
Log-Free Concurrent Data Structures
Tudor David∗

IBM Research Zurich
udo@zurich.ibm.com

Aleksandar Dragojević
Microsoft Research, Cambridge

alekd@microsoft.com

Rachid Guerraoui
EPFL

rachid.guerraoui@epfl.ch

Igor Zablotchi
EPFL

igor.zablotchi@epfl.ch

Abstract
Non-volatile RAM (NVRAM) makes it possible for data struc-
tures to tolerate transient failures, assuming however pro-
grammers have designed these structures in a way to pre-
serve their consistency upon recovery. Previous approaches,
typically transactional, inherently used logging, resulting
in implementations that are significantly slower than their
DRAM counterparts. In this paper, we introduce a set of
techniques that, in the common case, remove the need for
logging (and costly durable store instructions) both in the
data structure algorithm as well as in the associated memory
management scheme. Together, these generic techniques
enable us to design what we call log-free concurrent data
structures, which, as we illustrate on linked lists, hash tables,
skip lists, and BSTs, can provide several-fold performance
improvements over previous, transaction-based implemen-
tations, with overheads of the order of milliseconds for re-
covery after a failure. We also highlight how our techniques
can be integrated into practical systems, by introducing a
durable version of Memcached that is able to maintain the
performance of its volatile counterpart.

1 Introduction
Fast, non-volatile memory technologies have been inten-
sively studied over the past years, with various alternatives
such as Memristors [51], Phase ChangeMemory [29, 46], and
3D XPoint [38] being proposed. Nevertheless, they are only
now starting to become commercially available. Such memo-
ries, referred to as non-volatile RAM (NVRAM), promise byte-
addressability and latencies that are comparable to DRAM,
yet also non-volatility and higher density than DRAM.
From a programmer’s perspective, NVRAM can be read

and written using load and store instructions, identically to
DRAM. However, a significant fraction of software needs to
be redesigned. Unlike DRAM on the one hand, in order to
take advantage of NVRAM’s non-volatility, the stored data
needs to be in a state that allows the resumption of execution
after a transient failure (e.g., a power failure). Unlike block-
based durable storage on the other hand, the granularity at
which data is read andwritten is much finer, and the latencies
much smaller. Thus, strategies that might have yielded the

∗Work done while the author was at EPFL.

best performance in case of block-based storage might not
be appropriate when working with NVRAM.

In this paper, we focus on the design and implementation
of concurrent data structures for NVRAM. Such structures
are central to many software systems [9, 12, 37, 39, 40, 42].
Ideally, in the NVRAM environment, one would like con-
current data structures which can be recovered in case of a
transient failure, and whose state would reflect all completed
operations up to the failure, yet whose performance and
scalability resemble those of their counterparts designed for
DRAM.

However, this task is complicated by the fact that neither
data stored in registers, nor caches, are durable in the face
of transient failures. Moreover, by default, the program does
not control the order in which cache lines are evicted and
written to NVRAM. Explicit instructions, which we refer to
as sync operations, must be used to ensure that a store is
written through to NVRAM at the desired point. Finally, if
the user expresses their updates as transactions or critical
sections containing several stores, some form of logging is
necessary for the eventuality of a failure in the middle of a
transaction. This log needs to be reliably written before the
transaction is executed. In all these scenarios, one must wait
for stores to be written to NVRAM before proceeding, which
is particularly expensive: whereas when using DRAM, one
would at most wait for data to be written to the L1 cache,
now one has to wait for data to be written all the way to
NVRAM.
Previous approaches [2, 4, 6, 20, 25, 27, 28, 33, 36, 54]

to implementing data structures for NVRAM relied mainly
on transactions (either explicitly, or implicitly derived from
critical sections), and focused on minimizing the associated
logging overhead. The motivation of our work is to remove
the need for logging in the data structure altogether, with-
out incurring additional sync operations. We achieve this
(in the common case, when we can take advantage of local-
ity in memory allocation and reclamation) by using three
techniques: (1) we reduce sync operations in our algorithms
by using a link cache, (2) we remove logging in the data
structures by using lock-free algorithms, and (3) we avoid
logging associated with memory management by focusing
on coarse-grained memory tracking. We briefly discuss these
three techniques below.

1



The link cache is essentially an extremely fast, best-effort
concurrent hash table stored in volatile memory, which con-
tains data structure links that have not yet been durably
written. When modifying the data structure, instead of en-
suring updated links are durably written, we add them to the
link cache. This enables us to avoid writing them to NVRAM
one at a time. When the durable write of one of them is
necessary for correctness, we batch the write-backs of all
the links stored in our cache, which is significantly more
efficient than waiting for writes to complete one at a time.
Logging in a concurrent data structure can be avoided

using lock-free algorithms: intuitively, a lock-free algorithm
must never bring a data structure in a state that prevents
other threads from continuing normal execution. Thus, as
long as the order of stores in the algorithm is reflected in
NVRAM, no further logging is required. We also discuss
how the store ordering requirement can be relaxed without
jeopardizing correctness.
Finally, memory allocation and reclamation is also a cen-

tral concern for concurrent data structures. Inserting and
removing objects in a data structure consists of two main
steps: (i) allocating (or deallocating) memory for the node,
and (ii) adding (or removing) a pointer to the node in the
data structure. When working with NVRAM, a crash be-
tween these two steps would result in a persistent memory
leak or use-after-free problems. The traditional approach for
avoiding such issues is again some form of logging. To avoid
this, we propose NV-epochs, an epoch-based memory recla-
mation scheme for durable and concurrent data structures.
NV-epochs groups memory nodes into memory areas, and
reliably and persistently keeps track of the active (recently
used) memory areas instead of individual allocations. This
bookkeeping of active memory areas can be seen as the only
form of logging in our approach. However, in the common
case, due to locality in allocation and reclamation, the mem-
ory area an operation accesses will already be marked as
active, and thus we do not have to wait for any additional
store for memory leak prevention1. When recovering after a
failure, we simply need to traverse the memory areas that
were active at the moment of the crash and detect which
objects belonging to these areas are still linked in the data
structures. This is significantly faster than generic mark-and-
sweep garbage collection for instance [1].
Each of these techniques is of independent interest, and

can be used individually while maintaining its associated
benefits. Together, these three techniques result in what
we call log-free durable concurrent data structures, namely,
durable concurrent data structures that, in the common case
described above, require no form of logging. As we show in
the paper, these data structures provide up to an order of
magnitude faster updates when compared to a traditional,

1For small and medium sized data structures, as we show, this covers more
than 99% of memory operations.

L1 L2 LLC DRAM PCM Memristor
Read 2 6 15 50 50-70 100
Write 2 6 15 50 150 100

Table 1. Caches, DRAM, and NVRAM (projected) latencies
(ns).

log-based approach, in a single-threaded, as well as in a con-
current environment. Moreover, we achieve these benefits
while maintaining low recovery times in case of restarts:
even for gigabyte-sized structures, the time required to re-
cover the structure is of only a few milliseconds. In terms of
correctness, our implementations guarantee durable lineariz-
ability [26]. Briefly, all the operations that were completed
before a crash are reflected after recovery.
We also highlight the practicality of our techniques by

developing NV-Memcached, a persistent version of Mem-
cached [37] that is based on a lock-free, durable hash table.
NV-Memcached performs similarly to the volatile memory
version of Memcached (more details in Section 6.6).

Our approach is however not a silver bullet. While it is ex-
tremely efficient for small and medium-sized data structures,
its benefits are less apparent for very large data structures.
And, as we discuss in the paper, in a scenario with a large
number of concurrent updaters, our link cache may limit
scalability and might need to be turned off.

To summarize, the contributions of this paper are:
1. The link cache: a component that mostly eliminates

sync operations in durable data structures;
2. NV-epochs: a coarse-grained durable memory manage-

ment scheme that requires no logging in the common
case;

3. A methodology for building log-free durable data struc-
tures starting from algorithms designed for DRAM;

4. NV-Memcached, a durable version ofMemcached based
on our techniques;

5. A library of log-free durable data structures, as well
as the link cache, NV-epochs, and NV-Memcached
implementations, all available at anonymized_link.

The rest of the paper is organized as follows. Section 2
recalls some background. We discuss our link cache in Sec-
tion 3, and memory management in Section 4. We describe
our log-free durable structures in Section 5. Experimental
results are provided in Section 6, while related work is dis-
cussed in Section 7. Section 8 concludes this paper.
2 Background
Before presenting our techniques, we first discuss some back-
ground and basic assumptions regarding NVRAM.

Traditionally, storage has either been fast, but volatile (i.e.,
the data stored is lost in case of a power failure), as is the case
with DRAM, or non-volatile, but slow, as is the case with flash
storage for instance. However, more recently, a new class of
storage that promises low latency, byte-addressability, and

2



non-volatility is becoming available. Candidate technologies
include Memristors [51], Phase Change Memory [29, 46],
and 3D XPoint [38]. NVRAM latencies are expected to be
somewhat larger than those of DRAM, with writes being
more expensive than reads. Table 1 provides a comparison
of expected PCM and Memristor latencies [49, 52, 57] with
those of DRAM and caches.
As highlighted in the introduction, one of the main dif-

ficulties when working with such NVRAM stems from the
fact that, by default, we do not control the order in which
cache lines to which we have done stores are evicted from
the caches, and actually written to NVRAM. On current In-
tel processors however, we can ensure that a cache line is
indeed written to memory by using the clflush instruc-
tion. This instruction invalidates the cache line. In addition,
such flushes are ordered with respect to one another: if we
issue two flushes, the second one will only start execut-
ing once the first one has completed. On upcoming pro-
cessors, Intel is introducing two new instructions targeted
at NVRAM [21, 23]. The first one is clflushopt. This in-
struction is not strongly ordered. Therefore, we can issue a
clflushopt before the previous one has finished; thus, mul-
tiple such instructions can proceed in parallel. clflushopt
is only ordered with respect to store fences. The second new
instruction is clwb, which only does a write-back to memory,
without invalidating the cache line from the cache hierarchy.
Like clflushopt, it is only ordered with respect to store
fences (or to instructions that have an implied store fence,
such as, for example, Compare-and-Swap).
In our work, when working with NVRAM, we consider

the clwb instruction to ensure that cache lines are written
to memory. An important observation is that since these
instructions are unordered with respect to one another, when
the relative order in which they are written to NVRAM is
not important, batching several write-back instructions is
beneficial for performance [22]. We refer to one or more
write-back instructions followed by a store fence as a sync
operation.
We assume that a machine may fail at any point in time

(due to, for example, a power failure), but can be expected to
be restarted and resume normal operation (transient failure).
We require, as is commonly the case in practice, that only
the data stored in durable main memory is still available
after a crash. The data that was in a processor’s registers or
in the write-back caches at the moment of the crash is not
available after a restart. Nevertheless, our approach would
be highly beneficial and remove the need for logging on an
architecture that maintains enough residual energy to flush
the register and the caches in case of a power failure as well.
Moreover, similar to related work [1], we assume that a

region of NVRAM can be mapped to the same region of
virtual memory across restarts. Alternatively, if this is not
the case, we can update persistent pointers at recovery time.

In the context of concurrent software, it is important to
define correctness conditions in the face of restarts. In par-
ticular, we require a framework that allows us to reason
about the state that is stored in NVRAM after a crash. For
this purpose, we use the concept of durable linearizability
introduced by Izraelevitz et al. [26]. Essentially, a durably
linearizable implementation guarantees that the state of the
data structure after a restart reflects a consistent operation
subhistory that includes all the completed operations at the
moment of the crash.

3 Avoiding frequent write-backs: the link
cache

We now introduce our first technique, aimed at minimizing
the number of sync operations in durable data structures.

3.1 Link cache overview
In linked data structures, a new node becomes visible when
a link to it from an existing node is atomically inserted.
Once this happens, other operations can see that the node is
present. Furthermore, in many algorithms, a node becomes
logically deleted when a mark is atomically inserted on a
link to signal deletion. After this, all operations enquiring
about the state of this node will consider the node as no
longer in the structure. A node becomes unreachable when
the last link to it from another node in the data structure is
atomically removed.

All these operations change the fundamental state of the
node, and determine the return value of other operations
which depend on the particular node. In the context of NVRAM,
in order to ensure durable linearizability, it is therefore es-
sential for each operation to ensure that the data its return
value directly depends on is durably written before the oper-
ation returns. Otherwise, a scenario in which the operation
returns the outcome to the user, the system restarts, and the
state no longer reflects the user’s operation is possible.

In order to deal with this issue, the most straight-forward
approach is what we call the link-and-persist operation. Es-
sentially, when performing an operation that changes the
state of a node, a link is atomically updated normally, but
contains a mark to signal the there is no guarantee its state
is persisted. The updating operation then persists the newly
modified link, and once the link is guaranteed to be persisted
it atomically removes the mark. If another operation whose
result depends on the marked link occurs before the updating
thread can persist it and remove the mark, the second opera-
tion can try to do these steps itself. This method involves no
blocking, and is thus suitable for all concurrent algorithms
classes, including lock-free and wait-free algorithms [16].
However, as previously discussed in Section 2, batching

multiple cache line write-backs is significantly more efficient
than persisting them one at a time. Therefore, we propose
the following scheme: do not wait for links to be immediately

3



fla
gs

head

flu
sh

ha
sh

 2

hashes

ha
sh

 1

ha
sh

 4
ha

sh
 3

ha
sh

 6
ha

sh
 5

link addresses

ad
dr

 1

ad
dr

 2

ad
dr

 3

ad
dr

 4

ad
dr

 5

ad
dr

 6

0 4 16 64

Figure 1. A bucket in the link cache.

persisted when doing an update, but place them in a fast,
volatile memory cache, and write back all the links in this
fast cache when an operation that directly depends on one
of them occurs. We call this auxiliary structure a link cache.
Of course, this means that clients which have inserted links
into the link cache will only be notified of the successful
completion of their operations once the link cache is flushed
to NVRAM. The changes of a link and the insertion of a
corresponding entry in the link cache must occur atomically
(can be achieved in a non-blocking manner by using hard-
ware transactional memory, or by marking the pointers to
be inserted in the link cache while the operation is ongoing).
If a restart happens, the modified link currently in the link
cache might be lost. However, this is not problematic: the fact
that these link addresses were in the cache at the moment
of restart means that no operation that directly depends on
them completed, and thus its outcome may or may not be
visible. We thus maintain the durable linearizability property.
In addition, an atomic update of an ongoing operation not
being durably recorded does not leave the data structure in
an incorrect state after a restart. Where ordering of durable
updates is necessary, we enforce it in the data structure al-
gorithm (see Section 5.2). The link cache is practical as long
as inserting an entry in the cache is faster than waiting for a
cache line to be written back to NVRAM.

3.2 Link cache implementation
We now go into details regarding the implementation of the
link cache. It is important to note that the link cache does not
have to reside in NVRAM, as we do not rely on its content
after a restart. Our main aims were small memory footprint
for the cache, non-blocking operation, and fast insertions.
With these requirements in mind, we chose to simplify

the design, by making insertions to the cache best effort. The
cache is only useful if it can improve the time updates spend
waiting. Therefore, if an update attempts to insert an entry
in the cache, but does not succeed on the first try, it gives up
and persists the modified link itself instead of waiting. Thus,
the link cache has constant worst case performance.
Our hash table has a configurable (but fixed throughout

the execution) number of buckets. Each bucket spans exactly
one cache line, and can store up to 6 links. Links concerning
a particular key map to one and only one bucket. Figure 1
details the contents of a bucket. The first two bytes are used
to signal whether the bucket is currently being flushed. The
next two bytes are used to store the current state of each of
the entries in the bucket. An entry can be free, pending or
busy. We next store the 6 keys associated with the links in

the bucket. In order to be able to fit 6 entries in a single cache
line, instead of storing the entire key, we only store a 2-byte
hash for each of the keys. While this might result in false
collisions, they are extremely unlikely. With 32 buckets, we
essentially have a hash space with 2M elements. Even if false
collisions do occur, this is not problematic: we would simply
be triggering a flush of the links in the cache when this
might not have been strictly necessary. The hashes therefore
require 12 bytes in each bucket. The remaining 48 bytes in
the cache line are used to store the addresses of the 6 links.

The interface of the link cache has three operations, which
we discuss in the following.

Try link and add. If there is space in the link cache, this
operation atomically modifies the link in the data structure
and inserts an entry in the link cache. The operation first
tries to reserve an entry in the link cache. To this effect, it
tries to atomically change the state of an entry from free to
pending. If no free entry exists, or the attempt to reserve an
entry is not successful, the caller is notified that the operation
did not succeed and that it should persist the link itself. Once
an entry is reserved, we set the corresponding key and link
address in the link cache. Next, we try to update the link
in the data structure. We insert the new link, but use a bit
to mark the fact that for now, this link has been neither
persisted, nor has its addition to the link cache been marked
as completed. If the link update fails, we set the state of the
link cache entry to free and return failure to the caller. We
next set the state of the entry in the link cache to busy (to
mark the fact that we have added the key and link address,
and that the link address in fact contains the value that we
want to persist). Finally, we remove the mark from the link
in the data structure.

The fact that this operation is best effort, and the fact that
we do several atomic updates (link marking, transitioning
between multiple states) just in order to be able to handle
concurrent readers make this operation an ideal candidate
for the use of hardware transactional memory (HTM). In
fact, we first try to execute a fast-path HTM-based operation
before reverting to the code presented above. In the HTM
path, we do not need to insert a marked link into the data
structure, and we can avoid going through the pending state
in the link cache.

Flush. This operation writes all the finalized entries in a
bucket to NVRAM. The operation first atomically sets a flag
to signal that it is in the process of flushing a bucket. The
flush operation then issues write-backs for the link addresses
in the busy entries in the bucket one by one (without waiting
for the write-backs to complete) and sets the state of these
entries to free. Next, the operation checks if any of the entries
we have not written back have become busy (completed) in
the meanwhile, and if yes, issues write-backs for them as
well. This is repeated until no new busy entries appear. The

4



1 4 6 9 10 14 20 23

1 4 6 9 10 14 20 237

1 4 6 9 10 14 20 237

1 4 6 9 10 14 237 12

1 4 6 9 10 14 237

Insert(7)
Key Link

7 &(6→7)

Delete(20)
1. mark(&(20 → 23))

Key Link
7 &(6→7)
20 &(20→23)

2. unlink(20)
Key Link

7 &(6→7)
20 &(14→23)

Insert(12)
Key Link

7 &(6→7)
20 &(14→23)
12 &(10→12)

SCHEDULE:
1:Search(4)
2:Insert(7)
3:Search(6)
4:Search(1)
5:Delete(20)
6:Search(14)
7:Search(4)
8:Insert(12)
9:Search(20)

Key Link

1 4 6 9 10 14 237 12Search(20)

Key Link
Flush cache

Figure 2. Example of how the link cache is constructed.

thread then waits for the write-backs to complete by issuing
a fence, resets the flushing flag, and returns.

Scan. The scan operation is given a key and searches if any
link corresponding to the key is in the cache link. If such
an entry is found in busy state (i.e., the insertion of the
link was finalized), a flush is triggered. If an entry is found
but is in pending state, the operation checks whether the
new pointer has been inserted into the data structure. If
this is the case, the current operation’s linearization point
should be after that of the operation currently inserting into
the cache link, and therefore the current operation triggers
a write-back of the new value of the link. Otherwise, the
current operation’s linearization point is before that of the
update, and no further action needs to be taken. In order
to guarantee durable linearizability, every data structure
operation needs to call the scan method for its key, as well
as for its predecessor in the structure in case of updates.
However, this is as fast as reading two cache lines.

3.3 Illustration of the link cache’s effectiveness
We illustrate the effectiveness of the approach through an
example. We consider a lock-free linked list that uses the
algorithm proposed by Tim Harris [14]. In this algorithm,
in the case of inserts, once a node is properly allocated and
initialized, we simply have to set the next pointer of its pre-
decessor to point to it. In the case of a delete, we must first
atomically mark the next pointer of the node to be deleted
to signal logical deletion, after which the next pointer of
its predecessor is set such that it bypasses the node to be
deleted.

The schedule of operations in our example, as well as the
way the link cache is constructed are presented in Figure 2.

We assume an initially empty link cache, and we only depict
the effects of operations that change the state of the data
structure or the link cache. Normally, updates would have
to wait for one link to be persisted in the case of the insert
operations, and two links in the case of the delete operation
(one for marking and one for deletion). However, in this
example, by using the link cache, we have replaced writing
back 4 cache lines one at a time by a single batch of 3 cache
line write-backs.

4 Memory Management with NV-Epochs
We now address another issue that is unavoidable whenever
inserting or removing nodes in a concurrent data structure:
memory management.

4.1 Overview
Two separate steps need to be performed bothwhen inserting
and removing a node: in case of an insertion, memory for
the new node first needs to be allocated and initialized, after
which the node has to be linked into the data structure; in
case of a deletion, the node is first unlinked from the data
structure, and later, when we are sure no references to it
exist, its memory is freed. If a restart occurs in between
these two main steps both in case of an insertion and a
removal, a persistent memory leak would occur: we would
have allocated data that is not linked anywhere in our data
structure.
The typical way of addressing the issue in the context of

NVRAM is to use some form of logging: before allocating and
linking, we log our intention, as we do before unlinking and
freeingmemory. Once the operation has (durably) completed,
the log entry can be removed. However, this entails an extra
write to NVRAM per update. In addition, this write needs
to complete before we can proceed with the update, thus
producing a non-negligible increase in the latency of updates.

In order to avoid waiting for the durable log to be written
at each allocation or deallocation, we propose keeping track
of active memory areas instead of keeping track of individ-
ual allocations/deallocations. Intuitively, when allocating,
threads often reserve larger contiguous memory areas from
which they allocate. Therefore, consecutive allocations tend
to belong to the same memory area. In addition, memory
reclamation schemes keep track of which objects have been
unlinked, and periodically free those for which it is guar-
anteed that no references are held. This reclamation step is
only run periodically (either at fixed time intervals, or, more
commonly, when a certain number of unlinked objects have
been collected) for performance considerations. Therefore,
we tend to free multiple nodes at the same time. Out of these,
it is usually the case that several of them map to the same
memory area. Thus, there is a certain degree of locality in
deallocation as well. Hence, if instead of logging every node
we unlink from the data structure, we only keep track of the

5



memory areas from which the unlinked nodes come from,
we can expect significant savings in term of write-backs to
NVRAM: in the common case, the memory area will already
be marked as active.
While providing us with important time savings at run

time, this method does defer some work for when we need
to recover. In particular, we need to go over the allocated
memory addresses in the active pages and check if they
indeed represent nodes that are linked into the data structure.
To be able to do this, we also make the assumption that
we can dedicate memory pages to only store data structure
nodes. To achieve this, we use an allocator specifically for
such nodes.
We first briefly describe the principles of the memory

reclamation scheme that we employ, after which we go into
more details into how we keep track of the active memory
page set, and how we recover in case a restart occurs.

4.2 Epoch-based memory reclamation
Epoch-based memory reclamation [10] is based on the fol-
lowing principle: if an object is unlinked, then no references
to the object are held after the operations concurrent with
the unlink have finished.

One method of using this principle in practice (and which
we use in our reclamation scheme) is to provide each thread
with a local counter, keeping track of the epoch the current
thread finds itself in. The epoch of a thread is incremented
when the thread starts an operation, and when it completes
it. Thus, if the current epoch number of a thread is odd, the
thread is currently active. We collect multiple objects, and
free them when the vector formed by the current epochs of
the threads is larger than the one when any of the objects
were unlinked (only the epochs of threads that were active
at the moment of unlinking need to be larger). We refer to
the set of unlinked nodes which we attempt to free together
as a generation.

4.3 Interface with NVRAM allocators
Memory allocators usually reserve a large contiguous mem-
ory address space, which they then recursively split into
smaller chunks. The chunk from which an object is allo-
cated then depends on the object’s size. These chunks of
contiguous memory are generally referred to as allocator
pages. Since smaller pages from which objects such as data
structure nodes are directly allocated are part of larger pages,
we can configure the granularity of the pages which we keep
track of. High-performance concurrent allocators usually
partition the memory space for allocations among threads,
such that there is minimal communication necessary be-
tween them: pages are assigned to individual threads.
Existing persistent allocators provide the capability of

atomically allocating and linking (or unlinking and deallo-
cating) objects, which, as discussed, is generally achieved

through some form of logging. We do not require this capa-
bility: we only require that the persistent allocator is able
to correctly maintain its durable metadata when allocating
or deallocating. Moreover, in our case, the last write-back
(which marks the memory as allocated or free in a thread’s
local allocator metadata, and is usually the only write-back
the allocator issues) does not have to be completed before
proceeding: in the case of an allocation, the data structure
algorithm will have to wait for the write-backs to complete
after the memory is initialized, while in the case of deallo-
cations the memory reclamation scheme waits for all the
deallocations it issues at once to be completed. Thus, in
most cases, when the allocator only does one store to thread-
local data, we do not have to issue a sync operation for the
allocator metadata. Based on its metadata and our active
page tables, the allocator can recover its state in case of a
restart. An existing persistent allocator, such as for instance,
nvm_malloc [49], can be used for our purposes, with the
small changes we mentioned. We also require the allocator
to provide a method that returns the next node address to
be allocated. As allocators generally assign larger chunks
of memory to individual threads, and threads do not “steal”
memory from one another, adding this method is trivial.

4.4 Maintaining the set of active NVRAMmemory
areas

In our approach, each thread keeps a set of active memory
pages. For each memory page, we also store some metadata
determining when the page can be considered as no longer
active and can thus be removed from the set. This meta-
data consists of (i) the largest epoch at which this thread
has unlinked memory belonging to the page from the data
structure, and (ii) the largest epoch at which this thread has
allocated memory belonging to this page. The addresses of
the memory pages need to be stored persistently (meaning
that when we insert a new page, we have to wait for the
write-back of the address of the page to complete before
continuing), while the metadata is only needed for removing
table entries, and is not needed in case of a restart.
We attempt to trim a thread’s active page table when it

exceeds a certain size. For this purpose, the metadata as-
sociated with each page is used as follows. A page from
which unlinks have happened is active until the epoch-based
memory reclamation scheme is guaranteed to have freed
all unlinked nodes. This can be verified by having the recla-
mation scheme keep track of the epoch vector of the most
recent generation of objects that were collected. A page from
which allocations have happened is active until the insert
operation has finished, i.e., while the current epoch of the
thread is equal to the last epoch at which a node allocation
from this page took place. When using a link cache, we also
have to ensure that it contains no entries pertaining to the
page under consideration. For this reason, the operation that
attempts to trim the active page table issues a link cache

6



flush as well. If all the unlinked nodes have been freed, and
all the allocated nodes have been linked, the page can be
removed from the table.

We use a separate persistent allocator for the active mem-
ory page table. Allocations for the table happen very infre-
quently (we preallocate a number of entries for each thread
at start-up, and allocate multiple entries at once when more
space is needed; in addition, tables usually do not grow be-
yond a certain size, and thus no allocations are needed from a
certain point). We require that this second allocator provide
the interface previous work on NVRAM memory allocators
does [6, 24, 41, 49, 54]. In this instance, we used the allocator
provided with nvml [24].

4.5 Recovery after transient failures
On recovery, we must make sure that there are no nodes that
are not linked in the data structure but are allocated.
There are two ways of verifying this. The efficiency of

each of these methods depends on the size of the data struc-
ture, the complexity of the search method, and the size of
the memory space that needs to be verified. In both cases,
we assume a well-formed data structure. That is, the recov-
ery procedure should first ensure that the data structure is
brought to a consistent state before attempting to remove
memory leaks. This step is not necessary for any of the data
structures we developed.
The first approach is to go over all the node addresses in

the active memory pages at the moment of the crash, and,
if they are allocated, perform a search in the data structure
for the key the allocated address contains. If the search (i)
returns a result and (ii) the address of the returned node is
the same as the address we were considering, we leave the
node as allocated. Otherwise, we free the node. Condition
(ii) is necessary because we might have an allocated but
uninitialized node. Therefore, a node with the key that we
retrieve from that uninitialized memory might indeed exist
in the data structure, but it might not be pointing to this
uninitialized memory.

The second approach is to traverse the structure only once,
and for each node check if its address belongs to the set of
active pages. If this is the case, store the address of the node
in a volatile memory buffer. Next, go over all the allocated
node addresses in the active memory pages, and check if
they are in the volatile memory buffer. If they are not, it
means they are not linked in the data structure and can be
deallocated.
Both of these approaches can be parallelized in order to

decrease the time spent on recovery.
We note that in our implementation, it cannot be the case

that a node is linked into the data structure, but not marked
as allocated. This is because before linking a node in the
data structure, we issue a store fence that ensures that the
contents of the node, as well as the allocator metadata (for
which we issue write-backs, but do not wait for last one to

complete when calling the allocation method) are durably
written.

5 Log-Free Durable Data Structures
In this section, we present our general approach to designing
concurrent and durable data structures. We first argue that
such data structures should be lock-free, and illustrate the
steps we take in order to obtain correct lock-free data struc-
ture implementations for NVRAM. We focus on implementa-
tions of linked lists, skip lists, hash tables, and search trees,
which are commonly used in practice [9, 12, 37, 39, 40, 42].
Nevertheless, our techniques apply to other data structures
as well. Besides the optimizations presented in this section,
the data structures use the previously introduced techniques,
namely the link cache and NV-epochs.

5.1 The Case for Lock-free Algorithms
As discussed, previous work has taken the approach of using
transactions and logging (normally either write-ahead log-
ging or copy-on-write) to ensure the correctness of durable
data structures. The log must be durably written before the
updates it refers to, thus introducing frequent waiting of
hundreds of cycles. Thus, when moving from volatile to
durable data structures, one can expect a significant drop
in performance. This is particularly problematic for small
and medium-sized concurrent data structures, which would
normally read and write most of the data from the write-back
caches.
In order to mitigate the problem at the level of the data

structure algorithms, we leverage lock-free algorithms. A
concurrent algorithm is said to be lock-free if it can guarantee
that at any point in time, at least one thread that is trying
to take steps is able to make progress. As previous work has
shown [7], lock-free algorithms tend to scale and perform
extremely well in practice.

We argue that lock-free algorithms are even more appeal-
ing in a system using NVRAM. A corollary of the theoretical
definition of lock-freedom is that in a system with n threads,
if n − 1 threads stop executing at any point in their oper-
ation, the one remaining thread must be able to continue
making progress. Otherwise, a thread stopping execution at
a problematic stage could prevent the progress of all other
threads, even when they are trying to make progress, thus
breaking the lock-free property. In other words, no thread
can at any point in its execution leave the data structure in
a state that is inconsistent and from which other threads
cannot continue their operation themselves. In particular, in
the state-of-the-art lock-free algorithms, there is an atomic
step (usually performed through an atomic compare-and-
swap) which makes an update visible: enough information
is introduced in the data structure through this step for any
other thread to be able to complete the update. Once this
atomic update is durably written, upon a restart, the update

7



can be completed by some thread, and the data structure
is thus in a consistent state. If the update is not persisted,
it is as if the update had not occurred at all, and thus the
data structure is of course in a consistent state. Thus, the
moment when this essential update is durably written is the
linearization point [19] of updates.
In the case of NVRAM, we can thus guarantee that as

long as the stores of the threads are persisted in the order
in which they are issued (we show how this can be relaxed),
regardless of where a crash occurs, upon a restart the data
structure is in a consistent state that allows the execution to
resume. Therefore, we remove the need for logging for the
data structure itself.

5.2 Durable Data Structure Implementations
We have implemented durable data structures for linked lists,
hash tables, skip lists, and BSTs. These structures model the
set abstraction, and have methods to insert, remove, and
search of elements identified through a unique key. We con-
sider one implementation per data structure type, starting
from the concurrent algorithm that has been shown to pro-
vide the best performance and scalability [7]. Our linked
list is based on Harris’ algorithm [14], the hash table uses
one Harris linked list per bucket, the skip list uses Herlihy
and Shavit’s lock-free algorithm [18], while the BST uses
the algorithm proposed by Natarajan and Mittal [44]. Other
algorithms and data structures can be similarly modified.

We illustrate our approach on the skip list, as most of the
issues that appear in the context of other data structures
appear in the case of the skip list as well.

Illustration: Log-free Durable Skip list. We start from a
version of Herlihy and Shavit’s algorithm that uses the opti-
mizations proposed by Asynchronized Concurrency [7]. In
a volatile memory environment, searches in this algorithm
are wait-free and perform no stores. Insert operations link
a new node in the data structure starting from the bottom
level, and progressively link the node in its higher level lists.
Remove operations first mark a node’s next pointers to sig-
nal logical deletion (starting from the node’s top level next
pointer, and going down to the bottom level), after which
the node is physically unlinked from the skip list one level
at a time (again, starting from its top level). We note that
nodes in a skip-list may span multiple cache lines.

One particularity of this algorithm is the very fact that it
does not guarantee that the skip list is well formed. Due to
concurrency, it might be the case that a node is present in
some higher-level list, but not in (some of) the levels below.
It is also possible that a node that was unlinked from all the
skip-list levels might reappear (in a state that is marked for
deletion) in one of the higher skip list levels. However, since
the membership of a node in a skip list is determined by its
presence or absence in the bottom-level list, this does not

affect correctness. The higher-level lists are used simply for
performance reasons.
In a sense, this makes this algorithm particularly appeal-

ing for NVRAM: the algorithm itself can work with a data
structure that is not completely well-formed, so we can take
advantage of this and not ensure that every update to the
higher levels of the skip list is persisted, since we know that
at recovery we can continue operation even if certain links
are missing. Thus, for the higher-level links, we do not is-
sue write-backs and wait for them to be persisted one at a
time. We only issue these write-backs at the end of the oper-
ation, but we do not wait for them to be completed before
proceeding.
In another sense, this causes difficulties at run-time: the

fact that at the end of a delete operation we cannot guarantee
the fact that a node is no longer reachable in the data struc-
ture makes memory reclamation problematic. To address
this, we identify the scenarios under which a node may still
be traversed even after its delete operation has completed.
We modify the original algorithm such that once all the up-
dates that were concurrent with a delete operation finish, the
deleted node is guaranteed to no longer reachable in the data
structure (even though at the end of the delete operation
itself it may still be). This is sufficient for our purposes, as
this is the same mechanism our memory reclamation scheme
uses. We believe these optimizations may be useful when
using the algorithm in a volatile memory setting as well.
Whenever we insert or remove a node from the bottom-

level list, in order to ensure durable linearizability, we can ei-
ther use the previously described link-and-persist technique,
or our link cache. Before performing an update, in order
to provide durable linearizability, we must ensure previous
updates concerning the node’s key, as well as nodes directly
related to the update have been durably written. We discuss
these aspects in the following.

Correctness. Our data structures are linearizable, since we
start from linearizable algorithms and add only flushes or link
cache operations, which do not impact linearization points.
We also ensure two additional properties [11]. First, each
update operation ensures that its changes are durable before
returning (when using the link cache, this happens after a
cache flush). Second, each operation O ensures that all oper-
ations O depends on (that involve some of the same nodes
and were already linearized) are also durably linearized be-
fore O makes changes. Together, these two properties en-
sure durable linearizability, because they ensure that after a
restart, the data structure reflects a consistent cut [26] of the
history including all operations that completed before the
crash and potentially some operations that were ongoing
when the crash occurred.

The first property is easily ensured by durably writing
any new edges or nodes introduced by an operation. Making
sure an edge e is durably written just means checking if

8



e is marked (or in the link cache), and issuing write-backs
only if e is not yet durable. The second property is achieved
because operations ensure that (1) before an edge is modified,
the edge is durably written and (2) incoming and outgoing
edges (adjacent edges) of nodes involved in the operation are
durable before proceeding.

We detail point (2) on a linked list (similar considerations
apply for the other linked data structures). For a successful
search, we make sure adjacent edges to the returned node
are durably written before returning. For a failed search, we
make sure the node is durably unreachable before returning
(e.g., in the case where a node is marked but not yet durably
unlinked). For the parse phase of a modify operation (insert
or delete), we take the same steps as for a search. For an
insert, we also ensure that adjacent edges to the predecessor
are durable before linking the new node. For a delete, we
ensure that adjacent edges to the target node T and to T ’s
predecessor are durable before unlinking the target node. In
all cases, if an edge e has changed between the time e is read
and the time we try to durably write e , then the operation
that changed e made sure e was durable.

6 Evaluation
We now study the impact our proposed techniques have on
practical data structures. We look at the overall performance
improvements, as well as at the behavior of components such
as the link cache, and the active page tables.

6.1 Experimental setup
We run our experiments on an Intel Xeon machine that has
four E7-4830 v3 12-core sockets. The cores operate at 2.1-2.7
GHz, while cache sizes are 32KB (L1), 256KB (L2), and 30MB
(LLC, per die). We work with key-value pairs, both of which
are 64 bytes in size. Larger values can be accommodated by
using a pointer instead of the 64-byte value. Experimentally
obtained values are the median of 5 repetitions.

As neither NVRAM with latencies comparable to DRAM,
nor processors providing the clwb instruction are available
yet, we write data to DRAM, simulate the clwb instruc-
tion, and inject software created delays, similar to previous
work [3, 6, 33, 53, 54]. Intel reports issuing several flushes
with clflushopt can be up to an order of magnitude faster
than flushing them one at a time using clflush [22]. We
assume similar performance characteristics for the clwb in-
struction. Moreover, we assume an NVRAM write latency of
125ns, which is an average of the projected values.

6.2 Data structure performance
We first look at the run time behavior of our data structures.
We focus on updates, as it is these operations that must be
durably recorded in NVRAM. We compare our implementa-
tions with alternatives that use lock-based critical sections
(and thus use logging). We find that in the context of such

data structures, an approach that uses redo logging provides
good performance in addition to ensuring durable lineariz-
ability. We use the algorithms that we find perform best for
each data structure: the lazy linked list [15], Herlihy’s lock-
based skip list [17], bst-tk [7], and a hash table with a lazy
linked list per bucket.

In Figure 3, we show the increase in the number of updates
per second obtained by using our structures relative to log-
based implementations. We use a workload where 50% of the
operations are inserts of random keys, while 50% are removes
of random keys, and show results for 1 and 8 concurrent
updating threads. We show relative improvements, as the
precise latencies are dependent on the assumptions made
about clwb instruction performance, as well as NVRAM store
latencies.
Our method yields important benefits regardless of the

data structure type. In particular, for the skip list, where in a
log-based implementation a logarithmic number of locks are
held while a logarithmic number of updates must be logged,
our approach results in an order of magnitude increase in
performance. We note that for small and medium sized data
structures, we obtain significant improvements by applying
our techniques. For large structures however, our improve-
ments become less impressive. There are two main reasons
for this. The first is that as the structure size increases, the
latency of an update becomes dominated by the time needed
to reach the point in the data structure where the modifi-
cation needs to be made, both due to the need to traverse
more pointers, and because when the structure does not fit
in the caches anymore, reads become more expensive. In
the case of the linked list in this experiment, it is in fact the
only factor that is responsible for the decrease in latency
improvement. The second reason has to do with a decrease
in the efficiency of our active page tables for deallocations as
the structures become large. We discuss why this is, as well
as ways of alleviating the issue in Section 6.4. In addition, as
the number of concurrent updating threads increases, the
link cache becomes somewhat less efficient, as we discuss
in the following. Thus, for high degrees of concurrency, we
can turn the link cache off.

To summarize, it is important to note that while the precise
magnitude of the improvements of our approachmay depend
on the characteristics of the NVRAM technology being used,
this experiment has shown that our approach is beneficial
for all the situations we have considered.

6.3 Link cache efficiency
The link cache technique is an optimization that can be
turned on or off in an algorithm. In this experiment, we
identify the scenarios under which it is beneficial.
The main potential barrier to link cache performance is

scalability, given that it is a structure occupying a small
number of cache lines, which is repeatedly accessed by all
threads.

9



2.
13

1.
69

1.
14

1.
111.

28

1.
22

1.
05

1.
02

0

0.5

1

1.5

2

2.5

128 4K 65K 4M
Structure size 

(no. of elements)

BST

1Thread 8 Threads

3.
03

3.
03

2.
27

1.
32

1.
92 2.
04

1.
56

1.
18

0
0.5

1
1.5

2
2.5

3
3.5

128 4K 65K 4M
Structure size 

(no. of elements)

Hash table

1 Thread 8 Threads

2.
17

1.
85

1.
30 1.

431.
56

1.
17

1.
09 1.

23

0

0.5

1

1.5

2

2.5

128 4K 65K 4M
Structure size 

(no. of elements)

Linked list

1 Thread 8 Threads

2.
22

5.
88

7.
69

10
.0

0

2.
56

6.
67

8.
33 9.

09

0

2

4

6

8

10

12

128 4K 65K 4M

U
pd

at
e t

hr
ou

gh
pu

t r
el

at
iv

e t
o 

lo
g-

ba
se

d 
im

pl
em

en
ta

tio
n 

 

Structure size 
(no. of elements)

Skip list

1 Thread 8 Threads

Figure 3. Update throughput improvements compared to redo log based implementations.

We evaluate an algorithm with and without the link cache,
and measure its scalability. In this experiment, we use a hash
table as a base data structure, due to the small latencies of
updates, which allows us to stress the link cache. Each thread
continuously issues insert and remove operations (thus, no
read operations). The link cache occupies 32 cache lines.

Figure 4 presents the throughput of the hash table version
using the link cache, normalized to the throughput of the
hash table version not using the link cache. While with one
thread, the link cache improves throughput by ~50%, as the
contention increases, the link cache becomes less effective,
until, with 12 concurrent threads, we observe no benefit.

Thus, this experiments highlights two main points (1) the
link cache can be extremely beneficial up to moderate de-
grees of concurrency; however, (2) as its cache lines become
contested, its benefits become less apparent.
We note that the link cache is the only component we

add which requires inter-thread coordination, and is thus
the only potential impediment to scalability.

6.4 Active page table efficiency
We now look at the efficiency of our active page table mech-
anism. The active page table is only efficient if it saves sync
operations: that is, if an important fraction of updates do not
have to write active page table entries.
In this experiment, we consider 4KB memory pages, and

we try to trim an active page table when it exceeds 16 ele-
ments.

0
0.5

1
1.5

2

1 2 4 8 12

N
or

m
al

iz
ed

 
th

ro
ug

hp
ut

Number of concurrent threads

Figure 4. Throughput when using the link cache normalized
to throughput when not using link cache, for a 1024-element
hash table, with all operations being updates.

0.00% 
25.00% 
50.00% 
75.00% 

100.00% 

A
PT

 H
it 

Ra
te

Data structure size
Insert hit rate Delete hit rate

Figure 5. Active page table hit rates.

We run a data structure algorithm, and measure the frac-
tion of allocations and deallocations that do not need to add
an entry to the active page tables (that is, the fraction of hits
in the active page table). Results are shown in Figure 5. In
this experiment, we have used a skip list. Results are similar
for other data structures, as the important factor is the data
structure size, rather than its type.
We note that the hit rate is close to 100% for allocations,

regardless of data structure size. In case of deallocations, the
hit rate starts decreasing after the structure exceeds 64 MB
(that is for data structures of more than 1M nodes; or more
than 0.5M in the case of skip lists). This is because as the
amount of used memory increases, there is less locality in
memory reclamation steps. However, fast memory allocation
and deallocation is particularly important for small data
structures that fit in the write-back caches, and which have
small access latencies. In such situations, our approach is
effective for both types of operations.
The parameters of our system can be adjusted to deal

with deallocations in larger data structures as well. The gran-
ularity at which we keep track of active memory areas is
adjustable. By using larger size pages, we can improve the
hit rate. This coarser granularity would however result in a
somewhat larger recovery time after a restart. Additionally,
we can also maintain larger active page tables (in terms of
the number of entries). However, this would make active
page table operations slightly slower at run time. Moreover,
the number of nodes that our memory management scheme

10



1.00
10.00

100.00
1,000.00

10,000.00
100,000.00

1,000,000.00
10,000,000.00

100,000,000.00

12
8

4K 64
K

4M 12
8

4K 64
K

4M 12
8

4K 64
K

4M 32 12
8

4K 65
K

Hash table BST Skip list Linked list
Structure and size (no. of elements)

Recovery time (ns)

Figure 6. Data structure recovery times.

stores in a generation (and thus frees as the same time) can
be increased.

To summarize, our memory management scheme is useful
regardless of the size of the data structure, but is particularly
efficient for small and medium-sized data structures.

6.5 Recovery
We now measure the time it takes to recover a data structure.
We stop execution of the concurrent algorithm at a certain
point, and then traverse its active pages and check for mem-
ory leaks. Prior to recovering, we ensure the structure’s data
is not in the write-back caches. We show recovery times
for the various data structures as a function of their size in
Figure 6.

For hash tables, BSTs, and skip-lists, which have fast search
methods, recovery is extremely efficient: even in structures
with 4M elements, we can recover in less than 5ms. Recov-
ery time for such structures is two orders of magnitude
lower than doing a full mark-and-sweep pass in this en-
vironment [1]. In the case of the link list, which has a linear
search method, in order to avoid repeated passes over the
entire structure, we employ a strategy similar to mark-and-
sweep. Recovery time in this case is somewhat slower: a
linked list with 64K elements can be recovered in 16ms. For
all structures, recovery time increases with data structure
size. Small structures tend to have a smaller number of active
pages at any point in time. In addition, the search operations
must traverse more pointers for larger structures, and data is
less frequently present in the higher-level caches. We believe
the recovery times we observed in this section are acceptable
in case of a reboot.

6.6 NV-Memcached
We now show how our techniques can be applied in a larger
context by developing an object caching system for durable
memory:NV-Memcached. Themain idea behindNV-Memcached
is to make Memcached persistent by replacing its core data
structures—the hash table and the slab allocator—with per-
sistent versions. Straightforward as this idea may seem, it
does entail interesting technical challenges.

First, Memcached uses a lock-protected sequential hash
table; thus replacing it with our persistent non-blocking hash
table would negate the latter’s lock-freedom. We solve this
challenge by basing NV-Memcached onmemcached-clht [34],
a version of Memcached that avoids protecting the hash table
with locks by employing a concurrent hash table—CLHT [7],
and replacing CLHT with our persistent hash table.
The second challenge is related to the recovery of items.

With a naive implementation of a persistent slab allocator,
it is possible for memory leaks to occur after a restart. An
item can be allocated, but not yet linked in the hash table,
or an item can be unlinked from the hash table but not yet
marked as free in the allocator. We address this issue with a
similar approach to our active page technique (Section 4): we
keep track of active slabs. During recovery, we iterate over
each thread’s active slab table and free any memory which is
marked as allocated but not yet or no longer reachable from
the hash table.
We compare the performance of NV-Memcached to that

of Memcached using memtier-benchmark [47]. The bench-
mark runs for a predetermined amount of time, issuing a
mix of get and set operations using keys drawn uniformly
at random from a given key range. The key range and the
ratio of get to set operations are configurable parameters.
Before each experiment, we warm up the cache by inserting
items covering half of the key range. Both the server and the
client are run with the default number of threads (4). The
results are averaged over 5 runs for each configuration.
The first experiment compares the throughput of NV-

Memcached and Memcached for three different key range
sizes, under a 10:1 set to get ratio. As we can see in Fig-
ure 7, there is no notable performance drop between NV-
Memcached and Memcached. While this is partly due to the
fact that NV-Memcached uses a faster, more scalable concur-
rent hash table, the comparable performance also shows that
our techniques remain practical when applied to real-world
applications.

The second experiment compares, for three different key
range sizes, the warm-up time of Memcached (the time it
takes to populate the cache with half of the key range) to the

0
1
2
3
4
5

1000 10000 100000

Th
ro

ug
hp

ut
 (1

00
K

op
/s)

Cache size (# of keys)

memcached nv-memcached

0.1
1

10
100

1000
10000

100000

1000 10000 100000R
ec

ov
er

y/
w

ar
m

up
 ti

m
e 

(m
s)

Cache size (# of keys)

memcached nv-memcached

Figure 7. Performance and warm-up time comparison of
Memcached and NV-Memcached.

11



recovery time of NV-Memcached (the time it takes to recover
after a restart). Figure 7 shows that populating a (volatile)
Memcached instance with items can take up to four orders
of magnitude more time than recovering a NV-Memcached
instance of the same size. This justifies the practicality of
a non-volatile memory caching service—recovering such a
service after a machine restart takes just a fraction of the
time necessary for its volatile counterpart to get re-populated
(and thus be useful again).

7 Related Work
Several approaches have used transactions as means of inter-
acting with NVRAM [2, 6, 8, 13, 25, 27, 28, 33, 36, 54]. Yet, the
significant overhead associated with transactional logging,
inherent to such methods, has been recently highlighted
(e.g., [50]), and several attempts to alleviate the problem
have been proposed. Izraelevitz et al. [25] introduce an ap-
proach in which if failures occur within a critical section,
upon recovery the critical section can simply be run to com-
pletion instead of reverting to previous state. To achieve
this, one simply needs to reliably keep track of the last store
instruction performed by each thread. While efficient in a
scenario where write-back caches can be assumed to be per-
sistent as well, the approach essentially requires a write to
the log for each store instruction in a critical section. Kolli
et al. [28] focus on static transactions in lock-based appli-
cations, and attempt to minimize persist dependencies in
order limit waiting time. The authors also show how the
commit stage of transactions can be performed while not
holding any locks. In the same vein, Kamino-Tx [36] uses a
copy-on-write technique, and avoids logging in critical sec-
tions. DudeTM [33] optimizes redo logging by first executing
the transaction and obtaining a redo log in volatile memory,
then atomically flushing the redo log to persistent memory,
and only then modifying the original data.

In this paper, we go beyond optimizations to logging: we
provide a method that in the common case allows us to cir-
cumvent such logging altogether in the context of concurrent
data structures.

Several efforts [2, 4, 20] have been dedicated to the genera-
tion of correct durable applications for NVRAM from existing
code. These approaches generally assume lock-based code.
Due to their general-purpose nature, they incur additional
overheads, in particular due to logging, when compared to
our method, which is specialized to concurrent data struc-
tures.

Several proposals for indexing trees for NVRAMhave been
made [5, 30, 45, 52, 56]. However, they either require logging
in some form, or do not address potential memory leaks
during new node creation. In addition, the techniques cannot
be broadly generalized to other data structures. Friedman et
al. [11] introduce lock-free algorithms for durable queues,

but do not go beyond this data structure, or consider memory
management.
The problem of general memory allocation and recla-

mation for NVRAM has also received a lot of attention.
Generic persistent memory frameworks [2, 6, 54] handle
allocation and reclamation as part of the transaction mech-
anisms they provide, and thus use logging to ensure cor-
rectness. nvm_malloc [49] provides an interface to allocate
and free persistent memory, but because of the fine-grained
accounting, incurs significant overheads for each allocation
and deallocation. Makalu [1] and NVthreads [20] also keep
track of allocator metadata at a coarser-grain level. However,
they incur higher costs at recovery time, as they require
a garbage collection pass over the entire memory. Unlike
all these approaches, we propose a method that is highly
tuned to concurrent data structures. Thus, we are able to
minimize overheads both at run-time (by efficiently keeping
track of active memory areas and not requiring inter-thread
coordination), as well as at recovery time (by avoiding a full
mark-and-sweep pass). Additionally, our memory manage-
ment scheme builds upon basic memory allocators and deals
with the issue of memory reclamation as well. Thus, our
scheme can take advantage of an efficient memory allocator
at its core.
The design of the buckets in our link cache shares some

similarities with the volatile metatdata hash table of RAM-
Cloud [48], the software cache of Li et al. [31], CLHT [7]
and the hash index of MICA [32]. Fundamentally, our cache
is different from alternatives through its use of HTM, and
in the sense that it is best-effort - we prioritize common
case performance over the certainty of being able to insert
a link. This however does not jeopardize the correctness of
our approach.
Other Memcached adaptations for NVRAM have been

proposed, but they use transactions extensively [6, 35, 43] or
they do not guarantee all completed requests are durable [55],
whereas NV-Memcached ensures all completed requests are
durable and limits transactions to the slab allocator code by
using our log-free hash table.

8 Concluding Remarks
In this paper, we introduced an approach yielding fast and
durable concurrent data structures. By using lock-free algo-
rithms, we avoid excessive writes to NVRAM. By using a
link cache, we mostly eliminate waiting for the completion
of write-backs, regardless of the data structure. By keeping
track of memory allocations and deallocations at a coarser
grained granularity, we avoid logging associated with these
operations at run time, at the cost of modest increases in
recovery time.

Yet, we do not claim our approach is a silver bullet.While it
is extremely effective for small and medium-sized concurrent
data structures, which are common in practical situations,

12



our method is somewhat less effective for large data struc-
tures. Moreover, our approach is applicable to concurrent
objects for which efficient lock-free algorithms exist. While
this is the case for most common data structures, our ap-
proach is not as generic as a complete transactional system.

References
[1] Kumud Bhandari, Dhruva R Chakrabarti, and Hans-J Boehm. Makalu:

Fast recoverable allocation of non-volatile memory. OOPSLA 2016.
[2] Dhruva R Chakrabarti, Hans-J Boehm, and Kumud Bhandari. Atlas:

Leveraging locks for non-volatile memory consistency. OOPSLA 2014.
[3] Andreas Chatzistergiou, Marcelo Cintra, and Stratis D Viglas. Rewind:

Recovery write-ahead system for in-memory non-volatile data-
structures. VLDB 2015.

[4] Himanshu Chauhan, Irina Calciu, Vijay Chidambaram, Eric Schkufza,
Onur Mutlu, and Pratap Subrahmanyam. NVMove: Helping Program-
mers Move to Byte-Based Persistence. INFLOW 2016.

[5] Shimin Chen and Qin Jin. Persistent b+-trees in non-volatile main
memory. VLDB 2015.

[6] Joel Coburn, Adrian M Caulfield, Ameen Akel, Laura M Grupp, Ra-
jesh K Gupta, Ranjit Jhala, and Steven Swanson. NV-Heaps: making
persistent objects fast and safe with next-generation, non-volatile
memories. ASPLOS 2011.

[7] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. Asynchro-
nized Concurrency: The Secret to Scaling Concurrent Search Data
Structures. ASPLOS 2015.

[8] Joel Edward Denny, Seyong Lee, and Jeffrey S. Vetter. Language-Based
Optimizations for Persistence on Nonvolatile Main Memory Systems.
IPDPS 2017.

[9] Facebook. RocksDB. http://rocksdb.org.
[10] Keir Fraser. Practical lock-freedom. PhD thesis, University of Cam-

bridge, 2004.
[11] Michal Friedman, Maurice Herlihy, Virendra Marathe, and Erez Pe-

trank. Brief Announcement: A Persistent Lock-Free Queue for Non-
Volatile Memory. DISC 2017 (to appear).

[12] Google. LevelDB. http://leveldb.org.
[13] Yonatan Gottesman, Joel Nider, Ronen Kat, Yaron Weinsberg, and

Michael Factor. Using Storage Class Memory Efficiently for an In-
memory Database. SYSTOR 2016.

[14] Timothy L Harris. A Pragmatic Implementation of Non-blocking
Linked Lists. DISC 2001.

[15] Steve Heller, Maurice Herlihy, Victor Luchangco, Mark Moir, William
N. Scherer III, and Nir Shavit. A Lazy Concurrent List-Based Set
Algorithm. In Principles of Distributed Systems, volume 3974. 2006.

[16] Maurice Herlihy. Wait-free Synchronization. ACM Trans. Program.
Lang. Syst., 13(1):124–149, 1991.

[17] Maurice Herlihy, Yossi Lev, Victor Luchangco, and Nir Shavit. A simple
optimistic skiplist algorithm. SIROCCO 2007.

[18] Maurice Herlihy andNir Shavit. The Art ofMultiprocessor Programming,
Revised Reprint. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1st edition, 2012.

[19] Maurice Herlihy and Jeannette MWing. Linearizability: A correctness
condition for concurrent objects. ACM Transactions on Programming
Languages and Systems, 12(3):463–492, 1990.

[20] Terry Ching-Hsiang Hsu, Helge Brügner, Indrajit Roy, Kimberly Kee-
ton, and Patrick Eugster. NVthreads: Practical Persistence for Multi-
threaded Applications. EuroSys 2017.

[21] Intel. Intel Architecture Instruction Set Extensions Programming
Reference. https://software.intel.com/sites/default/files/managed/b4/
3a/319433-024.pdf.

[22] Intel. Intel64 and IA-32 Architectures Optimization Reference
Manual. https://www-ssl.intel.com/content/dam/www/public/us/en/
documents/manuals/64-ia-32-architectures-optimization-manual.

pdf.
[23] Intel. Intel64 and IA-32 Architectures Software Developers Manu-

als Combined. http://www.intel.com/content/www/us/en/processors/
architectures-software-developer-manuals.html.

[24] Intel. NVM Library. http://pmem.io.
[25] Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli. Failure-atomic

persistent memory updates via JUSTDO logging. ASPLOS 2016.
[26] Joseph Izraelevitz, Hammurabi Mendes, and Michael L Scott. Lineariz-

ability of persistent memory objects under a full-system-crash failure
model. DISC 2016.

[27] Wook-Hee Kim, Jinwoong Kim, Woongki Baek, Beomseok Nam, and
Youjip Won. NVWAL: exploiting nvram in write-ahead logging. ASP-
LOS 2016.

[28] Aasheesh Kolli, Steven Pelley, Ali Saidi, Peter M Chen, and Thomas F
Wenisch. High-performance transactions for persistent memories.
ASPLOS 2016.

[29] Benjamin C Lee, Engin Ipek, Onur Mutlu, and Doug Burger. Archi-
tecting phase change memory as a scalable dram alternative. In ACM
SIGARCH Computer Architecture News, volume 37, pages 2–13. ACM,
2009.

[30] Se Kwon Lee, K Hyun Lim, Hyunsub Song, Beomseok Nam, and Sam H
Noh. Wort: Write optimal radix tree for persistent memory storage
systems. FAST 2017.

[31] Pengcheng Li, Dhruva R Chakrabarti, Chen Ding, and Liang Yuan.
Adaptive Software Caching for Efficient NVRAM Data Persistence.
IPDPS 2017.

[32] Hyeontaek Lim, Dongsu Han, David G Andersen, and Michael Kamin-
sky. MICA: a holistic approach to fast in-memory key-value storage.
NSDI 2014.

[33] Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai Qian, Yongwei
Wu, Weimin Zheng, and Jinglei Ren. DUDETM: Building Durable
Transactions with Decoupling for Persistent Memory. ASPLOS 2017.

[34] LPD-EPFL. memcached-clht. https://github.com/LPD-EPFL/
memcached-clht.

[35] Virendra Marathe, Margo Seltzer, Steve Byan, and Tim Harris. Persis-
tentMemcached: Bringing Legacy Code to Byte-Addressable Persistent
Memory. HotStorage 2017.

[36] Amirsaman Memaripour, Anirudh Badam, Amar Phanishayee, Yanqi
Zhou, Ramnatthan Alagappan, Karin Strauss, and Steven Swan-
son. Atomic In-place Updates for Non-volatile Main Memories with
Kamino-Tx. EuroSys 2017.

[37] Memcached. http://www.memcached.org.
[38] Micron. 3d xpoint technbology. https://www.micron.com/about/

our-innovation/3d-xpoint-technology.
[39] MonetDB. http://www.monetdb.org.
[40] MongoDB. http://www.mongodb.org.
[41] Iulian Moraru, David G Andersen, Michael Kaminsky, Niraj Tolia,

Parthasarathy Ranganathan, and Nathan Binkert. Consistent, durable,
and safe memory management for byte-addressable non volatile main
memory. TRIOS 2013.

[42] MySQL. http://www.mysql.com.
[43] Sanketh Nalli, Swapnil Haria, Mark D Hill, Michael M Swift, Haris

Volos, and Kimberly Keeton. An Analysis of Persistent Memory Use
with WHISPER. ASPLOS 2017.

[44] Aravind Natarajan and Neeraj Mittal. Fast concurrent lock-free binary
search trees. PPoPP 2014.

[45] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and
Wolfgang Lehner. Fptree: A hybrid scm-dram persistent and concur-
rent b-tree for storage class memory. SIGMOD 2016.

[46] Moinuddin K Qureshi, Vijayalakshmi Srinivasan, and Jude A Rivers.
Scalable high performance main memory system using phase-change
memory technology. ACM SIGARCH Computer Architecture News,
37(3):24–33, 2009.

13

http://rocksdb.org
http://leveldb.org
https://software.intel.com/sites/default/files/managed/b4/3a/319433-024.pdf
https://software.intel.com/sites/default/files/managed/b4/3a/319433-024.pdf
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://pmem.io
https://github.com/LPD-EPFL/memcached-clht
https://github.com/LPD-EPFL/memcached-clht
http://www.memcached.org
https://www.micron.com/about/our-innovation/3d-xpoint-technology
https://www.micron.com/about/our-innovation/3d-xpoint-technology
http://www.monetdb.org
http://www.mongodb.org
http://www.mysql.com


[47] Redis Labs. NoSQL Redis and Memcache traffic generation and bench-
marking tool. https://github.com/RedisLabs/memtier_benchmark.

[48] Stephen Mathew Rumble. Memory and object management in RAM-
Cloud. PhD thesis, Stanford University, 2014.

[49] David Schwalb, Tim Berning, Martin Faust, Markus Dreseler, and
Hasso Plattner. nvm malloc: memory allocation for NVRAM. ADMS
2015.

[50] Seunghee Shin, James Tuck, and Yan Solihin. Hiding the long latency
of persist barriers using speculative execution. ISCA 2017.

[51] Dmitri B Strukov, Gregory S Snider, Duncan R Stewart, and R Stanley
Williams. The missing memristor found. Nature, 453(7191):80, 2008.

[52] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan,
Roy H Campbell, et al. Consistent and Durable Data Structures for
Non-Volatile Byte-Addressable Memory. FAST 2011.

[53] Haris Volos, Sanketh Nalli, Sankarlingam Panneerselvam,
Venkatanathan Varadarajan, Prashant Saxena, and Michael M
Swift. Aerie: Flexible file-system interfaces to storage-class memory.
EuroSys 2014.

[54] Haris Volos, Andres Jaan Tack, and Michael M Swift. Mnemosyne:
Lightweight persistent memory. ASPLOS 2011.

[55] Xingbo Wu, Fan Ni, Li Zhang, Yandong Wang, Yufei Ren, Michel Hack,
Zili Shao, and Song Jiang. NVMcached: An NVM-based Key-Value
Cache. APSys 2016.

[56] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong
Yong, and Bingsheng He. Nv-tree: Reducing consistency cost for
nvm-based single level systems. FAST 2015.

[57] Yiying Zhang and Steven Swanson. A study of application performance
with non-volatile main memory. MSSR 2015.

14

https://github.com/RedisLabs/memtier_benchmark

	Abstract
	1 Introduction
	2 Background
	3 Avoiding frequent write-backs: the link cache
	3.1 Link cache overview
	3.2 Link cache implementation
	3.3 Illustration of the link cache's effectiveness

	4 Memory Management with NV-Epochs
	4.1 Overview
	4.2 Epoch-based memory reclamation
	4.3 Interface with NVRAM allocators
	4.4 Maintaining the set of active NVRAM memory areas
	4.5 Recovery after transient failures

	5 Log-Free Durable Data Structures
	5.1 The Case for Lock-free Algorithms
	5.2 Durable Data Structure Implementations

	6 Evaluation
	6.1 Experimental setup
	6.2 Data structure performance
	6.3 Link cache efficiency
	6.4 Active page table efficiency
	6.5 Recovery
	6.6 NV-Memcached

	7 Related Work
	8 Concluding Remarks
	References

