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Elasticity   Fracture opening w is related to the net pressure (pf-σo) and cohesive force σcoh in the fracture [-l, l] ( l is half 
fracture length including the cohesive length) via a Cauchy singular integral equation.

σcoh  is characterized by different traction-separation law, see in Figure 1 and Table 1 where σT  represents the yielding 
tensile stress of the material and wc is the critical opening in the cohesive model.  E’=E/(1-ν2) is the effective elastic 
modulus.

Fluid flow in the fracture  If one neglects the fluid compressibility and considers a constant fluid density, by applying 
the Poiseuille law, the width-averaged mass conservation turns to

where μ’=12μ, however in the case of an inviscid fluid, the mass conservation of the fluid further simplifies to

Boundary condition   Fluid is injected at x=0 at a given flow rate Qo. 

Figure 1. Traction separation laws of different cohesive zone models  Table 1. Different cohesive zone models  and their critial fracture energy
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I. Introduction
Hydraulic fracturing (HF) is widely used in the oil and gas industry to enhance production from tight reservoirs. The 
process involves the injection of fluid at a given flow rate into a wellbore in order to propagate a fracture in rocks and 
thus increase their permeability. 

Linear hydraulic fracture mechanics (LHFM) theories have been developped to predict the fracture propagation, assuming
a linear elastic solid and the lubrication fluid flow in the fracture. However, some studies (Chudnovsky et al. 2008; 
Papanastasiou 1999) have shown deviations from  LHFM predictions which indicates an existence of solid non-linearity
and a deviation of the Poiseille law.   

We revisit the problem of a plane-strain hydraulic fracture driven by the injection of a Newtonian fluid in a tight rock. 
By modelling the quasi-brittle nature of the rock with different cohesive zone models, we study the effect of solid 
non-linearity on toughness and viscosity-dominated HF regimes.   

A fixed regular grid is used and an implicit scheme is adopted to solve the increments of the pressure and dislocation for 
this fully-coupled problem. The elasticity is solved numerically using displacement discontinuity method using piece-wise 
linear element while the equation of mass conservation is solved by a finite volume method.

At the beginning of a time-step, at time tn, the fracture length  lo, opening profile wo, fluid pressure profile of pf
o, clamping 

stress and cohesive forces along the crack are known. For an increment of time Δt , the solution is obtained using two 
nested loops. For a trial location of the fracture front, the highly non-linear fluid-solid coupling arising from the elasticity 
and fluid-mass conservation is solved iteratively in terms of opening and pressure increment. Once with the new opening 
and pressure profile, a new estimate of the fracture front is obtained by checking for the normal stress ahead of the front 
location. A fixed point scheme is used with under-relaxation. The sequence of increments for each given fracture front and 
the subsequent update of the fracture front is repeated until convergence of the fracture front estimation. During the 
propagation, time step can be adapted with the fracture velocity. The tip advances if normal stresses at both collocation 
points of one element yield the critical tensile strength σT in the cohesive zone model, when considering the viscosity. 

Scaling parameters
We compare the numerical results with the LHFM analytical solutions having the same critical fracture energy. 

Toughness-dominated regime   The numerical results are scaled with the parameters related to the cohesive model, 
keeping the critical fracture energy Gc= σT wc 

The evolution of the dimensionless net pressure and fracture length can be seen in Figure 2.  

Viscosity-dominated regime 
Similarly, we also scale respectively the opening, the net pressure, the time and the fracture length with w*m, p*m, t*m 
and L*m.(Detournay, E. 2004)

where γm represents the dimensionless half fracture length exluding the cohesive zone length (where the opening is 
below the critical opening wc) and ξ represents the dimensionless coordinate. The opening and pressure profile of one 
time step and the evolution of the dimensionless fracture length and its relative error are shown in Figure 4. 
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( a ) Dimensionless net pressure  ( b ) Dimensionless fracture length, cohesive length included  

Figure 2. Evolution of the net pressure and fracture length with time in toughness dominated regime (zero fluid viscosity) using different  cohesive models
with the same critical fracture energy  
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( a ) Dimensionless net pressure  ( b ) Dimensionless fracture length, cohesive length excluded  

Figure 3. Evolution of the relative error (average from τ=140 to τ=300) of the net pressure and fracture length with the element size h in toughness 
dominated regime (zero fluid viscosity) using different cohesive models with the same critical fracture energy

Effect of cohesive zone models
The numerical results obtained with a cohesive zone model diviates from the LHFM solution at early time, where the 
cohesive zone is large compared with the fracture. At large time, different cohesive models all tend to the same LHFM 
solutions. This indicates that the fracture energy dominates the fracture propagation regardless of the cohesive zone 
models. However, numerical oscillations are found during the application of Dugdale-Barenblatt model, which are not 
observed in the analytical solutions using Dugdale-Barenblatt model. These oscillations are not realistic and are related 
to the discretization of the mesh, the injection volume and the sudden drop of cohesive forces in the model.

Influence of the mesh size
The numerical accuracy relies on the mesh size, especially for the problem related to cohesive zone, where the cohesive 
length is small compared with the whole fracture length, but characterizes the most important critical fracture energy 
during the propagation. We calculate the relative error of the dimensionless net pressure and fracture length, see in 
Figure 3. One finds that all of these models get decreasing errors while increasing the element number, from which we 
can control the relative errors by playing the relation between the critical opening and the mesh size. 
Figure 3 also shows the relative errors of the fracture length. Knowing that the cohesive length determines the 
critical fracture energy, it’s more reasonable to compare the fracture length with the LHFM solutions after taking off 
the cohesive length (the length whose corresponding opening is below the critical opening wc). However, this method 
is only correct for the linear softening model, where the cohesive length zone covers all the fracture energy. This 
explains the increasing relative error for the exponential linear model who has a more important part of fracture energy 
outside the calculated cohesive zone.

LHFM solution

1. The numerical algorithm reproduces the same results as LHFM solutions at 
 large time when the cohesive zone is small compared to the fracture length. 
 The shape of the material softening law or cohesive zone model does not 
 influence the results. 
2. The accuracy of this method depends on the mesh refinement in the cohesive 
 zone, which will be costly using a fixed uniform mesh. (To  reach a reasonable 
 relative error, say 0.1%, one needs an element size of 2wc).  

Further work would be done in studying the deviation of Poiseuille law coupled with the solid non-linearity. A spectral
method would be used to improve the numerical precision limited by the numerical cost of the method mentioned in this
work. Moreover, a mesh-adaptive method would also be studied.
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Figure 4. Evolution of the fracture length (cohesive length excluded), its relative error and profile of the dimensionless opening and pressure at τm=5.5 for 
viscosity-dominated regime (zero toughness) using exponential square cohesive zone model 
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