
The Inherent Cost of Remembering Consistently
Nachshon Cohen

EPFL
Rachid Guerraoui

EPFL
Igor Zablotchi

EPFL

ABSTRACT
Non-volatile memory (NVM) promises fast, byte-addressable and
durable storage, with raw access latencies in the same order of mag-
nitude as DRAM. But in order to take advantage of the durability of
NVM, programmers need to design persistent objects which main-
tain consistent state across system crashes and restarts. Concurrent
implementations of persistent objects typically make heavy use
of expensive persistent fence instructions to order NVM accesses,
thus negating some of the performance benefits of NVM.

This raises the question of the minimal number of persistent
fence instructions required to implement a persistent object. We an-
swer this question in the deterministic lock-free case by providing
lower and upper bounds on the required number of fence instruc-
tions. We obtain our upper bound by presenting a new universal
construction that implements durably any object using at most one
persistent fence per update operation invoked. Our lower bound
states that in the worst case, each process needs to issue at least
one persistent fence per update operation invoked.

1 INTRODUCTION
Non-volatile memory (NVM) is fast, byte-addressable memory that
preserves its contents even in the absence of power. Recent years
have seen significant research into NVM [32, 38, 40, 42], but the
technology is only now starting to become commercially available.

NVM shares similarities with both traditional stable storage
and DRAM. Like stable storage, NVM allows programs to persist
their state across power failures or machine restarts. Unlike stable
storage, NVM is byte-addressable and fast (with access times in
the same order of magnitude as DRAM [46]). In this sense, NVM
promises applications that are durable and fast, for they would not
need to access slow storage to persist their state or during recovery.

Yet, the task of designing fast persistent objects (as building
blocks of persistent applications) is complicated by two factors:
(1) Processor registers and caches are expected to remain volatile

(transient) for the foreseeable future. Therefore, simply writing
to a memory location is not sufficient to ensure the persistence
of its contents (even if the memory location is in NVM), because
thewrite instructionmight, for instance, be satisfied in the cache
and thus lost in the case of a crash.

(2) There is a priori no guarantee on the order in which cache lines
are written back to NVM. However, program correctness might
rely on such a guarantee, especially in a concurrent setting,
which is the focus of this paper.

Due to these two factors, programming for NVM requires the use
of flush instructions to force cache line write-backs, as well as of
expensive fence instructions to ensure ordering among such flushes.

As we explain in Section 2, it is these latter fences that dominate
the cost of NVM write-backs, which raises an interesting ques-
tion: What is the minimum number of persistent fences required
to implement a persistent object? In this paper, we answer this
question for concurrent lock-free objects, by providing both upper

and lower bounds on the number of fences required to implement
them persistently.

We focus on the lock-free case because it provides an interesting
trade-off. On the one hand, intuitively, lock-free objects can be im-
plemented with a small number of fences, because they are already
required to always be in a consistent state, such that progress can
be made despite the failure of any number of processes. A priori,
durability has the related requirement of an object state being con-
sistent, no matter when a crash may occur. On the other hand, it is
this very need for consistency that makes lock-free objects require
at least a minimal number of fences for each operation invoked, as
we show in the paper (we discuss lock-based objects in Section 8).

The correctness (safety) property we consider in this paper is
durable linearizability [28]. Durably linearizable objects satisfy the
standard linearizability property: every operation seems to happen
instantaneously at a linearization point between its invocation and
response, in separation from any other process in the system. In
addition, after a full-system crash, the state of the object must
reflect a consistent operation subhistory that includes all operations
completed by the time of the crash.

For the upper bound, we propose a new universal construction
called Order Now, Linearize Later (onll) that takes a deterministic
sequential specification of an object O and produces a lock-free
durably linearizable implementation of O that uses at most one
fence per operation invoked, in the worst case. Our construction in
fact guarantees detectable execution [14], an even stronger property
than durable linearizability, which ensures in addition that, upon
recovery, processes can determine which operations were linearized
before the crash and which operations were not.

In our universal construction, we distinguish between read-only
and update operations. An update operation op proceeds in 3 steps,
called order, persist and linearize, respectively. First, op synchronizes
with other update operations to establish the linearization order of
op. This step uses a shared lock-free execution trace data structure,
based on a lock-free queue, for determining this order in a lock-free
manner. Second, op is stored in NVM by using a per-process persis-
tent log. Crucial to this construction is the fact that the persistent
log can be implemented with only one persistent fence per append
operation [12]. A helping mechanism is used to ensure that delayed
processes do not create inconsistencies in the state of the object.
Third, op announces that it has completed the persistence step. This
is also the linearization point [22] of op if it runs solo. When setting
the linearization point, care is taken to respect the linearization
order computed in Step 1. A read-only operation determines its
return value based on the update that most recently announced
completion of the persistence step.

Since persistent fences are only performed when appending
one or more updates to a process’ persistent log, it is clear that
our construction uses at most one persistent fence per operation.
Moreover, no process can prevent the system frommaking progress,
thus the construction is lock-free.

Our lower bound states that any lock-free implementation of a
persistent object has at least one execution in which all concurrent
processes need to issue one fence instruction per update operation
invoked. The intuition behind this result is that processes cannot
always rely on each other to persist updates and must therefore
sometimes persist these updates themselves. To see this, imagine
that some process p is designated to persist updates for one or more
other processes but p is delayed. In order for lock-freedom to be
satisfied, those other processes cannot wait indefinitely for p, and
so must persist their updates themselves, thus each incurring the
cost of persistent fences.

To summarize, the contributions of this paper are:
(1) The onll universal construction, providing a lock-free durably

linearizable implementation of any deterministic object. onll
uses a single persistent fence per update operation and no per-
sistent fences for read-only operations. onll also serves as
upper bound on the number of persistent fences required to
implement such objects.

(2) A lower bound on the number of persistent fences in a lock-free
durably linearizable implementation of an object.
We also discuss extensions to our universal construction for wait-

freedom, improved read performance and memory reclamation.
The rest of this paper is organized as follows. Section 2 recalls

useful background. In Section 3, we give a high-level overview of
our universal construction. In Section 4, we describe in detail the
universal construction algorithm and we prove its correctness in
Section 5. In Section 6, we present our lower bound result. We
discuss relevant related work in Section 7 and conclude with an
overview of possible extensions and future directions in Section 8.

2 BACKGROUND
2.1 NVM
So far, storage has been either slow but durable (e.g., SSD, hard disk,
magnetic tape) or fast but volatile (e.g., DRAM). NVM promises to
combine the best of both worlds through fast and durable storage.
Several implementations of NVM are foreseen: Memristors [42],
Phase Change Memory[32, 40] and 3D XPoint [38].

NVM is expected to be byte-addressable and attached directly to
the memory bus of the CPU, accessible by standard load and store
instructions. Thus, programming for NVM will probably be closer
to programming for DRAM than for block-based storage. As argued
in the introduction, the main difficulty in programming for NVM
will likely stem from the fact that a priori there is no guarantee on
when and in what order (volatile) cache lines will be written back to
NVM. Therefore, programmers will need to use special instructions
to ensure cache lines are written to the NVM.

One such instruction on Intel machines is clflush [26], which
forces a cache-line to be written back to the NVM. This instruction
is strongly ordered: a call to clflush returns only once the cache
line is written-back to the NVM and is durable. Consequently, this
instruction stalls the CPU for the entire duration of accessing the
NVM, which is expected to be expensive in terms of CPU cycles.

Durability can also be ensured by using asynchronous write-
back instructions, such as clflushopt or clwb [24]. We adopt this
approach in this paper since it can be up to an order of magnitude
faster than clflush [25]. Multiple invocations of these instructions
are not ordered, so multiple cache lines can be flushed in parallel.

Since these instructions do not stall the CPU and can be processed in
the background, we consider the cost of invoking such instructions
to be zero. Of course, this also means that invoking write-back
asynchronous instructions is not sufficient to ensure durability.

In order to ensure that an asynchronous write-back completes
and data is made durable, a fence instruction is required, which
stalls the CPU until all active asynchronous write-back instruc-
tions complete. The fence instruction stalls the CPU for the entire
duration for accessing the NVM, which can be expensive. Thus,
our focus in this work is reducing the number of such fences. We
emphasize the fact that that it is possible to execute a fence while
no asynchronous cache line flush instructions are active, in which
case the CPU does not (necessarily) access the NVM. We denote
an execution of a fence while asynchronous cache line flushes are
pending by persistent fence.

Additional details of the memory ordering model to the NVM
are available in [12]. Briefly, two writes separated by a persistent
fences are guaranteed to reach NVM in order. However, standard
fences (e.g., mfences) do not generally guarantee ordering to the
NVM, unless all writes address the same cache line.
2.2 Processes and Operations
We consider a set of n processes that communicate through shared
memory access primitives. We make no assumptions on the relative
speeds of the processes; in particular, at any point in time, processes
may be delayed for arbitrary or even infinite amounts of time. As in
previous work [28], we also assume that the whole system can crash
at any point in time and potentially recover later. On such a full-
system crash, we assume that the contents of NVM are preserved
but that the contents of the processor’s registers and caches are lost.
Processes running at the time of the full-system crash also crash
and are replaced by new processes after recovery. After a system
recovers and before resuming normal operation, we assume that
a (potentially empty) recovery routine is invoked in order to bring
the persistent objects on the NVM back to a consistent state.

We classify operations on an object as read-only or update. Up-
dates are operations that influence the result of subsequent op-
erations; read-only operations do not influence later operations.
Updates also read the state of the object and have return values. The
state of the object is the sequence of update operations applied to
the object; the first operation must be INITIALIZE. This definition
implies that update operations are deterministic: applying the same
sequence of updates on the object always results in the same state.

Our universal construction assumes the existence of a compute
method. Given a read operation r and the state of the object s
(i.e., the sequence of update operations on the object), this method
computes the returned value of r applied to s . For an update opera-
tion u, the returned value is computed on the state of the object s
immediately after appending u.

3 ONLL: A PRIMER
We give in this section a high-level view of onll, our universal
construction that takes any deterministic object O and produces a
lock-free durably linearizable implementation of O that requires
at most one persistent fence per update operation and no persis-
tent fence for read-only operations. Broadly, the execution of an
operation under onll follows three stages: (1) order (in which the
linearization order of the operations is established), (2) persist (in

execution
index

available
flagNode: i a

Le
ge

nd
Persistent log: p2 a b

Execution trace: ⟘ i a i a i a

Ex
ec

ut
io

n
1

⟘

p1

⟘

p1

1 0 ⟘

p1

1 0

1

1 1 2 2

1 2 2

⟘ 1 1

1p1

⟘ 1 1

1

reader
1

p1

Ex
ec

ut
io

n
2

⟘

p1

1 1 2 0 ⟘ 1 1 2 0

p1 1

r1

⟘ 1 1 2 1

p1 1

r1 r2
21

⟘

p1

1 1

Ex
ec

ut
io

n
3 ⟘

p1

1 1 2 0

1

⟘

p1

1 1 2 0

1 2

3 0

2,3

⟘

p1

1 1 2 0

1

3 1

2,3

⟘

p1

1 1

p2 p2 p2 p2

Ex
ec

ut
io

n
4

⟘ ⟘ 1 0 2 0

p1

p2

p3

3 0

p1

p2

p3

1,2

n n n n

n1 n1 n1 n1n2 n2 n2

n1 n1 n1 n1n2 n2 n2 n3

n1 n2 n3
⟘ 1 0 2 0

p1

p2

p3

1,2

n1 n2

crash
+

recovery

⟘ 1 1 2 1

p1

p2

p3

1,2

n1 n2

n3

Figure 1: Executions of a counter implemented using onll.

which the operation is made persistent) and (3) linearize (in which
the operation is linearized)1. We first present the rationale behind
these three stages and then give an overview of how onll works.
We end the section with a concrete example, illustrating a shared
counter implementation produced by onll.
3.1 Rationale
Not performing any persistent fences when reading is a highly
desirable property. However, this imposes some constraints on the
design of onll:
(1) The linearization point of an update operation cannot coincide

with the time when the operation reaches NVM. This is because
NVM can only be written using simple writes (as opposed to
the cache that supports CAS), so it cannot in general serve as
a synchronization point. A reader cannot distinguish whether
data already reached NVM or not.

(2) The linearization order of update operations must be known
before the operation is written to NVM. This is because NVM
must contain enough information to replay this information in
the correct (linearization) order.

(3) The linearization point of an update operation must happen
after the write to NVM.
The last constraint was derived by the following contradiction.

Suppose that the linearization point of an update does not happen
1Formally, the linearization point of an operation can be reasoned about only after the
entire event history is known. We say that the linearization point of an operation is at
time t if for any valid sequence of events after time t the linearization point of the
operation can be set to time t .

after the write to the NVM. Then, a reader may observe the update
operation before it reaches NVM. There are three cases, each leading
to a different contradiction:
• The reader finishes its operation before the dependent update
is persisted. This breaks linearizability if the reader performs
an external operation (e.g., print) before the dependent update
reaches NVM and the system crashes afterward. It is not possi-
ble to recover the update, but the dependent read was already
observed.

• The reader waits for the dependent update to be persisted. This
breaks lock-freedom since the process executing the update op-
eration may stall arbitrarily long.

• The reader helps the dependent update to persist. This breaks
the property of never executing a persistent fence for read-only
operations.

3.2 ONLL Design
The design of onll derives naturally from the above-mentioned
constraints. Since the linearization order of an update operation
must be known before the operation is made durable, and the op-
eration must be made durable before it is linearized, an update
operation u under onll has three stages: order, persist, linearize.

First, in the order stage, a descriptor d is created for u and is
appended to the tail of a shared execution trace. Second, in the persist
stage, u and operations preceding it that are not yet persistent
are appended to a per-process persistent log (residing in NVM),
along with the ordering information. Third, in the linearize stage, u

becomes visible to other operations when the available flag of u, or
a later operation, is set. Finally, the returned value of u is computed
based on the state of the object according to the execution trace
up to d . So u is linearized at the linearize stage, after the write to
NVM, but according to the order computed at the order stage.

For a read-only operation r , the execution trace is traversed,
starting from the tail, until the first descriptor dfirst with a set
available flag is reached. The return value of r is then computed
based on the object state up to dfirst, as recorded in the execution
trace.

This design ensures that the linearization point of an operation
happens after the write to the NVM, so that readers are never
required to wait or help with persisting the update operation. More-
over, after a crash, the NVM contains enough information to recover
the state of the object in same order as the linearization points.
3.3 Illustration: Shared Counter
We illustrate how our onll universal construction works for a
concrete shared object: a counter. A counter holds an integer value
and has two operations: increment and read. The first is an update
operation that increments the counter’s value and returns the new
value. Read is a read-only operation that returns the value of the
counter. In what follows, we walk through several increasingly
complex executions of the counter (shown in Figure 1), to illustrate
various situations that can arise with our construction.

Sequential update and read. In the first execution, a single pro-
cess p1 executes an update operation (increment), followed by a
read-only operation. Initially, both the execution trace and p1’s per-
sistent log is empty. Process p1 creates a new node n with execution
index equal to 1 and available flag unset. Then, p1 appends to the
persistent log an entry containing all operations that have not been
persisted yet (just n in this case). To finalize the update, p1 sets n’s
available flag and returns the new value of the counter, 1. Next,
p1 performs a read operation by traversing the execution index
from tail to head, stopping at the first node with a set available flag.
In our case, there is only one node n, and its available flag is set.
The read thus computes its return value based on the state of the
counter at n. n corresponds to a state in which one increment has
been performed, so the read returns 1.

Update concurrent with reads. In the second execution, process
p1 is executing an update concurrently with two readers r1 and
r2. The counter initially has value 1: there is already a node n1
in the execution trace. The update appends a new node n2 to the
execution trace, appends the relevant entry to p1’s persistent log,
and then pauses. r1 traverses the execution trace from tail to head,
stopping at n1, the first node with a set available flag. p1 resumes
execution and sets the available flag of n2. r2 begins traversing the
execution trace and stops at n2. Finally, the three operations return:
r1 returns 1, based on the state of the counter at n1; r2 returns 2,
based on the state at n2; p1’s update returns 2, also based on the
state at n2.

Update helping another update. In the third execution, processes
p1 and p2 are each executing an increment concurrently. Initially,
the counter has value 1: the execution trace only contains node
n1. Process p1 appends a node n2 to the execution trace, adds the
corresponding entry to the persistent log, and then pauses. p2 also
appends a node n3 to the execution trace and then adds a persistent

Listing 1: recordEntry
1 struct recordEntry{
2 operation ops[MAX_PROCESSES];
3 int num_ops; //between 1 and MAX_PROCESSES

4 long executionIndex;
5 }

log entry containing all operations that have not been persisted
yet: both p1’s update and p2’s update. Finally, p2 sets the available
flag of n3 and returns 3. Any reader starting its traversal after n3’s
available flag has been set will return 3, even though the available
flag of n2 has not yet been set.

Crash concurrent with updates and reads. In the fourth execution,
processes p1, p2 and p3 are each executing an update operation.
Initially, the counter has value 0 and the execution trace is empty.
Processp1 appends a noden1 to the execution trace and then pauses
for the rest of the execution. p2 appends an execution trace node
n2, adds an entry to the persistent log corresponding to its own
update and to the update of p1, and then pauses without setting
the available flag of n2. p3 also appends an execution trace node
n3, and starts adding a node to the persistent log corresponding to
the updates of p1, p2 and p3. The system crashes before any of the
operations have returned.

After the crash, the state of the counter reflects the updates of p1
and p2. These can be reconstructed from p2’s persistent log, even
though no available flag was set during the execution. The post-
crash state of the counter does not however reflect p3’s update,
because p3 did not finish adding its persistent log entry.

Since no available flag was set during the execution, any reader
concurrent with the updates will return 0, the initial value of the
counter. Post-crash readers will return 2.
4 ONLL: A UNIVERSAL CONSTRUCTION
In this section, we first detail the data structures required by onll
and then we describe the onll algorithm itself.
4.1 Data Structures
The onll algorithm depends on two basic building blocks: a single-
fence persistent log and a lock-free queue.

We assume that an update operation can be stored in (persistent)
memory by using an operation structure; input parameters are
considered part of the operation and are thus also reflected in the
operation structure.

4.1.1 Persistent Log Usage. onll uses per-process persistent
logs. We leverage the log implementation of Cohen et al. [12],
which uses only one persistent fence per append. Each append
invocation records up to MAX-PROCESSES operations, the number
of recorded operations, and an execution index; pseudo code is
provided in Listing 1. The first operation in the operation array
is the current update operation executed by the process. The rest
of the operations in the operation array are used to help other
processes to persist their data. The executionIndex is a unique
index that represents the ordering of the linearization point of the
first operation. Operations in the array are sequential, so that the
execution index of the k-th help operation is executionIndex − k .

4.1.2 Transient Execution Trace. The second data structure used
by onll is a transient (i.e., not necessarily stored in NVM) execu-
tion trace of the object. This represents the sequence of all update

Fuzzy window

INIT
0
01

Non fuzzy

Tail
Operation

execution index

available flag

op1
1
00

op2
2
01

op3
3
00

op4
4
00

Figure 2: The execution trace and the fuzzy window. Since
op2 has a set available flag, all operations preceding it, in-
cluding op1, are considered part of the non-fuzzy window.
op3 and op4 have no later operation with a set available flag
and so are the fuzzy window of the execution trace.

operations applied to the object. Recall that the execution trace
is equivalent to the state of the object. We emphasize that read-
only operations do not appear in the execution trace of an object
since they do not influence the state of the object; in our design, a
read-only operation never writes to shared memory or to NVM.

The sequence of the update operations in the execution trace is
partitioned into a non-fuzzy prefix and a fuzzy window postfix. The
fuzzy window represents a set of currently executing operations
that are not yet guaranteed to reside on NVM and their linearization
point has not yet occurred. The non-fuzzy prefix consists of all
other operations, which are guaranteed to reside on NVM and
their linearization point has already occured. The fuzzy window
is implemented by assigning an available flag for each operation
in the execution trace. The fuzzy window spans from from the
latest operation in the execution trace up to (but not including) the
latest operation with available flag set. Available flags can be set in
any order, depending on the speed of the relevant process. A set
available flag is never cleared.

It is important to note that the fuzzy window is continuous: if
an operation op has its available flag unset, but a later operation
has its available flag set, then op is not part of the fuzzy window.
An illustration appears in Figure 2.

The execution trace is implemented in a lock-free manner, based
on a lock-free queue algorithm [37]. A slight difference from a tra-
ditional lock-free algorithm is the need to compute the execution
index of each operation, which counts the number of update opera-
tions in the execution trace before the current operation. Pseudo
code for the queue operation appears in Listing 2. Computing the
execution index of a new operation is done at Line 34.

The execution trace data structure supports the latestAvailable
method for reading the latest operation with its available flag set
(the latest operation in the non-fuzzy part of the execution trace).
Pseudo code appears at Listing 2 Line 38. It is important to note that
the latestAvailable method returns the latest observed available
operation, which might not be the actual latest operation in the
non-fuzzy part of the execution trace. This is because it is possible
that while the latestAvailable method is traversing the opera-
tions with available flag unset, the availability of a later operation
is set. In fact, it is possible that the returned node was never the
latest operation in the non-fuzzy part. onll is correct despite this
anomaly, as is described later (Proposition 5.9).

4.2 ONLL Algorithm
Our algorithms for updating the object and reading the object are
presented in Listing 3 and Listing 4, respectively.

Listing 2: Execution trace
1 struct queueNode{
2 operation op;
3 long idx;
4 atomic<bool> available;
5 queueNode ∗next;
6 set<operation> getFuzzyOps(){
7 queueNode ∗curr=this;
8 set<operation> ops;
9 while(curr−>available==false){
10 ops.add(curr−>op);
11 curr=curr−>next;
12 }
13 return ops;
14 }
15 queueNode ∗latestAvailable(){
16 queueNode ∗curr=this;
17 while(curr−>available==false){
18 curr=curr−>next;
19 }
20 return curr;
21 } }
22

23 class executionTrace{
24 atomic<queueNode ∗> tail;
25 executionTrace(){
26 tail=new operation(INITIALIZE, 0, true, null);
27 //also serves as a sentinel

28 }
29 void insert(queueNode ∗node){
30 queueNode ∗ltail;
31 node−>available.store(false, memory_order_relaxed);
32 do{
33 ltail = tail;
34 node−>idx = ltail−>idx+1;
35 node−>next = tail;
36 }while(tail.compare_exchange_weak(ltail, node))==false);
37 }
38 queueNode ∗latestAvailable(){
39 queueNode ∗curr=tail;
40 return curr−>latestAvailable();
41 } }

Listing 3: onll-update
1 Update(operation op){
2 queueNode ∗node = new queueNode(op);
3 executionTrace.insert(node);
4 operation fuzzyOps[MAX_PROCESSES] =
5 node−>getFuzzyOps();
6 persistentLog.append(fuzzyOps, node−>idx);
7 node−>available.store(true, memory_order_seq_cst);
8 return compute(node, op);
9 }

An update operation starts by adding a new node to the execu-
tion trace at Line 3. This corresponds to setting the linearization
order of the update operation without making it visible to read-
only operations and without linearizing it2. At Line 5, the fuzzy
window of the operation is computed. This corresponds to the set
2We note that adding a new node uses a CAS instruction, which serves as a (concur-
rency) fence. However, no writes to the NVM are pending, so this fence does not count
as a persistent fence.

Listing 4: onll-read
1 Read(operation op){
2 queueNode ∗node = executionTrace.latestAvailable();
3 return compute(node, op);
4 }

Listing 5: onll-recovery
1 executionTrace.insert(queueNode(INITIALIZE)).setAvailable();
2 for(i=1; true; i++){
3 Find log entry E with lowest execution index j : j ≥ i .
4 if(E does not exist)
5 break;
6 operation op=E.ops[j−i];
7 executionTrace.insert(queueNode(op)).setAvailable();
8 }

of operations preceding the current operation but are not yet guar-
anteed to be persistent. (We later show — Proposition 5.2 — that
this computation is finite since there are at most MAX-PROCESSES
nodes in the fuzzy window). Helping these operations to persist
on the NVM prevents waiting for an unresponsive process. Then,
the current operation and the helped operations are persisted by
appending them to the private, persistent log (Line 6). The update
part finishes by writing the available flag. This corresponds to the
linearization point of the operation (unless another process helped
it3) and makes the operation visible to read-only operations. Finally,
if the update operation also returns a value, this value is computed
and returned to the caller.

A read-only operation gets the latest node with available flag set.
This node corresponds to the latest node in the non-fuzzy prefix of
the object state. Then, the return value is computed based on this
state and returned to the caller.

After a system crash, the transient execution trace is recon-
structed from the persistent logs of all processes. The recovery
process starts by adding the initialization operation to the execu-
tion trace, which serves as a sentinel node in the execution trace.
Then, it iteratively searches for the next operation in the execu-
tion trace by looking into the persistent logs of all processes. If the
operation op was not stored into any persistent log, the recovery
process looks for an operation with a higher execution index and
finds op by looking into the helped operations by the later operation.
Finally, the found operation is pushed to the execution trace and
the available flag is set. Recovery code is illustrated on Listing 5.

5 ONLL: CORRECTNESS
In this section, we prove the following theorem.

Theorem 5.1. For any deterministic object O , there exists a lock-
free durably linearizable implementation of O that requires at most
one persistent fence per update operation and no persistent fence per
read-only operation.

We prove the theorem by first showing that onll is lock-free
and then that it is durably linearizable.
5.1 Lock-freedom
An implementation is lock-free if it guarantees that infinitely often,
some operation returns in a finite number of steps. More specifically,
3Helping is done by setting the available flag of a later operation, which logically
linearizes the current operation. There is no help for setting the available flag: it is set
only by the process executing the operation.

if any process is permanently taking steps, some operation will
eventually return.

The lock-freedom proof uses the following proposition, showing
that traversing the size of a fuzzy window is bounded regardless of
the initial node.

Proposition 5.2.At any time during any execution of onll and
any MAX-PROCESSES+1 consecutive nodes in the execution trace, at
least one has an available flag that is set.

Proof. Let t be any time during the execution and let S =
{ni , . . . ,ni+MAX−PROCESSES } be MAX-PROCESSES+1 consecu-
tive nodes in the execution trace. Clearly, there are at least two
nodes nj ,nk ∈ S that correspond to two operations by the same
process.

In our model, two operations cannot be executed by the same
process at the same time: the first operation must return before
the second operation can be invoked. Thus, let nj be the earlier
operation and the t ′ be the time it finished. Clearly, t ′ < t since at
time t the operation corresponding to nk already appended itself
to the execution trace, implying that it was already invoked.

According to Listing 3, an operation does not finish before setting
the available flag and executing a memory fence. Thus, at least nj
has a set available flag, as required. □

Recall that a set available flag is never unset; this property to-
gether with Proposition 5.2 imply that getFuzzyOps and latest-
Available are wait-free: they cannot be interfered with by other
processes and they always finish in O(MAX-PROCESSES) steps.

Lemma 5.3. Suppose that compute — the function for computing
the return value of an operation — always finishes in a finite time.
Then onll is lock-free.

Proof. Reads first find the latestAvailable node and then ex-
ecute compute on the resulting node. latestAvailable finishes in a
bounded number of steps and is thus wait-free.Compute operates on
a prefix of the execution trace starting with the latestAvailable
node. This prefix is never modified by any process (except for the
available flag, which is ignored by compute). Since we assume com-
pute finishes in a bounded number of steps, it is also wait-free. Thus,
reads are wait-free.

Next we consider updates. Appending to the execution trace is a
lock-free operation. Getting the fuzzy window of an operation is
wait-free since it always finishes in a bounded time. Appending to
the process’ private persistent log is also wait-free since an append
is never interrupted by other processes and it finishes in a bounded
number of steps. Finally, setting the available flag of a node is a
wait-free operation. Thus, we conclude that updates are lock-free.

□

5.2 Durable linearizability
We first recall the concept of durable linearizability and then pro-
ceed with the proof of durable linearizability in onll.

5.2.1 Technical Preliminaries. The execution of a concurrent
system is modeled by a history, a sequence of events. Events can be
operation invocations and responses. Each event is labeled with the
process and with the object to which it pertains. A subhistory of a
history H is a subsequence of the events in H .

A response matches an invocation if they are performed by the
same process on the same object. An operation in a history H

consists of an invocation and the next matching response. An in-
vocation is pending in H if no matching response follows it in H .
An extension of H is a history obtained by appending responses to
zero or more pending invocations in H . complete(H) denotes the
subhistory of H containing all matching invocations and responses.

For a process p, the process subhistory H |p is the subhistory of
H containing all events labeled with p. The object subhistory H |O
is similarly defined for an object O . Two histories H and H ′ are
equivalent if for every process p, H |p = H ′ |p.

A history H is sequential if the first event of H is an invocation,
and each invocation, except possibly the last, is immediately fol-
lowed by a matching response. A history is well-formed if each
process subhistory is sequential.

A sequential specification of an object O is a set of sequential
histories called legal histories of O . A sequential history H is legal
if for each object O appearing in H , H |O is legal.

An operation op1 precedes op2 in H (denoted op1 →H op2) if
op1’s response event appears in H before op2’s invocation event.
Precedence defines a partial order on the operations of H .

Definition 5.4 (Linearizability). A history H is linearizable if H
has an extension H ′ and there is a legal sequential subhistory S
such that
L1 complete(H ′) is equivalent to S
L2 if an operation op1 precedes an operation op2 in H , then the

same holds in S .

Informally, this definition is equivalent to saying that an object is
linearizable if every operation appears to take effect instantaneously
at some point (the linearization point) between invocation and
response. Incomplete operations (invocations without matching
responses) may or may not have a linearization point.

Durable linearizability [28] captures the fact that an object’s
state should remain consistent even across crashes and recoveries,
without "erasing" any completed operations.

Definition 5.5 (Consistent cut). Given a history H , a consistent
cut ofH is a subhistory P ofH such that if op2 ∈ P and op1 →H op2,
then op1 ∈ P and op1 →P op2.

Definition 5.6 (Durable linearizability). An object O is durably
linearizable if its states immediately before and immediately after
a crash and recovery reflect histories H and H ′ respectively such
that (1) H and H ′ are linearizable and (2) H ′ is a consistent cut of
H for which every complete operation op in H is also in H ′.

In other words, all operations that completed before the crash
must be included in H ′, but some operations that had not yet
completed may be excluded and thus not be reflected in the post-
recovery state of the object. However, the operations in H ′ must
constitute a consistent cut of H , meaning that if some operation op
is included in H ′, then so must all operations on which op depends.

Informally, an object O is durably linearizable if, in any history
H produced by O , every operation appears to take effect instanta-
neously at some point (the linearization point) between invocation
and response. Incomplete operations (invocations without match-
ing responses, either due to delayed processes or to system crashes)
may or may not have linearization points. Operations concurrent
with a crash may be reflected in the post-crash state of the object
(in which case these operations have linearization points before the

crash) or may not be reflected (in which case these operations have
no linearization points).

5.2.2 Durable Linearizability in ONLL.

Lemma 5.7. onll is durably linearizable.
The proof of durably linearizable for onll proceeds in 4 steps.

First, we define linearization points for all update operations and
define a time point for a crash (if a crash occurs). Second, we prove
that the linearization point of an update falls between its invocation
and response. Third, we show that a read is linearizable. Fourth, we
show that the state of the object after crash and recovery matches
the state of the object before recovery, according to the update
operations linearized before the crash.

We start by defining a point in time where each update oper-
ation linearizes. When defining linearization points, we use the
following convention. An integral time, denoted by t□, corresponds
to a specific instruction executed on the durable shared object; a
non-integral (i.e., fractional) time, denoted by t□ − a · ϵ denotes a
linearization point that happens before time t□ but does not relate
to a specific event during execution. We assume ϵ is sufficiently
small and a is a positive finite number so that t□−1 < t□−a ·ϵ < t□.

The linearization point of an update operation op with execution
index i is the earlier between (1) the time ti the i-th available flag
was set at the end of op or (2) immediately before the time tj when
the j-th available flag was set for j > i . To avoid distinguishing
between these two cases, we consider the first j-th available flag
that was set such that j ≥ i . The linearization point of opi is ti =
tj − (j − i) · ϵ for a sufficiently small ϵ > 0.

If a crash happens, let tcrash be the time of the crash; we assume
this time is higher by at least one than the last instruction executed
before the crash. Clearly, operations that returned before the crash
are included in the post-crash state of the object. We now examine
operations that were ongoing at tcrash. Let opi be such an ongoing
operation, with execution index i . We examine several cases:
(1) Some operation opj : j ≥ i persisted opi and opj set its available

flag at time tj . Then opi is linearized at time ti = tj − (j − i) · ϵ
as discussed above.

(2) opi either (a) persisted itself, but did not set its flag, or (b) was
persisted by one or more other operations (Listing 3 Line 6),
but none of these operations set their flag. To establish the
linearization point of opi , let opl be the operation with highest
execution index (= l) that finished persisting before tcrash. opi
is linearized at ti = tcrash − (l − i) · ϵ .

(3) opi was not persisted at all. That is, no operation opj : j ≥ i
finished appending to the persistent log at Listing 3 Line 6. Then,
opi is not linearized and is lost in the crash.
Proposition 5.8. The linearization point of an update operation

falls between the invocation and the response of this operation.
Proof. Consider an update operationopi and let j ≥ i be the first

index such that the j-th available flag that was set. The linearization
point of opi is tj − (j − i) · ϵ .

When opi is inserted in the execution trace, the latest operation
in the trace is i − 1; clearly, opj is inserted in the execution trace
no earlier than opi was inserted in the execution trace (note that
i can be equal to j, in which case the times are equal). Setting the
j-th available flag is done at time tj . Inserting the j-th node in the
execution trace happens earlier and is related to the execution of

an actual instruction; thus, its time is at most tj − 1. Recall that ϵ is
small enough so that tj − 1 < tj − (j − i) · ϵ . Thus, opi is inserted in
the execution trace before time tj −(j−i) ·ϵ . opi is invoked before is
it inserted in the execution trace, establishing that the linearization
point of opi happens after its invocation.

Operation i does not finish before setting the i-th available flag.
Clearly, the i-th available flag is set not earlier than the first j-th
available flag is set, j ≥ i . By definition of the linearization points,
setting the j-th available flag happens at time tj . Thus, the response
to opi happens after time tj ≥ tj − (j − i) · ϵ . □

Next we consider the linearization point of reads. If a reader were
to traverse an atomic snapshot of the execution trace and found the
last node in the non-fuzzy window, its linearization point would
follow immediately from the definition of the linearization points
of writes. But onll readers traverse the execution trace directly
(and not an atomic snapshot thereof) and thus they may find a node
corresponding to a concurrent update4. In this case, we show that
the linearization point of the read can be set to immediately after
the linearization point of the concurrent update operation.

Proposition 5.9. A read-only operation has a linearization point
between the invocation and the response of the operation, such that
the return value of the operation corresponds to the state of the object
at the linearization point.

Proof. A read-only operation traverses the execution trace from
the tail until it reaches a node with a set available flag. The resulting
node is the state on which the returned value is computed. Suppose
that the tail pointed to opj and the highest index operation with
available flag set is opi : i ≤ j. Consider the time t the read-only
operation reads the tail (Line 7); either the i-th available flag was
set at time t or not. If the i-th available flag was set at time t , then
the linearization point of the read is set to time t . This clearly falls
between the invocation and the response. The state of the object
at time t contains opi since its available flag is set, but not any
operation in the range [i + 1, j] since their available flag is unset at
time t . The latter is true since otherwise the traversal would find a
later node k ≥ i + 1 with a set available flag.

Next, consider the case that the i-th available flag was not set at
time t . Denote by te the time the read-only operation finds that the
i-th available flag is set. At time t all operations in the range [i, j]
have unset available flag and at time te the i-th available flag is set.
Thus, the linearization point of opi falls between time t and te . We
set the linearization time of the read-only operation to immediately
after the linearization time of opi and before the linearization point
of any other update operation4. Since the linearization point is
between time t and te , it is after the invocation of the read-only
operation and before the response, as required. □

Proposition 5.10. The state of the onll object after a crash in-
cludes all the operations that were linearized before the crash, executed
in linearization order, and none of the operations that were not lin-
earized before the crash.

Proof. By definition of the linearization points before a crash,
the state of the object just before tcrash corresponds to the last
operation that was written to the persistent log. After a crash,
the recovery reconstructs the execution trace by traversing all
persistent logs. Thus, the last node in the execution trace after
4See illustration on Appendix A.

recovery is the last operation that was written to the persistent
log. The order of operations follows the executionIndex, which
is stored on the persistent logs. Thus, the order of operations is
equal before the crash and after recovery. It remains to show that
all operations appearing in the execution trace before the crash
also appear after recovery.

Suppose, by a way of contradiction, that an operation i that
appeared before the crash does not appear after the crash. Since
the latest operation is the same, there exists an operation opj : j > i
that appears both before the crash and after recovery. We pick the
operation with smallest j (that is larger than i). Operations that have
a set available flag clearly appear in the log. Thus, all operations in
the range [i, j − 1] must have their available flag unset until tcrash.
But since opj persisted in the persistent log before tcrash, it must
have been added to the execution trace before tcrash. According to
Proposition 5.2, there are at most MAX-PROCESSES - 1 operations
between opi and opj−1 since the available flag of opj is unset when
it is appended to the execution trace.

But opj appended to the persistent log all operations in the range
[i, j], including opi , so it appears in a persistent log. This contradicts
our assumption that opi is not on the persistent log. □

The proof of Lemma 5.7 follows from Propositions 5.8, Propo-
sition 5.9 and Proposition 5.10. The proof of Theorem 5.1 follows
from Lemma 5.3 and Lemma 5.7.

Interestingly, onll also provides detectable execution [14]. After
recovery, it is possible to check if a given update operation appears
in the execution trace. The operation was linearized before the
crash if and only if it appears in the execution trace after recovery.

6 LOWER BOUND
We show that in any lock-free implementation of a durably lin-
earizable object, there exists some execution in which every update
operation must issue at least one persistent fence. This is trivially
true if operations are executed sequentially (otherwise a crash im-
mediately after an operation op would mean that op is not reflected
in the state of the object after recovery). Intuitively, the need for pro-
cesses to persist their operations also manifests in some concurrent
executions: if some process pwere to always rely on other processes
to persist its operations, then p might need to wait indefinitely if
those other processes are delayed, thus violating lock-freedom.

We prove this intuition below, through several intermediate
results, after defining relevant terminology.

Terminology. We say that a process p runs solo between events A
and B in an execution if p is the only process taking steps between
A and B in that execution. Two sequences of operations H1 and
H2 are equivalent (denoted H1 ≡ H2) if any possible execution,
when started from H1 produces the same results (operation return
values) as when started fromH2. We denote byH1 ·H2 the sequence
obtained by executing sequenceH2 after sequenceH1. An operation
op is an update if there exists a sequence H such that H · op . H .
For ease of description, we define a state as a sequence of update
operations, starting with INITIALIZE.

Lemma 6.1. Let A, A′ and B be sequences of operations such that
A · B . A′ · B. Then A . A′.

Proof. Assume that A ≡ A′. Then, by definition of equivalence,
A · B ≡ A′ · B, a contradiction. □

Lemma 6.2. Let op be any update and H be any state such that
H ·op . H . Then, if for some n ≥ 2,H ·opn−1 ≡ H ·opn , the following
property holds: ∀j ≥ 1,H . H · op j .

Proof. Assume by contradiction that ∃j ≥ 1 : H ≡ H ·op j . Then

for all k ∈ N, H · opk j ≡ H . Then (1) H · opn−1 · op
⌈
n
j

⌉
j−(n−1) ≡ H

and (2) H · opn · op
⌈
n
j

⌉
j−(n−1) ≡ H · op. The left sides of (1) and (2)

are equivalent (because H · opn−1 ≡ H · opn), but the right sides are
not equivalent. We have reached a contradiction. □

Theorem 6.3. In a n-process system, for any lock-free durably
linearizable implementation of an update operation op, there is an
execution in which (1) all processes call op concurrently and (2) each
process performs at least one persistent fence during its call to op.

Proof. By definition of an update operation, there exists a state
H such that op applied fromH produces a different stateH ·op . H .

We now consider two cases: (1) H · opn−1 . H · opn and (2)
H · opn−1 ≡ H · opn . For each case, we construct an execution
in which the n processes p1, ...,pn call op concurrently and all
necessarily perform persistent fences.
Case 1: H · opn−1 . H · opn . We construct the following execution:
• Starting from H , let p1 call op and run solo until just before the
response of op. p1 will eventually reach this point, due to the
lock-freedom of the implementation. p1 will perform at least
one persistent fence before being preempted. Otherwise, let p1
resume and perform the very next step of returning from op; if
a crash occurs after this response, after recovery the contents
of persistent memory will be identical to that at H , which is
inconsistent with the only possible linearization H · op . H .

• Let p2 call op and run solo until just before op returns (p2 even-
tually returns due to lock-freedom). p2 performs at least one
persistent fence during its call to op. Otherwise, let p2 return
from op and let p1 resume and perform the step of returning from
op. If a crash occurs immediately after, at recovery the contents
of memory will be identical to H · op . H , but the only possible
linearization is H · op · op. By Lemma 6.1, H · op · op . H · op
(taking A = H · op, A′ = H · op · op and B = opn−2). We have
reached a situation in which the only possible linearization is not
compatible with the contents of memory, a contradiction; thus
p2 does indeed perform at least one persistent fence during its
call to op.

• Continue with p3, ...,pn , each time calling op and preempting
the process just before returning. As with p2, each process will
perform at least one persistent fence before being preempted.

Case 2: H · opn−1 ≡ H · opn . We construct the following execution:
• Starting fromH , let p1 call op and run solo. If left to run solo long
enough, p1 will eventually perform a persistent fence. Otherwise,
p1 either never returns fromop, violating lock-freedom, or returns
from op without performing a persistent fence. In the latter case,
a crash may occur immediately after the response of op; upon
recovery, the contents of persistent memory will be identical to
those at H , which is inconsistent with the fact that H · op . H .

• Preempt p1 just before the first persistent fence.
• Let p2 call op and run solo. If left to run solo long enough, p2 will
eventually perform a fence. Otherwise, if p2 returns without a

fence and the system crashes afterwards, the contents of persis-
tent memory are identical to H which is inconsistent with all the
possible linearizations H , H · op, H · op · op due to Lemma 6.2.

• Continue in this way with processes p3, ..pn .
• For each process pn , ...p1, resume the process for one step—the
persistent fence it was about to perform—then preempt it and
move to the next process. □

Our lower bound result holds for detectable execution [14] as
well, since it is a stronger criterion than durable linearizability (an
implementation satisfying the former requires at least as many
persistent fences as an implementation satisfying the latter).

7 RELATEDWORK
Safety criteria. Several safety criteria have been proposed in the

crash-recovery model. Persistent atomicity [17] requires any op-
eration interrupted by a crash to be linearized or aborted before
any later invocation by the pending process. In the same situa-
tion, recoverable linearizability [4] requires the operation to be
linearized or aborted before any later invocation by the pending
process on the same object. These two criteria assume that pro-
cesses may crash and recover independently. However, it can be
argued that this model is unnecessarily general, since processes
typically crash together in a full-system crash (e.g., restart). In a
more restricted model that only allows such full-system crashes, the
two criteria become indistinguishable, and equivalent to durable
linearizability [28], the safety condition adopted in this paper.

Work has been done on verifying linearizability for traditional
transient objects [15, 34, 41]. It would be interesting to see if such
verification techniques could be extended to verify durable lineariz-
ability for persistent objects.

Our upper bound algorithm relates in an interesting way to Sec-
tion 4.1 of Izraelevitz et al. [28]. In that section, the authors state
that the linearization point of an operation must happen before it is
persisted. However, our onll construction linearizes an operation
op after the time when op persisted and generates the linearization
order before persisting, so that it knows what to persist. In fact,
as discussed in Section 3, we argue that having the persist point
earlier than the linearization point is necessary for any lock-free
algorithm where readers never execute a persistent fence.

The same section of [28] contains a theorem (Theorem 2), which
provides a set of sufficient conditions for an object to be durably
linearizable. While at first glance it may seem that our onll algo-
rithm contradicts this theorem, this is not the case: onll is durably
linearizable, without satisfying the condition that operations are
linearized before they are persisted.

General transformations. Related to the generality of our upper
bound construction, there has been work [7, 9, 23] on generating
correct persistent applications from existing code (designed for
DRAM). However, in contrast to our work, these approaches as-
sume the application is already multi-threaded and generally also
assume lock-based code. Moreover, the focus in this work [7, 9, 23]
is on lessening the programming effort necessary to transform ap-
plications, not on achieving optimality in terms of the number of
persistent fences used.

In the same vein of generality, our work shares similarities with
the universal construction of Herlihy [19, 20]. In both cases, the con-
struction yields a correct concurrent implementation of an object
from its sequential specification.

Transactions. Significant work has been done on transactions as a
means of interacting with NVM [5, 8, 11, 13, 16, 27, 29, 31, 35, 36, 44].
These efforts share similarities to our work in the following sense:
they strive for generality, they aim to reduce the cost of interacting
with NVM, and they often use logging. Yet, these works do not
consider lock-freedom as a progress guarantee. Also, whereas in
transactions logging is used to help maintain the consistency of
application state, in our construction, the log is the state.

Persistent data structures. A specific class of shared objects are
concurrent data structures [21]. There has been some work on
designing efficient data structures for NVM, focused mostly on in-
dexing trees [10, 33, 39, 45]. This is natural, given that indexing trees
are used extensively in data structures and file systems. Recently,
Friedman et al. [14] have proposed three lock-free durable queue
algorithms. These are specific approaches, not easily generalizable
to other data structures or to other shared objects.

Lower bounds. Related to our lower bound result, Attiya et al. [1]
have shown that linearizable implementations of strongly non-
commutative operations cannot completely eliminate the use of
expensive synchronization primitives such as memory barriers and
atomic instructions (whose effects also include the effects of mem-
ory fences). This seems to imply that any implementation of a
durably linearizable update operation requires (at least in some ex-
ecutions) two fences: one to account for the cited lower bound and
one to account for our lower bound. However, since the effects of a
memory fence also include stalling until pending cache line flushes
have completed, a memory fence can also count as a persistent
fence if flushes to NVM are pending. Thus, it might be possible in
some cases to implement a persistent object using only one (mem-
ory) fence per update operation, accounting for both our lower
bound result and that of Attiya et al. We leave open the questions
of when and if such one-fence updates are indeed achievable.
8 CONCLUDING REMARKS
In the NVM era, programmers will need persistent and concurrent
data structures. The performance of these is strongly influenced by
the number of persistent fences executed for each operation. This
paper shows that lock-free implementations require exactly one
persistent fence for any update operation to ensure correctness.
Our upper bound uses a novel ordering scheme to persist opera-
tions before their linearization points. Our lower bound captures
the very fact that processes cannot rely on each other to persist
updates and thus shows that one cannot hope to reduce the number
of persistent fences while still guaranteeing durable linearizability
and lock-freedom.

Below, we discuss possible extensions of our results and future
directions left open by our work.

Wait-freedom. According to the proof of Lemma 5.3, the only
operation in our onll construction that is not wait-free is the ex-
ecution trace transient data structure. Since this data structure is
transient, standard techniques such as the wait-free construction of
Timnat and Petrank [43] can be used to derive a wait-free execution
trace data structure. Alternatively, a wait-free execution trace can

be based on the wait-free queue of Kogan et al. [30]. onll can thus
easily be made wait-free.

Compressing the execution trace. An onll object stores its state
as a sequence of all operations applied to this object. This represen-
tation could be improved for specific cases, as most practical objects
have an object-specific representation of their state. For example,
for the shared persistent counter discussed in Section 3, an object-
specific representation would be an integer field corresponding to
the current value of the counter.

If such a representation exists, one could consider a hybrid ap-
proach that combines a small onll execution trace for correctness
with an object-specific representation for efficiency. As explained
below, this approach would have the double benefit of (1) allowing
better read performance and (2) enabling memory reclamation, thus
reducing memory consumption.

Readers in onll traverse the entire execution trace; thus, read-
ing an object’s state implies traversing all update operations in the
history of the object. onll read performance can be significantly
improved by storing a local view per process, similarly to log-based
systems [2, 3, 6]. The local view of process p includes (1) a rep-
resentation rp of the object up to some operation opp and (2) the
execution index of op.

A read by process p begins as before by finding the first execu-
tion trace node n with a set available flag. Then, p applies to its local
representation rp all updates between opp and n. Then, p updates
its local execution index to that of n. Finally, the read is served
directly from rp .

In this way, the overhead of a read is the difference between the
execution index of the local view and the execution index of the
shared object, which is expected to be significantly smaller than
the number of nodes in the execution trace.

Another effect of storing the entire execution trace in onll is
the inability to reclaim memory. Both execution trace nodes and
persistent log entries have to be kept forever. If the state can be
stored as a small object-specific representation, however, then there
is no need to remember all update operations and log entries, thus
significantly reducing memory consumption.

Execution trace nodes can be reclaimed if we use the following
scheme. As before, each process p has a local transient represen-
tation of the object rp , which p brings up to date periodically. Note
that once a process p has applied an operation op from the exe-
cution trace to rp , p will never need to read op again. Thus, once
all processes have updated their local representations past op, the
execution trace prefix up to op can be safely reclaimed.

We can go one step further and also reclaim persistent log en-
tries. Each process p periodically records its local representation
rp in its persistent log, along with the execution index n of opp .
Afterwards, p can reclaim the memory of all persistent log entries
with execution indexes smaller than n.

Lock-based implementations. At first glance, it might seem that
by allowing implementations of persistent objects to be blocking,
one could reduce the number of persistent fence instructions. For
instance, the work of Cohen et al. [12] enables an implementa-
tion in which each process announces its operation and one of the
processes applies all announced operations (similarly to flat com-
bining [18]) using a single persistent fence. This implementation

might seem to use only one persistent fence for every batch of
concurrent operations. However, upon closer inspection, it is easy
to realize that all pending operations pay the price of a persistent
fence (by waiting while the combiner performs the fence), even
without actually performing the fence.

ACKNOWLEDGMENTS
We wish to thank the anonymous reviewers for their helpful com-
ments on improving the paper. This work has been supported in
part by the European Research Council (ERC) Grant 339539 (AOC).

REFERENCES
[1] Hagit Attiya, Rachid Guerraoui, Danny Hendler, Petr Kuznetsov, Maged M.

Michael, and Martin Vechev. Laws of Order: Expensive Synchronization in
Concurrent Algorithms Cannot Be Eliminated. POPL 2011.

[2] Mahesh Balakrishnan, Dahlia Malkhi, John D. Davis, Vijayan Prabhakaran,
Michael Wei, and Ted Wobber. CORFU: A Distributed Shared Log. TOCS 2013.

[3] Mahesh Balakrishnan, Aviad Zuck, DahliaMalkhi, TedWobber, MingWu, Vijayan
Prabhakaran, Michael Wei, John D. Davis, Sriram Rao, and Tao Zou. Tango:
Distributed Data Structures Over a Shared Log. SOSP 2013.

[4] Ryan Berryhill, Wojciech Golab, and Mahesh Tripunitara. Robust Shared Objects
for Non-Volatile Main Memory. OPODIS 2015.

[5] Hans-J. Boehm and Dhruva R. Chakrabarti. Persistence Programming Models
for Non-volatile Memory. ISMM 2016.

[6] Irina Calciu, Siddhartha Sen, Mahesh Balakrishnan, and Marcos K. Aguilera.
Black-box Concurrent Data Structures for NUMA Architectures. ASPLOS 2017.

[7] Dhruva R Chakrabarti, Hans-J Boehm, and Kumud Bhandari. Atlas: Leveraging
Locks for Non-volatile Memory Consistency. OOPSLA 2014.

[8] Andreas Chatzistergiou, Marcelo Cintra, and Stratis D Viglas. Rewind: Recovery
Write-ahead System for In-memory Non-volatile Data-structures. VLDB 2015.

[9] Himanshu Chauhan, Irina Calciu, Vijay Chidambaram, Eric Schkufza, Onur
Mutlu, and Pratap Subrahmanyam. NVMove: Helping Programmers Move to
Byte-Based Persistence. INFLOW 2016.

[10] Shimin Chen and Qin Jin. Persistent B+-trees in Non-volatile Main Memory.
VLDB 2015.

[11] Joel Coburn, Adrian M Caulfield, Ameen Akel, Laura M Grupp, Rajesh K Gupta,
Ranjit Jhala, and Steven Swanson. NV-Heaps: Making Persistent Objects Fast
and Safe with Next-generation, Non-volatile Memories. ASPLOS 2011.

[12] Nachshon Cohen, Michal Friedman, and James R. Larus. Efficient Logging in
Non-volatile Memory by Exploiting Coherency Protocols. OOPSLA 2017.

[13] Joel Edward Denny, Seyong Lee, and Jeffrey S. Vetter. Language-Based Optimiza-
tions for Persistence on Nonvolatile Main Memory Systems. IPDPS 2017.

[14] Michal Friedman, Maurice Herlihy, Virendra Marathe, and Erez Petrank. A
Persistent Lock-free Queue for Non-volatile Memory. PPoPP 2018.

[15] Guy Golan-Gueta, G. Ramalingam, Mooly Sagiv, and Eran Yahav. Automatic Scal-
able Atomicity via Semantic Locking. ACM Transactions on Parallel Computing,
3(4), 2017.

[16] Yonatan Gottesman, Joel Nider, Ronen Kat, Yaron Weinsberg, and Michael Factor.
Using Storage Class Memory Efficiently for an In-memory Database. SYSTOR
2016.

[17] Rachid Guerraoui and Ron R Levy. Robust Emulations of Shared Memory in a
Crash-Recovery Model. ICDCS 2004.

[18] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. Flat combining and the
synchronization-parallelism tradeoff. SPAA 2010.

[19] Maurice Herlihy. Wait-free Synchronization. ACM Transactions on Programming
Languages and Systems, 13(1):124–149, 1991.

[20] Maurice Herlihy. A Methodology for Implementing Highly Concurrent Data
Objects. ACM Transactions on Programming Languages and Systems, 1993.

[21] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming, Revised
Reprint. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition,
2012.

[22] Maurice Herlihy and Jeannette MWing. Linearizability: A Correctness Condition
for Concurrent Objects. ACM Transactions on Programming Languages and
Systems, 12(3):463–492, 1990.

[23] Terry Ching-Hsiang Hsu, Helge Brügner, Indrajit Roy, Kimberly Keeton, and
Patrick Eugster. NVthreads: Practical Persistence for Multi-threaded Applications.
EuroSys 2017.

[24] Intel. Intel Architecture Instruction Set Extensions Programming Reference.
https://software.intel.com/sites/default/files/managed/b4/3a/319433-024.pdf.

[25] Intel. Intel64 and IA-32 Architectures Optimization Reference Man-
ual. https://www-ssl.intel.com/content/dam/www/public/us/en/documents/
manuals/64-ia-32-architectures-optimization-manual.pdf.

[26] Intel. Intel64 and IA-32 Architectures Software Developers Manu-
als Combined. http://www.intel.com/content/www/us/en/processors/
architectures-software-developer-manuals.html.

[27] Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli. Failure-atomic Persistent
Memory Updates via JUSTDO Logging. ASPLOS 2016.

[28] Joseph Izraelevitz, Hammurabi Mendes, and Michael L Scott. Linearizability of
Persistent Memory Objects Under a Full-System-Crash Failure Model. DISC 2016.

[29] Wook-Hee Kim, Jinwoong Kim, Woongki Baek, Beomseok Nam, and Youjip Won.
NVWAL: Exploiting NVRAM in Write-ahead Logging. ASPLOS 2016.

[30] Alex Kogan and Erez Petrank. Wait-free Queues with Multiple Enqueuers and
Dequeuers. PPoPP 2011.

[31] Aasheesh Kolli, Steven Pelley, Ali Saidi, Peter M Chen, and Thomas F Wenisch.
High-performance Transactions for Persistent Memories. ASPLOS 2016.

[32] Benjamin C Lee, Engin Ipek, Onur Mutlu, and Doug Burger. Architecting Phase
Change Memory as a Scalable DRAM Alternative. In ACM SIGARCH Computer
Architecture News, volume 37, pages 2–13. ACM, 2009.

[33] Se Kwon Lee, K Hyun Lim, Hyunsub Song, Beomseok Nam, and Sam H Noh.
WORT: Write Optimal Radix Tree for Persistent Memory Storage Systems. FAST
2017.

[34] Mohsen Lesani, Todd Millstein, and Jens Palsberg. Automatic Atomicity Verifica-
tion for Clients of Concurrent Data Structures. CAV 2014.

[35] Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai Qian, Yongwei Wu, Weimin
Zheng, and Jinglei Ren. DUDETM: Building Durable Transactions with Decou-
pling for Persistent Memory. ASPLOS 2017.

[36] Amirsaman Memaripour, Anirudh Badam, Amar Phanishayee, Yanqi Zhou, Ram-
natthan Alagappan, Karin Strauss, and Steven Swanson. Atomic In-place Updates
for Non-volatile Main Memories with Kamino-Tx. EuroSys 2017.

[37] Maged M. Michael and Michael L. Scott. Simple, Fast, and Practical Non-blocking
and Blocking Concurrent Queue Algorithms. PODC 1996.

[38] Micron. 3D XPoint Technbology. https://www.micron.com/about/
our-innovation/3d-xpoint-technology.

[39] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and Wolfgang
Lehner. FPTree: A Hybrid SCM-DRAM Persistent and Concurrent B-tree for
Storage Class Memory. SIGMOD 2016.

[40] Moinuddin KQureshi, Vijayalakshmi Srinivasan, and Jude A Rivers. Scalable High
Performance Main Memory System Using Phase-change Memory Technology.
ACM SIGARCH Computer Architecture News, 37(3):24–33, 2009.

[41] Ohad Shacham, Eran Yahav, Guy Golan Gueta, Alex Aiken, Nathan Bronson,
Mooly Sagiv, and Martin Vechev. Verifying Atomicity via Data Independence.
ISSTA 2014.

[42] Dmitri B Strukov, Gregory S Snider, Duncan R Stewart, and R Stanley Williams.
The Missing Memristor Found. Nature, 453(7191):80, 2008.

[43] Shahar Timnat and Erez Petrank. A Practical Wait-free Simulation for Lock-free
Data Structures. PPoPP 2014.

[44] Haris Volos, Andres Jaan Tack, and Michael M Swift. Mnemosyne: Lightweight
Persistent Memory. ASPLOS 2011.

[45] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong Yong, and
Bingsheng He. NV-Tree: Reducing Consistency Cost for NVM-based Single Level
Systems. FAST 2015.

[46] Yiying Zhang and Steven Swanson. A study of application performance with
non-volatile main memory. MSSR 2015.

A CORNER CASE: READER TRAVERSAL
CONCURRENTWITH UPDATE

In Figure 3 we exemplify a read from a state that is never the latest
in the non-fuzzy part. In part A, a reader starts and finds that the
available flag of Node 4 is still unset. It continue with Node 3, but
scheduled out before checking its available flag. The non-fuzzy part
consist of INIT,op1,op2. In part B, the thread executing op4 (Thread
4) sets the available flag of Node 4. The non-fuzzy part is expanded
to INIT,op1,op2,op3,op4. We emphasize that Node 3 is part of the
non-fuzzy part and that op3 is already linearized. In part C, the
thread executing op3 (Thread 3) sets the available flag of Node
3. This is a redundant operation with respect to op3, which was
already linearized at part B; but Thread 3 is unaware of op4 and
continues with the update algorithm. In part D, the reader resume,
finds that the available flag of op3 is set, and computes the returned
value based on the state up to op3 (INIT,op1,op2,op3). This state
was never the non-fuzzy part of the execution trace.

The read operation is still correctly linearized since moving from
history INIT,op1,op2 to history INIT,op1,op2,op3,op4 must pass
through history INIT,op1,op2,op3. This is the linearization point of

https://software.intel.com/sites/default/files/managed/b4/3a/319433-024.pdf
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
https://www.micron.com/about/our-innovation/3d-xpoint-technology
https://www.micron.com/about/our-innovation/3d-xpoint-technology

Fuzzy window

op1
1
00

op2
2
01

op3
3
00

op4
4
00

INIT
0
01

Non fuzzy

Tail

Operation
index

available

Reader

op1
1
00

op2
2
01

op3
3
00

op4
4
01

INIT
0
01

Non fuzzy

Tail

Operation
index

available

Reader

op1
1
00

op2
2
01

op3
3
01

op4
4
01

INIT
0
01

Non fuzzy

Tail

Operation
index

available

Reader

op1
1
00

op2
2
01

op3
3
01

op4
4
01

INIT
0
01

Non fuzzy

Tail

Operation
index

available

compute(op3)

A: reader traverses

B: op4.setAvailable

C: op3.setAvailable

D: last observed is op3

Figure 3: Illustrating a read from a node that is never the
latest in the non-fuzzy part.

the read. Using the terminology of Lemma 5.7, op3 is linearized at
time t4 − ϵ and the reader is linearized between t4 − ϵ and t4.

	Abstract
	1 Introduction
	2 Background
	2.1 NVM
	2.2 Processes and Operations

	3 ONLL: a Primer
	3.1 Rationale
	3.2 ONLL Design
	3.3 Illustration: Shared Counter

	4 ONLL: a Universal Construction
	4.1 Data Structures
	4.2 ONLL Algorithm

	5 ONLL: Correctness
	5.1 Lock-freedom
	5.2 Durable linearizability

	6 Lower Bound
	7 Related Work
	8 Concluding Remarks
	Acknowledgments
	References
	A Corner Case: Reader Traversal Concurrent with Update

