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abstract

The recent years have witnessed growing interest in the power of scientific visualization

for simulation-based neuroscience. The research presented in this thesis develops meth-

ods to generate physically-realistic visualizations of neocortical models reconstructed by

the Blue Brain Project, a pioneering endeavor that uses a simulation-based approach

to build large-scale, biologically-detailed digital reconstructions of neocortical microcir-

cuitry. The project has established a domain-specific framework to visualize hybrid rep-

resentations of these neocortical models, which it uses to evaluate their structure, com-

position and dynamics. The current framework offers naïve, optical emission-only mod-

els that oversimplify light-tissue interaction and ignore other computationally expensive

phenomena such as absorption, scattering and fluorescence. The methods presented in

this dissertation overcome these limitations, making it possible to visualize neocortical

models on a physically-plausible basis, taking into account the intrinsic optical proper-

ties of cortical tissue and the spectroscopic characteristics of its fluorescent structures.

This requires rigorous optical models that accurately simulate light interaction with cor-

tical tissue, and accurate volumetric models of the tissue itself which reflect its optical

properties during simulation. We present an efficient framework for creating high fidelity

large-scale volumetric models of neocortical microcircuitry that govern the way in which

light is distributed in cortical tissue. These models are reconstructed in two steps: first,

we build piecewise watertight mesh models of neocortical neurons from their morpho-

logical skeletons. Then, we apply solid voxelization to the meshes to build volumetric

models. We also present two novel optical models for simulating light interaction with

fluorescent structures in low- and highly-scattering volumes. These optical models are in-

tegrated into a high level framework that simulates the imaging pipelines of transmitted

light brightfield, widefield epi-fluorescence and light-sheet fluorescence microscopes. It

is based on the principles of geometric optics and Monte Carlo ray tracing. Afterwards,

we exploit this framework to render in silico realistic microscopic images resembling

those created by the actual instruments. In conclusion, we generalize the concept of

physically-based simulation of brain imaging modalities and review the computational

models required to simulate fMRI.

keywords In Silico, Blue Brain Project, Scientific Visualization Frameworks, Neocortical
Volume Reconstruction, Physically-based Rendering, Microscopy Simulation, fMRI Simulation.
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résumé

Ces dernières années ont été témoins d’un intérêt croissant à exploiter la visualisation

scientifique dans la neuroscience basée sur la simulation. La recherche conduite dans

le cadre de cette thèse s’applique à générer des visualisations physiquement réalistes

de modèles néo-corticaux inspirés par le project Blue Brain, une entreprise pionnière

qui utilise une approche basée sur la simulation pour construire des modèles informa-

tique biologiquement détaillés de microcircuits néo-corticaux à large échelle. Le projet a

établi un framework spécifique au domaine pour visualiser des représentations hybrides

de ces modèles néo-corticaux afin d’évaluer leur structure, composition et dynamique.

Le design de ce framework est principalement centré sur la visualisation interactive des

modèles, privilégiant la performance au détriment de la réalité physique; en utilisant des

modèles optiques qui simplifient excessivement l’interaction entre la lumière et les tissus

et ignorent d’autres phénomènes coûteux en termes de calcul tels que l’absorption, la

diffusion et la fluorescence. Les méthodes présentées dans ce document sont appliquées

pour dépasser les limitations du framework existant et offrir un environment pratique

pour visualiser les modèles néo-corticaux sur une base physiquement plausible, prenant

en compte les propriétés optiques intrinsèques des tissus corticaux et les caractéristiques

spectroscopiques de leurs structures fluorescentes. Ce défi est encore loin d’avoir été

relevé dû à l’absence de deux principales exigences: des modèles optiques rigoureux qui

simulent précisément l’interaction avec les tissus corticaux et des modèles volumétriques

du tissu lui-même qui rendent compte de ses propriétés optiques durant la simulation.

Dans cette dissertation, nous discutons d’un ensemble de méthodes novatrices et de mod-

èles informatiques pour répondre à ces deux exigences. Nous présentons un framework

efficace pour créer des grands modèles volumétriques à haute fidélité des microcircuits

néo-corticaux qui gouvernent la distribution de la lumière dans les tissus corticaux. Ces

modèles volumétriques sont reconstruits en deux étapes: premièrement, la construction

de modèles de mesh étanches par morceaux des neurones du néo-cortex à partir de

squelettes de leur morphologie suivi de leur utilisation pour la reconstruction de vol-

ume en s’appuyant sur la voxélisation solide. Nous présentons également deux nouveaux

modèles optiques pour simuler l’interaction de la lumière avec des volumes fluorescents

dans des milieux respectivement peu et très diffusants. Ces modèles optiques sont in-

tégrés dans un framework de haut niveau afin de simuler les pipelines d’imagerie de

trois types de microscopes spécifiques: le microscope en champ clair, le microscope à

epi-fluorescence et le microscope de fluorescence à feuille de lumière.

mots clés In Silico, Le projet Blue Brain, Visualisation Scientifique, Reconstruction du
Volume Néocortical, Rendu physique réaliste, Simulation de Microscopie, Simulation de fMRI.
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zusammenfassung

In den letzten Jahren konnte man ein wachsendes Interesse an wissenschaftlicher Visu-

alisierung für simulationsbasierte Neurowissenschaften feststellen. Die Forschung, die

in dieser Dissertation vorgestellt wird, entwickelt Methoden, um physikalisch realistis-

che Visualisierungen von neokortikalen Modellen zu erzeugen. Diese Modelle wurden

vom Blue Brain Project erstellt, einem Pionierprojekt, welches einen simulationsbasierten

Ansatz zur Erstellung von umfangreichen und biologisch detaillierten digitalen Rekon-

struktionen des neokortischen Schaltkreises verfolgt. Das Projekt hat ein Framework zur

Visualisierung von hybriden Darstellungen dieser neokortikalen Modelle etabliert, mit

denen sich ihre Struktur, Zusammensetzung und Dynamik bewerten lassen. Der derzeit-

ige Ansatz bietet naive optische Emissionsmodelle, vereinfacht die Interaktion zwischen

Licht und Gewebe und ignoriert andere rechenintensive Phänomene wie Absorption,

Streuung und Fluoreszenz.

Die in dieser Dissertation vorgestellten Methoden überwinden diese Grenzen, so dass

neokortikale Modelle auf einer physikalisch-plausiblen Basis unter Berücksichtigung der

intrinsischen optischen Eigenschaften von kortikalem Gewebe und die spektroskopis-

chen Eigenschaften seiner fluoreszierenden Strukturen dargestellt werden können. Dies

erfordert optische Modelle, die die Lichtwechselwirkung mit kortikalem Gewebe genau

simulieren, und exakte volumetrische Modelle des Gewebes selbst, die seine optischen

Eigenschaften während der Simulation widerspiegeln.

Wir stellen ein effizientes Framework für die Erstellung von umfangreichen volumetr-

ischen Modellen des neokortikalen Schaltkreises vor, die die Lichtverteilung im kor-

tikalen Gewebe bestimmt. Diese Modelle werden in zwei Schritten rekonstruiert: zunächst

bauen wir stückweise wasserdichte Mesh-Modelle von neokortikalen Neuronen aus ihren

morphologischen Skeletten, um dann daraus volumetrische Modelle zu erstellen. Wir

präsentieren auch zwei neuartige optische Modelle zur Simulation der Lichtwechsel-

wirkung mit fluoreszierenden Strukturen in niedrig- und hochstreuenden Volumen. Diese

optischen Modelle sind in einem Framework integriert, welches die Bilderstellung von

Durchlicht-Hellfeld-, Weitfeld-Epifluoreszenz- und Lichtscheibenfluoreszenzmikroskopen

simuliert. Es basiert auf den Prinzipien der geometrischen Optik und Monte Carlo Ray

Tracing. Danach nutzen wir das Framework, um in silico realistische, mikroskopische

Bilder zu erzeugen, die denen der eigentlichen Mikroskope ähneln.

Zusammenfassend verallgemeinern wir das Konzept der physikalisch basierten Simu-

lation von Bildgebungsmodalitäten für das Gehirn und überprüfen die Berechnungsmod-

elle für die Simulation von fMRI.
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preface

part I introduction and background

Chapter 1, Introduction, gives a gentle overview of the topic and

discusses the substantial role of physically-based visualization in

the context of simulation-based neuroscience. The limitations of

previous visualization methods are discussed, the motivations

that have initiated the spark of this work are elaborated and

finally our major contributions are summarized.

part II accurate modeling of neocortical tissue

In Chapter 2, Realistic Neocortical Tissue Modeling for In Silico

Imaging, we present a systematic approach for building realistic

large scale volumetric models of the neocortical circuity from

the morphological representations of the neurons. Those model

account for light interaction with the different structures of the

tissue.

part III modeling light interaction with brain tissue

The optical models presented in this thesis require certain level

of knowledge of the theory of light transport in volumetric me-

dia. Chapter 3, Fundamentals of Light Interaction with Brain Tis-

sue, lies down the basic fundamentals of light transport that are

necessary to allow the reader to understand the derivation of the

fluorescence models presented in the following chapters.

The light transport equation presented in Chapter 3 represents a

more rigorous model than the emission-only model that is com-

monly used in interactive rendering applications. It accounts for

absorption and elastic scattering, but it ignores light interaction

with fluorescent volumes. Chapter 4, Modeling Light Interaction

with Low Scattering Fluorescent Volumes presents a novel op-

tical model that extends the monochromatic rendering integral

xvii



taking inelastic scattering, or fluorescence, into account. This extended model is capable

of rendering low-scattering fluorescent neocortical data. The model is expressed in terms

of the spectroscopic properties of fluorescent dyes and their concentration when injected

into the intracellular space of the neurons.

The fluorescence model presented in Chapter 4 is limited only

to low scattering fluorescent volumes. It can be utilized to ren-

der fluorescent images of clarified brain models assuming the re-

moval of all the lipid content that is characterized with high tur-

bidity, but it fails otherwise. In Chapter 5, Modeling Light Inter-

action with Highly Scattering Fluorescent Volumes, we present

a further extension to account for light transfer in highly scatter-

ing fluorescent volumes, taking into account the spectroscopic properties of fluorescent

dyes in addition to the optical properties of the tissue itself. The spectral performance of

this optical model is also validated against normalized emission spectra of multiple fluo-

rescent dyes. The results of the model are demonstrated with rendering three neocortical

models tagged with fluorescent solutions that have low-, medium- and high scattering

properties.

part V applications

In Chapter 6, In Silico Transmitted Light Brightfield Microscopy,

we present a computational model of brightfield microscopy in-

cluding its illumination and acquisitions units in addition to

light interaction with a virtual specimen that is filled with highly

attenuating dye to improve the contrast in the final image. This

microscopic model is exploited afterwards to simulate the pro-

cess of imaging brain tissue stained with Golgi’s method using

a group of few pyramidal cells filled virtually with an opaque dye that has optical prop-

erties similar to those of a typical Golgi’s solution.

In Chapter 7, In Silico Fluorescence Microscopy, the rendering in-

tegrals of fluorescence that were derived in Chapter 4 and Chap-

ter 5 are integrated into our microscopy simulation framework

to introduce a novel model for epi-fluorescence microscope. This

model is applied to visualize annotated models of neocortical cir-

cuitry virtually injected with various fluorescent dyes that are of

significance in neurobiology. The microscopic model is also em-

ployed to perform several in silico experiments to investigate the visual response of the

same specimen model when excited with a laser source at different wavelengths.
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In Chapter 8, In Silico Light Sheet Fluorescence Microscopy, the

illumination and acquisition models of the epi-fluorescence mi-

croscope are extended to introduced a novel model of structured

illumination microscopy. This model allows rendering fluores-

cent images of the neocortical tissue with high axial resolution

and less blurring artifacts. The model is then used to carry out a

set of in silico experiments to visualize annotated tissue models

when illuminated with different light sheet thicknesses. Moreover, it is used to simulate

brainbow experiments when the tissue is labeled with multiple fluorescent dyes having

different colors at the same time.

part V concept generalization

The introduction of functional Magnetic Resonance Imaging

(fMRI) has pioneered neuroscience research to address the map-

ping of the functional aspects of the human brain. Since its

inception, several models and simulation studies for blood

oxygen-level dependent (BOLD) fMRI were proposed and exten-

sively discussed. Most of these research studies were focused

on understanding the underlying mechanisms of the technique.

The complexity of fMRI data challenged the development of common, precise and

physiologically-plausible fMRI simulators, and consequently the data generation mod-

els in the majority of the current simulators are ad hoc. In Chapter 9, Computational

Modeling & Simulation of fMRI, we present an extensive review of the modelling work
and numerical simulation studies of BOLD fMRI that were covered in the literature to date.

This chapter is not intended to present a simulator for fMRI; this is beyond the scope

of this thesis, but rather, to generalize the concept of in silico imaging to a non-optical

instrument.

part VI concluding remarks & future insights

Chapter 10, Conclusions, Perspectives and Future Work, summa-

rizes the major results of the thesis and discusses several exten-

sions of our microscopy simulation framework and its applica-

tions to reconstruct and visualize other kinds of data including

vasculature, glial cells and also different brain regions such as

the hippocampus.
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Chapter 1

introduction

in silico brain imaging

The content of this chapter has been adapted from the following paper

1. physically-plausible in silico imaging of neocortical

microcircuitry

In Preparation
Author(s) − Marwan Abdellah, Ahmet Bilgili, Stefan Eilemann, Juan Hernando, Henry
Markram, and Felix Schürmann





Chapter 1
introduction : in silico brain imaging

“ More may have been learned about the brain and the mind in the 1990s – the so-
called decade of the brain – than during the entire previous history of psychology and
neuroscience ”.

– Antonio Damasio

The research presented in this dissertation has been conducted as part of the Blue

Brain Project (BBP), an attempt to reverse engineer the mammalian brain using a

simulation-based approach to build biologically-detailed models of neocortical microcir-

cuitry. In this context, we present a novel set of methods to visualize these models on a

physically-plausible basis, making it possible to simulate neocortical tissue imaging with

different types of optical microscopes.

This chapter gives a brief introduction to the topic, highlighting the significance of

physically-based visualization in the context of simulation-based neuroscience and the

BBP. We will discuss the limitations of the current visualization methods, and elaborate

how in silico imaging is addressed to achieve this goal.

1.1 background : the blue brain project

The mammalian brain has always been a significant source of inspiration and challenge.

It is the most complex phenomenon in the known universe whose function depends on

the communication between countless structures, all spanning various spatial and tem-

poral scales. The last century has witnessed massive efforts to reveal the intricacies of

the brain to understand its function and dysfunction [1–3]. Despite these efforts, our

comprehension of the underlying mechanisms of the brain remains incomplete. A com-

prehensive understanding requires collaborative efforts and profound insights into its

structure and function across multiple levels of organization, from genetic principles to

whole-brain level systems [1]. Modern neuroscience is founded based on a productive

research approach where classical experiments can produce a vast amount of data re-

gardless of its integrity. This approach has made the resulting neuroscience knowledge

fragmented and daunting to synthesize [4–6].

5
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Understanding the hidden aspects of the mammalian brain relying solely on wet lab1

experiments has been proven to be extremely limiting and time consuming. The data

produced from such experiments is concerned with various levels of biological organiza-

tion: there are multiple brain regions, different types of animals, distinct research scopes

and often several disparate approaches for addressing the same research question [2, 7].

The search space for unknown data is so broad, that it is debatable whether classical in
vivo and in vitro experiments can provide enough results to answer all the questions in a

reasonable time, unless a more systematic approach is followed. This approach requires

integrating this data into a unifying multi-level system, which would allow us to build

on previous knowledge and accelerate neuroscience research towards one and only one

target: understanding the human brain.

The recent convergence between biology and information technologies (IT) has been

accompanied by two key revolutions that are expected to accomplish this mission. The

first is the emergence of informatics-based sciences that apply principles from a set of

interdisciplinary fields including mathematics, physics, statistics, algorithms and high

performance computing (HPC) to integrate and analyze the data produced by classical

experiments. This trend provides a convenient and efficient research environment to ex-

plore and discover the biological constraints that govern the different mechanisms of

the brain. The other revolution is the application of simulation-based research in neuro-

science allowing to experiment the brain in silico, to bridge the gap between theoretical

models and wet lab observations.

The Blue Brain Project was founded in 2005, heralding the birth of a paradigm shift

in neuroscience based on the fundamental insights of in silico research. This pioneer-

ing endeavor aims at integrating fragmented neuroscience knowledge from in vitro data

in order to build detailed, multi-scale and biologically-accurate digital unifying models

of rodent, and ultimately human brains. These models will be linked to high perfor-

mance computer simulations to provide a novel simulation-based research platform for

the neuroscience and medical communities, helping them to unravel the structural and

functional design principles of the brain. This research platform is acknowledged to be a

substantial step towards diminishing the immense gap between theoretical models and

experimental procedures; it is essential for integrating experimental data, running simu-

lations and defining new experiments that can assist us in gathering further information

to improve and complement the details of the current models. It also represents a conve-

nient and systematic tool for investigating the complex interactions within the different

levels of brain organization at an unprecedented level of biological detail.

In 2007, the BBP successfully announced the completion of its initial goal; the sim-

ulation of the principal functional unit of the neocortex, the neocortical column2 [5].

1 The term wet lab is used in biology to distinguish traditional bench-based experiments from other theoretical
or computational work.

2 The central part of the brain that underlies nearly all sensory and cognitive processing. The neocortical
circuity is introduced later in Chapter 2.
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This simulation prototype involved a sophisticated data-driven workflow for building,

validating and experimenting on a model of a neocortical column of a two-week-old ju-

venile rat that was composed of 10,000 neurons and ∼10
8 synapses. The project presented

an ecosystem of software components and a modeling framework capable of using ex-

perimental data to build three-dimensional models of neuronal networks at the level of

individual cells up to neuronal microcircuits3 [8]. The models are continuously refined

and improved by including further biological and physical data resulting from imaging

experiments, genetic studies, anatomical reconstructions, and patch clamp recordings.

These neocortical models are utilized for performing in silico experiments using a su-

percomputer. The results are analyzed and visualized for interactive validation. In this

context, visualization plays a central role for (1) validating the structural aspects of the

reconstructed data models and (2) validating their functional – or electro-physiological

– properties as well. The research presented in this dissertation is dedicated to explore

and design novel methods for reconstructing and visualizing the neocortical models on

a physically-plausible basis. These methods are developed to meet the new validation

requirements that have emerged due to the integration of new pieces of data that cannot

be validated with the current tools.

1.2 problem definition

1.2.1 Visualization in Neuroscience

Visualization is classified into two broad research domains: information visualization and

scientific visualization [9]. Information visualization4 uses interactive visual representa-

tions of abstract and non-physically-based data to amplify human cognition. Scientific visu-

alization is primarily concerned with creating visual representations of three-dimensional
data that are typically based on physical phenomena to reinforce cognition [11]. The fun-

damental purpose of scientific visualization is focused on rendering realistic5 images of

spatial data that involves surfaces, volumes, illumination sources and perhaps a temporal

component to glean further insights about the dynamics of the data.

In 1987, scientific visualization has been assorted by Mccormick et al. as an independent
research method of computing that transforms symbolic data representations into geometric

models, allowing researchers to observe complex multi-dimensional simulations [12, 13].

Since then, scientific visualization became an essential key tool for research and discov-

ery with vast amount of applications in several research domains such as architecture,

medicine, mechanical engineering and also in neuroscience [14].

3 Refer to Figure S10 by Markram et al. [8].
4 We recommend the reader to refer to the text book by Colin Ware to understand the importance of informa-

tion visualization and its remarkable differences from scientific visualization [10].
5 Realism in synthetic image generation is explained with further details in Section 1.2.5.
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The power of scientific visualization has been addressed to reveal the complexity of

the brain a long ago even before that time. There is a privileged relationship between

neuroscience and visualization since the beginning of the 20th century when Santiago

Ramón y Cajal used an early design of the light microscope to visualize the structure

and connectivity of the neocortical tissue [15]. Cajal used Golgi’s staining technique to

visualize the structure of individual cortical neurons to create what is called Neuron
Doctrine, shown in Figure 1.1. His inspiring drawings were used later to discover the

organization of the nervous system. Until this moment, Cajal’s method is still used to

visualize brain circuitry at various scales.

Modern neuroscience uses a spectrum of imaging modalities, shown in Figure 1.2,

to capture different aspects of neuronal tissue. Scientific visualization is used to explore

the resulting imaging data from these modalities. This thesis extends this historical re-

lationship and presents a novel visualization approach that is essential in the context of

simulation-based neuroscience. This approach is motivated by the ongoing research in

the BBP and the new demands of the neuroscientists to visualize the reconstructed neo-

cortical models on a physically-plausible basis, allowing them to perform in silico optical

experiments that involve accurate simulation of light interaction with tissue structures.

We accordingly introduce a set of rigorous mathematical models for visualizing the neo-

cortical structures as seen under various optical microscopes in the wet lab.

1.2.2 Visualization of Neocortical Microcircuitry

The BBP established a neuroscience-specific visualization framework that combines hy-

brid representations of various patterns of neuroscientific data (points, surfaces, and

volumes) with several visualization techniques (rasterization, surface rendering, and vol-

ume rendering). This framework is dedicated to address open research questions in the

context of simulation-based neuroscience, essentially the evaluation of structure, composi-
tion and also the dynamics of the simulated neocortical microcircuitry [4, 8, 20]. The fun-

damental design goals of this framework were focused on building an efficient, reliable

and domain-specific visualization system that would allow neuroscientists to explore the

structural aspects of the reconstructed data models, and ultimately to validate the results

of their in silico experiments.

Visualization of Microcircuit Structure

The framework provided a set of visualization techniques to highlight the structural

properties of neocortical microcircuits including:

1. morphological diversity of the neurons – Figure 1.3,
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(a) (b) (c)

(d) (e) (f)

(g)

(h)

(i) (j)

Figure 1.1: A set of drawings or Neuron doctrine done by Santiago Ramón y Cajal that have led
him to win Nobel prize in Medicine in 1906 [15–19].

.
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Single Photon Emission CT

(SPECT)

Positron Emission Tomography

(PET)

Computed Tomography

(CT)

Functional Magnetic Resonance Imaging

(fMRI)

Magnetic Resonance Imaging

(MRI)

Optical Coherence Tomography

(OCT)

(Bio-Luminescence)

Two-Photon Microscope

Brightfield Microscope

(BFM)

Light Sheet Fluorescence Microscope 

(LSFM)

Confocal Microscope

Super Resolution Fluorescence Microscope

X-ray Microscope

Electron Microscope

(EM)

Electron Microscope

(EM)
0.1 m 10 mm 1 mm 0.1 mm 10 μm 1 μm 0.1 μm 10 nm 1 nm

0.1 m 10 mm 1 mm 0.1 mm 10 μm 1 μm 0.1 μm 10 nm 1 nm

Figure 1.2: A spectrum of imaging technologies and modalities that are employed to image vari-
ous aspects of the brain at different spatial levels of detail as indicated by the horizontal axis.
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2. potential connectivity, that is essential to assist neuroscientists to design new in

vivo experiments [21],

3. structure of spiny neurons – Figure 2.6,

4. locations of synaptic connections – Figure 1.4,

5. innervation patterns – Figure 1.5,

6. and also the locations of ion channels along neuronal membranes.

Visualization of Microcircuit Composition

Neocortical neurons can be categorized in three principal classifications based on (1) the

layer where they are located in the NCC, (2) their morphological type (mType) and (3)

their electrophysiological type (eType)6. Therefore, it was crucial to have certain visual-

ization techniques to demonstrate these neuronal classifications to confirm the composi-

tion of the reconstructed models. The BBP visualization framework integrated an offline

volume rendering engine capable of creating a set of transparent visualizations that can

be used to validate the composition of cortical microcircuitry. Figure 1.6 illustrates three

volume renderings of 100 µm slice of the NCC that show its layer architecture (1.6a),

mTypes (1.6b) and eTypes distributions (1.6c).

Visualization of Microcircuit Dynamics

In addition to visualizing the structural details of neocortical circuits, the visualization

framework of the BBP addressed also rendering simulated activity to reflect the dynamics

of neocortical microcircuitry down to a single cell level and up to an entire slice7. Visu-

alizing the activity of cortical simulations is essential to identify specific spatio-temporal

patterns that can improve our understanding of the inherent relation between the struc-

tural and functional aspects of the neocortical circuits.

The framework utilizes two techniques to render simulation data. The first uses point

neuron models that only represent the activity of the somata and ignore the propagation

of the activity along the membranes of each individual neuron. The simulation data is

mapped onto symbolic spheres that have the same radii of the somata of their correspond-

ing neurons. This technique is illustrated in Figure 1.7, where each frame represents a

single snapshot taken during the simulation time course. The other technique uses polyg-

onal mesh models of the neurons and full compartmental simulations that are mapped

to each vertex on the membrane of the mesh. As shown in Figure 1.8, these detailed

simulations are relatively data intensive and require large scale visualization cluster that

can fit the memory requirements of the loaded meshes models.

6 The structure of the neocortical column is discussed in Section 2.1.1.
7 The structure of the slice is illustrated in Figure 2.21 (e).
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Figure 1.4: Martinotti loop showing the synaptic connections between two pyramidal neurons
(in red) and a Martinotti cell (in blue). This rendering demonstrates the efficiency of the axonal
arborization to form synaptic connections with dendritic branches in addition to the distribution
of the synapses along the branches. The image is rendered with RTNeuron [23].
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Figure 1.5: Innervation patterns of layer IV neuron. The synapses are color-coded based on the
morphological type of the pre-synaptic neuron. The neuron is textured with electron shader and
the image is rendered in Autodesk Maya [24].
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1.7: A sequence of frames showing the spatio-temporal activity patterns of point neuron
models in a single NCC. Individual somata at different levels of depolarization in the microcircuit
are colored according to a heatmap (blue, hyperpolarized; red, depolarized; white, spike). The
frames are rendered in RTNeuron [23].



1.2 problem definition 17

(a) (b) (c)

(d) (e) (f)

Figure 1.8: A sequence of frames showing the spatio-temporal activity patterns of full compart-
mental neuronal models in a single NCC. Individual neurons at different levels of depolarization
in the microcircuit are colored according to a heatmap (blue, hyperpolarized; red, depolarized;
white, spike). The frames are rendered in RTNeuron [23].
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1.2.3 Current Limitations & Thesis Motivations

The design goals of the current visualization framework were oriented to address a spe-

cific question:

How can scientific visualization be helpful in the context of simulation-based neuroscience,
taking into account the preservation of domain specificity?

The framework has been harnessed to evaluate various aspects of reconstructed neo-

cortical models. During the last few years, these models have been improved by integrat-

ing further biological and physical data obtained from multiple experiments and classi-

cal studies. However, this framework was limited to address several novel requirements

raised by neuroscientists following to this data integration process for three reasons.

The first is relevant to the realism of the generated visualization content. Neuroscientists

are becoming more interested to visualize neocortical models as if they can see neocor-

tical tissue under the microscope. This step depends on the availability of volumetric

neocortical models that account for the optical properties of the tissue and physically-

based visualization systems capable of creating realistic images. Data models are now

integrated with accurate optical properties compiled from recent studies [25]. However,

this target is technically unfeasible in terms of the abilities of the current visualization

framework. The design focused on interactive data visualization and ignored realism

that is relatively expensive to realize; the rendering techniques are based on simplified

optical models (emission-only models) that neglect other essential phenomena required

to achieve this physical realism, such as absorption and scattering [26–29].

The second reason is driven by recent neuroscientific demands to exploit visualization

not only for direct validation, but likewise, to perform in silico optical experiments. This

requires more rigorous mathematical models that can simulate light transport in brain

tissue including the interaction with its fluorescent structures.

The last reason is the lack of efficient software applications capable of creating plausible, high
fidelity and large-scale volumetric models of neocortical microcircuitry. The current framework

allows the creation of two representations of neocortical circuitry: polygonal mesh mod-

els and volumetric shells. The mesh models of individual neurons are not generated on a

physically-plausible basis and therefore they cannot accurately represent neither the shape

of the somata nor the neuronal membrane8. On the other hand, the creation of volumet-

ric models of the neurons is more complicated. As discussed in Section 2.8, volumetric

representations of neurons are obtained from their mesh models only if the meshes are

watertight. However, the aforementioned mesh models are not guaranteed to be water-

tight due to several reconstruction and digitization artifacts. Consequently, we cannot

build large scale volumetric models of the circuits. This thesis is primarily motivated to

overcome these limitations and reduce a gap that is still largely unfulfilled.

8 Further details are explained in Section 2.2 and Section 2.7.
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1.2.4 Thesis Objectives

The fundamental research elements addressed within the scope of this thesis are as fol-

lows:

1. Efficient physically-based volume reconstruction of large-scale, high fidelity and

annotated neocortical models that account for the optical and spectroscopic prop-

erties of the somatosensory cortex.

2. Investigating the extension of current optical models to rigorous ones that can sim-

ulate light interaction with fluorescent brain structures.

3. Design and implementation of a novel visualization framework capable of creating

highly realistic synthetic images of neocortical models that can resemble those gener-

ated by different real imaging modalities. This realism, discussed in the following

section, is relevant to finding the most natural representations of tissue models in

reference to how can we see the tissue itself through different imaging systems, see

Figure 1.2.

4. Applying this framework in the context of simulation-based neuroscience to per-

form in silico experiments that were infeasible in the past, for example to simulate

calcium imaging and voltage sensitive dye imaging (VSDI) experiments.

1.2.5 Synthetic Image Realism

Ferwerda has classified realism in synthetic image generation into physical and photo-

realistic [30]. Photo-realism is approached by creating a synthetic image that looks like a

real one on an artistic basis. This image is called in computer graphics a visually-plausible
image. For example, visual plausibility of fluorescence can be realized by manipulating

the colors of a non-fluorescent image to mimic a fluorescent one. Figure 1.9 shows a

fluorescent image captured by the confocal microscope and a visually-similar in silico

image that mimics the fluorescence effect via some image processing filters. The synthetic

image does not account for any physical characteristics that are required to simulate

fluorescence imaging. The level of realism of this image is merely addressed by false-

coloring the neuron by a green color to mimic the emission of a green fluorescent dye.

Another example is given in Figure 1.10 to demonstrate how visual realism can be

unsystematically obtained relying on fine artistic touches to create in silico images that

can reflect the shape and texture of the in vitro ones. In fact, these synthetic images can

– to certain degree – reduce the psychological gap between what neuroscientists observe

in a classical wet lab experiment and what they can obtain in a dry lab one. But from

another perspective, they cannot be exploited for validation purposes.
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(a) (b)

Figure 1.9: A morphology of a single neuron as seen under the fluorescence microscope (a) and
a false-colored in silico fluorescent image (b).

In contrast, physical realism is related to the principles of conservation of energy. For

example, physical realism for optical imaging simulations can be achieved if the spec-

tral irradiance arriving to the detector of an imaging modality is accurately calculated.

To have an ideal rendering system capable of achieving this physical realism, it has to

model and simulate all the phenomena occurring during light propagation in its opti-

cal pipeline such as absorption, scattering, emission, diffraction, refraction, polarization,

fluorescence and others. The more properties you can simulate, the more realism your

rendering system can deliver. The images created by such rendering system are called

physically-plausible. The recent advances in computer graphics and computing technolo-

gies afforded rendering such images relying on parallel HPC architectures with outstand-

ing quality, that makes it difficult to distinguish computer generated images from real

ones captured by recent digital cameras as shown in Figure 1.11.

The research question can be therefore stated as follows:

Can we use the current modeling efforts and rendering knowledge to simulate different imag-
ing experiments and create physically-plausible visualizations of neocortical circuitry?

Before we can answer this question, we have to take into consideration that there are

several imaging techniques used to explore the structural and functional aspects of the

brain at different scales as shown in Figure 1.2. The more data we integrate, the more

comprehensive and realistic the models will be. Moreover, the fact that the data reflects

different physical aspects of the tissue makes a generic visualization system incapable

of representing all of them correctly. For example, imaging the neocortical tissue using

different kinds of microscopes will create images that are radically distinct. Figure 1.12

show a layer-5 pyramidal cell taken with three different microscopes. Every image cap-
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(a) (b) (c) (d)

Figure 1.10: Comparison between in vitro and in silico images. An infra-red image of a slice of
the cortical column (a). In (b), an embossing processing filter applied to an average density of
a simulated slice image to mimic the in vitro image in (a). A cluster of 12 pyramidal cells seen
under the bright-field microscope (c). A visually-similar in silico image (d) to the in vitro one
depicted in (c) of a group of neuron geometrical models. The images are courtesy of the BBP.

tures certain aspect of the tissue depending on how the microscope interacts with it.

Therefore, the key answer to the previous question is in silico imaging.

1.2.6 In Silico Imaging

Although there is no crystal clear definition for this recently-coined term, in silico imaging
largely refers to advanced computer simulation of the physical principles of an imaging

system including its source and detection components in addition to the object being

observed [33].

By the end of the last decade, in silico imaging has become an independent emerging

field of imaging research. However, the goals of simulating the physics of an imaging

system may vary depending on the target application domain. This simulation can be

beneficial in several regards, for instance: for research, development or even to predict

the performance of a novel imaging technology for optimization purposes, technologi-

cal assessment, or regulatory evaluation of new technologies to complement bench test-

ing [33, 34]. In this thesis, we will integrate the basic principles of physically-plausible

rendering and in silico imaging to construct a set of virtual imaging platforms that can

simulate the process of visualizing the neocortical tissue using diverse kinds of optical

microscopes.
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(a) (b)

(c) (d)

Figure 1.11: Recent advances in computer graphics algorithms and rendering technologies make
it virtually impossible to discriminate between real and synthetic — or rendered — images. The
photos in (a) and (c) are captured with a recent digital camera, whereas these in (b) and (d) are
computer generated ones. The images in (b) and (d) have been produced with advanced NVIDIA
rendering and lighting simulation tools [31, 32].

1.3 relevant research studies

1.3.1 Simulation of Optical Microscopes

The last 20 years have seen numerous research studies for creating in silico images of

various types of imaging modalities. The majority of these studies focused on mimicking

the appearance of the generated image rather than simulating the underlying physics of the

imaging system itself. The complexity of the latter approach was two-fold. It entailed the

existence of rigorous mathematical models that can account for the physical phenomena
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(a) (b) (c)

Figure 1.12: Three different images of a layer V pyramidal neuron as seen under (a) TLBFM, (b)
DIC and (c) fluorescence microscopes.

the system is based on, in addition to high performance computing resources to put

these models into action.

In contrast, visually plausibility can be achieved by creating a synthetic image that

has the same visual appearance of the real one using statistical shape modeling, color ma-

nipulation and image processing filters with controllable parameters. Visually-plausible

microscopy models cannot be reliably used for systematic validation of an in silico ex-

periment. However, they can be very helpful for evaluating the quality of automated

post-processing workflows that are used for the analysis of various image stacks pro-

duced by different kinds of microscopes.

Svoboda et al. followed this approach and presented a multi-stage visually-plausible

model for simulating the image acquisition process of the conventional fluorescence mi-

croscope [35]. This model was used to assess the performance of their automated seg-

mentation techniques that were developed to analyze realistic fluorescent image stacks.

Lehmussola et al. designed a computational framework for simulating microscopic fluo-

rescent images of cell populations [36, 37]. This framework was developed to compare the

performance of several analysis methods for automated image cytometry. A similar work-

flow has been presented by Malm et al. to simulate the brightfield microscope (BFM) [38].

It was used to generate synthetic cervical smears images to validate the analysis of large-

scale screening algorithms of cervical cancer and mammography images.

Building computational models for simulating microscopic pipelines on a physical

basis is relatively complex and requires a lot of design and implementation considera-

tions. Kagalwala et al. developed a computational model of the image formation process

of the differential interference contrast (DIC) microscope that can simulate the varia-

tions of the phase of the light waves transmitted through the specimen [39–41]. They

used polarized ray tracing [42] and approximations of the diffraction artifacts to com-

pute the light propagation through the specimen and the optical elements of the micro-

scope, presenting a first step to combine the concepts of computer graphics and physics
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for serving computational biology. This model was applied later to reconstruct the op-

tical properties of unknown three-dimensional biological specimen [43–45]. Preza et al.
proposed another imaging model of the DIC microscope under partially-coherent illu-

mination [46]. Dye et al. presented a similar ray-tracing-based model to simulate the

imaging of three-dimensional translucent specimen lit with incoherent light [47]. Their

model was also used to address the inverse problem of reconstructing the characteristics

of unknown volumetric specimen. Based on the same principle, Sierra et al. presented a

simplified model of phase propagation within a transparent specimen using the point

spread function (PSF) to represent the optical transmission response of the phase con-

trast microscope (PCM) [48]. Tanev et al. presented another model for the PCM based on

finite-difference time-domain simulation and a realistic three-dimensional model of the

biological cell [49]. Menzel et al. have recently presented a relevant study that discussed

two complementary approaches for simulating polarized light imaging (PLI) microscopy

to understand the interaction of polarized light with brain tissue [50, 51].

Weigert et al. have used a different approach for simulating light sheet microscopy

based on wave optics to reproduce spatially-varying aberrations, diffraction artifacts and

adaptive optics of the microscope [52]. However, this model did not simulate the fluores-

cence phenomenon itself because fluorescence cannot be interpreted by the wave theory

of optics9.

In principle, fluorescence microscopes can be modeled relying on the same methods

described by Kagalwala [39], Dye [47] and Menzel [50, 51], however, due to the absence

of convenient and intuitive mathematical models of fluorescence in computer graphics,

there are no physically-based models for fluorescence microscopes in general. We will

present two optical models that can simulate fluorescence in low-, and high-scattering

specimens in Chapter 4 and Chapter 5 and will accordingly apply them to simulate the

optical pipeline of two types of fluorescence microscopes in Chapter 7 and Chapter 8.

1.3.2 Neuroscience-specific Visualization Framework

In this thesis, we develop a visualization framework that preserves domain specificity for

neuroscience applications. Current neuroscientific visualization tools have improved con-

siderably in the recent years in their capacity to visualize simulation data. A clear exam-

ple is presented by Hernando et al. to interactively visualize the simulation of the cortical

activity of large scale neuronal microcircuits [23]. Nevertheless, such toolset is still inad-

equate for visualizing and validating data generated by various in silico methodologies

such as (VSDI) [53], calcium imaging [8] and also optogenetic stimulation experiments.

For example, visualizing the data arising from simulating an optogenetic procedure en-

tails incorporating plausible optical models into the visualization pipeline to account for

9 Refer to Figure 3.1.
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light interaction with highly scattering turbid media [54]. Accurate visualization of the

responses from simulated imaging experiments requires a sophisticated biophysically-

based optical model that incorporates fluorescence in the rendering integral and can

account for the actual optical properties of the biological tissue. Such a pipeline is still

largely unfulfilled and will require an extensible spectral visualization system that can

model and simulate light interaction with highly scattering fluorescent volumetric data

resembling the fluorescent structures in real tissue. In general, neurobiology scientists

are familiar with generic visualization packages such as Paraview [55], Voreen [56] and

ImageVis3D [57]. They use them frequently to visualize and analyze data acquired from

sensing devices, for example imaging scanners and microscopes. In some cases, these

software packages can be employed for visualizing certain structural aspects of the data

arising from in silico experiments and modeling procedures, for example, to validate

morphological distribution of the neurons in the neocortical column model [8]. Other

frameworks are customized to fulfill specific demands required by scientists such as

Voxx [58] and VAA3D [59]. The design goals of these frameworks were focused on scala-

bility and interactivity. Consequently, they traded performance for oversimplified optical

models that remain very limited in their ability to visualize fluorescent data or even to

enhance the photorealism of the generated image [26, 60]. This is quite similar to the

present visualization framework that is established by the BBP.

Two notable studies have addressed photorealistic visualization of neuroscientific

data with advanced illumination models. The first is presented by Banks et al. [61], in

which they integrated global illumination into their visual data analysis pipeline to dis-

play the fiber tracts of the brain. Their study was intended to improve data interpreta-

tion in the presence of a complex jungle of fibers surrounding brain tumors. The sec-

ond study presented ExposureRender, an interactive GPU-based framework that couples

Monte Carlo ray tracing with physically-based light transport models to generate highly

realistic renderings of volumetric data [62]. This framework is capable of visualizing in

silico optogenetic experiments, but it cannot be employed to visualize fluorescent data,

and thus, it does not fit our purposes as well.

The visualization of fluorescent volumetric data was first presented in FluVR [63], a

commercial application that used a simple deterministic physically-based model called

the simulated fluorescence process (SFP) to combine elastic and inelastic rendering. Al-

though it is capable of handling multiple fluorescent dyes in the volume, FluVR is limited

in several regards. The SFP assumes that emission occurs only at the maximum emission

wavelength and ignores the rest of the emission spectrum. This optical model did not

account for the spectral characteristic of the dyes and ignored multiple scattering.

Fortunately, there is a framework called PBRT that has the basic components we need:

a spectral-based implementation, a flexible API and also clear documentation. Here, we

extend this framework and customize it to meet our neuroscientific requirements10.

10 The extension of PBRT is addressed in Appendix A.
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1.4 thesis framework & contributions

1.4.1 Summary of Original Contributions

Volume Reconstruction of Large Scale Neocortical Models

Our first contribution is an efficient software framework for building large scale, highly

detailed and realistic volumetric models of neocortical circuitry of a two-week-old ju-

venile rat. These models are synthesized based on various morphological skeletons of

diverse types of neurons that are digitally reconstructed from wet lab experiments. This

framework is designed to allow parallel data generation on high performance clusters

that consist of multiple computing nodes connected via high bandwidth network hubs.

The framework is utilized to reconstruct a volumetric slice of a neocortical circuit model

that contains ∼210,000 neurons.

Unbiased Rendering of Fluorescent-tagged Volumetric Models

Another key contribution in this dissertation is the introduction of two novel optical mod-

els for simulating light interaction with fluorescent volumes. The first model extends the

monochromatic radiative transfer equation to account for wavelength changes, but it is

limited only to low scattering volumes that resemble clarified brain tissue. The other

model is presented to overcome this limitation as it is capable of accurately simulating

light propagation in fluorescent volumetric media that are characterized by high turbid-

ity.

Physically-plausible Light Microscopy Simulation Framework

We also introduce a computational framework for simulating the imaging pipeline of

three different optical microscopes: the transmitted light brightfield microscope, wide-

field fluorescence microscope and light sheet fluorescence microscope. This framework

is composed of multiple building blocks that provide accurate models of each unit in the

three microscopes including their illumination and acquisition units in addition to the

light interaction with a digital model of their specimens.

In Silico Imaging of Neocortical Digital Reconstructions

The two frameworks (tissue reconstruction and microscopy simulation) are integrated

into a unifying high level framework for performing in silico imaging experiments to

simulate brain imaging with different microscopes.
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1.4.2 Thesis Structure & Organization

The dissertation is organized in six parts divided into eight core chapters, a concluding

chapter in addition to this introductory one.

Chapter 2 presents the design aspects and implementation details of a high level,

systematic and efficient framework for building large scale volumetric models of neocor-

tical microcircuitry. The creation of accurate volumetric models of individual neurons

typically requires the existence of watertight polygonal meshes that can faithfully rep-

resent their membrane. Unfortunately, this requirement is not applicable in two major

cases: (1) when the neurons have complex morphological skeletons and also (2) when

the skeletons are subject to reconstruction artifacts that were added during their digitiza-

tion from a stack of microscopic images. We present a novel technique that is capable of

converting these morphological skeletons into volumetric models without the necessity

of having intermediate watertight polygonal mesh models of the morphologies. Our ap-

proach creates a piecewise watertight mesh skeleton that reflects the exact three-dimensional

structures of the neurons without their integration into a single mesh object. This mesh

skeleton is then rasterized and flood-filled using surface and solid voxelization to yield

continuous volumetric models of certain tissue blocks of the circuit.

Chapter 3 gives a brief overview of the fundamentals of physically-based rendering

in general and light transport in volumetric extents in particular. The mathematical for-

malism of the radiative transfer equation (RTE) that governs the behavior of light in a

volume is presented. This monochromatic equation is limited only to light absorption,

elastic scattering and self emission. However, we believe that this introduction is crucial

to guide the reader towards understanding the formalism of the two optical models that

will be derived later in Chapter 4 and Chapter 5 to account for inelastic light interaction

with low- and high-scattering fluorescent volumes respectively.

In Chapter 4, the RTE is extended to account for the energy transfer from one wave-

length to another. We accordingly present a novel optical model and unbiased rendering

algorithm capable of simulating light interaction with clarified brain tissue that has neg-

ligible scattering properties. In Chapter 5, we present a further extension for simulating

light propagation in turbid fluorescent media that are characterized by high scattering

coefficients.

The tissue models are then integrated with the optical models into a single framework

for simulating the imaging pipelines optical microscopes. In Chapter 6, we present a com-

putational model of the transmitted light brightfield microscope. This model is used to

simulate Golgi’s staining experiments. In Chapter 7, we extend our microscopy simula-

tion framework and integrate two implementations of the fluorescence models derived

in Chapter 4 and Chapter 5. Then, we simulate the imaging pipeline of the widefield epi-

fluorescence microscope. Similarly, this model is exploited to perform in silico imaging

experiments to render fluorescent optical sections that resemble those created by the ac-
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tual fluorescence microscopes. In Chapter 8, we make further extensions to the design of

the illumination unit of the epi-fluorescence microscope to simulate the imaging pipeline

of the light sheet microscope. Afterwards, we use this model to perform multiple experi-

ments to validate its different aspects, and also to visualize the neocortical tissue models

reconstructed in Chapter 2.

In Chapter 9, the in silico imaging concept is generalized to non-optical imaging

modalities. We present a literature review of all the computational models that are es-

sential for building a physically-plausible fMRI simulator. The objective of this chapter

is not focused on providing an actual implementation of a novel fMRI simulator; this

is beyond the scope of this thesis and cannot be achieved by a single doctoral student.

Instead, we aim to list and classify all the mathematical models that are required to al-

low the simulation of the physics of fMRI. We believe that this review will be extremely

helpful for guiding future studies.

Finally, in Chapter 10, we summarize our contributions, discuss the impact and limi-

tations of our approach and enumerate possible extensions for future work.
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Chapter 2
realistic neocortical tissue modeling for in silico

imaging

“ Think of a forest, then imagine taking 10,000 trees and squeezing them together until
there is essentially no space between them. That’s what the neocortical column looks
like. ”

– Henry Markram

Building visual representations of neocortical neurons can take one of three forms:

morphological models, polygonal mesh models and volumetric models. Each form has

certain use cases and specific limitations. Morphological models can be used to visualize

the skeleton of a neuron for validating its structure upon reconstruction – see Figure 1.3.

Mesh models provide a convenient alternative to visualize electro-physiological simula-

tions that are mapped to the mesh surface. They can also be exploited to validate some

structural aspects, for example, to model how a spine is integrated on a neuronal arbor –

see Figure 2.6 (b). Nevertheless, these models cannot be used for performing in silico opti-
cal experiments that require simulating light interaction with brain tissue structures. This

simulation necessitates the existence of highly detailed volumetric models to account for

the optical properties of the tissue.

Creating volumetric models of neocortical data has been addressed before in few

research studies [21, 64]. However, building high fidelity volumes of neocortical circuits

that can be used for in silico imaging is still largely unfulfilled; in particular in terms of

structure, scale and data integration. In this chapter, we present a novel approach to con-

struct accurate, physically-plausible and large scale neocortical volumetric models that

account for the optical properties of brain tissue in addition to its fluorescent structures.

These models will be used to simulate different types of in vitro optical experiments in

Chapter 6, Chapter 7 and Chapter 8.

We also give a brief overview of the neocortical circuitry and its reconstruction pro-

cess starting from a two-week-old rat in the wet lab until its visualization on a computer

screen. We believe that this gentle introduction will help the reader to understand the

complexity of the problem.

35



36 realistic neocortical tissue modeling for in silico imaging

2.1 neocortical circuitry

2.1.1 Neocortex & Neocortical Column

The mammalian brain consists of several distinct regions and structures that have been

formed successively during its course of evolution. Amongst others, the most recent

and developed part of the brain is the neocortex – or isocortex [65]. It is considered

the principal part of the cerebral cortex of the brain that is responsible for higher order

brain functions including cognition, sensory reception, spatial reasoning and motor com-

mands [66]. The shape of the neocortex varies across the different mammals; it is smooth

in rodents and other small mammals, whereas in primates and other larger mammals, it

has deep grooves (sulci) and ridges (gyri) that significantly increase the surface area of

the neocortex and consequently enhance the cognitive abilities. In general, the shape of

the neocortex is further convoluted in more complex species and its size varies consid-

erably from one species to another. In humans, the neocortex is the largest part of the

cerebral cortex; it covers around 90% of the total surface of the brain and contributes to

40% of its total weight [67]. It has also much more convolutions than those of the rat

neocortex. Nevertheless, the fundamental architecture of the neocortical circuitry of the

brain of both humans and rats is quite similar despite the remarkable differences in their

structure as shown in Figure 2.1 [68].

The neocortex is located underneath the pial surface of the brain and extends until the

beginning of the white matter. It is organized in a continuous assembly of cells spanning

six vertical layers that are labeled from Layer I (outermost) to Layer VI (innermost). The

cortical neurons are interconnected with each other and also with cells located in other

brain regions by a huge number of synapses, in the order of ∼10
12. The basic unit of the

neocortex is called the mini-column; a narrow group of neurons (80 – 100) that spans the

cortical layers vertically, perpendicular to the pial surface. The principal functional unit

of the neocortex is known to be the column1, or the neocortical column (NCC). The NCC is

formed by bounding multiple mini-columns together by short-range horizontal connec-

tions [70]. The neurons located within a single column have common static and dynamic

properties; they show a similar response to external stimuli. This columnar organization

was established and made evident through single neuron electro-physiological record-

ings. These recordings have shown sharp transitions in electrical properties from a block

of neural tissue to the adjacent blocks [71, 72]. Ultimately, this columnar hypothesis as-

sumes that the cortex consists of a set of discrete assemblies – or modules – of cortical

columns that have a consistent connectivity profile. This modularity has been proven to

provide fundamental insights to unravel the different aspects of the neocortical circuitry,

therefore understanding the neocortex and potentially the entire brain.

1 The cortical column is also called the macro-column or the hyper-column as opposed to the mini-column. The
term is used interchangeably with functional column or cortical module in other contexts.
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(a)

(b)

Figure 2.1: A comparison between the size and structure of the rat (a) and human (b) brains. The
images are obtained from the Genetic Science Learning Center in University Utah [69].

2.1.2 Modeling and Reconstruction of Neocortical Microcircuitry

In 2015, Markram et al. presented a first-draft digital model of a piece – or slice– of the

somatosensoy cortex of a two-weeks old rat [8, 20].

This model unifies a large amount of data from wet lab experiments and can re-

produce a series of in vitro and in vivo results reported in the literature without any

parameter tuning. However, the model is merely limited to simulating electrophysiolog-

ical experiments – Figure 2.2. The fundamental objective of this chapter is focused on

integrating further structural volumetric data, into this model and extending its capabili-

ties for performing in silico optical studies that can simulate light interaction with brain

tissue.
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2.2 motivation, challenges and related studies

As mentioned earlier, structural modeling of neocortical circuits can be approached based

on morphological, polygonal or volumetric models of the individual neurons composing

the circuits. Each modeling approach has a specific set of applications accompanied with

a certain level of complexity and limitations. Morphological models can be used to vali-

date the skeletal representation of the neurons [73], their connectivity patterns [74] and

their organization in the circuit [75], but they cannot be used, for example, for detailed

visualization of electro-physiological simulations. Visualizing such spatio-temporal data

requires highly detailed models that can provide multi-resolution, continuous and plau-

sible representations of the neurons, such as polygonal mesh models [23, 76]. These

polygonal models can accurately represent the cell membrane of the neurons, but they

cannot characterize the light propagation in the tissue; they do not account for the in-

trinsic optical properties of the brain. Therefore, such models cannot be used to simulate

optical experiments on a circuit level, for example: microscopic [77] or optogenetic exper-

iments [78].

Simulating these experiments is constrained to the presence of detailed and multi-

scale volumetric models of the brain that are capable of addressing light interaction with

the tissue including absorption and scattering. There are also other in silico experiments,

such as voltage sensitive dye imaging [53] and calcium imaging [79], that require more

complicated models to simulate fluorescence. These volumetric models must be anno-

tated with the actual spectral characteristics of the fluorescent structures embedded in

the tissue to emit an accurate response upon excitation at specific input wavelength.

In principle, volumetric models of neurons can be obtained in one step based on

their morphological skeletons using line voxelization [80]. However, the accuracy of the

resulting volumes, in particular at the cell body and branching points of the neurons,

will be extremely limited. Line voxelization cannot reconstruct high fidelity volumetric

models from skeletal models. Moreover, addressing the scalability to precisely volumize

large scale neuronal circuits (micro-circuits, slice circuits or even meso-circuits) is not a

trivial problem.

A correct approach of solving this problem entails creating tessellated polygonal

meshes from the neuronal morphologies using a physically-based technique followed

by building the volumes from the generated meshes using solid voxelization [81]. Al-

though convenient, this approach is not applicable in many cases because solid voxeliza-

tion algorithms are conditioned by default to two-manifold – or watertight – polygonal

meshes [82]. Due to the complex structure of the morphological skeletons of the neurons

and their reconstruction artifacts, the creation of watertight meshes from these morpholo-

gies is not an easy task. Polygonal modeling of neurons has been investigated in several

studies for simulation, visualization and analysis purposes, but unfortunately they were

not mainly concerned with the watertightness of the created polygonal meshes. This
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can be demonstrated in the work presented by Wilson et al. in Genesis [83], Glaser et
al. [84] in Neurolicida and Gleeson et al. in neuroConstruct [85]. These software packages

have been designed solely for creating limited-quality and low level-of-detail meshes

that can only fulfill their objectives. For instance, those created by Neurolicida were sim-

plified to discrete cylinders that are disconnected between the different branches of the

dendritic arbors as a result of the variations in their radii. This issue was resolved in neu-

roConstruct relying on tapered tubes to account for the difference in the radii along the

branches, however, the authors have used uniform spheres to join the different branches

at their bifurcation points. These meshes were watertight by definition, but they do not

provide a smooth surface that can accurately reflect the structure of a neuron. Creating

smooth and continuous polygonal models of the neurons has been discussed in two

studies by Lasserre et al. [76] and Brito et al. [86], but their meshes cannot be guaran-

teed to be watertight when neuronal morphologies are badly reconstructed. Therefore,

a novel meshing method that can handle the watertightness issues is strictly needed.

The algorithms, workflows and implementations discussed in the following sections are

introduced to overcome these limitations and reduce a gap that is still largely unfulfilled.

2.3 contributions

1. Presenting an efficient meshing algorithm for creating piecewise-watertight polyg-

onal models of the neocortical neurons from their morphological skeletons, see

Figure 2.3.

2. Design and implementation of a scalable and distributed pipeline for creating

polygonal mesh models of all the neurons in a given neocortical microcircuit based

on Blender [22].

3. Design and implementation of a high performance solid voxelization software capable

of building high resolution volumetric models of the neocortical circuitry of a few

cubic millimeters extent.

4. Using the reconstructed neocortical models to render in-silico physically-plausible

images that are created from simulating the imaging pipelines of different optical

imaging modalities including brightfield, fluorescent, and light sheet microscopy

as discussed later in Chapter 6, Chapter 7 and Chapter 8 respectively.

5. Evaluating the plausibility of the meshing, voxelization and rendering results in

collaboration with a group of domain-experts including visualization researchers,

microscopists, neurobiologists and in silico neuroscientists.

https://www.blender.org/
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Figure 2.3: Graphical representation of a typical morphological skeleton of a neuron.

2.4 methods

Our approach for building scalable volumetric models of neocortical circuits from the

experimentally reconstructed morphologies is illustrated by Figure 2.4 and summarized

in the following points:

1. Preprocessing the individual neuronal morphologies that compose the circuit, to

filter them from any artifacts that would severely impact the meshing process.

2. Creating smooth and watertight polygonal mesh models of the neurons from their

morphological information.

3. Building local volumes of the neurons from their mesh models.

4. Integrating all the local volumes of the individual neurons into a single global volume
dataset.

5. Annotating — or tagging — the global volumetric model of the circuit according

to the criteria specified by the in silico study. For example, in clarified fluorescence

experiments [87], the neurons will be tagged with the spectral characteristics of

the different fluorescent dyes2 that are injected intracellularly. In optogenetic ex-

periments, the volume will be tagged with the intrinsic optical properties of the

cortical tissue [25] to account for precise light attenuation and accurate neuronal

stimulation [88].

2 The spectra of two families of fluorescent dyes are summarized in Appendix D.
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 2.4: A graphical illustration of our proposed workflow for creating volumetric models of
the neurons from their morphological skeletons. To eliminate any visual distractions, the opera-
tion will be illustrated on a single arbor (highlighted in yellow in Figure 2.3), but the algorithm
will be applied on the entire neuron. The blue circles in (a) and (b) represent the positions of
morphological samples of the neurons and the radii of their respective cross sections. (c) The
morphology structure is created by connecting the samples, segments, and branches together.
(d) The primary branches that represent a continuation along the arbor (in the same color) are
identified according to the radii of the samples of the children branches at the bifurcation points.
(e) The connected branches identified in (d) are converted into multiple mesh objects where each
object is smooth and watertight. (f) The mesh objects are converted to intersecting volumetric
shells with surface voxelization in the same volume. (g) Solid voxelization. The volume created
in (f) is flood-filled to cover the extra-cellular space of the neurons. (h) The final volumetric model
of a neuron is created by inverting the flood-filled volume to reflect a smooth, continuous and
plausible representation of the neuron.
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2.5 morphologies reconstruction

In reality, each neuron in the brain is characterized by a unique morphological struc-

ture. This structure is reconstructed from three-dimensional imaging stacks obtained

from different tracing experiments. The morphologies are digitized either with semi-

automated [89] or fully automated [90] tracing methods [84, 91]. The digitization data

is stored in multiple file formats such as SWC [92–94] and the Neurolucida proprietary

formats [95, 96].

For convenience, the digitized morphologies are loaded, converted and stored as a

tree data structure. The skeletal tree of a neuron is defined by the following components:

a cell body – or soma, sample points, segments, sections and branches. The soma, which is the

root of the tree, is usually described by a center, radius, and a two-dimensional contour of

its projection onto a plane or a three-dimensional one extracted from a series of parallel

cross sections. Each sample represents a point in the morphology with a certain position

and a radius of the corresponding cross section at this point. Two consecutive samples

define a connected segment, where a section is identified by a series of non-bifurcating

segments and a branch is a linear concatenation of sections. A typical morphological

skeleton of a neuron is shown in Figure 2.3.

2.6 morphologies pre-processing

Due to certain reconstruction errors, the morphology can have acute artifacts that limit

its usability for meshing. In this step, the morphological skeleton is investigated and

repaired if it contains any of the following artifacts:

1. Disconnected branches from the soma (relatively distant); where the first sample of

a first-order section is located far away from the soma.

2. Overlapping between the connections of first-order sections at the soma.

3. Intersecting branches with the soma; where multiple samples of the branch are

located inside the soma extent.

These issues can severely deform the reconstructed three-dimensional profile of the

soma, affect the smoothness of first-order branches of the mesh and potentially distort the

continuity of the volumetric model of the neuron. The disconnected branches are fixed

by repositioning the far away samples closer to the soma. The new locations of these

samples are set based on the most distant sample that is given by the two-dimensional

profile of the soma. For example, if the first-order sample is located at 20 µm from the

center of the soma while the farthest profile point is located at 10 µm, then the position

of this sample is updated to be located within 10 µm from the center along the same

direction of the original sample.
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The algorithm for creating a mesh for the soma is based on a deformation of an initial

mesh into a physically plausible shape. Two branches influencing the same vertices of the

initial mesh give rise to serious artifacts. Therefore, if two first-order branches or more

overlap, the branch with largest diameter is marked to be a primary branch, while the

others are ignored for this process. Finally, the samples that belong to first-order branches

and are contained within the soma extent are removed entirely from the skeleton.

2.7 meshing : from morphological samples to polygons

In general, creating an accurate volumetric representation of a surface object requires a

polygonal mesh model with certain geometrical aspects; the mesh has to be watertight, i.e.

non intersecting and two-manifold [97]. Unfortunately, creating a single smooth, continu-

ous and watertight polygonal mesh representation of the cell surface from a morphologi-

cal skeleton is more difficult than it seems. Reconstructing a mesh model to approximate

the soma surface is relatively simple, however, the main issues arise when (1) connect-

ing first-order branches to the soma and (2) joining the branches to each other. Apart

from the intrinsic difficulties, the morphological reconstructions that are produced from

wet lab experiments are not traced with membrane meshing in mind. Therefore, they

may contain features and artifacts that can badly influence the branching process even if

the artifacts are completely repaired. In certain cases, some branches can have extremely

short sections with respect to their diameters or unexpected trifurcations that can distort

the final mesh.

The existing approaches for building geometric representations of a neuron are not

capable of creating a smooth, continuous and watertight surface of the cell membrane

integrated into a single mesh object. In neuroConstruct, the neuron is modeled with dis-

crete cylinders, where each of them represents a single morphological segment [85]. By

definition, the cylinders are watertight surfaces, however, this technique underestimates

the actual geometric shape of the branches. It introduces gaps or discontinuities between

the segments that are not colinear. In contrast, the method presented by Lasserre et al. can

be used to create high fidelity and continuous polygonal meshes of the neurons, but the

resulting objects from the meshing process are not guaranteed to be watertight [21, 76].

Their algorithm resamples the entire morphological skeleton uniformly, and thus, the re-

sampling step cannot handle bifurcations that are closer than the radii of the branching

sections. Moreover, the somata are not reconstructed on a physically-plausible basis to

reflect their actual shapes. This issue has been resolved by the method discussed by Brito

et al. [86]. They can also build watertight meshes for the branches, but their approach

can be valid only if the morphological skeleton is artifact-free. The watertightness of the

resulting meshes is not guaranteed if the length of the sections are relatively smaller than

their radii or when two first-order branches are overlapping.
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We present a novel approach to address the previous limitations and build highly

realistic and smooth polygonal mesh models that are watertight piecewise. The resulting

meshes consist of multiple separate and overlapping objects, where each individual object

is continuous and watertight. In terms of voxelization, this piecewise watertight mesh is

perfectly equivalent to a single connected watertight mesh that is almost impossible to

reach in reality. The overlapping between the different objects guarantees the continuity

of the volumetric model of the neuron, see Figure 2.4 (f) and Figure 2.4 (h).

The final result of the voxelization will be correct as long as the union of all the pieces

provides a faithful representation of each component of the neuron. The mesh is split into

three components:

1. a single object for the soma,

2. multiple objects for the neurites (or the arbors),

3. multiple objects for the spines if that information is already available in the circuit

configuration.

2.7.1 Soma Meshing

In advanced morphological reconstructions, the soma is precisely described by a three-

dimensional profile that is obtained at multiple depths of field [98]. In this case, the soma

mesh object can be accurately created relying on the Poisson surface reconstruction algo-

rithm that converts sufficiently-dense point clouds to triangular meshes [99]. However,

the majority of the existing morphologies represent the soma by a centroid, mean radius

and in some cases a two-dimensional profile, and thus building a realistic soma object is

relatively challenging [91].

Lasserre et al. presented a kernel-based approach for recovering the shape of the

soma from a spherical polygonal kernel with 36 faces [76]. The first-order branches of

the neurons are connected to their closest free kernel face, and then the kernel is scaled

up until the faces reach their respective branches. The resulting somata are considered a

better approximation than a sphere, though, they cannot reflect their actual shapes. This

approach is illustrated in Figure 2.5 and used to produce the neuronal meshes shown in

Figure 2.6.

Brito et al. have discussed a more plausible approach for reconstructing the shape

of the soma based on mass-spring systems and Hooke’s law [86, 100, 101]. As shown in

Figure 2.7, their method simulates the growth of the soma by pulling forces that emanate

the first-order sections. However, their implementation has not been open sourced to

reuse it.

We present a similar algorithm for reconstructing a realistic three-dimensional con-

tour of the soma implemented with the physics library from Blender [22, 102]. The algo-

https://www.blender.org/
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(a) (b)

Figure 2.5: An illustration of the soma reconstruction algorithm proposed by Lasserre et al. In (a),
the kernel is placed at the origin of the soma and then connected to the arbors. In (b), the kernel
is scaled until it reaches the closest branch. The images are courtesy of Lasserre et al. [76].

(a) (b)

Figure 2.6: Exemplar neuronal meshes produced by the meshing pipeline of Lasserre et al. The re-
constructed somata are considered a better approximation than a sphere, however, the technique
is incapable of recovering their actual shapes. The images are courtesy of the Blue Brain Project [4,
5] and Lasserre et al. [21].

rithm simulates the growth of the soma by deforming the surface of a soft body sphere

that is based on a mass spring model. The soma is initially modeled by an isotropic sim-

plicial polyhedron that approximates a sphere, called icosphere [103]. The icosphere is

advantageous over a UV-mapped sphere because (1) the vertices are evenly distributed
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Figure 2.7: A progressive illustration of the soma reconstruction algorithm proposed by Brito et
al. showing the soma deformation step by step. The image is courtesy of Brito et al. [86]

and (2) the geodesic polyhedron structure distributes the internal forces throughout the

entire structure – Figure 2.8. As a trade-off between compute time and quality, the sub-

division level of the icosphere is set to four – Figure 2.8 (g). The radius of the icosphere

is computed with respect to the minimal distance between the soma centroid and the

initial points of all the first-order branches.

Figure 2.9 shows the progressive reconstruction of the soma of an L4−SP neuron. Each

vertex of the initial icosphere is a control point and each edge represents a spring. For

each first-order branch, the initial cross section is spherically projected to the icosphere

and the vertices within this projection are selected to create a hook modifier, Figure 2.9 (a),

which is an ensemble of control points that remains rigid during the simulation. Before

the hook is created, all the faces from the selected vertices are merged to create a single

face that is reshaped into a circle. This circle has the same radius of the projection of

the first-order segment on the sphere, Figure 2.9 (b). During the simulation each hook

is moved towards its corresponding target section causing a pulling force. At the same

time, the connecting polygons are progressively scaled to match the size of the final cross

section at destination point, Figures 2.9 (c) - (f). If two or more first-order sections or their

projections overlap, only the section with the largest diameter is considered. The other

will be extended later to the soma centroid during the branch generation as described in

the following section.

As we have mentioned earlier, the subdivision level of the icosphere is a critical fac-

tor that must be considered to maintain the balance between the reconstruction quality

and performance. On the one hand, a low subdivision level means less triangles and

therefore, possible reconstruction artifacts or even process failure. On the other hand, a

high subdivision level will severely impact the performance of the somata deformation

process. Based on several testing trials, the subdivision level of the icosphere has been

set to four to guarantee the accuracy of the final soma and also to provide a convenient

performance. Figure 2.10 shows the resulting somata from an icosphere that uses multi-

ple subdivision levels. It has to be noted that higher subdivision levels will degrade the
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 2.8: Illustrative comparison between two representations of a sphere object using UV-
spheres and icospheres. The UV-spheres are created with the following resolutions: (a) 16, (b)
32, (c) 64, (d) 128 and (i) 256 segments and rings. The icospheres are created with the following
resolutions: (e) 2, (f) 3, (g) 4, (h) 5 and (j) 6 subdivisions. The icosphere is advantageous over a UV-
sphere because the vertices of the icosphere are evenly distributed and its geodesic polyhedron
structure distributes the internal forces throughout the entire geometry. Using an icosphere with
a subdivision level of four optimizes the reconstruction performance of the somata and also
preserves the reconstruction quality.
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performance of the algorithm exponentially at the expense of little improvements in the

accuracy of the reconstructed soma.

2.7.2 Neurite Meshing & Soma Integration

To mesh an arbor, the morphology is divided in advance into a set of branches (con-

catenated non bifurcating sections) that span the entire morphological tree as shown in

Figure 2.4 (d). The algorithm starts with the first branch from the first-order section of

the neurite. At the first bifurcation, the section with the largest cross section at the start-

ing sample is chosen as the continuing section for the on-going branch, whereas the rest

are placed in a stack. The algorithm proceeds to the next bifurcation and repeats until a

terminal section is reached. Once the branch is completed, the first section in the stack

is popped and a new branch is created from there. The algorithm finishes when all the

sections have been processed. Each branch is meshed separately using a poly-line and a

circle bevel, which is adjusted to the branch radius at each control point, Figure 2.4 (e).

The initial branch of each neurite is connected to the centroid of the soma with a

conic section. For most branches this connection will not be visible, but it is necessary

for these ones that were overlapping a thicker branch and did not participate in the

soma generation. The whole algorithm requires only local information at each step, and

thus it runs in linear time in relation to the number of sections. Afterwards, the soma

is integrated to the branches and grouped into a single piecewise watertight mesh object

that can be intuitively used by the voxelization framework to create a volumetric model

of the neuron on an individual basis or as part of a larger microcircuit. The creation of

the branches from the morphological description of the neuron and the integration of

the somata are demonstrated using an L6−UTPC neuron in Figure 2.11.

2.8 voxelization : from polygonal to volumetric models

2.8.1 Voxelization

In computer graphics literature, voxelization is defined as the conversion of a geometric

representation of an object into a volumetric representation that is uniformly sampled in

the three-dimensional space [97, 105]. The geometric models are limited to certain extent

for accurate light matter interaction. They use surface reflectance and sub-surface scatter-

ing functions to reflect the incident light onto their surfaces. In contrast, the volumetric

models of the same objects can be used for accurate simulation of the light interaction

with spatially-varying participating media, which is the ultimate objective of this work.

Voxelization is generally categorized into two classes: surface and solid voxelization.

Surface voxelization converts a polygonal mesh model into a volumetric shell that is not
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(a) (b) (c)

(d) (e)

Figure 2.10: Reconstructed somata for the same neuron using icospheres with different subdivi-
sion levels: (a) 2, (b) 3, (c) 4, (d) 5 and (e) 6. A subdivision level of four is considered the most
optimized value that guarantees the quality of the reconstructed soma and also preserves the
performance of the process.

filled in the interior. Solid voxelization, in contrast, fills the interior side of the object

allowing accurate light interaction with the whole object [106]. The difference between

the two voxelization modes is graphically illustrated on the Stanford bunny model in

Figure 2.12.

By large, surface voxelization does not have any special requirements to convert a

three-dimensional model into a volumetric shell. But, on the other side, solid voxeliza-

tion has certain critical requirements that must be fulfilled for successful conversion

of the object, mainly watertightness. This condition entails the geometric model to be two-
manifold, i.e. having zero-manifold vertices and zero-manifold edges. Moreover the object

must be continuously smooth having no holes at all. In certain cases, the volume must

be sampled at very high resolution to capture the details of high frequency geometric

objects, otherwise the reconstructed shell that is obtained from the surface voxelization

stage will be full of holes and consequently, the solid voxelization procedure will fail. To

overcome this issue, conservative rasterization is used. This algorithm guarantees the conti-

nuity of the volumetric shell [109]. A comparison between conventional and conservative

rasterization is graphically illustrated in Figure 2.13.

Voxelization algorithms are known to be computationally expensive and require sev-

eral optimization strategies to be efficiently implemented. During the last decade, several

ideas have been discussed to use the rendering pipeline of the GPU for that purpose [112–
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(a) (b)

(c) (d)

Figure 2.11: The reconstruction process of an annotated piecewise polygonal mesh model of a
neuron from its morphological representation. The morphology skeleton is illustrated in (a). The
morphological samples in the skeleton are set to their actual radii in (b). In (c), each branch is
created as a continuous watertight mesh and connected to the origin of the soma to guarantee a
smooth connection. In (d), the soma is reconstructed and integrated to the mesh. The different
objects of the mesh are grouped later into a single piecewise polygonal mesh by a union boolean
modifier [104]. The soma, axon, basal and apical dendrites are colored in yellow, red, green and
blue respectively.

117]. Other algorithms have used the unified architecture of the GPU relying on high level

APIs such as CUDA and OpenCL to build extremely efficient and real-time voxelization

workflows [81, 82, 97, 108, 118–121]. Due to the embarrassingly-parallel nature of the

voxelization algorithms, these implementation were capable of delivering high through-

put performance. Nevertheless, they were limited to create relatively small volumetric

models due to the constraints imposed by the memory of the GPU.
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(a)

(b) (c)

(d) (e)

Figure 2.12: Illustrative comparison between surface and solid voxelization algorithms using the
Stanford bunny model [107]. The polygonal mesh model in (a) is converted into a volumetric shell
in (b and d) with surface voxelization and to solid volume that is filled in the interior in (c and
e) with solid voxelization. The blue voxels in (b) and (c) represent the outer shell of the volume,
the green ones represent the interior and the yellow ones are empty. The images are redesigned
from the original source by Schwarz and Seidel [108].
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(a) (b) (c) (d)

Figure 2.13: A comparison between the standard (a and c) and conservative rasterization (b and
d) algorithms. Source: GPU Gems 2, Hasselgren et al. [110] and [111].

CPU-based voxelization has been used alternatively to overcome these limitations and

allow the generation of large scale volumetric objects that are orders of magnitude larger

than these created using the GPU in some cases [122]. For these reasons, our voxelization

algorithm will be implemented on the CPU, but it will be optimized to guarantee its

practicality even for generating large scale neocortical volumes of microcircuits with

high cell densities.

2.8.2 Neocortical Circuit Voxelization

A straightforward approach to voxelize an entire neuronal circuit of a few hundred or

thousand neurons is to create a polygonal mesh for each neuron in the circuit, merge

all of them in a single mesh and feed that mesh into an existent robust solid voxelizer.

However, this approach is infeasible due to the memory requirements needed to create

the single aggregate mesh model of all neurons.

We propose a novel and efficient CPU-based method for creating these volumetric

models without the necessity of building joint mesh models of neurons. As mentioned

previously, we use a CPU implementation to avoid the restrictions of the memory of an

accelerator device, e.g. a GPU [108, 117, 118]. To reduce the memory requirements of our

implementation, we have used binary voxelization to store the volume, where each voxel

is stored in a single bit.

The volume is created in four steps:

1. The dimensions of the volume are obtained by computing the union bounding box

of all the neurons in the circuit.

2. Parallel surface voxelization for the piecewise meshes of all the neurons.

3. Parallel and slice-by-slice-based solid voxelization of the entire volume.

4. Volume annotation or tagging.
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The spatial extent of the circuit is obtained by (1) transforming the mesh of each

neuron to global coordinates, (2) computing its axis-aligned bounding box and finally (3)

calculating the union bounding box of all the meshes. The size of the volume is defined

according to the circuit extent and a desired resolution given by the user. The volumetric

shell of each component of the mesh is obtained with surface voxelization, Figure 2.4 (f).

This process rasterizes all the pieces conforming a mesh to find their intersecting faces

with the volume. This step can be easily parallelized since each cell can be processed

independently. We only need to ensure that the SET operations in the volume dataset are

thread-safe. Afterwards, the extracellular space is tagged with flood-filling the resulting

volume from surface voxelization [123]. To parallelize this process, we have used a two-

dimensional flood-filling algorithm that can be applied for each slice in the volume as

shown in Figure 2.4 (g), and the final volume is created subsequently by inverting the

flood-filled one to discard the intersecting voxels in the volume, Figure 2.4 (h).

2.8.3 Tissue Block Extraction

In typical in silico experiments, the spatial extent of the employed volume is equivalent to

the global bounding box of its corresponding circuit. Therefore, all the polygons of these

neurons that are defined by this circuit will be ultimately rasterized and integrated into

the created volume. Certain experiments require the extraction of a tiny volumetric block

that is identified by a user-specific bounding box. In the first prototype of our modeling

framework, this operation has been naïvely implemented with a mesh-clipping approach

that works as follows:

1. The unique identifiers of all the neurons that are spatially located within the given

bounding box are retrieved from the circuit, Figure 2.14 (a).

2. The meshes of those neurons are created from their corresponding morphologies

using our mesh generation pipeline (Meshy), Figure 2.14 (b).

3. Those meshes are loaded into Blender and clipped on a per-mesh basis using an

intersection boolean modifier, Figure 2.14 (c). To accelerate this process, the meshes

are clipped in parallel relying on our visualization cluster.

4. The clipped meshes are loaded afterwards in Blender again, grouped into a single

mesh block using a union boolean modifier and exported as a single mesh object,

Figure 2.14 (d).

5. This mesh block is converted into a volumetric one using our voxelization pipeline

(Voxy), Figure 2.14 (e). The volume is exported either as a raw file3 that can be

3 This format represents each voxel by one byte.
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loaded by any volume rendering application or as a binary format file4 that is

suitable for the rendering framework (pbrt).

The previous approach is convenient when the size of the extracted block is relatively

small, otherwise it might take several hours to be created due to the complexity of the

mesh clipping procedure that is very time consuming. To overcome the limitations of

this approach, this operation has been implemented at the voxelization process. The

volume is allocated a priori based on the spatial extent of the given bounding box. During

the surface voxelization, the polygons of the neuronal mesh are tested to intersect with

the bounding box or not. If the intersection is positive, the corresponding voxels in the

volume are directly set. This alternative approach, illustrated in Figures 2.14 (f), (g) and

(h), is extremely efficient due to the following reasons:

1. The surface voxelization stage runs in parallel using OpenMP where each mesh is

processed independently.

2. The expensive clipping operations are suppressed.

3. The aggregation of the clipped meshes into a single mesh block using the union

modifier is also removed.

4. In the naïve approach, the meshes are loaded in Blender for clipping. All the

clipped meshes are loaded again for creating the final mesh block that is loaded

later by the voxelization pipeline. Importing and exporting large neuronal meshes

with complex arbors and high tessellation levels can substantially reduce the per-

formance of the entire framework. In this approach, the original meshes are loaded

only once for voxelization.

2.8.4 Volume Tagging & Annotation

The voxelization workflow is capable of creating binary volumes where each voxel is

stored in a single bit. This representation is extremely beneficial for creating large scale

volumetric models of the neocortical tissue. It can be useful in certain cases, for instance,

when the tissue is injected with a single dye that is diffused uniformly in the intracellular

space of the neurons. If the value of the voxel is set to zero, then it represents the extra-

cellular space, otherwise it reflects the intracellular structure of the neurons. This binary

representation is limited in several cases, for instance: when the neurons are injected

with multiple fluorescent dyes or in case of non uniform diffusion of the dyes.

The voxelization pipeline is extended to allow the creation of annotated volumes that

can be used to account for several fluorescent dyes and different concentration in the

4 This format represents each voxel by a single bit.

https://www.blender.org/
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same volume. Each voxel will be annotated with a specific index — or tag — that reflects

a set of properties given in the rendering configuration. For example, if the model is

virtually tagged by three different dyes at the same concentrations, then the value of

each voxel is set to 0, 1, 2 or 3. A zero-valued voxel reflects the extracellular space.

The other indices refer to the different dyes. In the rendering configuration, the spectral

characteristics of these dyes are defined and during the rendering stage, when the optical

properties are retrieved by matching the index of the traversed voxel and that in the

rendering configuration. This approach is essential to allow us to add further properties

without enlarging the size of the reconstructed volume. The tagging process of a tissue

block is illustrated in Figure 2.15.

2.9 implementation details

The meshing algorithm is implemented in a Blender-based framework called Meshy5 [22].

The pipeline is designed to distribute the generation of all the meshes specified in a given

circuit in parallel relying on a high performance computing cluster with 36 computing

nodes, each shipped with 16 processors. The meshing application is configured to con-

trol the maximum branching orders of the axons and dendrites, control the quality of the

meshes at various tessellation levels and to integrate the spines to the arbors if needed.

This pipeline has been employed to create highly-tessellated and piecewise watertight

meshes of the neurons that were defined in a recent digital slice based on the recon-

structed circuit by Markram et al. [8]. This circuit (521× 2081× 2864µ3) is composed of

∼210,000 neurons and spatially organized as seven neocortical column stacked together.

Using 200 cores, all the meshes were created in eight hours approximately. On average,

a single neuronal morphology is meshed in the order of hundreds of milliseconds to few

seconds. The meshes were stored according to the Stanford polygon file format (.ply) to

reduce the overhead of reading them later during the voxelization process.

The voxelization algorithms (surface and solid) are implemented in C++ framework6

(Voxy) that is parallelized using the standard OpenMP interface [124]. The quality of the

resulting volumetric models is verified by inspecting the two-dimensional projections of

the created volumes, and comparing the results to an orthographic surface rendering

image of the same neurons7.

2.10 results

Each individual pipeline (somata reconstruction, piecewise polygonal meshing, voxeliza-

tion) is applied to a prototype circuit that consists of only 55 exemplar neurons. Those

5 A software guide is discussed in Section A.2 to help the reader to use this meshing framework.
6 A software guide is discussed in Section A.3 to help the reader to use this voxelization framework.
7 Refer to tha images generated in Section C.2.

https://www.blender.org/
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(a)

(b) (c)

(d) (e)

(f) (g)

(h) (i)

Figure 2.15: The process of creating a fluorescent tissue block from the cortical column model. (a)
The meshes of each neuron in the column are created and loaded according to their position and
orientation specified by a given circuit configuration. (b) The requested mesh block is extracted
from the neocortical column model. (c) The mesh block is converted into a volume with solid
voxelization. The volume block is annotated with the optical properties of the brain and the
spectroscopic properties of different fluorescent dyes in (d), (e), (f), (g), (h) and (i). The density of
the cells in the illustrated model in (a) is only 5%.
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exemplars, shown in Figure 2.16, have been carefully selected to reflect the diverse mor-

phological types (mTypes) in the neocortical column. Afterwards the entire framework is

utilized to reconstruct large-scale neocortical volumes of a recent slice microcircuit that

has ∼210,000 cells. Further details concerning the reconstruction of the slice microcircuit

are discussed by Ramaswamy et al. [20] and Markram et al. [8].

2.10.1 Physically-based Somata Reconstruction

Figure 2.17 shows the final profiles of the reconstructed somata of the exemplar neurons.

Progressive reconstruction of all the 55 exemplars is provided as a supplementary movie,

which is also available online [125].

2.10.2 Piecewise Watertight Polygonal Modeling of Neurons

Figure 2.18 shows a piecewise watertight mesh of a L5−TTPC1 pyramidal neuron recon-

structed from its morphological skeleton. It has to be noted that the different components

of the mesh (branches and somata) are not connected together to form a continuous sur-

face mesh, however, they are grouped into a single mesh object to facilitate reading them

by the voxelizer. Figure 2.19 shows close-up images of a few meshes created for a group

of other neurons having different mTypes. The resulting meshes of all the 55 exemplars

are provided in high resolution in Appendix C (Section C.1). The watertightness of all

the reconstructed meshes was validated in MeshLab [126]. All the meshes were verified

to have zero non-manifold edges and vertices.

2.10.3 Volumetric Modeling of Neocortical Circuits

The target volume is created upon request from the neuroscientist according to his de-

sired in silico experiment. Figure 2.20 illustrates the results of the main steps for creating

a volumetric model of a single spiny neuron from its mesh model. The volumetric shell

of each component of the neuron is created with surface voxelization. The filling of the

intracellular space of the neuron is done with solid voxelization to create a continuous

and smooth volumetric representation of the neuron. The scalability of our voxelization

workflow affords the creation of high resolution volumetric models of multi-level neocor-

tical circuits (microcircuits, mesocircuits, slices) that are composed from a single neuron8

and up to an entire slice that contains ∼210,000 neurons.

Figure 2.21 shows the results of voxelizing multiple neocortical circuits with various

scales that range from a single neuron and up to an entire slice circuit. Note that we only

8 Volumetric reconstructions of the 55 exemplars are illustrated in Appendix C (Section C.2).

http://www.meshlab.net/
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voxelize a fraction of neurons to be able to visualize the volume, but in principle the

volumes were created for all the neurons composing the circuit.

2.11 conclusion

A novel and systematic approach for creating highly-realistic, large-scale and annotated

volumetric digital models of the neocortical circuitry has been presented. The somata

of the individual neurons have been reconstructed on a physically-plausible basis ac-

cording to Hooke’s law and mass spring models. Accurate reconstruction of the somata

relying on the previous meshing algorithms has required the availability of its actual

three-dimensional profile, which is typically missing in the majority of the cases. Our

meshing workflow is introduced to overcome this limitation and allow the creation of

highly-plausible somata relying only on their connections with first-order branches of

the neurons. This workflow is also capable of generating piecewise watertight polygonal

models of the neurons to fulfill the requirements of solid voxelization algorithms.

The presented framework will be utilized later in Chapter 6, Chapter 7 and Chap-

ter 8 to create plausible and high resolution neocortical volumetric models that will be

employed to perform in silico microscopic experiments.
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Figure 2.17: Reconstructed somata meshes of the exemplar neurons selected from the neocortical
column. The meshes are textured with bump mapping and rendered with a recent version of
Blender [22].

https://www.blender.org/
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(a)

200 !m 

(b)

(c) (d)

Figure 2.18: Reconstruction of a piecewise watertight polygonal mesh model of an L5−TTPC1

pyramidal neuron in (b) from its morphological skeleton in (a). The close-up images in (c) and (d)
show how the different objects of the mesh are integrated into a single grouped object without
being connected. The somata, basal dendrites, apical dendrites and axons are colored in yellow,
red, green and blue respectively.
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(a) L1−NGC-DA

(b) L23−LBC

(c) L23−NBC

(d) L4−NGC

(e) L5−TTPC2

Figure 2.19: The reconstruction process of piecewise polygonal mesh models of five different
neurons from the various layers of the NCC. The somata, basal dendrites, apical dendrites and
axons are colored in yellow, red, green and blue respectively.
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100 µm 

(a) (b) (c) (d)

(e) (f)

(g) (h)

Figure 2.20: The process of building a volumetric model of a single pyramidal neuron from
its polygonal mesh. The polygonal mesh model in (a) is converted to a volumetric shell with
surface voxelization in (b) and a filled volume with solid voxelization in (c). In (d), the spines are
integrated to the volume. The images in (e), (f), (g) and (h) are close ups for the renderings in
(a), (b), (c) and (d) respectively. Notice the overlapping shells of the different branches and the
soma that result due to the surface voxelization step in (f). In (g), the volume created with solid
voxelization reflects a continuous, smooth and high fidelity representation of the entire neuron.
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100 µm 

(a)

150 µm 

(b)

150 µm 

(c)

250 µm 

(d)

250 µm 

(e)

Figure 2.21: Volumetric reconstructions of multiple neocortical circuits with solid voxelization.
The presented workflow is capable of creating large scale volumetric models for circuits with
different complexities. (a) Single cell volume. (b) A group of five pyramidal neurons. (c) 5% of
the pyramidal neurons that exist in layer five in the neocortical column. (d) 5% of all the neurons
in a single column (containing ∼31,000 neurons). (e) A uniformly-sampled selection of only 1% of
the neurons in a digital slice composed of seven columns (containing ∼210,000 neurons) stacked
together. The resolution of the largest dimension of each volume is set to 8000 voxels.
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Chapter 3

fundamentals of light interaction with brain tissue

“ There are two ways of spreading light: to be the candle or the mirror that reflects it. ”
– Edith Wharton

“ What is faked by the computerization of image-making is not reality, but photographic
reality, reality as seen by the camera lens. In other words, what computer graphics have
(almost) achieved is not realism, but rather only photorealism – the ability to fake not
our perceptual and bodily experience of reality but only its photographic image. ”

– Lev Manovich

The core of this thesis is based on three fundamental elements of modern computer

graphics: theory of light transport in participating media, geometric optics and Monte

Carlo ray tracing. These elements can be combined together to render highly realistic syn-

thetic images, refer to Figure 1.11, that are in certain cases indistinguishable from real

photographs taken by professional digital cameras. Rendering, at the highest level of

abstraction, is the process of simulating light transport in a given extent to convert a de-

scription of a three-dimensional scene into a meaningful photorealistic image. During the

last 30 years, rendering has become a ubiquitous industry trend; it has opened novel av-

enues for creative expressions, entertainment, and even visualization in multidisciplinary

scientific contexts. This sequel presents a new approach for applying physically-based

rendering in the context of simulation-based neuroscience to visualize various structures

of brain tissue.

This chapters lays down the necessary background, fundamentals and terminology

of physically-based rendering. We believe that these foundations are crucial to allow the

reader to understand the optical models that are derived in Part iii of the thesis in ad-

dition to their applications that are discussed later in Part iv. We will provide a brief

review of the different theories that have been used to interpret light and its different

phenomena. Based on geometric optics, we will present the mathematical formalism of

the rendering integral that governs light transport in volumetric media. Then, we will

discuss various analytical and numerical methods that have been used to solve this ren-

dering integral for participating media. At the end of the chapter, we will recommend

a set of valuable textbooks and other dissertations that are relevant to the content pre-

sented in this chapter with much further detail.

75
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3.1 light theories

Our current understanding of light transport relies on a progression of several theories

and associated mathematical models. In this section, we will try to summarize the most

notable theories and their relevance to computer graphics.

3.1.1 Ancient Theories & Models of Light

Amongst the earliest theories for understanding light transport in space was the tactile
theory or extromission theory. The interpretation of this theory to light was quite naïve;

based on our ability to touch and feel objects. It assumed that our eyes are capable of

sending invisible antennas or probes to feel — or to sense — the surrounding objects

located further away than what we can touch with our hands [127]. This theory was

extremely limited due to the following reasons:

1. It was incapable of explaining why objects cannot be seen in the dark although we

can touch and feel them.

2. It also failed to elucidate our disability to see objects in the dark while we can see

them in the presence of light.

The emission theory was the direct opposite of the tactile theory. It was qualified to

explain our observation to bright objects that can emit light. Although both theories

were quite popular, the emission theory was more convenient for explaining other ob-

servations when the interpretations of the tactile theory were relatively complicated; for

instance, to explain reflection and scattering. By time, the complexity of the tactile theory

has eventually led to its disappearance.

3.1.2 Wave Theory

During the 17
th century, the physics community started to debate how light is emanat-

ing from self-emitting objects; is it a stream of discrete flowing particles or a continuous

form of energy traveling from one point to another? At that period of time, it was quite

standard to describe light propagation using rays, to account for some phenomena such

as shadows, but it was still controversial to represent this energy flow in terms of moving

particles or moving waves. In mid 1600’s, and during his investigations on light interfer-

ence, Sir Isaac Newton has postulated his theory that light was made up of tiny particles.

This explanation was later disproved when light spreads to an extremely small extent.

Later in 1678, the Dutch physicist, Christiaan Huygens, has qualitatively proved that

light propagation was made up of waves that move perpendicularly to the direction the
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light travels. This qualitative explanation became known later as Huygens Principle. It has

helped him afterwards to formulate a way of visualizing this wave propagation.

In contrary to the Newton’s description, the wave theory was capable of interpreting

different light phenomena including interference, diffraction and polarization assuming

the presence of a medium through which the wave can propagate. But later, the wave

theory was again debatable due to inconsistent descriptions of this propagating medium.

Though, this wave interpretation has assisted Maxwell to formulate the general form of

electromagnetism that described the propagation of transverse electromagnetic waves.

This formalism was the first spark to explain other phenomena including reflection, re-

fraction and dispersion.

3.1.3 Particle Theory

Following to the inconceivable success of the wave theory to interpret many ambiguous

light phenomena, the particle theory was though to be completely defeated. This was

true until Einstein proposed his photon model that states that a light beam is composed of

tiny packets of energy called photons. However, it was known that photons can travel at

light speeds due to the fact that they have no mass, and thus, Einstein’s equation E = mc2

could not be used to compute the energy of these photons. This argument was resolved

later by Plank when he derived another formula to describe the relation between photon

energy and frequency according to the following equation

E = h f =
h c

λ
(3.1)

where

h Plank’s constant, 6.63 × 10
−34

f frequency

c speed of light, 3 × 10
8m/sec

λ wavelength

3.1.4 Modern Theories of Light

In classical physics, the electromagnetic theory can account for the light as a wave, but

cannot interpret the particle nature of a photon. In contrast, the particle theory can de-

scribe a light beam in terms of photons, but cannot account for the wave nature of light.

In modern physics, the light is interpreted by quantum mechanics with which waves and

photons are not rivals any further, though waves and particles are used as complimentary

instead. This modern theory of light, or quantum mechanics, exhibits a wave-particle dual-
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ity and combines all theories of light and the phenomena they can interpret as illustrated

in Figure 3.1.

3.1.5 Light Theories in Computer Graphics: Ray Theory

Computer graphics principles rely on the ray theory that uses geometric optics to model

light transport in a three-dimensional scene. This theory simulates several light phenom-

ena; typically emission, reflection, absorption and elastic scattering. It is also capable

of simulating fluorescence, phosphorescence and polarization too. However, these latter

phenomenon were ignored in the past due to their little practical value in standard graph-

ics applications. Unfortunately, ray theory is incapable of modeling diffraction which has

significant effects on the images resulting from microscopic imaging. Therefore, diffrac-

tion will be ignored within the scope of this research until further notice.

Refraction

Shadows

Quantized Energy

Black Hole Radiation

Gravitational Influence

Diffraction

Interference

Polarization

Fluorescence 

Absorption

Elastic Scattering

Attenuation

Emission Theory

Reflection

Spectrum

Ray Theory

Wave Theory

Quantum Theory

Particle Theory

Relativity Theory

Quantum Mechanics

Electromagnetic Waves

Figure 3.1: Light transport can be described by different set of theories and optical models, where
each successive model is able to account for various optical phenomena. In computer graphics,
we will use geometric optics or the ray theory to model light propagation in participating media.
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3.2 basic radiometry and radiometric definitions

Radiometry is the science that defines the measurement of light in the electromagnetic

spectrum, including ultraviolet, infrared and also its visible range. Photometry is a subset

of radiometry that is concerned with measuring radiometric quantities for a human eye

response. Radiometry defines a common terminology for the physical quantities that

are used to describe light propagation in the space. In this section, we review this basic

terminology and introduce the fundamental quantities that will be used to express the

light transport in the rest of the thesis. Those quantities are graphically illustrated in

Figure 3.2. Note that these parameters are wavelength-dependent, but we will omit this

explicit dependency for the moment for brevity.

(a) (b) (c)

Figure 3.2: Graphical illustration of flux (a), irradiance (b) and radiance (c). The flux computes
the total energy passing over a surface area per unit time. The irradiance measures incoming
energy per unit area at certain point p. The radiance defines the total amount of light arriving to
a surface from a differential direction dω.

3.2.1 Radiant Flux

Radiant flux1, or simply flux, defines the total amount of energy passing through a surface

or a region of space per unit time. This physical measurement is considered the most

fundamental radiometric quantity. The radiant flux is measured in watts (W), where

1W = 1 J/s, and is normally denoted by φ to express the total emission from illuminating

surfaces such as light bulbs or laser sources.

3.2.2 Irradiance and Radiant Exitance

Irradiance E is the amount of incoming flux arriving at a surface per unit surface area

at a point. For discrimination, a similar term is used to define the flux leaving a sur-

1 The radiant flux is defined in some contexts by the radiant power or simply power.
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face at a point called radiant exitance2 M. These radiometric quantities are expressed by

Equation (3.2) in W/m2.

E(p),M(p) =
dφ(p)
dA(p)

(3.2)

3.2.3 Intensity

The intensity I is similar to the irradiance, but it is used to characterize the directional

distribution of the light or the flux density arriving at a point per solid angle ω, Equa-

tion (3.3). This quantity is only beneficial for point light sources [29].

I(ω) =
dφ(ω)

dω
(3.3)

3.2.4 Radiance

Radiance L is conceivably the most significant and fundamental radiometric quantity used

is global illumination algorithms. It defines the total amount of light arriving to a surface

from a differential direction dω onto a hypothetical surface called unit projected area

dA⊥. Radiance, Equation (3.4), is expressed by the flux density per unity area, per unit

solid angle.

L(p,ω) =
dφ(p,ω)

dωdA⊥(p)
(3.4)

3.3 light transport in volumetric media

3.3.1 Volumetric Media Properties

Knowing the optical properties of participating media is essential for rendering realistic

images. In general, these optical properties are based upon the intrinsic characteristics of

the material and the thickness of the object [129]. The optical properties of participating

media are basically described in terms of three independent quantities: absorption and

scattering, shown in Figure 3.3, in addition to phase function. Those quantities fully define

the local behavior of light in volumetric media. We have noticed that attenuation is used in

different contexts to refer to either of absorption or scattering, in particular in the optics

community [130–134]. However, computer graphics literature assumes that attenuation

is the combined loss in radiance due to absorption and scattering [29, 135].

2 The radiant exitance is defined in some contexts by radiosity and denoted by the symbol B [128].
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Geometrical Absorption Cross Section

Particle

Effective Absorption Cross Section

(a)

Geometrical Scattering Cross Section

Particle

Effective Scattering Cross Section

(b)

Figure 3.3: The optical characteristics of participating media are expressed in terms of absorption
(a) and scattering (b).

Absorption

Absorption can be described either by absorption cross-section or absorption coefficient. Those

two quantities are related and used interchangeably, but the cross-section term is more

used in physics to quantify the probability of a certain particle-particle interaction. Ab-

sorption cross section σa is a measure of the absorption of a photon by a random particle

as shown in Figure 3.3 (a). It is measured in m2 to account for the effective cross ssection

of the shadow due to the absorption of the incident photons by this random particle.

The absorption coefficient term µa is more common in computer graphics and optics

communities. It defines the probability density that a group of photons is absorbed per

unit distance traveled in the participating medium. In general, the absorption coefficient

of a medium µa might vary with the position p, the direction ω and also the wavelength

of the incident light beam λ, however, it is normally expressed as a function of position

p only for simplification in reciprocal distance units (m−1).

Scattering

Scattering is a result of changing the directions of incident photons due to their collision

with the composing particles of the medium, see Figure 3.3 (b). Scattering can be seen

to be similar to absorption when it reduces the amount of photons of an incident light

beam during its linear passage in a medium. This phenomenon is called out scattering.

It reduces the amount of photons exiting a differential element as a consequence of the

deflection of the lost photons to different directions. Similarly, this reduction can be

defined in terms of scattering cross section σs or scattering coefficient µs of the medium

which is the probability that a group of photons encounter an out scattering event per

unit distance.
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Attenuation

As described earlier, attenuation is defined by the total reduction in the intensity (number

of photons) of an incident light beam due to absorption and scattering. Attenuation is

therefore expressed either by attenuation cross section σt = σa+σs or attenuation coefficient
µt = µa + µs. It is also measured in reciprocal distance units (m−1).

3.3.2 Phase Function

The phase function φp describes the angular distribution of light scattering at a given point

in the medium. It has units of (sr−1). In typical media including brain tissue, the phase

function is a one-dimensional function expressed in terms of the angle θ between two

directions: incident direction ω and outgoing direction ω ′. In other specific cases such

as exotic media, the phase function is a four-dimensional function of the two directions,

but this type is beyond the scope of this thesis.

Standard, or naturally occurring, phase functions have two major properties: they are

normalized and reciprocal. Being normalized means that it always integrates to one over

the sphere of directions as seen by Equation (3.5). The reciprocity implies that the two

directions of the phase functions can be interchanges without changing its value.∫
φp(p,ω↔ ω ′)dω ′ = 1 (3.5)

A widely used phase function in computer graphics literature was modeled by Henyey

and Greenstein in 1941. It was specifically developed to fit the data measured from scat-

tering experiments [136, 137]. This function is expressed in terms of a single parameter

called the asymmetry factor g that controls the distribution of the scattered light. The

Henyey-Greenstein φpHG is expressed by Equation (3.6).

φpHG(cosθ) =
1

4π

1− g2

(1+ g2 − 2g(cosθ))
3
2

(3.6)

The asymmetry parameter, g ∈ [−1, 1], is calibrated to control the relative amounts of

forward and backward scattering. When g is set to 0, the phase function is called isotropic;

where the light is uniformly scattered in all the directions regardless of the incident

direction. It has to be noted that the isotropic phase function is trivially reciprocal because

cos(θ) = cos(−θ) in Equation (3.5). This function, Equation (3.7), will be used later in

the derivation of our fluorescence models to account for the isotropic emission of pure

fluorescent materials.

φp Isotropic(ω→ ω ′) =
1

4π
(3.7)
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3.3.3 Brain Optical Properties

To guarantee the accuracy of a physically-plausible rendering that involve light interac-

tion with participating media, the optical properties of these media must be determined

a priori. Using estimated values for such parameters will directly affect light distribution

in the medium and ultimately produce wrong visualizations.

Measuring the optical properties of the brain, in particular the rat brain, is not a trivial

problem. The optics literature is full of a vast amount of studies that are concerned with

measuring the optical properties of different tissue types for humans and animals, but

there are neither detailed experiments nor accurate data that can be reliably exploited

in our simulations. Fortunately, we found a recent study presented by Azimipour et al.
to offer a three-dimensional atlas of the optical properties of the rat brain (Figure 3.4)

based on accurate experimental measurements [25]. All the renderings that involve high

scattering experiments presented in the rest of this sequel depend on data provided by

those atlases.
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Figure 3.4: Accurate optical properties of an extracted slice from a rat brain: (a) reduced scattering
coefficient, (b) absorption coefficient, (c) scattering coefficient and (d) anisotropy factor for phase
function computations. Those values will be utilized in our in silico experiments to enhance the
realism of the renderings. The figure is reproduced from a recent study compiled by Azimipour
et al. [25].
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3.3.4 Light Interaction Events

There are three fundamental processes that affect radiance distribution in a given spa-

tial extent involving volumetric media: emission, absorption and scattering. The media can

be modeled as a collection of microscopic particles that are randomly positioned in the

space. Therefore, we do not consider the interaction of each particle on an individual ba-

sis, but rather, their aggregate probabilistic effect to derive expressions about the behavior

of light as it travels through the medium. It is also assumed that the particles are spa-

tially located far apart with respect to the size of any individual particle. Consequently,

the interaction between a photon and a specific particle is statistically independent from

another subsequent interaction event.

The interaction events can be classified into two categories: events that add radiance

along the ray and other events that reduce the radiance as the ray travels through the

medium. The additive events are self-emission and in-scattering, whilst the reducing ones

are absorption and out-scattering. Those probabilistic events are illustrated in Figure 3.5.

(a) (b)

(c) (d)

Figure 3.5: The main probabilistic interaction events that occur during light transport in volu-
metric media: (a) absorption, (b) out-scattering, (c) in-scattering and (d) self-emission. The red
sphere represents a macroscopic particle where an interaction event occurs and the size of the
arrow reflects the intensity of a photon packet.

Absorption

Consider an infinitesimal light beam passing through a volumetric medium (Figure 3.6)

at point p and traveling in direction ω. The incident radiance of this beam at point p is

Li(p,ω) and the radiance after a very small distance t is denoted by Lo(p,ω) where
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Li(p,ω) = L(p,ω) & Lo(p,ω) = L(p+ωt,ω) (3.8)

Lo(p,�)Li(p,�)

�

p

Figure 3.6: An infinitesimal block of a participating medium represented as a collection of mi-
croscopic scattering particles. The incoming radiance at point p and direction ω is denoted by
Li(p,ω) and the outgoing radiance following an interaction event is given by Lo(p,ω).

Absorption reduces the amount of incident radiance as a result of partial conversion

of the incident light beam to another from of energy that is normally heat. Therefore, the

radiance existing the volumetric block can be expressed as

Lo(p,ω) = Li(p,ω) − dL(p,ω) (3.9)

The differential change in radiance dL depends on the absorption coefficient of the

medium µa where

dL(p,ω) = −µa L(p,ω)dt = −µa Li(p,ω)dt (3.10)

Hence, the outgoing radiance can be expressed in terms of the absorption coefficient

and the incoming radiance as follows

Lo(p,ω) = Li(p,ω) − µa Li(p,ω)dt

= Li(p,ω)(1− µa)dt
(3.11)

Generalizing the equation and rearranging terms, Equation (3.11) becomes

L(p+ωt,ω) − L(p,ω) = −µa L(p,ω)dt (3.12)

The difference in outgoing radiance between the start and end of this volumetric

block can be expressed as

L(p+ωt,ω) − L(p,ω)

δt
= −µa L(p,ω) (3.13)

This derivative can be computed by taking the limit as δt→ 0 to yield the differential

change in radiance following an absorption event as the ray travels along ω as follows
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lim
δt→0

(
L(p+ωt,ω) − L(p,ω)

δt

)
=

dL
dt

= −µa L(p,ω) (3.14)

This differential change (or loss) in radiance along the beam due to absorption can be

expressed as

dL(p,ω) = Lo(p,ω) − Li(p,−ω) = −σa(p,ω)Li(p,−ω)dt (3.15)

The solution of this differential equation gives an integral equation – Equation (3.16) –

that can compute the total fraction of light absorbed along the ray. This equation defines

the absorbance A of a given medium. It can be used to evaluate the results of Beer-Lambert

law for participating media characterized by low scattering properties [138].

A = exp

(
−

∫d
0

µa(p+ tω,ω)dt
)

(3.16)

Out Scattering

As the light beam passes through the medium along direction ω, the photons collide

with the individual particles of the medium and scattered to different directions, see Fig-

ure 3.5 (b). This effects reduces the radiance exiting the differential element of the volume

due to its partial deflection. The radiance loss in this case depends on the probability of

occurrence of an out-scattering event per unit distance; or scattering coefficient µs. Fol-

lowing the same derivation applied for absorption, the differential change in radiance

due to out-scattering can be expressed as

dL(p,ω) = −µs(p,ω)Li(p,−ω)dt (3.17)

Extinction

Extinction defines the total loss of radiance due to absorption and out-scattering events.

It is quite similar to the attenuation coefficient where

µt(p,ω) = µa(p,ω) + µs(p,ω) (3.18)

Based on the previous attenuation equation, the differential change that can account

for the overall attenuation in radiance at a given point p and along direction ω is given

by

dL(p,ω)

dt
= −µt(p,ω)Li(p,−ω) (3.19)
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Equation (3.19) can be solved to obtain another integral equation – Equation (3.20) –

that can describe the fraction of radiance transmitted between two points p and p ′ with

distance d. This equation defines the transmittance Tr of a given medium.

Tr(p→ p ′) = exp
(
−

∫d
0

µt(p+ tω,ω)dt
)

(3.20)

The negated exponent in the transmittance equation is called the optical thickness τ
where

τ(p→ p ′) =
∫d
0

µt(p+ tω,ω)dt (3.21)

Computing this integral for spatially-invariant or homogeneous media, where µt has

constant value, is trivial and can be evaluated using Beer-Lambert law. Though, the

evaluation of τ of spatially-varying volumes is relatively complex problem that has been

discussed in several research contexts. The further readings section will contain some

textbooks that discuss this topic in detail.

In Scattering

In contrary to out-scattering that reduces the radiance along a ray due to the deflection

of its photons to other directions, in-scattering increases the radiance due to integration

of photons from other directions to the principal direction of the ray, see Figure 3.5 (c).

The differential increase in radiance in this case depends on the scattering coefficient µs
of the medium in addition to the in-scattered radiance Li along the same direction ω

that comes from other directions ω ′ where

dL(p,ω) = σs(p,ω)Li(p,ω)dt (3.22)

and

Li(p,ω) =

∫
Ω4π

φp(p,ω ′,ω)L(p,ω ′)dω ′ (3.23)

Combining Equation (3.22) and Equation (3.23) together, the total radiance added per

unit distance due to in-scattering can be expressed by

dL(p,ω) = σs(p,ω)

∫
Ω4π

φp(p,ω ′,ω)L(p,ω ′)dω ′ dt (3.24)

Emission

In certain types of media, such as fire or smoke, the might emit radiance due to chemical,

thermal, or nuclear reactions that convert other forms of energy into visible light, see

Figure 3.5 (d). This emission, denoted by Lve, increases the radiance as follows
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dL(p,ω) = Lve(p,ω)dt (3.25)

Other Interaction Events

There are some other interaction events that can change radiance along a ray, such as

polarization and fluorescence. Polarization is not addressed within the scope of this the-

sis. Fluorescence has been ignored by the computer graphics community due to their

little practical value for rendering natural scenes. However, we will present the contri-

bution of fluorescence in low- and high-scattering volumes in Chapter 4 and Chapter 5

respectively.

3.4 radiative transfer equation

Based on the different events described in the previous section, we can formulate a phys-

ically plausible model for describing the behavior of light and its interaction in partici-

pating media. By adding Equations 3.15 and 3.17, 3.24 and 3.25 together, the total change

in the radiance at along the ray at point p and in the direction ω can be given by

dL(p,ω) = Lve(p,ω)︸ ︷︷ ︸
Self Emission

+µs Li(p,ω)︸ ︷︷ ︸
In Scattering︸ ︷︷ ︸

Source

−µa L(p,ω)︸ ︷︷ ︸
Absorption

− µs L(p,ω)︸ ︷︷ ︸
Out Scattering︸ ︷︷ ︸

Extinction

dt (3.26)

Equation 3.26 is called the radiative transfer equation, or simply the RTE. This funda-

mental integro-differential equation models the behavior of light in a turbid participating

medium that absorbs, scatters and even emits radiation. If this equation is split into two

parts that reduce and increase the energy along the ray, it can be easily transfered into

a pure integral equation that can govern the propagation of light in participating media

from infinite number of samples along the ray.

The source term S(p,ω) accounts for radiance increase due to emission and in-scattering

as follows

S(p,ω) = Lve(p,ω) + µs(p,ω)Li(p,ω)

= Lve(p,ω) + µs(p,ω)

∫
Ω4π

φp(p,ω,ω ′)Li(p,ω ′)dω ′
(3.27)

Recalling Equation (3.19), the events that reduce the radiance along a ray, absorption

and out-scattering, can be described by

LRed(p,ω) = −µt(p,ω)L(p,ω)dt (3.28)

The total differential change in radiance at a certain point p ′ along a ray can be

obtained by adding the Equation (3.27) and Equation (3.28) together as follows
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∂

∂t
L(p,ω) = −LRed(p,ω) + S(p,ω) (3.29)

Considering the suitable boundary conditions and assuming no direct contributions

from surfaces, this equation can be transformed to a purely integral form

L(p,ω) =

∫∞
0

Tr(p,p ′)Lve(p
′,ω)dt+

∫∞
0

Tr(p,p ′)Li(p
′,ω)dt (3.30)

It has to be noticed that the reduction of radiance is taken into account by the pres-

ence of the transmittance Tr that will always reduce the in-scattered Li and emitted Lve

radiance added at point p ′.

p

Tr(p� p �)

p �

L(p,�)
Li(p

�,�)
Lve(p

�,�)

Figure 3.7: The radiance computed from the rendering integral due to light scattering and atten-
uation along a ray.

3.5 methods for solving the rendering equation

The rendering integral derived in Equation (3.30) is extremely complicated to be solved

analytically in the general case, and thus it is usually approximated using numerical

integration methods. Since the early ages of computer graphics and renderings, a huge

variety of global illumination techniques have been discussed in the literature to solve

or approximate this integral. These techniques can be classified generally into two cat-

egories: finite element methods and Monte Carlo based methods. From another perspective,

these techniques can be grouped into two sets based on the turbidity of the medium into

single and multiple scattering methods. The single scattering methods are suitable to render

participating media with low scattering properties, while the multiple scattering meth-

ods are used to solve the rendering integral for highly-turbid participating media. In this

context, Cerezo et al. have presented an excellent and exhaustive review for the methods

that have been introduced to solve the radiative transfer equation [139]. The presented

work in the rest of this sequel will be focused only on providing unbiased Monte Carlo

solutions to simulate the light interaction with brain tissue models that were developed

in Chapter 2.
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3.6 further readings

This chapters has presented only the fundamental principles that are necessary to un-

derstand the formalism of the rendering integral developed in the rest of the thesis. We

recommend further textbooks and other theses that can be very helpful for physically-

based rendering.

1. Physically-based rendering: from theory to implementation, by Matt Pharr, Wenzel

Jakob and Greg Humphreys [135].

2. Efficient Monte Carlo methods for light transport in scattering media, by Wojciech

Jarosz [128].

3. Robust Monte Carlo Methods for Light Transport Simulation, by Eric Veach [140].
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Chapter 4

modeling light interaction with low scattering

fluorescent volumes

“ The world of fluorescence is a world of beautiful color. In the darkness, all the ordinary
colors of our daylight world disappear. Only the intensely glowing hues of fluorescent
substances touched by the ultraviolet beam shine out with striking clarity. ”

– Sterling Gleason

The fundamental principles of light transport introduced in Chapter 3 assumed light

interaction with volumetric media via elastic scattering only, i.e. there is no change in

wavelength following a scattering event. This assumption is only valid if the volume does

not contain any fluorescent particles. In reality, the presence of such glowing particles in

participating media will cause light emission after a short duration of time following

the absorption of electromagnetic energy. On a macroscopic level, this phenomenon –

fluorescence – is accompanied with light scattering, though, with different color (inelastic
scattering). On a quantum level, it occurs as a consequence of an electronic transition

from the excited state of an atom to its ground state.

This chapter introduces the fundamental principles required to understand how the

RTE – Equation (3.30) – can be extended to account for fluorescence in volumetric media

that exhibit low scattering properties. In Chapter 5, we will present a further extension

to account for the optical properties of highly scattering volumes.

4.1 fluorescence

4.1.1 Fluorescence Discovery

The first observation of fluorescence dates back to 1560 when the Spanish physician

Nicolás Monardes described the emission of a blue color from an infusion of wood

known as lignum nephriticum [141, 142]. At that time, it was complicated to find scientific

explanations for this astonishing phenomenon. In 1852, the physical laws of fluorescence

were elucidated based on the investigations of Sir George Gabriel Stokes [143, 144]. He

was the first scientist who noticed and reported that fluorescence emission occurs at a

longer wavelength than excitation. This wavelength shift was named later Stokes shift to

95
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reflect his significant efforts that have lead to this discovery. He also derived the relation

between the intensity of fluorescence emission and the concentration of a fluorescent

dye. This allowed him to discover the quenching process that happens at high fluorophore

concentrations and potentially led him to propose the idea of using fluorescence as a

biological tool to detect organic substances [145].

4.1.2 Fluorescence Significance in Neuroscience

Based on Stokes’s discovery, scientists have started to develop new techniques to ex-

ploit this physical principle for visualizing biological tissue relying on the fluorescent

molecules as biological markers. These techniques have led to several significant discov-

eries in neuroscience and in particular in cell biology. For instance, immunofluorescence
has become an extremely powerful utility for inquisitive biologists allowing them to vi-

sualize the distribution and localization of specific cellular components in the proper

tissue context [144, 146–148].

4.2 physical principles of fluorescence

4.2.1 Fluorophores

The fluorescence process occurs only in certain chemical compounds that generally con-

tain polyaromatic hydrocarbons or heterocycles molecules called fluorophores1. They cause

their molecules to absorb light at specific wavelengths and then re-emit it at different, but,

equally specific wavelengths. The wavelengths of the emitted light depend on the spec-

tral characteristics of the fluorophore and its chemical environment. In several contexts,

fluorophores are interchangeably called chromophores. Historically speaking, this denota-

tion implies that a chromophore causes a molecule to absorb light, while a fluorophore

causes the same molecule to, likewise, emit light within few nanoseconds [149].

The recent explosion in the diversity of available fluorophores is associated with the

emergence of new tools for biological imaging. In this section, we will present the spec-

tral properties2 of those fluorophores to understand how to use them to characterize

biological tissue.

Absorption Spectrum

The absorption spectrum of a fluorophore fabs reflects its capability to absorb photons at

different excitation wavelengths.

1 The fluorophores are generally denoted in other contexts by fluorescent dyes.
2 The spectral properties of all the fluorophores that have been used within the scope of this dissertation are

summarized in Appendix D.
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Excitation Spectrum

The profile of the excitation spectrum fx is similar to the absorption spectrum fabs. The ex-

citation spectrum of a fluorophore is obtained by measuring the intensity of fluorescence

emission at fixed wavelength, while scanning the excitation wavelength.

Emission Spectrum

The emission, or fluorescence spectrum, of a fluorophore fm is recorded by measuring

the intensity of fluorescence emission at varying wavelengths, while the fluorophore

is subject to a fixed excitation wavelength. The emission spectrum has the following

characteristics:

1. The emission spectrum is invariant and independent of the excitation wavelength

only in pure compounds dissolved in a solution in a unique form.

2. The wavelengths of the emission spectrum are longer than these of the excitation

spectrum due to Stock’s shift.

3. The emission spectrum is approximately a mirror image of the excitation spectrum

for the majority of the cases such as Fluorescein and LysoSensor Blue – Figure 4.1.

However, this is unlikely to happen in few fluorophores, for example in MitoSOX

Red and DDAO – Figure 4.2.

Figure 4.3 illustrates the relation between the excitation and emission spectra of a

specific fluorophore when exited at different excitation wavelengths.

Stokes Shift

Stokes shift accounts for the shifted emission of a certain fluorophore compared to its

excitation. This unique property is identified as the distance between the peaks of the

excitation and emission spectra.

Lifetime

Fluorophore lifetime τf is the average time a fluorophore stays in the excited state S1
before returning to the ground state S0. The deactivation phase is followed by a non-

radiative decay (internal conversion) or a radiative (fluorescence) process to depopulate

the excited phase. For a given fluorophore, the lifetime is constant (in the order of few

nanoseconds) when there is no energy transfer to the surrounding environment, i.e. no

acceptors. In contrast, the presence of certain acceptors such as hydrogen, oxygen, mag-

nesium or calcium, the lifetime is shortened. The lifetime τ of a specific fluorophore is

computed according to Equation (4.1), where kSr and kSnr are radiative and non-radiative

rate constants respectively.
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(a)

(b)

Figure 4.3: (a) The physics of fluorescence explained with a Jablonski diagram. (b) Excitation of
a polyatomic fluorophore at four different wavelengths λ1, λ2, λ3 and λ4. Although the resulting
emission spectra have the same profile, they have different intensities that correspond to the
amplitude of the excitation spectrum at each illuminating wavelength.
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τ =
1

kSr + kSnr
(4.1)

Quantum Yield

The quantum yield φq measures the efficiency of a fluorescence process. It is the ratio

between the number of emitted photons at certain wavelength λ and the total amount of

photons absorbed at all the wavelengths. It can be also seen as the number of emitted –

or fluorescent – photons Nm(λ) per absorbed excitation photon Nabs(λ).

φq =
kSr

kSr + kSnr
= τ kSr (4.2)

φq(λ) =
Nm(λ)

Nabs
=

Nm(λ)∫∞
−∞Nabs(λ ′)dλ ′

(4.3)

Extinction Coefficient

The extinction coefficient of a fluorophore ε(λ) is its capacity for photon absorption at a

specific wavelength.

Fluorescence Brightness

Fluorescence brightness Bf measures the fluorescence emission per fluorophore. The

brightness is equivalent to the product of the extinction coefficient and the fluorescence

quantum yield.

Bf(λ) = ε(λ)φq (4.4)

Quenching

Quenching is the loss of fluorescence signal as a result of the occurrence of short-range

interactions between the fluorophore and the local molecular environment. When this

interaction happens between the fluorophore and other surrounding fluorophores, this

process is called self-quenching. Quenching will be ignored in our fluorescence models.

Photobleaching

Photobleaching is the destruction of an excited fluorophore in response to photosen-

sitized generation of reactive oxygen species. Quenching will be also ignored in the

derivation of our fluorescence models.
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4.2.2 The Fluorescence Process

By default, the fluorescence process is cyclical, unless the fluorophore is irreversibly de-

stroyed in the excited state due to photobleaching. This features allows the fluorophore

to be repeatedly excited and detected. The fluorescence process consists of three stages:

energy absorption followed by a lifetime period and finally energy emission. This process

is summarized in Figure 4.4.

τ ≈ 10−8

S0

S1

λex

(a)

τ ≈ 10−88

S

S

S0

S1

(b)

88 τ ≈ 10−8

S

S

S

S

S0

S1

λem

(c)

Figure 4.4: A Jablonsky diagram of the fluorescence process in a fluorescent molecule. (a) A
photon is absorbed to excite the molecule from the ground state S0 to the excited state S1. (b) The
molecule undergoes a series of conformational changes for a short time defined by the life time
of the fluorophore τ that is normally in the range of few nanoseconds. (c) The molecule emits a
fluorescent photon at the excitation wavelength λx and returns to the ground state S0.

Stage 1: Energy Absorption and Excitation

A stable fluorophore is excited when a photon of energy Ex is supplied by an external

light source such as an incandescent lamp or a single-wavelength laser beam and gets

absorbed by the fluorophore. The fluorophore becomes in an excited electronic state (S1).

This excitation mechanism distinguishes fluorescence from the chemiluminescence that

requires a chemical reaction to excite the fluorophore.

Stage 2: Excited State Lifetime

After the excitation of the fluorophore, the excitation state remains for a very short time,

typically around a few nanoseconds. During this short period, the fluorescent molecule

undergoes a series of conformational changes and is ready to perform several possible

interactions with the molecular environment.

Stage 3: Fluorescence Emission

The fluorophore returns to its ground state S0 after the emission of a photon with energy

Em. As a consequence of the energy dissipation within the lifetime of the fluorophore,

the energy of the emitted photon Em is lower than the excitation energy Ex, and therefore

the wavelength of the emission photon λm is longer than that of the exciting photon λx.



102 modeling light interaction with low scattering fluorescent volumes

4.3 fluorescence equation

4.3.1 Formalism

Consider a differential volume dV of a low scattering fluorescent solution with cross-

sectional area A and differential length dx as illustrated in Figure 4.5.

Excitation Emission

A
dx

l

Isotropic Fluorescence Emission

Area Light Source 

Uniform Illumination Power 

Single Wavelength

Collimated Illumination

Figure 4.5: Homogeneous fluorescence block illuminated by a monochromatic and collimated
light beam.

If this block is illuminated by a monochromatic and collimated light beam with a

constant photon flow3 and uniform intensity I(λ), the light absorbed by this block can be

modeled with Beer-Lambert law

dI(λ)
dx

= −I(λ)× σa(λ)× ρ (4.5)

where

I(λ) wavelength-specific illumination intensity of the light source

σa(λ) wavelength-dependent absorption cross-section of the fluorescent medium

ρ density of the fluorescent medium

dx differential distance element

The intensity of the light transmitted Itrans from a volume V = A× l following the

absorption can be computed by integrating Equation (4.5) and substituting for boundary

conditions as follows

dI(λ)
I(λ)

= −σa(λ)× ρdx (4.6)

3 Constant amount of photons per unit time regardless of their energy.
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∫I
I0

dI(λ)
I(λ)

= −

∫ l
0

σa(λ)× ρdx (4.7)

ln(I)
∣∣∣∣I
I0

= −σa × ρ× x
∣∣∣∣l
0

(4.8)

ln(I) − ln(I0) = ln(
I

I0
) = −σa × ρ× l (4.9)

exp
(

ln(
I

I0
)

)
= exp

(
− σa × ρ× l

)
(4.10)

Itrans(λ, l) = I0(λ)× exp
(
− σa(λ)× ρ× l

)
(4.11)

In order to compute the intensity of fluorescence emission, we have to obtain the

amount of absorbed light in the volume block prior to any excitation. This absorbed

light, denoted Iabs(λ), is simply the difference between the initial intensity I0(λ) of the

illumination beam and the transmitted one Itrans(λ) at the same wavelength λ where

Iabs(λ) = I0(λ) − Itrans(λ)

= I0(λ) − I0(λ)× exp
(
− σa(λ)× ρ× l

)
= I0(λ)

[
1− exp

(
− σa(λ)× ρ× l

)] (4.12)

The intensity of fluorescence emission If at given wavelength pair λx and λm is pro-

portional to that of the absorbed light Iabs at the excitation wavelength λx

If(λx, λm)α Iabs(λx) (4.13)

Substituting Iabs from Equation (4.12) and adding the proportionality constant, the

intensity of fluorescence emission can be expressed as

If(λx, λm) = k× Iabs(λ)

= k× I0(λ)
[
1− exp

(
− σa(λ)× ρ× l

)] (4.14)

The proportionality constant k depends on the spectral characteristics of the fluo-

rescent dye, including its excitation fx and emission spectra fm and also its quantum

yield φq. Replacing the constant k to account for these characteristic parameters, Equa-

tion (4.14) takes the following form

If(λx, λm) = fx(λx)× fm(λm)×φq × I0(λ)
[
1− exp

(
− σa(λ)× ρ× l

)]
(4.15)
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As shown in Figure 4.5, Equation (4.15) accounts for the total intensity of fluorescence

emitted or scattered in all directions Ω4π. Fluorescence emission is known to be spherical

with an isotropic phase function, and thus, the intensity of the emitted fluorescence in a

single direction ω can be expressed by

If(λx, λm,ω) =
1

4 π
× fx(λx)× fm(λm)×φq × I0(λ)

[
1− exp

(
− σa(λ)× ρ× l

)]
(4.16)

As mentioned earlier, the fluorescent volume used in this derivation has low scatter-

ing properties, i.e. low density ρ or concentration c. In this case, Taylor expansion can be

used to simplify Equation (4.16), where

1− exp(−x) = x−
1

2 !
x2 +

1

3 !
x3 −

1

4 !
x4 + ... (4.17)

In highly diluted volumes that have insignificant scattering coefficients, the terms

of higher order become negligible and the exponent in Equation (4.16) can be fairly

approximated by keeping the first term of the expansion and ignoring the rest where[
1− exp

(
− σa(λ)× ρ× l

)]
≈ σa(λ)× ρ× l (4.18)

Substituting Equation (4.18) in Equation (4.16) results in the following approximation

If(λx, λm,ω) ≈ 1

4 π
× fx(λx)× fm(λm)×φq × I0(λ)× σa(λx)× ρ× l (4.19)

It has also to be noted that in certain contexts, the formalism of fluorescence emission

is expressed in terms of absorption coefficient of the volume µa or fluorophore concentra-

tion c instead of absorption cross-section σa and density ρ. Those quantities are related

as follows

µa(λ) = σa(λ)× ρ = ln(10)× ε10(λ)× c ≈ 2.3× ε10(λ)× c (4.20)

where

µa(λ) wavelength-dependent absorption coefficient of the fluorescent volume

σa(λ) wavelength-dependent absorption cross-section of the fluorescent volume

ρ density of the fluorescent medium

ε10(λ) wavelength-dependent molar absorptivity of the fluorophore

c fluorophore concentration in the volume
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The rendering model of fluorescence derived in the following sections is presented to

account for the concentration of the fluorophore in the volume, therefore, the rest of this

sequel will be based on the following concentration-based formalism

If(λx, λm,ω) =
1

4 π
× fx(λx)× fm(λm)×φq × I0(λx)× 2.3× ε10(λx)× c× l (4.21)

4.3.2 Fluorescence Equation & Optical Depth

A volume is defined to be optically-thick or opaque if a photon cannot pass through the

volume without absorption. Conversely, an optically-thin volume is considered transpar-

ent since it allows the transmittance of a photon through it without being absorbed. For

example, the glass is considered optically-thin in the visible spectrum and optically-thick

in the infrared range. Based on these definitions, an optically-thick volume is analogous

to a highly scattering turbid medium, whereas an optically-thin one represents a homo-

geneous volume with negligible scattering properties.

Equation (4.16) describes a direct relationship between the intensity of the emitted

fluorescence from a volume and its optical depth. Assuming a constant length l, the flu-

orescence dependence on the concentration c of a fluorophore is linear or quasi-linear for

optically-thin volumes and exponential for optically-thick ones. Accordingly, the formal-

ism of fluorescence obtained in Equation (4.21) is only valid for low scattering volumes

that must be characterized by optically-thin systems. This relation demonstrates that the

fluorescence intensity is only proportional to the fluorophore concentration at low ab-

sorbance values. This model deviates significantly from linearity when the concentration

of the fluorophore increases as shown in Table 4.1.

Table 4.1: Deviation from linearity in the relation between fluorescence
intensity and the concentration for multiple absorbance values.

relative concentration deviation (%)

0.001 0.1

0.01 1.1

0.05 5.5

0.15 10.6

0.25 19.9

Therefore the fluorescence formalism presented in Equation (4.21) can only be used

to render low scattering volumes. This limitation will be addressed in the formalism

presented in Chapter 5 to handle highly scattering fluorescent volumes.
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4.4 contributions overview

1. Presenting an accurate optical model for rendering fluorescence in low scattering

participating media. The model accounts for the intrinsic characteristics of fluores-

cent dyes including their excitation and emission spectra, quantum yield and also

their concentration in the tissue.

2. Designing a single scattering Monte Carlo-based ray-tracing algorithm for render-

ing low scattering fluorescence participating media.

3. Implementing our fluorescence rendering algorithm in a wavelength-dependent

volume integrator in PBRT4.

4. Integrating a spectral validation framework into PBRT to quantitatively measure

the emitted power spectrum in the scene and the spectral radiance arriving at the

camera film.

5. Quantitative validation of the fluorescence model against the brightness equation

and actual characteristic emission spectra of different fluorescent dyes.

6. Using our fluorescence optical model to render accurate and physically-plausible in

silico images5 of fluorescent-tagged neocortical models, resembling those produced

by original fluorescence microscopes from in vitro experiments.

4.5 fluorescence rendering

4.5.1 Fluorescence in Computer Graphics Literature

As discussed previously in Chapter 3, there are numerous research studies in computer

graphics that were concerned with simulating light transport in participating media [139].

The majority of these studies have modeled several light phenomena that are interpreted

by the ray theory of light such as absorption, scattering, reflection and refraction. Nev-

ertheless, we found no deep investigations of modeling fluorescence in the literature.

Fluorescence was generally ignored for several reasons including its little practical value

for rendering natural scenes [29, 135, 151], and the absence of convenient spectral render-

ing frameworks capable of handling fluorescence simulation efficiently.

Glassner presented the first steps towards a correct formulation of the rendering

equation to account for fluorescence emission in participating media [152]. Though, the

formalism of his model has not considered the distinct properties of the fluorescent

4 The implementation details are explained in Appendix A.
5 The model will be integrated later into our microscopy simulation framework in Chapter 7 and Chapter 8.
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medium. Cerezo et al. [153, 154] and Gutierrez et al. [155, 156] developed further exten-

sions to Glassner’s model to account for these properties for the purpose of rendering

fluorescent pigments in the ocean. These extensions were limited in two aspects: (1) they

ignored the actual spectral profiles of fluorescent materials, and (2) they were neither

validated against theoretical laws nor experimental measurements. Other extensions for

Glassner’s model were formulated to treat the fluorescence as a surface phenomenon

using re-radiation matrices [151, 157–160], but the discussion of these models is out of

scope. Our fluorescence extension is presented to fill this gap.

4.5.2 Optical Model for Rendering Low Scattering Fluorescent Volumes

Recalling the RTE formalism from Section 3.4, the source term of this equation is ex-

pressed by Equation (4.22)

S(p,ω) = Lve(p,ω) +
[
µs(p,ω)

∫
Ω4π

pφ(p,ω ′,ω)Li(p,ω ′)dω ′
]

(4.22)

where

Lve self-emitted radiance at direction ω

ω incoming direction towards the point p

µs scattering coefficient of the medium

pφ phase function of the medium

This equation takes into account self-emission, absorption, and elastic scattering events

only. However, fluorescent dyes do not emit any energy without getting excited, therefore

the self-emission term can be neglected, and Equation (4.22) becomes

S(p,ω) = µs(p,ω)

∫
Ω4π

pφ(p,ω ′,ω)Li(p,ω ′)dω ′ (4.23)

Glassner extended this equation to account for inelastic scattering by adding a term

called fluorescence efficiency Pf(p, λ ← λx) that reflects the energy redistribution for each

emission-excitation wavelength pair and an integration of the radiance over all the visible

wavelengths of the spectrum Rv [152]. His extension was limited to the correct formula-

tion of the full radiative transfer equation (FRTE), shown in Equation (4.24), but he did

not give enough elaboration on the fluorescence efficiency term.

S(p,ω, λ) = µs(p,ω)

∫
Rv

∫
Ω4π

p(p,ω ′,ω)Pf(p, λ← λx)Li(p,ω ′, λx)dω ′ dλx (4.24)
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An extensive discussion of this term, Pf, was presented later by Cerezo et al. [153, 154]

and Gutierrez et al. [155, 156] to simulate the inelastic scattering of ocean waters. In this

discussion, the fluorescence efficiency term was redefined as the wavelength redistribution
function fp(λx, λ) that represents the efficiency of the energy transfer between the different

wavelengths in terms of the excitation λx and emission wavelengths λ. This function,

shown in Equation (4.25), is expressed by an absorption function gp(λx), a fluorescence

emission function hp(λ), the quantum yield φ(p), and the wavelength pair.

fp(λx, λ) = gp(λx)hp(λ)φ(p)
λx

λ
(4.25)

The absorption function was assumed to be a binary response that is equal to one

only if the exciting wavelength λx is between 370 and 690 nm and zero otherwise.

gp(λx) ≡

 1, 370 < λx < 690

0, otherwise
(4.26)

The fluorescence emission function hp(λ) was oversimplified by the Gaussian func-

tion shown in Equation (4.27)

hp(λ) =
1√
2πλσ

exp−
(λ− λ0)

2

2(λσ)2
(4.27)

where

λ0 maximum emission wavelength

λσ wavelength standard deviation

In fact, this model is not valid to accurately express the fluorescence emission in terms

of the spectral characteristics of the fluorescent material used in a real experiment. Our

extension is presented in Equation (4.28) to overcome this limit.

The energy transfer from excitation wavelength λx to another wavelength λ is primar-

ily determined by the relative contribution of the excitation spectrum fx at λx – refer to

Figure 4.3 (b). The emission power at λ is scaled by the emission spectrum fm at λ and

the quantum yield φ of the material. Finally, due to the isotropic emission, the phase

function of the inelastic term is substituted by 1
4π .

Pf(p, λ← λx) = fx(p, λx) fm(p, λ) φ(p) (4.28)
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Putting all the terms together, the source term of our extended fluorescence model

can be expressed by

S(p,ω, λ) =[ 1
4π
µs(p,ω)

∫
Rv

∫
Ω4π

fm(p, λ) fx(p, λx)φ(p)Li(p,ω ′, λx)dω ′ dλx

]
× F(p)+[

µs(p,ω)

∫
Ω4π

p(p,ω ′,ω)Li(p,ω ′)dω ′
]
×
[
1− F(p)

] (4.29)

where

F(p) binary fluorescence function

p interaction point in the medium

It has to be noticed that the term F(p) is equal to one if the point p is fluorescent and

zero otherwise. This equation will be used to model the light interaction with low scatter-

ing fluorescent specimens in the computational models of the fluorescence microscopes

that will be presented later in Chapter 7 and Chapter 8.

4.5.3 Model Implementation

The fluorescence model presented in Equation (4.29) is implemented in a single scatter-

ing fluorescence volume integrator that uses ray marching to evaluate the integral of the

radiative transfer equation. This integrator is extended from an existing implementation

of a wavelength-independent single scattering integrator in the second version of the

rendering toolkit (PBRT) that can only model elastic scattering events [161]. Our exten-

sion accounts for both elastic and inelastic scattering events using a binary fluorescence

coefficient that is equal to one if the point sampled along the path is fluorescent and

zero otherwise. The fluorescence term considers the distinct properties of different fluo-

rescent materials represented by their emission and excitation spectral profiles and their

quantum yield.

4.5.4 Model Validation

The fluorescence model presented in Equation (4.29) and its implementation in PBRT are

validated with the following tests:

1. Quantitative comparison between the spectral distribution of the radiance retrieved

from the rendered images against the normalized emission profiles of the fluores-

cent dyes measured in real experiments.
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2. Quantitative comparison between the total energy – or number of photons – com-

puted from the rendered images against the theoretical results obtained from solv-

ing the brightness equation.

A simple experimental scene is designed – Figure 4.6 – to accomplish this mission.

The scene contains a 2 µm3 cube filled with homogeneous and isotropic fluorescent

medium that is characterized by low molecular absorption cross section6. This fluores-

cent cube is evenly illuminated by a collimated light source that has (1) a surface area of

2 µm2, (2) varying emission intensity and (3) varying emission spectra. The light source is

positioned above the cube and aligned to its central axis in order to excite all the fluores-

cent samples contained in it. The fluorescence emission was recorded from two opposite

directions to double check the results. In theory, the recorded photon counts by the two

cameras should match, but they would slightly vary due to Monte Carlo integration.

Excitation Emission Iso
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Figure 4.6: Experimental scene rendered in PBRT for validating the fluorescence model presented
in Equation (4.29).

In the first test, the cube is filled with three different dyes: CFP, GFP and RFP7 and

illuminated with a laser beam at six different excitation wavelengths between 355 and

561 nm. The results of this test are shown in Figure 4.7. The detected spectral densi-

ties with our rendering workflow match the characteristic emission profiles of the three

fluorophores.

In the second test, the laser intensity of the exciting light source was varied between

1 − 10× 10
12 photons. The detected photon count was integrated over the surface area

of the virtual camera and compared against the total number of fluorescent photons

computed from the brightness equation [162].

The FBE expresses the fluorescence produced by a fluorescent molecule F(p) in terms

of its molecular absorption cross-section σ, its quantum yield and the flux of the incident

light beam I, where F(p) = σ I φ.

6 The value of the absorption cross section σa is approximately 3× 10
−16cm2.

7 The spectral properties of these fluorescent dyes are available in Appendix D.
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(b) GFP
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(c) RFP

Figure 4.7: Emission SPDs measured from rendering CFP, GFP and RFP at different excitation
wavelengths between 355 and 561 nm. The curves are normalized to the SPD resulting at the
maximum excitation wavelength for each respective dye.
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Assuming isotropic emission, the number of fluorescent photons measured at a two-

dimensional plane facing any of the six planes of the cube can be computed from Equa-

tion (4.30), where N is the concentration of fluorophore in the volume, A is the surface

area of the illumination sheet, l is the path length of the excitation light in the volume,

I is the intensity of the illumination in number of photons, and IφA is the intensity flux

density in photos per square cm2.

FFBE =
1

4π
IφA σs NφA l

=
1

4π
I σs Nφ l

(4.30)

The total detected number of fluorescent photons on the virtual CCD surface Fs is

computed from the double integral in Equation (4.31), where I(pS, λ) is the SPD mea-

sured at each point on the surface ps.

Fs =

∫
As

∫
Rv

I(ps, λ) dλ dAs (4.31)

The number of detected fluorescent photons was almost equivalent to that computed

from the FBE with an error of 0.01 %.

4.6 conclusion

In this chapter, we introduced a novel optical model capable of rendering low scattering

volumetric media in the presence of fluorescent structures. The fundamental principles

of fluorescence were introduced and the fluorescence equation was accordingly derived.

Based on this equation, we developed our fluorescence model and validated it against the

brightness equation. This model will be employed later to simulate light interaction with

fluorescent-tagged neocortical volumes for performing in silico optical experiments. In

Chapter 5, this model will be extended to render volumetric media with highly scattering

optical properties.
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Chapter 5

modeling light interaction with highly scattering

fluorescent volumes

“ According to the belief, molecules closer together than 200 nanometers could not be
told apart with focused light. This is because, in a packed molecular crowd, the molecules
shout out their fluorescence simultaneously, causing their signal, their voices, to be
confused. ”

– Stefan Hell

The conventional monochromatic rendering integral was extended in Chapter 4 to

grant us a plausible optical model that can simulate light transport in low-scattering

fluorescent volumes. This model uses a single scattering interaction (inelastic scattering)

to reflect the incident light from a light source towards a sensing element at longer

wavelength. This extension is extremely significant for simulating the imaging of cleared

brain tissue [163]. However, it fails to model light propagation in highly scattering vol-

umes, where a photon can bounce more than once before its absolute absorption either

by the volume itself or by the sensors of the acquisition system of the microscope. This

chapter discusses a novel optical model, a Monte Carlo estimator and an unbiased rendering
algorithm to account for light interaction with highly scattering fluorescent volumes.

5.1 contributions overview

1. Rigorous physically-based optical model capable of simulating light interaction

with fluorescent volumes, taking into account their spectroscopic and optical prop-

erties.

2. Qualitative validation and analysis of the developed optical model by correlating

the SPDs – or responses – of the generated images to experimental emission spectra

of different fluorescent dyes.

3. Visualization of fluorescent neuronal models tagged with multiple fluorescent so-

lutions having different optical properties.

4. Evaluating the results collaboratively with domain experts including neurobiolo-

gists, in silico neuroscientists and visualization scientists .

117
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5.2 unbiased rendering of highly scattering fluorescent volumes

5.2.1 Path Integral Formalism

Assuming a light path consisting of three points p0p1p2 – Figure 5.1 – starting from the

camera at p0 and terminating at the light source that is located at p2, then the radiance

arriving to the camera following a scattering event at p1 can be computed according to

the monochromatic light transport formula

L(p0,ω) = L(p0 ← p1) = Lve(p0 ← p1) + Ls(p0 ← p1) (5.1)

where

p0 location of the camera

p1 randomly sampled interaction (or scattering point) in the volume

p2 location of the light source

ω direction from p1 to p0

L radiance arriving to the camera at p0 from p1 along ω

Lve self-emission radiance at p1 towards p0 along ω

Ls scattered radiance at p1 from p2 towards p0

The self-emission term Lve(p0 ← p1) is only substantial if the volume itself is emitting

due to chemical or thermal processes. Our model does not account for any self emission,

therefore, this term will be neglected. In this case, the total radiance recorded by the

camera due to light scattering Ls in the volume is evaluated with the following integral

L(p0 ← p1)
∣∣∣
NSE

= µs(p1,p0 ← p1)

∫
Ω4π

fp(p1,p0 ← p1,ω ′)Li(p1,ω ′)dω ′ (5.2)

where

L
∣∣
NSE radiance computed with no self emission

µs scattering coefficient of the volume

fp phase function of the volume

ω ′ direction from p1 to p2

Li incoming radiance towards p1 from ω ′
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Figure 5.1: Light transport in a highly scattering volumetric extent. (a) The volume prior to
illumination by the light source. (b) Single scattering interaction: the light ray is scattered once
between the light source and the camera on a single path p0p1p2. (c) Multiple scattering: the
light ray bounces multiple times between several interaction events before reaching the camera
on a single path p0p1p2 . . . pn−1pn. (d) The radiative transport equation evaluates the light
propagating from the light source to the camera on multiple paths x1, x2, . . . , xn. The rays are
shot from the camera towards the light source to sample the scattering events.

For convenience [140], Equation (5.2) can be re-written as an integral over surfaces

dA and volumes dV instead of directions dω ′ on the sphere Ω4π to yield what is called

the three-point form of the light transport equation

Ls(p0 ← p1) =

∫
A

Le(p1 ← p2) Fs(p0 ← p1 ← p2)G(p2,p1) V̂(p2,p1)dA(p2) (5.3)

where

Fs scattering function

G geometric term

V̂ visibility term

V binary visibility function

Tr transmittance

Le emitted radiance from the light source at p2

Fs = σs(p1,p0 ← p1) fp(p0 ← p1 ← p2) (5.4)
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G =
1

‖p1 − p2‖2
(5.5)

V̂ = V(p1,p2) Tr(p1 − p2) (5.6)

Tr = exp
(
−

∫ |p2−p1|
0

σt(t)dt
)

(5.7)

If the light scatters at n− 1 interaction sites before reaching the camera at p0, where

pn is a sampled point on the light source, the path integral equation becomes

L(p0,ω) =

n−1︷ ︸︸ ︷∫
A

...
∫
V

Le(pn−1 ← pn)G(pn−1,pn) V̂(pn−1,pn)

n−1∏
i=1

[
Fs(pi+1 ← pi← pi−1)G(pi+1,pi)V(pi+1,pi)

]
dV(p1) . . . dA(pn)

(5.8)

where Le is the emitted radiance from the light source at the sampled point on its

surface pn to the first interaction point in the volume pn−1.

In principle, Equation (5.8) can be used to render highly scattering volumetric models

assuming monochromatic wavelengths, i.e. there is no transfer of energy from one wave-

length to another. We have extended this equation by introducing a new term called the

path binary fluorescent visibility Vfi that indicates whether a path has encountered a flu-

orescence emission or not. Adding this term to Equation (5.8) and integrating over all

excitation wavelengths λx to evaluate the radiance at specific emission wavelength λm,

the rendering equation becomes

L(p0,ω, λm) =

∫
λx

n−1︷ ︸︸ ︷∫
A

...
∫
V

Le(pn−1 ← pn, λx)G(pn,pn−1) V̂(pn,pn−1, λx)Vfi(λx, λm)×

n−1∏
i=1

[
Fs(pi+1 ← pi ← pi−1, λm)G(pi+1,pi)V(pi+1,pi)

]
dV(p1) . . . dA(pn)dλx

(5.9)

This formalism evaluates the radiance at point p arriving from direction ω at a spe-

cific wavelength λm following a fluorescence emission from a highly scattering volume

due to its excitation with wavelength λx. This optical model is extremely complicated to

solve analytically. In the following section, we will present a Monte Carlo estimator that

can be solved numerically to approximate this rendering integral.
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5.2.2 Monte Carlo Estimator

The path integral formulation of the fluorescence model presented in Equation (5.9) eval-

uates the radiance arriving to the camera at point p0 from directionω at certain emission

wavelength λm after multiple scattering events in a turbid fluorescent volume. This in-

tegral can be approximated in a stochastic path tracer with the following Monte Carlo

estimator

Li(p0,ω, λm) ≈ 1

Nλ

1

N

Nλ∑
λ=1

N∑
i=1

Le(pn, λx)V̂i
P(pn)P(λx)

Vfi

M∏
j=1

V̂jFjGj

P(ωj)P(tj)
(5.10)

where

Fj wavelength-dependent scattering function

P(.) sampling probability density function (PDF)

P(pn) PDF of sampling a point on the light source

P(λx) PDF of sampling an excitation wavelength

P(ωj) PDF of sampling a scattering event with a direction ωj

P(tj) PDF of sampling a scattering event at a distance tj

Fj = σs(pj, λm) fp(pj,ωj,ωj+1, λm) (5.11)

V̂i = V(pn,pn−1) τ(pn,pn−1, λx) (5.12)

V̂j = V(pj,pj−1) Tr(pj,pj−1, λm) (5.13)

Tr = exp
(
−

∫ |pj−pj−1|
0

σt(t, λ)dt
)

(5.14)

Fj = σs(pj, λm) fp(pj,ωj,ωj+1, λm) (5.15)

The path binary fluorescence visibility term Vfi accounts for the spectral optical prop-

erties of the volume and the intrinsic spectroscopic properties of the fluorescent dye in-

cluding its excitation and emission spectra, molar absorptivity and quantum yield, and

also the concentration of the fluorescent solvent in a given solution.

Monte Carlo path tracing is used to determine the interaction sites, or events, within

the volume extent. The fluorescent events — represented by the green points in Fig-

ure 5.2 — are stochastically identified according to the ratio between the fluorescence

absorption coefficient µfa and the total absorption coefficient µa of the volume at emis-
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sion wavelength λm. There are eight possible combinations that might occur during the

path sampling. According to the type of the sampled event, some of these cases are

plausible and the other are not possible as explained in Figure 5.3.

1 2

3

4
5

6

Fluorescent Point Non Fluorescent Point Fluorescence Emission

Figure 5.2: Path tracing with multiple scattering in fluorescent volume. The green and yellow rays
are transported at λm and λx respectively. The red rays escape the volume with no contribution to
the estimated radiance along the path. The dashed rays indicate invalid paths, where fluorescence
visibility is set to zero. The light is only sampled if a fluorescence emission event is determined.

(a) (c) (d)

(f)(e) (g) (h)

(b)

p0

pi

pn

pi pi pi

pi pi pi pi

λem λem λem λemλex λex λex λex

λem λem λem λemλex λex λex λex

Figure 5.3: All possible combinations of interaction events during path sampling in a scattering
fluorescent mixture. The white / green events represent an interaction between the light ray
and non-fluorescent / fluorescent volume samples. The events in (a) and (b) are not physically-
plausible because a fluorescent emission must occur at a fluorescent sample. (f) is also not possible
because λm cannot excite the dyes to emit at λx. The events in (c), (d), (g) and (h) represent an
elastic scattering at the same wavelength. (e) is the only event that can account for fluorescence
emission.

The SPD of the fluorescence absorption coefficient µfa(λ) is expressed in terms of the

excitation (or absorption) spectrum of the fluorophore fx(λ), the concentration of the

dye in the solution c, and its molar absorptivity at the maximum excitation wavelength

ε. The spectral radiance is computed by tracing a ray through the volume at certain

wavelength between 300 and 800 nm with 1 nm increments. The estimated pixel value is

updated only if the constructed path is valid and a fluorescence emission occurs. A valid

contributing path, such as 2 and 4 in Figure 5.2, consists of a series of elastic scattering
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events and a single inelastic one that involves changing the wavelength from λx to λm. In

this case, the light source is sampled and the radiance emitted towards the fluorescence

emission event is attenuated according to λx. Otherwise, the fluorescence visibility Vf
term is set to zero and the path is terminated. The paths are sampled with woodcock

tracking, which is known to be an unbiased method [164, 165].

The probability of fluorescence emission Pf is expressed by two terms: the photon

absorption probability Px and the photon emission probability Pm [166], i.e. Pf(λx, λm) =

Px(λx)× Pm(λm) where

Px(λx) = φq
µfa(λx)

µa(λx)
(5.16)

Pm(λm) =
fm(λm) ∆λ∫∞
0

fm(λ) dλ
(5.17)

Therefore, the fluorescence emission probabilistically occurs in terms of the exact

spectral characteristics of the fluorescent dye including its excitation fx(λ) and emission

fm(λ) spectra, and its quantum yield φq. This method can accurately generate fluores-

cent images with SPDs that have similar profiles to the actual emission spectra of the

fluorescent dyes. However, it ignores secondary fluorescence effects such as quenching,

photo-bleaching or saturation.

5.3 results & model validation

5.3.1 Rendering Highly Scattering Fluorescent Neocortical Tissue

The results of our model have been demonstrated with a 50 µm3 tissue block extracted

from the center of the neocortical column model. As seen in Chapter 2, the tissue model

is prepared by defining all the neurons that are located withing the central 50 µm3 extent.

The corresponding mesh models of these neurons are created and then an annotated vol-

umetric tissue block is reconstructed accordingly. The intracellular space of the neurons

in this volume is labeled by an index that reflects the spectroscopic properties of a spe-

cific fluorophore. A surface rendering image of a mesh model of this extracted block

(prior to virtual fluorescent injection) is illustrated in Figure 5.4.

Based on this extracted mesh block, we created two experimental sets of fluorescent-

annotated volume blocks. The first one is tagged with the same type of fluorescent dye

dissolved in several solutions having different extinction coefficients. The goal of this

set is to experiment the responses of the same fluorescence parameters in the presence
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of relatively low, medium and high scattering volumes. The other set is labeled with

various fluorescent dyes that have different spectral responses at fixed concentrations.

This set is designed to validate and measure the performance of our extended optical

model that can simulate the light interaction with fluorescent volumes. The two sets

were labelled with multiple dyes from the Alexa Fluor family, Alexa Fluor 350, 488, 568

and 633. This family is selected in our experiments due to its importance in fluorescence

microscopy and cell biology in general [167]. The spectroscopic properties of the four

dyes are tabulated in Appendix D.

The first set is labelled with three Alexa Fluor 488 solutions that are characterized

with extinction coefficients that are 10, 100 and 1000 times greater than that of pure

water [168]. To maximize the emission, the illuminating light source is set to emit at

the maximum excitation wavelength of Alexa Fluor 488 at 495 nm. Figure 5.5 shows

the results of rendering the three tissue volume blocks under the same illumination

conditions.

The tissue blocks in the second set are tagged with Alexa Fluor 350, 488, 568 and

633 solutions at the same concentration (0.4 mol/l). The same illumination conditions

defined in the first experiment are used to excite the volumes in this case where the

light source emits at the maximum excitation response of each respective dye. Figure 5.6

shows the images rendered for the four tissue volume blocks used in this experimental

set.

5.3.2 Optical Model Validation

The experimental measurements of the excitation and emission spectra of fluorescent

dyes are normally recorded for highly diluted and low scattering solutions using Beer-

Lambert law and the fluorescence brightness equation [141, 169]. However, the normal-

ized spectral distributions of the emission spectra recorded from highly scattering solu-

tions should have similar profiles to the experimental emission spectra of the fluorescent

dyes [170]. In this context, we validated our fluorescence optical model relying on two ba-

sic tests. The first one measures the SPD of the generated images from our visualization

pipeline and then compares their normalized profile with the distribution of the intrinsic

emission spectra of each dye. Note that the SPDs of each image are recorded before their

conversion to RGB colors for each pixel in the image.

The four tissue volume blocks in the second experimental set are used to validate our

optical model. The normalized spectral responses (or SPDs) from the four images shown

in Figure 5.6 are compared to the emission profiles of the four dyes. The results of this

validation test are shown in Figure 5.7.

The second test measures the performance of the model when the volume is illumi-

nated with different wavelengths. Depending on the excitation spectrum of the dye and
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Figure 5.4: Surface rendering of a watertight mesh of a 50 µm3 tissue block extracted from a
digital reconstruction of the microcircuitry of the somatosensory cortex of a two-week-old rat. The
model is textured with an electron microscopy shader and loaded in Maya (Autodesk, California,
USA) [24] for rendering.
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(a) (b)

(c)

Figure 5.5: The block in Figure 5.4 is volume rendered after virtual fluorescence tagging with
three Alexa Fluor 488 solutions that are characterized by (a) relatively low, (b) medium and
(c) high extinction coefficients. The volumes are illuminated with monochromatic diffusive light
source that emits at 495 nm corresponding to the maximum excitation wavelength of Alexa Fluor
488.



5.3 results & model validation 127

(a) Alexa Fluor 350 (Blue)

B

(b) Alexa Fluor 488 (Green)

C

(c) Alexa Fluor 586 (Orange)

D

(d) Alexa Fluor 633 (Red)

Figure 5.6: Volume rendering of the tissue volume blocks when the neurons are virtually injected
with four different fluorescent dyes: (a) Alexa Fluor 350, (b) Alexa Fluor 488, (c) Alexa Fluor
586 and (d) Alexa Fluor 633. The volumes are illuminated with monochromatic laser sources at
346, 495, 578 and 632 nm that correspond to the maximum excitation wavelength of the four
fluorescent dyes respectively.
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the selected wavelength to illuminate the solution, the scale of the emission spectrum

is proportional to the amplitude of the excitation spectrum at the excitation wavelength.

The maximum emission profile is reached when the maximum excitation wavelength is

used [141, 169, 171]. In this test, all the tissue volume blocks are illuminated at several

wavelengths (300, 346, 495, 532, 555, 578, 632 and 700 nm) and the responses are recorded

and relatively compared. The results of this test are illustrated in Figure 5.8.

5.3.3 Rendering Performance

In general, the rendering performance of Monte Carlo algorithms depends on multiple

factors including pixel sampling density — or number of samples per pixel, number of

light samples, the optical properties of the volume and the resolution of the rendered

images as well. If the sampling rates are relatively low, the rendered image will be full of

noise. Therefore, high sampling is mandatory to have an image with a converging solu-

tion. All the renderings created in this chapter have been rendered with pixel sampling of

512× 512 SPP. High spectral sampling is also required to obtain accurate emission spec-

tra that can reflect those measured in real spectroscopic experiments. For this purpose,

we used a spectral sampling of 1 nm. The rendering time of the images demonstrated in

Figure 5.5 and Figure 5.6 varied between six and eight hours on a recent machine that is

shipped with Intel core i7 CPU and 32 GBytes of memory.

5.4 conclusion

The fundamental limitation of the fluorescence model discussed in Chapter 4 is overcome.

We introduced a novel unbiased extension capable of rendering highly scattering fluores-

cent volumes on a physically-plausible basis. Based on this model, we derived a Monte

Carlo estimator that can accurately approximate the fluorescence emission from a tur-

bid volume in terms of its intrinsic spectroscopic and optical properties including excitation
and emission spectra, quantum yield, molar absorptivity, absorption and scattering coefficients
in addition to the concentration of the different fluorophores expressed in the volume.

The fluorescence model was implemented in a stochastic path tracer within the context of

the PBRT framework. This module is utilized to render multiple fluorescent volumetric

model reconstructed from the neocortical circuitry of a two-week-old rat. This rendering

framework is exploited to perform in silico experiments to analyze the response of the

neocortical model when filled with different dyes having diverse properties. The spectral
performance of the fluorescence model was analyzed and quantitatively validated by corre-

lating the responses measured from the rendered images with respect to experimental

emission spectra of different fluorescent dyes.
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Chapter 6

in silico transmitted light

brightfield microscopy

The content of this chapter has been adapted from the following paper

1. reconstruction and visualization of large-scale volumetric

models of neocortical circuits for physically-plausible in silico

optical studies

BMC Bioinformatics 2017 · In press
Author(s) − Marwan Abdellah, Juan Hernando, Nicolas Antille, Stefan Eilemann,
Henry Markram, and Felix Schürmann





Chapter 6
in silico transmitted light brightfield microscopy

“ By the help of microscopes, there is nothing so small, as to escape our inquiry; hence
there is a new visible world discovered to the understanding. ”

– Robert Hooke

“ I expressed the surprise which I experienced upon seeing with my own eyes the won-
derful revelatory powers of the chrome-silver reaction and the absence of any excitement
in the scientific world aroused by its discovery. ”

– Santiago Ramón y Cajal

In the previous part, we introduced the fundamentals of light transport in volumet-

ric media and derived two optical models that can account for fluorescence in low-

and highly-scattering volumes. In this part, we will integrate these models into an ad-

vanced optical microscopy simulation framework that will be employed to visualize our

neocortical models on a physically-plausible basis. The framework will be dedicated

for simulating three different optical microscopes. This chapter will focus on modeling

the transmitted light brightfield microscope (TLBFM) to simulate the process of imag-

ing brain tissue stained with Golgi’s method. In Chapter 7, we will use the acquisition

model of the TLBFM and integrate the fluorescence models derived in Chapter 4 and

Chapter 5 to simulate the widefield epifluorescence microscope. In Chapter 8, the illumi-

nation model of the fluorescence microscope will be extended to allow the simulation of

the rediscovered light sheet fluorescence microscope (LSFM).

6.1 optical microscopy

Microscopes can be largely classified according to the physical phenomena that are used

to form an image into three notable categories: optical — or light — microscopy, elec-

tron microscopy (EM) and scanning probe microscopy (SPM) [172]. This classification

is summarized by Table 6.1. In this chapter we will focus on building a first model of

the brightfield light transmitted optical microscope. At the end of the chapter, we will

use this model to create in silico Golgi’s staining images of the neocortical tissue models

reconstructed in Chapter 2.

137
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6.1.1 Brightfield Microscopy

Brightfield illumination is the simplest type of optical illumination techniques. The bright-

field microscope creates a projection image by transmitting a beam of light through an

opaque specimen that blocks light propagation to cast a shadow against a bright back-

ground. Due to the fact that the majority of the biological specimen are transparent by

default, the contrast of the brightfield microscope is improved by staining the specimen

with a highly absorbing substance such as Golgi’s (Figure 6.1 and Figure 6.2) and Nissle’s

stains. This staining procedure damages the cell function and only allows to image the

structural aspects of the specimen.

Figure 6.1: A brightfield image of Golgi staining of a few pyramidal neurons in the cortex of a
mouse brain. Image courtesy of Singapore Bioimaging Consortium’s Lab.

Brightfield microscopy is extremely significant in neuroscience. It is used to resolve a

fundamental challenge to determine the three-dimensional morphology in the cortex by

tracing neurons filled with highly-absorbing stains such as biocytin [89, 175, 176].
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(b) (c)

(d)

(e)

(f)

(a)

Figure 6.2: An adult mouse brain stained with a modified Golgi technique called Golgi-Cox
staining protocol [173] and captured with brightfield microscopy. The neurons are evenly stained
across the different regions of the brain (a). The magnified images in (b)-(c), (d) and (e) represent
the cerebral cortex, hippocampus and the cereberllar cortex respectively. Combining Golgi stain-
ing with the brightfield microscope can be even used to visualize the dendritic spines in much
higher resolution (f). The images were generated by Zaqout and Kaindl [174].
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6.1.2 Historic Perspective

The first definition of the brightfield microscope was introduced by Giovanni Faber in

1625. The invention of an optical microscope at that time was probably one of the most

remarkable technological advancements that has been exploited by the scientists (or early

microscopists) to overcome the resolving power of the human eye that is limited to 2 µm

only. In 1665, Robert Hooke published a book entitled Micrographia to disseminate the

knowledge of his observations of certain physiological reactions of tiny biological bodies

relying on an early design of the brightfield microscope. In addition to his biological

observations, he also provided a detailed description of the design of this microscope.

He used a compound microscope consisting of two lens systems that was even more

advanced than a single lens microscope designed by Antoni van Leeuwenhoek a decade

later. Nevertheless, Leeuwenhoek utilized his microscope to observe different biological

objects including bacteria, plants and even blood cells. Those contributions helped to

advance our understanding of optical microscopy more than what Hooke presented. A

comparison between both microscopes is illustrated by the drawings in Figure 6.3.

(a) (b)

Figure 6.3: Ancient drawings of first designs of brightfield microscopes that were used by (a)
Hooke and (b) Leeuwenhoek to make their early biological observations.

The early years of 1900s have witnessed a turning point when the theoretical funda-

mentals of the optical microscopes were well established and understood. At that time,

microscopy became a major research field for professional microscopists and significant

tool for biologists. During the 20
th century, the designs of optical microscopes were radi-

cally improved and updated with advanced accessories that were invented as a result of

the evolution of several photographic and digital imaging technologies. All these factors
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have contributed later to the appearance of the modern brightfield microscope that is

considered an essential tool in all the research laboratories, in particular these concerned

with cell biology.

6.2 contributions overview

1. Unbiased physically-plausible simulation of the imaging pipeline of the TLBFM

including its illumination and acquisition systems.

2. Validating the operational aspects of our TLBFM model.

3. Using the TLBFM model to simulate the process of imaging neocortical tissue filled

with Golgi’s stain.

4. Evaluating the rendering results in collaboration with domain experts.

6.3 computational modeling of transmitted brightfield microscopy

6.3.1 Brightfield Microscope Configuration & Setup

An extremely simple configuration of the brightfield microscope is achieved by using a

single lens to form a magnified virtual image of the specimen. This naïve setup has been

employed in the early days of microscopy by Antoni van Leeuwenhoek, Jan Swammer-

dam, Robert Brown, and even Charles Darwin. The recent compound microscope as we

know it today consists of two advanced lens systems. The primary lens represents the

objective lens, which collects the diffracted light from the specimen to create a real inter-

mediate image that is magnified and seen relying on a secondary lens system called the

eyepiece or the ocular.

By large, current configurations of brightfield microscopes are divided into two stan-

dard categories. In the first configuration, the objective lens is designed to form an in-

verted image behind it, where the specimen is located in front of focal plane of the lens.

This traditional configuration was replaced by an improved setup that uses a tube lens to

form the image of an object located at the focal plane of the objective lens at infinity. The

tube lens is integrated into the acquisition unit of the microscope to construct an infinity-

corrected objective lens system to focus the parallel rays emanating from the objective

lens to form a real image at the back side of the focal plane of the tube lens. This setup

minimizes the aberrations that result due to the unwanted light rays reflected from other

optical elements located between the objective lens and the eyepiece.

The brightfield microscope has two illumination setups: trans-illumination and epi-
illumination. In trans-illumination, the light is transmitted through the specimen and the

contrast is therefore created based on the absorption of light corresponding to each pixel
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in the final image. In this typical illumination, a stained specimen is used such that the

dark regions on the sample correspond to more absorbed light. In epi-illumination setup,

the incident light is reflected off the specimen to generate the contrast. In the majority

of the cases, this setup is used for fluorescence microscopy as we will see in Chapter 7.

Figure 6.4 illustrates the difference between the two illumination setups that exist in the

brightfield microscope.

CCD  
Camera

Specimen

Light  
Source

CCD  
Camera

Specimen

Light  
Source

(a)

CCD  
Camera

Specimen

Light  
Source

CCD  
Camera

Specimen

Light  
Source

(b)

Figure 6.4: Trans-illumination (a) and epi-illumination (b) in brightfield microscopy. In trans-
illumination, the light is attenuated in the specimen via absorption and the transmitted light is
recorded. In epi-illumination, the recorded light is reflected from the specimen. The illuminating
light is colored in yellow and the recorded light is colored in blue.

A recent design of a standard TLBFM (Figure 6.5) is composed of four key compo-

nents:

1. A trans-illumination light source, that irradiates the specimen from below upwards

to the objective lens.

2. A condenser lens, that collects trans-illuminated light from the lamp and focuses it

on the sample.

3. An objective lens, that is responsible for collecting the light transmitted from the

sample and magnifies it with certain factor.

4. An eyepiece, which is used to guide the light to be viewed by a direct observer.

5. An optional CCD camera, that records the final image for subsequent display.
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Figure 6.5: A cross-sectional diagram of a recent design of TLBFM.

6.3.2 Illumination Unit Model

The illumination unit is modeled by a collimated area light source that can have multiple

emission spectra depending on the input configuration to the system1. The illumination

model simulates the inverted transmitted Khölr illumination system; the light is trans-

mitted through the specimen to the detection unit. The size of the illumination surface

is configured to cover a specific area of the specimen based on the requirements of the

user.

6.3.3 Acquisition Unit Model

The acquisition unit of an infinity-corrected objective lens system is composed of the de-

fault objective lens in addition to a tube lens. The detection objective collects all the rays

that are transmitted from the specimen to form an intermediate image that is projected

as a final image on the detection unit, or the CCD by the tube lens. The coupling between

the two lenses form a telecentric lens system that produces an orthographic view of the ac-

quired optical section. As shown in Figure 6.6, the acquisition unit can be modeled by a

1 The emission spectra of the different light sources used in the simulation are listed in Appendix D.



6.4 in silico brightfield microscopy of neocortical tissue 145

thin lens orthographic camera with finite aperture to simulate depth of field effects [135,

177]. This model provides an accurate simulation of the image formation process in the

real microscope, however, its performance is subject to either high sampling rates or im-

portance sampling techniques of the virtual lens to avoid a noisy image due to Monte

Carlo integration. These sampling issues will be discussed later.

6.3.4 Modeling Light Interaction with Brain Tissue

Due to the fact that our specimen is filled with hight absorbing dye that is used to at-

tenuate the light and keep the transmitted part being detected, we can use the standard

rendering integral derived in Equation (3.30) to model light interaction with the speci-

men. This model can accurately simulate light attenuation via absorption and scattering

and is sufficient to fulfill the modeling requirements of the TLBFM.

6.4 in silico brightfield microscopy of neocortical tissue

6.4.1 In Silico Golgi Staining

Using a recent neocortical circuit, we designed and reconstructed a high resolution neo-

cortical volume consisting of a few Layer V pyramidal neurons. The intracellular space

of these neurons is virtually filled with Golgi’s stain that will attenuate the light trans-

mitted from the illumination system towards the virtual CCD camera of the detection

unit model.

The spatial extent (or the bounding volume) of the somata of the selected pyramidal

neurons in the reconstructed neocortical model is limited to 300 µm3. The six neurons

in this block represent less than 10% of the total number of cells in this volume. Note

that these neurons are not chosen randomly, but, they were carefully selected at differ-

ent focal distances to validate the operational aspects of our computational model of

the microscope. The reconstruction process of this neocortical volume is illustrated in

Figure 6.7.

Figure 6.8 demonstrates the result of visualizing this tissue volume using our TLBFM.

To validate the operational aspects of the microscope, mainly the variation of the focal

distance of the acquisition system to create different optical sections of the tissue, we

changed the focal depth value to reflect the distances between the lens surface and the

somata of the six neurons. The images created from this validation experiment are illus-

trated in Figure 6.9 and Figure 6.10.
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Figure 6.6: (a) A typical optical setup of the conventional TLBFM. (b) A high level diagram of our
computational model of this microscope.
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(a) (b)

(c) (d)

Figure 6.7: Reconstruction of polygonal meshes (a, c) followed by the creation of a volumetric
model (b, d) for a group of few layer V pyramidal neurons. The images in (c) and (d) reflect a
magnification of the boxes in (a) and (b) respectively.
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6.4.2 Rendering Performance & Noise

In general, the performance of rendering synthetic images on a physically-plausible basis

depends on several factors including the sampling rate of the employed Monte Carlo

integrator, pixel sampling density of the image — or number of samples per pixel (SPP)

— and ultimately on the resolution of the image. High sampling rates are crucial to

reduce the Monte Carlo noise. The resolution of the in silico image in Figure 6.8 is set

to 2048× 1450 pixels. This image was rendered in four hours approximately with 512

SPP. At this sampling density, the amount of Monte Carlo noise is barely noticed in the

image. However, using less number of samples to compute each pixel will significantly

affect the quality of the reconstructed image and would potentially limit its usage to

evaluate the results of our in silico experiments. In Figure 6.11, the same optical section

is rendered using different pixel sampling densities. The errors associated with each

sampling density are computed using peak-signal-to-noise-ratio (PSNR) in Figure 6.12.

These figures can guide us to find an optimization level between the minimal sampling

density required for creating an applicable2 image and its rendering time.

6.5 conclusion

This chapter presented a computational model of the TLBFM. This microscopic model

is capable of creating synthetic and unbiased microscopic images adhering to the en-

ergy conservation law, aiming to making them comparable to those produced by the

actual imaging system. The model was designed based on Monte Carlo ray tracing and

the physical principles of geometric optics to simulates the image formation process in

the TLBFM including its main components: the illumination and acquisition systems in

addition to light interaction with the volumetric models that reflect the content of real

neocortical specimens. Figure 6.13 shows a high level overview of the computational

model of the TLBFM, its components and their parameters. The TLBFM model was ap-

plied to create in silico Golgi’s stain images of a group of layer V pyramidal neurons. This

model will be extended in the following chapters to simulate the imaging of fluorescent

neocortical volumes.

2 An image that can be trusted to evaluate the output of an in silico experiment.
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Figure 6.8: In silico BFM imaging of a group of few layer V pyramidal neurons that are virtually
stained with a highly absorbing solution that has similar optical characteristics to Golgi’s silver
nitrate stain [178].
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(a) (b) (c)

(d) (e) (f)

Figure 6.9: A set of in silico brightfield optical sections that are rendered at different focal planes
for the same neocortical model that is shown in Figure 6.8.
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(a) (b) (c)

(d) (e) (f)

Figure 6.10: Close-up images of the in silico optical sections that were rendered at multiple focal
planes in Figure 6.9.
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(a) 512 SPP

(b) 2 SPP (c) 4 SPP

(d) 8 SPP (e) 16 SPP

(f) 32 SPP (g) 64 SPP

(h) 128 SPP (i) 256 SPP

Figure 6.11: Rendering a set of in silico brightfield images for virtually-stained neocortical neu-
rons with Golgi’s method at different samples per pixel (SPP). The more samples are used to
render the image the less noisy the image gets.
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Figure 6.12: A visual comparison between the number of pixel samples used to render the image
shown in Figure 6.8 and the associated peak-signal-to-noise ratio PSNR. Increasing the number
of of samples per pixel (SPP) can significantly reduce the Monte Carlo noise.



154 in silico transmitted light brightfield microscopy

Stain Diffusion and

Concentration

Stain Attenuation 

Spectrum

Stain Phase Function
Tissue 

Absorption Coefficient

Tissue 

Anisotropy Factor

Tissue 

Scattering Coefficient

Virtual Specimen Preparation

Virtual Tissue SpecimenIllumination Unit

Beam Dimensions

Lamp Type

Lamp Intensity

Stained

Brain Tissue Model

Acquisition Optical System
Objective Lens 

Focal Length

Lens 

Aperture Size

Virtual CCD Camera

Noise

CCD 

Sensor SIze

FOV

Pixel Size

(Resolution)

Acquisition Unit

In Silico Brightfield Microscopy  

Optical Section

Improve Tissue / Microscope Models 

Illumination Unit

Absorption followed by Transmission

Illumination

Feedback

Input Model

In Silico Output

Microscopic Unit Model

Model Parameter

Lens System 

ParametersTelecentric Lens 

System

Widefield Detection

Width Height

Lamp Emission 

Spectrum

Figure 6.13: A high level overview of the computational model of the brightfield microscope and
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Chapter 7

in silico fluorescence microscopy

“ In 2008, the Nobel Prize in Chemistry was awarded for work done on a molecule
called green fluorescent protein that was isolated from the bioluminescent chemistry of a
jellyfish, and it’s been equated to the invention of the microscope in terms of the impact
that it has had on cell biology and genetic engineering. ”

– Edith Widder

In the previous chapter, we presented a computational model of the TLBFM. Then we

used it to render synthetic optical sections of non-fluorescent virtual specimens. To

account for the contrast in the final image, the specimen was required to be filled with

a highly absorbing (or attenuating) solution injected into the intracellular space of the

neurons. In this chapter, we extend our microscopy simulation framework and introduce

a novel computational model of the conventional fluorescence microscope to image vir-

tual fluorescent-tagged specimens. This model is utilized to create physically-plausible

in silico fluorescent images of neocortical tissue models that are virtually injected with

various of fluorescent dyes. We also present a brief historical overview of fluorescence

microscopy and its evolution during the last century.

7.1 introduction

Fluorescence microscopy refers to the ability of an optical microscope to use fluorescence

phenomenon to create an image of a fluorescent-labeled biological specimen, whether

this microscope has a relatively simple design or a more advanced optical setup. The

working principle of this technique is based on the illumination of the specimen by

fluorescent light that is produced by the object itself. This requires the specimen to ei-

ther contain natural fluorescent pigments or to be injected in advance with fluorescent

dyes [179]. Fluorescence microscopy has powerful imaging capabilities and significant

biological applications that have allowed the collection of spatial and functional informa-

tion about both endogenous auto-fluorescent and exogenously labeled structures [180].

During the last few decades, fluorescence microscopy has evolved from a simple tool

for localization to a rich set of quantitative tools for functional analysis with broad ap-

plications in biomedical research [181], underpinning several major discoveries in cell

biology. Since its discovery, fluorescence microscopy has been in a continuous state of

159
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rapid evolution due to the emergence of corresponding novel imaging techniques and

the appearance of new fluorescent probes [182]. In the following section, we will present

a brief review of the history of fluorescence microscopy.

7.1.1 Historic Perspective

The modern designs of recent fluorescence microscopes have been invented as a result

of a series of largely unrelated events and discoveries that have taken place since the be-

ginning of the 20th century. The fluorescence phenomenon was observed and reported

as early as 1845 by Sir Frederik William Herschel who noticed the emission of a vivid

blue color from a colorless and transparent quinine solution when illuminated with sun-

light [183, 184]. This seemingly magical effect was scientifically elaborated a decade later

by Sir George Stokes in greater detail [143, 144].

Later in the 19th century, Ernst Abbe recognized the potential of fluorescence as a new

technology for overcoming the physical limitations of conventional light microscopes.

Abbe was the first to describe the relationship between the resolution of a microscopic

image and the wavelength of the illuminating light. At the time, microscopists had re-

cently succeeded at manufacturing an objective lens that approached the resolution limit

for visible light predicted by optical theory. He concluded that the production of higher

resolution images would required the use of a modified objective lens capable of focusing

shorter wavelengths.

In 1904, August Kholer has used blue and UV light for some experiments that have

accidentally led him to notice fluorescent emission when the tissue is illuminated by that

UV light. He was the first to describe primary fluorescence or auto-fluorescence in biolog-

ical tissue. Later in 1913, Henrich Lechmann and Stanislaus Josef Mathias von Prowazek

built a custom fluorescence microscope to observe and record fluorescence signals. Ar-

guably the most influential demonstration of the power of fluorescence microscopy, help-

ing to spark its widespread adoption in the biology sciences, was presented in 1941

by Albert Hewett Coons, who used fluorescein to label pneumococcal anti-serum. Ten

years later, another major breakthrough occurred when Thomas Weller developed a sub-

stantial indirect method of fluorescence staining that uses two antibodies, a non-labeled

primary one and a fluorescent-labeled secondary one to mark structures of interest in a

cell culture.

At the beginning of the 1900’s, the first series of fluorescence microscopes were de-

signed by Carrl Zeiss and Carl Reichert [179, 185, 186]. Ellinger and Hirt later extended

these original designs, presenting the first intravital microscopes that do not use direct

transmitted illumination, but rather incident light to visualize thick and opaque living

tissue. Those tissue samples were pre-processed by injecting fluorescent substances into

them and then illuminated by a UV light source. The fluorescent light emitted from the
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specimen was filtered by glass filters that were placed between the detection objective

lens and the eye of the observer [187–189].

In 1903, Henry Friedrich Wilhem Siedentopf and Richard Adolf Zsigmondy devel-

oped the ultramicroscope to address fundamental observations in colloids physics and

gold particles. The ultramicroscope was incapable of imaging the colloids; it was lim-

ited to the detection of each particle as a bright spot of light. This contrast limitation

was improved upon later by Siedentopf by inserting a dark-field condenser before the

detection objective to block the incident light going through the objective lens. Dur-

ing his experiments, he noticed and reported that when the specimen was illuminated

with UV light, it fluoresced, which consequently reduced the contrast of the specimen.

Siedentopf and Zsigmondy developed further extensions to their original ultramicro-

scope to improve its contrast, resulting in the design of the slit-ultramicroscope and the

immersion-ultramicroscope. The ultramicroscope was commercially manufactured later

by Carl Zeiss and marketed as a tool to study colloids. Although the ultramicroscope is

considered the first actual fluorescence microscope, it was not used until it was rediscov-

ered in the early 1990s as the modern light sheet fluorescence microscope, which will be

simulated in Chapter 8.

In 1893, August Köhler invented a microscope with a novel illumination scheme that

was later named after him (Köhler illumination) to be used for photographic purposes.

After nine years, Köhler developed yet another microscope that used ultraviolet light

called the ultraviolet absorption microscope which preceded the familiar fluorescence micro-

scope as we recognize it today. UV illumination was exploited to improve the resolution

of the microscope relying on the basic principle introduced by Ernst Abbe; incident light

with shorter wavelengths increases the optical resolution of the system. Köhler also ob-

served by coincidence that the UV illumination of certain materials was accompanied by

a strong fluorescence signal in the visible spectrum. This interesting observation led him,

in collaboration with his colleague at Zeiss, Henry Siedentopf, to design an extended

version of this microscope that used an excitation wavelength of 275 nm generated by a

spark light source. This extended microscope enabled them to observe auto-fluorescence

of biological specimen using UV light excitation. Nevertheless, the technology was not

viable due to the unreliability of the spark gap as a source of UV illumination for the

microscope. This critical issue was solved in 1903 when Robert W Wood introduced his

method for isolating bands of UV light between 300 and 400 nm from an arc lamp using

a nitrosodiumethylaniline solution.

The method was further extended in 1910 by H Lehmann, who presented a prototype

for the transmitted (brightfield) fluorescence microscope where the exciting UV light

enters the objective lens to illuminate the specimen. This modified method was capable

of filtering all the visible spectrum of the light source which in turn improved the contrast.

The application of this improved microscope in the biological domain was pioneered in

1910 by Stanislaus von Prowazek when he used fluorescence staining to image living
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protozoa. Roughly at the same period, Carl Reichert designed a similar fluorescence

microscope that was integrated with a darkfield quartz condenser to block the UV light

from entering the objective.

In 1911, Hans Stübel observed that fluorescent signals may be emitted by biological

specimens in response to excitation in the absence of exogenously added fluorescent dyes.

Following this fortuitous discovery, Carl Ziess designed its first commercial fluorescence

microscope for cell biology and released it in 1913. The microscope was shipped with

UV illumination unit with quartz lenses and glass lenses in its detection unit. At the

same time, Carl Reichert introduced its own version of the technology using a darkfield

condenser instead of the brightfield one used in the Zeiss design.

In mid 1920’s, Philipp Ellinger and August Hirt developed an initial prototype of the

intravital fluorescence microscope. In 1929, Carl Ziess produced a commercial version of

this intravital microscope that was shipped with a vertical illumination module, a water-

immersion objective lens and an UV light source. This microscope was used later to study

the fluorescence distribution in different organs of frogs and mice. From that moment

on, the design of the fluorescence microscope was rapidly evolving which subsequently

affected its widespread use in the biological domain in many significant applications. For

example, Siegfried Strugger developed a specific dye for staining plant cells which was

used later to discriminate between live and dead cells.

Later in 1948, Evgenii Brumberg has introduced an advanced type of illumination in

the fluorescence microscope to excite the specimen from above. The idea of his invention

was based on an interference mirror to steer the illumination light to the objective lens

and meanwhile separate the excitation light from the fluorescence signal that was col-

lected by the detection objective. This design was modified later to use a dichroic mirror

for performing the splitting mechanism.

After the introduction of the laser technology in 1960, the light sources in fluores-

cence microscopy have been replaced by wavelength-specific lasers beams that were avail-

able with a variety of wavelengths, pulse durations and pear intensities. Carl Ziess has

release its first laser scanning fluorescence microscope in 1982. This microscope was

further developed and integrated with multiple types of photon detectors including

photo-multiplier tubes and CCDs. New types of fluorescence microscopes have been

introduced later to improve the contrast and spatial and temporal resolution and also

to overcome many other limitations that have existed in traditional fluorescence micro-

scopes. Amongst those, the two-photon fluorescence microscope, the fluorescence life-

time imaging microscopy and the light sheet fluorescence microscope. The usage of effi-

cient halogen lamps in fluorescence microscopy was introduced to optimize the costs of

the traditional light sources. This step has allowed the scientists to use the fluorescence

microscope under difficult contidions. A detailed historic review of the green revolution

and fluorescence microscopy is discussed by Vonesch et al. [190].
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7.1.2 Advantages and Limitations of Fluorescence Microscopy

Fluorescence microscopy allows the identification individual cells and cellular compo-

nents with high specificity among other non fluorescent materials, see Figure 7.1. It is

also capable of detecting fluorescing components with detailed sensitivity. There are in

contrast some other factors that would limit traditional fluorescence microscopy to be

employed in certain applications and under specific conditions. Those limitations can be

classified into two categories: (1) general limitations and (2) fluorescence-specific limita-

tions. The general limitations typically affect all other kinds of microscopes including

optical resolution, optical and chromatic aberrations and also signal-to-noise ratio.

The other limitations are relevant to the physics of the fluorescence phenomenon.

The quality of the fluorescence process depends on the energy deposited into the biolog-

ical specimen. The usage of exogenous fluorescent markers can significantly affect the

structure of the cell and its function as well, which would account for false observations

and potentially wrong interpretations. For instance, using genetically expressed GFP in

the cells is accompanied with over-expression of GFP. Therefore, the validation of the

structural and function aspects of the cells under investigation must be considered via

multiple control experiments to confirm the stability of these different aspects due to

the over-expression of the GFP. Those limitations can fortunately be avoided or partially

resolved relying on other imaging techniques that can be used alternatively, but the dis-

cussion of these techniques is out of the scope of this chapter. However, we recommend

the reader to review the excellent article of Barry R Masters [189] for further details.

(a) (b)

Figure 7.1: A comparison between two images having the same field capturing BPAE cells us-
ing brightfield (a) and fluorescence (b) microscopy showing how fluorescence microscopy can
radically improve the contrast in a transparent specimen. The fluorescent labeling of nucleus
in yellow and actin in red significantly improves the contrast allowing to see the detailed cell
structure. (Source:Thermofisher Scientific [191])

https://www.thermofisher.com/ch/en/home/life-science/cell-analysis/cell-analysis-learning-center/molecular-probes-school-of-fluorescence/fundamentals-of-fluorescence-microscopy/how-fluorescence-microscopy-works.html
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7.1.3 Types of Fluorescence Microscopy

There are multiple types of fluorescence microscopes that range from basic ones with

simple optical setups to advanced ones having complicated designs including:

1. widefield epi-fluorescence microscope, illustrated in Figure 7.2,

2. laser scanning confocal microscope, illustrated in Figure 7.3,

3. multi-photon fluorescence excitation microscope, illustrated in Figure 7.4,

4. light sheet fluorescence microscope1,

5. and total internal reflection fluorescence microscope, illustrated in Figure 7.5.

By and large, the widefield epi-fluorescence microscopy (Figure 7.2) is the most com-

mon configuration. In this setup, the light source, that is typically a mercury or xenon

lamp, illuminates the sample through a filter that selects a specific band of wavelengths

for exciting the specimen through an objective lens. The incident light gets absorbed by

the fluorophores to excite the specimen. This excitation is followed by an isotropic emis-

sion of fluorescent light that is collected along with the elastically scattered light from

the illumination source by the objective lens and detected either by a CCD camera or

naked eye.

The epi-fluorescence microscope collects the emission radiation from all the directions

that are located within the field of view of the objective lens of the microscope. Moreover,

the excitation light is absorbed by the specimen before and after the focal plane of the

objective lens. Consequently, the reconstructed image will reflect a sharp picture of the

light at the focal plane superimposed to out-of-focus radiation from the other regions;

which will in turn degrade the quality of the final image. This issue is resolved in the

confocal microscope by focusing a laser beam at the same plane where the focal plane of

the objective plane is located and inserting a pinhole in front of the detector to block all

the light that is not collected from the focal plane. A clear image of the object can then

be seamlessly obtained as shown in Figure 7.6.

The other types are also quite important and have significant applications to neuro-

biology, but their discussion is beyond the scope of this sequel. In the following section,

we will discuss the optical setup of the widefield epi-fluorescence microscope and our

approach to build a computational model that can simulate its imaging pipeline on a

physically-plausible basis. In Chapter 8, we will provide an extensive discussion about

the simulation of the optical setup of the light sheet microscope.

1 The optical setup of the LSFM will be discussed in Chapter 8.
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Figure 7.2: A cross-sectional diagram of a modern epi-fluorescence microscope. This image is
obtained from the following source: Zeiss [192].

Figure 7.3: A cross-sectional diagram of a spinning disk confocal scanning microscope. This unit
is equipped with filter wheels and two camera ports for dual-color fluorescence imaging. This
image is obtained from the following source: Zeiss [193].

http://zeiss-campus.magnet.fsu.edu/articles/basics/fluorescence.html
http://zeiss-campus.magnet.fsu.edu/articles/spinningdisk/introduction.html
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Figure 7.4: A comparison between the optical configurations of the confocal microscope and the
two photon microscope. This image is obtained from the following source: MicroscopyU [194].

Figure 7.5: A cross-sectional diagram of an inverted total internal reflection fluorescence micro-
scope. This image is obtained from the following source: Olympus [195].

https://www.microscopyu.com/techniques/multi-photon/multiphoton-microscopy1
https://www.olympus-lifescience.com/en/microscope-resource/primer/techniques/confocal/applications/tirfmintro/
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(a) (b)

Figure 7.6: A comparison between the imaging of axon boutons labeled for GAD67 in green
using the epi-widefield (a) and confocal (b) fluorescence microscopes. The blue color represents
a pyramidal cell stained with Nissle substance. The quality of the image captured by the confocal
microscope is much higher than that recorded with the epi-widefield microscope due to the
filtration of the out-of-focus radiation using the pinhole that is added in front of the detection
unit allowing to resolve the small structures in the image. (Source: Sweet et al. [196])

7.2 computational modeling of widefield epi-fluorescence microscopy

7.2.1 Epi-fluorescence Microscope Setup

The basic working principle of a properly configured epi-fluorescence microscope is to

illuminate the specimen with a particular band of wavelengths, and then filter the weak

fluorescence signal from the excitation light. This configuration is essential to guarantee

a high contrast image that results only from the fluorescent structures in the sample.

The optical setup of a typical epiwidefield fluorescence microscope, illustrated in Fig-

ure 7.7 (a), is composed from the following basic components:

1. A light source that can be a xenon arc, a mercury vapor lamp, a metal-halide lamp,

a powerful Light Emitting Diode (LED) or most commonly a laser source2.

2. A set of excitation and emission filters. The excitation filter is used to narrow the

spectral band of the illuminating light source to the wavelengths that are employed

to excite the specimen. The emission filter is added to the optical path to allow the

transmission of the desired wavelengths of the fluorescence spectra emitted from

the specimen towards the detection unit and also to block all the light that is passed

through the excitation filter.

2 The spectral emission profiles of the different lamps are illustrated in Appendix D.
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3. A beam splitter or dichroic mirror that can reflect the excitation light towards the

specimen and simultaneously transmit the emitted light from the specimen back to

the detection system.

4. A CCD camera for recording the fluorescence emission and then transmitting the

signal for display on a computer screen.

A light with specific wavelengths, usually in the UV range, is created from the

illumination unit by passing a multi-spectral light beam through an excitation filter.

Those wavelengths that go through the excitation filter are reflected by a dichromatic (or

dichroic) mirror into the microscope objective to excite the fluorescent structures in the

specimen. Few nanoseconds after the excitation, the specimen fluoresces, and the emitted

light is collected by the objective lens to be transmitted through the dichromatic mirror,

filtered by an emission filter to suppress the unwanted excitation wavelengths and sub-

sequently recorded by a CCD detector to create a fluorescent image of the specimen. It

is important to note that the emitted light is re-radiated isotropically — or spherically3

— in all the directions regardless to the direction of the excitation light. The following

sections will present our approach of building computational models of the different

components of the epi-fluorescence microscope that will be employed later to create in

silico images of fluorescent neocortical models.

7.2.2 Illumination Unit Model

The illumination unit of the fluorescence microscope must be capable of delivering a

light beam with the following characteristics:

1. It has to be homogeneous with uniform output intensity.

2. It must provide aconvenient illumination power that would be sufficient to illumi-

nate the specimen without destroying it.

3. It mush have constant illumination power that guarantees no flickering.

4. It must be able to illuminate the specimen with all the wavelengths that are required

to excite all the fluorescent probes in the tissue.

Unlike the light transmitted microscope, see Figure 6.4, the optical components of the

illumination unit in the fluorescence microscope are arranged to irradiate the specimen

from the above. This is why the illuminator in the fluorescence microscope is called an

epi-illuminator4. This arrangement is illustrated in Figure 7.7 (b).

3 The anisotropy factor in this case equals to zero.
4 Epi-illumination means reflected light illumination.
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Figure 7.7: A typical optical setup of the conventional widefield epi-fluorescence microscope in
(a). A high level diagram of our computational model of this microscope in (b).
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Similar to the illumination model in the brightfield microscope, the illumination unit

in this system is modeled by a collimated area light source that can have multiple emis-

sion spectra depending on the input configuration to the system. The wavelength of the

illumination unit can be selected from xenon or hg or laser source based on the experi-

ment itself. However, the position of the light source is located in the same side of the

acquisition, i.e. on top of the specimen. Also this model integrates a set of spectral filters

that can narrow the excitation bandwidth of the light source, unless a laser source is

selected.

7.2.3 Acquisition Unit Model

The design on acquisition unit model is also based on that of the TLBFM. The model

has been extended by adding a set of filters to allow the filtration of certain wavelength

bands that can discriminate the fluorescence light from the excitation beam.

7.2.4 Modeling Light Interaction with Fluorescent Brain Tissue

The two fluorescence models developed in Chapter 4 and Chapter 5 are integrated in two

separate volume integrators to simulate the interaction between the exciting light and the

fluorescent structures of the tissue. As discussed in Chapter 2, the virtual specimen can

be annotated with multiple fluorescent dyes, where each voxel in the model indexes a

specific dye with certain spectroscopic and optical characteristics.

7.3 in silico fluorescence microscopy of neocortical tissue models

The in silico epi-fluorescence microscope discussed in Section 7.2 is applied to render

synthetic fluorescent optical sections of the neocortical models. Those renderings are

then utilized for the following purposes:

1. Validating the performance of the structural and operational aspects of our micro-

scopic model.

2. Verifying the performance of the two optical models of fluorescence that have been

derived in Chapter 4 and Chapter 5 after their integration into the simulation frame-

work of the fluorescence microscope.

3. To demonstrate the applicability of our computational modeling framework to per-

form physically-correct in silico fluorescence imaging experiments under various

illumination conditions and also for diverse tissue models.
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7.3.1 Fluorescent Neocortical Tissue Models

The results are demonstrated using two sets of tissue models. The first one consists of

a single L23−NBC neuron, see Figure 7.8, that is virtually injected with five different

fluorescent dyes from the Alex Fluor family5. The other set is created from a large scale

microcircuit that resembles a digital reconstruction of a slice composed of three adjacent

neocortical columns. The neurons composing this model are selected randomly with

relatively low cell density (15%).

7.3.2 In Silico Imaging of Different Fluorophores

Figure 7.9 shows a set of in silico fluorescence images of the L23−NBC cell when virtually
injected with multiple fluorophores from the Alexa Fluor family: Alexa Fluor 488, Alexa

Fluor 405, Alexa Fluor 532, Alexa Fluor 568 and Alexa Fluor 610. The virtual specimen

is excited with a uniform collimated laser beam at the corresponding maxim excitation

wavelength of each respective fluorophore.

To validate the performance and the integration of the fluorescence models, the emis-

sion spectra analyzed from these images were compared to the emission spectra of the

respective dyes that were measured in the lab.

7.3.3 Varying Optical Depth of Field

Figure 7.10 shows the effect of varying the parameters of the lens system in the acquisi-

tion unit on the amount of out-of-focus radiation for a single optical section taken at the

same focal distance of the detection objective. The result of this test is sufficient to verify

the operational aspects of our model and its implementation.

7.3.4 In Silico Fluorescence Imaging of Neocortical Slices

Figure 7.11 demonstrates the imaging of large scale neocortical tissue model that is recon-

structed from a slice circuit containing three adjacent columns with relatively high cell

density. The detection objective is focused at the middle of the slice at the axial direction.

This is why some cells are out-of-focus and therefore blurry.

5 The spectral characteristics of the Alexa Fluor fluorophores including their excitation and emission spectra,
quantum yield and colors are summarized in Appendix D.
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7.4 conclusion

In this chapter, a computational model of the widefield epi-fluorescence microscope is

presented. Figure 7.12 shows a high level overview of the model, its components and

their parameters. The underlying architecture of this model is based on the physical

principles of geometric objects and Monte Carlo ray tracing. The modeling of the acqui-

sition unit is extended from the computational model of the brightfield microscope that

was discussed previously in Chapter 6. The model is applied to create different sets of

in silico fluorescence optical sections of multiple fluorescent-tagged neocortical tissue

models.
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(a) Alexa Fluor 488

(b) Alexa Fluor 405 (c) Alexa Fluor 532

(d) Alexa Fluor 568 (e) Alexa Fluor 610

Figure 7.9: In silico optical sections for the same neocortical neuron filled with multiple fluo-
rophores from the Alexa Fluor family: (a) Alexa Fluor 488, (b) Alexa Fluor 405, (c) Alexa Fluor
532, (d) Alexa Fluor 568 and (e) Alexa Fluor 610. All the neurons are illuminated with collimated
laser beams at a wavelength that corresponds to the maximum excitation of each respective dye.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.10: In silico fluorescent optical sections of a single neocortical neuron that is virtually
injected with Alexa Fluor 488 fluorophore. The volume is illuminated with a collimated laser
source that corresponds to the maximum excitation wavelength of the fluorophore. The optical
sections are created at different lens parameters to reflect the influence of depth of field on the
resulting image. The lens radius of the camera model is gradually increasing from (a) to (i). The
entire neuron in (a) is in focus as a result of using a pin-hole camera that has a lens radius of zero.
Increasing the lens radius accounts for sharp focus only at the focal plane and higher blurring
otherwise. This is demonstrated in (h) where the soma is only in focus and the arbors are totally
blurry.
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Figure 7.11: In silico fluorescence optical section of neocortical slice composed of three adjacent
columns. The neurons are injected intra-cellularly with GFP. This virtual specimen is illuminated
with a nm collimated light source that corresponds to the maximum excitation wavelength of the
GFP.
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Chapter 8
in silico light sheet fluorescence microscopy

During the last decade, light sheet fluorescence microscopy1 (LSFM) was rediscov-

ered to establish a significant non-destructive imaging method with growing im-

portance for neurobiology. The technique combines several high-content dynamic capa-

bilities convenient for live imaging studies in developmental biology [197, 198]. It can

be used to reconstruct and build detailed three-dimensional atlases of entire brain vol-

umes at cellular resolution. For example, Ahrens et al. applied this imaging method to

unravel the functional aspects of the whole brain of zebrafish at single cell level [199].

Compared to widefield or confocal fluorescence microscopes, this technology is capable

of scanning thick transparent tissue samples tagged with fluorescent substances with

minimal damaging effects such as phototoxicity and photobleaching [200, 201]. The re-

cent advancements in LSFM techniques have turned it out to be an extremely convenient

tool for imaging large and clarified specimens to reconstruct their structural aspects [202,

203].

The first part of this chapter gives a brief introduction to the history of LSFM and

its importance in neuroscience. Then, the optical setup of the LSFM is discussed to high-

light its advantages compared to other typical microscopic setups used for fluorescence

imaging. In the second part, we present a physically-plausible computational model of

the LSFM, including its illumination and acquisition units. This LSFM model is applied

to create unbiased physically-plausible fluorescent images adhering to the energy conser-
vation law, aiming to making them comparable to those produced by the actual imaging

system.

8.1 introduction

8.1.1 Historic Perspective & Rediscovery

Although light sheet microscope has become widely popular in neurobiology only a

few years ago, the idea, design and fundamental concepts underlying this technique

were developed over a century ago (between 1902-1903) by Richard Zsigmondy and

Henry Siedentopf. During that time, it was called the slit-ultramicroscope or simply the

1 The technique is called single or selective plane illumination microscopy (SPIM) in other contexts.

183
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ultramicroscope [200, 204, 205]. The optical setup of the ultramicroscope, illustrated in

Figure 8.1, was quite simple: the sample was illuminated by a diffraction-limited light

sheet obtained directly from sunlight. This beam is then focused and adjusted using a

horizontal split aperture [204, 206]. The main applications of this microscope were not

dedicated to any biological research, but rather, they were driven to address fundamental

observations in colloids physics and gold particles. These applications led Zsigmondy to

earn Nobel prize in chemistry later in 1925.

Due to its simple design, the ultramicroscope did not allow the possibility of creating

multiple optical sections at varying depth of fields by moving the specimen table back

and forth along the optical axis of the microscope. This principle was integrated later

in 1960’s by McLachlan in an extended design of the ultramicroscope called deep-field
microscope. This microscope was only suitable for scanning a few millimeter-sized and

non-biological specimen due to its low magnification and low NA objective lens [207].

Figure 8.1: An artistic rendering of the original design of the slit-ultramicroscope, the first light
sheet microscope invented by Zsigmondy and Siedentopf in 1960’s. The specimen is illuminated
by an orthogonally-placed illumination objective lens. The image is reproduced from [206, 208].

In the early 1990’s, two further extensions of the ultramicroscope were developed to

be used for biological purposes. The first is the orthogonal plane fluorescence optical

sectioning (OPFOS) microscopy, which was developed by Voie et al. for quantitative as-

sessment of hair cell structure and other cochlear features [209–212]. The other is the

confocal theta microscope.

The modern LSFM – shown in Figure 8.2 – is designed to take the advantages of

the recent technological advancements in electronics and optics, mainly CCD and CMOS

cameras, allowing high throughput and acquisition of high resolution images and fast

recording capabilities with high dynamic range.
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Figure 8.2: An artistic rendering of the modern diSPIM head mounted on an inverted microscope.
The image is reproduced from [208].

8.1.2 Advantages of Light Sheet Fluorescence Microscopy

The LSFM has several advantages over traditional fluorescence microscopes including:

1. Speed; since LSFM is designed and optimized for rapid imaging of fluorescent

specimen.

2. Sensitivity; the LSFM is optimized for detecting fluorescent signals with high sen-

sitivity.

3. The LSFM is capable of imaging relatively large specimens that are few millimeters

thick.

4. The LSFM has minimal bleaching artifacts compared to confocal and widefield

microscopy techniques.

5. The light scattering in the illumination plane does not contribute to the final flu-

orescence recorded by the acquisition system, therefore it does not degrade the

quality of the image.
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6. In contrast to confocal and widefield fluorescent microscopic setups, the scattered

illumination contributes to the image formation.

7. The LSFM is capable of controlling the lateral and axial resolutions of the micro-

scope, which can be very helpful for reducing the noise.

For a detailed review of the benefits and challenges of LSFM with other established

fluorescence microscopy techniques and its applications in developmental biology, we

recommend to read the article by Huisken and Stainier [213].

8.2 contributions overview

1. Unbiased physically-plausible simulation of the LSFM imaging pipeline including

illumination and acquisition systems, and light interaction with fluorescent-tagged

volumetric models of the specimen.

2. Qualitative validation of the operational aspects of the microscope.

3. Using the modeling framework to create synthetic LSFM optical sections that re-

semble those created by the actual modality.

4. Evaluating the rendering results in collaboration with domain experts.

8.3 computational modeling of light sheet fluorescence microscopy

8.3.1 Optical Setup

The typical setup of the LSFM is illustrated in Figure 8.3. This optical setup is extended

from a basic epi-fluorescence microscope. The only difference is the illumination system,

which is designed to illuminate the specimen perpendicular to the direction of the optical

axis of the acquisition unit.

8.3.2 Illumination Unit Model

The core of the illumination system guides a single-wavelength laser beam into the op-

tical path of the LSFM via a set of optical elements including mirrors, beam splitters

and optical fibers. Using a beam expander, cylindrical lens (typically with a focal length

= 150 mm) and an objective lens (illumination objective), this illumination unit expands

the input laser beam into a thin light plane (typically 2 - 15 µm thick) that is aligned with

the focal plane of the objective lens in the detection unit. Although the light sheet can

be produced without the illumination objective, the presence of this element is crucial to
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188 in silico light sheet fluorescence microscopy

remove the aberrations caused by the cylindrical lens, and thus improving the quality of

the generated light sheet.

The simulation of the entire illumination unit on an element-by-element basis start-

ing from the laser source and until the generation of the light sheet is computationally

expensive and practically infeasible. An alternative way for performing this simulation

is the direct modeling of the different aspects of the resulting light sheet and ignoring

the complexity of its underlying generation mechanisms. These aspects include its spa-

tial extent, geometric profile, power distribution and wavelength. Traditional LSFMs use

Gaussian beam illumination to excite the specimen. The geometry, illumination profiles,

and field of view (FOV) of the Gaussian light sheet depend on the diameter of the input

laser beam and the numeric aperture (NA) of the illumination objective. This sheet has

a hyperbolic light profile with a Gaussian intensity distribution that is perpendicular to

the propagation direction.

A fundamental limitation of this illumination scheme is the rapid divergence of the

beam (edges are 41% thicker than the beam waist) that prevents the creation of a uniform

thin light sheet with large FOV. The object positioned within the area of the beam waist

is sectioned by a light sheet of almost a constant thickness. Consequently, a focused

Gaussian beam can be fairly approximated by a rectangular profile [214]. This issue was

resolved in advanced LSFMs that replaced the Gaussian illumination with propagation-

invariant Bessel [215] and Airy [216] beams that can yield the same axial resolution and

tenfold larger FOV.

Based on the approximation of the Gaussian beam, we modeled the light sheet by

a thin rectangular directional area light with uniform illumination intensity profile and

a single excitation wavelength. This model does not have any constraints for LSFMs

with Airy and Bessel illuminations, but it is only valid for Gaussian beams when the

illumination objective has high NA and small FOV. However, if the lateral dimension

of the specimen is relatively small, the approximation of the light sheet model is still

effective [217, 218].

The illumination unit is implemented with a collimated area light source that can

excite the virtual specimen with a single wavelength only. The dimensions of the light

source are equivalent to the size of the beam waist of a Gaussian light sheet. The emitting

surface of the light source is not aligned to the same optical axis of the acquisition unit,

but perpendicular to it.

8.3.3 Acquisition Unit Model

Similar to the acquisition units in brightfield and epi-fluorescence microscopes, there are

two main lenses in the acquisition unit: the detection objective that collects the emitted

fluorescence from the specimen across the entire FOV, and an infinity-corrected tube lens
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that projects the intermediate image on the CCD. The coupling between the two lenses

form a telecentric lens system that produces an orthographic view of the acquired optical

section. Although it cannot be used to magnify the specimen, this lens system is still

valid to reflect the physical optical setup of the microscope. As shown in Figure 8.4, the

acquisition unit can be modeled by a thin lens orthographic camera with finite aperture

to simulate the depth of field effects [29, 177]. This model provides an accurate simulation

of the image formation process in the real microscope, however, its performance is subject

to either high sampling rates or importance sampling techniques of the virtual lens to

avoid a noisy image due to Monte Carlo integration. The spectral filters are modeled

with a transparent layer having the same dimensions as the film, placed in front of the

camera. The acquisition module is synchronized with the illumination stage to focus on

the specimen where the illumination sheet is applied.
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Figure 8.4: Microscopic units of a realistic LSFM and our computational model.
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8.4 in silico brain imaging with lsfm

The in silico LSFM discussed in Section 8.3 is applied to perform multiple in silico exper-

iments of imaging different sets of neocortical volumes. These experiments are utilized

for the following purposes:

1. To validate the structural and operational aspects of our microscopic model.

2. To verify the performance of the two fluorescence models that were derived in

Chapter 4 and Chapter 5 after their integration into the LSFM simulation frame-

work.

3. To demonstrate the applicability of our computational modeling framework to per-

form physically-correct in silico LSFM imaging experiments under various illumi-

nation conditions and also for diverse tissue models.

8.4.1 Validation Experiments

The primary results of our in silico LSFM are demonstrated with a 100 µm3 fluorescent

block extracted from the central region of the NCC. The reconstruction of a volumet-

ric model of this block, see Figure 8.5, was described in details in Section 2.8.3. This

block is used to perform two validation experiments. The first is designed to validate the

modeling aspects of the microscope. In this experiment, the volumetric block is virtually

injected with GFP and excited with a 488 nm light sheet at four different thicknesses: 5.0,

7.5, 10.0 and 12.0 µm. The optical setup of this experiment is illustrated in Figure 8.6.

The axial resolution of the LSFM is known to be inversely proportional with the thick-

ness of the illumination sheet due to out-of-focus light contributions. The fundamental

objective of this experiment is to study the influence of varying the thickness of the light

sheet on the amount of blur that will be added to the image due to out-of-focus light.

The variation of the light sheet thickness is addressed to evaluate the modeling of the

acquisition unit and its synchronization with the illumination one. All the other param-

eters of the experiment were fixed. The focal plane of the detection lens is fixed to the

center of the specimen and the excitation wavelength is always set 488 nm to maximize

the emission intensity from the specimen. The results of this experiment are shown in

Figure 8.7. Increasing the light sheet thickness increases the blurring of the rendered

optical section.

The other experiment is designed to verify the integrity of the optical models of flu-

orescence into the LSFM simulation framework. In this experiment, the structural block

reconstructed in the previous experiment is labeled with three different fluorophores:

GFP, CFP and RFP. A thin light sheet (5 µm) is used to sample the block and generate

high resolution optical sections for each virtual specimen. The position of the light sheet
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Figure 8.5: Surface rendering of a neuronal mesh block extracted from a microcircuit recon-
structed from the neocortex of a young rat. The size of this block is 100 µm3. The virtual specimen
used in this chapter was created by converting this model into a fluorescent tagged-volume using
the solid voxelization pipeline illustrated in Chapter 2.
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Figure 8.6: Illustrative diagram for performing in silico LSFM experiments for rendering four
optical sections at various light sheet thicknesses: 5.0, 7.5, 10.0, 12.5 µm. The light sheets are
illustrated in different shades of blue.

is varied across the virtual specimen along its optical axis to render different optical sec-

tions. The focal plane of the detection objective is updated accordingly to align with the

location of the light sheet. The optical setup of this experiment is illustrated in Figure 8.8.

The current structural limitations of the tissue model do not allow to perform sys-

tematic and quantitative comparisons between a synthetic and real optical section. How-

ever, the spectral content of each image is quantitatively analyzed and compared to the

relative emission SPD of its corresponding fluorophore. Figure 8.9 shows the results of

rendering different optical sections from the virtual specimens upon excitation with their

corresponding maximum excitation wavelengths. The emission SPDs were computed for

different excitation wavelengths between 355 and 561 nm. The detected spectral densities

with our rendering workflow (Figure 8.10) match the characteristic emission profiles of

the three fluorophores.

8.4.2 In Silico Brainbow of Clarified Neocortical Models

The complex circuitry of the neuronal tissue imposes further challenges to visualize the

tracts of individual neurons and their connectivity. Certain experiments require precise

reconstruction of multiple neighboring neurons that are extremely close to each others.

Traditional staining experiments cannot be employed to achieve this objective, since we

have to highlight the neurons and meanwhile distinguish them from their neighboring

ones. The remarkable Brainbow method is established to label different neurons in the
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(a) 5.0 µm (b) 7.5 µm

(c) 10.0 µm (d) 12.5 µm

Figure 8.7: Rendering an optical section from a GFP-tagged block with multiple light sheet thick-
nesses: (a) 5, (b) 7.5, (c) 10, and (d) 12.5 µm. The increased blur with thicker light sheets is due to
the detection of out-of-focus light rays.
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Figure 8.8: Illustrative diagram for performing in silico LSFM experiments for rendering three
optical sections at various focal planes for the same neocortical tissue block when tagged with
three different fluorophores (CFP, GFP and RFP).

same tissue block relying on distinct fluorescent proteins that can target specific cells

without labeling their adjacent ones, see Figure 8.11. Each neuron is tagged with a dis-

tinctive color by randomly expressing a mixture of red, blue and green derivatives of

basic fluorescent proteins in the individual neurons. The introduction of this method has

created a revolution in the field of connectomics.

We used the workflow presented in Chapter 2 to create synthetic tissue models that

can express multiple fluorescent proteins and also account for their spectroscopic prop-

erties. Our in silico LSFM is utilized to create synthetic Brainbow images of neocortical

circuitry that can reflect these images acquired by the actual imaging modalities. Fig-

ure 8.12 shows an in silico brainbow image of a small neocortical slice that is tagged with

six different fluorescent proteins (GFP, CFP, eCFP, mBanana, mCherry and mPlum). This

tissue block is illuminated by a light sheet at the maximum excitation wavelength of each

respective dye. This in silico experiment is useful to study the connectivity patterns of

the circuit after the building process and also to evaluate the visual response of different

fluorescent dyes before performing the experiment in vitro.
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(a) GFP

(b) RFP (c) CFP

Figure 8.9: In silico optical sectioning with our in silico LSFM. Those synthetic optical sections
are generated from (a) GFP-, (b) RFP- and (c) CFP-tagged virtual specimens excited with their
respective maximum excitation wavelengths.
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(c) RFP

Figure 8.10: Emission SPDs measured from the rendered images in Figure 8.9 at different excita-
tion wavelengths between 355 and 561 nm. The curves are normalized to the SPD resulting at the
maximum excitation wavelength for each respective case.
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8.5 conclusion

This chapter presented a complete computational model of the LSFM. Similar to the

previous microscopic models discussed in Chapter 6 and Chapter 7, the model consid-

ers the physical principles of geometric optics and Monte Carlo ray tracing to simulate

the optical pipeline of the microscope. A high level overview of this microscopic model

is illustrated in Figure 8.13. The optical models that govern light interaction with the

fluorescent specimen have been developed by extending the monochromatic radiative

transfer equation to account for the spectroscopic properties of fluorophores and their

concentration in the tissue. The model presented in Chapter 4 was constrained to simu-

late the light propagation in low scattering fluorescent models. However, the extension

developed in Chapter 5 overcame this limitation to allow accurate modeling of light

transfer in highly scattering fluorescent tissue models. The LSFM model was applied to

perform in silico optical experiments of imaging the cortical circuitry of a two-weeks old

rat.
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Figure 8.13: A high level diagram of the computational model of the LSFM and its parameters.
The model is applied to perform in silico LSFM experiments using a synthetic neocortical tissue
model that is virtually-stained with multiple fluorescent dyes.
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Part V

C O N C E P T G E N E R A L I Z AT I O N

The introduction of functional Magnetic Resonance Imaging (fMRI) has pio-

neered the neuroscience research to address the mapping of the functional

aspects of the brain. Since its inception about twenty years ago, several mod-

els and simulation studies for blood oxygen-level dependent (BOLD) fMRI

have been proposed and extensively discussed. Most of these research stud-

ies have been focused on understanding the underlying mechanisms of the

technique. The complexity of fMRI data has challenged the development of

common, precise and physiologically-plausible fMRI simulators, and conse-

quently the data generation models in the majority of the current simulators

are ad hoc. This report reviews the modelling work and numerical simulation stud-
ies of BOLD fMRI that have been covered in the literature to date. Also, the

review lists multiple software simulation packages that have been developed

recently to meet the increasing demands of the fMRI community.
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Chapter 9

computational modeling & simulation of fmri

“ We have a habit of turning to scientists when we want factual answers and artists when
we want entertainment, but where are the facts about the nature of the self? Neurologists
peering at PET scans and fMRIs know they aren’t seeing the soul in there. ”

– James Gleick

There is no doubt that the inception of the functional magnetic resonance imaging

(fMRI) 20 years ago was a significant scientific breakthrough for brain research and

neuroimaging [219]. During this period, fMRI was growing exponentially until it be-

came a standard tool for cognitive studies. The impact of this advanced technology was

associated with the emergence of new scientific fields such as social neuroscience, neu-

roeconomics and neuromarketing [220]. The main advantage of fMRI is its capability of

mapping brain activity noninvasively as it measures the blood oxygen-level dependent

(BOLD) perturbations that arise in response to a neuronal activity that follows a change

in brain state [221–223]. The principle idea of BOLD fMRI is based on the fact that a

neuronal activity will incur perturbations in the cerebral blood magnetism (CBM) that

can be measured by a T∗2 -weighted MRI sequence. This process can be characterized by

a neurovascular coupling model that expresses the vascular response to a neuronal activity

in terms of the cerebral blood flow (CBF), cerebral blood volume (CBV) and the cerebral

metabolic rate of oxygen (CMRO2) [224].

9.1 introduction

Despite its importance and the wide acceptance the technique has gained since its in-

troduction, the underlying mechanisms of BOLD fMRI in general and the complicated

neurovascular process in particular are not fully understood [225–228]. This limitation

makes the generated datasets with fMRI have no ground truth that can be exploited to

validate the statistical techniques being developed to analyse the measured signals and

assess their properties quantitatively. Moreover, fMRI signals are contaminated by differ-

ent sources of noise mainly due to electronic and physiological artifacts, chemical shift

and the magnetic susceptibility induced by magnetic field inhomogeneities [229]. Several

methods have been developed to establish the missing ground truth such as intra-cranial

electroencephalography (iEEG). Nevertheless, most of theses iEEG studies were not fea-
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sible to reconstruct a precise ground truth [230]. Additionally, various artifact-correction

techniques have been developed to suppress or at least minimize the artifacts that con-

taminate the fMRI signal, but these techniques were based on the analysis of empirically

measured fMRI data, which fail to identify a valid ground truth.

9.1.1 fMRI Modeling and Simulation

Ultimately, the modeling and simulation of fMRI can be used to facilitate understand-

ing the complex dynamics and the different mechanisms involved in the generation of

the BOLD effect quantitatively. Though, realistic simulation of fMRI data is known to

be an extremely challenging mission due to the complexity that characterize the data

itself. This simulation requires very accurate computational models for the neurovascu-

lar responses, different sources of noise and artifacts, a complete MR acquisition system

and above all geometric definition of the anatomy of the brain at different scales. Even

if detailed models for each item in this list were available, combining these features into

a single simulation system is still an inspiring task that requires the collaborations of

interdisciplinary research teams.

9.1.2 Our Objectives

In this chapter, the different modeling and simulation contributions of fMRI that have

been presented and discussed in the literature are reviewed. We also refer and highlight

the features of different fMRI simulation packages that have been developed recently

to meet the demands of the community for flexible and standard simulation software

applications.

9.2 the biophysical basis of bold fmri

Obviously, the signaling mechanisms involved in this process cannot be extensively dis-

cussed in this sequel. Thus, this section is just a brief review of the basic physiological

basis of the underlying mechanisms of fMRI. It is though to be very helpful to identify

and highlight the different parameters that are required to model and simulate the BOLD

response. For further details, this set of references will be very helpful in this regard [222,

231–234].

Moreover, since the majority of fMRI experiments uses BOLD contrast to measure the

brain activity [220], our coverage for the biophysical principles of fMRI will be limited

to BOLD-contrast fMRI only.

BOLD fMRI does not measure the neural activity itself. Instead, it provides an indirect

way to address the functional activity of certain brain region by measuring the changes
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in blood oxygenation levels that happen in response to the local activation of certain

functional network of neurons in this brain region. The BOLD signal emerges within the

vasculature as a result of the concentration changes of the de-oxygenated hemoglobin

(deoxyHb) that depends directly on the CBF, CBV, and CMRO2. During the neural ac-

tivity, the CBF increases much more than the CMRO2. This results in more oxygenation

of the venous blood that is accompanied with susceptibility changes of the blood and

creates magnetic field gradient around the vessel (see Figure 9.1). This happens because

the deoxyHb is more magnetic, i.e. paramagnetic, than oxygenated hemoglobin (oxyHb),

which is virtually resistant to magnetism, or diamagnetic. This effect gradually changes

the T∗2 relaxation time and finally causes changes in the detected MRI signal over time.

This improvement can be mapped to show which regions of the brain are active at a time.

Figure 9.2 summarizes the biophysical principles of BOLD fMRI in a simplifying block

diagram.

9.3 data generation models for bold fmri

There are two approaches to generate fMRI simulation data. The first and most common

one considers pure synthetic simulations and the other uses a hybrid simulation strategy. The

first approach relies completely on rigours or simplified mathematical models to reflect

the characteristics of the measured fMRI signals. In the hybrid approach, the generated

fMRI combines a realistic dataset acquired at resting state added to synthetic activation

data. Although the noise in this case is representative for real data, the parametrization

or the manipulation of this noise in the resulting simulated fMRI data is not applicable.

This reason obviously accounts for the widespread acceptance of the first approach in

the literature [236].

Bellec et al. have discussed two simulation models for fMRI data and evaluated their

performance relying on the bootstrap framework in a completely controlled environ-

ment [237]. The first model, Equation (9.1), adds a mixture of multiple components,

mainly a baseline signal b(t), the BOLD activation signal BAct(t) and random noise n(t)

(for example [238, 239]).

BSim(t) = b(t) +BAct(t) +n(t) (9.1)

The second model adds a non-linear term to account for the motion artifacts either

using spatial interpolation [240, 241] or a first principle model of MR physics [242–244].

The advantage of the additive model is its flexibility that allows control over the signal-to-

noise ratio and the profile of the activated region. The majority of the simulation studies

have relied on the pure synthetic approach to generate the fMRI simulation data [236].
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Figure 9.1: The structural content of a unit volume (voxel) in the visual cortex of a monkey. The
stained image to the left shows a Nissl slice extracted from the cortex. The central image depicts
the relative density of the blood vessels in the same area of the cortex. The vessel diameter is
color coded. The three-dimensional reconstructions demonstrate the difference in the diameters
of the blood vessels and the spatial distribution of a group of neurons between the blood vessels.
Image courtesy of Nikos K. Logothetis (Macmillan Publishers) [235].

9.3.1 Baseline Models

The modeling of the baseline signal was quite straightforward. It was assumed to be zero

or constant value in some cases, and time-varying in other cases to reflect the intensity

variations of the signal. The time-varying case was used by Backfrieder et al. to model

thermal shifts [241].

9.3.2 BOLD Activation Models

The classification of the BOLD activation models will be covered in depth in Section 9.4.
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Figure 9.2: A simplified block diagram of the underlying principle of fMRI within a single voxel
starting from the stimulation activity and until the generation of the BOLD signal.
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9.3.3 Noise Models

Roughly, the noise models were always involved in the generation of synthetic fMRI

simulation data. Gaussian noise was used in most of the models and other models have

added to it some drift. A little number of simulations have used experiment-specific noise

models to account for some artifacts of the BOLD signal such as physiological noise or

motion-correlated noise.

9.4 bold activation models

Due to the fact that the BOLD response detected in most of the fMRI studies is merely

an indirect measure of the neuronal activation, precise models of the BOLD response do

not exist so far. A clear understanding of the exact underlying biophysical principles of

the neural activation and the observable BOLD response requires a rigours mathemati-

cal model that can link the two variables. Consequently, most of the modeling studies

of fMRI do not attempt to model the neuronal activation at such biophysical detail and

only assume that the neuronal activation can be addressed by an abstract latent vari-

able [220, 245]. Their hypothesis was set such that a linear time-invariant relationship

governs the transformation of the neuronal activation directly into the BOLD response.

This model allows exploiting powerful analysis tools such as linear regressions and sta-

tistical tests [246].

Several studies have addressed the validity of this linear relationship. Some of them

have confirmed that its deviation from linearity is not severe as long as the triggering

events are separated by few seconds and the duration of the exposure is larger than a

certain threshold [220, 247, 248]. The others studies which involved different measure-

ment modalities have accounted for this non-linearity mainly due to the hemodynamic

effects [249, 250].

These conditions were enough such that the BOLD response Bi(t) can be described by

a linear system in terms of the input neuronal activation Ni(t). The transfer function of

this model fTF represents all the complex mathematical transformations that potentially

contribute to the conversion of the neural activation Ni(t) into the BOLD response Bi(t)

where

Bi(t) = fTF[Ni(t)] (9.2)

Relying on the superposition principle of linear systems, the BOLD response Bi(t)

can be obtained if the neural activation can be represented by an impulse function. In

this case, the BOLD response is called the hemodynamic response function (HRF) h(t).

This is called the general linear model (GLM), where the HRF is seen to be a hypothetical

BOLD response to an impulse neuronal activation. This means that the BOLD response
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Bi(t) to any complex neuronal activation Ni(t) can be computed from the convolution

integral described by Equation (9.3) if the HRF is known a priori.

B(t) =

∫t
0

N(τ)h(t− τ)dτ (9.3)

It is obvious from this previous integral in Equation (9.3) that the HRF can be simply

obtained if the input activation was an impulse. Nevertheless, such experiment is not

practically feasible because we do not have a direct control over the input neuronal

activation.

9.4.1 Models for the Estimated HRF

Specific estimated models for the HRF can be used based on experimental observations

and previous knowledge characteristics of the function. There are two basic and famous

models that have been used to estimate the HRF: the gamma function [247, 251] and the

difference of two gamma functions1 [252, 253]. The two models are depicted in Figures 9.3a

and 9.3b.

(a) The Gamma function model of the HRF (b) The canonical model of the HRF

Figure 9.3: Estimated models of the BOLD HRF.

9.4.2 Biophysically-plausible Models of the BOLD HR

The standard convolution models and the BOLD HR estimations presented in the previ-

ous section are blind to any physiological processes that result in the BOLD signal. They

can only reflect a simplification of a chain of physiological effects and complex mech-

anisms that extend between the neuronal activation and the generated BOLD response.

A more realistic approach is to investigate the causal models of how BOLD responses

are generated. These causal models require deep and crystal-clear understanding of the

different biophysical mechanisms that translate the neuronal activation into a detected

BOLD signal, as seen in Figure 9.4.

1 Also known by the canonical HRF.
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Following a neuronal activation, these physiological mechanisms can be briefly sum-

marized in the following points:

1. The demands of each activated neuron for the oxygen and glucose increase.

2. The cerebral metabolic rate of consumption of the glucose (CMRGL) and the oxy-

gen CMRO2 increase.

3. The extraction rate of glucose and the oxygen molecules from the blood stream

increases.

4. The higher supply of glucose and oxygen causes the CBF to increase.

5. The increased CBF cause the venous vessels to dilate according to their visco-elastic

properties.

6. The CBF effect dominates over those of the CMRO2 and CBV, and consequently,

blood becomes more oxygenated.

7. The susceptibility is changed and the MR signal increases.

Figure 9.4: The underlying physiological processes that account for the generation of the BOLD
response. Image source: [245]

.

Each of the previous points requires a complex physiological model in order to be

able to formulate an accurate and complete biophysically-plausible model of the BOLD
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HR. During the last decade, there have been sustained efforts to model each individual

mechanism that is suspected to contribute to this chain of effects. According to the classi-

fication proposed by Buxton et al. [254] and Deneux and Faugeras [245], the biophysical

models of the BOLD response can be divided into the following categories:

1. Models for neural basis.

2. Models for energy consumption and metabolism.

3. Models for blood flow (CBF).

4. Models for vasculature dynamics (CBV).

5. Models for oxygen extraction.

6. BOLD signal models.

Models for Neural Basis

A neural basis model would be valuable to identify the main neuronal activity that affects

the BOLD response. Mathiesen et al. have discussed a sigmoid dependence of the CBF

on LFP [255]. Logothetis et al. have concluded that the BOLD response is proportional

to intra-cortical processing of a given brain area and not due to its spiking activity [256].

Kim et al. have shown a high correlation between the LFP and the amplitude of the BOLD

response measured in the same region [257]. Friston et al. have presented the dynamic

causal modeling (DCM) that was considered the first step to present comprehensive

forward models that take into account parameters at the neuronal level to model the

causal chain starting from the external stimulus to the BOLD response [258].

Models for Energy Consumption and Metabolism

Aubert and Costalat have presented a relatively sophisticated mathematical model that

accounts for the different mechanisms involved in the oxygen metabolism for a given

neural activity [259]. This model was used to simulate the BOLD responses for several

patterns of neuronal activities and different assumptions for the changes of the CMRO2
signal. Davis et al. have presented another model that only accounts for the CMRO2
response using a step function [260]. Buxton et al. have proposed a more relaxed model

by convolving the neuronal activity with a gamma-variate function [254].

Models for Blood Flow (CBF)

Four neurovascular coupling models were discussed extensively in the literature [245,

261]. Based on an empirical approach, Miller et al. have considered a non-linear relation

between the CBF and the BOLD signal [249]. Friston et al. have proposed a damped
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oscillator model that relates the CBF to a flow-inducing signaling mechanism [261]. Their

model accounts for the CBF in terms of the neuronal activity, blood flow value at resting

state, neural efficacy and auto-regulatory feedback time constant. Behzadi et al. have

extended Friston’s model to account for the changes in the muscular compliance of the

cerebral arteriole [262].

The previous models provide a more realistic reflection of the blood flow that that

presented by Buxton et al. that convolve the neuronal activity with a gamma-variate

function [263].

Models for Vasculature Dynamics (CBV)

Vasculature models have to account for the density of blood in a fixed volume, or the

perfusion (CBV). In general, the dynamics of CBV and CBF depend on each others ac-

cording to the visco-elastic properties of the vasculature. Grubb has proposed a very

simplified model to link the two variables relying on a power law V = Fα. The Grubb’s

constant α was estimated between 0.25 and 0.4 [245]. This model is only valid in steady

state and thus, a dynamic model is necessary to precisely reflect the vasculature response.

Mainly, two reference dynamic models exist. The first one is the Balloon model presented

by Buxton et al. [263] and the other one was proposed by Mandeville et al. and is called

the Windkessel model [264]. The Balloon model has expressed the output flow as the sum

of a linear component and a power law to determine the volume dynamics. The Wind-

kessel model has discussed an analogy between the blood pressions and the CBF. Kong

et al. have improved the Windkessel model to account for the delayed compliance by

modelling it using an additional state variable [265].

Models for Oxygen Extraction

Since deoxyHb molecules cause the paramagnetism responsible for the BOLD signal,

there should be some biophysical models for describing the oxygen extraction from the

hemoglobin molecules in the blood stream. Buxton and Frank have proposed a model

of the dynamics of oxygen delivery to the tissue within the context of the Balloon

model [263, 266]. It was called the Oxygen limitation model. This model has assumed

no capillary recruitment, negligible arteriolar contribution to the volume, zero oxygen

concentration in the tissue and finally the presence of the all the deoxyhemoglobin in

the venous vasculature. As a consequence of the simplification of this model, due to the

previous assumptions, the oxygen extraction rate was found to depend only on the CBF.

A more elaborated model was presented by Zheng et al. called Oxygen tissue transport
model [267]. This model has discarded several assumptions from Buxton’s model. It in-

corporated non-zero concentration of the oxygen into the tissue and established a direct

relation between tissue oxygenation and the metabolic demand.
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BOLD Signal Models

The BOLD signal is generated due to the paramagnetic properties of deoxyHb. This

affects the T∗2 relaxation time of the MR signal as a consequence of the increased inhomo-

geneity of the induced magnetic field. Ogawa et al. have presented a first model to this

effect in [268]. Afterwards, several studies have been developed to introduce improved

models of this effect, but the first attempt of proposing a precise model for the BOLD

signal was taken by Davis et al. [234, 269]. Their model have introduced the relationship

between the BOLD signal changes and the underlying physiological variables of the neu-

rovascular coupling process and few other parameters that characterize the local tissue.

This simplified model was based on several reasonable approximations and previous

outcomes of different numerical simulations [269]. Due to the simplicity of this model, it

was proven to be a very significant step towards the understanding of the BOLD effect

in a quantitative manner. In that regard, Buxton et al. have presented another simplified

model of the MR signal acquisition that links the solution of the Balloon model to an

approximation of the measured BOLD signal [263]. This model computes the changes in

the BOLD signal as a function of the changes in the deoxyHb content in the blood and

the blood volume. The formalism of this model is discussed below.

The basic MR signal in Buxton’s model was represented with the following decaying

exponential function in terms of the echo time TE

S = S0 e
−TER∗2 (9.4)

where S0 is the effective spin density2 and R∗2 is the transverse relaxation rate constant.

This constant is expressed in terms of the T∗2 relaxation time by the following formula

R∗2 =
1

T∗2
= R0 + R (9.5)

R∗2 can be also expressed by the sum of the two terms R0 and R which represent

the value of R∗2 if no deoxyHb is present and the additional relaxation produced by the

deoxyHb respectively.

Few years later, Buxton’s model was updated by Obata et al. to account for the dif-

ference in the intra-vascular and extra-vascular signal contributions to the final BOLD

signal [250]. In this model, the signal measured from a single voxel at resting state S0 is

approximated by a volume weighted sum of the intra-vascular signal SI and the extra-

vascular one SE (Equation 9.6). One of the critical assumptions of this model was the

random and isotropic distribution of the blood vessels in the tissue. Based on this as-

sumption, the intra-vascular signal has neglected the effect of the arterial blood and it

was only assumed to reflect a venous volume fraction V0 merged with the contribution

2 Signal measured at TE = 0
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of the capillaries. The intra- and extra-vascular signals were represented by a decaying

exponential function in terms of R∗2 of each component (Equation 9.7).

S0 = (1− V0)SE + V0 SI (9.6)

S0 = (1− V0)SE0 e
−TER∗2E + V0 SI0 e

−TER∗2I (9.7)

The final BOLD signal that corresponds a neuronal activation was given by

S = (1− V)SE e
−TER∗2E + V SI e

−TER∗2I (9.8)

and the fractional signal changes is given by

δS

S0
=

1

1− V0 + εSV0

[
(1− V) e

−TER∗2E + εs V e
−TER∗2I − (1− V0) − εs V0)

]
(9.9)

where εs = SI/SE represents the ratio of the blood to tissue signal, and the venous

volume fraction V0 was changed to V for generalization.

Assuming a first-order linear approximation, this model was simplified to

δS

S0
≈ −TE δR∗2E − εSV TE δR

∗
2I

+ (V0 − V)(1− εS) (9.10)

where by δR∗2I and δR∗2E represent an increment in the R∗2 of both signal components.

The modelling of these two terms was based on the numerical simulations of Ogawa et
al. [268].

9.4.3 Other BOLD HR Models

According to [236], there are many fMRI simulations that have not used any of the pre-

vious models for representing the BOLD activation in the synthetic fMRI data. Some of

them have ignored the simulation of the BOLD activation component3 BAct(t) entirely

and others have selected a boxcar function Π(t) to reflect it.

9.5 fmri simulation studies

9.5.1 Single Voxel fMRI Simulations

Boxerman et al. have presented an fMRI model to evaluate the intra- and extra-vascular

contributions of a single voxel to the fMRI signal at 1.5 Tesla using Monte Carlo sim-

ulation for modelling the susceptibility-based contrast and physiological model for the

3 Refer to Equation (9.1)
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neurovascular coupling process [270]. The results of their model have shown good agree-

ments with the experimental designs, and therefore they have confirmed that the intra-

vascular components have major contributions to the fMRI signal changes.

In 2008, Pathak et al. have developed a novel modelling technique called the Finite
Perturber Method (FPM) to model the different susceptibility-based contrast mechanisms

for arbitrary vasculature morphologies at the micro-scale [271]. FPM has shown excellent

agreement with the theory and the extant susceptibility modelling data. Later the same

year, Marques and Bowtell have applied a three-dimensional finite element method to a

realistic model of the cortical vasculature to evaluate the reliability of the infinite cylinder

model used previously in the literature [227]. They have used the realistic model to

highlight the relative importance of intra- and extra-vascular contributions to the BOLD

signal.

Martindale et al. have developed a generalization of the Monte Carlo models pre-

sented by Boxernamn et al. [270] that can accurately model the intra- and extra-vascular

signals for an arbitrary tissue with various imaging parameters [272]. This model was

verified against combined measurements of fMRI and optical imaging.

9.5.2 Multi-Voxel fMRI Simulations

The majority of fMRI simulations were performed to compute the BOLD signal in a

single voxel and others have considered only a few number of voxels in their simu-

lations. This limited approach was taken due to the computational complexity of the

algorithm needed or the memory requirements to express the BOLD effect for a four-

dimensional fMRI volume. Such approach cannot be useful if a complete simulation of

three-dimensional spatial distribution of the BOLD signal is required. In 2012, Chen and

Calhoun have proposed an overall multi-voxel BOLD fMRI simulation model. This model

was decomposed into two cascaded stages. The first stages reflects the neurophysiology

of the neurovascular coupling process. It characterizes the neurovascular coupling mech-

anism in terms of susceptibility perturbations for MR signal detection, i.e. it generates

a series of snapshots of three-dimensional susceptibility distributions. The susceptibil-

ity change is expressed in terms of the susceptibility difference between the oxyHb and

deoxyHb χdo, CBV, CBF, CMRO2 and the neuronal activation NA(x,y, z, t) as seen in

Equation (9.11). This stage is based on previous models presented in the literature [266,

273–276]. The other stage simulates the MRI technology that is used to image the suscep-

tibility changes based on similar ideas for single voxel BOLD simulations [277, 278]. The

field map due to the susceptibility map computed in the first stage can be computed by

the convolution operation in Equation (9.12), where h(x,y, z) is represented by a point

dipole filed three-dimensional kernel. The final BOLD signal is generated based on the
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volume integral in Equation (9.13) in terms of the filed distribution δB, the gyromagnetic

ratio γ, and the echo time of the sequence TE.

δχ(x,y, z, t) = χdo f(CBV ,CMRO2)CBV(x,y, z, t)NA(x,y, z, t) (9.11)

δB(x,y, z, t) = conv(δχ(x,y, z, t),h(x,y, z)) (9.12)

SBOLD(xi,yi, zi) =
∫ ∫ ∫

exp(i γ δB TE)dxdydz (9.13)

9.5.3 Multi-resolution BOLD Models

Chen and Calhoun have presented a computational multi-resolution (four levels of res-

olution) model for BOLD fMRI [279]. They were motivated to use this model in a nu-

merical simulation in order to capture and understand several aspects of the BOLD sig-

nal formation at different scales. This model has considered multiple spatial scales that

range from the atomic scale (10−6m) and up to the millimeter scale (10−6m) based on

a spin packet model presented in their previous study [280]. Their model has involved

bulk nuclear spin precession in a BOLD-induced inhomogeneous magnetic field with

a millimeter-resolution voxel. The model has considered the partitioning of the nuclear

spin pool into spin packets at a macroscopic scale and calculating the multi-resolution

voxel signal by grouping the spin packets at a mesoscopic scale. Based on this multi-

resolution model, and assuming a small-angle approximation, they have concluded that

the BOLD signal intensity is related to its phase counterpart by a two-resolution-level

relationship.

9.5.4 fMRI artifacts Simulations

According to Drobnjak, early fMRI simulators have used naïve techniques to generate

the synthetic fMRI data [229]. These techniques were based on using existing MRI data

and artificially integrate into this data an activation time-series to reflect the behaviour

of the activated brain regions in response to an external stimulus. The spatial distribu-

tions of the assigned activations were pre-defined to certain voxels in the brain image.

In some studies, these voxels were determined relying on the results of previous exper-

iments [281] and in others they were manually selected based on the region of inter-

est [282–285]. The objective of these simulators was only dedicated to generate synthetic

fMRI data for static objects without considering any motion artifacts.

Drobnjak and his colleagues have presented an advanced computational model for

the fMRI acquisition process that takes into account different sources of artifacts in the
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fMRI signal. This model was used later in the development of an extensive software tool-

box that can simulate these artifacts including rigid-body motion, magnetic field inho-

mogeneities, chemical shift and eddy currents [242, 286]. Their simulator was dependent

on three main components: (1) a mathematical model of the BOLD activation, (2) a three-

dimensional geometric representation to model the brain and (3) a model to solve Bloch

equations. Further details on the development of the different models for the simulator,

its numerical implementation and its validation procedures are present in [229].

9.6 simulation software applications

The main obstacle that have blocked the generalization and sharing the simulation results

of fMRI to the community was the absence of flexible software architectures that could

be used to unify and standardize the simulation procedures. Major contributions and

research studies have created their synthetic fMRI datasets mainly relying on their in-

house fMRI simulators that would not fit for other studies [236, 287]. Fortunately, during

the last four years, the introduction of several open software packages have reduced this

gap and met the demands of the community. This section highlights the features of two

software applications that are continuously developed and released to the community

on a regular basis.

9.6.1 fMRI Simulation Toolbox (SimTB)

Allen et al. have developed a flexible MATLAB-based fMRI simulation environment

called SimTB for generating synthetic fMRI datasets and verifying a huge variety of

statistical analytic methods [288, 289]. The underlying structure of this toolbox is based

on spatio-temporal separability assumptions of independent component analysis (ICA)

such that the resulting data can be expressed by the product of time courses and spatial

maps. This package is capable of systematically capturing the characteristics of realistic

fMRI data. The flexibility of this software package comes due to the full parametrization

and user controllability of the data generation model employed to generate the synthetic

datasets. SimTB is designed to allow MATLAB beginners to easily design and execute dif-

ferent types of simulations. For this reason, it was provided with friendly graphical user

interface (GUI) and also comes with batch scripting support to automate and customize

the simulation process. Figure 9.5 illustrates a flowchart for the data generation model

in SimTB. The software package is freely downloadable at [290] and its documentation is

available online at [291] .
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Figure 9.5: Data generation sequence of synthetic fMRI datasets in SimTB. Image courtesy of
Allen et al. [288]

9.6.2 neuRosim

Welvaert et al. have developed an R-based software package for simulating fMRI data

called neuRosim [292]. They aimed to provide an open tool for fMRI simulation that can

spark the researchers to focus their studies on further validated simulation methods for

fMRI data to generalize the results of the simulation studies. The application of neuRosim

can be of importance for two kinds of researchers. On one hand, it can be used to evaluate

the performance of fMRI designs for particular research question. On the other hand, it is

a very useful tool for theoretical modelling scientists and statisticians to validate existing

and new fMRI interpretation methods based on the analysis of the generated data.

Currently, there are three different response functions (Figure 9.6) that can be simu-

lated in neuRosim:

1. A gamma-variate HRF based on the model presented by Buxton et al. [254]. This

function is implemented in the procedure gammaHRF.

2. A double-gamma HRF based on the model presented by Friston et al. [252]. This

function is implemented in the procedure canonicalHRF.

gammaHRF
canonicalHRF
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3. The Balloon model presented by Buxton et al. [254] is implemented in the balloon

procedure.

Figure 9.6: The simulated BOLD signals based on the three convolution functions implemented
in neuRosim for a 20-seconds ON/OFF block design. Image courtesy of Welvaert et al. [292]

Moreover, neuRosim supports several various functions to model different types of

noise in fMRI signals.

1. Drift signals based due to system noise can be simulated with the lowfreqdrift

function.

2. Physiological noise due to the cardiac and respiratory artifacts is implemented in

the physnoise function.

3. Task-related noise due to the spontaneous neuronal activity is implemented in the

tasknoise function.

balloon
lowfreqdrift
physnoise
tasknoise
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9.7 conclusion

The modelling and simulation of fMRI is known to be an extremely challenging research

topic due to the complexity of the data and its underlying causal mechanisms. Realistic,

or biophysically-plausible, simulations of fMRI are subject to the development of sophis-

ticated models that can capture and reflect the potential signalling mechanisms that ac-

count for the generated BOLD response. This review has summarized the different mod-

elling work, numerical simulation studies and software simulation packages of BOLD

fMRI that have been reported in the literature to date. The categories of the underlying

models are highlighted in Figure 9.7.

Constant

Time Varying

Estimated HRF Models

Physiologically-

plausible Models

Random

Experiment Specific

Baseline Models

BOLD Activation Models

Noise Models

Pure Synthetic Data Generation Models

Neural Basis Models

Energy Consumption and 

Metabolism Models

Blood Flow (CBF) Models

Vasculature Dynamics 

(CBV Models)

Vasculature Geometric 

Models

Oxygen Extraction Models

BOLD Signal Models

Physiologically-plausible Models

fMRI Data Generation Models Hybrid 

Data Generation Models

Figure 9.7: A block diagram summarizing the data generation models for fMRI simulations.
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Chapter 10
conclusions , perspectives and future work

“ This is not the end. It is not even the beginning of the end. But it is, perhaps, the end
of the beginning. ”

– Winston Churchill

The research presented in this dissertation is motivated by the Blue Brain Project, a

pioneering endeavor aiming to reverse engineer the mammalian brain. In 2015, the

project published a first draft digital reconstruction of neural microcircuitry of the so-

matosensory cortex of a two-week-old juvenile rat. We presented a novel approach and a

set of methods, including various optical and microscopic models, for generating physi-

cally plausible visualizations of the reconstructed microcircuitry. The methods represent

a significant step forward with respect to established ones that are based primarily on

visual plausibility. The optical models adhere to the physical principles of geometric op-

tics, and their solution was approximated using Monte Carlo ray tracing, allowing us to

generate realistic renderings of neocortical tissue models as they would appear under

different types of optical microscopes. Our methods are applied to simulate the opera-

tional aspects and image formation process for three optical microscopes: transmitted

light brightfield, epi-fluorescence and light-sheet fluorescence microscopy.

10.1 what was missing?

Creating highly realistic visualizations (similar to their appearance under microscope) of

neocortical microcircuitry on a physically plausible basis requires three principal compo-

nents:

1. Rigorous mathematical (or optical) models that govern light transport in participating

media in addition to its interaction with the different structures of the neocortical

tissue.

2. Realistic tissue models that capture the structural aspects of the real tissue including

its components (neurons, glia, vasculature, etc...), geometry and optical properties

(absorption, scattering and attenuation).

3. Physically-based simulation of the imaging pipeline of the microscope.

231



232 conclusions , perspectives and future work

10.2 key contributions

The contributions discussed in this thesis were focused on building these missing com-

ponents to address the following questions:

How can we exploit the principles of scientific visualization to create synthetic images of
neocortical circuitry that reflect those generated by real imaging instruments? and How useful
this approach can be in the context of simulation-based neuroscience?

Our solution comprised three key contributions. The first is a tissue modeling frame-

work for creating realistic volumetric models of neocortical circuitry. The second consists

of physically plausible optical models for modeling light interaction with fluorescent brain

tissue structures. The third is a microscopy modeling framework for simulating the imag-
ing pipelines of specific optical microscopes that are commonly used in neuroscientific

research studies.

Volume Reconstruction of Large Scale Neocortical Models

An essential requirement for rendering a realistic image of a volumetric object is an

accurate model that reflects its geometric structure and optical properties. In the past, it

was not possible to create realistic and physics-ready models of neocortical circuitry that

would fulfill these criteria. Volumetric models of neurons are typically based on mesh

models that are derived from neuronal morphological skeletons. The mesh models must

be watertight, however, the digitization procedures used to reconstruct the morphologies

are known to affect the quality of the skeletons. Therefore, such morphologies cannot be

converted into watertight mesh models.

This issue is resolved with an effective algorithm for creating piecewise-watertight

polygonal mesh models of neocortical neurons from their morphological skeletons. These

piecewise-watertight meshes are then utilized to synthesize plausible volumetric mod-

els of their corresponding neurons with solid voxelization. The volumes are annotated

with the optical properties of the neocortex based on a recent study by Azimipour et
al. [25]. When the created volumes are used to simulate fluorescence experiments, the

annotation includes the spectroscopic properties of the fluorescent dyes involved in the

simulation. The meshing and voxelization algorithms have been implemented in an effi-

cient framework designed to allow parallel volume reconstruction on high performance

visualization clusters.

Unbiased Rendering of Fluorescent-tagged Volumetric Models

Numerous research studies in computer graphics have attempted to simulate light trans-

port in volumetric media [139]. The majority of these studies modeled phenomena such
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as absorption, scattering, reflection and refraction using the ray theory of light. Never-

theless, they ignored fluorescence due to its limited practical value for rendering natural

scenes. The first steps towards a correct formulation of the rendering equation which can

account for fluorescence emission in volumetric media were presented by Glassner [152].

However, the formalism of Glassner’s model did not consider the distinct properties of

the media.

We discussed two novel optical models for simulating light interaction with fluores-

cent volumes which do take into account the optical properties of the medium and its

fluorescent structures. The first extends the monochromatic radiative transfer equation to

account for wavelength changes, but only applies to low-scattering volumes such as clar-

ified brain tissue [163]. The second model overcomes this limitation, allowing to simulate

light propagation in fluorescent volumetric media with high turbidity. The spectral per-

formance of the two models was validated against empirical emission spectra for several

fluorescent dyes.

Physically-based Light Microscopy Simulation Framework

We also introduced a computational framework for simulating the imaging pipeline of

three different optical microscopes: transmitted light brightfield, widefield fluorescence

and light sheet fluorescence microscopes. This framework is composed of multiple build-

ing blocks that provide accurate models of each unit in the three microscopes including

their illumination and acquisition units in addition to light interaction with digital mod-

els of the specimen.

Plausible In Silico Imaging of Neocortical Digital Reconstructions

The two frameworks (tissue reconstruction and microscopy simulation) were integrated

into a unifying high level framework for performing in silico imaging experiments to

simulate brain imaging with different microscopes. This framework is used to create all

the in silico optical sections presented in Chapter 6, Chapter 7 and Chapter 8.

10.3 simulation scalability & limitation

The current tissue models used in the simulations are constrained to neurons; the glia,

vasculature and other tissue constituents are ignored. In fact, there is a short term plan

for integrating these components in our tissue models. However, using our microscopy

simulators to render these new models might be challenging and even practically infeasi-

ble in certain cases. This challenge is not due to data integration or tissue reconstruction

issue. The voxelization workflow presented in Chapter 2 can create annotated volumetric

models to represent the different structures even if each structure has unique optical and

spectroscopic properties. The principal issue arises from the runtime complexity of our
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Monte Carlo algorithms. The current simulations assume homogeneous tissue structures,

even if they have high scattering properties, but the interaction between the different com-

ponents is ignored. The integration of further tissue structures requires more and more

interactions between these different components, which might have exponential runtime

complexity. The next step is therefore to think how this limitation can be overcome. We

might need to find a more convenient approach for performing light tissue interaction,

or even an optimized method for running Monte Carlo simulations. We also need to

build efficient and distributed frameworks that would allow us to scale the simulation

on titanic computing cluster with recent multi-core CPUs and GPUs.

10.4 impact

Can we use our microscopy simulation framework to simulate other optical microscopes?

The presented microscopy simulation framework is designed to be extensible, making it

possible to simulate other optical microscopes in the future. The current framework is

capable of modeling absorption, scattering, reflection, refraction and even fluorescence.

Simulating these light phenomena was sufficient to build computational models for the

microscopes we have chosen, but they are incapable of simulating 3D PLI, which uses

polarization and phase shifts to form a meaningful image. Therefore, simulating PLI

is dependent on the existence of computational models for polarization. We found few

research studies that proposed effective polarization models for ray tracing [42, 151, 293].

Integrating those models in the loop allows us to extend this framework and simulate

PLI. We believe that this work will inspire other researchers to build on and simulate

other optical microscopes.

10.5 future work

10.5.1 Other Applications

The tissue reconstruction framework was designed for reconstructing neocortical mod-

els. However, it can be used to build watertight meshes and volumetric models of other

datasets. We are currently extending the framework to build models for glia, hippocam-

pal neurons and vasculature. We will also use the derived optical models to perform

other types of in silico experiments such as voltage sensitive dye imaging and calcium

imaging.
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10.5.2 Workflows Extensions

Meshing Workflow

The current prototype of the meshing workflow (Meshy) is based on Blender which pro-

vides interactive verification of the reconstructed meshes. Blender was selected in our

initial design to exploit its powerful physics engine. Nevertheless, it has some perfor-

mance limitations which might be inconvenient if new meshes are required on a contin-

uous basis. Some morphologies have extremely complex arborizations that might take

several seconds or even a few minutes to mesh. Therefore, we will try to re-implement

all the meshing algorithms discussed in Chapter 2 in a standard C++ API that can be

easily parallelized on a single computing node. This step will allow us to mesh complex

morphologies in a few milliseconds.

Voxelization Workflow

Our voxelization workflow is designed to maximize its throughput on a single multi-

core compute node using OpenMP. The surface voxelization stage is parallelized per mesh

whereas the solid voxelization stage is parallelized per slice. However, the application is

still limited by available memory. We will therefore extend this application to support

distributed volume generation on parallel computing nodes connected through high-end

network hubs.

GPU-based Microscopy Simulation Framework

The rendering problem is known to be embarrassingly parallel. Therefore, the rendering

operations that underly the microscopy simulation framework are a perfect fit for imple-

mentation on GPUs using a high level API such as CUDA. The core part of our current

implementation is based on PBRT, parallelized on a single compute node using Posix

threads. We believe that a GPU implementation can achieve at least a 10× speedup with

respect to a single computing node.

https://www.blender.org/
https://www.blender.org/
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Appendix A
software guide

The core of this dissertation relies on three fundamental software frameworks: PBRT,

Meshy and Voxy. In this appendix we present a little software guide that can help the

reader to use these frameworks for reconstructing different kinds of neocortical models

as described in Chapter 2 and rendering them with our microscopy simulators that were

presented in Chapter 6, Chapter 7 and Chapter 8.

a.1 pbrt

PBRT is a generic, robust and full-scale global illumination rendering framework based on

the popular ray-tracing algorithm. There are other rendering frameworks that have been

developed for public use such as appleseed [294], Mitsuba [295] and LuxRender [296].

However, PBRT was selected to build on this work because the system is written relying

on literate programming; which combines algorithm description with the source code that

implements it. PBRT is accompanied with a valuable textbook that facilitates its extension

without going through all the details of the implementation [29, 135]. It is designed

in a hierarchical architecture: the core of the framework is implemented in terms of a

set of abstract base classes, and the specific implementations are written in extended

derived ones, including a set of advanced algorithms and techniques relevant to Monte

Carlo light transport in volumetric participating media. This section enumerates our

specific extensions and presents a mini-tutorial that would help the reader to write the

configuration files used to render in silico images of our tissue models.

a.1.1 Spectrum

The color representation is changed from the default RGBSpectrum to more advanced and

computationally-intensive one: the SampledSpectrum. The spectrum sampling is set to 1

nm; i.e. using 500 spectral samples between 300 and 800 nm to reflect the visible range

of the UV spectrum.
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a.1.2 Volumes

The volume API is extended to include four new types of volumes that would allow us

to annotated the neocortical volumes with dye-specific properties and also to build large

scale volumes using binary representations of the data1.

Binary Volume Grid

The binary grid is similar to the current VolumeGridDensity implementation, but it uses a

single bit to represent each voxel instead of a full byte. This representation is substantial

for volumetric media that are created from solid voxelization; where each voxel is either

set or unset by default. The volumetric models of the neurons use this property, where the

intracellular space and the membrane are always set to one, while the extracellular space

voxels are all set to zero. The options of this BinaryVolumeGrid are shown in Listing 1.

Listing 1: PBRT configuration options for the BinaryVolumeGrid.

# Binary Volume Grid

Volume "binaryvolumegrid"

"point p0" [P0_X P0_Y P0_Z]

"point p1" [P1_X P1_Y P1_Z]

"string prefix" "VOLUME_PREFIX"

"color sigma_a" [SIGMA_A SIGMA_A SIGMA_A]

"color sigma_s" [SIGMA_S SIGMA_S SIGMA_S]

"float density" [DENSITY]

Annotated Volume Grid

In certain cases, it is essential to tag each voxel with a specific set of optical properties. In

typical implementations, this functionality is achieved by creating a data structure that

integrates these properties in a single element, and thus, each voxel is represented by an

object of this structure. However, this implementation requires huge amounts of memory

that prevents the generation of even medium-sized volumes.

To resolve this limitation, we implemented the AnnotatedVolumeGrid, where each

voxel is annotated with an index that refers to a specific set of properties. Those properties

are added in the configuration file for flexibility and readability. This approach is efficient

because it does not entail further memory requirements if the number of those properties

is increased. Nevertheless, we limited the number of tags to 256 only such that we can

represent each voxel in a single byte. The options of this AnnotatedVolumeGrid are shown

in Listing 2.

1 Each voxel is represented in a single bit. This is contrary to the current implementation that stores each
voxel is one byte.
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Listing 2: PBRT configuration options for the AnnotatedVolumeGrid.

# Binary Volume Grid

Volume "binaryvolumegrid"

# Structure

"point p0" [P0_X P0_Y P0_Z]

"point p1" [P1_X P1_Y P1_Z]

"string prefix" "VOLUME_PREFIX"

"integer ntags" "NUMBER_TAGS"

# Tag (i)

"color sigma_a_i" [SIGMA_A SIGMA_A SIGMA_A]

"color sigma_s_i" [SIGMA_S SIGMA_S SIGMA_S]

"float density_i" [DENSITY]

Fluorescent Binary Volume Grid

In certain experiments, we need to virtually inject a specific fluorescent dye that only

diffuses in the intracellular space of the neurons. Assuming uniform diffusion, we can

therefore use a binary grid similar to the BinaryVolumeGrid presented in Section A.1.2 to

model this volume. For that reason we have implemented a FluorescentBinaryGrid that

extends the BinaryVolumeGrid implementation to account for the spectroscopic proper-

ties of a single fluorescent dye including its excitation and emission spectra, absorptivity,

quantum yield and anisotropy. Due to its binary representation, this volume can be ex-

ploited to reconstruct and represent a giant slice of the neocortical tissue that spans the

range of a few cubic millimeters. The options of this FluorescentBinaryGrid are shown

in Listing 3.

Listing 3: PBRT configuration options for the FluorescentBinaryGrid.

# Fluorescent Binary Grid with only 1 dye

Volume "fluorescentbinarygrid"

# Structure

"point p0" [P0_X P0_Y P0_Z]

"point p1" [P1_X P1_Y P1_Z]

"string prefix" "VOLUME_PREFIX"

# Fluorescent Dye

"spectrum fex" [EXCITATION_SPECTRUM]

"spectrum fem" [EMISSION_SPECTRUM]

"float epsilon" [FLUOROPHORE_EPSILON]

"float c" [FLUOROPHORE_CONCENTRATION]

"float yield" [FLUOROPHORE_QUANTUM_YIELD]

"float gf" [FLUOROPHORE_ANISOTROPY_FACTOR]
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Fluorescent Annotated Volume Grid

The FluorescentBinaryGrid is limited to represent a uniform distribution of a single fluo-

rophore in the tissue model. In several experiments, we need to tag specific neurons with

different fluorescent labels, for instance: to use DAPI to label the nuclei and GFP to label

the rest of the intracellular space. Therefore, we extended the AnnotatedVolumeGrid and

presented a FluorescentAnnotatedGrid to allow the existence of multiple fluorescent

dyes in the volume at the same moment. This volume is crucial to simulate the imaging

of brainbows, where each neuron is randomly labeled with a different fluorescent protein.

The options of this FluorescentAnnotatedGrid are shown in Listing 4.

Listing 4: PBRT configuration options for the FluorescentAnnotatedGrid.

Volume "fluorescentannotatedgrid"

# Structure

"point p0" [P0_X P0_Y P0_Z]

"point p1" [P1_X P1_Y P1_Z]

"string prefix" "VOLUME_PREFIX"

# Fluorescent Dye (i)

"spectrum fex_i" [EXCITATION_SPECTRUM]

"spectrum fem_i" [EMISSION_SPECTRUM]

"float epsilon_i" [FLUOROPHORE_EPSILON]

"float c_i" [FLUOROPHORE_CONCENTRATION]

"float yield_i" [FLUOROPHORE_QUANTUM_YIELD]

"float gf_i" [FLUOROPHORE_ANISOTROPY_FACTOR]

a.1.3 Illumination

The original Light API in PBRT provides a single class for implementing a light source

with surface illumination: the DiffuseAreaLight. Unfortunately, we cannot rely on this

implementation to simulate the propagation of a laser beam in the optical pipeline of

a microscope. We therefore presented a CollimatedAreaLight that can model this col-

limated behavior of lasers. The options of this CollimatedAreaLight are shown in List-

ing 5.

Listing 5: PBRT configuration options for the CollimatedAreaLight.

# @Light Sheet Selective-plane Illumination

AreaLightSource "collimated"

"string units" "radiance"

"spectrum photons" "LASER_PULSE"
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Translate X_LIGHT_OFFSET Y_LIGHT_OFFSET Z_LIGHT_OFFSET

Rotate ANGLE X_ROTATION Y_ROTATION Z_ROTATION

Shape "rectangle"

"float x" [X_LIGHT_SIZE]

"float y" [Y_LIGHT_SIZE]

a.1.4 Cameras

The acquisition units of modern optical microscopes contain a tube lens coupled with the

detection objective to create infinity-corrected images. This coupling forms what is called

a telecentric lens system. The Camera API in PBRT is constrained to either Perspective

or Orthographic lens systems that cannot fit our purpose. Based on the Orthographic

camera implementation, we added a Telecentric lens implementation that can model

the acquisition of real microscopes. The options of this Telecentric camera system are

shown in Listing 6.

Listing 6: PBRT configuration options for a camera with telecentric lens system.

# Telecentric Lens System Camera

Camera "telecentric"

"float screenwindow" [X_MIN_SCREEN X_MAX_SCREEN Y_MIN_SCREEN Y_MAX_SCREEN]

"float focaldistance" [FOCAL_DISTANCE]

"float lensradius" [LENS_RADIUS]2

a.2 meshy

Meshy is a software framework for creating piecewise watertight mesh models of the neu-

rons from their morphological descriptions – see Section C.1. This API is designed

on top of Blender [22] and an in-house library for handling file IO operations called

Brion [297]. The core of Meshy is composed of the following modules: data handling,

geometry processing, physically-plausible somata reconstruction, arbors generation and

rendering. Brion is mainly used to load the neuronal morphologies according to the

software ecosystem of the BBP.

The framework is designed to allow workload distribution on large scale, high per-

formance and multi-node computing clusters using SLURM [298]. Meshy has been used

in the context of this research to build watertight polygonal meshes of neurons using

the physics engine of Blender. The command line options of Meshy2 are enumerated in

Listing 7.

2 The framework is executed from the python file meshy.py.
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Listing 7: Meshy command line options.

--blue-config

Input blue brain circuit configuration file.

[CONFIG_FILE]

--input

A single cell gid or a group of cells defined by a target.

[gid or target]

--cell-target

A particular cell target as specified in the target file. The --input option
should be set to target to activate this option.

[CELL_TARGET]

--gid

A particular cell identifier or gid. The --input option should be set to gid
to activate this option.

[CELL_GID]

--output-directory

The directory where the artifacts (meshes, images, validation files, ...)
will be generated.

[OUTPUT_DIRECTORY]

--execution-node

The computing node that will be used to run the workflow. Options: local on
your local machine or cluster to distribute the load on the cluster.

[local or cluster]

--number-cores

Number of computing cores required to run the workflow. The --execution-node
option should be set to cluster to activate this option.

[NUMBER_CORES: max. 16 on bbpviz.cscs.ch or 12 on bbplxviz.epfl.ch]

--granularity

Workload granularity on the cluster. The --execution-node option should be
set to cluster to activate this option.

[high or low (default)]

--ignore-soma

Create a mesh without reconstructing the soma based on soft body engine.
This option is not set by default.

--ignore-axon

Create a mesh without building the axon. This option is not set by default.

--ignore-dendrites

Create a mesh without building the dendrites. This option is not set by
default.

--max-axon-level

Maximum branching level for the axon.

[MAX_AXON_LEVEL]

--max-dendrite-level

Maximum branching level for the dendrites.

[MAX_DENDRITE_LEVEL]

--meshing-technique

The used meshing algorithm.

[discrete-branches or skeleton]
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--tessellation-level

Mesh tessellation level between 0.0 and 1.0.

[TESSELLATION_LEVEL]

--global

Export the meshes at the global coordinates in the circuit. If this flag is
not set, the somata will be located at the origin.

--export-single-mesh

Export the mesh as a single polygonal mesh object.

--export-separate-meshes

Export the mesh as multiple separate polygonal mesh objects to axon,
dendrites and soma.

--ply

Export the meshes in .ply format.

--obj

Export the meshes in .obj format.

--stl

Export the meshes in .stl format.

--blend

Export the meshes in .blend format.

--render-soma-skeleton

Render the skeleton of the soma.

--render-morphology-skeleton

Render the skeleton of the morphology as thin lines.

--render-soma-profile

Render soma mesh only after the extrusion process to the profile points.

--render-soma-mesh

Render soma mesh only after the extrusion process of the branches.

--render-mesh

Render the full reconstructed mesh in high resolution.

--render-close-up

Render a close up image around the soma of the reconstructed mesh.

a.3 voxy

Voxy is a CPU-based voxelization library for creating large scale volumetric models of

neocortical circuitry relying on the polygonal meshes created by Meshy, – see Section C.2.

It uses software rasterization3 to create volumetric shells of the neurons and slice-based

flood-filling [123] to convert those shells into solid volumes. Voxelization algorithms

are known to be computationally extensive and require several optimization strategies

to be efficiently implemented. Therefore, and to guarantee a reliable performance, it is

accelerated to run on multi-core systems relying on OpenMP [124, 299].

3 CPU-based conservative rasterization [109].
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Voxy comes with two separate applications called NeuroVoxy and NeuroTaggy. On

the one hand, NeuroVoxy creates binary volumetric grids that can be loaded in PBRT us-

ing the BinaryVolumeGrid and FluorescentBinaryGrid implementations. On the other

hand, NeuroTaggy creates annotated volume grids that can be loaded in PBRT using the

AnnotatedVolumeGrid and FluorescentAnnotatedGrid implementations. The command

line options of NeuroVoxy abd NeuroTaggy are shown in Listing 8 and Listing 9 respec-

tively.

a.3.1 NeuroVoxy

Listing 8: Command line options for neurovoxy.

--list

A compiled list of all the neurons that will be voxelized.

[VOXELIZATION_LIST_FILE]

--input-directory

The directory where the mesh models of the neurons exist.

[MESHES_DIRECTORY]

--output-directory

The directory where the artifacts (volumes, images, validation files, ...)
will be generated.

[OUTPUT_DIRECTORY]

--bounds-file

A file that contains the bounding box that specifies the extent of the
generated volume.

[BOUNDS_FILE]

--volume-prefix

Prefix for the output volume (file name without extension).

[VOLUME_PREFIX]

--resolution

Volume base resolution in the largest dimension. The other dimensions will
be set accordingly.

[VOLUME_RESOLUTION]

--edge-gap

A little space exterior to the bounding box of the volume. The default value
is set to 0.001.

[EDGE_GAP_VALUE]

--project-xy

Create an XY projection of the volume.

--project-zy

Create an ZY projection of the volume.

--binary

Create a binary volume where each voxel is stored in one bit.

--byte

Create a byte volume where each voxel is stored in one byte.
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--solid-2d

Use the 2D solid voxelization algorithm, faster but less robust.

--solid-3d

Use the 3D solid voxelization algorithm, slower but more robust.

--pbrt-brightfield

Create PBRT configuration files for rendering in silico brightfield
microscopy images.

--pbrt-brightfield-config

Input PBRT configuration file for the brightfield microscope.

[PBRT_CONFIG_FILE]

--pbrt-fluorescence

Create PBRT configuration files for rendering in silico fluorescence
microscopy images.

--pbrt-fluorescence-config

Input PBRT configuration file for the fluorescence microscope.

[PBRT_CONFIG_FILE]

--pbrt-lsfm

Create PBRT configuration files for rendering in silico LSFM images.

--pbrt-lsfm-config

Input PBRT configuration file for the LSFM.

[PBRT_CONFIG_FILE]

--pbrt-fixed-focus

Create a series of rendering configurations at the focal plane of each
neuron defined in the given --list.

--pbrt-varying-focus

Create a series of rendering configurations at the varying focal planes
sampled at multiple depth of fields defined by --pbrt-n-focal-planes.

--pbrt-n-focal-planes

Number of focal planes that sample the entire volume for applying depth of
field effects.

[Number_FOCAL_PLANES]

--pbrt-resolution

The resolution of the images rendered by PBRT.

[PBRT_IMAGE_RESOLUTION1]

--pbrt-volume-step

The sampling step of the volume defined for PBRT configuration. The suitable
range for this parameter lies between 0.01 and 1.0.

[PBRT_VOLUME_STEP]

a.3.2 NeuroTaggy

Listing 9: Command line options for neurotaggy.

--list

A compiled list of all the neurons that will be voxelized.

[VOXELIZATION_LIST_FILE]



252 appendix

--input-directory

The directory where the mesh models of the neurons exist.

[MESHES_DIRECTORY]

--output-directory

The directory where the artifacts (volumes, images, validation files, ...)
will be generated.

[OUTPUT_DIRECTORY]

--bounds-file

A file that contains the bounding box that specifies the extent of the
generated volume.

[BOUNDS_FILE]

--volume-prefix

Prefix for the output volume (file name without extension).

[VOLUME_PREFIX]

--resolution

Volume base resolution in the largest dimension. The other dimensions will
be set accordingly.

[VOLUME_RESOLUTION]

--edge-gap

A little space exterior to the bounding box of the volume. The default value
is set to 0.001.

[EDGE_GAP_VALUE]

--voxelize-nucleus

Voxelize the nucleus using --nucleus-mesh model for simulating DAPI imaging.

--nucleus-mesh

An anisotropic mesh model that defines the shape of the nuclei.

[NUCLEUS_MESH]

--project-xy

Create an XY projection of the volume.

--project-zy

Create an ZY projection of the volume.

--project-tags

Project each tag in the volume for verification.

--binary

Create a binary volume where each voxel is stored in one bit.

--tagged

Create a tagged volume where each voxel reflects the id of the tag.

--solid-2d

Use the 2D solid voxelization algorithm, faster but less robust.

--solid-3d

Use the 3D solid voxelization algorithm, slower but more robust.

--pbrt-brightfield

Create PBRT configuration files for rendering in silico brightfield
microscopy images.

--pbrt-brightfield-config

Input PBRT configuration file for the brightfield microscope.

[PBRT_CONFIG_FILE]
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--pbrt-fluorescence

Create PBRT configuration files for rendering in silico fluorescence
microscopy images.

--pbrt-fluorescence-config

Input PBRT configuration file for the fluorescence microscope.

[PBRT_CONFIG_FILE]

--pbrt-lsfm

Create PBRT configuration files for rendering in silico LSFM images.

--pbrt-lsfm-config

Input PBRT configuration file for the LSFM.

[PBRT_CONFIG_FILE]

--pbrt-fixed-focus

Create a series of rendering configurations at the focal plane of each
neuron defined in the given --list.

--pbrt-varying-focus

Create a series of rendering configurations at the varying focal planes
sampled at multiple depth of fields defined by --pbrt-n-focal-planes.

--pbrt-n-focal-planes

Number of focal planes that sample the entire volume for applying depth of
field effects.

[Number_FOCAL_PLANES]

--pbrt-resolution

The resolution of the images rendered by PBRT.

[PBRT_IMAGE_RESOLUTION]

--pbrt-volume-step

The sampling step of the volume defined for PBRT configuration. The suitable
range for this parameter lies between 0.01 and 1.0.

[PBRT_VOLUME_STEP]

--brainbow

Use the rasterizer to create a brainbow image where each tag will be colored
with a different color using the --colormap.

--colormap

A colormap that defines the tags for the brianbow image.

[COLOR_MAP_FILE]

--alpha

Alpha blending value for the brainbow image. Default value is set to 0.01.

[ALPHA_BLENDING_VALUE]
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This appendix lists templates for the rendering configurations that were used to create the

in silico images presented in Chapter 6, Chapter 7 and Chapter 8. It has to be obvious that

those rendering configurations are not compatible with the default PBRT framework [161];

but they are only valid for the extended version we have developed in the context of this

dissertation [300]. Further details about those extensions are discussed in Section A.1.

b.1 in silico brightfield microscopy

Listing 10: Template PBRT configuration for in silico golgi imaging with TLBFM.

################################################################################

# Physically-based Brightfield Microscope Simulation

# Thesis Title: In Silico Brain Imaging

# Chapter 6: In Silico Brightfield Microscopy

# (C) Marwan Abdellah <MARWAN.ABDELLAH@EPFL.CH> (2012 - 2017)

# (C) Blue Brain Project (BBP) / Ecole polytechnique federale de Lausanne (EPFL)

# This file is available online at https://github.com/BlueBrain/bbp-pbrt-data

# NOTE: THIS IS AN AUTO GENERATED FILE FROM VOXY

# NOTE: This config. uses spectral optical properties of the dye.

# FILE: brightfield-golgi.pbrt.input

################################################################################

# @Frustum

# For further detais, look at gluLookAt()

# [ eyeX eyeY eyeZ ] [ pX pY pZ ] [ normX normY normZ ]

LookAt X_CAMERA 0.0 Z_CAMERA 0.0 0.0 0.0 0.0 1.0 0.0

# @Camera

Camera "telecentric"

"float screenwindow" [X_MIN_SCREEN X_MAX_SCREEN Y_MIN_SCREEN Y_MAX_SCREEN]

"float focaldistance" [FOCAL_DISTANCE]

"float lensradius" [LENS_RADIUS]

# @Film

259
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# Resolutions: [X0 / Y0][X1 / Y1][X2 / Y2][X3 / Y3][X4 / Y4]

Film "image"

"integer xresolution" [X_RESOLUTION]

"integer yresolution" [Y_RESOLUTION]

"string filename" "IMAGE_NAME"

# @Sampler

Sampler "lowdiscrepancy"

"integer pixelsamples" [SPP]

# @Volume Integrator

VolumeIntegrator "single"

"float stepsize" [STEP_SIZE]

# @World

WorldBegin

# @Brightfield Collimated Illumination

AttributeBegin

AreaLightSource "collimated"

"spectrum photons" "LAMP_SPECTRUM"

Translate X_LIGHT_OFFSET 0.0 Z_LIGHT_OFFSET

Rotate 90.0 0 1 0

Shape "rectangle"

"float x" [X_LIGHT_SIZE]

"float y" [Y_LIGHT_SIZE]

AttributeEnd

# @Binary Volume Grid

AttributeBegin

Volume "binaryvolumegrid"

"point p0" [P0_X P0_Y P0_Z]

"point p1" [P1_X P1_Y P1_Z]

"string prefix" "VOLUME_PREFIX"

"spectrum sigma_a" [SIGMA_A]

"spectrum sigma_s" [SIGMA_S]

"float density" [DENSITY]

AttributeEnd

# @World

WorldEnd
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b.2 in silico widefield epifluorescence microscopy

b.2.1 Fluorescent Volumes with Single Fluorescent Dye

Listing 11: Template PBRT configuration for in silico FM (one dye).

################################################################################

# Physically-based Epi-widefield Fluorescence Microscope Simulation

# Thesis Title: In Silico Brain Imaging

# Chapter 7: In Silico Epi-widefield Fluorescence Microscopy

# (C) Marwan Abdellah <MARWAN.ABDELLAH@EPFL.CH> (2012 - 2017)

# (C) Blue Brain Project (BBP) / Ecole polytechnique federale de Lausanne (EPFL)

# This file is available online at https://github.com/BlueBrain/bbp-pbrt-data

# NOTE: THIS IS AN AUTO GENERATED FILE FROM VOXY

# NOTE: This config. renderes a fluorescent volume with single fluorescent dye.

# FILE: fluorescence-microscope-one-dye.pbrt.input

################################################################################

# @Frustum

# For further detais, look at gluLookAt()

# [ eyeX eyeY eyeZ ] [ pX pY pZ ] [ normX normY normZ ]

LookAt X_CAMERA 0.0 Z_CAMERA 0.0 0.0 0.0 0.0 1.0 0.0

# @Camera

Camera "telecentric"

"float screenwindow" [X_MIN_SCREEN X_MAX_SCREEN Y_MIN_SCREEN Y_MAX_SCREEN]

"float focaldistance" [FOCAL_DISTANCE]

"float lensradius" [LENS_RADIUS]

# @Film

# Resolutions: [X0 / Y0][X1 / Y1][X2 / Y2][X3 / Y3][X4 / Y4]

Film "image"

"integer xresolution" [X_RESOLUTION]

"integer yresolution" [Y_RESOLUTION]

"string filename" "IMAGE_NAME"

# @Sampler

Sampler "lowdiscrepancy"

"integer pixelsamples" [SPP]

# @Volume Integrator

VolumeIntegrator "singlefluorescence"

"float stepsize" [STEP_SIZE]
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# @World

WorldBegin

# @Epi-widefield Illumination

AttributeBegin

AreaLightSource "collimated"

"string units" "radiance"

"spectrum photons" "LASER_PULSE"

Translate X_LIGHT_OFFSET 0.0 Z_LIGHT_OFFSET

Rotate -90.0 0 1 0

Shape "rectangle"

"float x" [X_LIGHT_SIZE]

"float y" [Y_LIGHT_SIZE]

AttributeEnd

# @Fluorescent Binary Grid with only 1 Dye

AttributeBegin

Volume "fluorescentbinarygrid"

# Structure

"point p0" [P0_X P0_Y P0_Z]

"point p1" [P1_X P1_Y P1_Z]

"string prefix" "VOLUME_PREFIX"

# Fluorescent Dye

"spectrum fex" [EXCITATION_SPECTRUM]

"spectrum fem" [EMISSION_SPECTRUM]

"float epsilon" [FLUOROPHORE_EPSILON]

"float c" [FLUOROPHORE_CONCENTRATION]

"float yield" [FLUOROPHORE_QUANTUM_YIELD]

"float gf" [FLUOROPHORE_ANISOTROPY_FACTOR]

AttributeEnd

# @World

WorldEnd



B.2 in silico widefield epifluorescence microscopy 263

b.2.2 Annotated Fluorescent Volumes with Multiple Fluorescent Dyes

Listing 12: Template PBRT configuration for in silico FM (multiple dyes).

################################################################################

# Physically-based Epi-widefield Fluorescence Microscope Simulation

# Thesis Title: In Silico Brain Imaging

# Chapter 7: In Silico Epi-widefield Fluorescence Microscopy

# (C) Marwan Abdellah <MARWAN.ABDELLAH@EPFL.CH> (2012 - 2017)

# (C) Blue Brain Project (BBP) / Ecole polytechnique federale de Lausanne (EPFL)

# This file is available online at https://github.com/BlueBrain/bbp-pbrt-data

# NOTE: THIS IS AN AUTO GENERATED FILE FROM VOXY

# NOTE: This config. renderes annotated fluorescent volumes with multiple dyes.

# NOTE: The [Fluorescent Dye (i)] section is repeated N times for N dyes.

# FILE: fluorescence-microscope-multiple-dyes.pbrt.input

################################################################################

# @Frustum

# For further detais, look at gluLookAt()

# [ eyeX eyeY eyeZ ] [ pX pY pZ ] [ normX normY normZ ]

LookAt X_CAMERA 0.0 Z_CAMERA 0.0 0.0 0.0 0.0 1.0 0.0

# @Camera

Camera "telecentric"

"float screenwindow" [X_MIN_SCREEN X_MAX_SCREEN Y_MIN_SCREEN Y_MAX_SCREEN]

"float focaldistance" [FOCAL_DISTANCE]

"float lensradius" [LENS_RADIUS]

# @Film

# Resolutions: [X0 / Y0][X1 / Y1][X2 / Y2][X3 / Y3][X4 / Y4]

Film "image"

"integer xresolution" [X_RESOLUTION]

"integer yresolution" [Y_RESOLUTION]

"string filename" "IMAGE_NAME"

# @Sampler

Sampler "lowdiscrepancy"

"integer pixelsamples" [SPP]

# @Volume Integrator

VolumeIntegrator "singlefluorescence"

"float stepsize" [STEP_SIZE]

# @World
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WorldBegin

# @Epi-widefield Illumination

AttributeBegin

AreaLightSource "collimated"

"string units" "radiance"

"spectrum photons" "LASER_PULSE"

Translate X_LIGHT_OFFSET 0.0 Z_LIGHT_OFFSET

Rotate -90.0 0 1 0

Shape "rectangle"

"float x" [X_LIGHT_SIZE]

"float y" [Y_LIGHT_SIZE]

AttributeEnd

# @Fluorescent Annotated Volume Grid

AttributeBegin

Volume "fluorescentannotatedgrid"

# Structure

"point p0" [P0_X P0_Y P0_Z]

"point p1" [P1_X P1_Y P1_Z]

"string prefix" "VOLUME_PREFIX"

# Fluorescent Dye (i)

"spectrum fex_i" [EXCITATION_SPECTRUM]

"spectrum fem_i" [EMISSION_SPECTRUM]

"float epsilon_i" [FLUOROPHORE_EPSILON]

"float c_i" [FLUOROPHORE_CONCENTRATION]

"float yield_i" [FLUOROPHORE_QUANTUM_YIELD]

"float gf_i" [FLUOROPHORE_ANISOTROPY_FACTOR]

AttributeEnd

# @World

WorldEnd
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b.3 in silico lsfm

b.3.1 Fluorescent Volumes with Single Fluorescent Dye

Listing 13: Template PBRT configuration for in silico LSFM (one dye).

####################################################################################

# Physically-based Light Sheet Fluorescence Microscope Simulation

# Thesis Title: In Silico Brain Imaging

# Chapter 8: In Silico Light Sheet Fluorescence Microscopy

# (C) Marwan Abdellah <MARWAN.ABDELLAH@EPFL.CH> (2012 - 2017)

# (C) Blue Brain Project (BBP) / Ecole polytechnique federale de Lausanne (EPFL)

# This file is available online at https://github.com/BlueBrain/bbp-pbrt-data

# NOTE: THIS IS AN AUTO GENERATED FILE FROM VOXY

# NOTE: This config. renderes a fluorescent volume with a single fluorescent dye.

# FILE: lsfm-one-dye.pbrt.input

####################################################################################

# @Frustum

# For further detais, look at gluLookAt()

# [ eyeX eyeY eyeZ ] [ pX pY pZ ] [ normX normY normZ ]

0.0 0.0 Z_CAMERA 0.0 0.0 0.0 0.0 1.0 0.0

# @Camera

Camera "telecentric"

"float screenwindow" [X_MIN_SCREEN X_MAX_SCREEN Y_MIN_SCREEN Y_MAX_SCREEN]

"float focaldistance" [FOCAL_DISTANCE]

"float lensradius" [LENS_RADIUS]

# @Film

# Resolutions: [X0 / Y0][X1 / Y1][X2 / Y2][X3 / Y3][X4 / Y4]

Film "image"

"integer xresolution" [X_RESOLUTION]

"integer yresolution" [Y_RESOLUTION]

"string filename" "IMAGE_NAME"

# @Sampler

Sampler "lowdiscrepancy"

"integer pixelsamples" [SPP]

# @Volume Integrator

VolumeIntegrator "singlefluorescence"

"float stepsize" [STEP_SIZE]
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# @World

WorldBegin

# @Light Sheet Selective-plane Illumination

AttributeBegin

AreaLightSource "collimated"

"string units" "radiance"

"spectrum photons" "LASER_PULSE"

Translate X_LIGHT_OFFSET Y_LIGHT_OFFSET Z_LIGHT_OFFSET

Rotate 90.0 1 0 0

Shape "rectangle"

"float x" [X_LIGHT_SIZE]

"float y" [Y_LIGHT_SIZE]

AttributeEnd

# @Fluorescent Binary Grid with only 1 Dye

AttributeBegin

Volume "fluorescentbinarygrid"

# Structure

"point p0" [P0_X P0_Y P0_Z]

"point p1" [P1_X P1_Y P1_Z]

"string prefix" "VOLUME_PREFIX"

# Fluorescent Dye

"spectrum fex" [EXCITATION_SPECTRUM]

"spectrum fem" [EMISSION_SPECTRUM]

"float epsilon" [FLUOROPHORE_EPSILON]

"float c" [FLUOROPHORE_CONCENTRATION]

"float yield" [FLUOROPHORE_QUANTUM_YIELD]

"float gf" [FLUOROPHORE_ANISOTROPY_FACTOR]

AttributeEnd

# @World

WorldEnd
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b.3.2 Annotated Fluorescent Volumes with Multiple Fluorescent Dyes

Listing 14: Template PBRT configuration for in silico LSFM (multiple dye).

####################################################################################

# Physically-based Light Sheet Fluorescence Microscope Simulation

# Thesis Title: In Silico Brain Imaging

# Chapter 8: In Silico Light Sheet Fluorescence Microscopy

# (C) Marwan Abdellah <MARWAN.ABDELLAH@EPFL.CH> (2012 - 2017)

# (C) Blue Brain Project (BBP) / Ecole polytechnique federale de Lausanne (EPFL)

# This file is available online at https://github.com/BlueBrain/bbp-pbrt-data

# NOTE: THIS IS AN AUTO GENERATED FILE FROM VOXY

# NOTE: This config. renderes annotated fluorescent volumes with multiple dyes.

# NOTE: The [Fluorescent Dye (i)] section is repeated N times for N dyes.

# FILE: lsfm-multiple-dyes.pbrt.input

####################################################################################

# @Frustum

# For further detais, look at gluLookAt()

# [ eyeX eyeY eyeZ ] [ pX pY pZ ] [ normX normY normZ ]

0.0 0.0 Z_CAMERA 0.0 0.0 0.0 0.0 1.0 0.0

# @Camera

Camera "telecentric"

"float screenwindow" [X_MIN_SCREEN X_MAX_SCREEN Y_MIN_SCREEN Y_MAX_SCREEN]

"float focaldistance" [FOCAL_DISTANCE]

"float lensradius" [LENS_RADIUS]

# @Film

# Resolutions: [X0 / Y0][X1 / Y1][X2 / Y2][X3 / Y3][X4 / Y4]

Film "image"

"integer xresolution" [X_RESOLUTION]

"integer yresolution" [Y_RESOLUTION]

"string filename" "IMAGE_NAME"

# @Sampler

Sampler "lowdiscrepancy"

"integer pixelsamples" [SPP]

# @Volume Integrator

VolumeIntegrator "singlefluorescence"

"float stepsize" [STEP_SIZE]

# @World
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WorldBegin

# @Light Sheet Selective-plane Illumination

AttributeBegin

AreaLightSource "collimated"

"string units" "radiance"

"spectrum photons" "LASER_PULSE"

Translate X_LIGHT_OFFSET Y_LIGHT_OFFSET Z_LIGHT_OFFSET

Rotate 90.0 1 0 0

Shape "rectangle"

"float x" [X_LIGHT_SIZE]

"float y" [Y_LIGHT_SIZE]

AttributeEnd

# @Fluorescent Annotated Volume Grid with N Dyes

AttributeBegin

Volume "fluorescentannotatedgrid"

# Structure

"point p0" [P0_X P0_Y P0_Z]

"point p1" [P1_X P1_Y P1_Z]

"string prefix" "VOLUME_PREFIX"

# Fluorescent Dye (i)

"spectrum fex_i" [EXCITATION_SPECTRUM]

"spectrum fem_i" [EMISSION_SPECTRUM]

"float epsilon_i" [FLUOROPHORE_EPSILON]

"float c_i" [FLUOROPHORE_CONCENTRATION]

"float yield_i" [FLUOROPHORE_QUANTUM_YIELD]

"float gf_i" [FLUOROPHORE_ANISOTROPY_FACTOR]

AttributeEnd

# @World

WorldEnd
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To validate the reconstruction workflows presented in Chapter 2, the 55 exemplar mor-

phologies – illustrated in Figure 2.16 – were converted into polygonal meshes and ulti-

mately to volumetric models. This appendix summarizes the results of reconstructing the

meshes of these exemplars from their morphological skeletons in Section C.1. Section C.2

demonstrates the results of converting the reconstructed meshes into volumetric shells

and to solid volumes.

c.1 mesh reconstruction

Figure C.1: L1−DAC

Figure C.2: L1−DLAC
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Figure C.3: L1−HAC

Figure C.4: L1−NGC-DA

Figure C.5: L1−NGC-SA

Figure C.6: L1−SLAC

Figure C.7: L23−BP
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Figure C.8: L23−ChC

Figure C.9: L23−ChC

Figure C.10: L23−DBC

Figure C.11: L23−LBC

Figure C.12: L23−MC
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Figure C.13: L23−NBC

Figure C.14: L23−NGC

Figure C.15: L23−PC

Figure C.16: L23−SBC

Figure C.17: L4−BP
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Figure C.18: L4−BTC

Figure C.19: L4−ChC

Figure C.20: L4−DBC

Figure C.21: L4−LBC

Figure C.22: L4−MC
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Figure C.23: L4−NBC

Figure C.24: L4−NGC

Figure C.25: L4−PC

Figure C.26: L4−SBC

Figure C.27: L4−SP
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Figure C.28: L4−SS

Figure C.29: L5−BP

Figure C.30: L5−BTC

Figure C.31: L5−ChC

Figure C.32: L5−DBC
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Figure C.33: L5−LBC

Figure C.34: L5−MC

Figure C.35: L5−NBC

Figure C.36: L5−NGC

Figure C.37: L5−SBC
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Figure C.38: L5−STPC

Figure C.39: L5−TTPC1

Figure C.40: L5−TTPC2

Figure C.41: L5−UTPC

Figure C.42: L6−BPC
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Figure C.43: L6−BP

Figure C.44: L6−BTC

Figure C.45: L6−ChC

Figure C.46: L6−DBC

Figure C.47: L6−IPC
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Figure C.48: L6−LBC

Figure C.49: L6−MC

Figure C.50: L6−NBC

Figure C.51: L6−NGC

Figure C.52: L6−SBC
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Figure C.53: L6−TPC−L1

Figure C.54: L6−TPC−L4

Figure C.55: L6−UTPC

c.2 volume reconstruction via voxelization

Figure C.56: L1−DAC
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Figure C.57: L1−DLAC

Figure C.58: L1−HAC

Figure C.59: L1−NGC-DA

Figure C.60: L1−NGC-SA

Figure C.61: L1−SLAC
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Figure C.62: L23−BP

Figure C.63: L23−BTC

Figure C.64: L23−ChC

Figure C.65: L23−DBC

Figure C.66: L23−LBC
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Figure C.67: L23−MC

Figure C.68: L23−NBC

Figure C.69: L23−NGC

Figure C.70: L23−PC

Figure C.71: L23−SBC
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Figure C.72: L4−BP

Figure C.73: L4−BTC

Figure C.74: L4−ChC

Figure C.75: L4−DBC

Figure C.76: L4−LBC
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Figure C.77: L4−MC

Figure C.78: L4−NBC

Figure C.79: L4−NGC

Figure C.80: L4−PC

Figure C.81: L4−SBC
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Figure C.82: L4−SP

Figure C.83: L4−SS

Figure C.84: L5−BP

Figure C.85: L5−BTC

Figure C.86: L5−ChC
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Figure C.87: L5−DBC

Figure C.88: L5−LBC

Figure C.89: L5−MC

Figure C.90: L5−NBC

Figure C.91: L5−NGC
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Figure C.92: L5−SBC

Figure C.93: L5−STPC

Figure C.94: L5−TTPC1

Figure C.95: L5−TTPC2

Figure C.96: L5−UTPC
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Figure C.97: L6−BPC

Figure C.98: L6−BP

Figure C.99: L6−BTC

Figure C.100: L6−ChC

Figure C.101: L6−DBC



294 exemplars

Figure C.102: L6−IPC

Figure C.103: L6−LBC

Figure C.104: L6−MC

Figure C.105: L6−NBC

Figure C.106: L6−NGC
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Figure C.107: L6−SBC

Figure C.108: L6−TPC−L1

Figure C.109: L6−TPC−L4

Figure C.110: L6−UTPC
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d.1 fluorophores

d.1.1 Alexa Fluor Family

Table D.1: Spectral characteristics of Alexa Fluor family fluorophores.

color alexa fluor dye λx λm φq ε spectra

1 Alexa Fluor 350 346 442 − 19,000 Figure D.2

2 Alexa Fluor 405 401 421 − 34,000 Figure D.3

3 Alexa Fluor 430 433 541 − 16,000 Figure D.4

4 Alexa Fluor 488 495 519 0.92 71,000 Figure D.5

5 Alexa Fluor 514 517 542 − 80,000 Figure D.6

6 Alexa Fluor 532 532 553 0.61 81,000 Figure D.7

7 Alexa Fluor 546 556 573 0.79 104,000 Figure D.8

8 Alexa Fluor 555 555 565 0.10 150,000 Figure D.9

9 Alexa Fluor 568 578 603 0.69 91,000 Figure D.10

10 Alexa Fluor 594 590 617 0.66 73,000 Figure D.11

11 Alexa Fluor 610 612 628 − 138,000 Figure D.12

12 Alexa Fluor 633 632 647 − 100,000 Figure D.13

13 Alexa Fluor 635 650 665 0.33 239,000 Figure D.14

14 Alexa Fluor 660 663 690 0.37 132,000 Figure D.15

15 Alexa Fluor 680 679 702 0.36 184,000 Figure D.16

16 Alexa Fluor 700 702 723 0.36 192,000 Figure D.17
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d.1.2 Fluorescent Proteins (XFPs)

Table D.2: Spectral characteristics of (XFP) fluorescent proteins.

color xfp λx λm φq ε spectra

1 CFP 439 476 0.4 32,500 Figure D.19

2 GFP 484 507 0.6 56,000 Figure D.20

3 YFP 514 514 0.61 83,400 Figure D.22

4 RFP 555 584 0.48 100,000 Figure D.21

5 mBanana 540 553 0.7 6,000 Figure D.23

6 mCherry 587 610 0.22 72,000 Figure D.24

7 tdTomato 554 581 0.69 69,000 Figure D.26

8 mPlum 590 590 0.10 41,000 Figure D.25
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d.1.3 DAPI

Table D.3: Spectral characteristics of DAPI.

color dye λx λm φq ε spectrum

DAPI 358 461 0.58 27,000 Figure D.27
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Figure D.27: Excitation and emission spectra of DAPI.
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d.2 lamps emission spectra
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Figure D.28: Relative emission spectrum of the Mercury (Hg) lamp.
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Figure D.29: Relative emission spectrum of the Xenon (Xe) lamp.

R
el

a
ti

v
e 

In
te

n
si

ty
 (

a
.u

.)

0

0.25

0.5

0.75

1

Wavelength (nm)

300 350 400 450 500 550 600 650 700 750 800 850 900

Emission Intensity

0

0.25

0.5

0.75

1

300 350 400 450 500 550 600 650 700 750 800 850 900

320 0.506933859

321 0.479844474

322 0.457152696

323 0.438262999

324 0.42253752

325 0.409425036

326 0.398433937

327 18

328 0.381088589

329 0.373955613

330 132

331 0.361249518

332 0.355262774

333

334 0.343369556

335 0.337373441

336 0.331394584

337 0.325540685

338 0.319944538

339 0.314730403

340 0.309988936

341 0.305780283

342 0.302160587

343 0.299182206

344 0.296880654

345 0.295261537

346 0.294292337

347

348 154

349 0.29450702

350 0.295283664

351 0.296235972

352 0.297270519

353 1935

354 0.299306747

355 0.30022554

356 0.301062945

357 0.301833085

358 0.302556288

359 0.303235936

360 0.303843401

361 0.304329093

362 0.304638887

363 0.304720608

364 0.304526702

365 0.304016215

366 0.303155999

367 193

368 0.300295272

369 0.298269399

370 0.295841939

371 0.293018012

372 0.289810157

373 0.286239017

374

375 0.278130855

376 0.273675372

377 0.269016177

378 0.264201726

379 0.259276658

380 0.254281274

381 0.24925149

382 0.244218705

383 0.239209081

384 0.234242493

385 132

386 0.224481548

387 0.219699846

388

389 0.210397647

390 0.205929658

391 0.201626978

392 0.19752214

393 0.193645792

394 0.190025646

395 0.186685413

396 0.183644168

397 0.180915886

398 0.178508452

399 0.176422935

400 0.17465303

401 0.173185033

402 0.171998282

403 0.171066083

404 0.17035707

405 0.169836562

406 0.169468375

407 0.169216725

408 0.169048313

409 0.168934327

410 0.168851355

411 0.168780706

412 0.168707188

413 0.16861688

414 0.168489654

415 0.168296048

416 1

417 0.167581516

418 0.167028243

419 0.166357231

420 0.165590742

421 0.164755038

422 0.163889637

423 0.163067372

424 0.162407866

425 0.162041629

426 0.162143126

427 0.16291325

428 0.164483679

429

430 0.170365741

431 0.175008145

432 0.181070874

433 0.188708485

434 0.198025741

435 16

436 0.222058958

437 1862

438 0.25418663

439 0.273993819

440 0.297030407

441 0.323953832

442 0.355321985

443

444 0.432391291

445 0.477841261

446 0.527195309

447 0.579608876

448 0.634008465

449 188

450 0.743543167

Figure D.30: Relative emission spectrum of the Metal Halide lamp.
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http://k-space.org
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research interests

Visualization
Scientific visualization · High performance, distributed, and scalable vol-
ume rendering · Transfer function design

Rendering
Physically-based Monte Carlo rendering · Rendering fluorescence materi-
als with highly scattering heterogeneous media

Medical Imaging
High quality and high performance 3D/4D real-time volume reconstruc-
tion for medical data (CT, MRI and Ultrasound) ·Digitally reconstructed
radiograph generation with k-space volume rendering

High Performance
Computing

GPU computing (GPGPU) with CUDA ·Heterogeneous computing with
OpenCL · Distributed computing with MPI and OpenMP

In Silico
Neuroscience

Physically-plausible simulation of cortical brain tissue imaging using dig-
ital reconstructions of 3D neuronal models and optical microscopes

experience & employment history

Scientific Visualization Engineer 07.2011 − Present

Blue Brain Project · Human Brain Project · École Polytechnique Fédéral de Lausanne (EPFL)
Lausanne · Switzerland
Role — High performance visualization and multimedia generation for neuroscientific data.
Managers — Henry Markram · Felix Schürmann · Stefan Eilemann

Software Engineer 01.2013 − 10.2013

Coursera EPFL · Lausanne · Switzerland
Role — Building automated grading and systematic evaluation workflows for C++ and JAVA courses
offered by EPFL on Coursera.
Instructors — Jean-Cédric Chappelier · Vincent Lepetit · Jamila Sam

Research Assistant 07.2010 − 04.2011

SCI-STI-MM Multimedia Group · École Polytechnique Fédéral de Lausanne (EPFL)
Lausanne · Switzerland
Role — Pursuing a research on H.264 and re-configurable video coding.
Lab Director — Marco Mattavilli

Associate Biomedical Software Engineer 03.2010 − 07.2010

Biomedical Group · Symbyo Technologies (360imaging) · Cairo · Egypt
Role — Development of dental implant software.

Instructor 07.2009 − 07.2010

National Institute of Laser Advanced Sciences (NILES) · Cairo University · Cairo · Egypt
Role — Instructing different topics of visualization and high performance computing.

http://bluebrain.epfl.ch
https://www.humanbrainproject.eu/de/home
http://www.epfl.ch
https://en.wikipedia.org/wiki/Henry_Markram
https://www.linkedin.com/pub/felix-sch%C3%BCrmann/66/428/444
https://www.linkedin.com/in/eilemann
https://www.coursera.org/epfl
https://people.epfl.ch/jean-cedric.chappelier?lang=en
https://people.epfl.ch/vincent.lepetit?lang=en
https://people.epfl.ch/jamila.sam?lang=en
http://gramm.epfl.ch/
http://www.epfl.ch
https://people.epfl.ch/marco.mattavelli
http://www.360imaging.com/
http://niles.cu.edu.eg/
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Biomedical Software Engineer 09.2009 − 02.2010

Research and Development Team · International Biomedical Engineering (IBE) Technologies
Cairo · Egypt
Role — Development of 4D ultrasound reconstruction software.

classes & teaching

Numerical Analysis ·MATH–251 Spring 2014 − Spring 2013

Life Sciences School · 4th Bachelor semester
École Polytechnique Fédéral de Lausanne (EPFL)
Lecturer — Simone Deparis

High Performance Computing July 2010

National Institute of Laser Advanced Sciences (NILES)
Topics — Basic theory of HPC topics like Amdahl’s law, speed up, UMA and NUMA architectures
· GPU architecture · CUDA · Parallel algorithms

Computer Graphics & Visualization October 2009

National Institute of Laser Advanced Sciences (NILES)
Topics — OpenGL Pipeline · Surface rendering · Graphics Modeling using 3D Studio Max

professional memberships

01.2010 − Present
Graduate Student Member
Institute of Electrical and Electronic Engineers (IEEE)

01.2010 − Present
Graduate Student Member
IEEE Engineering in Medicine and Biology Society (EMBS)

02.2015 − Present
Graduate Student Member
IEEE Engineering Computer Society

04.2015 − Present
Student Member
The European Association of Computer Graphics (Eurographics)

05.2015 − Present
Student Member
International Society for Computational Biology (ISCB)

selected projects

Physically-plausible Volume Reconstruction of Neocortical Circuits 2016 − Present

Automated reconstruction of accurate volumetric models of neocortical neuronal morphologies ob-
tained from optical microscopes. The workflow creates watertight mesh models directly from the mor-
phologies and then converts them to volumetric ones using parallel solid voxelization.

http://www.ibetech.com/
http://isa.epfl.ch/imoniteur_ISAP/%21itffichecours.htm?ww_i_matiere=1179245&ww_x_anneeacad=123456101&ww_i_section=945901&ww_i_niveau=6683117&ww_c_langue=en
http://sv.epfl.ch/
http://www.epfl.ch
http://cmcs.epfl.ch/people/deparis
http://marwan-abdellah.com/hpc_2009.html
http://niles.cu.edu.eg/
http://marwan-abdellah.com/visualization_2009.html
http://niles.cu.edu.eg/
https://www.ieee.org/index.html
http://www.embs.org/
http://www.computer.org/web/guest
https://www.eg.org/
http://www.iscb.org/
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-017-1788-4
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Parallel Volume Rendering on Heterogeneous Computing Platforms 2015 − 2016

OpenCL-based, distributed rendering engine for visualizing large scale volumes on parallel multi-
GPU remote machines.

Physically-based Rendering of Fluorescent Neocortical Models 2015 − 2016

A novel rendering model for simulating light interaction with highly scattering fluorescent models
based on a physically-plausible basis.

Simulation of Optical Microscopy with Monte Carlo Rendering 2013 − Present

Simulation of the imaging pipelines in multiple optical microscopy techniques including brightfield
and light sheet fluorescence microscopy.

technical

Programming C/C++ · Java · Python · Unix Shell · OOP · Design Patterns

Libraries STL · Boost · Qt

Visualization OpenGL · Open Inventor · OpenSceneGraph · VTK · XIP · Cg · GLSL

Rendering PBRT · LuxRender ·Mitsuba

HPC CUDA · OpenCL · OpenMP · pthreads

Web Development HTML · CSS · PHP · JavaScript

Mobile Apps iOS · OpenGL ES · Swift ·Metal

Software Process Agile · Scrum · Bamboo · Jira · Jenkins

Scientific Packages MATLAB · Octave · Vensim
3D Graphics Maya (MEL) · 3DSMax · Blender (Python)

Design & Web Gimp · Photoshop · Illustrator · After Effects

Typography LATEX· Lyx ·Microsoft Office

Others Git · SVN · Doxygen

reviewer

February 2017 Journal of Medical Imaging (SPIE)

May 2016 Journal of Electronic Imaging (SPIE)

March 2016 Eurographics, Parallel Graphics & Visualization (EGPGV) 2016

January 2016 SoftwareX (Elsevier)

August 2015 Design Automation for Embedded Systems

July 2015 Computer Graphics Forum

March 2015 Eurographics, Parallel Graphics & Visualization (EGPGV) 2015

January 2014 Journal of Medical Imaging & Health Informatics

August 2012 IEEE, International Biomedical Engineering Conference (CIBEC) 2012

https://www.ncbi.nlm.nih.gov/pubmed/28269150
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-016-1444-4
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-16-S11-S8
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honors & awards

ITIDA Graduation Project Award January 2010

My graduation project was awarded the first place in 2009 from the Minsters of Higher Education
and Tele-Communication in Egypt during a celebration that was organized by ITIDA.

NVIDIA Award June 2010

NVIDIA GeForce GTX 9800 GPU Awarded as a prize for accelerating ultrasound volume rendering
application. The even was held at ICTP in Italy.

Distinction with Honor · B.Sc. Biomedical Engineering July 2009

Systems & Biomedical Engineering Department · Faculty of Engineering · Cairo University

publications

1. Reconstruction and Visualization of Large-scale Volumetric Models of Neocortical Circuits for
Physically-plausible In Silico Optical Studies
Marwan Abdellah, Juan Hernando, Nicolas Antille, Stefan Eilemann, Henry Markram, and
Felix Schürmann · BMC Bioinformatics 2017 · September 2017

2. Bio-physically Plausible Visualization of Highly Scattering Fluorescent Neocortical Models for
In Silico Experimentation
Marwan Abdellah, Ahmet Bilgili, Stefan Eilemann, Julian Shillcock, Henry Markram, and Fe-
lix Schürmann · BMC Bioinformatics 2017 · Volume 18 · Supplement 2:62 · February 2017

3. Reconstruction and Simulation of Neocortical Microcircuitry
Henry Markram, Eilif Muller, Srikanth Ramaswamy, Michael W. Reimann, Marwan Abdellah,
Nicolas Antille, et al. · Cell · October 2015

4. The Neocortical Microcircuit Collaboration Portal: A Resource for Rat Somatosensory Cortex
Srikanth Ramaswamy, Jean-Denis Courcol, Marwan Abdellah, Stanislaw Adaszewski, et al. ·
Frontiers in Neural Circuits · August 2015

5. Physically-based In Silico Light Sheet Microscopy for Visualizing Fluorescent Brain Models
Marwan Abdellah, Ahmet Bilgili, Stefan Eilemann, Henry Markram, and Felix Schürmann ·
BMC Bioinformatics 2015 · Volume 16 · Supplement 11:S8 · August 2015

6. High Performance GPU-based Fourier Volume Rendering
Marwan Abdellah, Ayman Eldeib and Amr Sharawi · International Journal of Biomedical Imag-
ing · Article ID 590727 · January 2015

7. Reconstruction and Visualization of Large-scale Volumetric Models of Neocortical Circuits for
Physically-plausible In Silico Optical Studies
Marwan Abdellah, Juan Hernando, Nicolas Antille, Stefan Eilemann, Henry Markram, and

http://www.itida.gov.eg/En/Pages/home.aspx
https://www.ictp.it/
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-017-1788-4
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-017-1788-4
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-016-1444-4
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-016-1444-4
http://www.cell.com/cell/abstract/S0092-8674%2815%2901191-5#.VhaNJfbI-P4.twitter
http://journal.frontiersin.org/article/10.3389/fncir.2015.00044/full
http://www.biomedcentral.com/1471-2105/16/S11/S8
http://www.hindawi.com/journals/ijbi/2015/590727/
http://www.biorxiv.org/content/early/2017/07/17/164483
http://www.biorxiv.org/content/early/2017/07/17/164483
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Felix Schürmann · 7th Workshop on Biological Data Visualization (BioVis 2017), ISMB 2017 ·
Prague, Czechia · July 2017

8. Bio-physically Plausible Visualization of Highly Scattering Fluorescent Neocortical Models for
In Silico Experimentation
Marwan Abdellah, Ahmet Bilgili, Stefan Eilemann, Julian Shillcock, Henry Markram, and Fe-
lix Schürmann · 6th Workshop on Biological Data Visualization (BioVis 2016), IEEE VIS 2016 ·
Baltimore, MD, USA · October 2016

9. Efficient Rendering of Digitally Reconstructed Radiographs on Heterogeneous Computing Ar-
chitectures using Central Slice Theorem
Marwan Abdellah, Mohamed Abdallah, Mohamed Alzanati, and Ayman M. Eldeib · 38th An-
nual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC
2016) · Orlando, FL, USA · August 2016

10. Parallel Generation of Digitally Reconstructed Radiographs on Heterogeneous Multi-GPU
Workstations
Marwan Abdellah, Asem Abdelaziz, Eslam Ali, Sherief Abdelaziz, Abdelrahman Sayed, Mo-
hamed I. Owis, and Ayman M. Eldeib · 38th Annual International Conference of the IEEE Engi-
neering in Medicine and Biology Society (EMBC 2016) · Orlando, FL, USA · August 2016

11. Physically-based Rendering of Highly Scattering Fluorescent Solutions using Path Tracing
Marwan Abdellah, Ahmet Bilgili, Stefan Eilemann, Henry Markram, and Felix Schürmann ·
Eurographics 2016 · Lisbon, Portugal · May 2016

12. Interactive High Resolution Reconstruction of 3D Ultrasound Volumes on the GPU
Marwan Abdellah, Asem Abdelaziz, and Ayman M. Eldeib · 2016 IEEE International Sympo-
sium on Biomedical Imaging: From Nano to Macro · Prague, Czech Republic · April 2016

13. Optimized GPU-accelerated Framework for X-ray Rendering using k-space Volume Recon-
struction
Marwan Abdellah, Yassin Amer, and Ayman Eldeib · XIV Mediterranean Conference on Medi-
cal & Biological Engineering & Computing (MEDICON 2016) · Paphos, Cyprus · April 2016

14. Accelerating DRR Generation Using Fourier Slice Theorem on the GPU
Marwan Abdellah, Ayman M. Eldeib, and Mohamed Owis · 37th Annual International Con-
ference of the IEEE Engineering in Medicine and Biology Society (EMBC 2015) · Milan, Italy ·
August 2015

15. GPU Acceleration for Digitally Reconstructed Radiographs using Bindless Texture Objects
and CUDA/OpenGL Interoperability
Marwan Abdellah, Ayman Eldeib, and Mohamed Owis · 37th Annual International Conference
of the IEEE Engineering in Medicine and Biology (EMBC 2015) ·Milan, Italy · August 2015

http://biovis.net/2016/papers_ieeevis_Accepted/
http://biovis.net/2016/papers_ieeevis_Accepted/
http://ieeexplore.ieee.org/document/7591593/
http://ieeexplore.ieee.org/document/7591593/
http://ieeexplore.ieee.org/document/7591592/
http://ieeexplore.ieee.org/document/7591592/
https://diglib.eg.org/handle/10.2312/egp20161045
http://emb.citengine.com/event/embc-2015/paper-details?pdID=5231
http://emb.citengine.com/event/embc-2015/paper-details?pdID=5231
http://emb.citengine.com/event/embc-2015/paper-details?pdID=5231
http://emb.citengine.com/event/embc-2015/paper-details?pdID=5231
http://emb.citengine.com/event/embc-2015/paper-details?pdID=5232
http://emb.citengine.com/event/embc-2015/paper-details?pdID=5232
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16. Physically-based In Silico Light Sheet Microscopy for Visualizing Fluorescent Brain Models
Marwan Abdellah, Ahmet Bilgili, Stefan Eilemann, Henry Markram, and Felix Schürmann ·
5th Symposium on Biological Data Visualization (BioVis 2015) · Dublin, Ireland · July 2015

17. A Computational Model of Light-Sheet Fluorescence Microscopy using Physically-based Ren-
dering
Marwan Abdellah, Ahmet Bilgili, Stefan Eilemann, Henry Markram, and Felix Schürmann ·
Eurographics 2015 · Zürich, Switzerland · May 2015

18. MATLAB-based Fourier Volume Rendering Framework
Marwan Abdellah, Ayman Eldeib and Amr Sharawi · IEEE, Proceedings of the 7th Cairo Inter-
national Biomedical Engineering Conference (CIBEC 2014) · Cairo, Egypt · December 2014

19. Offline Large Scale Fourier Volume Rendering on Low-end Hardware
Marwan Abdellah, Ayman Eldeib and Amr Sharawi · IEEE, Proceedings of the 7th Cairo Inter-
national Biomedical Engineering Conference (CIBEC 2014) · Cairo, Egypt · December 2014

20. cufftShift: High Performance CUDA-accelerated FFT-shift Library
Marwan Abdellah · Proceedings of the High Performance Computing Symposium (HPC ′14),
Article No. 5 · Tampa, FL, USA · April 2014

21. Constructing a Functional Fourier Volume Rendering Pipeline on Heterogeneous Platforms
Marwan Abdellah, Ayman Eldeib and Amr Shaarawi · IEEE, Proceedings of the 6th Cairo Inter-
national Biomedical Engineering Conference (CIBEC 2012) · Cairo, Egypt · December 2012

22. High Performance Multi-dimensional (2D/3D) FFT-Shift Implementation on Graphics Pro-
cessing Units (GPUs)
Marwan Abdellah, Ayman Eldeib and Amr Shaarawi · IEEE, Proceedings of the 6th Cairo Inter-
national Biomedical Engineering Conference (CIBEC 2012) · Cairo, Egypt · December 2012

23. High Performance CUDA-based Implementation for the 2D Version of the Maximum Subar-
ray Problem (MSP)
Salah Saleh, Marwan Abdellah, Ahmed A. Abdel Raouf and Yasser M. Kadah · IEEE, Pro-
ceedings of the 6th Cairo International Biomedical Engineering Conference (CIBEC 2012) · Cairo,
Egypt · December 2012

24. Parallel Rendering on Hybrid Multi-GPU Clusters
Stefan Eilemann, Ahmet Bilgili, Marwan Abdellah, Juan Hernando, Maxim Makhinya, Renato
Pajarola, and Felix Schürmann · Eurographics Symposium on Parallel Graphics and Visualiza-
tion (EGPGV’12) · Cagliari, Italy · May 2012

25. GPU-Based Reconstruction and Display for 4D Ultrasound Data
Ahmed Elnokrashy, Ahmed Elmalky, Tamer Hosny, Marwan Abdellah, Alaa Megawer, Abubakr
Alsebai, Abou-Bakr Youssef and Yasser Kadah · 2009 IEEE International Ultrasonics Symposium

http://biovis.net/year/2015/papers
http://diglib.eg.org/handle/10.2312/egp.20151038.015-016
http://diglib.eg.org/handle/10.2312/egp.20151038.015-016
http://dx.doi.org/10.1109/CIBEC.2014.7020914
http://dx.doi.org/10.1109/CIBEC.2014.7020915
http://dl.acm.org/citation.cfm?id=2663515
http://dx.doi.org/10.1109/CIBEC.2012.6473295
http://dx.doi.org/10.1109/CIBEC.2012.6473306
http://dx.doi.org/10.1109/CIBEC.2012.6473306
http://dx.doi.org/10.1109/CIBEC.2012.6473291
http://dx.doi.org/10.1109/CIBEC.2012.6473291
https://diglib.eg.org/handle/10.2312/EGPGV.EGPGV12.109-117
http://dx.doi.org/10.1109/ULTSYM.2009.5441645
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· Rome, Italy · September 2009

26. Software Development for Low Cost, High quality, Real-time, 4D Ultrasound on Personal
Computers
Abdellah M., Megawer A. and Kadah Y. Mh · IEEE, 26th National Radio Science Conference
(NRSC), Union Radio Scientifique Internationale (URSI) · Cairo, Egypt · March 2009

27. Computational Models and Simulators of functional MRI
Marwan Abdellah · A literature review report submitted to Prof. Rolf Gruetter · Neuroscience
Doctoral School · École Polytechnique Fédéral de Lausanne (EPFL) · Lausanne, Switzerland ·
February 2015

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5233441&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5233441
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5233441&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5233441
http://marwan-abdellah.weebly.com/uploads/1/4/9/0/14902006/article.pdf
https://people.epfl.ch/rolf.gruetter
http://phd.epfl.ch/edne
http://phd.epfl.ch/edne
http://www.epfl.ch



