑎𝑥𝑘(𝐿𝑜𝑎𝑑𝑘) >
1

𝐹𝑃𝑆

6: 𝐶𝑎𝑝 ← 1/𝐹𝑃𝑆
7: 𝒆𝒍𝒔𝒆
8: 𝐶𝑎𝑝 ← 𝑚𝑎𝑥𝑘(𝐿𝑜𝑎𝑑𝑘)
9: 𝒆𝒏𝒅 𝒊𝒇

10: 𝐷𝑖𝑠𝑡𝑘
𝑗

← |𝐶𝑎𝑝 − (𝐿𝑜𝑎𝑑𝑘 + 𝑇
𝑓𝑚𝑎𝑥,𝑗

𝑢𝑗)|

11: 𝒆𝒏𝒅 𝒇𝒐𝒓
12: 𝐼𝐷𝑐 ← 𝐹𝑖𝑛𝑑 𝐶𝑜𝑟𝑒 𝑤𝑖𝑡ℎ 𝑚𝑖𝑛𝑘(𝐷𝑖𝑠𝑡𝑗)
13: 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒 𝑡ℎ𝑟𝑒𝑎𝑑 𝑗 𝑡𝑜 𝑐𝑜𝑟𝑒 𝐼𝐷𝑐

14: 𝐿𝑜𝑎𝑑𝐼𝐷𝑐
← 𝐿𝑜𝑎𝑑𝐼𝐷𝑐

+ 𝑇
𝑓𝑚𝑎𝑥 ,𝑗

𝑢𝑗

15: 𝒆𝒏𝒅 𝒇𝒐𝒓
16: 𝒇𝒐𝒓 𝑘 = 1 ∶ 𝑁𝑐 // DVFS for Energy Efficiency
17: 𝒊𝒇 𝐿𝑜𝑎𝑑𝑘 ≤ 1/𝐹𝑃𝑆

18: 𝑆𝑒𝑡 𝑚𝑖𝑛(𝐹) 𝑡𝑜 𝑐𝑜𝑟𝑒 𝑘 𝑓𝑜𝑟 𝑠𝑙𝑎𝑐𝑘 𝑡𝑖𝑚𝑒 (
1

𝐹𝑃𝑆
− 𝐿𝑜𝑎𝑑𝑘)

19: 𝐿𝑜𝑎𝑑𝑘 ← 0

20: 𝒆𝒍𝒔𝒆

21: 𝑆𝑒𝑡 𝑓𝑚𝑎𝑥 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑤ℎ𝑜𝑙𝑒
1

𝐹𝑃𝑆

22: 𝐿𝑜𝑎𝑑𝑘 ← 𝐿𝑜𝑎𝑑𝑘 −
1

𝐹𝑃𝑆

23: 𝒆𝒏𝒅 𝒊𝒇
24: 𝒆𝒏𝒅 𝒇𝒐𝒓

