
Supplementary Material
This section presents the complete proofs of lemmas presented in the article.

A Detailed Proof of Lemma 4.2

Lemma 4.2 If there exists a partition in S such that at least half of its buckets are full, then for the
set Z produced by STAR-T-GREEDY we have

f(Z) ≥
(
1− e−1

)(
1− 4m

wk

)
τ. (2)

Proof. Let i? be a partition such that half of its buckets are full. Let Bi?,j be a full bucket that
minimizes |Bi?,j ∩ E|. In STAR-T, every partition contains wdk/2ie buckets. Hence, the number
of full buckets in partition i? is at least wk/2i

?+1. That further implies

|Bi?,j ∩ E| ≤
2i

?+1m

wk
. (6)

Taking into account that Bi?,j is a full bucket, we conclude

|Bi?,j \ E| ≥ |Bi?,j | −
2i

?+1m

wk
. (7)

From the property of our Algorithm (line 5) every element added to Bi?,j increased the utility of this
bucket by at least τ/2i

?

. Combining this with the fact that Bi?,j is full, we conclude that the gain of
every element in this bucket is at least τ/ |Bi?,j |. Therefore, from Eq. (7) it follows:

f (Bi?,j \ E) ≥
(
|Bi?,j | −

2i
?+1m

wk

)
τ

|Bi?,j |
= τ

(
1− 2i

?+1m

|Bi?,j |wk

)
. (8)

Taking into account that 2i
?+1 ≤ 4 |Bi?,j | this further reduces to

f (Bi?,j \ E) ≥ τ
(
1− 4m

wk

)
. (9)

Finally,

f(Z) = f(GREEDY(k, S \ E)) ≥ (1− e−1)f(OPT(k, S \ E))

≥
(
1− e−1

)
f(OPT(k,Bi∗,j \ E)) (10)

=
(
1− e−1

)
f (Bi?,j \ E) (11)

≥
(
1− e−1

)(
1− 4m

wk

)
τ, (12)

where Eq. (10) follows from (Bi?,j \ E) ⊆ (S \ E), Eq. (11) follows from the fact that |Bi?,j | ≤ k,
and Eq. (12) follows from Eq. (9). 2

B Detailed Proof of Lemma 4.3

We start by studying some properties of E that we use in the proof of Lemma 4.3.

Lemma B.1 Let Bi be a bucket in partition i > 0, and let Ei := Bi∩E denote the elements that are
removed from this bucket. Given a bucket Bi−1 from the previous partition such that |Bi−1| < 2i−1

(i.e. Bi−1 is not fully populated), the loss in the bucket Bi due to the removals is at most

f (Ei | Bi−1) <
τ

2i−1
|Ei|.

11

Proof. First, we can bound f (Ei | Bi−1) as follows

f (Ei | Bi−1) ≤
∑
e∈Ei

f (e | Bi−1) . (13)

Consider a single element e ∈ Ei. There are two possible cases: f(e) < τ
2i−1 , and f(e) ≥ τ

2i−1 .
In the first case, f (e | Bi−1) ≤ f(e) < τ

2i−1 . In the second one, as |Bi−1| < 2i−1 we conclude
f (e | Bi−1) < τ

2i−1 , as otherwise the streaming algorithm would place e inBi−1. These observations
together with (13) imply:

f (Ei | Bi−1) <
∑
e∈Ei

τ

2i−1
=

τ

2i−1
|Ei|.

2

Lemma B.2 For every partition i, let Bi denote a bucket such that |Bi| < 2i (i.e. no partition is
fully populated), and let Ei = Bi ∩E denote the elements that are removed from Bi. The loss in the
bucket Bdlog ke due to the removals, given all the remaining elements in the previous buckets, is at
most

f

Edlog ke
∣∣∣∣∣∣
dlog ke−1⋃
j=0

(Bj \ Ej)

 ≤ dlog ke∑
j=1

τ

2j−1
|Ej |.

Proof. We proceed by induction. More precisely, we show that for any i ≥ 1 the following holds

f

Ei
∣∣∣∣∣∣
i−1⋃
j=0

(Bj \ Ej)

 ≤ i∑
j=1

τ

2j−1
|Ej |. (14)

Once we show that (14) holds, the lemma will follow immediately by setting i = dlog ke.

Base case i = 1. Since B0 is not fully populated and the maximum number of elements in the
partition i = 0 is 1, it follows that both B0 and E0 are empty. Then the term on the left hand side of
(14) for i = 1 becomes f(E1). As |B0| < 1 we can apply Lemma B.1 to obtain

f(E1) = f (E1 | B0) ≤ |E1|
τ

20
.

Inductive step i > 1. Now we show that (14) holds for i > 1, assuming that it holds for i − 1.
First, due to submodularity we have

f

Ei−1
∣∣∣∣∣∣
i−2⋃
j=0

(Bj \ Ej)

 ≥ f
Ei−1

∣∣∣∣∣∣
i−1⋃
j=0

(Bj \ Ej)

 ,

and, hence, we can write

f

Ei
∣∣∣∣∣∣
i−1⋃
j=0

(Bj \ Ej)

 ≤ f
Ei

∣∣∣∣∣∣
i−1⋃
j=0

(Bj \ Ej)

+ f

Ei−1
∣∣∣∣∣∣
i−2⋃
j=0

(Bj \ Ej)

− f
Ei−1

∣∣∣∣∣∣
i−1⋃
j=0

(Bj \ Ej)

= f

Ei ∪ i−1⋃
j=0

(Bj \ Ej)

+ f

Ei−1
∣∣∣∣∣∣
i−2⋃
j=0

(Bj \ Ej)

− f
Ei−1 ∪ i−1⋃

j=0

(Bj \ Ej)

 .

(15)

Due to monotonicity, the first term can be further bounded by

f

Ei ∪ i−1⋃
j=0

(Bj \ Ej)

 ≤ f
Ei ∪Bi−1 ∪ i−2⋃

j=0

(Bj \ Ej)

 , (16)

12

and for the third term we have

f

Ei−1 ∪ i−1⋃
j=0

(Bj \ Ej)

 = f

Ei−1 ∪Bi−1 ∪ i−2⋃
j=0

(Bj \ Ej)

 ≥ f
Bi−1 ∪ i−2⋃

j=0

(Bj \ Ej)

 ,

(17)
where to obtain the identity we used that Ei−1 ∪ (Bi−1 \ Ei−1) = Ei−1 ∪Bi−1.

By substituting the obtained bounds (16) and (17) in (15) we obtain:

f

Ei
∣∣∣∣∣∣
i−1⋃
j=0

(Bj \ Ej)

 ≤ f
Ei

∣∣∣∣∣∣ Bi−1 ∪
i−2⋃
j=0

(Bj \ Ej)

+ f

Ei−1
∣∣∣∣∣∣
i−2⋃
j=0

(Bj \ Ej)

≤ f (Ei | Bi−1) + f

Ei−1
∣∣∣∣∣∣
i−2⋃
j=0

(Bj \ Ej)

 , (18)

where the second inequality follows by submodularity.

Next, Lemma B.1 can be used (as |Bi−1| < 2i−1) to bound the first term in (18):

f

Ei
∣∣∣∣∣∣
i−1⋃
j=0

(Bj \ Ej)

 ≤ τ

2i−1
|Ei|+ f

Ei−1
∣∣∣∣∣∣
i−2⋃
j=0

(Bj \ Ej)

 . (19)

To conclude the proof, we use the inductive hypothesis that (14) holds for i − 1, which together
with (19) implies

f

Ei
∣∣∣∣∣∣
i−1⋃
j=0

(Bj \ Ej)

 ≤ τ

2i−1
|Ei|+

i−1∑
j=1

τ

2j−1
|Ej | =

i∑
j=1

τ

2j−1
|Ej |,

as desired. 2

Lemma 4.3 If there does not exist partition of S such that at least half of its buckets are full, then
for the set Z produced by STAR-T-GREEDY we have

f(Z) ≥
(
1− e−1/3

)(
f
(
Bdlog ke

)
− 4m

wk
τ

)
,

where Bdlog ke is a bucket in the last partition which is not fully populated minimizing
∣∣Bdlog ke ∩ E∣∣

and |E| ≤ m.

Proof. Let Bi denote a bucket in partition i which is not fully populated (Bi ≤ min{2i, k}), and for
which |Ei|, where Ei = Bi ∩E, is of minimum cardinality. Such bucket exists in every partition i
due to the assumption of the lemma that more than a half of the buckets are not fully populated.

First,

f

dlog ke⋃
i=0

(Bi \ Ei)

 ≥ f (Bdlog ke)− f
Edlog ke∣∣∣∣dlog ke−1⋃

i=0

(Bi \ Ei)

 (20)

≥ f
(
Bdlog ke

)
−
dlog ke∑
i=1

τ

2i−1
|Ei|, (21)

where Eq. (20) follows from Lemma D.1 by setting B = Bdlog ke, R = Edlog ke and A =⋃dlog ke−1
i=0 (Bi \ Ei). As we consider buckets that are not fully populated, Lemma B.2 is used

to obtain Eq. (21). Next, we bound each term τ
2i−1 |Ei| in Eq. (21) independently.

From Algorithm 1 we have that partition i consists of wdk/2ie buckets. By the assumption of the
lemma, more than half of those are not fully populated. Recall that Bi is defined to be a bucket of

13

partition i which is not fully populated and which minimizes |Ei|. Let Ẽi be the subset of E that
intersects buckets of partition i. Then, |Ei| can be bounded as follows:

|Ei| ≤
|Ẽi|

wdk/2ie
2

≤ 2i+1|Ẽi|
wk

.

Hence, the sum on the left hand side of Eq. (21) can be bounded as

dlog ke∑
i=1

τ

2i−1
|Ei| ≤

dlog ke∑
i=1

τ

2i−1
2i+1|Ẽi|
wk

=
4

wk
τ

dlog ke∑
i=1

|Ẽi| ≤
4|E|
wk

τ.

Putting the last inequality together with Eq. (21) we obtain

f

dlog ke⋃
i=0

(Bi \ Ei)

 ≥ f (Bdlog ke)− 4|E|
wk

τ.

Observe also that
dlog ke⋃
i=0

|Bi \ Ei| ≤
dlog ke⋃
i=0

|Bi| ≤ k +
blog kc⋃
i=0

2i ≤ 3k,

which implies

f (OPT(3k, S \ E)) ≥ f

dlog ke⋃
i=0

(Bi \ Ei)

 ≥ f (Bdlog ke)− 4|E|
wk

τ.

Finally,

f(Z) = f(GREEDY(k, S \ E)) ≥
(
1− e−1/3

)
f (OPT(3k, S \ E))

≥
(
1− e−1/3

)(
f
(
Bdlog ke

)
− 4|E|

wk
τ

)
≥
(
1− e−1/3

)(
f
(
Bdlog ke

)
− 4m

wk
τ

)
, (22)

as desired. 2

C Detailed Proof of Lemma 4.4

Lemma 4.4 If there does not exist partition of S such that at least half of its buckets are full, then
for the set Z produced by STAR-T-GREEDY,

f(Z) ≥ (1− e−1)
(
f(OPT (k, V \ E))− f(Bdlog ke)− τ

)
,

where Bdlog ke is any bucket in the last partition which is not fully populated.

Proof. Let Bdlog ke denote a bucket in the last partition which is not fully populated. Such bucket
exists due to the assumption of the lemma that more than a half of the buckets are not fully populated.

Let X and Y be two sets such that Y contains all the elements from OPT(k, V \E) that are placed
in the buckets that precede bucket Bdlog ke in S, and let X := OPT(k, V \ E) \ Y . In that case, for
every e ∈ X we have

f
(
e
∣∣ Bdlog ke) < τ

k
(23)

due to the fact that Bdlog ke is the bucket in the last partition and is not fully populated.

14

We proceed to bound f(Y):

f(Y) ≥ f(OPT(k, V \ E))− f(X) (24)

≥ f(OPT(k, V \ E))− f
(
X
∣∣ Bdlog ke)− f (Bdlog ke) (25)

≥ f(OPT(k, V \ E))− f
(
Bdlog ke

)
−
∑
e∈X

f
(
e
∣∣ Bdlog ke) (26)

≥ f(OPT(k, V \ E))− f
(
Bdlog ke

)
− τ

k
|X| (27)

≥ f(OPT(k, V \ E))− f
(
Bdlog ke

)
− τ, (28)

where Eq. (24) follows from f(OPT(k, V \ E)) = f(X ∪ Y) and submodularity, Eq (25) and
Eq (26) follow from monotonicity and submodularity, respectively. Eq. (27) follows from Eq. (23),
and Eq. (28) follows from |X| ≤ k.

Finally, we have:

f(Z) = f(GREEDY(k, S \ E)) ≥
(
1− e−1

)
f(OPT(k, S \ E))

≥
(
1− e−1

)
f(OPT(k, Y)) (29)

=
(
1− e−1

)
f(Y) (30)

≥
(
1− e−1

) (
f(OPT(k, V \ E))− f(Bdlog ke)− τ

)
, (31)

where Eq. (29) follows from Y ⊆ (S \E), Eq. (30) follows from |Y | ≤ k, and Eq. (31) follows from
Eq. (28). 2

D Technical Lemma

Here, we outline a technical lemma that is used in the proof of Lemma 4.3

Lemma D.1 For any submodular function f on a ground set V , and any sets A,B,R ⊆ V , we have

f(A ∪B)− f(A ∪ (B \R)) ≤ f (R | A) .

Proof. Define R2 := A ∩R, and R1 := R \A = R \R2. We have

f(A ∪B)− f(A ∪ (B \R)) = f(A ∪B)− f((A ∪B) \R1)

= f (R1 | (A ∪B) \R1)

≤ f (R1 | (A \R1)) (32)
= f (R1 | A) (33)
= f (R1 ∪R2 | A) (34)
= f (R | A) ,

where (32) follows from the submodularity of f , (33) follows since A and R1 are disjoint, and (34)
follows since R2 ⊆ A. 2

E Detailed Proof of Theorem 4.5

Setting τ in STAR-T assumes that we know the unknown value f(OPT(k, V \E)). In this subsection
we show how to approximate that value. First, f(OPT(k, V \ E)) can be bounded in the following
way: η ≤ f(OPT(k, V \ E)) ≤ kη, where η denotes the largest value of any of the elements
of V \ E, i.e. η = maxe∈(V \E) f(e). In case we are given η, we follow the same approach
as in [8] by considering all the O

(
log1+ε k

)
possible values of f(OPT(k, V \ E)) from the set

{(1+ε)i | i ∈ Z, η ≤ (1+ε)i ≤ kη}. For each of the thresholds independently and in parallel we then
run STAR-T, and hence build O

(
log1+ε k

)
different summaries. After the stream ends, on each of

the summaries we run algorithm STAR-T-GREEDY and report the maximum output over all the runs.

15

Algorithm 3 Parallel Instances of (STAR-T)

Input: Set V , k, w ∈ N+, η ∈ R
1: O =

{
(1 + ε)i | η ≤ (1 + ε)i ≤ kη

}
2: Create a set of instances I := {STAR-T(V, k, η, w) | η ∈ O}, and run all the instances in

parallel over the stream.
3: Let S = {the output of instance I | I ∈ I }.
4: return S

Algorithm 4 Parallel Instances STAR-T- GREEDY

Input: Family of sets S, query set E and k
1: Z ← argmaxS∈S GREEDY(k, S \ E)
2: return Z

As this approach runs O(log1+ε k) copies of our algorithm, it requires O(log1+ε k) more memory
space than stated in Theorem 4.1. Furthermore, since we are approximating f(OPT(k, V \ E))
as the geometric series with base (1 + ε), our final result is an (1 + ε)-approximation of the value
provided in the theorem.

Unfortunately, the value η might also not be known a priori. However, η is some value among the
m+ 1 largest elements of the stream. This motivates the following idea. At every moment, we keep
m+ 1 largest elements of the stream. Let L denote that set (note that L changes during the course
of the stream). Then, for different values of η belonging to the set {f(e) | e ∈ L} we approximate
f(OPT(k, V \ E)) as described above. Here we make a minor difference, as also described in [8].
Namely, instead of instantiating all the copies of the algorithm corresponding to η ≤ (1 + ε)i ≤ km,
we instantiate copies of the algorithm corresponding to the values of f(OPT(k, V \E)) from the set
{(1 + ε)i | i ∈ Z, η ≤ (1 + ε)i ≤ 2kη}. We do so as an element e can belong to an instance of our
algorithm even if f(OPT(k, V \ E)) = 2kf(e).

Next, let e be a new element that arrives on the stream. If e is not among the m+ 1 largest elements
of the stream seen so far, we do not instantiate any new copy of our algorithm. On the other hand, if e
should replace another element e′ ∈ L because e′ does not belong to the m+ 1 largest elements of
the stream anymore, we redefine L to be (L \ {e′}) ∪ {e}, and update the instances. The instances
are updated as follows: we instantiate copies (those that do not exist already) of our algorithm for
η = f(e) as described above; and, any instance of our algorithm corresponding to η = f(e′), but not
to any other element of L, we discard.

To bound the space complexity, we start with the following observation – given an element e, we
do not need to add e to any instance of our algorithm corresponding to f(OPT(k, V \ E)) < f(e).
This reasoning is justified by the following: if e ∈ E, then it does not matter whether we keep e in
our summary or not; if e /∈ E, then f(OPT(k, V \ E)) ≥ f(e). Therefore, those thresholds that
are less than f(e) are not a good estimate of the optimum solution with respect to e. To keep the
memory space low, we pass an element e to the instances of our algorithm corresponding to the of
f(OPT(k, V \ E)) being in set {(1 + ε)i | i ∈ Z, f(e) ≤ (1 + ε)i ≤ 2kf(e)}. Notice that, by the
structure of our algorithm, e will not be added to any instance of our algorithm with threshold more
than 2kf(e).

Putting all together we make the following conclusions. At any point during the execution, ev-
ery element of L belongs to at most O(log1+ε k) instances of our algorithm. Define emin :=
argmine∈L f(e). Then by the definition, every element a /∈ L kept in the parallel instances of
our algorithms is such that f(a) ≤ f(emin). This further implies that a also belongs to at most
O(log1+ε k) instances corresponding to the following set of values {(1 + ε)i | i ∈ Z, f(emin) ≤
(1 + ε)i ≤ 2kf(emin)}. Therefore, the total memory usage of the elements of L is O

(
m log1+ε k

)
.

On the other hand, since all the elements not in L belong to at most O(log1+ε k) different instances
of STAR-T, the total memory those elements occupy is O((k +m log k) log k log1+ε k). Therefore,
the memory complexity of this approach is O

(
(k +m log k) log k log1+ε k

)

16

F Additional results for the dominating set problem

In Figure 3 we outline further results for the dominating set problem considered in Section 5.1.

Cardinality k

10 20 30 40 50 60 70 80 90 100

A
v
g
.
o
b
j.

v
a
lu
e

0

2000

4000

6000

8000

10000

12000
Amazon communities,|E| = 2k

Star-T-Greedy

Star-T-Sieve

Sieve-Str

Random

Cardinality k
10 20 30 40 50 60 70 80 90 100

A
v
g
.
o
b
j.

v
a
lu
e

0

2000

4000

6000

8000

10000

12000
Amazon communities,|E| = k/2

Star-T-Greedy

Star-T-Sieve

Sieve-Str

Random

Cardinality k

10 20 30 40 50 60 70 80 90 100

O
b
j.

v
a
lu
e

0

2000

4000

6000

8000
Amazon communities,|E| = k

Star-T-Greedy

Star-T-Sieve

Sieve-Str

Random

Cardinality k
10 20 30 40 50 60 70 80 90 100

O
b
j.

v
a
lu
e

0

2000

4000

6000

8000

10000
Amazon communities,|E| = k/2

Star-T-Greedy

Star-T-Sieve

Sieve-Str

Random

Cardinality k

10 20 30 40 50 60 70 80 90 100

A
v
g
.
o
b
j.

v
a
lu
e

×104

0

0.5

1

1.5

2

2.5
ego-Twitter,|E| = 2k

Star-T-Greedy

Star-T-Sieve

Sieve-Str

Random

Cardinality k

10 20 30 40 50 60 70 80 90 100

O
b
j.

v
a
lu
e

×104

0

0.5

1

1.5

2
ego-Twitter,|E| = k

Star-T-Greedy

Star-T-Sieve

Sieve-Str

Random

Figure 3: Numerical comparisons of the algorithms STAR-T-GREEDY, STAR-T-SIEVE and SIEVE-
STREAMING.

17

	Detailed Proof of Lemma 4.2
	Detailed Proof of Lemma 4.3
	Detailed Proof of Lemma 4.4
	Technical Lemma
	Detailed Proof of Theorem 4.5
	Additional results for the dominating set problem

