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Optimal adaptive sampling (full information)

The performance of stochastic optimization algorithms
like Stochastic Gradient Descent (SGD) and Coordinate
Descent (CD) crucially depends on the sampling
distribution. The progress is maximized for

full information optimal adaptive sampling p°Pt,

but this distribution requires knowledge of full gradient
information and is therefore unamenable in practice.

Safe bounds: a relaxation

CD setting:

min f(x) = [ <|Vif(x)] < [u);

SGD setting:

min f(x):= 13" fix) = [ < [VAG) < [l
=1

x€R4

Optimal adaptive sampling (limited information)
The optimal adaptive sampling with respect to the
bounds £ < u is the solution of an optimization
problem and can efficiently be computed. We propose
to use

limited information optimal adaptive sampling p".

For any bounds £ < u, the proposed sampling p*"
is provably better than importance sampling.

Example: Coordinate Descent (also applicable to SGD)

Alg. 1: Optimal sampling (too expensive)
e Compute: V f(xy)

o £ = = |Vf(xp)|

e lteration complexity: 7'(V f(xy))

Alg. 2: Proposed sampling

e Compute: V, f(xy)

e Update €5, < |V f(xx)| < ug

e lteration complexity: 7'(V, f(xx)) + O(nlogn)

Alg. 3: Importance sampling (slower convergence)
o Compute: V,f(xx)

e . =0,u; =0

o Iteration complexity: T(V,f(x}))

The stepsize % and the sampling p; maximize the
expected one step progress (in the worst case):

L, |V, £ (xi)|1?
202 [P,

=7 (v, P,V f (xX1))

(Vf(xk), Vi f(x))

Uk [Prix

f(xk)—f(Xk41) >

(vk, Px) := argmax min E;, p [7(v,p, c)]
vER £ <c<uy
pEA™

Alg. 1: Optimal sampling

° pOPt = _|Vfo(xk)_| vopt o —“\/fo(xk)Hi
k VIV, k NMIEDIE

Alg. 2: Proposed sampling

e Theorem 3.4: p,, U}, can be computed in O(nlogn)

e Theorem 3.2: vzpt <P < v}cmp (the progress is
always better than importance sampling)

* P, is the best sampling (in worst case) for £, uy,

Alg. 3: Importance sampling

. L .
° p}cmp =S _T|r[T|.4]’ Ullﬂmp =Tt [L]

e Note: for L; = L, this is just uniform sampling

Assumptions: f: R” — R convex; coordinate-wise Lipschitz: |V, f(x + ve;) — Vif(x)| < Li|y|, Vx € R",v € R,i = 1: n. Define: L = diag(Ly,..., Ly).

e Trivial values [£]; = 0 and [u]; = oo are admissible,
but more accurate bounds give better speed-up.

e Updating the bounds can be delegated to a dedicated
worker in a distributed setting.

Special cases:
e ¢ = u: optimal sampling (full information)

e £ =0, u= oo: uniform sampling (no information)

Principal example: f(x) =1 [|Ax — b|.
e CD setting: (A € R¥™)

Vif(x+ei,) = Vif(x) =y (ai,a;,), Vi#ig
o SGD setting: (A € R™*%), f(x) =Y, fi(a] x)
Vi i,

» T(Vf(x)) = ©(dn), T(Vif) = T(Vfi) = ©(d)
¢ Updating the bounds takes ©(n) time.

Vfi(x+nei,) — Vii(xi) = v (a;, a;,) a;,

Upper/lower bounds alone are not enough:

1 2 2
Example 3.1: ¢ = [2} u= [3] Vixg) = [2}
and L1 = Ly = 1. Then

IE:ikNuniform [f(xk-i—l)] < max

Iterations: Coordinate Descent on rcvi

f(x) =]Ax — bH2 + Tlo HxH%, d, n = 10000, subsampled rcv1
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Open Problems and Future Work

e The approach works very well for the CD setting, for
SGD the advantage was less pronounced in the
experiments, can this be explained by theory?

e Relax the strict conditions on £ and u

Clock time: Coordinate Descent on real-sim

f(x) = ||Ax — b”2 + % Hx||%, d = 72,309, n = 20,958, real-sim
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Experiments with SGD can be found in the full paper.

e Reduce complexity to O(min{d, n}) (for both:
updating the bounds £, u, and computing f)e’“).

e The approach might be transferable to other domains,
for instance active learning.



