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Abstract

We present an affine-invariant non-stationary subdivision scheme for the recursive refinement of any tri-
angular mesh that is regular or has extraordinary vertices of valence 4. In particular, when applied to an
arbitrary convex octahedron, it produces a G1-continuous surface with a blob-like shape as the limit of the
recursive subdivision process. In case of a regular octahedron, the subdivision process provides an accu-
rate representation of ellipsoids. Our scheme allows us to easily construct a new interactive 3D deformable
model for use in the delineation of biomedical images, which we illustrate by examples that deal with the
characterization of 3D structures with sphere-like topology such as embryos, nuclei, or brains.

Keywords: Non-stationary subdivision; exponential-polynomial generation; extraordinary vertex;
deformable model; delineation; biomedical imaging.

1. Introduction

An important challenge in biomedical imaging is the characterization of 3D structures. In a clinical
context, the delineation of organs such as lungs and kidneys allows for better 3D visualization and, hence,
facilitates preoperative steps. In a biological context, microscopic images often contain hundreds of cells for
which an automatized or semi-automatized cell segmentation is necessary, because the manual delineation
of each cell would otherwise be overly time consuming.
3D deformable models are powerful tools for the extraction of volumetric structures. They consist in flexible
surfaces that are deformed from an initial user-provided configuration toward the boundary of the object to
delineate. The deformation can be driven manually, by interactively modifying the parameters of the model,
or automatically, by applying suitable energies [14, 27]. Currently, 3D deformable models are described
either implicitly, by level sets [2], or explicitly, by meshes [8, 11] and parameterizations [25]. Therefore,
the explicit definition of 3D deformable models can typically rely either on a discrete (mesh-based) or
a continuous (parametric) representation. A good deformable model must fulfill two main requirements.
First, it must depend on a small number of parameters (called control points), which limits the complexity
of the deformation and improves robustness. Second, since we want to detect blob-like objects, it must
reproduce or approximate ellipsoids.
In recent years, the trend in computer graphics has been to use subdivision surfaces as geometric tools for
representation and modeling [10, 18]. A subdivision scheme consists in a refinement process that is recursively
applied to an initial coarse polygonal mesh. Since, once infinitely refined, it provides a continuously defined
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surface, the set of the coarse mesh initial vertices, although discrete, is sufficient to fully describe the limit
surface.
The goal pursued in this paper is to describe the surface of a 3D deformable model by the continuous limit
surface obtained by applying a subdivision scheme to a suitable coarse mesh. The vertices of this initial
coarse mesh are regarded as the control points of the deformable model. The idea of a subdivision-based
deformable model offers the following advantages: i) the model can handle surfaces of arbitrary topological
type; ii) easy and localized interactions can be achieved by simply modifying the control points; iii) the
discrete nature of the scheme leads to an easy implementation.
In order to have few control points to manipulate, and as the number of mesh vertices increases geometrically
at each subdivision step, we want a simple shape as initial mesh. Since we focus our attention on the
construction of 3D deformable models for the characterization of structures with sphere-like topology, we
choose as initial mesh a 2-manifold triangular mesh with genus 0. In particular, among the Platonic solids
having triangular faces and a low number of vertices, we choose the octahedron. It is the one that has a
vertex valence closest to the regular valence 6. (The icosahedron is discarded for its high number of vertices
and the octahedron is preferred to the tetrahedron since it has vertex valence 4 rather than 3.)
To the best of our knowledge, the only subdivision methods that allow one to construct a good approximation
of the unit sphere, starting from a 2-manifold polygon mesh with arbitrary connectivity, are the polar method
proposed in [15] and improvements thereof proposed in [22]. These methods can be used on polar meshes,
which are meshes with sphere-like topology described by triangles in the vicinity of extraordinary vertices
(i.e., internal vertices with a number of incident edges that differ from the regular valence), and made of
quadrilaterals elsewhere. However, the extraordinary vertices contained in the polar meshes are not allowed
to have a valence smaller than 6. As a consequence, the methods proposed in [15] and [22] cannot be applied
to initial triangular meshes defined by six vertices of valence 4, as is the case with the regular octahedron.
A subdivision scheme that is able to handle a regular octahedron is Loop’s scheme. It is an approximating
subdivision scheme for triangular meshes developed by Charles Loop in 1987 [19]. At each step of the
subdivision process, it refines each triangle of a given mesh into four subtriangles, obtained by inserting
one new vertex in correspondence to each edge midpoint and to each existing vertex [1, 19]. If applied to
a 2-manifold triangle mesh with arbitrary connectivity, it generates a limit surface of arbitrary topology
that is C2-continuous everywhere, except at extraordinary vertices where the regularity is only C1. Thus,
by applying Loop’s scheme to a regular octahedron, we get a limit surface that is globally C1-continuous.
However, as we show in Section 3.1.4, it provides a bad approximation of the unit sphere because the stencil
used by Loop’s scheme to insert a new vertex in correspondence to an edge midpoint is too small to take
into account the desired geometry and does not adapt to the refinement step.
In this paper, we resolve this issue by proposing a new non-stationary (or level-dependent) subdivision
scheme. Like Loop’s scheme, it belongs to the class of primal subdivision schemes [1, 23] since, at each step
of the refinement process, a finer mesh is created by splitting the faces of the coarse mesh. However, we
use a level-dependent vertex-point stencil and a much larger (and also level-dependent) edge-point stencil.
These modified rules for inserting new vertices fulfill the following properties:

1. affine invariance, which ensures that the limit surface is described independently of its location and
orientation;

2. applicability to an initial mesh with very few control points;

3. G1-continuity of the limit surface;

4. accurate representation of ellipsoids;

5. friendly user interactions whenever some manual editing of the model is desired.

1.1. Organization of the Article

In Section 2, we present our new non-stationary subdivision scheme. Then, in Section 3, we analyze
its main properties. Finally, in Section 4, we illustrate how it can be effectively exploited to construct
deformable models with sphere-like topology. We also provide application examples in real volumetric
biomedical images. Conclusions are drawn in Section 5.
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2. BLOB: A Butterfly-Loop Optimal Blending Non-Stationary Subdivision Scheme

In this section, we present our new non-stationary subdivision scheme for the construction of 3D de-
formable models with sphere-like topology.

2.1. Notation and Vocabulary

In this paper we focus on 2-manifold triangular meshes with genus 0 [12], where each vertex is the
meeting point of an arbitrary number n (n ≥ 3) of triangles. The value assumed by n is called the
valence of the vertex. Vertices of a triangular mesh are called regular when they have valence n = 6 and
extraordinary otherwise. Let M(0) denote an initial 2-manifold triangular mesh. Then, the finer resolution
meshM(k), k ∈ N∗ := N\{0}, is obtained by means of the recursive application of the subdivision operators
{Sn, n = 0, . . . , k − 1} that identify the non-stationary subdivision scheme, as

M(k) = Sk−1Sk−2 · · · S0M(0). (2.1)

Since the subdivision operators are defined locally, in the remainder of this paper we denote by R(0) and E(0)

the submeshes of M(0) that determine the behavior of the limit surface on the one-ring of a regular and of
an extraordinary vertex, respectively. The submesh R(0) (E(0), respectively) is also called the neighborhood
of a regular (extraordinary, respectively) vertex.
In Sections 2.2 and 2.3, we describe how the subdivision operators perform in R(0) and E(0), respectively.

2.2. Regular Subdivision Rules

We denote by q(0) = {q(0)
α , α ∈ Z2} the set of vertices in the submesh R(0). Following the standard

notation of [5], at each level k ∈ N, the action of a non-stationary scheme on R(0) is described by the
refinement rules

q(k+1)
α =

∑
β∈Z2

a
(k)
α−2β q

(k)
β , α ∈ Z2, (2.2)

which generate the refined data sequence q(k+1) = {q(k+1)
α , α ∈ Z2} starting from the coarser data sequence

q(k) = {q(k)
α , α ∈ Z2}. The coefficients in (2.2), which are assumed to be finitely many, can be conveniently

collected in the kth-level subdivision mask

a(k) = {a(k)
α , α ∈ Z2}

or incorporated in the kth-level subdivision symbol

a
(k)
∗ (z) =

∑
α∈Z2

a(k)
α zα, z ∈ (C\{0})2.

For our specific scheme, the kth-level subdivision mask is of the form

a(k) = {a(k)
α1,α2

, −3 ≤ α1, α2 ≤ 3} =



0 0 0 e(k) c(k) c(k) e(k)

0 0 c(k) b(k) d(k) b(k) c(k)

0 c(k) d(k) f (k) f (k) d(k) c(k)

e(k) b(k) f (k) a(k) f (k) b(k) e(k)

c(k) d(k) f (k) f (k) d(k) c(k) 0
c(k) b(k) d(k) b(k) c(k) 0 0
e(k) c(k) c(k) e(k) 0 0 0


, (2.3)

where the non-zero entries are

a(k) = 4(v(k))2+2v(k)+1
4(v(k)+1)2

, b(k) = 2v(k)+1
8(v(k)+1)2

, c(k) = 2v(k)+1
16(v(k)+1)3

,

d(k) = (2v(k)+1)2

8(v(k)+1)3
, e(k) = 1

16(v(k)+1)3
, f (k) = (2v(k)+1)(4(v(k))2+6v(k)+3)

16(v(k)+1)3
,

with

v(k) =
1

2

(
e
i λ

2(k+1) + e
−i λ

2(k+1)

)
, λ ∈ [0, π) ∪ i(0, 2acosh(500)). (2.4)
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b(k) b(k)

V

b(k) b(k)

b(k) b(k)
a(k)

(a) Vertex-point stencil.

e(k)

c(k) d(k) c(k)

d(k) c(k)c(k)

f (k) f (k)e(k)

E

(b) Edge-point stencil.

Figure 1: Stencils for vertex-point (a) and edge-point (b) rules of the BLOB scheme in the regular regions of the mesh.

Remark 2.1. The parameter λ influences the final shape of the limit surface. Since

v(0) =
1

2

(
eiλ2 + e−iλ2

)
=

{
cos
(
λ
2

)
∈ (0, 1], λ ∈ [0, π)

cosh
(
Im(λ)

2

)
∈ (1, 500), λ ∈ i(0, 2acosh(500)),

we can also assume v(0) ∈ (0, 500) to be the free parameter that specifies the shape of the surface we get in
the limit.

The kth-level symbol associated to the subdivision mask in (2.3), written in terms of v(k), is thus

a
(k)
∗ (z1, z2) =

(1 + z1) (1 + z2) (1 + z1z2) (z2
1 + 2v(k)z1 + 1) (z2

2 + 2v(k)z2 + 1) (z2
1z

2
2 + 2v(k)z1z2 + 1)

16(v(k) + 1)3z3
1z

3
2

. (2.5)

For the mask coefficients in (2.3), the refinement rules in (2.2) give rise to the vertex-point and edge-point
stencils illustrated in Figure 1, where local linear combinations of vertices are suggested graphically. The
coarser mesh is used to create a new vertex in correspondence to either an old vertex or an old edge.
Since the vertex-point rule has the same size and structure as the vertex-point rule of Loop’s subdivision
scheme [19], and since the size and structure of the edge-point rule are the same as those of the modified
Butterfly scheme [31], the new scheme is named the Butterfly-Loop Optimal Blending (BLOB) subdivision
scheme.

2.3. Extraordinary Subdivision Rules

We allow the starting mesh to contain extraordinary vertices of valence 4. In fact, we are interested
in applying the BLOB scheme to an initial mesh given by an octahedron, which is a polyhedron made of
eight triangular faces and six vertices that all have valence 4. The vertex-point stencil for an old vertex of
valence 4 and the edge-point stencil for an old edge, where one or both endpoints are extraordinary vertices
of valence 4, are illustrated in Figure 2. The rule to create our edge point with two extreme vertices of
valence 4 (Figure 2 (b)) is only used in the first step of the subdivision process. In the subsequent steps, the
extraordinary vertices are isolated; thus, the regular rule (Figure 1 (b)) and the rule for extreme vertices
with different valences (Figure 2 (c)) are used. In addition, the rule for the computation of the vertex-point
of valence 4 (Figure 2 (a)) is used six times in each subdivision step since the octahedron has six vertices of
valence 4 and they are kept throughout the whole subdivision process.
Denoting by p(0) the vector that collects the vertices of the submesh E(0), we describe the action of the BLOB
scheme in the vicinity of an extraordinary vertex of valence 4 by the kth-level equation p(k+1) = S̃kp

(k),
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b̃(k)

V

ã(k)
b̃(k)b̃(k)

b̃(k)

(a) Vertex-point rule for a vertex of valence 4.

g(k)

0

0

h(k)
g(k)

h(k)
E

(b) Edge-point rule for an edge with two end-point ver-

tices of valence 4. Here, g(k) =
(2v(k)+3)(2v(k)+1)

8(v(k)+1)2
and

h(k) = 1
8(v(k)+1)2

, with k = 1.

d̃(k)

ẽ(k)

d̃(k) c(k)

c(k)

e(k)
f (k)f̃ (k)

E

(c) Edge-point rule for an edge with one end-point vertex of valence 4 and the other of valence 6.

Figure 2: Stencils for vertex-point and edge-point rules involving extraordinary vertices of valence 4.

k ∈ N (see again [5]). The matrix S̃k is the kth-level subdivision matrix, and for all k > 1, is of the form

S̃k =



ã(k) (r(k))T (r(k))T (r(k))T (r(k))T

s(k) M
(k)
0 M

(k)
1 M

(k)
2 M

(k)
3

s(k) M
(k)
3 M

(k)
0 M

(k)
1 M

(k)
2

s(k) M
(k)
2 M

(k)
3 M

(k)
0 M

(k)
1

s(k) M
(k)
1 M

(k)
2 M

(k)
3 M

(k)
0


, (2.6)

where

M
(k)
0 =

f (k) e(k) c(k)

a(k) b(k) b(k)

f (k) c(k) d(k)

 , M
(k)
1 =

d̃(k) 0 0
b(k) 0 0
f (k) c(k) e(k)

 , M
(k)
2 =

ẽ(k) 0 0
0 0 0
c(k) 0 0

 , M
(k)
3 =

d̃(k) 0 c(k)

b(k) 0 b(k)

c(k) 0 e(k)

 ,

d̃(k) =
16(v(k))2 + 18v(k) + 5

32(v(k) + 1)3
, ẽ(k) =

2v(k) + 5

64(v(k) + 1)3

and

ã(k) =
45(v(k))2 + 18v(k) + 1

48(v(k) + 1)2
, r(k) = (b̃(k), 0, 0)T , s(k) = (f̃ (k), b(k), d(k))T ,

with

b̃(k) =
3(v(k))2 + 78v(k) + 47

192(v(k) + 1)2
, f̃ (k) =

32(v(k))3 + 64(v(k))2 + 54v(k) + 15

64(v(k) + 1)3
.

Remark 2.2. The coefficients g(k) and h(k) in Figure 2 (b) do not appear in the subdivision matrix (2.6)
since the corresponding stencil is used only in the first step of the refinement process. The explicit form of
the subdivision matrix S̃k is given only for levels k > 1.
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3. Properties of the BLOB Scheme

In this section, we analyse the main properties of the BLOB scheme, including its capability of generat-
ing/reproducing bivariate exponential polynomials or blob-like shapes, affine invariance, convergence, and
smoothness.

3.1. Generation and Reproduction Properties

Non-stationary subdivision schemes have become popular due to their capability to reproduce conic
sections or surfaces of revolution, which appear very often in geometric modeling, isogeometric analysis, or
biomedical imaging.

3.1.1. Generation of Exact Ellipsoids from a Regular Triangular Mesh with Poles

Proposition 3.1. In the submesh R(0), the BLOB subdivision scheme generates exponential polynomials
from the space EP(Γ1,Θ), with Γ1 = {(γ1, γ2) ∈ N2 : 0 ≤ γ1+γ2 ≤ 1}, Θ = {(0, 0), (±λ, 0), (0,±λ), (±λ,±λ)},
λ ∈ (0, π) ∪ i(0, 2acosh(500)); that is,

span
{

1, x, y, e±λx, e±λy, x e±λx, y e±λy, x e±λy, y e±λx, e±λ(x+y), e±λ(x−y), x e±λ(x−y), y e±λ(x−y)
}
.
(3.1)

In particular, it reproduces linear polynomials from the space Π2
1 = span {1, x, y} with respect to the param-

eterization {T(k), k ∈ N}, T(k) = {t(k)
α = α

2k
,α ∈ Z2}.

The proof of Proposition 3.1 is given in Appendix A. This gives the BLOB scheme the ability to generate
exact ellipsoids, starting from a regular triangular mesh. To build an exact ellipsoid (Figure 4 (b)), we need

to apply the regular rules shown in Figure 1 to the initial control mesh q(0) = {φ(t
(0)
α ),α ∈ Z2}, where φ

also denotes an ellipsoid, and select λ ∈ (0, π) accordingly. Since we require the initial control mesh q(0) to
be regular (i.e., made of vertices of valence 6), we apply the refinement process to an initial mesh described
by the twenty-eight vertices of coordinates

[(q(0))1]i,j = cos(si−1) cos(tj−1), [(q(0))2]i,j = cos(si−1) sin(tj−1), [(q(0))3]i,j = sin(si−1), (3.2)

where 1 ≤ i ≤ 4, 1 ≤ j ≤ 7, sm = −π2 +mπ
3 , m = 0, 1, 2, 3 and tn = nπ3 , n = 0, 1, 2, 3, 4, 5, 6. Since the sm

and tn values are equally spaced with step size π
3 , we select λ = π

3 . Definition (3.2) implies that the vertices

of the first and last line of q(0) =
(
(q(0))1, (q

(0))2, (q
(0))3

)
are assumed to be topologically identical, namely

they have the same coordinates, to define the ellipsoid’s poles of coordinates (0, 0,−1) and (0, 0, 1) (Figure
3). But, although the initial mesh contains only fourteen distinct points (Figure 4 (a)), the subdivision rules
are blind to the topological identification. Thus, they are virtually applied to a mesh with twenty-eight
vertices. (While the vertices of the mesh in Figure 4 (a) are apparently of valence 5, they actually have
valence 6 due to the poles that are“multiple” vertices (Figure 3 (a)).

Remark 3.2. The poles are preserved during the subdivision process. However, if the initial mesh is de-
formed, additional conditions are required in order to keep the mesh closed and smooth at the poles.

3.1.2. Generation of Blob-Like Shapes from a Triangular Mesh Without Poles

It is possible as well to consider only six vertices, thus applying the extraordinary refinement rules of
Figure 2 to an octahedron. The corresponding limit surface then takes an ellipsoidal shape. In Figure 5 (a)
and (b), we show the blob-like shapes obtained from the regular octahedrons in the first row. We used λ = π

2

to define v(k) as in (2.4). Moreover, if the BLOB scheme is applied to an arbitrary convex octahedron, we
can produce a rich collection of blob-like shapes, in particular, all affine transformations of the approximate
sphere (Figure 5 (c) and (d)).

Remark 3.3. The initial mesh can be non convex. The convexity is only required to obtain a blob-like shape.
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(a) Mesh with identified vertices. (b) Flat image of (a).

Figure 3: 3D triangular mesh defined by twenty-eight vertices.

(a) Initial mesh. (b) Limit surface of the BLOB scheme.

Figure 4: Generation of an exact ellipsoid (b) starting from a regular triangular mesh with twenty-eight vertices, of which only
fourteen are distinct (a).

(a) Approximate sphere. (b) Approximate ellipsoid. (c) Blob-like shape. (d) Blob-like shape.

Figure 5: Initial triangular meshes (first row) and corresponding limit surfaces (second row) obtained by the BLOB scheme
with extraordinary rules.
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Level Vertices of the Vertices of the
k subdivided regular subdivided

mesh with poles octahedron

0 28 6
1 91 18
2 325 66
3 1225 258
4 4753 1026
5 18721 4098
6 74305 16386
7 296065 65538
8 1181953 262146

Table 1: Number of vertices of the kth-level meshes.

(a) Initial mesh. (b) Limit surface of the BLOB scheme. (c) Limit surface of Loop’s scheme.

Figure 6: Approximation of the unit sphere obtained with (b) the BLOB scheme and (c) Loop’s scheme when using the regular
octahedron (a) as initial mesh.

3.1.3. Comparison

The number of vertices of the triangular meshes obtained at each subdivision step differs significantly
when generating exact and approximate spheres. On one hand, the kth-level mesh obtained from the initial
28-point regular mesh with poles by applying the regular refinement rules in Figure 1 contains 18·4k+9·2k+1
vertices. On the other hand, the number of vertices obtained by applying the extraordinary refinement rules
in Figure 2 on an octahedron is only 4k+1 + 2. In Table 1, we compare these two numbers for subdivision
levels k = 0, . . . , 8. We observe that the use of regular meshes to construct exact ellipsoids requires more
initial vertices than those that are effectively needed if we allow the initial mesh to contain extraordinary
vertices. As the vertices will be the control points of the deformable model, we certainly prefer to use the
octahedron as initial mesh.

3.1.4. Comparison with Loop’s Scheme

If we refine the regular octahedron using Loop’s subdivision scheme [19], the shape that we obtain in the
limit is more distant from the unit sphere than if we use the proposed BLOB scheme. We denote by C the
center of gravity of the octahedron, which is the center of the circumscribed sphere. We denote by f (k) the set
of points, of cardinality #f (k), that define the subdivision mesh at the kth step. We say that a subdivision
scheme produces a better approximation of the unit sphere if it defines a smaller error ε = lim

k→∞
εk, where

εk = max
i=1,...,#f (k)

|C− f
(k)
i | − min

i=1,...,#f (k)
|C− f

(k)
i |.

It turns out that the error 0.01 obtained for the BLOB scheme is almost eight times smaller than the error
0.08 produced by Loop’s scheme (Figure 6).
If we insist in letting Loop’s scheme match the quality of the BLOB scheme, then we need to consider a
starting mesh with many more vertices than the octahedron. Precisely, we need to consider an initial mesh
defined by 258 vertices (Figure 7).
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(a) Initial mesh. (b) Limit surface of the BLOB scheme. (c) Limit surface of Loop’s scheme.

Figure 7: Approximation of the unit sphere obtained with (b) the BLOB scheme and (c) Loop’s scheme when applied to an
initial mesh consisting of 258 vertices (a).

This suggests that the BLOB scheme will be more accurate when delineating spherical shapes with a small
number of initial vertices (Figure 9 (b)). As more control points are included, the two schemes will produce
outcomes of equivalent quality.

3.2. Affine Invariance

The property of affine invariance means that the geometry of the limit surface produced by the subdivision
scheme changes in synchrony with any affine transformation that would be applied to the initial mesh. When
applied on R(0), the affine invariance of the BLOB scheme follows from the capability of reproducing Π2

1,
as stated in Proposition 3.1 [1, 4]. Near extraordinary vertices, affine invariance is also achieved since the
entries in each row of the matrix S̃k defined in (2.6) sum up to 1 [1, 23].

3.3. Convergence and Smoothness

Convergence and smoothness of the BLOB scheme in the neighborhood of a regular and extraordinary
vertex are investigated by means of the theoretical results proposed in [3, 5].

3.3.1. Analysis in Regular Regions of the Mesh

Proposition 3.4. The BLOB scheme converges to C4 limit surfaces when applied to regular triangular
meshes.

The proof of Proposition 3.4 is given in Appendix B.

3.3.2. Analysis in the Vicinity of Extraordinary Vertices

To study convergence and smoothness of the BLOB scheme in the vicinity of an extraordinary vertex of
valence 4, we apply the theoretical results in [5]. More precisely, we prove Proposition 3.5 in Appendix C.

Proposition 3.5. When applied to triangular meshes with extraordinary vertices of valence 4, the BLOB
scheme converges to limit surfaces that are G1-continuous at the limit points of the extraordinary vertices.

4. Deformable Models for Biomedical Images

The BLOB scheme can be exploited to efficiently construct a deformable model with sphere-like topology.
The surface σ of the deformable model is defined by limk→+∞M(k), withM(k) in (2.1), {Sn, n = 0, . . . , k−1}
the subdivision operators of the BLOB scheme and M(0) the (possibly refined) octahedron (Figure 8).

Remark 4.1. For the implementation of the deformable model, we select a suitable resolution level kf > 0
and use the kf-level mesh M(kf ) as a discretization of the surface σ. The mesh M(kf ) is obtained by (2.1)
after the application of kf subdivision operators.
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(a) 6 control points. (b) 18 control points. (c) 66 control points. (d) 258 control points.

Figure 8: First row: initial mesh M(0). Second row: fourth-level discretization of the surface σ (red mesh) and its control
points (blue dots).

The generated surface is then iteratively deformed until the boundary of the object is reached. We denote
the vertices f (0) of M(0) as the control points of σ. The shape of σ is entirely encoded by these points. To
attract σ towards the surface of interest in the image, we locally adjust the control points f (0). This is done
either manually or automatically by minimizing the energy functional

Eσ = −
‹

σ

∇g · dσ,

where ∇g is the image gradient and dσ is the vector differential of the area. This functional consists in
an image energy that is based on gradient information contained in the data [14, 28]. We use a Powell-like

line-search method [24] to find the optimum f
(0)
opt = arg min

f (0)
Eσ. The optimizer proceeds as follows: For

each control point, a direction is chosen depending on the partial derivatives of the energy. Then, the
control point is displaced along the selected direction to minimize the energy. The process is repeated until
convergence. The use of few control points accelerates the optimization, while the ability of the model to
approximate complex shapes improves as the number of control points increases. Thus, a tradeoff has to be
made between accuracy and fast optimization. The image gradient ∇g is precomputed, which accelerates
the segmentation process and decreases the memory requirements.
In the following, we first show the advantage of describing the surface σ by means of the BLOB scheme
instead of Loop’s scheme. Then, we illustrate the use of this deformable model through several biomedical
applications. The experiments were carried out on a 1.7 GHZ processor with 8 GB RAM. We used the
fine-resolution mesh M(4) for the discretization of σ.

4.1. Comparison with Loop’s Scheme

We saw in Section 3.1.4 that the improvement of BLOB over Loop’s scheme lies in the fact that it
better approximates the sphere starting from an initial mesh with few vertices. Both schemes cannot be
distinguished when the initial mesh has 258 vertices. The goal of this section is to compare the accuracy
of the deformable model for the delineation of structures with a spherical shape when 1) we describe the
surface by either scheme; 2) we vary the number of control points. We carried out an experiment in which,
for each scheme, we delineated a spherical nucleus (Figure 9 (a)) using 6 control points. We used the Jaccard
index to measure the overlap between the deformed mesh and the ground truth. For two sets A and B,

it is defined as J = |A∩B|
|A∪B| . Clearly, 0 ≤ J ≤ 1, and the maximum overlap is described by J = 1. The

results and corresponding Jaccard indices are shown in Figure 9 (b). We repeated the experiment with 258
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(a) Real image.

(b) 6 control points. (c) 258 control points.

Figure 9: Delineations of a spherical nucleus (a) when the surface was described by either scheme. We used 6 (b) and 258 (c)
control points.

(a) Initial position of σ. (b) Outcome of the delineation.

Figure 10: Characterization of the nucleus of a neuron in 3D microscopic images. Red mesh: fourth-level discretization of the
surface σ. Blue dots: control points.

control points. However, the resulting meshes were poor (Figure 9 (c)). As the control points were too dense
compared to the size of the object, the optimization algorithm failed to reach an acceptable local optimum.
This lead to a bad distribution of the vertices. Hence, for small structures with a sphere-like topology, we
have a more robust and accurate deformable model when using the BLOB scheme with few control points.

4.2. Biological Images

4.2.1. Characterization of a Nucleus

After having delineated a nucleus, we get direct access to properties such as symmetry, mean intensity,
and curvature. In Figure 10, we report the result of the automatical delineation of the nucleus of the neuron
of a rat in 3D microscopic images [7]. The shape of the nucleus has many details (concavities); hence, as
starting mesh M(0), we used a refined octahedron with 66 control points (Figure 8 (c)). The delineation
was executed in 20 seconds. The initialization of the deformable model is shown in Figure 10 (a) and the
outcome is illustrated in Figure 10 (b).

4.3. Medical Images

4.3.1. Characterization of the Total Intracranial Volume

The total intracranial volume (TIV) is an important measure for volumetric analyses of the brain [20]. It
is used in medicine to detect temporal morphological changes related to neurological diseases [26]. However,
TIV algorithms are challenging because the brain contains many concavities such as the convoluted areas
around the temporal lobe and cerebellum. In a 3D MRI scan, we performed the automatic delineation of the
TIV of a human brain using the initial mesh shown in Figure 8 (d). The average time for the computation
was less than 75 seconds. The initialization is given in Figure 11 (a). The result is illustrated in Figure 11 (b).
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(a) Initial position of σ. (b) Outcome of the delineation.

Figure 11: TIV delineation in a 3D MRI volume. Red mesh: fourth-level discretization of the surface σ; Blue dots: control
points.

Figure 12: Deformation of the sphere by user interaction. Blue dots: control points for user interaction.

4.3.2. User-Interactive Modeling

We finally illustrate how a surface can be manually modified to design a shape of interest, starting from
an approximate sphere1. Different steps of the modeling of a bone structure are shown in Figure 12.

5. Conclusion

We have proposed an affine-invariant non-stationary subdivision scheme, called the BLOB scheme, ca-
pable of producing G1-continuous blob-like surfaces. The refinement process is started from a convex oc-
tahedron. The choice of this octahedron as starting mesh is motivated by two facts. First, since we are
interested in blob-like structures, it is natural to consider control meshes with sphere-like topology. Second,
to reduce the complexity of the deformable model, it is appropriate to use as few control points as possible.
The benefits provided by the new subdivision scheme in the field of biomedical imaging are related to its
efficiency to characterize 3D biomedical structures with sphere-like topology.
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1A video that illustrates the modeling of a bone is available at http://bigwww.epfl.ch/demo/subdivision-surfaces/
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Appendix A. Proof of Proposition 3.1

Let Λλ = {(0, λ, −λ) : λ ∈ (0, π) ∪ i(0, 2acosh(500))}, Θ = Λλ × Λλ, and Γ1 = {(γ1, γ2) ∈ N2 : 0 ≤
γ1 + γ2 ≤ 1}. We consider the space of exponential polynomials EP(Γ1,Θ) in (3.1) and the set

Vk,Θ =
{

(−1, 1), (1,−1), (−1,−1), (−e
±λ

2k+1 , 1), (e
±λ

2k+1 ,−1), (−e
±λ

2k+1 ,−1), (−1, e
±λ

2k+1 ), (1,−e
±λ

2k+1 ),

(−1,−e
±λ

2k+1 ), (−e
±λ

2k+1 , e
±λ

2k+1 ), (e
±λ

2k+1 ,−e
±λ

2k+1 ), (−e
±λ

2k+1 ,−e
±λ

2k+1 ), (−e
±λ

2k+1 , e
∓λ

2k+1 ),

(e
±λ

2k+1 ,−e
∓λ

2k+1 ), (−e
±λ

2k+1 ,−e
∓λ

2k+1 )
}
.

In the submesh R(0), the BLOB-subdivision scheme generates exponential polynomials from the space
EP(Γ1,Θ), if

D(γ1,γ2)a
(k)
∗ (ν1, ν2) = 0, ∀(ν1, ν2) ∈ Vk,Θ, (γ1, γ2) ∈ Γ1, ∀k ∈ N, (A.1)

where D(γ1,γ2) = ∂γ1

∂z
γ1
1

∂γ2

∂z
γ2
2

is the directional derivative of the symbol along (γ1, γ2) [4, Proposition 4.2].

The kth-level symbol a
(k)
∗ (z1, z2) given in (2.5) is such that condition (A.1) is satisfied. Hence, the BLOB

scheme generates EP(Γ1,Θ).

In the submesh R(0), the BLOB scheme reproduces Π2
1 = span {1, x, y} if it is EP(Γ1,0)-generating and if

its kth-level symbol satisfies [4, Theorem 4.4]

a
(k)
∗ (1, 1) = 4, D(1,0)a

(k)
∗ (1, 1) = 0, D(0,1)a

(k)
∗ (1, 1) = 0, ∀k ∈ N. (A.2)

As the scheme is EP(Γ1,Θ)-generating, it is in particular EP(Γ1,0)-generating. Using (2.5), we see that (A.2)

is also satisfied. Thus, the BLOB scheme reproduces Π2
1 with respect to the parameterization {T(k), k ∈ N},

T(k) = {t(k)
α = α

2k
,α ∈ Z2}.

Appendix B. Proof of Proposition 3.4

We first need to recall [3, Definition 3] and [6, Definition 7].

Definition B.1. [3, Definition 3] Let Z = {(−1, 1), (1,−1), (−1,−1)} and let D(γ1,γ2) be the directional
derivative along (γ1, γ2). A non-stationary, bivariate subdivision scheme S identified by the sequence of

symbols {a(k)
∗ (z), k ∈ N}, z ∈ (C\{0})2, is said to satisfy the approximate sum rules of order r + 1, r ∈ N,

if the sequences {µk, k ∈ N} and {δk, k ∈ N}, with

µk =
∣∣∣a(k)
∗ (1, 1)− 4

∣∣∣ and δk = max
0≤γ1+γ2≤r

max
(ζ1,ζ2)∈Z

2−k(γ1+γ2)
∣∣∣D(γ1,γ2)a

(k)
∗ (ζ1, ζ2)

∣∣∣
satisfy

∞∑
k=0

µk < +∞ and

∞∑
k=0

2kr δk < +∞.

Definition B.2. [6, Definition 7] A stationary subdivision scheme S̄ and a non-stationary one S are termed
asymptotically similar if the sequences {a} and {a(k), k ∈ N} of subdivision masks have the same support

J ( i.e. , a
(k)
α = aα = 0 for all α /∈ J ) and satisfy limk→+∞ a

(k)
α = aα, ∀α ∈ J .

To prove that the BLOB scheme converges to C4 limit surfaces when applied to regular triangular meshes,
we have to show that it is asymptotically similar to a stationary, convergent, bivariate subdivision scheme
whose basic limit function is C4 [3, Corollary 4] and that it satisfies the approximate sum rules of order 5.
The proof of this first result is based on Proposition B.3.

Proposition B.3. The stationary counterpart of the BLOB scheme converges to C4 limit surfaces when
applied to regular triangular meshes.
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Proof: We derive the stationary counterpart of the BLOB scheme by computing the limit of its local rules
when k → +∞. Since limk→+∞ v(k) = 1 for all λ ∈ [0, π) ∪ i(0, 2acosh(500)), it follows that the stationary
counterpart of the BLOB scheme applied on R(0) is identified by the mask

a = lim
k→+∞

a(k) =



0 0 0 1
128

3
128

3
128

1
128

0 0 3
128

3
32

9
64

3
32

3
128

0 3
128

9
64

39
128

39
128

9
64

3
128

1
128

3
32

39
128

7
16

39
128

3
32

1
128

3
128

9
64

39
128

39
128

9
64

3
128 0

3
128

3
32

9
64

3
32

3
128 0 0

1
128

3
128

3
128

1
128 0 0 0


. (B.1)

The associated symbol is

a∗(z1, z2) = lim
k→+∞

a
(k)
∗ (z1, z2) =

1

128 z3
1z

3
2

(z1 + 1)3 (z2 + 1)3 (z1z2 + 1)3. (B.2)

The result of Proposition B.3 follows by observing that the Laurent polynomial a∗(z1, z2) in (B.2) is the
symbol of the C4 and Π2

5-generating subdivision scheme proposed in [13, Example 5, case 3].

In light of Proposition B.3, the BLOB scheme is asymptotically similar to the C4 stationary subdivision
scheme with symbol a∗(z1, z2) in (B.2). It is therefore left to prove that the BLOB scheme satisfies approx-
imate sum rules of order 5. Indeed, since µk = 0, the sum

∑∞
k=0 µk is trivially convergent. We thus only

need to show that

∞∑
k=0

24k δk < +∞ with δk = max
0≤γ1+γ2≤4

max
(ζ1,ζ2)∈Z

2−k(γ1+γ2)
∣∣∣D(γ1,γ2) a

(k)
∗ (ζ1, ζ2)

∣∣∣ .
From Proposition 3.1, we already know that the BLOB scheme generates the space EP(Γ1,Θ) defined by (3.1).

This means that its kth-level symbol a
(k)
∗ (z1, z2) satisfies

a
(k)
∗ (ζ1, ζ2) = D(1,0)a

(k)
∗ (ζ1, ζ2) = D(0,1)a

(k)
∗ (ζ1, ζ2) = 0 for all (ζ1, ζ2) ∈ Z.

Thus, for the computation of δk, we can just consider max2≤γ1+γ2≤4 max(ζ1,ζ2)∈Z 2−k(γ1+γ2)
∣∣∣D(γ1,γ2) a

(k)
∗ (ζ1, ζ2)

∣∣∣ ,
which yields

max
2≤γ1+γ2≤4

max
(ζ1,ζ2)∈Z

2−k(γ1+γ2)
∣∣∣D(γ1,γ2) a

(k)
∗ (ζ1, ζ2)

∣∣∣ =


2−4k 3|(v(k)−1)(v(k)−5)|

(v(k)+1)2
, v(k) < 7

3

2−4k 6(v(k)−1)2

(v(k)+1)2
, v(k) ≥ 7

3 .

Focusing first on the case v(k) < 7
3 , we find that

∞∑
k=0

24kδk =

∞∑
k=0

3
∣∣(v(k) − 1)(v(k) − 5)

∣∣
(v(k) + 1)2

.

Thus, recalling the definition of v(k) in (2.4), and letting c be some positive constant, we exploit the fact
that

|1− v(k)| ≤ c2−2k, (B.3)

which implies that

∞∑
k=0

24kδk =

∞∑
k=0

3
∣∣(v(k) − 1)(v(k) − 5)

∣∣
(v(k) + 1)2

≤ c
∞∑
k=0

∣∣∣v(k) − 1
∣∣∣ < +∞.
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With a similar reasoning, we can also show that, when v(k) ≥ 7
3 ,

∞∑
k=0

24kδk =

∞∑
k=0

6(v(k) − 1)2

(v(k) + 1)2
≤ c

∞∑
k=0

(v(k) − 1)2 < +∞.

Hence, the BLOB scheme satisfies approximate sum rules of order 5. We can thus conclude that the BLOB
scheme is C4-convergent (it converges to C4 limit surfaces) when applied to regular triangular meshes.

Appendix C. Proof of Proposition 3.5

To prove that the BLOB scheme is convergent and produces G1-continuous surfaces at the limit points of
extraordinary vertices of valence 4, we need to prove that the BLOB scheme and its stationary counterpart
satisfy the assumptions of Theorem C.1.

Theorem C.1. [5, Theorems 4.6 and 4.8] Let E(0) denote the neighborhood of an extraordinary element
of valence n. Let S be a non-stationary subdivision scheme whose action in E(0) is described by the matrix
sequence {S̃k} and let S̄ be a stationary subdivision scheme that in E(0) is identified by {S̃}. Moreover,
let Sk and S be the block-circulant matrices possessing the same eigenvalues as S̃k and S̃ and, in case the
extraordinary element is an extraordinary vertex, (n− 1) additional null eigenvalues. Assume that

(i) S̄ is C1-convergent in R(0) with symbol a∗(z) containing the factor (1 + z1)(1 + z2), and G1-convergent
in E(0);

(ii) S is defined in R(0) by the symbols {a(k)
∗ (z)} where each a

(k)
∗ (z) contains the factor (1 + z1)(1 + z2);

(iii) S is asymptotically equivalent of order 1 to S̄ in R(0);

(iv) in E(0), the matrices Sk and S satisfy ‖Sk − S‖∞ ≤ C
σk

, where C is some finite positive constant and

σ > 1
λ1
> 1 with λ1 ∈ R+ the subdominant eigenvalue of S which is double and non-defective.

Then, for all bounded initial data, the non-stationary subdivision scheme S is convergent in E(0) and produces
a tangent-plane continuous surface at the limit points of extraordinary elements.

A gist of the proof of Theorem C.1 is given in Appendix D. We start by considering Assumption (i). We
already know that the stationary counterpart S̄ of the BLOB scheme is C1-convergent in R(0) with symbol
a∗(z) and that it contains the factor (1 + z1)(1 + z2) (see Proposition B.3 and (B.2)). To prove that S̄ is
G1-convergent in E(0), we exploit Theorem C.2.

Theorem C.2. [29, Theorem 3.1] Let S̄ be a stationary subdivision scheme identified by the block-circulant
matrix {S̃} and let λ0, . . . , λN−1 be its eigenvalues with |λ0| ≥ |λ1| ≥ · · · ≥ |λN−1|. Let the subdominant
eigenvalue λ1 be real with geometric multiplicity 2. If λ1 = λ2, λ0 = 1 > |λ1| > |λ3|, and moreover, the
characteristic map of S̄ is regular and injective, then the limiting surface is C1-continuous for almost all
initial control meshes.

To apply [29, Theorem 3.1], we need to construct the subdivision matrix S̃, study its eigenvalues and the
associated characteristic map. Using the fact that lim

k→+∞
v(k) = 1 for all λ ∈ [0, π) ∪ i(0, 2acosh(500)), it

follows that S̃ is given by

S̃ = lim
k→+∞

S̃k =



1
3 rT rT rT rT

s M0 M1 M2 M3

s M3 M0 M1 M2

s M2 M3 M0 M1

s M1 M2 M3 M0

 , k > 1, (C.1)
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Figure C.13: Left: control net c of the characteristic map of the stationary counterpart of the BLOB scheme for extraordinary
vertices of valence 4. Right: control points defining the first segment of the characteristic map (only the subscripts of the
control points are shown). The solid green area corresponds to the first segment that constitutes the ring of regular patches
defined around the extraordinary vertex. The two red lines delimiting this area identify the directions e1 and e3.

where r =
(

1
6 , 0, 0

)T
, s =

(
165
512 ,

3
32 ,

9
64

)T
, and

M0 =


39
128

1
128

3
128

7
16

3
32

3
32

39
128

3
128

9
64

 , M1 =


39
256 0 0
3
32 0 0
39
128

3
128

1
128

 , M2 =


7

512 0 0

0 0 0
3

128 0 0

 , M3 =


39
256 0 3

128
3
32 0 3

32
3

128 0 1
128

 .

Before transforming S̃ into the block-circulant matrix

S = circ(B0,B1,B2,B3) with Bj =

(
1
12 rT

s
4 Mj

)
, j = 0, . . . , 3

that has the same eigenvalues as S̃ plus three null eigenvalues, we first extend the blocks Mj , as well as
the vectors r and s, from size 3 to 15. This is actually needed to properly define the characteristic map
of S̄. In fact, due to the support of the basic limit function of S̄ which, in R(0), coincides with the C4

bivariate three-directional box-spline defined by the set {e1, e1, e1, e2, e2, e2, e3, e3, e3} with e1 = (1, 0)T ,
e2 = (0, 1)T , e3 = (1, 1)T , the submesh E(0) must be extended to a 5-ring neighborhood of the extraordinary
vertex in order to define a full ring of regular patches around it (Figure C.13).
There follows that S has size (64 × 64), λ0 = 1 is its unique dominant eigenvalue with corresponding
eigenvector 1, λ1 = 0.3776 is the subdominant eigenvalue with algebraic and geometric multiplicity 2, and
λ3 = 0.2201. Hence, the conditions λ1 = λ2 and λ0 = 1 > |λ1| > |λ3| of [29, Theorem 3.1] are verified.
To define the characteristic map of S̄, we extract from S the two eigenvectors that correspond to the
subdominant eigenvalue. They are real and linearly independent. Their entries define the 2D coordinates
of the control net c of the characteristic map, which is depicted in Figure C.13 (left). Then, once c is
computed, the characteristic map is simply defined as the limit surface obtained by c using the subdivision
scheme S̄.
For such a symmetric subdivision scheme, the characteristic map is made up of 4 rotationally symmetric
segments. A segment is defined by a subset X of the 2D control points of c. For S̄, the set X that defines
the first segment of the characteristic map, normalized such that it is symmetric with respect to the 1-axis
(Figure C.13 (right)), is given by
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X =

c0,2

c0,1

c0,0

c0,−1

c0,−2

c1,3

c1,2

c1,1

c1,0

c1,−1

c1,−2

c2,4

c2,3

c2,2

c2,1

c2,0

c2,−1

c2,−2

c3,5

c3,4

c3,3

c3,2

c3,1

c3,0

c3,−1

c3,−2

c4,5

c4,4

c4,3

c4,2

c4,1

c4,0

c4,−1

c5,5

c5,4

c5,3

c5,2

c5,1

c5,0

. (C.2)

Now, we denote by

∇n q(k)
α = q

(k)
α+en − q

(k)
α , n = 1, 2, 3 (C.3)

the directional difference ∇n of the points q
(k)
α , α ∈ Z2. To prove that the characteristic map of S̄ is regular

and injective, we state Theorem C.3.

Theorem C.3. [30, Theorem 1] Let X be the control net that defines the first segment of the characteristic
map and let Cn denote the cone of length |Cn| defined by

Cn = [ inf
ci∈X

∠(∇nci, 1− axis), sup
ci∈X

∠(∇nci, 1− axis)], n = 1, 2, 3.

For a symmetric subdivision scheme, the characteristic map is regular and injective if

- the divided ∇1- and ∇3-difference schemes are scalar and use only convex combinations;

- none of the ∇1- and ∇3-differences of X vanish; and

- the cones C1 and C3 satisfy the conditions

|C1 ∪ C3| < π and C1 ∩ C3 = ∅.

Since, in R(0), the stationary counterpart of the BLOB scheme has the subdivision symbol in (B.2) and
converges to C4 limit surfaces, we can easily observe that, for all n = 1, 2, 3, there exists a scalar subdivision
scheme using only convex combinations that maps the divided ∇n-differences of level k, defined by (C.3),
into the divided ∇n-differences of level k+ 1. Moreover, since the points of X in (C.2) are pairwise distinct,
it is immediate to see that none of the ∇1- and ∇3-differences of X vanishes. Finally, it is not difficult to see
that the first coordinates of the points of X in (C.2) increase in the direction e1 while the second coordinates
decrease in the direction e1 and increase in direction e2. Thus, the first coordinates of the ∇1-differences and
the second coordinates of the ∇2-differences are positive, while the second coordinates of the ∇1-differences
are negative. This yields for the cones C1, C2, and C3, that C1 ⊆ (−π/2, 0), C2 ⊆ (0, π), and C3 ⊆ (0, π/2).
It follows that

|C1 ∪ C3| < π and C1 ∩ C3 = ∅.

Hence, we conclude that the characteristic map of the stationary BLOB scheme is regular and injective.
Then, in light of [29, Theorem 3.1], the stationary counterpart of the BLOB scheme is C1-convergent in the
neighborhood of extraordinary vertices of valence 4 and, therefore, G1-convergent, too.

To apply [5, Theorem 4.8], we need to prove that all remaining assumptions are satisfied. Assumption
(ii) is trivially satisfied because of (2.5). Assumptions (iii) and (iv) compare the behavior of the BLOB
scheme with that of its stationary counterpart. The comparison focuses on the neighborhood of regular
and extraordinary vertices, separately. In the neighborhood of regular vertices, the comparison consists in
showing that the subdivision masks a(k) and a in (2.3) and (B.1), respectively, are asymptotically equivalent
of order 1 so that they satisfy the property in Definition C.4.
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Definition C.4. [5, Definition 3.2.] The stationary subdivision scheme S̄ and the non-stationary scheme S

are termed asymptotically equivalent of order 1 if the sequences {a} and {a(k), k ∈ N} of subdivision masks
satisfy

+∞∑
k=0

2k max

∑
β∈Z2

|a(k)
α−2β − aα−2β| : α ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}

 < +∞.

Exploiting the identities

cos(2−kλ) = 1− λ2

2
2−2k +

λ4

24
2−4k cos(ξ), ξ ∈ (0, 2−kλ),

cos2(2−kλ) = 1− λ22−2k +
λ4

3
2−4k cos(2ξ̃), ξ̃ ∈ (0, 2−kλ),

and

cosh(2−kλ) = 1 + λ22−2k +
λ4

24
2−4k cosh(η), η ∈ (0, 2−kλ),

cosh2(2−kλ) = 1 + 2λ22−2k +
λ4

3
2−4k cosh(2η̃), η̃ ∈ (0, 2−kλ),

given by the Lagrange form of the remainder of the Taylor expansion, we get the bounds

|a(k) − 7
16 | ≤

A
4k
, |b(k) − 3

32 | ≤
B
4k
, |c(k) − 3

128 | ≤
C
4k
,

|d(k) − 9
64 | ≤

D
4k
, |e(k) − 1

128 | ≤
E
4k
, |f (k) − 39

128 | ≤
F
4k
,

(C.4)

with A,B, C ,D,E ,F finite positive constants independent of k. Thus, we can write that

max
{∑

β∈Z2 |a(k)
α−2β − aα−2β| : α ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}

}
=

max
{
|a(k) − 7

16 |+ 6|b(k) − 3
32 |, 4|c(k) − 3

128 |+ 2|d(k) − 9
64 |+ 2|e(k) − 1

128 |+ 2|f (k) − 39
128 |

}
≤

1
4k

max {A + 6B, 4C + 2D + 2E + 2F } ,

so that ∑+∞
k=0 2k max

{∑
β∈Z2 |a(k)

α−2β − aα−2β| : α ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}
}
≤

max (A + 6B, 4C + 2D + 2E + 2F )
∑+∞
k=0

1
2k
< +∞.

As a consequence, Assumption (iii) is satisfied.
We now focus on the neighborhood of extraordinary vertices. After transforming S̃k into the block circulant
matrix

Sk = circ(B
(k)
0 ,B

(k)
1 ,B

(k)
2 ,B

(k)
3 ) with B

(k)
j =

(
ã(k)

4 (r(k))T

s(k)

4 M
(k)
j

)
, j = 0, . . . , 3,

we write that

‖Sk − S‖∞ ≤ ‖B(k)
0 −B0‖∞ + ‖B(k)

1 −B1‖∞ + ‖B(k)
2 −B2‖∞ + ‖B(k)

3 −B3‖∞.

Each norm on the right-hand side can be explicitly computed and shown to satisfy the upper bounds ‖B(k)
j −

Bj‖∞ ≤ Mj
4k

, j = 0, ..., 3 with Mj finite positive constants independent of k, in view of the inequalities (C.4).

Hence ‖Sk−S‖∞ ≤ M
4k
, with M = M0 +M1 +M2 +M3 a finite positive constant independent of k. Observing

that λ1 = 0.3776 has algebraic and geometric multiplicity 2 and satisfies 4 > 1
λ1
> 1, we can conclude that

Assumption (iv) is satisfied for σ = 4.
It follows that all the assumptions of Theorem C.1 are verified. Thus, the non-stationary BLOB scheme is
convergent at extraordinary vertices and the limit surfaces obtained by such a scheme are G1-continuous at
the limit points of extraordinary vertices.
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Appendix D. Gist of the Proof of Theorem C.1

Let us start by defining some notation and vocabulary. Since we deal with triangular meshes, we denote by
Ωk, k ∈ N the subdomain of R2 defined by

Ωk = {(u, v) ∈ R2 |u, v ≥ 0 and 2−k ≤ u+ v ≤ 21−k}.

Moreover, since we focus our analysis around an isolated extraordinary vertex of valence n, we consider the
local domain consisting of n copies of Ωk, briefly denoted by Ωk × Zn with Zn = Z/nZ. During the refine-
ment process, the subdivision scheme S generates a sequence of regular rings {rk, k ∈ N}, where the k-th
regular ring rk : Ωk × Zn → R3 can be expressed in terms of a control point vector dk and the associated
basic limit function vector Φk.

The gist of the proof is based on the following mathematical pipeline:

• To prove convergence of S, we have to show that, for all bounded initial vectors d0 (containing the
vertices of E(0)), there exists a limit point rc ∈ R3 such that lim

k→+∞
sup(u,v)∈Ωk×Zn ‖rk(u, v)−rc‖∞ = 0.

• Then, if S converges, r =
⋃
k∈N rk ∪{rc} is a surface without gap; i.e., r is a surface that is continuous

at all points including rc (which is in fact r(0, 0)).

• Finally, to prove that the limit surface r is G1-continuous at rc, we have to show that the sequence of

normal vectors {nk(u, v) = ∂urk(u,v)∧∂vrk(u,v)
‖∂urk(u,v)∧∂vrk(u,v)‖2 , (u, v) ∈ Ωk × Zn, k ∈ N} converges uniformly to the

normal vector n(rc) defined at the limit point rc, i.e., lim
k→+∞

sup(u,v)∈Ωk×Zn ‖nk(u, v)− n(rc)‖∞ = 0.

To obtain the existence of the limit point rc, we first study the behaviour of {Φk(u, v), k ∈ N} and {dk, k ∈ N}
when k → +∞.

We start by considering Assumptions (ii), (iii) and the fact that S̄ is C1-convergent in R(0) with a symbol
that contains the factor (1 + z1)(1 + z2) (i.e., first part of Assumption (i)). These assumptions allow us to
claim that S is C1-convergent inR(0), that the sequence of basic limit function vectors {Φk, k ∈ N} converges
uniformly to the basic limit function vector Φ̄ of S̄ when k → +∞, and that the sequence {∂uΦk, k ∈ N}
(resp. {∂vΦk, k ∈ N}) converges uniformly to ∂uΦ̄ (resp. ∂vΦ̄) when k → +∞. We call this Result (A).

The control point vector dk is linked to the initial control point vector d0 by the relation

dk = S(k)d0 with S(k) = Sk−1 Sk−2 · · · S1S0, k ∈ N∗,

where Sj , j = 0, . . . , k−1, is the j-th block-circulant matrix defining S in E(0). Hence, to study the behaviour
of dk as k → +∞, we write the product matrix S(k) in terms of the stationary matrix S. It follows that

dk = Skd0 + yk, (D.1)

where yk is the corresponding residual term. Assuming convergence of S̄ in E(0) (which is implied by the
second part of Assumption (i)), for k sufficiently large, we get

Skd0 = x0q
T
0 +O(λk1) (D.2)

with qT0 = x̃T0 d0. The symbols x̃T0 and x0 denote respectively the left and right eigenvector of S associated
with its unique dominant eigenvalue λ0 = 1, while λ1 ∈ R+ is the subdominant eigenvalue of S which is
assumed to be double and non-defective. Moreover under Assumption (iv), we are able to show that, when
k is large enough, we have

yk = x0β
T
0 +O

(
1

σk

)
, (D.3)

for β0 = ( lim
k→+∞

yk)T x0

‖x0‖22
. Using (D.1), (D.2) and (D.3), we have that

lim
k→+∞

dk = x0(q0 + β0)T . (D.4)
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Combining the result in (D.4) with Result (A), we then are able to prove the existence of the limit point
rc, which is exactly rc = q0 + β0. Hence, S is convergent in E(0).

We now want to prove that the limit surface r is G1-continuous at rc. In light of the G1-convergence of S̄
in E(0) ( i.e., considering exactly the second part of Assumption (i)), we know that, for k sufficiently large,

Skd0 = x0q
T
0 + λk1(x0

1(q0
1)T + x1

1(q1
1)T ) + o(λk1),

where q0
1 and q1

1 are vectors in R3, while x0
1 and x1

1 are the two linearly independent eigenvectors associated
to λ1. Thus, using the resulting asymptotic expansion

dk = x0(qT0 + βT0 ) + λk1(x0
1(q0

1)T + x1
1(q1

1)T ) + θk, (D.5)

where θk is a vector with all its entries behaving as o(λk1)+O
(

1
σk

)
, we are able to show that, for k sufficiently

large,

nk(u, v) = sign

(
det

(
∂uΦk(u, v)Tx0

1 ∂uΦk(u, v)Tx1
1

∂vΦk(u, v)Tx0
1 ∂vΦk(u, v)Tx1

1

))
((q0

1)T ∧ (q1
1)T ) + o(1)

‖((q0
1)T ∧ (q1

1)T ) + o(1)‖2
.

Hence, in light of Result (A) and of the fact that

n(rc) = sign

(
det

(
∂uΦ̄(0, 0)Tx0

1 ∂uΦ̄(0, 0)Tx1
1

∂vΦ̄(0, 0)Tx0
1 ∂vΦ̄(0, 0)Tx1

1

))
(q0

1)T ∧ (q1
1)T

‖(q0
1)T ∧ (q1

1)T ‖2
,

we obtain that lim
k→+∞

sup(u,v)∈Ωk×Zn ‖nk(u, v) − n(rc)‖∞ = 0. This proves that the limit surface r is G1-

continuous at rc = r(0, 0), which ends the proof.
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