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Abstract

Understanding the elementary steps involved in a chemical reaction forms the cornerstone of
physical chemistry research. One way to deepen this understanding is by studying chemical
and physical processes using linear and nonlinear spectroscopic techniques. However, the
outcomes of such experiments can be difficult to decipher due to the interweaving of several
effects. Therefore, in order to help experimentalists to disentangle such spectra, the role of

theorists is to develop efficient tools that are able to accurately describe molecular systems.

The starting point of such tools is solving the time-dependent Schrodinger equation. In
this thesis, after implementing geometric integrators, which are based on a combination of
the split-operator algorithm and Magnus expansion, for the exact nonadiabatic quantum
dynamics of a molecule interacting with a time-dependent electromagnetic field, we derive
and implement these geometric integrators for the time-dependent perturbation theory,
the Condon, rotating-wave, and ultrashort-pulse approximations, as well as every possible
combination thereof. As verified in several model systems, these integrators exactly preserve
the geometric invariants, and achieve an arbitrary prescribed order of accuracy in the time

step and an exponential convergence in the grid spacing.

We also explore in more detail the ultrashort-pulse approximation and derive an analytical
expression for the combination with the time-dependent perturbation theory; this expression
significantly accelerates numerical calculations. We show that in the limit of the zero
pulse width, the §-pulse approximation is recovered. We illustrate the performance of the
introduced approximations, using a three-dimensional model of pyrazine, in which it is

essential to go beyond the d-pulse limit in order to describe the dynamics correctly.

The high-order algorithms are also applied to the photodissociation dynamics of iodomethane
(CH3l), following its excitation to the A band. We implement a general split-operator with
both discrete-variable and finite-basis representations that can treat one non-Cartesian,
such as angular coordinate. To test the effect of various degrees of freedom and of the
nonadiabatic dynamics, we apply these algorithms to one-, two-, and three-dimensional

models of iodomethane, both in the presence and in the absence of nonadiabatic couplings.
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Abstract

A full quantum calculation is, however, limited to problems with low dimensionality
(approximately ten degrees of freedom). Beyond this, one must seek an affordable balance
between computational efficiency and physical accuracy and can employ, for example,

semiclassical methods that are based on classical trajectories.

A simple semiclassical approximation that can treat larger systems and requires only local
knowledge of the potential is the on-the-fly ab initio thawed Gaussian approximation. We
implement a generalization of the method that goes beyond the Franck-Condon approxima-
tion and treats Herzberg-Teller active molecules. Our method is used to compute absorption
spectra of phenyl radical and of benzene, for which the Herzberg-Teller contribution is

essential.

Keywords: time-dependent Schrédinger equation, split-operator, Magnus expansion,
time-dependent perturbation theory, Condon approximation, rotating-wave approximation,
ultrashort-pulse approximation, d-pulse approximation, on-the-fly ab initio thawed Gaussian

approximation, Herzberg-Teller, pyrazine, iodomethane, phenyl radical, benzene
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Résumé

La compréhension des étapes élémentaires impliquées dans une réaction chimique constitue
la pierre angulaire de la recherche en chimie-physique. Une fagon d’approfondir cette
compréhension est d’étudier les processus chimiques et physiques a l'aide de techniques
spectroscopiques linéaires et non-linéaires. Cependant, les résultats obtenus peuvent étre
compliqués a déchiffrer en raison de I'entrelacement de nombreux effets. Par conséquent, le
role des théoriciens est de développer des outils efficaces afin d’aider les expérimentalistes

a déméler leurs résultats.

Le point de départ de ces outils consiste a résoudre I’équation de Schrédinger dépendante du
temps. Dans cette these, apres I'implémentation d’intégrateurs géométriques, qui reposent
sur une combinaison de l'algorithme split-operator et de I’expansion de Magnus, pour la
dynamique quantique non-adiabatique exacte d’une molécule interagissant avec un champ
électromagnétique dépendant du temps, nous dérivons et implémentons ces intégrateurs
pour la théorie des perturbations dépendante du temps et les approximations de Condon,
de 'onde rotative et des impulsions ultra courtes, ainsi que pour toutes les combinaisons
possibles. Comme vérifié dans plusieurs systémes modeles, ces intégrateurs conservent
exactement les invariants géométriques et atteignent un ordre de précision arbitraire par
rapport au pas de temps et une convergence exponentielle par rapport a I’espacement de

la grille.

Nous explorons également plus en détail I’approximation des impulsions ultra courtes et
dérivons une expression analytique pour la combinaison avec la théorie des perturbations,
ce qui permet d’accélérer les calculs numériques. Nous montrons que, dans la limite
ou la longueur de I'impulsion tend vers zéro, 'approximation d-pulse est retrouvée. La
performance de ces approximations est illustrée en utilisant un modeéle tridimensionnel de

la pyrazine pour lequel il est essentiel d’aller au-dela de la limite J-pulse.

Les algorithmes sont également appliqués a la dynamique de photodissociation de 1’io-
dométhane (CHj3l) suite & son excitation au niveau de la bande A. Nous implémentons
I’algorithme split-operator en utilisant deux représentations : variable discréte et base finie,

ce qui permet de traiter une coordonnée non-Cartésienne, telle qu'une coordonnée angulaire.



Résumé

Afin de tester l'effet de différents degrés de liberté et de la dynamique non-adiabatique,

nous appliquons ces algorithmes a différents modeles décrivant I'iodométhane.

Un calcul quantique complet est cependant limité & des problémes de petite taille (tout au
plus dix degrés de liberté). Au-deld, il est nécessaire de trouver un compromis entre efficacité
computationnelle et précision physique. Par exemple, des méthodes semi-classiques basées

sur des trajectoires classiques peuvent étre employées.

L’approximation de “thawed Gaussian” ab initio a la volée peut traiter des systemes plus
imposants et nécessite une connaissance uniquement locale du potentiel. Nous implémentons
une généralisation de cette méthode qui va au-dela de 'approximation de Franck-Condon
et qui traite les molécules Herzberg-Teller actives. Nous 1'utilisons pour calculer les spectres
d’absorption du radical phényle et du benzeéne, pour lesquels la contribution Herzberg-Teller
est essentielle.

Mots-clés : équation de Schrodinger dépendante du temps, split-operator, expansion
de Magnus, théorie des perturbations dépendante du temps, approximation de Condon,
approximation des ondes rotatives, approximation des impulsions ultra courtes, approxima-
tion J-pulse, approximation de “thawed Gaussian” ab initio a la volée, Herzberg-Teller,

pyrazine, iodométhane, radical phényle, benzéne
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I} Introduction

1.1 Overview

In the context of nonadiabatic molecular quantum dynamics, solving the time-dependent
Schrodinger equation enables us to predict the motion of nuclei on electronic potential
energy surfaces. To describe many photochemical and photobiological processes, several
potential energy surfaces are often needed and are frequently coupled to each other, which
means that nuclei can jump from one surface to another [1]. This is called the nonadiabatic
effect [2, 3] and is one of the main processes in physical, chemical, and biological reactions
[4, 5].

Such processes cover a wide range of time scales and with the advent of femtosecond laser
technology, the study has moved towards the kinetics of the fastest molecular processes.
For an illustration of the “femtochemistry field” [6] that enables real-time spectroscopy
on a femtosecond time scale, it is worth citing the pioneer work by Zewail [7, 8]. His
pump-probe experiment is the benchmark in light-matter interaction studies: First, a short
pump laser pulse excites coherently a sample of molecules. Then, after a certain time delay,
a probe pulse hits the sample. By monitoring the probe signal as a function of the time
delay, information on the time evolution of the system can be obtained. Variants of this
pump-probe technique enable us to follow, in real time, molecular rearrangements [9-11]
and many other processes, such as photodissociation dynamics of diatomic molecules in

the gas phase [12] or excited state dynamics of dye molecules in solution [13].

Theoretical models help experimentalists to disentangle such dynamical processes. For ex-
ample, theories for femtosecond pump-probe experiments on solvated polyatomic molecules
[14] and for large polyatomic molecules in condensed phases [15] have been developed, as
well as for femtosecond time-resolved ionization spectroscopy of ultrafast internal conversion
dynamics in polyatomic molecules [16]. Another example is the development of a density
matrix theory that enables to obtain third-order time- and frequency-resolved optical
signals such as the four-wave-mixing, n-wave-mixing, and photon-echo signals [17-19].
Recent theoretical developments [20] suggest a new time-domain spectroscopic technique

based on strong pump and probe pulses. It enables the real-time investigation of molecular
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processes that cannot be resolved temporally by the usual weak pump and probe pulses.

For low-dimensional systems, the starting point of these theories is solving the time-
dependent Schrodinger equation, which is the most accurate and straightforward approach.
In principle, the description of the interaction of the system with electromagnetic field
requires the application of quantum field theory. However, in most situations, it has
been shown that it is sufficient to use classical electromagnetism to describe the light-
matter interaction as a classical field interacting with quantum matter [21]. Under given
assumptions, the expressions for certain observables will be the same as if derived using
quantum field theory. For all cases discussed in this thesis, a classical description of the

field, together with a quantum treatment of matter is considered sufficiently accurate.

However, applying numerical algorithms that treat exactly the interaction between quantum
matter and a classical electromagnetic field can be still time consuming. Therefore, it is

worth using approximations to accelerate calculations.

The é-function pulse, or “infinitely short” pulse approximation seems natural for the descrip-
tion of time-resolved spectroscopy [15, 22-29]. However, such pulses are not experimentally
feasible [30]. Furthermore, they are not desired because they would simultaneously excite
all dipole-allowed electronic states of the system. As a result, it is useful to consider the
impulsive limit [31] that defines a new kind of pulse known also as an ultrashort pulse;
the duration of the pulse is longer than electronic time scale and shorter than nuclear one
[24, 25]. However, for the specific diabatically coupled systems studied in Refs. [24, 25], it is
shown that such pulses are not sufficiently short to guarantee the validity of the impulsive
limit [28, 31]. Therefore, besides the fact that the pulse must be shorter than the time
scale of vibrational dynamics, it should also be short compared to the time scale on which

the nonadiabatic dynamics occurs.

Another common approximation is the so-called rotating-wave approximation [32, 33],
quite often used in the fields of quantum optics and magnetic resonance. It was developed
in order to obtain an analytical solution of a quantum mechanical two-level system driven
by a constant sinusoidal external potential. Indeed, if the laser field is nearly resonant
with the electronic transition and if the field intensity is “low” (the latter condition being
less stringent than the former, as will be shown later), it is possible to neglect highly
oscillatory terms in the interaction potential of the Hamiltonian [34, 35]. Indeed, these
terms will average to zero in a reasonable time scale. In systems with more than two
levels, a generalization of the rotating-wave approximation is also called the quasi-resonant
condition [36-40].

Another very useful approximation is the Condon approximation [41-44]. It assumes that
the time scale of an electronic transition is short, compared to nuclear motion. Therefore,
the transition probability can be calculated at a fixed nuclear position. In other words, the

transition dipole moment is considered to be independent of the coordinates of the nuclei.

In the case when interaction between a molecular system and electromagnetic field is
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weak, i.e., the molecular properties are not significantly altered by the field, the interac-
tion potential can be considered as a perturbation. The solution of the time-dependent
Schrodinger equation can be obtained using the first-order time-dependent perturbation
theory [24, 45, 46].

The above-mentioned ultrashort-pulse, rotating-wave, and Condon approximations, together
with the time-dependent perturbation theory, are four of the most common approximations
for treating the light-matter interaction. It is not uncommon for one, or even a combination
of these approximations, to be employed without previous knowledge of its validity. In
order to avoid such problems, in this thesis, the validity of these four basic approximations

and their combinations is predicted by defining corresponding dimensionless parameters.

The main goal of this thesis is to study these approximations for the molecule-field
interaction by using geometric integrators of arbitrary order of accuracy in the time step.
To do so, the time-dependent Schrédinger equation has to be converted, independently
of the number of approximations included, into a numerically tractable problem by the
discretization of time and space [47, 48]. This, in general, is done in two steps: First, the
wavefunction and corresponding operators are either represented by an expansion in a set
of basis functions or discretized on a spatial grid; second, a numerical algorithm is used to

propagate the initial wavefunction in time.

Many numerical propagation schemes have been developed and the summary of various
approaches can be found in specialized reviews [47-53]. Most of the algorithms were
originally designed to solve the time-dependent Schrédinger equation with time-independent
Hamiltonian and some of them were extended to treat systems where the potential depends

explicitly on time.

Amongst these algorithms, the Chebyshev propagator [54] is based on an expansion of the
time-evolution operator in terms of complex Chebyshev polynomials and enables the use
of a large time step [55, 56]. There is also the second-order differencing scheme [57-59]
that expands the evolution operator in a Taylor series. Runge Kutta schemes [60, 61]
are also widespread due to their variable time step that eliminates the need to determine
the time step by a trial-and-error procedure. All these methods obviously have their
advantages and disadvantages, and their performance depends on the particular problem
under study. In this thesis, we focus on geometric integrators. They are defined as a
numerical integration of a differential equation that preserves geometric properties of the
quantum dynamics such as time-reversal symmetry, unitarity, and symplectic structure
[62, 63]. The general split-operator/Magnus integrator algorithm is such an integrator
and is therefore the one we use, together with a grid representation of the wavefunction
and operators. The split-operator method exploits the ease of treating operators in their
diagonal representations. While it was originally based on a symmetric second-order
factorization of the time-evolution operator [64, 65], it was later generalized to an arbitrary
order of accuracy [66-70]. The Magnus integrator, in turns, invokes the fact that the

evolution operator for a time-dependent Hamiltonian can also be written as a Magnus
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expansion [71-77]. Symplectic numerical algorithms are, as of this writing, still considered
an important area of research. For example, a fourth-order gradient symplectic integrator
has been proposed for solving the time-dependent Schrédinger equation [70, 78] and
proves to accelerate the quantum calculation, while symplectic algorithms for nonseparable
Hamiltonians have been developed for solving the dynamics of charged particles in a
magnetic field [79, 80].

Implementing symplectic algorithms is usually straightforward when dealing with Cartesian
coordinates. On one hand, when studying a more realistic example such as polyatomic
photodissociation dynamics, internal coordinates are often more appropriate as they enable
to lower the dimensionality. On the other hand, they result in a more involved kinetic
energy term. Another focus in this thesis, motivated by the experiments in H.-J. Wérner’s
group at ETH Ziirich, is the study of the effects of various degrees of freedom and of the
nonadiabatic couplings on the photodissociation of iodomethane induced by a femtosecond

pump pulse.

Photodissociation dynamics of iodomethane following the excitation to the A band has
been studied since the discovery of the first laser that relies on photodissociation [81]. More
recently, Worner and coworkers explored it with time-resolved high-harmonic spectroscopy
[82]. These methods were originally applied only to the electronic ground state of molecules
[83, 84], yet, ultrafast dynamics occurs predominantly in excited electronic states, hence
Worner et al. extended the methodology to excited states [82, 85-89]. In these experiments,
first, two synchronized pump pulses are used to generate an intensity grating that induces
a spatial modulation of the excited state’s population. Then, using an intense femtosecond
probe pulse, an electron wave packet can be extracted from one of the valence orbitals
and driven back to interfere with the remaining bound electronic state. If the electron
recombines, extreme ultraviolet radiation is emitted. This phenomenon, known as high-
harmonic generation, makes it possible to create an image of a molecular orbital [90], probe

vibrational dynamics [91, 92], or observe a chemical reaction in real time [93].

The observed high-harmonic signal in the iodomethane experiment depends crucially on
population dynamics. To understand it better, we perform exact nonadiabatic quantum
dynamics simulations of the photodissociation process induced by the pump pulse. To
support high-harmonic generation experiments performed in H.-J. Wérner’s group, we
modify the methodology to non-Cartesian coordinates. In order to treat one problematic
angular coordinate, we implement, in particular, a general split-operator with both discrete-

variable and finite-basis representations.

However, neither the high-order split-operator/Magnus integrator algorithms, nor any of
the physical approximations, can overcome the exponential scaling of the computational
cost with dimensionality, i.e., full quantum calculations are limited to approximately ten
degrees of freedom. Indeed, the nonadiabatic dynamics is inherently quantum mechanical,
and sensitive to the amount of quantum mechanics involved to treat the problem, which

inhibits the application to large systems. However, for typical molecular problems, the
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promising development of the multi-configuration time-dependent Hartree method [94, 95]
enables to deal with up to about 30 degrees of freedom quantum mechanically. Other
examples allowing to treat larger systems are the methods employing Gaussian bases, such
as the Gaussian multi-configuration time-dependent Hartree method [96, 97], multiple
spawning [98, 99], and ab initio multiple spawning [100], for which the incompleteness of
the basis is, in principle, the only contribution to the inexactness of the result. Beyond
this limit, an affordable balance between computational efficiency and physical accuracy is
required. For example, an attempt to treat large systems has been proposed using only
few specific quantum modes and a classical “bath” [101, 102]. Alternatively, semiclassical
methods based on classical trajectories can be used. For these methods, an ensemble of
classical trajectories, accompanied by a complex phase factor, is employed and enables
them to capture interference effects. Therefore, various quantum effects can be described
in contrast to standard classical molecular dynamics. But, in these semiclassical methods,
the number of classical trajectories required for convergence usually grows rapidly with
dimensionality, hence they are also limited to rather small molecular systems, i.e., few

atoms.

To go beyond this and still partially include some quantum effects, more severe semiclassical
approximations can be invoked, such as the phase averaging/dephasing representation
[103-110], a highly efficient multi-trajectory semiclassical method, or the thawed Gaussian
approximation [111-113], a single trajectory based method. The convergence of the former
is independent of the dimensionality, however, the accuracy depends strongly on the
system under study. As for the latter, it is suited only for short-time dynamics but,
due to the ultrafast character of the dynamics, this is of less importance. Moreover, the
implementation of the thawed Gaussian approximation is also performed using geometric
integrators. Indeed, the norm is preserved exactly and the numerical integration of classical
equations of motion is carried out using a symplectic algorithm. In addition, it goes beyond
the global harmonic approximation and captures, at least partially, the anharmonicity of

the studied system.

The key ingredient, for each method, is the definition of the potential energy surfaces.
Traditionally they are computed beforehand, which leads to the bottleneck of exact
quantum dynamics for large systems. However, trajectory-based methods require only
local knowledge of the potential. Therefore, potential energy surfaces can be computed on
the fly (i.e., only where needed) by using ab initio electronic structure packages, which

avoids exponential scaling with dimensions.

The calculations of Franck-Condon absorption or emission spectra of large and/or floppy
molecules [114, 115] have proven to be successful within the on-the-fly ab initio thawed
Gaussian approximation. In classical mechanics, this means that an electronic transition
is most likely to occur without changes in the positions of the nuclei in the molecular
entity; in other words, the transition dipole moment is independent of nuclear coordinates,
which leads to a vertical transition. In quantum mechanics, the intensity of a vibronic

transition is proportional to the square of the overlap integral between the vibrational
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wavefunctions that belong to the two different electronic states involved in the transition.
However, it is possible that for the system under study, the absorption of a photon is
electronically forbidden but vibronically allowed. Therefore, it is necessary to go beyond the
Franck-Condon approximation. In the last part of this thesis, we focus on the computation
of absorption cross sections within the Herzberg-Teller approximation, which goes beyond
the Condon approximation by allowing a linear dependence of the transition dipole moment
on nuclear coordinates. To do so, we implement a generalization of the on-the-fly ab initio
thawed Gaussian approximation and test it by calculating the AQBl +— }~(2A1 absorption
spectrum of phenyl radical and 1'Bg, 11A1g absorption spectrum of benzene, for which
the Franck-Condon approximation fails completely. The new approach improves older
absorption cross sections computed within the Franck-Condon approximation and also

gives much better results than those obtained via global harmonic approximations.

The remainder of this thesis is organized as follows: the theoretical background needed to
understand the full manuscript is presented in Chapter 1. In Chapter 2, we define and
derive the approximations to the interaction with the electromagnetic field and present
numerical examples that show how several approximations can work and break down. The
symplectic numerical algorithms for the exact and approximate propagation schemes are
presented in Chapter 3. In addition, we demonstrate, on several examples, the conservation
of geometric properties. Chapter 4 focuses on the ultrashort-pulse approximation and its
relation to the well-known §-pulse approximation. We show the necessity to go beyond the
0-pulse limit in the case of the three-dimensional three-state vibronic coupling model of
pyrazine. Next, in Chapter 5, we study the effects of various degrees of freedom and of the
nonadiabatic couplings on the photodissociation of iodomethane induced by a femtosecond
pump-pulse. Then, in Chapter 6, we show how the on-the-fly ab initio thawed Gaussian
approximation can be used in order to compute absorption cross sections beyond the
Franck-Condon approximation for higher-dimensional systems such as phenyl radical and

benzene. Finally, Chapter 7 summarizes the main results and concludes this thesis.

1.2 Interaction of a Molecule with an Electromagnetic Field

1.2.1 Molecular Hamiltonian

Considering only S lowest-lying electronic states, we write a general time-dependent state

of a molecule as the superposition

S [¥1())
() =D [Wa@®)m)=| ... |, (L.1)
" s ()

where |1, (t)) is a time-dependent nuclear wavepacket on the nth potential energy surface,
and |n) is the corresponding time-independent—typically adiabatic or diabatic—electronic

state. In the absence of electromagnetic field, evolution of |1)(t)) is given by the time-
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dependent Schrodinger equation

L d o
ih— (1)) = Hole(t)), (1.2)
with the time-independent molecular Hamiltonian
Hy:=T + Vo. (1.3)

Throughout this thesis, the bold face denotes electronic operators, i.e., S-dimensional
vectors and S x S matrices acting on the Hilbert space C® spanned by S discrete electronic
states, and the hat "~ denotes nuclear operators acting on the Hilbert space £2(R”) of square

integrable functions of D continuous nuclear degrees of freedom.

The first component of the molecular Hamiltonian (1.3) is the nuclear kinetic energy

operator
T:=171, (1.4)
N 1 ~
T:= 5PT M. P, (1.5)
where M =diag(M;, Mo, ..., Mp) denotes the diagonal nuclear mass matrix and - denotes

the matrix product in the nuclear configuration space R”. The second component of H, is

the molecular potential energy operator

VO = Ve + vn + Vney (16)
consisting of the electronic part
V. :=1v,, (1.7)
Ve := Vo(Qo),
nuclear part
Vo= Til, (1.8)
Vi == (Vo) = (Vo) 11(Qo),

and the vibronic coupling Vpe. Above, Qo denotes the coordinates of a reference nuclear
configuration, which typically corresponds either to the minimum of the ground potential
energy surface (Vp)11 (this is what we use) or to a conical intersection. From here on, we
will use the convention that the potential energy is zero at the reference configuration Qg

on the ground electronic potential energy surface, i.e.,
(Vo)11(Qp) =0  (convention).

As we assume that the electronic basis is diabatic, the electronic potential energy V. is a
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diagonal! S x S matrix and Vo is independent of nuclear momenta but contains offdiagonal
elements—the so-called diabatic electronic couplings. Note that the vibronic coupling Vnc
contains not only the offdiagonal elements (which, in diabatic basis, must be at least of
linear order in @, and are sometimes defined to be the vibronic coupling) but also diagonal
elements if the nuclear dependence of the diabatic potential energy surfaces is different
for different surfaces, e.g., due to displacement of the minima of the different potential
energy surfaces. A simple two-state one-dimensional harmonic system represented in Fig.

1.1 should clarify some of the previous definitions.

— (Vo)1 ="
— — (Vo)22 = (Ve)22 + Vi + (Vne)22
N T /
N s
(Ve)aa PN rrrrrremrenneens \ -~ _ . ~ d
(Ve)11=0 éo
Q

Figure 1.1 — Meaning of several components of the molecular potential Vo in a one-
dimensional two-state harmonic system assuming that (V5)11(Qo) = 0.

Finally, note that it is sometimes useful to separate the molecular Hamiltonian differently,
as ﬂo = ﬂn+ne + Ve, where
I:In-‘rne = Tl + Vn+ne (19)

denotes the Hamiltonian of nuclei together with the vibronic coupling, and

A

Vigne := Val + Vie (1.10)

contains the nuclear an and vibronic Vne parts of the molecular potential.

1.2.2 Interaction with an Electromagnetic Field

The interaction of the molecule with a time-dependent laser field is described by a time-

dependent Schréodinger equation

ih—|3(1)) = H(t)|y (1) (1.11)

with the Hamiltonian
H(t) := Hy + Vi (t) = T+ V(2) (1.12)

consisting of the molecular Hamiltonian Hj and the time-dependent interaction poten-

tial Vint(t). Within the long-wavelength and electric dipole approximations [116], the

'Definition (1.7) suggests that V. could contain offdiagonal elements. However, the orthogonal trans-
formation that diagonalizes V. does not depend on nuclear coordinates, and therefore will not introduce
nonadiabatic momentum couplings if applied to the matrix Vo. Therefore there is a single basis in which
the offdiagonal elements of V(Q) do not contain constant terms (the leading terms are at least linear in
Q); this is precisely the diabatic basis (more precisely, this special version of diabatic basis, which always
exists, is referred to as the crude adiabatic basis).
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interaction potential is given by

A

Vin(t) = —i- E(t), (1.13)

where fi is the molecular electric-dipole operator and E(t) is the electric field. See
Appendix A for the derivation. In the preceding expression, the arrow refers to three-

dimensional vectors.

Finally, as suggested in Eq. (1.12), sometimes it is useful to combine the molecular potential

with the interaction potential into the total time-dependent potential

A,

V(1) := Vo + Vi (1) (1.14)

1.2.3 Exact Solution of the Time-Dependent Schrédinger Equation

In the absence of an electromagnetic field, the molecular state evolves as

[9(t)) = Ug(t — to)|ab(to)), to,t <t;orty < to,t, (1.15)

where

Up(t) := UI:IO (t) (1.16)
is the molecular evolution operator and, for later convenience, we introduce notation for a
unitary operator

U, (t) i= e 1AM (1.17)

generated by a time-independent Hermitian operator A. When the electromagnetic field is

present, the exact evolution of the molecular state is given by

9 (t)) = Ut to)[3(t)),  to,t € (tisty), (1.18)

where

A

Ul(t, tg) := Uﬁ(t,)(t,to) (1.19)
is the exact evolution operator and where we introduce the notation for a unitary operator

N i [t
UA(t/)(t,tg) =T exp {—ﬁ s A(t’)dt’} (1.20)
generated by a time-dependent Hermitian operator A(t). In Eq. (1.20), 7 denotes the

time-ordering operator [117].
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1.2.4 Description of the Electric Field

Although our analytical results are general, in all our numerical calculations, the following

form of the electric field is used

E(t) := €E(t),
E(t) := Ep&(t) cos(wpulset + Ppulse)s (1.21)

where €, Ep, wpulse, Ppulse; and E(t) denote polarization (||€|| = 1), amplitude, carrier
frequency, phase, and slowly varying envelope, respectively. In order to simplify notation,

we rewrite the interaction potential as

A

Ving(t) = —p E(1), (1.22)

—

where fi := fi - €.

A Gaussian shape is assumed for the envelope of the pulse, i.e.,

2

E(t) = N~ tm) /2800 (1.23)

/2
where its normalization factor A is chosen to be 1/ — and its width is controlled by
7T pulse

Atpuise that is related to the full-width at half-maximum (FWHM) by

FWHM := 2v/21n 2At . (1.24)
Finally, the pulse is assumed to be fully contained in the time interval (t;,tf) := (ty, —

4Atpuise, tm + 4Atpuise). The interaction potential is, hence, negligible before initial time ¢;

and after final time #y.

1.3 Split-Operator Method

Our method of choice to implement the two formal solutions of the evolved molecular state,
Eqgs. (1.15) and (1.20), is the split-operator algorithm. Usually, it is split into two parts,
one of which depends only on the momenta, and the other only on the coordinates. The
basic idea is to first decompose the full evolution into a number of small time steps At.
Then, for each of these steps, the evolution of t