
SIAM J. NUMER. ANAL. c\bigcirc 2018 Society for Industrial and Applied Mathematics
Vol. 56, No. 5, pp. 3121--3143

A POSTERIORI ERROR ESTIMATION FOR THE STOCHASTIC
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Abstract. In this work, we consider an elliptic partial differential equation (PDE) with a
random coefficient solved with the stochastic collocation finite element method (SC-FEM). The
random diffusion coefficient is assumed to depend in an affine way on independent random variables.
We derive a residual-based a posteriori error estimate that is constituted of two parts controlling the
SC error and the FE error, respectively. The SC error estimator is then used to drive an adaptive
sparse grid algorithm. Several numerical examples are given to illustrate the efficiency of the error
estimator and the performance of the adaptive algorithm.
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1. Introduction. Partial differential equations (PDEs) are the mathematical
formulation of many physical and engineering phenomena. For such problems, the
input data are often affected by uncertainty due to either a lack of knowledge or an
inherent variability of the system. Probability theory offers a possible way to describe
the uncertainties, characterizing the uncertain input data with random variables or
random fields and yielding PDEs with random inputs.

The development of efficient methods to tackle the numerical approximation of
such problems has thus been of great interest and has attracted the attention of
many scientists over the past decades. In this work, we will consider the stochastic
collocation (SC) method [1, 2, 3] for the stochastic approximation, and the finite
element method (FEM) for the physical space discretization. As sampling methods
of Monte-Carlo type or quasi- and multilevel Monte-Carlo types [4, 5, 6, 7], and
contrary to intrusive methods such as stochastic Galerkin [8, 9], the SC method
requires only the solution of decoupled deterministic problems and thus allows the
re-use of deterministic solvers. Moreover, exploiting the possible regularity of the
solution with respect to the random parameters, the SC method has the advantage of
a potentially much faster convergence rate than the Monte-Carlo method. It is also
suitable for large uncertainties, contrary to perturbation-type methods as considered
in our previous works [10, 11].

Whenever a numerical method is used to approximate the solution of the problem
under consideration, an error analysis should be performed to estimate the numerical
error thus introduced. The derivation of a priori error estimates for the stochastic
collocation finite element method (SC-FEM) is done, e.g., in [1, 12, 13], but to our
knowledge no a posteriori error estimate for the whole solution in suitable norms
has been derived. It is of great importance to have a posteriori error estimators at
our disposal since such estimators are the foundation of many adaptive strategies
which aim at reaching a numerical solution with prescribed accuracy while keeping

\ast Received by the editors November 6, 2017; accepted for publication (in revised form) August 13,
2018; published electronically October 23, 2018.

http://www.siam.org/journals/sinum/56-5/M115545.html
\dagger SB-MATH, Ecole Polytechnique F\'ed\'erale de Lausanne, 1015 Lausanne, Switzerland (diane.

guignard@epfl.ch, fabio.nobile@epfl.ch).

3121

http://www.siam.org/journals/sinum/56-5/M115545.html
mailto:diane.guignard@epfl.ch
mailto:diane.guignard@epfl.ch
mailto:fabio.nobile@epfl.ch


3122 DIANE GUIGNARD AND FABIO NOBILE

the computational cost as low as possible. Here, the numerical solution is affected
by two sources of error, namely the SC error and the FE error, and the estimator
should not only provide an upper bound of the error but also furnish an estimation
of the contribution of each error component to the total error, so that it can be used
for balancing errors in an adaptive algorithm. We mention that recently, a posteriori
error estimates for a specific quantity of interest, usually referred to as goal-oriented
error estimates, have been developed; see, for instance, [14].

The main drawback of the SC method is that it suffers from the so-called curse
of dimensionality when tensor grids are used; namely, the performance of the method
deteriorates as the number of random variables increases. A remedy is then to ex-
ploit the possible anisotropy of the solution, in the sense that the different random
variables might not have the same influence on the solution. Examples of works in
this direction are the anisotropic sparse grid method proposed in [15] and the quasi-
optimal sparse grid method introduced in [12]. In the latter, the adaptive algorithm
is based on a priori error estimates whose constants are numerically tuned during the
process, yielding what the authors called an a priori/a posteriori strategy. A proof
of convergence has been obtained in [16] for the pure a priori algorithm. An a pos-
teriori sparse grid adaptive algorithm was first proposed in [17] and then used, for
instance, in [13, 18, 19, 20, 21, 22]. In [20], the adaptive process is driven by profit
indicators obtained by solving additional PDEs. The method is applicable to a wide
range of problems, including, for instance, the case of unbounded random variables or
non-nested grids, and can be combined with a Monte-Carlo sampling, using a control
variate technique, to handle rough random fields [23]. However, the error indicators
proposed so far are heuristic and do not provide a certified control of the error.

We mention that adaptive strategies have also been investigated for the case when
a different method is used for the stochastic space approximation. For instance, in [24]
the solution is approximated via a Taylor series, and an adaptive algorithm is proposed
with a proof of its convergence. In [25, 26], where the random PDEs are solved
with the stochastic Galerkin FEM, the convergence is proved when the adaptation is
performed in both physical and stochastic spaces. In this case, the extension of the
results obtained for the adaptive finite element method (AFEM) in [27] is feasible and
heavily depends on the so-called Galerkin orthogonality property. So far, at least to
our knowledge, there is no proof of convergence for adaptive SC methods.

The main goal of this paper is to derive an a posteriori error estimate that controls
both the FE error and the SC error. We consider an elliptic diffusion problem with
random coefficient that depends in an affine way on a finite number of independent
random variables. Moreover, we restrict our attention to the case where the source
term is deterministic and the SC scheme is interpolatory. The error estimate we
obtain is residual-based, provides an upper bound of the total error, is localizable,
and hence is suitable for adaptive algorithms. We use then the SC error estimator to
drive an adaptive sparse grid algorithm in which the collocation points are iteratively
selected based on a criterion that uses the error estimator. It is important to mention
that so far, we have no proof of convergence of the adaptive algorithm proposed here.
Moreover, this algorithm is suitable only for random spaces of moderate dimension
(or if the anisotropy in the problem is significant). An alternative procedure should
be used for high-dimensional problems, adapting, for instance, the dimension adaptive
strategy proposed in [20] to our context. Finally, since physical mesh refinements are
rather standard, we focus here only on adaptive strategies in the stochastic dimension.
The next step would be to propose an adaptive strategy with refinements in both the
physical and random spaces, combining, for instance, the algorithm proposed here
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for the adaptive selection of the collocation points with a standard AFEM for the
physical mesh refinement.

The outline of the paper is the following. In section 2 we give the statement of
the problem, namely an elliptic diffusion PDE with random coefficient. In section 3
we present the SC-FEM that we use to solve this problem approximately. Section
4 is devoted to the a posteriori error analysis, more precisely, to the derivation of a
residual-based a posteriori error estimate that controls the two error components. In
section 5 we give a possible strategy to adaptively construct the sparse grid using
the stochastic error estimator. In section 6 we perform several numerical experiments
to test the efficiency of the error estimator and the performance of the proposed
adaptive strategy. Finally, section 7 contains some insight into how to deal with
high-dimensional problems, and section 8 presents some conclusions.

2. Problem statement. Let D \subset \BbbR d be an open bounded domain with Lips-
chitz continuous boundary \partial D, and let (\Omega ,\scrF , P ) be a complete probability space. We
seek u : \=D \times \Omega \rightarrow \BbbR that solves P -almost everywhere in \Omega , or in other words almost
surely (a.s.), the problem

(1)

\biggl\{ 
 - \nabla \cdot (a(\cdot , \omega )\nabla u(\cdot , \omega )) = f(\cdot ) in D,

u(\cdot , \omega ) = 0 on \partial D,

with deterministic forcing term f \in L2(D) and random field a on (\Omega ,\scrF , P ) over
W 1,\infty (D). Moreover, we make the following assumptions on the random diffusion
coefficient a:

(2) \exists amin, amax : P (\omega \in \Omega : 0 < amin \leq a(x, \omega ) \leq amax <\infty \forall x \in D) = 1

and

(3) a(x, \omega ) = a0(x) +

N\sum 
n=1

an(x)Yn(\omega ),

where (Yn)
N
n=1 are real-valued independent random variables. Thanks to the Doob--

Dynkin lemma, the solution u depends on the same random variables as the diffusion
coefficient a; i.e., we have u(x, \omega ) = u(x, Y1(\omega ), . . . , YN (\omega )). Let us introduce \Gamma =
\Gamma 1 \times \cdot \cdot \cdot \times \Gamma N with \Gamma n = Yn(\Omega ) for n = 1, . . . , N . Moreover, let \rho : \Gamma \rightarrow \BbbR + be
the joint probability density function of the random vector Y = (Y1, . . . , YN ), which
factorizes as \rho (y) = \Pi N

n=1\rho n(yn) for all y = (y1, . . . , yN ) \in \Gamma . We can then replace
the probability space (\Omega ,\scrF , P ) by (\Gamma , B(\Gamma ), \rho (y)dy), where B(\Gamma ) denotes the Borel
\sigma -algebra defined on \Gamma , and \rho (y)dy denotes the probability measure of Y. Due to
assumption (2) on a, the energy and the H1

0 norms are equivalent; i.e., there exist
0 < cmin \leq cmax such that

(4) cmin\| \nabla v(y)\| L2(D) \leq \| a
1
2 (y)\nabla v(y)\| L2(D) \leq cmax\| \nabla v(y)\| L2(D) \rho -a.e. in \Gamma 

for any v(y) \in H1
0 (D). In particular, (4) holds with cmin =

\surd 
amin and cmax =\surd 

amax. Finally, for a given Banach space V with norm \| \cdot \| V , and for p \in [1,\infty ], we
define the Bochner space

Lp
\rho (\Gamma ;V ) := \{ v : \Gamma \rightarrow V | v is strongly measurable and \| v\| Lp

\rho (\Gamma ;V ) <\infty \} 
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with

\| v\| Lp
\rho (\Gamma ;V ) :=

\Biggl\{ \bigl( \int 
\Gamma 
\| v(y)\| pV \rho (y)dy

\bigr) 1
p if p <\infty ,

\rho -ess sup\bfy \in \Gamma \| v(y)\| V if p =\infty .

The (parametric, pointwise) weak formulation of problem (1) reads as follows: find
u : \Gamma \rightarrow V such that

(5)

\int 
D

a(x,y)\nabla u(x,y) \cdot \nabla v(x)dx =

\int 
D

f(x)v(x)dx \forall v \in V, \rho -a.e. in \Gamma ,

where V := H1
0 (D) is the usual Sobolev space that we endow with the gradient norm

\| v\| V := \| \nabla v\| L2(D). By a straightforward application of the Lax--Milgram lemma,
assumption (2) ensures the well-posedness of problem (5), namely that there exists a
unique solution u \in L2

\rho (\Gamma ;V ) which satisfies the a priori estimate

\| u\| L2
\rho (\Gamma ;V ) \leq 

CP

amin
\| f\| L2(D).

In particular, we have u \in Lp
\rho (\Gamma ;V ) for any p \in [1,\infty ]. Moreover, it has been

shown (see, for instance, [1]) that the parametric solution u of problem (5) is analytic
with respect to each parameter yn \in \Gamma n, n = 1, . . . , N . Finally, we mention that
imposing a(\cdot , \omega ) \in L\infty (D) is enough for the well-posedness of the problem. We
assume W 1,\infty (D) regularity for ease of derivation of our a posteriori error estimate,
more precisely, for the part controlling the FE error; see (17) below.

3. Stochastic collocation finite element method. In this section, we briefly
present the SC-FEM for numerically solving PDEs with random input data, following
closely [16] and focusing on the model problem (1). We also refer the reader to [1, 3]
for a complete discussion on this method. The idea is to proceed in two steps: first,
a semidiscretization of problem (5) using the FEM for the physical space approxi-
mation, and then the application of a collocation method for the stochastic space
approximation using global polynomials in y. We thus seek an approximate solution
in a space \BbbP (\Gamma ) \otimes Vh, with \BbbP (\Gamma ) \subset L2

\rho (\Gamma ) a polynomial space on \Gamma , and Vh a FE
subspace of V .

More precisely, for any h > 0, let \scrT h be a regular triangulation of D with elements
T of diameter hT \leq h. We assume that there exists a constant c > 0 satisfying

(6)
hT

\rho T
\leq c \forall T \in \scrT h, \forall h > 0,

where \rho T = sup\{ diam(B) : B is a ball contained in T\} . Let Vh \subset V , with dim(Vh) =
Nh, be the space of continuous, piecewise linear FE functions associated to \scrT h that
vanish on \partial D. The semidiscretized problem is therefore given by the following: find
uh : \Gamma \rightarrow Vh such that

(7)

\int 
D

a(x,y)\nabla uh(x,y) \cdot \nabla vh(x)dx =

\int 
D

f(x)vh(x)dx \forall vh \in Vh, \rho -a.e. in \Gamma .

Problem (7) is then further discretized by considering a set \{ y1, . . . ,yNc
\} of Nc

collocation points in \Gamma and building the global polynomial approximation

(8) uh,Nc(y) :=

Nc\sum 
k=1

uh(yk)Lk(y)
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for appropriate multivariate (for instance, Lagrange) polynomials Lk, where uh(yk) is
the solution of problem (7) with y = yk. A possible choice for the collocation points
yk \in \Gamma is to take the Cartesian product of certain abscissas in each direction. However,
using such a tensor grid would rapidly become computationally too expensive due to
the curse of dimensionality : the number of nodes increases exponentially with N . To
alleviate this drawback, the idea is to use a so-called sparse grid, first introduced by
Smolyak in [28]. Let us define

(9) \scrU m(in)
n : C0(\Gamma n)\rightarrow \BbbP m(in) - 1(\Gamma n),

a sequence of univariate polynomial interpolant operators along each direction \Gamma n

for n = 1, . . . , N , using abscissas \{ \xi n,inj \} m(in)
j=1 . Here, m(in) denotes the number of

collocation points used to build the interpolant of level in, and \BbbP q(\Gamma n) is the space
of polynomials in yn of degree at most q. The function m should satisfy m(0) = 0,
m(1) = 1, and m(i) < m(i+ 1) for any i \geq 1. Moreover, let I \subset \BbbN N

+ be a multi-index
set, where \BbbN + = \{ 1, 2, . . .\} denotes the positive integers. In what follows, the only
restriction on I will be that it is a downward closed set (a.k.a. lower set), i.e., it
satisfies

(10) \forall i \in I, i - ej \in I \forall j = 1, . . . , N such that ij > 1.

This condition is necessary to get good approximation properties; see, for instance,
[17]. Setting \scrU 0

n = 0 for n = 1, . . . , N , we define then the sparse grid interpolant SI

by

(11) uh,I(y) := SI [uh](y) :=
\sum 
\bfi \in I

\Delta \bfm (\bfi )(uh)(y),

where

\Delta \bfm (\bfi ) :=

N\bigotimes 
n=1

\Delta m(in)
n :=

N\bigotimes 
n=1

\Bigl( 
\scrU m(in)
n  - \scrU m(in - 1)

n

\Bigr) 
and m(i) = (m(i1), . . . ,m(iN )). The operators \Delta 

m(in)
n and \Delta \bfm (\bfi ) are often referred

to as difference (or detail) and hierarchical surplus operators, respectively. In what
follows, we assume that

(12) uh(y) =
\sum 
\bfi \in \BbbN N

+

\Delta \bfm (\bfi )(uh)(y) \rho -a.e. in \Gamma ,

where the series converges absolutely in V , which holds if u is sufficiently smooth in

y and if the operators \scrU m(in)
n in (9) are such that

\bigotimes N
n=1 \scrU 

m(in)
n u\rightarrow u in V as i\rightarrow \infty .

Finally, we mention that the operator SI in (11) can be equivalently written as a
linear combination of tensor grid interpolations (see, for instance, [29]),

(13) SI [uh](y) =
\sum 
\bfi \in I

c\bfi 

N\bigotimes 
n=1

\scrU m(in)
n (uh)(y), c\bfi :=

\sum 
\bfj \in \{ 0,1\} N

(\bfi +\bfj )\in I

( - 1)| \bfj | ,

with | j| =
\sum N

n=1 jn for j = (j1, . . . , jN ). Notice that many of the coefficients c\bfi are
actually zero: for instance, for i \in I, c\bfi = 0 if (i+ j) \in I for all j \in \{ 0, 1\} N . We then
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call sparse grid the set of Nc collocation points needed by (13) to compute SI [uh]. To
summarize, the sparse grid interpolant SI is characterized by the multi-index set I,
the function m defining the number of collocation points on each level, and the type
of univariate nodes. Note that I must contain the multi-index 1, which allows us to
approximate constant functions.

Our error estimate will only be valid in the case when SI is interpolatory, i.e., it
satisfies SI [f ](yk) = f(yk) for k = 1, . . . , Nc, where \{ y1, . . . ,yNc

\} are the collocation
points in the sparse grid underlying the multi-index set I and function m. Notice that
such a property requires the use of nested sequences of univariate nodes \{ \xi n,in - 1

j \} \subset 
\{ \xi n,inj \} ; see, for instance, [30, p. 277]. Finally, we introduce the notion of margin\scrM I

and reduced margin, defined, respectively, by

\scrM I := \{ i \in \BbbN N
+ \setminus I : i - en \in I for some n \in \{ 1, . . . , N\} \} ,

\scrR I := \{ i \in \scrM I : i - en \in I for all n = 1, . . . , N with in > 1\} .

4. Residual-based a posteriori error estimate. We will now derive an a
posteriori error estimate for the error u - SI [uh], which consists of two parts controlling
the FE error and the SC error, respectively. We first give two results that we will use
in the derivation of the error estimate.

Proposition 4.1. Let SI be the operator defined in (11). Then for any f, g \in 
C0(\Gamma ) we have

SI [fg] = SI [fSI [g]].

Proof. Since SI is assumed to be interpolatory, we have SI [g](yk) = g(yk) for all
k = 1, . . . , Nc. By the definition of SI , we get then

SI [fSI [g]](y) =

Nc\sum 
k=1

(fSI [g]) (yk)Lk(y) =

Nc\sum 
k=1

f(yk)SI [g](yk)Lk(y)

=

Nc\sum 
k=1

f(yk)g(yk)Lk(y) = SI [fg](y)

for any y \in \Gamma .

For any downward closed multi-index set I, let us define the polynomial space \BbbP I

by

(14) \BbbP I :=
\sum 
\bfi \in I

\BbbP \bfm (\bfi ) - \bfone with \BbbP \bfm (\bfi ) - \bfone := \BbbP m(i1) - 1 \otimes \cdot \cdot \cdot \otimes \BbbP m(iN ) - 1.

We have the following approximation properties that will be crucial in the deriva-
tion of our error estimate.

Proposition 4.2. Let SI be the operator defined in (11). Then

1. SI [f ] \in \BbbP I \forall f \in C0(\Gamma );

2. SI is exact on \BbbP I , i.e., SI [f ] = f \forall f \in \BbbP I .

Proof. See Proposition 1 in [31].
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Finally, we introduce the (generalized) jump of a function \varphi across an edge (d = 2)
or a face (d = 3) e in the direction ne orthogonal to e by

[\varphi ]\bfn e(x) :=

\biggl\{ 
limt\rightarrow 0+ (\varphi (x+ tne) - \varphi (x - tne)) if e \not \subset \partial D,

0 if e \subset \partial D.

We can now state our residual-based a posteriori error estimate.

Proposition 4.3. Let u and uh be the solutions of (5) and (7), respectively, and
let SI [uh] be the sparse grid approximation of uh computed using the multi-index set
I. There exists a constant C > 0 depending only on the mesh aspect ratio c such that
for any p \in [1,\infty ], we have

(15) \| u - SI [uh]\| Lp
\rho (\Gamma ;V ) \leq 

1

c2min

[C\eta FE + \zeta SC ] ,

where

(16) \eta FE :=

Nc\sum 
k=1

\eta k\| Lk\| Lp
\rho (\Gamma ), \eta k :=

\Biggl( \sum 
T\in \scrT h

\eta 2k,T

\Biggr) 1
2

,

with
(17)

\eta k,T := h2
T \| f +\nabla \cdot (a(yk)\nabla uh(yk))\| 2L2(T ) +

\sum 
e\subset \partial T

he

\bigm\| \bigm\| \bigm\| \bigm\| 12 [a(yk)\nabla uh(yk) \cdot ne]\bfn e

\bigm\| \bigm\| \bigm\| \bigm\| 2
L2(e)

and

(18) \zeta SC :=
\sum 
\bfi \in \scrM I

\zeta \bfi , \zeta \bfi := \| \Delta \bfm (\bfi ) (a\nabla SI [uh]) \| Lp
\rho (\Gamma ;L2(D)).

Proof. In what follows, all equations hold \rho -a.e. in \Gamma without specifically men-
tioning it. Moreover, the dependence of each function on variables will not necessarily
be indicated unless ambiguity arises. For any v \in V, we have\int 

D

a\nabla (u - SI [uh]) \cdot \nabla v =

\int 
D

fv  - 
\int 
D

a\nabla SI [uh] \cdot \nabla v

= SI

\biggl[ \int 
D

fv  - 
\int 
D

a\nabla uh \cdot \nabla v
\biggr] 

\underbrace{}  \underbrace{}  
=:A1

+SI

\biggl[ \int 
D

a\nabla uh \cdot \nabla v
\biggr] 
 - 
\int 
D

a\nabla SI [uh] \cdot \nabla v\underbrace{}  \underbrace{}  
=:A2

.(19)

For the second equality, we used the fact that f is deterministic and thus SI [f ] = f
for any multi-index set I. We analyze the terms A1 and A2 separately. For the first
term, thanks to the Galerkin orthogonality we have

A1 =

Nc\sum 
k=1

\biggl[ \int 
D

fv  - 
\int 
D

a(yk)\nabla uh(yk) \cdot \nabla v
\biggr] 
Lk(y)

=

Nc\sum 
k=1

\biggl[ \int 
D

f(v  - vh) - 
\int 
D

a(yk)\nabla uh(yk) \cdot \nabla (v  - vh)

\biggr] 
Lk(y)(20)
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for any vh \in Vh. We take vh = Ihv as the Cl\'ement interpolant of v for which we have
the following interpolation error bounds [32]:

(21) \| v - Ihv\| L2(T ) \leq ChT \| \nabla v\| L2(N(T )) and \| v - Ihv\| L2(e) \leq Ch
1
2
e \| \nabla v\| L2(N(Te))

for any element T and any edge or face e. Here, for an internal edge or face e, Te

is the union of the two elements sharing e. Moreover, N(T ) denotes the patch of
elements associated to T , i.e., all K \in \scrT h with \=K \cap \=T \not = \emptyset (the definition of N(Te) is
analogous). After splitting the integral in (20) over each element T and integrating
by parts, we obtain

(22) A1 \leq C

Nc\sum 
k=1

| Lk(y)| \eta k\| \nabla v\| L2(D),

with \eta k defined in (16). Notice that this term \eta k is deterministic; namely, it does not
depend on y. It controls the FE error made when solving approximately the problem
for the collocation point yk.

We now bound the second term A2. We first notice that, thanks to Proposition
4.1, we have SI [a\nabla uh] = SI [a\nabla SI [uh]] since SI is assumed to be interpolatory.
Therefore, using relation (12) we get

A2 =

\int 
D

(SI [a\nabla SI [uh]] - a\nabla SI [uh]) \cdot \nabla v =  - 
\int 
D

\sum 
\bfi \not \in I

\Delta \bfm (\bfi )(a\nabla SI [uh]) \cdot \nabla v

=  - 
\int 
D

\sum 
\bfi \in \scrM I

\Delta \bfm (\bfi )(a\nabla SI [uh]) \cdot \nabla v

\leq 
\bigm\| \bigm\| \bigm\| \bigm\| \sum 

\bfi \in \scrM I

\Delta \bfm (\bfi )(a\nabla SI [uh])

\bigm\| \bigm\| \bigm\| \bigm\| 
L2(D)

\| \nabla v\| L2(D).(23)

We used the fact that a depends in an affine way on the random variables (see (2))
to restrict the summation over the multi-indices of the margin \scrM I of I. Indeed, by
Proposition 4.2 we have SI [uh] \in \BbbP I , with \BbbP I defined in (14), and by assumption,

a \in \BbbP \bfzero +

N\sum 
n=1

\BbbP \bfe n , with \BbbP \bfe n = \BbbP 0 \otimes \cdot \cdot \cdot \otimes \BbbP 0 \otimes \BbbP 1\underbrace{}  \underbrace{}  
nth index

\otimes \BbbP 0 \cdot \cdot \cdot \otimes \BbbP 0.

Therefore, we have a\nabla SI [uh] \in 
\sum N

n=1

\sum 
\bfi \in I \BbbP \bfm (\bfi ) - \bfone +\bfe n

\subset \BbbP I\cup \scrM I
, and thus

(24) \Delta \bfm (\bfi ) (a\nabla SI [uh]) = 0 \forall i \not \in I \cup \scrM I ,

using again Proposition 4.2, namely, that SI\cup \scrM I
is exact on \BbbP I\cup \scrM I

. Thanks to the
norm equivalence (4), taking then v = u(y) - SI [uh](y) in (19) and using the bounds
(22) and (23) for the terms A1 and A2, respectively, yields
(25)

\| \nabla (u(y) - SI[uh](y))\| L2(D)\leq 
1

c2min

\left(  C

Nc\sum 
k=1

| Lk(y)| \eta k+

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \sum 
\bfi \in \scrM I

\Delta \bfm (\bfi )(a\nabla SI[uh])(y)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
L2(D)

\right)  .

To conclude the proof, it only remains to take the Lp
\rho (\Gamma ) norm on both sides of the

last inequality and to use the triangle inequality for the norm Lp
\rho (\Gamma ;L

2(D)) to take
the sum over the multi-indices i \in \scrM I outside the norm.
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Notice that in this proof, we have relied on the fact that SI is interpolatory and
that a depends in an affine way on the random variables. The latter allows us to
restrict the summation over all the multi-indices outside I in the bound of A2 to the
multi-indices belonging to the margin\scrM I ; see (23). Moreover, it is worth mentioning
that (25) yields a pointwise (in y) error estimate.

Remark 4.4. The spatial error estimate \eta FE in (16) depends on \| Lk(y)\| Lp
\rho (\Gamma ),

k = 1, . . . , Nc, i.e., on the stability constant of the operator SI . These quantities can
be bounded using the Lebesgue constant for SI , whose growth depends on the choice

of the function m and the family of interpolation points used by \scrU m(i)
n , n = 1, . . . , N .

For instance, when using a doubling rule for m as in [30], defined by m(1) = 1 and
m(i) = 2i - 1 + 1 if i > 1, and Clenshaw--Curtis (CC) nodes, the Lebesgue constant
associated with the operator SI can be bounded by | I| 2 [33]. As an alternative, we
could bound the term A1 in (20) as

A1 =
\sum 
T\in \scrT h

\Biggl[ \int 
T

Nc\sum 
k=1

Lk(y)(f +\nabla \cdot (a(yk)\nabla uh(yk)))(v  - vh)

+
1

2

\sum 
e\subset \partial T

\int 
e

Nc\sum 
k=1

Lk(y)[a(yk)\nabla uh(yk) \cdot ne]\bfn e
(v  - vh)

\Biggr] 

\leq C

\Biggl( \sum 
T\in \scrT h

\eta 2T

\Biggr) 1
2

\| \nabla v\| L2(D),

with

\eta T (y)
2 := h2

T

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
Nc\sum 
k=1

Lk(y)(f +\nabla \cdot (a(yk)\nabla uh(yk)))

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

L2(T )

+
\sum 
e\subset \partial T

he

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 12
Nc\sum 
k=1

Lk(y)[a(yk)\nabla uh(yk) \cdot ne]\bfn e

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

L2(e)

.(26)

Since
\bigl( \sum 

T\in \scrT h
\eta 2T
\bigr) 1

2 \leq 
\sum 

T\in \scrT h
\eta T , we can then replace (15) by

(27) \| u - SI [uh]\| Lp
\rho (\Gamma ;V ) \leq 

1

c2min

\Biggl[ 
C
\sum 
T\in \scrT h

\| \eta T \| Lp
\rho (\Gamma ) + \zeta SC

\Biggr] 
.

Mesh refinement, using the error estimate of Proposition 4.3 or the one proposed here,
would lead to different adaptive strategies. The estimator in (16) gives an estimation
of the spatial error for each collocation point that is further localized on each element
T \in \scrT h. Indeed, the estimator \eta k,T in (17) is an estimator of the FE error for the
element T and the collocation point yk. Therefore, different spatial meshes could
be considered for different collocation points. On the contrary, the estimator in (26)
gives an estimation of the spatial error for each element T \in \scrT h and contains the
contribution of all the collocation points. In this case, the same spatial mesh would
then be used for all the collocation points.

5. Adaptive algorithm. The error estimator deduced from Proposition 4.3
can be used to adaptively refine the mesh and increase the multi-index set. Such an
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adaptive strategy aims at reaching a given accuracy of the (FE and SC) error with
computational cost as low as possible. Since the theory for mesh adaptation, often
referred to as the AFEM, is well developed and studied, we will focus on the SC
error. More precisely, we will consider an adaptive construction of the multi-index
set I proceeding similarly to that originally proposed in [17] and further used, for
instance, in [13, 20].

We give below a possible adaptive strategy which uses the error estimators \zeta \bfi 
given in (18) to drive the process, with the requirement that the multi-index set I
must remain downward closed during the adaptation. Basically, at each iteration we
select the multi-index in the margin \scrM I of the current set I that has the largest
profit, with the latter being defined as follows: for any i \in \scrM I , we define

(28) P\bfi :=

\sum 
\bfj \in A\bfi 

\zeta \bfj \sum 
\bfj \in A\bfi 

W\bfj 
,

where A\bfi = J\bfi \setminus I and J\bfi is the downward closed set of minimal cardinality containing
I \cup \{ i\} ; i.e., A\bfi is the set containing i plus all the multi-indices j \in \scrM I that must
also be included in I if i is added to I so that the set remains downward closed.
Moreover, we have denoted by W\bfi the work contribution of the multi-index i, which
can be defined as in [20] by

(29) W\bfi := \Pi N
n=1(m(in) - m(in  - 1)).

In the case of nested sets of points, as considered here, it corresponds to the number
of new points in \Gamma introduced if i is added to I. We could also choose to set W\bfi = 1
if we want to drive the adaptation based only on the error estimators. Finally, notice
that for any i \in \scrR I , since I \cup \{ i\} is always downward closed, we have A\bfi = \{ i\} , and
the profit is simply given by P\bfi =

\zeta \bfi 
W\bfi 

.
We can now introduce the adaptive algorithm we consider in this work.

Algorithm 1 Adaptive algorithm (stochastic space adaptation).

Require: Tol > 0
Ensure: multi-index set I such that \zeta SC \leq Tol
1: I = \{ 1\} , uh,I = SI [uh], \zeta SC = \zeta \bfone 
2: while \zeta SC > Tol do
3: i\ast = argmax\bfi \in \scrM I

P\bfi select the most profitable multi-index
4: I \leftarrow I \cup A\bfi \ast update the multi-index set
5: uh,I = SI [uh] compute the new sparse grid approximation
6: \zeta SC =

\sum 
\bfi \in \scrM I

\zeta \bfi compute the error estimator (18)
7: end while

Remark 5.1. Algorithm 1 is one possible adaptive strategy. In particular, we
choose to select only one multi-index at each iteration; see line 3. Another possibility
would be to allow the selection of several multi-indices, for instance, to satisfy a
D\"orfler-type criterion. Moreover, the selection of the most profitable element is made
on the full margin in Algorithm 1. To reduce the computational cost, we could
alternatively drive the adaptive process only by the profit of the elements of the
reduced margin. In such a case, we do not need to compute \zeta \bfi for each i \in \scrM I \setminus 
\scrR I . However, the global error estimator \zeta SC would then no longer be available, and
another stopping criterion must be used.
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6. Numerical results. We consider here numerical examples to test the effi-
ciency of the SC error estimator derived in Proposition 4.3 and, in particular, to test
the performance of Algorithm 1. In all what follows, the FE error is not accounted for.
Moreover, we consider the case p =\infty , and we thus consider the error and estimator
defined, respectively, by

(30) \| \nabla (uh  - SI [uh])\| L\infty 
\rho (\Gamma ;L2(D)) and

\sum 
\bfi \in \scrM I

\| \Delta \bfm (\bfi )(a\nabla SI [uh])\| L\infty 
\rho (\Gamma ;L2(D)).

In order to compute the L\infty 
\rho (\Gamma ) norm approximately, we use a set \Theta \subset \Gamma of finite

cardinality; that is, we use the approximation

\| g\| L\infty 
\rho (\Gamma ) \approx max

\bfy \in \Theta 
| g(y)| 

for any g \in C0(\Gamma ). In what follows, we set \Theta to be constituted of 500 points randomly
sampled according to the distribution \rho . Finally, instead of taking the a priori bound\surd 
amin for cmin, which may be overly conservative, we estimate it by

cmin := min
\bfy \in \Xi 

\| a 1
2 (y)\nabla v(y)\| L2(D)

\| \nabla v(y)\| L2(D)
,

with \Xi \subset \Gamma a random set of small cardinality and v = uh or v = uh - SI [uh] using any
(small) set I. In all the numerical examples below, we have observed that cmin \approx 1,
i.e., the energy and the H1

0 norms of the error are comparable, which is the reason
why we decided to drop this constant and consider the estimator defined in (30).

Remark 6.1. In practice, we first compute (approximately) the error estimator \zeta \bfi 
defined in (18) for each i \in \scrR I , the reduced margin of I, using

(31) \zeta \bfi \approx max
\bfy \in \Theta 
\| SG\cup \{ \bfi \} [a\nabla SI [uh]](y) - SG[a\nabla SI [uh]](y)\| L2(D),

with G = I. We then proceed layer by layer, namely, we compute the estimator for
each i \in \scrM I that belongs to the reduced margin of I\cup \scrR I using (31) with G = I\cup \scrR I ,
and so on until the full margin \scrM I is covered (which requires a finite number of
iterations). A key point is that no additional PDE solve is needed throughout this
process.

Before performing sparse grid adaptation, we will test the efficiency of the SC
estimator considering different approximation spaces chosen a priori. We will consider
both cases m(i) = i and

(32) m(i) =

\left\{   0 if i = 0,
1 if i = 1,
2i - 1 + 1 if i > 1.

Since we need nested sequences of points, we use Leja points for the linear case
m(i) = i and CC points ifm is defined by (32). We recall that for a generic compact set
X and a given initial point y0 \in X, the (standard) Leja points are defined recursively
by [34]

yk = argmax
y\in X

k - 1\prod 
j=1

(y  - yj), k = 1, 2, . . . .
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In what follows, when using Leja points on an interval \Gamma i = [ai, bi] \subset \BbbR , we will
set the initial point to the endpoint bi. To test the efficiency of the estimator, we
will consider an arbitrary (downward closed) multi-index set I or, for a given level of
approximation w, the classical approximation spaces [31] given in Table 1.

Table 1
Approximation spaces for testing the efficiency of the SC error estimator.

Approximation space m I Points

Tensor product (TP) m(i) = i I(w) = \{ i \in \BbbN N
+ : maxn(in  - 1) \leq w\} Leja

Total degree (TD) m(i) = i I(w) = \{ i \in \BbbN N
+ :

\sum 
n(in  - 1) \leq w\} Leja

Hyperbolic cross (HC) m(i) = i I(w) = \{ i \in \BbbN N
+ : \Pi n(in) \leq w + 1\} Leja

Smolyak (SM) m in (32) I(w) = \{ i \in \BbbN N
+ :

\sum 
n(in  - 1) \leq w\} CC

6.1. First example. We start with the analysis of an inclusion problem, first
with N = 2 inclusions and then with N = 8 inclusions; see [31]. The physical
domain is the unit square D = (0, 1)2 in which we identify the subdomains F and Cn,
n = 1, . . . , N, as depicted in Figure 1(left) for the case N = 2 and in Figure 7(left)
for N = 8. The square subdomain F has a side length of 0.2, while the radius of each
circular subdomain Cn is equal to 0.13. We set the forcing term to f(x) = 100\chi F (x)
and define the random diffusion coefficient by

(33) a(x,Y(\omega )) = a0(x) +

N\sum 
n=1

\gamma n\chi n(x)Yn(\omega ) with a0 = 1,

where \chi F and \chi n, n = 1, . . . , N , denote the indicator function of each subdomain.
The parameters \gamma n, n = 1, . . . , N, are used to introduce anisotropy in the problem,
assigning more importance to one or another direction yn.

Fig. 1. Geometry of the problem (left), expected value (middle), and standard deviation (right)
of the solution for the case \gamma 1 = \gamma 2 = 1.

Case \bfitN = 2. We start with N = 2 and take Yn \sim \scrU [ - 0.99, 0.99] for n = 1, 2.
The FE mesh we are using consists of 4961 vertices and 9696 triangles, with minimal
and maximal diameter hT of about 7.367e-3 and 2.854e-2, respectively. The mean
and the standard deviation of the solution is given in Figure 1 for the isotropic case
\gamma 1 = \gamma 2 = 1.

In Figure 2 we give the error and the estimator with respect to the number of
points in the sparse grids for the four types of approximation spaces defined in Table
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Fig. 2. Error and estimator with respect to the number of points in logarithmic scale for the
four approximation spaces given in Table 1. Isotropic case \gamma 1 = \gamma 2 = 1 (left), and anisotropic case
\gamma 1 = 1 and \gamma 2 = 0.1 (right).

1. We consider the isotropic case \gamma 1 = \gamma 2 = 1 but also an anisotropic one, namely,
\gamma 1 = 1 and \gamma 2 = 0.1. The maximum level of approximation w is set to 10 for TP, 14
for TD, 29 for HC, and 5 for SM, which correspond to a sparse grid of 121, 120, 111,
and 145 points in \Gamma , respectively.

We can see that the estimator provides a good control of the error for all the
considered approximation spaces and for both the isotropic and the anisotropic cases.
This is also the case when an arbitrary multi-index set is considered. Indeed, let
us take, for instance, I1 = [(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (2, 3), (3, 1)],
which is a priori not a good set for the considered values of \gamma 1 and \gamma 2 as it uses more
points for y2 rather than y1, and I2 = [(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (4, 1), (5, 1)].
The results we obtain for the two cases m(i) = i with Leja points and m in (32)
with CC points are presented in Table 2. Finally, we mention that we observe similar
behavior for all the numerical examples presented below.

Table 2
Number of points, error, and estimator for the given multi-index sets I1 and I2. Case iso:

\gamma 1 = \gamma 2 = 1. Case aniso: \gamma 1 = 1 and \gamma 2 = 0.1.

m(i) = i and Leja points m in (32) and CC points
\sharp pts error estimator \sharp pts error estimator

is
o I1 9 3.5977e-2 4.8307e-2 29 2.2348e-3 3.7151e-3

I2 7 1.4035e-1 2.1013e-1 23 3.1768e-2 3.5094e-2

a
n
is
o I1 9 3.0888e-2 3.3697e-2 29 1.9359e-3 2.3869e-3

I2 7 2.4784e-3 4.5417e-3 23 8.3280e-5 1.3008e-4

We now consider the adaptive strategy proposed in Algorithm 1. From now on,
we restrict our attention to CC nodes and m defined in (32). We start with the
isotropic case \gamma 1 = \gamma 2 = 1. We set the tolerance to Tol = 10 - 6. The evolution of the
multi-index set I during the adaptive process is presented in Figure 3. The multi-
index in green denotes the selected element at the current iteration of Algorithm 1,
i.e., the one with the highest profit, before it is added to I.

We can detect the isotropy of the problem by the symmetrical construction of the
multi-index set. For instance, at iteration 11 the point (4, 2) is added, while (2, 4) is
selected at the next iteration. Moreover, we see that the estimator provides a good
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Fig. 3. Evolution of I during the adaptive process for the case \gamma 1 = \gamma 2 = 1. From left to right:
iterations 8 and 14 and order of selection of the multi-indices. (See online version for color.)
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Fig. 4. Final sparse grid (left) and error and estimator with respect to the number of points in
semilogarithmic scale (right) for the case \gamma 1 = \gamma 2 = 1.

control of the error as shown in Figure 4, where the final sparse grid is also given. It
has been obtained after 17 iterations, yielding a grid of 97 points and an error and
an estimator of about 3.8464e-7 and 7.6980e-7, respectively. The error in the energy
norm at this final stage, namely \| a 1

2\nabla e\| L\infty 
\rho (\Gamma ;L2(D)), is about 3.0020e-7 and thus close

to the error in the H1 seminorm. Finally, we mention that the highest profit of the
elements of the margin of this final stage is about 2.3220e-8 and is achieved at (2, 5),
which belongs to the reduced margin.

We now set different values for \gamma 1 and \gamma 2 in (33) to see whether the adaptive
algorithm is able to capture the anisotropy of the problem. We thus set \gamma 1 = 1 and
\gamma 2 = 0.1. In Figure 5 we present the set I at various steps of the adaptive construc-
tion. As expected, the algorithm clearly identifies a preferred direction, namely, the
horizontal direction which corresponds to y1.

The final sparse grid for a tolerance of Tol = 10 - 6 in Algorithm 1 is given in
Figure 6 and has been reached in 10 iterations. In this case, there are 41 points in the
sparse grid, the error and estimator are 6.9851e-8 and 1.2506e-7, respectively, and the
maximal profit among the elements of the margin is about 2.0030e-8 at (3, 3), which
belongs to the reduced margin. Finally, the error in the H1 seminorm is comparable
to the error in the energy norm, which is about 6.3569e-8.
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Fig. 6. Final sparse grid (left) and error and estimator with respect to the number of points in
semi-logarithmic scale (right) for the case \gamma 1 = 1 and \gamma 2 = 0.1.

Case \bfitN = 8. To conclude on this inclusion problem, we consider the case N = 8
as in [31] and choose Yn \sim \scrU [ - 0.99, 0.2] for n = 1, . . . , 8 in (33). The geometry is given
in Figure 7(left), where the value of the coefficients \gamma n, n = 1, . . . , 8, is also given.
The FE mesh we are using contains 3805 vertices and 7416 triangles with minimal
diameter and maximal diameter hT of about 1.0041e-2 and 3.1153e-2, respectively.
For this case, we set the tolerance to Tol = 10 - 3 in Algorithm 1.

In Figure 7(right), we give the error and the estimator with respect to the number
of points in the grid. At the final stage, obtained in 79 iterations, the sparse grid
contains 363 points, and the error and estimator are about 1.0852e-4 and 9.9014e-4,
respectively. Moreover, the error in the energy norm is about 8.7246e-5. Finally, the
maximum profit among the elements of the margin is about 5.4553e-6 and is achieved
at (1, 1, 1, 2, 1, 2, 2, 1).

In this case, the estimator still provides a reasonable control of the error, even
though it is less efficient than for the case N = 2. We see several possible explanations
for this behavior and give a nonexhaustive list below. First, we have not been able to
prove that the error estimator provides a lower bound for the error. The difficulties
arise from, among other things, the lack of Galerkin orthogonality and the use of the
triangle inequality to localize the estimator on each multi-index of the margin. More-
over, we are not taking into account the error due to the approximation of the L\infty 

\rho (\Gamma )
norm, and further investigation should be made in this direction, namely, trying to
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Fig. 7. Geometry of the problem for N = 8 with indication of the coefficients \gamma n, n = 1, . . . , 8,
(left) and error and estimator with respect to the number of points in logarithmic scale (right).
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Fig. 8. Projection of the multi-index set I, obtained for Tol = 10 - 3 in Algorithm 1, on (y1, y4)
(left), (y1, y5) (middle), and (y1, y8) (right).

quantify this additional error and perform additional tests with other training sets
\Theta . The size of the training set could also be adapted with respect to the number of
points in the sparse grid and not be fixed once and for all as considered here.

The projection of the obtained multi-index set I over two directions, namely, y1
and y4, y1 and y5, and y1 and y8, is presented in Figure 8. These results are consistent
with the choice we made for the value of the coefficients \gamma n, n = 1, 2, . . . , 8; see Figure
7(left).

6.2. Second example. As a second numerical experiment, we consider problem
(1) with D = (0, 1)2, f(x) = 32(x1(1 - x1) + x2(1 - x2)), and

(34) a(x,Y(\omega )) = 1+

N\sum 
n=1

cos(2\pi nx1) + cos(2\pi nx2)

(\pi n)2
Yn(\omega ) with Yn \sim \scrU [ - 

\surd 
3,
\surd 
3]

for x = (x1, x2) \in D. We use a spatial mesh consisting of 2673 vertices and 5184
triangles with minimum diameter and maximum diameter hT of about 0.01 and 0.04,
respectively. Finally, we consider the two cases N = 3 and N = 5 and set the tolerance
to Tol = 10 - 6 in Algorithm 1.

The results for the case N = 3 are given in Figure 9. We plot the error and the
estimator with respect to the number of collocation points. We also give the projection
of the final multi-index set I over two directions, namely, y1 and y3. For this final
state, obtained in 27 iterations, the error and the estimator are about 4.3746e-7 and
9.2363e-7, respectively, and the grid contains 141 points. The error in the energy
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Fig. 9. Error and estimator with respect to the number of points in logarithmic scale (left) and
projection of the final multi-index set on (y1, y3) (right) for the case N = 3.

norm is about 3.5904e-7. Finally, we mention that the multi-index added in the last
iteration to the final set I is (4, 3, 1) and that the maximum profit among the elements
of\scrM I is about 3.0550e-8 and is reached at (3, 2, 3), which belongs to \scrR I .

Figure 10 contains the results for the case N = 5. The final multi-index set I is
projected on y1 and y3 and on y1 and y5. The final grid has 973 points, for an error
and estimator of about 1.7666e-7 and 9.9454e-7, respectively, and was reached in 110
iterations. The error in the energy norm at this final stage is about 1.4942e-7. Finally,
the last multi-index added to the set is (4, 2, 1, 2, 2), and the maximum profit among
the elements of the margin of the final set is about 3.9748e-9 at (4, 3, 1, 2, 1) \in \scrR I .
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Fig. 10. Error and estimator with respect to the number of points in logarithmic scale (left)
and projection of the final multi-index set on (y1, y3) (middle) and on (y1, y5) (right) for the case
N = 5.

In both cases N = 3 and N = 5, the error estimator provides a good control of the
error, the overestimation being slightly bigger for N = 5 than for N = 3. Moreover,
due to the decay of the an in n - 2, the random variables Yn should have less and less
influence as n increases. The adaptive algorithm is able to capture this feature, as
seen, for instance, when projecting the obtained multi-index set over two different
directions. From this experiment, together with the numerical results obtained for
the inclusion problems, we see that the efficiency of the stochastic error estimator
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seems to be linked to the number of random variables. Further investigation should
be made in this direction to determine whether this is indeed the case or if the reason
lies elsewhere, for instance, in the error due to the approximation of the L\infty 

\rho (\Gamma ) norm.

Remark 6.2. For all the numerical examples given above, the selected multi-index
at each iteration of Algorithm 1 belongs to \scrR I . In what follows, we consider a 1D
example for which the optimal set is not downward closed, as observed in [12]. The
goal is then to see whether our adaptive algorithm captures this feature.

6.3. 1D numerical example. We consider problem (1) withD = (0, 1) the unit
interval, f(x) = 1, and a(x,Y(\omega )) = 1 + 0.1Y1(\omega ) + 0.5Y2(\omega ), where Yn \sim \scrU [ - 1, 1]
for n = 1, 2.

For the FE mesh, we consider a uniform partition of the unit interval with mesh
size h = 2 - 12; that is, we discretize [0, 1] taking the nodes xi = ih with i = 0, . . . , 212.
In Figure 11 we give three different examples for which the selected multi-index be-
longs to\scrM I\setminus \scrR I . For such a multi-index, more than one element is added to I because
of the constraint that I remains downward closed during the adaptive process. If we
set the tolerance to Tol = 10 - 8 in Algorithm 1, the adaptive process stops after 16
iterations and the sparse grid contains 153 points in \Gamma . Moreover, the corresponding
error and estimator are about 2.4882e-9 and 4.2305e-9, respectively, while the error
in the energy norm is about 2.0389e-9.
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Fig. 11. Three examples for which the selected multi-index belongs to \scrM I \setminus \scrR I which correspond
to iterations 8 (left), 11 (middle), and 12 (right).

6.4. Comparison with a heuristic error indicator. Finally, we compare our
error estimator with the heuristic error indicator

(35) \Delta \scrM I
:=

\sum 
\bfi \in \scrM I

\Delta \bfi :=
\sum 
\bfi \in \scrM I

\| \Delta \bfm (\bfi )(uh)\| Lp
\rho (\Gamma ;V )

that is based on the relation \| uh - SI [uh]\| Lp
\rho (\Gamma ;V ) \leq 

\sum 
\bfi /\in I \| \Delta \bfm (\bfi )(uh)\| Lp

\rho (\Gamma ;V ). Notice
that we use the FE approximation uh of u since the FE error is not taken into account
here. This error indicator is used, for instance, in [17, 20], although its definition is
restricted to the reduced margin. We can then consider the adaptive strategy of
Algorithm 1 with \zeta \bfi replaced by \Delta \bfi and the appropriate modification in the definition
(29) of the profit. Considering the case p = \infty as above, the computation of \Delta \bfi can
be done similarly to the procedure described in Remark 6.1. We emphasize that the
computation of \Delta \bfi requires the solution of additional PDEs; namely, we need to solve
(7) for each new collocation point between the sparse grid for SG\cup \{ \bfi \} and SG. In
Figure 12 we give the evolution of estimator, the residual-based error estimator (30),
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Fig. 12. Adaptive algorithm based on the residual-based estimator and the heuristic error
indicator. Case (33) with N = 2 and \gamma 1 = \gamma 2 = 1 in semilogarithmic scale (left), and first 70
iterations for the case (34) with N = 5 in logarithmic scale (right).

and indicator, the hierarchical error indicator (35), throughout the adaptive process,
each setup being run independently. The error obtained for each case, denoted by
error (est) and error (ind), respectively, is also provided. The results are plotted with
respect to not only the cardinality of the current sparse grid but also the number of
collocation points for SI\cup \scrM I

for the error indicator (see indicator 2), i.e., the number
of PDE solves needed to compute it. Even if the error indicator is heuristic, it seems
to provide a good control of the error, at least in the two cases considered here.
Indeed, the error estimator and the error indicator are similar and produce comparable
adaptive sparse grids (the same grid for the inclusion problem). Therefore, the true
error is also similar. However, the error indicator is much more costly to compute,
and the higher the dimension, the higher the cost, since additional PDE solves are
needed. This last observation is slightly tempered by the fact that these additional
solves are not wasted since the approximation SI\cup \scrM I

[uh] can be returned at the end
of the adaptive process. The error estimator has the advantage of providing a certified
control of the error and is cheaper to compute. In its version provided here, it presents
the drawback of requiring interpolatory sparse grid approximation, and, contrary to
the error indicator (35), it is problem dependent.

7. Dimension adaptive algorithm. We provide here some details on how we
could proceed to deal with the case where the number N of random variables in the
system is large, possibly infinite. For such a problem, the cardinality of the margin
of the multi-index set I becomes large, and the computation of the error estimator
\zeta SC is no longer feasible. The idea is then to activate initially only a finite (small)
number of directions yn---the most important ones---as proposed in [20]. The error
committed by neglecting some directions has then to be appropriately estimated. A
first step in this direction is proposed below. Let us rewrite the diffusion coefficient
a defined in (3) as aN to highlight its dependence on the N random variables Yn,
n = 1, . . . , N . Similarly, we write uN for the solution of the diffusion problem with
diffusion coefficient aN . For 1 \leq M \leq N , let uM be the solution of the diffusion
problem with coefficient aM (x,y) = a0(x) +

\sum M
n=1 an(x)yn. The goal is to estimate

the error uN  - SIM [uM,h], where uM,h is the FE approximation of uM and SIM is the
sparse grid interpolant based on IM \subset \BbbN M

+ , i.e., with M active variables. This is the
content of the following proposition.
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Proposition 7.1. There exists a constant C > 0 depending only on the mesh
aspect ratio c such that for any p \in [1,\infty ], we have

(36) \| uN  - SIM [uM,h]\| Lp
\rho (\Gamma ;V ) \leq 

1

c2min

[C\eta FE,M + \zeta SC,M + \theta ] ,

with \eta FE,M and \zeta SC,M defined as in (16)--(18) upon replacing a, SI , and uh by aM ,
SIM , and uM,h, respectively, and

(37) \theta := \| (aN  - aM )\nabla SIM [uM,h]\| Lp
\rho (\Gamma ;L2(D)).

Proof. We can easily show that for any v \in H1
0 (D) and a.s. in \Omega , we have

(38)

\int 
D

aN\nabla (uN  - SIM [uM,h]) \cdot \nabla v = A1 +A2 +A3,

with

A1 := SIM

\biggl[ \int 
D

fv  - 
\int 
D

aM\nabla uM,h \cdot \nabla v
\biggr] 
,(39)

A2 :=  - 
\int 
D

\sum 
\bfi \in \scrM IM

\Delta m(\bfi ) (aM\nabla SIM [uM,h]) \cdot \nabla v,(40)

A3 :=  - 
\int 
D

(aN  - aM )\nabla SIM [uM,h] \cdot \nabla v.(41)

Indeed, we have\int 
D

aN\nabla (uN  - SIM [uM,h]) \cdot \nabla v =

\int 
D

fv  - 
\int 
D

aN\nabla SIM [uM,h] \cdot \nabla v

=

\int 
D

fv  - 
\int 
D

aM\nabla SIM [uM,h] \cdot \nabla v  - 
\int 
D

(aN  - aM )\nabla SIM [uM,h] \cdot \nabla v,

and the first two terms of the right-hand side can be split into A1 and A2, defined
in (39) and (40), respectively, proceeding exactly as in the proof of Proposition 4.3.
Then, these two terms A1 and A2, which correspond to the errors due to the FEM
and the SC method, respectively, can be estimated by proceeding exactly as in section
4. For the term A3, which corresponds to the error due to neglecting some directions,
we simply apply the Cauchy--Schwarz inequality. Plugging these estimations into (38)
with v = uN  - SIM [uM,h], we finally obtain (36) using the norm equivalence (4) and
taking the Lp

\rho (\Gamma ) norm on both sides.

The term \theta defined in (37), which controls the neglected directions, can be further
estimated. Considering the case p = 2 and denoting by \sigma 2

n the variance of Yn, n =
M + 1, . . . , N , we get

\theta 2 =

N\sum 
n=M+1

\theta 2n with \theta 2n := \sigma 2
n\| an\nabla SIM [uM,h]\| 2L2

\rho (\Gamma ;L
2(D)),

where we have used the independence of the random variables and the fact that
SIM [uM,h] depends only on yn, n = 1, . . . ,M . Since the computation of \theta might still
be prohibitive if N \gg M , we can further decompose it into two parts as

\theta 2 =

M+Q\sum 
n=M+1

\theta 2n +

N\sum 
n=M+Q+1

\theta 2n \leq \theta 2Q,M + \theta 2tail,
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with
(42)

\theta 2Q,M :=

M+Q\sum 
n=M+1

\theta 2n and \theta 2tail := \| \nabla SIM [uM,h]\| L2
\rho (\Gamma ;L

2(D))

N\sum 
n=M+Q+1

\sigma 2
n\| an\| 2L\infty (D)

for some 1 \leq Q \leq N  - M , and compute \theta n only for the first Q terms, i.e., for
n = M + 1, . . . ,M + Q. For the choice of Q, we can, for instance, fix it to some
prescribed value. Another possibility is to choose Q such that \theta 2Q,M \approx \theta 2tail, i.e., such
that the two terms are balanced. In the spirit of Algorithm 1, a possible adaptive
strategy for high-dimensional problems is provided in Algorithm 2, where the same
notation as in section 5 is used and \theta Q,M is defined in (42).

Algorithm 2 Dimension adaptive algorithm (stochastic space adaptation).

Require: Tol > 0, Minit

Ensure: multi-index set IM \subset \BbbN M
+ such that \zeta SC,M + \theta \leq Tol

1: M = Minit, IM = \{ 1\} \subset \BbbN M
+ , uh,IM = SIM [uM,h]

2: compute \zeta SC,M and \theta Q,M with Q = min\{ \^Q : \theta \^Q,M \geq \theta tail\} 
3: while \zeta SC,M +

\surd 
2\theta Q,M > Tol do

4: if \zeta SC,M \geq 
\surd 
2\theta Q,M then

5: i\ast = argmax\bfi \in \scrM IM
P\bfi 

6: IM \leftarrow IM \cup A\bfi \ast 

7: uh,IM = SIM [uM,h]
8: else
9: m\ast = argmaxM+1\leq n\leq M+Q \theta 2n

10: extend IM and\scrM IM by adding the direction ym\ast (does not affect uh,IM )
11: M \leftarrow M + 1 (and relabeling of the neglected directions if needed)
12: end if
13: compute \zeta SC,M and \theta Q,M with Q = min\{ \^Q : \theta \^Q,M \geq \theta tail\} 
14: end while

8. Conclusions. In this work we have derived a residual-based a posteriori er-
ror estimate for the SC-FEM, focusing on an elliptic model problem with a random
diffusion coefficient. Our error estimate is valid under the assumptions that the dif-
fusion coefficient depends affinely on the random variables and that the sparse grid
approximation is interpolatory, which requires the use of nested points. The error es-
timate, which provides an upper bound of the total error, is constituted of two parts
accounting for the FE error and the SC error, respectively. We have then used the SC
estimator to drive an adaptive strategy in which the multi-index set characterizing
the sparse grid is constructed step by step. We assign a profit to each element of the
margin of the set and, at each iteration, select the most profitable one to enter the set.
We have provided several numerical examples of moderate dimension to illustrate the
theoretical findings. More precisely, we have compared the error and the estimator
for various given multi-index sets and have then tested the efficiency of the proposed
adaptive algorithm. This algorithm, which uses the SC estimator to drive the adap-
tive process, is one possible strategy. Several other versions could be considered as
well, for instance, by selecting more than one multi-index at each iteration using a
so-called D\"orfler or maximum marking strategy with, ideally, a proof of convergence.
In the case of high-dimensional problems, that is, when the coefficient depends on
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(possibly infinitely) many random variables, the computation of the profit of each
element of the margin becomes prohibitive, and an alternative should be used. We
have given some insight in this direction and proposed a possible adaptive strategy;
however, further investigations, including numerical experiments, should be done.
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