Circuit Design, Architecture and CAD for RRAM-based
FPGAs

THESE N° 8084 (2017)

PRESENTEE LE 24 NOVEMBRE 2017
A LA FACULTE INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE DES SYSTEMES INTEGRES (IC/STI)
PROGRAMME DOCTORAL EN INFORMATIQUE ET COMMUNICATIONS

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

POUR L'OBTENTION DU GRADE DE DOCTEUR ES SCIENCES

PAR

Xifan TANG

acceptée sur proposition du jury:

Prof. A. P. Burg, président du jury
Prof. G. De Micheli, Dr P.-E. J. M. Gaillardon, directeurs de these
Prof. M. Huebner, rapporteur
Dr J. Ryckaert, rapporteur
Prof. P. lenne, rapporteur

(Pr

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Suisse
2017

We're paratroopers, Lieutenant.
We're supposed to be surrounded.
— Richard Winters

To my parents and grandparents. ..

Acknowledgements

It is an amazing experience to spend six years in EPFL pursuing my master and PhD degrees.
Itis my great honor to have Prof. Giovanni De Micheli and Prof. Pierre-Emmanuel Gaillardon
supervising my doctoral researches. Without their insights and tremendous support on both
technical works and scienti ¢ writings, this work may not be possible. Their serious attitudes
on scienti ¢ researches drive me to improve my works to the most. In addition, their sincere
advices on personal development also inspire me greatly.

| am also grateful to my scienti ¢ collaborators: Prof. Paolo lenne, Dr. Mathias Soeken, Prof.
Zhufei Chu, Prof. Vasilis F. Pavlidis, Dr. Jian Zhang, Dr. Hu Xu, Edouard Giacomin, Kim Gain,
Dr. Grace Zgheib, Dr. Ana Petkovska and Maxime Thammasack for their advices and important
contributions to technical work. In particular, | really appreciate the technical contributions
from Prof. Zhufei Chu, Dr. Jian Zhang and Edouard Giacomin. Their works indeed have added
remarkable value to my research outcomes.

| should also express my deepest appreciation to Prof. Lingli Wang, who showed me the
world of FPGA and taught me good habits at the beginning of my academic career. His
encouragement solids my motivation in pursuing a PhD degree.

I would like to express my appreciation to my colleagues in Integrated Systems Laboratory,
especially Mme. Christina Govoni for helping me with all the administrative work. | should
also express my appreciation to IT manager, Rodolphe Buret, for his hard work in maintaining
powerful computers and servers. | thank Dr. Jian Zhang, Prof. Zhufei Chu and Dr. Hu Xu for
the collaboration work broadening my vision and knowledge. | am glad to have Winston Jason
Haaswijk and Eleonora Testa as my of ce mate, for sharing happiness and sadness during
work hours.

I would like to thank my family: my mother Weigian Tang, my father Jianhua Zhang, my
grandparents Yongming Tang and Jinzhu Chen for supporting me unconditionally all the time.
It is their spiritually supports that give me the in nite courage and determination to crash any
dif culties during my PhD.

Last but not least, | would like to thank Dr. Jian Zhang, Dr. Hao Zhuang, Dr. Tian Guo, Bin Jin,
Yujie Wu, Jun Ma, Dr. Hezhi Zhang, Dechao Sun and all of my friends, who let me enjoy the life
in Switzerland and the happy time we spent together.

Lausanne, August 2017 Xifan Tang

Abstract

Field Programmable Gate Arrays (FPGASs) have been indispensable components of embedded
systems and datacenter infrastructures. However, energy ef ciency of FPGAs has become a
hard barrier preventing their expansion to more application contexts, due to two physical
limitations: (1) The massive usage of routing multiplexers causes delay and power overheads
as compared to ASICs. To reduce their power consumption, FPGAs have to operate at low
supply voltage but sacri ce performance because the transistors drive degrade when working
voltage decreases. (2) Using volatile memory technology forces FPGAs to lose con gurations
when powered off and to be recon gured at each power on.

Resistive Random Access Memorie$RRAMS) have strong potentials in overcoming the physical
limitations of conventional FPGAs. First of all, RRAMs grant FPGAs non-volatility, enabling
FPGAs to be "Normally powered off, Instantly powered on". Second, by combining functional-
ity of memory and pass-gate logic in one unigue device, RRAMs can greatly reduce area and
delay of routing elements. Third, when RRAMs are embedded into datpaths, the performance
of circuits can be independent from their working voltage, beyond the limitations of CMOS cir-
cuits. However, researches and development of RRAM-based FPGAs are in their infancy. Most
of area and performance predictions were achieved without solid circuit-level simulations
and sophisticated Computer Aided Design (CAD) tools, causing the predicted improvements
to be less convincing.

In this thesis, we present high-performance and low-power RRAM-based FPGAs from transistor-
level circuit designs to architecture-level optimizations and CAD tools, using theoretical anal-
ysis, industrial electrical simulators and novel CAD tools. We believe that this is the rst
systematic study in the eld, covering:

From a circuit design perspective , we propose ef cient RRAM-based programming circuits
and routing multiplexers through both theoretical analysis and electrical simulations. The pro-
posed 4T (ransitor)1R(RAM) programming structure demonstrates signi cant improvements

in programming current, when compared to most popular 2T1R programming structure.
4T1R-based routing multiplexer designs are proposed by considering various physical design
parasitics, such as intrinsic capacitance of RRAMs and wells doping organization. The pro-
posed 4T1R-based multiplexers outperform best CMOS implementations signi cantly in area,
delay and power at both nominal and near- V; regime.

From a CAD perspective , we develop a generic FPGA architecture exploration tool, FPGA-
SPICE, modeling a full FPGA fabric with SPICE and Verilog netlists. FPGA-SPICE provides
different levels of testbenches and techniques to split large SPICE netlists, in order to obtain

Abstract

better trade-off between simulation time and accuracy. FPGA-SPICE can capture area and
power characteristics of SRAM-based and RRAM-based FPGAs more accurately than the
currently best analytical models.

From an architecture perspective , we propose architecture-level optimizations for RRAM-
based FPGAs and quantify their minimum requirements for RRAM devices. Compared to the
best SRAM-based FPGAS, an optimized RRAM-based FPGA architecture brings signi cant
reduction in area, delay and power respectively. In particular, RRAM-based FPGAs operating
in the near- V; regime demonstrate a 5 £ power improvement without delay overhead as
compared to optimized SRAM-based FPGA operating at nominal working voltage.

Key words: Resistive Memory, Field Programmable Gate Array, Circuit Design, Programming
Structure, Multiplexer, Physical Design, Computer-Aided Design

Réesumeé

Les Réseaux de Portes Programmables in Situ (Field Programmable Gate Arrays - FPGA) sont
des composants indispensables aux systemes embarqués et aux infrastructures de systémes de
données. Cependant, I'ef cacité énergétique des FPGA est devenue une barriere empéchant
leur expansion a de nouveaux contextes d'applications, du fait de deux limitations physiques :

(1) Lutilisation massive de multiplexeurs de routage engendre une augmentation des délais et

de la consommation énergétique par rapport aux ASICs. A n de réduire leur consommation
d'énergie, les FPGAs peuvent fonctionner a faible tension d'alimentation mais cela engendre
une perte de performances car les transistors se dégradent lorsque la tension de fonction-
nement diminue. (2) Lutilisation d'une technologie de mémoire volatile oblige les FPGA a
recon gurer leurs informations de con gurations a chague mise sous tension.

Les mémoires résistives (Resistive Random-Access Memory- RRAM) ont de forts potentiels
pour surmonter les limitations physiques des FPGA conventionnels. Premierement, les RRAMs
permettent aux FPGA d'étre non-volatiles, leur permettant ainsi de ne pas perdre leur con -
guration lors de la mise hors tension et d'étre instantanément opérationnels lors de la mise
sous tension. Deuxiémement, en combinant la fonctionnalité de la mémoire et de la logique
des portes de transmission dans un seul et méme composant, les RRAM peuvent considéra-
blement réduire l'aire et le délai des éléments de routage. Troisiemement, lorsque les RRAM
sont intégrées dans les chemins d'acces, les performances des circuits peuvent devenir in-
dépendante de la tension de fonctionnement, bien au-dela des limites des circuits CMOS.
Cependant, les recherches et le développement des FPGA basés sur des RRAMs en sont a leurs
débuts. La plupart des prédictions en termes d'aire et de délai ont été réalisées sans simula-
tions approfondies au niveau du circuit et sans outil de Conception Assistée par Ordinateur
(CAOQ), rendant incertaines les prédictions de performances.

Dans cette thése, nous proposons des FPGA haute performance et faible consommation, basés
sur RRAMSs au travers de I'étude des circuits au niveau du transistor jusqu'aux optimisations
architecturales et la création d'outils CAO spéci ques, et en utilisant I'analyse théorique, les
simulateurs électriques industriels et les nouveaux outils de CAO. Nous sommes convaincus
que c'est la premiére étude du domaine couvrant :

Du point de vue de la conception de circuits , nous proposons des circuits de programma-
tion ef caces basés sur des RRAMs et des multiplexeurs de routage évalués a la fois a tra-
vers des analyses théoriques et des simulations électriques. La structure de programmation
4T (ransitor) 1IR(RAM) proposée démontre des améliorations signi catives en termes de cou-
rant de programmation, par rapport a la structure de programmation 2T1R la plus populaire.

Abstract

Des multiplexeurs de routage basés sur les structures 4T1R sont proposés en considérant
divers facteurs parasites tels que la capacité intrinséque des RRAMs et l'arrangement des zones
de dopage substrat. Les multiplexeurs basés sur les 4T1R surpassent les implémentations
CMOS de maniére signi cative en termes d'aire, délai et de consommation énergétique, en
régime nominal et en régime proche de la tension de seuil.

Du pointde vue de la CAO |, nous développons un outil générique d'exploration d'architectures

de FPGAs, FPGA-SPICE, capable d'exporter le modéle SPICE ou verilog d'un FPGA complet.
FPGA-SPICE fournit différents niveaux de banc d'essais et des techniques pour diviser les
larges représentations SPICE a n d'obtenir les meilleurs compromis en termes de temps de
simulation et précision. FPGA-SPICE peut capturer les caractéristiques des FPGA basées sur
SRAM et RRAM en termes d'aire et de consommation plus précisément que les meilleurs
modeéles analytiques actuels.

Du point de vue de l'architecture , nous proposons des optimisations au niveau de I'archi-
tecture pour les FPGA basés sur des RRAMs et quanti ons les spéci cations minimales pour
les RRAMSs. Par rapport aux meilleurs FPGAs basés sur des SRAM, une architecture FPGA
optimisée basée sur des RRAMs apporte de grandes améliorations en termes d'aire, de délai et
de consommation. En particulier, les FPGAs basées sur des RRAMs fonctionnant en régime
proche de la tension de seuil démontrent une consommation énergétique 5 fois inferieur sans
délais supplémentaires par rapport aux FPGAs optimisés utilisant des SRAMs et fonctionnant

a la tension de travail nominale.

Mots clefs : Mémoire Résistive, Réseaux de Portes Programmables in Situ, Conception de Cir-

cuits, Structures de Programmation, Multiplexeur, Conception Physique, Conception Assistée
par Ordinateur

\Y

Contents

Acknowledgements i

Abstract (English/Frangais/Deutsch) iii

List of gures Xi
List of tables XVil
1 Introduction 1
1.1 Overviewof RRAMS 2
1.2 Advantages and ChallengesforFPGAs 4
1.3 Opportunitiesin RRAM-based FPGAs 5
1.4 Contributionsand Organization 6
2 Background and Previous Works 11
2.1 RRAMTechnology 11
2.1.1 Resistive Characteristics 13
2.1.2 Capacitive Modeling e 15
2.1.3 Trade-offbetween Rigsand Cp 16
2.1.4 Co-Integration with CMOS Technology and Scaling Trends 16
2.1.5 ProcessVariations 18
2.1.6 Material Engineering for Application Requirements 19
2.2 Conventional FPGA Architectures L 20
2.2.1 Classical Architectures 20
2.2.2 Architectural Enhancementso o 25
2.2.3 CircuitDesignsinFPGAS 30
2.2.4 Memory TechnologiesforFPGAs 34
2.3 Previous works about RRAM-based Circuit Designs and FPGA Architectures . . 38
2.3.1 Programming Structures 38
2.3.2 Non-Volatile Flip-Flopand SRAM 41
2.3.3 Multiplexerand CrossbarDesigns 41
2.3.4 RRAM-based FPGA Architectures 43
2.4 FPGA Architecture Exploration Tool and Power Modeling Technique 46
241 FPGAEDA OW 46

Vii

Contents

2.4.2 Probability-based Power Estimation Techniques 47
25 Summary e e 52
3 RRAM-based Circuit Designs 53
Part 1: RRAM-based Programming Structures
3.1 Experimental Methodology 54
3.2 Limitations of 2T1R Programming Structure 54
3.2.1 2T1IRCircuitStructure e 55
3.2.2 |-V Characteristics of 2T1R Structure 56
3.2.3 Physical Design Difculties 58
3.2.4 AreaEstimation 59
3.2.5 Electrical Simulations 60
3.2.6 Discussion About Limitations L. 61
3.3 2TGI1R Programming Structure 62
3.3.1 2TG1RCircuitStructure e 62
3.3.2 AreaEstimation 63
3.3.3 Electrical Simulations 65
3.3.4 Summary: Advantages and Limitations 66
3.4 A4ATIRProgramming Structure e 67
3.4.1 A4TIRCircuitStructure 68
3.4.2 Theoretical Analysis on |-V Characteristics 69
3.4.3 Current Density Boosting Methodologies 71
3.4.4 AreaEstimation 73
3.45 Benetsof4T1Rstructures 74
3.4.6 Summary on the 4T1R programming structures 76
3.4.7 DISCUSSION e e 77
Part 2: RRAM-based Multiplexer Designs
3.5 Basic4T1R-based Multiplexer. 80
3.5.1 Multiplexer Structure and Programming Strategy 80
3.5.2 Limitations from a Physical Design Perspective 82
3.6 Improved 4T1R-based Multiplexer, 83
3.6.1 One-level Multiplexer Structure 83
3.6.2 Physical Design Advantages oo 85
3.6.3 Two-level and Tree-like multiplexer Structure 86
3.6.4 Sharing deep N-Well between multiplexers 88
3.6.5 Constraints on the Programming Voltage Vprog 89
3.6.6 Analytical Comparison between 4T1R multiplexers 92
3.7 Optimal Physical Design Parameters 93
3.7.1 RC modeling of General 4T1R-based multiplexers 93
3.7.2 Physical Positionof RRAMs 96
3.7.3 Programming Transistor Sizing Technique 97
3.8 ExperimentalResults 99

viii

Contents

3.9

Simulation-based Architecture Exploration Tool
4.1 Principles
4.1.1 SPICE Modeling
4.1.2 Verilog Modeling
Extended Architecture Description Language

4.2

4.3

4.4

4.5

4.6

3.8.1
3.8.2
3.8.3
3.8.4
3.8.5
3.8.6
3.8.7
3.8.8

3.9.1
3.9.2
3.9.3

4.2.1 Transistor-level Module Declaration
4.2.2 Physical Structure Modeling
4.2.3 Con guration Circuitry
Transistor-level Circuit Netlist Generation
Inverters/Buffers
Pass-gate Logic
SRAM
Scan-chain Flip-Flop
IOCircuits

43.1
43.2
4.3.3
4.3.4
4.3.5
4.3.6
4.3.7
4.3.8

4.4.1 Voltage Stimuli and Loads Extraction
4.4.2 Parasitic Activity Estimation
Experimental Results

451
452
453
454
4.5.5
4.5.6

Experimental Methodology
Transient Analysis
BestWprog for RRAM-based Multiplexers
Optimal RRAM Location
Area Comparison
Delay Improvements
Energy and Power Bene ts
Area-Delay and Power-Delay Products Analysis
Impact of Process Variations of RRAMs
Impact of Variationson Cp

Impact of Variations on Vg
Impact of Variations on Vyeget
3.10 Summary

Multiplexers

Look-Up Tables
Channel Wire
Netlist Partitioning Strategies

Methodology

Functional Veri cation
Studies on Runtime, Memory Usage and Accuracy
Power Breakdowns
Accuracy Examination vs. VersaPower
Area Characteristics of SRAM-based FPGAs
Summary

Contents

5 RRAM-based FPGA Architectures 149
5.1 GeneralVision e 150
5.1.1 Choice of Non-volatile Modules 150
5.1.2 CongurationCircuits 152
5.1.3 Experimental Methodology, 153
5.1.4 AreaCharacteristics 154
5.1.5 Power Characteristics 157
5.1.6 OverallPerformance 164
5.2 Architecture-level Optimizations 164
5.2.1 Experimental Methodology 165
5.2.2 UniedConnectionBlock 166
5.2.3 Increase Capacityof SBMUXes, 172
5.2.4 SmallerBestLengthWire C4 174
5.2.5 RRAM-based FPGAsvs. SRAM-based FPGAs 177
5.3 Summaryo e e 177
6 Conclusion and Future Work 181
6.1 Summary of Contributions 181
6.2 Future Work e 185
A An appendix 187
A.1 Examples of FPGA-SPICE Architecture Modeling 187
Bibliography 214
Curriculum Vitae 215

List of Figures

1.1 A RRAM Device (a) sandwiched structure and (b) I-V Characteristics: Vsetand

| set cOnverts part of metal oxide to low-resistance state. 3
1.2 Power consumption of (a) a SRAM-based FPGA and (b) a RRAM-based FPGA. . 5
1.3 Use SRAM + transistors or RRAMSs to propagate and block datapath signals. . . 6

2.1 (a) RRAMn pristine state; (b) RRAM in Low Resistance State(LRS); (c) RRAM in

High Resistance State(HRS). 12
2.2 |-V characteristic of (a) a URS RRAM; (b)aBRSRRAM. 12
2.3 (a) Size of laments inside a RRAM achieved by Isetmin; (b) Size of laments

inside a RRAM achieved by |setmax; (C) I-V characteristics of a RRAM with Bipolar

Resistive Switching e 14
2.4 Alternative integrations: (a) Natively combine with source/drain or gate of tran-

sistors; (b) Locate between metallayers. 17
2.5 Impactofcellareaon Ryrsand R rs[Courtesyby[1]]. 18
2.6 Generic FPGA Architecture. 21
2.7 Detailed CLB Architecture. 22
2.8 Bi-directional global routing architecture. 23
2.9 Bi-directional global routing architecture featuredby (@) LA, (b)LA2. 25
2.10 Tile-based FPGA Architecture. 27
2.11 Tile and enhanced CLB architecture. 28
2.12 Uni-directional global routing architecture. 29
2.13 Auni-directional routing track featuredby L A2. 29

2.14 (a) Symbol of a N -input routing multiplexer; (b) One-level implementation[2, 3]. 31
2.15 Alternative routing multiplexer design topologies: (a) two-level; (b) tree-like[2, 3]. 31
2.16 Look-Up Table (LUT): (a) principle internal structure; (b) transistor-level design

ofa2-input LUT[4]. 33
2.17 Transistor-level design of a master-slave D-type Flip-Flop with asynchronous set

andreset[4]. e 34
2.18 (a) 6-Transistor SRAM design [4]; (b) Con guration circuits for SRAM arrays. . . 35

2.19 Scan-Chain Flip-Flop (SCFF) design and associated con guration circuits [5, 6] 36

2.20 (a) Embedded Flash Process (Courtesy by [7]); (b) Erasing operation of a Flash
transistor (Courtesy by [7]); (c) Programming operation of a Flash transistor
(Courtesy by [7]). o e 37

Xi

List of Figures

Xii

2.21 (a) A transmission gate controlled by a SRAM; (b) Equivalent Flash-based pro-

grammable switch. (Courtesy by [7]) oL 37
2.22 Three most commonly used programming structures: (a) 1T(ransistor)1R(RAM),

(b) 1T(ransistor)2R(RAM) and (c) 2T(ransistor)IR(RAM). 39
2.23 A non-volatile master-slave Flip-Flop design[5,6]. 42
2.24 Anon-volatile SRAM design[5,6]. 43
2.25 Early designs of 2T1R-based multiplexers: (a) A N -input onelevel structure [9];

(b) Anillustrative example of two-level and tree-like 4:1 structure [10]. 44
2.26 Early RRAM-based FPGA architectures (a)LUTs embedded with 2T1R program-

ming structures; (b)SRAMs are replaced by 2T1R programming structures. . . . 45
2.27 Classical EDA ow for FPGA architecture exploration purpose. a7
2.28 Examples of signals for switching activity modeling. 48
2.29 Dynamic power modelling: (a) an CMOS inverter with a load capacitance Ci; (b)

Equivalent RC model; (c) Input transition from low to high voltage level. 50

3.1 System-level implementations exploiting the 2T1R programming structure: (a)

scan chain [8]; (b) memory bank [9]. 55
3.2 A 2T1R programming structure extracted from system-level implementations in

Fig. 3.1 . . 57
3.3 |-V characteristics of the 2T1R structure. 58

3.4 (a) Asymmetric bulk management of the 2T1R structure; (b) Symmetric bulk
management of the 2T1R structure; (c) Single well application of layout; (d)

Triple well application of layout., 59
3.5 Transient analysis on voltages and current in the 2T1R structure during a set

process (Wprog A5, Vprog 3.0V, Winy A20, 1Wprog A£320nm). 61
3.6 Vpsi and Vpsy in 2T1R structure under diverse Vprog (Winy £20) 62
3.7 Vpsi and Vps in 2T1R structure under diverse Winy (Vprog A3.0V). (1 Wprog /£

320NM) . . . e e 63
3.8 (a) lysin 2T1R structure under diverse Vprog (Winy /E20); (b) I4s in 2T1R struc-

ture under diverse Winy (Vprog A3.0V). (1 Wprog A£320nm) 64
3.9 A 2TGI1R programming structure extracted from system-level implementations

INFIg. 3.0 . . . e e 65
3.10 Vpsy and Vpsp in 2TG1R structure under diverse Vprog (Winy £20); 66
3.11 Vpsi and Vps; in 2TG1R structure under diverse Winy (Vprog A3.0V). (1Wprog /£

320NM) . . L 67

3.12 (a) The proposed 4T1R structure (b) Extracted 4T1R structureina setprocess . 68
3.13 I-V characteristics of the 4T1R structure: (a) Vset=Vreset; () Vset € Vreset OF

Isetc Ireset; (C) VsetEVreset or IsetE Ireset 70
3.14 1-V characteristics of the 4T1R structure during set process when: (a) Boosting
Whprog; (B) BoOSting Vprog. - - - v o oo o 71

3.15 Comparison on Vps of programming transistors under diverse = Wprog and Vprog
in 2T1R, TG-based 2T1R and 4T1R structures (Winy A20). (1Wprog A320nm) . 75

List of Figures

3.16 Comparisonon l4sin 2T1R, 2TG1R and 4T1R structures (Winy A20). (1Wprog £
320NM) . . L 76
3.17 Comparison on driving current per minimum transistor width under diverse
Wprog and Vprog between 2T1R, TG-based 2T1R and 4T1R structures (Winy A20).
(IWprog AB320NM) 77
3.18 Comparison on area-delay product of 2TG1R and 4T1R structures (Wi, A£20). 78
3.19 Comparison on power-delay product of 2TG1R and 4T1R structures (Wi,y A£20). 78
3.20 Comparison on R rsin 2TG1R and 4T1R structures (Winy A20). (1 Wprog /£

320NM) . . . e 79
3.21 Circuit design and well arrangement of a naive N : 1 one-level 4T1R-based
Multiplexer e 81

3.22 Improved one-level N-input 4T1R-based multiplexer: (a) operatingmode (Vpp wen A&
Vbop, GNDyel AGND); (b) set process (Vpop well 4 iVprog A2Vpp,GNDyel £

i Vprog AVpp); (c) reset process (Vpp well AVprog, GNDwell AVprog i Vop; - . 84
3.23 Cross-section of the layout of 4T1R multiplexers: (a) naive design; (b) improved

design. e 87
3.24 Schematic of a robust two-level N-input 4T1R-based multiplexer. 88
3.25 Schematic of a robust tree-like N -input 4T1R-based multiplexer. 89
3.26 Cascading two N -input one-level 4T1R-based multiplexers: share Deep N-Wells

efciently. 90
3.27 Cross-section of the layout of a 4T1R programming structure: (a) during reset

process; (b) during Setprocess. 91
3.28 (a) Critical path of a general RRAM-based multiplexer; (b) General critical path

of RRAM-based multiplexer; (c) EquivalentRCmodel. 94
3.29 Relation between x; and delay of a RRAM-based multiplexer. 97
3.30 Relation between Wy, o4 and delay of a RRAM-based multiplexer. 98
3.31 Transient analysis of a 2-input 4T1R-based multiplexer in Fig. 3.22(a): (a) signal

waveforms of programming phase; (b) signal waveforms of operation. 101
3.32 Impact of Wp,qg on the delay of 50-input improved 4T1R-based multiplexers

(XAEL). o o 102

3.33 Two case studies on the best W4 ofimproved 4T1R-based multiplexers (x ZL):
(a) impact of the multiplexing structures when Vpp A0.9V (b) impact of Vpp. . 103
3.34 Delay comparison of improved 4T1R-based multiplexers featured by x A0 and

XAEL. e e e 104
3.35 Layout of 16-input multiplexers: (a) CMOS two-level structure; and (b) 4T1R-
based two-level structure. 105

3.36 Delay comparison between CMOS and 4T1R-based multiplexers: (a) delay im-
provements of one-level, two-level and tree-like structures (Vpp Z£0.7V); (b)
delay ef ciency of one-level structure atnear Viregime. 107
3.37 Power comparison between CMOS and 4T1R-based multiplexers: (a) energy
improvements of one-level, two-level and tree-like structures (Vpp A0.7V); (b)
power reduction of one-level structure atnear Viregime. 108

List of Figures

Xiv

3.38 Comparison between CMOS multiplexers and 4T1R-based multiplexers: (a)

Area-Delay Product; (b) Power-Delay Product. 109
3.39 Impact of parasitic capacitance of RRAM Cp on the delay of one-level 4T1R-

based multiplexers (Vpp A0.9V). 111
3.40 Ryrs degradation when Vg A£{0.4,0.6V,0.8V}CVpp AO0.9V. 112

3.41 (a) R_rs degradation when V,eset £0.3V over 1k operating cycles; (b) Voltage
across a RRAM in LRS ¥4 and V¢ in Fig. 3.22(a)) during operation; and (c) Rirs

degradation when Vgt Z£0.3V inaswitchingcycle. 113
4.1 FPGA-SPICE EDA ow for SPICE modelingpurpose. 118
4.2 llustration of the full-chip-level testbenches. 120
4.3 llustration of the grid-level testbenches. 121
4.4 llustration of the component-level testbenches. 122
4.5 FPGA-SPICE EDA ow for synthesizable Verilog purpose. 123
4.6 Anl/O pad: (a) VPR abstract-level modeling, and (b) actual physical design. . . 125
4.7 Transistor-level circuit design of (a) an inverter and (b) a tapered buffer. 127
4.8 Transistor-level circuit design of (a) a global routing multiplexer, (b) a local

routing multiplexer, and (c) the internal tree-like structure. 131
4.9 Transistor-level circuit design of a 4T1R-based multiplexer. 133
4.10 An example of the transistor-level designofaLUT 135
4.11 (a) A length-2 unidirectional wire (highlighted in red) within FPGA routing archi-

tecture; (b) Corresponding RC modelingofsegments 136
4.12 llustration of the voltage stimuli generation and load extraction techniques. (a)

BLE multiplexer with its architectural context; (b) extracted testbench. 137
4.13 An example for parasitic nets estimation. 138
4.14 An illustration of the waveforms for functional veri cation purpose. 141

4.15 Waveforms of a sample circuit: inverter, achieved by ModelSim simulation:
(a) full waveform with con guration phase highlighted in red rectangle and
operation phase highlighted in blue rectangle; (b) an example of a programming
clock cycle; (c) an example of a operating clockcycle. 142
4.16 Power breakdown results of the considered FPGA architecture between FPGA-
SPICE and VersaPower averaged over the MCNC big20 benchmark suite for

22nm, 45nm and 180nm technology nodes. 145
4.17 Full-chip layouts of 40nm SRAM-based FPGAs with CLB array size 5 £5, a channel

widthof300. 146
4.18 Area breakdown of SRAM-based FPGAs which are con gured by (a) BL/WL

decoders, and (b) scan-chain ip-ops. 147

5.1 Memory access organization in SRAM-based FPGA: SRAMs are placed in an
array and SRAMs in the same column/row share the same BL/WL. 150

5.2 Memory access organization in RRAM-based FPGA: RRAMs belonging to the
same multiplexer/NV SRAM are placed in the same column and share BL/WL. 151

List of Figures

5.3 Full-chip layouts of 40nm SRAM-based and RRAM-based FPGAs with CLB array

SIZEBE L. . 155
5.4 Areabreakdown of (a) RRAM-based FPGA and (b) SRAM-based FPGA. 155
5.5 Full-chip area comparison between SRAM-based and RRAM-based FPGAs by

sweeping channel widths from50t0300. 156
5.6 Standard cell area comparison between SRAM-based and RRAM-based FPGAs

by sweeping channel widths from50t0300. 156
5.7 Leakage paths of N -input multiplexers: (a) SRAM-based (b)RRAM-based 159

5.8 Impact of Ryrs on the average static power of a 2-input 4T1R-based multiplexer 160
5.9 Impact of Ryrson the average static power of a 2-input 4T1R-based multiplexer

with tapered bufferatoutput 161
5.10 Normalized power consumption of SRAM-based and RRAM-based architectures
withdifferent Ryrs o o o o e 162

5.11 Static power breakdown of (a) RRAM-based FPGA and (b) SRAM-based FPGA. . 163
5.12 Dynamic power breakdown of (a) RRAM-based FPGA and (b) SRAM-based FPGA. 163
5.13 Area, delay and energy comparison between SRAM-based and RRAM-based

FPGAs operating at nominal and near- Vyregime. 164
5.14 Classical interconnection from routing tracks to LUT inputs. 167
5.15 Proposed interconnection from routing tracks to LUT inputs. 168
5.16 An illustrative example of the proposed routing architecture(K A6) with F¢in A&

0.33andFsEB. e 169

5.17 Normalized average area, delay, power and channel width of baseline and pro-
posed architecture by sweeping F¢in: (a) SRAM-based architectures; (b) RRAM-

based architectures. 170
5.18 Tile area comparison between a traditional FPGA architecture and the proposed

RRAM FPGA architecture for different channelwidth W. 171
5.19 (a) Driver multiplexer and fan-outs of a Length- L wire; (b) Equivalent RC model

ofalength-L wire. 172

5.20 Normalized average area, delay, power and channel width of baseline and pro-

posed architectures by sweeping Fs: (a) SRAM-based architectures; (b) RRAM-

based architectures. 173
5.21 Normalized average area, delay, power and channel width of baseline and pro-

posed architectures by sweeping L: (a) SRAM-based architectures; (b) RRAM-

based architectures. 176
5.22 Normalized average area, delay, energy and channel width of baseline and pro-

posed architectures: (a) baseline SRAM-based architectures; (b) baseline RRAM-

based architectures; (c) proposed RRAM-based architectures 178
5.23 Normalized average area, delay, power, channel width, ADP and PDP of classical SRAM-

based and proposed RRAM-based architectures. 178

XV

List of Tables

2.1
2.2
2.3

2.4

3.1
3.2

4.1

4.2

5.1

5.2

6.1

Bipolar RRAMs with different metal oxide materials 19
FPGA Architecture Parameters 24
Analytical comparison between CMOS one-level, two-level and tree-like multi-

PIEXEIS . . . 32
Static probability and transition density of the signalsin Fig. 2.28. 48
Voltages arrangements for operation, set and reset examples in Fig. 3.22(a)(b)(c) 85

Analytical comparison on area, delay and switching energy of N-input 4T1R-
based multiplexers. 92

Comparison of runtime, memory usage and total power of full-chip/grid/component-

level testbenches for 22nm, 45nm and 180nm technology nodes in the case of

the MCNC big20 benchmark s298. 143
Comparison of accuracy by modules in full-chip/grid/component-level test-

benches for 22nm, 45nm and 180nm technology nodes in the case of the MCNC
benchmark big20 s298. 144

Resistance of leakage paths of the 4T1R-based multiplexer in 5.7(b) whose start-
ing pointis p3 and ending pointsare n4,n5, n6andn7 159
Delay comparison between SRAM-based and RRAM-based routing multiplexers. 165

Summary of Contributions in Differnt Research Fields. 182

XVii

i} Introduction

Strong demand from the Internet of Things (loT) have fueled researches on high-performance
and energy-ef cient computer-based systems [10, 11, 12]. We confront challenges from two-
pronged ecosystems in loT: low-power mobile devices and cloud services. The mobile devices
are supposed to stay active for a long period with a limited battery life. For these devices,
energy-ef ciency is the most critical factor due to a tight power budget. Cloud services are
actually provided by datacenters, aiming at processing huge amount of data from mobile
devices or other sources. For datacenters, high-performance computing is a more important
metric than energy ef ciency since they are supposed to deal with abundant data while being
power supplied through the grid.

Since invented in 1984, Field Programmable Gate Arrays (FPGAs) have demonstrated them-
selves not only as an alternative implementation media of Application Speci c Integrated
Circuits (ASICs) but also as an indispensable component of embedded systems and datacenter
infrastructures [13, 14], growing to a $ 4.5 billion per year industry [15, 16]. The programmabil-
ity and large I/0 bandwidth of FPGAs brings signi cant advantages in realizing energy-ef cient

and high-throughput applications, e.g., deep learning network [17]. Meanwhile, programma-
bility and 1/0 bandwidth cost general FPGA implementations 20 £ bigger area, 4£ longer delay
and 12£ higher power consumption, when compared to ASICs[18]. Such overheads prohibit
FPGAs from massive deployment in ultra-low-power embedded systems.

Resistive Random Access Memorie$RRAMS) [1, 19], a member of the emerging Non-Volatile
Memories (NVM) family [20], have become a promising candidate in displacing conventional
memory technologies of FPGASs, such as SRAM [21] and Flash [7]. Potentials of RRAMs have
been investigated in many elds, i.e., memory storage [22], neuromorphic computing[23],
hardware security [24] and FPGAs [25, 9, 26, 27, 28]. In particular, RRAM-based FPGAs are pre-
dicted to improve area, delay and power in addition to non-volatility, thus being an effective
component for loT applications. Still, researches and development of RRAM-based FPGAs are
in their infancy. Circuit simulations focus on functional veri cation and employ analytical
RRAM models. Area and performance predictions are achieved without fully considering
physical design issues, e.g., the parasitic effects of RRAMs and their associated transistors.

Chapter 1. Introduction

Additionally, the ef ciency of RRAM-based circuit topologies has not been carefully examined.
Lacking solid circuit-level studies, FPGA architecture explorations based on RRAMs would
be less meaningful. Moreover, current FPGA architecture exploration tools provide limited
supports in accurate power analysis, especially for emerging memory technologies. Itis en-
tirely possible that the predicted improvements of RRAM-based FPGAs are counteracted when
the parasitic effects are considered and accurate power analysis are conducted. Therefore,
it is necessary to examine the concept with realistic device modelling, circuit designs under
physical design considerations and accurate architecture-level simulations.

In this thesis, we present RRAM-based FPGAs from transistor-level circuit designs to architecture-
level optimizations and fast prototyping techniques. We validate their high-performance and
low-power advantages over Static Random Access Memory(SRAM)-based FPGAs with theoret-
ical analysis, industrial electrical simulators and novel Electrical Design Automation (EDA)
tools. We believe that this is the rst systematic study about RRAM-based essential circuit
designs and FPGA architectures. To motivate our work, the rest of this chaper is organized
as follows. Section 1.1 provides a brief overview about RRAM technology and explains their
outstanding features to be exploited in circuit designs and FPGAs. Section 1.2 is devoted to
analyzing the advantages of SRAM-based FPGAs and their bottlenecks in low-power appli-
cations. Section 1.3 introduces the opportunities of RRAM-based FPGAs in overcoming the
limitations of their SRAM-based counterparts. Section 1.4 lists the major contributions of this
thesis and the approaches to achieve them.

1.1 Overview of RRAMs

Since their popularization in 2004 [29], Resistive Random Access Memorie$RRAMS) are ex-
pected to trigger revolutionary changes in many applications. In terms of functionality, a
RRAM can be simply regarded as a non-volatile con gurable resistor, which can hold informa-

tion when powered down. A RRAM device exhibits resistive switching between High Resistance
State (HRS) and Low Resistance State(LRS) thanks to forming and rupturing the conductive
laments in its metal oxide, as illustrated in Fig. 1.1(a). By applying a proper combination of
programming voltage and programming current between electrodes, resistance states can be
switched, following the I-V curve in Fig. 1.1(b).

The non-volatile property of RRAMs have attracted interest in replacing SRAMs, Dynamic
Random-Access Memories(DRAMSs) and even Flash RAMs in computer systems. Compared
to volatile memories, e.g., SRAMs and DRAMSs, using RRAMSs can save recon guration time
and energy when the entire system wakes up from sleep modes, appealing to loT and mobile
applications. Different from Flash memory, RRAMs are compatible with Back-End-of-Line
(BEoL) fabrication and hence are envisioned to be stacked on the top of the transistors, reduc-
ing fabrication cost and improving footprint of whole system. Besides, BEoL compatibility
allows memories to be close to the computing logic, signi cantly reducing the access time to
memories.

1.1. Overview of RRAMs

Figure 1.1 — A RRAM Device (a) sandwiched structure and (b) I-V Characteristics: Vgetand | get
converts part of metal oxide to low-resistance state.

The con gurable resistive property of RRAMs have been catalyst of research in In-Memory
Computing [30, 31, 32], Neuromorphic Computing [33, 34] and Physical Unclonable Function
(PUF) [35, 36]. The HRS and LRS can represent '0' and '1' in boolean logic, similar tothe on
and off states of a transistor. Hence, the two resistance states can be exploited to realize digital
circuits, replacing transistors [37, 30, 38]. Interestingly, even a RRAM-based memory array
is capable of implementing logic gates such as majority gate by properly connecting RRAMs
[30, 31]. Such capability is called In-Memory Computing, which enables simple computing
tasks to be shifted from CPUs to memories. Since long memory access time becomes a major
bottleneck in accelerating modern CPU-based systems, such computing paradigm provides a
promising solution. More than boolean logic, RRAMs can also realize multi-value logic thanks

to its tunable resistance. By adjusting programming current, RRAMs can achieve resistance
between HRS and LRS, which is a unique advantage of RRAMs over other NVM technologies,
such as Magnetoresistive Random Access Memorie{MRAMS) [39] and Phase-Change Random
Access Memorie{PCRAMS) [40]. Such resistive characteristic allow RRAMs to model the states
of a neuron in human brain, which is the basis of Neuromorphic Computing. Furthermore, the
stochasticity in resistive switching mechanism leads to that resistance of RRAMs is different
from cycle to cycle [1]. As a result, RRAMs can be employed in PUF designs as the key to
encrypt hardware designs.

In particular, the programmable resistance, non-volatility and BEoL features are attractive to
FPGAs, where 90% of area is consumed by volatile memory cells and programmable routing
elements. More issues about RRAM-based FPGAs will be discussed in Section 1.3.

Chapter 1. Introduction

1.2 Advantages and Challenges for FPGAs

Thanks to their rich programmable resources, FPGAs can implement any circuits by appropri-
ately con guring memory cells and thus have two bene ts over other implementations, e.g.,
ASICs:

(1) Low Non-Recurring Engineering (NRE) costs. In addition to design efforts, fabricating an
ASIC chip requires heavy NRE fees from silicon manufacturer (for example, E $1 million
for 14nm FinFET technology), covering the cost of making lithography masks, wafer-level
packaging and building testing platforms. With FPGAs, not only NRE costs but also design
efforts can be saved since implementing circuits only involves programming existing
silicon.

(2) Fast time-to-market. Full fabrication of an ASIC chip typically requires more than 6
weeks while a FPGA can be instantly programmed and deployed in a system. To make
things worse, more iterations on designing and fabrication are needed if any problems are
detected in the rst manufacturing. Short production cycles is compelling nowadays as
competition in consumer electronics becomes erce.

Therefore, once introduced, FPGAs gain popularity in low volume applications where ASIC
manufacturing cost is extremely high. Recent years withess FPGA's expansion in medium or
even high volume applications, i.e., co-processors, thanks to their programmable and parallel
nature. FPGAs can ef ciently parallelize algorithms that are hard for Central Processing
Unit (CPU) + Graphic Processing Unit (GPU) platforms, such as machine learning and video
encoding/decoding. An representative example is Microsoft's Bing Search Engine, which
employs CPU + FPGA platforms and achieves 40£ speed-up [13, 14].

Despite their success, FPGAs are facing challenges from their physical limitations generally
preventing them to embrace the 10T era. Programmable routing multiplexers in FPGAs have
higher resistance and capacitance than metal wires and also drive more fanouts to guarantee
routability, consuming more area and reducing circuit speed. Intensive usage of routing multi-
plexers introduces more signal activities, causing signi cant power overhead. To reduce power
consumption, FPGAs have to operate at low supply voltage but sacri ce performance because
speed of transistors have to degrade when working voltage decreases| 41, 42, 43]. Using volatile
memory technology, i.e., SRAMSs, forces FPGAs to lose con gurations when powered down
and to be recon gured at each power on. Such drawback leads to embarrassment in using
FPGA-based embedded systems, as illustrated in Fig. 1.2(a): Power-off has to pay additional
recon guration time and energy next time wake up. Otherwise, power-on burns more power
and reduce battery cycle. To continue the success in future, it is worthwhile to advance FPGA
technology by overcoming these physical limitations.

4

1.3. Opportunities in RRAM-based FPGAs

1.3 Opportunities in RRAM-based FPGAs

RRAM-based technology can bring three fundamental advancements to FPGA architectures,
meeting the low-power demands of IoT:

(1) Non-volatility of RRAMSs allows FPGASs to be frequently switched on and off without the
additional recon guration time and energy, as depicted in Fig. 1.2(b). When powered
down, RRAM-based FPGAs can hold con gurations and consume zero leakage power.
Such "Normally off, Instantly on" property can be achieved by simply replacing SRAMs
with RRAMs [25].

Figure 1.2 — Power consumption of (a) a SRAM-based FPGA and (b) a RRAM-based FPGA.

(2) Fig. 1.3 illustrates that Low Resistance State(LRS) and High Resistance State(HRS) of
RRAMs can be exploited to replace pass-gate logic in programmable routing multiplexers
and propagate datapath signals [9, 26, 27, 28]. Combining functionality of memory and
pass-gate logic in one unique device, RRAMs can narrow the gap between programmable
routing multiplexers and long metal wires. Replacing both SRAMs and pass-gate logics,
RRAMs greatly reduce area since they are fabricated on the top of transistors. Implanting
RRAMs into datapaths leads to less parasitic capacitance than SRAM-based multiplex-
ing structures, contributing to smaller delay [3]. RRAM-based implementations enable
area and speed of programmable routing multiplexers to be comparable or even smaller
than a long metal wire, fundamentally changing the cost functions considered in FPGA
architectures [28].

(3) RRAMSs have stable resistances when exposed below programming threshold voltage. As

Chapter 1. Introduction

Figure 1.3 — Use SRAM + transistors or RRAMSs to propagate and block datapath signals.

long as the working voltage is kept lower than threshold voltage of RRAMs, RRAM-based
circuits and systems can exhibit resistive property independent from their work voltage,
beyond the limitations on transistors [6]. Hence, using RRAMs in datapaths can have a
better trade-off between power and delay than transistors. For instance, RRAM-based
circuits operating in the near- V; regime keep the same performance level as if they were
operated at a nominal working voltage, while their power consumption is sharply reduced.
Overall, the energy ef ciency of FPGAs can be profoundly improved when adapted to
RRAM technology [28].

Note that ASICs cannot bene t large improvements from RRAMs as FPGAs, because they
seldom use programmable routing multiplexers . Therefore, RRAM-based programmable
routing multiplexers open an exclusive opportunity for FPGAs to catch up with ASICs in
performance and power. Furthermore, physical features of RRAMs may also expand FPGAs
application elds. For example, FPGAs would become popular in aerospace applications since
RRAMs are more robust to high-energy radiations than SRAMs.

1.4 Contributions and Organization

This thesis provides a thorough study of the fundamentals of RRAM-based FPGAs, starting
from essential circuit designs, i.e., programming structures to architecture-level optimizations
and prototyping with novel Electrical Design Automation (EDA) tools. In order to reveal
important characteristics of RRAM-based FPGAs, our researches are conducted in three
aspects: circuit design, architecture exploration tool development and architecture-level
optimizations.

The rest of this thesis is organized as follows.

Chapter 2 provides background knowledges covering

6

1.4. Contributions and Organization

(1) RRAM technology: We explain working principles, electrical characteristics and unique
technology features of RRAMs, which bring both bene ts and challenges to RRAM-based
circuit designs.

(2) modern FPGA architectures: We describe basic principles and important enhancements
in modern FPGASs, which are the baseline FPGA architecture considered in Chapter 5.

(3) previous works about RRAM-based circuit designs and FPGA architectures: We analysis
signi cance and limitations of circuit topologies, including memory cells, ip- ops and
routing multiplexers.

(4) FPGA architecture exploration tools: We introduce EDA techniques of current state-of-art
academic tool, i.e., VPR [44] and discuss limitations of power analysis with analytical
models.

Chapter 3 aims to propose ef cient RRAM-based programming circuits and routing multi-
plexers. The RRAM-based circuits are studied through both theoretical analysis and electrical
simulations with physical design considerations. Alow R rsis commonly considered as the
key to guarantee high-performance for RRAM-based circuits. This chapter argues that the
high-performance and energy-ef ciency of RRAM-based circuits are actually impacted by
many other factors, e.g., programming transistors, well organization and physical location of
RRAMSs. The rst study is about how to program RRAMs into LRS with transistors ef ciently.
Most popular programming structure, i.e., 2T(ransitor)1R(RAM), cannot leverage the full driv-
ing strength of transistors, which potentially causes low circuit speed due to ahigher R rsthan
expected. A more ef cient programming structure, namely 4T(ransitor)1R(RAM), is proposed
and it demonstrate signi cant improvements in programming current, guaranteeing a low
RLrs. Experimental results prove that using pairs of p-type and n-type transistors are better
in driving programming current and also more exible to diverse RRAM devices, than purely
using n-type transistors. By exploiting 4T1R, high-performance and low-power RRAM-based
routing multiplexer designs are proposed by considering various physical design parasitics,
such as intrinsic capacitance of RRAMs and well organization. Chapter 3 draws three crucial
conclusions:

(a) despite from R Rs, parasitics of programming transistors is another important factor
to guarantee high-performance for RRAM-based circuits. To obtain the best trade-off
between R_rsand parasitics of programming transistors, programming transistor sizing
technique is proposed. Experimental results validate that best performance is often
achieved with a R_rslarger than its lowest value.

(b) By sharing programming transistors in multiplexing structure, performance of RRAM-
based routing multiplexer is underlinear to input size, encouraging the use of large mul-
tiplexers. Actually, in large RRAM-based routing multiplexer, circuit design topology
becomes the major source of high-performance, ratherthanalow Rygrs.

Chapter 1. Introduction

(c) When RRAMs are embedded in datapath, performance of RRAM-based circuits is not
sensitive to working voltage. As a result, operating at near- V; regime, RRAM-based circuits
can keep the same performance level as nominal working voltage, meanwhile their power
consumption is sharply reduced. This implies outstanding energy-ef ciency and can be
generalized to any circuit with RRAMs in datapaths.

With a commercial 40nm technology, we investigate area, delay and power improvements of
RRAM-based multiplexing structure by comparing to best SRAM-based implementations. To
ensure the accuracy of comparisons, layouts of RRAM-based and SRAM-based routing multi-
plexers are generated with industrial EDA tools, i.e., Cadence Virtuoso [45] and layout-level
parasitic effects are back-annotated in electrical simulations. We believe that the conclusions
are generic and instructive when developing novel RRAM-based circuits.

Chapter 4 introduces generic FPGA architecture exploration tool, FPGA-SPICE, for emerg-
ing technologies. Current state-of-art FPGA architecture exploration tool, i.e., VPR [44, 46],
evaluates area, delay and power with analytical models, which cannot accurately capture the
trends of FPGAs based on emerging technologies, such as RRAMs. In addition, VPR provides
limited support in prototyping novel FPGA architecture. FPGA-SPICE is developed to enable
accurate power analysis and fast prototyping for diverse FPGA architectures, including both
SRAM-based and RRAM-based. FPGA-SPICE can auto-generateSimulation Program with
Integrated Circuit Emphasis (SPICE) netlists, modeling a full FPGA fabric. With SPICE netlists
and electrical simulator, i.e., HSPICE [47], accurate power analysis can be conducted. To accu-
rate model physical designs in SPICE netlists, FPGA-SPICE extends the FPGA architectural
description language [48] by providing rich transistor-level modeling parameters. Large SPICE
netlist, e.g., the one containing a full FPGA fabric, requires a long simulation time. FPGA-SPICE
provides different levels of testbenches and techniques in split large SPICE netlists, in order to
obtain better trade-off between simulation time and accuracy. In addition, FPGA-SPICE is also
capable of auto-generating synthesizable Verilog netlists containing a full FPGA fabric. Verilog
netlists can be used to verify the functionality of FPGA designs and also allows engineers to
prototype FPGA architectures through a semi-custom design ow. FPGA-SPICE can be useful
in many research topics, including but not limited to the following. The power results from
FPGA-SPICE can be a baseline when examining the accuracy of analytical power models for
FPGA. The accurate power results are an important benchmarking metric when evaluating
novel FPGA architecture. SPICE netlists help validating the functionality and performance of
circuit designs based on emerging technologies. Synthesizable Verilog netlists simplify the
processes in examining the feasibility of novel FPGA architectures.

Chapter 5 focus on architecture-level optimizations in FPGA to leverage the potential of
RRAM-based multiplexers proposed in Chapter 3. The architectural parameters, routing
architectures and buffering strategy are modi ed to exploit the high-performance of large
RRAM-based multiplexers. We propose that local routing architecture should be uni ed to
connection blocks, in order to achieve high-performance when using RRAM-based multiplex-
ers. Connectivity parameters Fgand best length of routing wire L should be tweaked because

8

1.4. Contributions and Organization

RRAM-based multiplexers are faster in delay than long metal wires. In addition, we propose
con guration circuits for the novel RRAM-based FPGA architecture and verify its ef ciency
with FPGA-SPICE. With cutting-edge EDA tools, VPR and FPGA-SPICE, we believe that the
architectural-level results are realistic enough to validate the area, delay and power bene ts

of RRAM-based FPGAs. We believe that the methodology in architecture evaluation can be
generalized to developing FPGA architectures based on emerging technologies.

Chapter 6 summarizes important conclusions in circuit designs, FPGA-SPICE and RRAM-
based FPGA architectures. It concludes what is the basis of high-performance and energy-
ef ciency of RRAM-based FPGAs, and also provides suggestions for future work.

Appendix A includes an example of modern FPGA architectures modelled by FPGA-SPICE
architecture description language, which is also the baseline FPGA architecture considered in
this thesis.

P Background and Previous Works

As motivated in Chapter 1, RRAMs are promising to advance FPGA technology. The research
on RRAM-based FPGA requires a wide range of background knowledge including RRAM
technology, circuit designs, FPGA architecture and EDA techniques. Without any of these,
evaluating RRAM-based FPGAs would not be possible with a proper level of accuracy. This
chapter aims at providing the suf cient background information required for studying RRAM-
based FPGASs and therefore consists of four parts. Section 2.1 introduces Resistive Random
Access Memory(RRAM) technology, covering device structures, physical mechanism and
electrical characteristics. These important features of RRAMs help us understanding their
potentials in circuit designs. Section 2.2 presents detailed conventional FPGA architectures,
including a few crucial architectural enhancements, circuit design topologies and memory
technology. These details provide a solid foundation for developing RRAM-based FPGAs in
Chapter 5. Section 2.3 reviews previous works about RRAM-based circuit designs and FPGA
architectures, which stands as baseline in Chapter 3 and Chapter 5. Last but not least, we
discuss current state-of-art FPGA architecture exploration tools and their limitations especially

in terms of power analysis, motivating us to develop FPGA-SPICE in Chapter 4.

2.1 RRAM Technology

Resistive Random Access MemorfRRAM) device technology typically relies on a three-layer
material stack, namely a Metal-Insulator-Metal (MIM) structure [1]. As depicted in Fig. 2.1(a),
a RRAM cell is a two-terminal device, consisting ofa Top Electrode (TE), a metal oxide insulator
and a Bottom Electrode (BE). RRAMSs can be programmed into two stable resistance states, a
Low Resistance State(LRS) and aHigh Resistance State(HRS) respectively by modifying the
conductivity of the metal oxide layer. Applying a combination of programming voltages and
currents between TE and BE can trigger switching events between HRS and LRS. The switching
event from HRS to LRS is called the "set" process. Conversely, the switching event from LRS to
HRS is called the "reset" process. We denote the resistance of a RRAM in LRS and HRS as R rs
and Ryrs respectively.

11

Chapter 2. Background and Previous Works

Figure 2.1 — (&) RRAM in pristine state; (b)) RRAM in Low Resistance Statg(LRS); (c) RRAM in
High Resistance State(HRS).

Figure 2.2 — I-V characteristic of (a) a URS RRAM; (b) a BRS RRAM.

In terms of the polarity of programming voltages, RRAMSs can be categorized into Unipolar
Resistive Switching (URS) and Bipolar Resistive Switching (BRS) [1]. Fig. 2.2(a)(b) compare

12

2.1. RRAM Technology

the I-V curves of URS and BRS RRAMSs. Take the example in Fig. 2.2(a), resistive switching
of URS RRAMSs depends on the amplitude of Vet and Vigget but not the polarity, in order to
trigger set and reset processes. In contrast, BRS RRAMSs account on the polarity as well as the
amplitude of Vget and Vieset in programming. Take the example in Fig. 2.2(b), a set process
can only be triggered by a positive programming voltage, while a subsequent reset process
can only be invoked by a negative programming voltage. The minimum programming voltage
inducing a positive programming currentisde nedas Vsget, While the minimum programming
voltage leading to a negative programming currentis Vieset. In principle, for both types of
RRAMSs, a programming process can only be triggered by a proper programming voltage while
the achieved R rsand Ryrs are determined by the provided programming current. The rest
of this thesis will focus on BRS RRAMs because that they are widely adopted in RRAM-based
FPGA researches.

In orderto set/reset the RRAM into a stable resistance state, programming voltages should be
applied for a giventime [1]. The minimum pulse width of programming voltage determines
the writing speed of the RRAM [1]. Besides, RRAMs should be able to afford a reasonably large
number of writing operations, expressed by the endurance [1], and also should be able to
maintain the resistance state for a long period without degradation, expressed by the retention

[1].

In the following subsections, we present in-depth knowledge about the RRAM technology
from ve major aspects: resistive characteristics (subsection 2.1.1), capacitive properties
(subsection 2.1.2), fabrication issues (subsection 2.1.4), process variations (subsection 2.1.5)
and material engineering (subsection 2.1.6).

2.1.1 Resistive Characteristics

The metal oxide material is the key component of a RRAM that can exhibit resistive switching,
whose working principle is mostly based on lamentary conducting mechanism.

In its pristine state (Fig. 2.1(a)), the oxide material is a pure insulator withoutany ~ Conductive
Filament (CF). In this case, a RRAM has an extremely high resistance and can be approximately
treated as a pure capacitor. A pristine RRAM rst go through the "forming" process, after
which the device can be freely switched between HRS and LRS. The forming process is to
initialize a conductive path in metal oxide, which is achieved by polarizing the memory to a
positive bias. The formation of the initial conductive path requires a high electric eld in the
purpose of knocking the oxygen atoms out of the lattice and creating defect-rich regions in
the metal oxide. The localized defects can be generated by set processes or recovered during
reset process, and hence they are regarded as the sources of con guring CFs. To establish
such strong electric eld, the forming voltage should be high enough, which is typically larger

in amplitude than normal set voltage. To some extent, the forming process is a special set
process because the forming voltage has the same polarity as the set voltage. By carefully
controlling the size and materials of the oxide, RRAMs can get rid of forming process, which

13

Chapter 2. Background and Previous Works

Figure 2.3 — (a) Size of laments inside a RRAM achieved by Isetmin ; (b) Size of laments inside
a RRAM achieved by | setmax; (€) I-V characteristics of a RRAM with Bipolar Resistive Switching

are so called "forming-free" devices [49, 50].

After the forming process, a RRAM device is initialized to LRS, with a CF through the oxide as
shown in Fig. 2.1(b). When a reset voltage Viesetis applied, the CF created by the set/forming
process is partially or fully ruptured to the low-conductivity oxide, leading to an increment

in resistance. During the reset process, when the CF is separated from the TE, the RRAM is
considered to be in HRS and the minimum | eset required is de ned as |resetmin - Fig. 2.1(c)
exempli es the resulting CF and oxide during the reset process. The exhibited Rpyrsdepends
on the distance between the top of the CF and the TE, denoted as h in Fig. 2.1(c). Because a
large reset current leads to a strong rupture of CF and thus increases h, Ryrs are positively
related to the reset current. Note that |,eset Should be correlated to the et in last switching, in
order to restore the oxide to its original state before set. Asmall ¢t leads to weak CFs, which
requires a small | ¢setto be ruptured. In the example of Fig. 2.3(c), a set process achieved by
Isetmin requires atleast | esetmin in the subsequent reset process [1].

In the subsequent resistive switching cycles, a RRAM in HRS can be con gured to LRS with a
set voltage, which is smaller than the forming voltage. When a setvoltage Vset is applied across
the two electrodes, part of the oxide is transformed to the CFs, as illustrated in Fig. 2.1(b).
When there is a CF through the oxide, the RRAM is considered to be in LRS and the minimum
Iset required is de ned as |setmin - In addition, a current compliance Isetmax is often enforced
to avoid a permanent breakdown of the device. In practice, current compliance is usually
provided by the programming transistors. Note that the |se modulates the diameter of CF,
and thus impacts on the achieved R rs. Fig. 2.3(a)(b) illustrates two CFs which are shaped
by two programming currents lsetmin and lsetmax . corresponding to the green and blue set

14

2.1. RRAM Technology

curves in Fig. 2.3(c) respectively. The R_grsof a RRAM is typically following a linear or ohmic
relationship with the programming current passing through it, when the applied voltage is
lower than Vet [49]. Therefore, the higher programming current we drive, the lower R rswe
obtain. This reveals one of the most important feature of RRAMs: by adjusting lget, itS R rs
can be controlled in the range of [Vset/ I setmax:Vset/ I setmin]. This means that RRAMs can be
sized just as transistors, creating large design space to be explored in circuits and architectures.
Tunable R_rsis an unique advantage of RRAM over other NVMs, such as MRAM [39] and
PCRAM [40], strongly motivating the studies in the rest of this thesis.

2.1.2 Capacitive Modeling

Resistive property is the major interest of RRAMSs to be exploited in applications, meanwhile
their capacitive parasitics are often regarded as a negative aspect. For instance, when placed
in datapath, capacitances of RRAMs cause additional propagation delay in critical paths,
negatively impacting circuit speed. As a result, it is necessary and important to consider
the capacitive part when designing circuits with RRAMs. The capacitive effect of a RRAM is
induced by the MIM structure, which is naturally a parallel-plate capacitor. Considering a
parallel-plate model, capacitance of a pristine RRAM in Fig. 2.1(a) is

Cp 'CEZOXZOT. (2-1)
where 244 is the dielectric constant of the oxide material, 2 is the electric constant (¥48.854£
10i*2 F ¢mil), a ¢b represents the contact area between the metal oxide and the electrodes,
and d denotes the height of the metal oxide.

The capacitance of a RRAM is in uenced by CF, whose dielectric constant 2k is smaller than
oxide. Consider a RRAM in Fig. 2.1(b) and (c) and assume that CF can be modeled as a cylinder
with an average radius rcg. ForaRRAMIn LRS, the laments create a conductive path between
TE and BE, resulting in the capacitive effect to be negligible (Cp %0). For a RRAM in HRS, the
capacitance of a RRAM in HRS is approximately

adthj 1/4I‘c|:2 A 1/4I‘c|:2

Cp A2 x?
P oxO(d dih

). (2.2)

In practice, (2.1) can be accurate enough because that the size of CF r¢f is often much smaller
than metal oxide [29, 51], which will be explained in subsection 2.1.5. In this thesis, we
estimate the capacitance of RRAMs with (2.1).

15

Chapter 2. Background and Previous Works

2.1.3 Trade-off between R rsand Cp

As explained in Section 2.1.1, R_rsis determined by the size of Conductive Filament (CF):

d
Rirs AVF———, (2.3)

/4t’C =

where Y%k denotes the electrical resistivity of CF, d represents the height of CF, and rcf is the
radius of CF

For simplicity in analysis, we assume the shape of CF to be a cylinder, and the area of RRAM
device a ¢b to be xed under a given technology node, which is limited by the size of contacts
(See Section 2.1.4). Combining equation 2.3 and equation 2.2, we see a trade-off between R Rrs
and Cp. When a smaller R rsis achieved by decreasing d, a larger Cp is seen in HRS. To be
more intuitive, we compute the product of R rsand Cp:

adbhi Varcg? 1

R WCp A2 o2 0Y4
LrRsICp A2 gy 2 0¥k (1/4%': 1; h/d

) (2.4)

When h/d is xed, R _rs(Cp can be independent from d. And, increasing the size of CFs can
ef ciently reduce R rs®Cp. Actually, the product of R_rsand Cp can be regarded as the RC
delay of a RRAM device, which signi cantly impacts the performance of RRAM-based circuits
(See Chapter 3). The smaller the R_rs(Cp, the better performance of RRAM-based circuits can
be achieved.

2.1.4 Co-Integration with CMOS Technology and Scaling Trends

Compatible with Back-End-Of-Line (BEOL) technology, RRAMs can be ef ciently fabricated
using two alternative integrations:

1. Fabricating a memory in the contact of an access transistor [52, 53], as illustrated in
Fig. 2.4(a); In this case, the BEs of RRAMs share the same material with source/drain
of transistors, enabling RRAMSs and transistors to be fabricated with one lithography
step. The BE of RRAMj is built with n-doped S;, which is also the source/drain of
transistors. Indeed, the BEs are natively connected to the source/drain of transistors,
bringing conveniences in RRAM-based circuit designs. But in this fabricating choice,
RRAMs have to occupy silicon area as transistors, limiting their interests in area-hungry
designs.

2. Fabricating a memory on the top of or between metal layers in the process of a via
[54], as depicted in Fig. 2.4(b). Compared to native integration with transistors, this
methodology allows RRAMs to be 3-D stacked anywhere on the top of transistors, no
longer occupying silicon area. This can bring signi cant reduction on footprints but
carry a cost in parasitic effects and fabrication. RRAMs are connected to transistors
through contacts, metals and VIAs, causing parasitic resistances and capacitances in

16

2.1. RRAM Technology

interconnection. To minimize the parasitics, RRAMs should be located close to tran-
sistors, i.e., between metal layer MET 1 and MET 2. Due to different materials, RRAMs
require additional lithography masks than conventional VIAs, increasing fabrication
cost. Actually, this fabrication methodology is more commonly adapted than the native
integration, because of more exibility in choosing materials and strong interests in
area reduction.

Figure 2.4 — Alternative integrations: (a) Natively combine with source/drain or gate of transis-
tors; (b) Locate between metal layers.

For both integration methods, the size of RRAMs is supposed to be consistent or comparable
with contacts and VIAs, in order to simplify Back-End process. Thanks to lamentary con-
ducting mechanism, RRAM can be fabricated with an theoretical cell area as smallas 4 F?,
where F is the feature size [55], following the scaling trends of CMOS technology. In princi-
ple, device size of RRAMSs can potentially reach sub-10nm dimensions as Lee et al. reported
successful resistive switching events in a CF whose size is ¢ 10nm [29, 51]. In recent years,
plenty of research works have demonstrated that device size of RRAMs is scalable between
10nm and 180nm [52, 50, 56, 57, 49, 55, 58, 59, 60, 61, 62, 63, 64, 29]. Particularly, many efforts
have been spent on cooperating with advanced CMOS technology, such as 16nm, 28nm and
40nm, in a good yield rate [52, 58, 60, 61, 64, 62, 63]. These pioneering works are meaningful
to RRAM-based FPGA researches as regularity of FPGA architectures is advantageous when
adapting to new technology.

Similar to transistors, RRAMs can bene t from the scaling down on their device size, proved

by Fig. 2.5. The Ryrs is inverse proportional to device area, roughly following the Ohm'’s law. A
small device area can increase Ryrs and thus effectively suppress the leakage power of RRAM-
based circuits. As shown in (2.1), the parasitic capacitance is linear with the device area. The

17

Chapter 2. Background and Previous Works

parasitic capacitance Cp can also be reduced by the scaling down, potentially contributing

to delay and dynamic power improvements. Different from Ryrs and Cp, R rs is mainly
determined by lamentary conducting current[1]. Since size of laments is less sensitive to
the feature size, R rsonly has a limited dependency on device scaling. The trendon R rsis
superior than transistors, whose equivalent resistance actually increases when scaling down.

Figure 2.5 — Impact of cell area on Ryrs and R rs[Courtesy by [1]].

2.1.5 Process Variations

Filamentary conducting mechanism brings good scalability but also variation problems. It

is believed that the formation and rupture of CFs is stochastic[65]. Variations can impact
key parameters negatively. For instance, uctuationson Vsetand Vieset may cause R rsand
RuRrs to be larger than expected, which directly in uence performance metrics. There are two
sources of the variations:

(1) device-to-device: Similar to transistors, RRAMs on the same die/wafer suffer spatial
differences in device geometry.

(2) cycle-to-cycle: A RRAM may exhibit various resistances during each switching. This is
an intrinsic property of RRAM devices, coming from the stochastic nature of lamentary
conducting. Consequently, the size of CFs is different from cycle to cycle, resultingin R rs
and RyRs variations.

From a device perspective, the variation can be con ned mainly by (a) carefully selecting
the materials of TE, BE and oxide [66, 67, 68, 69]; and (b) using multi-layers of metal oxides

18

2.1. RRAM Technology

[70]. Lee et al. reported that reducing device size is also an effective way [71]. Through
device engineering, both device-to-device and cycle-to-cycle variations are reported to be
well controlled between 10-20% [72, 73, 74]. Variation problems can also be addressed by
programming methods. To be more robust in cycle-to-cycle variations, programming RRAMs
can borrow the program-verify strategy for Flash memory [75, 76, 77].

In this thesis, we will focus on examining the robustness of RRAM-based circuits to process
variations.

2.1.6 Material Engineering for Application Requirements

The parameters of a RRAM, such as the R_rs, RyRs, Vset, Vreset and endurance, are highly
dependent on the chosen metal oxide materials, the stack architecture and the fabrication
techniques. Therefore, the device properties of RRAMSs can be tuned to meet different applica-
tion needs. For instance, RRAMSs for memory applications and FPGAs require different device
properties. Table 2.1 lists a few bipolar RRAMs fabricated with different metal oxide materials.

Table 2.1 — Bipolar RRAMs with different metal oxide materials

Metal Oxide Cu/Z: 0y AlOy H¢ Oy To0y
Material [57] [49] [58] [56]
Rirs (-) » 200 » 100k » 10k » 100
Rurs () » 100M » 100M » 60k » 1k

Endurance N/A 10° 5£ 10’ 10°
Retention 10year | 10year 30h 10 year

@25C | @125C @250C @85C

Peak Current »5mA »50nA »501 A »170t A

Peak Voltage c2.5v cav c1lb5v cav

Speed »100ns N/A »10ns »10ns
Cell Area (t m?) »9 »1 1ei* (10nm) | »0.25

In memory applications, RRAMs typically requires (a) compact cell size (F2) for high density,
(b) fast speed in programming (1 j 10! s) for high-speed memory access, and (c) excellent
endurance (E 10°) for frequent writing operations. There are no speci ¢ requirements for
RLrs and Ryrs/RRrs ratio as long as the states "0' and "1' can be properly differentiated.
However, the FPGA architecture that is described in the thesis requires relaxed RRAM param-
eters, with typically (a) medium endurance (» 10°) and long retention period(E 10 years@
85), (b) low R grs(» 1i 4k-)alongwith high Ryrs/Rrsratio (E 103), (c) low programming
current (C 800t A) and (d) medium density (E» 4F?). In addition, FPGAs are con gured to
customized circuit designs but are not programmed frequently. Practically, FPGAs see only
limited write cycles (» 10*) [78]. Hence, the RRAMs in an FPGA application do not require
excellent endurance. Furthermore, the performances of the implemented circuit designs are
not determined by the programming cost of the memory. Therefore, fast programming speed

19

Chapter 2. Background and Previous Works

is not a necessity for the RRAMs in the presented context. Instead, a long retention period is
mandatory because the programmed FPGAs should hold its con gurations unless there is a
request to re-program. We will discuss in the chapter that the RRAMs will have two different
functionalities in the proposed architectures. First, RRAMs will be employed in the data path

of the routing multiplexer (as a replacement of the transmission-gates). Their = R_rs should
be low enough to propagate signals in high speed while Rprs/Rrs ratio should be large to
limit the perturbations between the inputs and to avoid parasitic leakage currents. Second,
RRAMSs will be used ip- ops (FFs), and serve as standalone memories only. their Ryrsand
Rurs/RLRs ratio could be more relaxed as in memory applications. Last but not the least,
since FPGA area is typically dominated by the transistors, and programming transistors in
particular, the cell size could be relaxed to medium density.

In this thesis, we consider the integration method in Fig. 2.4(b), because that it can signi cantly
narrow the area gap between FPGAs and ASICs. We will consider a RRAM device with the
following parameters: R rs/1l.6k-, Ryrs £27M- , as per [50][79]. However, in electrical
simulations, we may use degraded parameters to emphasize on certain aspects of the study.

For more details about RRAM technology, we refer the interested reader to [1].

2.2 Conventional FPGA Architectures

In this section, we will rst review classical FPGA architectures, whose principles are still used
in modern FPGAs. Then, we will introduce critical architectural enhancements and circuit

design techniques routinely used in commercial FPGA products. Last but not least, we will
analyze the use of memory technologies in modern FPGA architectures.

2.2.1 Classical Architectures

FPGA architectures typically follow a regular organization, which contains highly repeatable
modules. A generic island-style FPGA architecture, shown in Fig. 2.6, consists of an array of
Con guration Logic Blocks (CLBs), which are surrounded by a sea of routing resources [4].

Con gurable Logic Block

CLBs are the key module to implement combinational and sequential logic. Fig. 2.7 illustrates a
detailed CLB architecture, where a number of Basic Logic Elements(BLES) are tightly connected
by a local routing architecture. A BLE is the primitive module implementing logic functions,
including a Look-Up Table (LUT), a Flip-Flop (FF) and a 2-input routing multiplexer. By
con guring SRAMs properly, a K-input LUT can realize any K-input single-output logic
function. The FFs enable BLEs to implement not only combinational but also sequential logic.
By con guring the 2-input routing multiplexer, a BLE can operate in either combinational or
sequential mode. The local routing architecture, which is actually a group of programmable

20

2.2. Conventional FPGA Architectures

Figure 2.6 — Generic FPGA Architecture.

routing multiplexers, provides interconnections among CLB inputs, BLE inputs and outputs.
As depicted in Fig. 2.7, each BLE input is driven by a local routing multiplexer, whose inputs
come from all the CLB input pins and BLE outputs. The local routing architecture guarantees
that BLEs can be fully connected to each other and also to every CLB input pin. Thanks to

21

Chapter 2. Background and Previous Works

such full connectivity, a CLB can implement any large logic function by interconnecting LUTs
and FFs.

The logic capacity of a CLB is de ned as the amount of combinational and sequential logic that

can be mapped to a CLB, which is mainly determined by the following parameters: (1) input
size of LUTs K; (2) the number of BLEsina CLB N; (3) the number of inputs ofa CLB |. Indeed,
large K, N and | improves CLB logic capability but also increases the area, delay and power of
CLBs linearly. For instance, area, delay and power of local routing multiplexers are correlated

to N and |, because their input sizeis N A . Large CLBs can reduce the use of global routing
architecture, but the saving may be null due to the increase in CLB area. Therefore, there exists

a best trade-off between CLB logic capacity and its performance metrics. In modern FPGAs,
the best CLB architecture is typically featured by K A6, N A10and | £K (N A 1)/2 /33.

Figure 2.7 — Detailed CLB Architecture.

Global Routing Architecture

The global routing resources outside CLBs consist of two types of blocks, the Connection
Blocks (CBs) and the Switch Blocks (SBs). Both CBs and SBs consist of programmable routing
multiplexers but have different interconnecting topologies. CBs connect routing tracks to CLB
inputs and outputs, while SBs interconnect routing tracks. Differently from local routing archi-
tecture, global routing multiplexers usually have sparse connectivity. In other words, a routing
multiplexer can only connect to a subset of the routing tracks. Using sparse connections leads

to better trade-off between routing area and routability. Indeed, full connectivity ensures
perfect routability but results in large routing multiplexers. In global routing architecture,

the number of point-to-point connections is linear to the FPGA array size, which is much

22

2.2. Conventional FPGA Architectures

larger than local routing architecture. It will cause large routing area and lead to dif culties in
wiring if all the routing multiplexers are fully-connected. C. Clos has proved that multi-level
sparse crosshars can also achieve perfect routability as fully-connected solutions, while the
routing area can be signi cantly reduced [80]. Therefore, in global routing architectures,
point-to-point connections are realized through multiple sparse CBs and SBs.

Figure 2.8 — Bi-directional global routing architecture.

The following parameters are widely used to quantify the sparse connectivities in global
routing architecture: As routing tracks are grouped in channels, the number of routing tracks

per channel is called channel width, denoted by W . In the context of CBs, the fraction of
routing tracks that can be connected to a CLB input pin is de ned as Fcin. The fraction of
routing tracks that can be connected by a CLB output pin is de ned as Fcout. Ina SB, the
number of routing tracks to which each incoming routing track can connect is de ned as Fs.
Fig. 2.8 provides an illustrative example of global routing architecture, where CLB CLBO is
surrounded by a SB, SBO, and two CBs, CBO0 and CB1, with a channel width of 4. Connectivity
parameters F¢;n of inputpins IPINO,IPIN1and IPIN 2 are 2/4 A0.5, 3/4 A0.75 and 4/4 A1
respectively. All the output pins OPINO, OPIN1 and OPIN 2 share the same connectivity
parameters F¢ oyt A2/4 A0.5. Each routing track can connect to three other tracks, leading
to Fs /3 in SBO. Note that each routing track is bi-directional. Take the example of Track3
in Fig. 2.8, a signal can propagate from left side to right side and vice versa. To realize a
bi-directional SB, two routing multiplexers with tri-state buffers are required for each routing
track. Different from routing tracks, connections for input and output pins of CLBs have to

be uni-directional. As a result, tri-state buffers are used for output pins to guarantee that

23

Chapter 2. Background and Previous Works

signals can only ow from output pins to routing tracks, while routing multiplexers are used

for input pins to guarantee that signals can only pass from routing tracks to input pins. For a bi-
directional routing architecture, routing algorithms have to not only determine directionality

of each routing track but also show respect to the uni-directionality of tri-state buffers. These
additional constraints complicate the routing algorithms. Normally, a routing path starts
from a CLB input, connects to a routing track through a CB, then passes through a number of
SBs, to nally reach a CLB output through another CB. However, when the CLBs are far from
each other, the routing path may contain many SBs, causing large delay. To overcome this
limitation, routing tracks are allowed to span multiple CLBs without passing through any SB.
The number of CLBs spanned by a routing tracks is de ned as the length of routing track L.
Fig. 2.9(a) and (b) describe how to realize a long connection with either cascaded L 41 routing
tracks or a single L A2 routing track. The L A2 solution removes one SB on the routing path,
potentially leading to a performance improvement. Indeed, while L A2 architecture is less
routable than L A1, its circuit speed can be 24% faster [4]. The routability of L, 2 architecture
can be fully compensated by adding more routing tracks and distributing equally their starting
points over the length of the track. Take the example of Fig. 2.9(b), CLB[1] cannot be routed
to CLBJ[2] through TrackO which starts from CLB[0], but it can always be solved by another
routing track Track1 which starts from CLB[1]. In practice, FPGAs include routing tracks with
various L, in order to achieve best performance. For instance, Xilinx XC4000X series FPGAs
contain 25% L A1 tracks, 12.5%L A1 tracks, 37.5%L A1 tracks and 25% "one-quarter longs”,
whose length is one-fourth of the chip [81].

Fcin, Fcout, Fs and L strongly in uence not only routability but also area and performance
of FPGAs. V. Betz reported that when only one type of routing track is allowed, Fc;n A£0.25¢
W, F¢out Z0.5¢W,Fs A3,L A4 contributes to the best trade-off between area and delay [4].

Most frequently-used FPGA architecture parameters are summarized in Table 2.2. We refer

Table 2.2 — FPGA Architecture Parameters

Parameter | Range | Description

K [1,A1]| Inputsize of a LUT.

N [1,A1]| Number of BLEs in a Con guration Logic Block.

[[1,A1]| Number of inputs of a CLB.

w [1,A1]| The number of routing tracks contained in a channel.

Fcin [0,1] The fraction of routing tracks to which each CLB input pin connects.

Fcout [0,1] The fraction of routing tracks to which each CLB output pin connects.

Fs [0,4W]| The number of routing tracks to which each incoming routing track
can connectin a SB.

L [1,A1]| The length of a routing track in term of the number of CLBs spanned
by the track.

interested readers to [4] for more details about classical FPGA architectures.

24

2.2. Conventional FPGA Architectures

Figure 2.9 — Bi-directional global routing architecture featured by (a) L A1, (b) L /2.

2.2.2 Architectural Enhancements

Since any large logic function can be represented by interconnected small partitions, FPGAs
can implement any circuit by appropriately programming BLES, global and local routing
architectures. However, in reality, a FPGA has resource bounds, e.g., millions of BLEs in
Xilinx products [82]. In practice, an extremely large circuit or system may be implemented
by a network of FPGAs [83, 84]. The limited capacity of FPGA in implementing large scale
computing can be overcome by boosting the capability of a single FPGA, which also narrows
the gap between FPGAs and ASICs. Therefore, modern FPGAs have adapted several major
architecture enhancements:

(1) Tile-based heterogeneity : Modern FPGAs [82, 85] typically employ a tile-based heteroge-
neous architecture [86], where the entire FPGA is organized in the unit of tile, highlighted
blue in Fig. 2.10. A number of tiles or even columns of tiles) are replaced by hard Intel-
lectual Property (IP) blocks, such as Digital Signal Processing (DSP) blocks and memory
banks [82, 85]. The introduction of heterogeneous blocks (highlight brown in Fig. 2.10)
aims at a better trade-off between programmability and ef ciency. Programmable logics,
i.e., LUTs, are considered as soft logic because of their exibility in mapping logic func-

25

Chapter 2. Background and Previous Works

(2)

@)

26

tions, while compact CMOS logics are considered to be hard logic since their functionality

is xed. Indeed, LUTs are exible enough to realize any multi-input and single-output
logic functions but their implementations require more area, delay and power than most
compact CMOS logic. For instance, a 2-input NAND gates requires only 4 transistors in
CMOS logic, but using a 2-input LUT consumes 28 transistors. This is one of the critical
reasons which cause serious overheads of FPGA implementations. Therefore, to alleviate
the limitations, modern FPGA architectures embed hard logic to implement most fre-
quently used logic functions. For instance, commercial FPGAs, i.e., Xilinx Virtex Series
[82] and Altera Stratix Series [87, 88, 89, 90, 85], feature DSP blocks, various sized memory
banks and ARM Cortex CPUs [91], to accelerate arithmetic-intensive applications. Other
hard IPs including shifted registers, embedded CPU cores, Phase Lock Loops(PLLs) and
high-speed transceivers. We refer the interested readers to [87] for more information. By
following a tile-based organization, heterogeneous FPGAs can achieve better granularity
at layout-level. Commercial FPGAs [86] are manually designed because that their highly
repeatable nature are friendly to hand optimization with medium layout efforts| 86]. On
average, manual FPGA layouts outperform 2 £ in area and performance than automatically
generated layouts [18, 92]. As illustrated in Fig. 2.11, each tile includes a CLB, two CBs and
one SB, while routing tracks are interconnected only through SBs. This allows engineers to
focus on optimizing the layout of a tile and spend less time on placing and routing tiles.

Hard carry chain : In modern FPGAs, heterogeneity is not only applied at the tile-level but
also in CLBs. In arithmetic applications, the critical path is highly likely a mixture of the
carry part of adders and other regular logic functions. To achieve better delay ef ciency,
adders should be placed closely to LUTs as much as possible. For this purpose, hard adder
chains are embedded in CLBs across all the BLES, as depicted in Fig. 2.11. The carry parts
of the hard adders are connected across BLEs through pins Cin and Cyut in Fig. 2.11,
while the sum parts are connected to regular BLE outputs. Note that the adder chains
are also hard wired in sequence through CLB pins Cin and Cyut across all the CLBsina
column. As a result, the hard adder chains are the fastest implementation in FPGAs for
adder functions. J. Luu et al. reported that embedding adder chains and heterogeneous
blocks can improve performance of FPGAs by 15% on average [93]. Further researches
[94, 95] focus on exploiting the hard adder chains to improve up to 15% area and 25%
delay of general circuit implementations, not limited to arithmetic-intensive ones. We
refer interested readers to [93, 94, 95, 96] for more information.

Fracturable LUT : Area of a LUT is exponential to its number of inputs. When the mapped
function does not exploit all the inputs ofa K-input LUT, at least 50% of the LUT is not
involved in computing. Consequently, the utilization rate of LUTs in classical FPGAs is
often low since they contain one type of LUTs with xed input size. In modern FPGAs, a
K-input LUT can be fractured totwo (K j 1)-input LUTS, boosting its capability in mapping
logic functions [97]. Compared to the classical design in Fig. 2.6, the 6-input fracturable
LUT in Fig. 2.11 has an additional output, and thus can accommodate two logic functions
with up to ve common inputs. For instance, the 5-input LUT [0] can accommodate a

2.2. Conventional FPGA Architectures

(4)

Figure 2.10 — Tile-based FPGA Architecture.

4-input logic function fo(Xg,X1,X2,X3,X4) Using in0,in1,in2,in3 and in 4. The 5-input
LU T [1] can still implement another 4-input logic function f1(X3,X4,Xs5,Xg) by sharing in 3
and in 4 with 5-input LUT[O]. Alternatively, the 6-input fracturable LUT can implement

two small functions without common inputs, whose total number of input is smaller or
equal to ve. For example, logic functions f2(xo,X1) and f3(x2,X3,X4) can be mapped to
5-input LUT[0] and 5-input LUT[1] respectively. Such capability is beyond a classical
K-input 1-output LUT, signi cantly improving the capacity of LUTs.

Uni-directional Global Routing Architecture and Single-Driver Wires . In the recent
decade, we have seen a trend of uni-directional global routing architecture becoming
popular in commercial FPGAs [98]. The interests comes from that uni-directional routing
architecture can save 25% area and improve delay by 9% as compared to bi-directional
classics [98]. Fig. 2.12 depicts an uni-directional global routing architecture featured by
the same parameters (Fs £3, W A4, F¢in /£{0.5,0.75,1}, F¢ out Z0.5) as bi-directional
example in Fig. 2.8. Just as its name implies, each routing track is directional, as illus-
trated with arrowed lines in Fig. 2.12. It seems that uni-directional architecture is less
exible than bi-directional architecture because that channel width W have to be doubled

27

Chapter 2. Background and Previous Works

28

Figure 2.11 — Tile and enhanced CLB architecture.

to reach the same routability. But in fact each routing track will always have a de nite
directionality in a mapped FPGA. Routing tracks, which are actually metal wires, are on the
top of transistors. Doubled channel width has very limited impact of FPGA area. Despite
issues of channel width, uni-directional routing architecture has several overwhelming
advantages over bi-directional:

(a) Tri-state buffers in SBs can be eliminated, reducing the number of con guration

(b)

(©

bits and dedicated transistor area. The number of multiplexers is the same for each
crosspoint in SBs (See dashed circles in Fig. 2.8 and Fig. 2.12).

CBs for CLB output pins can be merged into SBs. Since each routing track has a speci ¢
direction, connections between a routing track and a CLB output pin can be realized
by multiplexers, instead of tri-state buffers. As represented with yellow rectangles
in Fig. 2.12, CLB output pins are directly wired to an input of SB multiplexers. As
such, routing delay from a CLB output pin to a routing track can be reduced, because
that only one level of crossbars is needed, rather than the two levels in bi-directional
architecture.

The wiring capacitance can be reduced by 37% [98], thanks to single-driver wiring:
each uni-directional routing track is driven by only one routing multiplexer. The

2.2. Conventional FPGA Architectures

removal of tri-state buffers contributes to less wire loads of routing tracks. Compared
to Fig. 2.9(b), the L A2 uni-directional routing track in Fig. 2.13 only need to drive
downstream routing multiplexers.

It is still possible to increase connectivity parameter Fc oyt in uni-directional architecture.
For instance, OPINO can also drive Track3 and Track2 by connecting an additional
input of SB multiplexers.

Figure 2.12 — Uni-directional global routing architecture.

Figure 2.13 — A uni-directional routing track featured by L A2.

29

Chapter 2. Background and Previous Works

Architectural enhancements include but not limited to those introduced here. This section
focus on most widely used enhancements in modern FPGAS, which are considered in the
architecture-level evaluations throughout this thesis. Other architectural enhancements, such
as sparse local routing architecture, time-borrowing FFs and look-ahead/carry-select adder
chains, are designed for speci ¢ application purposes. We recommend interested readers to
see [82, 88, 89, 90, 99, 100, 101, 102, 103] for more detalils.

2.2.3 Circuit Designs in FPGAs

Actually, the entire FPGA architecture is an assembly of three main circuit primitives: Look-
Up Table (LUT), Flip- op (FF) and routing multiplexer. Therefore, the design topology for
these circuits profoundly impacts the area and performance of FPGAs. This part focuses on
introducing current best implementations of LUT, FF and routing multiplexer.

Routing Multiplexer

Routing multiplexers are intensively deployed in both local and global routing architectures, as
shown in Fig. 2.6. The functionality of routing multiplexers is to select among several possible
input signals. As symbolized in Fig. 2.14(a), a N-input routing multiplexer can propagate
any of the N inputs to the output according to the con guration stored in its memory bits.

Fig. 2.14(b) shows a straightforward implementation ofa N -input routing multiplexer, where
each transmission gate can be con gured to propagate/block an input independently. The
one-level structure requires the least number of transmission-gate, but the number of memory

bits required and its critical path delay is linear to the input size N. Consequently, its parasitic
capacitance and memory footprint grows linearly to input size N. Therefore, when N is large,
one-level multiplexer is area-consuming and low-performance.

Remember that large routing multiplexers are intensively used in local routing architecture.
Two-level structure is proposed to achieve better area-delay trade-off in large multiplexers[2].
As illustrated in Fig. 2.15(a), a two-level structure is built by cascading one-level structures.

A N-input two-level structure consists of [= N]A 1 one-level structures, each of which has
[N]inputs. Note that all the one-level structures can share[=~ N]memory bits. In a two-level
structure, the number of memory bits and critical path delay is quadratic to input size N.
Therefore, two-level structure can be area-ef cient and high-performance when N becomes
large.

It is possible to generalize the topology to multi-level structures, such as three-level, etc. A
tree-like structure shown in Fig. 2.15(b) is a special case of multi-level structure where each
one-level structure has only two inputs. A 2-input one-level multiplexer only requires one
memory bit because the two transmission gates are always in opposite states. As a result,

a tree-like multiplexer is most compact in terms of the number of memory bits, which is
logarithmic to input size. But, due to their large number of stages, tree-like multiplexers

30

2.2. Conventional FPGA Architectures

Figure 2.14 — (a) Symbol of a N -input routing multiplexer; (b) One-level implementation[2, 3].

Figure 2.15 — Alternative routing multiplexer design topologies: (a) two-level; (b) tree-like
(2, 3].

31

Chapter 2. Background and Previous Works

perform worse in area, delay and power than others.

Table 2.3 — Analytical comparison between CMOS one-level, two-level and tree-like multiplex-

ers
Multiplexer | Transistor Area?® Critical Path Delay Switching Energy 3
One-level N ¢Amem AN CAgate Rigate 0N 0Cygate 0.5¢®¢N.¢CrgateVpp
Two-level a["_ﬁ] ¢ Amem A (N A | Rigate ¢(3[N] A 1) ¢[0.5@®@[N]CigateVp
N) ¢Atgate Ctgate
Tree-like 10g2N CAmemA(2N § 2)¢ | Rigate ¢ 5([10g2N17 A | 0.5¢®¢(3[logoN]j 1) ¢
Atgate [log2N]) ¢Cigate CtgatevéD

1 Area of input and output inverters are not included here.
2 Elmore delay model [104] is considered here. 2 Only the switching energy of multiplexer
structures is considered here. ®is the switching activity.

* Amem IS the transistor area of a memory bit.

Atgater Rigate @and Cigate are the area,

equivalent resistance and source/drain capacitances of a transmission gate.

Table 2.3 summaries an analytical comparison among CMOS one-level, two-level and tree-like
multiplexing structure. One-level structure is the best choice for small input size. When N
grows, two-level structure becomes the best in terms of area-delay-power product as compared

to one-level and other multi-level structures [2]. A tree-like structure is preferred when there

is a tight constraint on the number of memory bits. Note that transmission gates in Fig. 2.14
and 2.15 can be replaced by pass-transistors or other pass-gate logics but the results in Table
2.3 and conclusions on best multiplexing structure remain true. In this thesis, we will consider
transmission-gate-based routing multiplexer designs because they guarantee best area, delay
and power results.

Look-Up Table

Large number of memory bits gives a K-input Look-Up Table (LUT) the capability to realize
any K-input single-output logic function. Fig. 2.16(a) shows the most popular implementation

of a K-input LUT, where a 2 K-input tree-like multiplexer is used in a different way than it is for
the routing multiplexer in Fig. 2.14(a). Inputs of a LUT are wired to the control lines of the
multiplexer while memory bits become the inputs of the multiplexer. By properly con guring

the 2K memory bits, a complete truth table can be built for any

K-input single-output logic

function. Depending on inputs, the multiplexer of a LUT can output any bit of a truth table.

As such, LUTs can realize the functionality of any single-output logics.

Fig. 2.16(b) illustrates the transistor-level circuit design of a 2-input LUT based on transmission
gates. Note that each input employs three inverters to drive the multiplexer, which can balance
the delay from an input to every gates of transmission gates. Note that the area of LUTs is
exponential to their input sizes:

At 2% CAmem A 2AL 2) ¢Agate.

32

(2.5)

2.2. Conventional FPGA Architectures

where K denotes the number of inputs while Amem and Agate is the transistor area of a
memory bit and a transmission gate respectively. In other words, the logic capacity and area

of a LUT is doubled when number of input is increased by one. For instance, a 6-input LUT is
built with two 5-input LUTs and a 2-input multiplexer, as shown in Fig. 2.11. In addition, the
delay of a LUT comes from the tree-like multiplexer and hence is approximately linear to the
input size. Compared to standard CMOS logic, LUTs are expensive in terms of area and delay
due to heavily using memory bits and tree-like multiplexers.

In this thesis, we will consider transmission-gate-based multiplexer designs for LUTs in the
same perspective as routing multiplexers.

Figure 2.16 — Look-Up Table (LUT): (a) principle internal structure; (b) transistor-level design
of a 2-input LUT [4].

Flip-Flop

Flip-Flops (FFs) are an essential hard logic in FPGASs to implement sequential logics. FPGAs
typically employ D-type FFs in order to simplify timing constraints in sequential logics. The
date stored in a D-type FF can be changed only at the rising/falling edge of the clock signal. Fig.
2.17 shows the transistor-level design of a master-slave D-type FF with asynchronous set and
reset. Both the master and slave parts are CMOS latches based on cross-coupled inverter pair.
Unless a strong write voltage is applied, the two inverters can hold a stable voltage, either' ('
or'1. When clock signal CLK is disabled (logic low "' 0, the rst stage (master) is transparent
to the D input, but the second stage (slave) cannot change its storage. When the clock signal is
enabled (logic high' 1'), the rst stage is read-only and its storage is transferred to the second
stage (slave). As a result, output Q can only change state when the clock signal CLK makes a
transition from logic low to logic high. The set and reset signal can force a overwrite to both

33

Chapter 2. Background and Previous Works

master and slave parts regardless of input D and clock CLK. In this thesis, we consider the FF
design in Fig. 2.17 in conventional FPGA architectures.

Figure 2.17 — Transistor-level design of a master-slave D-type Flip-Flop with asynchronous set
and reset [4].

2.2.4 Memory Technologies for FPGAs

Itis memory bits that enable FPGAs to be con gurableto any circuits. As a crucial component
in LUTs and routing multiplexers, memory cells can occupy 35% of FPGA area and consume
38% of total static power [105]. Their characteristics are key factors determining merits of
FPGAs. Most popular memory technologies used in FPGA can be classi ed to two categories:
(1) Volatile memories, i.e., Static Random Access Memories(SRAMSs), and (2) Non-Volatile
memories, i.e., Flash.

SRAM Technology

Most commercial FPGAs are based on SRAM technology because of its good reliability. Fig.
2.18(a) shows a six-transistor SRAM design, where a CMOS latch based on cross-coupled
inverter pair is accessed by two n-type transistors. When control lines Word Line (WL) is
enabled, a SRAM can be programmed by Bit Line (BL) voltages. When control lines WL is
disabled, a SRAM can hold its storage whatever BL is. Note that six-transistor SRAM is preferred
in FPGA because it is more resistant than ve/four-transistor designs to state ipping due to
crosstalk or charge sharing. The SRAMs in FPGAs are typically placed in an array and accessed
by decoders, like a memory bank. As depicted in Fig. 2.18(b), SRAM cells belonging to the
same row share a BL signal while each column is controlled by a WL signal. Allthe BL and
W L signals are controlled by two decoders. Each SRAM cell can be individually programmed
by manipulating the two decoders. Note that with ef cient sharing BLsand WLs,n SRAMs
onlyrequire - nBLsand n W Ls. Therefore, area of con guration circuits in FPGAs can be
guadric to the number of SRAMs.

34

2.2. Conventional FPGA Architectures

Figure 2.18 — (a) 6-Transistor SRAM design [4]; (b) Con guration circuits for SRAM arrays.

As SRAMSs share the same storage mechanism as FFs, SRAM cell can also be embedded in FFs
and accessed by a scan-chain. Fig. 2.19 shows the transistor-level design of a Scan-Chain
FF (SCFF) and associated con guration circuit to program SRAMs. The con guration circuit

is actually a cascade of SCFFs, which behaves as shift registers. When programming clock
prog_clockis enabled, all the SRAMs are writable by the output of previous SCFF. As a result,
during each programming clock cycle, the data is shifted from one SCFF to another which its
output is connected to. It takes n clock cycles to programming the n SRAMs in the scan-chain.
Memory bits are fed to a scan-chain in reversed sequence. In the rst cycle, memory bit for

the last SRAM is given to the head of chain. In the following cycles, the rst memory bit is
shifted from one SCFF to its next. After n cycles, the rstinput is propagated to the last SCFF
and all the SCFFs receive their desired memory bits.

35

Chapter 2. Background and Previous Works

Figure 2.19 — Scan-Chain Flip-Flop (SCFF) design and associated con guration circuits [5, 6]

Flash Technology

As a well-developed non-volatile technology, Flash transistors have been exploited in FPGA
architectures to achieve low power consumption. A Flash transistor can retain its con guration
with zero leakage, which motivates commercial Flash-based FPGAs replace SRAMs and also
pass-gate logics [7, 106].

Fig. 2.20(a) presents the cross-section of a embedded Flash transistor, where CMOS transistors
are located in regular wells while the ash transistor is placed in a deep N-well. By applying a
negative voltage difference across the oating gate (Fig. 2.20(b)), electrons are removed from
the oating gate by Fowler-Nordheim tunneling mechanism|[107], which turns the device on.
A positive programming voltage inject electrons to the oating gate and turns off the device,

as illustrated in Fig. 2.20(c). Because of the voltages required for programming and erasing,
ash processes include special high-voltage transistors with thicker oxides, resulting in more
complicate process than logic transistors.

Because Flash transistors can retain their on/off state without constant power supplies, they
can be regarded as a combination of memory and transistor. By exploiting the features, two
Flash transistors sharing a same control gate and a common oating gate (Fig. 2.21(b)) can
realize the same functionality as a SRAM-controlled transmission gate in Fig. 2.21(a). The
sense device (minimum-sized ash transistor) programs the oating gate voltage while the
switch device (a larger ash transistor) turns on/off the data path. When the sense device
undergoes a programming sequence illustrated in Fig. 2.20(b)(c), the oating gate of the
switch device is programmed simultaneously. In other words, switching on/off the sense
device also turns on/off the switch device, leading to propagating/blocking datapath signals.

36

2.2. Conventional FPGA Architectures

Figure 2.20 — (a) Embedded Flash Process (Courtesy by [7]); (b) Erasing operation of a Flash
transistor (Courtesy by [7]); (c) Programming operation of a Flash transistor (Courtesy by [7]).

Figure 2.21 — (a) A transmission gate controlled by a SRAM; (b) Equivalent Flash-based pro-
grammable switch. (Courtesy by [7])

However, Flash transistors typically require a long con gurationtime (» msec.), a high pro-
gramming current (» mA) and alarge programming voltage (E 10V). To keep a short con gura-
tion time for the whole FPGA and also a low current budget, Flash transistors are programmed
individually and in series. As con guration can be activated by applying a voltage difference
between BL and W L, the Flash-based programmable switch in Fig. 2.21(b) is compatible with

37

Chapter 2. Background and Previous Works

the con guration circuit in Fig. 2.18.

Indeed, Flash-based FPGAs are better in power consumption than SRAM-based counterparts,
thanks to non-volatility. But the drawbacks are also obvious, including low-speed, complicated
fabrication process and area overheads, due to the limitation of Flash technology. Therefore,
mainstream FPGA products are still based on SRAMs while Flash-based FPGAs are preferred
only when power budget is an more important factor than others.

In this thesis, our baseline FPGA architecture resembles a well-optimized commercial SRAM-
based FPGA B8], including the following essential architectural enhancements: (1) tile-based
architecture, (2) heterogeneous blocks, (3) fracturable LUT, (4) embedded adder chains and
(5) single-driver uni-directional global routing architecture.

2.3 Previous works about RRAM-based Circuit Designs and FPGA
Architectures

As summarized in Section 2.1, RRAM technology is appealing to FPGA researches owing
to their low and tunable R_rs, BEOL integration and non-volatility. This section aims at
reviewing previous works related to RRAM-based FPGAs, including both novel circuit designs
and architectures. These previous works provide important insights, e.g., inserting RRAMs

in datapaths, which strongly motivates our works throughout this thesis. The rst part of

this section will focus on RRAM-based circuit designs related to FPGA architectures. We
will rst review programming structure, which is the basis for all essential circuits in FPGA
architectures. Then, we report previous works about RRAM-based memory cell, Flip-Flop (FF)
and routing multiplexer designs. The second part of this section introduce previous works
about RRAM-based FPGA architectures, exploiting the circuit designs.

2.3.1 Programming Structures

Programming structures are the elements that con gure the resistance states of RRAMs, which
are actually the basis for all RRAM-based circuit designs and systems. The quality of pro-
gramming structures directly determines the con guration time, achieved RLrs and RyRrs,
profoundly impacting the performance of circuits and systems. Therefore, programming struc-
tures are the mostimportant and essential circuit designs and are worth intensive elaborations.

Typically, programming structures employ transistors to provide programming voltage and
drive programming current for RRAMs. A programming structure is named according to the
number of transistors dedicated to programming a RRAM, e.g., 1T(ransistor)1R(RAM). The
transistors in programming structures are called programming transistors. Fig. 2.22 shows
three most commonly used programming structures in RRAM-based FPGAs:

38

2.3. Previous works about RRAM-based Circuit Designs and FPGA Architectures

Figure 2.22 — Three most commonly used programming structures: (a) 1T(ransistor)1R(RAM),
(b) 1T(ransistor)2R(RAM) and (c) 2T(ransistor)1R(RAM).

(1) 1T(ransistor)1R(RAM) :The 1T1R programming structure is the most compact implemen-
tation, where a RRAM is programmed by a n-type transistor [1, 36, 108]. When W L[0] is
enabled in Fig. 2.22(a), the RRAM can be programmed by the voltage of BL[0]. When
BL[O], Vset, the RRAM is set to LRS. WhenBL[0] , V(eset, the RRAM is reset to HRS.
During operation, W L[0]is disabled and BL[0] &Vpp, the data of the RRAM can be read
out through the output voltage Vout AVpD m, where Rgrrawm is the resistance
of RRAM while Ry ans represents the off-resistance of the programming transistor. Note
that Vpp should be kept smaller than Vgserand Vieset, to avoid parasitically programming
RRAMs. Because each RRAM is accessed by an individual transistor, a 1T1R RRAM cell can
eliminate serious problems in RRAM-based crossbar, e.g., the sneaking current and the
disturbances during write and read [108].

(2) 1T(ransistor)2R(RAM) : To improve the reliability, the 1T2R in Fig. 2.22(b) is proposed
[8,109]. The two RRAMs Rg and R; are programmed simultaneously when programming
transistor is turned on. Note that the polarity of the two RRAMSs are always opposite.
By applying BL[0] /AVset and BL[1] £V eset: RRAM Ry is set to LRS while RRAM Ry is
reset to HRS. In contrast, BL[0] £V eset and BL[1] A£Vset cON gure RRAMs Rg and Ry
to HRS and LRS respectively. During operation, programming transistor is switched off
and BL[0] is connected to Vpp while BL[1] is connected to GND. The output voltage
Vout is determined by Vpp TARlTRO- The 1T1R is most robust to process variations than
1T1R becauseVy,; is only related to on/off ratio of RRAMs Rprs/ RLrs, whose variability
is smallerthan Ryrsand R rs[110, 8]. The 1T2R programming structures are proposed
to replace SRAMs but they require a very high Rpyrs (» 10G-) for RRAMs to suppress
the leakage power [111]. For instance, the leakage power of a 1T2R elementis P|eakage A
VDZD/(RLRSA RuyRrs). Since typically RyrsEE R Rrs, the leakage power is dominated by
RuRrs. Assume in 45nm technology node, Vpp ZA1.2V and an optimistic Ryrs/Z100M - ,
the leakage power of a RRAM structure is 14 .4AnW , far more than the leakage power of a
SRAM (» 0.073nW [112)).

(3) 2T(ransistor)1IR(RAM) : To overcome the leakage issue, many works focus on embed-

39

Chapter 2. Background and Previous Works

ding RRAMs in the datapath along with two n-type programming transistors [26, 113, 9,
27, 8, 110, 6, 114, 111]. The 2T1R programming structure in Fig. 2.22(c) is proposed to
provide equivalent functionality as a SRAM-controlled transmission gate. When ~ W L[0]
and W L[1] are enabled, RRAM R, can be programmed to HRS/LRS by setting BL[0] i
BL[1] AVieset! Vset. During operation, WL[0] and W L[1] are disabled and RRAM R;
can propagate/block datapath signal from in to out. When inserted in the datapaths,
RRAMs can introduce alow RLRS(» 1k-), whichis » 75% less than transmission gates
(» 4k- at 45-nm technology node) [26, 113, 9, 27, 8]. In addition, compared to a SRAM-
controlled transmission gate occupying eight transistor area, the 2T1R programming
structure requires only two transistors. By exploiting RLRS the 2T1R programming struc-
ture opens an opportunity in area-ef cient and high-performance routing architecture
[26,113,9, 27, 8, 110, 6, 114, 111].

Controlled by BLsand WLs, the 1T1R, 1T2R and 2T1R programming structures can be ac-
cessed by the con guration circuits in Fig. 2.18, compatible to existed FPGA architectures.

In previous works [26,113, 9, 27, 8, 110], evaluations of the 1T1R, 1T2R and 2T1R programming
structures focus on functionality veri cation only, where the achieved Rirsis always assumed
to be lowest possible value. However, such simple analysis ignores crucial factors in circuit
designs, i.e., electrical characteristics of RRAMs and transistors:

1)

(2)

©)

40

Parasitic capacitances of RRAMs Cp are ignored, which has a strong impact on the circuit
performance. Especially when RRAMs appear in datapath, Cp causes delay degradation of
routing architecture, mitigating the performance gain from RLRrs.

Side effects of programming transistors are also ignored. In order to achieve alow R rsora
high Ryrs, the sizes of programming transistors have to be large enough to drive suf cient
programming current. For instance, to achieve the programming current required by [9]
(» 2mA) with 45-nm transistor technology node (|set £ »200t A at minimal width), the
size of the programming transistor should be » 10, far more than the size of a transmission
gate (typically » 3). In this case, the parasitic capacitances of the programming transistors
become non-negligible and may seriously threaten the performance of RRAM-based
routing architecture. Therefore, RRAM-based circuits have to trade off betweenlow R rs
and large programming transistors.

Programming structures are designed and veri ed based on ideal operating conditions.
Previous works assume that during programming, the voltage across the RRAMs is stable
and n-type transistors can always operate in saturation region, providing maximum pro-
gramming current. However, these assumptions violate realistic electrical characteristics
of transistors and RRAMS in two major aspects: (a) resistance switching of RRAMs leads
to that the voltage across RRAMs is changing throughout the programming processes. A
RRAM in HRS takes more voltage share than a RRAM in LRS. (b) transistors requires a large

2.3. Previous works about RRAM-based Circuit Designs and FPGA Architectures

source-to-drain voltage Vps when operating at saturation region. But such Vpg may not
be always achievable during resistance switching.

In short, instead of pure functionally veri cation, programming structures should be studied
electrically by analyzing operating conditions of RRAMs and transistors. This motivate us to
give a detailed study on programming structures in Section 3.

2.3.2 Non-Volatile Flip-Flop and SRAM

Rather than memory arrays, RRAMs can also enhance conventional FFs and SRAMs with
non-volatile data storage.

Fig. 2.23 illustrates a Non-Volatile Flip-Flop (NVFF) design based on the master-slave FF in
Fig. 2.17 [5, 115, 116]. The master stage of NVFF is same as the conventional FF, while the
slave stage is modi ed to store data in RRAMs. During normal operation, the NVFF works the
same as a conventional FF, where data storage purely relies on CMOS transistors. Prior to an
active-to-sleep transition, the data stored in the slave latch needs to be written to the non-
volatile RRAM devices. To this end, the clock is silenced and kept low for the entire duration of
the RRAM write operation, thereby forcing the slave latch to be non-transparent and isolated
from the master. During write, the RRAM devices are completely disconnected from the slave
latch and from the read circuits, so that the voltage drop across their terminals can be set

by the write drivers. Note that the two RRAM devices are always used in a complementary
fashion, i.e., one device is programmed to the HRS, while the other one is programmed to the
LRS. During system wake-up (power-on), the slave latch would ideally be directly restored,
based on the data stored in the RRAM devices. Both internal storage nodes Q and Q are
rst pre-charged and equalized using three dedicated PMOS transistors controlled by ~ EQ.
Following this pre-charge phase, the internal nodes Q and Q are connected to ground through
the RRAM devices. Note that the NVFF can also be used in Scan-chain con guration circuit
(Fig. 2.19).

The slave latch of a NVFF can be simpli ed to be a NV SRAM, as shown in Fig. 2.24. The NV
SRAM can be con gured like the memory array in Fig. 2.18. Similar to NVFFs, the storage
is transferred to RRAMs before system power down and also can be loaded from RRAMs
after system wake-up. The NVFF and NV SRAM have the same performance as conventional
circuits because they share the same working principle during normal operation. Thanks to
non-volatility, the energy consumption of NVFF and NV SRAM is 67% smaller than volatile
versions.

2.3.3 Multiplexer and Crossbar Designs

Earlier works [22,117, 110, 109, 118] used 1T1R and 1T2R memory structures to replace the
con guration memories in the routing structures. These modi cations grant non-volatility to

41

Chapter 2. Background and Previous Works

Figure 2.23 — A non-volatile master-slave Flip-Flop design [5, 6].

the FPGA and enable instant-on normally-off — operations. However, the multiplexer structures
in[22,117,110, 109, 118] were still based on CMOS multiplexers, leading to no improvements
on performance.

To leverage the potential of the 2T1R programming structure, non-volatile routing multiplexer
design have been intensively studied in [9, 26, 27, 8, 113]. Fig. 2.25(a) shows a one-level
N -input 2T1R-based multiplexer [9, 26, 8, 113], where all the programming structures share
a common n-type transistor at the output node. The 2T1R-based multiplexers in Fig. 2.25
depend on n-type transistors to provide high programming current, in order to achieve a
low R rs. For instance, when W L[0] AW L[N] A21° BL[0] A1%and BL[N] A0° RRAM Ry
is programmed to LRS. Fig. 2.25(b) presents an illustrative example of a two-level/tree-like
2T1R-based multiplexer [27], whose input size is 4. Note that every two RRAMs are opposite in
polarity, which enables complementary programming. RRAMs belonging to the same stage are
programmed simultaneously. Take the example in Fig. 2.25(b), when BL[0] £1° BL[1] £1°,
BL[2] £0° wL[0] £1° W L[1] A0 and W L[2] £0° RRAMSs of the rst stage sharing the same
polarity with Rg are programmed to LRS, while those sharing the same polarity with R; are
programmed to HRS. Note that, every two RRAMSs are always different in the resistance states

42

2.3. Previous works about RRAM-based Circuit Designs and FPGA Architectures

Figure 2.24 — A non-volatile SRAM design [5, 6].

and RRAM programming is conducted stage by stage, which is similar to the tree-like CMOS
multiplexers in Fig. 2.15(b).

By ef ciently sharing programming transistors in multiplexing structure, the ratio between the
number of programming transistors and RRAMs approaches 1: 1 when input size increases.
In addition to better granularity, sharing programming transistors also contribute to better
performance. For instance, whatever input size is, the 2T1R-based multiplexer in Fig. 2.15(a)
only need a n-type transistor at the output node. As a result, the parasitic capacitance on
critical paths and the delay of multiplexers are independent from input size, which cannot be
achieved by any CMOS multiplexersin Fig. 2.14 and Fig. 2.15. Such relationship between input
size and performance becomes a strong motivation for chapter 5 which explores RRAM-based
FPGA architectures.

2.3.4 RRAM-based FPGA Architectures

FPGA architecture can bene tfrom the non-volatility as well as the area and performance
gains coming from the BEoL integration and the low R rsachieved by RRAMs. Previous works
[109, 110, 8, 26, 9] proposed novel FPGA architecture based on two principles: (a) replace the
SRAMs in LUTs with RRAMs, and (b) replace the SRAMs as well as the transmission-gates in
routing structures with RRAMs.

Fig. 2.26 illustrates early RRAM-based FPGA architectures where bi-directional routing ar-

43

Chapter 2. Background and Previous Works

Figure 2.25 — Early designs of 2T1R-based multiplexers: (a) A N -input onelevel structure [9];
(b) An illustrative example of two-level and tree-like 4:1 structure [10].

chitecture is employed. As a direct approach, SRAMs can be replaced by 2T1R programming
structures (Fig. 2.26(b)), as proposed by P-E. Gaillardon etal. [119]. Y. Chen et al. study a
RRAM-based FPGA using such scheme [109], while Y. Yang-Liauw et al. recently demonstrated
a functional prototype [117]. 2T1R programming structures can also be employed to realize
RRAM-based LUT structures (Fig. 2.26(a)) as proposed by P-E. Gaillardon et al. [110]. Ef cient
CB and SB design as proposed by S. Tanachutiwat et al. [26] and J. Cong et al. [9] further
improve the granularity of bi-directional routing architecture through sharing programming
transistors and eliminating tri-state buffers. As illustrated in Fig. 2.26, all the programmable
switches that connected to either a routing track or a CLB pin to share a programming tran-
sistor. Without tri-state buffers, the transistor area of global routing architecture only is
dominated by programming transistors, since RRAMs are fabricated above transistors. As
global routing architecture typically occupies more than 50% area of a FPGA, the predicted
area gain of RRAM-based FPGAs is 2j 3£ [26, 9]. However, the absence of tri-state buffers
causes the sneak path problems [120, 121, 122] in routing architecture, which is hard to be
addressed. During programming, RRAMs in LRS can distribute the programming currents for
other RRAMs on the same routing track. Consequently, some RRAMs have a higher R_rsthan
expected, decreasing the speed of routing paths.

Previous RRAM-based FPGA studies [26, 113, 9, 27] also follow the trends of uni-directional
routing architecture and single driver wiring technique, where one/multi-level RRAM-based
multiplexers is the key to achieve area, delay and power reduction. More than global routing
architecture, the local routing architecture can also bene t from the 2T1R-based multiplexers

in Fig. 2.25. Compared to bi-directional routing, uni-directional solution can avoid sneak path
problems because RRAMSs are separated by buffers. Therefore, this thesis will consider only
uni-directional routing architecture for the exploration of RRAM-based FPGA architectures

44

2.3. Previous works about RRAM-based Circuit Designs and FPGA Architectures

Figure 2.26 — Early RRAM-based FPGA architectures (a)LUTs embedded with 2T1R program-
ming structures; (b)SRAMs are replaced by 2T1R programming structures.

(See Chapter 5).

However, most RRAM-based researches overlook the challenges coming from programming
structures (see Section 2.3.1), which may lead to a strong bias in the estimation of any per-
formance metric improvements. Previous works [26,113, 9, 27,109, 118, 110, 8] predict that
RRAM-based FPGAs can reduce the area by 7%-15%, increase the performance by 45%-58%,
and save the power consumption by 20%-58%, compared to SRAM-based FPGAs. However,
these architectural improvements are obtained by simply replacing SRAM-based transmission
gates in classical FPGA architectures with RRAM-based programming structures. Very limited

45

Chapter 2. Background and Previous Works

work studies the impact on novel RRAM-based FPGA architectures that exploit the circuit-level
features of RRAM-based multiplexers. Therefore, it is worthy to investigate speci ¢ archi-
tectural optimizations for RRAM-based FPGAs that would derive from realistic RRAM-based
multiplexer designs (See chapter 5).

2.4 FPGA Architecture Exploration Tool and Power Modeling Tech-
nique

The most accurate approach to evaluate a FPGA architecture is to manufacture a FPGA chip
and then measure its performance by implementing a set of benchmark circuits. However,
the architecture of FPGA is dependent on a large number of parameters, as listed in Table 2.2,
resulting in a large design space to be explored. As manufacturing and testing all the FPGA
architectures in the design space is not practical, modeling FPGA architectures with EDA tools
and estimate their performance with analytical models is necessary. Sophisticated EDA tools
can reduce the large design space to a few candidates of best FPGA architectures. To guarantee
reliable results, the analytical models should be accurate enough to capture the characteristics
of diverse FPGAs architectures. Otherwise, the EDA tools would lead to misleading conclusions
on the best FPGA architectures. This section is devoted to the EDA techniques used in current
best academic FPGA architecture exploration tools. This section consists of two parts. The
rst part introduces current state-of-art FPGA architecture exploration tools, while the second
part discusses the limitation of mainstream power estimation techniques in the context of
emerging technologies.

24.1 FPGAEDA ow

The purpose of FPGA architecture exploration is to search the best FPGA architecture for a
speci c technology. Typically, merits of a FPGA architecture are judged by evaluating their
area, delay and power consumption average over a set of benchmark circuits. The evaluation is
performed with a complete EDA tool suite, where a benchmark circuit is virtually implemented
by a hypothesized FPGA.

Fig. 2.27 illustrates the Verilog-To-Routing (VTR) ow, which is current state-of-art academic
EDA ow for the purpose of FPGA architecture exploration [4, 44]. First of all, the logic synthe-
sis tool, ABC [123], optimizes the benchmark circuits and performs a technology mapping.
Then, the activity estimator ACE2 [124] computes the signal activities of all the internal nodes
in the benchmark circuits. Finally, the tool VPR [44] packs, places and routes the circuits
onto a virtual FPGA architecture de ned by the architecture description language. In the
packing stage, LUTs, FFs and hard adders are clustered into CLBs. Placement determines the
physical positions of CLBs in the FPGA fabric. Routing maps the nets of CLBs into routing
architectures. The routing stage contains two steps. In the rst step, VPR performs a binary
search to determine the minimum channel width Wi required for a given benchmark circuit

46

2.4. FPGA Architecture Exploration Tool and Power Modeling Technique

Figure 2.27 — Classical EDA ow for FPGA architecture exploration purpose.

and the FPGA architecture under evaluation. In the second step, a 30% slack is added to the
minimum routable channel width Wy, , in order to simulate a low-stress routing [4]. This
comes from the fact that commercial FPGAs are normally built with suf cient routing tracks

that "average" circuits have some spare routing available. After routing, VPR reports area and
delay by using Minimum Transistor Width Area (MTWA) model [4, 125] and Elmore delay
model [104] respectively, while power consumption is estimated by VersaPower [46]. The best
FPGA architectures are in general determined by overall performance, such as Area-Delay
Product (ADP).

2.4.2 Probability-based Power Estimation Techniques

Very Large Scale Integration (VLSI) power estimation techniques can be classi ed into two
categories: simulation-based and probability-based [126, 127]. On the one hand, simulation-
based methods are the most direct ways to do accurate power analysis. They typically rely
on SPICE-based simulations to analyze the power consumption of a given circuit netlist.
However, in the 1990s, SPICE simulations were regarded to be only applicable for small-scale
circuits due to the low simulation speed and high memory usage [126, 127]. On the other
hand, probability-based methods are based on signal activity estimation and analytical power
models. Average power consumption is calculated by combining signal switch density and

47

Chapter 2. Background and Previous Works

switching power. Compared to a simulation-based method, a probability-based method is
faster but trades off accuracy due to the approximate errors in analytical power models and
signal activity estimations.

In the speci ¢ context of FPGAs, the power estimation engines embedded in academic ar-
chitecture exploration tools are typically based on probabilistic activity estimation [124] and
analytical power models [128, 41, 46].

Signal Activity Estimation

The probability activity estimation models the transitions of a signal with two parameters: the
static probability and the transition density. The static probability P(x) at node x is de ned
as the average fraction of clock cycles in which the steady state value of x is a logic high. The
transition density D (x) is the average number of transitions per clock cycle at node x. Fig.
2.28 exempli es two signals A and B and also the clock signal as reference. Table 2.4 lists the
corresponding static probability and transition density of signals.

Figure 2.28 — Examples of signals for switching activity modeling.

Table 2.4 — Static probability and transition density of the signals in Fig. 2.28.

Signal | Static Probability | Transition Density
Clock 0.5 2

A 0.5 1

B 0.43 25

The transition density can be propagated through a logic gate. Assume a logic gate with n
inputs x;,1- i - n,anoutput y, and a function y Zf (x). The P(x) and D(x) at the output
node y is determined by the Boolean Difference.
R @ (x)
D(y) £ P(F)D (i),
i £1 i (2.6)
@ (x) . .
—— AT (X) jx, £1© T (X) ix, &0

When transition density is known for every primary inputs of a circuit, it is possible to compute

48

2.4. FPGA Architecture Exploration Tool and Power Modeling Technique

the transition density of all the internal nodes and primary outputs by applying (2.6) to each
logic gate. More details about switching activity modeling and associated algorithms can be
foundin [128, 124].

Analytical Power Models

The total power of a circuit is the sum of two parts: leakage power and dynamic power[126,
127].

Leakage power is the power dissipation of a circuit with zero transition density. It is well known
that the leakage power strongly depends on various factors, including process technology, cir-
cuit topology and the state of inputs. Developing a purely analytical leakage power model has

to involve many technology parameters, whose numbers keep increasing for modern CMOS
technologies [128, 41, 46]. Therefore, previous works [126, 127, 128, 41, 46] commonly esti-
mate leakage power with simulation-based approaches. For each circuit primitive, a leakage
power library is built from simulation results with a speci c CMOS technology, different circuit
designs featured by various transistor sizes. The total leakage power is obtained by identifying
the leakage power of circuit primitives in their associated library and then summing up. Even
though itis time-consuming to build a leakage power library due to a large number of electrical
simulations, such method guarantees good accuracy as compared to purely analytical leakage
power models [128, 46]. In VersaPower [46], the average error between estimated leakage
power and SPICE results is within 5%.

However, the majority of total power comes from dynamic power consumption, which has

two sources: (1) the switching power resulting from charging and discharging parasitic capac-
itances, and (2) the short-circuit power dissipated by temporary Direct Current (DC) paths
during signal transitions.

Fig. 2.29 provides an illustrative example to understand the sources of the switching and
short-circuit power. The CMOS inverter in Fig. 2.29(a) can be modelled by the RC tree in Fig.
2.29(b), where Cg is the total gate capacitance of transistors P; and N1, Ra and Rg are the
equivalent channel resistance of transistors P31 and N1 respectively, and C is the total parasitic
capacitance at node out. Note that C, includes both parasitic capacitance of transistors and
the load capacitance C in Fig. 2.29(a). During the transition of input in, there is two types of
currents owing from Vpp: capacitance charging current |g,, and short-circuit current |gc.

The switching power results from |y, which charges Cq, until Vou¢ £Vpp . Considering transi-
tion density in Fig. 2.29(b), the average switching power of node out is
z 1
Psw(out) & t isw(t)Vop dt A2 D (out) 1C, V25 e, (2.7)

where D (out) represents the transition density of node out, Vpp denotes the supply voltage
and f¢k is the clock frequency. The accuracy of the switching power model in (2.7) mainly

49

Chapter 2. Background and Previous Works

Figure 2.29 — Dynamic power modelling: (a) an CMOS inverter with a load capacitance Ci; (b)
Equivalent RC model; (c) Input transition from low to high voltage level.

depends on the value of C,. Since the parasitic capacitance of a transistor is in general a
function of the source-to-drain voltage Vps, which is actually changing during a transition.
In practice, power estimation tools build a library for the average parasitic capacitance of a
transistor, by extracting from a large number of simulation results [128, 41, 46].

Note that during the input transition, transistors ~ P; and Nj are not fully turned on or off. As
depicted in Fig. 2.29(c), when input voltage V;, swings from the threshold voltage of transistor
N1, Vinn , to the threshold voltage of transistor Py, Vinp , transistors P; and N1 operate at sub-
threshold regime and both of them are considered to be in on state. Consequently, there is
a short-circuit current Is¢c owing from Vpp to GND during the time period tsc. The short
circuit power during a transition can be calculated by
Z,,
Psc(out) &£ t isc(t)Vppdt. (2.8)
1

However, the short-circuit power is dif cult to be accurately estimated, due to that i(t)are
changing during the transition and it is strongly dependent on the shape of input voltage
Vin . For instance, slews of Vj, lead to large difference in the short-circuit power [129]. The
estimated short-circuit power typically has an error as large as 10-20% when compared to
simulation results [128, 129].

The total dynamic power of a circuit is the sum of the switching and short-circuit power of
each node:

X
denamic total /E (Psc(i)A Psw(i)) (2-9)

i2nodes

Despite the dif culties in accurate modelling capacitances and shape of voltages, the dynamic
power models encounter more serious challenges in accuracy from the recon gurability of

50

2.4. FPGA Architecture Exploration Tool and Power Modeling Technique

FPGASs:

(1) The accuracy of these analytical power models is guaranteed for only a few input signal
patterns of the different circuit elements. Unfortunately, the input signal patterns of FPGAs
may signi cantly differ from a design to another. For instance, the power differences of a
4-input LUT can reach 69% under diverse input signal patterns [41]. Therefore, current
power estimation tools guarantee accuracy on very restrictive conditions.

(2) Transistor-level circuit designs are diverse in FPGA architectures, leading to different
dynamic power characteristics. For instance, a routing multiplexer has three different
transistor-level implementation as shown in Fig. 2.14 and 2.15, each of which has dif-
ferent power characteristic as list in Table 2.3. Academic FPGA architecture exploration
tools [44] employ architecture description language [48] to model highly exible FPGA
architectures. The hierarchy and complex interconnects inside modern FPGA logic block
architectures can be precisely described with the architecture description language. The
timing parameters of logic and routing elements are richly provided for accurate tim-
ing analysis. However, there are very limited transistor-level modeling parameters in
architecture description language, that can be exploited for power estimations.

(3) Con guration circuits of FPGA architectures are diverse, strongly depending on the mem-
ory technologies. For instance, Section 2.2 introduces two types of con guration circuits,
which are based on scan-chain FFs and memory arrays respectively. The choice of con g-
uration circuits leads to different power characteristics of FPGA architectures. However,
current FPGA exploration tools neglect the contribution of con guration circuits, leading
to inaccurate power analysis for entire FPGA architecture.

These three challenges cause over 20% error between estimated power and SPICE results on
average when evaluating individual modules, such as LUTs and routing multiplexers [46].
Note that only a limited input patterns and con gurations are considered when evaluating the
LUTs and routing multiplexers because it is extremely time-consuming to enumerate all the
possible conditions. In terms of full FPGA architectures, the error may be even worse when
considering a speci ¢ benchmark circuit is mapped to a FPGA, because the con gurations

of LUTs and routing multiplexers may hit the worst cases of analytical models. Furthermore,
the accuracy of estimated power has not been carefully examined for full FPGA fabrics due
to the lack of SPICE modeling in VPR tools. Additionally, current FPGA power models are
developed exclusively for CMOS logic, while there is very limited work with respect to emerging
technologies. When developing novel FPGA power models, providing reliable baseline SPICE
results is always a necessity.

Overall, the analytical power estimation method is a dif cult problem. Without advanced
dynamic power models and versatile EDA supports, current power estimation tools relying on
analytical power models cannot capture well the power characteristics of a wide range of novel
FPGA architectures. To guarantee accurate power analysis for novel circuit design topologies

51

Chapter 2. Background and Previous Works

and general FPGA architectures, the simulation-based approaches are worth a revisit and the
FPGA architecture description language needs to be extended for power modeling parameters.
In chapter 4, we will introduce FPGA-SPICE, a simulation-based accurate power analysis
framework, enabling SPICE modeling for versatile FPGA architectures.

2.5 Summary

This chapter has covered memory technologies, circuit designs, architectures and EDA tech-
niques of both conventional and emerging RRAM-based FPGAs. We rst reviewed the basics
of RRAM technology, which are exploited intensively from circuit design and architecture
perspectives in Chapter 3 and Chapter 5. In the second part, we then detailed circuit designs
and architectures of SRAM-based FPGASs, which are the baselines of performance evaluations
in Chapter 3, Chapter 4 and Chapter 5. The third part presented important prior researches
about RRAM-based FPGASs, whose merits will be discussed detailedly in Chapter 3. Finally,
we introduced the EDA techniques for conventional FPGAs and in particular focused on the
power estimation techniques, the limitations of which will be overcome in Chapter 4.

52

®] RRAM-based Circuit Designs

Circuit design is a corner stone of FPGA architectures. Actually, it is one of the most critical
factors impacting the overall performance of FPGAs. Without ef cient RRAM-based circuit
designs, it is hard for RRAM-based FPGAs to demonstrate advantages over SRAM-based
counterparts. This chapter proposes novel RRAM-based circuit designs and examines their
superiority over SRAM-based circuits through both theoretical analysis and electrical simula-
tions. This chapter is divided into two parts:

1. RRAM-based programming structures: the access circuits for RRAMs, which are the most
basic elements in all RRAM-based circuit designs, such as NV SRAMs, NV FFs and multiplexers.
2. RRAM-based multiplexer designs: routing circuits employing RRAMSs to propagate datapath
signals, which are the most frequent element in FPGA architectures.

Part 1: RRAM-based Programming Structures

Programming structures are the circuit elements devoted to con guring RRAMs. As mentioned

in Section 2.3, RRAM-based FPGAs account on the low R| grsof RRAMSs to guarantee their high
performance. Therefore, the quality of programming structures (their ability to achieve low

R rswhile minimizing the area footprint) is a crucial factor of the performance of RRAM-based
FPGAs. This part provides a thorough study of RRAM-based programming structures for FPGA
architectures. We will focus on three most representative programming structures, which
are 2T(ransistor)1IR(RAM), 2T (ransmission)G(ate)1IR(RAM) and 4T(ransistor)1IR(RAM). When
analyzing each programming structure, we perform both theoretical analysis and electrical
simulations in order to demonstrate their advantages and limitations.

This part consists of four sections: Section 3.1 introduces general experimental methodology
in evaluating programming structures. Section 3.2 analyzes the speci cities and limitations of
2T(ransistor)1R(RAM) programming structure, and discuss the associated shortcomings, such
as low current density and areainef ciency. Section 3.3 studies 2T (ransmission)G(ate)1R(RAM)
programming structure and discusses its advantages and limitations compared to 2T1R. Sec-

53

Chapter 3. RRAM-based Circuit Designs

tion 3.4 proposes a more advanced 4T (ransistor)1R(RAM) programming structure, overcoming
limitations of 2T1R and 2TG1R programming structures.

3.1 Experimental Methodology

When studying programming structures, we consider the RRAM modelin[130, 131], whose
Vset/ Vreset IS 1.3V/-1.3V respectively, R rsis 500- , and Ryrsis 20k- (Ryrs/ RLrsA40). The
current compliance Iserand I esetiS Setto ImA, considered as a way to avoid large thermal
damage. The minimum required pulse width for programming the RRAM element is 100ns.
The programming structures discussed in the paper are implemented with I/O transistors
(W/L=320nm/270nm) from a commercial 45nm process technology. The associated transistor
model is based on BSIM4. The standard Vgsand Vpg of transistors are 2.5V. The transistors
can be over-driven up to 3.0V. The ratio between p/n-type transistors ~ is set to 3. In this part,
we also consider the area overhead of the P-Well of p-type transistors for which a penalty factor

° AE1.2is set.

Electrical simulations are run with HSPICE simulator [47]. The time step of electrical sim-
ulations is set to 0 .1ps. In each simulation, the RRAM is initialized to the HRS and then
transistors are turned on to program the RRAM into LRS. At the end of programming period,
we measure the voltage difference between the RRAM electrodes and the current passing
through to calculate the LRS resistance R Rrs.

We sweep two parameters: the width of transistors Wp,;og and the programming voltage Vprog,
to study their impact on the performance of programming structures. Woprog is de ned as the
width of the n-type transistors used in the structures expressed by the minimal size transistors.
Woprog is sweptin the range from 1 to Switha 0.1 step. Vprog is sweptin the range from 2.5V to
3.0V witha 0.1V step.

Note that, to achieve signi cant FPGA improvements, a Rpyrs of at least 20M- must be
employed [114]. However, as the presented methodology and structures are general for any
device parameters and for the sake of reproducibility, we present results using the base
parameters of the RRAM model in[130, 131]. We will consider RRAM parameters meeting the
demand of FPGA architectures when studying RRAM-based multiplexer design (Second part
of this chapter) and FPGA architecture-level optimizations (Chapter 5)

3.2 Limitations of 2T1R Programming Structure

This section begins with circuit design of 2T1R programming structures including the effects
from system-level implementations. Then, theoretical analysis is performed from three as-
pects: |-V characteristics (Section 3.2.2), physical design (Section 3.2.3) and area consumption
(Section 3.2.4). Last but not least, electrical simulation results are presented to validate the
conclusions of theoretical analysis.

54

3.2. Limitations of 2T1R Programming Structure

3.2.1 2T1R Circuit Structure

Practical analysis programming structures should consider the context of system-level im-
plementations. Previous works [26, 9, 110, 27, 8, 6] mainly exploit two different strategies
to access the individual 2T1R memory elements. A scan-chain organization, as shown in
Fig. 3.1(a), has been proposed in [8] while a memory bank arrangement, as shown in Fig.
3.1(b), has been employed in [9]. With the scan-chain organization that is similar to modern
FPGAs, RRAMs are programmed through Flip-Flop (FF) outputs when signal prog is set to
1. For example, when Qg &£1,Q; AQO, a set process for RR AM is started. In a memory bank
arrangement, the RRAMSs are programmed through Bit Lines (BLs) and Word Lines (WLs). For
instance, when W L[1] £1,WL[2] A1,BL[0] £1,BL[2] AO, a set process for RR AM is initiated.
Note that, with this strategy, only one RRAM is programmed at a given time - allowing to limit

the programming current to be delivered to the chips.

Figure 3.1 — System-level implementations exploiting the 2T1R programming structure: (a)
scan chain [8]; (b) memory bank [9].

55

Chapter 3. RRAM-based Circuit Designs

In Fig. 3.2, we extract a 2T1R structure along with its driving inverters from the system-level
implementation shown in Fig. 3.1. A 2T1R structure requires driving inverters to provide
the voltage levels of VprogTE and Vprogge during a programming phase. Ina set process, the
terminals of 2T1R structure Vprog7E @aNd Vprogae are driven by a p-type transistor P1and a
n-type transistor N3, respectively. As illustrated in Fig. 3.2, the driving inverters introduce two
potential voltage drops caused by the drain-to-source voltage Vpss and Vps4 of transistors P1
and N3, while the 2T1R structure has two built-in voltage drops caused by Vps1 and Vpsp of
transistors N1 and N2. In a reset process, the terminals of 2T1R structure VprogTe and Vprogse
are driven by a n-type transistor N4 and a p-type transistor P2, respectively. Similarly, another
two drain-to-source voltage drops of transistors P2 and N4 are introduced.

Note that the principles in the circuit designs of programming structures are different from
logic gates, because the programming structures are driving a resistive load instead of a
capacitive one. To drive a resistive load like a RRAM, the source-to-drain voltages Vpg of
transistors should be large enough in order to ensure a high current. Moreover, when the
Vps voltage drops of the transistors take most of the supply range Vprog and the voltage
difference between the RRAM electrodes goes below the programming threshold voltage,

a correct programming cannot be guaranteed. Since driving inverters are shared among
programming transistors, their effects on adjusting the programming current is limited. To
tune R rsfor each individual RRAM, we should focus on studying how to adjust the driving
current through sizing programming transistors N1 and N2. Considering that Vp,og AVpsi A
Vps2 AVpsz A Vpsa A Vrram, maximize the driving current |45 implies that Vps; and Vps)
should be maximized while the effect of Vps3 and Vps4 should be avoided as much as possible.
As aresult, the sizes of transistors P1 and N3 have to be far larger than N1 and N2, so that Vps3
and Vps4 can be neglected compared to Vps; and Vpsp. We take this assumption and focus
on the set process in the rest of the analysis. Without loss of generality, our approach can be
applied to the reset process as well.

3.2.2 |-V Characteristics of 2T1R Structure

In this part, we consider the voltage drops Vps; and Vps» in Fig. 3.2 and discuss the |-V
characteristics of a 2T1R structure. By considering Kirchhoff circuit laws:

8
2 lgs Z&f (Vest1, Vpsi) £f (Ves, Vbs2)
VrrAM Al 4sRrRrRAM (3.1)

>
" Vprog AVps1 AVps2 AVerram.

where |45 is the current passing through the transistors and RRAM. Rgrgram denotes resistance
of RRAM. f (Vgst1,Vpsi) and f (Vg s, Vpsp) represent the I-V relationships of transistors N1 and
N2 in Fig. 3.2. To give an intuition on the operating points of transistors, we consider the

56

3.2. Limitations of 2T1R Programming Structure

Figure 3.2 — A 2T1R programming structure extracted from system-level implementations in
Fig. 3.1

following transistor model:
8
/E< kn'¥[(Vesi VT)Vpsi 3Vbs?l, VpsGVesi V7

i (3.2)
© 2kn L (Vesi V)2 Vbs, Vesi V1

|ds

where k,, denotes the process transconductance parameter of a n-type transistor and Vr
represents its threshold voltage. W and L are the width and length of channel, respectively. Vgs
is the voltage difference between the gate and source terminals. Vps is the voltage difference
between the drain and source terminals. The intuitive results obtained with the model will be
subsequently validated by SPICE simulations. In the theoretical analysis, we focus on studying
how the current 145 is changed with Vgsi1, Vo, Vbs: and Vps, during a set programming
phase.

Fig. 3.3 illustrates the I-V curve of the transistors N1 and N2 during the programming phase.
A programming phase starts when the transistors N1 and N2 are turned on and the RRAM
is in HRS. At the start point P, |45 is close to zero because the HRS resistance Ryrs of the
RRAM typically is very high, leading to Vps1 and Vpsy approaching zero. Vgrrawm is above
the programming threshold voltage Vset, and therefore a resistive transition occurs and the
resistance decreases. Note that Vg equals to Vg2 because the source voltage of transistors N2
isGND, while Vgs1 AVg1i V1E,is much smallerthan Vgs. Then, the resistance of the RRAM
is gradually decreasing from Rprsto R Rs, leading to an increase in 14s. The growth in 14
creates a positive feedback: Vps; and Vpsp are increasing to provide a higher current which

57

Chapter 3. RRAM-based Circuit Designs

Figure 3.3 —I-V characteristics of the 2T1R structure.

leads the voltage difference across the RRAM to decrease. The positive feedback continues
until the Vrrawm reaches the Vget 0f the RRAM, i.e., the memory cannot switch anymore. At
this point, l4s, Vps1 and Vpsp reach their peak values. Note that during the programming
phase, Vg g is increasing as the source voltage of transistors N1, Vtg, is decreasing, but it is
still smaller than Vgs. The difference in Vgscauses aVps gap because Vps; has to be larger
than Vpsp in order to drive the same current. Therefore, transistor N1 may work in deep linear
region or even saturation region while transistor N2 has to work in linear region, causing the
programming current to be much lower than what saturated transistors can offer.

Boosting Vprog can reduce the difference between Vps; and Vpsp, improving the driving
strength of transistors. Its effort will be studied by electrical simulations.

3.2.3 Physical Design Dif culties

Typically, in digital circuit designs, the bulks of n-type transistors are connectedto GND, as
shown in Fig. 3.4(a). However, the regular bulk connections for the 2T1R structure causes
serious body effects. In a set process where VprogTeYVprog and Vprogse/4GND, the Vsg AVsy
of transistor N1 in Fig. 3.4(a) is larger than Vset AEVs1i Vp2, which leads to a high threshold
voltage of transistor N1 and reduces its driving strength. Note thatthe Vgp of transistor N2
is negligible due to the Vps3 and Vps4 and its driving strength is reduced as well. Similar
conclusion can be drawn in a reset process where VprogTe¥4SND and VprogeYVprog -

To alleviate the serious body effect, a symmetric bulk connection can be envisaged as shown

in Fig. 3.4(b). When VprogTEYVprog and VprogreVGND, the Vsp of transistor N1 equals to
Vps which is smaller than in the previous case and improves the driving strength. The Vgg
of transistor N2 is strictly zero, totally eliminating the body effect. Similar conclusion can be
drawn when VprogTeYGND and VproggeYMprog -

However, when a symmetric bulk is implemented with a single-well technology as shown in Fig.

58

3.2. Limitations of 2T1R Programming Structure

3.4(c), the substrate is connected to two voltage sources VprogTeYNprog and VprogreVGND,
resulting in a high leakage current |g,p. Besides, the junction diode at the source of transistor
N1 is positively biased, introducing another high leakage current |gioge- | sup Can be reduced
to zero with a triple-well technology as shown in Fig. 3.4(d), but l4ioge remains a concern.
In short, there exist serious problems in connecting the bulks of 2T1R structure, limiting its
feasibility from a physical design perspective.

Figure 3.4 — (a) Asymmetric bulk management of the 2T1R structure; (b) Symmetric bulk man-
agement of the 2T1R structure; (c) Single well application of layout; (d) Triple well application
of layout.

3.2.4 Area Estimation

We estimate the area of the programming structures in terms of minimal size transistors. While

we only considered the set process, it is worth noticing that in the 2T1R structure, the same
transistors N1 and N2 are used in reset process as well. Typically, the reset current is not
the same as the set current [1]. To be applicable in both set and reset, the size of transistors
N1 and N2 should be determined by the largest of set/reset currents. Assume Wy;og set and
Wprog reset @re the transistor sizes required for the set and reset operations, respectively. In
the context of a memory bank, we assume that a driving inverter foraBL issharedby N 2T1R

structures:
8
< 2Wprog,setA 2¢(1A_°) Winv/N, |set, Ireset

. (3.3)
’ 2Wprog,resetA 2¢(1A_° Winv/N, lsetClreset

59

Chapter 3. RRAM-based Circuit Designs

where "~ is the ratio of p-type and n-type transistors and ° is the penalty factor for the area
overhead of the P-Well of p-type transistors. Wiy, is the size of driving inverters. When the
set current is larger than the reset current, the area is determined by ~ Wpog set. When the
reset current is larger than the set current, the area is determined by ~ Wprqg reset. In this case,
during the set process, transistor N1 and N2 should be under-drived by reducing Vg1, Va2
and Vprog to respect the current compliance. Unlike the Wprog set, @ large Wprog reset does
not contribute to a high Ryrs. In others words, a large Wyog reset do€s not improve the
performance as the Wy, g set does. Therefore, when lset C lreset, the area consumed by a large
Wprog reset is not directly contributing to a performance improvement.

3.2.5 Electrical Simulations

First, we validate our theoretical intuitions by presenting the SPICE transient analysis of the
2T1R structure. Then, we show the SPICE results of the Vpg and programming current |4 of
the 2T1R structure.

Transient Analysis

Fig. 3.5 illustrates current and voltage waveforms of the 2T1R structure during a set process.
After the transistors are turned on, a voltage difference Vyax between the RRAM electrodes is
applied, initiating the set transition on the memory. The reduction on the resistance of the
RRAM leads to an increase in 14g. To support the growing |45, the Vpg of transistors have to
increase, leading to Vyg is decreasing and Vg is increasing. The RRAM stays in programming
phase until Vygi Vgg reaches the threshold voltage Vset.

Vps of Transistors N1 and N2

Fig. 3.6 shows the trend of Vps in a 2T1R structure by sweeping Wprog and Vprog, Where
Winy is 20 in order to keep Vpss and Vpsa negligible. The Vpgs difference reaches 0.65V when
Vprog 2.5V on average. Boosting Vrog can reduce the Vps difference down to 0.5V. A larger
Vprog Can increase the Vpsp by 2.8£. Fig. 3.7 depicts the trend of Vpg in 2T1R structure by
sweeping Wprog and Winy , Where Vproq is 3.0V. Increasing Wip, can effectively reduce the
Vps gap by 15%.

Programming Current lgg

The achievable programming currents 145 are determined by Vps. A high Vo9 canincrease
the Vps, as explained in Section 3.2.2. Fig. 3.8(a) illustrates that for the same W;,y , we can
improve 3.4 £ |45 by boosting Vprog from 2.5V to 3.0V on average. Wipy is another important

factor that in uencesthe |q4s. Alarge Wi,y canreduce Vpss and Vpsg While increase Vps; and
Vps2. As shown in Fig. 3.8(b), a large Wi,y , such as 20, leads to a 3.& higher |45 than the

60

3.2. Limitations of 2T1R Programming Structure

Figure 3.5 — Transient analysis on voltages and current in the 2T1R structure during a set
process (Wprog A5, Vprog 3.0V, Winy /20, 1Wprog A£320nm).

smallest Wi,y A1 on average. In short, boosting Vprog is an ef cient method inimproving lgs,
which avoids the use of large transistors. A large Wi,y (i.e., =20) must be applied to avoid a
serious degradation on |ys.

3.2.6 Discussion About Limitations

From theoretical analysis and electrical simulations, we see ve major limitations of 2T1R
structure:

(1) its current density is low due to the intrinsic low Vpsp;

(2) its bulk connections lead to a high leakage current;

(3) its current density is weakened by a small Wjpy ;

(4) its area is bounded by the maximum of Wpyog,set and Wprog reset, Which is not ef cient
when | esetis large.

(5) itis not manufacturable due to the layout issues shown in Section 3.2.3. Hence, in the rest
of the paper, we only refer to it when comparing the current density.

To address the listed limitations (1), (2) and (5), we propose 2TG1R programming structures in
Section 3.3.

61

Chapter 3. RRAM-based Circuit Designs

Figure 3.6 —Vps; and Vps; in 2T1R structure under diverse Vprog (Winy A20)

3.3 2TGI1R Programming Structure

In this section, we improve the previous 2T1R circuit by replacing the n-type transistors and
propose a 2TG1R programming structure. The 2TG1R circuit, comprising of four transistors,
increases the current density signi cantly and overcomes the bulk management problem. The
solution is validated using the electrical simulations.

3.3.1 2TGI1R Circuit Structure

Replacing the n-type transistors in 2T1R structure with transmission gates is a solution to
the bulk management and driving strength. As shown in Fig. 3.9, the bulks of the n-type and
p-type transistors (in total 4 transistors) are connected respectively to the highest and lowest
potentials, similarly to common digital design practice, removing the bulk leakage and body
effects. The driving inverters are still required to provide the voltage levels of ~ VprogTE @nd
Vprogse during the programming phases. Whatever in a set or reset process, there always exist
a p-type transistor and a n-type transistor whose Vsg ZA0. Therefore, these two transistors

62

3.3. 2TG1R Programming Structure

Figure 3.7 —Vps1 and Vps in 2T1R structure under diverse Winy (Vprog A3.0V). (1 Wprog A
320nm)

whose Vsg A0 can provide higher current than 2T1R structure. Although the other two
transistors (weak p-type and weak n-type) suffer serious body effects, they still contribute to
the currents. Hence, the total current offered by 2TG1R structure is higher than 2T1R structure.

3.3.2 AreaEstimation

We consider the area of a 2TG1R structure in the context of a memory bank as well. By
considering the area of two p-type transistors, the area of a 2TG1R structure is:

8

< 2¢(1A_°)V\/prog,sc-:-tA 2¢(1A_°)Winv/Ny |set, Ireset

. (3.4
' 2¢(1A_°)Wprog,resetAzq:(]A_o) Winv/N, lsetC lreset.

63

Chapter 3. RRAM-based Circuit Designs

Figure 3.8 — (a) I 45 in 2T1R structure under diverse Vprog (Winy A20); (b) 145 in 2T1R structure

64

3.3. 2TG1R Programming Structure

Figure 3.9 — A 2TG1R programming structure extracted from system-level implementations in
Fig. 3.1

In summary, the area of 2TG1R circuitis still bounded to the largestof ~ Wpog,set@nd Wpog reset.
When lset C lreset, areainvestment on Wpoq reset does not bring any improvement on perfor-
mance. This is extremely inef cientwhen Wy g resetis large. A 2TG1R circuit leads to a even
larger area overhead than 2T1R structure due to the use of p-type transistors.

3.3.3 Electrical Simulations

In this section, we show the electrical simulation results of 2TG1R structure. We focus on the
improvements on Vps and |45 of 2TG1R structure, compared to the baseline 2T1R element.

Transient Analysis

Basically, the waveforms of the transient analysis on a 2TG1R are the same as 2T1R structure.
The only difference lies in the slope rate of Vr1g and Vgg during the programming phase. In
2TG1R,V1g decreases at the same rate asVgg increases. In the other word, Vps; and Vpsp in
2TG1R grow at the same rate.

65

Chapter 3. RRAM-based Circuit Designs

Figure 3.10 —Vps; and Vps; in 2TG1R structure under diverse Vprog (Winy A20);

Vps Gap Improvement

As shown in Fig. 3.10 and Fig. 3.11, a 2TG1R structure reduces the Vps gap by 5£, compared to
a 2T1R structure. Like the 2T1R structure, boosting Vprog canimprove Vps, of 2TG1R by 1.8£.
However, a 2TG1R still requires a large Wi, 420 to avoid the degradation on Vps gap, coming
from a non-negligible Vps3 and Vpssa. When Wi,y A1, the Vps gap degrades by 2£.

Programming Current lgg

Boosting Vprog and Wip, achieves a similar effect on the 145 than on the 2T1R structure.
Boosting Vprog canimprove lys of 2TG1R by 1.8£. Increasing Wi,y from 1to 20 can improve
l4s Of 2TG1R by 4.3£. The l45 of 2TG1R is 1.2£ higher than 2T1R structure.

3.3.4 Summary: Advantages and Limitations

From theoretical analysis and electrical simulations, 2TG1R structures have the following
advantages over 2T1R structure:

66

3.4. 4T1R Programming Structure

Figure 3.11 -Vps; and Vpsp in 2TG1R structure under diverse Winy (Vprog Z3.0V). (1 Wprog A
320nm)

(1) the Vps gap is reduced by 5£, contributingtoa 1.2 £ improvementin lys;

(2) its bulk connections are regular, removing the bulk leakage and body effects.

However, the 2TG1R still shares two limitations with the 2T1R structure:

(2) large driving inverters are still needed to avoid current density degradation;

(2) the area is still constrained by the worse case of Wprog set and Wprog reset, Which is inef -
cientwhen lgset C Ireset and Wprog reset is large.

Note that the 2TG1R programming structure overcomes the limitations (1), (2) and (5) of the
2T1R programming structure (See Section 3.2.6). To fully address the limitations of the 2T1R
and the 2TG1R programming structures, we propose 4T1R programming structures in Section
3.4.

3.4 ATI1R Programming Structure

In this section, we propose a 4T1R programming structure able to alleviate the addressed
limitations of 2T1R programming structures. We rst introduce the circuit design and conduct

67

Chapter 3. RRAM-based Circuit Designs

theoretical analysis. Then, we compare the 4T1R structure with 2T1R and 2TG1R structures
using electrical simulations.

3.4.1 4T1R Circuit Structure

Fig. 3.12(a) illustrates the schematic of the 4T1R structure which consists of two p-type
transistors P1 and P2 and two n-type transistors N1 and N2. The sources of the transistors
in the 4T1R structure are directly connected to the voltage supplies, eliminating the driving
inverters used with the 2T1R and 2TG1R solutions. The programming phase is launched by
appropriately biasing the gates of the transistors. Ina set process, the transistors P1 and N2
are turned on while the transistor P2 and N1 are turned off, applying a positive programming
voltage between Vtg and Vgg, as shown in Fig. 3.12(b). Conversely, when the transistors
P2 and N1 are turned on and the transistors P1 and N2 are turned off, applying a negative
voltage between Vyg and Vg, areset process is operated. When the programming segment
is nished, all the transistors are turned off. The 4T1R structure is compatible to the system-
level implementations in Fig. 3.1. In a scan-chain organization, Vg1, Vg2, Va3, Vg4 can be
connected to Qg, Qo, Q1, Q1, respectively. In a memory bank organization, Va1, Va2, Vas, Vea
can be connected to BL[0], W L[2], BL[2], W L[1], respectively.

Figure 3.12 — (a) The proposed 4T1R structure (b) Extracted 4T1R structure ina set process

68

3.4. 4T1R Programming Structure

3.4.2 Theoretical Analysis on |-V Characteristics

We rst focus on the set process (Fig. 3.12(b)). By applying Kirchhoff Circuit Laws, we can
express the following relationships:

8
2 lgs &£f (Vest,Vosi) Z&f (Ves, Vbs2)
VrrAM Al gsRrRrAM (3.5)

>
" Vprog AVps1 AVps2 AVerram.

Vps1 and Vpsp represent the drain-to-source voltages of transistors P1 and N2, respectively.
Ves1 and Vg represent the gate-to-source voltages of transistors P1 and N2, respectively.
Note that in the 4T1R structure, the sources of the transistors are connected to constant voltage
supplies, giving stable Vgsduring the programming phase. We can set Vgs1 AVes. According
to the basic transistor model shown in (3.2), when Vgg AVgs, we can nd:

Vps AVps1 AVps». (3.6)

Combining (3.5) and (3.6), we can reach

Voro 2
| s 2| Vps. 3.7)
RrrAM RrRRAM

We plot the I-V curves of (3.2) and (3.7) in Fig. 3.13(a). The crossing points P (» 0,Vprog/ RHRS)
and Q ((Vprog i Vset)/2,lset) in Fig. 3.13(a) represent the starting and end points of a ~ set pro-
cedure. From P to Q, Vps gradually increases to provide alarge 14s. On the other side, Rrram
decreases asl 45 grows. The increment of 144 further induces aincrease in Vpg and a decrease
in RrRram- When Vgrram reaches the threshold programming voltage Vet Of the RRAM, the
set process stops (point Q in Fig. 3.13(a)). We can determine Vpsg A(Vprog i Vset)/2 and
lds,o AVset/ RRrRAM,Q at the ending point Q. Note that Rrram,g is the programmed R, gs of
the RRAM while Rrram,p iS RyRrs Of the RRAM.

In the reset process, let Veset be the threshold programming voltage of the RRAM. The I-
V curve of reset process could be different from set process because of the technological
constraints (Vreset and |l eset). Fig. 3.13 illustrates the three cases that could happen during
a reset process. Similar to the analysis in set process, we de ne the operating point P (»
0,Vprog/ Rurs) as the ending point of a reset process and the operating point N ((Vprog i
Vrieset)/2,lreset) @s the starting point of a reset process. Fig. 3.13(a) is applicable to all the
conditions where Vget, Vieset lset. lreset, Where point N overlaps point Q. In this case, the
reset process is an exact reverse trace of the set process. Fig. 3.13(b) covers the most dif cult
condition: Vget C Vieset@nd lset C lreset. Compared to the set, the starting point N of the reset
process is most stringent. As aresult, a Wprog reset/ Vos,resetlarger than Wy og set/ Vo s,set will
have to be used to reach point N. Note that Fig. 3.13(b) is applicable for other conditions where
either Vset C Vreset OF lset C lreset happens. Finally, Fig. 3.13(c) covers another case where

69

Chapter 3. RRAM-based Circuit Designs

Figure 3.13 — |-V characteristics of the 4T1R structure: (a) Vset=Vrieset; (0) Vset C Vreset OF
Iset G lreset: (C) Vset E Vieset OF Iset E lreset.

Vset E Viesetand Iset E Ireset, While the case shown in Fig. 3.13(a) still applies in the case, it
would result in an oversizing for the reset process. In the case of Fig. 3.13(c), the starting point
of reset process N leads to a smaller Wy qg reset! Vos,reset than Wyoqg set/ Ve sset-

Note that Fig. 3.13 reveals another shortcoming of 2T1R and 2TG1R structures, which use
the same programming transistors for both the set and the reset processes. Due to this fact,
they must be sized according to the worse case max{Wprog,set: Wprog reset}- Hence, for the
conditions illustrated in Fig. 3.13(b)(c), the 2T1R and 2TG1R structures have to use two
different Vgsfor the set and the reset processes (Vg sset 6A&2csreset). When two different Vgs
are needed, the system-level implementations in Fig. 3.1 will require additional circuitry for
generating controlling signals, i.e., WL[1] and W L[2] should have three voltage levels: Vgsgset,
VGS,reset and GND.

70

3.4. 4T1R Programming Structure

Figure 3.14 — |-V characteristics of the 4T1R structure during set process when: (a) Boosting
Woprog; (b) Boosting Vprog-

3.4.3 Current Density Boosting Methodologies

Vprog and Wp;og are the two controllable parameters for circuit designerstoboost 145 q. Inthis
part, depending on the working regions of the crossing point Q, we investigate the boosting
methodologies for 14sq by tuning Vprog and Wpyog-

Linear Region

When the transistors work in the linear region at the crossing point Q, we can obtain the
following equations:

8
W ro
E las,0 Akn —2[(Vesi VT)Vbsqi 3Voso?l

Vbso G Vesi V1 a8
las,@ A(Vprog i 2VpsQ)/RRRAMQ
Vbsq /E(Vprog i Vset)/2

From (3.8), we can determine lgsg:
8

2 loso & 2L/l W
set/ VWprog 3.9
B RRRAM'Q /Ekn [(VGSi VT)(Vprogi Vset)i %(Vprogi Vset)z] ()

Vprog G 2(VGsi VT)AVset

kanrog [(VGSi VT)(Vprogi Vset)i %(Vprogi Vset)z]

In this case, both Wpog and Vprog Caninuence Igsqg. By increasing Wprog and Vprog, ldso
can be magni ed, leading to a higher current density.

Fig. 3.14(a) and (b) shows the I-V characteristics of 4T1R programming structure working
in linear region when Wp,oq and Vpqg are boosted respectively. As depicted in Fig. 3.14(a),

71

Chapter 3. RRAM-based Circuit Designs

boosting Wprog t0 Wprog hoost leads to that the operating point during set process following
another I-V curve, highlighted green in Fig. 3.14(a). Hence, the ending point of set process
shifts from N to N °and a higher programming current I setboost €an be achieved, contributing
to a reduction in R rs. Fig. 3.14(b) shows the shift of operating point during set process
when Vpoq is boosted. Increasing Vprog 10 Vprog boost l€ads to Vps of transistors grows from
Vprog i Vset)210 Vprog boosti Vset)2. Therefore, we see in Fig. 3.14(b) that the ending point
of set process shifts from N to N 0 contributing to a higher programming current I getboost
than |set. As aresult, the achieved R rsis reduced to R rspoost-

Saturation Region

When the crossing point Q lies in the saturation region, we obtain the following equations.

8 W,
% lgs,q Akn —% (Vasi Vr)?

Vbso., Vesi V1 (3.10)
§ lds,o A(Vprog i 2Vps,Q)/RRRAMQ
Vbs,0 /E(Vprog i Vset)/2

From (3.10), we express | 45 o as follows:

8
KnWprog (Vasi Vr)?
5 |dS’Q,cE%GSIT

2L/ st/ Wpro
RRRAMQ A3 LG v (3.11)

Vprog E 2(Vesi VT)AVset
In the saturation region, only Wpog Can boost l4sq.

Equations (3.9) and (3.11) show that adjusting the Wpog and Vpog are the two methods in
boosting lgsq. The Wy,oq is linearly proportional to 145 whatever the working region is.
When Vy;oq is bound to the linear region, it has a quadraticimpacton lgsq. After Vprog meets
the need of the saturation region, it has no impacton Iqsq. Therefore, to enhance the current
density in the linear region, boosting W), 4 is effective but requires a large transistor size,
while boosting Vprog does not increase the transistor size and should be considered as a rst
choice. When Voq increases, the transistors move from the linear region to the saturation
region. In the saturation region, boosting Wy, is the only boosting method. Referring to the
examples in Fig. 3.14(a)(b), boosting Wy;o4 can still shift the I-V curve and lead to a higher
programming current even in saturation region, while boosting ~ Vpog leads to no difference in
programming current since the ending point of set process always lies in the saturation region

of the same |-V curve. Similar conclusions can be found for reset process.

Constraints from Breakdown Limitations

As addressed in Section 3.4.3, boosting Vprog Can increase lysq. However, there exists a
breakdown voltage Vyreak for the source-to-drain voltage Vpg of a transistor that provides an

72

3.4. 4T1R Programming Structure

upper-bound. In this section, we discuss the range of Vqg that the 4T1R structure can safely
afford.

The Vpg of all the transistors (P1,P2,N1,N2) in Fig. 3.12(a) should satisfy to:
8
(@) :max{Vprog i Vre}AmMax{Vpsi}: Voreak
% (b) :max{Vre} AVprogi Min{Vpsi}: Vbreak
(c):max{Vprog i Vbs2}AVprogi Min{Vpsz}: Vpreak
(d):max{Vge} Amax{Vpsz}- Vpreak
(e) : max{Vps1} Amax{Vpsz} A(Vprog i Vset)/2
(f):min {Vpsi} Zmin {Vps2} AVpsp.

(3.12)

Equations 3.12(a)(b)(c)(d) consider the breakdown limitations of ~ Vpg of the transistors P1,N1,P2,
N2, respectively. Equations 3.12(e)(f) are derived from the range of Vpg of the transistors P1,N2
in Fig. 3.13. As illustrated in Fig. 3.13, max{Vps1} and max{Vps,} happen when the RRAM is
in LRS (point Q), while min {Vps1} and min {Vps»} happen when the RRAM is in HRS (point
P). Vpbs p can be calculated by applying the transistor model (3.2) to the crossing point P in
Fig. 3.13:

W ro
las’AEkn —2[(Vasi VT)Vpspi Vbsp?/2]

las’ZE(Vprog i 2Vbsp)/RRRAMP-

(3.13)

Note that here, we only consider the linear region because typically the Rrramp is large
enough to letthe Vps of transistors P1,N2 less than Vgs.

Solving (3.12) and (3.13), we nd that the programming voltage Vprog cOnstrained by:

P1&N2: Vprog 2Vpreak i Vset
P2&N1: vprog Vibreak AVpsp

Vbsmin Ag— RR k nWprog/L A (Vesi VT)I (3.14)
g ¢ /‘E[ZAkn pmg (VGSI V1)I?RrRRAMP
12 Vprog I(n RRRAM,P

Assume that Rrram,p Of RRAM is large, Vps p is approximately zero. In such case, the upper-
bound of Vpog istiedto Vprog -+ Min {2Vpreak i Vset, Vbreakl}-

3.4.4 Area Estimation

Ina 4T1R structure, Vprog and GND are directly connected to power supplies. Compared to
the 2T1R and 2TG1R structures, no driving inverters are needed. The area of a 4T1R structure
is the sum of the sizes of transistors used in set and reset process:

2¢(]A_°) V\/prog,setA 2¢(1A_°) Wprog,reset- (3.15)

73

Chapter 3. RRAM-based Circuit Designs

When Wprqog reset is much larger than Wy qg set, all the transistors in the 2T1R and 2TG1R
structures have to be as large as Wpyqg reset While the 4T1R structure can use smaller transistor
sizes for set process. Hence, the 4T1R structure brings more exibilities in transistor sizes than
the 2T1R and 2TG1R structures.

3.4.5 Benetsof4T1R structures

In this section, we compare the 2T1R, 2TG1R and 4T1R structures in terms of three metrics:
Vps symmetry, |45 current, area, delay and power.

Vps Gap Reduction

In Fig. 3.15, we compare the Vpg of 2T1R, 2TG1R and 4T1R structures, where W;,, A20
is considered for the 2T1R and 2TGI1R structures. The Vps difference of 2TG1R and 4T1R
structures are 75% smaller than 2T1R structure, because they employ p-type transistors to
propagate Vprog, as explained in Section 3.4.2. Note that if asmall Wipy , i.e., Winy A1, rather
than Wi,y A20 is used, the Vpgs gap of the 2TG1R structure would be larger than 4T1R.

Improvement on Programming Current lgs

As aresult, the driving current shown in Fig. 3.16 of 4T1R structures is the best of the three
solutions. lyg of the 4T1R is 1.1£ higher than 2TG1R structure, while 2TG1R improves lyg
by 1.3£, compared to 2T1R structure. Note that when Vo9 A£2.5V, the improvement in
driving current of 4T1R and 2TG1R structures are more signi cantthan ~ Vp,og A£3.0V. When
we investigate the driving current density of 2T1R, 2TG1R and 4T1R structures in Fig. 3.17,
4T1R structure is the best, which is 1 .1£ higher than 2TG1R structure and 1 .4£ higher than
2T1R structure. Note that the current density of 2T1R and 2TG1R are deceasing when Wy, qq
increases, while the current density of 4T1R is increasing. When a larger Wy og is used, Wipy
has to be increased to alleviate the impact of Vps3 and Vpsa. If Wi,y does not grow as Wpyog,
Vpss and Vps4 becomes non-negligible, resulting a degrading current density. Hence, without
re-sizing Winy , when Wy,qq increases, 2T1R and 2TG1R provides a weakerl ys than a 4T1R
scheme. As a conclusion, 4T1R structure is more ef cientin driving current than 2T1R and
2TGI1R structures.

Area, Delay and Power

In this part, we evaluate the area, delay and power of SRAM-based transmission gate and
2TG1R, 4T1R RRAM-based programming structures. The area of RRAM-based multiplexers is
estimated with (3.4) and (3.15), where we assume N /32, a typically size for a modern memory
bank [132]. The area model in [125] is used to estimate the transistor area. We consider the
propagation delay as the delay of the multiplexers, i.e., the signal delay from in to out in Fig.

74

3.4. 4T1R Programming Structure

Figure 3.15 — Comparison on Vps of programming transistors under diverse Wprog and Vpyog
in2T1R, TG-based 2T1R and 4T1R structures (Winy A20). (1 Wprog ££320nm)

3.12(a). To evaluate the switching energy, we assume that 50% of the inputs have switching
activities, which is representative in FPGAs [125]. Because I/O transistors are used in 2TG1R
and 4T1R structure while SRAM-based circuit use standard transistors, we consider that /O
transistors have twice area than standard transistors.

Fig. 3.18 and Fig. 3.19 illustrate the area-delay product and the power-delay product of 2TG1R
and 4T1R structures respectively, when different target R rsand Vpog are considered. A
low R, Rrsrequires large programming transistors, which introduces large capacitances to the
circuit. When the reductionon R_rsis not as signi cant as the increment on capacitances, the
delay of a RRAM-based circuit increases. In addition, large programming transistors increase
the area and large capacitances increase the power consumption. Therefore, alow R rsdoes
not guarantee the best area-delay and power-delay products [6]. In Fig. 3.18 and Fig. 3.19, we
see that the 4T1R programming structure can be more area-delay/power-delay ef cient than

the SRAM-based multiplexers when R rsE 2k- . Boosting Vprog is an ef cient method to
reduce the area-delay and power-delay products of programming structures. To fully exploit

75

Chapter 3. RRAM-based Circuit Designs

Figure 3.16 — Comparison on lgsin 2T1R, 2TG1R and 4T1R structures (Wjn, A20). (1 Wprog A
320nm)

the area and delay of ef ciency, it is better to apply the highest possible voltage within the
breakdown limit of transistors, i.e., above the standard Vpp and close to the breakdown
voltage of transistors. It is worth pointing out that the large ~ Vproq is only raised during the
programming phase, i.e., for a short period of time. As a result, the use of larger programming
voltage does not introduce signi cant reliability hazards.

3.4.6 Summary on the 4T1R programming structures

In summary, the 4T1R programming structures have the following advantages over the 2T1R
and 2TG1R structures:

(2) the small Vps gap improves the driving strength of transistors;

(2) Since the set and reset processes use separated transistors, transistor sizes in 4T1R can be
more exible than 2T1R and 2TG1R, leading to a better area ef ciency.

(3) Drain/Source of transistors are directly connected to voltage supplies, eliminating the
driving inverters;

(4) the bulk connections of 4T1R structure follow the common digital design practice, and
avoid the hazards in 2T1R structure.

Note that the proposed 4T1R programming structure fully overcome the limitations of the
2T1R and 2TG1R programming structures listed in Section 3.2.6 and Section 3.3.4 respectively.

76

3.4. 4T1R Programming Structure

Figure 3.17 — Comparison on driving current per minimum transistor width under diverse
Wprog and Vprog between 2T1R, TG-based 2T1R and 4T1R structures (Winy A20). (1 Wprog /£
320nm)

3.4.7 Discussion

Programming structures are the most basic and common elements of all the RRAM-based
circuits, such as NV SRAMs, NV FFs, multiplexers etc.. Therefore, performance of programming
structures, i.e., the lowest achievable R\ Rrs, transistor area and easiness in physical design,
are critical factors impacting the quality of all the RRAM-based circuits. Compared to the
2T1R and the 2TG1R programming structures, the proposed 4T1R programming structure
has demonstrated superior capability to achieve lower R grswith smaller transistor sizes, and
also be more friendly to physical designs. The advance in programming structure will case a
signi cant impact on all the RRAM-based circuits and even FPGA architectures.

From a circuit design perspective: Mostimportantly, a lower achievable R; rsby using smaller
transistor sizes leads to smaller resistance and parasitic capacitances on the datapath, meaning
that 4T1R-based circuits can achieve better performance than 2T1R-based and 2TG1R-based
circuits. Using smaller transistor sizes also leads to that 4T1R-based circuits can be smaller
in transistor area than 2T1R-based and 2TG1R-based circuits. Furthermore, the 4T1R pro-
gramming structure is more adaptive for RRAM devices especially those with asymmetric
Vset and Vieset than its 2T1R and 2TG1R counterparts, leading to better compatibility in

77

Chapter 3. RRAM-based Circuit Designs

Figure 3.18 — Comparison on area-delay product of 2TG1R and 4T1R structures (Winy, ZA20).

Figure 3.19 — Comparison on power-delay product of 2TG1R and 4T1R structures (W;ny A20).

78

3.4. 4T1R Programming Structure

Figure 3.20 — Comparison on R rsin 2TG1R and 4T1R structures (Winy A20). (1 Wprog A
320nm)

integrating generic RRAM technology. In addition, the introduced boosting methodologies
(increasing Vprog and Wy, g) are effective to all the programming structure. (2T1R, 2TG1R and
4T1R), being generic methods to improve the performance of 4T1R-based circuits. Note that
the methodology used in theoretical analysis can generalized to other non-volatile memory
technologies, such as Phase Change Memory[40], which have similar |-V characteristics as
RRAMs.

From an architecture perspective: RRAM-based FPGAs use a lowR| grs to improve the per-
formance of routing elements. As it will be presented in Section 3.7 and Chapter 5, a proper

R rstarget for FPGA architectures is between 2 k- and 6k- depending on the design context,
while Ryrs should be at least 20M - to mitigate a leakage power increase. The mentioned
ranges of R_rsand Ryrs, achievable as worst case target in current RRAM technologies, show
that, beyond the performance gain, FPGA architectures can tolerate a wide distribution of
RiLrsand Ryrs without delay and power increase [6, 114]. The performance of RRAM-based
routing elements are not only determined by the R rs but also the parasitic capacitances of
programming transistors. As a result, programming structures offering a high current density,
e.g., the proposed 4T1R programming structure, are preferred. Fig. 3.20 shows the R_rsvalues
that can be driven by 2TG1R and 4T1R structures as a function of Wy, 4. To obtain a proper
Rirsin FPGA, the applicable Wy, qq of transistors are between 1.5 and 4. Boosting Vprog Can
signi cantly reduce the R_rs, which brings opportunities in further area and delay improve-
ment on RRAM-based FPGAs. When considering more advanced technology nodes, such as

79

Chapter 3. RRAM-based Circuit Designs

28nm, 14nm and beyond, it is expected that lower V,g¢gsetand Vget Voltages can be employed as
aconsequence of the Vpp reduction. As a result, the effect of boosting Vyroq is expected to
gain further in ef ciency.

Part 2: RRAM-based Multiplexer Designs

As 4T1R programming structure (See Section 3.4) shows outstanding advantages over 2T1R
counterparts, it opens opportunities in improving RRAM-based routing multiplexer designs.
The second part of this chapter focus on studying how to ef ciently integrate the 4T1R pro-
gramming structure in routing multiplexers. As explained in Section 3.4, both 2T1R and 4T1R
programming structures have to employ a high programming voltage, different from nominal
working voltage, in order to drive the set and reset currents. Therefore, in physical design, a
deep N-well (highlighted red in Fig. 3.21) is required to provide a different voltage domain for
the programming structure. However, deep N-wells typically require large spacing between
each other and also regular N-wells. This reveals a series of challenges at the physical design
level, such as how to co-integration of low-voltage nominal power supply and high voltage pro-
gramming supply, which have not been evaluated in previous works[6, 114, 26,110, 9, 27, 133].
This motivates us to take the parasitics into account and study the physical design aspects of
integrating 4T1R programming structure into RRAM-based multiplexers.

This part is organized as follows: Section 3.5 introduces and analyzes a naive one-level 4T1R-
based multiplexer at the physical design level. Section 3.6 proposes improved one-level, two-
level and tree-like 4T1R-based multiplexers, overcoming dif culties in physical design. Section
3.7 deals with a generic optimizing technique for RRAM-based circuits, i.e., programming
transistor sizing technique, which enables large design space to be explored. Section 3.8
presents some experimental results and Section 3.9 analyzes the impact of process variations.

3.5 Basic 4T1R-based Multiplexer

In this section, we propose a naive multiplexer structure using 4T1R elements and discuss a
few limitations of the structure.

3.5.1 Multiplexer Structure and Programming Strategy

By following the general topology shown in Fig. 2.25, a basic one-level N : 1 multiplexer can
be developed with 4T1R elements. The resulting one-level N -input RRAM-based multiplexer
is illustrated in Fig. 3.21 and consists of N pairs of 4T1R programming structures, which are
controlled by N A1Bitlinesand N A1 Word lines. Since RRAMSs require a programming voltage
which is higher than the nominal one, a Deep N-well isolation (highlighted red in Fig. 3.21) is
required for the programming structures, resulting in two power domains. Instead of providing
each RRAM with four independent programming transistors, all the RRAMs can share a pair of

80

3.5. Basic 4T1R-based Multiplexer

programming transistors (controlled by BL[N]and W L[N] respectively) at node B. As a result,
each RRAM can be individually programmed with either positive or negative voltage polarity.
For example, we can rstset RRAM Ry by enabling BL[0] and W L[N]. Note that the rest of bit
lines and word lines should be off, to ensure the programming current (highlighted blue in Fig.
3.21) ows only through transistor PO, RRAM Rg and transistor NO. Then we can turn off BL[0]
and WL[N],andturnon BL[N]Jand WL[N i 1]to reset RRAM Ry i1 . Sharing programming
transistors in the multiplexer structure is exible enough from a recon guration standpoint.

In practice, ina N -input multiplexer, only one RRAM is in LRS while the others are in HRS.
Each time a multiplexer is recon gured, one RRAM is reset from LRS to HRS and another is set
from HRS to LRS, implying two steps (one reset process and one set process). Note that set
and reset process have to be executed sequentially because set and reset processes require
different programming voltages at node B. Whether the multiplexer has shared programming
transistors or employs independent programming transistors for each RRAMs, we always need
two steps (one reset process and one set process) in each recon guration. More importantly,
sharing programming transistors can signi cantly reduce the parasitic capacitances at node

B in Fig. 3.21, leading to large delay and power improvements. Independent programming
transistors cause that the total parasitic capacitance at node B includes N pairs of program-
ming transistors. In contrast, sharing programming transistors lead to that the total parasitic
capacitance at node B includes only a pair of programming transistors.

Figure 3.21 — Circuit design and well arrangement of a naive N : 1 one-level 4T1R-based
multiplexer

81

Chapter 3. RRAM-based Circuit Designs

3.5.2 Limitations from a Physical Design Perspective

Such straightforward design suffers from three possible limitations due to the co-integration
of both datapath and programming channels.

Limitation 1: Programming Currents Contribution from Datapath Transistors

Whether a RRAM can be programmed into a reasonable R rs highly depends on the amount
of programming current that can be driven through the RRAM. In order to accurately control

the programming current of a RRAM, only a pair of p-type and n-type transistors is turned on
during programming. However, during programming, some datapath transistors in on state
could inject or distribute the programming currents, leading to the achieved RLrsto be out
of speci cations. Take the example in Fig. 3.21, assume that RRAM Rq is being programmed
by enabling transistors PO and NO. Datapath transistors N1 and N2 could potentially be in
on state, sinking part of the programming current, as highlighted by red dashed lines. This
would cause the programming current (blue dashed lines) to be smaller than expected, leading

to a higher R rs. Note that not only pull-down transistors, suchas N1 and N2, but pull-up
transistors of input inverters, such as P1 and P2, can interfere with the programming current.
Such interference becomes serious as input sizes increases, which can signi cantly reduce the
programming current passing through RRAMs and even cause failure in con guring RRAMs.

Limitation 2: Breakdown Threats of Datapath Transistors

To achieve a reasonable R| rs, programming voltages prog_V DD should be large enough
to drive a high enough programming current. For instance, [133] considers a programming
voltage as high as prog_V DD A3.0V while the nominal voltage of the datapath transistors
isonly VDD A0.9V. Such large gap between prog_V DD and Vpp could cause the datapath
transistors to breakdown during RRAMSs' programming phases. Take the example in Fig. 3.21,
the voltage of node A, Va, canreach prog_V DD while programming RRAM Rp, leading to the
source-to-drain voltage of transistor P1 being prog_V DD j Vpp. Assume that prog_ VDD A&
3.0V and Vpp A0.9V, both the gate-to-source voltage Vgsand source-to-drain voltage Vps
of transistor P1 are 2.1V, possibly leading transistor P1 to breakdown. Note that not only
transistor P1 but also all the transistors belonging to the input and output inverters in Fig.
3.21 can be in a breakdown condition. While exposed to these conditions, even if datapath
transistors do not break down, their reliability, i.e., lifetime, would signi cantly degrade.

Limitation 3: Long Interconnecting Wires between Wells

Since RRAMSs require a programming voltage which is higher than the nominal one, a deep
N-well isolation (highlighted red in Fig. 3.21) is required for the programming structures,
resulting in three N-wells as shown in Fig. 3.21. In physical designs, a large spacing is required
between a deep N-well and a regular N-well, which introduces long interconnecting wires. As

82

3.6. Improved 4T1R-based Multiplexer

illustrated in Fig. 3.21, two groups of long interconnecting wires have to be employed: one is
between input inverters and programming structures while the other is between programming

structures and output inverters. The long metal wires introduce parasitic resistances and
capacitances to 4T1R-based multiplexers, potentially causing delay and power degradation.

Therefore, there is a strong need to study how to properly integrate 4T1R programming
structures into RRAM-based multiplexers without area and delay overhead while guaranteeing
robust operations.

3.6 Improved 4T1R-based Multiplexer

In this section, we address the limitations of the previously introduced naive 4T1R-based
multiplexers by employing power-gated inverters and rearranging the power domains. In

addition to the one-level 4T1R-based multiplexers, we also investigate two-level and tree-like
multiplexer structures, similar to baseline CMOS multiplexers.

3.6.1 One-level Multiplexer Structure

In order to address the identi ed limitations, we present, in Fig. 3.22(a), an improved one-level

N -input 4T1R-based multiplexer, which is different from the one in Fig. 3.21 in two aspects:

(a) the datapath input inverters are power-gated in order to eliminate the contribution of

the datapath transistors in the programming phase; (b) the two power domains (and the
isolation deep N-well) are organized differently to Fig. 3.21. Indeed, the input inverters
and part of 4T1R programming structures are driven by a constant voltage domain Vpp and
GND while the output inverter and the rest of 4T1R programming structures are driven by
switchable voltage supplies Vpp well and GND,yei . During operation, Vpp wel and GND ey
are con gured to be equalto Vpp and GND respectively, as shown in Fig. 3.22(a). Note that
the RRAM programming voltages are typically selected to be larger than Vpp, ensuring that
RRAMs are not parasitically programmed during operation. When a set operation is triggered,
input inverters are disabled and Vpp wei and GND | are switched to be j Vprog A2Vpp and
i Vprog AVpp respectively, as highlighted red in Fig. 3.22(b). During reset operations, input
inverters are disabled and Vpp welr and GND g are switched to be Vprog and Vprog i Vop
respectively, as highlighted red in Fig. 3.22(c). As such, the voltage difference across the RRAM
during set or resetis §Vprog and the working principle of the 4T1R programming structure
can still be applied. Indeed, to enable the programming current path highlighted blue in

Fig. 3.22(b), bit line BL[0O] is con gured to be GND and word line WL[N]is con gured to
be i Vprog A 2Vpp while other programming transistors should be turned off by con guring
BL[i]A£VDD,WL[j]AGND,1- i- Nj 1,0- j- Nj 1and BL[N] 4 iVprog A 2Vpp. Table
3.1 summaries the voltages involved in the different operations.

The improved 4T1R-based multiplexer has a major advantage over the initial design in Fig. 3.21:
the voltage drop across each datapath transistor can be limitedto Vpp, allowing the use of

83

Chapter 3. RRAM-based Circuit Designs

Figure 3.22 — Improved one-level N-input 4T1R-based multiplexer: (a) operating mode
(Vop well £Vpp, GNDyeii £EGND); (b) set process (Vop well 4 iVprog A2Vpp, GNDyer £
i Vprog AVDD); (c) reset process (Vpp well AVprog, GNDwell AVprogi VoD

logic transistors instead of I/O transistors (thicker oxides and higher breakdown voltage). Logic
transistors occupy less area and introduce less capacitances than I/O transistors, potentially
improving the footprint and delay of RRAM multiplexers. During the set and reset processes,
the voltage drop of each transistor can be boosted from Vpp to Vpp max, approaching the
maximum reliable voltage without breakdown limitation. Boosted Vbp max leads to higher
current density driven by transistors, further contributing to a lower RLRrs[133]. Note that the
set and reset processes typically require short amount of time, i.e., typically 200 ns for each

84

3.6. Improved 4T1R-based Multiplexer

RRAM [133]. Since programming does not occur many times (non-volatility), very low stress is

applied on the transistors, further contributing to a robust operation.

Table 3.1 — Voltages arrangements for operation, set and reset examples in Fig. 3.22(a)(b)(c)

Control lines/ Operation Set process Reset process
Voltages Fig. 3.22(a) Fig. 3.22(b) Fig. 3.22(c)
BL[0] Vbp GND Vbb
BL[i], Vbp Vbp Vbp
1-i-Nj1
r[N] Vbbp i Vprog A2vpp Vprog i VbD
WL[i], GND GND GND
0-i-Nj2
WLIN j 1] GND GND Vbb
WL[N] GND i Vprog A2Vbp | Vprogi Vop
EN GND Vbob Vbb
EN VoD GND GND
Vb well Vbp i Vprog A2Vpp Vprog
GND el GND i VprogAVop | Vprogi Vob

3.6.2 Physical Design Advantages

The improved 4T1R-based multiplexer layout has two major advantages over the initial design
in Fig. 3.21:

(1) the voltage drop across each datapath transistor can be limitedto Vpp, allowing the use of
logic transistors instead of I/O transistors (thicker oxides and higher breakdown voltage). Logic
transistors occupy less area and introduce less capacitances than I/O transistors, potentially
improving the footprint and delay of RRAM multiplexers. During the set and reset processes,
the voltage drop of each transistor can be boosted from Vpp to Vpp max, approaching the
maximum reliable voltage without breakdown limitation. Boosted Vbp,max leads to higher
current density driven by transistors, further contributing to a lower RLrs[133]. Note that the
set and reset processes typically require short amount of time, i.e., typically 200 ns for each
RRAM [133]. Since programming does not occur many times (non-volatility), very low stress is
applied on the transistors, further contributing to a robust operation.

(2) Only one connection between regular and deep N-Wells is necessary. As a result, only one
group of long interconnecting wires is employed, potentially reducing the parasitics from
metal wires. To be more illustrative, we depict in Fig. 3.23 and compare the cross-sections of
the naive and improved designs at layout level. In each illustrative cross-section, we consider
an input inverter in 0, an output inverter, and a 4T1R programming structure. We assume that,

85

Chapter 3. RRAM-based Circuit Designs

in the naive design, input and output inverters can be accommodated with a regular N-well,

so as to be more area ef cient. However, even when the regular N-well is shared, long metal
wires are still required because interconnections between datapath logics and programming
structures have to include a large space between regular N-well and deep N-well. The length

of metal wires MET 1 and MET 2 in Fig. 3.23(a) are dominated by the large well spacing L. Fig.
3.23(b) depicts the cross-section of the improved circuit in Fig. 3.22(a). Since RRAMs can be
fabricated between metal lines, they can be located in any position between the two wells.
Whatever location the RRAM is, there is only one long metal wire (MET 2 and part of MET 1)
across two wells, while the other metal wires MET 1 connect transistors inside the same well.
Note that the length of interconnecting wires inside the same well is much smaller than those
across two wells L. As a result, the length of metal wires in the naive design is dominated by
24, while the improved design is dominated by L. Therefore, the improved design can reduce
50% the length of interconnecting wire than the naive design, contributing to smaller parasitic
resistances and capacitances.

3.6.3 Two-level and Tree-like multiplexer Structure

Based on the circuit topology of CMOS multiplexers shown in Fig. 2.15, we also develop

N -input 4T1R-based multiplexers implemented with two-level and tree-like structures. The
resulting structures are depicted in Fig. 3.24 and Fig. 3.25 respectively. The two-level and
tree-like structures are implemented by cascading elementary one-level multiplexer struc-
tures similar to the one shown in Fig. 3.21. Note that even in two-level and tree-like 4T1R
multiplexers, only one DNW is needed, as highlighted red in Fig. 3.24 and Fig. 3.25 respectively.
To simplify the programming strategies, RRAMs in the even levels have opposite polarities
than those in the odd levels. Take the example in Fig. 3.24, the polarities of RRAMs in the
second level, highlighted in red, are opposite to the rstlevel. As such, when set processes
are required, Vpp weii and GND,ej are switched to Vprog A2Vpp and i Vprog A Vpp re-
spectively; while during reset processes, Vpp well and GNDy, are switched to Vprog and
Vprog i Vpp respectively. Otherwise, if all the RRAMs have had the same polarity, switching
Vbp well @and GNDy,e; depends not only on the type of process (either set or reset) but also
on the number of levels (either even or odd), requiring additional circuitry. In addition, DNWs

also can be ef ciently shared between two cascaded 4T1R-based multiplexers, as illustrated in
Fig. 3.26. The input inverters and part of programming structures of MU X 1in Fig. 3.26 can
share a DNW with the output inverter and part of programming structures of MU X 0. Note
that the polarities of RRAMs of MU X 1 are opposite to the RRAMs of MU X 0, allowing a similar
programming strategy as highlighted above.

The number of bit lines and word lines can be reduced, as the 4T1R programming structures be-
longing to the same level can ef ciently share control lines, allowing RRAMs to be programmed
simultaneously. Take the example of Fig. 3.24, all the multiplexer structures from the rst stage
can be connected to bit lines BL[j],0: j - N andword lines WL[j],0- j- N.RRAMs
that are controlled by BL[0] and WL[N],i.e., Ra and Rg in Fig. 3.24, can be programmed

86

3.6. Improved 4T1R-based Multiplexer

‘uBisap panoiduwi (q) ‘ubisap anleu () :s1axajdninw YT 1 Jo In0Ae| 8yl JO UOI108S-SS0ID — £2°E ainbi4

87

Chapter 3. RRAM-based Circuit Designs

simultaneously, which is resembling to the control sharing in a CMOS multiplexer tree. RRAMs
belonging to different stages have to be programmed sequentially. A two-level or tree-like
4T1R-based multiplexer requires 2 m steps (m reset processes andm set processes) to program
all the RRAMs, where m represents the number of stages. In contrast, a one-level 4T1R-based
multiplexer, consisting of fewer RRAMS, only need two steps, implying less recon guration
time and programming energy.

Figure 3.24 — Schematic of a robust two-level N-input 4T1R-based multiplexer.

3.6.4 Sharing deep N-Well between multiplexers

Deep N-wells can be ef ciently shared between two cascaded 4T1R-based multiplexers, as
illustrated in Fig. 3.26. The input inverters and part of programming structures of MUX 1in
Fig. 3.26 can share a deep N-well with the output inverter and part of programming structures

of MU X 0. Note that the polarities of RRAMs of MU X 1 are opposite to the RRAMs of MU X 0,
allowing simple programming strategies. As such, when set processes are required, Vpp well
and GNDy are switched to | Vprog A2Vpp and j Vprog AVpp respectively; while during
reset processes,Vpp well and GNDye are switched to Vprog and Vprog i Vpp respectively,

88

3.6. Improved 4T1R-based Multiplexer

Figure 3.25 — Schematic of a robust tree-like N -input 4T1R-based multiplexer.

Otherwise, if all the RRAMs have had the same polarity, switching Vpp well and GND e
depends not only on the programming operation (either set or reset) but also on the location
of multiplexers, requiring additional circuitry.

3.6.5 Constraints on the Programming Voltage =~ Vprog

During set and reset processes, the necessary programming voltage Vpqq is determined by
the source-to-drain voltage drop across the programming transistors and the programming
threshold voltage of the RRAMs. The Vpg of the programming transistors should be large
enough in order to drive suf cient programming current, but should also be selected under the
breakdown conditions. Therefore, there exists a limitfor Vo4 to be respected. For instance,
in the set example of Fig. 3.22(b), Vprog Can be expressed as the sum of the voltages across
RRAM A and the programming transistors PO and NO:

8

< VDS,POAVDS,NOAVset,min /EVprog) (3 16)

* Vps,po AVpsno - VDD max:

where Vsetmin IS minimum programming voltage to trigger a set process for a RRAM. Note that
the Vps of the programming transistors should be the same to guarantee the best achievable
current density[133]. Similarly, for the reset example in Fig. 3.22(c), one can derive a similar

89

Chapter 3. RRAM-based Circuit Designs

‘Auald Jo s|Iap-N daaq areys :siaxa|dnnw paseq-yT .1 [9Aa]-auo 1ndul- N om] Buipease) — gz's ainbi4

90

3.6. Improved 4T1R-based Multiplexer

Figure 3.27 — Cross-section of the layout of a 4T1R programming structure: (a) during reset
process; (b) during set process.

set of constraints with transistors P1 and N1:
8

<VDS,PlAVDS,NlAVreset.min /CEVprog: (3 17)

* Vps,p1 AVpsN1- VDD max:
where Vgetmin iS minimum programming voltage to trigger a reset process for a RRAM.

In addition to the limitations mentioned above, the use of different wells also constrains
Vprog as the diode across P-Well and Deep N-Well should be reversely biased, as illustrated
in Fig. 3.27(a) and (b). During the reset process in Fig. 3.27(a), diode Dg is always reversely
biased because the voltage of P-Well is GND and the voltage of Deep N-Well is Vg EGND.
However, during the set process in Fig. 3.27(b), diode D is reversely biased only when:

If we boost Vpp to Vpp max during set and reset process, the constraint becomes:
(i Vprog AZVDD,max)i GND, 0. (3.19)

91

Chapter 3. RRAM-based Circuit Designs

By combining (3.16), (3.17) and (3.19), we obtain:
8
%Vprog ' 2VDD,max AVset,
Vprog ' 2VDD,max AVresety (3-20)

' Vprog : 2VDD,max-
As aresult, the upper bound for Vprog can be expressed as:
Vprog ' 2VDD,max (3-21)

As discussed in [133], a larger Vpog leads to a higher programming current and a lower R|Rs.
In this paper, we consider Vprog A2Vpp max for the electrical simulations.

3.6.6 Analytical Comparison between 4T1R multiplexers

Note that the two-level and tree-like 4T1R-based multiplexers reduce the number of con-
trol/programming lines signi cantly but does not reduce the number of required RRAMSs.
An analytical comparison of the area, delay and energy between 4T1R-based multiplexers
is shown in Table 3.2, and will be veri ed by electrical simulations in Section 3.8. In CMOS
technology, two-level multiplexers produce the best area-delay-power product because their
structure reduces not only the number of control lines but also the parasitic capacitances
introduced in the critical path. Since the parasitic capacitances of a RRAM is typically smaller
than a transistor, the delay and power of one-level 4T1R-based multiplexers scale better with
the number of inputs N than CMOS multiplexers. When the input size is small and total capac-
itance is dominated by programming transistors, the delay and power of one-level 4T1R-based
multiplexers are better than two-level and tree-like structures. When the input size is large
enough, the total capacitance is dominated by Cp and two-level 4T1R-based multiplexers
become better in delay and power.

Table 3.2 — Analytical comparison on area, delay and switching energy of N-input 4T1R-based
multiplexers.

Multiplexer One-level awo-level Tree-like
Areal N ¢Areasrans (NA[NJ]) CArearrans (2N i 2)CAreasrans
Delayz RLRSCI:(Ctrans AN (ICP) 4RLRS¢(Ctrans A [r N] GCP) 0.5® WSD
¢Ctrans A[N] qCP)
Energy® 0.50@0¢V3, ¢ 3([10g2NT?AflogoN])RLRs | 0.5®¢5(3[logzoN]i 1)
(Ctrans AN ¢CP) ¢Ctrans ACP) ¢Ctrans ACP)VDZD

! Area of input and output inverters are not included here.

2 Elmore delay model [104] is considered here.

3 Only the switching energy of multiplexer structures is considered here.

®is the switching activity.

* R rsis the equivalent resistance of a RRAM in LRS. Cp is smaller than Ci ans.

92

3.7. Optimal Physical Design Parameters

3.7 Optimal Physical Design Parameters

In previous works [26, 9, 110, 27, 8], the sizes of programming transistors are considered uni-
form to achieve the lowest R_rsof RRAM, which is assumed to produce the best performance
of RRAM-based interconnects. However, Fig. 3.18 and Fig. 3.19 demonstrates that the lowest
R_rs do not always guarantee the best Area-Delay Product (ADP) and Power-Delay Product
(PDP). Actually, the delay of RRAM-based programmable interconnects is determined by
various factors, such as the resistance of RRAMSs, the parasitic capacitance of programming
transistors and also the parasitics of long interconnecting wires. Asthe R_rsVvalue is strongly
correlated with the size of the programming transistors ~ Wyg (See Section 3.4), there is no
guarantee that using the lowest possible the R rswill give the lowest delay. In addition, as
RRAMs can be located anywhere on the long interconnecting wire across the two wells as
illustrated in Fig. 3.23, the resulting parasitic capacitance is non-negligible and strongly im-
pacts the performance as well. Despite technology factors, suchas R rsand Cp, there are a
few design parameters, such as physical location of RRAMs and programming transistor size
Wprog , Which can potentially impact the performance of RRAM-based multiplexers. Therefore,

it is worthwhile to study how to improve RRAM-based multiplexers through tuning the design
parameters. In this section, we will rstintroduce our methodology in modeling RRAM-based
multiplexers and then focus on studying the optimizing techniques for improving the perfor-
mance of 4T1R-based multiplexer designs in two aspects: (1) the impact of physical location

of RRAMSs; (2) the impact of programming transistor size Wp;og4. Note that the methodology
developed here is not dependent on the considered RRAM technology or on the transistor
technology nodes or even the circuit design topology, but is rather general.

3.7.1 RC modeling of General 4T1R-based multiplexers

Modeling circuits with equivalent RC tree is a widely used method in studying the delay of
digital circuit designs [132], which can bring instructive knowledge for circuit optimization.
In this part, we introduce the RC modeling for general cases of 4T1R-based multiplexers
including layout-level parasitics, based on which we study the optimizing techniques.

The critical path of a RRAM-based multiplexer is the path from an input to the output which
contains the largest number of RRAMs inthe Low Resistance StatgLRS) and the largest number
of programming transistors. For instance, the highlighted path in Fig. 3.28(a) is the critical path

of a N -input RRAM-based multiplexer. Note that the RRAM-based multiplexer in Fig. 3.28(a)

is a general case of multi-level multiplexers, which contains n stages of m-input one-level
multiplexing structure. Fig. 3.28(b) depicts all the relevant transistors and RRAMs impacting
the critical path, considering the general case ofa n-stage RRAM-based multiplexer, while its
equivalent RC modelis given in Fig. 3.28(c). Note that the parasitics of long interconnecting
wires across N-wells are included in Fig. 3.28(c), which are represented as Ry i, Cy i, Ry and
Cy,i,i /1,2,...,n. We de ne the distance between the RRAM and the regular N-wellas x 2[0,L]
and the distance between the RRAM and the deep N-wellas y 2[0,L], as shown in Fig. 3.23(b).

93

Chapter 3. RRAM-based Circuit Designs

Figure 3.28 — (a) Critical path of a general RRAM-based multiplexer; (b) General critical path of
RRAM-based multiplexer; (c) Equivalent RC model.

(Rx,i» Cx,i)and (Ry,i, Cy,) denote the parasitic resistances and capacitances of the long metal
wires atthe it stage of a 4T1R multiplexer, corresponding to (X, y) in Fig. 3.23(b) respectively.

In short, the resistance and capacitance in Fig. 3.28(c) can be extracted from Fig. 3.28(b) and

94

3.7. Optimal Physical Design Parameters

expressed as follows:

Ro Z£Rinv /EM,
Winy
Rijii n ARLRs,
Co AWiny Ciny A2WprogCirans,
Cij1i n j1 A4WprogCirans.,
Cn ACL A2WprogCirans,
Rxij1i n AXi R,
Ryijzi n AYi IR,
Cxij1i n AXi CC
Cyij1i n AYi@C ,

(3.22)

where Rnyin denotes the equivalent resistance of a minimum size inverter, Cjny represents
the parasitic capacitance at the output of a minimum size inverter, W,y is the size of driving
inverter in terms of the minimum width transistor[4]. R_ rs denotes the equivalent resistance
of a RRAM in LRS, Cp is the parasitic capacitance of a RRAM. Wy, oq represents the width
of programming transistor in the unit of the minimum width transistor, and Ctrans is the
parasitic capacitance of a minimum width programming transistor in off state. R and
C are the square resistance and capacitance of a unit metal wire respectively. X; denotes
the distance between the RRAM and the left half of 4T1R programming structure atthe i t"
stage of multiplexer, while y; denotes the distance between the RRAM and the right half of
4T1R programming structure atthe i'" stage of multiplexer. Note that x; Ay; &L, where L is
minimum distance between a regular N-well and a deep N-well.

Considering the Elmore delay [104] of the critical path of a general n-stage RRAM-based
multiplexer (Fig. 3.28(b)), we obtain:
X X
¢E G R
i i
/E(Cinv AZWprog C:trans) tRiny
X
A xC ¢Rinv Al i 1)(RirsALIR)AXR]
i 1
X .
A~ m(Li x)C HRinv Ai(RirsAL R)] (3.23)
i E1
L
A“r\/\/prog Ctrans [Rinv Ai (RLRSA LdR)]
i E1
A(2Wprog Cirans ACL) YRinv An ¢(RLRSA L¢R)]

X
AmdCp (Rinv AiRRsA(j 1)LER AXR)
i 1

As we see, despite from technology parameters, i.e., Rinyv,Cinv, R ,C ,Ctrans, Cp and L, the

95

Chapter 3. RRAM-based Circuit Designs

delay is dependent on many design parameters, X;, n, m and Wp,oq. To minimize the delay in
(3.23), it is worthwhile to study the optimal values of these design parameters. In the rest of
this section, we will focus the impact of x; (See Section 3.7.2) andWy,og (See Section 3.7.3).

3.7.2 Physical Position of RRAMs

As illustrated in Fig. 3.23(b), RRAMs are exible in their location between the two wells.
However, the choice of the location of RRAMSs lead to different distribution of parasitics inside
the 4T1R-based multiplexer, and further resulting in difference in performance. In this part,
we study the impact of location of RRAMs on the performance, by using the Elmore Delay in
(3.23).

Since our target is to determine the optimal values of variables x;, we only focus on the terms
involving X;:

¢ A (L, Wprog,n,m,Riny,Ciny ,Ctrans)

X))) (3.24)
A R C x°A[1i m)RinyC A(j 1j mi)(RrsALR)C AmR Cp]x;
i £1
where f(L,Wprog.n,M,Riny,Cinv,Ctrans) is the sum of terms without x;.
The delay ¢, reaches its minimal when x; is:
. /E(mi DRinwC A(mi Alj i)(RirsALR)C | mR Cp
hopt 2R C
mi 1R i(mij DALR L mC (3.25)
/E | inv A | LRSA[i (ml 1)A1]—| P
2 R 2 R 2 2C
Notethat m , 2andi, 1, X opt is monotonically increasing with respectto i. This implies

that x; opt increases when the number of stages increases. Additionally, in a sophisticated
CMOS technology, Cp ¢ C ,Riny A R and RirsA R . As aresult, Xj opt is usually larger
than L and Fig. 3.29 depicts the relation between delay ¢ and x; in such case.

Our goal is to minimize the delay ¢ inthe range of x; 2 [0,L]. As highlighted red in Fig. 3.29,
the delay ¢ is monotonically decreasing when x; 2[0,L]. Hence, the optimal delay is achieved
when x; ZL. From a circuit design perspective, the optimal location of RRAMs should be close
to the right half of 4T1R programming structures, especially in a multi-level multiplexer. In

the example of Fig. 3.23(b), the optimal location of RRAMSs should be on the top of the deep
N-well.

The optimal location of RRAMSs will be veri ed through electrical simulations in Section 3.8.4.

96

3.7. Optimal Physical Design Parameters

Figure 3.29 — Relation between x; and delay of a RRAM-based multiplexer.

3.7.3 Programming Transistor Sizing Technique

As we see in (3.23),Wprog and Ry rs appear in almost every term of the polynomial, imply-
ing their tight relationship with delay of RRAM-based multiplexers. This part is devoted to
determining the optimal value of Wpoq and R rsin the goal of minimizing the delay ¢.

As shown in equations (3.9) (3.11), the product of the R rsof RRAM and the programming
transistor size Wpog is a function of programming voltage:

\%
RirRsAE— (3.26)

Note that the product R rsWprog is a constant under a specic Vprog-

With Equation (3.26), Equation (3.23) is simpli ed to be relatedto ~ Wpog Only. Since our target
is to determine the optimal values of variables Wy, o4, we only focus on the terms involving

¢Ah(L,Xi,n,m,Riny,Cinv,Ctrans)
AT4n ¢Riny Ctrans A2n?LR Ctrans] Wprog
n(n A1)
2

(3.27)

A 9(Vprog)InC Am

X
(CPALC)j C (mijiADx]¢ ! ,
i1 Whprog

97

Chapter 3. RRAM-based Circuit Designs

where h(L,xi,n,m,Riny,Ciny,Cirans) is the sum of terms without Wpog.

According to (3.27), the relation between the n-stage multiplexer delay ¢ and the width of the
programming transistor Wy, qq is depicted in Fig. 3.30.

Figure 3.30 — Relation between Wy, o4 and delay of a RRAM-based multiplexer.

When W, g is small, the delay increases due to the large R_rs of RRAM. When W, is large,
the delay increases as well. Indeed, while the R\ rsis reduced, large parasitic capacitances are
introduced by the programming transistors and limit the performances. Therefore, as shown

in Fig. 3.30, there exists an optimal Wpqg 0pt giving the best performances by trading off the
RLrs with the parasitic capacitances from the programming transistors.

Equation (3.27) reaches minimum value (best delay) when:

d P

P 9(Vprog)nCLAM AL (CpALC)i C Dymi i i Al)xi]
4n 0Riny Ctrans A2n2LR Cirans

(3.28)

Wprog ,opt

In FPGA routing architecture, the number of stages and the number of inputs of multiplexers
are diverse. As Equation 3.28 depends on the n and m of the multiplexer, using a uniform size
of programming transistors[26, 9, 27, 8] does not ensure the best performance. To achieve the
best performances, the multiplexers in FPGA should have different Wp;og opt -

If we consider the optimal x; AL as explained in Section 3.7.2, the Wp,og 0pt Can be simpli ed

98

3.8. Experimental Results

to
S

9(Vprog)2CLA(NAL)MCpA(n 1)LC]

(3.29)
80Riny Ctrans A4nLR Ctrans

Whrog,optix £LAE

Note that Wprog,0pt iS always larger than zero and lies in the valid range of Wyog 2[1, 1).

Since the EImore delay is an approximation of the delay, the estimated =~ Wy og 0pt in (3.28) may
not always guarantee the best delay. In practice, the best Wp,qg,0pt €an be found by sweeping
Wprog in electrical simulations. In Section 3.8.3, we will examine the effect of programming
transistor sizing technique.

As input sizes and fan-out loads of multiplexers are diverse in the context of FPGA architectures,
the choice of multiplexing structure, transistor sizes and physical locations of RRAMs should

be well optimized by considering their architecture context. As a result, the two optimizing
techniques are effective methods to achieve optimal performance for multiplexers located in
different blocks of a FPGA architecture. Note that the design space of 4T1R-based multiplexer
could be even larger than what we have investigated here. For instance, in this thesis, we
assume that Wy;og and R rs are uniformin a 4T1R-based multiplexer. Actually, Wprog and
RLRrs can be various in different stages, leading to more optimizing opportunity. We leave
these as part of our future work.

3.8 Experimental Results

In this section, we will verify the conclusions drawn by our analytical comparison with electri-
cal simulations and further evaluate the performance of the proposed multiplexers. We rst
explain our experimental methodology. Then, we show and comment the transient behavior of
4T1R-based multiplexers, and nally we compare the area, delay and power between different
4T1R-based and CMOS multiplexer topologies.

3.8.1 Experimental Methodology

We consider a RRAM technology [114] with programming voltages Vset £ Vresed £1.1V
and a maximum current compliance of lget & Jresed £500t A. The lowest achievable on-
resistance R rs of a RRAM is 2.2k- while the off-resistance Ryrsis 23M- . The parasitic
capacitance of a RRAM Cp is estimated to be 13 .2aF by considering that the RRAMs are
embedded in the MET1 and MET2 vias of our considered technology. The pulse width of
a programming voltage in both set and reset processes is set to be 200 ns. Stanford RRAM
compact model [130, 131] is used to model the considered RRAM technology. The TSMC 40nm
technology is used in the circuit designs of datapath logics and 4T1R programming structures.
Both datapath circuits and the 4T1R programming structures are built with standard logic
transistors (W /L A£140nm /40nm). The standard logic transistors have a nominal working
voltage Vpp A0.9V, and can be overdriven to 1 .2V while staying in their reliability limits.

99

Chapter 3. RRAM-based Circuit Designs

Transmission gates are implemented with a pair of minimum-width n-type and p-type logic
transistor. Input and output inverters are sizedto 3 £ minimum width in order to resist the
parasitics of metal wires. Delay and power results are extracted from HSPICE [47] simulations.
The datapath Vpp is swept from 0.7V to 0.9V with a step 0.1V, in order to study the trade-off
between delay and power in sub/near- V; regime. The programming voltage Vp,oq is selected
to be 2.4V, respecting to the physical design limits, discussed in Section 3.6.5.

The comparison baseline is selected from the CMOS multiplexer topologies in Fig. 2.14 and Fig.
2.15interms of best delay. When input size N is lower or equal than 10, we consider one-level
CMOS multiplexers as baseline. When input size N is larger than 10, our baseline becomes a
two-level CMOS multiplexer. As for 4T1R-based multiplexers, we consider one-level, two-level
and tree-like structures for comparison on area, delay and power.

3.8.2 Transient Analysis

In order to validate the analytical comparisons in Table 3.2, we perform transient simulations

for 4T1R-based multiplexers, which consist of two phases: (1) the programming phase, where
set and reset operations are made to validate the RRAM programming strategy; and (2) the
datapath operation phase, where we verify if the multiplexer is functionally correct. Without

loss of generality, we focus on a representative example: a 2-input one-level 4T1R-based
multiplexer (consider N A2 in Fig. 3.22). Such transient analysis was conducted for every
4T1R-based multiplexer. Before programming, we initialize a 4T1R-based multiplexer in Fig.
3.22 as follows: RRAMsRp and Rg are formed and con gured to HRS and LRS respectively.
During the programming phase depicted in Fig. 3.31(a), Rg is rstresetto HRS by a reset
procedure, then Ra is setto LRS by a set cycle. Fig. 3.31(a) illustrates that both Ra and Rg can
be set or reset successfully according to the changes in programming currents Iygq0 and lyqq1-
Between the programming phase and operating cycles, there are a few idle cycles during which
programming transistors are all turned off. After then, input pulses are generated sequentially

to the two inputs, as shown in Fig. 3.31(b). We see that the multiplexer is functionally correct,
asin [0] is propagated to the output while in[1] is blocked. Transient analysis also veri es that
RRAMSs can be programmed correctly without interfering each other.

3.8.3 Best Wyog for RRAM-based Multiplexers

As explained in Section 3.7, the sizing of programming transistors can signi cantly impact the
delay and power number of RRAM-based multiplexers. In this section, we study the impact

of Wprog ON the delay of the improved 4T 1R-based multiplexers through simulation results.
Throughout this thesis, Wy;og is expressed with the number of minimum width transistors.
For each 4T1R-based multiplexer structure (one-level, two-level and tree-like), we sweep
Wprog from 1 to 3 with a step of 0.2, in order to identify the optimal Wprog in terms of best
delay. Fig. 3.32 shows the delay difference of the improved one-level, two-level and tree-like
4T1R-based multiplexers (x AL) when input size is 50. A proper Wy, o4 indeed can reduce the

100

3.8. Experimental Results

‘uonelado Jo swiojonem [eubis
(q) ‘eseyd Buiwwesboid Jo swioanem [eubis (e) :(e)zz s B4 ullexadinnw paseq-YT.1y Indul-g e Jo sisAjeue wuaisuel] — T’ ainbi4

101

Chapter 3. RRAM-based Circuit Designs

Figure 3.32 — Impact of Wpo4 0on the delay of 50-input improved 4T1R-based multiplexers
(x AEL).

delay of 4T1R-based multiplexers by 5%-11%. Fig. 3.32 shows that the best W4 depends
on the multiplexing structure because of different n and m, as predicted in Equation (3.29).
More than multiplexing structures, Fig. 3.33(a) and (b) present the best Wy, qg4 is strongly
dependent on many other design factors, such as input size and Vpp. As depicted in both Fig.
3.33(a) and (b), the best Wy, 4 basically increases when input sizes grows. This is consistent
to the prediction in Equation (3.29), where optimal ~ Wp,og is positively relatedto m. In general,
optimal Wp,qg of tree-like multiplexers are larger than two-level and one-level multiplexers,
which validates the dependency of Wprqg opt 0N the number of stages n shown in Equation
(3.29). Fig. 3.33(b) studies the relation between best Wy,og and Vpp, considering one-level
multiplexers. In most cases, operating in near- V; regime, such as Vpp A0.7V leads to a smaller
Woprog,opt than nominal working voltages. Indeed, when Vpp is decreased, Ri,y increases due
to the degrading current density, leading to a smaller Wpyog,0pt as shown in Equation (3.29).

In short, we see that in Fig. 3.33(a) and (b), the optimal Wpoq4 ranges from 1 to 3, strongly
in uenced by design choices. In addition to delay, the choice of Wy, og impacts strongly on
both area footprint and power consumption. Therefore, to achieve better trade-off in area,
delay and power, the optimal W4 can also be determined with respect to various metrics,
such as Area-Delay Product (ADP) and Power-Delay Product (PDP). In the rest of this chapter,
Wprog Of each 4T1R-based multiplexer is properly sized to achieve best delay metric.

102

3.8. Experimental Results

Figure 3.33 — Two case studies on the best W4 of improved 4T1R-based multiplexers (x ZL):
(a) impact of the multiplexing structures when Vpp A0.9V (b) impact of Vpp.

103

Chapter 3. RRAM-based Circuit Designs

Figure 3.34 — Delay comparison of improved 4T1R-based multiplexers featured by x A0 and
X AEL.

3.8.4 Optimal RRAM Location

As shown in Equation 3.25, the location of RRAMs can in uence the delay of 4T1R-based
multiplexers. From the consider design kit, we extract process parameters L A£2.5!' m, Ry &£
45k- ,R A2.1- /*mand C A72.4aF/* m. According to Equation 3.25, the best location
of the RRAMSs is Xopt ZL. Therefore, in this part, we study only two locations for RRAMs :
X A0 and x ZL. Fig. 3.34 compares the delay of one-level and two-level improved 4T1R-based
multiplexers with different locations of RRAMs x A0 and x AL. The improved designs with
x AL signi cantly reduce the delay by 35% | 2.5£ as compared to the cases of x Z£0. In
particular, x /A0 causes that delay of RRAM-based multiplexers linear to input sizes similar
to CMOS counterparts, while x AL can guarantee that delay of RRAM-based multiplexers is
almost independent from input size. To be intuitive, such delay characteristic can be explained

as follows. In the cases of x A0, long metal wires are all connected to the output nodes of
multiplexing structure (See node C in Fig. 3.22(a)). As a result, the parasitic resistances
and capacitances at the output node stack at the output node, being linear to the input size.
Consequently, the delay of improved 4T1R-based multiplexers x AQ is linear to the input size.
Differently, in the case of x AL, long metal wires are connected to each input inverter and the
parasitics at output node is only impacted by the intrinsic capacitance of RRAMs. Therefore,
we see in Fig. 3.34 that the delay of improved 4T1R-based multiplexers is almost independent

104

3.8. Experimental Results

on the input size.

Note that, thanks to such outstanding feature, improved 4T1R-based multiplexers with large
input sizes can be as delay ef cient as smallest ones, encouraging the use of large multiplexers

in FPGASs. This potentially opens opportunities in optimizing FPGA architectures, which will

be explored in Chapter 5. In the rest of this thesis, we consider the improved design with x AL
in the comparison with CMOS multiplexers.

Figure 3.35 — Layout of 16-input multiplexers: (a) CMOS two-level structure; and (b) 4T1R-
based two-level structure.

3.8.5 Area Comparison

In order to properly study the physical area of the proposed structure, i.e., considering routing,
well organization etc., and draw fair area comparisons with regular CMOS, we realized the
layouts of a 16-input two-level CMOS multiplexer and a 16-input two-level 4T1R-based multi-
plexer with a semi-custom design ow, as depicts in Fig. 3.35(a) and (b) respectively. Since the
different wells can be ef ciently shared among multiplexers as shown in Fig. 3.26, the layout
of 4T1R-based multiplexer consists of the programming structures and input inverters (MUXO0
in Fig. 3.26) in a regular well. The output and associated programming structure of another
multiplexer (MUX1 in Fig. 3.26) can be shared in this same well. The output inverter and asso-

105

Chapter 3. RRAM-based Circuit Designs

ciated programming structure of MUXO will be located ina deep N-well which also contains
programming structure and input inverters of another multiplexer. CMOS multiplexers must
employ SRAMs to store their con guration bits, while 4T1R-based multiplexers eliminate the
use of SRAMSs as their con guration bits are stored in RRAMs. To access either the SRAMs
or the RRAMSs, we assume a memory bank organization, i.e., using parallel word lines and
bit lines. Since CMOS and 4T1R-based multiplexers have similar number of con guration
bits, the area of their memory banks are similar and are not included in their layouts. The
bene t on removing SRAMs leads to that a 4T1R-based multiplexer (35 .3t m?) is 21% smaller
than its CMOS counterpart (44 .9t m?2). We believe that the area comparison between 16-input
multiplexers is representative and also its conclusive trend is also valid for multiplexers with
other sizes.

3.8.6 Delay Improvements

Fig. 3.36(a) compares the delay of CMOS multiplexers and the improved 4T1R-based multi-
plexers with the different structures under analysis. Note that naive 4T1R and 2T1R-based
multiplexers are also evaluated with electrical simulations. Due to a low driving current
density, RRAM programming of the naive 2T1R-based multiplexers is regarded as a failure
because programming structures cannot drive enough current through RRAMSs. As a result,
the RRAM LRS becomes too high and the multiplexer performance degrades signi cantly.
The performance of the naive 2T1R-based multiplexers are more than 5 £ worse than the
improved 4T1R-based multiplexer and best CMOS multiplexers. To keep a proper scale of
axis x and y, we do not plot them in Fig. 3.36(a). In the case of naive 4T1R multiplexers,
we consider Wy og A4 in order to compensate the loss in programming current due to the
input inverters in Fig. 3.21. Such large Wpog enables success RRAM programming but at
cost of large parasitics of programming transistors. Consequently, the performance of naive
4T1R-based multiplexers is 2 .6£ worse than the improved ones. In contrast, the improved
4T1R-based multiplexers with one-level, two-level and tree-like structures can guarantee
RRAM con guration successful even when Wp,og is minimized. In the considered input sizes,
one-level structure performs better in delay than two-level and tree-like structures due to its
smaller parasitic capacitances. One-level structures and two-level 4T1R-based multiplexers
achieve up to 2 .4£ and 42% delay improvements respectively, as compared to their CMOS
counterparts. Note that even when the input size is small, i.e., N A2, one-level 4T1R-based
multiplexers have similar performance than CMOS implementations.

We also investigate the performance of the multiplexers in the near- V; regime. As illustrated
in Fig. 3.36(b), CMOS multiplexers suffer from 2.25€ delay degradation when Vpp decreases
from 0.9V to 0.7V. However, because, unlike transistors, the resistances of RRAMs are not
affected by a reduction of Vpp, one-level 4T1R-based multiplexers keep a high-performance-
level even in the near- V; regime. When Vpp 0.7V, one-level 4T1R-based multiplexers
improve delays by upto 3 £, as compared to CMOS multiplexer. Note that, when compared to
CMOS multiplexers operating at Vpp A0.9V, one-level 4T1R-based multiplexers operating

106

3.8. Experimental Results

Figure 3.36 — Delay comparison between CMOS and 4T1R-based multiplexers: (a) delay
improvements of one-level, two-level and tree-like structures (Vpp A0.7V); (b) delay ef ciency
of one-level structure at near V; regime.

107

Chapter 3. RRAM-based Circuit Designs

with Vpp Z0.7V outperform up to 36% in delay.

Figure 3.37 — Power comparison between CMOS and 4T1R-based multiplexers: (a) energy im-
provements of one-level, two-level and tree-like structures (Vpp Z0.7V); (b) power reduction
of one-level structure at near V; regime.

108

3.8. Experimental Results

Figure 3.38 — Comparison between CMOS multiplexers and 4T1R-based multiplexers: (a)
Area-Delay Product; (b) Power-Delay Product.

109

Chapter 3. RRAM-based Circuit Designs

3.8.7 Energy and Power Bene ts

Fig. 3.37(a) shows the energy ef ciency of naive one-level 4T1R-based multiplexers and
4T1R-based multiplexers with different improved structures. Note that naive 4T1R-based
multiplexers consumes 7 .5£ more energy than the improved one-level 4T1R-based multiplex-
ers due to the use of Wp,og A4. Inthe considered range of input sizes, a one-level structure
multiplexer performs better in terms of energy consumption, bringing up to 3 .7£ reduction
compared to CMOS multiplexers, thanks to the smaller parasitic capacitances. 4T1R-based
multiplexers are not only ef cient in energy but also in power, as shown in Fig. 3.37(b). At
nominal Vpp A0.9V, one-level 4T1R-based multiplexers reduce power by 20% as compared
CMOS multiplexers. In near- V; regime, i.e., Vpp #A£0.7V, the power reduction of one-level
4T1R-based multiplexers is 38% as signi cant as Vpp /A0.9V. Note that, the 4T1R-based
multiplexers operating at Vpp 4A0.7V can bene t power improvementupto4 £ ascompared
to CMOS multiplexers at nominal Vpp A0.9V, and such power reduction is achieved along
with signi cant delay improvements.

3.8.8 Area-Delay and Power-Delay Products Analysis

To explore the inherent trade-offs with area, delay and power, we compare Area-Delay Product
(ADP) and Power-Delay Product (PDP) of CMOS and 4T1R-based multiplexers, as shown in Fig.
3.38. Similar to CMOS multiplexers, we select the best structure for 4T1R-based multiplexers
with varying input sizes, in terms of best delay. When input size ranges from 2 to 50, we
consider one-level structure. Since 4T1R-based multiplexers reduce both area and delay
signi cantly, Area-Delay Product (ADP) of 4T1R-based multiplexers can be upto 2 .3£ more
ef cient than CMOS multiplexers than CMOS multiplexers, as illustrated in Fig. 3.38(a). Since
4T1R-based multiplexers are more delay and power ef cient than CMOS multiplexers in near-

V; regime, Power-Delay Product (PDP) of 4T1R-based multiplexer improves over 4 .7£ the
one of CMOS multiplexers, as shown in Fig. 3.38(b). Vpp A0.7V guarantees the best PDP for
4T1R-based multiplexers. In summary, 4T1R-based multiplexers are delay and power ef cient

at both nominal Vpp and near-V; regime.

3.9 Impact of Process Variations of RRAMs

RRAMSs are more susecptible to device variations than transistors. As their mechanism is phys-
ically stochastic, there is a large observed cycle-to-cycle variability[1]. The variations on RRAM
parameters, such as Vset and Vieset, could lead to a degradation of RRAM-based multiplexers
performance. Therefore, it is necessary to understand, for a given technology node, what is the
range of variations that the RRAM multiplexers can tolerate without signi cant degradation in
delay and power. In this section, we study the effect of three representative RRAM parameters:
Cp, Vset and Vieset, coupled with a commercial 40nm technology.

110

3.9. Impact of Process Variations of RRAMs

Figure 3.39 — Impact of parasitic capacitance of RRAM Cp on the delay of one-level 4T1R-based
multiplexers (Vpp A0.9V).

3.9.1 Impactof Variationson Cp

As shown in equation 3.23, the parasitic capacitance of RRAM Cp is one of the crucial factor
impacting the delay of 4T1R-based multiplexers. A large Cp introduces more capacitance
into datapath and therefore negatively in uence the delay of 4T1R-based multiplexers. As
presented in Fig. 3.39, the delay of one-level 4T1R-based multiplexers degrades as Cp is
increased from 13 .2aF (the default value used in this thesis) to 118 .8aF. A variation on Cp
can indeed reduce the performance gain of 4T1R-based multiplexers from 2 .4£ to only 15%.
More importantly, an increased Cp causes that the delay of 4T1R-based multiplexers becomes
strongly linear to the input size, similar to CMOS multiplexers. Therefore, the variation on Cp
should be well controlled as it signi cantly impact not only the performance improvement

but also the performance characteristic of 4T1R-based multiplexers.

Note that, in this part, we assume that the increase in Cp does not impact other device
parameters of RRAMs, i.e., R rs. As explained in Section 2.1.1, aiincreased Cp canleadto a
smaller R_rs, which may potentially limit the delay degradation on 4T1R-based multiplexers.
Hence, in practice, the impact of Cp on 4T1R-based multiplexers may be less serious than that
shown in Fig. 3.39.

111

Chapter 3. RRAM-based Circuit Designs

Figure 3.40 —Ryrs degradation when Vg A{0.4,0.6V,0.8V}C Vpp A0.9V.

3.9.2 Impactof Variationson Vg

Process variations on Vger may cause Vset C Vpp, Wwhere RRAMSs could be parasitically set
during operation. Take the example in Fig. 3.31(b), during regular operation (highlighted in
red), where Vo EAGND,Vg AVpp and Ve £AGND, the voltage drop across RRAM Rg could
be large enough to trigger a set process. The RRAM Rg in HRS could be gradually set to
LRS after a certain amount of time. In this part, we consider three representative cases
of RRAM technologies where Vget are 0.4V, 0.6V and 0.8V respectively, which are smaller
than Vpp A0.9V. Using electrical simulations, we run a fatigue test for a 2-input RRAM
multiplexer by running one thousands operating cycles, whose input waveforms are similar to

the one shown in Fig. 3.31(b). Fig. 3.40 illustrates the degradation trend of Rpyrsof RRAMRg,
where Ryrs decreases gradually from 23M- to 4.9 46k- and then no further degradation
is observed. The lower bound of Ryrs degradation remainstobe 4 .9 46k- even when 100
thousands and 1 M operating cycles are further applied. The existence of a lower bound of
RyRrs can be explained as following: The voltage at node C in Fig. 3.22(a) is dependent on the
resistance of Rg,

RRrg

Ve AVpp ¢——F—,
Rr. ARR,

(3.30)

where Rg, and Rg, represent the resistances of RRAM Rp and Rg in Fig. 3.22(a) respectively.
AsRg, degrades, V¢ decreases as well, leading to the voltage drop across RRAM Rg decreases.
When the voltage drop across RRAM Rg is reduced to be lower than Vset, the parasitic set

112

3.9. Impact of Process Variations of RRAMs

process is stopped. The lower bound of degradation is independent from the number of
operating cycles but is related to Vget. In Fig. 3.40, we see that a high Vgt £0.8V leads to
less degradation on Ryrsthan Vsei £0.4V . Note that the degradation on Ryrs could cause
signi cant leakage overhead [114]. In this paper, we consider a 20% margin between nominal
Vpp and Vget. Additionally, the excellent performance of 4T1R-based multiplexers in near- Vi
regime allows the use oflow Vpp, i.e., A£0.7V, further increasing the margin to 60%. We believe
such margin is suf cientto resist Vge¢ variations.

Figure 3.41 — (a) R_rs degradation when V,eset £0.3V over 1k operating cycles; (b) Voltage
across a RRAM in LRS ¥4 and V¢ in Fig. 3.22(a)) during operation; and (c) R, rsdegradation
when Vieset 0.3V in a switching cycle.

3.9.3 Impactof Variationson Vieset

A parasitic reset process could also happen to a RRAM in LRS when the voltage drop across
RRAM jVrram] G jVresetd- However, during normal operation, the voltage drop across a RRAM

113

Chapter 3. RRAM-based Circuit Designs

is typically smaller than 0 .3V, as shown in Fig. 3.41(a), and the duration of such voltage
drop is as short as 78ps. Hence, as long as V,eset Varies to be above max{Vcj Va}, i.e.,
AE0.3V, a parasitic reset process can be fully avoided. Using electrical simulation, we consider
Vieset 0.4V, 0.5V and 0.6V in the same torture test as described in Section 3.9.2, and the
resistances of RRAM in LRS remains unchanged in all the conditions. Evenif V,esetis smaller
than max{Vci Va}, RLrsdegradation is much less serious than Ryrs. Fig. 3.41(b) illustrates
that when V,eset is below 0.3V, the parasitic reset caused by a rising edge of Va (Vc E Va) can
be partly recovered by a falling edge of Va (Vc CVa), resultingina » 10- R rgdegradation
per operation cycle. However, as compared to nominal Vyeset 1.1V considered in this paper,
process variation can be well controlled to ensure V,eset E 0.3V and thus parasitic reset can be
fully avoided.

3.10 Summary

In this chapter, we investigated essential RRAM-based circuit designs for FPGA architectures.
To the best of our knowledge, this is the rst work contributing to systematical studies on

the programming structures and ef cient integrating RRAMs into routing multiplexers by
considering physical design details. The proposed 4T1R programming structure and routing
multiplexer design have profound impacts on the RRAM-based circuit designs and also FPGA
architectures. We rst studied the programming structures for RRAMs through both theoretical
analysis and electrical simulations. The proposed 4T1R programming structure outperforms
the widely-used 2T1R programming structure by a signi cant improvement of driving current
density. Thanks to the signi cant advance in area ef ciency, lowest achievable RLrs and
physical designs, the proposed 4T1R programming structure can be widely used in all the
RRAM-based circuits, including but not limited to routing multiplexers. For instance, the
4T1R programming structure is adapted to non-volatile SRAM designs in Chapter 5. The
methodologies in analyzing and boosting programming structure is rather general and can

be extended to other non-volatile memory technology, e.g., Phase Change Memory[40]. This
implies that the 4T1R programming structure can be exploited for other non-volatile memory
technologies.

We then presented one-level, two-level and tree-like multiplexer designs based on the 4T1R
programming structure, addressed the physical design challenges in RRAM-based circuit
designs and analyze the impact of process variations. In addition, we proposed generic
optimization techniques, i.e., programming transistor sizing and optimal RRAM location,
which can signi cantly improve area, delay and power of RRAM-based multiplexers. Note that
the methodologies in analyzing programming transistor sizing and optimal RRAM location
are not limited to the proposed multiplexer design, but are rather general to all RRAM-based
circuits. Electrical simulations demonstrate the superiority of 4T1R-based multiplexers over
best CMOS multiplexers:

(1) their delay can be much less dependent on the input size.

(2) delay improvementis 2 £ and 3£ when considering nominal and near- V; working voltages

114

3.10. Summary

respectively.

(3) energy can be reduced by 2 .8£ and 3.7£ when considering nominal and near- V; working
voltages respectively.

The outstanding performance of 4T1R-based multiplexers can lead to strong architecture
impacts, including but not limited to FPGA architectures. For instance, multiplexers are also
intensively used in Network-On-Chips (NoC) [134]. In particular, the one-level 4T1R-based
multiplexers show superior delay and power characteristics over best CMOS multiplexers. As
for the RRAM-based FPGA architectures, such paradigm shift in the interconnection topology
potentially leads to a revisit of best architecture parameters. Last but not least, the impact of
process variations of RRAMSs on the proposed 4T1R-based multiplexers are also examined.
Experimental results show that variations on V,eset Should be well constrained due to their
remarkable in uence on multiplexer performance while variations on Vset Can be relaxed
because of their trivial impact on multiplexer performance.

Chapter 3 hardcores for architecture-level studies about RRAM FPGAs and strongly motivates
Chapter 4 and Chapter 5. The improved multiplexer designs will be modelled from a CAD
perspective in Chapter 4 and their outstanding charactersitics will be intensively exploiting in
FPGA architectures in Chapter 5.

115

%Y Simulation-based Architecture Explo-
ration Tool

As stated in Section 2.4, mainstream Field Programmable Gate Array (FPGA) architecture
exploration tools, e.g., VTR [44], face serious limitations in capturing the characteristics of
FPGAs architectures based on emerging technologies, due to the large design space offered
by FPGAs and the limits of analytical models. In addition, the novel RRAM-based circuit
designs shown in Chapter 3 bring new physical design constraints and hence require both
functional and electrical veri cation at architecture-level. To enable further studies about
RRAM-based FPGA architecture presented in Chapter 5, a novel architecture exploration tool

is desired to Il the void in accurately modeling and fast prototyping of FPGAs architectures
using unconventional device technologies.

In this chapter, we introduce a simulation-based FPGA architecture exploration tool suite,
called FPGA-SPICE, that is tightly integrated with the popular academic architecture explo-
ration tool suite VTR [44]. FPGA-SPICE aims at providing SPICE and Verilog modeling for
both SRAM-based and RRAM-based FPGA architectures, in order to perform accurate power
analysis, functional veri cation and prototyping. To support versatile architectures and circuit
designs, FPGA-SPICE extends the generic architecture description language of VTR [48] to
consider transistor-level parameters related to each module inside the FPGA architecture
under evaluation. With SPICE netlists, accurate power analysis can be conducted for large
FPGA fabrics through electrical simulators, i.e., HSPICE [47]. Verilog netlists allow full FPGA
fabrics to be rapidly prototyped through a semi-custom design ow [45], and also enables
functional veri cation with a HDL simulator [135]. Note that the SPICE and Verilog modeling
methodologies of FPGA-SPICE are general, which can be easily extended to studying FPGA
architectures based on other emerging technologies, such as Phase Change Memory(PCM)
[40].

This chapter is organized as follows. Section 4.1 introduces the working principles of FPGA-
SPICE. Section 4.2 presents the extended FPGA architecture description language. Section
4.3 discusses the core engine to generate transistor-level designs of circuit modules in FPGA
architectures. Section 4.4 covers critical techniques in auto-generating SPICE and Verilog
testbenches. Section 4.5 shows the experimental results about accurate area and power

117

Chapter 4. Simulation-based Architecture Exploration Tool

analysis of FPGAs.

FPGA-SPICE is available for download at [136].

4.1 Principles

FPGA-SPICE plays a role of interfacing various EDA tools, i.e., SPICE-based electrical simula-
tors and Verilog-based design tools, with the VTR tool suite. In order to accurately model a full
FPGA fabric with SPICE or Verilog netlists, FPGA-SPICE requires detailed routing information,
such as directionality, connectivity and channel width. Therefore, FPGA-SPICE is invoked
after routing stage, similar to VersaPower [46] in the classical EDA ow shown in Fig. 2.27.
Depending on the purpose of FPGA-SPICE, either for SPICE or Verilog netlist auto-generation,
the organization of EDA ow and even working principles of FPGA-SPICE could be different. In
the rest of this section, we will introduce FPGA-SPICE in two separated tracks: SPICE modeling
(Section 4.1.1) and Verilog modeling (Section 4.1.2).

Figure 4.1 — FPGA-SPICE EDA ow for SPICE modeling purpose.

118

4.1. Principles

4.1.1 SPICE Modeling

In a SPICE-oriented design ow, FPGA-SPICE plays a role of automatically generating SPICE
netlists and testbenches for a mapped FPGA architecture. As illustrated in Fig. 4.1, FPGA-
SPICE exploits the description of the architecture provided by the architectto VTR, the mapped
netlists and the estimated signal activities to dump circuit netlists and the associated test-
benches for the implemented benchmarks. The tool subsequently invokes a SPICE simulator
to conduct power analysis.

FPGA-SPICE reads transistor-level design parameters from an extended architecture descrip-
tion XML le and use them to automatically generate detailed SPICE netlists of the basic circuit
elements used in the full FPGA architecture. The proposed extension of the VTR architecture
description language will be given in Section 4.2.

Alternatively, FPGA-SPICE can use user-de ned SPICE netlists rather than automatically
generating them. This is an interesting feature to model ne-grain FPGA components, such
as SRAMs, whose performances are highly dependent on the technology and the circuit
structure. This brings the capability to study the system-level impact of full-custom optimized
circuit elementary blocks, thereby enabling interesting circuit/architecture co-optimization
opportunities. Details about transistor-level SPICE netlists generation are introduced in
Section 4.3.

FPGA-SPICE can generate its netlists at three levels of complexity: full-chip-level, grid-level
and component-level. Fig. 4.2, Fig. 4.3 and Fig. 4.4 illustrate the granularity of each level
respectively. In a full-chip-level testbench, all the components, such as CLBs, SBs and CBs, are
simulated within a unique top SPICE netlist, leading to an accurate simulation. Nevertheless,
a full-chip-level testbench simulation may require long runtime and large memory usage
because of the exponential complexity of SPICE solvers. To reduce both runtime and memory
usage, FPGA-SPICE can split the evaluation of a full-chip-level testbench into grid-level and
component-level testbenches. The grid-level testbenches consider separately each individual
CLBs, memory banks, DSP blocks, SB multiplexers and CB multiplexers. In the component-
level testbenches, the CLBs are further sliced into ner-grain modules, such as LUTs, FFs and
local routing multiplexers, for each of which an associated testbench is created. Section 4.4
focus on the partitioning strategies in grid/component-level testbenches.

4.1.2 Verilog Modeling

Different from SPICE modeling, the Verilog generator of FPGA-SPICE aims at automatically
generating synthesizable circuit netlists and testbenches in order to perform functional veri -
cation and prototyping. As illustrated in Fig. 4.5, FPGA-SPICE reads the extended architecture
description le and dumps synthesizable Verilog netlists, associated testbenches and bit-
stream for a mapped FPGA fabric. Note that the detailed circuit designs, such as transistor
sizing and buffering, are typically handled by a semi-custom design ow. The synthesizable

119

Chapter 4. Simulation-based Architecture Exploration Tool

Figure 4.2 — llustration of the full-chip-level testbenches.

Verilog netlists are organized at structure-level, and hence FPGA-SPICE requires more circuit-
level modeling parameters to capture diverse circuit design topologies than transistor-level
modeling parameters. Section 4.3 will introduce the circuit-level modeling enhancements in
the VTR architecture description language.

Similar to SPICE modeling, FPGA-SPICE can also use a user-de ned Verilog netlists rather
than automatically generating them. Thanks to the popularity of Verilog modeling in hard
Intellectual Property (IP) cores, such feature brings opportunities in modeling coarse-grained
FPGA architectures. As Verilog netlist are widely used in EDA tools, the Verilog generator
enables various FPGA research opportunities. In this thesis, we focus on exploiting the Verilog
generator to perform functional veri cation and automatic layout generation, as illustrated in

Fig. 4.5. The synthesizable Verilog netlists and the associated testbenches can be the input
of a Hardware Description Language (HDL) simulator, e.g., Modelsim ™[135], and therefore
be used to verify the functionality of the mapped FPGA implementations. Section 4.5.2 will
introduce the techniques used in functional veri cation. The synthesizable Verilog netlists can

be the input of a semi-custom design ow, e.g., Cadence Innovus ™/[137], where the Verilog
netlists are optimized by physical synthesis and then converted to their corresponding layout.

120

4.2. Extended Architecture Description Language

Figure 4.3 — llustration of the grid-level testbenches.

The layout-level realization can be directly used for manufacturing and also for realistic area,
delay and power analysis for the investigated FPGA architectures. Section 4.5.6 is devoted to
present the layout-level results.

4.2 Extended Architecture Description Language

FPGA-SPICE extends the architecture description language of [48]. This architecture de-
scription language can model highly- exible FPGA architectures at an abstract level. In the
extension, we add transistor-level circuit design parameters for:

1. elaborating the circuit components of the FPGA modules (See Section 4.2.1);

2. capturing the physical structure of circuit modules (See Section 4.2.2);

3. describing the topology of con guration circuits (See Section 4.2.3).

4.2.1 Transistor-level Module Declaration

First, transistor model and basic geometrical properties are de ned in XML nodes tech_lib
and transistors, as follows:

<tech_lib lib_path=45nmHP.pm nominal_vdd= 1.0 />

121

Chapter 4. Simulation-based Architecture Exploration Tool

Figure 4.4 — llustration of the component-level testbenches.

<transistors pn_ratio=1.5">
<nmos chan_length=45e-9 min_width= 140e-9 />
<pmos chan_length=45e-9 min_width= 140e-9 />
</transistors>
The channel length, transistor width and ratio between p-type and n-type transistors are

122

4.2. Extended Architecture Description Language

Figure 4.5 - FPGA-SPICE EDA ow for synthesizable Verilog purpose.

de ned in the XML properties nmosand pmos, respectively.

Then, transistor-level circuit design parameters of a FPGA module are de ned under a
XML property called spice_model. The VTR architecture description language models all
logic blocks with a hierarchy of XML properties, called pb_type. We create a property
spice_model_nameunder pb_type to link the logic blocks to de ned spice models. The
following code shows an example, where a 6-input LUT spice model, Iut6 , is de ned and
linked to a logic block, n_Iut6:

<spice_model type=Ilut name=Iut6 sp_netlist= lut6.sp

verilog_netlist= "lut6.v">
<port type=input prefix=in size=6 is_global="false" is_clock="false"/>
<port type=output prefix=out size=1/>
<port type=sram prefix=sram size=64 spice_model name=sram6T

123

Chapter 4. Simulation-based Architecture Exploration Tool

default_val=1/>
<spice_model>
<pb_type name=n_lut6 spice_model_name= lut6 >
</pb_type>

Under the XML property spice_maodel, the ports of a LUT should be de ned by providing the
size, port type and port name. In addition, whether the port is a global port in FPGA, such as
the clock signal, can be de ned under the XML node port . FPGA-SPICE can automatically
identify the functionality of global ports and give proper stimuli in testbenches. Since the
circuit designs of some of the FPGA modules are highly dependent on the technology nodes,
such as SRAMs, hard logic blocks or FFs, FPGA-SPICE allows user-customized SPICE netlists
for each de ned spice model. In the above example of |ut6 , user-customized SPICE and
Verilog netlists are de ned in the XML properties, sp_netlist and verilog_netlist . Note
that, the circuit design of SRAMs used in a spice_model can also be customized by assigning
the XML property spice_model_namein the port. In the example of Iut6 , a spice_model
named by sram6Tis declared to be used.

4.2.2 Physical Structure Modeling

To be ef cient in mapping logic functions to circuit modules, VPR uses abstract-level mod-
eling to bridge the technology mapping results and FPGA architecture resources. The VPR
architecture description language focuses on describing the structure of circuit modules at
behavioral-level rather than at structural-level. For instance, an I/0 pad is described with two
operating modes: input pad and output pad, as illustrated in Fig. 4.6(a). An input of a circuit
can be mapped to an input pad while an output of a circuit can be mapped to an output pad.
Indeed, the transistor-level design of a I/O pad in Fig. 4.6(b) can operate as either an input
pad or an output pad by con guring the SRAM. However, with the abstract-level modeling, the
physical structure of I/O pads cannot be accurately described, causing dif culties in transistor-
level modeling. Comparing to Fig. 4.6(b), an 1/0O pad modelled by VPR (in Fig. 4.6(a)) lacks
two critical elements: (1) the SRAM controlling the directionality of the /0O module; (2) two
ports direction and PAD of the I/O module. PADSs an bi-directional port that interfaces the
FPGA to outside world. direction determines whether the signal is propagated from PADo
data_in orfrom data_out to PADHence, in the purpose of accurate modeling FPGAs with
SPICE or Verilog netlists, the abstract-level modeling should be improved to exactly describe
the physical design.

We extend the architecture description language to model the physical design of an I/O pad,
as follows:

<pb_type name="io" idle_mode_name="inpad" physical_mode_name="io_phy">

124

4.2. Extended Architecture Description Language

Figure 4.6 — An /O pad: (a) VPR abstract-level modeling, and (b) actual physical design.

<mode name="io_phy">
<pb_type name="iopad" num_pb="1" spice_model_name="iopad"/>
</mode>
<mode name="inpad">
<pb_type name="inpad" num_pb="1" mode_bits="1"/>
</mode>
<mode name="outpad">
<pb_type name="outpad" num_pb="1" mode_bits="0"/>
</mode>
</pb_type>

In parallel to the original abstract-level modeling, an extra mode named by io_phy is added to
the pb_type, under which the physical design of an I/O pad is described by the architecture
description language. An XML property physical_mode_nameis added to the pb_type, in
order to identify which mode describes the physical design of the module. As a module
depends on the con guration bits to switch between operating modes, each operating mode,
e.g.,inpad and outpad, contains a new XML property mode_bits, in order to de ne its unique
con guration bits. For instance, the mode_bits="1" under operating mode inpad speci es
that it is enabled when the SRAM is con gured to logic 1. Note that the new mode i0_phy
is only used by FPGA-SPICE for SPICE and Verilog generator, while the two original modes
inpad and outpad are used in VPR packing, placement and routing. As such, the extended
architecture description language does not in uence any results of VPR packing, placement
and routing.

125

Chapter 4. Simulation-based Architecture Exploration Tool

4.2.3 Con guration Circuitry

As introduced in Section 2.2.4, memory bits of FPGAs can be accessed by different types of
con guration circuits, leading to difference in the full-chip area and also other merits. For
example, when scan-chain ip- ops are used, area of con guration circuits is linear to the
number of memory bits. When using BL and WL decoders, area of con guration circuits is in
square root relationship to the number of memory bits. However, since most FPGA researches
only focus on the core logics, the exact impact of con guration circuits has not been carefully
examined. As FPGA-SPICE aims at accurately model a full FPGA fabric with SPICE or Verilog
netlists, the architecture description language is extended to model the con guration circuits.
Under the XML node sram, details of con guration circuits can be speci ed separately for
SPICE and Verilog generator, as follows:

<sram area="6">
<verilog organization="memory_bank" spice_model_name="sram6T_blwlI"/>
<spice organization="standalone" spice_model_name="sram6T"/>

</sram>

Take the example of the XML node verilog , the type of con guration circuit can be speci ed

by the XML property organization . The supported con guration circuits include memory-
bank-style (shown in Fig. 2.18) and scan-chains (shown in Fig. 2.19). The memory model ac-
cessed by the con guration circuits can be declared in the XML property ~ spice_model_name
which is linked to a de ned spice model devoted to the transistor-level designs of a SRAM and

a scan-chain ip- op (See details in Section 4.3.3 and Section 4.3.4).

As a result, FPGA-SPICE can automatically generate the bitstream used to program the con g-
uration circuits, according to the selected implementations.

4.3 Transistor-level Circuit Netlist Generation

In an FPGA, the circuit-level implementations for the different blocks, such as channel wires,
multiplexers and LUTSs, are highly dependent on the architectural choices. FPGA-SPICE can
automatically determine their design parameters and generate the associated SPICE netlists.
In this section, we will discuss the details of the circuit netlist generation engine. We will start
with the basic circuits, i.e., inverters, buffers and transmission gates, which are commonly
used by all the blocks. Then, we will introduce more complicated blocks, such as SRAMs,
multiplexers and LUTs.

126

4.3. Transistor-level Circuit Netlist Generation

4.3.1 Inverters/Buffers

Inverters and buffers are essential components of FPGA submodules, such as LUTs and
multiplexers, as shown in Fig. 2.14, Fig. 2.15 and Fig. 2.16. FPGA-SPICE allows inverters and
buffers to be either fully customized by specifying sp_netlist or automatically generated.

Figure 4.7 — Transistor-level circuit design of (a) an inverter and (b) a tapered buffer.

The transistor-level circuit design of an inverter in Fig. 4.7(a) can modelled by the following
code:

<spice_model type=inv_buf name=invl >
<design_technology type=cmos topology=inverter size=1/>
<port type=input prefix=in size=1/>
<port type=output prefix=out size=1/>

</spice_model>

The transistor sizes can be speci ed in the SPICE model de nitions.

FPGA-SPICE can also model the transistor-level circuit design of a general multi-stage buffer
in Fig. 4.7(b) with the following code:

<spice_model type=inv_buf name=tap_buf4 >
<design_technology type=cmos topology= buffer size=1
tapered=on tap_buf level=3 f per_stage=4/>
<port type=input prefix=in size=1/>
<port type=output prefix=out size=1/>

</spice_model>

The size and design topology can be customized by properly setting the XML properties

127

Chapter 4. Simulation-based Architecture Exploration Tool

tapered, tap_buf _level andf_per_stage.

4.3.2 Pass-gate Logic

Pass-gate logic is the essential component in LUTs and multiplexers, as shown in Fig. 2.14, Fig.
2.15 and Fig. 2.16. The transistor-level circuit design of a transmission gate can be de ned
with the following code:

<spice_model type=pass_gate name=tgate >
<design_technology type=cmos topology=transmission_gate
nmos_size=1 pmos_size=2 />
<input_buffer exist= off />
<output_buffer exist= off />
<port type=input prefix=in size=1/>
<port type=input prefix=sel size=1/>
<port type=input prefix=selb size=1/>
<port type=output prefix=out size=1/>
</spice_model>

The sizes of the transistors used in the pass gate or transmission gate logic can be speci ed in
the XML properties nmos_sizeand pmos_size.

4.3.3 SRAM

SRAM is a critical component of SRAM-based FPGA, whose transistor-level design is mostly
dependent on the technology node and is usually hand-optimized. Therefore, SPICE and
Verilog netlists of SRAMs are required to be user-de ned. The following codes exemplify how
to de ne a spice model for the SRAM circuit design shown in Fig. 2.18.

<spice_model type=sram name=sram6T spice_netlist= sram6T.sp"
verilog_netlist= "sram6T.v">

<design_technology type=cmos />

<input_buffer exist= off />

<output_buffer exist= off />

128

4.3. Transistor-level Circuit Netlist Generation

<port type=input prefix=in size=1/>

<port type=output prefix=out size=2/>

<port type=Dbl prefix=bl size=1/>

<port type=wl prefix=wl size=1/>
</spice_model>

Note that the modeling method can also support the non-volatile SRAM design in Fig. 2.24.

4.3.4 Scan-chain Flip-Flop

Similar to SRAM, SPICE and Verilog netlists of scan-chain ip- op are required to be user-
de ned. The following code exempli es how to de ne a spice model for the scan-chain
ip- op design shown in Fig. 2.19.

<spice_model type=sff name=sc_dff spice netlist= scff.sp"
verilog_netlist= "scff.v">
<design_technology type=cmos />
<input_buffer exist=on spice_model_name=inv4 />
<output_buffer exist=on spice_model_name=inv4 />
<port type=input prefix=D size=1/>
<port type=input prefix=Set size=1 is_global="true" is_set="true"/>
<port type=input prefix= Reset size=1 is_global="true" is_reset="true"/>
<port type=output prefix=Q size=1/>
<port type=output prefix=Qb size=1/>
<port type=clock prefix=prog_clk size=1 is_global="true"
is_clock="true"/>
</spice_model>

The presence or absence of input/output inverters/buffers can be declared by setting the XML
properties exist and spice_model_name. In the example, the input and output buffers are
linked to the spice model named by inv 1, which is de ned in Section 4.3.1.

129

Chapter 4. Simulation-based Architecture Exploration Tool

4.3.5 10 Circuits

IO circuits are usually provided as a standard cell in a speci ¢ technology library, since their
transistor-level designs are strongly dependent on the technology nodes. The following codes
de ne a spice model called iopad which is linked to the IO module shown in Section 4.2.2.
Note that in the port sram, we specify it as a mode selector of IO module (in Fig. 4.6), and
declare that it is connected to a SRAM, which is de ned in Section 4.3.3.

<spice_model type=iopad name=iopad spice_netlist=iopad.sp"
verilog_netlist="iopad.v">
<design_technology type=cmos />
<input_buffer exist=on spice_model _name=inv4 />
<output_buffer exist=on spice_model name=inv4 />
<port type=inout prefix=pad size=1/>
<port type=sram prefix=en size=1 mode_select=true
spice_model_name=sram6T default val=1/>
<port type=input prefix=outpad size=1/>
<port type=output prefix=inpad size=1/>

</spice_model>

4.3.6 Multiplexers

The multiplexers in FPGAs have diverse sizes and fan-outs, depending on their locations, i.e.,
in local routing or global routing.

In this context, different circuit-level optimization, such as transistor sizing and the use of
tapered buffer, may apply. The transistor sizes and buffer allocation can be speci ed in the
SPICE model de nitions. The presence or absence of input/output inverters/buffers can

be declared by setting the XML properties exist and spice_model_name. The use of a pass
gate logic or a transmission gate logic design style can be speci ed in the XML property
pass_gate_logic

Transistor-level circuit design examples of global routing multiplexers and local routing mul-
tiplexers are shown in Fig. 4.8(a) and Fig. 4.8(b), respectively. The tree-like structure of
multiplexers is depicted in Fig. 4.8(c). The transistor-level circuit design of a global routing
multiplexer in Fig. 4.8(a) can modelled by the following code:

130

4.3. Transistor-level Circuit Netlist Generation

Figure 4.8 — Transistor-level circuit design of (a) a global routing multiplexer, (b) a local routing
multiplexer, and (c) the internal tree-like structure.

131

Chapter 4. Simulation-based Architecture Exploration Tool

<spice_model type= mux name=sb_mux />
<design_technology type=cmos structure= one-level />
<input_buffer exist=on spice_model_name=invl />
<output_buffer exist=on spice_model_name=tap_buf4 />
<pass_gate_logic spice_model_name= tgate />
<port type=input prefix=in size=4/>
<port type=output prefix=out size=1/>
<port type=sram prefix=sram size=4/>
</spice_model>

Global routing multiplexers require an output tapered buffer[132], in order to drive the long
routing metal wires as well as downstream loads due to the SB and CB multiplexers[2]. The
output tapered buffer in Fig. 4.8(a) consists of three stages and the logical effort between
stages is four, whose spice model is de ned in Section 4.3.1. Input buffers are added to restore
the input signals and drive the tree-like internal structure of the multiplexer. Fig. 4.8(b) depicts

the circuit design of a local routing multiplexer which interconnects CLB input pins to BLE
input pins. Because the fanout of the multiplexer is typically small (one or two inverters), there

is only a minimum-size output inverter.

To enable accurate power analysis for RRAM-based FPGAs, FPGA-SPICE is capable of modeling
one-level, two-level and tree-like 4T1R-based multiplexers, presented in Chapter 3. Transistor-
level circuit design examples of a one-level 4T1R-based multiplexer are shown in Fig. 4.9. The
transistor-level circuit design of a global routing multiplexer in Fig. 4.9 can modelled by the
following code:

<spice_model type="mux" name="mux_1level">
<design_technology type="rram" ron="3e3" roff="20e6"
wprog_set_nmos="1" wprog_reset_nmos="1"
wprog_set_pmos="2" wprog_reset_pmos="2"
structure="one-level'/>
<input_buffer exist="on" spice_model_name="inv1"/>
<output_buffer exist="on" spice_model_name="inv1"/>

<port type="input" prefix="in" size="1"/>

132

4.3. Transistor-level Circuit Netlist Generation

Figure 4.9 — Transistor-level circuit design of a 4T1R-based multiplexer.

133

Chapter 4. Simulation-based Architecture Exploration Tool

<port type="input" prefix="EN" size="1" is_global="true"

default_val="0" is_config_enable="true"/>

<port type="output" prefix="out" size="1"/>
</spice_model>

Compared to the SRAM-based multiplexers in Fig. 4.8, the 4T1R-based multiplexer has
an global port progEN which is shared by all the 4T1R-based multiplexers in a FPGA. As a
programming enable signal, progENis enabled periodically during con guration phase, while
being disabled during operation (See Chapter 3). In the XML de nition, we specify that progEN
is enabled during con guration phase (is_config_enable="true"), while during operation,

it is stuck at logic O (default_val="0").

FPGA-SPICE translates the architectural needs and design topologies into multiplexer SPICE
netlists and initializes the SRAM or RRAM con gurations according to VPR routing results.

4.3.7 Look-Up Tables

LUTs are crucial components in FPGAs as they serve as combinational function generators.
Fig. 4.10 illustrates the transistor-level circuit design of the LUT structure considered in this
chapter, including the con guration SRAMSs, the decoding multiplexers, and buffers [125].

The following XML properties are used to describe the circuit characteristics of the imple-
mentation shown in Fig. 4.10. The input_buffer properties model the buffers between
the inputs of internal multiplexer and SRAM outputs. The lut_input_buffer properties
describe the buffers at LUT inputs, where f_stage denotes the logical efforts of the input
buffers. By setting the spice_model_nameproperty under XML node pass_gate_logic , the
type of pass-gate logic used in the decoding multiplexers can be speci ed. In the example,
the LUT circuit employs the transmission gate de ned in Section 4.3.2. FPGA-SPICE decodes
technology mapping results of LUTs to properly initialize the SRAM bits.

<spice_model type=Ilut name=lut6 >
<lut_input_buffer exist=on spice_model name="buf size2"/>
<input_buffer exist=on spice_model name=invl >
<output_buffer exist=on spice_model_name=invl >
<pass_gate_logic spice_model_name= tgate />
<port type=input prefix=in size=6 is_global="false" is_clock="false"/>

<port type=output prefix=out size=1/>

134

4.3. Transistor-level Circuit Netlist Generation

Figure 4.10 — An example of the transistor-level design of a LUT

<port type=sram prefix=sram size=64 spice_model_name=sram6T
default val=1/>

</spice_model>

4.3.8 Channel Wire

In modern FPGAs, the CLB area increases to contain heterogeneous blocks, resulting in long
interconnecting wires between Switch Blocks (SBs) and also inside CLBs. Take the example
in Fig. 2.7, the length of metal wires interconnecting between BLE outputs and local routing
multiplexers can be as long as the channel wires interconnecting two adjacent SBs. In addition,

dif culties in scaling down interconnecting metal wires cause that their parasitics can be as
signi cant as those of transistors [132]. As a result, channel wires have become non-negligible
modules when evaluating FPGA architectures. A length-L channel wire is abstracted as L
cascaded segments, each of which spans a unique CLB. Fig. 4.11(a) depicts a length-2 channel
wire in unidirectional routing architecture [4]. The channel wire is divided into two segments,
namely Segment0 and Segmentl.

135

Chapter 4. Simulation-based Architecture Exploration Tool

Figure 4.11 — (a) A length-2 unidirectional wire (highlighted in red) within FPGA routing
architecture; (b) Corresponding RC modeling of segments

We assume that the inputs of CBs are connected to the middle of segments, breaking segments
into two parts. We model each part of segments with distributed RC lines. The type of RC
lines, i.e., either Ystype or T-type [132], is speci ed in the XML property model_type. The
number of levels of a RC line can be customized by setting the XML property level . The
total resistances and capacitance of a segment can be de ned in XML properties res_val
and cap_val, respectively. The following example describes the RC models of segments in Fig
4.11(b), corresponding to the segments in Fig 4.11(a).

<spice_model type=chan_wire name=chan_segment >
<wire_param model_type=pi res_val=103.84
cap_val=13.80e-15 level=1/>

</spice_model>

136

4.4. Netlist Partitioning Strategies

4.4 Netlist Partitioning Strategies

Full-chip-level netlists, that consider the full FPGA fabric in unique SPICE testbenches, would
produce accurate analysis but will come at the cost of large simulation time and memory usage.
FPGA-SPICE can distribute the individual elements of a full-chip-level testbench (See Fig.
4.2) into separate grid/component-level testbenches (See Fig. 4.3 and Fig. 4.4), signi cantly
reducing the simulation time and memory usage at the cost of a lower accuracy. In this section,
we introduce the two techniques, namely voltage stimuli/load extraction and parasitic activity
estimation, used in FPGA-SPICE to split a full-chip netlist.

Figure 4.12 — llustration of the voltage stimuli generation and load extraction techniques. (a)
BLE multiplexer with its architectural context; (b) extracted testbench.

137

Chapter 4. Simulation-based Architecture Exploration Tool

4.4.1 Voltage Stimuli and Loads Extraction

FPGA-SPICE generates its individual testbenches by extracting voltage stimuli and down-
stream loads. To illustrate the technique, Fig. 4.12 shows a BLE multiplexer (in blue) that is
driven by signals A and B, and that fanouts to local routing and global routing architectures.

First, voltage stimuli are added to model the signal activities of A and B. Their frequencies
and pulse widths are derived from signal density and activities. The signal density de nes the
number of switching events of a signal in one clock cycle while the probability represents the
proportion that the signal is in logic 1 during one system clock cycle. To relate these activity
information, we set the frequency of the voltage stimuli to:

clock_period

freq &£ . 4.1
d density(Signal) 1)

The pulse width of a voltage stimuli is set to:
pulse_width Afreqdprobability (Signal). (4.2)

Then, FPGA-SPICE adds the loads of the block by extracting the downstream elements in the
architecture (highlighted in red in Fig. 4.12(a)). The downstream loads of a grid/component
should be included in the testbench for two reasons: (1) these loads are charged/discharged
by the element and (2) the power consumption is sensitive to voltage slews, which are highly
dependent on the downstream loads [128]. Note that, if the downstream loads include channel
wires, the channel wires should be extracted and included to the testbench.

Figure 4.13 — An example for parasitic nets estimation.

4.4.2 Parasitic Activity Estimation

Input signals in grid/component-level netlists should accurately model the internal signal
activities of FPGA modules. In an FPGA, the signals of the used nets may be parasitically

138

4.5. Experimental Results

propagated to unused nets, depending on the topology of the routing architecture. ACE2
estimates the signal activities of the used nets but cannot foresee the parasitically propagated
activities because they are only predictable after the routing pass nishes|[124]. Fig. 4.13
illustrates the parasitic net signals sourcing from a used net, called net0. Assume netO is
only used by the CLB through local routing (green path) and not routed to the global routing
architecture. VPR assumes that all the downstream components driven by netO are idle and
con gures them to propagate their rst inputs. However, in such condition, netO will be
propagated through the routing structure (red path). These parasitic activities will cause
extra power consumption and should be taken into account. FPGA-SPICE performs parasitic
activity estimation for all the unused nets after routing stage by iteratively using Depth-First
Search(DFS) algorithms.

4.5 Experimental Results

As shown in Fig. 4.1 and Fig. 4.5, FPGA-SPICE is a versatile tool interfacing VPR with other EDA
tools, such as HSPICE [47], ModelSim [135] and Innovus [137], leading to various research
interests. In this section, we will rstintroduce general experimental methodology. Then, we
present experimental results by using FPGA-SPICE in four applications, not accessible with
standard academic tools:

1. Verify the functionality of FPGA implementations (Section 4.5.2);

2. Study the runtime, memory usage and accuracy of the different levels of testbenches
(Section 4.5.3);

3. Study the power breakdown of a modern FPGA architecture under different technology
nodes and compare the results to standard analytical models, i.e., VersaPower (Section
4.5.4);

4. Perform a detailed analysis on the full-chip-level area of SRAM-based FPGAs (Section
4.5.6).

45.1 Methodology

We use the FPGA-SPICE EDA ows shown in Fig. 4.1 and Fig. 4.5. MCNC big20 benchmarks
[138] are selected as the EDA ow inputs. First, ABC synthesizes the benchmarks and ACE2
estimates the signal activities. Then, VPR packs, places and routes. Afterwards, the FPGA-
SPICE generates the full-chip/grid/component-level testbenches and also Verilog netlists of
the modeled architectures. In the last step, we call different industrial EDA tools for various
purposes:

1. we run the HDL simulator ModelSim [135] to verify the functionality of Verilog netlists;

139

Chapter 4. Simulation-based Architecture Exploration Tool

2. we run the electrical simulator HSPICE [47] to analyzing power;

3. we run Cadence Innovus [137] to generate the layouts of a full FPGA chip by running a
semi-custom design ow, in order to perform accurate area evaluation.

The experiments are run on a 64-bit RedHat Linux server with 28 Intel Xeon Processors and
256Gb memory.

In this chapter, we resemble the architecture of an Altera Stratix IV FPGA [88], where each
CLB contains | £33 inputs pins and N 410 fracturable 6-input LUTs (K A6). Length-4 uni-
directional routing architectures are employed to interconnect Wilton's Switch Boxes (SBs),
where Fs /3. We setF¢ i, A£0.15 and F¢ oyt ££0.10. The channel width, W, is set to 120 by
adding 20% margin to the minimum channel width that VPR can route the biggest tested
benchmark. All the architecture description les used in this chapter are available in 136]. For
the power analysis, we consider three technology nodes, 22nm, 45nm and 180nm using the
PTM model cards[139]. For the area analysis, we only consider a commercial 40nm technology
node. The transistor-level circuit designs of SRAMs, FFs and multiplexers are derived from
[125]. We model routing wire segments with a one-level Ystype RC models and the wire
parameters are derived from ITRS [140]. We determine the simulation clock period by adding

a 20% slack to the VPR critical path delay, in order to consider errors between the timing
analysis engine and SPICE simulations [4]. The duration of electrical simulations should be a
full operating cycle by considering the least active signal, as follows:

clock_period

sim_time _period A& .
'm_time_per min {density(Signal)}

(4.3)

However, the density of the least active signal is typically very low, which leads to long time
period and large simulation time. Instead, we replace the min {density(Signal)} with the
average density of signals to reduce the the simulation time. The time step of SPICE simulator
is set to 0.1ps and fast simulation algorithmis turned on.

4.5.2 Functional Veri cation

Before presenting area and power results, all the SPICE and Verilog netlists generated by
FPGA-SPICE have passed functional veri cation with full-chip-level testbenches, to guarantee
that they behave exactly the same as pre-VPR netlists functionally. In this thesis, the functional
veri cation considers random input vectors. Indeed, to be more robust, formal veri cation

can be applied, and we leave this as part of future works.

The functional veri cation employs the EDA ow shown in Fig. 4.5. In a top-level Verilog test-
bench, stimulus are automatically added to all the inputs of a full FPGA module, as illustrated
in Fig. 4.14. A top-level Verilog testbench includes two phases:

1. Con guration phase, where each memory cell, i.e., SRAM or RRAM, is programmed

140

4.5. Experimental Results

Figure 4.14 — An illustration of the waveforms for functional veri cation purpose.

serially according to the bitstream. In Fig. 4.14, during each programming cycle, a
memory cell is con gured by assigning their addresses to BL and WL decoders. During
this period, the programming clock is enabled, signal config_done is disabled and all
the 1/0s of FPGA stuck at logic 0.

2. Operating phase, where con guration circuits are powered off and testing input patterns
are fed to all the 1/0Os of FPGA. During this period, the programming clock is disabled
and signal config_doneis enabled.

The output waveforms are then compared to the simulation results of post-logic-synthesis
netlists, and ensure they are consistent. Fig. 4.15 shows the waveforms of functional veri ca-
tion of a simple benchmark: an inverter. The red rectangle highlights the waveform during

con guration phase, while the blue rectangle highlights the waveform during operation phase.

Fig. 4.15(b) presents an example of the waveforms during a programming clock cycle. We
see that the BL and WL addresses are changed at each rising edge of programming clock
prog_clock, resulting in con guring a SRAM. Fig. 4.15(c) presents an example of the wave-
forms during a operating clock cycle. We see that the output input _B of FPGA is always an
inversion of the input input _A, revealing the correctness of functionality.

4.5.3 Studies on Runtime, Memory Usage and Accuracy

Simulating full-chip-level testbenches is the most accurate approach to power analysis at
the cost of runtime and memory usage. Table 4.1 compares the runtime, memory usage and
power results of full-chip/grid/component-level testbenches at different technology nodes,
obtained for the MCNC big20 benchmark s298. Compared to the full-chip-level testbench,

141

Chapter 4. Simulation-based Architecture Exploration Tool

'8]9A2 20|02 Buiesado e Jo ajdwexs
ue (2) ‘21942 320J0 bulwwelboud e Jo ajdwexa ue (q) ‘a|bueldal an|g ul pawybiybiy aseyd uoneiado pue s|bueldal pai ul pawybiybiy
aseyd uoneinb uod yum wioanem |nj (B) :uonejnwis WISISPON Ag panaiyoe ‘1a1aAul :1INdlid 3jdwes e Jo swiojanep\ — GT 17 ainbi

142

4.5. Experimental Results

the grid-level testbenches achieve 12 £ speed-up in runtime with a moderate 14.5% error on
average over the different technology nodes. Compared to the full-chip-level testbench, the
component-level testbenches accelerate 14 £ in runtime with a 13.6% error on average over
the different technology nodes. Component-level testbenches lead to the best trade-off in
runtime and accuracy loss thanks to the ef cient netlist partitioning strategies discussed in
Section 4.4. Therefore, in the following, we use component-level power results to study power
breakdowns.

Table 4.1 — Comparison of runtime, memory usage and total power of full-
chip/grid/component-level testbenches for 22nm, 45nm and 180nm technology nodes in the
case of the MCNC big20 benchmark s298.

Benchmark: s298 | Runtime (No. of minutes) Improvement
Testbench/Tech. 22nm | 45nm 180nm | 22nm | 45nm | 180nm
Full-chip-level 129.48 | 106.15 | 102.56 - - -
Grid-level 10.27 | 9.82 8.25 | -92%' | -91%' | -92%
Component-level 7.42 6.97 6.23 | -94%° | -93%° | -94%°
Benchmark: s298 Peak Used Memory (Mb.) Improvement
Testbench/Tech. 22nm | 45nm 180nm | 22nm | 45nm | 180nm
Full-chip-level 4780 4827 4306 - - -
Grid-level 768 768 825 | -84%' | -84%' | -81%'
Component-level 589 584 621 | -88%° | -88%° | -86%°
Benchmark: s298 Total Power (mW) Accuracy
Testbench/Tech. 22nm | 45nm 180nm | 22nm | 45nm | 180nm
Full-chip-level 1.56 4.13 15.63 100% | 100% | 100%
Grid-level 1.41 | 3.37 18.03 | -9%° | -18%° | +15%
Component-level 1.45 3.21 17.57 | -7%* | -21%* | +129%

1Gain(%) = (Grid-level/Full-chip-level-1)£100%
2Error(%) = (Component-level/Full-chip-level-1)£100%
3Gain(%) = (Grid-level/Full-chip-level-1)£100%
4Error(%) = (Component-level/Full-chip-level-1)£100%

4.5.4 Power Breakdowns

In this part, we use FPGA-SPICE to study the power breakdowns of the considered FPGA
architecture. Fig. 4.16 shows the power repartition by components for the three considered
technology nodes. These breakdowns are obtained by averaging the results over the complete
MCNC big20 suite. In general, the routing architecture consumes 90% of the total power
with the global routing architecture taking 60% of the overall power. When the technology
scales down from 180nm to 22nm, the power share of the global routing architecture increases,
resulting from the fact that interconnect does not scale down as the same ratio as transistors do.
Indeed, the parasitic transistor capacitance decreases by 90% from 180nm to 22nm technology
node but the interconnect capacitance per length is reduced by only 70% [46]. Consequently,
at 22nm and 45nm technology, the number of stages in the SB tapered buffers in typically

143

Chapter 4. Simulation-based Architecture Exploration Tool

Table 4.2 — Comparison of accuracy by modules in full-chip/grid/component-level testbenches

for 22nm, 45nm and 180nm technology nodes in the case of the MCNC benchmark big20
Benchmark: s298 CLB Power (mW) Accuracy
Testbench/Tech. 22nm | 45nm | 180nm | 22nm | 45nm | 180nm
Full-chip-level 0.42 1.06 7.85 100% | 100% | 100%
Grid-level 0.44 | 117 | 10.00 | +5% | +10%' | +27%'
Component-level | 0.47() | 1.01() | 9.54() | +12%° | -5%° | +22%°
Benchmark: s298 CBs Power (mW) Accuracy
Testbench/Tech. 22nm | 45nm | 180nm | 22nm | 45nm | 180nm
Full-chip-level 0.12 0.23 2.53 100% | 100% | 100%
Grid-level 0.11 | 0.22 267 | -8%* | -5%' | -5%!
Component-level 011 | 0.22 2.67 -8%° | -5%° | -5%°
Benchmark: s298 SBs Power (mW) Accuracy
Testbench/Tech. 22nm | 45nm | 180nm | 22nm | 45nm | 180nm
Full-chip-level 1.02 2.82 5.26 100% | 100% 100%
Grid-level 0.86 | 1.99 | 537 | -15%' | -29%' | +2%'
Component-level 0.86 | 1.99 537 | -15%° | -29%° | +2%°

LError(%) = (Grid-level/Full-chip-level-1)£100%

2Error(%) = (Component-level/Full-chip-level-1)£100%

$298.

larger in order to drive the interconnect wires. Therefore, the power share of SBs grows from

180nm to 22nm technology. The obtained results are in accordance with literature [46].

455 Accuracy Examination vs. VersaPower

In this part, we compare the power breakdown results between FPGA-SPICE and VersaPower,
as shown in Fig. 4.16. FPGA-SPICE predicts that the local routing architecture requires as
much power as the global routing architecture, which is different from the VersaPower. It can

be explained in the following reasons. First, FPGA-SPICE takes the parasitic net activities into
account which leads to additional power consumption in routing architectures. VersaPower
assumes that unused resources in FPGAs can be regionally powered-off and therefore parasitic
net activities can be neglected. Second, FPGA-SPICE uses electrical simulations and real
con guration information from VTR, i.e., SRAM con gurations in LUTs, used and unused
routing multiplexer con gurations, to accurately analyze the power of the architectures, while
VersaPower only considers worst-case scenario and basic scaling strategies [46]. Therefore, we
believe that the power results from FPGA-SPICE are more accurate and realistic.

4.5.6 Area Characteristics of SRAM-based FPGAs

With synthesizable Verilog netslits and a semi-custom design ow, FPGA-SPICE enables
accurate area study for FPGAs with realistic layouts at full-chip-level, as well as fast prototyping.
In this section, we consider the FPGA architecture described in Section 4.5.1 but with a reduced

144

4.5. Experimental Results

"sapou ABojouyda) WUQYT pue WUGH ‘Wuzg 1o} a1ins yrewyouad 0Z6ig DNDW
a1 Jano palbiriane 1amodesiai pue 301dS-YOd- Usamiag ainoaliyore YO d- palapisuod ay) Jo S)nsal umopyealq jamod — 9T 7 ainbi4

145

Chapter 4. Simulation-based Architecture Exploration Tool

CLB array size 5£ 5 and a channel width of 300, in order to tthe capability of our Linux server
without losing representativity. We perform semi-custom design ows for two SRAM-based
FPGA different in con guration circuits: (1) using BL and WL decoders as illustrated in Fig.
2.18; and (2) relying on scan-chain ip- ops as depicted in Fig. 2.19; The achieved full-chip-
level layouts are used in studying area characteristics.

Figure 4.17 — Full-chip layouts of 40nm SRAM-based FPGAs with CLB array size 5 £ 5, a channel
width of 300.

Fig. 4.17 depicts two full layouts of SRAM-based FPGA chips: (a) con gured by BL and WL
decoders and (b) scan-chain ip- ops, where we see most area is covered by interconnecting
metal wires, illustrating its dominant impact on the total area. It is reported that 8-10% of the
total area is exclusively devoted to the metal interconnect.

The total area of a SRAM-based FPGA with BL and WL decoders is reported to be 979 ,387'm 2,
which is 9% smaller than a SRAM-based FPGA with scan-chains (1 ,087,368.68! m?). The
area saving comes from that control lines of SRAMs can be ef ciently shared among rows
and columns, leading to the size of con guration circuit is square root of the number of
SRAMs. But scan-chains results in the con guration circuit area to be linear to the number

of SRAMs. Note that, even if the considered FPGA (array size 5 £ 5 and contains 250 LUTS)
is far smaller than commercial FPGAs (which can contain millions of LUTSs), the number of
SRAMs has already reached 180,470 ¢ 22MB). The choice of con guration circuits can indeed
signi cantly impact the total area. Additionally, when a larger array size is applied, the area
difference between the two FPGAs should be more signi cant.

Fig. 4.18 compares the area breakdown between SRAM-based FPGAs con gured by BL/WL
decoders and scan-chain ip- ops. The scan-chain SRAMs can occupy 46.7% of the total area,
which is the major overhead. Note that the obtained area breakdown results are accordance

146

4.6. Summary

Figure 4.18 — Area breakdown of SRAM-based FPGAs which are con gured by (a) BL/WL
decoders, and (b) scan-chain ip- ops.

with literatures [141]. LUTs and FFs stand only up to 6% in the total area, while routing
multiplexers (25-46%) are the major contributor in both SRAM-based FPGAs. Actually, the
share of routing multiplexer may be even larger if we consider the area of SRAMs associated to
the routing multiplexers. Note that BL and WL decoders only take 0.3% of the total area, but
their share would increase when array size and channel width of FPGA increases due to the
heavy use of SRAMSs.

4.6 Summary

This chapter introduced FPGA-SPICE, a simulation-based architecture evaluation tool suite,
enabling accurate area and power analysis. This tool extends the VTR architecture description
language to include transistor-level modeling parameters of FPGA components, to capture the
physical structure of /O circuits and to model different types of con guration circuits. Tightly
embedded within academic architecture exploration tool suites, FPGA-SPICE generates SPICE
and Verilog netlists at different levels of complexity, considering precise technology mapping,
placement and routing information as well as technological data. SPICE and Verilog netlists
can be subsequently exploited for different research purposes:

1. use HDL simulator to verify the functionality of implementations;
2. use SPICE simulators to perform accurate power analysis;

3. feed a semi-custom design ow to achieve full FPGA layouts and perform accurate area
analysis and enable fast prototyping.

147

Chapter 4. Simulation-based Architecture Exploration Tool

As a general-purpose architecture evaluation framework, FPGA-SPICE can support more
transistor-level circuit design topologies, such as one-level/two-level multiplexers, and such
support covers peripheral circuits, such as I/O circuits and con guration circuits. FPGA-
SPICE is also capable of one-level, two-level and tree-like 4T1R-based multiplexer designs
presented in Chapter 3, enabling accurate architecture-level evaluations for RRAM-based
FPGAs. In addition to accurate modeling for transistor-level circuit designs, FPGA-SPICE
adapts netlist partitioning strategies to better trade off the runtime and memory usage of
simulations with accuracy. Thanks to various techniques developed for accurate SPICE and
Verilog modeling, the area and power results provided by FPGA-SPICE are more accurate and
realistic, when compared to analytical power models, i.e., VersaPower. In the case study, FPGA-
SPICE are used to capture the area and power characteristics of SRAM-based FPGAs with
different con guration circuits. In Chapter 5, we will exploit FPGA-SPICE in studying area and
power characteristics of RRAM-based FPGA architectures and compare to their SRAM-based
counterparts.

148

] RRAM-based FPGA Architectures

As presented in Chapter 2, SRAM-based FPGA architectures typically employ multiple levels
of small crossbars, instead of large multiplexers, due to a strong limitation of SRAM-based
multiplexer: whatever multiplexer structure is employed, their area, delay and power increase
linearly with the input size [4]. However, in Chapter 3, we have seen an outstanding feature of
RRAM-based multiplexers: their delay and power scale better with the input size and there-
fore the architectural design space can be extended beyond the limitations of SRAM-based
multiplexers. Indeed, the properties of RRAM-based multiplexers allow the FPGA architect
to size differently its routing multiplexers by: privileging one-level crossbars, made of large
multiplexers, as much as possible. This paradigm shift in the interconnection topology also
requires to rethink the optimal architectural parameters, which have been well determined for
classical SRAM-based architectures. Hence, it is worthwhile to identify properly-sized RRAM-
based FPGA architectures which can exploit the full potential of RRAM-based multiplexers,
and determine the associated optimal architectural parameters.

In this chapter, we will study and optimize RRAM-based FPGAs from an architecture per-
spective. By exploiting VPR [44] and FPGA-SPICE (introduced in Chapter 4), we perform
architecture-level simulations to:

1. determine the proper Rpyrsfor RRAM-based FPGA architectures;

2. study area and power characteristics of RRAM-based FPGAs over their SRAM-based
counterparts;

3. validate the impact of architecture-level optimizations.

4. investigate the delay and power ef ciency of near- Vi RRAM-based FPGAs
This chapter will be divided to two parts: Section 5.1 presents the generality of RRAM-based
FPGA architectures studied in this chapter and demonstrates the area and power characteris-

tics of general RRAM-based FPGA architecture by using FPGA-SPICE. Section 5.2 proposes
three architecture-level optimizations for RRAM-based FPGAs and validate their impacts.

149

Chapter 5. RRAM-based FPGA Architectures

5.1 General Vision

The RRAM-based FPGA introduced in this thesis has no architectural difference with respect
to the conventional SRAM-based FPGA shown in Fig. 2.6. It remains an island-style FPGA
where the cluster-based CLBs are surrounded by SBs and CBs. The differences lie in the circuit
design of those modules heavily relying on SRAMs, i.e., LUTs and multiplexers. Fig. 5.1 and Fig.
5.2 compare the circuit designs of LUT and multiplexer between a conventional SRAM-based
FPGA and the RRAM-based FPGA introduced in this thesis.

Figure 5.1 — Memory access organization in SRAM-based FPGA: SRAMs are placed in an array
and SRAMs in the same column/row share the same BL/WL.

5.1.1 Choice of Non-volatile Modules

In our FPGA, the logic elements exploit Non-Volatile (NV) LUTs. Such FPGA does not need
to be re-programmed during each power on and can bene t instant-on and normally- off
properties. Typically, a LUT consists of a bank of SRAMs and a multiplexer as shown in Fig

150

5.1. General Vision

Figure 5.2 — Memory access organization in RRAM-based FPGA: RRAMs belonging to the same
multiplexer/NV SRAM are placed in the same column and share BL/WL.

5.1(a). The SRAM bank stores a truth table which is decoded by the multiplexer, enabling LUT
to realize any logic function. In this chapter, we replace the SRAMs (Fig. 5.1(b)) in LUTs with
Non-Volatile (NV) SRAMs borrowed from previous work [5]. Note that the NV SRAM used in
this thesis (Fig. 5.2(b)) employ 4T1R programming structures to con gure RRAMSs, instead of
2T1R programming structures in [5].

The multiplexers in LUTs are still implemented by pass-transistors considering that their
decoding results keep changing when the FPGA is operating. If RRAMs are inserted in the data
path of LUTs for decoding, their operating speed will drastically limit frequency. Compared

151

Chapter 5. RRAM-based FPGA Architectures

to SRAM-based, the NV LUTs have no difference in performance because of the same de-
coder implementation. Data path DFFs are also Non-Volatile with the same circuit elements.
These FFs operate as standard volatile CMOS FF during regular operation but they are also
capable to store the data non-volatily on demand before a sleep period. Data stored in the
NV DFFs can then be restored during wake up. In these ip- ops, RRAMs are written only
before the sleep period. These events have very low frequency and are compatible with the
endurance capabilities of RRAMs. While supported by the presented architecture, instant- on
and normally-off operation will not be evaluated in this thesis. Similar to NV SRAM, the NV
FFs in this thesis also employ 4T1R programming structures to con gure RRAMs. More details
about the NV DFF architecture can be found in [5].

While the decoded paths of the LUT multiplexer change at runtime, the selected paths in
the routing multiplexers (i.e., in BLE output selector, local routing, SBs and CBs) remain
unchanged during runtime. Note that we do not consider partial recon guration during
runtime for FPGA architectures in this thesis. Therefore, RRAMs can be inserted in the data
path of routing architecture without challenging the endurance. Fig. 5.2(a)(b) illustrate the
4T1R-based multiplexer introduced in Chapter 3, which replaces the SRAM-based multiplexer
shown in Fig. 5.2(c). Compared to the SRAM-based multiplexers, the 4T1R-based multiplexers
exhibit both high performance and low-power accounted to the low R_rsof the RRAMs and
smaller parasitic capacitances introduced in the data path.

5.1.2 Con guration Circuits

SRAMs in FPGAs can be con gured through Bit Lines (BLs) and Word Lines (WLSs), similar to
the principle of memory bank, as depicted in Fig. 5.1. SRAMs are organized in an array, where
SRAMSs in one column share the same BL, while SRAMs in one row share the same WL. As
such, the number of BLs and WLs are square root to the number of SRAMs, leading to small BL
and WL decoders. To con gure a SRAM, the associated WL is enabled while the con guration
bit is fed to the corresponding BL. Note that during con guration, other BLs and WLs should

be disabled in order to avoid mistakenly accessing other SRAMs in the same column/row. In
this rest of this chapter, our baseline SRAM-based FPGAs employ the BL/WL decoders in Fig.
5.1 to access each SRAM.

In our RRAM-based FPGA architecture, each RRAM is accessed by BLs and WLs as well but
requires a different BL and WL sharing strategy. BLs and WLs of each 4T1R-based multiplexer
and each RRAM of LUTs are divided into two groups:

1. Common BLs and WLs that are shared by all the 4T1R-based multiplexer and also the
RRAM of LUTs. Take the example in Fig. 5.2(b), (c) and (d), the two N -input 4T1R-based
multiplexers share BL[0...N j 1] and WL[O0...N j 1], and the NV SRAM share BL[0] and
W L[0] with the multiplexers. Considering the different input size of multiplexers in
FPGA architecture, the number of shared BLs and WLs is determined by the largest input
size of multiplexers.

152

5.1. General Vision

2. Independent BLs and WLs, which are unique for each 4T1R-based multiplexer and also
RRAM of LUTs. As shown in Fig. 5.2(c) and (d), the programming transistors close to
output inverters in the two 4T1R-based multiplexer are controlled by two unique BLs
and WLs, (BL[N],WL[N]) and (BL[N A1],WL[N A 1]), respectively. Similarly, the NV
SRAM in Fig. 5.2(b) has an unique pair of BLand WL, BL[N A2]WL[N A?2].

As such, each RRAM can be con gured in the same way of assigning BL and WL signals
as SRAM-based FPGAs. Since each RRAM has a unique address, it is accessible only when
its associated couple of BL/WL is activated, providing the programming current exclusively

for one RRAM. Therefore, the BL and WL sharing strategy in Fig. 5.2 can avoid parasitic
programming and guarantee the number of BLs and WLs linear to the number of NVSRAMs
and 4T1R-based multiplexers.

Indeed, our RRAM-based FPGA architecture requires more BLs and WLs than SRAM-based,
leading to large decoder circuits and potentially area overhead. However, our RRAM-based
FPGA eliminates the use of SRAMSs in routing multiplexers, bringing signi cant area reduction.
Considering that in general routing multiplexers occupies more than 50% of the total area, the
area overhead from decoder circuits can be fully compensated by the 4T1R-based multiplexers.
Overall, our RRAM-based FPGA will be area ef cient as its SRAM-based counterpart or even
better, depending on the scale of routing architecture. In Section 5.1.4, we will focus on study
the area characteristics of proposed RRAM-based FPGA architecture with layout-level results.

5.1.3 Experimental Methodology

To be representative, both the SRAM-based and the RRAM-based FPGA architectures consider
the same set of architectural parameters: K A6, N A10, | /&40, F¢ i, A0.15, F¢out A0.1, Fs A3
and L A2, with unidirectional routing architecture. SRAM-based and RRAM-based FPGAs
employ the con guration circuits depicted in Fig. 5.1 and Fig. 5.2 respectively. Note that in this
section, we focus on studying the difference in area and power characteristics of SRAM-based
and RRAM-based FPGAs. The area and power of hard adder chains and heterogeneous blocks
are highly dependent on the choice of Intellectual Property (IP) blocks, and hence they are
not included in the evaluated FPGA architectures here. In addition to the core logic of FPGAs,
i.e., LUTs, FFs and routing multiplexers, the architecture evaluation in this section includes
peripheral circuitry, i.e., I/O pads, BL and WL decoders, in order to draw realistic conclusions.

In terms of the circuit designs, both SRAM-based and RRAM-based FPGAs are built with a
commercial 40nm technology. All the multiplexers and LUTs use transmission gates and
are also buffered according to their realistic fan-out in the architectural context. For SRAM-
based FPGAs, LUTs employ the design in Fig. 2.16 (Section 2.2.3). For best area-delay-power
product, routing multiplexers in local routing architecture adopt a two-level multiplexing
structure, as shown in Fig. 2.15(a) (Section 2.2.3). Routing multiplexers in global routing
architecture, i.e., CBs and SBs, consider a one-level multiplexing structure, as shown in Fig.
2.14(b) (Section 2.2.3). For RRAM-based FPGAs, routing multiplexers uniformly adopt a one-

153

Chapter 5. RRAM-based FPGA Architectures

level 4T1R-based multiplexing structure for best area-delay-power product, which has been
introduced detailedly in Chapter 3. The 4T1R-based multiplexers are properly sized by the
optimization techniques introduced in Section 3.7. Similar to Section 3.8.1, we consider
the Stanford RRAM model [130] with the following parameters: R_rs/Z5k- , Ryrs ranging
from 1 M- to 200M- , lget £E500' A, Vset EVieset £1.1V. The parasitic capacitance of a
RRAM is considered to be Cp A£13.2aF. RRAM-based FPGAs follow the principle explained
in Section 5.1.1. Both SRAM-based and RRAM-based FPGA architectures have passed the
functionality veri cation with FPGA-SPICE, validating that they can be con gured and also
operate correctly.

Area results are based on analyzing full FPGA layouts generated by a semi-custom design
ow. FPGA-SPICE are used to provide Verilog netlists containing a full FPGA chip for the
semi-custom design ow (See Section 4.1). The experiments are conducted on a workstation
with 256G memory and Xeon processors. For sake of the capability of our workstation, we
consider a CLB array size of 5 £ 5 and swept the channel width from 50 to 300 with a step of 50
for both FPGA architectures, which are surrounded by 160 I/O pads. Note that the achieved
arearesults with a5 £ 5 CLB array can be representative because large FPGAs can be regarded
as an assembly of the small CLB arrays. Studying area characteristics of large FPGAs will be
part of the future works.

Power results are achieved by SPICE simulations. FPGA-SPICE automatically generates the
component-level testbenches and latest HSPICE simulator (Version 2017.03) perform power
analysis. The power analysis considers FPGA architectures implemented with the twenty
biggest MCNC benchmarks [138]. Note the power analysis will focus on the core logic of
FPGAs, that is LUTs, FFs and routing multiplexers, in order to examine the architectural
impact of RRAM-based circuit designs. I/0O pads and con guration circuits are not included.

Note that the methodology developed here is not dependent on the considered RRAM tech-
nology or on the transistor technology nodes or even the circuit design topology, but is rather
general.

5.1.4 Area Characteristics

Fig. 5.3 compares the full-chip layouts of SRAM-based and RRAM-based FPGAs, both of which
contain a5 £ 5 CLB array and a global routing architecture with a channel width of 300, as well
as 1/0 pads and BL/WL decoders.

Fig. 5.4(a) and (b) compare the area breakdown of RRAM-based and SRAM-based FPGA chips
when channel width is set to 300. In both FPGAs, routing multiplexers occupy E 40% of the
total area, while LUTs and FFs only have a » 6% share. More than 40% of the total area is
consumed by SRAMs in the SRAM-based FPGA, while only 15% of the total area is consumed
NV SRAMs in the RRAM-based FPGA. Note that BL/WL decoders take 4 .5% of the total area in
RRAM-based FPGA while they are negligible in SRAM-based FPGA. This is due to the BL and

154

5.1. General Vision

Figure 5.3 — Full-chip layouts of 40nm SRAM-based and RRAM-based FPGAs with CLB array
size 5£ 5.

Figure 5.4 — Area breakdown of (a) RRAM-based FPGA and (b) SRAM-based FPGA.

WL sharing strategy in RRAM-based FPGA is not as ef cient as SRAM-based FPGA (See Section
5.1.2). Therefore, improving the BL and WL sharing strategy is well worth investigation and is
part of the future work. Thanks to 4T1R-based multiplexers, the area of routing multiplexer

in RRAM-based FPGA is smaller than SRAM-based FPGA because the SRAMs are eliminated.
Indeed, the SRAM-based FPGA contains 180,470 SRAMSs, while the RRAM-based FPGA reduce
the number to only 16,160 NV SRAMSs. Despite the reduced number of volatile elements, we
see the total area of SRAM/NV SRAM is similar due to the large area of NV SRAM. As shown
in Fig. 5.1(b) and Fig. 5.2(b), a NV SRAM requires 12 more transistors than a normal SRAM,

155

Chapter 5. RRAM-based FPGA Architectures

resulting in an area overhead as large as 6 £. Therefore, compact NV SRAM designs can be
another challenge in RRAM-based FPGA study.

Figure 5.5 — Full-chip area comparison between SRAM-based and RRAM-based FPGAs by
sweeping channel widths from 50 to 300.

Figure 5.6 — Standard cell area comparison between SRAM-based and RRAM-based FPGAs by
sweeping channel widths from 50 to 300.

Fig. 5.5 compares the full-chip area of SRAM-based and RRAM-based FPGAs by considering
different channel widths. When channel width is smaller than 250, the proposed RRAM-based

156

5.1. General Vision

FPGAs require more area than their SRAM-based counterparts. The area overheads results
from two factors:

1. The number of routing multiplexers is positively related to the channel width. Indeed,
RRAM-based multiplexers are more area ef cient than their SRAM-based counterparts.
However, when channel width is small, the area saved by RRAM-based multiplexers
cannot fully mitigate the area overhead of NV SRAMs.

2. RRAM-based FPGAs potentially requires more area exclusively devoted to routing metal
wires. Fig. 5.6 compares the total area of standard cells in SRAM-based and RRAM-based
FPGAs by considering different channel widths. Considering the case where channel
width is 200, the total area of standard cells in RRAM-based FPGAs is smaller than
SRAM-based implementations, while the full-chip area of RRAM-based FPGAs is larger.
This implies that RRAM-based FPGAs contain more routing area than SRAM-based
FPGAs. According to detailed area reports, there is 30% of the full-chip area is exclusively
dedicated to routing wires in RRAM-based FPGAs while only 20% of the full-chip area is
exclusively dedicated to routing wires in SRAM-based FPGAs.

Therefore, when channel width is larger than 250, the proposed RRAM-based FPGAs become
more area ef cient than SRAM-based FPGAs, owing to the increased number of routing
multiplexers in global routing architecture. We see the proposed RRAM-based FPGA consumes
4% and 10% smaller in terms of full-chip area and total area of standard cells respectively, as
compared to the SRAM-based FPGA, when channel width is set to 300. And we believe that
the area reduction can be more signi cant when larger channel widths are applied.

5.1.5 Power Characteristics

As presented in Chapter 3, SRAM-based and RRAM-based multiplexers have different struc-
tures, which lead to differences in power characteristics. Chapter 3 focused on comparing the
power characteristics of SRAM-based and RRAM-based multiplexers at circuit-level. However,
non-volatility allows RRAM-based FPGAs to be normally powered off and instantly powered
on, leading to different power characteristics at architecture-level. As illustrated in Fig. 1.2,
RRAM-based FPGA can be simply powered-off during long idle period, consuming zero static
power. Therefore, studying the power characteristics of RRAM-based FPGAs should focus on
the static and dynamic power consumed during standard operation time.

In addition, similar to SRAM-based multiplexers, whose static power is mainly determined by

the off -resistance of transistors, static power of 4T1R-based multiplexers is highly dependent
on the Ryrs of RRAMSs. At the rstglance, Ryrsshould be as large as the off -resistance of a
transistor in order to keep the a low static power consumption [114]. However, thanks to the
non-volatility, the lower bound of Ryrs can be relaxed owing to the following considerations:

1. Static power of RRAM-based FPGA only occurs during standard operation time, which

157

Chapter 5. RRAM-based FPGA Architectures

is typically along with high dynamic power consumption.

2. RRAM-based FPGAs still include pure CMOS circuits, such as LUTs, FFs and tapered
buffers, which can alleviate the impact of Rpygrgs on total static power.

3. Dynamic power of 4T1R-based multiplexers is smaller than CMOS multiplexers (See
Section 3.8), leaving more budget in static power during standard operation time.

4. As explained in Section 5.1, RRAM-based FPGA requires less volatile elements, poten-
tially reducing the power consumption.

Therefore, the choice of Ryrs should be studied in the context of FPGA architecture, rather
than in the context of standalone 4T1R multiplexers.

In this section, we will analyze the power consumption of RRAM-based FPGAs from an archi-
tecture perspective. We rst study the static power characteristics of 4T1R-based multiplexers
by considering the architectural context. We then study the impact of Rprs on the power
consumption of RRAM-based FPGAs during standard operation time.

Static Power of 4T1R-based Multiplexers

The static power of a multiplexer is dominated by the number of the leakage paths from
VDD to GND and also the resistance of sneak paths. We study the N -input multiplexers
in Fig. 5.7 as an example and focus on analyzing what dominates the static power of 4T1R-
based multiplexers. We will focus on the leakage paths through input inverters, transmission
gates and programming structures since they are highly sensitive to the input size and input
patterns. Without losing generality, we assume that the inputs in [0] of both SRAM-based and
4T1R-based multiplexers in Fig. 5.7(a) and (b) are propagated to the output node.

In Fig. 5.7, we see that RRAM-based multiplexers contain more leakage paths than SRAM-
based implementations. The pull-up transistors of programming structures introduce addi-
tional sources of leakage paths and the pull-down transistors of programming structures lead

to additional sources of leakage paths. Note that even though the programming transistors are

all turned off during operating period, they indeed increase the leakage current from Vpp to
GND.

Take the example of Fig. 5.7(a), assume that in [0] issetto GND and in[N j 1]is setto Vpp,
transmission gate tgo is turned on while transmission gate tgl is turned off. A leakage paths
can start from a p-type transistor p0, pass through transmission gates tg0 and tg1, and end
at a n-type transistor nl. We de ne the resistance of a transistor in on state as Ry, while the
resistance of a transistor in off state is denoted by Ry:¢. Since typically Ryi¢ EE Ron, the
resistance of the leakage path p0 to tg0 to tgl to nl is dominated by Rg¢+:

RIeakl ARon A RonJ'J'Ron A Rof f ijoff A Ron l/"Rof f 12 (5-1)

158

5.1. General Vision

Figure 5.7 — Leakage paths of N -input multiplexers: (a) SRAM-based (b)RRAM-based

The leakage power contributed by pO! tgO! tgl! nlis:

Pleak1 %42V3p /R of £ (5.2)

Similarly, in the 4T1R-based multiplexer (Fig. 5.7(b)), assume that in[0]is setto GND and
in[Nj 1] stuck at Vpp, RRAMRAa, is in LRS while RRAM Rg is in HRS. Note that all the pro-
gramming transistors are in off state during operating mode. Compared to the SRAM-based
multiplexer in Fig. 5.7(a), the leakage path starting froma p-type transistor p3 in Fig. 5.7(b)
has more ending points, due to the programming transistors connectedto GND. A leakage
path can start from a p-type transistor p3, pass through RRAM Rp and RRAM Rg, and end at a
n-type transistor, such as n4,n5, n6 and n7. Table 5.1 lists the leakage paths from p3 to n4,
n5, n6 and n7 and their resistance.

Table 5.1 — Resistance of leakage paths of the 4T1R-based multiplexer in 5.7(b) whose starting
pointis p3 and ending points are n4, n5, n6 and n7

Leakage paths Resistances on leakage paths
Path1:p3! Ra! Rg! n4 Ron AR rsA RursA Ron
Path2: p3! n5 Ron ARt
Path3: p3! Ra! Rg! n6 Ron A RLRSA Ry RSA Rot ¢
Path4:p3! Rp! n7 Ron ARLRSA R

Note that Ryrs EE Ron, the resistance of the leakage path listed in Table 5.1 is dominated by

159

Chapter 5. RRAM-based FPGA Architectures

Rursand Ry¢ . As aresult, the leakage power contributed by the leakage paths in Table 5.1 is
Pleak1 ¥42V2p /IR ursA2VE5 /R of 1 (5.3)

which is obviously larger than the leakage power contribution in Equation 5.2. We see that in
Equation 5.3, Ryrs is one of the important factors in uencing the leakage power.

Figure 5.8 — Impact of Ryrs on the average static power of a 2-input 4T1R-based multiplexer

In the rest of this section, we will rely on simulation results in studying the impact of Rurs
on the leakage power of 4T1R-based multiplexers, rather than a full analysis on the leakage
paths. Fig. 5.8 compares the average leakage power of a 2-input 4T1R-based multiplexer to
its SRAM-based counterpart by sweeping Ryrsfrom 10 M- to 100M- . The leakage power
overhead can be limited to 9.5% when RprsA100M - . Note that the simulation results is
achieved by enumerating all the possible input patterns for both SRAM-based and RRAM-
based 2-input multiplexers. Additionally, considering the architectural context, multiplexers,
such as those of Switch Blocks (SBs), usually contain tapered buffers at their outputs, which
can also reduce the leakage power overhead. Fig. 5.9 depicts the average leakage power of a
2-input 4T1R-based and SRAM-based multiplexers with tapered buffers at outputs. Note that
when Ryrs Z10M -, the leakage overhead is reduced to 33% as compared to Fig. 5.8.

However, due to that the number of input patterns is exponential to the input size, it is un-
realistic to enumerate all the input patterns fora N -input multiplexer, in order to conduct
a full simulation-based analysis on the leakage power. Furthermore, due to the diverse con-
gurations, any combination of propagating path and input pattern can happen to all the

160

5.1. General Vision

Figure 5.9 — Impact of Ryrs on the average static power of a 2-input 4T1R-based multiplexer
with tapered buffer at output

multiplexers of FPGA. Therefore, accurate leakage power analysis for RRAM-based FPGAs
should consider electrical simulations based on realistic circuit implementations. In addition,
thanks to the non-volatility, static power of RRAM-based FPGA only occurs during standard
operation time, which is typically along with high dynamic power consumption. Hence, in

the rest of this thesis, the power analysis on RRAM-based FPGAs consider both the static and
dynamic power consumed during standard operation time.

Impact of Ryrson Power Consumption

As explained in Section 5.1.5, the Ryrs can in uence the power consumption of RRAM-based
routing elements. We evaluate in Fig. 5.10 the impact of Ryrs on the average power of the
considered FPGA architectures implementing in MCNC big20 benchmarks by using FPGA-
SPICE. Basically, the power consumption of RRAM-based FPGA increases as Ryrs decreases.
Note that the power differences between RRAM-based and SRAM-based FPGAs is within 3%
when Ryrsis20M - . Andwhen Rygrsislargerthan20 M - , RRAM-based FPGAs becomes more
power ef cient than SRAM-based FPGAs. In particular, when RyrsA100M - , RRAM-based
FPGAs consumes 23% less power than SRAM-based FPGAs. Indeed, RRAM-based multiplexers
consume larger leakage power consumption than their SRAM-based counterparts. Also, in
Chapter 3, we have presented that RRAM-based multiplexers are more power ef cient in terms

of dynamic power than SRAM-based implementations. Therefore, when Rpyrsis smaller than

161

Chapter 5. RRAM-based FPGA Architectures

Figure 5.10 — Normalized power consumption of SRAM-based and RRAM-based architectures
with different Rprs

20M - , the leakage power overheads of RRAM-based FPGAs is too large and shadows the
gain in dynamic power, resulting in power overhead in total. When Rpygrsis large than 20M -,
the dynamic power advantages can fully mitigate the leakage power overhead, contributing

to power reduction in total. Note that all the power results in Fig. 5.10 are achieved when
both SRAM-based and RRAM-based FPGAs operate at nominal working voltage. Since that
RRAM-based circuits exhibit high-performance especially in near- V; regime (See Chapter 3),
RRAM-based FPGASs can be more delay ef cient than SRAM-based FPGAs when the working
voltage is reduced to near- V;. Note that such high performance is achieved along with the
power reduction. Therefore, in terms of Power-Delay Product, the minimum requirements of
RRAM devices in FPGASs can be further relaxed.

In this thesis, we consider Ryrs A£20M - as the minimum requirement for RRAM devices, in
order to ensure the power ef ciency of RRAM-based FPGAs.

Power Breakdown

In this section, we study the power breakdown of RRAM-based FPGA and compare to its SRAM
counterpart. To be fair, we consider RprsA20M - for RRAM-based FPGA, which guarantees
zero power difference between RRAM-based and SRAM-based FPGAs average over MCNC
big20 benchmarks (See Section 5.1.5). Fig. 5.11 compares the static power breakdown between
RRAM-based and SRAM-based FPGAs. In general, routing multiplexers consumes over 40% of
the total static power, while LUTs and FFs only consumes up to 20% of the total. Due to the
heavy use of SRAMSs, 36% of the static power is consumed by SRAMs in SRAM-based FPGA.

162

5.1. General Vision

Differently, in RRAM-based FPGA, only 14% is required by SRAMs. This reduced share of SRAM
power comes from that 4T1R-based multiplexers eliminate the use of SRAMSs, giving more
power budget to other components.

Figure 5.11 — Static power breakdown of (a) RRAM-based FPGA and (b) SRAM-based FPGA.

Fig. 5.12 compares the dynamic power breakdown between RRAM-based and SRAM-based
FPGAs. We see that over 70% of the total power is consumed by routing multiplexers, while
only 12% is consumed by LUTs and FFs. By removing the SRAMs in routing multiplexers, the
power share of SRAMs is reduced from 14% (SRAM-based FPGA) to 5% in RRAM-based FPGA.

Figure 5.12 — Dynamic power breakdown of (a) RRAM-based FPGA and (b) SRAM-based FPGA.

163

Chapter 5. RRAM-based FPGA Architectures

5.1.6 Overall Performance

Fig. 5.13 compares the overall performance of SRAM-based and RRAM-based FPGAs operat-
ing in both nominal and near- V; regimes. When operating at nominal voltage (Vpp 4A0.9V),
RRAM-based FPGA can improve delay by 22% over its SRAM-based counterpart. Even
when Vpp is reduced to near- V; regime, i.e., 0.8V, RRAM-based FPGA remains at the same
performance-level as the SRAM-based FPGA at nominal voltage. Signi cantly, the near- V;
RRAM-based FPGA bene ts from energy reduction, leadingtoa 2 j 2.3£ improvement on
energy. Note that the energy of RRAM-based FPGA operating at Vpp A0.9V is similar to the
best SRAM-based FPGA ¥pp 4A0.7V). In terms of Energy-Delay Product (EDP), SRAM-based
FPGA at nominal voltage is the best, while RRAM-based FPGA at Vpp ZA0.8V is the best with a
close to 2£ improvement compared to the best SRAM-based FPGA. Note that only runtime
power consumption is evaluated in Fig. 5.13. We believe that the energy improvement of
RRAM-based FPGA can go beyond 2£, when non-volatility is taken into account.

Figure 5.13 — Area, delay and energy comparison between SRAM-based and RRAM-based
FPGAs operating at nominal and near- V; regime.

5.2 Architecture-level Optimizations

Most SRAM-based FPGA architectures typically employ multiple levels of small crossbars,
instead of large multiplexers, due to a strong limitation of SRAM-based multiplexer: Whatever
multiplexer structure is employed, their area, delay and power increase linearly with the
input size [4]. However, we saw in Chapter 3 that the delay of RRAM-based multiplexers is
independent from the input size. Table 5.2 compares the delay of SRAM-based and 4T1R-
based multiplexer in their architectural context, i.e., by considering realistic sizing and loads.
In high fan-in and low fan-out condition, such as local routing, the 4T1R-based multiplexer
can achieve 48% reduction in delay. In contrast, when fan-in is low and fan-out is high, e.g.,

164

5.2. Architecture-level Optimizations

Table 5.2 — Delay comparison between SRAM-based and RRAM-based routing multiplexers.

Multiplexer Input | fan-out | SRAM-based | 4T1R-based Improvements
Location Size MUX (ps) MUX (ps)
Local Routing 80 1 57.7 30.4 -48%
BLE output selector 2 70 38.8 42.2 +11%
Connection block 48 60 76.0 48.2 -36%
Switch block 4 124! 57.8 49.6 -14%

* Qutput buffers are considered and sized according to the fan-outs of routing multiplexers
in architecture.
1 The fanout includes the parasitics of long metal wires driven by SBs.

the BLE output selector, 4T1R-based multiplexer guarantees a similar performance level as an
SRAM-based implementation. Therefore, considering such feature of one-level 4T1R-based
multiplexers, the FPGA architectural design space can be extended beyond the limitations
of SRAM-based multiplexer. Indeed, the properties of RRAM-based multiplexers allow the
FPGA architect to size differently its routing multiplexers by: privileging one-level crossbars,
made of large multiplexers, as much as possible. This paradigm shift in the interconnection
topology also requires to rethink the optimal architectural parameters, which have been
well determined for classical SRAM-based architectures. Hence, it is worthwhile to identify
properly-sized RRAM-based FPGA architectures which can exploit the full potential of RRAM-
based multiplexers, and determine the associated optimal architectural parameters.

To exploit the high-performance of 4T1R-based multiplexers, in this section, we propose three
architectural optimizations:

1. The realization of a Uni ed Connection Block;

2. The increase of Switch Blocks capacity;

3. The decrease of the best length of routing wire;
For each architectural optimization, we study its impact on both SRAM-based and RRAM-
based FPGAs.

This section will be organized as follows. Section 5.2.1 introduces the general experimental
methodology in this part. Section 5.2.2, Section 5.2.3 and Section 5.2.4 present the three
architectural optimizations and validate their impacts on both SRAM-based and RRAM-based
FPGAs. Section 5.2.5 compares the optimized RRAM-based FPGA to its SRAM-based counter-
part, considering both nominal working voltage and near- Vi regime.

5.2.1 Experimental Methodology

In this part, we will base our analysis using a commercial 40nm technology, whose nominal
working voltage is Vpp A0.9V. Area is estimated and expressed by the number of mini-

165

Chapter 5. RRAM-based FPGA Architectures

mum width transistors, based on the area model in[125]. Delay results are extracted from
electrical simulations by running HSPICE simulator[47]. Both datapath logic gates and pro-
gramming structures are built with standard logic transistors (W)qggic/ Liogic £140nm/40nm,
Wpmos,logic/ WNMOs,logic A2). SRAM-based multiplexers are built with two-level structures
and transmission gates for best area-delay product[2]. RRAM-based multiplexers are built
with one-level structure and 1/O transistors [133]. Electrical simulations use the Stanford
RRAM model [130] with following parameters: R rs A£2k- , Ryrs £27M- , lget AAS00 A,
Vset AVreset £1.1V . The parasitic capacitance of a RRAM is considered to be Cp A13.2aF.
The considered RRAM parameters are suf cient to guarantee that the RRAM-based circuits
are as power ef cient as SRAM-based circuits [114]. To determine the size of CB and SB
multiplexers, we set the channel widthto W 4320, which is close to the practical number in
commercial products [85, 82].

Since each architectural optimization involves different routing architecture parameters, such
asFcin, Fsand L, for a fair comparison, we vary a single parameter in each comparison and
nd a reasonable value for each parameter. Once we nd the best value of one parameter,
we set it to this value and vary another. All the investigated tile-based FPGA architectures
share the Stratix IV-like CLB architecture [88], which contains 10 BLES, consisting of 6-input
fracturable LUTs and FFs (K £6,N A10). We consider a uni-directional routing architecture
and the CLB output connection exibility, = F¢out,iS xed to O .1. All the baseline architectures
have 40 inputs for each CLB (| A£40). Because the local routing is removed in the proposed
architecture, we provide 60 inputs for each CLB (| £K ¢N A60). We will focus on studying
the effect of the different architectural modi cations on both SRAM-based and RRAM-based
FPGAs. Both SRAM-based and RRAM-based implementations of the proposed architecture are
then investigated and their bene ts are examined by comparing to the baseline SRAM-based
and RRAM-based architectures, respectively. We believe that such methodology helps to
identify where RRAM FPGAs can be improved beyond SRAM FPGAs. Then, we will discuss the
bene ts of a properly-optimized RRAM-based FPGA compared to the SRAM counterpart.

We use the VTR ow [44] to evaluate the area, delay, power and channel width of the investi-
gated FPGA architectures. The twenty biggest MCNC [138] and VTR benchmarks [44] suites
are logic optimized by ABC [123] and then packed, placed and routed by VPR7. We add a
30% slack to the minimum routable channel width Wp,in , in order to simulate a low-stress
routing [4]. For a fair comparison, the maximum routing iterations are set to 50 for the classical
architecture, while 100 routing iterations are used for the proposed architectures. Indeed, our
proposed architecture requires more routing efforts because local routing is removed and
more nets have to be routed by the global router.

5.2.2 Uni ed Connection Block

In SRAM-based FPGA architectures, a routing track has to pass through a CB multiplexer and
a local routing multiplexer before reaching a LUT input, as shown in Fig. 5.14. Such routing

166

5.2. Architecture-level Optimizations

architecture ef ciently reduces the number of CB multiplexer to be used. Indeed, the number

of the inputs of a CLB, typically | Z£K (N A1)/2, is smaller than the total number of LUTs inputs,
K ¢N, where K is the input size of a LUT and N is the number of BLEs in a CLB. However, it
requires tapered buffers at the outputs of CB multiplexers, in order to drive the high fan-outs.
Take the example in Fig. 5.14, each CB multiplexer has to drive K ¢N local routing multiplexers.
The use of large tapered buffers potentially increase the delay from a routing track to a LUT
input. This situation is extremely inef cient for RRAM-based FPGAs since the delay of a
tapered buffer may be far larger than the delay of the RRAM-based multiplexer itself.

Figure 5.14 — Classical interconnection from routing tracks to LUT inputs.

Therefore, we propose that RRAM-based FPGA should use a one-level RRAM-based crosshar
to provide interconnections between routing tracks and LUT inputs, as illustrated in Fig.
5.15. Note that feedback connections are also resolved by the uni ed Connection Block. The
proposed routing architecture is well suited to RRAM-based multiplexers for three reasons:
(a) Each CB multiplexers now has a unique fan-out, and tapered buffers can be avoided; (b)
Only one large multiplexer interconnects between a routing track to a LUT input; Both routing
delay and feedback delay can be signi cantly reduced when a RRAM-based multiplexer is
used; (c) The number of inputs of a CLB is increased to | £K ¢N, which can potentially lead

167

Chapter 5. RRAM-based FPGA Architectures

Figure 5.15 — Proposed interconnection from routing tracks to LUT inputs.

to a total area reduction even for SRAM-based FPGAs [142]; Since RRAM-based multiplexers
require a smaller footprint, the area reduction could be more signi cant.

The proposed routing architecture requires to rede ne the best fraction of routing tracks
that can be reached by each CB multiplexer, F¢in. Note that in the classical architecture
(Fc,in A0.15), all the nets mapped to the inputs of a CLB are different because the local routing
can connect a net from a CLB input to multiple LUTs. The proposed architecture may have a
net mapped to multiple CLB inputs due to the absence of local routing. Therefore, we need to
increase F¢ iy to allow more CLB inputs to be reached by a single routing track, to compensate
the potential loss in routability. In an FPGA tile, all the LUT inputs are connected to the right
and bottom sides of a CLB. Each LUT has K/2 input connected to the right/bottom side of

a CLB. To ensure that different LUT inputs can be connected from a common routing track,
Fcin should be at least 2/ K. Fig. 5.16 depicts such an example when K Z6. Input in0of LUT O
and input in0of LUT 1 can be reached by the same track TrackO. Note that there is no need
to allow two inputs of the same LUT to share a routing track. The case where two inputs of

a LUT share the same net can never happen because the inputs of a LUT are naturally logic

168

5.2. Architecture-level Optimizations

Figure 5.16 — An illustrative example of the proposed routing architecture(K /6) with F¢ i, A&
0.33 and Fs AB6.

equivalent. By considering architecture parameters K 46, the proposed architecture requires
Fc,in to be at least 0.33, in order to ensure routability. In this part, we sweep F¢ i, to examine
the best F¢ i for the proposed architecture.

Fig. 5.17(a) and (b) show normalized area, delay, power and channel width of SRAM-based and
RRAM-based proposed architectures with F¢;, A{0.15,0.25,0.33,0.5}, when compared to base-
line architectures respectively. The SRAM-based proposed architecture with F¢ i, 40.33 pro-
duces a slightly better area-delay product (-4%) than the classical architecture, but performs
worse (+2%) in delay. In contrast, the RRAM-based proposed architecture with F¢ i, A0.33
reduces delay by 3% and area-delay product by 15%, when compared to the classical ar-
chitecture. In either SRAM-based or RRAM-based FPGAs, the proposed architecture with
Fc,in Z0.33 produces the best area-delay product. Note that we see a 5% area reduction in both
SRAM-based and RRAM-based proposed architectures when F¢ i, Z£0.33, which is close to the
conclusion of literature [142]. The proposed architecture with varying F¢in reduces power by
10%-13% for SRAM-based and RRAM-based FPGAs. In the classical architecture, there are
two-stages of multiplexers (local routing and classical connection blocks) that lead to four lev-

els of transmission gates between the routing tracks and the LUTs. However, in the proposed
uni ed connection block, there is only one-stage of multiplexers (two-levels of transmission
gates) between the routing tracks and the LUTSs, contributing to power ef ciency. Besides,
the uni ed connection blocks eliminates the need for intermediate buffers between the local
routing and the connection block, which further reduce the power. Channel width overheads

169

Chapter 5. RRAM-based FPGA Architectures

Figure 5.17 — Normalized average area, delay, power and channel width of baseline and
proposed architecture by sweeping Fc¢in: (a) SRAM-based architectures; (b) RRAM-based
architectures.

170

5.2. Architecture-level Optimizations

are observed in both SRAM-based and RRAM-based proposed architectures, because their
routability is lower than their baselines due to the absence of local routing. However, these
overheads can be potentially eliminated because the routability can be signi cantly improved
when we increase Fg and decrease L. In terms of the best overall performance, we consider
Fcin Z0.33 for the proposed FPGA architectures in the rest of this chapter.

Fig. 5.18 compares the tile area of a classical FPGA architecture (| £40,F i, A0.15) and the
proposed RRAM FPGA architecture (1 AW ¢F¢ n,F¢in A0.33) for a sweeping channel width
W from 100 to 350. Note that the input size of local routing multiplexers in traditional SRAM
FPGAs is xed for every W, while that of proposed RRAM FPGAs is directly related to W.
When a small W, e.g. 100, is used, the size of the local routing multiplexers in the proposed
RRAM FPGAs is smaller than for a classical FPGA architecture. Therefore, when W C 300,
the proposed RRAM FPGA architecture bene ts up to 36% area reduction as compared to
classical FPGA architecture. When W E 300, the input size of multiplexers in the proposed
RRAM FPGAs becomes larger, leading to a 9% area overhead when W A350. The considered
W 320 in this part promises that the proposed RRAM FPGAs is as area ef cient as classical
SRAM FPGAs.

Figure 5.18 — Tile area comparison between a traditional FPGA architecture and the proposed
RRAM FPGA architecture for different channel width W'

171

Chapter 5. RRAM-based FPGA Architectures

5.2.3 Increase Capacity of SB MUXes

Since RRAM-based multiplexer is more delay-ef cient than SRAM-based multiplexer, the
connection exibility parameter of Switch Block (SB) Fs can be increased. Classical FPGA
architectures typically set Fg /3, where each routing track on one side of a SB can reach
three other routing tracks on different sides of a SB. In SRAM-based FPGAs, Fs /43 promises
the best area-delay product [98]. Indeed, a larger F5 can improve the routability but it may
produce area and delay overhead coming from the larger SB multiplexers to be used. However,
considering RRAM-based routing architecture, the delay overhead is no longer a concern
thanks to the advantage of RRAM multiplexers. Therefore, a larger Fs, i.e. A6, can considered,
where a routing track can drive six different tracks, as shown in Fig. 5.16 with Track3. Note
that a large Fs signi cantly improves the routability of the proposed routing architecture. Take

the example of Fig. 5.16 where netA is routed through Track3. If Fs £3, Track3 can only
drive TrackO, Track4 and Track®6. If TrackO is not available, the output of LUT O has to
seek for another routing track by increasing the channel width. If F¢ A6, Track 3 can reach
both TrackOand Track2. When TrackO is occupied by another net, Track3 can easily use
Track2toroute netA.

Figure 5.19 — (a) Driver multiplexer and fan-outs of a Length- L wire; (b) Equivalent RC model
of a Length-L wire.

We sweep Fs to determine its best value for the proposed architecture. Fig. 5.20(a) and (b)
show normalized average area, delay, power and channel width of SRAM-based and RRAM-
based proposed architectures with Fg /{3, 6,9}, when compared to the baseline architectures,
respectively. The proposed RRAM-based architectures can bene t larger delay reduction (-7%)
than SRAM-based (-4%), because RRAM-based multiplexers are more delay ef cient for the

172

5.2. Architecture-level Optimizations

Figure 5.20 — Normalized average area, delay, power and channel width of baseline and
proposed architectures by sweeping Fs: (a) SRAM-based architectures; (b) RRAM-based
architectures.

173

Chapter 5. RRAM-based FPGA Architectures

uni ed connection block. However, FsE 3 introduces larger SB multiplexers, which potentially
increases the area of both SRAM-based and RRAM-based proposed architectures. On the other
hand, larger SB multiplexers improve the exibility of the routing architecture and reduce

the number of necessary SB multiplexers, as explained in Fig. 5.16. In the end, the proposed
architecture can maintain the same power ef ciency as baseline SRAM one. Therefore, Fs /A6
produces the best area-delay-power product for both SRAM-based and RRAM-based proposed
architectures. Note that, even when Fs /A9, RRAM-based proposed architecture leads to a
8% delay reduction thanks to its RRAM-based multiplexer, while, the SRAM-based proposed
architecture has a 5% delay overhead. As a large Fs boosts the routability, a 20% channel
width reduction is achieved in both SRAM-based and RRAM-based proposed architectures, as
compared to those with Fg ZA3. In terms of the best overall performance, we consider Fg A6
for the proposed FPGA architectures in the rest of this part.

5.2.4 Smaller Best Length Wire C4

In FPGA architectures, a length-L wire is a wire that spans across L CLBs [4]. Asillustrated in
Fig. 5.19(a), a length-L wire is driven by an output of CLB[0] and ends at CLB[Lj 1]. All the
CLBs and SBs along the length- L wire can be directly routed from the driving outputof ~ CLB|0].
When only one type of wires is allowed to be used in an FPGA, the type of length- L wires
that produces best area-delay product is called best single wire length. Commercial FPGAs
typically provide different types of wires, i.e. length-1 for short connections and length-8 for
long connections. However, best single wire length is useful in deciding which type of wires
should be predominant within the architecture.

Length-4 wires are the best choice for classical SRAM-based FPGA architectures (Fcin A
0.15,F¢ /3) [4]. V. Betz et al. show that a length-4 wire is faster than shorter wires in terms of
delay per logic block (AT gelay,wire/ Length). In other words, for a routing path spanning X
CLBs, length-4 wires promise the best average delay. Indeed, when there is a routing path with

X C 4, shorter wires such as length-1 or length-2 will give better delay. However, for a routing
pathwith X . 4, multiple cascaded length-4 wires are faster than not only any length- X (X E 4)
wire but also multiple cascaded length-1 or length-2 wires. Therefore, on average, length-4
wires provide the best trade-off between short and long connections.

In SRAM-based FPGAs, why long length wires, such as length-4 wires, are preferred is estab-
lished on the fact that the delay of a SB multiplexer is larger than a long metal wire across

a logic block. However, RRAM-based multiplexers are more delay ef cient and can be even
faster than a long metal wire. Therefore, as the cost function between a SB multiplexer and

a long metal wire has been twisted, the best single wire length L should be revisited. Fig.
5.19(a) illustrates the different elements composing a length- L wire, while Fig. 5.19(b) shows
the extracted RC model. We use Elmore delay [104] to estimate the delay per logic block of a

174

5.2. Architecture-level Optimizations

Length-L wire:

11 X1
Tdelay,wire /L /EE R Cj
iE0 |/
RmCm
2
ARm(CsgACcgi Cm)ARy(CmACsgACcs)

L ¢ (5.4)

1
A T ®Tael ARyCoi 2RmCsgi 2RmCcpg)

where R, and Cy, are the resistance and capacitance of a metal wire spanning a logic block,
respectively, Tqe represents the intrinsic delay of a SB multiplexer, Ry and C, denote the
equivalent resistance and capacitance of the tapered buffer that drives the metal wire, re-
spectively, Csg and Ccp are the equivalent input capacitance of each SB and CB, respectively.
According to (5.4), there exists a Loptimai Which guarantees the minimum Tgejaywire /L :

(TdeIARocoi 2RmCsgi 2RmCcg)

I—optimal A 2Ry Crm (5-5)
Note that Csg and Ccp are related to Fs and F¢ i, respectively:
Csp AEFs (Cj
s ¥~in (5.6)

Ccp AW Ok in ¢Cipy

In the proposed RRAM-based routing architecture, where both Fsand F¢ i, increased and Tge|
decreased thanks to RRAM-based multiplexer, Loptimar Will de nitely decrease. In addition,
the tile area of the proposed architecture may be slightly larger than the classical architec-
ture because of the Fs and F¢;, increases, leading to an increased Ry and Cp,. This would
further decrease the Loptimal - Therefore, the best single wire length of the proposed routing
architecture will be smaller than 4. When a smaller L (C 4) is used, previous work [4] show
that the routability is improved signi cantly. Therefore, the proposed RRAM-based routing
architecture can achieve routability improvement without delay overhead.

We sweep L to determine its best value for the proposed architecture. Fig. 5.21(a) and (b)
show normalized average area, delay, power and channel width of SRAM-based and RRAM-
based proposed architectures with L A{1, 2,4}, when compared to the baseline architectures,
respectively. In SRAM-based architectures, whatever Fs is, length-4 wires achieve the best
delays and area-delay-power products. However, the proposed RRAM-based architecture with
length-2 wires promises the best delay (-11%) and also the best area-delay-power product
(-24%), thanks to its better routability and lower routing congestion. As L is reduced from 4 to
2, we see a 26% channel width reduction because short wires are more exible. Conversely,
length-1 wires have the smallest channel width but more SB multiplexers have to be used in
long routing paths. Therefore, we see signi cant area and power overhead. Length-4 wires
guarantee the best power results since less multiplexers are required in a SB compared to the
case where length-2 and length-1 wires are used. In terms of the best overall performance,
L /2 is the best single wire length for the proposed FPGA architecture.

175

Chapter 5. RRAM-based FPGA Architectures

Figure 5.21 — Normalized average area, delay, power and channel width of baseline and
proposed architectures by sweeping L: (a) SRAM-based architectures; (b) RRAM-based archi-
tectures.

176

5.3. Summary

5.2.5 RRAM-based FPGAs vs. SRAM-based FPGAs

In Section 5.2.2, Section 5.2.3 and Section 5.2.4, we have determined that F¢;, A0.33,Fs /6
and L /A2 produce the best performances for the proposed FPGA architecture. In this section,
we make a general comparison between SRAM-based and RRAM-based FPGAs architectures.
Fig. 5.22 shows the area, delay, power and channel width of three FPGA architectures: (1)
SRAM-based FPGA with classical architecture; (2) RRAM-based FPGA with classical archi-
tecture; (3) RRAM-based FPGA with architectural optimizations. When implemented with
classical architecture, RRAM-based FPGAs improve the delay by 32% and the area by 15%, as
compared to SRAM-based FPGAs, thanks to the delay ef ciency of the RRAM-based routing
elements. By properly optimizing the architecture, RRAM-based FPGAs can further reduce the
area by 15%, the delay by 10% and the channel width by 13%, leading to a total improvement

of 38% in delay and 43% in area compared to an SRAM-based FPGA architecture. In terms of
Area-Delay Product (ADP) and Delay-Power Product (PDP), the proposed RRAM-based FPGA
architecture brings a reduction of 57% and 38% respectively.

As explained in Chapter 3, the resistance of RRAMSs is only impacted by programming voltage
and therefore a near- V; working voltage leads to less performance degradation for RRAM-
based circuits, when compared to pure CMOS implementations. Such outstanding feature
strongly motivates us to evaluate the potential of the proposed RRAM-based FPGA architec-
ture in the near- V; regime. In this section, we consider the SRAM-based FPGA with classical
architecture operating at nominal working voltage (Vpp 40.9) as the baseline. We investigate
the area, delay and power of the RRAM-based FPGAs with architectural optimizations operat-
ing at both nominal (Vpp A0.9) and near-V; (Vpp 4A0.7 and Vpp 4A0.8) working voltages. As
shown in Fig. 5.23, when operated in the near- V; regime, the proposed RRAM-based FPGA
at Vpp /0.7 can achieve 42% and 5£ improvement on Area-Delay Product and Power-Delay
Product respectively, as compared to a classical SRAM-based FPGA running at a nominal
voltage. Note that such signi cant power reduction is achieved with zero delay overhead and
such feature can not be achievable by any SRAM-based FPGA.

5.3 Summary

This chapter combines the efforts from 4T1R-based multiplexers (introduced in Chapter 3) and
FPGA-SPICE (introduced in Chapter 4), in studying RRAM-based FPGA architectures. We rst
presented a generic RRAM-based FPGA architecture exploiting the 4T1R-based multiplexers
and BL/WL sharing strategy, whose functionality has been veri ed by FPGA-SPICE. With
layout-level implementation and accurate electrical simulator, we analyze the area breakdown
and power characteristics of the proposed RRAM-based FPGA architecture and compare to its
SRAM-based counterpart. Thanks to the 4T1R-based multiplexers, the propose RRAM-based
FPGA can be as area ef cient as SRAM-based FPGA, and meanwhile achieve non-volatility.
Electrical simulations show that to guarantee power ef ciency, Rurs of RRAMs does not need
be as large as theoff -resistance of a transistor, but should be atleast 20 M - . To further leverage

177

Chapter 5. RRAM-based FPGA Architectures

Figure 5.22 — Normalized average area, delay, energy and channel width of baseline and
proposed architectures: (a) baseline SRAM-based architectures; (b) baseline RRAM-based
architectures; (c) proposed RRAM-based architectures

Figure 5.23 —Normalized average area, delay, power, channel width, ADP and PDP of classical SRAM-
based and proposed RRAM-based architectures.

the potential of 4T1R-based multiplexers, we propose three architecture optimizations: (a)
The traditional CB and local routing are replaced with a uni ed CB, leading to ultra-fast
interconnection from routing tracks to LUT inputs; (b) The CB connectivity parameter Fcin
should be at least 0.33 to ensure routability, while the SB connectivity parameter Fg can be

178

5.3. Summary

increased to achieve routability improvements without delay overhead; (c) The best single
wire length L is reduced, leading to better routability. We study the best values of F¢n, Fs
and L in terms of area, delay, power and channel width. Experimental results show that

a RRAM-based FPGA properly optimized should employ (F¢in A0.33, Fs A6 and L /A2) to
achieve optimal performances. Compared to best SRAM-based FPGAs, a optimized RRAM-
based FPGA architecture brings a reduction of 57% on Area-Delay Product (ADP) and 38%
on Delay-Power Product (PDP) respectively. In particular, when operating at near- V; regime,
RRAM-based FPGAs demonstrate a 5£ improvement on the power with zero delay overhead
as compared to optimized SRAM-based FPGA operating at nominal working voltage.

179

Conclusion and Future Work

Before this thesis, merits of RRAM-based FPGASs, i.e., area, delay and power, were predicted
without solid circuit-level studies nor specialized CAD tools, which caused architecture-level
conclusions to be less meaningful. In this thesis, we have provided a systematic study on
RRAM-based FPGAs by considering realistic device modelling, circuit designs under physical
design considerations and accurate architecture-level simulations. The major principle of our
works is to leverage the potential of RRAMs in FPGA architectures by integrating RRAMs and
programming structures into the datapaths, replacing the classical SRAM-based routing ele-
ments. In order to achieve the research goal, our contributions involve three related research
elds: circuit designs (Chapter 3), CAD tool (Chapter 4) and architecture-level optimizations
(Chapter 5). From a circuit design perspective, we investigated the fundamental of RRAM-
based programming structure, proposed a high-current-density 4T1R programming structures
and 4T1R-based multiplexer designs. Compared to best CMOS implementations, the proposed
RRAM-based circuits signi cantly reduce the area, delay and power. From a CAD perspective,
we propose a simulation-based architecture exploration tool suite for FPGAs, which is called
FPGA-SPICE. Compared to the existing VTR tool suite, FPGA-SPICE enables more accurate
and realistic area and power analysis for both SRAM-based and RRAM-based FPGAs, From an
architecture perspective, we present a generic RRAM-based FPGA architecture, quanti ed the
minimum requirements for Ryrs of RRAM devices and proposed architecture-level optimiza-
tions. Accurate experimental results show that the proposed RRAM-based FPGAs improve
Area-Delay Product (ADP) by 57% and Power-Delay Product (PDP) by 38% when compared to
well-optimized SRAM-based FPGAs.

The rest of this chapter is divided into two parts. Section 6.1 highlights our contributions in
each research elds. Section 6.2 envisages the future work.

6.1 Summary of Contributions

Table 6.1 summarizes our contributions in three research elds: circuit designs, CAD tool and
architecture-level optimizations.

181

Chapter 6. Conclusion and Future Work

Table 6.1 — Summary of Contributions in Differnt Research Fields.

Research eld

Contributions

Circuit designs

2 Analysis of 2T1R programming structure.

2 Proposition of 4T1R programming structure.

2 Proposition of boosting methodologies for improving driving current
density of programming structures.

2 Proposition of one-level, two-level and tree-like 4T1R-based multi-
plexer designs with physical design details.

2 Proposition of programming transistor sizing technique.

2 Proposition of optimal physical location of RRAMSs.

2 |Investigation of the excellence on delay and power of RRAM-based
circuits at near- V; regime.

2 Investigation of the robustness of 4T1R-based multiplexers to process
variations of RRAMs.

CAD

2 Proposition of FPGA-SPICE enables automatic generation of SPICE
and synthesizable Verilog netlists for full FPGA fabric.

2 Extension of FPGA architecture description language to support
modelling transistor-level circuit designs, the physical structure of I/O
circuits and different types of con guration circuits.

2 Proposition of netlist splitting strategies to better trade-off between
simulation runtime and accuracy.

2 Study on the accuracy of analytical power model VersaPower, with
respect to simulation results.

2 Study on the area characteristics of SRAM-based FPGAs with different
con guration circuits.

FPGA architecture

2 Proposition of novel RRAM-based FPGA architecture with ef cient
BL and WL sharing strategy.

2 Determining the lower bound of Rygrsto be 20- for a power ef cient
RRAM-based FPGA.

2 Study on the area characteristics of SRAM-based and RRAM-based
FPGAs.

2 Proposition of three architecture-level optimizations for RRAM-
based FPGASs: (1) uni ed connection blocks; (2) increase capacity
of SB multiplexers; (3) smaller best length wire.

2 Investigation of the performance and power ef ciency of near- V;
RRAM-based FPGA.

In addition, the contributions of this thesis include the novel and general approaches that we
developed to study RRAM-based circuits and FPGA architectures:

1. Previous works typically bound their circuit designs and FPGA architectures tightly to a
speci c RRAM technology. Differently, this thesis selects another angle: we target generic
RRAM technologies and quantify the minimum requirements on the RRAM devices,
such as R_rs and Ryrs, which can guarantee good circuit-level and architecture-level

182

