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Abstract
Why are classical theories often sufficient to describe the physics of our world even though

everything around us is entirely composed of microscopic quantum systems? The boundary

between these two fundamentally dissimilar theories remains an unsolved problem in modern

physics. Position measurements of small objects allow us to probe the area where the classical

approximation breaks down. In quantum mechanics, Heisenberg’s uncertainty principle

dictates that any measurement of the position must be accompanied by measurement induced

back-action—in this case manifested as an uncertainty in the momentum.

In recent years, cavity optomechanics has become a powerful tool to perform precise position

measurements and investigate their fundamental limitations. The utilization of optical micro-

cavities greatly enhances the interaction between light and state-of-the-art nanomechanical

oscillators. Therefore, quantum mechanical phenomena have been successfully observed

in systems far beyond the microscopic world. In such a cavity optomechanical system, the

fluctuations in the position of the oscillator are transduced onto the phase of the light, while

fluctuations in the amplitude of the light disturb the momentum of the oscillator during the

measurement. As a consequence, correlations are established between the amplitude and

phase quadrature of the probe light.

However, so far, observation of quantum effects has been limited exclusively to cryogenic

experiments, and access to the quantum regime at room temperature has remained an elusive

goal because the overwhelming amount of thermal motion masks the weak quantum effects.

This thesis describes the engineering of a high-performance cavity optomechanical device and

presents experimental results showing, for the first time, the broadband effects of quantum

back-action at room temperature. The device strongly couples mechanical and optical modes

of exceptionally high quality factors to provide a measurement sensitivity ∼104 times below

the requirement to resolve the zero-point fluctuations of the mechanical oscillator. The

quantum back-action is then observed through the correlations created between the probe

light and the motion of the nanomechanical oscillator. A so-called “variational measurement”,

which detects the transmitted light in a homodyne detector tuned close to the amplitude

quadrature, resolves the quantum noise due to these correlations at the level of 10% of the

thermal noise over more than an octave of Fourier frequencies around mechanical resonance.

Moreover, building on this result, an additional experiment demonstrates the ability to achieve

quantum enhanced metrology. In this case, the generated quantum correlations are used to

cancel quantum noise in the measurement record, which then leads to an improved relative
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signal-to-noise ratio in measurements of an external force.

In conclusion, the successful observation of broadband quantum behavior on a macroscopic

object at room temperature is an important milestone in the field of cavity optomechanics.

Specifically, this result heralds the rise of optomechanical systems as a platform for quantum

physics at room temperature and shows promise for generation of ponderomotive squeezing

in room-temperature interferometers.

Keywords: quantum measurement, room temperature cavity optomechanics, measurement

back-action, quantum correlations
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Zusammenfassung
Warum können wir unsere Welt mittels der Theorien klassischer Physik beschreiben, obwohl

sie gänzlich aus mikroskopischen Quantensystemen zusammengesetzt ist? Der Verlauf der

Grenze zwischen diesen beiden fundamental gegensätzlichen Theorien stellt bis heute ein

ungelöstes Problem der modernen Physik dar. Als Lösung ermöglichen Messungen des Aufent-

haltsortes winziger Objekte den Zugang zu einem Bereich, an dem die klassischen Näherungen

versagen. Jedoch schreibt die Quantenmechanik vor, dass die Messung der Position durch

eine Messrückwirkung auf das System begleitet wird — in diesem Fall manifestiert als Störung

des Impulses.

Innerhalb der letzten Jahre hat sich die noch junge Forschung der Resonator-Optomechanik

zu einem bedeutenden Werkzeug für präzise Positionsmessungen und der Erforschung der

fundamentalen Beschränkungen jener entwickelt. Durch die Verwendung von optischen

Mikroresonatoren, welche die Wechselwirkung zwischen Licht und hochmodern gefertigten

nanomechanischen Oszillatoren deutlich steigern, konnten quantenmechanische Effekte an

Systemen weit jenseits des Mikrokosmos nachgewiesen werden. Zur Messung der Auslenkung

in einem solchen optomechanischen System prägt sich die Schwingung des Oszillators auf die

Phase des zirkulierenden Lichts, während Fluktuationen der Lichtamplitude den Impuls der

Schwingung beeinflussen. In Konsequenz führt dies zu messbaren Korrelationen zwischen

der Amplituden- und Phasenquadratur des ausgekoppelten Lichts.

Bis dato konnte ein erfolgreicher Nachweis der Quantenmessrückwirkung lediglich unter

Tieftemperaturbedingungen erbracht werden, wohingegen dies bei Raumtemperatur ein bis-

her unerreichtes Ziel blieb. Grund hierfür ist, dass die schwachen Quanteneffekte hier durch

die sehr große thermische Bewegung der mechanischen Schwingung überschattet werden.

Diese Dissertation beschreibt den Prozess der Entwicklung eines besonders leistungsstarken

optomechanischen Systems, mit dessen Hilfe erstmalig der breitbandige Effekt der Messrück-

wirkung bei Raumtemperatur nachgewiesen wurde. Das System zeichnet sich hierbei durch

eine hohe optomechanische Wechselwirkung zwischen mechanischer und optischer Reso-

nanzen außerordentlich hoher Güten aus. Somit wurde eine Messempfindlichkeit erreicht,

die um einen Faktor ∼104 unterhalb der Grundzustandsfluktuationen des mechanischen

Oszillators liegt. Die Messrückwirkung kann als Folge dessen anhand der Korrelationen zwi-

schen Oszillator und Licht nachgewiesen werden. Mittels homodyner Detektion nahe der

Amplitudenquadratur wurde das so entstehende Quantenrauschen gemessen, das in den hier

beschriebenen Messungen bis zu 10% des thermischen Rauschens erreicht. Die Korrelationen
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spannen dabei mehr als eine Oktave an Fourierfrequenzen rund um die Resonanzfrequenz.

Des Weiteren wurden in einem zweiten Experiment die entstandenen Quantenkorrelationen

dazu genutzt, das Quantenrauschen des Messvorgangs auszulöschen und so eine erhöhte

Messempfindlichkeit des relativen Signal-Rausch-Verhältnisses einer externen Kraft erreicht.

Zusammenfassend markiert die erfolgreiche Beobachtung des breitbandigen Quanteneffekts

einen wichtigen Meilenstein in der Resonator-Optomechanik. Weiterhin untermauert dieses

Resultat die allgemeine Bedeutung von optomechanischen Systemen als Plattform für quan-

tenphysikalische Experimente und gilt als vielversprechende Lösung, gequetschtes Licht in

Raumtemperatur-Interferometern zu erzeugen.

Stichwörter: Quantenmessung, Raumtemperatur Resonator-Optomechanik, Messrückwir-

kung, Quantenkorrelationen
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Résumé
Pourquoi les théories classiques sont-elles souvent suffisantes pour décrire la physique de

notre monde, alors même que celui-ci est entièrement composé de systèmes quantiques

microscopiques ? La frontière entre ces deux théories fondamentalement dissemblables reste

un problème non résolu de la physique moderne. Mesurer la position d’objets mesoscopiques

nous permet de sonder le domaine où l’approximation classique échoue. En mécanique

quantique, le principe d’incertitude de Heisenberg impose que toute mesure de la position

doit s’accompagner d’une action en retour, induite par la mesure—qui se manifeste, dans ce

cas, comme une incertitude sur la quantité de mouvement.

Au cours de ces dernières années, l’opto-mécanique en cavité est devenue un outil puissant

pour effectuer des mesures de position très précises et étudier leurs limites fondamentales. En

utilisant des micro-cavités optiques, qui augmentent considérablement l’interaction entre

la lumière et des oscillateurs nanomécaniques à la pointe de la technologie, des phéno-

mènes quantiques ont pu être observés dans des systèmes dépassant largement l’échelle

microscopique. Dans une cavité opto-mécanique, les fluctuations de position de l’oscilla-

teur influencent la phase de la lumière tandis que les variations d’amplitude de la lumière

perturbent la quantité de mouvement de l’oscillateur durant la mesure. En conséquence,

des corrélations s’établissent entre les quadratures d’amplitude et de phase de la lumière de

sonde.

Cependant, l’observation des effets quantiques est restée, jusqu’à présent, exclusivement

limitée aux expériences cryogéniques. Accéder au régime quantique à température ambiante

est resté un objectif inatteignable en raison de la quantité écrasante de mouvement thermique,

qui masque les subtils effets quantiques. Cette thèse décrit la conception d’un système d’opto-

mécanique en cavité de haute performance et présente des résultats expérimentaux montrant,

pour la première fois à température ambiante, les effets quantiques de l’action en retour

sur une large bande. Le dispositif couple fortement des modes mécaniques et optiques aux

facteurs de qualité exceptionnellement élevés, pour fournir une sensibilité de mesure ∼104

fois inférieure à celle nécessaire pour résoudre les fluctuations du point zéro de l’oscillateur

mécanique. L’action en retour quantique est alors mise en évidence à travers les corréla-

tions créées entre la lumière de la sonde et le mouvement de l’oscillateur nanomécanique.

Une «mesure variationnelle», qui détecte la lumière transmise dans un montage homodyne

sélectionnant la quadrature d’amplitude, permet de résoudre le bruit quantique lié à ces

corrélations à un niveau de 10% du bruit thermique sur une plage fréquentielle de plus d’une
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octave autour de la résonance mécanique. De plus, en se basant sur ce résultat, une expérience

supplémentaire démontre la capacité d’améliorer la métrologie par effet quantique. Dans ce

cas, les corrélations quantiques générées sont utilisées pour annuler le bruit quantique dans

l’enregistrement mesuré, ce qui conduit à l’amélioration du rapport signal / bruit relatif pour

la mesure d’une force externe.

En conclusion, l’observation sur une large bande du comportement quantique d’un ob-

jet macroscopique à température ambiante est une étape importante dans le domaine de

l’opto-mécanique en cavité. Plus précisément, ce résultat préfigure l’éminence des systèmes

opto-mécaniques en tant que plate-forme permettant l’étude de la physique quantique à

température ambiante et démontre leur potentiel prometteur pour la génération d’états

pondéromoteurs compressés dans des interféromètres à température ambiante.

Mots clefs : mesure quantique, opto-mécanique en cavité à température ambiante, mesure de

l’action en retour, corrélation quantique
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1 Introduction

For most species on this planet, light as the visible part of the electromagnetic spectrum

is the primary way of perceiving the surrounding environment with us humans being no

exception. Throughout history, the vision has always been our primary tool of observing and

understanding the laws of nature. This holds true until today where the optical perception

still constitutes the main mechanism for studying phenomena in both biological and physical

sciences.

Figure 1.1 – Radiation pressure effect on the tail of
a comet. Original drawing by Kepler from 1619 [1].

It was only logical that the desire to understand

the concepts of light itself would eventually arise.

Until the mid 19th century, both, wave and parti-

cle theories competed with each other attempting

to describe the nature of light. The alleged solu-

tion was brought with the formulation of an early

version of Maxwell’s equations in 1862 that led

to the comprehension of light as electromagnetic

waves capable of describing observations such

as interference and polarization effects. How-

ever, evidence for the particle character of light

remained omnipresent. Hertz and Hellwachs dis-

covered the photoelectric effect in 1887 where

they made the observation that the energy of the

emitted electrons is proportional to the frequency

of the incident light while their number merely

depends on the light’s intensity [2]. This effect,

standing in contrast to the classical wave theory

and supporting a particle nature of light, was later

on in 1905 described by Einstein in one of his an-

nus mirabilis papers with his postulation of the

quantum nature of light in form of localized par-
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Chapter 1. Introduction

ticles with discrete energies proportional to the light’s frequency [3]. This eventually led to the

formulation of the theory of quantum mechanics [4] describing both, the particulate character

of light waves as well as the complimentary wave character of - until then thought of as pure -

particles (e.g. atoms, electrons etc.).

1.1 Radiation pressure forces

The fact that light also carries momentum leads to the concept of a radiation pressure force,

the underlying fundamental mechanism for this thesis. The first reference to this effect dates

back to as early as 1619 when Kepler studied the phenomenon that the tails of comets always

seem to point away from the sun [1]. This is illustrated in his original drawing in fig. 1.1

where he suggested an outward solar radiation pressure acting on the tails of the comets as

explanation, a claim which remained unsubstantiated for more than two centuries due to a

lack of a quantitative theory. The assertion of light being able to exert this kind of pressure

force first followed as a consequence from Maxwell’s equations that required electromagnetic

radiation to carry momentum.

Figure 1.2 – Nichols radiometer [5]. The appara-
tus consists of a torsion balance in which two sil-
vered mirrors (C and D) are suspended by a thin
wire. One mirror is illuminated by a high intensity
light source while the other is used to measure the
rotation caused by the radiation pressure. This is
carried out by reflecting a weaker light beam off the
other mirror, similar to a galvanometer. The appa-
ratus is placed inside an evacuated glass cylinder to
avoid thermal effects as in Crookes’ attempt [6].

Inspired by Cavendish’s precision measurement

of the gravitational force between two masses us-

ing a torsion balance [7], in 1873 William Crookes

presented his invention that targeted the first ob-

servation of direct evidence of the radiation pres-

sure of light: the radiometer [6]. Indeed, the ap-

paratus consisting of a low-friction spindle with

several vertical lightweight vanes responded to

a photo-induced force and rotated when illumi-

nated. By investigating the observations made by

Crookes more carefully, it quickly became clear

that the rotation of the vanes was solely caused by

a thermal effect through impacting gas molecules.

In addition, the rotation direction was opposite

of what was expected from radiation pressure

forces. The first successful observations of a pure

radiation pressure effect were eventually realized

by Lebedew in 1900 [8], and independently by

Nichols and Hull using a Nichols radiometer in

the following year [5]. A drawing of this device

is shown in fig. 1.2. The essential difference to

Crooke’s device was that here, the torsion appara-

tus was placed inside an evacuated glass cylinder,

therefore eradicating the main flaw of Crooke’s

radiometer.
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1.1. Radiation pressure forces

After the first theoretical analysis of the statistics of radiation pressure force fluctuations

by Einstein in 1909, more than half a century had to pass until further investigation of this

effect was conducted at a lab scale 1. A powerful tool hereby turned out to be the in 1960

newly invented lasers, although they were at first considered as a "solution looking for a

problem" [12]. However, relying on quantum mechanical principles, with the laser it was

finally possible to provide the required high-intensity, monochromatic, collimated light fields

necessary to further study light forces. It was first within the context of laser cooling that the

effects of radiation pressure forces of light were experimentally demonstrated. To understand

the fundamental principle behind laser cooling, one first has to go back to the discovery

made by Brown, a botanist who in 1827 observed a random motion of pollen grains in water2.

Einstein in 1905, in another annus mirabilis paper, explained this observation with the kinetic

theory of gases that, highly controversial at that time, describes a gas as a large ensemble of

submicroscopic particles, i.e. atoms or molecules [13]. He conjectured that a large object that

is placed into a gas will experience kicks from the gas particles with the amount of these kicks

being proportional to the magnitude of thermal motion, establishing a link to the temperature.

This immediately rose the question whether the Brownian motion would vanish by bringing

the object of interest to zero temperature. The answer to this question is indeed a complete

suppression of the thermal motion, leaving the object only to its vacuum fluctuations. When

performing a measurement however, quantum mechanics dictates a disturbance of the object

in the order of the vacuum fluctuations, imparting additional motion onto the object: this

process is referred to as the measurement back-action effect. The aim of the first laser cooling

experiments was the “refrigeration,” or cooling, of the thermal motion of atomic-scale matter

as well as controlling and trapping neutral particles [14–17]. Since the first experiments, laser

cooling has become an exceptionally important technique in quantum optics and has enabled

the study of low-temperature many-body systems as well as applications such as optical

clocks.

It was the pioneering work of Braginsky who first investigated the impact of radiation pressure

forces on larger scale objects, i.e. the optomechanical effects, by considering a harmonically

suspended end mirror of an optical cavity. His theoretical study predicted the so-called pon-

deromotive effect of light, meaning the ability to cool or amplify the periodic motion of a

mechanically oscillating object with light due to the retarded nature of the radiation pressure

force which he eventually also succeeded to demonstrate experimentally [18, 19]. Later on,

Braginsky also studied the impact of quantum fluctuations in the radiation pressure force

limiting the sensitivity of a position measurement of a mirror [20, 21]. Applying this to interfer-

ometric measurements, further detailed analysis of this quantum noise eventually established

the so-called standard quantum limit (SQL) for a continuous position measurement using an

interferometer [22–24].

1For the field of astronomy, the concept of radiation pressure forces was of high relevance since the beginning
as it delivered explanations for various, until then unsolved, observations [9–11]

2Brown made the same observation also on inorganic matter, directly ruling out any life-related processes.
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Chapter 1. Introduction

1.2 Cavity optomechanics

Braginsky’s findings soon led to the emergence of the new research field of cavity optome-

chanics [25]. Based on his work described above, cavity optomechanics studies the properties

and effects of radiation pressure interactions between light and matter. For this, the light

is confined inside an optical cavity and interacts during its circulation with a mechanically

compliant object. Each photon recirculates inside the cavity, and therefore is able to inter-

rogate the state of the mechanical object multiple times before exiting the cavity. This leads

to a greatly enhanced measurement sensitivity and enables the most precise displacement

measurements ever performed.

Figure 1.3 – LIGO interferometer:. Aerial view of
the Laser Interferometer Gravitational-Wave Obser-
vatory in Hanford, WA, USA. The interferometer
arms measure 4 km in length.

Prominent examples that harnesses this extreme

sensitivity are the gravitational wave interferome-

ters. With the Laser Interferometer Gravitational-

Wave Observatory (LIGO) in the USA leading the

way, the LIGO collaboration has recently detected

the very first gravitational-wave signal and there-

fore proven their existence. An aerial view of one

of the LIGO facilities is shown in fig. 1.3. LIGO

utilizes an optical interferometer to detect space-

time fluctuations caused by gravitational waves,

which are passing through the interferometer

arms. Owing to its exceptionally high strain sensitivity of 10−23/
�

Hz, a transient gravitational-

wave signal caused by two merging black holes about 109 ly away from Earth could very

recently be observed for the very first time at LIGO [26]. The gravitational wave strain for this

event was 10−21, resulting in a change of path length in the order of 10−18 m in one of the

4 km long interferometer arms. This corresponds to the one-thousandth diameter of a proton.

Already predicted by Einstein about a century ago, this direct evidence of gravitational waves

marks a breakthrough discovery providing new ways of understanding our universe and giving

astrophysicists the ability to observe objects that otherwise would remain invisible. Conse-

quently, the Nobel Prize in Physics 2017 was awarded to the LIGO project for the successful

observation of gravitational waves.

As an interesting remark, the first example of an optomechanical resonator (though not

operating at optical frequencies) surfaced long before the first dedicated experiments: ”The

Thing". In 1945, the Soviets presented a carved wooden plaque of the Great Seal of the United

States to the US ambassador as a ”gesture of friendship". Hidden inside this plaque was a

diaphragm coupled to a UHF cavity. Figure 1.4 shows a replica of the Great Seal which is

displayed in a museum in the USA. The device invented by Léon Theremin served as a passive

bug to eavesdrop on possibly confidential conversations [27]. The principle was very similar

to Braginsky’s work: vibrations of the diaphragm modulate the resonance frequency of the

cavity and thereby transmit sound in the room via radio waves if the cavity was driven with

the correct UHF frequency from a distant transmitter. The device was not found before seven
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1.2. Cavity optomechanics

a b

Figure 1.4 – The Thing. Replica of ”The Thing", on display at the NSA’s National Cryptologic Museum in Annapolis
Junction, MD, USA. It contained a listening device hidden inside the Great Seal, which was used by the Soviets to
spy on the American ambassador to Russia between 1945 and 1952, when it was finally exposed.

years of successful spying had passed. Whether or not it is a coincidence that Braginsky’s first

optomechanics experiments also took place at UHF frequencies, is up to the reader to decide

for himself.

1.2.1 Optomechanical systems in practice

Eventually, advances in microfabrication helped substantially to boost the rise of the field of

cavity optomechanics. Photons became a powerful tool for quantum-limited measurements,

as the field of a laser-driven cavity can be quantum-noise limited even at room temperature,

and hence constitutes an ideal mechanical transducer. Moreover, the finite build-up time

of the cavity field allows it to perform work on the mechanical element, enabling low-noise

optical cooling and amplification [28]. Investigation of these effects has led to two paradig-

matic goals: cooling of a solid-state mechanical oscillator to its quantum ground state and,

concomitantly, read-out of its zero-point motion with the minimal disturbance allowed by the

Heisenberg uncertainty principle due to measurement back-action (radiation-pressure shot

noise (RPSN) [22]).

The first goal, ground-state cooling, has been achieved by several cryogenic optomechanical

[34, 45] and electromechanical systems [71] (via resolved-sideband cooling [72]).

The second goal, measuring at the standard quantum limit (SQL) [21], remains outstanding;

however, readout noise far below the zero-point displacement has been reported [59, 73], as

well as RPSN dominating the thermal force in a cryogenic environment [74, 75]. Reaching the

SQL ultimately requires a ‘Heisenberg-limited’ displacement sensor for which the product

of the read out noise and the total force noise is the minimum allowed by the uncertainty

principle. Several cryogenic systems have come within an order of magnitude of this goal [71,

73] and operating within this regime has allowed measurement-based feedback protocols for

cooling [73, 76] and squeezing [77] of an oscillator.
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Figure 1.5 – Survey of various cavity optomechanical systems. (a) Single-photon cooperativity C0 for various
cavity optomechanical systems plotted versus mechanical frequency. C0 is an important figure of merit in
optomechanics, describing the efficiency of the coupling between photons and phonons. Blue and red data
correspond to cryogenic (typically T < 10 K) and room temperature experiments, respectively. Diagonal lines
indicate the condition for C0 = nth ≈ kBT /�Ωm, for various T . The device used for the main results reported
in this thesis (see chapter 4) is highlighted in orange at the intersection of the dashed gray lines. All other
systems correspond to published results in (in the numbering order) [29–67]. (b) Examples of optomechanical
systems covering ranges from the kilogram scales to atom mass. The illustration includes macroscopic [68]
and microscopic suspended mirrors [54], suspended membranes inside an optical cavity [36], microtoroids [45],
phoxonic crystals [69] and cold atoms coupled to an optical cavity [70].

Efficient cavity optomechanical transduction involves co-localization of optical and mechani-

cal modes with high Q/(modevolume) and high optical power handling capacity. Moreover, it

is desirable that the cavity supports a mechanism for efficient input/output coupling. A di-

verse zoo (fig. 1.5) of micro- and nanoscale cavity optomechanical systems has been designed

to meet these challenges, ranging from cantilevers [51] and membranes [36] coupled to Fabry-

Pérot cavities to mechanically-compliant whispering-gallery-mode (WGM) microcavities [44]

and photonic crystals [41, 69]. They generally employ one of two types of radiation pressure

force coupling: either traditional scattering-type coupling, in which the cavity field exchanges

energy with the mechanical element via momentum transfer, or gradient force coupling [78],

in which energy is exchanged via induced-dipole coupling to a field gradient. The net effect is

a parametric coupling between the cavity resonance frequency and the mechanical degree

of freedom. The actual device used in the experiments presented in this thesis is marked in

fig. 1.5 and detailed in chapter 3.

1.2.2 Quantum cavity optomechanics at room temperature: this thesis

The very recent arrival of optomechanical systems in the quantum regime opens the door to

an entirely new class of measurements. Quantum control schemes already established for

atoms and ions could now be applied to tangible macroscopic objects. While all cavity op-

tomechanics experiments that were able to operate in the quantum regime so far were limited

to cryogenic environments, the work presented in this thesis marks one of the first successful

ventures into this promised land at room temperature by being able to observe the quantum
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1.2. Cavity optomechanics

back-action – the fluctuating force due to the random arrival of photons that drives additional

motion during a displacement measurement. Emphasizing the room-temperature aspect, our

advances signal a paradigm shift in the practical applicability of quantum optomechanics.

To achieve this, this thesis details the engineering and optimization of an optomechanical near-

field system for room temperature experiments, featuring both high quality factors for optics

and mechanics as well as large optomechanical interaction. The result is a high-performance

device that allows for mechanical displacement measurements with a sensitivity several orders

below that at the standard quantum limit, even at room temperature. Performing a strong (i.e.

at relatively large optical powers) ”variational" measurement [79], we observe the generation

of quantum correlations between the quadratures of the light that has interacted with the

mechanical oscillator.

These correlations are a direct consequence of strong quantum measurement back-action

and could eventually lead to ponderomotive squeezing. In this regime, the quantum back-

action induced motion dominates over the thermal motion and leads to suppression of the

fluctuations on the output optical field below the shot-noise level, however, at the expense of

increasing fluctuations in the orthogonal quadrature. Squeezed light is known to constitute

a resource for sensitivity improvements beyond usual quantum limits, as has been demon-

strated already in gravitational wave observatories [80, 81]. In contrast to ongoing methods of

squeezed light generation, optomechanically generated squeezing is uniquely powerful as it

is capable of enhancing the displacement measurement of the same mechanical object that

generated it. This situation is, for instance, very relevant to gravitational wave detectors that

are limited by radiation-pressure shot noise [82, 83].

This thesis describes the first-time broadband observation of these optomechanically gen-

erated quantum correlations at room temperature, spanning over an octave around the

mechanical resonance frequency. In an additional experiment, the working principle behind a

quantum-enhanced force measurement is demonstrated, in which the quantum back-action

is canceled in the measurement record. Finally, the thesis provides an outlook of current ef-

forts to further increase the efficiency of the optomechanical interaction and hence approach

the regime of ponderomotive squeezing.

In particular, this thesis is structured into four following chapters. First, the thesis begins

with the foundations of cavity optomechanics (chapter 2): here, the necessary theoretical

background to understand the observed effects is provided. Following that is a discussion of

the engineering and optimization of our particular optomechanical platform and its prop-

erties (chapter 3). Chapter 4 is devoted to the main experimental results, in which we first

observe the effects of quantum measurement back-action at room temperature, and then use

this result to achieve a quantum-enhanced estimation of an external force. Finally, an outlook

is given discussing ongoing work on improving the device parameters to further enhance its

performance (chapter 5).
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2 Foundations of cavity optomechanics

In this chapter, the basic formalism used to describe optomechanical systems and effects will

be introduced, with an eye towards the main experimental results of this thesis which are

presented in chapters 3 and 4.

To begin with, section 2.1 covers the relevant physics of optical cavities and whispering-gallery

mode microresonators. Section 2.2 introduces the properties of nanomechanical oscillators

before section 2.3 combines optics and mechanics in order to convey the principles and

foundations of the field of cavity optomechanics. Section 2.4 finally details the formalism of

optical readout and describes the detection mechanisms used in this work.

2.1 Optical microresonators

Silica microresonators have a rich history in the field of quantum optics. A prominent example

is the microsphere resonator, which is fabricated by melting the tip of an optical fiber. Owing

to the extremely high optical quality factors of microspheres in excess of 109 in combination

with their small mode volume [84–86], they have been established as a powerful tool to study

effects of non-linear optics [84, 87], low-threshold Raman lasers [87–89], cavity quantum

electrodynamics [90], and molecule- and biosensing [91–93].

The downside with these microsphere resonators is, however, that their exact geometry cannot

be precisely controlled during fabrication. In addition, this process is not compatible with

fabrication techniques developed in microelectronics, rendering a potential integration with

other mechanical or electrical components impossible. This changed with the development of

the microtoroid [94] which combines the high quality factors of microspheres with an on-chip

fabrication scheme, finally allowing for chip-based integration.

This section describes the fundamentals of silica optical microresonators and their properties,

as used in this work. Section 2.1.1 introduces the concept of whispering-gallery modes and

their properties, followed by the analysis of the different loss channels and definition of the

quality factor, an important measure for optical cavities (section 2.1.2). Section 2.1.3 presents
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Chapter 2. Foundations of cavity optomechanics

Figure 2.1 – Whispering gallery modes: Total internal reflection of acoustic (left) and optical (right) waves inside a
circular resonator. A mode is supported if the optical path along the circumference is an integer multiple of the
wavelength. Image adapted from [97].

the mathematics behind the process of coupling light in and out of an optical cavity and

defines the observables measured in an experiment under different coupling conditions.

2.1.1 Whispering-gallery modes

The term ”whispering-gallery mode" (or ”whispering-gallery wave") was first mentioned in

1878, when Lord Rayleigh used it to describe an acoustic phenomenon occurring in the dome

of St. Paul’s Cathedral [95]. There, whispers can be heard across the 32 m gallery on the

opposite site when placing the ear close to the wall. He explained this effect with multiple

reflections of the sound waves off the dome’s circumferential wall and further developed

theories stating that, based on wave interference, only certain pitches of sound experience

this effect, the so-called modes [96].

When investigating light scattering from spherical particles, Mie in 1908 predicted sharp

resonances for certain wavelengths of the incident light [98], corresponding to optical reso-

nances (modes) of the spheres. The light was found to propagate inside the sphere close to

the surface, which Mie subsequently linked to the concept of the acoustic whispering-gallery

modes (WGM). In this simple picture, the light rays inside the sphere repeatedly bounce off

the glass-air interface at a shallow angle due to total internal reflection, and are contained

within the perimeter, similar to the acoustic WGMs. The strongest scattering is observed if the

optical path length of a round trip is an integer multiple of the wavelength, corresponding

to a supported mode, or more precisely, a whispering-gallery mode. The concept of acoustic

and optical WGMs is illustrated in fig. 2.1. A detailed mathematical description can be found

10
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Figure 2.2 – Wedged SiO2 microdisk resonator: (a) SEM of a wedged microdisk; blue and gray indicate SiO2 and
Si, respectively. (b) Finite-element calculated electric field intensity distribution of a WGM for a disk with 40 μm
diameter, 600 nm thickness and 30◦ wedge angle. For fabrication details, see section 3.2.

in [99].

Throughout the experiments presented in this work, silica microdisk resonators, as shown in

fig. 2.2a, are used. Due to a completely MEMS compatible fabrication process, the disks enable

the on-chip integration with a mechanical oscillator to form an optomechanical system

in which optical and mechanical resonator are separated. This novel concept of having

integrated on-chip optomechanical devices where mechanics and optics are completely

separated obviously bears the advantage that specific materials and designs can be chosen

independently for each element. A second advantage is that in an integrated device no

relative positioning after the fabrication process is required, nullifying instabilities caused by

external vibrations, for example. Together, these two aspects enabled a significant boost of the

performance of the samples.

The microdisks, however, lack a key advantage compared to spheres and toroids – the silica is

not reflowed and therefore has a less smooth surface. However, by fabricating a wedge, the

cavity mode can be spatially isolated from the surface of the disk and equally high quality

factors can be achieved. Responsible for this is the wedge that spatially isolates the mode from

the surface of the disk. Figure 2.2b shows a finite-element simulation (using COMSOL) of the

whispering-gallery mode and its location inside the disk resonator. The fabrication process of

the microdisks and measurements of the quality factor are detailed in chapter 3.

2.1.2 Quality factor and optical loss mechanisms

To mathematically describe optical microresonators, the Fabry-Pérot cavity constitutes a

straightforward example to introduce useful quantities. Such a resonator consists of two

highly reflective mirrors facing each other at a distance L, and hence supports resonances

characterized by their angular frequency,

ωc,m ≈ m ·π c

L
, (2.1.1)

11



Chapter 2. Foundations of cavity optomechanics

with the integer mode number m. The spectral separation of two adjacent modes is named

the free spectral range (FSR) of the oscillator and is given by,

ΔωFSR =π
c

L
. (2.1.2)

Note that in the following, the focus is on a single optical mode denoted as ωc.

An ideal resonator with perfectly reflecting mirrors would have no losses besides the light that

is intentionally coupled back out of the resonator. Due to different loss mechanisms however,

the energy stored in a cavity mode decays over a characteristic timescale τ, or more frequently

described at a loss rate κ,

κ= τ−1. (2.1.3)

A useful quantity proportional to the average number of cavity round-trips of the photons

before exiting through one of the loss channels is the optical Finesse F given by,

F =ΔωFSRτ= ΔωFSR

κ
= 2πτ−1

rt

κ
=π

c

Lκ
, (2.1.4)

where τrt denotes the cavity round-trip time of light. Therefore, the optical Finesse can be

understood as the power enhancement factor and describes the ratio between intracavity

and injected power. In line with this, another very important parameter of an optical cavity is

its quality factor Q that compares the oscillation period of the field inside a cavity with the

photon life time,

Q =ωcτ= ωc

κ
. (2.1.5)

To understand the limitations in the quality factor, the total loss rate needs to be decomposed

into the individual contributions that each reduce the photon storage time τ of the cavity.

In general, the cavity decay rate κ is separated into two major parts, one describing internal

losses, κ0, and the other denoting losses due to the intentional input and output coupling, κex.

In the case of a Fabry-Pérot cavity, κex represents losses due to the coupling, while κ0 combines

internal loss channels inside the cavity, such as transmission losses at the second mirror as

well as scattering and absorption losses during the circulation. For silica microresonators,

the intrinsic loss rate κ0 consists of absorption and bulk Rayleigh scattering of the material

κmat, scattering losses due to residual surface inhomogeneities κs.s, absorption due to surface

contaminations κcont, and radiation loss κrad. The total loss rate of the cavity can then be

expressed as,

κ= κ0 +κex =κmat +κs.s +κcont +κrad +κex, (2.1.6)

and an intrinsic quality factor Q0 of the cavity can be defined as,

Q−1
0 =

(
ωc

κ0

)−1

=Q−1
mat +Q−1

s.s +Q−1
cont +Q−1

rad. (2.1.7)

The losses due to material absorption in ultra-clean silica are very low for wavelengths in

12



2.1. Optical microresonators

the visible (390−700 nm) and near-infrared (700−2500 nm) regime. For a given absorption

coefficient α, Qmat can be approximated by [99],

Qmat ≈ 4.3 ·103

α

2πn

λ
. (2.1.8)

For silica (refractive index n = 1.45, α= 0.17 dB/km) at a wavelength λ= 780 nm, a material

limited quality factor as high as Qmat ≈ 1011 is predicted and values approaching this limit

have been observed in microsphere resonators [100, 101].

The magnitude of the loss channel caused by scattering from surface inhomogeneities, de-

scribed by the scattering quality factor Qs.s, is derived from calculations of Rayleigh scat-

tering by molecular-sized surface clusters under grazing incidence and total internal reflec-

tion [100, 102]. For microsphere resonators this estimate yields,

Qs.s = λ2D

2π2σ2B
, (2.1.9)

where D is the diameter of the resonator, and σ and B denote the root-mean-square surface

roughness and correlation length of surface inhomogeneities, respectively. Values reported

for glass surfaces are σ = 0.3 nm and B = 3 nm. The exact loss rate also depends on the

ratio of the light intensity at the surface to the total modal energy. For large microsphere

resonators, quality factors of up to 8 ·109 have been observed, approaching the surface loss

limit of Qs.s ≈ 1010 if D ≈ 100 μm. However, optical silica micro resonators are in general

scattering-loss limited at quality factors of 108 due to their small mode volume [103].

Intrinsic radiation (curvature) losses due to lack of confinement of the optical mode by the

curved surface of the resonator are typically negligible for resonators with dimensions used

in this work. Spheres and microdisks with diameters larger than 20 μm experience radiation

losses in the order of Qrad > 1011 at visible and near-infrared wavelengths [104], as radiation

losses exponentially decrease with increasing size [100].

Finally, since silica is highly hygroscopic, losses due to chemically adsorbed water molecules

on the surface are important. When measuring the quality factors of large microspheres

(up to 800 μm in diameter) under ambient conditions, the quality factors were limited to

Q = 8 ·109 [86]. Particularly at telecommunication wavelengths around 1.5 μm where water

absorption peaks, even a mono-layer of water on the surface leads to a significant increase

of losses [103]. Investigating the adsorption, a degradation of the optical quality factor in

microsphere resonators due to a water layer has been observed after exposure to air for a time

period as short as 100s. Therefore, κcont is the dominant loss contribution for experiments

under ambient conditions [100]. However, the quality factors can be recovered by baking out

the sample at 400◦C (see appendix F).
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Chapter 2. Foundations of cavity optomechanics

2.1.3 Resonator-waveguide coupling

When investigating the properties of an optical resonator, light is coupled into it using some

type of input wave, for example light inside a waveguide. To study both the steady states and

temporal dynamics of the coupled system, the input-output formalism described in [105]

provides a powerful tool for the modeling of quantum fluctuations from any coupling port and

also includes the treatment of a possible coherent laser drive at angular frequency ωL. In this

formalism, the complex scalar mode amplitude a(t ) is introduced, which is normalized such

that |a(t )|2 equals the mode energy (or equivalently the photon number with a proportionality

factor of 1/(�ωL)). Based on the Heisenberg equations of motion, the time evolution of a(t)

inside the cavity can be derived [105, 106] and its equation of motion is given as,

da

dt
=−iωca(t )−

(κ0

2
+ κex

2

)
a(t )+�

κexsin(t ), (2.1.10)

with sin(t) describing the input field amplitude due to a laser drive (coupled to the cavity,

for example via an optical fiber). This quantity is normalized such that |sin(t )|2 is the optical

power (or equivalently the photon flux) of the driving light field. Typically, the drive is supplied

by a harmonic oscillation at an angular frequency ωL, resulting in sin(t) ≡ ŝin(t)e−iωLt . For a

convenient further analysis, transformation into a frame rotating at the drive frequency using

a(t ) ≡ â(t )e−iωLt leads to the modified equation of motion,

dâ

dt
= iΔâ(t )− κ

2
â(t )+�

κex ŝin(t ), (2.1.11)

with the detuning of the laser field Δ=ωL−ωc and the total losses κ=κ0+κex as introduced in

the previous section. Positive (negative) detuning means blue (red) detuning from the cavity.

The solution of this first-order ordinary differential equation for a constant drive amplitude

ŝin(t ) = s̄ is given by,

â(t ) = Â0e−
1
2 t (κ+2iΔ)︸ ︷︷ ︸

damped part

+
�
κex s̄

−iΔ+κ/2︸ ︷︷ ︸
steady state

, (2.1.12)

with a complex amplitude Â0. For times t 
 κ−1, only the steady state ā ≡
�
κex s̄

−iΔ+κ/2 is of

relevance and the power circulating in the cavity,
∣∣p̄∣∣2, can be derived as,

∣∣p̄∣∣2 = |ā|2
τrt

= 1

τrt

κex |s̄|2
Δ2 + (κ/2)2

= 4ηc

τrtκ

|s̄|2
1+4Δ2/κ2 = 2ηc

F

π

|s̄|2
1+4Δ2/κ2 .

(2.1.13)

Here, the coupling parameter ηc ≡ κex
κ describes the cavity-waveguide coupling efficiency. The

last equation highlights the meaning of the cavity finesse. For a symmetric cavity in which

κex = κ0 (i.e. ηc = 1/2), the intracavity power on resonance (Δ= 0) is enhanced by a factor of∣∣p̄/s̄
∣∣2 =F/π. The steady-state intracavity field also gives rise to the mean photon number nc
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Figure 2.3 – Wavelength scan across several free spectral ranges of a microdisk resonator: Measurement of the
transmission T versus laser wavelength for sample AE/L2/A2/23. The red and blue traces are measurements of
the two different polarizations (TE and TM). The free spectral range can be easily read off to be ∼2.5 nm. The
background noise is caused by fluctuations of the input power (e.g. due to output power fluctuations of the laser
or etalons in the optical path).

inside the cavity,

nc = |ā|2 = 4ηc

κ

Pin

�ωL

1

1+4Δ2/κ2 . (2.1.14)

Here, Pin = �ωL |s̄|2 is the input power launched into the waveguide.

To estimate the transmission amplitude detected at the output of the waveguide, the input-

output relation for the transmission amplitude sout = sin −�
κexa is used. In the steady state,

the transmission coefficient T is can be found as,

T (Δ) ≡
∣∣∣∣ s̄out

s̄

∣∣∣∣2 = Δ2 + (κ0/2−κex/2)2

Δ2 + (κ0/2+κex/2)2 = 1− ηc(1−ηc)κ2

Δ2 + (κ/2)2 , (2.1.15)

corresponding to a Lorentzian suppression when approaching resonance (|Δ| → 0) with

FWHM linewidth κ.

Figure 2.3 shows a measurement of the optical spectrum of a microdisk resonator for the

two different input polarizations of the light, TE and TM. For this, the laser wavelength was

slowly tuned over its entire range from 765−780 nm while monitoring the transmission of the

fiber. By investigating the periodicity of the acquired transmission signal, we gain access to

the free spectral range ∼2.5 nm in this example, which is equivalent to a free spectral range

ΔωFSR ≈ 2π·1.3 THz. From this result, we can calculate the radius R of the microdisk resonator

by (cf eq. (2.1.2)),

ΔωFSR =π
c

2nπR
⇔ R = c

2nΔωFSR
≈ 15 μm, (2.1.16)

with the refractive index of SiO2, n = 1.45.
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Figure 2.4 – Coupling regimes: (a) Model and (b) measurement of the transmission T versus cavity detuning Δ for
the undercoupled (blue traces, ηc = 0.1), critically coupled (red traces, ηc = 1) and overcoupled case (orange traces,
ηc = 0.8). The measurements were taken with sample M2/CU/T/BD. See text for details regarding the experiment.

Coupling regimes

The coupling parameter ηc can be continuously tuned by varying the strength of the external

coupling κex, for example by changing the distance between the optical waveguide and the

cavity in case of WGM resonators. This grants access to three different coupling regimes:

undercoupled, critically coupled and overcoupled [107].

In the first regime, the total losses of the cavity are dominated by the intrinsic loss rate. The

cavity is hence operated in the undercoupled regime. It is characterized by κ0 > κex, leading

to a coupling parameter ηc < 1/2. In this case, the magnitude of the light coupled back from

the cavity is smaller than the field propagating in the optical fiber. This regime is useful for

measuring the intrinsic linewidth of the optical resonator.

The second regime of critical coupling describes the case where the intrinsic loss rate equals

the external coupling rate, κ0 = κex ⇔ ηc = 1/2. On cavity resonance, the light field coupled

back from the cavity equals the field propagating in the optical fiber in magnitude. However,

due to their phase difference of π, this results in zero transmitted power of the system.

A further increase of the external coupling strength leads to the overcoupled regime in which

κ0 < κex. Here, ηc > 1/2, leading to a larger magnitude of the outcoupled light compared to

the field propagating in the fiber.

The different coupling regimes are illustrated in fig. 2.4. The measurements were taken for

a fundamental optical mode of a microdisk WGM resonator with an intrinsic loss rate of

κ0 ≈ 2π · 500 MHz, a typical value for the experiments carried out in this thesis. The data

was acquired by directly measuring the transmission T (Δ) at the end of an optical fiber on

the output side of the cavity. To this end, a widely tunable external cavity diode laser at a

wavelength of 780 nm is coupled into a tapered fiber which is positioned in the evanescent

near-field of the microdisk. By varying the gap between fiber and resonator, κex, and hence the
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2.1. Optical microresonators

coupling efficiency, ηc, can be precisely controlled and tuned through the different regimes.

Sweeping the laser frequency across the whispering-gallery mode allows for the recording of

T (Δ). The relative detuning between laser and cavity is calibrated by directing a fraction of

the laser light into a fiber-loop cavity of known FSR. The intrinsic linewidth of the cavity is

accessed in the strongly undercoupled regime in which the total losses κ are dominated by κ0.

Experiments generally operate close to the critically coupled regime ηc ∼ 0.5, as this means

that the signal that is eventually measured on the output side is almost only composed of light

that has entered and circulated in the cavity, yielding a high measurement efficiency, while

keeping the deterioration of the optical quality factor at a reasonable level.

Coupling of counter-propagating modes in bi-directional cavities

Due to the frequency degeneracy of counter-propagating modes in whispering-gallery mode

resonators the direction of the light propagation is determined by the propagation direction of

light in the tapered fiber. Light scattering processes due to inhomogeneities in the bulk and on

the surface however cause an excitation of the mode propagating in the opposite direction [108,

109]. This effect is described using a simple coupled harmonic oscillator model [109]. The

field amplitudes of the excited clockwise (cw) mode and the unpumped counter-clockwise

(ccw) that are coupled to each other at a rate γ evolve following the equations of motion,

dacw

dt
=−iωcacw −

(κ0

2
+ κex

2

)
acw + i

γ

2
accw +�

κexsin(t ), (2.1.17)

daccw

dt
=−iωcaccw −

(κ0

2
+ κex

2

)
accw + i

γ

2
acw. (2.1.18)

Again transforming to a frame that rotates at the driving frequency (acw(ccw) = âcw(ccw)e−iωLt )

and taking κ=κ0 +κex leads to the modified equations of motion,

dâcw

dt
=
(
iΔ− κ

2

)
âcw + i

γ

2
âccw +�

κex ŝin, (2.1.19)

dâccw

dt
=
(
iΔ− κ

2

)
âccw + i

γ

2
âcw. (2.1.20)

In the steady state, the solutions for these equations are given by,

ācw = 1

2

(
1

κ/2− i (Δ+γ/2)
+ 1

κ/2− i (Δ−γ/2)

)�
κex s̄, (2.1.21)

āccw = 1

2

(
1

κ/2− i (Δ+γ/2)
− 1

κ/2− i (Δ−γ/2)

)�
κex s̄. (2.1.22)

Under these conditions, the eigenfrequencies ωc become non-degenerate and are split due to

the modal coupling by ±γ/2. By considering the time derivative of the energy stored in the

cavity it can be verified in a straightforward manner that the cross-coupling term iγ/2 does
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Figure 2.5 – Transmission and reflection for counter-propagating modes: (a,b) Transmission T and reflection
R coefficient versus cavity detuning Δ for the cases of (i) undercoupled (κex < κ0), (ii) κex = κ0, (iii) critically

coupled (κex = κ0

√
1+Γ2), and (iv) overcoupled case (κex > κ0

√
1+Γ2). (c) Transmission T and reflection R

versus coupling strength κex on resonance (Δ= 0). For all these illustrations, a modal coupling rate γ= 3κ0 was
assumed.

not cause a loss in optical power, as the result is independent of γ:

d

dt

[|acw|2 +|accw|2
]=−κ(|acw|2 +|accw|2

)+κex |acws| . (2.1.23)
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2.2. Nanomechanical oscillators

In addition to the transmitted field sout = sin −�
κexacw due to the clockwise mode, a reflected

field r =−�κexaccw from the counter-clockwise mode is also coupled back into the fiber. The

transmission and reflection coefficients on resonance are found to be,

T (Δ) =
∣∣∣∣ s̄out

s̄

∣∣∣∣2 =
∣∣∣∣ (2iΔ+κ)2 +γ2 − (4iΔ+2κ)κex

(2iΔ+κ)2 +γ2

∣∣∣∣2 Δ=0=
(
γ2 −κ2

ex +κ2
0

)2(
γ2 + (κex +κ0)2

)2 , (2.1.24)

R(Δ) =
∣∣∣∣ r̄

s̄

∣∣∣∣2 =
∣∣∣∣ 2iκexγ

(2iΔ+κ)2 +γ2

∣∣∣∣2 Δ=0= 4γ2κ2
ex(

γ2 + (κex +κ0)2
)2 . (2.1.25)

The mode splitting also causes a modification of the coupling conditions. In particular, zero

transmission (critical coupling) now occurs when the external coupling is κex = κ0

�
1+Γ2

with the modal coupling parameter Γ= γ/κ0. The reflected signal reaches its maximum at this

critical point and is given by,

R(Δ= 0) = Γ2(
1+

�
1+Γ2

)2 . (2.1.26)

Figure 2.5 illustrates the transmission and reflection coefficients in dependence of the de-

tuning and coupling strength. Note that for strong modal coupling, Γ 
 1, the reflection

coefficient approaches unity.

Finally, the stored optical energy in the cavity is given by,

E = |acw|2 +|accw|2

= 4s2κex
(
γ2 +4Δ2 + (κex +κ0)2

)(
(γ−2Δ)2 + (κex +κ0)2

)(
(γ+2Δ)2 + (κex +κ0)2

)
Δ=0= 4s2κex

γ2 + (κex +κ0)2 .

(2.1.27)

2.2 Nanomechanical oscillators

This section provides the properties of the second ingredient of any cavity optomechanical

system: the nanomechanical oscillator. Nanomechanical oscillators are sensitive to weak

forces and have large zero-point fluctuations, rendering them an attractive platform for

both precision sensing technology [110–112] and basic quantum science [113]. To try to use

this precision sensing in the electrical domain, great efforts have been devoted to making

transducers from mechanical motion to the electrical domain, including single-electron

transistors [114], atomic point contacts [115], and superconducting microwave cavities [31].

In the first part of this section, the relevant properties and useful quantities of mechanical

motion are discussed in general (section 2.2.1), before section 2.2.2 covers the reasons for
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Chapter 2. Foundations of cavity optomechanics

choosing silicon nitride nanobeams as the mechanical element in the system used in this work

2.2.1 Mechanical motion

The displacement x(t) of a harmonic mechanical oscillator at mechanical frequency Ωm is

described by the equation of motion,

d2x(t )

dt 2 +Γm
dx(t )

d t
+Ω2

mx(t ) = F (t )

meff
. (2.2.1)

Here F (t ) denotes the combined forces, that are acting on the oscillator. The effective mass,

meff, is introduced to account for the displacement profile of a finite-sized mechanical oscilla-

tor, as eq. (2.2.1) is only valid for point-like masses. With an effective mass that is in general

smaller than the physical mass of the system, eq. (2.2.1) holds true for arbitrary oscillator

geometries. The expression also includes the energy dissipation rate Γm, quantifying the loss

rate of mechanical excitations. A very important quantity characterizing the ratio between

stored and dissipated energy of the oscillator is the mechanical quality factor,

Qm = Ωm

Γm
. (2.2.2)

There are different mechanisms that contribute to the overall mechanical dissipation [116,

117] that can be divided into extrinsic and intrinsic loss channels. The extrinsic sources include

viscous damping due to interactions with surrounding gas molecules, Γgas, and clamping

losses, Γcl, caused by radiation into the substrate through the supports of the oscillator. The

intrinsic loss mechanisms, Γ0, comprise fundamental anharmonic effects, such as thermoe-

lastic damping and phonon-phonon interactions, as well as material-induced losses due to

bulk and surface imperfections. All these processes contribute independently to the total

losses and result in the total dissipation rate Γm =∑
i Γi , or quality factor Q−1

m =∑
i Q−1

i , where

i labels the individual loss channels [25].

Another useful quantity of a mechanical oscillator is its thermal decoherence rate. This rate

corresponds to the inverse time for one quantum from the environment to enter the system.

Considering an oscillator that is coupled to a high-temperature bath (at a temperature T ) with

phonon occupation n̄th, the average phonon number, n̄, of the oscillator evolves as,

dn̄

dt
=−Γm(n̄ − n̄th). (2.2.3)

Starting from an initial ground state n̄(t = 0) = 0 (neglecting the zero-point energy of 1/2�Ωm),

a simple time dependence of the occupation n̄(t) = n̄th(1− e−Γmt ) is obtained. The thermal

decoherence rate is then found to be the rate at which the oscillator is heated out of the ground

state,
dn̄(t )

dt

∣∣∣∣∣
t=0

= n̄thΓm ≈ kBT

�Qm
, (2.2.4)
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2.2. Nanomechanical oscillators

where the approximation denotes the high-temperature limit n̄th ≈ kBT
�Ωm

. To achieve a low de-

coherence rate, a high quality factor (and a low-temperature bath) is essential. The decoupling

of a mechanical oscillator from its thermal environment is given by its number of coherent

oscillations in the presence of thermal decoherence,

Ωm

n̄thΓm
=Qm fm

h

kBT
, (2.2.5)

highlighting the meaning of the often mentioned Q− f product of a mechanical oscillator.

When attempting a measurement of the motion of a mechanical oscillator, a signal randomly

time-varying in both amplitude and phase would be observed due to the presence of damp-

ing [25]. For this reason, the interest lies in general in a frequency-domain description of the

mechanical oscillator. To this end, eq. (2.2.1) can be solved in frequency space by performing

a Fourier transformation via x(Ω) =∫∞
−∞ dt x(t )eiΩt to obtain,

x(Ω) =χx (Ω)F (Ω). (2.2.6)

This linear expression links the external force F (Ω) to the displacement x(Ω), mediated by the

mechanical susceptibility1,

χx (Ω) = m−1
eff

Ω2
m(1− iφ(Ω))−Ω2

, (2.2.7)

where φ(Ω) is the frequency-dependent loss angle. In an experiment, the measured quantity is

not x(Ω) but rather the associated spectrum Sxx (Ω). Following the Wiener-Khinchin theorem,

the spectrum for a given quantity a(t) is obtained by taking the Fourier transform of the

autocorrelation function [118],

Saa(Ω) =
∫∞

−∞
dτ〈a(t )a(t +τ)〉eiΩτ, (2.2.8)

where 〈. . .〉 denotes the statistical mean. Such a spectrum has units of [a]2 Hz−1 and gives

information about the spectral density of the Fourier components of the measured quantity. In

case of a known Fourier transform of the quantity in question, the spectrum can be obtained

by,

Saa(Ω) = 〈a(Ω)a(−Ω)〉 . (2.2.9)

Therefore, the mechanical displacement spectrum Sxx (Ω) follows as,

Sxx (Ω) = ∣∣χx (Ω)
∣∣2 SF F (Ω), (2.2.10)

whereas SF F denotes the power spectrum of the sum of the forces acting on the mechanical os-

cillator. In the absence of any other external driving forces, F (Ω) is simply the thermal Langevin

force leading to the thermal Brownian motion of the oscillator [13]. The caused fluctuations in

1The response at low frequency is given by χx (0) = (meffΩ
2
m)−1 = 1/k with the spring constant k.
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Figure 2.6 – Thermal spectrum of a mechanical oscillator. Symmetrized single-sided displacement spectrum
Sth

x (Ω) of a mechanical oscillator versus Fourier frequency. The oscillator is modeled using typical values as
presented throughout this work, leading to a resonance frequency Ωm = 2π ·4.4 MHz and dissipation rate Γm =
2π ·10 Hz.

displacement in any system with dissipation can be expressed with the fluctuation-dissipation

theorem (FDT) [119, 120]. Applying the FDT, the (double-sided) spectrum of the thermal force

Sth
F F is obtained [121]:

Sth
F F (Ω) =−2kBT

Ω
Im

(
χx (Ω)−1) . (2.2.11)

Generally in literature, frequency-independent (white) thermal noise is considered for me-

chanical oscillators, corresponding to a linear loss dispersion φ(Ω) =Q−1Ω/Ωm. In the further

considerations throughout this chapter, this assumption is followed. Consequently, the sus-

ceptibility and the thermal force spectrum is given by,

χx (Ω) = 1

meff(Ω2
m −Ω2 − iΩΓm)

, (2.2.12)

Sth
F F = 2meffΓmkBT, (2.2.13)

depending on the ambient temperature T , dissipation rate and effective mass. The associated

displacement spectrum Sth
xx is then expressed as,

Sth
xx (Ω) = 2ΓmkBT

meff
[
(Ω2

m −Ω2)2 +Γ2
mΩ2

] = 2nth�ΩmΓm

meff
[
(Ω2

m −Ω2)2 +Γ2
mΩ2

] , (2.2.14)

with the thermal phonon occupation in the high-temperature limit nth = kBT
�Ωm

. This spectrum

represents a Lorentzian peak around the resonance frequency Ωm and full width at half

maximum of Γm, as illustrated in fig. 2.6. For this model, values typical for experiments carried

out in this thesis have been assumed, namely Ωm = 2π ·4 MHz, Γm = 2π ·10 Hz, meff = 10 pg

and ambient conditions (T = 295 K). At frequencies far below the mechanical resonance, the

noise spectrum is frequency-independent, and at large frequencies it shows a Ω−4 scaling. The

peak value of the thermal spectrum reaches Sth
xx (Ωm) = 2kBT /(meffΩ

2
mΓm). High displacement
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2.2. Nanomechanical oscillators

sensitivities in the readout (see section 2.4) can therefore be achieved through decreasing meff

and Γm, which is equivalent to maximizing the Qm/meff ratio [122].

Integration of the displacement spectrum allows the calculation of the oscillator’s energy. The

equipartition theorem states that the stored displacement energy of a harmonic oscillator

should amount to half of its thermal energy, specifically 1
2 meffΩ

2
m

〈
x2

th

〉= 1
2 kBT . When calcu-

lating the root-mean-square of the thermal motion
〈

x2
th

〉
from eq. (2.2.14), it indeed confirms

the equipartition theorem as it results in,

〈
x2

th

〉=∫∞

−∞
dΩ

2π
Sth

xx (Ω) = kBT

meffΩ
2
m

. (2.2.15)

Note that the chosen factor of 2 in eq. (2.2.11) ensures that the entire energy is contained

in the double-sided spectrum which explains the integration boundaries. In experiments,

instruments only analyze the positive half of the frequency spectrum because the spectrum of

a real-world signal is generally symmetrical around DC. Therefore, the measured quantity of

the single-sided spectral density, Sa , follows from the symmetrized spectral density, S̄aa , as,

S̄aa(Ω) = 1

2
(Saa(+Ω)+Saa(−Ω)) , (2.2.16)

Sa(Ω) = 2S̄aa(Ω), (2.2.17)

and is only evaluated at positive frequencies.

2.2.2 Silicon nitride nanobeam mechanical oscillators

The frequency band of interest in an experiment is usually around the mechanical resonance

frequency. One reason for operating a nanoscale oscillator becomes obvious when consid-

ering, that the mechanical susceptibility at resonance is proportional to the inverse of the

effective mass, χx (Ωm) = i
meffΩmΓm

. To increase the responsiveness to external forces, both the

dissipation rate as well as the effective mass need to be decreased. An increase of the Qm/meff

ratio also brings a second advantage into play, as it causes a reduction of the magnitude of

the thermal force (eq. (2.2.13)). The thermal motion sets the sensitivity limit for transducer

applications, as it cannot be distinguished from motion induced by another external force. In

addition, as the resonance frequency scales with the dimension of the oscillator, a nanometer

scale resonator means a high fundamental resonance frequency, resulting in lower phonon

occupation at a given temperature which is advantageous for experiments in the quantum

regime.

The canonical example of a nanoscale oscillator is the nanobeam. The mechanical quality

factors of these beams are set by their intrinsic elasticity (which can be enhanced by high

stress) and extrinsic factors such as the clamping conditions. The total motion of the beam

is composed by a number of eigenmodes, each with a distinct resonance frequency and

displacement profile, which are obtained by solving the characteristic elastic equations for a
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Figure 2.7 – Mechanical eigenmodes of a nanobeam. (a) Finite-element simulation results for a doubly-clamped
nanobeam. Shown are the displacement profiles of the fundamental out-of-plane mode and the first six odd-
numbered harmonics from left to right. The number of nodes for each harmonic increases by two. (b) Blue trace
shows the measured frequency noise spectrum Sω for a nanobeam (sample M2/CU/T/-1) showing the first three
odd-ordered modes for in-plane and out-of-plane motion. The red dashed line is a fit based on FEM simulations.
Also noticeable are the mechanical modes of the microdisk with their fit shown as the orange dashed line.

specific geometry. This can be done either analytically for simple geometries, or by simulation

utilizing the finite-element method (FEM) for more complex architectures and designs. For

a simple nanobeam geometry, the displacement profiles of the fundamental out-of-plane

vibrational mode and its first six harmonics are shown as a FEM solution in fig. 2.7a, as these

are the modes of interest in the experiments presented in this thesis. Figure 2.7b shows a

measured noise spectrum of a nanobeam with typical dimensions. The emphasis lies on the

fact that the spectrum around the fundamental mode, which is the mode of interest for the

experiments conducted here, is extremely clean. The dimensions of the nanobeam samples

are therefore carefully chosen to ensure large spectral separation between the individual

modes, such that each can be modeled as a simple harmonic oscillator as discussed in the

previous section2.

Historically, the readout mechanisms of mechanical motion are mostly based on the electrical

or magnetic properties of the nanomechanical oscillator, forging the field of nanoelectrome-

chanical systems (NEMS) [117, 125]. Specific examples for readout mechanisms include

magnetomotive readout [126], piezoresistive readout [127], readout via a single-electron tran-

sistor [114], and capacitative readout of a carbon nanotube [128]. While all of these techniques

allow for reasonable readout sensitivities in the range of fm ·Hz−1/2, the quality factors of the

mechanical motion is generally limited to only Qm ∼ 104 which can be explained by the fact

that the choice of materials is limited due to the requirements of the readout mechanisms.

2Mechanical modes with small spectral separation have also been studied with the aim to demonstrate interfer-
ence and avoided crossings [123, 124].
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2.3. Cavity optomechanics

Also, often additional material needs to be deposited on a mechanical resonator to enable a

specific readout in the first place.

To overcome the sensitivity limitations of these conventional readout mechanisms, a high-Q,

low-mass oscillator is required that allows for efficient readout (and control) at room tempera-

ture. To this end, a doubly-clamped high-stress silicon nitride (Si3N4) nanobeam oscillator has

been developed, combining an exceptionally high mechanical quality factor in excess of 106

at room temperature with a low mass in the picogram range [129, 130]. Since silicon nitride

is a dielectric material, the readout in those experiments is realized interferometrically by

focusing laser light onto the beam and monitoring its reflection. This method does not grant

very high sensitivity (the dimension of the oscillators are typically below the diffraction limit),

but laid the foundation for the field of cavity optomechanics which uses an optical cavity for

enhanced-sensitivity readout of mechanical motion [25]. We adopt the high-stress silicon

nitride nanobeam oscillator in our experiments as, besides the advantages already discussed,

this geometry can be precisely positioned into the evanescent near-field of an optical mi-

crodisk whispering-gallery mode resonator, creating a high-sensitivity cavity optomechanical

system. See chapter 3 for details about the integrated system and its fabrication process.

2.3 Cavity optomechanics

Combining an optical cavity with a mechanical degree of freedom defines the research field

of cavity optomechanics [25, 28]. With the use of recirculating photons, the cavity provides a

large enhancement in readout and control of the mechanical motion with exceptionally high

sensitivity.

This section provides the formalism used to describe any cavity optomechanical system. The

first part (section 2.3.1) presents a classical description, an illustrative way to understand

the basic concepts of cavity optomechanics. This is followed by the quantum mechanical

description in section 2.3.2 required to describe and understand quantum mechanical effects

in optomechanical measurements.

Cavity optomechanics is most intuitive when considering the canonical optomechanical

system illustrated in fig. 2.8a. It consists of a Fabry-Pérot cavity in which one of the end mirrors

is suspended by a spring. The design relevant for this thesis is shown in fig. 2.8b and consists of

a nanostring as the mechanical resonator in the near-field of an optical WGM microresonator.

In both cases, the mechanical degree of freedom can be described by its one-dimensional

position variable x(t ). Consequently, the resonance frequency of the optical cavity at a given

time ωc(t ) depends linearly on the displacement of the mechanical oscillator and is given by

the expression,

ωc(t ) =ωc +Gx(t ). (2.3.1)
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Figure 2.8 – Principle of cavity optomechanics. (a) Canonical optomechanical system: A Fabry-Pérot cavity with
one of its end mirrors suspended by a spring and thus free to oscillate. (b) Architecture relevant to this thesis: The
optical cavity is a WGM microresonator with a nanostring acting as the mechanical oscillator.

Here ωc denotes the cavity resonance frequency for x = 0 and

G = ∂ωc(t )

∂x
(2.3.2)

is the optomechanical coupling parameter (also frequency pull parameter) describing optical

frequency shift per displacement. For a Fabry-Pérot cavity, the coupling is given as, G =−ωc/L.

2.3.1 Classical description

Effects of an oscillating mirror on an optical cavity

For now, disregarding any back-action effect of the light through radiation-pressure forces on

the mechanical degree of freedom, the equation of motion for the cavity amplitude following

eq. (2.1.10) becomes,

da

dt
=
(
−i (ωc +Gx(t ))− κ

2

)
a(t )+�

ηcκs̄e−iωLt (2.3.3)

Assuming that the mechanical degree is moving with a sinusoidal oscillation with small

amplitude x0 and angular frequency Ωm such that x(t) = x0 sin(Ωmt), the intracavity field
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Figure 2.9 – Optical cavity response: Build-up of anti-Stokes and Stokes sidebands in a driven optical cavity at
frequencies ωL +Ωm and ωL −Ωm, weighted by the Lorentzian of the cavity.

amplitude can be approximated as [131],

a(t ) ≈ a0(t )+a1(t )

a0(t ) =
�
ηcκs̄

−iΔ+κ/2
e−iωLt

a1(t ) = Gx0

2

�
ηcκs̄

−iΔ+κ/2

(
e−i (ωL+Ωm)t

−i (Δ+Ωm)+κ/2︸ ︷︷ ︸
anti-Stokes

− e−i (ωL−Ωm)t

−i (Δ−Ωm)+κ/2︸ ︷︷ ︸
Stokes

)
.

(2.3.4)

From the above expression it is obvious that the resulting mode amplitude consists of the

contribution a0(t) due to the laser drive at frequency ωL but also of a pair of sidebands

a1(t) at frequencies ωL ±Ωm. Consequently, the oscillating boundary can be understood

as a modulator that builds up what is commonly referred to as the anti-Stokes and Stokes

sidebands [28]. Depending on the detuning Δ and mechanical frequency Ωm, their amplitude

is weighted by the cavity Lorentzian, as illustrated in fig. 2.9.

Considering |a(t)|2, it becomes evident that the presence of the sidebands correspond to a

modulation of the intracavity stored energy. Specifically, the calculation yields

|a(t )|2 ≈|a0(t )|2 +a0(t )a∗
1 (t )+a∗

0 (t )a1(t )

= ηcκ|s̄|2
Δ2 + (κ/2)2

(
1+

Gx0

(
Δ+Ωm

(Δ+Ωm)2 + (κ/2)2 + Δ−Ωm

(Δ−Ωm)2 + (κ/2)2

)
sin(Ωmt )+

Gx0

(
κ/2

(Δ+Ωm)2 + (κ/2)2 − κ/2

(Δ−Ωm)2 + (κ/2)2

)
cos(Ωmt )

)
.

(2.3.5)

and includes an in-phase (∝ sin(Ωmt )) as well as an out-of-phase quadrature (∝ cos(Ωmt )).

In the above approximation, the term |a1(t )|2 has been neglected under the assumption that

the amplitude x0 is small.
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Radiation-pressure back-action: static effect

To fully describe an optomechanical system, it is not sufficient to only consider the effects

of the mechanical oscillation on the optical field. For a complete description, the mutual

coupling between the optical and mechanical degrees of freedom has to be taken into account.

The effect of the light on the moving cavity boundary is referred to as back-action and arises

due to radiation pressure. For a movable mirror of a Fabry-Pérot cavity, the radiation-pressure

force is a consequence of the momentum flips of the photons being reflected from the mirror

surface and is given as,

Frp(t ) = 2�k
|a(t )|2
τrt

= �
ωc

L
|a(t )|2 =−�G|a(t )|2, (2.3.6)

with the cavity round-trip time τrt = 2L
c , |a(t)|2 normalized to the photon number, and the

photon momentum �k where k = ωc
c . Therefore, �ωc

L = �G represents the radiation-pressure

force exerted per photon. In general, optomechanical coupling can arise due to different

mechanisms. One way is by direct momentum transfer, as described in this example and

also observed in systems such as microtoroids [132]. Other methods are based on coupling

via dispersive shift of the resonance frequency, as used in membrane-in-the-middle exper-

iments [133] or levitating nanoparticles [134], or by near-field effects with a mechanical

oscillator in the evanescent field of an optical cavity [135]. The latter concept is realized with

the system described in chapter 3 which is used to achieve the main results of this thesis

(see chapter 4). Note that the introduction of G in the last step in eq. (2.3.6) generalizes the

expression for Frp and thus makes it a valid statement for different types of optomechani-

cal systems. The coupled equations of motion for describing the optomechanical system,

assuming a viscous damping rate Γm, become (in a frame rotating by ωL),

ȧ(t ) =
(
i (Δ−Gx(t ))− κ

2

)
a(t )+�

ηcκsin(t ) (2.3.7)

ẍ(t )+Γmẋ(t )+Ω2
mx(t ) =−�G

|a(t )|2
meff

, (2.3.8)

where |sin(t )|2 is normalized to denote the photon flux. For a constant drive with amplitude

sin(t ) = s̄, stable solutions a(t ) = ā and x(t ) = x̄ can be found as a first step which read,

ā = 1

−i (Δ−Gx̄)+κ/2

�
ηcκs̄ (2.3.9)

x̄ =− �G|ā|2
meffΩ

2
m

. (2.3.10)

The solution x̄
(|ā|2) of these two expressions can be understood as a static displacement x̄

mapped to an intracavity photon number |ā|2. For sufficiently large optical input powers, mul-

tiple stable solutions are possible and a well-known bistable behavior arises which results in a

hysteresis in the cavity transmission for swept detuning or variation in the input power [136].
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Radiation-pressure back-action: dynamic phenomena

More interesting than the static consequences of the radiation pressure force is the dynamical

response of an optomechanical system around its equilibrium. These fluctuations not only

introduce new physics into the system, but also have a significant impact on the experiment,

in particular the ultra-sensitive gravitational wave interferometers [18]. To dynamics of the

system can be described by considering small fluctuations δa(t ) and δx(t ) around the equi-

librium states ā and x̄ which are caused by a small applied force δF (t) to the mechanical

oscillator. Definition of the equilibrium detuning,

Δ̄≡ωL − (ωc +Gx̄), (2.3.11)

and insertion of a(t ) = ā +δa(t ) and x(t ) = x̄ +δx(t ) into eqs. (2.3.7) and (2.3.8) together with

the above definitions for ā and x̄ yield the linearized equations,

δȧ(t ) =
(
i Δ̄− κ

2

)
δa(t )− iGāδx(t ) (2.3.12)

meff
(
δẍ(t )+Γmδẋ(t )+Ω2

mδx(t )
)=−�Gā

(
δa(t )+δa∗(t )

)+δF (t ). (2.3.13)

To obtain these results, second-order terms ∝ δa(t )δx(t ) and ∝|δa(t )|2 are neglected as small

perturbations δ(a, x) � (ā, x̄) are assumed. In addition, ā can be assumed as real without

loss of generality, as this can always be achieved by adjustment of the phase of the incoming

drive s̄. These equations can be solved in a straightforward manner after performing a Fourier

transformation. The results are given by,

−iΩδa(Ω) =
(
+i Δ̄− κ

2

)
δa(Ω)− iGāδx(Ω) (2.3.14)

−iΩδa∗(Ω) =
(
−i Δ̄− κ

2

)
δa∗(Ω)+ iGāδx(Ω) (2.3.15)

meff
(−Ω2 − iΓmΩ+Ω2

m

)
δx(Ω) =−�Gā

(
δa(Ω)+δa∗(Ω)

)+δF (Ω), (2.3.16)

with the assumption that δa∗(Ω) = (δa(−Ω)). The first two equations again prove the presence

of the induced anti-Stokes and Stokes sidebands for an oscillating displacement δx(Ω) at

Fourier frequency Ω. Their amplitudes are given by,

δa(Ω) = −iGā

−i (Δ̄+Ω)+κ/2
δx(Ω), (2.3.17)

δa∗(Ω) = +iGā

+i (Δ̄−Ω)+κ/2
δx(Ω). (2.3.18)

As shown in eq. (2.3.5), in the presence of sidebands, the intracavity power oscillates with the

frequency of the mechanical degree of freedom. Following the definition in eq. (2.3.6), the
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radiation pressure force δFrp(Ω) therefore likewise oscillates and is now expressed as,

δFrp(Ω) =−�Gā
(
δa(Ω)+δa∗(Ω)

)
=−�G2ā2

(
Δ̄+Ω

(Δ̄+Ω)2 + (κ/2)2
+ Δ̄−Ω

(Δ̄−Ω)2 + (κ/2)2

)
δx(Ω)

+ i�G2ā2
(

κ/2

(Δ̄+Ω)2 + (κ/2)2
− κ/2

(Δ̄−Ω)2 + (κ/2)2

)
δx(Ω).

(2.3.19)

The real and imaginary part in this representation of the radiation pressure force are caused

by the in-phase and quadrature component of the modulated intracavity power. The presence

of this force can cause a substantial change of the mechanical oscillator’s dynamics, an effect

that is referred to as the dynamical back-action (DBA). For example, blue-detuning leads to a

”stiffened" mechanical oscillator while a detuning on the red side of the resonance ”softens"

it. The latter situation can be used to cool the thermal motion of the mechanics towards its

ground state [72, 137]. The modified mechanical response to the external force is found by

insertion of eq. (2.3.19) back into eq. (2.3.16) and eq. (2.2.6),

δx(Ω) =χeff(Ω)δF (Ω). (2.3.20)

In this expression, χeff denotes the effective mechanical susceptibility,

χ−1
eff (Ω) = meff

((
Ω2

m + kdba(Ω)

meff

)
−Ω2 − i (Γm +Γdba(Ω))Ω

)
, (2.3.21)

where the DBA damping rate Γdba and spring constant kdba are introduced as,

Γdba =
�G2ā2

meffΩ

(
κ/2

(Δ̄+Ω)2 + (κ/2)2
− κ/2

(Δ̄−Ω)2 + (κ/2)2

)
, (2.3.22)

kdba =
�G2ā2

meff

(
Δ̄+Ω

(Δ̄+Ω)2 + (κ/2)2
+ Δ̄−Ω

(Δ̄−Ω)2 + (κ/2)2

)
. (2.3.23)

For small induced changes of the dynamics, the oscillator retains its damped harmonic

behavior with an effective damping and resonance frequency given by [137],

Γeff ≈ Γm + �G2ā2

meffΩm

(
κ/2

(Δ̄+Ωm)2 + (κ/2)2
− κ/2

(Δ̄−Ωm)2 + (κ/2)2

)
, (2.3.24)

Ωeff ≈Ωm + �G2ā2

2meffΩm

(
Δ̄+Ωm

(Δ̄+Ωm)2 + (κ/2)2
+ Δ̄−Ωm

(Δ̄−Ωm)2 + (κ/2)2

)
. (2.3.25)

The change in resonance frequency due to dynamical back-action is referred to as the optical

spring effect.
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2.3.2 Quantum mechanical formulation

The quantum Langevin approach allows for the description of cavity optomechanics in a

more general formalism than the simple classical formulation introduced above [106]. This

formalism is especially powerful since it grants access to the quantum dynamics in an op-

tomechanical system and provides the foundations to understand effects that are based on

the quantum nature of light.

Optomechanical Hamiltonian

The first step towards a quantum mechanical description of a generic cavity optomechanical

system is to obtain a Hamiltonian formulation by following the standard procedures of quan-

tum mechanics [4, 138]. Accordingly, the first two contributions to the system Hamiltonian

are the Hamiltonians of the optical cavity (Ĥopt) and mechanical oscillator (Ĥmech),

Ĥopt = �ωc

(
â†â + 1

2

)
(2.3.26)

Ĥmech = p̂2

2meff
+ 1

2
meffΩ

2
mx̂2. (2.3.27)

Here, â† and â denote the creation and annihilation operators for the optical field while

x̂ and p̂ = meff ˙̂x are the conjugated mechanical displacement and momentum operators.

The occupation number operator of the optical mode in the system is defined as n̂c ≡ â†â.

The canonical commutation relation between the position and displacement operator of the

mechanical mode,
[
x̂, p̂

]= i�, can be realized by defining the two operators b̂ and b̂† for the

quantized mechanical harmonic oscillator,

b̂ = 1

2

(
x̂√

�/(2meffΩm)
+ i

p̂√
�meffΩm/2

)
(2.3.28)

b̂† = 1

2

(
x̂√

�/(2meffΩm)
− i

p̂√
�meffΩm/2

)
. (2.3.29)

With this, the free Hamiltonian of eq. (2.3.27) can be reformulated as,

Ĥmech = �Ωm

(
b̂†b̂ + 1

2

)
, (2.3.30)

where the additional 1
2 arises from the commutation of x̂ and p̂ and describes the intrinsic

vacuum fluctuations, analogous to the optical Hamiltonian. In equilibrium, the canonical

thermal state is given by,

ρ̂m = e−βĤmech

Tr
[

e−βĤmech

] , (2.3.31)
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with β= (kBT )−1 and Trρ̂m = 1. The mean phonon occupation can then be obtained from,

nth := Tr
[

b̂†b̂ρ̂m

]
= 1

e�Ωm/(kBT ) −1

kBT
�Ωm≈ kBT

�Ωm
. (2.3.32)

where the approximation is referred to as the high-temperature limit.

Calculation of the variance in the oscillator position,

Var[x̂] = Tr
[
x̂2ρ̂m

]= (2nth +1)x2
ZPF, xZPF :=

√
�

2meffΩm
, (2.3.33)

reveals a contribution due to the zero-point fluctuations of magnitude xZPF.

The optomechanical interaction is attributed to the parametric coupling between the optical

and mechanical modes, i.e. the resonance frequency of the cavity ωc is modulated by the

mechanical displacement x and is given by

ωc (x) =ωc +x
∂ωc

∂x
+ . . . (2.3.34)

For most experimental realizations, it is sufficient to only consider first-order terms and

therefore define the optical frequency shift per displacement as the optomechanical coupling

parameter G = ∂ωc
∂x . With this, an interaction Hamiltonian Ĥint can be defined as,

Ĥint = �Gx̂â†â = �GxZPFâ†â
(
b̂ + b̂†

)
. (2.3.35)

where x̂ := xZPF
(
b̂ + b̂†

)
is the quantized displacement.

At this point it is useful to introduce the vacuum optomechanical coupling rate g0 =GxZPF

characterizing the optical frequency shift for the displacement of a ground-state mechanical

oscillator. This quantity allows for direct comparison of optomechanical systems, as often

measurements relative to the vacuum fluctuations are of interest. Adding an external drive to

the system expressed as

Ĥdrive = i�
�
ηcκ

(
s̄ â†e−iωLt − s̄∗âe+iωLt

)
, (2.3.36)

with the drive amplitude s̄ normalized to the photon flux at input power Pin and drive fre-

quency ωL, such that |s̄|2 = Pin
�ωL

, the total Hamiltonian of a cavity optomechanical system can

be expressed as,

Ĥ = Ĥopt + Ĥmech + Ĥint + Ĥdrive (2.3.37)

= �ωc

(
â†â + 1

2

)
+�Ωm

(
b̂†b̂ + 1

2

)
+�g0â†â

(
b̂ + b̂†

)
+ i�

�
ηcκ

(
s̄ â†e−iωLt − s̄∗âe+iωLt

)
.

(2.3.38)

Note that often the zero-point energies 1
2�ωc and 1

2�Ωc in the optical and mechanical Hamil-

32



2.3. Cavity optomechanics

tonians are neglected as energy offsets often have no relevance to the dynamics.

The radiation pressure force F̂rp can be obtained from

F̂rp =−∂Ĥint

∂x̂
=−�Gâ†â. (2.3.39)

Quantum Langevin equations

The time evolution of the individual operators can be derived from the Hamiltonian descrip-

tion. This leads to a set of quantum Langevin equations (QLEs) that also take into account

mechanical and optical dissipation as well as the corresponding fluctuations [139]. The

expressions are given by (in a frame rotating at ωL),

˙̂a =
(
iΔ− κ

2

)
â − i g0â(b̂ + b̂†)+�

κex (s̄in +δŝin(t ))+�
κ0δŝvac(t ), (2.3.40)

˙̂x = p̂

meff
, (2.3.41)

˙̂p =−meffΩ
2
mx̂ −�Gâ†â −Γmp̂ +δF̂th(t ), (2.3.42)

with the noise terms δŝin, δŝvac and δF̂th. They fulfill the commutation relations [140],[
δŝin(t ),δŝ†

in(t ′)
]
=
[
δŝvac(t ),δŝ†

vac(t ′)
]
= δ(t − t ′), (2.3.43)

and, 〈
δŝin(t )δŝ†

in(t ′)
〉
=
〈
δŝvac(t )δŝ†

vac(t ′)
〉
= δ(t − t ′) (2.3.44)

as the only non-zero correlators. Here, δŝin denotes vacuum noise entering the optical cavity

through the pump port, while δŝvac represents vacuum noise entering through the remaining

loss channels, assuming no thermal excitation of the optical mode.

Similar as derived in the classical formalism, the QLEs are simplified in a first step by sepa-

rating static and dynamic behavior. For this, the dynamics of the system are investigated by

considering small fluctuations around the equilibrium positions by defining â(t ) = ā +δâ(t )

and x̂(t) = x̄ +δx̂(t) with 〈δâ(t )〉 = 〈δx̂(t )〉 = 0 and the steady-state solutions for the mode

amplitude ā and displacement x̄. With this, the Heisenberg equations of motion for the

fluctuations δâ, δâ† and δx̂ can be derived. Under the assumption of a strong coherent drive

ā 
 1, where the choice of the appropriate phase of s̄in ensures that ā is positive and real, the

linearized quantum Langevin equations can be derived by dropping terms ∝ δâδx̂,δâ†δx̂, or
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Chapter 2. Foundations of cavity optomechanics

δâ†δâ. They are then found as,

d

dt
δâ(t ) =

(
+i Δ̄− κ

2

)
δâ(t )− iGāδx̂(t )+�

κexδŝin +�
κ0δŝvac (2.3.45)

d

dt
δâ†(t ) =

(
−i Δ̄− κ

2

)
δâ†(t )+ iGāδx̂(t )+�

κexδŝ†
in +

�
κ0δŝ†

vac (2.3.46)

d2

dt 2 δx̂(t )+Γm
d

dt
δx̂(t )+Ω2

mδx̂(t ) =− �G

meff
ā
(
δâ(t )+δâ†(t )

)
+ δF̂th(t )

meff
, (2.3.47)

where the Hermitian property δx̂(t ) = δx̂†(t ) was used. The solutions of these equations are

again obtained by transformation to the Fourier domain and yield,(
−i (Δ̄+Ω)+ κ

2

)
δâ(Ω) =−iGāδx̂(Ω)+�

κexδŝin(Ω)+�
κ0δŝvac(Ω) (2.3.48)(

+i (Δ̄−Ω)+ κ

2

)
δâ†(Ω) =+iGāδx̂(Ω)+�

κexδŝ†
in(Ω)+�

κ0δŝ†
vac(Ω) (2.3.49)

meff
(
Ω2

m −Ω2 − iΓmΩ
)
δx̂(Ω) =−�Gā

(
δâ(Ω)+δâ†(Ω)

)
+δF̂th(Ω). (2.3.50)

In the frequency domain, the only non-zero correlators are given as〈
δŝin(Ω)δŝ†

in(Ω′)
〉
= 2πδ(Ω−Ω′) (2.3.51)〈

δŝvac(Ω)δŝ†
vac(Ω′)

〉
= 2πδ(Ω−Ω′) (2.3.52)〈

δF̂th(Ω)δF̂ †
th(Ω′)

〉
= 2πδ(Ω−Ω′)�meffΓmΩ

(
coth

(
�Ω

2kBT

)
+1

)
. (2.3.53)

The input-output relations for the fluctuations read

δŝout(Ω) = δŝin(Ω)−�
ηcκδâ(Ω) (2.3.54)

δŝ†
out(Ω) = δŝ†

in(Ω)−�
ηcκδâ†(Ω), (2.3.55)

which complete the formalism of the quantum Langevin equations that provides a powerful

mean to understand relevant effects in cavity optomechanics.

Radiation-pressure cooling

One prominent example often investigated in optomechanics is the cavity-assisted sideband

cooling of the mechanical motion. Under the assumption of the weak-coupling regime, g �κ,

the effect of this radiation-pressure cooling can be described in the Raman picture via a

perturbative approach in the linear approximation [25]. Here, g = g0
�

nc denotes the light-

enhanced optomechanical coupling rate. As discussed earlier, photons that are red detuned

from the cavity resonance will be preferentially anti-Stokes scattered (cf. fig. 2.9) and as a

result undergo a blue-shift of Ωm. This can be understood as the removal of one quantum of

mechanical energy from the system. Assuming, these anti-Stokes processes occur at a rate A−,
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2.3. Cavity optomechanics

the transition rate from the state of n to n −1 phonons is given by [72, 141],

Γn→n−1 = n A−. (2.3.56)

Accordingly, the suppressed Stokes scattered photons (at rate A+) experience a red-shift and

hence add a quantum of mechanical energy to the oscillator, with Γn→n+1 = (n +1)A+. The

net optomechanical damping rate can then be written as,

Γopt = A−− A+. (2.3.57)

The change in the mean phonon occupation n̄ follows from the rates Γn→n±1 and is calculated

as,
˙̄n = (n̄ +1)(A++ A+

th)− n̄(A−+ A−
th). (2.3.58)

Here, also the coupling to the thermal bath at phonon occupation n̄th is considered, occurring

at rates A+
th = n̄thΓm and A−

th = (n̄th +1)Γm. The resulting steady-state phonon occupation n̄f

is found from the above expression for ˙̄n = 0:

n̄f =
A++ n̄thΓm

Γopt +Γm
. (2.3.59)

In the absence of optomechanical coupling (A− = A+ = 0), the system thermalizes to the

thermal environment as the steady-state solution becomes n̄f = n̄th. In the optimal case of no

coupling to a thermal bath on the other hand (Γm = 0), the minimum achievable occupation

number can be found as,

n̄min = A+

Γopt
= A+

A−− A+ . (2.3.60)

The rates A± can be calculated from the known quantum noise spectrum of the force, SF F (Ω)

and are given by [142],

A± = x2
ZPF

�2 SF F (Ω=∓Ωm) = g 2
0 SN N (Ω=∓Ωm), (2.3.61)

where the photon number noise spectrum of a laser-driven cavity,

SN N (Ω) = nc
κ

(κ/2)2 + (Δ+Ω)2 , (2.3.62)

has been introduced [141]. Equations (2.3.57), (2.3.61) and (2.3.62) finally yield the expression

for the optomechanical damping rate, reproducing the result of eq. (2.3.24). The minimum

occupation number is then calculated as,

n̄min =
(

A−

A+ −1

)−1

=
(

(κ/2)2 + (Δ−Ωm)2

(κ/2)2 + (Δ+Ωm)2 −1

)−1

. (2.3.63)

In the resolved sideband regime (Ωm 
 κ), this value is maximized at a detuning Δ=−Ωm
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Figure 2.10 – Cavity response in an optomechanical system: The input field at frequency ωL (black dashed line)
acquires a phase shift depending on the mutual detuning between cavity resonance and laser. The oscillation of
the mechanical degree of freedom x(t ) induces a modulation of the cavity resonance frequency ωc(t ) and phase
φ(t ) of the detected field sout.

and becomes in this case,

n̄min ≈
(

κ

4Ωm

)2

< 1, (2.3.64)

permitting ground-state cooling. In the for this thesis relevant case of the bad-cavity limit

(Ωm �κ), the minimal occupation at optimal detuning Δ=−κ/2 becomes,

n̄min ≈ κ

4Ωm

 1. (2.3.65)

In general, the final occupation number (eq. (2.3.59)) in the presence of coupling to a thermal

environment is given by,

n̄f =
Γoptn̄min +Γmn̄th

Γopt +Γm
. (2.3.66)

When operating blue detuned (Δ > 0), the Stokes scattering process becomes dominant

which results in an anti-damping Γopt < 0 and the motion of the mechanical oscillator is

hence amplified. When exceeding the threshold Γm +Γopt = 0, eventually the regime of

optomechanical instability is reached [143].

2.4 Optomechanical readout of motion

Starting point for any cavity optomechanical experiment is the sensitive readout of the me-

chanical displacement fluctuations Sxx that have been introduced in section 2.2. The principle
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2.4. Optomechanical readout of motion

behind any such measurement is illustrated in fig. 2.10. Essentially, the motion of the oscillator

causes the frequency of the cavity mode to shift, which changes the phase of the output light

field corresponding to the motion of the oscillator. In particular, the phase noise spectral

density is obtained by,

Sφφ = 1

Ω2 Sωω(Ω) = G2

Ω2 Sxx (Ω), (2.4.1)

which can be detected with standard detection techniques, such as the side-of-the-line

method [144], the Pound-Drever-Hall technique [145–147] or a homodyne scheme [44]. Be-

fore describing the relevant detection schemes applied here (section 2.4.4), the fundamental

limitations on displacement sensing are investigated in section 2.4.1, leading to the so-called

standard quantum limit (SQL) (section 2.4.2). In addition, the influence of laser noise is

discussed (section 2.4.3).

2.4.1 Quantum noise limitations in displacement sensing

The experimental results in this thesis were obtained by measurements with resonant probing

(Δ̄= 0) where the dynamical properties of the mechanical oscillator are not affected by the

measurement process, i.e. Γdba =Ωdba = 0. Because of this, extremely sensitive measurements

of the mechanical mode can be achieved. To get an understanding about the fundamental

quantum limits of such a displacement measurement, eqs. 2.3.48-2.3.55 are used to calculate

the noise in the light field at the output of a system. This gives

δŝout(Ω) = δŝin(Ω)− ηcκ

−iΩ+κ/2

(−iGāδx̂(Ω)+�
κexδŝin +�

κ0δŝvac
)

(2.4.2)

δŝ†
out(Ω) = δŝin(Ω)− ηcκ

+iΩ+κ/2

(
+iGāδx̂(Ω)+�

κexδŝ†
in +

�
κ0δŝ†

vac

)
. (2.4.3)

At this point, hermitian operators for the amplitude and phase quadratures may be introduced,

δq̂out(Ω) := 1�
2

(
δŝout(Ω)+δŝ†

out(Ω)
)

(2.4.4)

δp̂out(Ω) := 1

i
�

2

(
δŝout(Ω)−δŝ†

out(Ω)
)

. (2.4.5)

The symmetrized (double-sided) spectral density of the phase quadrature can be found by,

S̄out
pp (Ω) = 1

2

(
Sout

pp (+Ω)+Sout
pp (−Ω)

)
, (2.4.6)

and 〈
δp̂out(Ω)δp̂†

out(Ω
′)
〉
= 2πδ(Ω−Ω′)Sout

pp (Ω), (2.4.7)

and is given as,

S̄out
pp (Ω) = 1+ 4ā2G2ηcκ

Ω2 + (κ/2)2 S̄xx (Ω), (2.4.8)
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by application of the correlators defined earlier. It contains information about the displace-

ment spectrum S̄xx on top of a background which is here normalized to 1. This background

term originates from the quantum fluctuations of the probing light and is referred to as the

measurement imprecision. Its spectral density expressed as displacement noise is hence given

as,

S̄imp
xx (Ω) = Ω2 + (κ/2)2

4ā2G2ηcκ
= κ

16ncG2ηc

(
1+4

Ω2

κ2

)
, (2.4.9)

where quantum noise as the only noise source was assumed and the previously introduced

normalization of the squared mode amplitude to the intracavity photon number nc = ā2 was

used. This imprecision represents an apparent displacement noise and hence defines the

smallest possible displacement δxmin(Ω) that can be measured in an experiment. Specifically,

δxmin(Ω) =
√
Δ f S̄imp

xx (Ω) =
√

Δ f
κ

16ncG2ηc

(
1+4

Ω2

κ2

)
. (2.4.10)

Here, Δ f represents the measurement bandwidth. An important remark is that no assumption

regarding the detection method was made here. In principle this minimum displacement can

be achieved in any measurement scheme as long as it is quantum limited.

2.4.2 Standard quantum limit

As evident from eq. (2.4.9), by performing a stronger measurement with a larger photon num-

ber nc, the imprecision decreases leading to an increased sensitivity. However, this comes

at the cost of an increased measurement back-action as any measurement of a mechanical

oscillator’s position produces a disturbance on its momentum [21]. In an optomechanical sys-

tem, the measurement back-action is induced by the radiation-pressure force [22]. Following

eq. (2.3.13), it takes the form,

δF̂rp(Ω) =−�Gā
(
δâ(Ω)+δâ†(Ω)

)
, (2.4.11)

from which we can obtain the spectral density of the back-action noise force,

S̄ba
F F (Ω) = ā2G2κ�2

Ω2 + (κ/2)2 = 4�2ncG2

κ

(
1+4

Ω2

κ2

)−1

. (2.4.12)

In case of pure quantum noise, as assumed again in above expression, the force noise is referred

to as quantum back-action (QBA) or radiation-pressure shot noise (RPSN). Together, the

imprecision and back-action noise spectra from eqs. (2.4.9) and (2.4.12) fulfill a fundamental

quantum mechanical inequality derived from Heisenberg’s uncertainty principle [21, 142].

The imprecision-back-action product reads,

S̄imp
xx (Ω)S̄ba

F F (Ω) = �
2

4ηc
≥ �

2

4
, (2.4.13)
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2.4. Optomechanical readout of motion

where the equality is fulfilled for a strongly overcoupled cavity with κ= κ0+κex ≈κex. The total

displacement noise at the detector is composed of intrinsic thermal fluctuations, imprecision

noise and noise induced by the back-action force mediated by the mechanical susceptibility

χx ,

S̄tot
xx (Ω) = S̄th

xx (Ω)+ S̄imp
xx (Ω)+ S̄ba

F F (Ω)|χx (Ω)|2. (2.4.14)

Defining the sum of the last two terms as the added noise and making it a function of the

measurement strength,

S̄add
xx (Ω,nc) = S̄imp

xx (Ω,nc)+ S̄ba
F F (Ω,nc)|χx (Ω)|2 = κ

16ncG2ηc

(
1+4

Ω2

κ2

)
+ 4�2ncG2

κ

(
1+4

Ω2

κ2

)−1

,

(2.4.15)

from eq. (2.4.13) it becomes evident that in a measurement a trade-off between imprecision

and measurement back-action has to be made in order to achieve the optimal sensitivity.

Considering a measurement at the mechanical resonance frequency, the optimal power for a

minimum displacement uncertainty is given as,

P SQL
in = �ωcΓm

κ2

64g 2
0η

3/2
c

(
1+4

Ω2
m

κ2

)
, (2.4.16)

which defines the standard quantum limit (SQL). Into the above expression, the mechanical

susceptibility on mechanical resonance χx (Ωm) (eq. (2.2.7)) and the intracavity photon num-

ber for zero detuning nc(Δ= 0) = 4
κ

Pin
�ωc

(eq. (2.1.14)) were inserted. Figure 2.11a illustrates the

contributions from eq. (2.4.14) to the total noise spectrum while fig. 2.11b shows the noise

sources as a function of measurement power. For this, the spectra are normalized to two times

the zero-point displacement spectrum 2SZPF
xx = 4x2

ZPF
Γm

, using eq. (2.2.14), such that
Sth

xx

2SZPF
xx

= nth.

In this normalization, it is obvious that any measurement will add at least half a quantum of

noise which equals the zero-point motion. This results in a total phonon-equivalent noise

at the detector output of 1 quanta for optimal detection and a ground-state mechanical os-

cillator. At the SQL, both the imprecision and back-action contribute equally to the added

noise, however only the latter causes a physical heating of the oscillator by a temperature

corresponding to a quarter quantum.

To estimate the impact of quantum back-action in an experiment, the ratio of it to the thermal

force noise can be found from eqs. (2.2.13) and (2.4.12) to be,

S̄ba
F F (Ωm)

Sth
F F

= 2�ncG2

meffnthκΓmΩm

1

1+4Ω2
m/κ2

≈C0
nc

nth
. (2.4.17)

Here, the single-photon cooperativity C0 = 4g 2
0

κΓm
was introduced, an important figure of merit

characterizing the coupling strength between photons and phonons in a cavity optomechan-

ical system. The term (1+4Ω2
m/κ2)−1 can be understood as an additional efficiency factor

attributed to the cavity acting as a low-pass filter due to the limited bandwidth. For operation

deep in the bad-cavity limit (Ωm � κ), the aforementioned factor equals unity and is there-
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Figure 2.11 – Quantum noise contributions and the SQL: (a) The total measured noise is the sum of the intrinsic

fluctuations of the mechanical oscillator Sth
x , the measurement imprecision S

imp
x and the heating due to the

quantum back-action Sba
F |χx |2. (b) The added quantum noise at detection (magenta trace) versus input power,

normalized to that at the SQL. At low powers, the measurement is dominated by imprecision noise (light blue
dashed trace), while the back-action heating increases with measurement strength and dominates at powers above
the SQL (orange dashed trace). The dark blue dashed trace shows the intrinsic thermal motion for an oscillator in
a thermal state. In this case, the total noise is given as the red trace.

fore neglected in the last equality. With this, the imprecision and back-action noise can be

expressed in terms of phonon-equivalent quantities,

nimp = 1

16ηcC0nc
(2.4.18)

nqba =C0nc, (2.4.19)

with the imprecision-back-action product taking the form,

nimp
(
nqba +nth

)≥ nimpnqba =
1

16ηc
≥ 1

16
. (2.4.20)

From the equation above, it becomes evident that in order to achieve such a quantum-limited

measurement, two requirements must be met. First, a quantum-limited meter in a strongly
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2.4. Optomechanical readout of motion

overcoupled cavity is required, such that nimpnqba → 1/16 is achieved. Due to the nature of

the optical field performing this measurement, this condition can be assumed to be fulfilled.

Secondly, a large ratio nqba/nth is required, demanding that the mechanical oscillator is

predominantly coupled to the meter rather than to the thermal reservoir.

In actual experiments, the observation of the effects of quantum back-action remained an

elusive goal for a long time. The first successful demonstration was achieved in cold-atom

experiments [56, 148] and in a membrane-in-the-middle setup at cryogenic temperatures [74].

The main result of this thesis is the observation of radiation-pressure shot noise effects on a

mechanical oscillator under room temperature conditions (see chapter 4). To this end, we

developed an optomechanical device with single-photon cooperativity approaching unity

and the capability of supporting a large photon number without reaching instabilities (see

chapter 3).

2.4.3 Laser noise

An optomechanical system is usually probed using a resonant laser at frequency ωL = ωc.

Following eq. (2.3.40), the photon flux amplitude operator is assumed to be given by,

ŝin(t ) = e−iωLt (s̄in +δŝin(t )) , (2.4.21)

with the normalization s̄in =
√

Pin
�ωL

. The commutator of these fluctuations satisfies [149],

[
δŝin(t ),δŝ†

in(t ′)
]
= δ(t − t ′). (2.4.22)

At this point, hermitian quadrature operators for amplitude and phase of these fluctuations

can be introduced as,

δq̂in(t ) ≡ 1�
2

(
δŝin(t )+δŝ†

in(t )
)

(2.4.23)

δp̂in(t ) ≡ 1

i
�

2

(
δŝin(t )−δŝ†

in(t )
)

, (2.4.24)

such that, [
δq̂in(t ),δp̂in(t ′)

]= i

2
δ(t − t ′). (2.4.25)

With this, eq. (2.4.21) takes the form,

ŝin(t ) = e−iωLt
(

s̄in + δq̂in(t )�
2

+ i
δp̂in(t )�

2

)
. (2.4.26)

Under real conditions, δŝin(t ) (and equivalently δq̂in(t ), δp̂in(t )) may contain classical fluctua-

tions in addition to the intrinsic vacuum. This classical noise, e.g. excess noise in the laser, can

be arbitrarily distributed among the quadratures. The detection techniques applied in this

thesis (section 2.4.4) allow for the measurement of an arbitrary quadrature of the optical field.
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However, because of the large coherent amplitude of the light states, the two-time correlators

of the quadratures contain already almost all of the information carried by the state. Therefore,

the focus is limited to [150],(
Sqq (t ) Sqp (t )

Spq (t ) Spp (t )

)
:=

(〈
δq̂in(t )δq̂in(0)

〉 〈
δq̂in(t )δp̂in(0)

〉〈
δp̂in(t )δq̂in(0)

〉 〈
δp̂in(t )δq̂in(0)

〉
)

, (2.4.27)

with real Sqq and Spp due to the hermitian property of the quadratures. Here, the contributions

that are purely due to quantum mechanical origin can be separated out from these correlators.

From eq. (2.4.25) follows,

Sqp (t )−Spq (t ) = iδ(t ), (2.4.28)

which can be satisfied by the appropriate choices for Sqp and Spq ,

Sqp (t ) =+ i

2
δ(t )+Cqp (t ), (2.4.29)

Spq (t ) =− i

2
δ(t )+Cqp (t ), (2.4.30)

with Cqp (t) = S̄qp (t), following from the calculation of the symmetrized correlation. Analo-

gously, the coherent state has the property Sqq (t ) = Spp (t ) = 1
2δ(t ), and a similar separation of

the quantum mechanical contribution can be found as,

Sqq (t ) = 1

2
δ(t )+Cqq (t ), (2.4.31)

Spp (t ) = 1

2
δ(t )+Cpp (t ). (2.4.32)

Equation (2.4.27) hence becomes,(〈
δq̂in(t )δq̂in(0)

〉 〈
δq̂in(t )δp̂in(0)

〉〈
δp̂in(t )δq̂in(0)

〉 〈
δp̂in(t )δq̂in(0)

〉
)
=
(

1
2

i
2

− i
2

1
2

)
δ(t )+

(
Cqq (t ) Cqp (t )

Cpq (t ) Cpp (t )

)
. (2.4.33)

With this, the symmetrized correlations are found as,

S̄qq (Ω) = 1

2
+Cqq (Ω), (2.4.34)

S̄pp (Ω) = 1

2
+Cpp (Ω), (2.4.35)

S̄qp (Ω) =Cqp (Ω). (2.4.36)

2.4.4 Photodetection of noise spectra

As the measurements presented here are carried out in the optical domain (ωL ∼ 2π c
780 nm ∼

2π ·380 THz), this subsection will detail the principles of photodetection and the relevant

detection techniques.
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The optical detection of the outcoupled light is realized by guiding the output field, described

by its amplitude flux ŝout, onto a detector that performs a linear measurement on the amplitude

quadrature of the incident field. Following the principles of the photoelectric effect, the

absorbed photons are subsequently converted into electrons with a quantum efficiency η≤
1. Typical detectors at these wavelengths are based on a silicon (Si) diode and possess an

efficiency of η∼ 0.8. This imperfection in detecting an optical signal can be interpreted as an

additional loss channel that is described by the injection of the light into a beam splitter with

transmissivity η followed by a flawless detector receiving the transmitted field âη(t ) [151],

âη(t ) =�
ηŝout + i

√
1−ηδŝvac(t ). (2.4.37)

Here, the incident light on the detector is composed of part of the outcoupled light from the

optomechanical system ŝout = (s̄ +δŝ(t))e−iωLt as defined earlier, and vacuum noise δŝvac

entering the beam splitter from its second input. The photocurrent operator of the detector

can be defined as,

Î (t ) = qe â†
η(t )âη(t ) ≡ qe n̂η(t ), (2.4.38)

with the electron charge qe and the photon flux,

n̂η(t ) = â†
η(t )âη(t ) ≈ η|s̄|2 +�

2η|s̄|δq̂(t )+√
2η(1−η)|s̄|δp̂0, (2.4.39)

where the approximation indicates the omission of second-order terms in fluctuation, and δq̂

and δp̂0 denote the signal amplitude and vacuum phase quadrature fluctuations. From the

above expression, the mean of the photon flux as well as its fluctuations can be derived as,

〈
n̂η(t )

〉= η|s̄|2 (2.4.40)

δn̂η(t ) = n̂η(t )−〈
n̂η(t )

〉=�
2η|s̄|δq̂(t )+√

2η(1−η)|s̄|δp̂0. (2.4.41)

Since the photocurrent is the actual observable in photodetection, with eq. (2.4.38) its mean

and the fluctuations due to the incident field are found as,

〈
Î (t )

〉= qe
〈

n̂η(t )
〉= qeη|s̄|2 = ηRP (2.4.42)

δÎ (t ) = qeδn̂η(t ) =�
2qe |s̄|

(
ηδq̂(t )+√

η(1−η)δp̂0

)
, (2.4.43)

where the responsivity of the detector R = qe

�ωL
and the incident power P = �ωL|s̄|2 were intro-

duced. The symmetrized (double-sided) corresponding photocurrent spectrum is obtained

from the photocurrent fluctuations as,

S̄I I (Ω) = 2q2
e |s̄|2

(
η2S̄qq (Ω)+η(1−η)S̄0

pp (Ω)
)

. (2.4.44)

For a quantum-noise limited measurement, following eqs. (2.4.4) and (2.4.5), any detection of

the amplitude quadrature will be composed of the signal and a contribution due to vacuum
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Chapter 2. Foundations of cavity optomechanics

fluctuations, leading to δq̂(t) = δq̂sig(t)+δq̂vac(t), which can in general be assumed not to

be correlated. Under these conditions, S̄qq (Ω) = S̄qq (Ω)sig + S̄vac
qq (Ω) and S̄vac

qq (Ω) = S̄0
pp (Ω) = 1

2

with the resulting single-sided photocurrent spectrum,

SI (Ω) = 2ηq2
e |s̄|2

(
ηSsig

q (Ω)+1
)

. (2.4.45)

Here, the single-sided spectrum is used since photodiodes convert negative to positive fre-

quencies such that Sa(Ω) = 2S̄aa(Ω) for Ω> 0. The constant background in this expression is

caused by the amplified vacuum fluctuations and is referred to as the shot noise,

Sshot
I (Ω) = 2ηq2

e |s̄|2 = 2qe
〈

Î (t )
〉= 2qeηRP. (2.4.46)

The signal-to-noise ratio of a measurement is hence determined by the detection efficiency η.

In reality, the measured photocurrent is subject to one additional noise source – the ther-

mal noise in the electronics of the detector. This is commonly characterized by the noise-

equivalent power (NEP) spectrum SNE
P (Ω) in the specifications of the photodetector. Convert-

ing this to a photocurrent spectrum using the responsivity,

Sdet
I (Ω) = R2SNE

P (Ω), (2.4.47)

results in the expression of the total detected photocurrent (eqs. (2.4.45) to (2.4.47)),

SI (Ω) = R2SNE
P (Ω)︸ ︷︷ ︸

Sdet
I

+2qeηRP︸ ︷︷ ︸
Sshot

I

+2qeη
2RPSsig

q (Ω)︸ ︷︷ ︸
Ssig

I

. (2.4.48)

To overcome the detector noise, the measurement has to be performed with sufficient optical

power such that the detector noise is dominated by shot noise, specifically,

Sshot
I ≥ Sdet

I ⇔ P ≥ R

2qeη
SNE

P (Ω). (2.4.49)

Once the detector noise is overwhelmed by shot noise, the maximum possible signal-to-noise

ratio for a given optical power is achieved. Beyond this, the SNR scales with
�

P up to the

saturation of the detector. Figure 2.12 shows a measurement of a spectrum consisting of the

electronic noise Sdet
I (grey trace), the added shot noise Sshot

I (blue trace) and the total signal

due to a mechanical resonance Ssig
I (red trace).

Side-of-line detection

As mentioned in the introduction of this section, the aim is to measure the phase fluctuations

imparted by the motion of the mechanical oscillator. Applying the method of direct detection

by simply directing the outcoupled light onto a photodiode, only amplitude fluctuations

of the light field, i.e. the amplitude quadrature fluctuations δq̂ , can be detected, as the
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Figure 2.12 – Example of a detected spectrum: The total measured signal (red trace) consists of the detector noise

Sdet
x (gray trace), the shot noise Sshot

x (blue trace) and the actual signal due to a mechanical resonance S
sig
x . The

measurement was taken with sample AE/L2/B2/34.

induced photocurrent carries no phase information. Therefore, it becomes obvious that

a measurement at the cavity resonance is in this scheme impossible for two reasons: (1)

at cavity resonance, the slope of the transmission dip is zero (see fig. 2.10) such that the

small frequency fluctuations caused by the mechanical motion cause almost no amplitude

modulation. (2) Measurements are often carried out close to the critically coupled regime

(ηc ∼ 0.5) as mentioned in section 2.1.3, resulting in almost zero transmission at the output.

One way to circumvent these two problems at once is to operate detuned from the cavity

resonance where the cavity can convert the frequency fluctuations to an amplitude modulation

of the outcoupled light. In practice, a detuning of Δ= κ/2 is chosen where the slope of the

cavity is the largest. This technique is the so-called side-of-line detection. This technique

however has the significant disadvantage of changing the mechanical susceptibility due

to dynamical back-action effects (see section 2.3.1), especially at optical powers necessary

to overcome the detector noise for a shot-noise limited measurement as discussed above.

Typically, the required powers range from around 100 μW for a trans-impedance amplified

silicon photodiodes to as low as a few microwatts for an avalanche photodiode (APD). APDs

however possess the caveat that they already saturate at very low powers.

In this work, the side-of-line method is used to characterize the optomechanical devices,

i.e. accessing the intrinsic optical and mechanical linewidth as well as the optomechanical

coupling rate. To this end, we work in the far undercoupled regime at very low optical powers

of only a few nW to avoid any back-action and use an APD for detection (see chapter 3).

For the reasons discussed above, most experiments in cavity optomechanics utilize interfero-

metric readout schemes as they allow a phase-sensitive measurement at the optical resonance

where dynamic back-action is completely suppressed. This in turn allows for higher optical

powers to be used such that the shot noise limit can be easily reached. Now, the scheme used

in this work, balanced homodyne detection, will be detailed.
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Balanced homodyne spectroscopy

The balanced homodyne technique [152] was used to achieve the main results of this thesis.

This method allows for shot-noise limited operation on resonance (Δ = 0) where dynamic

back-action effects are absent (see section 2.3.1). Another important difference is that with a

homodyne interferometer, an arbitrary superposition of amplitude and phase quadrature can

be measured by an appropriate choice of the phase angle θ:

δq̂θ(t ) := δq̂(t )cosθ+δp̂(t )sinθ = 1�
2

(
δâ(t )e−iθ+δâ†(t )eiθ

)
. (2.4.50)

The principle of the homodyne scheme is illustrated in fig. 2.13. The signal field âsig in question

is superimposed with a local oscillator (LO) field âLO on a beam splitter (ideally balanced

with transmissivity ηt = 0.5) such that the transverse mode profiles in each output arm of the

interferometer overlap. The output fields â± of the beam splitter are then given by [151],

â+ =�
ηtâsig + i

√
1−ηtâLO (2.4.51)

â− = i
√

1−ηtâsig +�
ηtâLO, (2.4.52)

and are each directed into independent but identical photodiodes inducing the respective

photocurrents Î±(t) = qe â†
±(t)â±(t) that are then subtracted from each other to obtain the

homodyne signal,

Îhom(t ) = Î+(t )− Î−(t ) =qe
(
1−2ηt

)(
n̂LO(t )− n̂sig(t )

)
+2i qe

√
ηt(1−ηt)

(
â†

sig(t )âLO(t )− â†
LO(t )âsig(t )

)
,

(2.4.53)

with the signal (LO) photon flux n̂sig(LO)(t ) = â†
sig(LO)(t )âsig(LO)(t ). If the signal and LO fields are

both coherent, their amplitudes can be expressed as,

âsig(LO) =
(√〈

n̂sig(LO)
〉+δâsig(LO)(t )

)
e−i(ωLt+θsig(LO)), (2.4.54)

with the mean amplitude expressed in terms of the mean photon flux
√〈

n̂sig(LO)
〉

. The quantity

θsig(LO) denotes the phase of the signal (LO) field. With this, the mean value of the homodyne

photocurrent can be approximated as,

〈
Îhom(t )

〉≈ qe
(
1−2ηt

)(〈
n̂(LO)

〉−〈
n̂(sig)

〉)−4qe

√
ηt
(
1−ηt

)√〈
n̂(LO)

〉〈
n̂(sig)

〉
sinθhom,

(2.4.55)

while the fluctuations take the form,

δÎhom(t ) ≈qe
(
1−2ηt

)(√
2
〈

n̂(LO)
〉
δq̂0

LO −
√

2
〈

n̂(sig)
〉
δq̂0

sig

)

−qe

√
2ηt

(
1−ηt

)(√
2
〈

n̂(LO)
〉
δq̂θhom+π/2

sig −
√

2
〈

n̂(sig)
〉
δq̂−θhom−π/2

LO

)
,

(2.4.56)
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Figure 2.13 – Homodyne detection principle: At a beam splitter, the signal beam is combined with a local oscillator
from the same laser source such that the output beams are both spatially overlapped. Both outputs are then sent
to independent but identical photodiodes where the induced photocurrents are subtracted from each other. For
details, refer to the text.

with the mean phase difference between signal and LO fields θhom := θsig −θLO at the beam

splitter. Second-order fluctuation terms were omitted. The expression for the fluctuations can

be interpreted as the homodyne measuring a combination of the signal and LO quadratures

δq̂±θhom∓π/2
sig(LO) at different angles. In order to isolate the signal quadrature in a measurement, a

homodyne interferometer is usually operated with a very strong local oscillator compared to

the signal beam (
〈

n̂(LO)
〉
 〈

n̂(sig)
〉

) in addition to an ideal beam splitter (ηt = 1
2 ). According

to the first term in eq. (2.4.56), the latter has the additional advantage of canceling out any

classical noise present in the strong LO [153]. Under these conditions, eqs. (2.4.55) and (2.4.56)

simplify to,

〈
Îhom(t )

〉≈−qe

√〈
n̂(LO)

〉〈
n̂(sig)

〉
sinθhom (2.4.57)

δÎhom(t ) ≈ qe

√
2
〈

n̂(LO)
〉
δq̂θhom+π/2

sig (t ), (2.4.58)

such that the fluctuating part of the detected photocurrent renders a linear measurement of

purely the signal quadrature δq̂θhom+π/2
sig (t ).

The total detected photocurrent consists, similarly to eq. (2.4.48), of the three contributions,

Shom
I (Ω) = R2SNE

P (Ω)︸ ︷︷ ︸
Shom,det

I

+2qeηRPLO︸ ︷︷ ︸
Shom,shot

I

+2qeη
2RPLOSsig

qθhom+π/2
(Ω)︸ ︷︷ ︸

Shom,sig
I

. (2.4.59)

In contrast to direct detection methods where only the amplitude quadrature can be detected,

homodyne interferometers usually operate at the phase quadrature where θhom = 0 where
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the measurement record can be interpreted as a measurement of the phase fluctuations

between the signal and the local oscillator, as the relation between phase quadrature and

phase fluctuations is given as δp̂ =�
2〈n̂〉δφ̂ [142]. Operating with a strong LO such that the

measurement is shot-noise limited and therefore omitting the detector noise contribution,

the photocurrent now takes the form,

Shom
I (Ω)

∣∣∣
θhom=0

= 2qeηRPLO +4η2R2PsigPLOSsig
φ

(Ω) = 4η2R2PsigPLO

(
Ssig
φ

(Ω)+ qe

2ηRPsig

)
,

(2.4.60)

where again the constant background defines the shot noise level and can be taken as the

measurement imprecision of the homodyne detected signal,

Shom,imp
φ

(Ω) = 1

2η

�ωL

Psig
. (2.4.61)

Note that once the LO shot noise overwhelms the detector noise, the signal-to-noise ratio is

again maximized and weakly dependent of a further increase in PLO.

For the main experimental results in this work, the technique of variational measurements [79]

was applied in which homodyne spectra Sθ
I (Ω) are acquired for a sweep of the quadrature

angle through the amplitude quadrature (see chapter 4). An additional section about the

experimental details and challenges in the setup and operation of a homodyne interferometer

can be found in appendix D.
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3 High-cooperativity near-field optome-
chanical transducer

A particularly promising platform for optomechanical transduction, as described in the pre-

vious chapter, turns out to be a (dielectric) mechanical substrate placed next to the surface

of a WGM microcavity, so that it samples its evanescent field. Since the evanescent decay

length is ∼ λ/10, this topology offers the opportunity for strong gradient force coupling to

nanoscale mechanical devices. It also has the virtue of naturally accommodating optical and

mechanical substrates of dissimilar material and geometry, enabling separate optimization

of Q/(modevolume). Moreover, WGMs can be input/output coupled with high ideality using

tapered optical fibers [154], making them well-suited to interferometric displacement sensing.

Recent work has focused on coupling of nanobeams [135], -cantilevers [155], and -membranes

[156] to the evanescence of WGM microtoroids [135], -spheres [156, 157], and -disks [155, 158],

with mechanical materials ranging from (ultra low loss) high-stress Si3N4 [135] to (ultra low

mass) single-layer graphene [156], typically using SiO2 as the optical material. Gradient force

coupling as high as G ∼ 2π ·100 MHz/nm has been achieved [135]. Combined with the high

power handling capacity of SiO2 and low extraneous displacement noise (typically thermo-

refractive noise (TRN) in the cavity substrate [159]), optimized systems have achieved room

temperature displacement imprecisions as low as 10−16 m/
�

Hz, sufficient to in principle

resolve the zero-point motion in several cases [135, 159].

Despite these advances, the full potential of evanescent cavity optomechanics has been

inhibited by the difficulty of positioning the nanomechanical element within λ/10 ∼ 100 nm

of the cavity substrate. Early systems made use of nanopositioning stages and suffered from

vibrational instability [135]. In a first version of the here presented architecture, this challenge

was addressed by integrating a Si3N4 nanobeam and a SiO2 microdisk on a chip; however, due

to fabrication constraints, the beam-disk separation was limited to 250 nm and the optical Q

was reduced by a factor of 10 [158].

This chapter presents a novel device design that features the integration of a high-stress Si3N4

thin film resonator and a SiO2 microdisk cavity within the evanescent near-field, without

deteriorating the intrinsic Q of either element [160]. Responsible for the vast improvement in

performance of the optomechanical system hereby is a refined fabrication process that allows
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the suspension of a nanobeam as little as 25 nm above a SiO2 microdisk – a factor of three

smaller than the evanescent decay length of its WGMs – while maintaining mechanical and

optical mode qualities in excess of 105 and 106, respectively. The chapter covers the design of

the device (section 3.1), an outline of the fabrication process (section 3.2), a description of

characterization measurements (section 3.3), and a demonstration of the exceptionally high

displacement sensitivity (section 3.4), the key ingredient for the main results of this thesis that

are discussed in chapter 4.

3.1 Device design

The following section presents a description of the design of the optomechanical system used

in the experiments. To begin with, the first two subsections detail the design and properties

of the mechanical oscillator (section 3.1.1) and the optical cavity (section 3.1.2), before the

final part combines them to explain the optomechanical coupling between the two elements

(section 3.1.3).

3.1.1 Nanomechanical beam

The mechanical oscillator in our optomechanical system is a silicon nitride (SI3N4) doubly-

clamped nanobeam. It is released from a high-stress (∼ 1 GPa) thin film as this grants an

exceptionally high Q/m ratio for the string-like flexural modes. Typical beams used in our

experiments have dimensions {length(l ),width(w), thickness(t )} ∼ {60,0.5,0.05} μm, leading

to an effective mass, m ∼ 10 pg. The frequency of the fundamental mechanical mode is about

Ωm ∼ 2π ·4 MHz with a quality factor, Qm > 105. This exceptionally high value can be mainly

attributed to two effects; the first is the realization of a large impedance mismatch from the

anchoring body which reduces extrinsic losses at the clamping points [161]. The second

origin of the high quality factor is the so-called stress-related dilution of intrinsic loss, an

effect first discussed in the context of pendulum supports for the mirrors in gravitational wave

interferometers [162]. Here, the high tensile stress leads to an increase of the stored elastic

energy inside the material without altering its loss tangent [129, 163, 164].

From the standpoint of quantum-limited measurements, an important consequence of the

high Q/m ratio is that high-stress nanobeams exhibit large zero-point fluctuations. Expressed

as a single-sided spectral density evaluated at the mechanical frequency, the above parameters

correspond to a peak zero-point displacement noise density of Szp
x (Ωm) = 2�Qm/mΩ2

m ∼
10 fm/

�
Hz. This value occurs in a radio frequency window, 1-10 MHz, where low noise elec-

tronics and laser sources are readily available. As such, nanobeams were the first solid-state

mechanical resonators to be electrically [165] and optically [159] read out with an imprecision

lower than Szp
x (Ωm).

Figure 3.1 shows measurements of quality factors and Q×frequency products for odd-ordered,

out-of-plane flexural modes of a typical nanobeam with dimensions {l , w, t } = {60,0.6,0.05} μm.
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Figure 3.1 – Measurement of odd-ordered, out-of-plane flexural modes of a nanobeam. Measured Q-factors
(red) and Q · frequency products (blue) of a nanobeam with dimensions {l , w, t } = {60,0.6,0.05} μm (sample
M2/CU/T/+1) are plotted versus the mode frequency. The dashed red curve is a fit to the Q-dilution model in
[164], implying a limiting contribution from surface-related intrinsic loss. Above the plot is an FEM simulation
illustrating the first seven measured beam modes.

The achieved values go as high as 4 · 1012 for the Q × f products and are on par with the

state-of-the-art for high-stress Si3N4 nanobeams of similar dimensions [164, 166]. From the

near-linear eigenfrequency spectrum Ω(n)
m ≈ 2πn ·4.3 MHz, we can access the tensile stress

of σ ≈ (ρlΩ(0)
m /π)2 ≈ 800 MPa of our film, assuming a density of ρ = 2700 kg/m3 [129]. The

mechanical-Q spectrum is consistent with the intrinsic loss model of [163, 164],

Q(n)
m = Qint

λ+n2π2λ2 , (3.1.1)

and is fit using Q(n)
m ≈ 3.6 ·105/(1+0.023 ·n2) (dashed red line in fig. 3.1). Here, λ= t

l

�
E/(12σ),

E is the elastic modulus of the film, and Qint is the intrinsic quality factor of the film when

unstressed. The inferred value of Qint ≈ 6700 (using E = 200 GPa), is roughly an order of

magnitude lower than that for bulk Si3N4. Interpreted as surface loss, however, the inferred

coefficient of Qint/t ≈ 1.1 ·105 μm−1 is within a factor of two of the typical value for LPCVD

SiN thin films [164].

In addition to its favorable mechanical properties when stressed, Si3N4 is an attractive optical

material. It has a relatively large index of refraction, n ≈ 2, and, owing to its ∼ 3 eV bandgap,

respectably low optical absorption at near infrared wavelengths, characterized by an imaginary

index of nim ∼ 10−5 −10−6 [167].
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Figure 3.2 – Measurement results of optical quality factors. (a,b) SEM of a wedged microdisk; blue and gray
indicate SiO2 and Si, respectively. (c) Intrinsic WGM quality factor Q0 as a function of disk radius rd for stand-alone
SiO2 microdisks of thickness td ≈ 700nm. TE and TM modes are not distinguished. Blue (red) points correspond
to disks prepared with photo lithography (e-beam lithography), which produce wedge angles of θ ≈ 30(11)◦.
Horizontal lines represent constant cavity linewidth, κ= 2πc/(λQo ), with λ= 780 nm. Blue (red) dashed line is a
guide-to-the-eye for Q ∝ rd, corresponding to a fixed finesse of F = 0.6 (1.2) ·105.

3.1.2 Optical microdisk

The optical resonator used in our system is a silicon dioxide (SiO2) microdisk that supports

whispering-gallery modes (WGMs) along its periphery. SiO2 microdisks possess several ad-

vantages for evanescent sensing. The first advantage is that the material exhibits a wide

transparency window and a large power handling capacity, enabling large intracavity photon

numbers nc. The practically achievable photon number is typically limited by Kerr and Ra-

man nonlinearities. At visible and telecommunication wavelengths, as of relevance for the

experiments carried out in this work, other effects such as multi-photon absorption do not

play a significant role in SiO2, in contrast to Si and other semiconductors. A second advantage

is that standard lithographic techniques, in conjunction with wet-etching, can produce SiO2

microdisks with exceptionally high Q (recently exceeding 107 in the telecommunication band

[168, 169]). This feature is related to the wedged rim of the disk, which supports WGMs that

are spatially isolated from the surface, and thereby experience very low surface scattering/ab-

sorption loss. Finally, a third advantage is that microdisk WGMs can be evanescently coupled

to tapered optical fibers with high ideality [154]. This feature is critical for sensing applications,

as optical loss of the outcoupled light field would produce elevated shot-noise imprecision
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[44].

Microdisk resonators for the in this thesis presented results were studied at λ≈ 750−850 nm

(outside of the telecommunications window), to allow for smaller optical mode volumes. As

discussed in the following section 3.1.3, reducing the disk radius (rd) and thickness (td ∼λ/n)

results in smaller mode volumes with fractionally larger evanescent components, thereby

increasing the optomechanical coupling strength. Figure 3.2 shows measurement results of

intrinsic optical Q0 versus disk radius (rd) for microdisk samples of thickness td = 0.7 μm.

Two sets of devices are considered. The first set was prepared with photo lithography, the

second with electron-beam lithography. The sets differ by their corresponding wedge angle,

which is 30 (11) degrees for photo (e-beam) lithography. For both disk preparation methods,

intrinsic Q0 > 106 was measured for radii as low as 10 μm, corresponding to loss rates of

κ0 ∼ 2π ·100 MHz. For shallower wedge angles, Q0 as high as 4 ·107 (κ0 ∼ 2π ·10 MHz) was

obtained – notably similar to those measured at telecommunications wavelengths, where

scattering losses are significantly lower [168, 169]. Numerical simulations [170] reveal that

radiation contributes negligibly to the measured loss. Dotted blue (red) lines in fig. 3.2 are

guide-to-the-eye models for Q0 ∝ rd, consistent with loss due to surface absorption/scattering

[171], and corresponding to a fixed finesse of F ≡ΔωFSR/κ0 ≈ c/(rdκ0) = 0.6 (1.2)·105, with the

free spectral range, ΔωFSR. As discussed in section 3.3.5, the intrinsic optical Q0 is ultimately

reduced by loss introduced by the nanobeam, for beam-disk separations of less than 100 nm.

3.1.3 Evanescent optomechanical coupling

Optomechanical coupling in our system is achieved by placing the nanobeam near the surface

of the microdisk, such that the beam’s center is located in the evanescent volume of the optical

resonance. When the WGM is excited, the beam experiences a gradient force, Fopt. The

magnitude of this force, and likewise the optomechanical coupling factor G = ∂ωc/∂x, can be

derived by computing the work done on the WGM, −δUcav, by a small displacement of the

beam, δx: that is, Fopt =−∂Ucav/∂x ≈−GUcav/ωc, where Ucav is the potential energy stored in

the cavity field [78, 172]. To first order, it can be shown that [135]

G ≈ ω(0)
c

2

∂

∂x

(∫
beam(ε(�r )−1)|�E (0)(�r )|2d 3r∫

disk ε(�r )|�E (0)(�r )|2d 3r

)
≈ ω(0)

c

2

∂

∂x

(
n2

SiN −1

nSiO2

|E (0,beam)
max |2

|E (0,disk)
max |2

Vbeam

Vdisk

)
(3.1.2)

where ε(�r ) is the local relative permittivity, �E (0)(�r ) is the unperturbed cavity field ampli-

tude, and
∫

beam(disk) indicates an integral over the volume occupied by the beam (disk). The

simplified expression in (3.1.2) replaces ε with an index of refraction n and parameterizes

each integral in terms of the intensity-weighted volume of the beam (disk), Vbeam(disk) ≡∫
beam(disk) |E0|2d 3r /|E (0,beam(disk))

max |2, where E (0,beam(disk))
max is the maximum of the unperturbed

field within the beam (disk).

To gain physical insight into eq. (3.1.2), we consider the configuration shown in fig. 3.3. Here,

the beam is placed above the disk, so that it samples the vertical evanescence of a WGM.
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Figure 3.3 – Simulation of the evanescent optomechanical coupling. (a) Geometry of the nanobeam-microdisk
system: x, y represent the vertical (out-of-plane) and lateral (in-plane) position of the beam, respectively, with
respect to the inner rim of the disk (thickness td, radius rd). (b) Simulated optomechanical coupling versus beam
position for the device shown in fig. 3.4. The intensity profile of a TM-like WGM (computed using finite element
analysis) is shown in the background. Solid and dashed white lines denote the disk surface and the boundary
within which the beam touches the disk surface, for the coordinate system defined in (a). Contours indicate lines of
constant g0 for the 4.3 MHz fundamental out-of-plane mode. (c) Measured and simulated g0 versus y for the beam
shown in fig. 3.4 (samples on chip M2/BD/T). Black and blue data are for fundamental out-of-plane and in-plane
vibrational modes, respectively (for details, see section 3.3.5). Black lines correspond to numerical solutions to
eq. (3.1.2) with a vertical offset of x = 25 nm. Gray shading shows the solution space for x =20 to 30 nm.

For simplicity, the transverse dimensions of the beam are assumed to be much smaller than

that of the evanescent field; that is, w ��
AWGM and w � xev, where AWGM is the effective

cross-sectional area of the WGM and xev is the exponential decay length of the evanescent

field. In this case Vbeam can be approximated as t wleff, where leff < l is the intensity-weighted

“sampling length” of the beam. Likewise Vdisk can be parameterized as Vdisk ≈ 2πrd AWGM,

where rd is the physical disk radius. Assuming the form |E (0,beam)
max |/|E (0,disk)

max | = ξe−
x+t/2

xev , neglect-

ing the weak position dependence of Vbeam, and assuming the effective mass of a point probe,

m = ρt wl /2, the vacuum optomechanical coupling rate can be approximated as

g0 ≈ 1

2

ω(0)
c

xev

n2
SiN −1

nSiO2

t wleff

2πrd AWGM
ξ2e−

x+t/2
xev ·

√
�

ρt wlΩm
(3.1.3)

where ρ is the mass density of the beam. In practice xev, AWGM, and ξ must be determined

numerically for a wedged microdisk. An estimate can be made, however, by assuming the

mode shape of a microtoroid WGM with a minor radius of td/2 [135]. In this case, using nSiO2 ≈
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3.1. Device design

Figure 3.4 – False-colored scanning electron micrograph of the device: a high-stress Si3N4 (red) nanomechanical
beam integrated into the evanescent mode volume of a SiO2 (blue) microdisk. Disk and beam are integrated on a
Si (gray) microchip. Subpanel b (c) highlights the lateral (vertical) positioning of the beam.

1.4, one has xev ≈ λ/(2π
√

n2
Si02

−1) ≈ λ/12, AWGM ≈ 0.15r 7/12
d t 1/4

d λ7/6 and ξ ≈ 1.1(λ/rd )1/3

[173]. Using these formulas, the device geometry in fig. 3.4 ({t , w, l } = {0.06,0.4,60} μm, x = 25

nm, rd = 14.2 μm, t = 0.65 μm) and assuming λ= 780 nm, nSiN = 2.0, ρ = 2700 kg/m3, Ωm =
2π ·4.3 MHz, and leff = 10 μm (see section 3.3.7), eq. (3.1.3) predicts that G ≈ 2π ·1.0 GHz/nm,

xzp ≈ 33 fm, and g0 =G ·xzp = 2π ·33 kHz. As shown in fig. 3.3d, this estimate agrees well with

numerically and experimentally determined values. Notably, (3.1.3) implies that to achieve

large g0, it is necessary to reduce the vertical gap to x < xev ≈ 100 nm, and to maximize leff by

laterally positioning the beam above the disk.

A numerical model for g0(x, y) is shown in fig. 3.3b. Intrinsic WGM mode shapes, �E 0)(�r ), were

computed using an axially-symmetric finite element model (COMSOL FEM axial symmetric

package [170]). The energy stored in the WGM,

U (0)
cav ≈ 1

2

∫
disk

ε(�r )|�E (0)(�r )|2d 3r, (3.1.4)

and the energy shift due to the beam,

ΔUcav(x, y) ≈ 1
4

∫
beam

(ε(�r )−1)|�E (0)(�r )|2d 3r, (3.1.5)

were computed by numerical integration in Matlab. Differentiating the 2D energy landscape

gives G(x, y) =ωc
∂
∂x (ΔUcav(x, y)/U (0)

cav) for out-of-plane motion. Figure 3.3b shows g0(x, y) =
G(x, y) ·xzp for a beam and disk with the dimensions given above, for a TM-like WGM mode.

Contours indicate that the optimal position of the beam is above and inside the inner rim of

the disk, and that the magnitude of g0 scales exponentially with vertical displacement from

the disk surface, with a decay length of ∼ 100 nm. A horizontal cut through the contours for

x = 25 nm is shown in fig. 3.3c. Upper and lower curves show models for fundamental in-plane

(IP) and out-of-plane (OP) flexural modes. Significantly, maximizing g (OP)
0 also minimizes
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g (IP)
0 ; this opens a wide spectral window, ΔΩ∼Ωm, for measurement of the out-of-plane mode.

Experimental measurements (see section 3.3.2) of g0(25 nm, y) are also shown in fig. 3.3c. The

model agrees well with experiment assuming a vertical offset of 25±5 nm.
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3.2. Fabrication details

3.2 Fabrication details

Figure 3.5 – Fabrication process flow: blue, red,
green, and (light) gray indicate SiO2, Si3N4, Al2O3,
and (poly-)Si, respectively.

The fabrication process is outlined in fig. 3.5. Four

key elements of the process, detailed in the follow-

ing subsections, are: (A) fabrication of the SiO2

microdisk, (B) formation of a planarized sacrifi-

cial layer, (C) fabrication of the Si3N4 nanobeam,

and (D) release of the sacrificial layer. Of partic-

ular importance is the sacrificial layer, which al-

lows the mechanical (Si3N4) and optical (SiO2) el-

ements to be designed independently while main-

taining the high optical quality and achieving a

vertical beam-disk separation of less than 100 nm.

Also important is the use of e-beam lithography

to pattern the Si3N4, as this enables fine tuning of

the lateral beam position.

3.2.1 Microdisk fabrication

The process begins with an undoped, float-zone

silicon (Si) wafer, on which a 750 nm film of SiO2

is grown by dry oxidation (fig. 3.5a). Three struc-

tures are patterned into the dioxide film: the mi-

crodisk, rectangular pads that later serve as a plat-

form for the nanobeam and a reference plane for

CMP polishing, and markers that are later used

for e-beam alignment. As illustrated in fig. 3.6,

the SiO2 pattern is processed in two stages. In the

first stage all structures are defined. In the second

stage the microdisk is etched preferentially, re-

cessing it from the pads and defining the vertical

gap between disk and the beam.

Details of the SiO2 patterning process are as fol-

lows: The first mask, containing all structures,

is exposed in 1.1 μm of Microchemicals AZ 1512

photoresist using a Karl Süss MA 150 mask aligner

and a broadband Hg lamp. A subsequent re-

flow step is used to smoothen the pattern bound-

aries and minimize standing wave patterns. After-

wards, the pattern is transferred to SiO2 by etch-

ing in a room-temperature bath of BHF. The pho-
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Figure 3.6 – Defining the vertical gap between the disk and the nanobeam: (a) Top view of patterned SiO2 prior
to selective etch of the microdisk. Photoresist protects the sacrificial structures, while a window is exposed around
the microdisk. (b) Top view after selective etch of the microdisk and removal of the photoresist. The altered color
of the microdisk indicates thinning.

toresist is then stripped and a second mask is applied. The second mask covers all structures

on the wafer except for the microdisk, leaving it exposed for etching (fig. 3.6a). Subsequently,

the microdisk is preferentially etched in BHF until it is 10-100 nm thinner than the surrounding

pads (later defining the beam-disk gap). The result, after the photoresist is stripped, is shown

in fig. 3.6b. Note that the microdisk reflects a different color than the surrounding pads due to

its reduced thickness. Also seen in fig. 3.6 is a matrix of sacrificial pads surrounding the disk.

This matrix extends across the entire wafer and is only broken where microdisks or alignment

marks are placed. As discussed in section 3.2.2, a uniform matrix of pads is necessary to

achieve a flat surface when performing chemical mechanical polishing of the sacrificial layer.

The final result of microdisk fabrication is illustrated in fig. 3.5b. Blue indicates (in profile) the

patterned SiO2 film, with the microdisk in the center and nanobeam support pads on either

side. The offset between the microdisk and the pads is highlighted with a dashed line. Not

shown are sacrificial pillars and alignment marks. In the next processing step, all structures

are buried in a sacrificial layer, onto which a silicon nitride (Si3N4) film will be grown.

3.2.2 Planarized sacrificial layer

After patterning, the SiO2 film is covered with a layer of sacrificial material. The sacrificial layer

is used as a substrate for deposition and patterning of the Si3N4 film, meanwhile protecting

the underlying microdisk. A crucial consideration is the thickness and flatness of the sacrificial

layer, which is initially uneven because of its conformity to the underlying SiO2 pattern. Poly-Si

is chosen as sacrifical material because it can be isotropically etched with high selectivity to

SiO2 and Si3N4, and is well-suited to CMP. In addition, it can withstand the high temperatures

of up to > 800◦C required for LPCVD Si3N4 (see section 3.2.3), and can be used to undercut

the nanobeam and the microdisk in a single step (see section 3.2.4). A 1.5 μm thick layer is

deposited by LPCVD at 800◦C using silane and disilane as reactants. In addition, immediately

before poly-Si deposition, a 5 nm aluminum oxide (Al2O3) film is deposited atop the SiO2
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using atomic layer deposition1. This film later serves as an etch-stop to protect the microdisk

when releasing the Si3N4 nanobeam, as Al2O3 etches over 100× slower than Si3N4 in fluorine-

based RIE, and thus a few nanometers is sufficient to protect the microdisk. A profile of the

pre-polished sacrificial layer is sketched in fig. 3.5c. The Al2O3 etch-stop film is indicated

by green. Immediately above the etch-stop is the layer of poly-Si (gray). Because of the

underlying SiO2 structures, the surface of the poly-Si is uneven. This surface is planarized by

chemical-mechanical planarization (CMP) before Si3N4 is deposited.

The objective of the CMP process is to remove poly-Si until the pads are exposed, while

maintaining a thin layer above the recessed microdisk (fig. 3.5d). CMP involves pressing the

wafer against a rotating polishing pad in the presence of an abrasive and corrosive chemical

slurry. Abrasion is provided by SiO2 particles 30-50 nm in diameter. The slurry pH is adjusted

to achieve the desired polishing rate. In practice, the polishing rate is also a function of applied

force, rotation speed, and wafer topography. In order to reduce the poly-Si thickness to less

than 100 nm over the entire 100 mm wafer, a uniform polishing rate is critical. This is the

reason for patterning a matrix of sacrificial pads as discussed in the previous subsection. The

entire procedure is complicated by the fact that the polishing rate varies across the wafer and,

more importantly, that the polishing rate above the microdisk is faster than the rate above

the adjacent nanobeam support pads. The latter results in a poly-Si layer which is thinner

above the microdisk than at the nanobeam supports. To reduce this “dishing” effect, the

support pads are brought as close to the microdisk as possible (limited to 7 μm by photo

lithography and BHF biasing). To further reduce dishing, a two-step polishing technique is

used. First, a slurry designed to etch poly-Si is used to remove the bulk of the material, leaving

approximately 100 nm above the pads. The remaining material is removed with a different

slurry that is designed to etch SiO2 faster than poly-Si. When the surface of the SiO2 pads is

reached, the dishing effect therefore begins to reverse, resulting in an overall flat surface.

The gap between the microdisk and nanobeam is not determined by the thickness of the

sacrificial layer, but rather by the pre-defined difference in thickness between the microdisk

and the pads (fig. 3.5b). During the final steps of CMP, however, the support pads are etched.

The final gap is therefore smaller than originally defined by thinning of the microdisk. In

order to precisely tune the gap, the thickness of the clamping pads is iteratively measured by

reflectometry until a desired value is reached. The sample is then ready for the deposition of

Si3N4.

3.2.3 Nanobeam fabrication

To form the nanobeam, a 50-100 nm thick film of high-stress Si3N4 is deposited onto the pla-

narized poly-Si layer (fig. 3.5e). Low pressure chemical vapor deposition (LPCVD) is performed

1ALD achieves atomic layer control of film growth by separating the reactants into 2 precursors that are
introduced to the chamber sequentially and cyclically, allowing growth of one molecular layer at a time. This
process is used to produce very thin continuous films with high conformity - both of which are critically important
here.
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Figure 3.7 – Definition of the nanobeam and the "mesa": (a) Top view of sample after etching of Si3N4 (pink and
purple). Surrounding SiO2 structures, including microdisk, appear green. (b) Image of the “mesa" photomask.

at 800◦C using dichlorosilane and ammonia, producing a nearly stoichiometric Si3N4. High

stoichiometry is important for reducing absorption caused by hydrogen and oxygen impuri-

ties [167]. The high stress (800 MPa) on the other hand, resulting from the high temperature

deposition, is important for achieving high mechanical quality factors [129].

To maximize optomechanical coupling, it is necessary to fine-tune the lateral beam-disk

separation with 100 nm precision (fig. 3.3c), as the coupling strength strongly depends on the

exact beam position (see section 3.3.5). This is accomplished using e-beam lithography to

define the beams, in conjunction with the alignment markers defined during SiO2 patterning

(fig. 3.5f). Importantly, after the nitride deposition, the markers are buried under Si3N4 and

poly-Si, and cannot be seen by the electron-beam. A series of etch steps are used to locally

uncover the markers; in addition, to improve contrast, the exposed markers are used as a

hard mask to etch 2 μm into the underlying Si, using a highly selective fluorine-based etch.

The resulting high-contrast markers permit alignment of the Si3N4 mask with sub-100 nm

precision.

The nanobeams, support pads, and sample labels are patterned in a 180 nm-thick hydro-

gen silsesquioxane (HSQ) negative photoresist2. To reduce the writing time, the pattern is

separated into two parts, one containing the nanobeams and one containing the pads and

labels. The former is written with a high resolution of 5 nm, while the latter is written with a

50 nm resolution. Proximity effect correction is used to ensure a high fidelity pattern3. The

e-beam pattern is transferred to Si3N4 using an SF6 RIE etch. The resulting structure is shown

in fig. 3.7a.

2After development in tetramethylammonium hydroxide, HSQ is chemically similar to SiO2.
3Proximity effect correction software calculates the dose from this backscattering at each grid point and adjusts

the writing dose to ensure the correct effective dose is achieved.
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3.2.4 Structural release

Mesa and sample chip

Before the nanobeam and microdisk are released, they are elevated from the surrounding

wafer on a rectangular “mesa”. This later facilitates alignment of a straight tapered optical fiber

to the microdisk [174]. Figure 3.7b shows the mesa defined in a 5 μm mask of MicroChemicals

AZ 9260 photoresist. Fluorine-based RIE is used to remove the surrounding poly-Si. The

underlying sacrificial SiO2 pads are removed by a subsequent BHF etch, exposing the Si

substrate. To create the elevated mesa, exposed Si is recessed an additional 50 μm by RIE

(fig. 3.3g).

After releasing the mesa, the sample chips are defined. To define the sample chips, the wafer

is coated with a protective photoresist layer and partially diced (300 μm deep) with a high

precision Si dicing saw. Partial dicing is important as it leaves the wafer intact, enabling further

processing using wafer-scale equipment. After partial dicing the photoresist is stripped, so

that final release steps can be carried out.

Nanobeam and microdisk

To release the nanobeam and undercut the microdisk, the partially diced wafer is immersed in

40% KOH at 45◦C, selectively removing poly-Si but also etching Si. The etch time is fine-tuned

with two opposing criteria in mind: first, to ensure that the microdisk is undercut sufficiently

far from its rim to avoid optical losses, and second, to ensure that Si underneath the nanobeam

clamping point is not etched away. After KOH etching, the wafer is rinsed in water and any

remaining potassium is neutralized in a bath of hydrochloric acid. Organic cleaning is then

performed using an exothermic mixture of three parts sulfuric acid to one part 30% hydrogen

peroxide (a “piranha etch”). After rinsing again, the wafer is transferred directly to the ethanol

bath of a critical-point-drying (CPD) machine4. After CPD, the wafer is broken into sample

chips along the partially diced lines, concluding the fabrication process. An optical image of

the finalized samples is shown in fig. 3.5h.

3.3 Characterization measurements

This section presents the characterization measurements and their results and is divided into

six subsections. First, a brief description of the experimental setup is given in section 3.3.1.

The second subsection presents the thermal noise measurement to determine the mechanical

properties (resonance frequency, Ωm, and linewidth, Γm) as well as the optomechanical

4CPD is a technique used to dry suspended parts that would otherwise stick together under the tension
of evaporative drying. This is accomplished through avoiding the liquid to gas phase transition and instead
passing through the supercritical regime. CPD does this by replacing EtOH with carbon dioxide (CO2), and then
controlling the pressure and temperature of the CO2, such that the transition from liquid to gas is circumvented
via the supercritical regime.
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Figure 3.8 – Characterization setup and measurements. (a) Overview of the experimental apparatus, described
in section 3.3.1. (b) Representative optical Q measurement. WGM loss rates (κ) and mode splitting (γ) are inferred
from the cavity transmission profile (red), generated by sweeping the diode laser frequency while monitoring
the transmitted power. The sweep is calibrated by simultaneously monitoring transmission through a fiber loop
cavity (blue). (c) Representative thermomechanical noise measurement. Ωm,Γth, and g0 are inferred from the
center frequency, linewidth, and area beneath the thermal noise peak (pink), respectively. The latter is calibrated
by normalizing to the area beneath a FM tone (blue).

coupling strength, g0 (section 3.3.2). This is followed by a subsection demonstrating the optical

spring effect, an alternative way of calibrating g0 (section 3.3.4). Sections 3.3.5 and 3.3.6 show

the behavior of g0 for swept sample parameters, such as the lateral beam position, beam

width and disk thickness. The final section investigates the optomechanical coupling strength

for higher-order mechanical modes from which a effective sampling length can be derived

(section 3.3.7).

3.3.1 Experimental setup

Samples are characterized using the experimental setup shown in fig. 3.8a. Light from a

765−785 nm tunable diode laser (New Focus Velocity 6312) is coupled into the microdisk

using a tapered optical fiber (780 HP) [154]. The forward-scattered (“transmitted") field is

monitored using one of two techniques: direct detection with an avalanche photo diode

(Thorlabs APD110) and balanced homodyne detection with a pair of fast Si photo diodes
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(FEMTO HCA-S-100). DC- and AC-filtered photosignals are split between an oscilloscope

(Tektronix DPO4034) and a spectrum analyzer (Tektronix RSA5106A). Optical decay rates are

inferred from measurements of transmitted power versus laser detuning (fig. 3.8b). To calibrate

laser-cavity detuning, a fraction of the input field is simultaneously passed through a 20-cm-

long (FSR ∼ 350 MHz) fiber loop cavity. Mechanical properties, including the optomechanical

coupling rates, are inferred from measurements of thermomechanical cavity frequency noise

[175] (fig. 3.8c). To calibrate this noise, the input field is frequency modulated using an electro-

optic modulator (iXBlue). Residual amplitude modulation – an important source of calibration

error – is suppressed by temperature stabilizing the EOM and supplying it with a DC voltage in

addition to the RF drive in order to match the polarization direction to the input field [176].

To eliminate gas damping of the nanobeam (section 3.3.3), the sample chip and the fiber

coupling setup (based on an Attocube stack) are embedded in a vacuum chamber operating

at < 10−5 mbar.

3.3.2 Calibrated thermal noise measurement

The mechanical mode frequencies Ωm, intrinsic damping rates Γm, and optomechanical

coupling rates g0, are determined by analyzing the cavity resonance frequency noise produced

by thermal motion of the nanobeam. Thermal motion of the nanobeam x(t ) is written onto the

cavity resonance frequency ωc (t ) via the optomechanical coupling G = dωc /d x. To measure

ωc (t), we monitor the power of the transmitted field while operating at a fixed detuning of

|Δ| ≈ κ/2. Referred to the output voltage (V ) of the photodetector trans-impedance amplifier,

the uncalibrated noise spectrum can be expressed as (neglecting detector noise),

SV (Ω) = |GV ω(Ω)|2
(
Simp
ω (Ω)+Scav

ω (Ω)
)
= Simp

V (Ω)+|GV ω(Ω)|2Scav
ω (Ω)︸ ︷︷ ︸

Scav
V (Ω)

, (3.3.1)

where GV ω(Ω) is the measurement transfer function, Simp
ω (Ω) is the imprecision frequency

noise and Scav
ω (Ω) are the cavity frequency fluctuations. For both direct and homodyne

detection schemes, laser frequency fluctuations imparted on the probing beam before entering

the cavity are transduced in the same way as cavity frequency fluctuations [175]. To calibrate

the measurement transfer function, we can hence use an EOM to frequency modulate the

input laser light with a known modulation depth β at frequency Ωcal. This adds a third

contribution to the detected voltage noise spectrum which can be used as a calibration tone,

SV (Ω) = Simp
V (Ω)+|GV ω(Ω)|2

(
Scav
ω (Ω)+Scal

ω (Ωcal)
)

, (3.3.2)

where the frequency noise spectrum of the injected modulation is given by,

Scal
ω (Ωcal) =

β2Ω2
cal

2
δ [Ω−Ωcal] . (3.3.3)
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The cavity frequency noise fluctuations in the presented experiments arise from the motion of

a high-Q mechanical oscillator with resonance frequency Ωm and can therefore be expressed

as, Scav
ω (Ω) =G2Sx (Ω) = g 2

0 Sx (Ω)/x2
ZPF (cf. section 2.4), and lead to the total detected signal,

SV (Ω) ≈ Simp
V (Ω)+|GV ω(Ωcal)|2

β2Ω2
cal

2
δ [Ω−Ωcal]+|GV ω(Ωm)|2 g 2

0

x2
ZPF

Sx (Ω). (3.3.4)

Under the assumption that the mechanical oscillator is in equilibrium at a certain temperature

T we can apply the equipartition identity Var[x̂] = 2x2
ZPF

kBT
�Ωm

= 2x2
ZPFnth (eq. (2.2.15)) and

hence calibrate the spectrum by considering the ratio,

Var[Vmech]

Var[Vcal]
≈ |GV ω(Ωm)|2

|GV ω(Ωcal)|2
4g 2

0 nth

β2Ω2
cal

. (3.3.5)

By choosing a modulation frequency close to the mechanical resonance frequency, it can be

safely assumed that |GV ω(Ωm)| ≈ |GV ω(Ωcal)|, the known phonon occupation (temperature) of

the oscillator can be used to extract g0 or vice versa and to calibrate the spectrum in frequency

or displacement noise units.

A representative measurement of a spectrum with present calibration tone is shown in fig. 3.8c.

Red, blue, and grey components correspond to thermal noise, Sth
ω (Ω), the calibration tone,

Scal
ω (Ω), and measurement imprecision, Simp

ω (Ω), respectively. The full signal can be modeled

as

Sω(Ω) = Sth
ω (Ω)+Scal

ω (Ω)+Simp
ω (Ω)

≈ 2g 2
0 nth ·L (Ω−Ωm)+ β2Ω2

cal

2
·G (Ω−Ωcal)+Simp

ω (Ω),
(3.3.6)

where L (Ω) = 4Γm/(Γ2
m +4Ω2) is a normalized Lorentzian (characterizing the mechanical

susceptibility) and G (Ω) = e−Ω
2/(2B 2)/

�
2πB 2 is a normalized Gaussian (characterizing the

window function of the spectrum analyzer, which is assumed to have a resolution bandwidth

B � Γm). Fitting the calibrated spectrum to eq. (3.3.6) gives Ωm, Γm, and g0. As mentioned

above, the last inference requires knowledge of nth, which by using input powers low enough

to neglect photothermal/radiation pressure damping (< 10 nW), we assume to be nth ≈
kB ·295 K/(�Ωm) ≈ 106.

To calibrate the modulation index β, we perform a separate heterodyne measurement of

the modulated light before it enters the optomechanical system. The heterodyne setup

is shown in fig. 3.8a and consists of a local oscillator that is frequency shifted by ΩAOM =
2π ·238 MHz using an acousto-optical modulator (AOM) and afterwards recombined with the

frequency-modulated light for detection. The EOM is driven by a tone with fixed amplitude and

frequency close to the mechanical resonance, both left unchanged during the characterization

experiment. Figure 3.9a presents the measured heterodyne spectrum showing the carrier at

ΩAOM and generated sidebands up to third order (here, Ωcal = 2π ·3.4 MHz). The amplitude of
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Figure 3.9 – Calibration of modulation index. (a) Measured heterodyne spectrum for a modulation drive at
Ωcal = 2π ·3.4 MHz with given signal strength. The amplitude of the generated sidebands is normalized to the
carrier tone in the absence of modulation. Grey dashed lines mark the amplitudes of the generated sidebands. (b)
Bessel functions of the first kind, Jn (β) versus modulation index β. The measured relative amplitudes of the n-th
sideband pair in the heterodyne measurement correspond to Jn (β) from which the modulation index β= 0.43 for
this measurement is extracted.

the measured signal
√

Shet
V (Ω) is normalized to the carrier amplitude in the absence of any

modulation,
√

Shet,0
V (ΩAOM). In these relative units, the amplitudes of the n-th modulation

sideband pair correspond to the Bessel function Jn(β) evaluated at the modulation index of

the EOM, as shown in fig. 3.9b) [177]. All generated sidebands show very good agreement to a

modulation index β= 0.43 in this measurement, as indicated by the grey dashed lines. With

the now known modulation index, a measured thermal noise spectrum can subsequently be

calibrated in frequency noise units and used for determination of the vacuum optomechanical

coupling strength g0. Note that in general, the modulation index of an EOM can be frequency-

dependent. For this reason, to avoid systematic errors, recalibration when changing the

modulation frequency is necessary.

3.3.3 Gas damping

To investigate the influence of residual gas molecules, we measure the pressure dependence

of the mechanical quality factor Qm(p), where p denotes the pressure inside the vacuum

chamber. For this experiment, we continuously measure the mechanical noise spectrum as

before while varying the pressure. An example of a measured spectrum is shown in fig. 3.10a

with a lorentzian fit to extract the exact resonance frequency and mechanical linewidth.

Starting from high vacuum (p < 10−6 mbar), we now gradually close the gate valve to the

ion pump, slowly isolating the pump from any pumping. Further increase of the pressure

is achieved by slowly opening the valve to a regulator valve that injects dry nitrogen gas

at a low enough flow rate to slowly increase the pressure. The measured quality factor is

shown in fig. 3.10b. No change in the mechanical quality factor is observable for pressures

p < 10−4 mbar, indicating that the limiting factor in this regime is rather defined by intrinsic

loss channels, such as clamping losses. Above these pressures, a loss increase is noticeable

which can be accounted for by a modified mechanical linewidth Γ= Γm +Γgas(p) and follows
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Figure 3.10 – Gas damping measurement. (a) Measured noise spectrum (blue) and fit (red for a gas damped
mechanical resonance. (b) Plot of mechanical quality factor Qm versus pressure. The grey line is a simple model
introducing the gas damping as additional loss channel with proportionality constant, D = 2.4 kHz mbar−1. The
measurements were taken from sample AE/L2/B1/34. For details, refer to the text.

the simple model,

Qm(p) = Ωm

Γm +Γgas(p)
= Ωm

Γm +D ·p
, (3.3.7)

with the damping constant D = dΓgas

dp = 2.4 kHz mbar−1 in this case. We conclude that under

normal experimental conditions (p < 10−6 mbar), we are far below the gas damping limited

regime and mainly susceptible to intrinsic loss channels.

3.3.4 Optical spring effect

As a cross-check of the thermal noise measurement, g0 can be independently estimated from

the optical spring effect [25]. In the experimentally relevant bad cavity limit (Ωm � κ), the

mechanical frequency shift produced by a radiation pressure optical spring is (see eq. (2.3.25)),

ΔΩm(Δ) ≈ 8g 2
0

κ
·nc(Δ) · Δ/κ

1+4(Δ/κ)2 (3.3.8)
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Figure 3.11 – Optical spring measurement. (a) Thermal noise spectrum of the fundamental beam mode as a
function of laser detuning. Blue and red spectra indicated blue (Δ > 0) and red (Δ < 0) detuning, respectively.
Lighter shades indicate smaller detuning. Blue spectra are vertically offset. (b) Plot of optical spring shift, ΔΩm,
versus normalized detuning, Δ/κ. Dashed gray lines are a fit to eq. (3.3.8) using g0 as a free parameter. The
measurements were taken with sample M2/CU/T/-1.

where Δ is the laser-cavity detuning, nc(Δ) = (4Pin/(�ω0κ))(κex/κ)/(1+4(Δ/κ)2) is the intracav-

ity photon number, and Pin is the power injected into the cavity. Radiation pressure damping

also occurs for a detuned input field; however, in the devices studied, for which Ωm/κ∼ 0.01,

this effect was found to be overwhelmed by photothermal damping [178].

A measurement of the optical spring effect is shown in fig. 3.11, corresponding to the sample

also characterized in fig. 3.8c. The injected powers used – Pin = 60,120 nW – were chosen to

avoid instabilities due to photothermal/radiation pressure damping. The cavity was critically

coupled (κex ≈ κ0 ≈ κ/2 ≈ 2π ·550 MHz) and laser detuning was estimated from the mean

transmitted power. Overlaid models correspond to eq. (3.3.8) with the value g0 = 2π ·60 kHz,

inferred from a least-squared fit to the low power measurement. This value is within 10% of

that inferred from thermal noise in fig. 3.8c.
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Figure 3.12 – Characterization measurements for swept sample parameters. (a) Measured vacuum optome-
chanical coupling rate (g0) and cooperativity (C0, assuming Γm = 2π·20 Hz) versus lateral beam position (y) for TM
(solid circles) and TE (open circles) cavity modes. (b) Corresponding intrinsic cavity decay rate (κ0). (c) Measured

g0 versus beam width (w) for two disk thicknesses (td). (d) Measured g0 versus mode frequency, Ω(n)
m ≈ nΩ(0)

m .
Red dots correspond to odd harmonics (n = 1,3,5...). Solid and dashed lines are model curves (Eq. 3.3.9) for a
sampling length of leff = 9.6 and leff = 0, respectively.

3.3.5 g0 and C0 versus lateral beam position

As discussed in section 3.1.3, the vacuum optomechanical coupling rate g0 depends sensitively

on the lateral positioning of the nanobeam, and assumes a maximum (minimum) value for

out-of-plane (in-plane) flexural modes when centered above the WGM. This behavior was

studied by sweeping the lateral position of the beam and measure g0 for each of these positions.

The results are shown in fig. 3.12a for beam and disk dimensions of {l , w, t } = {60,0.4,0.06} μm

and {r, td,θ} = {15μm,0.60μm,30◦}, respectively, and for a vertical gap of 25 nm. The in-plane

modes exhibit typically an order of magnitude lower g0 for geometrical reasons, and are not

considered. In agreement with numerical modeling (dashed line), g0 assumes a maximum of

2π ·40 kHz as the outer edge of the beam eclipses the rim of the disk. Notably, the observed

g0 > 2π ·10 kHz is 20 dB larger than previous chip-scale devices [158], owing to the small

vertical gap and optimal lateral placement of the beam.

Also shown in fig. 3.12b are measurements of κ versus lateral beam position (y). When the

beam is displaced far from the disk, κ converges to the intrinsic value of ∼ 2π · 100 MHz
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observed in fig. 3.2, suggesting that the additional fabrication steps to implement the beam

did not significantly affect microdisk surface quality. As the beam is brought within 100 nm of

the disk, κ is observed to increase sharply. The observed exponential dependence κ on y is

independent of mode polarization and similar to the scaling observed in [159] with a beam

coupled to a microtoroid. The absolute magnitude of the loss is also inconsistent with bulk

Si3N4 optical absorption – specifically, accounting for the relatively small fraction of energy

stored in the beam, the observed loss would require an imaginary index of ∼ 10−4, which is

1-2 orders of magnitude larger than conventionally observed for Si3N4 at NIR wavelengths

[37, 167]. We thus conjecture that this loss is due to scattering from the beam and/or waveguide

coupling into the beam.

Combining measurements of g0 and κ with the room temperature mechanical damping rate of

Γm = 2π ·15 Hz (we observed no change in Γm for small beam-disk separation, suggesting that

squeeze-film gas damping [166] was not a factor), the single-photon cooperativity is observed

to approach C0 ∼ 1. This value is limited by the unfavorable scaling of g 2
0 /κ as g0 begins to

saturate. Despite this limitation, the inferred C0 represents a nearly 50 dB increase over prior

chip-scale implementations [158], owing to the combined 100-fold increase of g0 and 10-fold

reduction in κ due to a more sophisticated fabrication process. Figure 3.12b suggests that the

optical linewidth, κ, is ultimately dominated by beam-induced scattering/absorption loss,

rather than deterioration of intrinsic disk loss (fig. 3.2), implying that an additional 10-fold

reduction in κ may yet be realized with appropriate beam shaping/positioning.

3.3.6 g0 and C0 versus beam width and disk thickness

Wider beams (w ∼λ) and thinner disks (td <λ) were fabricated in an attempt to increase g0

and C0 (see eq. (3.1.3)). Measurements of {g0,C0} for different beam widths, w , and for two

microdisk thicknesses, td ≈ 0.43 and 0.63 μm, are shown in fig. 3.12c. Fixed dimensions of the

nanobeam and microdisk are {t , l } ≈ {0.06,60} μm and {rd,θ} ≈ {15 μm,30 deg.}, respectively.

The lateral beam position was chosen to maximize g0 for the 0.4 μm-wide beam (see fig. 3.12).

For the TE optical modes studied, a roughly 2× increase in g0 was observed for the 30% thinner

disk. In both cases, g0 scaled roughly linearly for widths w ∈ [0.4,1] μm. C0 also increased

with w , roughly in proportion to g 2
0 , for both td. This is due to the fact that κ (not shown) was

roughly independent of w for both disk thicknesses and a factor of four larger for the thinner

disk. The highest optomechanical coupling rate we have measured, g0 ≈ 2π ·150 kHz, was

for a 1 μm wide beam coupled to a 0.43 μm thick disk. The highest cooperativities observed,

C0 > 2.5, were for 1 μm wide beams coupled to disks of both thicknesses.

3.3.7 g0 versus mechanical mode order

The vacuum optomechanical coupling rate, g0, was also studied for higher order mechanical

modes. As shown in fig. 3.12d, g0 decreases as the vibrational node spacing approaches the

dimensions of the effective sampling length leff. In this case the model in section 3.1.3 – which

69



Chapter 3. High-cooperativity near-field optomechanical transducer

assumes rigid displacement of a beam with effective mass m = ρt wl/2 – breaks down. A

simple extension of the model is shown as a red line in fig. 3.12d. Here, m is computed with

respect to optical-intensity-weighted displacement of the mechanical mode:

m =
∫

beamρ|u(r )|2d 3r

|∫beam |E(r )|2u(r )d 3r /
∫

beam |E(r )|2d 3r |2 ≈ ρt wl

1− (−1)n

1

sinc2
(

nπ
2

leff
l

) (3.3.9)

where�u(x, y, z) ≈ sin(nπx/l )ẑ is the displacement profile of the nth-order out-of-plane flexural

mode. The latter expression is appropriate when the transverse dimensions of the beam are

much smaller than that of the WGM, and assumes that the intensity distribution sampled by

the beam is uniform along the beam axis with an effective sampling length leff. Using Ωm ∝ n

gives g (n)
0 /g (0)

0 ≈ |sinc
(

nπ
2

leff
l

)
|/�n for odd n and 0 for even n. The model shown in fig. 3.12d

agrees quantitatively with experiment assuming an effective length of leff = 9.6 μm as the only

free parameter. A simple route to increasing g0 is to remove mass from the beam outside of

the effective sampling length, to either produce a double-tethered (shown in fig. 3.15), or a

single-tethered nanobeam, as it is used for the main results of this thesis (see section 4.3.1).

3.4 Displacement sensitivity

As an illustration of the device performance, we use the microdisk to perform a cavity-

enhanced interferometric measurement of the beam’s displacement. For this purpose, the

fiber taper and microdisk are embedded in one arm of a length- and power-balanced homo-

dyne interferometer (fig. 3.8). The cavity is driven on resonance using the Pound-Drever-Hall

technique [146]. A piezoelectric mirror is use to stabilize the interferometer path length dif-

ference so that the homodyne photocurrent is proportional to the phase of the transmitted

cavity field. The operation of a homodyne interferometer is detailed in appendix D.

The measured displacement noise spectra are shown in fig. 3.13 for a {l , w, t } = {60,0.4,0.06} μm

beam with a vertical beam-disk separation of approximately 35 nm and optomechanical pa-

rameters {Ωm, Γm, κ, g0, C0} ≈ {2π ·4.4MHz, 2π ·10Hz, 2π ·700MHz, 2π ·28kHz, 0.45}. Here

κ corresponds to the critically-coupled cavity linewidth while the mechanical parameters

correspond to the fundamental out-of-plane mechanical mode. For the measurements

shown, the cavity was critically coupled and the power of the input field was swept from

0.01−20 μW. The homodyne photocurrent noise spectrum is plotted in units relative to the

signal produced by a phonon of displacement 2Szp
ω (Ωm) ≈ (2π · 10kHz/

�
Hz)2 (equivalent

to 2Szp
x (Ωm) ≈ (2π ·8.9fm/

�
Hz)2 assuming xzp = 25 fm). In these units, the magnitude of

the fundamental thermal noise peak (neglecting photothermal or dynamical back-action) is

equal to the effective thermal occupation ntot ≡ Sω(Ωm)/(2Szp
ω (Ωm) = nth +nba +nimp, where

nth ≡ Sth
ω (Ωm)/2Szp

ω (Ωm) is the ambient bath occupation, nba is the effective thermal bath oc-

cupation associated with classical and quantum measurement back-action (radiation pressure

shot noise), and nimp ≡ Simp
ω (Ωm)/2Szp

ω (Ωm) is the apparent thermal occupation associated

with the measurement imprecision. The noise spectra are calibrated by bootstrapping a low

70



3.4. Displacement sensitivity

106

104

102

100

10-2

10-4

106

104

102

100

10-2

10-4

n
im

p , n
tot , 4√n

im
p n

tot

4ncC0

100 102 1041 2 3 4 5 6 7
Frequency, /(2 ) [MHz]

S
/(

2S
 (

m
))

zp 60

a b
 8 W
32 W
0.3 
1 W
2 
4 W
8 
20 W (          LO shot noise)
model

(2  · 10 kHz/√Hz)2

(8.9 fm/√Hz)2

106

Figure 3.13 – Displacement sensitivity measurement. (a) Nanobeam displacement noise, measured by balanced
homodyne detection of the microdisk output field, for various input powers. The measurements were taken with
sample M2/CU/T/-1. Noise spectra are expressed in units relative to the cavity frequency noise produced by one
phonon of fundamental out-of-plane vibration, 2S

zp
ω (Ωm) = (2π ·10kHz/

�
Hz)2, where Ωm = 2π ·4.4 MHz. At large

powers, the fundamental noise peak is shifted and broadened by optical spring softening and damping, respectively.
The peak at 4.9 MHz is due to thermal motion of the fundamental in-plane mode. The gray curve is a model for the
intrinsic thermal motion of the fundamental out-of-plane and in-plane modes (eq. (3.4.1)). (b) Measured phonon

equivalent displacement, ntot = Sω(Ωm)/2S
zp
ω (Ωm), displacement imprecision, nimp ≡ S

imp
ω (Ωm)/2S

zp
ω (Ωm), and

their geometric mean versus intracavity photon number nc weighted by single-photon cooperativity C0. Dashed
lines denote ideal values for ntot = nth +nba +nimp (green), nba =C0nc (red), and nimp = 1/16C0nc (blue), using

nth ≈ 1.4 ·106 and C0 = 0.45. Magenta arrow indicates proximity to the uncertainty limit, 4
√

nimpntot ≥ 1.

power measurement to ntot ≈ nth ≈ kBT /�Ωm ≈ 1.4 ·106 (for larger optical powers, dynamic

spring/damping forces modify the peak value, Sω(Ωm)). At the highest optical powers, the

displacement imprecision in the vicinity of Ωm is estimated (from the saddle at 2.5 MHz) to

be nimp ≈ 1.5 ·10−4, while the shot-noise imprecision (blue curve, obtained by blocking the

signal interferometer arm) is n(shot)
imp ≈ 2.6 ·10−5. These correspond to imprecisions 32 and

40 dB below that at the SQL (nimp = 0.25), respectively. The magnitude of the extraneous

imprecision, 2Szp
ω (Ωm) · (nimp −n(shot)

imp ) ≈ (2π ·110Hz/
�

Hz)2, is independent of optical power

and gives rise to the saturation of the blue points in 3.13b. This extraneous noise is consistent

with a mixture of diode laser frequency noise (∼ 30Hz/
�

Hz [73]), thermorefractive noise

(∼ 10Hz/
�

Hz [135]), and off-resonant thermal noise (∼ 70Hz/
�

Hz). The latter is estimated

using the ‘structural damping’ model of Saulson [121],

Sω(Ω)

2Szp
ω (Ωm)

≈ nth
Ωm

Ω

Γ2
mΩ2

m

(Ω2 −Ω2
m)2 +Γ2

mΩ2
m
� 7nth

Q2
m

, (3.4.1)

shown in gray in fig. 3.13, for Qm =Ωm/Γm = 4.4 ·105.

The total efficiency of the measurement is estimated by comparing the power dependence

of the imprecision (nimp), the effective thermal bath occupation (ntot), and their geometric

mean
�

nimpntot to the ideal values 1/(16C0nc), C0nc, and 1/4, respectively, where the last

case represents the Heisenberg uncertainty limit. As shown on the right hand side of fig. 3.13,

the imprecision is a factor of 7.5 larger than ideal, due to a combination of cavity loss (50%,

71



Chapter 3. High-cooperativity near-field optomechanical transducer

corresponding to critical coupling), taper loss (∼ 10%), homodyne detector loss/misalignment,

and optical mode splitting [73]. The effective thermal bath occupation is inferred by fitting

to the off-resonant tail of the fundamental noise peak (to avoid the systematic error due

to optical damping). From these fits we infer a heating of C ext
0 ≡ (ntot −nth)/nc = 1.4, two

times larger than expected due to quantum measurement back-action. The imprecision-back-

action product is constrained, at high powers, to 4
�

nimpntot ≈ 60, due to the saturation of the

measurement imprecision. To the best of our knowledge, this represents the closest approach

to the uncertainty limit for a room temperature mechanical oscillator.

3.5 Structural damping

In a recent experiment [179], we resolved and investigated the thermal motion of a nanobeam

far below its mechanical resonance frequency and gained evidence that the mechanical

oscillator is driven by a 1/ f thermal force, which is in contrast to the generally assumed model

of a white (frequency-independent) thermal noise that drives the oscillator. This observation

suggests that the loss angle φ0 (defined in eq. (2.2.7)) of the system is frequency-independent.

As discussed in the section about the fundamentals of mechanical motion (section 2.2.1), the

thermal force driving a nanomechanical oscillator is commonly assumed to be a Langevin

force with a white (frequency-independent) spectrum [121]. To recall, the (single-sided) force

spectrum of the thermal force is given as,

Sth
F (Ω) =−4kBT

Ω
Im

(
χx (Ω)−1) , (3.5.1)

with the mechanical susceptibility,

χx (Ω) = m−1

Ω2
m(1− iφ(Ω))−Ω2

, (3.5.2)

and the loss angle of the beam material φ(Ω). So far, this loss angle has been assumed to be

frequency dependent, in particular φ(Ω) =Q−1
m

Ω
Ωm

, in order to achieve a white thermal force

spectrum which arises for viscous (velocity-proportional) damping mechanisms, such as gas

damping [166].

In the absence of external losses, the modes of the silicon nitride nanobeam would exhibit a

frequency-independent loss angle, φ(Ω) =φ=Q−1
m . This scenario is the so-called ”structural

damping" which results in a ”pink" (1/ f , with f =Ω/(2π)) thermal force spectrum,

Sth
F (Ω) = 4kBTmeffΓm

Ωm

Ω
. (3.5.3)

Structural damping has been studied for precision macroscopic oscillators, such as pendu-

lums [180, 181] and gram-scale mirror oscillators [182]. In terms of nanomechanical oscillators,

structural damping had not been verified yet due to the difficulties (a) of fabricating samples
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Figure 3.14 – Structural damping measurement: (a) Broadband thermal motion of a Si3N4 nanobeam with
resonance frequency at Ωm = 2π ·3.4 MHz as displacement noise Sx (Ω). Shown are the unprocessed homodyne
spectrum (light blue trace), the shot noise subtracted signal (blue trace) and in dark blue a trace where also the
extraneous cavity noise (shown as the grey trace) has been subtracted. The data clearly shows better agreement
to a pink 1/ f thermal noise model (red dashed trace) representing structural damping compared to a white
viscous damping model (orange dashed trace). (b) Intrinsic loss angle versus frequency inferred from the the
low-frequency displacement spectrum (blue trace), spectrum without extraneous noise subtraction (light blue
dashed trace) and quality factor measurements of higher-order flexural modes (green data points). Also shown are
the predictions for the loss angle from the viscous (orange) and structural damping model (red). All measurements
were taken with sample AE/L2/B1/34.

that are limited by internal losses and (b) of being capable of resolving the thermal motion far

below resonance.

Our recent results indeed indicate that the viscous damping model does not seem to agree

with the measurement, as seen in the low-frequency part of fig. 3.13 which was fitted using a

structural damping model (eq. (3.4.1)). This suggests that the nanomechanical oscillator in

our system is in fact limited by internal losses, characterized by the actual material loss angle

for the nanobeams φ(Ω) =φ=Q−1
m which is frequency-independent.

The results of our measurements are shown in fig. 3.14a. For this measurement, we utilized a

nanobeam with mechanical resonance frequency at Ωm = 2π ·3.4 MHz and intrinsic dissipa-
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tion rate Γm = 2π ·15 Hz. When attempting to fit both, a viscous damping model (indicating a

dominating extrinsic damping) and a structural damping model (dissipation purely intrinsic)

to the measured spectrum, especially the low frequency part, down to two decades below the

resonance frequency of the fundamental mode, appears in better agreement to the structural

damping model. The extraneous noise from the disk (thermorefractive noise [183, 184]) was

estimated by measuring the frequency noise spectrum of a bare microdisk resonator without

mechanical oscillator in its evanescent field.

From the fit to the measured data, we infer the material loss angle φ≈ 4.5 ·10−6, almost two

orders of magnitude lower than values for bulk silicon [164]. We attribute this to ”loss dilution"

due to the high stress in our nanobeam samples. Taking this into account, we infer an intrinsic

loss angle in the absence of stress of φ0 ≈ 3 ·10−4. This value is remarkably stable between

frequencies of 50 kHz and 50 MHz and changes by less then a factor of two, as shown in

fig. 3.14b. Our inferred value for φ0 is in good agreement with a recent survey of stressed Si3N4

films [164].

Our result shows that white thermal noise is not applicable to silicon nitride nanobeam res-

onators in case they are limited by internal losses. The viscous damping model underestimates

the low-frequency part of the displacement spectrum which can have significant impact on

broadband measurements in the quantum regime as the increased noise at low frequencies

constitutes an even higher hurdle when attempting to perform quantum-enhanced force

sensing [79] or squeezed light generation [185, 186] with an optomechanical system.

3.6 Conclusion

Building on earlier strategies of integrating a high-stress, Si3N4 nanobeam within the evanes-

cent near-field of a SiO2 microdisk [135, 158], a refined fabrication technique now preserves

the high Q/(mode volume) ratio of the optical resonator while enabling the beam and the

disk to be separated by a vacuum gap of as small as 10-100 nm – significantly smaller than the

evanescent decay length of the optical mode. Samples of various dimensions were fabricated

and characterized. Simultaneously low mechanical loss, Γm = 2π · (10−100) Hz, low optical

loss, κ= 2π·(100−1000) MHz, and large optomechanical coupling rates, g0 = 2π·(10−100) kHz,

were measured, corresponding to room temperature single-photon cooperativities as high as

C0 ≡ 4g 2
0 /Γmκ= 2.

The engineered system holds particular promise as a quantum-limited displacement sen-

sor even at room temperature, owing to the large vacuum displacement of the nanobeam

and the high power handling capacity of the microdisk. For a typical device, possessing

{Ωm,Γm,κ0, g0} ≈ 2π · {4.5 MHz,15 Hz,500 MHz,50 kHz}, the resonant vacuum displacement

noise, Szp
ω (Ωm) = 4g 2

0 /Γm ≈ (2π · 26 kHz/
�

Hz)2, is orders of magnitude larger than major

sources of imprecision, such as laser frequency and thermorefractive noise [159], and com-

mensurate with shot noise for an ultra-low intracavity photon number of nc = 1/(16C0) = 0.05.

Operating a similar device at 4 K with nc ∼ 105 (corresponding to Pin ∼ 100 μW when critically

74



3.6. Conclusion

10 μm

Figure 3.15 – Tethered beam design. Suspending the nanobeam from tethers enables higher g0 by reducing the
mass without changing optomechanical mode overlap. In this example, the central beam coincides with the
effective sampling length of the optical mode.

coupled to the fiber waveguide), a displacement imprecision 43 dB below Szp
ω was recently

demonstrated, while maintaining an imprecision-back-action product within a factor of 5 of

the uncertainty limit [73].

An intriguing question is whether the reported device may be used to realize Heisenberg-

limited displacement measurements at room temperature – namely, an apparent imprecision-

back-action product
√

(nba +nth) ·nimp → 1/4 (see section 3.4). For the radio frequency

oscillators under study (nth ∼ 106), the main challenges are (1) pumping the cavity with

nc ≥ nth/C0 ∼ 106 photons in order to achieve the necessary measurement strength (charac-

terized by a phonon-equivalent RPSN of nba =C0nc ≥ nth), (2) reducing extraneous sources of

measurement imprecision to Szp
ω /nth < (2π·10 Hz/

�
Hz)2, and (3) reducing extraneous heating

to ensure that nba is dominated by RPSN. Because of the (blue-stable) thermal self-locking

effect in room temperature SiO2 microresonators [187], the first requirement (corresponding

to an input power of Pin ∼ 1 mW for critically coupling with κ ∼ 1 GHz) is expected to be

limited by parametric radiation pressure instabilities, requiring active feedback damping.

Taking a different approach, cross-correlation techniques may be employed to detect radia-

tion pressure shot noise at the few-% level [58], significantly relaxing associated demands on

input power and active stabilization (see main results presented in chapter 4). The second

requirement – for microdisks with dimensions studied here – is expected to be limited by

thermorefractive noise at the level of Strn
ω ∼ (2π ·10 Hz/

�
Hz)2 [159], an impressive 60 dB lower

than Szp
ω . Reaching Strn

ω < Szp
ω /nth would require a moderate increase in g 2

0 ·Qm (for instance,

by using lower-mass, “tethered" beams [59]; see fig. 3.15). The third requirement depends
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Chapter 3. High-cooperativity near-field optomechanical transducer

on the details of the nanoscale heat transfer process. At 4 K, we have observed photothermal

heating consistent with an extraneous cooperativity of C ext
0 ≡ next

ba /nc ∼ 1 [73]; we anticipate

this heating to reduce to tenable levels (C ext
0 <C0) at room temperature, provided that the un-

derlying process is related to the temperature-dependent thermal conductivity of amorphous

glass [188]. Preliminary room temperature measurements, discussed in section 3.4, suggest

that C ext
0 ∼C0 can be met for a moderate C0 ∼ 0.8.

Furthermore, while the engineering of the device has been focused on achieving a quantum

noise limited displacement sensor, possible applications of the presented architecture would

be their utilization as mass/force/charge sensors [189]. To this end, the practical utility of

the reported high-cooperativity evanescent sensing platform lies in the ability to resolve

thermal motion with high signal-to-noise and a large bandwidth, which is in contrast to

MEMS sensors where the thermal motion is typically masked by Johnson noise. For the

nanobeam displacement measurements shown in fig. 3.13, thermal noise is resolved over a

bandwidth of ∼ MHz at the level of 4kBTΓmm ∼ (100aN/
�

Hz)2 employing ∼ 10μW of injected

optical power. Notably, a moderate reduction in extraneous imprecision would enable thermal

noise to be resolved over a full octave, a difficult challenge for high-Q resonators as it requires

resolving the thermal peak with a signal-to-noise of ∼Q2 (eq. (3.4.1)).
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4 Quantum correlations of light at
room temperature

The radiation pressure interaction of light with mechanical oscillators has been the subject of

intense theoretical research in the gravitational wave community [18, 22, 190], leading, for ex-

ample, to an understanding of the quantum limits of interferometric position measurements.

An important insight that could potentially help evade this limit is that the two noise sources

that enforce it – quantum (measurement) back-action and imprecision – are in general corre-

lated [191]. From the perspective of the light in the interferometer, quantum fluctuations in

its amplitude quadrature drive the oscillator leading to quantum back-action, and the driven

motion is imprinted onto the phase quadrature. Ultimately, this leads to correlations between

the quantum fluctuations of the amplitude and phase quadratures, i.e. quantum correlations.

Correlations thus established form a valuable resource: the optomechanical system may be

viewed as an effective Kerr medium generating squeezed states of the optical field [185, 186],

or the correlations can be directly employed for back-action cancellation [79, 83, 192, 193].

Indeed, the ability to utilize quantum correlations generated in-situ is conceptually identical

to injection of squeezed light [83], while circumventing the challenge of realizing a near-unity

coupling efficiency between the squeezed light source and the interferometer [81]. The burden

of quantum efficiency in this case is shifted to the detector, a problem that is largely solved

[194]. Thus, a room-temperature interferometer capable of harnessing in-situ correlations

is a platform that may help extend the practical reach of quantum optics, with applications

ranging from gravitational wave detection to chip-scale accelerometry.

In practice, owing to the weakness of the radiation pressure force, optomechanical quantum

correlations are typically obscured by thermal motion. Only in recent years has this challenge

been broached, by the development of cavity optomechanical systems [25], which combine

an engineered high Q, cryogenically-cooled micromechanical oscillator with a high finesse

optical (or microwave) cavity. In such systems, it is possible to realize a regime in which the

motion of the oscillator is dominated – or nearly so – by quantum back-action [73–75]. This

has enabled studies of various effects related to optomechanical quantum correlations, such

as ponderomotive squeezing [60, 61, 148, 150, 195] and motional sideband asymmetry (using

autonomous [196–199] or measurement-based [150] feedback to cool the mechanical oscilla-
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tor). Accessing this regime at room-temperature is difficult as the optical powers necessary to

overwhelm thermal forces with back-action are typically accompanied by dynamic instabilities

[200]. Various cross-correlation techniques have been proposed to relax these requirements

and allow observation of quantum correlations near mechanical resonance [201, 202]. In a

recent demonstration [67], such a technique was used in the regime of large measurement

imprecision to unearth quantum correlations from beneath 60 dB of thermal noise. How-

ever, the generation of broadband quantum-noise-induced optomechanical correlations,

that could simultaneously ameliorate the limits posed by imprecision and back-action on

room-temperature interferometers [79, 83, 192, 203, 204], remains an outstanding challenge.

This chapter presents the first observation of broadband quantum correlations at room tem-

perature, developed in an optical field after interacting with a nanomechanical oscillator [205].

To this end, we utilize an optomechanical system specifically engineered to demonstrate

the effects of quantum back-action as described in the previous part of this thesis, and take

advantage of its high-cooperativity near-field coupling to an optical microcavity [160].

4.1 Theoretical background

The following section presents the theoretical calculation of quantum correlations of light

caused by a mechanical oscillator (section 4.1.1). Section 4.1.2 defines the asymmetry ratio, a

useful quantity to evaluate the magnitude of the generated correlations. Finally, section 4.1.3

describes how these correlations can be taken advantage of in order to achieve quantum-

enhanced force sensitivity.

4.1.1 Theoretical model for optomechanically induced quantum correlations

We start by considering an optomechanical system consisting of an optical cavity, whose intra-

cavity field is described by the amplitude a(t ), dispersively coupled to a mechanical oscillator

of effective mass m, whose position is described by x(t). Following standard linearization

procedure [25], as already covered in chapter 2, the fluctuations in either variable, denoted δa

and δx respectively, satisfy the equations of motion,

δȧ =
(
iΔ− κ

2

)
δa + iGāδx +�

ηcκδsin +
√

(1−ηc)κδsvac (4.1.1)

m
(
δẍ +Γmδẋ +Ω2

mδx
)= δFth +�Gā(δa +δa†). (4.1.2)

Following the notations already established earlier, δFth is the thermal force noise with spec-

tral density, S̄th
F F ≈ 2mΓmkB T , and G is the cavity frequency pull parameter (the dispersive

optomechanical coupling strength). The noise variables δain and δa0 describe the fluctua-

tions in the cavity input at the coupling port and the port modeling internal losses. The cavity

coupling efficiency, ηc =κex/κ, describes the relative strength of the external coupling port.
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4.1. Theoretical background

The steady state intracavity photon number, nc = ā2 is given by,

nc = 4ηc

κ

Pin/�ωL

1+4Δ2/κ2 , (4.1.3)

where Pin is the injected probe power at optical frequency ωL.

In the frequency domain, mechanical motion is described by susceptibility to the applied

force F [Ω],

δx[Ω] =χx [Ω]F [Ω] = 1

m(Ω2
m −Ω2 − iΩΓm[Ω])

F [Ω], (4.1.4)

where Γm[Ω] is the frequency-dependent damping rate generalizing the velocity-proportional

dissipation model in eq. (4.1.1). For the out-of-plane flexural modes of a Si3N4 nanostring, this

rate is given as, Γm[Ω] ≈ΩmΓm/Ω [179], where Γm without argument denotes the intrinsic

linewidth of the oscillator’s mechanical resonance.

For the following it is convenient to introduce the normalized position, δz := δx/xZPF, the

single- and multi-photon optomechanical coupling rates, g0 := GxZPF and g := g0
�

nc, as

well as the single- and multi-photon cooperativities, C0 := 4g 2
0 /κΓm and C :=C0nc into the

formalism (cf. chapter 2). xZPF =
√
�/2mΩm is the zero-point variance in the position of the

mechanical oscillator.

In the experimentally relevant situation of resonant probing (Δ ≈ 0) and bad cavity limit

(Ωm 
κ), the equation of motion for the cavity field in eq. (4.1.1) assumes the form,

δa[Ω] ≈ 2i g

κ
δz[Ω]+ 2�

κ

(�
ηcδsin[Ω]+√

1−ηcδsvac[Ω]
)

.

Using the input-output relation [106], δsout = δsin −�
ηcκδa, the transmitted fluctuations,

δsout[Ω] = (1−2ηc)δsin[Ω]−2
√

ηc(1−ηc)δsvac[Ω]− i
√

ηcCΓmδz[Ω], (4.1.5)

carry information regarding the total mechanical motion δz, consisting of the thermal motion

and the quantum back-action driven motion, i.e.,

δz[Ω] = δzth[Ω]+δzBA[Ω].

Here and henceforth, we define the quadratures of the optical field δa,

δq(t ) = 1�
2

(
δa(t )+δa†(t )

)
, δp(t ) = 1

i
�

2

(
δa(t )−δa†(t )

)
. (4.1.6)

The back-action motion is given by,

δzBA[Ω] =
√

2CΓmχz [Ω]
(�

ηcδqin[Ω]+√
1−ηcδqvac[Ω]

)
, (4.1.7)

where δqin and δq0 are the amplitude quadrature fluctuations from the two cavity input ports
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Chapter 4. Quantum correlations of light at room temperature

and χz [Ω] = �χx [Ω]/x2
ZPF is the oscillator susceptibility in new units,

χz [Ω] = 2Ωm

Ω2
m −Ω2 − iΩΓm[Ω]

≈ 1

(Ωm −Ω)− iΓm/2
, (4.1.8)

where the approximation is valid close to the mechanical resonance, i.e. for |Ωm −Ω|�Ωm.

Inserting eq. (4.1.7) in eq. (4.1.5), the two quadratures of the cavity transmission are,

δqout[Ω] =(1−2ηc)δqin[Ω]−2
√
ηc(1−ηc)δq0[Ω]

δpout[Ω] =(1−2ηc)δpin[Ω]−2
√

ηc(1−ηc)δp0[Ω] (4.1.9)

−√
2ηcCΓm

[
δzth[Ω]+

√
2CΓmχz [Ω]

(√
2ηcδqin[Ω]+√

2(1−ηc)δq0[Ω]
)]

.

For a general quadrature at angle θ, defined by,

δqθ
out[Ω] ≡ δqout[Ω]cosθ+δpout[Ω]sinθ, (4.1.10)

it follows that, 〈
δqθ

out[Ω]δqθ
out[−Ω]

〉
=cos2θ

〈
δqout[Ω]δqout[−Ω]

〉
(4.1.11)

+ sin2θ
〈
δpout[Ω]δpout[−Ω]

〉
+ sin(2θ)Re

〈
δqout[Ω]δpout[−Ω]

〉
.

The homodyne photocurrent spectrum is related to this correlator via,

S̄θ
I I [Ω] ·2πδ[0] ∝ S̄θ,out

qq [Ω] ·2πδ[0] = 1

2

〈
{δqθ

out[Ω],δqθ
out[−Ω]}

〉
,

i.e., S̄θ
I I [Ω] = cos2θ S̄out

qq [Ω]+ sin2θ S̄out
pp [Ω]+ sin(2θ) S̄out

pq [Ω].
(4.1.12)

The relevant spectra of the output field quadratures is explicitly given by,

S̄out
qq [Ω] = 1

2 , (4.1.13)

S̄out
pp [Ω] = 1

2 +2ηcCΓm

(
S̄th

zz [Ω]+ S̄BA
zz [Ω]

)
, (4.1.14)

S̄out
pq [Ω] = ηcCΓmReχz [Ω]. (4.1.15)

For a detection near the amplitude quadrature (θ ≈ 0) where the signal due to the thermal mo-

tion is strongly suppressed, the asymmetric contribution (third term in eq. (4.1.12)) becomes

significant. Figure 4.1 shows the total expected signal leading to a distorted Lorentzian line

shape. The correlations can in principle even cause a back-action cancellation of the total

signal below the shot noise level, a phenomenon called ponderomotive squeezing [185].

Inserting the above expressions in eq. (4.1.12), we arrive at the homodyne photocurrent

spectrum (normalized to electronic shot noise and omitting the negligible contribution from
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Figure 4.1 – Model of the homodyne photocurrent spectrum. For detection near the amplitude quadrature
(θ ≈ 0), the measured signal S̄θ

I I [Ω] (red trace) has a symmetric part S̄out
pp [Ω] (blue trace) due to physical motion,

composed of thermal (S̄th
zz [Ω]) and back-action motion (S̄BA

zz [Ω]), and an asymmetric part S̄out
pq [Ω] (green) due

to quantum correlations (see eq. (4.1.12)). Note that the zero-point motion (contribution 1/2) is subtracted for
S̄out

pp [Ω].

detector electronic noise),

S̄θ
I I [Ω] = 1+4ηCΓm

(
S̄zz [Ω]sin2θ+ 1

2
sin(2θ)Reχz [Ω]

)
, (4.1.16)

with the detection efficiency η. Note that henceforth, photocurrent spectra are implicitly

normalized to shot noise. Using the fluctuation-dissipation theorem [142] to relate the thermal

and back-action force noise to mean phonon occupations nth and nQBA respectively, the

spectral density of the total motion,

S̄zz [Ω] = ∣∣χz [Ω]
∣∣2 (Γm[Ω]nth +ΓmnQBA

)
, (4.1.17)

where, nth = kB T /�Ωm 
 1 is the average thermal occupation, and, nQBA = C = C0nc is the

average occupation due to (quantum) back-action arising from vacuum fluctuations in the

input amplitude quadrature.

4.1.2 Analysis of the correlation magnitude

In the regime when nQBA � nth, as it is the case at ambient temperature, the correlation term

in the eq. (4.1.16) is small compared to shot noise and thermomechanical noise 4ηCΓmS̄zz .

Therefore, in order to visualize the correlations we consider R(θ,δ), the ratio of the homodyne

spectral densities symmetrically detuned to the high and low frequencies from the mechanical

resonance,

R(θ,δ) = S̄θ
I I [Ωm +δ]

S̄θ
I I [Ωm −δ]

. (4.1.18)
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In the limit of δ�Ωm, the thermomechanical motion spectrum S̄zz [Ω] is symmetric about

Ωm and Reχz [Ω] is antisymmetric, so R(θ,δ) only deviates from 1 due to the correlation term,

R(θ,δ)|δ�Ωm ≈ 1+ 4ηCΓm sin(2θ)

1+4ηCΓmS̄zz [Ωm +δ]sin2θ
Reχz [Ωm +δ]. (4.1.19)

Maximization/minimization of R given by the eq. (4.1.19) over θ yields

ΔR(δ) = max
θ

R(θ,δ)−min
θ

R(θ,δ)

= 2
4ηCΓmReχz [Ωm +δ]√
1+4ηCΓmS̄zz [Ωm +δ]

≈ 4
ηC /nth√

(δ/2Γmnth)2 +ηC /nth

≈ 4

√
ηC

nth
= 4

√
η

nQBA

nth
if Γm � δ� 2Γm

√
ηC nth.

(4.1.20)

Considering broad frequency ranges, however, one has to account for the deviation of χx (and

therefore also of χz ) from a single-pole Lorentzian and for the thermal force noise not being

perfectly white. Up to the 1-st order in (S̄zz [Ωm +δ]− S̄zz [Ωm −δ]) the approximation in this

case is given as,

R(θ,δ) ≈ 1+ 4ηCΓm

1+4ηCΓmS̄zz [Ωm +δ]sin2θ

(
sin(2θ)Reχz [Ωm +δ]

+1

2
sin2θ(S̄zz [Ωm +δ]− S̄zz [Ωm −δ])

)
.

(4.1.21)

In the approximation of eq. (4.1.19), Rθ−1 is antisymmetric in the quadrature angle θ, with its

magnitude being proportional to
√

ηnQBA/nth. For δ further from the mechanical resonance,

the antisymmetric part of Rθ−1 still has the same meaning, but it becomes superimposed

with a classical contribution symmetric in θ.

4.1.3 Quantum-enhanced force sensitivity

We consider now the problem of estimating an arbitrary force, δF , acting on the mechanical

oscillator. The homodyne photocurrent spectrum carries information about the force. From

eq. (4.1.12) follows,

S̄θ
I I [Ω] = 1+4ηCΓm

[∣∣χx [Ω]
∣∣2 (S̄F F [Ω]+ S̄QBA

F F [Ω]
)

sin2θ+ 1

2
sin(2θ)Reχx [Ω]

]
. (4.1.22)

The spectrum of the force, S̄F F [Ω], can be estimated from the photocurrent spectrum via,

S̄est,θ
F F [Ω] ≡ S̄θ

I I [Ω]

4ηCΓm
∣∣χx [Ω]

∣∣2 sin2θ
. (4.1.23)
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The spectrum of this force estimator takes the form,

S̄est,θ
F F [Ω] = S̄F F [Ω]+ S̄QBA

F F [Ω]+ 1

4ηCΓm
∣∣χx [Ω]

∣∣2 sin2θ︸ ︷︷ ︸
S̄imp,θ

F F

+cotθ
Reχx [Ω]∣∣χx [Ω]

∣∣2 . (4.1.24)

Here, the first term represents the spectral density to be estimated. The second term, positive

at all frequencies, is the contamination in the measurement record due to quantum back-

action. The third term, also positive, is the imprecision due to shot-noise in the detection.

The last term is due to quantum correlations between the back-action and imprecision in

homodyne measurement record that can be negative at some frequencies, providing for

reduced uncertainty in the ability to estimate the force.

Note that precisely on resonance (Ω=Ωm), and/or, for phase quadrature homodyne measure-

ment (θ =π/2), correlations do not contribute to the estimator; so any reduction in uncertainty

can only be expected away from resonance for quadrature-detuned homodyne measurement.

For a fixed probe strength, i.e. fixed cooperativity C , there exists a frequency dependent

homodyne phase at which the correlation and the imprecision S̄imp,θ
F F achieve an optimal

trade-off. This optimal angle θopt[Ω] is determined by,

cotθopt[Ω] =−2ηCΓmReχx [Ω]

= 4ηC
ΩmΓm(Ω2 −Ω2

m)

(Ω2 −Ω2
m)2 + (ΩΓm[Ω])2

.
(4.1.25)

At this optimal angle, the spectrum of the force estimator takes the form,

S̄
est,θopt

F F [Ω] = S̄F F [Ω]+ S̄QBA
F F [Ω]+ 1

4ηCΓm
∣∣χx [Ω]

∣∣2 −ηCΓm

(
Reχx [Ω]∣∣χx [Ω]

∣∣
)2

. (4.1.26)

Noting that the third term is simply S̄imp,π/2
F F , and that S̄QBA

F F [Ω] =CΓm, this equation can be

re-expressed in the suggestive form,

S̄
est,θopt

F F [Ω] = S̄F F [Ω]+ S̄imp,π/2
F F [Ω]+ S̄QBA

F F [Ω]

[
1−η

(
Reχx [Ω]∣∣χx [Ω]

∣∣
)2]

. (4.1.27)

Thus, at the optimal detection angle, quantum correlations conspire to cancel quantum back-

action (in the measurement record) and reduce the error in the force estimation compared to

the conventional choice θ =π/2, for which correlations are absent and

S̄est,π/2
F F [Ω] = S̄F F + S̄imp,π/2

F F [Ω]+ S̄QBA
F F [Ω]. (4.1.28)
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Correlation enhanced thermal force sensing

In the case of an oscillator in thermal equilibrium quantum correlations can yield improved

sensitivity in the detection of the thermal force. In such a case the signal is the thermal

force noise, i.e. S̄F F = S̄th
F F . Assuming that the recorded periodogram of the photocurrent has

converged to the theoretical power spectrum, the homodyne angle dependent uncertainty in

the spectral estimation of the thermal force may be defined by,

εθ[Ω] ≡ S̄est,θ
F F [Ω]− S̄th

F F [Ω]. (4.1.29)

If we consider the ratio of uncertainties for the phase quadrature measurement (θ =π/2) and

for the measurement at a detuned detuned quadrature θ,

ξθ[Ω] = επ/2[Ω]

εθ[Ω]
= S̄imp,π/2

F F [Ω]+ S̄QBA
F F [Ω]

S̄imp,π/2
F F [Ω]

sin2 θ
+cotθ Reχx [Ω]

|χx [Ω]|2 + S̄QBA
F F [Ω]

, (4.1.30)

the sensitivity enhancement due to back-action cancellation takes place when ξθ > 1 for θ

such that
S̄imp,π/2

F F [Ω]

sin2 θ
+cotθ Reχx [Ω]

|χx [Ω]|2 < S̄imp,π/2
F F [Ω] < S̄imp,π/2

F F [Ω].

The enhancement in sensitivity attained for measurement at the frequency-dependent op-

timal quadrature θopt, compared to the conventional measurement on phase quadrature, is

quantified by,

ξθ[Ω] = επ/2[Ω]

εθopt [Ω]
= S̄imp,π/2

F F [Ω]+ S̄QBA
F F [Ω]

S̄imp,π/2
F F [Ω]+ S̄QBA

F F [Ω]
[

1−η
(
Reχx [Ω]/

∣∣χx [Ω]
∣∣)2

] ≈
[

1−η

(
Reχx [Ω]∣∣χx [Ω]

∣∣
)2]−1

,

(4.1.31)

where the last approximation is valid when S̄QBA
F F [Ω] 
 S̄imp,π/2

F F [Ω], i.e. in the limit of large co-

operativity C 
 1 and for frequency offsets around the mechanical resonance |Ω−Ωm|/Γm �
2
�
ηC . In this regime ξθ > 1 and quantum-enhanced force sensitivity can be realized, with

the enhancement factor being limited by the finite detection efficiency η and the imaginary

part of the mechanical susceptibility. The back-estimated factors ξθ[Ω] for the parameters

of our experiment are shown at the Figure 4.2 and demonstrate thermal force sensitivity

enhancement up to 25%.

The ability to better estimate the thermal force over a broad range of frequencies may open up

opportunities for probing the structure of the weak thermal environment that the oscillator is

coupled to.

Correlation enhanced external force sensing

If an optomechancial system is used for external incoherent force detection, the thermal force

itself becomes a part of the noise background. We now consider the sensitivity enhancement
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Figure 4.2 – Theoretical quantum-enhanced sensitivity to thermal force: Quantum-enhanced sensitivity to
thermal force for the parameters realized in the current experiment, assuming input power = 25μW. Plot shows
the enhancement factor ξθ[Ω], defined in eq. (4.1.30) and eq. (4.1.31), as a function of Fourier frequency and
homodyne angle θ. The dashed black line corresponds to ξπ/2[Ω], where force is estimated by phase quadrature
detection, where back-action-imprecision correlations are absent. As the homodyne angle is detuned from
phase quadrature, enhancement of up to 25% can be observed, limited by the detection efficiency of similar
magnitude. The yellow curve shows the theoretically ideal detection scheme, where the homodyne angle is
frequency dependent (eq. (4.1.25)), so that broadband enhancement is realized.

in such a case, i.e. S̄F F = S̄ext
F F + S̄th

F F , and the error is,

εθ[Ω] ≡ S̄est
F F [Ω]− S̄ext

F F [Ω]. (4.1.32)

The corresponding expression for the sensitivity enhancement,

ξext[Ω] = επ/2[Ω]

εθopt [Ω]
= S̄imp,π/2

F F [Ω]+ S̄th
F F [Ω]+ S̄QBA

F F [Ω]

S̄imp,π/2
F F [Ω]+ S̄th

F F [Ω]+ S̄QBA
F F [Ω]

[
1−η

(
Reχx [Ω]/

∣∣χx [Ω]
∣∣)2

] , (4.1.33)

indicates an additional constraint to be met due to the presence of the thermal force – the

quantum back-action force needs to be comparable to the thermal force.

For room temperature experiments to date, the regime nQBA/nth � 1 (with nth 
 1) has been

relevant, so, again for the case S̄QBA
F F 
 S̄imp,π/2

F F ,

ξext[Ω] ≈ 1+η
nQBA

nth

(
Reχx [Ω]∣∣χx [Ω]

∣∣
)2

, (4.1.34)

and quantum-enhanced sensitivity to external force can be realized far off resonance, if QBA

is significant compared to thermal noise.

In future experiments, where nQBA/nth 
 1 may be achieved, the improvement for external

force sensitivity scales as,

ξext[Ω] ≈ 1

1−η(Reχx /
∣∣χx

∣∣)2

[
1−O

(
nth

nQBA

)]
, (4.1.35)

85



Chapter 4. Quantum correlations of light at room temperature

300 K, 10-7 mbar

Spectrum analyzer
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θ

p
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p
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Figure 4.3 – Optomechanical quantum correlations. (A) Schematic of the experiment: The optomechanical
system is formed by a Si3N4 nanobeam oscillator (red) evanescently coupled to a SiO2 microdisk cavity (blue).
Both are maintained at room temperature (T ≈ 300K) in a low pressure (≈ 10−7 mbar) vacuum chamber. The cavity
is probed on resonance with 780 nm light from a Ti:Sa laser. The transmitted field is read out with a homodyne
detector with variable local oscillator phase θ. Amplitude and phase fluctuations of the light field are correlated
after passing through the cavity; here represented as squashing in a phase space cartoon.

so that arbitrarily large enhancement may be realized far off resonance, limited by the detec-

tion efficiency.

4.2 Experimental results

This section presents the results of the observation of quantum correlations of light gener-

ated by reflection from a room temperature nanomechanical oscillator coupled to a high

finesse broadband optical microcavity and discusses how to use these correlations to realize a

quantum-enhanced mechanical force sensor. To this end, the large bandwidth of the cavity

and the exceptionally high Q/mass of the oscillator allows us to operate in a novel regime

where the magnitude of quantum correlations is comparable to both sources of quantum

noise – imprecision and back-action – at Fourier frequencies detuned as much as an octave

from mechanical resonance. In a suitably chosen field quadrature, correlations manifest

as a reduction or enhancement in the fluctuation spectrum at Fourier frequencies detuned

from mechanical resonance. Though the fluctuations are contaminated by thermal noise

and do not drop below the vacuum level – the condition for ponderomotive squeezing – their

reduction provides a metrological advantage, since its origin is a coherent cancellation of

quantum noises. Counter-intuitively, as a result of this coherence, we observe a 10% noise

reduction despite the fact that back-action is 20 dB smaller, in equivalent phonon units (nQBA),

than thermal noise (nth ≈ kB T /�Ωm ≈ 106). Indeed, at optimal Fourier frequencies, the frac-

tional noise reduction scales as
√

nQBA/nth, distinguishing it from classical noise correlations,

and enabling an enhanced estimate of the quantum back-action force relative to standard

‘calorimetric’ measurements [73–75]. Finally, we demonstrate how quantum correlations can

be used to improve the signal-to-noise ratio for the estimation of an off-resonant force.
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4.2.1 Concept of the experiment

Accessing the above physics requires the ability to resolve back-action-driven motion far

from mechanical resonance, a regime traditionally studied for gravitational wave detectors,

but only recently accessed experimentally, using high-cooperativity cryogenic micro-cavity

optomechanical systems operating deep in the so-called bad cavity limit [73, 150]. Our system

was optimized for achieving this regime at room temperature and is detailed in chapter 3.

As illustrated in fig. 4.3, it consists of a Si3N4 nanomechanical beam coupled dispersively to

a whispering gallery mode of a silica microdisk. The beam has an exceptionally high room

temperature Q/mass factor due to its high stress and quasi-1D geometry. To enhance its

optomechanical coupling, it is suspended ≈ 50 nm from the surface of the disk and profiled

to increase its overlap with the optical mode (see section 4.3.1). This results in a vacuum

optomechanical coupling rate of g0 ≈ 2π ·60 kHz for the fundamental, Ωm = 2π ·3.4 MHz

flexural beam mode – a three-fold increase over previous implementations of the device

[73, 150]. In conjunction with the high room temperature mechanical quality factor, Qm ≈
3 ·105 (giving a damping rate of Γm =Ωm/Qm ≈ 2π ·12 Hz), and a critically coupled cavity

decay rate of κ≈ 2π ·4.5 GHz, a near-unity single photon cooperativity of C0 = 4g 2
0 /κΓm ≈ 0.27

is attained. Importantly, the system operates in the broadband regime (bad-cavity limit), i.e.

κ
Ωm.

In the experiment, as illustrated in the scheme in fig. 4.3, the optomechanical device is placed

in a high-vacuum chamber and probed on resonance using a Ti:Sa laser. As in detail shown

in section 4.1.1, the motion of the oscillator, characterized by the Fourier transform of its

displacement fluctuation δx[Ω], is imprinted on the transmitted phase quadrature as,

δpout[Ω] =−δpin[Ω]+
√

2CΓm
δx[Ω]

xzp
, (4.2.1)

where pin is the phase quadrature of the input field, xzp =
√
�/2mΩm is the zero-point motion

of the oscillator, and C =C0nc is the multi-photon cooperativity for the mean intracavity pho-

ton number nc . The displacement has components from the ambient thermal environment,

and quantum back-action,

δx[Ω] = δxth[Ω]+δxQBA[Ω] (4.2.2)

The thermal motion,

δxth[Ω] = 2xzpχ[Ω]
√

(nth + 1
2 )/Γmδξ[Ω], (4.2.3)

is due to a Langevin force of intensity proportional to the average thermal occupation nth, and

fluctuating as a white noise δξ, characterized by,

〈δξ(t )δξ(t ′)〉 = δ(t − t ′). (4.2.4)

The force fluctuations are transduced into displacement fluctuations via the dimensionless

87



Chapter 4. Quantum correlations of light at room temperature

susceptibility of the oscillator,

χ[Ω] ≡ ΩmΓm

Ω2
m −Ω2 − iΩΓm

=χx [Ω]mΩmΓm, (4.2.5)

where χx is the conventional susceptibility. The back-action driven motion,

δxQBA[Ω] = 2xzpχ[Ω]
√

2nQBA/Γmδqin[Ω], (4.2.6)

arises from quantum fluctuations in the amplitude quadrature of the input field, δqin, charac-

terized by,

〈δqin(t )δqin(t ′)〉 = 1

2
δ(t − t ′), (4.2.7)

and leads to an additional phonon occupation, nQBA = C . Note that here, we adopt the

definition, δqin = (δain +δa†
in)/

�
2, for the amplitude quadrature. This, in conjunction with

the conventional correlator for the photon flux 〈δa†
in(t)δain(t ′)〉 = δ(t − t ′), gives a factor of

1/2 in the correlator for the amplitude quadrature.

Because δqin is written onto the output optical phase vis-a-vis back-action, the amplitude

and phase quantum fluctuations of the output field are correlated. The magnitude of these

quantum correlations is characterized by the symmetrized cross-correlation spectrum (see sec-

tion 4.1.1),

S̄out
pq [Ω] ≡

∫
〈1

2 {δpout(t ),δqout(0)}〉eiΩt d t

= 2ηnQBA Reχ[Ω],
(4.2.8)

which is proportional to the back-action occupation, and the overall detection efficiency η.

The correlation changes sign across the mechanical resonance frequency because of the 180◦

phase change in the response of the oscillator to the quantum back-action force.

Phase-amplitude correlations can be experimentally accessed by measuring a linear super-

position of both the amplitude and phase of the transmitted field. Proper choice of the

superposition, exemplified by a homodyne detector, allows for a quantum-limited measure-

ment of both quadratures. Specifically, the transmitted field is interfered at a beam-splitter

with a strong local oscillator field at a fixed phase offset θ, followed by balanced detection of

the two output of the beam-splitter. In this case, the photocurrent Iθ, is proportional to the ro-

tated field quadrature, δqθ = δq cosθ+δp sinθ. Its spectrum therefore contains contributions

due to amplitude/phase vacuum noise, oscillator motion, and quantum correlations,

S̄θ
I I [Ω] ∝ cos2θ S̄out

qq [Ω]+ sin2θ S̄out
pp [Ω]+ sin(2θ) S̄out

pq [Ω], (4.2.9)
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where,

S̄out
qq [Ω] = 1

2 , (4.2.10)

S̄out
pp [Ω] = 1

2 +8ηC
∣∣χ[Ω]

∣∣2 (ntot + 1
2 ), (4.2.11)

are, respectively, the transmitted amplitude quadrature spectrum (containing a copy of the

incident vacuum fluctuations) and the transmitted phase quadrature spectrum (carrying in

addition, the total motion of the oscillator transduced via the optomechanical interaction).

Here, ntot = nth +nQBA is the phonon occupation of the oscillator due to the combined effect

of the thermal and back-action forces.

The homodyne photocurrent spectrum (in eq. (4.2.9)), expressed in terms of the mechanical

response,

S̄θ
I I [Ω] ∝ 1+16ηC

∣∣χ[Ω]
∣∣2 (ntot + 1

2

)
sin2θ+4ηC Reχ[Ω] sin2θ, (4.2.12)

consists of a measurement imprecision due to vacuum fluctuations of the detected quadrature,

a component due to the motion of the oscillator diminished by a sin2θ factor, and a compo-

nent due to correlations between the imprecision and the quantum back-action (∝ sin2θ).

By exploiting its different dependence on the homodyne angle and Fourier frequency, the

correlation term may be detected despite the large thermal motion of the oscillator at room-

temperature. Specifically, near the amplitude quadrature (θ = 0◦) and at Fourier frequencies

detuned from mechanical resonance (|Ω−Ωm|� Γm), the contribution of thermal and back-

action forces is suppressed relative to the correlation term. Closer inspection shows that a

necessary requirement for the correlation term to dominate eq. (4.2.12) is that the back-action

force dominates the thermal force: nQBA � nth.

The large thermal occupation of room temperature mechanical oscillators makes it technically

challenging to achieve nQBA > nth. Nevertheless, even when nQBA � nth, the signature of

quantum correlations can still be discerned in the homodyne photocurrent spectrum at

frequencies far detuned from mechanical resonance (alternate detection techniques have

been demonstrated [150, 197], and proposed [206], to detect back-action-induced quantum

correlations on mechanical resonance). To wit, for a detuning δ ≡ Ω−Ωm which is larger

than Γm, the homodyne photocurrent spectrum takes on a characteristic anti-symmetry with

respect to both δ and θ [201, 202]

S̄θ
I I [Ωm +δ]|δ|
Γm ≈ 1+4ηC

(
Γm

δ

)2

sin2θ

(
nth +nQBA − δ

Γm
cotθ

)
. (4.2.13)

Note that such an anti-symmetry can also arise from quantum correlations established by in-

jecting squeezed light into the optical cavity [207] (or indeed, classical correlations established

by injecting a laser field with classical amplitude fluctuations [123, 208]). Figure 4.1 shows

a model of the homodyne photocurrent spectrum for a quadrature close to the amplitude

(i.e., θ ≈ 0◦): the red trace represents the asymmetric spectrum observed at sufficiently large

optical powers and the blue and green traces represent contributions due to thermal motion
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Figure 4.4 – Asymmetry in homodyne spectrum. (a) Resonant magnitude of the photocurrent signal, S̄θ
I I [Ωm]

(normalized to shot-noise), as the homodyne angle, θ, is varied. Blue points are measurements. Red line is a
fit to eq. (4.2.12). 40 dB suppression of the signal is achieved on the amplitude quadrature, limited by residual
fluctuations in the homodyne angle (θRMS < 0.01rad). (b) Example spectra taken near the phase (green) and
amplitude (blue) quadratures. Also plotted is the background with the meter laser blocked (gray), dominated
by LO shot noise (detector electronic noise is 10 dB below shot noise). For all measurements, feedback is used
to stabilize the mechanical mode, as discussed in section 4.3.2. Note that the sharp peak at 3.5 MHz is due to
thermal motion of the fundamental in-plane beam mode. (c) Magnified image of the spectrum at two quadratures,
θ =±13◦, highlighted with vertical lines in (A) (blue = +13◦, yellow = −13◦). The ∼ 10% asymmetry between the
two spectra at Fourier frequency detuning away from mechanical resonance (Ωm ≈ 2π ·3.5MHz) arises due to
the quantum correlation term in eq. (4.2.12). Larger asymmetry is observed at Fourier frequencies further from
mechanical resonance, as predicted by eq. (4.2.13). The spectra are measured at an injected power of, Pin = 280μW.
The measurements in this figure were taken with sample AE/L2/B1/34.

and quantum correlations, respectively.

4.2.2 Observation of quantum correlations

In the following, we discuss homodyne measurements of a rotated quadrature of the field

transmitted through our room temperature nanobeam-microdisk optomechanical system,

with powers sufficient to resolve the asymmetry due to quantum correlations. In order to

mitigate optomechanical instabilities, active radiation pressure feedback is used to damp the

mechanical mode [73, 209]. For this purpose we employ an auxiliary 850 nm laser side-locked

to an independent cavity mode (see section 4.3.2). Cold-damping of this sort changes the

mechanical susceptibility within the feedback bandwidth (1 kHz in this instance); nevertheless,

the total decoherence rate, and the ratio nQBA/nth, remains unchanged. Figure 4.4a shows the

sensitivity of the homodyne interferometer as a function of the local oscillator phase θ. By

operating with a modest input power of 280μW, we measure thermal motion of the oscillator

with a phonon-equivalent imprecision, nimp = (16ηC )−1 ≈ 4 ·10−5, that is approximately 50 dB

below that at the SQL (corresponding to nimp = 1/4) while operating on phase quadrature
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(θ = 90◦). As the local oscillator phase is swept towards the amplitude quadrature (|θ|→ 0◦),

the apparent thermal motion is suppressed by about 40 dB. Figure 4.4b shows example

photocurrent spectra measured close to the phase (green) and amplitude (blue) quadratures;

the gray trace shows shot-noise of the homodyne detector, recorded by blocking the meter

field. Excess amplitude noise in the output field is measured to be ≈ 1% for the largest powers

used in our experiments (P ≈ 300μW), which we attribute to thermally driven fluctuations of

the tapered fiber.

In order to visualize the asymmetry in the photocurrent spectra as predicted by eq. (4.2.13),

we compare two spectra at homodyne angles symmetric about the amplitude quadrature,

indicated by the blue (at angle +θ) and yellow (at angle −θ) vertical lines in fig. 4.4a. The

corresponding spectra are shown in fig. 4.4c. An asymmetry of approximately 10% with respect

to Fourier frequency, is observed at a detuning δ� 2π ·1 kHz, consistent with the theoretically

predicted effect due to quantum correlations. Qualitatively, the observed asymmetry over a

broad range of frequencies – more than a MHz on either side of resonance – indicates that the

magnitude of quantum-noise-induced correlations is comparable to all sources of quantum

noise at these frequencies.

The asymmetry in the observed spectrum (red in fig. 4.4c) traces its root to the detuning

dependence of quantum correlations (green in fig. 4.1, and third term in eq. (4.2.13)). In

order to systematically investigate this asymmetry, we consider the ratio of the homodyne

photocurrents at frequency offsets at ±δ from mechanical resonance,

Rθ ≡
S̄θ

I I [Ωm +δ]

S̄θ
I I [Ωm −δ]

. (4.2.14)

Following eq. (4.2.13),

Rθ =
1+4ηC ntot(Γm sinθ/δ)2 (1− (δ/ntotΓm)cotθ)

1+4ηC ntot(Γm sinθ/δ)2 (1+ (δ/ntotΓm)cotθ)
. (4.2.15)

Note that quantum correlations render Rθ anti-symmetric in θ about amplitude quadrature

(θ = 0◦), i.e.,

Rθ−1 ≈−(R−θ−1). (4.2.16)

It is thus a robust experimental signature for the presence of quantum correlations, provided

that excess amplitude and phase noise of the meter laser is sufficiently small (see section 4.3.4).

Rθ is measured by recording the spectral power in windows of finite bandwidth symmetric

about resonance (δ=±2π ·21kHz, also see section 4.3.3), as a function of the homodyne angle

θ. Figure 4.5 shows Rθ for several probe powers. At low probe powers (i.e. low cooperativity,

C ≈ 1·102), shown in the top panel of fig. 4.5, the anti-symmetric feature around the amplitude

quadrature (i.e. Rθ − 1) is relatively small due to the large measurement imprecision. As

the probe power is increased, shown in the two subsequent panels of fig. 4.5, the relative

contribution of quantum correlation increases, leading to a progressively larger anti-symmetry

near amplitude quadrature. We note that classical sources of noise may also affect the anti-
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Figure 4.5 – Asymmetry in homodyne spectrum as a function of quadrature angle. Each plot shows asymmetry
of the homodyne spectra, Rθ (eq. (4.2.15)), as a function of the homodyne angle. From top to bottom, Rθ is plotted
as the probe power (mean intracavity photon number) is increased, Pin = 1.5,9,113.4μW (nc ≈ 4 ·102,2.5 ·103,3.1 ·
104). Red lines are a model employing only quantum noises and independently inferred values of the effective
single-photon cooperativity, ηC0; gray band shows interval corresponding to uncertainties in either parameter. All
measurements were taken with sample AE/L2/B1/34.

symmetric feature: laser amplitude noise can establish classical amplitude-phase correlations

leading to excess anti-symmetry [208], or anharmonicity of the mechanical oscillator can

lead to structured thermal noise which at large Fourier frequency detuning modify the anti-

symmetry [179]. These and various other sources of systematics were found to be negligible in

our experiment (see section 4.3.4).

For the scenario in our experiments, where the back-action is large, but does not overwhelm

thermal motion, i.e. nth 
 nQBA 
 1, the visibility of the anti-symmetric feature in Rθ≈0◦ , is
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Figure 4.6 – Visibility of quantum correlations versus laser power. Blue points are measurements of ΔR
(eq. (4.2.17)) of sample AE/L2/B1/34 as a function of laser power (referred to the optomechanical cooperativity, C ).
At each value of the injected power, the various blue points show ΔR inferred from various choices of the detuning
δ. The red line is a prediction based on eq. (4.2.17), with a notably square-root dependence on power. The gray
line is a linear fit to the data, which would apply if the correlations were entirely due to classical noise in the laser
(see eq. (4.2.18)).

given by (cf. eq. (4.1.20)),

ΔR ≡ max Rθ−min Rθ ≈ 4

√
η

nQBA

nth
. (4.2.17)

Here the extrema are calculated with respect to both the readout angle θ and for detuning,

δ ∈ (Γm,2Γm
√

ηC nth). The square-root scaling of ΔR is unique to quantum correlations (as

opposed to correlations produced by classical noise), and makes possible the 10% asymmetry

despite the relatively small magnitude of quantum back-action in our room temperature ex-

periment nQBA/nth ≈ 10−2. In fig. 4.6 we show measurements of ΔR versus power by analyzing

a series of quadrature sweeps as shown in Figure 4.5. For all data, ΔR is extracted from the

asymmetry in the same spectral window around |δ| ≈ 2π ·2 ·103 ·Γm. The observed scaling

agrees well with the square-root scaling predicted by eq. (4.2.17), shown as a red line in fig. 4.6

with parameters for C , η and nth determined independently.

For comparison, it can be shown that for a laser with excess classical amplitude noise, charac-

terized by an average thermal photon occupation Cqq in excess of shot-noise, the visibility of

the anti-symmetric feature is given by (see section 4.3.4),

ΔR = 4

√
η

nQBA

nth
(1+2Cqq ). (4.2.18)

Phenomenologically, when optical power is changed by attenuating the laser beam (as done

in our experiment), excess amplitude noise scales as Cqq ∝ P , leading to ΔR ∝ P . This linear

scaling is in qualitative disagreement with the observations in fig. 4.6.
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4.2.3 Quantum-noise cancellation for force sensing

Quantum correlations are a generic resource for enhancing the precision with which parame-

ters of a system can be estimated [210]. In the context of force estimation using interferometric

methods, two techniques – injection of external correlations [81, 83, 191], and back-action

evasion [190, 211, 212] – have been conventionally employed to surpass limits imposed by

quantum noise of the optical field. A third alternative – correlations developed in-situ – can

be directly used to derive a metrological advantage [83, 192]. For example, by performing a

rotated-quadrature measurement of the cavity output field, an off-resonant external force

(Fext) applied to the mechanical oscillator, can be estimated with a precision better than that

achievable with a phase quadrature measurement. As inferred from the homodyne photocur-

rent (eq. (4.2.12)), the apparent force experienced by the oscillator (i.e., the force estimator,

F θ
est) has a spectral density (as detailed in section 4.1.3),

S̄est,θ
F F [Ω] = S̄ext

F F [Ω]+ S̄th
F F [Ω]+ S̄imp,θ

F F [Ω]+ S̄QBA
F F [Ω]+�cotθ

Reχx [Ω]

|χx [Ω]|2 , (4.2.19)

where we now employ the conventional susceptibility, χx [Ω] ≡ [m(Ω2
m −Ω2 − iΩΓm)]−1. Equa-

tion (4.2.19) shows that the uncertainty in the estimate of Fext has a classical component due

to thermomechanical noise
(
S̄th

F F

)
and a quantum component (last three terms in eq. (4.2.19))

due to phase quantum noise (imprecision), amplitude shot noise (back-action), and corre-

lations between the two. By detecting a rotated field quadrature (θ �= 90◦), phase-amplitude

correlations (∝ cotθ) can be used to reduce the uncertainty due to quantum noise, which has

to be weighed against a concomitant reduction of the signal. In the limit of strong back-action

S̄QBA
F F 
 S̄imp,90◦

F F (i.e. C 
 1), and at an optimal measurement quadrature at angle θopt, this

trade-off reduces to the simplified form (cf section 4.1.3),

S̄
est,θopt

F F [Ω] = S̄ext
F F [Ω]+ S̄th

F F [Ω]+ S̄imp,90◦
F F [Ω]+

[
1−η

(
Reχx [Ω]∣∣χx [Ω]

∣∣
)2]

S̄QBA
F F [Ω]. (4.2.20)

Equation (4.2.20) shows that measurement back-action can be “erased” from the measured

photocurrent at frequencies offset from mechanical resonance. The efficacy of this back-action

erasure is limited by the detection efficiency, η. Note that, by contrast, physical back-action is

suppressed in back-action evasion schemes [190].

In the presence of thermal noise, the signal-to-noise enhancement afforded by quantum cor-

relations in eq. (4.2.20) is diminished by a factor of approximately nth/nQBA. We nevertheless

observe the principle behind this quantum-enhancement, by applying a detuned radiation

force Fext[Ωext] via an auxiliary cavity field, as described in section 4.3.3, and recording the

signal-to-noise ratio,

SNθ[Ωext] ≡
S̄est,θ

F F [Ωext]

S̄est,θ
F F [Ωext]− S̄ext

F F [Ωext]
(4.2.21)

in the homodyne photocurrent versus θ. In the experiment, we choose a two-tone force of the
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Figure 4.7 – Quantum-enhanced external force estimation. (a) Inset: Green shows homodyne photocurrent spec-
trum near phase quadrature showing the two balanced forces applied on the mechanical oscillator (AE/L2/B1/34)
via radiation pressure from the auxiliary laser; grey is the shot noise background. Main: Red (blue) shows the signal-
to-noise ratio of the force F+ (F−) normalized to its value for phase quadrature detection, i.e. SNθ

+(−)/SNπ/2
+(−). The

asymmetry between the two traces at θ ≈±10◦ is due to quantum noise cancellation. Here the laser input power
is Pin = 110μW. (b) Blue shows SNθ+/SNθ−, extracted as a ratio of the blue and red traces in panel (a). For a force

balanced in intensity and frequency offset from resonance, eq. (4.2.23) predicts that SNθ+/SNθ− ∝ Rθ . The solid red
line is a prediction based on eq. (4.2.23) in conjunction with eq. (4.1.21), while red dashed shows the same model
excluding the contribution from quantum correlations.

form,

Fext[Ω] = F+δ[Ωm +δ]+F−δ[Ωm −δ], (4.2.22)

centered around resonance, so that one of the forces provides a reference for the signal-to-

noise ratio. We denote by SNθ
±, the definition of the signal-to-noise ratio in eq. (4.2.21) applied

to each of the two force components (F±). Figure 4.7a shows the variation of SNθ
± for each of

the forces F± (carefully balanced, as shown in inset) as the homodyne readout angle is varied.

The effect of quantum correlations in the optical field is to cancel back-action at intermediate

measurement quadratures (0◦ < |θ| < 90◦), leading to an enhancement or suppression of SNθ
±

at these optimal quadratures. For a fixed measurement setting (i.e. fixed value of C ,θ,δ), it

can be seen that quantum noise cancellation leads to an enhanced signal-to-noise ratio for F+
relative to F−, or visa versa. The absolute value of the enhancement is given by the ratio,

SNθ[Ωm +δ]

SNθ[Ωm −δ]
≈ 1

Rθ

|χx [Ωm +δ]|2
|χx [Ωm −δ]|2

〈
F 2+

〉〈
F 2−

〉 , (4.2.23)
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and is plotted in fig. 4.7b. The observed anti-symmetric dependence on θ is directly related

to Rθ (eq. (4.1.21)). The offset from unity at θ =±90◦ is due to imperfect balance of the two

forces. The maximum deviation (at θ ≈±2◦) of approximately 12% is less than the absolute

signal loss shown in fig. 4.7a. It nevertheless provides a measure of the improvement obtained

in the ability to estimate a force with and without quantum noise cancellation.

4.3 Experimental details

In this section, we describe details of the experiment. In detail, section 4.3.1 presents the

optomechanical device used to generate quantum correlations, section 4.3.2 describes the

experimental setup, and section 4.3.3 outlines the process of data acquisition and analysis.

Finally, we estimate the magnitude and impact of laser noise (section 4.3.4) and homodyne

phase fluctuations (section 4.3.5).

4.3.1 Experimental platform

The characteristics and fabrication details of the device measured in this work are in detail

described in chapter 3. To summarize, the device consists of an SiO2 whispering gallery mode

microdisk with a high-stress Si3N4 nanobeam centered in the near-field of the microdisk. The

sample has been fabricated by a monolithic wafer-scale process that utilizes a sacrificial layer

to define a ∼ 50 nm gap between the microdisk and nanobeam, as detailed in [160]. Similar

devices have also been used for recent cryogenic experiments [73, 150]. However, in contrast to

those devices, here both the mechanical and optical resonator shapes are defined by electron-

beam lithography. The bare microdisks exhibit a very high finesse of ∼ 105 – nearly an order

of magnitude higher than microdisks produced by photo-lithography. However, in this work

we do not access this high finesse regime when the nanobeam is placed in the near-field of

the disk. We attribute this to the 80 nm thickness of the Si3N4, which is conjectured to lead to

excessive scattering and/or waveguiding. The microdisk is 40μm in diameter, ∼ 350 nm thick,

and has a gently sloping sidewall of ∼ 10° which results from the use of thin photoresist during

the wet-etching process.

In previous work [73, 150] the mechanical resonator was formed by a beam with a homoge-

neous transverse profile. However, the present device has been designed with a central defect

that allows for increased overlap with the optical mode while minimizing the effective mass

(meff ≈ 1.94 pg). The optical mode of the microdisk samples approximately 9μm of the beam

at its center (see [160]), however we utilize a defect that is tapered within the sampling region

as this results in lower optical loss and overall higher C0 than longer defects. This effect may

be attributed to the reduced scattering loss on account of a softer dielectric boundary seen by

the optical mode, in combination with less optical waveguiding inside the beam. The latter

effect can especially be observed by a significant reduction of scattered light at the beam’s

clamping points. Figure 4.8B shows the defect geometry and the effect of defect length on the

effective mass of the fundamental out-of-plane mode. The beam is 70 μm long and consists of

96



4.3. Experimental details

400nm wide standard beam

10 m 0 20 40 60
1

2

3

4

200nm wide standard beam

Defect length200nm 400nm

a b
fiber support

fiber
path

Defect length ( m)

Eff
ec

tiv
e 

m
as

s, 
m

eff
 (p

g)

Figure 4.8 – Experimental device: (a) False colored scanning electron micrograph of the device design used in
this work. Si3N4 is indicated in red and SiO2 in blue. (b) Finite element calculation of effective mass for defect
beam design, as a function of the defect length. The data point in orange indicates the defect length (5 μm) of the
experimental device; see text for details.

a narrow (200 nm) beam with a wider (400 nm) rectangular defect at the center which tapers

linearly into the thin beam at an angle of ∼ 12°. The defect length of the device used here is

5 μm, which exhibits an effective mass only 11% larger than that of a standard 200 nm wide

beam.

As shown in Figure 4.8a, two short beams of Si3N4 with dimensions 20×0.2×0.08μm are also

placed across the channel on either side of the microdisk to support the tapered optical fiber

and increase the overall mechanical stability of the experiment.

4.3.2 Measurement setup

The essential layout of the experiment is shown in fig. 4.9. The sample is placed in a high

vacuum chamber, at a pressure of ∼ 10−7 mbar, and room temperature. Light is coupled in

and out of the microdisk cavity using a tapered optical fiber, the position of which is adjusted

using piezo actuators to achieve critical coupling into the cavity (i.e. ηc ≈ 0.5).

Two lasers are employed in the experiment – a Ti:Sa laser (MSquared Solstis) with wavelength

centered around 780 nm which is the meter beam, and an auxiliary 850 nm external cavity

diode laser (NewFocus Velocity) which is the feedback beam. Both beams are combined

before the cavity and separated after it using dichroic beamsplitters. The feedback beam is

detected on an avalanche photodetector (APD), while the meter beam is fed into a length-

and power-balanced homodyne detector. A small portion of the meter beam – stray reflection

from the dichroic beam-splitter – is directed onto an APD.

Both lasers are actively locked to their independent cavity resonances using the APD signals.

For the meter beam, a lock on cavity resonance (|Δ|� 0.1 ·κ) is implemented using the Pound-

Drever-Hall technique [146]. For the feedback beam, a part of the APD signal is used directly
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Figure 4.9 – Schematic of the experimental setup. A Ti:Sa at 780 nm, acting as the meter beam, and an ECDL
at 850 nm, providing moderate feedback damping to avoid optomechanical instabilities, are locked to cavity
resonances of the optomechanical system. The desired quadrature of the meter beam is read out in a power and
length balanced homodyne interferometer, in which the phase of the local oscillator can be adjusted. Abbreviations:
AM – amplitude modulator, FM – frequency modulator, BS – beam splitter, IS – intensity stabilizer.

to implement a lock red-detuned from cavity resonance.

The other part of the feedback beam APD signal is used to perform moderate feedback cooling

of the mechanical oscillator. Specifically, the photosignal is amplified, low-pass filtered and

phase-shifted, before using it to amplitude modulate the same laser. As in conventional cold

damping [209], the phase-shift in the feedback loop is adjusted to synthesize an out-of-phase

radiation pressure force that damps the mechanical oscillator. This effect is described by

an effective mechanical linewidth, Γeff = Γm +Γfb = (1+ gfb)Γm with the feedback damping

rate Γfb and the dimensionless feedback gain gfb. At the nominal feedback laser power of

5μW, a damping rate of Γfb = 2π ·1kHz is realized; the associated increase in the mechanical

decoherence rate due to injected imprecision noise was measured to be below 5%.

The path length difference of the homodyne interferometer is actively stabilized using a two-

branch piezo translation system. Demodulation of the homodyne signal at PDH frequency

also produced interference fringes suitable for locking the homodyne angle near the amplitude

quadrature (i.e. θ = 0). The residual homodyne angle fluctuations could be estimated θRMS �
1°≈ 0.017rad, inferred from the suppression of thermomechanical signal-to-noise ratio on

amplitude quadrature of ≈ 40 dB compared to the phase quadrature. An offset DC voltage is

applied to the homodyne error signal for deterministic choice of detection quadrature.

Since the feedback cooling exclusively relies on the auxiliary diode laser, the homodyne
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measurements on the 780 nm meter beam are completely out-of-loop and do not contain

electronically-induced correlations.

For the external force estimation measurement, the light of the auxiliary laser is intensity

modulated at a frequency Ω=Ωm +δ to induce an external radiation-pressure force.

4.3.3 Data acquisition and analysis

In each experimental run, corresponding to the data presented in section 4.2, the meter laser

is locked to cavity resonance at fixed input power, and a series of homodyne photocurrent

spectra are taken at various settings of the homodyne angle θ. From independently measured

mechanical and optical parameters of the sample, together with the known input power, the

homodyne detection efficiency is inferred in each run by the thermomechanical signal-to-shot-

noise ratio. For this, the shot noise level was measured by blocking the signal interferometer

arm. To account for a small quadrature rotation by the cavity the nominal θ = 0 quadrature

was inferred from the minimum in the transduction of thermomechanical noise.

In order to experimentally access the asymmetry ratio Rθ discussed earlier within this section,

Rθ is estimated from an integral over a finite bandwidth ΔΩ, i.e.,

Rθ =
∫Ωm+δ+ΔΩ/2

Ωm+δ−ΔΩ/2
S̄θ

I I [Ω]dΩ

/∫Ωm−δ+ΔΩ/2

Ωm−δ−ΔΩ/2
S̄θ

I I [Ω]dΩ . (4.3.1)

Theoretically, there is some freedom in the choice of the detuning offset δ and integration

bandwidth ΔΩ, since the relative contribution of the quantum interference term to the de-

tected signal is maximum within a broad range of detunings Γeff � δ� 2Γm
√

ηC nth; here

Γeff ≈ 2π ·1kHz is the effective damping rate due to feedback. For typical experimental con-

ditions in this work 1 kHz � δ/2π� 500 kHz. Figure 4.10 shows the ratio Rθ extracted for

various choices of the detuning offset and integration bandwidth. The results presented in

section 4.2 in fig. 4.5 depict data extracted for the choice δ= 2π ·21kHz and ΔΩ= 2π ·20kHz.

In the demonstration of external force estimation (see sections 4.1.3 and 4.2), the signal-to-

noise ratio for the applied force δFext is defined by,

SNθ
± ≡ S̄θ

I I [ΩF ±δ]
/

S̄I I [ΩF ±δ]|δFext=0 ; (4.3.2)

i.e., the signal is the photocurrent noise at the frequencies where the force is applied (ΩF ±δ),

while the noise is the photocurrent noise at the same frequencies without the force. Practically,

we estimate both contributions from finite bandwidth integrals over the relevant part of the

photocurrent spectrum: for the signal, the photocurrent signal is integrated over a finite

bandwidth ΔΩF around the applied force, while to estimate the noise, we choose to take

averages of the photocurrent spectrum over finite bandwidth ΔΩN, on either side of the

99



Chapter 4. Quantum correlations of light at room temperature

/(2 ) = 26 kHz

/(2 ) = 56 kHz

/(2 ) = 160 kHz

/(2 ) = 340 kHz

0 20 40-20-40
 [˚]

1.1

1.0

0.9

0.8

1.1
1.0
0.9
0.8

1.1
1.0
0.9
0.8

1.1
1.0
0.9
0.8

R
R

R
R

R
R

R

1.1

1.0

0.9
1.1

1.0

0.9

/(2 ) = 1 kHz

/(2 ) = 8 kHz

/(2 ) = 40 kHz

 [˚]
0 20 40-20-40

S II_

100

102

104

106

S II_

100

102

104

106

S II_

100

102

104

106

S II_
100

102

104

106

3.1 3.2 3.3
/(2 ) [MHz]

3.73.63.53.4

3.30 3.35
/(2 ) [MHz]

3.453.40

S II_

100

102

104

106

S II_

100

102

104

106

S II_

102

104

106

100

a b

c d

Figure 4.10 – Asymmetry ratio for different offsets and integration bandwidths: (a,c) Illustration of the variation
of the experimental asymmetry ratio Rθ for different offsets δ at fixed integration bandwidth ΔΩ/2π= 20 kHz (a)
and for different integration bandwidths ΔΩ at fixed offset δ/2π= 56 kHz (c). Solid and dashed red curves show
theoretical predictions accounting and not accounting for the quantum back-action-imprecision correlations.
(b,d) Plots show the integration bands used for calculation of R(θ) on the left (shaded gray regions). Dark green is a
mechanical spectrum at an intermediate homodyne quadrature and light green is the local oscillator trace showing
the shot noise level. The data was taken at Pin = 200 μW. All measurements were taken with sample AE/L2/B1/34.

applied force, without turning off the force. Specifically,

SNθ
± =

∫ΩF±δ+ΔΩF/2

ΩF±δ−ΔΩF/2
S̄θ

I I [Ω]dΩ

/
1

2

(∫ΩF±δ+δΩN+ΔΩN/2

ΩF±δ+δΩN−ΔΩN/2
S̄θ

I I [Ω]dΩ+
∫ΩF±δ−δΩN+ΔΩN/2

ΩF±δ−δΩN−ΔΩN/2
S̄θ

I I [Ω]dΩ

)
.

(4.3.3)

The integration bands used for main results are shown in figure 4.11.
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Role of broadband mechanical susceptibility

Within the theoretical description that relies on single-pole Lorentzian mechanical suscepti-

bility and white thermal noise, the variation of the asymmetry ratio, ΔR = maxθ Rθ−minθ Rθ,

can be directly related to the nQBA/nth as given by the eq. (4.1.20). In the present experiment,

however, backaction-imprecision correlations are produced in the broad span of frequencies

on the order of hundreds of kHz, which makes eq. (4.1.20) not directly applicable at large de-

tunings δ. As is illustrated by the fig. 4.10a, at large δ the experimental Rθ−1 shows deviations

from the antisymmetric shape given by eq. (4.1.19) and should be described by the eq. (4.1.21)

containing a contribution symmetric in θ. In order to make the data analysis more transparent

we choose δ= 21 kHz, which is small enough so that eq. (4.1.20) holds with sufficient accuracy.

4.3.4 Laser noise

In addition to vacuum fluctuations in the input amplitude quadrature, classical fluctuations

in the amplitude quadrature can lead to phase-amplitude correlations in the cavity trans-

mission [150]. Additionally, detuning deviations causing a finite Δ/κ can transduce classical

phase fluctuations in the input to excess phase-amplitude correlations in the output.

In order to analyze the two possible classical contributions on the same footing, we consider

the quadratures of the cavity transmission, δqout,δpout for the case of a finite detuning |Δ|� κ.
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In this regime, eq. (4.1.9) contains corrections of order Δ/κ, in particular,

δqout[Ω] =(1−2ηc)δqin[Ω]−2
√

ηc(1−ηc)δq0[Ω]

+ 2Δ

κ

(√
2ηcCΓmδz[Ω]

+2ηcδpin[Ω]+2
√

ηc(1−ηc)δp0[Ω]
)

δpout[Ω] =(1−2ηc)δpin[Ω]−2
√
ηc(1−ηc)δp0[Ω]

−√
2ηcCΓmδz[Ω]

− 2Δ

κ

(
2ηcδqin[Ω]+2

√
ηc(1−ηc)δq0[Ω]

)
,

(4.3.4)

where δz = δzth +δzBA is the total motion. The back-action component in this case,

δzBA[Ω] =
√

2CΓm

[(�
ηcδqin[Ω]+√

1−ηcδq0[Ω]
)

+4i
ΩΔ

κ2

(�
ηcδpin[Ω]+√

1−ηcδp0[Ω]
)]

,
(4.3.5)

consists of the motion induced by the quantum and the classical fluctuations in the input

laser field. Excess noise in the input amplitude and phase quadratures is modeled by white

noise with intensity Cqq and Cpp respectively, so that,

S̄in
qq [Ω] = 1

2
+Cqq , S̄in

pp [Ω] = 1

2
+Cpp . (4.3.6)

Using eqs. (4.3.4) and (4.3.5) in the definition of the homodyne spectrum (eq. (4.1.12)) to

leading order in Δ/κ, the shot-noise normalized balanced homodyne spectrum is:

S̄θ
I I [Ω] ≈ 1+4ηCΓm

[(
S̄th+QBA

zz [Ω]+ S̄CBA,q
zz [Ω]+ S̄CBA,p

zz [Ω]
)

sin(θ′)2 + 1

2
sin(2θ′)Reχz [Ω]

+sin(2θ′)
�
ηc (1−2ηc )Cqq Reχz [Ω]+2sin(θ′)2�ηc (1−2ηc )

4ΩmΔ

κ2 Cpp Imχz [Ω]

]
, (4.3.7)

where θ′ ≈ θ−4Δ/κ is the quadrature angle rotated by the cavity. The effect of excess noise

is two-fold. Firstly, classical amplitude (phase) noise Cqq (Cpp ) causes additional classical

back-action motion S̄CBA,q
xx (S̄CBA,p

xx ), leading to excess back-action occupations,

nCBA,q =C0ncCqq , nCBA,p =C0nc

(
4ΩmΔ

κ2

)2

Cpp . (4.3.8)

Secondly, classical amplitude noise, and phase noise transduced via finite detuning, establish

excess correlations, as can be seen from the last two terms in the eq. (4.3.7). It is important

to note that the contribution of excess phase noise Cpp to the measured homodyne signal

is effectively suppressed for the current experimental parameters since Δ ·Ωm/κ2 =O (10−4).

Finally, when laser noise is insignificant, the role of a residual detuning from the cavity, i.e.

Δ �= 0, is to rotate the detected quadrature by an angle arctan(4Δ/κ), without leading to any
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artificial asymmetry.

Classical amplitude noise leads to excess correlations, which results in a larger anti-symmetry

in R . The size of the anti-symmetry is quantified by ΔR . Following the definition in eq. (4.1.20),

and using the expression for the homodyne spectrum in the presence of laser noise (eq. (4.3.7)),

it can be shown that,

ΔR(δ) = 4

√
ηC

nth
(1+2Cqq ) for Γm � δ� 2Γm

√
ηC nth, (4.3.9)

and for an overcoupled cavity (ηc ≈ 1). Thus, the magnitude of the anti-symmetric feature in

R is increased by the average thermal photon occupation of the amplitude quadrature.

In addition, the overall scaling of ΔR with probe power is qualitatively different. In order to see

this, we consider an arrangement (as in the experiment) where the laser field alas is attenuated

by a variable beam-splitter of transmissivity ηbs, to derive the field that excites the optical

cavity, ain. Thus,

δain[Ω] =�
ηbsδalas[Ω]+√

1−ηbsδabs, (4.3.10)

where, δabs, is the vacuum noise from the remaining open input port of the beam-splitter.

This equation, together with the definition of Cqq (eq. (4.3.6)), allows us to relate the amplitude

quadrature excess noise in the cavity input field to that of the laser, in particular,

C in
qq = ηbsC las

qq = Pin

Plas
C las

qq , (4.3.11)

Pin(Plas) is the mean optical power of the input (laser) field. Thus, when the cavity input power

(Pin) is varied by attenuating a laser operating at a fixed output power (Plas), the amplitude

noise at the cavity input scales proportional to the power. Inserting this in eq. (4.3.9) shows

that in this case, ΔR ∝ Pin, when C in
qq 
 1

2 .

For the experiments presented in this chapter, an MSquared Solstis Ti:Sa laser was used for all

measurements. The amplitude noise of the laser was characterized via direct photo-detection.

In a 3 MHz wide frequency band around the mechanical frequency, Ωm = 2π · 3.4MHz at

the highest employed power of 150μW, the classical amplitude noise level was < 1% of the

shot noise (see fig. 4.12b). This means that Cqq < 1 ·10−3, implying a negligible contribution

due to excess classical correlations and a negligible fraction of classical back-action motion,

nCBA,q < 0.001 ·nQBA, compared to quantum back-action.

Laser phase noise on the other hand was upper-bounded using a self-heterodyne measure-

ment [213] with a 400 m fiber delay line. The self-heterodyne signal can be described by (after

shifting the beat-note to zero frequency),

S̄I I [Ω] ∝ π

2
δ[Ω]+ sin2

(
Ωτ0

2

)
S̄φφ[Ω], (4.3.12)
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where τ0 is the delay and S̄φφ[Ω] is the laser phase noise spectral density. The measured signal

for the laser is compared to an external cavity diode laser and is shown in figure 4.12a, where

the vertical scale is calibrated using the known mean photon flux in the beat note carrier. For

the Ti:Sa laser (blue trace in fig. 4.12a) the absence of the characteristic sin2(Ωτ0) interference

pattern suggests that laser phase noise is below the sensitivity of the measurement. Although

the laser is expected to be quantum-noise-limited at frequencies well above the relaxation

oscillation frequency (≈ 400kHz), our measurements can only provide a conservative upper-

bound for the frequency noise to be at the level of 2Hz2/Hz (in comparison, frequency noise

of a commercial external cavity diode laser, also shown in fig. 4.12a, is 20dB larger). This upper

bound on the excess phase noise, together with large optical linewidth (κ) strongly suppresses

the influence of Cpp and leads to an estimated back-action motion that is below a factor 0.0025

compared to the quantum mechanical contribution. Intrinsic cavity frequency noise, for

example from thermoelastic [214] or thermorefractive [215] processes, can also lead to a finite

value of Cpp . In the current experiments, broadband measurements of cavity transmission on

phase quadrature suggest a conservative upper bound of Cpp < 10 at frequencies around Ωm.

Using a length-balanced homodyne interferometer, classical phase noise in the measurement

imprecision is also bounded at 0.1%.

4.3.5 Effect of homodyne phase fluctuations

The measured dependence R(θ) for δ/2π = 21 kHz exhibit sharp variation with θ around

amplitude quadrature, with maxima and minima of the high-power measurements being as

close as 1-2◦ to θ = 0. Correspondingly, in order to be able to resolve these features ensuring

low residual fluctuations of the homodyne angle is essential.

In order to see the effect of homodyne angle instability on R(θ), consider the homodyne

detection with θ fluctuating as θ(t ) = θ0 +δθ(t )

δqθ(t ) = δq(t )cos(θ(t ))+δp(t )sin(θ(t ))

≈ δqθ0 (t )+δθ(t )δqθ0+π/2(t ),
(4.3.13)

where δqθ0 (t) is the signal of a perfectly stable homodyne at the angle θ0 and δqθ0+π/2(t) is

such signal at the orthogonal quadrature. The signal spectral density

S̄θ
I I [Ω] = S̄θ0

I I [Ω]+ S̄θ0+π/2
I I [Ω]∗Sδθ[Ω], (4.3.14)

where Sδθ[Ω] is the homodyne angle fluctuations spectrum and ∗ denotes the convolution,

S̄θ0+π/2
I I [Ω]∗Sδθ[Ω] = 1

2π

∫
dΩ′S̄θ0+π/2

I I [Ω−Ω′]Sδθ[Ω′]. (4.3.15)

In the presented experiment, the homodyne angle fluctuations were mainly confined to low

frequency (suppressed within the bandwidth of 300 Hz by feedback loop), so Sδθ[Ω′] can be
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Figure 4.12 – Phase and amplitude noise of the lasers used in the experiments: (a) Phase noise about the carrier,
measured using an imbalanced Mach-Zehnder interferometer (self-heterodyning). The blue trace shows the
measurement for the employed Ti:Sa, whose phase noise contribution can be estimated to be ≤ 2 ·10−13 rad2/Hz
around the mechanical frequency ≈ 3.4MHz, corresponding to frequency noise ≤ 2Hz2/Hz. The noise peaks at
ca. 250 kHz are attributed to the laser’s relaxation oscillation frequency. Red shows a commercial external-cavity
diode laser (NewFocus Velocity) for comparison, exhibiting at least 20 dB times more phase noise at similar
frequencies. The noise measurement for the Ti:Sa laser clearly indicates absence of the sin2(Ωτ0) pattern, visible
in the measurement for the diode laser and expected for the classical laser noise interference, showing that the
phase noise of the Ti:Sa lasers was not observed. (b) Red data shows the amplitude noise measurement of the Ti:Sa
characterized as relative intensity noise integrated over a 3 MHz bandwidth around the mechanical frequency. The
dashed orange line shows a fit with 1/P dependence, characteristic of shot noise limited behavior. The deviation
from this model provides Cqq , which can be extrapolated to < 1 ·10−3 for the highest employed powers ∼150 μW,
marked by the dashed gray line.

treated as a delta-function

S̄θ0+π/2
I I [Ω]∗Sδθ[Ω] ≈ 〈δθ2〉S̄θ0+π/2

I I [Ω]. (4.3.16)

Neglecting terms of order 〈δθ2〉, eq. (4.1.16) is modified as,

S̄θ
I I [Ω] = 1+4ηCΓm

(
S̄zz[Ω](sin2θ+〈δθ2〉cos2θ)+ 1

2
sin(2θ)Reχz[Ω]

)
. (4.3.17)

Correspondingly, due to the impossibility to completely suppress thermal noise on amplitude
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Figure 4.13 – Excess noise due to taper vibrations: Blue trace shows a measurement (sample AE/L2/B1/34) with
the tapered fiber in contact with the nanobridges (see section 4.3.1). The red trace is a measurement of the same
samples with the nanobridges removed and the tapered fiber in contact with the microdisk. For better visualization,
the two datasets have been slightly offset.

quadrature, ΔR is diminished by the fraction 〈δθ2〉/(θopt )2, where θopt � 1 is the angle at

which R reaches maximum. For the data presented here,
√

〈δθ2〉 ≈ 0.4◦, θopt ≈ 1.2◦, resulting

in the homodyne instability effect on R as 〈δθ2〉/(θopt )2 < 10%. Larger δ or smaller input

power result in larger θopt and improve this constraint further.

4.3.6 Excess detection noise due to taper vibrations

While the amplitude quadrature of the employed Ti:Sa laser is quantum limited at Fourier

frequencies around the mechanical oscillator, analysis of the initially measured displacement

spectra revealed an additional background present in the measurement, that reaches 15% of

the shot noise level around the mechanical oscillator Fourier frequencies for the largest powers

used in the experiment. An example of a measured spectrum showing this noise is shown as

the blue trace in fig. 4.13. In the measurement window, this structured background, extrinsic

to the laser, is revealed around the amplitude quadrature where sensitivity to broadband

thermomechanical noise is significantly reduced.

Investigating broadband spectra of this excess noise, as shown in fig. 4.14, lets us analyze its

spectral dependence. We find evidence that its origin are mechanical vibrations of the tapered

fiber, as the noise includes a series of peaks that we associate with vibrational resonances.

The inset of fig. 4.14 plots the free spectral range of the noise peaks as a function of frequency,

indicated with red data points, which is seen to follow a power law ∝Ω0.31. Such a power

law scaling is consistent with phase velocity dispersion of the lateral vibrations of an elastic

cylinder [216, 217].

As a second check of the hypothesis that the excess noise originates from fiber vibrations, the

eigenmodes of a realistic tapered fiber geometry are computed using finite element modeling

(blue data points). The model incorporates the known geometry of the taper, which is ca.

25 mm long and 80μm in diameter at the clamping points. The taper profile is modeled as

exponential in cross-section, as expected for a taper pulled with a uniform heat source [218].
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Figure 4.14 – Broadband measurement of taper excess noise: Broadband homodyne spectrum in phase and
amplitude quadrature (red and blue respectively) normalized to the local oscillator shot noise level, shown in
gray. The inset shows the measured free spectral range (FSR) of the noise peaks as a function of frequency (red
data points), with a power law fit ∝Ω0.31 (green trace). The data shows excellent agreement with a finite element
model calculation, shown in blue. The image shows the FEM solution of a fiber harmonic near 3.5 MHz. The
measurements were taken with sample AE/L2/B1/34.

The model assumes the center of the taper is 1μm in diameter. The prediction of this mode,

shown as blue data point in Figure 4.14 inset, closely matches the measured data.

As for the case of guided-acoustic wave Brillouin scattering (GAWBS) in optical fiber[219], we

ascribe the motion to the thermal excitation of the vibrational taper modes for the analysis

frequencies in the MHz domain, as this frequency band is far outside the acoustic noise

disturbance bands. In contrast to GAWBS, the vibrational noise peaks are only present when

the taper is coupled to the microcavity. Therefore we attribute the excess amplitude and

phase noise due to reactive and dispersive coupling of the tapered fiber to the cavity, which

transduces taper fluctuations to both amplitude and phase fluctuations.

To solve is problem and attain a clean spectrum, we removed the fiber supports. This was

achieved by loading them with a dummy tapered fiber and apply as much force as necessary

to break these nanobridges without harming the sample. For the main results presented in

the following section, we instead operate with the tapered optical fiber in contact with the

microdisk. This eliminates any vibration in the sampling region of the optical resonator and

results in complete suppression of this excess noise, as shown as the red trace in fig. 4.13.

4.4 Conclusion

The experiments reported in this chapter demonstrate how quantum effects of radiation

pressure at ambient temperature become both, measurable and useful. Firstly, we were able

to observe broadband quantum correlations in a light field detected after reflection off of a

nanomechanical oscillator. By overcoming daunting levels of thermomechanical noise that

has plagued all such attempts to date, we were able to show how the in-situ generated quantum

correlations are a valuable resource for quantum-enhanced sensing in interferometry. Our
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Chapter 4. Quantum correlations of light at room temperature

demonstration is equivalent and complementary to the injection of squeezed states of light.

In a second experiment, we further showed how these correlations can be taken advantage of

in order to realize a quantum-enhanced measurement of an (off-resonant) external force. By

applying an external force to the oscillator, we demonstrated how quantum noise cancellation

leads to an increase in the relative signal-to-noise ratio for the external force.

In conclusion, despite being subtle, the observed effects are unprecedented, and are the first

broadband demonstration of long-standing theoretical predictions made in the gravitational-

wave community. In fact, the techniques presented here have been adopted by the LIGO

community to test for quantum correlations in the interferometer [220]. Further increasing

the system’s performance will eventually lead to ponderomotive squeezing [60, 61, 150, 195]

and sideband asymmetry [150, 197, 199] observable at room temperature, as the quantum

correlations are the basis for these effects.

In future room-temperature optomechanics experiments, in which back-action is the dom-

inant force noise, the “variational” measurement technique here described can be used to

surpass the standard quantum limit for a linear force measurement. This remains a long-

standing pursuit in the gravitational wave community, and was only very recently demon-

strated in a micro-cavity optomechanical system at dilution refrigerator temperatures to

obtain a displacement sensitivity beyond the finite-efficiency standard quantum limit [221].

As discussed in chapter 1, optomechanically generated squeezed light at room-temperature

would be extremely advantageous for further enhancement of the sensitivity in gravitational

wave interferometers. Limited by radiation-pressure shot noise, the ponderomotive squeezing

would improve the sensitivity beyond usual quantum limits by enhancing the measurement

of the same mechanical object that generated it.
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5 Outlook

The work reported in this thesis accessed an entirely new regime of cavity optomechanics at

room temperature. Utilizing a near-field optomechanical transducer with exceptionally high

single-photon cooperativity, we were able to observe the effects of quantum measurement

back-action despite the large thermal phonon occupation at room temperature. Even though

the thermal motion dominated the measurement back-action induced motion by two orders

of magnitude at the highest optical powers used in the experiment, we successfully measured

the correlations created between the optomechanical system and the probing light. Around

the amplitude quadrature, the displacement noise due to thermal motion is suppressed by

40 dB and hence the correlated signal becomes comparable in magnitude. We therefore

pursued a variational measurement strategy [79] allowing us to discern the correlations at

the level of 10% over a frequency range of more than an octave around the mechanical

resonance frequency. In addition, we demonstrated how to use these correlations to achieve

quantum-noise cancellation, leading to an enhanced detection ability of signal-to-noise of an

off-resonant external force.

Enhancing the performance of our optomechanical system to further increase the quantum

back-action contribution in the total motion of a mechanical oscillator will allow for the inves-

tigation of related quantum-mechanical effects at room temperature, such as the generation

of ponderomotive squeezing or motional sideband-asymmetry. Another elusive goal that

remains is the feedback-cooling of a room-temperature nanomechanical oscillator close to its

quantum mechanical ground state.

5.1 Future directions

For the experiments mentioned above, it is essential to further enhance the single-photon

cooperativity C0 = 4g 2
0 /(κΓm) of our optomechanical devices. To achieve this, we attempted

to move the beam closer to the disk in order to achieve higher optomechanical coupling

as C0 scales quadratically in this manner. As the intrinsic optical quality factor is already

deteriorated by the presence of the beam in the near-field, our observations showed a further
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dramatic increase of the optical linewidth when positioning the beam further into the optical

mode. Part of this can also be attributed to the fact that additional loss occurs due to the

nanobeam itself becoming an optical waveguide. The latter also means a physical heating

of the beam which is intuitively counterproductive when trying to achieve a large quantum

back-action to thermal noise ratio,

nQBA

nth
=C0nc

(
kBT

�Ωm

)−1

= 4g 2
0

κ
nc

�Qm

kBT
. (5.1.1)

The only remaining parameter that can independently optimized in order to achieve a higher

cooperativity is the mechanical quality factor.

The efforts currently undertaken to enhance the mechanical quality factor are detailed in the

following sections.

5.1.1 Phononic crystal nanobeams

The boundary conditions of the vibrational mode-shape of a doubly-clamped beam require

that the displacement profile exhibits curvature close to the supports. Following the approach

of anelastic theory, we find that the loss dilution of the mechanical quality factor due to stress

for a nanobeam can be expressed as (see eq. (3.1.1)) [162, 164],

Q(n)
m

Qint
= ( 2λ︸︷︷︸

clamping

+π2n2λ2︸ ︷︷ ︸
antinodes

)−1, (5.1.2)

with λ = t
l

�
E/(12σ). Here, Qint is the intrinsic quality factor of the unstressed oscillator, n

is the mode number, E is Young’s modulus, t (l ) is the thickness (length) of the mechanical

resonator and σ is the tensile stress. An enhancement of the dilution factor can be achieved

by increasing the aspect ratio l/t and/or the tensile stress.

Another approach recently demonstrated is the localization of the displacement profile around

an engineered defect by micro-patterning the nanobeam [222]. Since the first term in eq. (5.1.2)

is caused by the curvature at the clamping points, while the second term depends on the

mode number and describes the curvature at the antinodes [164], a localization of a specific

mechanical mode can significantly reduce its bending at the supports. As in general λ� 1,

meaning that the contribution due to the bending at the clamped ends of the beam domi-

nates, isolation of the displacement profile away from the clamping points leads to a strong

enhancement of the loss dilution.

Inspired by this ”soft-clamping" technique, we have fabricated micro-patterned nanobeams

(phononic crystals) with stress σ ∼ 800 MPa, as shown in fig. 5.1a (manuscript in prepara-

tion [223]). The beams are between 2−6 mm long and 20−100 nm thick. The size of the unit

cells determines the localized mode number n, and is in this case chosen to localize the me-

chanical mode around Ωm ≈ 2π ·2.5 MHz. The fabricated sample is placed in a high-vacuum

110



5.1. Future directions

environment at ∼ 10−7 mbar to suppress gas damping of the mechanical quality factor. We

estimate the ultimate measurable quality factor, Qlim, at a given pressure by Q−1
lim =Q−1

m +Q−1
gas

(see section 2.2.1) and use a simple model to find the contribution due to gas damping [224],

Qgas = 4.2 ·108
(

10−6 mbar

p

)(
Ωm

2π ·1 MHz

)(
t

20 nm

)
, (5.1.3)

with the pressure p.
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Figure 5.1 – Quality factor measurements of micropatterned nanobeams: (a) Scanning electron micrograph of
patterned nanobeam with total length l = 3 mm. Image is taken before the release of the Si3N4 (b) Amplitude
ring-down measurement to determine the mechanical quality factor. We compare the ring-down times of a normal
beam (blue trace) with that of a patterned beam (red trace) for the same mechanical mode. (c) Quality factor
versus frequency for patterned beams with varying corrugation lengths and different thicknesses. Clearly visible is
the enhancement in Qm by a factor of 10 for the localized mechanical mode. Note that the localized mode slightly
shifts when varying the thickness t .

The measurement results of the quality factors for different beams are shown in fig. 5.1b and

c. The beams are measured in a fiber interferometer [225] using the ring-down method, in
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Tapered fiber mount Mount for optical resonator chip
Mount for mechanical 
oscillator chip

Attocube stacks

Figure 5.2 – Near-field setup: Rendered CAD design of the planned near-field setup. For description, refer to the
text.

which laser light from a lensed fiber is focused onto the beam and the substrate underneath,

and then reflected back into the fiber. The motion of the nanobeam shifts the phase of the

light, allowing for the detection of the reflected light through a homodyne interferometer to

access the mechanical spectrum. For the measurement of the mechanical quality factor, the

motion of the beam is briefly actuated at the target mode’s frequency using a piezo, which is

placed underneath the sample chip. We then record the time trace of the ring-down and fit an

exponential function to it in order to extract the quality factor. The result of measurements

of different order modes on different beams with sweeps in unit cell size (to find the ideal

localization conditions) is shown in fig. 5.1c. We were able to measure quality factors of 1.5·108

for a 2.5 MHz localized mechanical mode which means a gain of a factor 10 compared to

unpatterned beams.

As these long beams are very difficult to integrate with an optical microdisk without the

beam collapsing and sticking to the disk during the fabrication process, we are currently

developing a near-field setup in which mechanical oscillator and optical resonator are on

separate chips. The CAD drawing is shown in fig. 5.2. The chip with the optical resonator

(silica microsphere) will be placed on the fixed center pedestal. The tapered optical fiber and

the chip with the mechanical oscillators can then be brought into the near field of the optical

cavity independently by three-dimensional nanopositioners (attocubes). The entire setup will

then also be placed into a high-vacuum environment at 10−7 mbar. To ensure mechanical

stability, the whole setup will be placed onto a dedicated vibration-isolated table, similar to

the present setup (see appendix A). We emphasize that experiments in the near-field setup will

be performed at lower optomechanical coupling rates due to the limitation in positioning the

two elements with respect to each other. The ultimate goal will be to integrate these patterned

beams into the existing device to achieve the aforementioned enhancement in cooperativity.

As seen in fig. 5.1a, we have so far studied unit cell designs of rectangular shape with the sole

purpose of localizing the mechanical mode. Calculations and simulations of different unit cell

shapes, for example a tapering of the beam towards its center, have shown that this can lead
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to increased stress in regions of maximum displacement [223]. Adding this method of ”stress-

engineering" to the nanobeams could eventually lead to another increase in mechanical Q by

a factor of ∼ 1.5−2.

5.1.2 Nanobeams with ultra-high stress

Another possibility to enhance the mechanical quality factor (in addition to the discussion

above) is to increase the tensile stress in the film (see eq. (5.1.2)) as the ultimate yield strength

of silicon nitride is reached for a stress 6.4 GPa [226].

The deposition method (described in section 3.2.3) for silicon nitride used up to this point is

the low pressure chemical vapor deposition (LPCVD). Here, the relaxed silicon nitride film

is deposited at a temperature 800◦C resulting in a stressed film at room temperature of σ∼
800 MPa. The advantage of this method is that the silicon nitride film is highly stoichiometric,

i.e. no further treatment is necessary to purify and clean the Si3N4, and therefore no further

enhancement in intrinsic stress can be achieved.

As a different approach, a plasma-enhanced chemical vapor deposition (PECVD). Here,

the film is deposited at lower temperatures around 300◦C. The deposition process can

be controlled such that tensile stress σ ∼ 400 MPa of the film at room temperature can be

achieved [227]. Films deposited with PECVD are known not to be very stoichiometric as they

possess a significant amount of hydrogen, requiring an annealing step in order to achieve a

purified Si3N4 film. It has been demonstrated that annealing of the film by performing ultravi-

olet thermal processing (UVTP) leads to breaking of hydrogen bonds, as shown in fig. 5.3a,

and removal of these impurities. In particular, the stress of thin films (t < 100 nm) can be

increased by up to 1 GPa this way [228, 229]. Figure 5.3b shows measurement results of this

stress increase in dependence of UV irradiation time from [228].

Due to the rapid deposition of water (within seconds) under ambient conditions [100], we

chose to implement an ”in-situ" solution, which is shown in fig. 5.4. To realize this UVTP

treatment of the nanobeam samples, as the first element, we have equipped the measurement

setup inside the vacuum chamber with a high-power (1mW), 250 nm UV LED, which can be

positioned close to the nanobeams using the nanopositioners. With this, the necessary inten-

sity for efficient UV irradiation with intensities of up to 100 mW/cm2 [228] can be achieved. To

complete the UVTP setup, the sample stage is equipped with a micro heater that can be heated

to up to temperatures ∼450◦C. The first PECVD nanobeams are currently under development

and will be processed soon after submission of this thesis.

5.2 Conclusion

With the approaches described in this chapter, we hope to be able to enhance the cooperativity

of our optomechanical system with the aim to observe stronger quantum back-action and
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a b

Figure 5.3 – Ultraviolet thermal processing: (a) Band gap versus wavelength. Photons of wavelength 250 nm
provide sufficient energy to break H-Si and H-N bonds as well as N-Si. The latter can then recombine in order to
enhance the stoichiometry of the film and achieve higher stress. (b) Increase of stress versus UV irradiation time. A
clear improvement in stress enhancement is visible when exposing the samples to strong UV light (center curve,
filled circles) compared to a pure thermal anneal (bottom curce, open circles). The top curve shows the change in
refractive index (right axis). Images adapted from [228].

Attocube stack

250nm UV LED

Lensed optical fiber

Sample stage

Figure 5.4 – Ultraviolet thermal processing setup: Rendered CAD design of the fiber interferometer setup for
measurement of mechanical quality factors. For UV thermal processing, a ceramic micro heater underneath the
sample stage and a 250 nm UV LED are implemented.

eventually the creation of ponderomotive squeezing at room temperature. For this, the

ultimate goal is the engineering of an integrated structure with a micro-patterned nanobeam,

potentially in combination with the stress-enhancement for PECV-deposited silicon nitride.

In the near-field setup, where lower optomechanical coupling rates are expected, the plan

is to demonstrate room-temperature feedback cooling of the mechanical oscillator to its

quantum-mechanical ground state, analogous to the work presented in [73].
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A Experimental setup

The schematic of the setup, showing the essential components, is shown in fig. A.2. Key

element is the vacuum chamber which contains a chip with a number of optomechanical

samples. Using nanopositioners, the desired device can be probed by coupling a tapered

optical fiber to the microdisk cavity. Three available lasers constitute the light sources for the

experiments: two tunable external cavity diode laser (ECDL) at 780 nm and 850 nm and a

titanium-sapphire (Ti:Sa) laser, which is described in more detail in the following section. For

the main experiments presented in this thesis, the Ti:Sa laser at 780 nm acts as the ”meter"

beam used for probing the cavity, while the 850 nm ECDL serves as the ”feedback" beam

providing moderate feedback cooling of the mechanical oscillator, as described in section 4.3.2.

The tunable 780 nm ECDL mainly serves characterizing purposes to determine the param-

eters of the optomechanical device in terms of resonance frequencies, quality factors and

optomechanical coupling rates.

Applying the Pound-Drever-Hall method [146], both lasers are locked to the respective cavity

resonance by frequency modulating the light (using EOMs) and demodulation at the drive

frequency in the detected transmission signals (by avalanche photodiodes) after the cavity.

The optical path through the optomechanical device also constitutes one arm of a balanced

homodyne interferometer. After probing the cavity and being combined with a local oscillator,

the mechanical motion in an arbitrary quadrature of the light field can be measured, leading

to the results presented in chapters 3 and 4.

To minimize the susceptibility to external vibrations, the optical setup is placed on floated

optical tables. The vacuum system on the other hand, containing the device under test, is

situated on a floated breadboard on top of a massive granite block (as also used in atomic-force

microscopy) to guarantee even superior vibration isolation. The chamber is evacuated by an

ion pump that ionizes gas particles and employs a high electrical potential to accelerate the

ions towards its cathode to subsequently capture them at this point. In contrast to a turbo

pump, an ion pump possesses no moving components, such that the pumping is completely

free of vibrations. In addition to these measures, a custom-made acoustic shield covers the

vacuum setup and further insulation for the acoustic frequency spectrum. The entire isolated
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a b

c d

HeaterThermistor

Sample chip
Ceramic spacers

Tapered fiber

Attocube positioners

Electric terminal

Acoustic shield

Floated
breadboard

Granite table

Ion pump

Vacuum chamber

Figure A.1 – Picture of the vacuum setup. (a)+(b) Vacuum system on a floated breadboard positioned on a
granite AFM table. (b) Close-up of the high-vacuum system allowing for operation at 10−7 mbar. (c)+(d) Inside
the chamber is the optomechanical device under test that is coupled to a tapered optical fiber. The sample is
positioned on a stack of nanopositioners allowing for precise three-dimensional alignment with respect to the
optical fiber. A heater and thermistor attached to the thermally isolated sample stage allow for sample baking up
to 450◦C.

vacuum system is shown in fig. A.1.

The following appendices describe the key elements of the entire experiment in more detail.

In particular appendix B explains the operation of the MSquared SolsTiS titanium-sapphire

laser, appendix C explains the assembly and correct handling of a vacuum system, and ap-

pendix D details the setup, balancing and locking procedure of the homodyne detection

scheme. Finally, appendix F presents the observation and countermeasures to restore de-

graded mechanical quality factors due to adsorption of water molecules.
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Figure A.2 – Layout of the experiment.
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B Ti-sapphire laser operation

The quantum correlation measurements presented in this thesis were performed using a

MSquared SolsTiS Ti:Sapphire laser. Ti:Sa lasers are widely used in research as they provide

wide tuning range and output low amplitude and phase noise (cf. section 4.3.4). Figure B.1a

shows an image of the SolsTiS system used in the experiment. The first element in the chain of

the laser system is a 532 nm, 10 W laser serving as the pump for the titanium-doped sapphire

crystal (Ti:Al2O3). Following the pump laser is an optics module for injecting the pump light

into the cavity, which contains the Ti:Sa crystal inside the main laser cavity. A small fraction of

the laser head’s output is injected into a reference cavity, which reduces the laser linewidth

down to 50 kHz if locked to.

The laser is controlled via a web interface provided by an Ethernet control unit (ICE – Instru-

ment Control by Ethernet). A screen shot of the interface is shown in fig. B.1b. For locking of

the laser to a specific wavelength (e.g. a microresonator mode), the following procedure is

followed:

1. Identification of the target wavelength by characterizing the optical spectrum with the

diode laser and readout of the wavelength with a calibrated wavelength meter.

2. Coarse adjustment of the target wavelength by rotation of a motorized intracavity

birefringent filter.

3. Adjustment and locking of the intracavity thin etalon for stable operation close to the

target wavelength.

4. Locking to the temperature-controlled reference cavity at the target wavelength using

one of the SolsTiS cavity mirrors, which is mounted on a fast piezo.

5. Finally, a PDH lock is applied by feeding an error signal, which is derived from the

science cavity resonance, to the laser controller.

Once locked to the science cavity, the laser operates stably for sufficient periods of time,

allowing to perform the experiments without midst falling out of the lock. Typically, the
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a b

SolsTiS laser head

Reference cavity

Output

Pump optics module

532nm 10W pump laser

Figure B.1 – MSquared SolsTiS laser. (a) Picture of the Ti:sapphire laser system. (b) Screen shot of the software
interface for control of the laser.
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Figure B.2 – Frequency stability of the SolsTiS laser. (a) Short and (b) long term measurement of the beat
frequency versus time between two Ti:Sa lasers and a Menlo Systems frequency comb, stabilized to an atomic
clock. The SolsTis shows little drift < 1 MHz min−1.

laser stays locked for the entire work day. Figure B.2 a and b compare the short and long term

frequency stability of the SolsTiS system to that of a Sirah Matisse Ti:Sa system used in previous

experiments. The measurements were acquired by beating both lasers with a Menlo Systems

frequency comb, which is stabilized to an atomic clock, and monitoring the beat frequency

over time. Both the Ti:Sa lasers were hereby locked to their respective reference cavity and

left running for a day to equilibrate with the environment. The result shows very stable

operation of the SolsTiS with a frequency drift < 1 MHz min−1. Its linewidth was measured

to be ∼ 100 kHz, many orders of magnitude below the typical linewidth of the microdisk

resonators (κ≈ 2π ·1 GHz).
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C (Ultra-)High vacuum chambers

The center piece of the experimental setup is the vacuum chamber. Operation in such is

essential to alleviate gas damping (see section 3.3.3) of the mechanical oscillator but also to

avoid contamination of the sample due to dust particles, adsorption of water molecules, etc.

For an optimal result, it is vital to keep the vacuum chamber as clean as possible. For this, we

adhere to the following vacuum guidelines:

• Keep the chamber vented for as short as possible. Especially when performing tasks

outside the chamber in between (change of samples with air-side mounting steps,

modification of the vacuum-side setup, etc.), the chamber should be closed and ideally

evacuated, even if with mechanical pumps only. This will keep possible contamination

of the chamber’s inside to a minimum.

• Vent and purge the chamber with dry nitrogen (N2) gas instead of air. This helps to

reduce the amount of unwanted adsorbate (especially water molecules) introduced into

the chamber.

• Only use vacuum compatible components and materials with very low out-gassing rates

under vacuum. We use materials that are often considered for vacuum applications,

which include (unanodized) metals such as 304(L) stainless steel and aluminum, plastics

like Teflon (PTFE) and polyether ether ketone (PEEK), and alumina ceramics for thermal

isolation. For electrical connections, Kapton insulated wires and lead-free solder are

common choices. Another feature of vacuum compatible components are the polished

surfaces minimizing the amount of adsorption of water molecules.

• Any component introduced into the vacuum setup must be thoroughly cleaned in order

to remove various residues, e.g. flux from soldering, lubricants from machining, etc.

Following these steps, the experiments of this thesis were performed in a high-vacuum envi-

ronment at a pressure around 10−7 mbar using the setup described in appendix A. The limiting

factor in the achievable pressure (besides the ISO-KF flanges that are rated for pressures down
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Appendix C. (Ultra-)High vacuum chambers

Figure C.1 – Ultra-high vacuum chamber: Featuring only CF flanges, this chamber is capable of reaching the
UHV regime. The right hand side of the picture shows the port for the mechanical pump (roughing and turbo
pump) together with the leak valve used to vent and purge the chamber with nitrogen gas. In the background, the
ion pump is placed, guaranteeing vibration-free operation at high-vacuum levels. The chamber and flanges are
wrapped in heat ribbons for a potential bake-out, once gas-damping becomes the limiting factor.

to 10−8 mbar) is water that is adsorbed onto the surfaces when the chamber is cycled. Under

vacuum, this leads to desorption of water vapor limiting the ultimate pressure to ∼ 10−8 mbar.

This limitation can be eluded by heating up the entire vacuum system, also referred to as a

bake-out.

For future measurements where gas damping even at high vacuum pressures might become

an issue, we have designed a new chamber capable of reaching the ultra-high vacuum (UHV)

regime < 10−9 mbar. To this end, we created a similar design to the setup already in place with

the key difference of using conflat (CF) flange interconnections. The new UHV chamber is

shown in fig. C.1.

The following sections detail the cleaning procedure of the components (appendix C.1), as-

sembly advices of the UHV chamber (appendix C.2) and the bake-out process (appendix C.3).

C.1 Cleaning

As mentioned above, all parts that are being placed inside a vacuum system must be extremely

clean in order to limit out-gassing, but also reduce the risk of redepositing contaminants onto

samples during pump-down and bake-out. Documents are publicly available detailing the

cleaning procedures for UHV components in large-scale high-energy physics experiments,

such as the Deutsches Elektronen-Synchrotron (DESY) [230] and the European Organization

for Nuclear Research (CERN) [231], and also for the Laser Interferometer Gravitational-Wave
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C.2. Assembly of a UHV system

Observatory (LIGO) [232].

The essential procedure for cleaning of parts and components is the following:

1. Wearing gloves through the entire procedure, the first step is to wipe off visible grease

and dirt (e.g. lubricants from machining) using lint free wipers.

2. In an ultrasonic bath, in which contaminants also in hard-to-reach places are removed,

the parts are then cleaned using an appropriate detergent (based on the material, refer to

the references given above) for at least 20 minutes. Afterwards, the detergent is replaced

first with acetone (if all materials permit), followed by ethanol and finally methanol. For

each of these, the parts are sonicated for another 20 minutes minimum. While acetone

is very suitable for thorough cleaning, it will leave residues on the surface and hence

contaminate the UHV environment. Therefore, ethanol and methanol, solvents with

gradually lower molecular weight, are used as the final steps to replace the acetone.

3. The now clean parts should be immediately dried with nitrogen gas to completely

evaporate any remaining residues from the solvents.

4. After finishing the cleaning procedure, the components should be immediately imple-

mented into the vacuum system to avoid recontamination. If prior assembly is necessary

work on a clean workbench layered with aluminum foil.

5. Before placing a sample into the setup, the vacuum chamber should be evacuated after

new components have been added to the system.

Parts and components that are too large for the sonicator (e.g. the vacuum chamber itself)

need to be thoroughly cleaned using lint free wipers and the solvents mentioned above in the

same order, followed by drying with nitrogen gas.

C.2 Assembly of a UHV system

For UHV applications, it is inevitable to use conflat (CF) matings throughout the entire system.

Instead of a Viton o-ring as it is the case for ISO-KF flange connections, each of the two mating

CF flanges has a knife edge that cuts into a copper gasket, creating an extremely leak-tight,

metal-to-metal seal. As the soft copper is able to forgive small defects in the knife-edges of

the flanges, CF in principle allows for an operation down to 10−13 mbar. In reality the base

pressure will be limited by out-gassing of the materials used inside the chamber.

The key for being able to reach UHV base pressures is a leak-free assembly of the vacuum

system. Other than the easy-to-handle ISO-KF flanges, conflat flanges require a careful

procedure as the copper gasket must be uniformly clamped. In contrast to the Viton o-

rings for the KF system, the copper gaskets cannot be reused, i.e. a new (clean, see procedure
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Figure C.2 – Sequence for CF flanges: ”Triangular-reverse-direction" pattern for sealing CF flanges. For description
refer to the text.

in appendix C.1) gasket is necessary each time two flanges are mated. To avoid ”see-sawing"

and to ensure a leak-free seal, the copper gasket should be clamped evenly.

In the UHV community, a well-established method is the ”triangular-reverse-direction" se-

quence in which the bolts are tightened in triangular patterns with alternating directions.

The sequence is illustrated in fig. C.2 for the two common flange sizes in our setup. Ideally

with a torque wrench starting from low 6 Nm, at least two rounds of the sequence should be

completed each time before gradually increasing the torque in 1−2 Nm steps to the maximum

value of typically 20 Nm. At this torque, the sequence should finally be gone through multiple

times until none of the bolts tighten any further. After completion of this entire procedure,

an even gap of ∼ 1.5 mm between the flanges with the copper gasket remaining barely visible

indicates a leak-tight seal. Ultimately, all matings should be checked by performing a leak test.

For convenience, fluorocarbon gaskets are available that provide a reusable seal in non-critical,

non-UHV applications, particularly when frequent reassembly is necessary (e.g. frequent

changes of samples). These have similar ratings to ISO-KF seals in terms of pressure but

cannot be baked out, as the maximum temperature rating is typically < 100◦C.

Figure C.3 shows measurements of the pressure versus time. The orange trace represents a

pump down using only the turbo pump. When comparing to the blue trace, which shows a

pressure curve, where the pumping has been switched to an StarCell ion pump after two hours

of turbo pumping to ∼ 1 ·10−4 mbar, a significant improvement in pump speed is observable.

The red trace shows the initial pump down after the assembly of the chamber. The pump speed

is slower due to evaporating solvent residues etc. A slower pump down is also typical after

exposing the chamber to atmosphere for an extended amount of time, as well as after adding

freshly cleaned components. With the present setup, we can reach pressures ∼ 8 ·10−7 mbar

when pumping for several days.
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Figure C.3 – Pumpdown of the vacuum chamber: Measurement of the pressure inside the vacuum chamber
versus time. The orange trace shows a pump down with only the turbo pump. Higher pump power is supplied by
the StarCell ion pump which can be switched to at pressures ∼ 1 ·10−4 mbar (blue trace). The red trace shows the
initial pump-down after assembly which is slower due to evaporating solvent residues etc.

For ongoing experiments with nanobeam samples that feature extremely high mechanical

quality factors (see the outlook in chapter 5), gas damping might become the limiting factor at

these pressures. To reach pressures in the UHV range, a bake out of the chamber is inevitable.

The process is detailed in the following section.

C.3 Bake-out of a vacuum chamber

Every time a vacuum system is opened to ambient air with its attendant humidity, the internal

surfaces (chamber surfaces as well as other parts inside the chamber) are covered with multiple

layers of water molecules. Any subsequent pump-down removes two components from the

vacuum system: the permanent gases contained in air (mainly O2 and N2) and the water

molecules desorbing from the internal surfaces. It turns out that at pressures below 10−3 mbar,

water makes up 99% of the gas load. As the water-to-water bonds get stronger from the last

formed layers towards the chamber walls, the desorption rate Qdes, given by [233],

Qdes =
qdes At0

t
, (C.3.1)

decreases over time t . Here, A denotes the vacuum-side surface of the chamber, qdes is a

material constant describing the desorption rate per unit area (qdes = 2.7 ·10−4 Pa m3 s−1 m−2

for stainless steel), and t0 ∼ 1 h is the time constant. As the pressure p is given by the ratio of

desorption rate and pump speed S, one finds for the total pump time,

t = qdes At0

pS
. (C.3.2)

At a pumping speed S = 35 l/s, a valid value for the Agilent StarCell 40 ion pump used in the

experiments, and assuming a surface area A ∼ 2 m2, the pump-down time towards a pressure
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Appendix C. (Ultra-)High vacuum chambers

p = 10−8 mbar = 10−6 Pa would be t ≈ 643 d. In fact, when considering the expression for the

mean dwell time of adsorbed particles [234],

τ= τ0 exp

(
Edes

RT

)
, (C.3.3)

where τ0 = ν−1
0 ≈ 10−13 s denotes the time constant as inverse of the vibration rate ν0 ≈ 1013 s−1

of the adsorbed molecules, the desorption energy Edes that needs to be exceeded by the kinetic

energy of the particles in order for them to desorb, the temperature T and the gas constant

R = 8.314 J mol−1 K−1. The molar desorption energy of H2O on aluminum or stainless steel is

approximately Edes ≈ 90 kJ mol−1 [234] which results in an average dwell time of τ= 864 s at

room temperature (T = 295 K). Elevating the temperature of the chamber to 200◦C, this time

reduces to 9 ·10−4 s, an improvement by six orders of magnitude. The desorption rate follows a

similar behavior known from radioactive decay, and the time t required to reduce the number

of adsorbed molecules to a fraction f can be calculated as,

t = τ · ln

(
1

f

)
. (C.3.4)

The time to achieve f = 10−6 at room temperature is t ≈ 105 s, while at 200◦C the same

calculation yields t ≈ 10 ms.

This demonstrates the strong dependence of the desorption rate on temperature, and shows

the importance of a bake out of a vacuum system when targeting a pressure below 10−7 mbar.

A common strategy is to heat the vacuum chamber to 200◦C for a period of 48 h during the

pump-down, such that almost all water molecules are desorbed from the inside surfaces into

the vacuum and pumped out of the system.

In fig. C.1, it is shown how the heat ribbons, that are regulated by a PID controller, are wrapped

around the chamber. They can heat up the entire system up to 180◦C, the temperature limit for

the most sensitive components in our system: the attocube nanopositioners. For an efficient

bake-out, the entire system needs to be thermally isolated from the environment by wrapping

several layers of fiberglass and finally a layer of aluminum foil around the chamber and its

connected components. This also ensures a uniform heating to avoid thermal expansion

gradients across the system.
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D Setup and operation of a balanced
homodyne interferometer

Dichroic mirrors

50:50 beam splitter

Focusing
lenses

Balanced detector

Piezo mirror

Flip mirror
mount

Avalanche
photodiode

Focusing
lens

Motorized
translation stage

Figure D.1 – Balanced homodyne detection layout: Signal beam from the optomechanical device (blue) and local
oscillator (red) are combined at a 50:50 beam splitter, such that both are spatially overlapped at the two output
ports. Both output beams are then focused onto the two photodiodes of a balanced detector. A piezo mirror and a
motorized translation stage in the local oscillator path provide fast and slow feedback channel for the phase lock,
respectively. Before entering the interferometer, part of the signal beam is directed to an avalanche photodiode for
locking the laser to the cavity resonance using the Pound-Drever-Hall method. For more details, refer to the text.
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Figure D.2 – Length balancing of a homodyne interferometer: (a) Measurement of ωfringe versus length imbal-
ance and converted to relative imbalance ΔL/λ. The red dashed line is a linear fit to only the ten points with largest
imbalance which demonstrates the robustness of this method. (b) The frequency ωfringe of the interference fringes
reduces with decreasing |ΔL|. Shown are three points with large (orange trace), intermediate (blue) and small
imbalance (red).

The foundations of a balanced homodyne interferometer are detailed in section 2.4.4. This

chapter details the experimental realization of the homodyne setup used in the experiment,

as shown in fig. D.1. The signal beam (blue trace) is broken out of the fiber coming from

the optomechanical system. It is directed through a dichroic mirror that is transmissive for

780 nm and reflective at 830 nm. Due to its imperfectness, it also reflects a small fraction of

the 780 nm light, which is used for Pound-Drever-Hall locking [146] to the resonance of the

optomechanical device. The main fraction of the signal is directed to a balanced beam splitter

where it is spatially overlapped with a local oscillator beam from the same laser source (hence

the term homodyne), which is polarization matched using the quarter- and half-waveplates in

its path. The overlap is achieved by using a flip mirror to fiber couple the two beams behind

one of the beam splitter’s outputs into the same single-mode optical fiber. After this, the flip

mirror is removed and both beam-splitter output beams are focused onto the two photodiodes

of a balanced detector, that then outputs the subtraction of the two inputs as an electric signal

(see section 2.4.4). To avoid back reflections from the photodiodes back into the signal fiber,

the balanced detector is slightly rotated.
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The fundamental aim of a balanced homodyne detection is the capability to perform a mea-

surement of an arbitrary but constant quadrature of the signal. The challenging aspect under

experimental conditions lies hereby in the preservation of a constant relative phase, θhom,

between the signal and local oscillator light fields. For given path lengths Lsig(LO) of the signal

(LO) arm, the homodyne phase is found to be,

θhom ≈ 2π

λl

(
Lsig

nsig
− LLO

nLO

)
≈ 2π

λlneff

(
Lsig −LLO

)
, (D.0.1)

where λl denotes the optical wavelength and nsig(LO) the refractive index of the signal (LO) path.

In the approximation, for both interferometer arms, an effective refractive index neff ≈ 1.5 is

assumed, as here the light propagates predominantly inside optical fiber for both. To achieve

a desired phase 0 ≤ θhom ≤π/2, the difference in path length, ΔL, relative to the wavelength is

required to be of order unity,
ΔL

λl
= Lsig −LLO

λl
→ 1. (D.0.2)

To experimentally realize a length imbalance in the order of the optical wavelength, a two-step

process is applied. In the first step, after alignment of the optics, the wavelength of the laser

is modulated with λ(t) = λl +δλ(t). This results in a mean of the homodyne photocurrent

(using eqs. (2.4.55) and (D.0.1)),

〈
Îhom(t )

〉∝ sin

(
2πΔL

neffλ

)
≈ sin

(
2πΔL

neffλ0
+ 2πΔL

neffλ0

1

λ0

dλ

dt︸ ︷︷ ︸
:=ωfringe

t

)
. (D.0.3)

The frequency ωfringe of the interference fringes therefore depends on the imbalance and

can be monitored using an oscilloscope. By repeatedly shortening and re-splicing the local

oscillator optical fiber (which is prepared intentionally at a length exceeding the signal path),

the frequency ωfringe is reduced for decreasing length imbalance between signal and local

oscillator. Practically, with this method an imbalance of ∼ 1 cm can be achieved, ultimately

limited by the precision with which the optical fiber can be cut and spliced. The reduction

in ωfringe ∝ΔL/λ is shown in fig. D.2a for decreasing the imbalance following this technique.

Figure D.2b shows the measured fringes during the process for large (light blue trace, large

ωfringe), intermediate (blue) and small imbalance (dark blue). The remaining path difference

is balanced with a micrometer translation stage supporting the input fiber coupler of the

signal beam. In the end, around ΔL ≈ 10λ, the interference fringes start to become sensitive

to minimal external disturbances implying that at this point, the homodyne imbalance has to

be actively stabilized.

To generate an error signal from
〈

Îhom(t )
〉

, the length imbalance is modulated by dithering a

piezo-mounted mirror in the local oscillator path (see fig. D.1). An example of an error signal is

shown as the red trace in fig. D.3a. Using a PID controller, a fast branch (10-300 Hz bandpass)

actuates the mirror piezo to suppress the corresponding high-frequency fluctuations in path

length, while a slow branch (1 Hz low-pass) at the same time feeds back on the motorized stage
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Figure D.3 – Homodyne lock and residual phase noise: (a) Homodyne error signal
〈

Îhom(t )
〉

when scanning the
piezo mirror (red trace) and in the locked case with activated PID controller (blue trace). (b) Spectral analysis of
the homodyne signal showing residual noise in the phase θhom in the unlocked (red) and locked (green) case. The
gray trace is the electronic noise limiting the ultimate stability.

underneath the output coupler of the LO (also marked in fig. D.1) to account for slow drifts, e.g.

due to temperature fluctuations or seismic activity. The homodyne interferometer can hence

be locked to an arbitrary quadrature by choosing the corresponding position on the fringe, and

activating the PID controller. The locked homodyne signal is shown as the blue trace in fig. D.3a.

The zero-crossing of the fringes – also acting as the lock point in this example – corresponds

to the phase quadrature and the minimum and maximum to the amplitude quadrature. For a

measurement close to the amplitude quadrature, the error signal is demodulated at the EOM

frequency which is also used to PDH lock the laser to the cavity. This facilitates the locking as

the derivation of the error signal then oscillates around the zero-crossing of the fringe error

signal, which in this case corresponds to the amplitude quadrature. Spectral analysis of the

error signal of the locked homodyne interferometer provides an estimation of the noise in

the homodyne phase due to imperfect locking. Figure D.3b shows the residual noise in the

homodyne phase θhom for both when the homodyne is locked and free-running. For low

frequencies, an upper-bound of Var
[
θ2

hom

]1/2 < 100 mrad for the locked homodyne can be

extracted from the data. For frequencies in the kHz regime, the presence of piezo resonances

limits the gain that can be applied.
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E Sample design and characterization

The fabrication process of the integrated near-field devices is detailed in section 3.2. Figure E.1

shows a photograph of a finalized chip, which contains 40 integrated near-field samples. This

large number allows for the sweep of sample parameters, such as beam geometry and width,

its position, or different disk sizes. This way, the behavior of the sample specifications for

varying design parameters, which are presented in section 3.3.5, can be easily investigated.

A sweep of e.g. the beam position can also be used to account for uncertainties during the

fabrication process and hence guarantee the fabrication of at least one sample on the chip with

the desired optimal design parameters. Top and bottom of each chip are used for placing a

unique labeling, indicating the wafer (top label) and chip (bottom). Figure E.2a shows a sketch

Wafer label

Chip label

Samples

Figure E.1 – Sample chip: Left: photograph of a chip after finalized micro fabrication. The chip is 16 mm x 5 mm in
size and holds 40 optomechanical near-field devices, consisting of an Si3N4 nanobeam placed in the evanescent
near-field of a SiO2 microdisk optical resonator. Each chip carries a unique label identifying the wafer (top label)
as well as the chip (bottom). Right: Close-up photograph of the individual devices.
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a b c

Figure E.2 – Sample chip: (a) Design sketch illustrating a parameter sweep of the lateral beam position in this case.
(b) Optical microscope image of the finalized samples on a ship. (c) Close-up of a single optomechanical device.
The label at the top, but also the actual device components (nanobeam, microdisk, fiber supports) are discernible.

illustrating a sweep of the lateral beam position in discrete steps across adjacent samples.

Figure E.2b shows a microscope image of adjacent samples. The close proximity between

the individual devices ensures a large variety across the entire chip. Finally, fig. E.2c shows a

close-up of a single optomechanical device. At this magnification, the sample number as well

as a description of the beam geometry are easily readable, facilitating the identification during

a measurement. Concerning the actual sample, the nanobeam above the microdisk as well as

the support bridges for the tapered optical fiber are discernible.

After fabrication, the samples are measured one-by-one for characterization of their optical

and mechanical properties. An example of a measurement result is shown in fig. E.3a and b.

From these values, the cooperativity C0 can be calculated to gain an estimate of the device’s

performance in the desired experiment. Typically, the highest cooperativity is achieved for the

beam position with the highest coupling g0, in this case for sample −1 with C0 = 0.64.

Besides characterization, the measurement results are also useful to reveal possible design

flaws that can be optimized for the following fabricated runs. Encountered examples for this

include excessive optical linewidths due to limited optical confinement because of too thin

microdisks, and misplaced nanobeams resulting in no available sample with a peak in C0

across the chip.
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a b

Figure E.3 – Characterization data: Characterization data for chip M2 A Up Top. (a) shows the optical properties,
in particular the wavelength λ of the measured resonance, its linewidth κ, mode splitting as well as the polarization
direction. (b) shows the measured mechanical resonance frequency Ωm, linewidth Γm and single-photon coupling
strength g0 for the respective optical modes from (a).
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F Degradation of the mechanical qual-
ity factor

As mentioned in section 2.1.2 for the optical quality factors of silica microresonators, the

hygroscopic nature of Si3N4 likewise causes the nanobeams to adsorb water molecules on

their surface when exposed to moist air. This process can occur when samples are kept outside

of flow boxes that serve the purpose of surround the samples in a dry nitrogen atmosphere,

but also in vacuum chambers that either have leaks or have been left at atmosphere for long

periods of time [235]. We investigated the degradation of the mechanical quality factor over

time by leaving samples exposed to normal air while periodically measuring Qm inside the

vacuum chamber. The result of these measurements is shown in fig. F.1a. First immediately

measured after the finalized fabrication, the mechanical quality factor shows rapid exponential

degradation by almost an order of magnitude within several days. An indicator that the

degradation is indeed caused by adsorption is the also exponentially decreasing resonance

frequency Ωm, a clear proof for an increased effective mass due to deposited particles.

However, it has been found that this process is reversible. The initial mechanical properties

of the samples can be fully restored by heating them on a hot plate to a temperature around

400◦C for the duration of an hour [235]. Our applied solution is an in-situ heating without

the need to vent the chamber and move the sample. This is realized by attaching a ceramic

microheater (and thermocouple) to the thermally isolated chip mount. We observe that this

in-situ baking of the chip for around half an hour could fully recover the mechanical quality

factors, as well as the resonance frequency to its original value, as shown in fig. F.1b.

Figure F.1c shows the measured noise spectra of sample 2 before (red) and after the bake (blue),

from which a clear improvement in mechanical quality factor is apparent. For easier visual-

ization, the shift in resonance frequency after baking is corrected for in this figure. Following

the assembly and cleaning procedures described in appendix C, the samples now no longer

experience any degradation due to redistribution of water molecules inside the chamber when

left in vacuum. In conclusion, the in-situ heating enables the restoration of the mechanical

quality factors, allowing for experiments on long time scales without any degradation. In

addition, the revised vacuum setups eliminate the previously observed problem of degrading

mechanics due to particle redistribution inside the chamber when under vacuum.
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Figure F.1 – Degradation of mechanical quality factor: (a) Measurement of Qm versus time of a sample when left
exposed to atmosphere (red data points). The blue dashed trace is an exponential fit to the data. The inset shows a
likewise exponential decrease in the mechanical resonance frequency Ωm, indicating an increased mass through
particle deposition. (b) Measurements of Qm for different samples, that were left exposed to atmosphere, before
(red data) and immediately after baking at 400◦C for half an hour (blue data). (c) Measured noise spectra of sample
2 before (red) and after (blue) heating the sample. For better visualization, the change in resonance frequency has
been corrected for. These measurements were taken with sample M8/CD/B/+1.
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G Two-level systems in cavity optome-
chanical systems

Optomechanical systems provide an excellent platform for the investigation of mechanical

dissipation mechanisms in materials such as silicon nitride and silicon dioxide. Due to

their amorphous structure, these glass materials inherit defects that can be described as

intrinsic two-level systems (TLS) with tunnel splitting �Δ0 and asymmetry energy �Δ, such

that the eigenstates are split by ΔT =
√

Δ2 +Δ2
0 (fig. G.1b) [236]. These TLS embody the

dominant decoherence channel at low operation temperatures that can be studied in a regime

in which the interaction between phonons and TLS becomes resonant, i.e. the dissipation

rate is dominated by resonant phonon absorption. The resonator-phonon interaction can be

approximated by the Jaynes–Cummings Hamiltonian [237],

HJC =
(
�ΔT

2

)
σz +�Ωmb†b +�λ

(
σ+b +σ−b†

)
. (G.0.1)

Here, σi denote the Pauli matrices and λ the TLS-phonon coupling rate,

λ≈ DT

�

Δ0

ΔT

√
�Ωm

2EVm
, (G.0.2)

with the deformation potential DT, Young’s modulus E of the material, the mechanical mode

volume Vm, and the assumption that λ�ΔT ≈Ωm [237]. From the above expression follows

that a high mechanical resonance frequency together with a small modal volume is desirable.

Silica (SiO2) microsphere resonators on needle support pillars, as shown in fig. G.1c, turn out

to be very suitable candidates for the observation of the direct phonon absorption, as for them

a regime can be achieved in which this process dominates the other loss channels, such as

losses introduced by the clamping to a support. The theoretical TLS model and parameters for

the amorphous SiO2 have been subjects of studies for a long time [238, 239]. At temperatures

below 10 K and for mechanical frequencies in the MHz regime, the level transition process is

dominated by tunneling of the phonon through the barrier. This can be approximated by two

asymptotic behaviors. At typically a few Kelvin, this process is independent of the temperature

T and results in a plateau value Q−1
tun,plateau. For lower temperatures, the mechanical absorption
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Figure G.1 – Two-level systems in optomechanical systems: (a) Glasses such as SiO2 and Si3N4 are amorphous
materials where atoms at certain lattice positions can have more than one equilibrium state. (b) At low temper-
ature, the defect can be effectively described by two states in a double-well potential, where Δ0 is the tunnel
splitting frequency and Δ the asymmetry frequency. (c) Scanning electron micrograph of an SiO2 microsphere
(Sample 32/10S/G0B/18) with ∼ 6.5 μm diameter on a silicon needle pillar (∼ 500 nm diameter). Also shown is an
FEM simulation of the displacement profile for the fundamental radial breathing mode of such a sphere with a
mechanical resonance frequency of in this case Ωm ≈ 2π ·650 MHz. (d) Estimation of the loss channels of a silica
microsphere resonator. For the sample parameters used, a dominating contribution due to resonant phonon
absorption is expected below the temperature of 1 K.

decreases with T , yielding Q−1
tun,slope(T ). When working at even lower temperatures (and/or

higher mechanical frequencies), the so-called resonant absorption regime (given by Q−1
res(T ))

can be reached, in which the phonon energy corresponds to the TLS energy such that coherent

processes take place. The expressions for these three contributions are given by,

Q−1
tun,slope (T ) = 9ζ (3)

π

ΩmP̄B 4

ρ2c7
s�

4
(kBT )3 , (G.0.3)

Q−1
tun,plateau = πP̄B 2

2ρc2
s

, (G.0.4)

Q−1
res (T ) = πP̄B 2

ρc2
s

tanh

(
�Ωm

2kBT

)
. (G.0.5)

Here, P̄ denotes the TLS distribution parameter, B the parameter linking a deformation to

a change in energy splitting, ρ the mass density, cs the speed of sound and ζ (s) is the Rie-

mann zeta function of s. Evaluating these expressions for specifically fabricated microsphere

samples, as shown in fig. G.1c, combined with their derived clamping loss rate suggests a

measurable increase of total dissipation at temperatures below 1 K, according to the resonant
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Figure G.2 – Optical and mechanical properties of microsphere resonators: (a) Measurement of the optical
linewidth versus sphere diameter. Spheres with a radius less than ∼ 6 μm are radiation loss limited, as the good
agreement to the model suggests. The inset shows a model for the mechanical resonance frequency of the
fundamental breathing mode, following a r−1

s dependence. (b) Measurement of the mechanical quality factor for
an elevated temperature. The data shows good agreement with the model, combining the losses due to relaxation
and estimated clamping losses from an FEM simulation.

absorption process (cf. fig. G.1d). This environment can be achieved inside a Helium-3 cryo-

stat that condenses to temperatures as low as 500 mK. As the mechanical resonance frequency

scales inversely with the sphere radius, i.e. Ωm ∝ r−1
s (see inset of fig. G.2a), one might suggest

to work with sphere radii as small as possible. However, this comes at the expense of rapidly

increasing radiation losses for the optical modes (cf. section 2.1.2), rendering a sensitive

measurement of the mechanical resonance difficult. A measurement of κ vs. sphere size is

shown in fig. G.2a, based on which a sphere size of rs ≈ 3.5 μm has been chosen as a trade-off

between decent optical quality factor and expected contribution of the resonant phonon

absorption. A measurement of the mechanical quality factor versus temperature between

room temperature and 100◦C (fig. G.2b) shows good agreement with the theoretical TLS model

(dominated by relaxation processes in this regime). A measurement at cryogenic temperatures

has not yet been conducted but a recent similar experiment focusing on acoustic fiber modes

could successfully observe the resonant phonon absorption [240].

In addition to strain, it has been found that TLS are also susceptible to classical electromagnetic

fields [236, 241]. In particular, the two-level systems interact with a coherent microwave drive

at Rabi frequency Ωμ according to the Hamiltonian,

HTLS,μ = �Ωμeiωμtσ−+�ω∗
μe−iΩμtσ+. (G.0.6)

Applying such a microwave drive to the optomechanical system, the TLS can be driven into

their excited state and thus the resonant phonon absorption be suppressed. This would lead

to higher mechanical quality factors by removing the loss channel due to the TLS absorption.

This would be especially interesting for experiments with optomechanical systems close to

their quantum-mechanical ground state that consist of amorphous materials and operate at

high mechanical resonance frequencies. One example is the silica microtoroid in a Helium-

3 cryostat that is placed in a T ∼ 500 mK environment, a regime close to the dominating

resonant absorption [187]. Further, the ability to drive the defect with a resonant microwave
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field enables the realization of a phonon blockade, and eventually the preparation of non-

classical states of the mechanical oscillator [237].
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