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Abstract
Non-volatile RAM (NVRAM) makes it possible for data
structures to tolerate transient failures, assuming however
that programmers have designed these structures such that
their consistency is preserved upon recovery. Previous ap-
proaches are typically transactional and inherently make
heavy use of logging, resulting in implementations that
are significantly slower than their DRAM counterparts.
In this paper, we introduce a set of techniques aimed
at lock-free data structures that, in the large majority of
cases, remove the need for logging (and costly durable
store instructions) both in the data structure algorithm and
in the associated memory management scheme. Together,
these generic techniques enable us to design what we
call log-free concurrent data structures, which, as we
illustrate on linked lists, hash tables, skip lists, and BSTs,
can provide several-fold performance improvements
over previous transaction-based implementations, with
overheads of the order of milliseconds for recovery after
a failure. We also highlight how our techniques can be
integrated into practical systems, by presenting a durable
version of Memcached that maintains the performance
of its volatile counterpart.

1 Introduction
Fast, non-volatile memory technologies have been in-
tensively studied over the past years, with various alter-
natives such as Memristors [53], Phase Change Mem-
ory [31, 49], and 3D XPoint [39] being proposed. Nev-
ertheless, these technologies are only now starting to be-
come commercially available. Referred to as non-volatile
RAM (NVRAM), they promise byte-addressability and
latencies that are comparable to DRAM, yet also non-
volatility and higher density than DRAM.

From a programmer’s perspective, NVRAM can
be read and written using load and store instructions,
identically to DRAM. However, a significant fraction of
software needs to be redesigned to work with NVRAM.
Unlike DRAM on the one hand, in order to take advantage
of NVRAM’s non-volatility, the stored data needs to be
in a state that allows the resumption of execution after
a transient failure (e.g., a power failure). Unlike block-
based durable storage on the other hand, the granularity
at which data is read and written is much finer, and the
latencies much smaller. Thus, strategies that might have
yielded the best performance in case of block-based
storage might not be appropriate for NVRAM.
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In this paper, we focus on adapting to NVRAM the
design and implementation of an essential component of
modern software systems: concurrent data structures [10,
13, 38, 40, 41, 43]. Ideally, in the NVRAM environment,
one would like concurrent data structures that (a) can be
recovered in case of a transient failure with states that
reflect all completed operations up to the failure, yet (b)
whose performance and scalability resemble those of their
counterparts designed for DRAM.

This task is challenging because neither data stored in
registers, nor in caches, is durable in the face of transient
failures. Moreover, by default, the program does not
control the order in which cache lines are evicted and
written to NVRAM. In order to enforce ordering, specific
(and expensive) instructions, which we refer to as sync
operations, must be used to ensure that a store is written
through to NVRAM at the desired point.

Previous approaches [2, 4, 6, 20, 25, 28, 30, 33, 37, 56]
to implementing data structures for NVRAM rely mainly
on transactions (either explicitly, or implicitly derived
from critical sections). With transactions, some form of
logging is necessary to cope with the possibility of a fail-
ure in the middle of a transaction. This log needs to be
reliably written before the transaction is executed. This
entails waiting for stores to be written to NVRAM be-
fore proceeding, which is particularly expensive: whereas
when using DRAM, one would at most wait for data to
be written to the L1 cache, now one has to wait for data
to be written all the way to NVRAM. Logging is thus a
major source of expensive sync operations.

We propose three techniques aimed at lock-free data
structures that remove logging entirely from data structure
operations and dramatically reduce logging in the memory
reclamation scheme. We focus on lock-free algorithms,
because they always keep the data structure in a consistent
state and thus do not inherently require logging in order
to maintain consistency across restarts.

The techniques we propose are: (1) the link-and-persist
technique, which allows atomically changing and per-
sisting a link in a data structure, (2) the link cache,
which allows persisting entire batches of modified links,
thus reducing the number of sync operations and (3) NV-
epochs, a coarse-grained epoch-based memory reclama-
tion scheme. We briefly describe these techniques below.

Link-and-persist applies the pointer marking tech-
nique [15] from concurrent programming to ensure atom-
icity in the face of crashes and recoveries. With link-and-
persist, when a data structure link is modified, a mark is



added to the link to signify that the value of the link might
not be durable yet. The link can then be persisted, and
the mark removed, by the modifying operation or by any
other operation (helping).

The link cache is an extremely fast, best-effort concur-
rent hash table stored in volatile memory, which contains
data structure links that have not yet been durably written.
When modifying the data structure, instead of ensuring
updated links are written to NVRAM, we add them to
the link cache. Thus, we avoid writing them to NVRAM
one at a time. When the durable write of one of them is
necessary for correctness, we batch the write-backs of all
links stored in our cache, which is significantly faster than
waiting for writes to complete one at a time.

Finally, memory allocation and reclamation is also a
central concern for concurrent data structures. When
working with NVRAM, the traditional approach for avoid-
ing persistent memory leaks or use-after-free problems is
again some form of logging. To avoid this, we propose
NV-epochs, a coarse-grained epoch-based memory recla-
mation scheme for durable and concurrent data structures.
NV-epochs groups memory nodes into memory areas, and
reliably and durably keeps track of the active (recently
used) memory areas instead of individual allocations.
This bookkeeping of active memory areas can be seen
as the only form of logging in our approach. However, we
make the observation that most of the time, allocation and
reclamation exhibit locality1. Therefore, logging can be
sidestepped entirely in this case, because the memory area
an operation accesses will already be marked as active,
and thus we do not have to wait for any additional store
for memory leak prevention. When recovering after a
failure, we simply need to traverse the memory areas that
were active at the moment of the crash and detect which
objects belonging to these areas are still linked in the
data structures. This is significantly faster than generic
mark-and-sweep garbage collection for instance [1].

Each of these three techniques is of independent inter-
est, and can be applied individually while maintaining
its associated benefits. Together, these techniques can be
used to produce what we call by abuse of language log-
free durable concurrent data structures, namely, durable
concurrent data structures that, in the large majority of
cases described above, require no logging whatsoever. As
we show in the paper, these data structures provide up to
an order of magnitude faster updates than a traditional log-
based approach, both in single-threaded and in concurrent
environments. Moreover, we achieve these benefits while
maintaining low recovery times in case of restarts: even
for gigabyte-sized structures, the time required to recover
the structure is of only a few milliseconds. In terms of
correctness, our implementations guarantee durable lin-

1For small and medium sized data structures, as we show, this covers
more than 99% of memory operations.

earizability [26]. Briefly, all the operations completed
before a crash are reflected after recovery.

We also highlight the practicality of our techniques by
developing NV-Memcached, a durable version of Mem-
cached [38] that is based on a lock-free, durable hash
table. NV-Memcached performs similarly to the volatile
memory version of Memcached.

Still, our approach is not a silver bullet. While it largely
removes the cost of logging for all data structure sizes, this
is especially beneficial for small and medium-sized data
structures. Indeed, (1) these data structures exhibit high
locality in memory allocation/deallocation, as we show
in the paper, and (2) the relative cost of sync operations
is higher for these data structures, as opposed to larger
structures, where other costs, such as traversal, dominate.

To summarize, the contributions of this paper are:
1. Link-and-persist: a methodology for designing data

structures with no logging in the main operations;
2. Link cache: a component that largely eliminates sync

operations in durable data structures;
3. NV-epochs: a durable memory management scheme

in which only a fraction of operations do any logging;
4. NV-Memcached, a durable version of Memcached

based on our techniques;
5. A library of log-free durable data structures, as well as

the link cache, NV-epochs, and NV-Memcached imple-
mentations, all available at go.epfl.ch/nvram.
The rest of the paper is organized as follows. In § 2

we recall relevant background. We describe our link-and-
persist technique in § 3. We discuss our link cache in § 4,
and memory management in § 5. We show experimental
results in § 6 and discuss related work in § 7.

2 Background
Traditionally, storage has either been fast, but volatile (i.e.,
data is lost in case of a power failure), as is the case with
DRAM, or non-volatile, but slow, as is the case with flash
storage for instance. However, more recently, a new class
of storage that promises low latency, byte-addressability,
and non-volatility is becoming available. NVRAM la-
tencies are expected to be somewhat larger than those
of DRAM, with writes being more expensive than reads.
Table 1 compares expected PCM and Memristor latencies
[51, 54, 59] to those of DRAM and caches.

As highlighted in the introduction, one of the main dif-
ficulties when working with NVRAM stems from the fact
that, by default, we do not control the order in which cache
lines to which we have performed stores are evicted from
the caches, and actually written to NVRAM. However,
there are current and upcoming instructions [21, 23] on In-
tel processors2, which allow us to ensure that a cache line
is indeed written to memory. In this paper, we consider

2In this work, we assume a TSO-like memory model; our work can
be extended to more relaxed memory models as well.

go.epfl.ch/nvram


L1 L2 LLC DRAM PCM Memristor
Read 2 6 15 50 50-70 100
Write 2 6 15 50 150 100

Table 1: Caches, DRAM, and NVRAM (projected) laten-
cies (ns).

the clwb instruction, because it (a) writes-back a cache
line without invalidating it—as opposed to clflushopt—
and (b) it is only ordered with respect to fences (or to
instructions that have an implied store fence, such as,
for example, Compare-and-Swap)—as opposed to clflush.
Property (b) is especially beneficial to performance, since
it allows multiple cache-line write-backs to proceed in
parallel [22]. We refer to one or more such instructions
followed by a store fence as a sync operation.

A machine may fail at any point in time (e.g., due to a
power failure), but can be expected to restart and resume
normal operation (transient failure). We assume, as is
commonly done in practice, that only the data stored in
durable main memory is still available after a crash. The
data that was in a processor’s registers or in the write-back
caches at the moment of the crash is not available after a
restart. Nevertheless, our approach would be highly bene-
ficial and remove the need for logging on an architecture
that maintains enough residual energy to flush the register
and the caches in case of a power failure as well.

Similar to related work [1], we assume that a region
of NVRAM can be mapped to the same region of virtual
memory across restarts. Alternatively, if this is not the
case, we can update persistent pointers at recovery time.

In the context of concurrent software, it is important to
define correctness conditions in the face of restarts. For
this purpose, we use the concept of durable linearizability
introduced by Izraelevitz et al. [26]. Essentially, a durably
linearizable implementation guarantees that the state of
the data structure after a restart reflects a consistent opera-
tion subhistory that includes all the completed operations
at the moment of the crash.

3 The Link-and-Persist Technique
In this section, we present our link-and-persist technique
for designing concurrent and durable data structures. We
first argue that such data structures should be lock-free,
then we detail the technique itself and how it can be used
to obtain correct lock-free data structure implementations
for NVRAM. We focus on implementations of linked
lists, skip lists, hash tables, and search trees, which are
commonly used in practice [10, 13, 38, 40, 41, 43]. Never-
theless, our techniques also apply to other data structures.
The Case for Lock-Free Algorithms. As noted by pre-
vious work [7, 26, 29, 46, 47], lock-free algorithms are a
good fit for the NVRAM environment. This is because
in lock-free algorithms, threads must ensure that the data
structure is in a consistent state at all times, so that the fail-
ure of any number of threads does not prevent remaining

threads from making progress. A beneficial consequence
is that, when used with NVRAM, lock-free algorithms
ensure that as long as threads’ stores are persisted in the
order in which they are issued (we show how this can be
relaxed), regardless of when a crash occurs, upon a restart
the data structure is in a consistent state that allows the
execution to resume. Therefore, we remove the need for
logging for the data structure itself, as opposed to transac-
tional approaches which inherently require logging.

Our Technique. In linked data structures, a new node
becomes visible when a link to it from an existing node is
atomically inserted. Once this happens, other operations
can see that the new node is present. Furthermore, in
many algorithms, a node becomes logically deleted when
a mark is atomically inserted on a link to signal deletion.
After this, all operations enquiring about the state of this
node will consider the node as no longer in the structure.
A node becomes unreachable when the last link to it from
another node in the data structure is atomically removed.

All these operations change the state of the node, and
determine the return value of other operations which de-
pend on the particular node. In the context of NVRAM,
in order to ensure durable linearizability, it is therefore
essential that all direct dependencies of an operation be
durably written before the operation is performed. Other-
wise, a scenario in which the user receives a return value,
the system restarts, and the stored data no longer reflects
the state observed by the user is possible.

In order to deal with this issue, the most straight-
forward approach is what we call the link-and-persist
operation. Essentially, when performing a link update
that changes the state of a node, the link is atomically up-
dated normally, but contains a mark to signal that there is
no guarantee its state is persisted. The updating operation
then persists the newly modified link, and once the link
is guaranteed to be persisted, it atomically removes the
mark. If another operation whose result depends on the
marked link occurs before the updating thread can persist
it and remove the mark, the second operation will try to
do these steps itself. This method involves no blocking,
and is thus suitable for all concurrent algorithm classes,
including lock-free and wait-free algorithms [17].

We illustrate our technique through the example of a
lock-free linked list that uses the algorithm proposed by
Tim Harris [15]. In the original (volatile) algorithm, in
the case of inserts, once a node is properly allocated and
initialized, we simply have to set the next pointer of its
predecessor to point to it. In the case of a delete, we
must first atomically flag the next pointer of the node to
be deleted to signal logical deletion, after which the next
pointer of its predecessor is set such that it bypasses the
node to be deleted. Figure 1 shows the extra steps taken
when inserting a new node using link-and-persist.
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Figure 1: Stages of inserting a node in a linked list using
link-and-persist. 1.) The new node (b) is created and its
predecessor’s (a) adjacent links (indicated by downward
arrows) are persisted. 2.) The predecessor node’s next
pointer is atomically made to point to the new node. A
mark (?) is added to the link to indicate it is not durable
yet. 3.) The new node’s incoming link is persisted. 4.)
The mark is removed from the incoming link.

Durable Implementations. We have used link-and-
persist to implement several durable data structures:
linked lists, hash tables, skip lists, and BSTs. These
structures model the set abstraction, and have methods to
insert, remove, and search for elements identified through
a unique key. We consider one implementation per data
structure type, starting from the concurrent algorithm
that has been shown to provide the best performance and
scalability [8]. Our linked list is based on Harris’ algo-
rithm [15], the hash table uses one Harris linked list per
bucket, the skip list uses the lock-free algorithm by Her-
lihy et al. [19], while the BST uses the algorithm proposed
by Natarajan and Mittal [45]. Other algorithms and data
structures can be similarly modified.

Correctness. Our data structures are linearizable, since
we start from linearizable algorithms and add only flushes,
which do not impact linearization points. We also ensure
two additional properties [12]. First, each update opera-
tion ensures that its changes are durable before returning.
Second, each operation O ensures that all operations O de-
pends on (that involve some of the same nodes and were
already linearized) are also durably linearized before O
makes changes. Together, these two properties ensure
durable linearizability, because they ensure that after a
restart, the data structure reflects a consistent cut [26] of
the history including all operations that completed be-
fore the crash and potentially some operations that were
ongoing when the crash occurred.

The first property is easily ensured by durably writing
any new edges or nodes introduced by an operation. Mak-
ing sure an edge e is durably written just means checking
if e is marked, and issuing write-backs only if e is not
yet durable. The second property is achieved because
operations ensure that (1) before an edge is modified, the
edge is durably written and (2) incoming and outgoing
edges (adjacent edges) of nodes involved in the operation
are durable before proceeding.

We detail point (2) on a linked list (similar consider-
ations apply for the other linked data structures). For a

successful search, we make sure adjacent edges to the
returned node are durably written before returning. For a
failed search, we make sure the node is durably unreach-
able before returning (e.g., in the case where a node is
marked but not yet durably unlinked). For the parse phase
of a modify operation (insert or delete) [8], we take the
same steps as for a search. For an insert, we also ensure
that adjacent edges to the predecessor are durable before
linking the new node. For a delete, we ensure that adja-
cent edges to the target node T and to T ’s predecessor
are durable before unlinking the target node. In all cases,
if an edge e has changed between the time e is read and
the time we try to durably write e, then the operation that
changed e made sure e was durable.

4 Limiting Write-Backs: the Link Cache
We now introduce our second technique, aimed at further
minimizing the number of sync operations in durable data
structures.

4.1 Link Cache Overview
As discussed in § 2, batching multiple cache line write-
backs is significantly faster than persisting them one at
a time. Therefore, we propose the following scheme:
when doing an update, do not immediately persist links,
but place them in a fast, volatile cache (the link cache),
and write back all the links in this cache when an oper-
ation that directly depends on one of them occurs. Of
course, this means that clients which have inserted links
into the link cache can only consider the operation com-
pleted once the link cache is flushed to NVRAM. The
changes of a link and the insertion of a corresponding
entry in the link cache must occur atomically (achievable
in a non-blocking manner by using hardware transactional
memory, or by marking the pointers to be inserted in the
link cache while the operation is ongoing). If a restart hap-
pens, modified links currently in the link cache might be
lost. However, this is not problematic: the fact that these
link addresses were in the cache at the moment of restart
means that no operation that directly depends on them
completed, and thus its outcome may or may not be visi-
ble. We thus maintain the durable linearizability property.
In addition, an atomic update of an ongoing operation not
being durably recorded does not leave the data structure
in an incorrect state after a restart. Where ordering of
durable updates is necessary, we enforce it in the data
structure algorithm (see § 3). The link cache is practical
as long as inserting an entry in the cache is faster than
waiting for a cache line to be written back to NVRAM.

4.2 Link Cache Implementation
Our main aims for the link cache are small memory foot-
print, non-blocking operation, and fast insertions. With
these requirements in mind, we chose to make insertions
in the cache best effort. The cache is only useful if it can
improve the time updates spend waiting. Therefore, if an
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Figure 2: A bucket in the link cache.

update attempts to insert an entry in the cache, but does
not succeed on the first try, it gives up and persists the
modified link itself instead of waiting. Thus, link cache
insertions have constant worst case performance.

Our hash table has a configurable (but fixed throughout
the execution) number of buckets. Each bucket spans
exactly one cache line, and can store up to 6 links. Links
concerning a particular key map to one and only one
bucket. Figure 2 details the contents of a bucket. The
first two bytes are used to signal whether the bucket is
currently being flushed. The next two bytes are used to
store the current state of each of the entries in the bucket.
An entry can be free, pending or busy. We next store the
6 keys associated with the links in the bucket. In order to
be able to fit 6 entries in a single cache line, instead of
storing the entire key, we only store a 2-byte hash for each
of the keys. While this might result in false collisions,
they are extremely unlikely. With 32 buckets, we have a
hash space of size 2M. Even if false collisions do occur,
this is not problematic: we would simply be triggering a
flush of the links in the cache when this might not have
been strictly necessary. The hashes therefore require 12
bytes in each bucket. The remaining 48 bytes in the cache
line are used to store the addresses of the 6 links.

The interface of the link cache has three operations,
which we discuss in the following.
Try Link and Add. If there is space in the link cache,
this operation atomically modifies the link in the data
structure and inserts an entry in the link cache. The
operation first tries to reserve an entry in the link cache.
To this effect, it tries to atomically change the state of an
entry from free to pending. If no free entry exists, the link
cache is being flushed, or the attempt to reserve an entry
is not successful, the caller is notified that the operation
did not succeed and that it should persist the link itself.
Once an entry is reserved, we set the corresponding key
and link address in the link cache. Next, we try to update
the link in the data structure. We insert the new link, but
use a bit to mark the fact that for now, this link has been
neither persisted, nor has its addition to the link cache
been marked as completed. If the link update fails, we set
the state of the link cache entry to free and return failure
to the caller. We next set the state of the entry in the link
cache to busy (to mark the fact that we have added the
key and link address, and that the link address in fact
contains the value that we want to persist). Finally, we
remove the mark from the link in the data structure.

The fact that this operation is best effort, and the fact
that we do several atomic updates (link marking, transi-

tioning between multiple states) just in order to be able
to handle concurrent readers make this operation an ideal
candidate for the use of hardware transactional memory
(HTM). In fact, we first try to execute a fast-path HTM-
based operation before reverting to the code presented
above. In the HTM path, we do not need to insert a
marked link into the data structure, and we can avoid
going through the pending state in the link cache.

Flush. This operation writes all the finalized entries in
a bucket to NVRAM. The operation first atomically sets a
flag to signal that it is in the process of flushing a bucket.
The flush operation then issues write-backs for the link
addresses in the busy entries in the bucket one by one
(without waiting for the write-backs to complete) and
sets the state of these entries to free. Next, the operation
checks if any of the entries we have not written back have
become busy (completed) in the meanwhile, and if yes,
issues write-backs for them as well. This is repeated until
no new busy entries appear. The thread then waits for
the write-backs to complete by issuing a fence, resets the
flushing flag, and returns.

Scan. The scan operation is given a key and searches for
any link pertaining to this key in the link cache. If such an
entry is found in busy state (i.e., the insertion of the link
was finalized), a flush is triggered. If an entry is found but
is in pending state, the operation checks whether the new
pointer has been inserted into the data structure. If this is
the case, the current operation’s linearization point should
be after that of the operation currently inserting into the
link cache, and therefore the current operation triggers a
write-back of the new value of the link. Otherwise, the
current operation’s linearization point is before that of the
update, and no further action needs to be taken. In order
to guarantee durable linearizability, every data structure
operation needs to call the scan method for its key, as well
as for its predecessor in the structure in case of updates.
However, this is as fast as reading two cache lines.

Illustration: Link Cache Effectiveness. We illustrate
the effectiveness of the approach using the same linked list
example employed in the previous section. The schedule
of operations in our example, as well as the way the
link cache is constructed are presented in Figure 3. We
assume an initially empty link cache, and we only depict
the effects of operations that change the state of the data
structure or the link cache. Normally, updates would
have to wait for one link to be persisted in the case of
the insert operations, and two links in the case of the
delete operation (one for marking and one for deletion).
However, in this example, by using the link cache, we
have replaced writing back 4 cache lines one at a time by
a single batch of 3 cache line write-backs.
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Figure 3: Example of how the link cache is constructed.

5 Memory Management with NV-Epochs
We now address another issue that is unavoidable when-
ever inserting or removing nodes in a linked concurrent
data structure: memory management.

5.1 Overview
Two separate steps need to be performed both when insert-
ing and removing a node: in case of an insertion, memory
for the new node is first allocated and initialized, after
which the node is linked into the data structure; in case of
a deletion, the node is first unlinked from the data struc-
ture, and later, when we are sure no references to it exist,
its memory is freed. If a restart occurs between these two
main steps both in case of an insertion and a removal, a
persistent memory leak occurs: we have allocated data
that is not linked anywhere in our data structure.

The typical way of addressing the issue in the context
of NVRAM is to use some form of logging: before allo-
cating and linking, we log our intention, as we do before
unlinking and freeing memory. Once the operation has
(durably) completed, the log entry can be removed. How-
ever, this entails an extra write to NVRAM per update.
In addition, this write needs to complete before we can
proceed with the update, thus producing a non-negligible
increase in the latency of updates.

In order to avoid waiting for the durable log to be writ-
ten at each allocation or deallocation, we propose keeping
track of coarser-grained active memory areas instead
of keeping track of individual allocations/deallocations.
Intuitively, when allocating, threads often reserve larger
contiguous memory areas from which they serve user
requests; thus, consecutive allocations tend to belong to
the same memory area. In addition, memory reclamation
schemes keep track of which objects have been unlinked,
and periodically free those to which no references are held.
This reclamation step is only run periodically for perfor-

Active areas
0xa000

Insert(k1)
Allocate 

new node n1
n1 will be allocated

at addr. 0xa720
mem_area(0xa720) 
not marked as active

persistently mark 
mem_area( 0xa720) as active;

mark 0xa720 as allocated
(no waiting for persistence)

Active areas
0xa000

Insert(k2)
Allocate 

new node n2
n2 will be allocated

at addr. 0xa740
mem_area(0xa740) 

already marked as active

mark 0xa740 as allocated
(no waiting for persistence)

Active areas
Thread T

return

return

Figure 4: Illustration: thread T performs two inserts.
While both allocate memory, with our approach, only the
first allocation performs a durable write.

mance considerations (typically, when a certain number
of unlinked objects have been collected). Therefore, we
tend to free multiple nodes at the same time. Out of these,
it is usually the case that several of them map to the same
memory area. Thus, there is a certain degree of locality
in deallocation as well. Hence, if instead of logging every
node we unlink from the data structure, we only keep
track of the memory areas from which the unlinked nodes
come from, we can expect significant savings in term of
write-backs to NVRAM: most of the time, the memory
area will already be marked as active. We illustrate the
potential benefits of the approach in Figure 4.

While allowing us important time savings at run time,
this method does defer some work for when we need to
recover. In particular, we need to go over the allocated
memory addresses in the active areas at the time of shut-
down, and check if they indeed represent nodes that are
linked into the data structure. To be able to do this, we also
make the assumption data structure nodes belong to mem-
ory areas which store no other type of data. To achieve
this, we use an allocator specifically for such nodes.

We first briefly describe the principles of the memory
reclamation scheme that we employ, after which we go
into more details into how we keep track of the active
memory page set, and how we recover after a failure.

5.2 Epoch-Based Memory Reclamation
Epoch-based memory reclamation [11] is based on the
following principle: if an object is unlinked, then no refer-
ences to the object are held after the operations concurrent
with the unlink have finished. One method of using this
principle in practice (and which we use in our reclamation
scheme) is to provide each thread with a local counter,
keeping track of the epoch the current thread finds itself
in. The epoch of a thread is incremented when the thread
starts an operation, and when it completes it. Thus, if the
current epoch number of a thread is odd, the thread is cur-
rently active and in the middle of an operation. We collect
multiple objects, and free them when the vector formed
by the current epochs of the threads is larger than the one



when any of the objects were unlinked (only the epochs
of threads that were active at the moment of unlinking
need to be larger). We refer to the set of unlinked nodes
which we attempt to free together as a generation.

5.3 Interface with NVRAM Allocators
Memory allocators usually reserve a large contiguous
address space, which is then recursively split into smaller
chunks. The chunk from which an object is allocated
depends on the object’s size. These chunks of contiguous
memory are generally referred to as allocator pages. Since
smaller pages from which data structure nodes are directly
allocated are part of larger pages, we can configure the
granularity of the pages which we keep track of. High-
performance concurrent allocators usually partition the
memory space for allocations among threads, such that
there is minimal communication necessary between them:
pages are assigned to individual threads.

Existing persistent allocators provide the capability of
atomically allocating and linking (or unlinking and deallo-
cating) objects, which, as discussed, is generally achieved
through some form of logging. We do not require this
capability: we only require that the persistent allocator
is able to correctly maintain its durable metadata when
allocating or deallocating. Moreover, in our case, the last
write-back (which marks the memory as allocated or free
in a thread’s local allocator metadata, and is usually the
only write-back the allocator issues) does not have to be
completed before proceeding: in the case of an allocation,
the data structure algorithm will have to wait for the write-
backs to complete after the memory is initialized, while in
the case of deallocations the memory reclamation scheme
waits for all the deallocations it issues at once to be com-
pleted. Thus, in most cases, when the allocator only does
one store to thread-local data, we do not have to issue
a sync operation for the allocator metadata. Based on
its metadata and our structures maintaining active pages,
the allocator can recover its state in case of a restart. An
existing persistent concurrent allocator can be used with
our system, with the small changes we mentioned. We
also require the allocator to provide a method that re-
turns the next node address to be allocated. As allocators
generally assign larger chunks of memory to individual
threads, and threads do not “steal” memory from one an-
other, adding this method is trivial. We use a modified
version of jemalloc [27], with write-backs inserted when
updates to allocator metadata occur to model the run-time
performance of persistent allocators.

5.4 Tracking Active Memory Areas
In our approach, each thread keeps a set of active memory
pages in a structure called the active page table (APT). For
each memory page, we also store some metadata deter-
mining when the page can be considered as no longer ac-
tive and can thus be removed from the set. This metadata

consists of (i) the largest epoch at which this thread has un-
linked memory belonging to the page from the data struc-
ture, and (ii) the largest epoch at which this thread has
allocated memory belonging to this page. The addresses
of the memory pages need to be stored durably (meaning
that when we insert a new page, we have to wait for the
write-back of the address of the page to complete before
continuing), while the metadata is only needed for remov-
ing table entries, and is not needed in case of a restart.

We attempt to trim a thread’s active page table when
it exceeds a certain size. For this purpose, the metadata
associated with each page is used as follows. A page
from which unlinks have happened is active until the
epoch-based memory reclamation scheme is guaranteed
to have freed all unlinked nodes. This can be verified by
having the reclamation scheme keep track of the epoch
vector of the most recent generation of objects that were
collected. A page from which allocations have happened
is active until the insert operation has finished, i.e., while
the current epoch of the thread is equal to the last epoch at
which a node allocation from this page took place. When
using a link cache, we also have to ensure that it contains
no entries pertaining to the page under consideration. For
this reason, the operation that attempts to trim the active
page table issues a link cache flush as well. If all the un-
linked nodes have been freed, and all the allocated nodes
have been linked, the page can be removed from the table.

We use a separate persistent allocator for the active
memory page table. Allocations for the table happen very
infrequently (we preallocate a number of entries for each
thread at start-up, and allocate multiple entries at once
when more space is needed; in addition, tables usually do
not grow beyond a certain size, and thus no allocations are
needed from a certain point). We require that this second
allocator provide the interface previous work on NVRAM
memory allocators does [6, 24, 42, 51, 56]. In this
instance, we used the allocator provided with nvml [24].

5.5 Recovery after Transient Failures
On recovery, we must make sure that there are no nodes
that are not linked in the data structure but are allocated.

There are two approaches to verifying this, both of
which can be parallelized in order to decrease recovery
time. The efficiency of each method depends on the size
of the data structure, the complexity of the search method,
and the size of the memory space that needs to be verified.
In both cases, we assume a well-formed data structure.
That is, the recovery procedure should first ensure that
the data structure is brought to a consistent state before
attempting to remove memory leaks. This step is not
necessary for any of the data structures we developed.

The first approach is to go over all the node addresses
in the active memory pages at the moment of the crash,
and, if an address n is allocated, search the data structure
for n’s key. If (i) the search returns a result and (ii) the
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Figure 5: Update throughput of data structures implemented using our techniques (1 and 8 threads). Values are
normalized to throughput of redo log based implementations (1 and 8 threads, respectively).

address of the returned node is the same as n, we leave the
node as allocated. Otherwise, we free the node. Condition
(ii) is necessary because we might have an allocated but
uninitialized node. Therefore, a node with the key that
we retrieve from that uninitialized memory might indeed
exist in the data structure, but it might not be pointing
to this uninitialized memory. The second approach is to
traverse the structure only once, and for each node check
if its address belongs to the set of active pages. If this is
the case, store the address of the node in a volatile memory
buffer. Next, go over all the allocated node addresses in
the active memory pages, and check if they are in the
volatile memory buffer. If they are not, it means they are
not linked in the data structure and can be deallocated.
Both of these approaches can be parallelized.

We note that in our implementation, it cannot be the
case that a node is linked into the data structure, but not
marked as allocated. This is because before linking a node
in the data structure, we issue a store fence that ensures
that the contents of the node, as well as the allocator
metadata (for which we issue write-backs, but do not
wait for last one to complete when calling the allocation
method) are durably written.

6 Evaluation
We now study the impact our proposed techniques have
in practice. We look at the overall performance improve-
ments, as well as at the benefits of individual techniques.

6.1 Experimental Setup
We run experiments on an Intel Xeon machine having four
E7-4830 v3 12-core processors operating at 2.1–2.7 GHz,
with cache sizes of 32KB (L1), 256KB (L2), and 30MB
(LLC, per die). We work with key-value pairs, both of
which are 8B in size. Nodes are cache-aligned to 64B.
Larger values can be accommodated by using indirection
instead of directly storing values inside nodes. Shown
values are the median of 5 repetitions.

As neither NVRAM with latencies comparable to
DRAM, nor processors providing the clwb instruction
are available yet, we simulate clwb by writing data nor-
mally, and then pausing for an appropriate number of cy-
cles, similar to previous work [3, 6, 33, 55, 56]. The num-
ber of cycles to pause is chosen so as to account for the
increased latency of NVRAM (we assume an NVRAM

write latency of 125ns, which is an average of the pro-
jected values). Intel reports issuing several flushes with
clflushopt can be up to an order of magnitude faster
than flushing them one at a time using clflush [22].
We assume similar performance characteristics for the
clwb instruction. In order to account for the benefit
of flushing several cache lines at a time over flushing
them one by one, we inject the artifical pause described
above only once per batch of cache lines being written to
NVRAM (e.g., only once per flush of the link cache).

6.2 Data Structure Performance
We look at the run time behavior of our data structures.
We focus on updates, as it is these operations that must
be durably recorded in NVRAM. We compare our imple-
mentations with alternatives that use lock-based critical
sections (and thus use logging). We find that for such data
structures, an approach that uses redo logging provides
good performance in addition to ensuring durable lineariz-
ability. We use the algorithms that we find perform best
for each data structure: the lazy linked list [16], a lock-
based skip list by Herlihy et al. [18], bst-tk [8], and a
hash table with a lazy linked list per bucket. We manually
apply logging to each data structure, taking advantage
of knowledge of the algorithms so as to minimize the
number of syncs while maintaining correctness. We do
this for fairness of comparison, as the alternative of using
a generic transactional/logging framework would have
likely resulted in more syncs and thus worse performance.

In Figure 5, we show the increase in the number of up-
dates per second obtained by using our structures relative
to log-based implementations. We use a workload where
50% of the operations are inserts of random keys, while
50% are removes of random keys, and show results for 1
and 8 concurrent updating threads. We show relative im-
provements, as the precise latencies are dependent on the
assumptions made about clwb instruction performance,
as well as NVRAM store latencies.

Our method yields important benefits regardless of the
data structure type. In particular, for the skip list, where
in a log-based implementation a logarithmic number of
locks are held while a logarithmic number of updates
must be logged, our approach results in an order of mag-
nitude increase in performance. We note that for small
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Figure 6: Update throughput compared to redo log based
implementation for various NVRAM write latencies.

and medium sized data structures, we obtain significant
improvements by applying our techniques. For large struc-
tures however, our improvements become less impressive.
There are two main reasons for this. The first is that as
the structure size increases, the latency of an update be-
comes dominated by the time needed to reach the point
in the data structure where the modification needs to be
made, both due to the need to traverse more pointers, and
because when the structure does not fit in the caches any-
more, reads become more expensive. In the case of the
linked list in this experiment, it is in fact the only factor
that is responsible for the decrease in latency improve-
ment. The second reason has to do with a decrease in the
efficiency of our active page tables for deallocations as
the structures become large. We discuss why this is, as
well as ways of alleviating the issue in § 6.3. In addition,
as the number of concurrent updating threads increases,
the link cache becomes somewhat less efficient (also dis-
cussed in § 6.3). Thus, for high degrees of concurrency,
we can turn the link cache off.

In our experiments, we use NVRAM latencies compara-
ble to those of DRAM. Nevertheless, current technologies
still have significantly larger latencies. We therefore also
perform a simulation where we increase write latency
(Figure 6). These measurements are representative of
structures which are small enough for reads to be served
from cache. As NVRAM write latency increases, our ap-
proach becomes much more effective: the ratio between
our throughput and that of a log-based implementation
becomes inversely proportional to the ratio between the
number of sync operations in the two approaches.

To summarize, it is important to note that while the pre-
cise magnitude of the improvements of our approach may
depend on the characteristics of the NVRAM technology
being used, these experiments show that our approach is
beneficial for all the situations we have considered.
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Figure 7: Update throughput compared to an implemen-
tation oblivious of NVRAM.

We also compare our approach to algorithms aimed
at volatile memory, which do not concern themselves
with data durability. Briefly, the per-operation overheads
related to durability introduced by our approach are con-
stant. While these might account for a non-negligible frac-
tion of the operation latency for small structures, for larger
structures, as total operation latency increases, these be-
come less apparent. This is illustrated on a linked list in
Figure 7. Thus, in terms of performance, our approach
represents a middle ground between volatile data struc-
tures and log-based durable approaches.

6.3 Performance: a Closer Look
We now explore the impact each of our techniques has on
overall performance.
Link-and-Persist and Link Cache. We evaluate the
individual impact on performance of the link-and-persist
technique and of the link cache. We measure the through-
put of each data structure with the log-based implemen-
tation, with a log-free implementation that uses link-
and-persist and with a log-free implementation that uses
the link cache (all using identical memory management
schemes). We then normalize the throughput of the log-
free implementations with respect to the log-based imple-
mentation to determine the change in performance. We
use an update-only workload, with 1024-element data
structures. The link cache occupies 32 cache lines.

Figure 8 shows the results. As a result of removing
logging, algorithms using link-and-persist outperform
log-based alternatives for all structures, both in single-
threaded and in concurrent scenarios. Moreover, in
most cases, the link cache brings an additional increase
in performance with respect to the link-and-persist
implementation, due to its batching of write-backs.
NV-Epochs. We evaluate the efficiency of our active
page table. The active page table is only efficient if it
saves sync operations: i.e., if an important fraction of
updates do not have to write active page table entries.

We consider 4KB memory pages, and we try to trim
an active page table when it exceeds 16 elements. We
measure the fraction of allocations and deallocations that
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Figure 9: Active page table hit rates and throughput
improvements due to NV-epochs.

do not need to add an entry to the active page tables (that
is, the fraction of hits in the active page table). Results
are shown in Figure 9.a. In this experiment, we have used
a skip list. Results are similar for other data structures, as
the important factor is the data structure size.

We note that the hit rate is close to 100% for alloca-
tions, regardless of structure size. In case of deallocations,
the hit rate starts decreasing after the structure exceeds
64 MB (more than 1M nodes). This is because as the
amount of used memory increases, there is less locality
in memory reclamation steps. However, fast memory
allocation and deallocation is particularly important for
small data structures that fit in the write-back caches,
which have small access latencies. In such situations, our
approach is effective for both types of operations.

This conclusion is reflected in the throughput ob-
served when using NV-epochs (Figure 9.b): for small
and medium-sized structures, NV-epochs can increase
throughput several-fold. For large structures, when keep-
ing track of memory at 4KB granularity, NV-epoch’s ef-
fectiveness decreases. However, the granularity at which
we keep track of active memory areas is adjustable. Larger
memory areas result in higher hit rates and throughput
improvements, at the expense of increased recovery time.

6.4 Recovery
We now measure the time it takes to recover a data
structure. We simulate a crash by first stopping execution
of the algorithm at an arbitrary point. Then, we ensure
the structure’s data is not in the write-back caches (by
purging the caches). Next, we run the recovery process
which first brings the data structure to a consistent state
and then traverses its active pages to free allocated-but-
not-reachable nodes3. We show recovery times for the
various structures as a function of their size in Figure 10.

For hash tables, BSTs, and skip-lists, which have fast
search methods, recovery is extremely efficient: even in
structures with 4M elements, we can recover in less than
5ms. Recovery time for such structures is two orders

3After recovery, new threads can spawn and resume execution at a
"safe" point (a point in the instruction stream from which execution can
continue regardless of when the crash occurred). Determining such safe
points in general is outside the scope of this paper, but for our specific
case, any point in-between two data structure operations is a safe point.
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Figure 10: Data structure recovery times.
of magnitude lower than doing a full mark-and-sweep
pass in this environment [1]. In the case of the linked
list, which has a linear search method, in order to avoid
repeated passes over the entire structure, we employ a
strategy similar to mark-and-sweep. Recovery in this case
is somewhat slower: a linked list with 64K elements can
be recovered in 16ms. For all structures, recovery time
increases with data structure size. Small structures tend to
have a smaller number of active pages at any point in time.
In addition, search operations must traverse more pointers
for larger structures, and data is less frequently present in
the higher-level caches. We believe the observed recovery
times are acceptable in case of a reboot.

6.5 NV-Memcached
We now show how our techniques can be applied in a
larger context by developing an object caching system
for durable memory: NV-Memcached. The main idea
behind NV-Memcached is to make Memcached durable
by replacing its core data structures—the hash table
and the slab allocator—with durable versions. This
transformation entails interesting technical challenges.

First, Memcached uses a lock-protected sequential hash
table; thus replacing it with our durable non-blocking hash
table would negate the latter’s lock-freedom. We solve
this challenge by basing NV-Memcached on memcached-
clht [34], a version of Memcached that avoids protecting
the hash table with locks by employing a concurrent hash
table—CLHT [8], and replacing CLHT with our log-free
durable hash table.

The second challenge is related to the recovery of items.
With a naive implementation of a durable slab allocator,
it is possible for memory leaks to occur after a restart.
An item can be allocated, but not yet linked in the hash
table, or an item can be unlinked from the hash table but
not yet marked as free in the allocator. We address this
issue with a similar approach to our active page technique
(§ 5): we keep track of active slabs. During recovery, we
iterate over each thread’s active slab table and free any
memory which is marked as allocated but not yet or no
longer reachable from the hash table.

We compare the performance of NV-Memcached
to that of Memcached and memcached-clht using
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Figure 11: Performance and warm-up time comparison
of Memcached and NV-Memcached.

memtier-benchmark [50]. The benchmark runs for a
predetermined amount of time, issuing a mix of get and
set operations using keys drawn uniformly at random
from a given key range. The key range and the ratio of
get to set operations are configurable. Before each
experiment, we warm up the cache by inserting items
covering half of the key range. Both the server and the
client are run with the default number of threads (4). The
results are averaged over 5 runs for each configuration.

The first experiment compares the throughput of the
three systems for different key ranges, under a 1:4 set to
get ratio. Figure 11 shows that there is no notable perfor-
mance drop between Memcached, memcached-clht and
NV-Memcached. Thus, our techniques remain practical
when applied to real-world applications.

The second experiment compares, for three different
key range sizes, the warm-up time of Memcached and
memcached-clht (the time it takes to populate the cache
with half of the key range) to the recovery time of NV-
Memcached (the time it takes to recover after a restart).
Figure 11 shows that populating a (volatile) Memcached
or memcached-clht instance with items can take up to
three orders of magnitude more time than recovering a
NV-Memcached instance of the same size. This justifies
the practicality of a non-volatile memory caching service—
recovering such a service after a machine restart takes just
a fraction of the time necessary for its volatile counterpart
to get re-populated (and thus be useful again).

7 Related Work
Several approaches have used transactions as a means
of interaction with NVRAM [2, 6, 9, 14, 25, 28, 30, 33,
37, 56]. The benefits of transaction-based approaches
are generality and ease of use. Yet, their inherent and
significant overhead has been recently highlighted (e.g.,
[52]), and several attempts to alleviate the problem
have been proposed. Izraelevitz et al. [25] introduce an
approach in which by reliably keeping track of the last
executed store instruction at each thread, one is able to
simply complete the execution of critical sections after a
restart. While efficient if write-back caches are persistent,
the approach otherwise requires a write to the log for
each store in critical sections. Kolli et al. [30] focus on
static transactions in lock-based applications, and attempt
to minimize persist dependencies in order to limit waiting

time. The authors also show how the commit stage of
transactions can be performed while not holding any
locks. Similarly, Kamino-Tx [37] uses a copy-on-write
technique, and avoids logging in critical sections.
DudeTM [33] optimizes redo logging by first executing
the transaction and obtaining a redo log in volatile mem-
ory, then atomically flushing the redo log to persistent
memory, and only then modifying the original data.

In this paper, we go beyond optimizations to logging:
we provide a method that in the common case when lo-
cality is preserved, allows us to circumvent such logging
altogether in the context of concurrent data structures.

A number of efforts [2, 4, 20] have been dedicated
to the generation of correct durable applications for
NVRAM from existing code. These approaches generally
assume lock-based code. Due to their general-purpose
nature, they incur additional overheads when compared
to our method, in particular due to logging.

Several proposals for indexing trees for NVRAM have
been made [5, 32, 48, 54, 58]. However, they either re-
quire logging in some form, or do not address potential
memory leaks during new node creation. In addition,
the techniques cannot be easily generalized to other data
structures. Friedman et al. [12] introduce lock-free algo-
rithms for durable queues, but do not go beyond this data
structure, or consider memory management. Other work
advocating lock-free algorithms either assumes durable
caches [46, 47], or automatically generates durable algo-
rithms that issue syncs after each update [26].

The problem of general memory allocation and recla-
mation for NVRAM has also received attention. Generic
persistent memory frameworks [2, 6, 35, 56] handle
allocation and reclamation as part of the transaction
mechanisms they provide, and thus rely on logging.
nvm_malloc [51] provides an interface to allocate and
free persistent memory, but because of fine-grained ac-
counting, incurs significant overheads for each allocation
and deallocation. Makalu [1] and NVthreads [20] also
keep track of allocator metadata at a coarser-grain level.
However, they incur higher costs at recovery time, as they
require a garbage collection pass over the entire memory.
Unlike all these approaches, we propose a method that is
highly tuned to concurrent data structures. Thus, we are
able to minimize overheads at both run time and recovery
time. Our approach in fact builds upon basic memory
allocators, and handles concurrent memory reclamation
as well. Thus, our scheme can take advantage of an
efficient durable memory allocator at its core.

Other Memcached adaptations for NVRAM have been
proposed, but they use transactions extensively [6, 36, 44]
or they do not guarantee all completed requests are
durable [57], whereas NV-Memcached ensures all com-
pleted requests are durable and limits transactions to the
slab allocator code by using our log-free hash table.
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