Supplementary Material

This section presents the complete proofs of lemmas presented in the article.

A Detailed Proof of Lemma 4.2

Lemma 4.2 If there exists a partition in S such that at least half of its buckets are full, then for the set Z produced by STAR-T-GreEDY we have

$$
\begin{equation*}
f(Z) \geq\left(1-e^{-1}\right)\left(1-\frac{4 m}{w k}\right) \tau \tag{2}
\end{equation*}
$$

Proof. Let i^{\star} be a partition such that half of its buckets are full. Let $B_{i^{\star}, j}$ be a full bucket that minimizes $\left|B_{i^{\star}, j} \cap E\right|$. In STAR-T, every partition contains $w\left\lceil k / 2^{i}\right\rceil$ buckets. Hence, the number of full buckets in partition i^{\star} is at least $w k / 2^{i^{\star}+1}$. That further implies

$$
\begin{equation*}
\left|B_{i^{\star}, j} \cap E\right| \leq \frac{2^{i^{\star}+1} m}{w k} \tag{6}
\end{equation*}
$$

Taking into account that $B_{i^{\star}, j}$ is a full bucket, we conclude

$$
\begin{equation*}
\left|B_{i^{\star}, j} \backslash E\right| \geq\left|B_{i^{\star}, j}\right|-\frac{2^{i^{\star}+1} m}{w k} \tag{7}
\end{equation*}
$$

From the property of our Algorithm (line [5] every element added to $B_{i^{\star}, j}$ increased the utility of this bucket by at least $\tau / 2^{i^{\star}}$. Combining this with the fact that $B_{i^{\star}, j}$ is full, we conclude that the gain of every element in this bucket is at least $\tau /\left|B_{i^{\star}, j}\right|$. Therefore, from Eq. (7) it follows:

$$
\begin{equation*}
f\left(B_{i^{\star}, j} \backslash E\right) \geq\left(\left|B_{i^{\star}, j}\right|-\frac{2^{i^{\star}+1} m}{w k}\right) \frac{\tau}{\left|B_{i^{\star}, j}\right|}=\tau\left(1-\frac{2^{i^{\star}+1} m}{\left|B_{i^{\star}, j}\right| w k}\right) \tag{8}
\end{equation*}
$$

Taking into account that $2^{i^{\star}+1} \leq 4\left|B_{i^{\star}, j}\right|$ this further reduces to

$$
\begin{equation*}
f\left(B_{i^{\star}, j} \backslash E\right) \geq \tau\left(1-\frac{4 m}{w k}\right) \tag{9}
\end{equation*}
$$

Finally,

$$
\begin{align*}
f(Z)=f(\operatorname{GreEdY}(k, S \backslash E)) & \geq\left(1-e^{-1}\right) f(\operatorname{OPT}(k, S \backslash E)) \\
& \geq\left(1-e^{-1}\right) f\left(\operatorname{OPT}\left(k, B_{i^{*}, j} \backslash E\right)\right) \tag{10}\\
& =\left(1-e^{-1}\right) f\left(B_{i^{\star}, j} \backslash E\right) \tag{11}\\
& \geq\left(1-e^{-1}\right)\left(1-\frac{4 m}{w k}\right) \tau \tag{12}
\end{align*}
$$

where Eq. (10) follows from $\left(B_{i^{\star}, j} \backslash E\right) \subseteq(S \backslash E)$, Eq. (11) follows from the fact that $\left|B_{i^{\star}, j}\right| \leq k$, and Eq. 121 follows from Eq. (9).

B Detailed Proof of Lemma 4.3

We start by studying some properties of E that we use in the proof of Lemma 4.3 .
Lemma B. 1 Let B_{i} be a bucket in partition $i>0$, and let $E_{i}:=B_{i} \cap E$ denote the elements that are removed from this bucket. Given a bucket B_{i-1} from the previous partition such that $\left|B_{i-1}\right|<2^{i-1}$ (i.e. B_{i-1} is not fully populated), the loss in the bucket B_{i} due to the removals is at most

$$
f\left(E_{i} \mid B_{i-1}\right)<\frac{\tau}{2^{i-1}}\left|E_{i}\right|
$$

Proof. First, we can bound $f\left(E_{i} \mid B_{i-1}\right)$ as follows

$$
\begin{equation*}
f\left(E_{i} \mid B_{i-1}\right) \leq \sum_{e \in E_{i}} f\left(e \mid B_{i-1}\right) \tag{13}
\end{equation*}
$$

Consider a single element $e \in E_{i}$. There are two possible cases: $f(e)<\frac{\tau}{2^{i-1}}$, and $f(e) \geq \frac{\tau}{2^{i-1}}$. In the first case, $f\left(e \mid B_{i-1}\right) \leq f(e)<\frac{\tau}{2^{i-1}}$. In the second one, as $\left|B_{i-1}\right|<2^{i-1}$ we conclude $f\left(e \mid B_{i-1}\right)<\frac{\tau}{2^{i-1}}$, as otherwise the streaming algorithm would place e in B_{i-1}. These observations together with (13) imply:

$$
f\left(E_{i} \mid B_{i-1}\right)<\sum_{e \in E_{i}} \frac{\tau}{2^{i-1}}=\frac{\tau}{2^{i-1}}\left|E_{i}\right|
$$

Lemma B. 2 For every partition i, let B_{i} denote a bucket such that $\left|B_{i}\right|<2^{i}$ (i.e. no partition is fully populated), and let $E_{i}=B_{i} \cap E$ denote the elements that are removed from B_{i}. The loss in the bucket $B_{\lceil\log k\rceil}$ due to the removals, given all the remaining elements in the previous buckets, is at most

$$
f\left(E_{\lceil\log k\rceil} \mid \bigcup_{j=0}^{\lceil\log k\rceil-1}\left(B_{j} \backslash E_{j}\right)\right) \leq \sum_{j=1}^{\lceil\log k\rceil} \frac{\tau}{2^{j-1}}\left|E_{j}\right| .
$$

Proof. We proceed by induction. More precisely, we show that for any $i \geq 1$ the following holds

$$
\begin{equation*}
f\left(E_{i} \mid \bigcup_{j=0}^{i-1}\left(B_{j} \backslash E_{j}\right)\right) \leq \sum_{j=1}^{i} \frac{\tau}{2^{j-1}}\left|E_{j}\right| \tag{14}
\end{equation*}
$$

Once we show that (14) holds, the lemma will follow immediately by setting $i=\lceil\log k\rceil$.
Base case $i=1$. Since B_{0} is not fully populated and the maximum number of elements in the partition $i=0$ is 1 , it follows that both B_{0} and E_{0} are empty. Then the term on the left hand side of (14) for $i=1$ becomes $f\left(E_{1}\right)$. As $\left|B_{0}\right|<1$ we can apply Lemma B.1 to obtain

$$
f\left(E_{1}\right)=f\left(E_{1} \mid B_{0}\right) \leq\left|E_{1}\right| \frac{\tau}{2^{0}}
$$

Inductive step $i>1$. Now we show that holds for $i>1$, assuming that it holds for $i-1$. First, due to submodularity we have

$$
f\left(\begin{array}{l|l|l}
E_{i-1} & \bigcup_{j=0}^{i-2}\left(B_{j} \backslash E_{j}\right)
\end{array}\right) \geq f\left(\begin{array}{l|l}
E_{i-1} & \bigcup_{j=0}^{i-1}\left(B_{j} \backslash E_{j}\right)
\end{array}\right)
$$

and, hence, we can write

$$
\begin{align*}
f\left(E_{i} \mid \bigcup_{j=0}^{i-1}\left(B_{j} \backslash E_{j}\right)\right) & \leq f\left(E_{i} \mid \bigcup_{j=0}^{i-1}\left(B_{j} \backslash E_{j}\right)\right)+f\left(E_{i-1} \mid \bigcup_{j=0}^{i-2}\left(B_{j} \backslash E_{j}\right)\right)-f\left(E_{i-1} \mid \bigcup_{j=0}^{i-1}\left(B_{j} \backslash E_{j}\right)\right) \\
& =f\left(E_{i} \cup \bigcup_{j=0}^{i-1}\left(B_{j} \backslash E_{j}\right)\right)+f\left(E_{i-1} \mid \bigcup_{j=0}^{i-2}\left(B_{j} \backslash E_{j}\right)\right)-f\left(E_{i-1} \cup \bigcup_{j=0}^{i-1}\left(B_{j} \backslash E_{j}\right)\right) . \tag{15}
\end{align*}
$$

Due to monotonicity, the first term can be further bounded by

$$
\begin{equation*}
f\left(E_{i} \cup \bigcup_{j=0}^{i-1}\left(B_{j} \backslash E_{j}\right)\right) \leq f\left(E_{i} \cup B_{i-1} \cup \bigcup_{j=0}^{i-2}\left(B_{j} \backslash E_{j}\right)\right) \tag{16}
\end{equation*}
$$

and for the third term we have

$$
\begin{equation*}
f\left(E_{i-1} \cup \bigcup_{j=0}^{i-1}\left(B_{j} \backslash E_{j}\right)\right)=f\left(E_{i-1} \cup B_{i-1} \cup \bigcup_{j=0}^{i-2}\left(B_{j} \backslash E_{j}\right)\right) \geq f\left(B_{i-1} \cup \bigcup_{j=0}^{i-2}\left(B_{j} \backslash E_{j}\right)\right) \tag{17}
\end{equation*}
$$

where to obtain the identity we used that $E_{i-1} \cup\left(B_{i-1} \backslash E_{i-1}\right)=E_{i-1} \cup B_{i-1}$.
By substituting the obtained bounds (16) and (17) in (15) we obtain:

$$
\begin{align*}
f\left(E_{i} \mid \bigcup_{j=0}^{i-1}\left(B_{j} \backslash E_{j}\right)\right) & \leq f\left(E_{i} \mid B_{i-1} \cup \bigcup_{j=0}^{i-2}\left(B_{j} \backslash E_{j}\right)\right)+f\left(E_{i-1} \mid \bigcup_{j=0}^{i-2}\left(B_{j} \backslash E_{j}\right)\right) \\
& \leq f\left(E_{i} \mid B_{i-1}\right)+f\left(E_{i-1} \mid \bigcup_{j=0}^{i-2}\left(B_{j} \backslash E_{j}\right)\right) \tag{18}
\end{align*}
$$

where the second inequality follows by submodularity.
Next, Lemma B. 1 can be used (as $\left|B_{i-1}\right|<2^{i-1}$) to bound the first term in (18):

$$
\begin{equation*}
f\left(E_{i} \mid \bigcup_{j=0}^{i-1}\left(B_{j} \backslash E_{j}\right)\right) \leq \frac{\tau}{2^{i-1}}\left|E_{i}\right|+f\left(E_{i-1} \mid \bigcup_{j=0}^{i-2}\left(B_{j} \backslash E_{j}\right)\right) \tag{19}
\end{equation*}
$$

To conclude the proof, we use the inductive hypothesis that (14) holds for $i-1$, which together with (19) implies

$$
f\left(E_{i} \mid \bigcup_{j=0}^{i-1}\left(B_{j} \backslash E_{j}\right)\right) \leq \frac{\tau}{2^{i-1}}\left|E_{i}\right|+\sum_{j=1}^{i-1} \frac{\tau}{2^{j-1}}\left|E_{j}\right|=\sum_{j=1}^{i} \frac{\tau}{2^{j-1}}\left|E_{j}\right|
$$

as desired.

Lemma 4.3 If there does not exist partition of S such that at least half of its buckets are full, then for the set Z produced by STAR-T-GREEDY we have

$$
f(Z) \geq\left(1-e^{-1 / 3}\right)\left(f\left(B_{\lceil\log k\rceil}\right)-\frac{4 m}{w k} \tau\right)
$$

where $B_{\lceil\log k\rceil}$ is a bucket in the last partition which is not fully populated minimizing $\left|B_{\lceil\log k\rceil} \cap E\right|$ and $|E| \leq m$.

Proof. Let B_{i} denote a bucket in partition i which is not fully populated ($B_{i} \leq \min \left\{2^{i}, k\right\}$), and for which $\left|E_{i}\right|$, where $E_{i}=B_{i} \cap E$, is of minimum cardinality. Such bucket exists in every partition i due to the assumption of the lemma that more than a half of the buckets are not fully populated.

First,

$$
\begin{align*}
f\left(\bigcup_{i=0}^{\lceil\log k\rceil}\left(B_{i} \backslash E_{i}\right)\right) & \geq f\left(B_{\lceil\log k\rceil}\right)-f\left(E_{\lceil\log k\rceil} \mid \bigcup_{i=0}^{\lceil\log k\rceil-1}\left(B_{i} \backslash E_{i}\right)\right) \tag{20}\\
& \geq f\left(B_{\lceil\log k\rceil}\right)-\sum_{i=1}^{\lceil\log k\rceil} \frac{\tau}{2^{i-1}}\left|E_{i}\right| \tag{21}
\end{align*}
$$

where Eq. 20) follows from Lemma D.1 by setting $B=B_{\lceil\log k\rceil}, R=E_{\lceil\log k\rceil}$ and $A=$ $\bigcup_{i=0}^{[\log k\rceil-1}\left(B_{i} \backslash E_{i}\right)$. As we consider buckets that are not fully populated, Lemma B. 2 is used to obtain Eq. 21. Next, we bound each term $\frac{\tau}{2^{i-1}}\left|E_{i}\right|$ in Eq. 21) independently.
From Algorithm 1 we have that partition i consists of $w\left\lceil k / 2^{i}\right\rceil$ buckets. By the assumption of the lemma, more than half of those are not fully populated. Recall that B_{i} is defined to be a bucket of
partition i which is not fully populated and which minimizes $\left|E_{i}\right|$. Let \tilde{E}_{i} be the subset of E that intersects buckets of partition i. Then, $\left|E_{i}\right|$ can be bounded as follows:

$$
\left|E_{i}\right| \leq \frac{\left|\tilde{E}_{i}\right|}{\frac{w\left\lceil k / 2^{i}\right\rceil}{2}} \leq \frac{2^{i+1}\left|\tilde{E}_{i}\right|}{w k}
$$

Hence, the sum on the left hand side of Eq. 21) can be bounded as

$$
\sum_{i=1}^{\lceil\log k\rceil} \frac{\tau}{2^{i-1}}\left|E_{i}\right| \leq \sum_{i=1}^{\lceil\log k\rceil} \frac{\tau}{2^{i-1}} \frac{2^{i+1}\left|\tilde{E}_{i}\right|}{w k}=\frac{4}{w k} \tau \sum_{i=1}^{\lceil\log k\rceil}\left|\tilde{E}_{i}\right| \leq \frac{4|E|}{w k} \tau
$$

Putting the last inequality together with Eq. (21) we obtain

$$
f\left(\bigcup_{i=0}^{\lceil\log k\rceil}\left(B_{i} \backslash E_{i}\right)\right) \geq f\left(B_{\lceil\log k\rceil}\right)-\frac{4|E|}{w k} \tau
$$

Observe also that

$$
\bigcup_{i=0}^{\lceil\log k\rceil}\left|B_{i} \backslash E_{i}\right| \leq \bigcup_{i=0}^{\lceil\log k\rceil}\left|B_{i}\right| \leq k+\bigcup_{i=0}^{\lfloor\log k\rfloor} 2^{i} \leq 3 k
$$

which implies

$$
f(\mathrm{OPT}(3 k, S \backslash E)) \geq f\left(\bigcup_{i=0}^{\lceil\log k\rceil}\left(B_{i} \backslash E_{i}\right)\right) \geq f\left(B_{\lceil\log k\rceil}\right)-\frac{4|E|}{w k} \tau
$$

Finally,

$$
\begin{align*}
f(Z)=f(\operatorname{GrEEDY}(k, S \backslash E)) & \geq\left(1-e^{-1 / 3}\right) f(\operatorname{OPT}(3 k, S \backslash E)) \\
& \geq\left(1-e^{-1 / 3}\right)\left(f\left(B_{\lceil\log k\rceil}\right)-\frac{4|E|}{w k} \tau\right) \\
& \geq\left(1-e^{-1 / 3}\right)\left(f\left(B_{\lceil\log k\rceil}\right)-\frac{4 m}{w k} \tau\right) \tag{22}
\end{align*}
$$

as desired.

C Detailed Proof of Lemma 4.4

Lemma 4.4 If there does not exist partition of S such that at least half of its buckets are full, then for the set Z produced by STAR-T-GrEEDY,

$$
f(Z) \geq\left(1-e^{-1}\right)\left(f(O P T(k, V \backslash E))-f\left(B_{\lceil\log k\rceil}\right)-\tau\right)
$$

where $B_{\lceil\log k\rceil}$ is any bucket in the last partition which is not fully populated.
Proof. Let $B_{\lceil\log k\rceil}$ denote a bucket in the last partition which is not fully populated. Such bucket exists due to the assumption of the lemma that more than a half of the buckets are not fully populated.
Let X and Y be two sets such that Y contains all the elements from $\operatorname{OPT}(k, V \backslash E)$ that are placed in the buckets that precede bucket $B_{\lceil\log k\rceil}$ in S, and let $X:=\mathrm{OPT}(k, V \backslash E) \backslash Y$. In that case, for every $e \in X$ we have

$$
\begin{equation*}
f\left(e \mid B_{\lceil\log k\rceil}\right)<\frac{\tau}{k} \tag{23}
\end{equation*}
$$

due to the fact that $B_{\lceil\log k\rceil}$ is the bucket in the last partition and is not fully populated.

We proceed to bound $f(Y)$:

$$
\begin{align*}
f(Y) & \geq f(\mathrm{OPT}(k, V \backslash E))-f(X) \tag{24}\\
& \geq f(\operatorname{OPT}(k, V \backslash E))-f\left(X \mid B_{\lceil\log k\rceil}\right)-f\left(B_{\lceil\log k\rceil}\right) \tag{25}\\
& \geq f(\operatorname{OPT}(k, V \backslash E))-f\left(B_{\lceil\log k\rceil}\right)-\sum_{e \in X} f\left(e \mid B_{\lceil\log k\rceil}\right) \tag{26}\\
& \geq f(\operatorname{OPT}(k, V \backslash E))-f\left(B_{\lceil\log k\rceil}\right)-\frac{\tau}{k}|X| \tag{27}\\
& \geq f(\operatorname{OPT}(k, V \backslash E))-f\left(B_{\lceil\log k\rceil}\right)-\tau \tag{28}
\end{align*}
$$

where Eq. 24) follows from $f(\mathrm{OPT}(k, V \backslash E))=f(X \cup Y)$ and submodularity, Eq (25) and Eq (26) follow from monotonicity and submodularity, respectively. Eq. (27) follows from Eq. (23), and Eq. (28) follows from $|X| \leq k$.

Finally, we have:

$$
\begin{align*}
f(Z)=f(\operatorname{GreEDY}(k, S \backslash E)) & \geq\left(1-e^{-1}\right) f(\operatorname{OPT}(k, S \backslash E)) \\
& \geq\left(1-e^{-1}\right) f(\operatorname{OPT}(k, Y)) \tag{29}\\
& =\left(1-e^{-1}\right) f(Y) \tag{30}\\
& \geq\left(1-e^{-1}\right)\left(f(\mathrm{OPT}(k, V \backslash E))-f\left(B_{\lceil\log k\rceil}\right)-\tau\right) \tag{31}
\end{align*}
$$

where Eq. 29) follows from $Y \subseteq(S \backslash E)$, Eq. 30) follows from $|Y| \leq k$, and Eq. 31) follows from Eq. (28).

D Technical Lemma

Here, we outline a technical lemma that is used in the proof of Lemma 4.3
Lemma D. 1 For any submodular function f on a ground set V, and any sets $A, B, R \subseteq V$, we have

$$
f(A \cup B)-f(A \cup(B \backslash R)) \leq f(R \mid A)
$$

Proof. Define $R_{2}:=A \cap R$, and $R_{1}:=R \backslash A=R \backslash R_{2}$. We have

$$
\begin{align*}
f(A \cup B)-f(A \cup(B \backslash R)) & =f(A \cup B)-f\left((A \cup B) \backslash R_{1}\right) \\
& =f\left(R_{1} \mid(A \cup B) \backslash R_{1}\right) \\
& \leq f\left(R_{1} \mid\left(A \backslash R_{1}\right)\right) \tag{32}\\
& =f\left(R_{1} \mid A\right) \tag{33}\\
& =f\left(R_{1} \cup R_{2} \mid A\right) \tag{34}\\
& =f(R \mid A),
\end{align*}
$$

where (32) follows from the submodularity of f, 33) follows since A and R_{1} are disjoint, and (34) follows since $R_{2} \subseteq A$.

E Detailed Proof of Theorem 4.5

Setting τ in STAR-T assumes that we know the unknown value $f(\mathrm{OPT}(k, V \backslash E))$. In this subsection we show how to approximate that value. First, $f(\mathrm{OPT}(k, V \backslash E))$ can be bounded in the following way: $\eta \leq f(\operatorname{OPT}(k, V \backslash E)) \leq k \eta$, where η denotes the largest value of any of the elements of $V \backslash E$, i.e. $\eta=\max _{e \in(V \backslash E)} f(e)$. In case we are given η, we follow the same approach as in [8] by considering all the $O\left(\log _{1+\epsilon} k\right)$ possible values of $f(\mathrm{OPT}(k, V \backslash E))$ from the set $\left\{(1+\epsilon)^{i} \mid i \in \mathbb{Z}, \eta \leq(1+\epsilon)^{i} \leq k \eta\right\}$. For each of the thresholds independently and in parallel we then run STAR-T, and hence build $O\left(\log _{1+\epsilon} k\right)$ different summaries. After the stream ends, on each of the summaries we run algorithm STAR-T-GREEDY and report the maximum output over all the runs.

```
Algorithm 3 Parallel Instances of (STAR-T)
Input: Set \(V, k, w \in \mathbb{N}_{+}, \eta \in \mathbb{R}\)
    \(O=\left\{(1+\epsilon)^{i} \mid \eta \leq(1+\epsilon)^{i} \leq k \eta\right\}\)
    Create a set of instances \(\mathcal{I}:=\{\operatorname{STAR}-\mathrm{T}(V, k, \eta, w) \mid \eta \in O\}\), and run all the instances in
    parallel over the stream.
    Let \(\mathcal{S}=\{\) the output of instance \(I \mid I \in \mathcal{I}\}\).
    return \(\mathcal{S}\)
```

```
Algorithm 4 Parallel Instances STAR-T- GreEDY
Input: Family of sets \(\mathcal{S}\), query set \(E\) and \(k\)
    \(Z \leftarrow \arg \max _{S \in \mathcal{S}} \operatorname{GreEDY}(k, S \backslash E)\)
    return \(Z\)
```

As this approach runs $O\left(\log _{1+\epsilon} k\right)$ copies of our algorithm, it requires $O\left(\log _{1+\epsilon} k\right)$ more memory space than stated in Theorem 4.1. Furthermore, since we are approximating $f(\mathrm{OPT}(k, V \backslash E))$ as the geometric series with base $(1+\epsilon)$, our final result is an $(1+\epsilon)$-approximation of the value provided in the theorem.
Unfortunately, the value η might also not be known a priori. However, η is some value among the $m+1$ largest elements of the stream. This motivates the following idea. At every moment, we keep $m+1$ largest elements of the stream. Let L denote that set (note that L changes during the course of the stream). Then, for different values of η belonging to the set $\{f(e) \mid e \in L\}$ we approximate $f(\operatorname{OPT}(k, V \backslash E))$ as described above. Here we make a minor difference, as also described in [8]. Namely, instead of instantiating all the copies of the algorithm corresponding to $\eta \leq(1+\epsilon)^{i} \leq k m$, we instantiate copies of the algorithm corresponding to the values of $f(\mathrm{OPT}(k, V \backslash E))$ from the set $\left\{(1+\epsilon)^{i} \mid i \in \mathbb{Z}, \eta \leq(1+\epsilon)^{i} \leq 2 k \eta\right\}$. We do so as an element e can belong to an instance of our algorithm even if $f(\overline{\mathrm{OPT}}(k, V \backslash E))=2 k f(e)$.
Next, let e be a new element that arrives on the stream. If e is not among the $m+1$ largest elements of the stream seen so far, we do not instantiate any new copy of our algorithm. On the other hand, if e should replace another element $e^{\prime} \in L$ because e^{\prime} does not belong to the $m+1$ largest elements of the stream anymore, we redefine L to be $\left(L \backslash\left\{e^{\prime}\right\}\right) \cup\{e\}$, and update the instances. The instances are updated as follows: we instantiate copies (those that do not exist already) of our algorithm for $\eta=f(e)$ as described above; and, any instance of our algorithm corresponding to $\eta=f\left(e^{\prime}\right)$, but not to any other element of L, we discard.
To bound the space complexity, we start with the following observation - given an element e, we do not need to add e to any instance of our algorithm corresponding to $f(\operatorname{OPT}(k, V \backslash E))<f(e)$. This reasoning is justified by the following: if $e \in E$, then it does not matter whether we keep e in our summary or not; if $e \notin E$, then $f(\operatorname{OPT}(k, V \backslash E)) \geq f(e)$. Therefore, those thresholds that are less than $f(e)$ are not a good estimate of the optimum solution with respect to e. To keep the memory space low, we pass an element e to the instances of our algorithm corresponding to the of $f(\mathrm{OPT}(k, V \backslash E))$ being in set $\left\{(1+\epsilon)^{i} \mid i \in \mathbb{Z}, f(e) \leq(1+\epsilon)^{i} \leq 2 k f(e)\right\}$. Notice that, by the structure of our algorithm, e will not be added to any instance of our algorithm with threshold more than $2 k f(e)$.

Putting all together we make the following conclusions. At any point during the execution, every element of L belongs to at most $O\left(\log _{1+\epsilon} k\right)$ instances of our algorithm. Define $e_{\min }:=$ $\arg \min _{e \in L} f(e)$. Then by the definition, every element $a \notin L$ kept in the parallel instances of our algorithms is such that $f(a) \leq f\left(e_{\min }\right)$. This further implies that a also belongs to at most $O\left(\log _{1+\epsilon} k\right)$ instances corresponding to the following set of values $\left\{(1+\epsilon)^{i} \mid i \in \mathbb{Z}, f\left(e_{\min }\right) \leq\right.$ $\left.(1+\epsilon)^{i} \leq 2 k f\left(e_{\min }\right)\right\}$. Therefore, the total memory usage of the elements of L is $O\left(m \log _{1+\epsilon} k\right)$. On the other hand, since all the elements not in L belong to at most $O\left(\log _{1+\epsilon} k\right)$ different instances of STAR-T, the total memory those elements occupy is $O\left((k+m \log k) \log k \log _{1+\epsilon} k\right)$. Therefore, the memory complexity of this approach is $O\left((k+m \log k) \log k \log _{1+\epsilon} k\right)$

F Additional results for the dominating set problem

In Figure 3 we outline further results for the dominating set problem considered in Section 5.1 .

Figure 3: Numerical comparisons of the algorithms STAR-T-GreEdy, STAR-T-SIEVE and SIEVEStreaming.

