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Abstract

Humeral head translations (HHT) play a crucial role in the glenohumeral (GH)
joint function. The available shoulder musculoskeletal models developed based
on inverse dynamics however fall short of predicting the HHT. This study aims
at developing a simulation framework that allows forward-dynamics simulation
of a shoulder musculoskeletal model with a 6 degrees of freedom (DOF) GH
joint. It provides a straightforward solution to the HHT prediction problem.
We show that even within a forward-dynamics simulation addressing the HHT
requires further information about the contact. To that end, a deformable
articular contact is included in the framework defining the GH joint contact
force in terms of the joint kinematics. An abduction motion in the scapula
plane is simulated. The results are given in terms of HHT, GH joint contact
force, contact areas, contact pressure, and cartilage strain. It predicts a superior-
posterior translation of the humeral head followed by an inferior migration.

Keywords: Shoulder musculoskeletal model, Humeral head translations,
Glenohumeral joint, Forward-dynamics simulation, Deformable articular
contact

1. Introduction

Several musculoskeletal models are available for the human shoulder that
provide reliable predictions of both the muscle and joint reaction forces e.g.
[1, 2]. A vast majority of these models have been developed based on inverse
dynamics, e.g. [2-7]. In inverse dynamics, measured joints kinematics (rotations
and translations) are required as inputs to calculate muscle and joint reaction
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forces. However, with the available measurement techniques, it is not straight-
forward to measure the translational DOF of the GH joint [8]. Therefore, it
is often approximated as an ideal ball-and-socket joint in the musculoskeletal
models, neglecting its translation [9]. A so-called stability constraint is also of-
ten considered in the load-sharing scheme of the models to restrict the GH joint
reaction force to point into the glenoid fossa, avoiding subluxations by enforcing
more physiological contributions from the rotator cuff muscles [1]. Nonetheless,
the GH joint translations have a role to play in the GH joint stability mecha-
nism [1, 10]. Furthermore, predictions of the GH joint translations, the contact
pressure, and the contact areas are required in designing shoulder prostheses
[11, 12].

Indeed, few studies have investigated the HHT using biomechanical models.
To this end, they tailored either available musculoskeletal models [12, 13] or
developed finite element models [9, 11, 14, 15]. Other studies mainly used
cadaveric [16, 17] or clinical [8, 18-23] approaches to address the GH joint
translations. However, there are limitations associated to each of these studies.
The Anybody shoulder model [6] was tailored using the force dependent kine-
matic method, introduced in [24], to address the HHT after total shoulder
arthroplasty (TSA) [12]. The dynamic effects of motion were neglected although
their influence on the HHT has been already highlighted [18]. A shoulder model,
developed in [25], was adapted in [13] to address the HHT using a novel inverse-
dynamics framework. The HHT was considered as an extra design variable in
an optimization scheme within this framework. Despite [12], the dynamic ef-
fects of motion were partially considered. However, the articular contact was
approximated by an elastic potential function. This deviates from the nonlin-
ear and viscoelastic behavior of the cartilage [26] and does not account for the
moment applied on the humerus due to the articular contact. The different
3D finite element models developed in [9, 11, 14, 15] share the same attributes.
They include more realistic estimation for the articular contact although they
were simulated under a sequence of static conditions, neglecting the dynamics
of motion. Furthermore, they all lack a physiological muscle force load-sharing.
The 3D finite element model developed in [9] was used in[10, 27, 28| to further
study the HHT after the TSA.
The in vivo or in vitro measurement of the HHT remains a challenging task [8].
Specifically, in vitro studies cannot accurately simulate the in vivo conditions in
terms of the muscle and joint contact forces. The in vivo studies are also either
limited to 2 dimensional analysis [18, 19] or otherwise their accuracy is limited
by the 3D reconstruction of the bones [8, 22, 23|. Furthermore, they are not
developed to assess the GH joint translations during dynamic activities [20, 21].

The aim of this study is to develop a simulation framework for a shoulder
musculoskeletal model that allows simultaneous predictions of HHT, joint reac-
tion forces, and contact pressure. To that end, a forward-dynamics simulation
coupled with a nonlinear viscoelastic approximation of the articular contact is
used. The dynamic equations of motion are therefore solved forward in time, al-
lowing a straightforward consideration of the dynamic effects of the motion. To
the best of our knowledge this has not been addressed elsewhere. This simulation
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framework provides addressing the GH joint kinematics (HHT) and mechanics
(reaction forces and contact pressure) either in its physiological form or after the
TSA. The outcome of this simulation framework will be translated for future
patient-specific clinical applications related to the treatment of osteoarthritis by
TSA.

2. Methods

A musculoskeletal model of the GH joint with 6 DOF is developed. The 6
DOF correspond to 3 rotational and 3 translational (HHT) generalized coordi-
nates. We show that the equations of motion of the GH joint with 6 DOF is
indeterminate, i.e. there are fewer equations than the number of unknown forces
and unknown generalized coordinates (subsection 2.1). Therefore, defining the
HHT requires solving the indeterminate equations of motion of the GH joint. In
order to resolve the indeterminacy, we develop a framework that maps the un-
known forces to the unknown generalized coordinates and velocities (subsections
2.3 and 2.3). This leads to a set of transformed equations of motion that no
longer is indeterminate. We then simulate an arm motion in the scapula plane.
The resulted HHT, GH joint contact force, contact areas, contact pressure, and
cartilage strain are compared to those from the in vitro, in vivo, and numerical
studies.

2.1. Indeterminacy in HHT

The surfaces of humeral head and glenoid fossa are both approximated as
spheres with radii r;, and r, equal to 30 [mm| and 32 [mm]|, respectively [29]
(Fig. 1). The arm weight is 35.7 [N] that corresponds to 5% of the bodyweight.
All the 11 major muscles spanning the GH joint are included, and their forces
applied on the humerus are replicated by a resultant force F,, and a resultant
moment M,, acting on the humeral head center. Muscle paths are defined
using the algorithm introduced in [4]. F, represents the GH joint contact force
applied on the humerus. The contact point on the humeral head and its associate
point on the glenoid fossa are denoted by Cj and C,, with velocities of V¢,
and Vg, , respectively. xp, ypn, and 2, are the humerus body-fixed coordinates
at the humeral head center (HH). The scapula motion is included by the
scapulohumeral rhythm [30].
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Figure 1: A schematic view of the GH joint. The surfaces of humeral head and the
glenoid fossa are both approximated as spheres. xp, yn, and z;, are the humerus body-
fixed coordinates attached to the humeral head center HH. F,, and M,, are resultant
force and moment due to the muscles, and F. is the contact force. The contact points
on the humeral head and the glenoid fossa are denoted by C}, and Cy, respectively.

The GH joint equations of motion are derived using the Lagrange’s equations.
A compact form of these equations is

d (0L oL
P <6q> T oq 7(Fy,, Fe) (1)

The generalized coordinate vector g consists of three rotational DOF (1, 6, and
@) and three translational DOF (z, y, and z). The generalized force vector 7 is
a function of applied external forces (F, and F.) [31]. A holonomic constraint
is also considered to account for the contact between the surfaces of humeral
head and glenoid fossa

(Vo, — Ve,) =0 2)

The unit vector 73 is perpendicular to the plane of contact that is tangential to
the contact point. The constraint equation assures no relative velocity between
C}, and Cy in the direction of 71 [32].

There are 12 unknowns in equations (1) and (2), including the 6 generalized
coordinates (¢, 0, ¢, x, y, and z), the 3 components of the contact force (F),
and the 3 components of the resultant muscle force (F,). However, equations
(1) and (2) respectively provide 6 and 1 equations (7 in total) that are not
sufficient to uniquely determine the 12 unknowns. Therefore, the equations of
motion of the GH joint with 6 DOF is indeterminate.

2.2. Resolving the indeterminacy: deformable articular contact

Our approach to resolve the indeterminacy is to define the unknown muscle
and contact forces and their associated moments as smooth function mappings
of the generalized coordinate and velocity vectors. This leads to a set of trans-
formed equations of motion that is no longer indeterminate.
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Using the definition of virtual work [31], the generalized force vector (7) on
the right-hand side of (1) can be expressed as

oV, 0
T=(Fn+ FC)% + (Mpyp,, + MHHJ% (3)

where Vg is the velocity of the humeral head center, and w is the angular ve-
locity of the humerus. My, and Myp, denote the resultant moments about
the humeral head center due to the muscle and the contact forces, respectively.

Substituting F., F,, Myy_, and Mgy, in (3) with smooth function map-
pings (to be defined) of g and ¢ and introducing the resulting generalized force
vector into (1), we obtain

dt(aq)—aq—/c( ,q) g +///HHc(qa‘I)aq ”
A OVun . Ow
+ Zm(q.q) 94 +=///HHm(q,q)8fq

where Z ., F ., # yu,, and A gy, are the smooth function mappings from g
and q to F,, F,,, and their associated moments. Once these function mappings
are defined, solving the transformed equations of motion (4) is trivial.

To define .# ., a deformable articular contact between the humeral head and
the glenoid fossa is assumed. This contradicts our previous contact constraint
in (2) where a rigid contact was assumed. However, the assumption of a de-
formable articular contact is more physiologically consistent [1, 33] and allows
us to define .#.. The deformable contact model used here is adapted from [34]
approximating the cartilage as a nonlinear elastic material. A viscous damping
term is also incorporated to this contact model according to [33]. The humeral
head is considered to be rigid while a deformable layer covers the glenoid fossa
(Fig. 2). The thickness of this deformable layer accounts for the cartilage of
both humeral head and glenoid fossa. The vector ry g defines the position of
the humeral head center in the scapula coordinates (xs, ys, and z5). We denote
respectively by *h; and h; the center point of an infinitesimal surface on the
humeral head in the scapula and humerus frames and by f .. its associated con-
tact force. According to [34] and [33], the contact force applied on h; can be
express as

()

Fo (aisLn( —%)Jrcm)lzﬁl , u; >0
c 0 5 ul§0

where a;, s, b, and ¢ are the infinitesimal surface area, the aggregate module,
the cartilage thickness, and the damping coefficient, respectively. We denote by
u; the amount that h; penetrates the sphere approximating the glenoid fossa.
Therefore, u; is defined as (|°h;| —r4) where *h; is (rgg + Ru,sh;) with Ry s
being the rotation matrix from the humerus coordinate to the scapula coordi-
nate. The numerical values for the constants are adapted from the literature
[9, 26, 35].
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Figure 2: The GH joint with deformable articular contact (the dimensions are exag-
gerated for illustrations purposes). rpm defines the spatial position of the humeral
head in the scapula coordinates (zs, ys, and zs). The center point of an infinitesimal
surface on the humeral head in the humerus frames is denoted by h;, and f, denotes
its associated contact force.

2.8. Resolving the indeterminacy: forward-dynamics simulation

Having defined the function mapping .% ., we here develop a forward-dynamics
framework to define .# ffr,,. The forward-dynamics framework is a continua-
tion of our previous work [36]. We define 4y, and accordingly M g g, such
that the rotational generalized coordinates and velocities (g, and g,.) follow
their associated desired trajectory (g, and g,,). To that end, we expand the
transformed equations of motion (4) and split it into rotational and translational
subspaces (g, and g;):

My Mz (Gr : e
- , —Fe—F— — MHH, =
|:M12 Mzg] [qt:| +C(q Q) +g(q) dq HH. oq

8VHH 8w
~ I Taq g

where [M], ¢, and g are the inertia matrix, centrifugal and Coriolis torques
vector, and gravitational torques vector, respectively. #. and consequently
A, are already defined in subsection 2.2.

A change of coordinates is performed according to [37] to decouple (6). We
denote by f,, a vector that consists of the magnitudes of the forces applied
by different muscles. Two matrices B and W are also defined that map f,, to
F,, and Mg, , respectively. B is the matrix composed of the muscle force
directions, and W is the moment arm matrix. Making these substitutions and
denoting by L the four last terms on the left-hand side of (6), we obtain

My O gr L.(q,9)| _ OVin ow
[ 0 Mzz] [dt] * [Lt(%q)] = Bim oq +Wim 9q @)
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Defining B, as B a‘ggH and Wy as W%‘g, and eliminating their zero raws ac-

cordingly, yields
|:M11 0 :| |:qr:| 4 [L,.(q,(j)} — [ngm:| (8)
0 M| |q: Li(q.49) By fm
Equation (8) allows us to define the magnitudes of the muscle forces such that

the humerus follows a desired rotational trajectory. The rotational subspace of
the transformed equations of motion (8) is

Mg, + Lr(‘]ad) = Wg.fm (9>

where it can be solved for ¢

dr = Mllil(ngm - Lr(qv q)) (10)

The right-hand side of (10) is considered as a new intermediate control input v
[38]. This results in an equivalent linear system

gr="v (11)
We define the tracking error as q, = ¢, — q,,. Letting

v =4, —2)\q, —N’G, , A>0 (12)

results in an exponentially stable closed-loop dynamics for (11). Having defined
v, the function mapping .# gy, and accordingly Wy f,, can be achieved by
substituting g, from (11) into (9). Given that the raw size of f,, is larger than
the rank of Wy, a static optimization is used to arrive at a set of nontrivial
muscle force magnitudes (f,):

min. f,Tn E fin
s.t. M11P+LT(Q7Q) = ngm (13>
.f’mmzn S f7n S fmmaw

where F is a weighting matrix consisting of the physiological cross section areas
of the muscles, and f,™" and f,,™" are the lower and upper bounds on the
muscle force magnitudes, respectively [30]. The cost function is the sum of
squares of the muscle stresses [2].

2.4. Simulation of the framework

For a given desired (measured) rotational trajectory (q,,), the developed
framework allows forward-dynamics simulation of the GH joint model with 6
DOF (Fig. 3). The muscle force magnitudes (f,,) are defined by the forward-
dynamics framework such that the rotational generalized coordinates and ve-
locities (g, and g,) of the GH joint follow their associated desired trajectories
(gr, and ¢,,). The forward-dynamics framework consists of a feedforward and
a feedback controller. The feedforward controller defines the gross control input
based on (10), and the feedback controller has a fine action to compensate for



the tracking errors (12). The rotational motions of the joint together with the
muscle forces that are applied to generate these rotational motions may lead to
GH joint translations. The evolutions of these translations are captured through
the 3 translational DOF (g,) of the GH joint model.

The deformable articular contact model defines the contact forces (F.). At
each time step of the simulation, the contact force (F) is defined as the resultant
force of all the f . forces. For the sake of computational efficiency of the simu-
lation, a point search algorithm is developed using the techniques defining the
intersection of two quadric surfaces [39]. Among all the h; points constructing
the humeral head surface, it provides at each time step a subset for which the
penetration occurs. The contact model of (5) is smoothened using a continuous
approximation of the heaviside function.

A smooth motion representing 150° abduction in the scapula plane is simu-
lated. The motion is performed in 7.2 [s]. The Runge-Kutta-Fehlberg method
[40], which combines a fourth and a fifth order Runge-Kutta scheme for error
control is used to solve the equations of motion.

defi bl
drq |feedforward aft?(f:lljr ¢ —
F, { contact model (5)

controller (10)
feedback shoulder model qi

controller (12) vél;lhj gir?tOF

v

Figure 3: A block diagram representation of the developed framework. The contact
force (F.) is defined by the deformable articular contact model (5). The muscle force
magnitudes (f) are defined by the feedforward (10) and the feedback (12) controller
such that the 3 rotational DOF (g,) of the GH joint follow a given desired rotational
trajectory (gr,). The HHT is captured through the 3 translational DOF (g¢).

The GH joint model with 6 DOF is evaluated for the simulated motion
within the developed framework. The results are presented in terms of the HHT
relative to the glenoid, the GH joint contact force, the contact area, the contact
pressure on the glenoid cartilage, and the maximum normal strain of the glenoid
cartilage. They are also compared with the associated results from the literature
wherever it is possible. The evolution of the HHT is resolved along with the arm
abduction in three directions of a frame attached to the glenoid fossa, including
inferior-superior, posterior-anterior, and lateral-medial. The glenoid frame is
constructed from the scapula frame (Fig. 2) by two transformations. First, the
scapula frame is shifted by (r4 —rp) in the negative direction of z, to the origin
of the glenoid frame. It is then rotated along ys and x, to account for the glenoid
fossa orientation according to [9]. A similar GH joint model but with 3 DOF
(ideal ball-and socket) including the joint stability constraint is also simulated
and its associated contact force is presented.
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3. Results

The humeral head center translates relative to the glenoid frame from an
inferior position superiorly until 90° abduction and then translates inferiorly
(Fig. 4a). The range of inferior-superior HHT is around 2.5 [mm]. The humeral
head center translates posteriorly from a central position and lies posteriorly
throughout the simulated motion, whereas it translates anteriorly from 60° to
100° abduction (Fig. 4b). The range of posterior-anterior HHT is less than
0.5 [mm|. The humeral head center translates in the medial direction till 90°
abduction and translates laterally afterward (Fig. 4c). The maximum HHT in
the medial direction is less than 1.2 [mm].

The GH joint contact force increases to 660 |[N| (87% of the bodyweight)
at 90° abduction and decreases afterward (Fig. 5). The difference between the
contact forces predicted by the 3 DOF and the 6 DOF GH joint model is less
than 6%.

The contact area increases initially by the abduction and decreases after-
ward (Fig. 6). The distribution of the contact pressure applied on the glenoid
cartilage varies by the arm abduction (Fig. 6). The maximum contact pres-
sure increases from 0.50 [MPa] at 30° abduction by 130% at 90° abduction and
decreases thereafter to almost its initial amount by the end of the motion. Posi-
tions on the glenoid fossa where the maximum contact pressure is applied (center
of pressure) from 30° to 145° of the arm abduction lie in the superior-posterior
quarter of the fossa.

The maximum normal strain of the glenoid cartilage increases from 0% at
0° abduction to almost 31% at 90° abduction that is around 1.1 [mm)] of the
thickness of the deformable layer covering the glenoid fossa (Fig. 7). It decreases
afterward to almost 24% until the end of arm abduction.
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Figure 4: The HHT is resolved in three directions of the glenoid frame, namely
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ated results from the in vitro [17], in vivo [8, 18, 19, 21|, and numerical [10, 12—
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predicted by a similar GH joint model but with 3 DOF (ideal ball-and-socket) including
the stability constraint is also shown.
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Figure 6: The distribution of the contact pressure applied on the glenoid cartilage
and the contact area during the arm abduction. The results are shown for every 30°
abduction. Positions on the glenoid fossa where the maximum contact pressure is
applied (center of pressure) during the abduction are illustrated by black crosses.
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Figure 7: The maximum normal strain of the glenoid cartilage varies with the arm
abduction.

4. Discussion

The aim of this study was to develop a simulation framework that allowed
forward-dynamics simulation of a shoulder model consisting of a GH joint with
6 DOF associated to rotations and translations of the humerus in the glenoid
fossa. The model thus provided the HHT during controlled elevation of the
arm. We showed that a forward-dynamics framework addressing HHT required
extra information about the glenohumeral contact. To that end, a deformable
articular contact was included, providing a mapping from the generalized co-
ordinates and velocities to the contact forces. The simulation framework was
tested and verified during a movement of abduction in the scapula plane. We
specifically analyzed the HHT, the GH joint contact force, the contact area, the

12



contact pressure, and the cartilage strain. These results were indirectly vali-
dated through comparison with in vivo, in vitro, and other numerical studies.

The initial inferior position of the humeral head center can be explained by
the fact that the passive structures (ligaments, capsule, and labrum) surround-
ing the GH joint are lax when the joint is in its neutral configuration. Then
until 30° abduction, the humeral head center experienced a superior transla-
tions that placed it in a rather central position. This was due to an upward
pull by the muscles that has been already reported in [44, 45]. The upward
pull was compensated by the contact force, producing a cartilage deformation
(about 22% strain). After this first phase, the humeral head center remained in
the superior-posterior quarter of the glenoid fossa.

A large variability of HHT was reported in the literature. Therefore, a
rigorous validation of the HHT estimated by our framework was not possible.
However, the trend of predicted inferior-superior HHT was consistent with the
most commonly reported pattern ([10, 12, 13, 17, 18]). The range of translation
also corresponded well with the literature ([18], [8], and [17]).

The difference in curvature radii of joint articulating surfaces often defines
the joint congruence. An incongruence of 2 [mm] was assumed in this study
for the GH joint based on observations of clinical studies, e.g. [17, 29]. How-
ever, some authors claimed the GH joint to be perfectly congruent (same radii)
[46]. We found a correlation between the incongruence of the GH joint and
the inferior-superior translations. That is, a larger difference in the radii of the
humeral head and the glenoid fossa results in larger predicted translations in
the inferior-superior direction. For the case of congruent joint, the translations
were still witnessed but with much smaller amplitudes in the inferior-superior
direction. Furthermore, we found that neither posterior-anterior translations
nor lateral-medial translations were correlated with the GH joint incongruence.
These findings are consistent with clinical and numerical observations reported
in the literature, e.g. [17, 47, 48].

The predicted GH joint contact force was consistent with in vivo mea-
surements of instrumented prostheses [43] and the other numerical predictions
[5, 10, 12, 41, 42|, at least up to 90° abduction. There was less than 8% difference
between our estimation of the contact force at 90° abduction and measurements
of instrumented prostheses. However, it should be mentioned that there are yet
a number of limitations concerning applications of instrumented prostheses to
validate estimated joint contact forces. Particularly, the post-surgery patients
who participated in the in vivo study of [43] had compromised arm range of mo-
tions (ROM). Their musculotendinous were also damaged or disrupted possibly
due to the associated surgeries. Furthermore, they might have had pathological
neuromuscular motor control stemming from pain or compromised ROM. There-
fore, their muscular functions, joint kinematics, and joint mechanics (contact
forces) differed from those of healthy subjects.

After 90° abduction, there is no clear consensus between the contact forces
estimated by the different studies mentioned above. Inter-individual morpho-
logical differences and models shortcoming in replicating specific motor control
of subjects seem to be potential sources of this inconsistency. Subject-specific

13



modeling together with inclusion of measured EMG signals provided noticeable
improvements [42, 49]. Nevertheless, we indeed observed that contact pressure
decreased after 90° abduction. Therefore, the contact force can be expected to
exhibit the same descending behavior after 90° abduction.

The simulation of the 3 DOF GH joint model including the stability con-
straint and the 6 DOF GH joint model showed that the difference in the esti-
mated maximum contact forces was indeed negligible during the slow abduction.
This fully supports the well accepted ideal ball-and-socket approximation of the
GH joint with the stability constraint for applications requiring force estima-
tions. However, as a recommendation for future works, it would be interesting
to quantify this difference for simulation of activities of daily living (ADL). The
muscle force prediction of the 3 DOF model including the stability constraint
was already validated against EMG measurements in our previous work [50].

A discrepancy exists between the predicted contact area and in vitro mea-
surements ([51, 52]). For instance, the predicted contact area was on average
almost 2.8 and 4 times larger than the experimental measurements reported
in [51] and [52], respectively. However, given the practical differences in the
definition of contact between our approach and the in wvitro studies, the ob-
served discrepancy was expected. In our model, any infinitesimal surface on the
humeral head with an infinitesimal penetration in the glenoid fossa was consid-
ered to be in contact. On the other hand, in the in vitro studies the definition of
contact is subject to measurement precision. In a real joint, we can reasonably
assume a full contact between the two deformable cartilage layers.

The predicted contact pressure was consistent with the literature, e.g. [14,
52|. For example, the maximum contact pressure predicted by our framework
and the in vitro study in [52] at 60° was 0.93 [MPa] and 0.91 [MPal], respectively.
The predicted center of pressure in the superior-posterior quarter of the glenoid
fossa was also consistent with the literature [12, 14, 18].

The application of forward-dynamics simulation together with the deformable
articular contact model allowed us to solve the differential equations of motion
of the GH joint with 6 DOF. Therefore, the dynamic effects of motion were nat-
urally included in the translations predicted by our framework. Indeed, the first
and second derivatives of the translational degrees of freedom were neglected
in the previous studies (e.g. [9, 12, 14]) in order to transform the differential
equations of motion to a set of algebraic equations.

The indeterminacy associated with the unknown contact force was resolved
by incorporating a function mapping that defined the unknown contact force
in terms of the joint kinematics. The function mapping was defined using a
viscoelastic contact model. However, the necessity of incorporating a function
mapping to resolve the indeterminacy should be distinguished from the method-
ology used to find this function mapping. In other words, a function mapping
that defines the unknown contact force in terms of the joint kinematics is nec-
essary to resolve the indeterminacy. However, there are several methodologies
to define such a function mapping. For instance, given the viscoelastic charac-
teristic of the in vivo GH joint, we used a viscoelastic contact model to define
the associated function mapping. Whereas, one can consider an elastic contact
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model or a friction model to find an associated function mapping.

The developed framework included a multibody musculoskeletal model to-
gether with a representation of the cartilage contact mechanics. It therefore pro-
vided an integrated solution to study the relationship between joint kinematics,
muscle forces, and cartilage stress. The common approach in the literature con-
sists of two steps. First, a musculoskeletal model is used to define the rotational
joint kinematics as well as the muscle forces. Then, a finite element analysis is
performed to define the translational joint kinematics and the cartilage stress
based on the results provided from the first step.

One of the limitations of the present study was linked to the fact that we
focussed on the GH joint itself without considering the effect of the adjacent
bones. Future development should therefore incorporate a large-scale model of
the shoulder into the framework. The second limitation referred to the spherical
approximation of the humeral head. However, it is straightforward to integrate
more realistic anatomical geometries in the developed framework. The third
limitation was associated with neglecting the GH joint passive structures (liga-
ments, capsule, and labrum) in the evaluated shoulder model. However, given
that they are lax except for the extreme positions of the joint [45], their con-
tribution for the simulated motion was expected to be negligible. Furthermore,
to simulate motions involving the joint extreme positions, inclusion of these
passive structures in the framework is necessary. To this end, a model of the
passive structures defining their associated force as a function of joint kinematics
(e.g. see [53]), could be integrated in the framework in our future developments.
Another limitation was related to the fact that the articular contact was approx-
imated as a rigid-to-deformable contact (rigid humeral head in contact with the
deformable glenoid fossa). It simplified the formulation of the contact problem
provided that the deformation of one contacting component was only involved.
However, this deviated from the more complex deformable-to-deformable con-
tact of the in vivo GH joint.

In conclusion, we developed a framework based on a joint application of a
forward-dynamics simulation and a deformable articular contact to simulate a
human shoulder model including a 6 DOF GH joint model. It not only provided
estimations of muscle and joint reaction forces (similar to 3 DOF GH joint mod-
els) but also allowed estimations of HHT, contact areas, and contact pressure.
The latter is required to broaden our understanding of the GH joint stability
and more crucially to design shoulder prostheses. This novel framework had
three main advantages. First, given that the dynamic equations of motion were
solved forward in time, the dynamic effects of motion were naturally considered
despite the previous numerical [9, 11, 12, 14, 15] and in vivo [8, 19, 21] stud-
ies. Second, a nonlinear viscoelastic approximation was used for the articular
contact. Third, it provided an integrated solution for the study of the GH joint
function that dealt simultaneously with the joint kinematics and mechanics.
The results were in a good agreement with the ones from the literature. In
a next step, the proposed framework could be populated with subject-specific
morphological data to account for effects of inter-individual anatomical variabil-
ities on GH joint functions during ADL. The proposed methodology could also
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be translated for clinical applications related to the treatment of osteoarthritis
by TSA. Furthermore, outcomes of the proposed simulation framework could
be applied for biomechanical analysis and design of available and forthcoming
shoulder prostheses.
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