
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. A. P. Burg, président du jury
Prof. G. De Micheli, Dr P.-E. J. M. Gaillardon, directeurs de thèse

Prof. M. Huebner, rapporteur
Dr J. Ryckaert, rapporteur
Prof. P. Ienne, rapporteur

Circuit Design, Architecture and CAD for RRAM-based
FPGAs

THÈSE NO 8084 (2017)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 24 NOVEMBRE 2017
À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS

LABORATOIRE DES SYSTÈMES INTÉGRÉS (IC/STI)
PROGRAMME DOCTORAL EN INFORMATIQUE ET COMMUNICATIONS

Suisse
2017

PAR

Xifan TANG

We’re paratroopers, Lieutenant.

We’re supposed to be surrounded.

— Richard Winters

To my parents and grandparents. . .

Acknowledgements
It is an amazing experience to spend six years in EPFL pursuing my master and PhD degrees.

It is my great honor to have Prof. Giovanni De Micheli and Prof. Pierre-Emmanuel Gaillardon

supervising my doctoral researches. Without their insights and tremendous support on both

technical works and scientific writings, this work may not be possible. Their serious attitudes

on scientific researches drive me to improve my works to the most. In addition, their sincere

advices on personal development also inspire me greatly.

I am also grateful to my scientific collaborators: Prof. Paolo Ienne, Dr. Mathias Soeken, Prof.

Zhufei Chu, Prof. Vasilis F. Pavlidis, Dr. Jian Zhang, Dr. Hu Xu, Edouard Giacomin, Kim Gain,

Dr. Grace Zgheib, Dr. Ana Petkovska and Maxime Thammasack for their advices and important

contributions to technical work. In particular, I really appreciate the technical contributions

from Prof. Zhufei Chu, Dr. Jian Zhang and Edouard Giacomin. Their works indeed have added

remarkable value to my research outcomes.

I should also express my deepest appreciation to Prof. Lingli Wang, who showed me the

world of FPGA and taught me good habits at the beginning of my academic career. His

encouragement solids my motivation in pursuing a PhD degree.

I would like to express my appreciation to my colleagues in Integrated Systems Laboratory,

especially Mme. Christina Govoni for helping me with all the administrative work. I should

also express my appreciation to IT manager, Rodolphe Buret, for his hard work in maintaining

powerful computers and servers. I thank Dr. Jian Zhang, Prof. Zhufei Chu and Dr. Hu Xu for

the collaboration work broadening my vision and knowledge. I am glad to have Winston Jason

Haaswijk and Eleonora Testa as my office mate, for sharing happiness and sadness during

work hours.

I would like to thank my family: my mother Weiqian Tang, my father Jianhua Zhang, my

grandparents Yongming Tang and Jinzhu Chen for supporting me unconditionally all the time.

It is their spiritually supports that give me the infinite courage and determination to crash any

difficulties during my PhD.

Last but not least, I would like to thank Dr. Jian Zhang, Dr. Hao Zhuang, Dr. Tian Guo, Bin Jin,

Yujie Wu, Jun Ma, Dr. Hezhi Zhang, Dechao Sun and all of my friends, who let me enjoy the life

in Switzerland and the happy time we spent together.

Lausanne, August 2017 Xifan Tang

i

Abstract
Field Programmable Gate Arrays (FPGAs) have been indispensable components of embedded

systems and datacenter infrastructures. However, energy efficiency of FPGAs has become a

hard barrier preventing their expansion to more application contexts, due to two physical

limitations: (1) The massive usage of routing multiplexers causes delay and power overheads

as compared to ASICs. To reduce their power consumption, FPGAs have to operate at low

supply voltage but sacrifice performance because the transistors drive degrade when working

voltage decreases. (2) Using volatile memory technology forces FPGAs to lose configurations

when powered off and to be reconfigured at each power on.

Resistive Random Access Memories (RRAMs) have strong potentials in overcoming the physical

limitations of conventional FPGAs. First of all, RRAMs grant FPGAs non-volatility, enabling

FPGAs to be "Normally powered off, Instantly powered on". Second, by combining functional-

ity of memory and pass-gate logic in one unique device, RRAMs can greatly reduce area and

delay of routing elements. Third, when RRAMs are embedded into datpaths, the performance

of circuits can be independent from their working voltage, beyond the limitations of CMOS cir-

cuits. However, researches and development of RRAM-based FPGAs are in their infancy. Most

of area and performance predictions were achieved without solid circuit-level simulations

and sophisticated Computer Aided Design (CAD) tools, causing the predicted improvements

to be less convincing.

In this thesis, we present high-performance and low-power RRAM-based FPGAs from transistor-

level circuit designs to architecture-level optimizations and CAD tools, using theoretical anal-

ysis, industrial electrical simulators and novel CAD tools. We believe that this is the first

systematic study in the field, covering:

From a circuit design perspective, we propose efficient RRAM-based programming circuits

and routing multiplexers through both theoretical analysis and electrical simulations. The pro-

posed 4T(ransitor)1R(RAM) programming structure demonstrates significant improvements

in programming current, when compared to most popular 2T1R programming structure.

4T1R-based routing multiplexer designs are proposed by considering various physical design

parasitics, such as intrinsic capacitance of RRAMs and wells doping organization. The pro-

posed 4T1R-based multiplexers outperform best CMOS implementations significantly in area,

delay and power at both nominal and near-Vt regime.

From a CAD perspective, we develop a generic FPGA architecture exploration tool, FPGA-

SPICE, modeling a full FPGA fabric with SPICE and Verilog netlists. FPGA-SPICE provides

different levels of testbenches and techniques to split large SPICE netlists, in order to obtain

iii

Abstract

better trade-off between simulation time and accuracy. FPGA-SPICE can capture area and

power characteristics of SRAM-based and RRAM-based FPGAs more accurately than the

currently best analytical models.

From an architecture perspective, we propose architecture-level optimizations for RRAM-

based FPGAs and quantify their minimum requirements for RRAM devices. Compared to the

best SRAM-based FPGAs, an optimized RRAM-based FPGA architecture brings significant

reduction in area, delay and power respectively. In particular, RRAM-based FPGAs operating

in the near-Vt regime demonstrate a 5× power improvement without delay overhead as

compared to optimized SRAM-based FPGA operating at nominal working voltage.

Key words: Resistive Memory, Field Programmable Gate Array, Circuit Design, Programming

Structure, Multiplexer, Physical Design, Computer-Aided Design

iv

Résumé
Les Réseaux de Portes Programmables in Situ (Field Programmable Gate Arrays - FPGA) sont

des composants indispensables aux systèmes embarqués et aux infrastructures de systèmes de

données. Cependant, l’efficacité énergétique des FPGA est devenue une barrière empêchant

leur expansion à de nouveaux contextes d’applications, du fait de deux limitations physiques :

(1) L’utilisation massive de multiplexeurs de routage engendre une augmentation des délais et

de la consommation énergétique par rapport aux ASICs. Afin de réduire leur consommation

d’énergie, les FPGAs peuvent fonctionner à faible tension d’alimentation mais cela engendre

une perte de performances car les transistors se dégradent lorsque la tension de fonction-

nement diminue. (2) L’utilisation d’une technologie de mémoire volatile oblige les FPGA à

reconfigurer leurs informations de configurations à chaque mise sous tension.

Les mémoires résistives (Resistive Random-Access Memory - RRAM) ont de forts potentiels

pour surmonter les limitations physiques des FPGA conventionnels. Premièrement, les RRAMs

permettent aux FPGA d’être non-volatiles, leur permettant ainsi de ne pas perdre leur confi-

guration lors de la mise hors tension et d’être instantanément opérationnels lors de la mise

sous tension. Deuxièmement, en combinant la fonctionnalité de la mémoire et de la logique

des portes de transmission dans un seul et même composant, les RRAM peuvent considéra-

blement réduire l’aire et le délai des éléments de routage. Troisièmement, lorsque les RRAM

sont intégrées dans les chemins d’accès, les performances des circuits peuvent devenir in-

dépendante de la tension de fonctionnement, bien au-delà des limites des circuits CMOS.

Cependant, les recherches et le développement des FPGA basés sur des RRAMs en sont à leurs

débuts. La plupart des prédictions en termes d’aire et de délai ont été réalisées sans simula-

tions approfondies au niveau du circuit et sans outil de Conception Assistée par Ordinateur

(CAO), rendant incertaines les prédictions de performances.

Dans cette thèse, nous proposons des FPGA haute performance et faible consommation, basés

sur RRAMs au travers de l’étude des circuits au niveau du transistor jusqu’aux optimisations

architecturales et la création d’outils CAO spécifiques, et en utilisant l’analyse théorique, les

simulateurs électriques industriels et les nouveaux outils de CAO. Nous sommes convaincus

que c’est la première étude du domaine couvrant :

Du point de vue de la conception de circuits, nous proposons des circuits de programma-

tion efficaces basés sur des RRAMs et des multiplexeurs de routage évalués à la fois à tra-

vers des analyses théoriques et des simulations électriques. La structure de programmation

4T(ransitor) 1R(RAM) proposée démontre des améliorations significatives en termes de cou-

rant de programmation, par rapport à la structure de programmation 2T1R la plus populaire.

v

Abstract

Des multiplexeurs de routage basés sur les structures 4T1R sont proposés en considérant

divers facteurs parasites tels que la capacité intrinsèque des RRAMs et l’arrangement des zones

de dopage substrat. Les multiplexeurs basés sur les 4T1R surpassent les implémentations

CMOS de manière significative en termes d’aire, délai et de consommation énergétique, en

régime nominal et en régime proche de la tension de seuil.

Du point de vue de la CAO, nous développons un outil générique d’exploration d’architectures

de FPGAs, FPGA-SPICE, capable d’exporter le modèle SPICE ou verilog d’un FPGA complet.

FPGA-SPICE fournit différents niveaux de banc d’essais et des techniques pour diviser les

larges représentations SPICE afin d’obtenir les meilleurs compromis en termes de temps de

simulation et précision. FPGA-SPICE peut capturer les caractéristiques des FPGA basées sur

SRAM et RRAM en termes d’aire et de consommation plus précisément que les meilleurs

modèles analytiques actuels.

Du point de vue de l’architecture, nous proposons des optimisations au niveau de l’archi-

tecture pour les FPGA basés sur des RRAMs et quantifions les spécifications minimales pour

les RRAMs. Par rapport aux meilleurs FPGAs basés sur des SRAM, une architecture FPGA

optimisée basée sur des RRAMs apporte de grandes améliorations en termes d’aire, de délai et

de consommation. En particulier, les FPGAs basées sur des RRAMs fonctionnant en régime

proche de la tension de seuil démontrent une consommation énergétique 5 fois inferieur sans

délais supplémentaires par rapport aux FPGAs optimisés utilisant des SRAMs et fonctionnant

à la tension de travail nominale.

Mots clefs : Mémoire Résistive, Réseaux de Portes Programmables in Situ, Conception de Cir-

cuits, Structures de Programmation, Multiplexeur, Conception Physique, Conception Assistée

par Ordinateur

vi

Contents
Acknowledgements i

Abstract (English/Français/Deutsch) iii

List of figures xi

List of tables xvii

1 Introduction 1

1.1 Overview of RRAMs . 2

1.2 Advantages and Challenges for FPGAs . 4

1.3 Opportunities in RRAM-based FPGAs . 5

1.4 Contributions and Organization . 6

2 Background and Previous Works 11

2.1 RRAM Technology . 11

2.1.1 Resistive Characteristics . 13

2.1.2 Capacitive Modeling . 15

2.1.3 Trade-off between RLRS and CP . 16

2.1.4 Co-Integration with CMOS Technology and Scaling Trends 16

2.1.5 Process Variations . 18

2.1.6 Material Engineering for Application Requirements 19

2.2 Conventional FPGA Architectures . 20

2.2.1 Classical Architectures . 20

2.2.2 Architectural Enhancements . 25

2.2.3 Circuit Designs in FPGAs . 30

2.2.4 Memory Technologies for FPGAs . 34

2.3 Previous works about RRAM-based Circuit Designs and FPGA Architectures . . 38

2.3.1 Programming Structures . 38

2.3.2 Non-Volatile Flip-Flop and SRAM . 41

2.3.3 Multiplexer and Crossbar Designs . 41

2.3.4 RRAM-based FPGA Architectures . 43

2.4 FPGA Architecture Exploration Tool and Power Modeling Technique 46

2.4.1 FPGA EDA flow . 46

vii

Contents

2.4.2 Probability-based Power Estimation Techniques 47

2.5 Summary . 52

3 RRAM-based Circuit Designs 53

Part 1: RRAM-based Programming Structures

3.1 Experimental Methodology . 54

3.2 Limitations of 2T1R Programming Structure . 54

3.2.1 2T1R Circuit Structure . 55

3.2.2 I-V Characteristics of 2T1R Structure . 56

3.2.3 Physical Design Difficulties . 58

3.2.4 Area Estimation . 59

3.2.5 Electrical Simulations . 60

3.2.6 Discussion About Limitations . 61

3.3 2TG1R Programming Structure . 62

3.3.1 2TG1R Circuit Structure . 62

3.3.2 Area Estimation . 63

3.3.3 Electrical Simulations . 65

3.3.4 Summary: Advantages and Limitations . 66

3.4 4T1R Programming Structure . 67

3.4.1 4T1R Circuit Structure . 68

3.4.2 Theoretical Analysis on I-V Characteristics 69

3.4.3 Current Density Boosting Methodologies 71

3.4.4 Area Estimation . 73

3.4.5 Benefits of 4T1R structures . 74

3.4.6 Summary on the 4T1R programming structures 76

3.4.7 Discussion . 77

Part 2: RRAM-based Multiplexer Designs

3.5 Basic 4T1R-based Multiplexer . 80

3.5.1 Multiplexer Structure and Programming Strategy 80

3.5.2 Limitations from a Physical Design Perspective 82

3.6 Improved 4T1R-based Multiplexer . 83

3.6.1 One-level Multiplexer Structure . 83

3.6.2 Physical Design Advantages . 85

3.6.3 Two-level and Tree-like multiplexer Structure 86

3.6.4 Sharing deep N-Well between multiplexers 88

3.6.5 Constraints on the Programming Voltage Vpr og 89

3.6.6 Analytical Comparison between 4T1R multiplexers 92

3.7 Optimal Physical Design Parameters . 93

3.7.1 RC modeling of General 4T1R-based multiplexers 93

3.7.2 Physical Position of RRAMs . 96

3.7.3 Programming Transistor Sizing Technique 97

3.8 Experimental Results . 99

viii

Contents

3.8.1 Experimental Methodology . 99

3.8.2 Transient Analysis . 100

3.8.3 Best Wpr og for RRAM-based Multiplexers 100

3.8.4 Optimal RRAM Location . 104

3.8.5 Area Comparison . 105

3.8.6 Delay Improvements . 106

3.8.7 Energy and Power Benefits . 110

3.8.8 Area-Delay and Power-Delay Products Analysis 110

3.9 Impact of Process Variations of RRAMs . 110

3.9.1 Impact of Variations on CP . 111

3.9.2 Impact of Variations on Vset . 112

3.9.3 Impact of Variations on Vr eset . 113

3.10 Summary . 114

4 Simulation-based Architecture Exploration Tool 117

4.1 Principles . 118

4.1.1 SPICE Modeling . 119

4.1.2 Verilog Modeling . 119

4.2 Extended Architecture Description Language . 121

4.2.1 Transistor-level Module Declaration . 121

4.2.2 Physical Structure Modeling . 124

4.2.3 Configuration Circuitry . 126

4.3 Transistor-level Circuit Netlist Generation . 126

4.3.1 Inverters/Buffers . 127

4.3.2 Pass-gate Logic . 128

4.3.3 SRAM . 128

4.3.4 Scan-chain Flip-Flop . 129

4.3.5 IO Circuits . 130

4.3.6 Multiplexers . 130

4.3.7 Look-Up Tables . 134

4.3.8 Channel Wire . 135

4.4 Netlist Partitioning Strategies . 137

4.4.1 Voltage Stimuli and Loads Extraction . 138

4.4.2 Parasitic Activity Estimation . 138

4.5 Experimental Results . 139

4.5.1 Methodology . 139

4.5.2 Functional Verification . 140

4.5.3 Studies on Runtime, Memory Usage and Accuracy 141

4.5.4 Power Breakdowns . 143

4.5.5 Accuracy Examination vs. VersaPower . 144

4.5.6 Area Characteristics of SRAM-based FPGAs 144

4.6 Summary . 147

ix

Contents

5 RRAM-based FPGA Architectures 149

5.1 General Vision . 150

5.1.1 Choice of Non-volatile Modules . 150

5.1.2 Configuration Circuits . 152

5.1.3 Experimental Methodology . 153

5.1.4 Area Characteristics . 154

5.1.5 Power Characteristics . 157

5.1.6 Overall Performance . 164

5.2 Architecture-level Optimizations . 164

5.2.1 Experimental Methodology . 165

5.2.2 Unified Connection Block . 166

5.2.3 Increase Capacity of SB MUXes . 172

5.2.4 Smaller Best Length Wire < 4 . 174

5.2.5 RRAM-based FPGAs vs. SRAM-based FPGAs 177

5.3 Summary . 177

6 Conclusion and Future Work 181

6.1 Summary of Contributions . 181

6.2 Future Work . 185

A An appendix 187

A.1 Examples of FPGA-SPICE Architecture Modeling 187

Bibliography 214

Curriculum Vitae 215

x

List of Figures
1.1 A RRAM Device (a) sandwiched structure and (b) I-V Characteristics: Vset and

Iset converts part of metal oxide to low-resistance state. 3

1.2 Power consumption of (a) a SRAM-based FPGA and (b) a RRAM-based FPGA. . 5

1.3 Use SRAM + transistors or RRAMs to propagate and block datapath signals. . . 6

2.1 (a) RRAM in pristine state; (b) RRAM in Low Resistance State (LRS); (c) RRAM in

High Resistance State (HRS). 12

2.2 I-V characteristic of (a) a URS RRAM; (b) a BRS RRAM. 12

2.3 (a) Size of filaments inside a RRAM achieved by Iset ,mi n ; (b) Size of filaments

inside a RRAM achieved by Iset ,max ; (c) I-V characteristics of a RRAM with Bipolar

Resistive Switching . 14

2.4 Alternative integrations: (a) Natively combine with source/drain or gate of tran-

sistors; (b) Locate between metal layers. 17

2.5 Impact of cell area on RHRS and RLRS [Courtesy by [1]]. 18

2.6 Generic FPGA Architecture. 21

2.7 Detailed CLB Architecture. 22

2.8 Bi-directional global routing architecture. 23

2.9 Bi-directional global routing architecture featured by (a) L = 1; (b) L = 2. 25

2.10 Tile-based FPGA Architecture. 27

2.11 Tile and enhanced CLB architecture. 28

2.12 Uni-directional global routing architecture. 29

2.13 A uni-directional routing track featured by L = 2. 29

2.14 (a) Symbol of a N -input routing multiplexer; (b) One-level implementation [2, 3]. 31

2.15 Alternative routing multiplexer design topologies: (a) two-level; (b) tree-like [2, 3]. 31

2.16 Look-Up Table (LUT): (a) principle internal structure; (b) transistor-level design

of a 2-input LUT [4]. 33

2.17 Transistor-level design of a master-slave D-type Flip-Flop with asynchronous set

and reset [4]. 34

2.18 (a) 6-Transistor SRAM design [4]; (b) Configuration circuits for SRAM arrays. . . 35

2.19 Scan-Chain Flip-Flop (SCFF) design and associated configuration circuits [5, 6] 36

2.20 (a) Embedded Flash Process (Courtesy by [7]); (b) Erasing operation of a Flash

transistor (Courtesy by [7]); (c) Programming operation of a Flash transistor

(Courtesy by [7]). 37

xi

List of Figures

2.21 (a) A transmission gate controlled by a SRAM; (b) Equivalent Flash-based pro-

grammable switch. (Courtesy by [7]) . 37

2.22 Three most commonly used programming structures: (a) 1T(ransistor)1R(RAM),

(b) 1T(ransistor)2R(RAM) and (c) 2T(ransistor)1R(RAM). 39

2.23 A non-volatile master-slave Flip-Flop design [5, 6]. 42

2.24 A non-volatile SRAM design [5, 6]. 43

2.25 Early designs of 2T1R-based multiplexers: (a) A N -input onelevel structure [9];

(b) An illustrative example of two-level and tree-like 4:1 structure [10]. 44

2.26 Early RRAM-based FPGA architectures (a)LUTs embedded with 2T1R program-

ming structures; (b)SRAMs are replaced by 2T1R programming structures. . . . 45

2.27 Classical EDA flow for FPGA architecture exploration purpose. 47

2.28 Examples of signals for switching activity modeling. 48

2.29 Dynamic power modelling: (a) an CMOS inverter with a load capacitance CL ; (b)

Equivalent RC model; (c) Input transition from low to high voltage level. 50

3.1 System-level implementations exploiting the 2T1R programming structure: (a)

scan chain [8]; (b) memory bank [9]. 55

3.2 A 2T1R programming structure extracted from system-level implementations in

Fig. 3.1 . 57

3.3 I-V characteristics of the 2T1R structure. 58

3.4 (a) Asymmetric bulk management of the 2T1R structure; (b) Symmetric bulk

management of the 2T1R structure; (c) Single well application of layout; (d)

Triple well application of layout. 59

3.5 Transient analysis on voltages and current in the 2T1R structure during a set

process (Wpr og = 5, Vpr og = 3.0V , Wi nv = 20, 1 Wpr og = 320nm). 61

3.6 VDS1 and VDS2 in 2T1R structure under diverse Vpr og (Wi nv = 20) 62

3.7 VDS1 and VDS2 in 2T1R structure under diverse Wi nv (Vpr og = 3.0V). (1 Wpr og =
320nm) . 63

3.8 (a) Id s in 2T1R structure under diverse Vpr og (Wi nv = 20); (b) Id s in 2T1R struc-

ture under diverse Wi nv (Vpr og = 3.0V). (1 Wpr og = 320nm) 64

3.9 A 2TG1R programming structure extracted from system-level implementations

in Fig. 3.1 . 65

3.10 VDS1 and VDS2 in 2TG1R structure under diverse Vpr og (Wi nv = 20); 66

3.11 VDS1 and VDS2 in 2TG1R structure under diverse Wi nv (Vpr og = 3.0V). (1 Wpr og =
320nm) . 67

3.12 (a) The proposed 4T1R structure (b) Extracted 4T1R structure in a set process . 68

3.13 I-V characteristics of the 4T1R structure: (a) Vset =Vr eset ; (b) Vset < Vr eset or

Iset < Ir eset ; (c) Vset >Vr eset or Iset > Ir eset . 70

3.14 I-V characteristics of the 4T1R structure during set process when: (a) Boosting

Wpr og ; (b) Boosting Vpr og . 71

3.15 Comparison on VDS of programming transistors under diverse Wpr og and Vpr og

in 2T1R, TG-based 2T1R and 4T1R structures (Wi nv = 20). (1 Wpr og = 320nm) . 75

xii

List of Figures

3.16 Comparison on Id s in 2T1R, 2TG1R and 4T1R structures (Wi nv = 20). (1 Wpr og =
320nm) . 76

3.17 Comparison on driving current per minimum transistor width under diverse

Wpr og and Vpr og between 2T1R, TG-based 2T1R and 4T1R structures (Wi nv = 20).

(1 Wpr og = 320nm) . 77

3.18 Comparison on area-delay product of 2TG1R and 4T1R structures (Wi nv = 20). 78

3.19 Comparison on power-delay product of 2TG1R and 4T1R structures (Wi nv = 20). 78

3.20 Comparison on RLRS in 2TG1R and 4T1R structures (Wi nv = 20). (1 Wpr og =
320nm) . 79

3.21 Circuit design and well arrangement of a naive N : 1 one-level 4T1R-based

multiplexer . 81

3.22 Improved one-level N-input 4T1R-based multiplexer: (a) operating mode (VDD,wel l =
VDD , GN Dwel l =GN D); (b) set process (VDD,wel l =−Vpr og +2VDD , GN Dwel l =
−Vpr og +VDD); (c) reset process (VDD,wel l =Vpr og , GN Dwel l =Vpr og −VDD ; . . 84

3.23 Cross-section of the layout of 4T1R multiplexers: (a) naive design; (b) improved

design. 87

3.24 Schematic of a robust two-level N-input 4T1R-based multiplexer. 88

3.25 Schematic of a robust tree-like N -input 4T1R-based multiplexer. 89

3.26 Cascading two N -input one-level 4T1R-based multiplexers: share Deep N-Wells

efficiently. 90

3.27 Cross-section of the layout of a 4T1R programming structure: (a) during reset

process; (b) during set process. 91

3.28 (a) Critical path of a general RRAM-based multiplexer; (b) General critical path

of RRAM-based multiplexer; (c) Equivalent RC model. 94

3.29 Relation between xi and delay of a RRAM-based multiplexer. 97

3.30 Relation between Wpr og and delay of a RRAM-based multiplexer. 98

3.31 Transient analysis of a 2-input 4T1R-based multiplexer in Fig. 3.22(a): (a) signal

waveforms of programming phase; (b) signal waveforms of operation. 101

3.32 Impact of Wpr og on the delay of 50-input improved 4T1R-based multiplexers

(x = L). 102

3.33 Two case studies on the best Wpr og of improved 4T1R-based multiplexers (x = L):

(a) impact of the multiplexing structures when VDD = 0.9V (b) impact of VDD . . 103

3.34 Delay comparison of improved 4T1R-based multiplexers featured by x = 0 and

x = L. 104

3.35 Layout of 16-input multiplexers: (a) CMOS two-level structure; and (b) 4T1R-

based two-level structure. 105

3.36 Delay comparison between CMOS and 4T1R-based multiplexers: (a) delay im-

provements of one-level, two-level and tree-like structures (VDD = 0.7V); (b)

delay efficiency of one-level structure at near Vt regime. 107

3.37 Power comparison between CMOS and 4T1R-based multiplexers: (a) energy

improvements of one-level, two-level and tree-like structures (VDD = 0.7V); (b)

power reduction of one-level structure at near Vt regime. 108

xiii

List of Figures

3.38 Comparison between CMOS multiplexers and 4T1R-based multiplexers: (a)

Area-Delay Product; (b) Power-Delay Product. 109

3.39 Impact of parasitic capacitance of RRAM CP on the delay of one-level 4T1R-

based multiplexers (VDD = 0.9V). 111

3.40 RHRS degradation when Vset = {0.4,0.6V ,0.8V } <VDD = 0.9V 112

3.41 (a) RLRS degradation when Vr eset = 0.3V over 1k operating cycles; (b) Voltage

across a RRAM in LRS (VA and VC in Fig. 3.22(a)) during operation; and (c) RLRS

degradation when Vr eset = 0.3V in a switching cycle. 113

4.1 FPGA-SPICE EDA flow for SPICE modeling purpose. 118

4.2 Ilustration of the full-chip-level testbenches. 120

4.3 Ilustration of the grid-level testbenches. 121

4.4 Ilustration of the component-level testbenches. 122

4.5 FPGA-SPICE EDA flow for synthesizable Verilog purpose. 123

4.6 An I/O pad: (a) VPR abstract-level modeling, and (b) actual physical design. . . 125

4.7 Transistor-level circuit design of (a) an inverter and (b) a tapered buffer. 127

4.8 Transistor-level circuit design of (a) a global routing multiplexer, (b) a local

routing multiplexer, and (c) the internal tree-like structure. 131

4.9 Transistor-level circuit design of a 4T1R-based multiplexer. 133

4.10 An example of the transistor-level design of a LUT 135

4.11 (a) A length-2 unidirectional wire (highlighted in red) within FPGA routing archi-

tecture; (b) Corresponding RC modeling of segments 136

4.12 Ilustration of the voltage stimuli generation and load extraction techniques. (a)

BLE multiplexer with its architectural context; (b) extracted testbench. 137

4.13 An example for parasitic nets estimation. 138

4.14 An illustration of the waveforms for functional verification purpose. 141

4.15 Waveforms of a sample circuit: inverter, achieved by ModelSim simulation:

(a) full waveform with configuration phase highlighted in red rectangle and

operation phase highlighted in blue rectangle; (b) an example of a programming

clock cycle; (c) an example of a operating clock cycle. 142

4.16 Power breakdown results of the considered FPGA architecture between FPGA-

SPICE and VersaPower averaged over the MCNC big20 benchmark suite for

22nm, 45nm and 180nm technology nodes. 145

4.17 Full-chip layouts of 40nm SRAM-based FPGAs with CLB array size 5×5, a channel

width of 300. 146

4.18 Area breakdown of SRAM-based FPGAs which are configured by (a) BL/WL

decoders, and (b) scan-chain flip-flops. 147

5.1 Memory access organization in SRAM-based FPGA: SRAMs are placed in an

array and SRAMs in the same column/row share the same BL/WL. 150

5.2 Memory access organization in RRAM-based FPGA: RRAMs belonging to the

same multiplexer/NV SRAM are placed in the same column and share BL/WL. 151

xiv

List of Figures

5.3 Full-chip layouts of 40nm SRAM-based and RRAM-based FPGAs with CLB array

size 5×5. 155

5.4 Area breakdown of (a) RRAM-based FPGA and (b) SRAM-based FPGA. 155

5.5 Full-chip area comparison between SRAM-based and RRAM-based FPGAs by

sweeping channel widths from 50 to 300. 156

5.6 Standard cell area comparison between SRAM-based and RRAM-based FPGAs

by sweeping channel widths from 50 to 300. 156

5.7 Leakage paths of N -input multiplexers: (a) SRAM-based (b)RRAM-based 159

5.8 Impact of RHRS on the average static power of a 2-input 4T1R-based multiplexer 160

5.9 Impact of RHRS on the average static power of a 2-input 4T1R-based multiplexer

with tapered buffer at output . 161

5.10 Normalized power consumption of SRAM-based and RRAM-based architectures

with different RHRS . 162

5.11 Static power breakdown of (a) RRAM-based FPGA and (b) SRAM-based FPGA. . 163

5.12 Dynamic power breakdown of (a) RRAM-based FPGA and (b) SRAM-based FPGA.163

5.13 Area, delay and energy comparison between SRAM-based and RRAM-based

FPGAs operating at nominal and near-Vt regime. 164

5.14 Classical interconnection from routing tracks to LUT inputs. 167

5.15 Proposed interconnection from routing tracks to LUT inputs. 168

5.16 An illustrative example of the proposed routing architecture(K = 6) with Fc,i n =
0.33 and Fs = 6. 169

5.17 Normalized average area, delay, power and channel width of baseline and pro-

posed architecture by sweeping Fc,i n : (a) SRAM-based architectures; (b) RRAM-

based architectures. 170

5.18 Tile area comparison between a traditional FPGA architecture and the proposed

RRAM FPGA architecture for different channel width W 171

5.19 (a) Driver multiplexer and fan-outs of a Length-L wire; (b) Equivalent RC model

of a Length-L wire. 172

5.20 Normalized average area, delay, power and channel width of baseline and pro-

posed architectures by sweeping Fs : (a) SRAM-based architectures; (b) RRAM-

based architectures. 173

5.21 Normalized average area, delay, power and channel width of baseline and pro-

posed architectures by sweeping L: (a) SRAM-based architectures; (b) RRAM-

based architectures. 176

5.22 Normalized average area, delay, energy and channel width of baseline and pro-

posed architectures: (a) baseline SRAM-based architectures; (b) baseline RRAM-

based architectures; (c) proposed RRAM-based architectures 178

5.23 Normalized average area, delay, power, channel width, ADP and PDP of classical SRAM-

based and proposed RRAM-based architectures. 178

xv

List of Tables
2.1 Bipolar RRAMs with different metal oxide materials 19

2.2 FPGA Architecture Parameters . 24

2.3 Analytical comparison between CMOS one-level, two-level and tree-like multi-

plexers . 32

2.4 Static probability and transition density of the signals in Fig. 2.28. 48

3.1 Voltages arrangements for operation, set and reset examples in Fig. 3.22(a)(b)(c) 85

3.2 Analytical comparison on area, delay and switching energy of N-input 4T1R-

based multiplexers. 92

4.1 Comparison of runtime, memory usage and total power of full-chip/grid/component-

level testbenches for 22nm, 45nm and 180nm technology nodes in the case of

the MCNC big20 benchmark s298. 143

4.2 Comparison of accuracy by modules in full-chip/grid/component-level test-

benches for 22nm, 45nm and 180nm technology nodes in the case of the MCNC

benchmark big20 s298. 144

5.1 Resistance of leakage paths of the 4T1R-based multiplexer in 5.7(b) whose start-

ing point is p3 and ending points are n4, n5, n6 and n7 159

5.2 Delay comparison between SRAM-based and RRAM-based routing multiplexers. 165

6.1 Summary of Contributions in Differnt Research Fields. 182

xvii

1 Introduction

Strong demand from the Internet of Things (IoT) have fueled researches on high-performance

and energy-efficient computer-based systems [10, 11, 12]. We confront challenges from two-

pronged ecosystems in IoT: low-power mobile devices and cloud services. The mobile devices

are supposed to stay active for a long period with a limited battery life. For these devices,

energy-efficiency is the most critical factor due to a tight power budget. Cloud services are

actually provided by datacenters, aiming at processing huge amount of data from mobile

devices or other sources. For datacenters, high-performance computing is a more important

metric than energy efficiency since they are supposed to deal with abundant data while being

power supplied through the grid.

Since invented in 1984, Field Programmable Gate Arrays (FPGAs) have demonstrated them-

selves not only as an alternative implementation media of Application Specific Integrated

Circuits (ASICs) but also as an indispensable component of embedded systems and datacenter

infrastructures [13, 14], growing to a $ 4.5 billion per year industry [15, 16]. The programmabil-

ity and large I/O bandwidth of FPGAs brings significant advantages in realizing energy-efficient

and high-throughput applications, e.g., deep learning network [17]. Meanwhile, programma-

bility and I/O bandwidth cost general FPGA implementations 20× bigger area, 4× longer delay

and 12× higher power consumption, when compared to ASICs [18]. Such overheads prohibit

FPGAs from massive deployment in ultra-low-power embedded systems.

Resistive Random Access Memories (RRAMs) [1, 19], a member of the emerging Non-Volatile

Memories (NVM) family [20], have become a promising candidate in displacing conventional

memory technologies of FPGAs, such as SRAM [21] and Flash [7]. Potentials of RRAMs have

been investigated in many fields, i.e., memory storage [22], neuromorphic computing [23],

hardware security [24] and FPGAs [25, 9, 26, 27, 28]. In particular, RRAM-based FPGAs are pre-

dicted to improve area, delay and power in addition to non-volatility, thus being an effective

component for IoT applications. Still, researches and development of RRAM-based FPGAs are

in their infancy. Circuit simulations focus on functional verification and employ analytical

RRAM models. Area and performance predictions are achieved without fully considering

physical design issues, e.g., the parasitic effects of RRAMs and their associated transistors.

1

Chapter 1. Introduction

Additionally, the efficiency of RRAM-based circuit topologies has not been carefully examined.

Lacking solid circuit-level studies, FPGA architecture explorations based on RRAMs would

be less meaningful. Moreover, current FPGA architecture exploration tools provide limited

supports in accurate power analysis, especially for emerging memory technologies. It is en-

tirely possible that the predicted improvements of RRAM-based FPGAs are counteracted when

the parasitic effects are considered and accurate power analysis are conducted. Therefore,

it is necessary to examine the concept with realistic device modelling, circuit designs under

physical design considerations and accurate architecture-level simulations.

In this thesis, we present RRAM-based FPGAs from transistor-level circuit designs to architecture-

level optimizations and fast prototyping techniques. We validate their high-performance and

low-power advantages over Static Random Access Memory (SRAM)-based FPGAs with theoret-

ical analysis, industrial electrical simulators and novel Electrical Design Automation (EDA)

tools. We believe that this is the first systematic study about RRAM-based essential circuit

designs and FPGA architectures. To motivate our work, the rest of this chaper is organized

as follows. Section 1.1 provides a brief overview about RRAM technology and explains their

outstanding features to be exploited in circuit designs and FPGAs. Section 1.2 is devoted to

analyzing the advantages of SRAM-based FPGAs and their bottlenecks in low-power appli-

cations. Section 1.3 introduces the opportunities of RRAM-based FPGAs in overcoming the

limitations of their SRAM-based counterparts. Section 1.4 lists the major contributions of this

thesis and the approaches to achieve them.

1.1 Overview of RRAMs

Since their popularization in 2004 [29], Resistive Random Access Memories (RRAMs) are ex-

pected to trigger revolutionary changes in many applications. In terms of functionality, a

RRAM can be simply regarded as a non-volatile configurable resistor, which can hold informa-

tion when powered down. A RRAM device exhibits resistive switching between High Resistance

State (HRS) and Low Resistance State (LRS) thanks to forming and rupturing the conductive

filaments in its metal oxide, as illustrated in Fig. 1.1(a). By applying a proper combination of

programming voltage and programming current between electrodes, resistance states can be

switched, following the I-V curve in Fig. 1.1(b).

The non-volatile property of RRAMs have attracted interest in replacing SRAMs, Dynamic

Random-Access Memories (DRAMs) and even Flash RAMs in computer systems. Compared

to volatile memories, e.g., SRAMs and DRAMs, using RRAMs can save reconfiguration time

and energy when the entire system wakes up from sleep modes, appealing to IoT and mobile

applications. Different from Flash memory, RRAMs are compatible with Back-End-of-Line

(BEoL) fabrication and hence are envisioned to be stacked on the top of the transistors, reduc-

ing fabrication cost and improving footprint of whole system. Besides, BEoL compatibility

allows memories to be close to the computing logic, significantly reducing the access time to

memories.

2

1.1. Overview of RRAMs

Metal
Oxide

Bottom
Electrode (BE)

Top
Electrode (TE)

Voltage
Cu
rr
en
t

�����

(b)
+-

+

0

����

����

(a)

������
����

��	�

�
	�	�

Conductive
Filaments

���

Figure 1.1 – A RRAM Device (a) sandwiched structure and (b) I-V Characteristics: Vset and Iset

converts part of metal oxide to low-resistance state.

The configurable resistive property of RRAMs have been catalyst of research in In-Memory

Computing [30, 31, 32], Neuromorphic Computing [33, 34] and Physical Unclonable Function

(PUF) [35, 36]. The HRS and LRS can represent ’0’ and ’1’ in boolean logic, similar to the on

and off states of a transistor. Hence, the two resistance states can be exploited to realize digital

circuits, replacing transistors [37, 30, 38]. Interestingly, even a RRAM-based memory array

is capable of implementing logic gates such as majority gate by properly connecting RRAMs

[30, 31]. Such capability is called In-Memory Computing, which enables simple computing

tasks to be shifted from CPUs to memories. Since long memory access time becomes a major

bottleneck in accelerating modern CPU-based systems, such computing paradigm provides a

promising solution. More than boolean logic, RRAMs can also realize multi-value logic thanks

to its tunable resistance. By adjusting programming current, RRAMs can achieve resistance

between HRS and LRS, which is a unique advantage of RRAMs over other NVM technologies,

such as Magnetoresistive Random Access Memories (MRAMs) [39] and Phase-Change Random

Access Memories (PCRAMs) [40]. Such resistive characteristic allow RRAMs to model the states

of a neuron in human brain, which is the basis of Neuromorphic Computing. Furthermore, the

stochasticity in resistive switching mechanism leads to that resistance of RRAMs is different

from cycle to cycle [1]. As a result, RRAMs can be employed in PUF designs as the key to

encrypt hardware designs.

In particular, the programmable resistance, non-volatility and BEoL features are attractive to

FPGAs, where 90% of area is consumed by volatile memory cells and programmable routing

elements. More issues about RRAM-based FPGAs will be discussed in Section 1.3.

3

Chapter 1. Introduction

1.2 Advantages and Challenges for FPGAs

Thanks to their rich programmable resources, FPGAs can implement any circuits by appropri-

ately configuring memory cells and thus have two benefits over other implementations, e.g.,

ASICs :

(1) Low Non-Recurring Engineering (NRE) costs. In addition to design efforts, fabricating an

ASIC chip requires heavy NRE fees from silicon manufacturer (for example, > $1 million

for 14nm FinFET technology), covering the cost of making lithography masks, wafer-level

packaging and building testing platforms. With FPGAs, not only NRE costs but also design

efforts can be saved since implementing circuits only involves programming existing

silicon.

(2) Fast time-to-market. Full fabrication of an ASIC chip typically requires more than 6

weeks while a FPGA can be instantly programmed and deployed in a system. To make

things worse, more iterations on designing and fabrication are needed if any problems are

detected in the first manufacturing. Short production cycles is compelling nowadays as

competition in consumer electronics becomes fierce.

Therefore, once introduced, FPGAs gain popularity in low volume applications where ASIC

manufacturing cost is extremely high. Recent years witness FPGA’s expansion in medium or

even high volume applications, i.e., co-processors, thanks to their programmable and parallel

nature. FPGAs can efficiently parallelize algorithms that are hard for Central Processing

Unit (CPU) + Graphic Processing Unit (GPU) platforms, such as machine learning and video

encoding/decoding. An representative example is Microsoft’s Bing Search Engine, which

employs CPU + FPGA platforms and achieves 40× speed-up [13, 14].

Despite their success, FPGAs are facing challenges from their physical limitations generally

preventing them to embrace the IoT era. Programmable routing multiplexers in FPGAs have

higher resistance and capacitance than metal wires and also drive more fanouts to guarantee

routability, consuming more area and reducing circuit speed. Intensive usage of routing multi-

plexers introduces more signal activities, causing significant power overhead. To reduce power

consumption, FPGAs have to operate at low supply voltage but sacrifice performance because

speed of transistors have to degrade when working voltage decreases [41, 42, 43]. Using volatile

memory technology, i.e., SRAMs, forces FPGAs to lose configurations when powered down

and to be reconfigured at each power on. Such drawback leads to embarrassment in using

FPGA-based embedded systems, as illustrated in Fig. 1.2(a): Power-off has to pay additional

reconfiguration time and energy next time wake up. Otherwise, power-on burns more power

and reduce battery cycle. To continue the success in future, it is worthwhile to advance FPGA

technology by overcoming these physical limitations.

4

1.3. Opportunities in RRAM-based FPGAs

1.3 Opportunities in RRAM-based FPGAs

RRAM-based technology can bring three fundamental advancements to FPGA architectures,

meeting the low-power demands of IoT:

(1) Non-volatility of RRAMs allows FPGAs to be frequently switched on and off without the

additional reconfiguration time and energy, as depicted in Fig. 1.2(b). When powered

down, RRAM-based FPGAs can hold configurations and consume zero leakage power.

Such "Normally off, Instantly on" property can be achieved by simply replacing SRAMs

with RRAMs [25].

Power

Time

SRAM Configuration

FPGA Operation

 Power on
Reconfiguration

Power
off

FPGA Operation

Idle

Power

Time

RRAM
Configuration

FPGA Operation

Power
off

(a) (b)

Power on Power on Power
on

Power
on

Power
on

Idle Idle

Active Leakage
Operating Power

Power
off

Power
off

Figure 1.2 – Power consumption of (a) a SRAM-based FPGA and (b) a RRAM-based FPGA.

(2) Fig. 1.3 illustrates that Low Resistance State (LRS) and High Resistance State (HRS) of

RRAMs can be exploited to replace pass-gate logic in programmable routing multiplexers

and propagate datapath signals [9, 26, 27, 28]. Combining functionality of memory and

pass-gate logic in one unique device, RRAMs can narrow the gap between programmable

routing multiplexers and long metal wires. Replacing both SRAMs and pass-gate logics,

RRAMs greatly reduce area since they are fabricated on the top of transistors. Implanting

RRAMs into datapaths leads to less parasitic capacitance than SRAM-based multiplex-

ing structures, contributing to smaller delay [3]. RRAM-based implementations enable

area and speed of programmable routing multiplexers to be comparable or even smaller

than a long metal wire, fundamentally changing the cost functions considered in FPGA

architectures [28].

(3) RRAMs have stable resistances when exposed below programming threshold voltage. As

5

Chapter 1. Introduction

LRS

HRS

SRAM
+Transistor RRAM

Propagate
in to out

Status

Block
in to out

in out

in out

in out

in out

SRAM

SRAM

='1'

='0'

Figure 1.3 – Use SRAM + transistors or RRAMs to propagate and block datapath signals.

long as the working voltage is kept lower than threshold voltage of RRAMs, RRAM-based

circuits and systems can exhibit resistive property independent from their work voltage,

beyond the limitations on transistors [6]. Hence, using RRAMs in datapaths can have a

better trade-off between power and delay than transistors. For instance, RRAM-based

circuits operating in the near-Vt regime keep the same performance level as if they were

operated at a nominal working voltage, while their power consumption is sharply reduced.

Overall, the energy efficiency of FPGAs can be profoundly improved when adapted to

RRAM technology [28].

Note that ASICs cannot benefit large improvements from RRAMs as FPGAs, because they

seldom use programmable routing multiplexers . Therefore, RRAM-based programmable

routing multiplexers open an exclusive opportunity for FPGAs to catch up with ASICs in

performance and power. Furthermore, physical features of RRAMs may also expand FPGA’s

application fields. For example, FPGAs would become popular in aerospace applications since

RRAMs are more robust to high-energy radiations than SRAMs.

1.4 Contributions and Organization

This thesis provides a thorough study of the fundamentals of RRAM-based FPGAs, starting

from essential circuit designs, i.e., programming structures to architecture-level optimizations

and prototyping with novel Electrical Design Automation (EDA) tools. In order to reveal

important characteristics of RRAM-based FPGAs, our researches are conducted in three

aspects: circuit design, architecture exploration tool development and architecture-level

optimizations.

The rest of this thesis is organized as follows.

Chapter 2 provides background knowledges covering

6

1.4. Contributions and Organization

(1) RRAM technology: We explain working principles, electrical characteristics and unique

technology features of RRAMs, which bring both benefits and challenges to RRAM-based

circuit designs.

(2) modern FPGA architectures: We describe basic principles and important enhancements

in modern FPGAs, which are the baseline FPGA architecture considered in Chapter 5.

(3) previous works about RRAM-based circuit designs and FPGA architectures: We analysis

significance and limitations of circuit topologies, including memory cells, flip-flops and

routing multiplexers.

(4) FPGA architecture exploration tools: We introduce EDA techniques of current state-of-art

academic tool, i.e., VPR [44] and discuss limitations of power analysis with analytical

models.

Chapter 3 aims to propose efficient RRAM-based programming circuits and routing multi-

plexers. The RRAM-based circuits are studied through both theoretical analysis and electrical

simulations with physical design considerations. A low RLRS is commonly considered as the

key to guarantee high-performance for RRAM-based circuits. This chapter argues that the

high-performance and energy-efficiency of RRAM-based circuits are actually impacted by

many other factors, e.g., programming transistors, well organization and physical location of

RRAMs. The first study is about how to program RRAMs into LRS with transistors efficiently.

Most popular programming structure, i.e., 2T(ransitor)1R(RAM), cannot leverage the full driv-

ing strength of transistors, which potentially causes low circuit speed due to a higher RLRS than

expected. A more efficient programming structure, namely 4T(ransitor)1R(RAM), is proposed

and it demonstrate significant improvements in programming current, guaranteeing a low

RLRS . Experimental results prove that using pairs of p-type and n-type transistors are better

in driving programming current and also more flexible to diverse RRAM devices, than purely

using n-type transistors. By exploiting 4T1R, high-performance and low-power RRAM-based

routing multiplexer designs are proposed by considering various physical design parasitics,

such as intrinsic capacitance of RRAMs and well organization. Chapter 3 draws three crucial

conclusions:

(a) despite from RLRS , parasitics of programming transistors is another important factor

to guarantee high-performance for RRAM-based circuits. To obtain the best trade-off

between RLRS and parasitics of programming transistors, programming transistor sizing

technique is proposed. Experimental results validate that best performance is often

achieved with a RLRS larger than its lowest value.

(b) By sharing programming transistors in multiplexing structure, performance of RRAM-

based routing multiplexer is underlinear to input size, encouraging the use of large mul-

tiplexers. Actually, in large RRAM-based routing multiplexer, circuit design topology

becomes the major source of high-performance, rather than a low RLRS .

7

Chapter 1. Introduction

(c) When RRAMs are embedded in datapath, performance of RRAM-based circuits is not

sensitive to working voltage. As a result, operating at near-Vt regime, RRAM-based circuits

can keep the same performance level as nominal working voltage, meanwhile their power

consumption is sharply reduced. This implies outstanding energy-efficiency and can be

generalized to any circuit with RRAMs in datapaths.

With a commercial 40nm technology, we investigate area, delay and power improvements of

RRAM-based multiplexing structure by comparing to best SRAM-based implementations. To

ensure the accuracy of comparisons, layouts of RRAM-based and SRAM-based routing multi-

plexers are generated with industrial EDA tools, i.e., Cadence Virtuoso [45] and layout-level

parasitic effects are back-annotated in electrical simulations. We believe that the conclusions

are generic and instructive when developing novel RRAM-based circuits.

Chapter 4 introduces generic FPGA architecture exploration tool, FPGA-SPICE, for emerg-

ing technologies. Current state-of-art FPGA architecture exploration tool, i.e., VPR [44, 46],

evaluates area, delay and power with analytical models, which cannot accurately capture the

trends of FPGAs based on emerging technologies, such as RRAMs. In addition, VPR provides

limited support in prototyping novel FPGA architecture. FPGA-SPICE is developed to enable

accurate power analysis and fast prototyping for diverse FPGA architectures, including both

SRAM-based and RRAM-based. FPGA-SPICE can auto-generate Simulation Program with

Integrated Circuit Emphasis (SPICE) netlists, modeling a full FPGA fabric. With SPICE netlists

and electrical simulator, i.e., HSPICE [47], accurate power analysis can be conducted. To accu-

rate model physical designs in SPICE netlists, FPGA-SPICE extends the FPGA architectural

description language [48] by providing rich transistor-level modeling parameters. Large SPICE

netlist, e.g., the one containing a full FPGA fabric, requires a long simulation time. FPGA-SPICE

provides different levels of testbenches and techniques in split large SPICE netlists, in order to

obtain better trade-off between simulation time and accuracy. In addition, FPGA-SPICE is also

capable of auto-generating synthesizable Verilog netlists containing a full FPGA fabric. Verilog

netlists can be used to verify the functionality of FPGA designs and also allows engineers to

prototype FPGA architectures through a semi-custom design flow. FPGA-SPICE can be useful

in many research topics, including but not limited to the following. The power results from

FPGA-SPICE can be a baseline when examining the accuracy of analytical power models for

FPGA. The accurate power results are an important benchmarking metric when evaluating

novel FPGA architecture. SPICE netlists help validating the functionality and performance of

circuit designs based on emerging technologies. Synthesizable Verilog netlists simplify the

processes in examining the feasibility of novel FPGA architectures.

Chapter 5 focus on architecture-level optimizations in FPGA to leverage the potential of

RRAM-based multiplexers proposed in Chapter 3. The architectural parameters, routing

architectures and buffering strategy are modified to exploit the high-performance of large

RRAM-based multiplexers. We propose that local routing architecture should be unified to

connection blocks, in order to achieve high-performance when using RRAM-based multiplex-

ers. Connectivity parameters Fs and best length of routing wire L should be tweaked because

8

1.4. Contributions and Organization

RRAM-based multiplexers are faster in delay than long metal wires. In addition, we propose

configuration circuits for the novel RRAM-based FPGA architecture and verify its efficiency

with FPGA-SPICE. With cutting-edge EDA tools, VPR and FPGA-SPICE, we believe that the

architectural-level results are realistic enough to validate the area, delay and power benefits

of RRAM-based FPGAs. We believe that the methodology in architecture evaluation can be

generalized to developing FPGA architectures based on emerging technologies.

Chapter 6 summarizes important conclusions in circuit designs, FPGA-SPICE and RRAM-

based FPGA architectures. It concludes what is the basis of high-performance and energy-

efficiency of RRAM-based FPGAs, and also provides suggestions for future work.

Appendix A includes an example of modern FPGA architectures modelled by FPGA-SPICE

architecture description language, which is also the baseline FPGA architecture considered in

this thesis.

9

2 Background and Previous Works

As motivated in Chapter 1, RRAMs are promising to advance FPGA technology. The research

on RRAM-based FPGA requires a wide range of background knowledge including RRAM

technology, circuit designs, FPGA architecture and EDA techniques. Without any of these,

evaluating RRAM-based FPGAs would not be possible with a proper level of accuracy. This

chapter aims at providing the sufficient background information required for studying RRAM-

based FPGAs and therefore consists of four parts. Section 2.1 introduces Resistive Random

Access Memory (RRAM) technology, covering device structures, physical mechanism and

electrical characteristics. These important features of RRAMs help us understanding their

potentials in circuit designs. Section 2.2 presents detailed conventional FPGA architectures,

including a few crucial architectural enhancements, circuit design topologies and memory

technology. These details provide a solid foundation for developing RRAM-based FPGAs in

Chapter 5. Section 2.3 reviews previous works about RRAM-based circuit designs and FPGA

architectures, which stands as baseline in Chapter 3 and Chapter 5. Last but not least, we

discuss current state-of-art FPGA architecture exploration tools and their limitations especially

in terms of power analysis, motivating us to develop FPGA-SPICE in Chapter 4.

2.1 RRAM Technology

Resistive Random Access Memory (RRAM) device technology typically relies on a three-layer

material stack, namely a Metal-Insulator-Metal (MIM) structure [1]. As depicted in Fig. 2.1(a),

a RRAM cell is a two-terminal device, consisting of a Top Electrode (TE), a metal oxide insulator

and a Bottom Electrode (BE). RRAMs can be programmed into two stable resistance states, a

Low Resistance State (LRS) and a High Resistance State (HRS) respectively by modifying the

conductivity of the metal oxide layer. Applying a combination of programming voltages and

currents between TE and BE can trigger switching events between HRS and LRS. The switching

event from HRS to LRS is called the "set" process. Conversely, the switching event from LRS to

HRS is called the "reset" process. We denote the resistance of a RRAM in LRS and HRS as RLRS

and RHRS respectively.

11

Chapter 2. Background and Previous Works

Bottom
Electrode (BE)Metal OxideTop

Electrode (TE)
Conductive
Filamentary

d

b
a

(a) (b) (c)

Vset Vreset

r

h

Figure 2.1 – (a) RRAM in pristine state; (b) RRAM in Low Resistance State (LRS); (c) RRAM in
High Resistance State (HRS).

Voltage

Cu
rr
en
t

�����

+-

+

0
����

����

������ ����

���

(a)
Voltage

Cu
rr
en
t

�����
+-

+

0
����

����

������
����

Ireset,max

���

Iset,max

(b)

Iset,max

Ireset,max

Figure 2.2 – I-V characteristic of (a) a URS RRAM; (b) a BRS RRAM.

In terms of the polarity of programming voltages, RRAMs can be categorized into Unipolar

Resistive Switching (URS) and Bipolar Resistive Switching (BRS) [1]. Fig. 2.2(a)(b) compare

12

2.1. RRAM Technology

the I-V curves of URS and BRS RRAMs. Take the example in Fig. 2.2(a), resistive switching

of URS RRAMs depends on the amplitude of Vset and Vr eset but not the polarity, in order to

trigger set and reset processes. In contrast, BRS RRAMs account on the polarity as well as the

amplitude of Vset and Vr eset in programming. Take the example in Fig. 2.2(b), a set process

can only be triggered by a positive programming voltage, while a subsequent reset process

can only be invoked by a negative programming voltage. The minimum programming voltage

inducing a positive programming current is defined as Vset , while the minimum programming

voltage leading to a negative programming current is Vr eset . In principle, for both types of

RRAMs, a programming process can only be triggered by a proper programming voltage while

the achieved RLRS and RHRS are determined by the provided programming current. The rest

of this thesis will focus on BRS RRAMs because that they are widely adopted in RRAM-based

FPGA researches.

In order to set/reset the RRAM into a stable resistance state, programming voltages should be

applied for a given time [1]. The minimum pulse width of programming voltage determines

the writing speed of the RRAM [1]. Besides, RRAMs should be able to afford a reasonably large

number of writing operations, expressed by the endurance [1], and also should be able to

maintain the resistance state for a long period without degradation, expressed by the retention

[1].

In the following subsections, we present in-depth knowledge about the RRAM technology

from five major aspects: resistive characteristics (subsection 2.1.1), capacitive properties

(subsection 2.1.2), fabrication issues (subsection 2.1.4), process variations (subsection 2.1.5)

and material engineering (subsection 2.1.6).

2.1.1 Resistive Characteristics

The metal oxide material is the key component of a RRAM that can exhibit resistive switching,

whose working principle is mostly based on filamentary conducting mechanism.

In its pristine state (Fig. 2.1(a)), the oxide material is a pure insulator without any Conductive

Filament (CF). In this case, a RRAM has an extremely high resistance and can be approximately

treated as a pure capacitor. A pristine RRAM first go through the "forming" process, after

which the device can be freely switched between HRS and LRS. The forming process is to

initialize a conductive path in metal oxide, which is achieved by polarizing the memory to a

positive bias. The formation of the initial conductive path requires a high electric field in the

purpose of knocking the oxygen atoms out of the lattice and creating defect-rich regions in

the metal oxide. The localized defects can be generated by set processes or recovered during

reset process, and hence they are regarded as the sources of configuring CFs. To establish

such strong electric field, the forming voltage should be high enough, which is typically larger

in amplitude than normal set voltage. To some extent, the forming process is a special set

process because the forming voltage has the same polarity as the set voltage. By carefully

controlling the size and materials of the oxide, RRAMs can get rid of forming process, which

13

Chapter 2. Background and Previous Works

Bottom Electrode (BE)Metal OxideTop Electrode (TE) Conductive Filamentary

(a) (b)

Voltage

Cu
rr

en
t

�����

+-

+

0
����

����

������
����

Ireset,max

���

Ireset,min
r

Vset

Iset,
min r

Vset

Iset,
max

Iset,max
Iset,min

(c)

d

b
a

d

b
a

εox εox

Figure 2.3 – (a) Size of filaments inside a RRAM achieved by Iset ,mi n ; (b) Size of filaments inside
a RRAM achieved by Iset ,max ; (c) I-V characteristics of a RRAM with Bipolar Resistive Switching

are so called "forming-free" devices [49, 50].

After the forming process, a RRAM device is initialized to LRS, with a CF through the oxide as

shown in Fig. 2.1(b). When a reset voltage Vr eset is applied, the CF created by the set/forming

process is partially or fully ruptured to the low-conductivity oxide, leading to an increment

in resistance. During the reset process, when the CF is separated from the TE, the RRAM is

considered to be in HRS and the minimum Ir eset required is defined as Ir eset ,mi n . Fig. 2.1(c)

exemplifies the resulting CF and oxide during the reset process. The exhibited RHRS depends

on the distance between the top of the CF and the TE, denoted as h in Fig. 2.1(c). Because a

large reset current leads to a strong rupture of CF and thus increases h, RHRS are positively

related to the reset current. Note that Ir eset should be correlated to the Iset in last switching, in

order to restore the oxide to its original state before set. A small Iset leads to weak CFs, which

requires a small Ir eset to be ruptured. In the example of Fig. 2.3(c), a set process achieved by

Iset ,mi n requires at least Ir eset ,mi n in the subsequent reset process [1].

In the subsequent resistive switching cycles, a RRAM in HRS can be configured to LRS with a

set voltage, which is smaller than the forming voltage. When a set voltage Vset is applied across

the two electrodes, part of the oxide is transformed to the CFs, as illustrated in Fig. 2.1(b).

When there is a CF through the oxide, the RRAM is considered to be in LRS and the minimum

Iset required is defined as Iset ,mi n . In addition, a current compliance Iset ,max is often enforced

to avoid a permanent breakdown of the device. In practice, current compliance is usually

provided by the programming transistors. Note that the Iset modulates the diameter of CF,

and thus impacts on the achieved RLRS . Fig. 2.3(a)(b) illustrates two CFs which are shaped

by two programming currents Iset ,mi n and Iset ,max , corresponding to the green and blue set

14

2.1. RRAM Technology

curves in Fig. 2.3(c) respectively. The RLRS of a RRAM is typically following a linear or ohmic

relationship with the programming current passing through it, when the applied voltage is

lower than Vset [49]. Therefore, the higher programming current we drive, the lower RLRS we

obtain. This reveals one of the most important feature of RRAMs: by adjusting Iset , its RLRS

can be controlled in the range of [Vset /Iset ,max ,Vset /Iset ,mi n]. This means that RRAMs can be

sized just as transistors, creating large design space to be explored in circuits and architectures.

Tunable RLRS is an unique advantage of RRAM over other NVMs, such as MRAM [39] and

PCRAM [40], strongly motivating the studies in the rest of this thesis.

2.1.2 Capacitive Modeling

Resistive property is the major interest of RRAMs to be exploited in applications, meanwhile

their capacitive parasitics are often regarded as a negative aspect. For instance, when placed

in datapath, capacitances of RRAMs cause additional propagation delay in critical paths,

negatively impacting circuit speed. As a result, it is necessary and important to consider

the capacitive part when designing circuits with RRAMs. The capacitive effect of a RRAM is

induced by the MIM structure, which is naturally a parallel-plate capacitor. Considering a

parallel-plate model, capacitance of a pristine RRAM in Fig. 2.1(a) is

CP = εoxε0
a ·b

d
, (2.1)

where εox is the dielectric constant of the oxide material, ε0 is the electric constant (≈ 8.854×
10−12F ·m−1), a ·b represents the contact area between the metal oxide and the electrodes,

and d denotes the height of the metal oxide.

The capacitance of a RRAM is influenced by CF, whose dielectric constant εC F is smaller than

oxide. Consider a RRAM in Fig. 2.1(b) and (c) and assume that CF can be modeled as a cylinder

with an average radius rC F . For a RRAM in LRS, the filaments create a conductive path between

TE and BE, resulting in the capacitive effect to be negligible (CP ≈ 0). For a RRAM in HRS, the

capacitance of a RRAM in HRS is approximately

CP = εoxε0(
a ·b −πrC F

2

d
+ πrC F

2

d −h
). (2.2)

In practice, (2.1) can be accurate enough because that the size of CF rC F is often much smaller

than metal oxide [29, 51], which will be explained in subsection 2.1.5. In this thesis, we

estimate the capacitance of RRAMs with (2.1).

15

Chapter 2. Background and Previous Works

2.1.3 Trade-off between RLRS and CP

As explained in Section 2.1.1, RLRS is determined by the size of Conductive Filament (CF):

RLRS = ρC F
d

πr 2
C F

, (2.3)

where ρC F denotes the electrical resistivity of CF, d represents the height of CF, and rC F is the

radius of CF.

For simplicity in analysis, we assume the shape of CF to be a cylinder, and the area of RRAM

device a ·b to be fixed under a given technology node, which is limited by the size of contacts

(See Section 2.1.4). Combining equation 2.3 and equation 2.2, we see a trade-off between RLRS

and CP . When a smaller RLRS is achieved by decreasing d , a larger CP is seen in HRS. To be

more intuitive, we compute the product of RLRS and CP :

RLRS ·CP = εoxε0ρC F (
a ·b −πrC F

2

πr 2
C F

+ 1

1−h/d
) (2.4)

When h/d is fixed, RLRS ·CP can be independent from d . And, increasing the size of CFs can

efficiently reduce RLRS ·CP . Actually, the product of RLRS and CP can be regarded as the RC

delay of a RRAM device, which significantly impacts the performance of RRAM-based circuits

(See Chapter 3). The smaller the RLRS ·CP , the better performance of RRAM-based circuits can

be achieved.

2.1.4 Co-Integration with CMOS Technology and Scaling Trends

Compatible with Back-End-Of-Line (BEOL) technology, RRAMs can be efficiently fabricated

using two alternative integrations:

1. Fabricating a memory in the contact of an access transistor [52, 53], as illustrated in

Fig. 2.4(a); In this case, the BEs of RRAMs share the same material with source/drain

of transistors, enabling RRAMs and transistors to be fabricated with one lithography

step. The BE of RR AM0 is built with n-doped Si , which is also the source/drain of

transistors. Indeed, the BEs are natively connected to the source/drain of transistors,

bringing conveniences in RRAM-based circuit designs. But in this fabricating choice,

RRAMs have to occupy silicon area as transistors, limiting their interests in area-hungry

designs.

2. Fabricating a memory on the top of or between metal layers in the process of a via

[54], as depicted in Fig. 2.4(b). Compared to native integration with transistors, this

methodology allows RRAMs to be 3-D stacked anywhere on the top of transistors, no

longer occupying silicon area. This can bring significant reduction on footprints but

carry a cost in parasitic effects and fabrication. RRAMs are connected to transistors

through contacts, metals and VIAs, causing parasitic resistances and capacitances in

16

2.1. RRAM Technology

interconnection. To minimize the parasitics, RRAMs should be located close to tran-

sistors, i.e., between metal layer MET 1 and MET 2. Due to different materials, RRAMs

require additional lithography masks than conventional VIAs, increasing fabrication

cost. Actually, this fabrication methodology is more commonly adapted than the native

integration, because of more flexibility in choosing materials and strong interests in

area reduction.

VIA

(a)
P-Well

N+

RRAM 0

(b)

TEMetal
Oxide

N+ / BE

n-type
transistor P-Well

N+
SiO2

Metal

N+

Cont
act

MET2

Oxide

MET1

TE

BE

Oxide
TE

BE

MET3

MET1Oxide

RRAM 1

Figure 2.4 – Alternative integrations: (a) Natively combine with source/drain or gate of transis-
tors; (b) Locate between metal layers.

For both integration methods, the size of RRAMs is supposed to be consistent or comparable

with contacts and VIAs, in order to simplify Back-End process. Thanks to filamentary con-

ducting mechanism, RRAM can be fabricated with an theoretical cell area as small as 4F 2,

where F is the feature size [55], following the scaling trends of CMOS technology. In princi-

ple, device size of RRAMs can potentially reach sub-10nm dimensions as Lee et al. reported

successful resistive switching events in a CF whose size is < 10nm [29, 51]. In recent years,

plenty of research works have demonstrated that device size of RRAMs is scalable between

10nm and 180nm [52, 50, 56, 57, 49, 55, 58, 59, 60, 61, 62, 63, 64, 29]. Particularly, many efforts

have been spent on cooperating with advanced CMOS technology, such as 16nm, 28nm and

40nm, in a good yield rate [52, 58, 60, 61, 64, 62, 63]. These pioneering works are meaningful

to RRAM-based FPGA researches as regularity of FPGA architectures is advantageous when

adapting to new technology.

Similar to transistors, RRAMs can benefit from the scaling down on their device size, proved

by Fig. 2.5. The RHRS is inverse proportional to device area, roughly following the Ohm’s law. A

small device area can increase RHRS and thus effectively suppress the leakage power of RRAM-

based circuits. As shown in (2.1), the parasitic capacitance is linear with the device area. The

17

Chapter 2. Background and Previous Works

parasitic capacitance CP can also be reduced by the scaling down, potentially contributing

to delay and dynamic power improvements. Different from RHRS and CP , RLRS is mainly

determined by filamentary conducting current [1]. Since size of filaments is less sensitive to

the feature size, RLRS only has a limited dependency on device scaling. The trend on RLRS is

superior than transistors, whose equivalent resistance actually increases when scaling down.

Figure 2.5 – Impact of cell area on RHRS and RLRS [Courtesy by [1]].

2.1.5 Process Variations

Filamentary conducting mechanism brings good scalability but also variation problems. It

is believed that the formation and rupture of CFs is stochastic [65]. Variations can impact

key parameters negatively. For instance, fluctuations on Vset and Vr eset may cause RLRS and

RHRS to be larger than expected, which directly influence performance metrics. There are two

sources of the variations:

(1) device-to-device: Similar to transistors, RRAMs on the same die/wafer suffer spatial

differences in device geometry.

(2) cycle-to-cycle: A RRAM may exhibit various resistances during each switching. This is

an intrinsic property of RRAM devices, coming from the stochastic nature of filamentary

conducting. Consequently, the size of CFs is different from cycle to cycle, resulting in RLRS

and RHRS variations.

From a device perspective, the variation can be confined mainly by (a) carefully selecting

the materials of TE, BE and oxide [66, 67, 68, 69]; and (b) using multi-layers of metal oxides

18

2.1. RRAM Technology

[70]. Lee et al. reported that reducing device size is also an effective way [71]. Through

device engineering, both device-to-device and cycle-to-cycle variations are reported to be

well controlled between 10-20% [72, 73, 74]. Variation problems can also be addressed by

programming methods. To be more robust in cycle-to-cycle variations, programming RRAMs

can borrow the program-verify strategy for Flash memory [75, 76, 77].

In this thesis, we will focus on examining the robustness of RRAM-based circuits to process

variations.

2.1.6 Material Engineering for Application Requirements

The parameters of a RRAM, such as the RLRS , RHRS , Vset , Vr eset and endurance, are highly

dependent on the chosen metal oxide materials, the stack architecture and the fabrication

techniques. Therefore, the device properties of RRAMs can be tuned to meet different applica-

tion needs. For instance, RRAMs for memory applications and FPGAs require different device

properties. Table 2.1 lists a few bipolar RRAMs fabricated with different metal oxide materials.

Table 2.1 – Bipolar RRAMs with different metal oxide materials

Metal Oxide Cu/Zr O2 AlOx H f Ox TaOx

Material [57] [49] [58] [56]
RLRS (Ω) ∼ 200 ∼ 100k ∼ 10k ∼ 100
RHRS (Ω) ∼ 100M ∼ 100M ∼ 60k ∼ 1k

Endurance N /A 105 5×107 109

Retention 10 year 10 year 30h 10 year
@25°C @125°C @250°C @85°C

Peak Current ∼5m A ∼50n A ∼50µA ∼170µA
Peak Voltage < 2.5V < 2V < 1.5V < 2V

Speed ∼100ns N /A ∼10ns ∼10ns
Cell Area (µm2) ∼9 ∼1 1e−4 (10nm) ∼0.25

In memory applications, RRAMs typically requires (a) compact cell size (F 2) for high density,

(b) fast speed in programming (1−10µs) for high-speed memory access, and (c) excellent

endurance (> 109) for frequent writing operations. There are no specific requirements for

RLRS and RHRS/RLRS ratio as long as the states ‘0’ and ‘1’ can be properly differentiated.

However, the FPGA architecture that is described in the thesis requires relaxed RRAM param-

eters, with typically (a) medium endurance (∼ 106) and long retention period(> 10 years@

85°), (b) low RLRS(∼ 1−4kΩ) along with high RHRS/RLRS ratio (> 103), (c) low programming

current (< 800µA) and (d) medium density (>∼ 4F 2). In addition, FPGAs are configured to

customized circuit designs but are not programmed frequently. Practically, FPGAs see only

limited write cycles (∼ 104) [78]. Hence, the RRAMs in an FPGA application do not require

excellent endurance. Furthermore, the performances of the implemented circuit designs are

not determined by the programming cost of the memory. Therefore, fast programming speed

19

Chapter 2. Background and Previous Works

is not a necessity for the RRAMs in the presented context. Instead, a long retention period is

mandatory because the programmed FPGAs should hold its configurations unless there is a

request to re-program. We will discuss in the chapter that the RRAMs will have two different

functionalities in the proposed architectures. First, RRAMs will be employed in the data path

of the routing multiplexer (as a replacement of the transmission-gates). Their RLRS should

be low enough to propagate signals in high speed while RHRS/RLRS ratio should be large to

limit the perturbations between the inputs and to avoid parasitic leakage currents. Second,

RRAMs will be used flip-flops (FFs), and serve as standalone memories only. their RHRS and

RHRS/RLRS ratio could be more relaxed as in memory applications. Last but not the least,

since FPGA area is typically dominated by the transistors, and programming transistors in

particular, the cell size could be relaxed to medium density.

In this thesis, we consider the integration method in Fig. 2.4(b), because that it can significantly

narrow the area gap between FPGAs and ASICs. We will consider a RRAM device with the

following parameters: RLRS = 1.6kΩ,RHRS = 27MΩ, as per [50][79]. However, in electrical

simulations, we may use degraded parameters to emphasize on certain aspects of the study.

For more details about RRAM technology, we refer the interested reader to [1].

2.2 Conventional FPGA Architectures

In this section, we will first review classical FPGA architectures, whose principles are still used

in modern FPGAs. Then, we will introduce critical architectural enhancements and circuit

design techniques routinely used in commercial FPGA products. Last but not least, we will

analyze the use of memory technologies in modern FPGA architectures.

2.2.1 Classical Architectures

FPGA architectures typically follow a regular organization, which contains highly repeatable

modules. A generic island-style FPGA architecture, shown in Fig. 2.6, consists of an array of

Configuration Logic Blocks (CLBs), which are surrounded by a sea of routing resources [4].

Configurable Logic Block

CLBs are the key module to implement combinational and sequential logic. Fig. 2.7 illustrates a

detailed CLB architecture, where a number of Basic Logic Elements (BLEs) are tightly connected

by a local routing architecture. A BLE is the primitive module implementing logic functions,

including a Look-Up Table (LUT), a Flip-Flop (FF) and a 2-input routing multiplexer. By

configuring SRAMs properly, a K -input LUT can realize any K -input single-output logic

function. The FFs enable BLEs to implement not only combinational but also sequential logic.

By configuring the 2-input routing multiplexer, a BLE can operate in either combinational or

sequential mode. The local routing architecture, which is actually a group of programmable

20

2.2. Conventional FPGA Architectures

... ...

... ...

DFF

BLE

...

SRAM

DFF

BLE

...

CLK

CLK

Local Routing

Track

...

...

MUX

...

Connection Box

... ...
...

Switch Block

Configurable Logic Block

CLB SB CB IO

Transceivers

Transceivers

Transceivers

Transceivers

L
U
T

L
U
T

M
U
X

M
U
X

Figure 2.6 – Generic FPGA Architecture.

routing multiplexers, provides interconnections among CLB inputs, BLE inputs and outputs.

As depicted in Fig. 2.7, each BLE input is driven by a local routing multiplexer, whose inputs

come from all the CLB input pins and BLE outputs. The local routing architecture guarantees

that BLEs can be fully connected to each other and also to every CLB input pin. Thanks to

21

Chapter 2. Background and Previous Works

such full connectivity, a CLB can implement any large logic function by interconnecting LUTs

and FFs.

The logic capacity of a CLB is defined as the amount of combinational and sequential logic that

can be mapped to a CLB, which is mainly determined by the following parameters: (1) input

size of LUTs K ; (2) the number of BLEs in a CLB N ; (3) the number of inputs of a CLB I . Indeed,

large K , N and I improves CLB logic capability but also increases the area, delay and power of

CLBs linearly. For instance, area, delay and power of local routing multiplexers are correlated

to N and I , because their input size is N + I . Large CLBs can reduce the use of global routing

architecture, but the saving may be null due to the increase in CLB area. Therefore, there exists

a best trade-off between CLB logic capacity and its performance metrics. In modern FPGAs,

the best CLB architecture is typically featured by K = 6, N = 10 and I = K (N +1)/2 = 33.

LUT FF

BLE[1]

...

input
crossbars

OPIN

OPIN

OPIN

IPIN

IPINIPIN

IPINIPIN

IPINIPIN feedback
crossbars

...

LUT FF

BLE[2]

LUT FF

BLE[N]

...

Figure 2.7 – Detailed CLB Architecture.

Global Routing Architecture

The global routing resources outside CLBs consist of two types of blocks, the Connection

Blocks (CBs) and the Switch Blocks (SBs). Both CBs and SBs consist of programmable routing

multiplexers but have different interconnecting topologies. CBs connect routing tracks to CLB

inputs and outputs, while SBs interconnect routing tracks. Differently from local routing archi-

tecture, global routing multiplexers usually have sparse connectivity. In other words, a routing

multiplexer can only connect to a subset of the routing tracks. Using sparse connections leads

to better trade-off between routing area and routability. Indeed, full connectivity ensures

perfect routability but results in large routing multiplexers. In global routing architecture,

the number of point-to-point connections is linear to the FPGA array size, which is much

22

2.2. Conventional FPGA Architectures

larger than local routing architecture. It will cause large routing area and lead to difficulties in

wiring if all the routing multiplexers are fully-connected. C. Clos has proved that multi-level

sparse crossbars can also achieve perfect routability as fully-connected solutions, while the

routing area can be significantly reduced [80]. Therefore, in global routing architectures,

point-to-point connections are realized through multiple sparse CBs and SBs.

OPIN0 OPIN1 OPIN2

CB0

IPIN0

IPIN1
CLB 0

IPIN2

CB1

Track 3

Track 2

Track 1

Track 0

Track 3

Track 2

Track 1

Track 0
SB0

SRAM
Routing Track

Input Pin

SB MUX

Output Pin

CB MUX

SB Tri-strate Buffer
CB Tri-strate Buffer

Track ATrack B Track C Track D

Track ATrack B Track C Track D

Figure 2.8 – Bi-directional global routing architecture.

The following parameters are widely used to quantify the sparse connectivities in global

routing architecture: As routing tracks are grouped in channels, the number of routing tracks

per channel is called channel width, denoted by W . In the context of CBs, the fraction of

routing tracks that can be connected to a CLB input pin is defined as Fc,i n . The fraction of

routing tracks that can be connected by a CLB output pin is defined as Fc,out . In a SB, the

number of routing tracks to which each incoming routing track can connect is defined as Fs .

Fig. 2.8 provides an illustrative example of global routing architecture, where CLB C LB0 is

surrounded by a SB, SB0, and two CBs, C B0 and C B1, with a channel width of 4. Connectivity

parameters Fc,i n of input pins I PI N 0, I PI N 1 and I PI N 2 are 2/4 = 0.5, 3/4 = 0.75 and 4/4 = 1

respectively. All the output pins OPI N 0, OPI N 1 and OPI N 2 share the same connectivity

parameters Fc,out = 2/4 = 0.5. Each routing track can connect to three other tracks, leading

to Fs = 3 in SB0. Note that each routing track is bi-directional. Take the example of Tr ack3

in Fig. 2.8, a signal can propagate from left side to right side and vice versa. To realize a

bi-directional SB, two routing multiplexers with tri-state buffers are required for each routing

track. Different from routing tracks, connections for input and output pins of CLBs have to

be uni-directional. As a result, tri-state buffers are used for output pins to guarantee that

23

Chapter 2. Background and Previous Works

signals can only flow from output pins to routing tracks, while routing multiplexers are used

for input pins to guarantee that signals can only pass from routing tracks to input pins. For a bi-

directional routing architecture, routing algorithms have to not only determine directionality

of each routing track but also show respect to the uni-directionality of tri-state buffers. These

additional constraints complicate the routing algorithms. Normally, a routing path starts

from a CLB input, connects to a routing track through a CB, then passes through a number of

SBs, to finally reach a CLB output through another CB. However, when the CLBs are far from

each other, the routing path may contain many SBs, causing large delay. To overcome this

limitation, routing tracks are allowed to span multiple CLBs without passing through any SB.

The number of CLBs spanned by a routing tracks is defined as the length of routing track L.

Fig. 2.9(a) and (b) describe how to realize a long connection with either cascaded L = 1 routing

tracks or a single L = 2 routing track. The L = 2 solution removes one SB on the routing path,

potentially leading to a performance improvement. Indeed, while L = 2 architecture is less

routable than L = 1, its circuit speed can be 24% faster [4]. The routability of L ≥ 2 architecture

can be fully compensated by adding more routing tracks and distributing equally their starting

points over the length of the track. Take the example of Fig. 2.9(b), C LB [1] cannot be routed

to C LB [2] through Tr ack0 which starts from C LB [0], but it can always be solved by another

routing track Tr ack1 which starts from C LB [1]. In practice, FPGAs include routing tracks with

various L, in order to achieve best performance. For instance, Xilinx XC4000X series FPGAs

contain 25% L = 1 tracks, 12.5% L = 1 tracks, 37.5% L = 1 tracks and 25% "one-quarter longs",

whose length is one-fourth of the chip [81].

Fc,i n , Fc,out , Fs and L strongly influence not only routability but also area and performance

of FPGAs. V. Betz reported that when only one type of routing track is allowed, Fc,i n = 0.25 ·
W,Fc,out = 0.5 ·W,Fs = 3,L = 4 contributes to the best trade-off between area and delay [4].

Most frequently-used FPGA architecture parameters are summarized in Table 2.2. We refer

Table 2.2 – FPGA Architecture Parameters

Parameter Range Description
K [1,+∞] Input size of a LUT.
N [1,+∞] Number of BLEs in a Configuration Logic Block.
I [1,+∞] Number of inputs of a CLB.
W [1,+∞] The number of routing tracks contained in a channel.
Fc,i n [0,1] The fraction of routing tracks to which each CLB input pin connects.
Fc,out [0,1] The fraction of routing tracks to which each CLB output pin connects.
Fs [0,4W] The number of routing tracks to which each incoming routing track

can connect in a SB.
L [1,+∞] The length of a routing track in term of the number of CLBs spanned

by the track.

interested readers to [4] for more details about classical FPGA architectures.

24

2.2. Conventional FPGA Architectures

SB MUXRouting TrackCB MUX SRAMCB Tri-strate Buffer

CLB
[0]

CLB
[1]

CLB
[2]

��

L=2

��

(b)

L=1 L=1

CLB
[0]

CLB
[1]

CLB
[2]

�� ��

(a)
L=1

Track 0

Track 1

Figure 2.9 – Bi-directional global routing architecture featured by (a) L = 1; (b) L = 2.

2.2.2 Architectural Enhancements

Since any large logic function can be represented by interconnected small partitions, FPGAs

can implement any circuit by appropriately programming BLEs, global and local routing

architectures. However, in reality, a FPGA has resource bounds, e.g., millions of BLEs in

Xilinx products [82]. In practice, an extremely large circuit or system may be implemented

by a network of FPGAs [83, 84]. The limited capacity of FPGA in implementing large scale

computing can be overcome by boosting the capability of a single FPGA, which also narrows

the gap between FPGAs and ASICs. Therefore, modern FPGAs have adapted several major

architecture enhancements:

(1) Tile-based heterogeneity: Modern FPGAs [82, 85] typically employ a tile-based heteroge-

neous architecture [86], where the entire FPGA is organized in the unit of tile, highlighted

blue in Fig. 2.10. A number of tiles or even columns of tiles) are replaced by hard Intel-

lectual Property (IP) blocks, such as Digital Signal Processing (DSP) blocks and memory

banks [82, 85]. The introduction of heterogeneous blocks (highlight brown in Fig. 2.10)

aims at a better trade-off between programmability and efficiency. Programmable logics,

i.e., LUTs, are considered as soft logic because of their flexibility in mapping logic func-

25

Chapter 2. Background and Previous Works

tions, while compact CMOS logics are considered to be hard logic since their functionality

is fixed. Indeed, LUTs are flexible enough to realize any multi-input and single-output

logic functions but their implementations require more area, delay and power than most

compact CMOS logic. For instance, a 2-input NAND gates requires only 4 transistors in

CMOS logic, but using a 2-input LUT consumes 28 transistors. This is one of the critical

reasons which cause serious overheads of FPGA implementations. Therefore, to alleviate

the limitations, modern FPGA architectures embed hard logic to implement most fre-

quently used logic functions. For instance, commercial FPGAs, i.e., Xilinx Virtex Series

[82] and Altera Stratix Series [87, 88, 89, 90, 85], feature DSP blocks, various sized memory

banks and ARM Cortex CPUs [91], to accelerate arithmetic-intensive applications. Other

hard IPs including shifted registers, embedded CPU cores, Phase Lock Loops (PLLs) and

high-speed transceivers. We refer the interested readers to [87] for more information. By

following a tile-based organization, heterogeneous FPGAs can achieve better granularity

at layout-level. Commercial FPGAs [86] are manually designed because that their highly

repeatable nature are friendly to hand optimization with medium layout efforts[86]. On

average, manual FPGA layouts outperform 2× in area and performance than automatically

generated layouts [18, 92]. As illustrated in Fig. 2.11, each tile includes a CLB, two CBs and

one SB, while routing tracks are interconnected only through SBs. This allows engineers to

focus on optimizing the layout of a tile and spend less time on placing and routing tiles.

(2) Hard carry chain: In modern FPGAs, heterogeneity is not only applied at the tile-level but

also in CLBs. In arithmetic applications, the critical path is highly likely a mixture of the

carry part of adders and other regular logic functions. To achieve better delay efficiency,

adders should be placed closely to LUTs as much as possible. For this purpose, hard adder

chains are embedded in CLBs across all the BLEs, as depicted in Fig. 2.11. The carry parts

of the hard adders are connected across BLEs through pins Ci n and Cout in Fig. 2.11,

while the sum parts are connected to regular BLE outputs. Note that the adder chains

are also hard wired in sequence through CLB pins Ci n and Cout across all the CLBs in a

column. As a result, the hard adder chains are the fastest implementation in FPGAs for

adder functions. J. Luu et al. reported that embedding adder chains and heterogeneous

blocks can improve performance of FPGAs by 15% on average [93]. Further researches

[94, 95] focus on exploiting the hard adder chains to improve up to 15% area and 25%

delay of general circuit implementations, not limited to arithmetic-intensive ones. We

refer interested readers to [93, 94, 95, 96] for more information.

(3) Fracturable LUT: Area of a LUT is exponential to its number of inputs. When the mapped

function does not exploit all the inputs of a K -input LUT, at least 50% of the LUT is not

involved in computing. Consequently, the utilization rate of LUTs in classical FPGAs is

often low since they contain one type of LUTs with fixed input size. In modern FPGAs, a

K -input LUT can be fractured to two (K −1)-input LUTs, boosting its capability in mapping

logic functions [97]. Compared to the classical design in Fig. 2.6, the 6-input fracturable

LUT in Fig. 2.11 has an additional output, and thus can accommodate two logic functions

with up to five common inputs. For instance, the 5-input LU T [0] can accommodate a

26

2.2. Conventional FPGA Architectures

D
SP B

lock
D

SP B
lock

D
SP B

lock

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

M
em

ory B
ank

M
em

ory B
ank

M
em

ory B
ank

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Transceivers

Transceivers

Transceivers

Transceivers

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

M
em

ory B
ank

M
em

ory B
ank

M
em

ory B
ank

D
SP B

lock
D

SP B
lock

D
SP B

lock

Figure 2.10 – Tile-based FPGA Architecture.

4-input logic function f0(x0, x1, x2, x3, x4) using i n0, i n1, i n2, i n3 and i n4. The 5-input

LU T [1] can still implement another 4-input logic function f1(x3, x4, x5, x6) by sharing i n3

and i n4 with 5-input LUT[0]. Alternatively, the 6-input fracturable LUT can implement

two small functions without common inputs, whose total number of input is smaller or

equal to five. For example, logic functions f2(x0, x1) and f3(x2, x3, x4) can be mapped to

5-input LUT[0] and 5-input LUT[1] respectively. Such capability is beyond a classical

K -input 1-output LUT, significantly improving the capacity of LUTs.

(4) Uni-directional Global Routing Architecture and Single-Driver Wires: In the recent

decade, we have seen a trend of uni-directional global routing architecture becoming

popular in commercial FPGAs [98]. The interests comes from that uni-directional routing

architecture can save 25% area and improve delay by 9% as compared to bi-directional

classics [98]. Fig. 2.12 depicts an uni-directional global routing architecture featured by

the same parameters (Fs = 3, W = 4, Fc,i n = {0.5,0.75,1}, Fc,out = 0.5) as bi-directional

example in Fig. 2.8. Just as its name implies, each routing track is directional, as illus-

trated with arrowed lines in Fig. 2.12. It seems that uni-directional architecture is less

flexible than bi-directional architecture because that channel width W have to be doubled

27

Chapter 2. Background and Previous Works

C
onnection
 B

lock

Connection
Block

Tile

SRAM

RoutingTrack

CLB

SB

CB

M
U
X

FF
CLK

5-LUT
[0] M

U
X

5-LUT
[1] FF

CLK

M
U
X

Logic Element
M
U
X

LUT6_out

M
U
X

M
U
X

...

in0
in1
in2
in5

...

Cin

Cout

out0

out1

CLB

......
Local Routing

...
... BLE

[0]

...

...

out0

out1

in0

in5

Cin

Cout

out0

out1

in0

in5

Cin

Cin

BLE
[N-1]

out0

out1

in0

in5 Cout

CinSwitch
Block

Configurable
Logic
Block

...

...

...

...

...

...

Figure 2.11 – Tile and enhanced CLB architecture.

to reach the same routability. But in fact each routing track will always have a definite

directionality in a mapped FPGA. Routing tracks, which are actually metal wires, are on the

top of transistors. Doubled channel width has very limited impact of FPGA area. Despite

issues of channel width, uni-directional routing architecture has several overwhelming

advantages over bi-directional:

(a) Tri-state buffers in SBs can be eliminated, reducing the number of configuration

bits and dedicated transistor area. The number of multiplexers is the same for each

crosspoint in SBs (See dashed circles in Fig. 2.8 and Fig. 2.12).

(b) CBs for CLB output pins can be merged into SBs. Since each routing track has a specific

direction, connections between a routing track and a CLB output pin can be realized

by multiplexers, instead of tri-state buffers. As represented with yellow rectangles

in Fig. 2.12, CLB output pins are directly wired to an input of SB multiplexers. As

such, routing delay from a CLB output pin to a routing track can be reduced, because

that only one level of crossbars is needed, rather than the two levels in bi-directional

architecture.

(c) The wiring capacitance can be reduced by 37% [98], thanks to single-driver wiring:

each uni-directional routing track is driven by only one routing multiplexer. The

28

2.2. Conventional FPGA Architectures

removal of tri-state buffers contributes to less wire loads of routing tracks. Compared

to Fig. 2.9(b), the L = 2 uni-directional routing track in Fig. 2.13 only need to drive

downstream routing multiplexers.

It is still possible to increase connectivity parameter Fc,out in uni-directional architecture.

For instance, OPI N 0 can also drive Tr ack3 and Tr ack2 by connecting an additional

input of SB multiplexers.

OPIN0 OPIN1

IPIN0

IPIN1
CLB 0

IPIN2

CB0

Track 3

Track 2

Track 1

Track 0

Track 3

Track 2

Track 1

Track 0

Track 3 Track 2Track 1Track 0

Track 3 Track 2Track 1Track 0

SRAM
Routing Track

Input Pin

SB MUX

Output Pin

CB MUX

SB0

Figure 2.12 – Uni-directional global routing architecture.

SB MUXRouting TrackCB MUX SRAM

CLB
[0]

CLB
[1]

CLB
[2]

��

L=2

��

Track 0

Figure 2.13 – A uni-directional routing track featured by L = 2.

29

Chapter 2. Background and Previous Works

Architectural enhancements include but not limited to those introduced here. This section

focus on most widely used enhancements in modern FPGAs, which are considered in the

architecture-level evaluations throughout this thesis. Other architectural enhancements, such

as sparse local routing architecture, time-borrowing FFs and look-ahead/carry-select adder

chains, are designed for specific application purposes. We recommend interested readers to

see [82, 88, 89, 90, 99, 100, 101, 102, 103] for more details.

2.2.3 Circuit Designs in FPGAs

Actually, the entire FPGA architecture is an assembly of three main circuit primitives: Look-

Up Table (LUT), Flip-flop (FF) and routing multiplexer. Therefore, the design topology for

these circuits profoundly impacts the area and performance of FPGAs. This part focuses on

introducing current best implementations of LUT, FF and routing multiplexer.

Routing Multiplexer

Routing multiplexers are intensively deployed in both local and global routing architectures, as

shown in Fig. 2.6. The functionality of routing multiplexers is to select among several possible

input signals. As symbolized in Fig. 2.14(a), a N -input routing multiplexer can propagate

any of the N inputs to the output according to the configuration stored in its memory bits.

Fig. 2.14(b) shows a straightforward implementation of a N -input routing multiplexer, where

each transmission gate can be configured to propagate/block an input independently. The

one-level structure requires the least number of transmission-gate, but the number of memory

bits required and its critical path delay is linear to the input size N . Consequently, its parasitic

capacitance and memory footprint grows linearly to input size N . Therefore, when N is large,

one-level multiplexer is area-consuming and low-performance.

Remember that large routing multiplexers are intensively used in local routing architecture.

Two-level structure is proposed to achieve better area-delay trade-off in large multiplexers [2].

As illustrated in Fig. 2.15(a), a two-level structure is built by cascading one-level structures.

A N -input two-level structure consists of [
p

N]+1 one-level structures, each of which has

[
p

N] inputs. Note that all the one-level structures can share [
p

N] memory bits. In a two-level

structure, the number of memory bits and critical path delay is quadratic to input size N .

Therefore, two-level structure can be area-efficient and high-performance when N becomes

large.

It is possible to generalize the topology to multi-level structures, such as three-level, etc. A

tree-like structure shown in Fig. 2.15(b) is a special case of multi-level structure where each

one-level structure has only two inputs. A 2-input one-level multiplexer only requires one

memory bit because the two transmission gates are always in opposite states. As a result,

a tree-like multiplexer is most compact in terms of the number of memory bits, which is

logarithmic to input size. But, due to their large number of stages, tree-like multiplexers

30

2.2. Conventional FPGA Architectures

Memory
Bits [M-1:0]

...

in[N-1]

in[0]

in[1]

in[2]

in[N-2]
in[N-3]

out
N to 1

MUX out

in[N-1]

GND

VDD

in[1]

GND

VDD

...

S[1]

S[1]

in[0]

GND

VDD S[0]

S[0]

S[N-1]

S[N-1]

GND

VDD

(b) Input
inverters

Output
inverter

One-level
multiplexing

structure

...

(a)

Figure 2.14 – (a) Symbol of a N -input routing multiplexer; (b) One-level implementation [2, 3].

S[N −1]

GND

VDD

...

in[0]

GND

VDD S[0]

S[0]

GND

VDD

out

(a)

in[N-1]

GND

VDD

GND

VDD S[0]

S[0]

...

...

...

S[N −1]

in[N −1]

in[N − N]

Input
inverters

Two-level
multiplexing

structure

Output
inverter

S[N −1]

S[N −1]

S[2√N-1]

S[2√N-1]

S[√N]

S[√N]

...

...

... ...

...

in[1]

GND

VDD

...
S[0]

in[0]

GND

VDD S[0]

S[0]

(b)

S[1]

S[1]

S[1] ...

GND

VDD

out

in[N-1]

GND

VDD

S[0]

in[N-2]

GND

VDD S[0]

S[0]

... ...

Input
inverters

Tree-like
multiplexing

structure

Output
inverter

S[log2N-1]

S[log2N-1]

S[log2N-1]

S[log2N-1]

S[1]

S[1]

S[1]

...

...

...

Figure 2.15 – Alternative routing multiplexer design topologies: (a) two-level; (b) tree-like
[2, 3].

31

Chapter 2. Background and Previous Works

perform worse in area, delay and power than others.

Table 2.3 – Analytical comparison between CMOS one-level, two-level and tree-like multiplex-
ers

Multiplexer Transistor Area1 Critical Path Delay 2 Switching Energy 3

One-level N · Amem +N · At g ate Rt g ate ·N ·Ct g ate 0.5 ·α ·N ·Ct g ateV 2
DD

Two-level 2[
p

N] · Amem + (N +p
N) · At g ate

Rt g ate · (3[
p

N] + 1) ·
Ct g ate

0.5·α·2[
p

N]·Ct g ateV 2
DD

Tree-like l og2N ·Amem+(2N −2)·
At g ate

Rt g ate · 1
2 ([l og2N]2 +

[log2N]) ·Ct g ate

0.5 · α · (3[log2N] − 1) ·
Ct g ateV 2

DD
1 Area of input and output inverters are not included here.
2 Elmore delay model [104] is considered here. 3 Only the switching energy of multiplexer
structures is considered here. α is the switching activity.
* Amem is the transistor area of a memory bit. At g ate , Rt g ate and Ct g ate are the area,
equivalent resistance and source/drain capacitances of a transmission gate.

Table 2.3 summaries an analytical comparison among CMOS one-level, two-level and tree-like

multiplexing structure. One-level structure is the best choice for small input size. When N

grows, two-level structure becomes the best in terms of area-delay-power product as compared

to one-level and other multi-level structures [2]. A tree-like structure is preferred when there

is a tight constraint on the number of memory bits. Note that transmission gates in Fig. 2.14

and 2.15 can be replaced by pass-transistors or other pass-gate logics but the results in Table

2.3 and conclusions on best multiplexing structure remain true. In this thesis, we will consider

transmission-gate-based routing multiplexer designs because they guarantee best area, delay

and power results.

Look-Up Table

Large number of memory bits gives a K -input Look-Up Table (LUT) the capability to realize

any K -input single-output logic function. Fig. 2.16(a) shows the most popular implementation

of a K -input LUT, where a 2K -input tree-like multiplexer is used in a different way than it is for

the routing multiplexer in Fig. 2.14(a). Inputs of a LUT are wired to the control lines of the

multiplexer while memory bits become the inputs of the multiplexer. By properly configuring

the 2K memory bits, a complete truth table can be built for any K -input single-output logic

function. Depending on inputs, the multiplexer of a LUT can output any bit of a truth table.

As such, LUTs can realize the functionality of any single-output logics.

Fig. 2.16(b) illustrates the transistor-level circuit design of a 2-input LUT based on transmission

gates. Note that each input employs three inverters to drive the multiplexer, which can balance

the delay from an input to every gates of transmission gates. Note that the area of LUTs is

exponential to their input sizes:

ALU T = 2K · Amem + (2K+1 −2) · At g ate , (2.5)

32

2.2. Conventional FPGA Architectures

where K denotes the number of inputs while Amem and At g ate is the transistor area of a

memory bit and a transmission gate respectively. In other words, the logic capacity and area

of a LUT is doubled when number of input is increased by one. For instance, a 6-input LUT is

built with two 5-input LUTs and a 2-input multiplexer, as shown in Fig. 2.11. In addition, the

delay of a LUT comes from the tree-like multiplexer and hence is approximately linear to the

input size. Compared to standard CMOS logic, LUTs are expensive in terms of area and delay

due to heavily using memory bits and tree-like multiplexers.

In this thesis, we will consider transmission-gate-based multiplexer designs for LUTs in the

same perspective as routing multiplexers.

...
out

N:1
Tree-
like

MUX

Memory
Bit [0]

Memory
Bit [1]

Memory
Bit [2]

Memory
Bit [N-3]
Memory
Bit [N-2]

Memory
Bit [N-1]

in[K-1:0]

(a) (b)N=2K

out

Memory
Bit [0]

in0

Memory
Bit [1]

in1

Memory
Bit [2]

Memory
Bit [3]

GND

VDD

Figure 2.16 – Look-Up Table (LUT): (a) principle internal structure; (b) transistor-level design
of a 2-input LUT [4].

Flip-Flop

Flip-Flops (FFs) are an essential hard logic in FPGAs to implement sequential logics. FPGAs

typically employ D-type FFs in order to simplify timing constraints in sequential logics. The

date stored in a D-type FF can be changed only at the rising/falling edge of the clock signal. Fig.

2.17 shows the transistor-level design of a master-slave D-type FF with asynchronous set and

reset. Both the master and slave parts are CMOS latches based on cross-coupled inverter pair.

Unless a strong write voltage is applied, the two inverters can hold a stable voltage, either ’0’

or ’1’. When clock signal C LK is disabled (logic low ’0’), the first stage (master) is transparent

to the D input, but the second stage (slave) cannot change its storage. When the clock signal is

enabled (logic high ’1’), the first stage is read-only and its storage is transferred to the second

stage (slave). As a result, output Q can only change state when the clock signal C LK makes a

transition from logic low to logic high. The set and reset signal can force a overwrite to both

33

Chapter 2. Background and Previous Works

master and slave parts regardless of input D and clock C LK . In this thesis, we consider the FF

design in Fig. 2.17 in conventional FPGA architectures.

D

GND

VDD CLK

CLK GND

VDDVDD

SET

GND
RST

GND

VDD

CLK

CLK GND

VDDVDD

SET
GND

RST
GND

VDD

GND

VDD

Q

Master Stage Slave Stage Output
buffer

Input
buffer

Figure 2.17 – Transistor-level design of a master-slave D-type Flip-Flop with asynchronous set
and reset [4].

2.2.4 Memory Technologies for FPGAs

It is memory bits that enable FPGAs to be configurable to any circuits. As a crucial component

in LUTs and routing multiplexers, memory cells can occupy 35% of FPGA area and consume

38% of total static power [105]. Their characteristics are key factors determining merits of

FPGAs. Most popular memory technologies used in FPGA can be classified to two categories:

(1) Volatile memories, i.e., Static Random Access Memories (SRAMs), and (2) Non-Volatile

memories, i.e., Flash.

SRAM Technology

Most commercial FPGAs are based on SRAM technology because of its good reliability. Fig.

2.18(a) shows a six-transistor SRAM design, where a CMOS latch based on cross-coupled

inverter pair is accessed by two n-type transistors. When control lines Word Line (W L) is

enabled, a SRAM can be programmed by Bit Line (BL) voltages. When control lines W L is

disabled, a SRAM can hold its storage whatever BL is. Note that six-transistor SRAM is preferred

in FPGA because it is more resistant than five/four-transistor designs to state flipping due to

crosstalk or charge sharing. The SRAMs in FPGAs are typically placed in an array and accessed

by decoders, like a memory bank. As depicted in Fig. 2.18(b), SRAM cells belonging to the

same row share a BL signal while each column is controlled by a W L signal. All the BL and

W L signals are controlled by two decoders. Each SRAM cell can be individually programmed

by manipulating the two decoders. Note that with efficient sharing BLs and W Ls, n SRAMs

only require
p

n BLs and
p

n W Ls. Therefore, area of configuration circuits in FPGAs can be

quadric to the number of SRAMs.

34

2.2. Conventional FPGA Architectures

out
out

GND

VDD

GND

VDD

WL

BL

WL

BL

Cell
0

Cell
3

Cell
6

Cell
1

Cell
4

Cell
7

Cell
2

Cell
5

Cell
8

0 1 2 3

0

1

2

3
Word Lines (WL)

B
it

Li
ne

s
(B

L)

Column Decoder

R
ow

 D
ec

od
er

(a)

(b)

...

...

Figure 2.18 – (a) 6-Transistor SRAM design [4]; (b) Configuration circuits for SRAM arrays.

As SRAMs share the same storage mechanism as FFs, SRAM cell can also be embedded in FFs

and accessed by a scan-chain. Fig. 2.19 shows the transistor-level design of a Scan-Chain

FF (SCFF) and associated configuration circuit to program SRAMs. The configuration circuit

is actually a cascade of SCFFs, which behaves as shift registers. When programming clock

pr og _clock is enabled, all the SRAMs are writable by the output of previous SCFF. As a result,

during each programming clock cycle, the data is shifted from one SCFF to another which its

output is connected to. It takes n clock cycles to programming the n SRAMs in the scan-chain.

Memory bits are fed to a scan-chain in reversed sequence. In the first cycle, memory bit for

the last SRAM is given to the head of chain. In the following cycles, the first memory bit is

shifted from one SCFF to its next. After n cycles, the first input is propagated to the last SCFF

and all the SCFFs receive their desired memory bits.

35

Chapter 2. Background and Previous Works

D
CLK CLK

GND

VDD

CLK

CLK

CLK

SCFF SCFF SCFF

prog_clock

QD QD QD���in
Q(n-1)

Q

Q1Q0

Figure 2.19 – Scan-Chain Flip-Flop (SCFF) design and associated configuration circuits [5, 6]

Flash Technology

As a well-developed non-volatile technology, Flash transistors have been exploited in FPGA

architectures to achieve low power consumption. A Flash transistor can retain its configuration

with zero leakage, which motivates commercial Flash-based FPGAs replace SRAMs and also

pass-gate logics [7, 106].

Fig. 2.20(a) presents the cross-section of a embedded Flash transistor, where CMOS transistors

are located in regular wells while the flash transistor is placed in a deep N-well. By applying a

negative voltage difference across the floating gate (Fig. 2.20(b)), electrons are removed from

the floating gate by Fowler-Nordheim tunneling mechanism [107], which turns the device on.

A positive programming voltage inject electrons to the floating gate and turns off the device,

as illustrated in Fig. 2.20(c). Because of the voltages required for programming and erasing,

flash processes include special high-voltage transistors with thicker oxides, resulting in more

complicate process than logic transistors.

Because Flash transistors can retain their on/off state without constant power supplies, they

can be regarded as a combination of memory and transistor. By exploiting the features, two

Flash transistors sharing a same control gate and a common floating gate (Fig. 2.21(b)) can

realize the same functionality as a SRAM-controlled transmission gate in Fig. 2.21(a). The

sense device (minimum-sized flash transistor) programs the floating gate voltage while the

switch device (a larger flash transistor) turns on/off the data path. When the sense device

undergoes a programming sequence illustrated in Fig. 2.20(b)(c), the floating gate of the

switch device is programmed simultaneously. In other words, switching on/off the sense

device also turns on/off the switch device, leading to propagating/blocking datapath signals.

36

2.2. Conventional FPGA Architectures

(a)

(b) (c)

Figure 2.20 – (a) Embedded Flash Process (Courtesy by [7]); (b) Erasing operation of a Flash
transistor (Courtesy by [7]); (c) Programming operation of a Flash transistor (Courtesy by [7]).

in out

SRAM

in out

WL

Sense
device

Switch
device

BL BL

(a) (b)

Figure 2.21 – (a) A transmission gate controlled by a SRAM; (b) Equivalent Flash-based pro-
grammable switch. (Courtesy by [7])

However, Flash transistors typically require a long configuration time (∼ msec.), a high pro-

gramming current (∼ m A) and a large programming voltage (> 10V). To keep a short configura-

tion time for the whole FPGA and also a low current budget, Flash transistors are programmed

individually and in series. As configuration can be activated by applying a voltage difference

between BL and W L, the Flash-based programmable switch in Fig. 2.21(b) is compatible with

37

Chapter 2. Background and Previous Works

the configuration circuit in Fig. 2.18.

Indeed, Flash-based FPGAs are better in power consumption than SRAM-based counterparts,

thanks to non-volatility. But the drawbacks are also obvious, including low-speed, complicated

fabrication process and area overheads, due to the limitation of Flash technology. Therefore,

mainstream FPGA products are still based on SRAMs while Flash-based FPGAs are preferred

only when power budget is an more important factor than others.

In this thesis, our baseline FPGA architecture resembles a well-optimized commercial SRAM-

based FPGA [88], including the following essential architectural enhancements: (1) tile-based

architecture, (2) heterogeneous blocks, (3) fracturable LUT, (4) embedded adder chains and

(5) single-driver uni-directional global routing architecture.

2.3 Previous works about RRAM-based Circuit Designs and FPGA

Architectures

As summarized in Section 2.1, RRAM technology is appealing to FPGA researches owing

to their low and tunable RLRS , BEoL integration and non-volatility. This section aims at

reviewing previous works related to RRAM-based FPGAs, including both novel circuit designs

and architectures. These previous works provide important insights, e.g., inserting RRAMs

in datapaths, which strongly motivates our works throughout this thesis. The first part of

this section will focus on RRAM-based circuit designs related to FPGA architectures. We

will first review programming structure, which is the basis for all essential circuits in FPGA

architectures. Then, we report previous works about RRAM-based memory cell, Flip-Flop (FF)

and routing multiplexer designs. The second part of this section introduce previous works

about RRAM-based FPGA architectures, exploiting the circuit designs.

2.3.1 Programming Structures

Programming structures are the elements that configure the resistance states of RRAMs, which

are actually the basis for all RRAM-based circuit designs and systems. The quality of pro-

gramming structures directly determines the configuration time, achieved RLRS and RHRS ,

profoundly impacting the performance of circuits and systems. Therefore, programming struc-

tures are the most important and essential circuit designs and are worth intensive elaborations.

Typically, programming structures employ transistors to provide programming voltage and

drive programming current for RRAMs. A programming structure is named according to the

number of transistors dedicated to programming a RRAM, e.g., 1T(ransistor)1R(RAM). The

transistors in programming structures are called programming transistors. Fig. 2.22 shows

three most commonly used programming structures in RRAM-based FPGAs:

38

2.3. Previous works about RRAM-based Circuit Designs and FPGA Architectures

+

-

+

-

out

WL[0]

BL[0]

BL[1]

outin
-+

BL[0] BL[1]

WL[0] WL[1]GND

(a) (b) (c)

+
-

WL[0]

BL[0]

GND

out
R0

R1

R2

Figure 2.22 – Three most commonly used programming structures: (a) 1T(ransistor)1R(RAM),
(b) 1T(ransistor)2R(RAM) and (c) 2T(ransistor)1R(RAM).

(1) 1T(ransistor)1R(RAM): The 1T1R programming structure is the most compact implemen-

tation, where a RRAM is programmed by a n-type transistor [1, 36, 108]. When W L[0] is

enabled in Fig. 2.22(a), the RRAM can be programmed by the voltage of BL[0]. When

BL[0] ≥ Vset , the RRAM is set to LRS. When BL[0] ≥ Vr eset , the RRAM is reset to HRS.

During operation, W L[0] is disabled and BL[0] =VDD , the data of the RRAM can be read

out through the output voltage Vout =VDD
1

1+RRR AM /Rtr ans
, where RRR AM is the resistance

of RRAM while Rtr ans represents the off-resistance of the programming transistor. Note

that VDD should be kept smaller than Vset and Vr eset , to avoid parasitically programming

RRAMs. Because each RRAM is accessed by an individual transistor, a 1T1R RRAM cell can

eliminate serious problems in RRAM-based crossbar, e.g., the sneaking current and the

disturbances during write and read [108].

(2) 1T(ransistor)2R(RAM): To improve the reliability, the 1T2R in Fig. 2.22(b) is proposed

[8, 109]. The two RRAMs R0 and R1 are programmed simultaneously when programming

transistor is turned on. Note that the polarity of the two RRAMs are always opposite.

By applying BL[0] = Vset and BL[1] = Vr eset , RRAM R0 is set to LRS while RRAM R1 is

reset to HRS. In contrast, BL[0] = Vr eset and BL[1] = Vset configure RRAMs R0 and R1

to HRS and LRS respectively. During operation, programming transistor is switched off

and BL[0] is connected to VDD while BL[1] is connected to GN D. The output voltage

Vout is determined by VDD
1

1+R1/R0
. The 1T1R is most robust to process variations than

1T1R because Vout is only related to on/off ratio of RRAMs RHRS/RLRS , whose variability

is smaller than RHRS and RLRS [110, 8]. The 1T2R programming structures are proposed

to replace SRAMs but they require a very high RHRS (∼ 10GΩ) for RRAMs to suppress

the leakage power [111]. For instance, the leakage power of a 1T2R element is Pleakag e =
V 2

DD /(RLRS +RHRS). Since typically RHRS >> RLRS , the leakage power is dominated by

RHRS . Assume in 45nm technology node, VDD = 1.2V and an optimistic RHRS = 100MΩ,

the leakage power of a RRAM structure is 14.4nW , far more than the leakage power of a

SRAM (∼ 0.073nW [112]).

(3) 2T(ransistor)1R(RAM): To overcome the leakage issue, many works focus on embed-

39

Chapter 2. Background and Previous Works

ding RRAMs in the datapath along with two n-type programming transistors [26, 113, 9,

27, 8, 110, 6, 114, 111]. The 2T1R programming structure in Fig. 2.22(c) is proposed to

provide equivalent functionality as a SRAM-controlled transmission gate. When W L[0]

and W L[1] are enabled, RRAM R2 can be programmed to HRS/LRS by setting BL[0]−
BL[1] = Vr eset /Vset . During operation, W L[0] and W L[1] are disabled and RRAM R2

can propagate/block datapath signal from i n to out . When inserted in the datapaths,

RRAMs can introduce a low RLRS (∼ 1kΩ), which is ∼ 75% less than transmission gates

(∼ 4kΩ at 45-nm technology node) [26, 113, 9, 27, 8]. In addition, compared to a SRAM-

controlled transmission gate occupying eight transistor area, the 2T1R programming

structure requires only two transistors. By exploiting RLRS, the 2T1R programming struc-

ture opens an opportunity in area-efficient and high-performance routing architecture

[26, 113, 9, 27, 8, 110, 6, 114, 111].

Controlled by BLs and W Ls, the 1T1R, 1T2R and 2T1R programming structures can be ac-

cessed by the configuration circuits in Fig. 2.18, compatible to existed FPGA architectures.

In previous works [26, 113, 9, 27, 8, 110], evaluations of the 1T1R, 1T2R and 2T1R programming

structures focus on functionality verification only, where the achieved RLRS is always assumed

to be lowest possible value. However, such simple analysis ignores crucial factors in circuit

designs, i.e., electrical characteristics of RRAMs and transistors:

(1) Parasitic capacitances of RRAMs CP are ignored, which has a strong impact on the circuit

performance. Especially when RRAMs appear in datapath, CP causes delay degradation of

routing architecture, mitigating the performance gain from RLRS .

(2) Side effects of programming transistors are also ignored. In order to achieve a low RLRS or a

high RHRS , the sizes of programming transistors have to be large enough to drive sufficient

programming current. For instance, to achieve the programming current required by [9]

(∼ 2m A) with 45-nm transistor technology node (Iset =∼200µA at minimal width), the

size of the programming transistor should be ∼ 10, far more than the size of a transmission

gate (typically ∼ 3). In this case, the parasitic capacitances of the programming transistors

become non-negligible and may seriously threaten the performance of RRAM-based

routing architecture. Therefore, RRAM-based circuits have to trade off between low RLRS

and large programming transistors.

(3) Programming structures are designed and verified based on ideal operating conditions.

Previous works assume that during programming, the voltage across the RRAMs is stable

and n-type transistors can always operate in saturation region, providing maximum pro-

gramming current. However, these assumptions violate realistic electrical characteristics

of transistors and RRAMs in two major aspects: (a) resistance switching of RRAMs leads

to that the voltage across RRAMs is changing throughout the programming processes. A

RRAM in HRS takes more voltage share than a RRAM in LRS. (b) transistors requires a large

40

2.3. Previous works about RRAM-based Circuit Designs and FPGA Architectures

source-to-drain voltage VDS when operating at saturation region. But such VDS may not

be always achievable during resistance switching.

In short, instead of pure functionally verification, programming structures should be studied

electrically by analyzing operating conditions of RRAMs and transistors. This motivate us to

give a detailed study on programming structures in Section 3.

2.3.2 Non-Volatile Flip-Flop and SRAM

Rather than memory arrays, RRAMs can also enhance conventional FFs and SRAMs with

non-volatile data storage.

Fig. 2.23 illustrates a Non-Volatile Flip-Flop (NVFF) design based on the master-slave FF in

Fig. 2.17 [5, 115, 116]. The master stage of NVFF is same as the conventional FF, while the

slave stage is modified to store data in RRAMs. During normal operation, the NVFF works the

same as a conventional FF, where data storage purely relies on CMOS transistors. Prior to an

active-to-sleep transition, the data stored in the slave latch needs to be written to the non-

volatile RRAM devices. To this end, the clock is silenced and kept low for the entire duration of

the RRAM write operation, thereby forcing the slave latch to be non-transparent and isolated

from the master. During write, the RRAM devices are completely disconnected from the slave

latch and from the read circuits, so that the voltage drop across their terminals can be set

by the write drivers. Note that the two RRAM devices are always used in a complementary

fashion, i.e., one device is programmed to the HRS, while the other one is programmed to the

LRS. During system wake-up (power-on), the slave latch would ideally be directly restored,

based on the data stored in the RRAM devices. Both internal storage nodes Q and Q are

first pre-charged and equalized using three dedicated PMOS transistors controlled by EQ.

Following this pre-charge phase, the internal nodes Q and Q are connected to ground through

the RRAM devices. Note that the NVFF can also be used in Scan-chain configuration circuit

(Fig. 2.19).

The slave latch of a NVFF can be simplified to be a NV SRAM, as shown in Fig. 2.24. The NV

SRAM can be configured like the memory array in Fig. 2.18. Similar to NVFFs, the storage

is transferred to RRAMs before system power down and also can be loaded from RRAMs

after system wake-up. The NVFF and NV SRAM have the same performance as conventional

circuits because they share the same working principle during normal operation. Thanks to

non-volatility, the energy consumption of NVFF and NV SRAM is 67% smaller than volatile

versions.

2.3.3 Multiplexer and Crossbar Designs

Earlier works [22, 117, 110, 109, 118] used 1T1R and 1T2R memory structures to replace the

configuration memories in the routing structures. These modifications grant non-volatility to

41

Chapter 2. Background and Previous Works

READ
READ

out

EQ

READ

in out

D CLK

CLK CLK

READ

WR

Q
WR

Q

WR

Q
WR

Q

CLK

CLK

EQ
EQVDD

VDD VDD VDD

GND
GND

GNDGND

Figure 2.23 – A non-volatile master-slave Flip-Flop design [5, 6].

the FPGA and enable instant-on normally-off operations. However, the multiplexer structures

in [22, 117, 110, 109, 118] were still based on CMOS multiplexers, leading to no improvements

on performance.

To leverage the potential of the 2T1R programming structure, non-volatile routing multiplexer

design have been intensively studied in [9, 26, 27, 8, 113]. Fig. 2.25(a) shows a one-level

N -input 2T1R-based multiplexer [9, 26, 8, 113], where all the programming structures share

a common n-type transistor at the output node. The 2T1R-based multiplexers in Fig. 2.25

depend on n-type transistors to provide high programming current, in order to achieve a

low RLRS . For instance, when W L[0] = W L[N] =′ 1′, BL[0] =′ 1′ and BL[N] =′ 0′, RRAM R0

is programmed to LRS. Fig. 2.25(b) presents an illustrative example of a two-level/tree-like

2T1R-based multiplexer [27], whose input size is 4. Note that every two RRAMs are opposite in

polarity, which enables complementary programming. RRAMs belonging to the same stage are

programmed simultaneously. Take the example in Fig. 2.25(b), when BL[0] =′ 1′, BL[1] =′ 1′,
BL[2] =′ 0′, W L[0] =′ 1′, W L[1] =′ 0′ and W L[2] =′ 0′, RRAMs of the first stage sharing the same

polarity with R0 are programmed to LRS, while those sharing the same polarity with R1 are

programmed to HRS. Note that, every two RRAMs are always different in the resistance states

42

2.3. Previous works about RRAM-based Circuit Designs and FPGA Architectures

VDD

out

READ

in
out

READ

WR

Q
WR

Q

WR

Q
WR

Q

VDD

GND GND

WL

BL

WL

BL

Figure 2.24 – A non-volatile SRAM design [5, 6].

and RRAM programming is conducted stage by stage, which is similar to the tree-like CMOS

multiplexers in Fig. 2.15(b).

By efficiently sharing programming transistors in multiplexing structure, the ratio between the

number of programming transistors and RRAMs approaches 1 : 1 when input size increases.

In addition to better granularity, sharing programming transistors also contribute to better

performance. For instance, whatever input size is, the 2T1R-based multiplexer in Fig. 2.15(a)

only need a n-type transistor at the output node. As a result, the parasitic capacitance on

critical paths and the delay of multiplexers are independent from input size, which cannot be

achieved by any CMOS multiplexers in Fig. 2.14 and Fig. 2.15. Such relationship between input

size and performance becomes a strong motivation for chapter 5 which explores RRAM-based

FPGA architectures.

2.3.4 RRAM-based FPGA Architectures

FPGA architecture can benefit from the non-volatility as well as the area and performance

gains coming from the BEoL integration and the low RLRS achieved by RRAMs. Previous works

[109, 110, 8, 26, 9] proposed novel FPGA architecture based on two principles: (a) replace the

SRAMs in LUTs with RRAMs, and (b) replace the SRAMs as well as the transmission-gates in

routing structures with RRAMs.

Fig. 2.26 illustrates early RRAM-based FPGA architectures where bi-directional routing ar-

43

Chapter 2. Background and Previous Works

���

out

WL[0]
in[0] -+

-+
in[1]

in[N-1] -+

WL[1]

WL[N-1]

WL[N]
BL[0]

BL[1]

BL[N-1]

BL[N](a)
in[0]

in[1]

in[2]

in[3]

out

BL[0]

WL[0] WL[1]

BL[2]

(b)
-+

BL[0]
+-

-+
BL[0]

+-
BL[0]

-+

+-

WL[2]

BL[1]

BL[1]

R0

R0

R1

Figure 2.25 – Early designs of 2T1R-based multiplexers: (a) A N -input onelevel structure [9];
(b) An illustrative example of two-level and tree-like 4:1 structure [10].

chitecture is employed. As a direct approach, SRAMs can be replaced by 2T1R programming

structures (Fig. 2.26(b)), as proposed by P.-E. Gaillardon et al. [119]. Y. Chen et al. study a

RRAM-based FPGA using such scheme [109], while Y. Yang-Liauw et al. recently demonstrated

a functional prototype [117]. 2T1R programming structures can also be employed to realize

RRAM-based LUT structures (Fig. 2.26(a)) as proposed by P.-E. Gaillardon et al. [110]. Efficient

CB and SB design as proposed by S. Tanachutiwat et al. [26] and J. Cong et al. [9] further

improve the granularity of bi-directional routing architecture through sharing programming

transistors and eliminating tri-state buffers. As illustrated in Fig. 2.26, all the programmable

switches that connected to either a routing track or a CLB pin to share a programming tran-

sistor. Without tri-state buffers, the transistor area of global routing architecture only is

dominated by programming transistors, since RRAMs are fabricated above transistors. As

global routing architecture typically occupies more than 50% area of a FPGA, the predicted

area gain of RRAM-based FPGAs is 2−3× [26, 9]. However, the absence of tri-state buffers

causes the sneak path problems [120, 121, 122] in routing architecture, which is hard to be

addressed. During programming, RRAMs in LRS can distribute the programming currents for

other RRAMs on the same routing track. Consequently, some RRAMs have a higher RLRS than

expected, decreasing the speed of routing paths.

Previous RRAM-based FPGA studies [26, 113, 9, 27] also follow the trends of uni-directional

routing architecture and single driver wiring technique, where one/multi-level RRAM-based

multiplexers is the key to achieve area, delay and power reduction. More than global routing

architecture, the local routing architecture can also benefit from the 2T1R-based multiplexers

in Fig. 2.25. Compared to bi-directional routing, uni-directional solution can avoid sneak path

problems because RRAMs are separated by buffers. Therefore, this thesis will consider only

uni-directional routing architecture for the exploration of RRAM-based FPGA architectures

44

2.3. Previous works about RRAM-based Circuit Designs and FPGA Architectures

... ...

...

... ...

L
U
T DFF

MUX

BLE

...

L
U
T DFF

MUX

BLE

...

CLK

CLK

Local Routing

...

...

L
U
T

+-

+-

...

+-

+

-

GND

VDD

out

(a) (b)

OPIN0 OPIN1 OPIN2

CB0

IPIN0

IPIN1

CLB 0

IPIN2

CB1

Track 3

Track 2

Track 1

Track 0

Track 3

Track 2

Track 1

Track 0
SB0

Track ATrack B Track C Track D

Track ATrack B Track C Track D

Routing Track

Input Pin Output Pin

RRAM

Programming Transistor

+

-

+

-

out

WL[0]

BL[0]

BL[1]

GND

R0

R1

Figure 2.26 – Early RRAM-based FPGA architectures (a)LUTs embedded with 2T1R program-
ming structures; (b)SRAMs are replaced by 2T1R programming structures.

(See Chapter 5).

However, most RRAM-based researches overlook the challenges coming from programming

structures (see Section 2.3.1), which may lead to a strong bias in the estimation of any per-

formance metric improvements. Previous works [26, 113, 9, 27, 109, 118, 110, 8] predict that

RRAM-based FPGAs can reduce the area by 7%-15%, increase the performance by 45%-58%,

and save the power consumption by 20%-58%, compared to SRAM-based FPGAs. However,

these architectural improvements are obtained by simply replacing SRAM-based transmission

gates in classical FPGA architectures with RRAM-based programming structures. Very limited

45

Chapter 2. Background and Previous Works

work studies the impact on novel RRAM-based FPGA architectures that exploit the circuit-level

features of RRAM-based multiplexers. Therefore, it is worthy to investigate specific archi-

tectural optimizations for RRAM-based FPGAs that would derive from realistic RRAM-based

multiplexer designs (See chapter 5).

2.4 FPGA Architecture Exploration Tool and Power Modeling Tech-

nique

The most accurate approach to evaluate a FPGA architecture is to manufacture a FPGA chip

and then measure its performance by implementing a set of benchmark circuits. However,

the architecture of FPGA is dependent on a large number of parameters, as listed in Table 2.2,

resulting in a large design space to be explored. As manufacturing and testing all the FPGA

architectures in the design space is not practical, modeling FPGA architectures with EDA tools

and estimate their performance with analytical models is necessary. Sophisticated EDA tools

can reduce the large design space to a few candidates of best FPGA architectures. To guarantee

reliable results, the analytical models should be accurate enough to capture the characteristics

of diverse FPGAs architectures. Otherwise, the EDA tools would lead to misleading conclusions

on the best FPGA architectures. This section is devoted to the EDA techniques used in current

best academic FPGA architecture exploration tools. This section consists of two parts. The

first part introduces current state-of-art FPGA architecture exploration tools, while the second

part discusses the limitation of mainstream power estimation techniques in the context of

emerging technologies.

2.4.1 FPGA EDA flow

The purpose of FPGA architecture exploration is to search the best FPGA architecture for a

specific technology. Typically, merits of a FPGA architecture are judged by evaluating their

area, delay and power consumption average over a set of benchmark circuits. The evaluation is

performed with a complete EDA tool suite, where a benchmark circuit is virtually implemented

by a hypothesized FPGA.

Fig. 2.27 illustrates the Verilog-To-Routing (VTR) flow, which is current state-of-art academic

EDA flow for the purpose of FPGA architecture exploration [4, 44]. First of all, the logic synthe-

sis tool, ABC [123], optimizes the benchmark circuits and performs a technology mapping.

Then, the activity estimator ACE2 [124] computes the signal activities of all the internal nodes

in the benchmark circuits. Finally, the tool VPR [44] packs, places and routes the circuits

onto a virtual FPGA architecture defined by the architecture description language. In the

packing stage, LUTs, FFs and hard adders are clustered into CLBs. Placement determines the

physical positions of CLBs in the FPGA fabric. Routing maps the nets of CLBs into routing

architectures. The routing stage contains two steps. In the first step, VPR performs a binary

search to determine the minimum channel width Wmi n required for a given benchmark circuit

46

2.4. FPGA Architecture Exploration Tool and Power Modeling Technique

Logic Synthesis
(ABC)

Architecture
Description

AA-Pack

Placement

VPR
.blif

Area&Delay&Power

*.xml
*.net

Circuit-level
Description

 Technology Library

Activity Estimator 2
(ACE2)

.blif
.act

VersaPower

RoutingMin.
Channel
Width ?

Routing with
1.3 Wmin

Routing Engine

Adjust
Channel
Width

Yes, find Wmin

No

Figure 2.27 – Classical EDA flow for FPGA architecture exploration purpose.

and the FPGA architecture under evaluation. In the second step, a 30% slack is added to the

minimum routable channel width Wmi n , in order to simulate a low-stress routing [4]. This

comes from the fact that commercial FPGAs are normally built with sufficient routing tracks

that "average" circuits have some spare routing available. After routing, VPR reports area and

delay by using Minimum Transistor Width Area (MTWA) model [4, 125] and Elmore delay

model [104] respectively, while power consumption is estimated by VersaPower [46]. The best

FPGA architectures are in general determined by overall performance, such as Area-Delay

Product (ADP).

2.4.2 Probability-based Power Estimation Techniques

Very Large Scale Integration (VLSI) power estimation techniques can be classified into two

categories: simulation-based and probability-based [126, 127]. On the one hand, simulation-

based methods are the most direct ways to do accurate power analysis. They typically rely

on SPICE-based simulations to analyze the power consumption of a given circuit netlist.

However, in the 1990s, SPICE simulations were regarded to be only applicable for small-scale

circuits due to the low simulation speed and high memory usage [126, 127]. On the other

hand, probability-based methods are based on signal activity estimation and analytical power

models. Average power consumption is calculated by combining signal switch density and

47

Chapter 2. Background and Previous Works

switching power. Compared to a simulation-based method, a probability-based method is

faster but trades off accuracy due to the approximate errors in analytical power models and

signal activity estimations.

In the specific context of FPGAs, the power estimation engines embedded in academic ar-

chitecture exploration tools are typically based on probabilistic activity estimation [124] and

analytical power models [128, 41, 46].

Signal Activity Estimation

The probability activity estimation models the transitions of a signal with two parameters: the

static probability and the transition density. The static probability P (x) at node x is defined

as the average fraction of clock cycles in which the steady state value of x is a logic high. The

transition density D(x) is the average number of transitions per clock cycle at node x. Fig.

2.28 exemplifies two signals A and B and also the clock signal as reference. Table 2.4 lists the

corresponding static probability and transition density of signals.

clock

A

B

Figure 2.28 – Examples of signals for switching activity modeling.

Table 2.4 – Static probability and transition density of the signals in Fig. 2.28.

Signal Static Probability Transition Density
Clock 0.5 2

A 0.5 1
B 0.43 2.5

The transition density can be propagated through a logic gate. Assume a logic gate with n

inputs xi ,1 ≤ i ≤ n, an output y , and a function y = f (x). The P (x) and D(x) at the output

node y is determined by the Boolean Difference.

D(y) =
n∑

i=1
P (
∂ f (x)

∂xi
)D(xi),

∂ f (x)

∂xi
= f (x) |xi=1 ⊕ f (x) |xi=0

(2.6)

When transition density is known for every primary inputs of a circuit, it is possible to compute

48

2.4. FPGA Architecture Exploration Tool and Power Modeling Technique

the transition density of all the internal nodes and primary outputs by applying (2.6) to each

logic gate. More details about switching activity modeling and associated algorithms can be

found in [128, 124].

Analytical Power Models

The total power of a circuit is the sum of two parts: leakage power and dynamic power[126,

127].

Leakage power is the power dissipation of a circuit with zero transition density. It is well known

that the leakage power strongly depends on various factors, including process technology, cir-

cuit topology and the state of inputs. Developing a purely analytical leakage power model has

to involve many technology parameters, whose numbers keep increasing for modern CMOS

technologies [128, 41, 46]. Therefore, previous works [126, 127, 128, 41, 46] commonly esti-

mate leakage power with simulation-based approaches. For each circuit primitive, a leakage

power library is built from simulation results with a specific CMOS technology, different circuit

designs featured by various transistor sizes. The total leakage power is obtained by identifying

the leakage power of circuit primitives in their associated library and then summing up. Even

though it is time-consuming to build a leakage power library due to a large number of electrical

simulations, such method guarantees good accuracy as compared to purely analytical leakage

power models [128, 46]. In VersaPower [46], the average error between estimated leakage

power and SPICE results is within 5%.

However, the majority of total power comes from dynamic power consumption, which has

two sources: (1) the switching power resulting from charging and discharging parasitic capac-

itances, and (2) the short-circuit power dissipated by temporary Direct Current (DC) paths

during signal transitions.

Fig. 2.29 provides an illustrative example to understand the sources of the switching and

short-circuit power. The CMOS inverter in Fig. 2.29(a) can be modelled by the RC tree in Fig.

2.29(b), where Cg is the total gate capacitance of transistors P1 and N1, RA and RB are the

equivalent channel resistance of transistors P1 and N1 respectively, and Co is the total parasitic

capacitance at node out . Note that Co includes both parasitic capacitance of transistors and

the load capacitance CL in Fig. 2.29(a). During the transition of input i n, there is two types of

currents flowing from VDD : capacitance charging current Isw and short-circuit current Isc .

The switching power results from Isw , which charges Co until Vout =VDD . Considering transi-

tion density in Fig. 2.29(b), the average switching power of node out is

Psw (out) =
∫

t
isw (t)VDD d t = 1

2
D(out) ·Co ·V 2

DD · fclk , (2.7)

where D(out) represents the transition density of node out , VDD denotes the supply voltage

and fclk is the clock frequency. The accuracy of the switching power model in (2.7) mainly

49

Chapter 2. Background and Previous Works

in

GND

VDD

out

VDD

(a)
GND

out
RA

RB Co

(b)
Isc Isw

P1

N1
GND

in
CgCL

GND

(c)

Vin

Vthp

t1 t2

Vthn

tsc

Figure 2.29 – Dynamic power modelling: (a) an CMOS inverter with a load capacitance CL ; (b)
Equivalent RC model; (c) Input transition from low to high voltage level.

depends on the value of Co . Since the parasitic capacitance of a transistor is in general a

function of the source-to-drain voltage VDS , which is actually changing during a transition.

In practice, power estimation tools build a library for the average parasitic capacitance of a

transistor, by extracting from a large number of simulation results [128, 41, 46].

Note that during the input transition, transistors P1 and N1 are not fully turned on or off. As

depicted in Fig. 2.29(c), when input voltage Vi n swings from the threshold voltage of transistor

N1, Vthn , to the threshold voltage of transistor P1, Vthp , transistors P1 and N1 operate at sub-

threshold regime and both of them are considered to be in on state. Consequently, there is

a short-circuit current Isc flowing from VDD to GN D during the time period tsc . The short

circuit power during a transition can be calculated by

Psc (out) =
∫ t2

t1

isc (t)VDD d t . (2.8)

However, the short-circuit power is difficult to be accurately estimated, due to that i (t) are

changing during the transition and it is strongly dependent on the shape of input voltage

Vi n . For instance, slews of Vi n lead to large difference in the short-circuit power [129]. The

estimated short-circuit power typically has an error as large as 10-20% when compared to

simulation results [128, 129].

The total dynamic power of a circuit is the sum of the switching and short-circuit power of

each node:

Pd ynami c,tot al =
∑

i∈nodes
(Psc (i)+Psw (i)). (2.9)

Despite the difficulties in accurate modelling capacitances and shape of voltages, the dynamic

power models encounter more serious challenges in accuracy from the reconfigurability of

50

2.4. FPGA Architecture Exploration Tool and Power Modeling Technique

FPGAs:

(1) The accuracy of these analytical power models is guaranteed for only a few input signal

patterns of the different circuit elements. Unfortunately, the input signal patterns of FPGAs

may significantly differ from a design to another. For instance, the power differences of a

4-input LUT can reach 69% under diverse input signal patterns [41]. Therefore, current

power estimation tools guarantee accuracy on very restrictive conditions.

(2) Transistor-level circuit designs are diverse in FPGA architectures, leading to different

dynamic power characteristics. For instance, a routing multiplexer has three different

transistor-level implementation as shown in Fig. 2.14 and 2.15, each of which has dif-

ferent power characteristic as list in Table 2.3. Academic FPGA architecture exploration

tools [44] employ architecture description language [48] to model highly flexible FPGA

architectures. The hierarchy and complex interconnects inside modern FPGA logic block

architectures can be precisely described with the architecture description language. The

timing parameters of logic and routing elements are richly provided for accurate tim-

ing analysis. However, there are very limited transistor-level modeling parameters in

architecture description language, that can be exploited for power estimations.

(3) Configuration circuits of FPGA architectures are diverse, strongly depending on the mem-

ory technologies. For instance, Section 2.2 introduces two types of configuration circuits,

which are based on scan-chain FFs and memory arrays respectively. The choice of config-

uration circuits leads to different power characteristics of FPGA architectures. However,

current FPGA exploration tools neglect the contribution of configuration circuits, leading

to inaccurate power analysis for entire FPGA architecture.

These three challenges cause over 20% error between estimated power and SPICE results on

average when evaluating individual modules, such as LUTs and routing multiplexers [46].

Note that only a limited input patterns and configurations are considered when evaluating the

LUTs and routing multiplexers because it is extremely time-consuming to enumerate all the

possible conditions. In terms of full FPGA architectures, the error may be even worse when

considering a specific benchmark circuit is mapped to a FPGA, because the configurations

of LUTs and routing multiplexers may hit the worst cases of analytical models. Furthermore,

the accuracy of estimated power has not been carefully examined for full FPGA fabrics due

to the lack of SPICE modeling in VPR tools. Additionally, current FPGA power models are

developed exclusively for CMOS logic, while there is very limited work with respect to emerging

technologies. When developing novel FPGA power models, providing reliable baseline SPICE

results is always a necessity.

Overall, the analytical power estimation method is a difficult problem. Without advanced

dynamic power models and versatile EDA supports, current power estimation tools relying on

analytical power models cannot capture well the power characteristics of a wide range of novel

FPGA architectures. To guarantee accurate power analysis for novel circuit design topologies

51

Chapter 2. Background and Previous Works

and general FPGA architectures, the simulation-based approaches are worth a revisit and the

FPGA architecture description language needs to be extended for power modeling parameters.

In chapter 4, we will introduce FPGA-SPICE, a simulation-based accurate power analysis

framework, enabling SPICE modeling for versatile FPGA architectures.

2.5 Summary

This chapter has covered memory technologies, circuit designs, architectures and EDA tech-

niques of both conventional and emerging RRAM-based FPGAs. We first reviewed the basics

of RRAM technology, which are exploited intensively from circuit design and architecture

perspectives in Chapter 3 and Chapter 5. In the second part, we then detailed circuit designs

and architectures of SRAM-based FPGAs, which are the baselines of performance evaluations

in Chapter 3, Chapter 4 and Chapter 5. The third part presented important prior researches

about RRAM-based FPGAs, whose merits will be discussed detailedly in Chapter 3. Finally,

we introduced the EDA techniques for conventional FPGAs and in particular focused on the

power estimation techniques, the limitations of which will be overcome in Chapter 4.

52

3 RRAM-based Circuit Designs

Circuit design is a corner stone of FPGA architectures. Actually, it is one of the most critical

factors impacting the overall performance of FPGAs. Without efficient RRAM-based circuit

designs, it is hard for RRAM-based FPGAs to demonstrate advantages over SRAM-based

counterparts. This chapter proposes novel RRAM-based circuit designs and examines their

superiority over SRAM-based circuits through both theoretical analysis and electrical simula-

tions. This chapter is divided into two parts:

1. RRAM-based programming structures: the access circuits for RRAMs, which are the most

basic elements in all RRAM-based circuit designs, such as NV SRAMs, NV FFs and multiplexers.

2. RRAM-based multiplexer designs: routing circuits employing RRAMs to propagate datapath

signals, which are the most frequent element in FPGA architectures.

Part 1: RRAM-based Programming Structures

Programming structures are the circuit elements devoted to configuring RRAMs. As mentioned

in Section 2.3, RRAM-based FPGAs account on the low RLRS of RRAMs to guarantee their high

performance. Therefore, the quality of programming structures (their ability to achieve low

RLRS while minimizing the area footprint) is a crucial factor of the performance of RRAM-based

FPGAs. This part provides a thorough study of RRAM-based programming structures for FPGA

architectures. We will focus on three most representative programming structures, which

are 2T(ransistor)1R(RAM), 2T(ransmission)G(ate)1R(RAM) and 4T(ransistor)1R(RAM). When

analyzing each programming structure, we perform both theoretical analysis and electrical

simulations in order to demonstrate their advantages and limitations.

This part consists of four sections: Section 3.1 introduces general experimental methodology

in evaluating programming structures. Section 3.2 analyzes the specificities and limitations of

2T(ransistor)1R(RAM) programming structure, and discuss the associated shortcomings, such

as low current density and area inefficiency. Section 3.3 studies 2T(ransmission)G(ate)1R(RAM)

programming structure and discusses its advantages and limitations compared to 2T1R. Sec-

53

Chapter 3. RRAM-based Circuit Designs

tion 3.4 proposes a more advanced 4T(ransistor)1R(RAM) programming structure, overcoming

limitations of 2T1R and 2TG1R programming structures.

3.1 Experimental Methodology

When studying programming structures, we consider the RRAM model in [130, 131], whose

Vset /Vr eset is 1.3V/-1.3V respectively, RLRS is 500Ω, and RHRS is 20kΩ (RHRS/RLRS = 40). The

current compliance Iset and Ir eset is set to 1m A, considered as a way to avoid large thermal

damage. The minimum required pulse width for programming the RRAM element is 100ns.

The programming structures discussed in the paper are implemented with I/O transistors

(W/L=320nm/270nm) from a commercial 45nm process technology. The associated transistor

model is based on BSIM4. The standard VGS and VDS of transistors are 2.5V. The transistors

can be over-driven up to 3.0V. The ratio between p/n-type transistors β is set to 3. In this part,

we also consider the area overhead of the P-Well of p-type transistors for which a penalty factor

γ= 1.2 is set.

Electrical simulations are run with HSPICE simulator [47]. The time step of electrical sim-

ulations is set to 0.1ps. In each simulation, the RRAM is initialized to the HRS and then

transistors are turned on to program the RRAM into LRS. At the end of programming period,

we measure the voltage difference between the RRAM electrodes and the current passing

through to calculate the LRS resistance RLRS .

We sweep two parameters: the width of transistors Wpr og and the programming voltage Vpr og ,

to study their impact on the performance of programming structures. Wpr og is defined as the

width of the n-type transistors used in the structures expressed by the minimal size transistors.

Wpr og is swept in the range from 1 to 5 with a 0.1 step. Vpr og is swept in the range from 2.5V to

3.0V with a 0.1V step.

Note that, to achieve significant FPGA improvements, a RHRS of at least 20MΩ must be

employed [114]. However, as the presented methodology and structures are general for any

device parameters and for the sake of reproducibility, we present results using the base

parameters of the RRAM model in [130, 131]. We will consider RRAM parameters meeting the

demand of FPGA architectures when studying RRAM-based multiplexer design (Second part

of this chapter) and FPGA architecture-level optimizations (Chapter 5)

3.2 Limitations of 2T1R Programming Structure

This section begins with circuit design of 2T1R programming structures including the effects

from system-level implementations. Then, theoretical analysis is performed from three as-

pects: I-V characteristics (Section 3.2.2), physical design (Section 3.2.3) and area consumption

(Section 3.2.4). Last but not least, electrical simulation results are presented to validate the

conclusions of theoretical analysis.

54

3.2. Limitations of 2T1R Programming Structure

3.2.1 2T1R Circuit Structure

Practical analysis programming structures should consider the context of system-level im-

plementations. Previous works [26, 9, 110, 27, 8, 6] mainly exploit two different strategies

to access the individual 2T1R memory elements. A scan-chain organization, as shown in

Fig. 3.1(a), has been proposed in [8] while a memory bank arrangement, as shown in Fig.

3.1(b), has been employed in [9]. With the scan-chain organization that is similar to modern

FPGAs, RRAMs are programmed through Flip-Flop (FF) outputs when signal prog is set to

1. For example, when Q0 = 1,Q1 = 0, a set process for RR AM0 is started. In a memory bank

arrangement, the RRAMs are programmed through Bit Lines (BLs) and Word Lines (WLs). For

instance, when W L[1] = 1,W L[2] = 1,BL[0] = 1,BL[2] = 0, a set process for RR AM is initiated.

Note that, with this strategy, only one RRAM is programmed at a given time - allowing to limit

the programming current to be delivered to the chips.

VprogBE

BL[0]

WL[1]Cell
0

WL[2]

Cell
3

Cell
6

Cell
1

Cell
4

Cell
7

Cell
2

Cell
5

Cell
8

0 1 2 3

0

1

2

3
Word Lines (WL)

B
it

Li
ne

s
(B

L)

Column Decoder

R
ow

 D
ec

od
er

RRAM

GND

BL[2]

VprogTE

Vprog

GND

Vprog

(b)

FF FF FFCLK CLK CLK

QD QD QD

Q(n-2)

���in

(a)

Q(n-1)Q0 Q1

N1

N2

prog
prog

prog

RRAM0 RRAM(n-1)

+

-

+ - + -

Figure 3.1 – System-level implementations exploiting the 2T1R programming structure: (a)
scan chain [8]; (b) memory bank [9].

55

Chapter 3. RRAM-based Circuit Designs

In Fig. 3.2, we extract a 2T1R structure along with its driving inverters from the system-level

implementation shown in Fig. 3.1. A 2T1R structure requires driving inverters to provide

the voltage levels of Vpr og T E and Vpr og BE during a programming phase. In a set process, the

terminals of 2T1R structure Vpr og T E and Vpr og BE are driven by a p-type transistor P1 and a

n-type transistor N3, respectively. As illustrated in Fig. 3.2, the driving inverters introduce two

potential voltage drops caused by the drain-to-source voltage VDS3 and VDS4 of transistors P1

and N3, while the 2T1R structure has two built-in voltage drops caused by VDS1 and VDS2 of

transistors N1 and N2. In a reset process, the terminals of 2T1R structure Vpr og T E and Vpr og BE

are driven by a n-type transistor N4 and a p-type transistor P2, respectively. Similarly, another

two drain-to-source voltage drops of transistors P2 and N4 are introduced.

Note that the principles in the circuit designs of programming structures are different from

logic gates, because the programming structures are driving a resistive load instead of a

capacitive one. To drive a resistive load like a RRAM, the source-to-drain voltages VDS of

transistors should be large enough in order to ensure a high current. Moreover, when the

VDS voltage drops of the transistors take most of the supply range Vpr og and the voltage

difference between the RRAM electrodes goes below the programming threshold voltage,

a correct programming cannot be guaranteed. Since driving inverters are shared among

programming transistors, their effects on adjusting the programming current is limited. To

tune RLRS for each individual RRAM, we should focus on studying how to adjust the driving

current through sizing programming transistors N1 and N2. Considering that Vpr og =VDS1 +
VDS2 +VDS3 +VDS4 +VRR AM , maximize the driving current Id s implies that VDS1 and VDS2

should be maximized while the effect of VDS3 and VDS4 should be avoided as much as possible.

As a result, the sizes of transistors P1 and N3 have to be far larger than N1 and N2, so that VDS3

and VDS4 can be neglected compared to VDS1 and VDS2. We take this assumption and focus

on the set process in the rest of the analysis. Without loss of generality, our approach can be

applied to the reset process as well.

3.2.2 I-V Characteristics of 2T1R Structure

In this part, we consider the voltage drops VDS1 and VDS2 in Fig. 3.2 and discuss the I-V

characteristics of a 2T1R structure. By considering Kirchhoff circuit laws:
Id s = f (VGS1,VDS1) = f (VGS2,VDS2)

VRR AM = Id sRRR AM

Vpr og =VDS1 +VDS2 +VRR AM .

(3.1)

where Id s is the current passing through the transistors and RRAM. RRR AM denotes resistance

of RRAM. f (VGS1,VDS1) and f (VGS2,VDS2) represent the I-V relationships of transistors N1 and

N2 in Fig. 3.2. To give an intuition on the operating points of transistors, we consider the

56

3.2. Limitations of 2T1R Programming Structure

VG1

+ -

VDS1
N1

VRRAM

Ids

VG2

N2
VDS2VTE

VBE

Vprog

VprogTE

VprogBE

GND

Vprog

GND

GND

Vprog

VDS3

VDS4

Ids

Ids

VD1

VS1

VD2

VS2

VB1

VB2

P1

N3

N4

P2

Figure 3.2 – A 2T1R programming structure extracted from system-level implementations in
Fig. 3.1

following transistor model:

Id s =
kn

W
L [(VGS −VT)VDS − 1

2VDS
2], VDS <VGS −VT

1
2 kn

W
L (VGS −VT)2, VDS ≥VGS −VT

(3.2)

where kn denotes the process transconductance parameter of a n-type transistor and VT

represents its threshold voltage. W and L are the width and length of channel, respectively. VGS

is the voltage difference between the gate and source terminals. VDS is the voltage difference

between the drain and source terminals. The intuitive results obtained with the model will be

subsequently validated by SPICE simulations. In the theoretical analysis, we focus on studying

how the current Id s is changed with VGS1, VGS2, VDS1 and VDS2 during a set programming

phase.

Fig. 3.3 illustrates the I-V curve of the transistors N1 and N2 during the programming phase.

A programming phase starts when the transistors N1 and N2 are turned on and the RRAM

is in HRS. At the start point P, Id s is close to zero because the HRS resistance RHRS of the

RRAM typically is very high, leading to VDS1 and VDS2 approaching zero. VRR AM is above

the programming threshold voltage Vset , and therefore a resistive transition occurs and the

resistance decreases. Note that VGS2 equals to VG2 because the source voltage of transistors N2

is GN D , while VGS1 =VG1 −VT E , is much smaller than VGS2. Then, the resistance of the RRAM

is gradually decreasing from RHRS to RLRS , leading to an increase in Id s . The growth in Id s

creates a positive feedback: VDS1 and VDS2 are increasing to provide a higher current which

57

Chapter 3. RRAM-based Circuit Designs

IDS

0 VDS

VGS1
Wprog

VGS2
Wprog

Ids=(Vprog-
Vds1-Vds2)/
RLRS

Vds2
P

QM

Vds1
Figure 3.3 – I-V characteristics of the 2T1R structure.

leads the voltage difference across the RRAM to decrease. The positive feedback continues

until the VRR AM reaches the Vset of the RRAM, i.e., the memory cannot switch anymore. At

this point, Id s , VDS1 and VDS2 reach their peak values. Note that during the programming

phase, VGS1 is increasing as the source voltage of transistors N1, VT E , is decreasing, but it is

still smaller than VGS2. The difference in VGS causes a VDS gap because VDS1 has to be larger

than VDS2 in order to drive the same current. Therefore, transistor N1 may work in deep linear

region or even saturation region while transistor N2 has to work in linear region, causing the

programming current to be much lower than what saturated transistors can offer.

Boosting Vpr og can reduce the difference between VDS1 and VDS2, improving the driving

strength of transistors. Its effort will be studied by electrical simulations.

3.2.3 Physical Design Difficulties

Typically, in digital circuit designs, the bulks of n-type transistors are connected to GN D , as

shown in Fig. 3.4(a). However, the regular bulk connections for the 2T1R structure causes

serious body effects. In a set process where Vpr og T E≈Vpr og and Vpr og BE≈GN D , the VSB =VS1

of transistor N1 in Fig. 3.4(a) is larger than Vset =VS1 −VD2, which leads to a high threshold

voltage of transistor N1 and reduces its driving strength. Note that the VSB of transistor N2

is negligible due to the VDS3 and VDS4 and its driving strength is reduced as well. Similar

conclusion can be drawn in a reset process where Vpr og T E≈GN D and Vpr og BE≈Vpr og .

To alleviate the serious body effect, a symmetric bulk connection can be envisaged as shown

in Fig. 3.4(b). When Vpr og T E≈Vpr og and Vpr og BE≈GN D, the VSB of transistor N1 equals to

VDS which is smaller than in the previous case and improves the driving strength. The VSB

of transistor N2 is strictly zero, totally eliminating the body effect. Similar conclusion can be

drawn when Vpr og T E≈GN D and Vpr og BE≈Vpr og .

However, when a symmetric bulk is implemented with a single-well technology as shown in Fig.

58

3.2. Limitations of 2T1R Programming Structure

3.4(c), the substrate is connected to two voltage sources Vpr og T E≈Vpr og and Vpr og BE≈GN D ,

resulting in a high leakage current Isub . Besides, the junction diode at the source of transistor

N1 is positively biased, introducing another high leakage current Idi ode . Isub can be reduced

to zero with a triple-well technology as shown in Fig. 3.4(d), but Idi ode remains a concern.

In short, there exist serious problems in connecting the bulks of 2T1R structure, limiting its

feasibility from a physical design perspective.

+ -

P+ N+ N+ N+ N+ P+

VprogTE VG1 VG2 VprogBE

N-Well P-WellP-Well Idiode

+ -

P+ N+ N+ N+ N+ P+

VprogTE VG1 VG2 VprogBE

P-Well
IsubIdiode

(c)

(d)

(a)

+

-

N1

N2

VprogTE
VD1

VS1

VD2

VS2

VB2

VprogBE

VG1

VG2

VB1

(b)

+

-

N1

N2

VprogTE
VD1

VS1

VD2

VS2

GND

VprogBE

VG1

VG2

GND

Figure 3.4 – (a) Asymmetric bulk management of the 2T1R structure; (b) Symmetric bulk man-
agement of the 2T1R structure; (c) Single well application of layout; (d) Triple well application
of layout.

3.2.4 Area Estimation

We estimate the area of the programming structures in terms of minimal size transistors. While

we only considered the set process, it is worth noticing that in the 2T1R structure, the same

transistors N1 and N2 are used in reset process as well. Typically, the reset current is not

the same as the set current [1]. To be applicable in both set and reset, the size of transistors

N1 and N2 should be determined by the largest of set/reset currents. Assume Wpr og ,set and

Wpr og ,r eset are the transistor sizes required for the set and reset operations, respectively. In

the context of a memory bank, we assume that a driving inverter for a BL is shared by N 2T1R

structures:2Wpr og ,set +2·(1+βγ)Wi nv /N , Iset≥Ir eset

2Wpr og ,r eset +2·(1+βγ)Wi nv /N , Iset < Ir eset

(3.3)

59

Chapter 3. RRAM-based Circuit Designs

where β is the ratio of p-type and n-type transistors and γ is the penalty factor for the area

overhead of the P-Well of p-type transistors. Wi nv is the size of driving inverters. When the

set current is larger than the reset current, the area is determined by Wpr og ,set . When the

reset current is larger than the set current, the area is determined by Wpr og ,r eset . In this case,

during the set process, transistor N1 and N2 should be under-drived by reducing VG1, VG2

and Vpr og to respect the current compliance. Unlike the Wpr og ,set , a large Wpr og ,r eset does

not contribute to a high RHRS . In others words, a large Wpr og ,r eset does not improve the

performance as the Wpr og ,set does. Therefore, when Iset < Ir eset , the area consumed by a large

Wpr og ,r eset is not directly contributing to a performance improvement.

3.2.5 Electrical Simulations

First, we validate our theoretical intuitions by presenting the SPICE transient analysis of the

2T1R structure. Then, we show the SPICE results of the VDS and programming current Id s of

the 2T1R structure.

Transient Analysis

Fig. 3.5 illustrates current and voltage waveforms of the 2T1R structure during a set process.

After the transistors are turned on, a voltage difference VM AX between the RRAM electrodes is

applied, initiating the set transition on the memory. The reduction on the resistance of the

RRAM leads to an increase in Id s . To support the growing Id s , the VDS of transistors have to

increase, leading to VT E is decreasing and VBE is increasing. The RRAM stays in programming

phase until VT E −VBE reaches the threshold voltage Vset .

VDS of Transistors N1 and N2

Fig. 3.6 shows the trend of VDS in a 2T1R structure by sweeping Wpr og and Vpr og , where

Wi nv is 20 in order to keep VDS3 and VDS4 negligible. The VDS difference reaches 0.65V when

Vpr og = 2.5V on average. Boosting Vpr og can reduce the VDS difference down to 0.5V. A larger

Vpr og can increase the VDS2 by 2.8×. Fig. 3.7 depicts the trend of VDS in 2T1R structure by

sweeping Wpr og and Wi nv , where Vpr og is 3.0V. Increasing Wi nv can effectively reduce the

VDS gap by 15%.

Programming Current Id s

The achievable programming currents Id s are determined by VDS . A high Vpr og can increase

the VDS , as explained in Section 3.2.2. Fig. 3.8(a) illustrates that for the same Wi nv , we can

improve 3.4× Id s by boosting Vpr og from 2.5V to 3.0V on average. Wi nv is another important

factor that influences the Id s . A large Wi nv can reduce VDS3 and VDS4 while increase VDS1 and

VDS2. As shown in Fig. 3.8(b), a large Wi nv , such as 20, leads to a 3.8× higher Id s than the

60

3.2. Limitations of 2T1R Programming Structure

Programming
RRAM

Before
Programming

After
Programming

VTE

VBE

(V
)

(A
)

Ids

Vset

t(s)

Vmax

Figure 3.5 – Transient analysis on voltages and current in the 2T1R structure during a set
process (Wpr og = 5, Vpr og = 3.0V , Wi nv = 20, 1 Wpr og = 320nm).

smallest Wi nv = 1 on average. In short, boosting Vpr og is an efficient method in improving Id s ,

which avoids the use of large transistors. A large Wi nv (i.e., =20) must be applied to avoid a

serious degradation on Id s .

3.2.6 Discussion About Limitations

From theoretical analysis and electrical simulations, we see five major limitations of 2T1R

structure:

(1) its current density is low due to the intrinsic low VDS2;

(2) its bulk connections lead to a high leakage current;

(3) its current density is weakened by a small Wi nv ;

(4) its area is bounded by the maximum of Wpr og ,set and Wpr og ,r eset , which is not efficient

when Ir eset is large.

(5) it is not manufacturable due to the layout issues shown in Section 3.2.3. Hence, in the rest

of the paper, we only refer to it when comparing the current density.

To address the listed limitations (1), (2) and (5), we propose 2TG1R programming structures in

Section 3.3.

61

Chapter 3. RRAM-based Circuit Designs

1 2 3 4 5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Wprog(No. of min. trans.)

V
D

S1
/V

D
S2

 (V
)

 VDS1 of 2T1R Vprog=2.5V
VDS2 of 2T1R Vprog=2.5V
VDS1 of 2T1R Vprog=2.6V
VDS2 of 2T1R Vprog=2.6V
VDS1 of 2T1R Vprog=2.7V
VDS2 of 2T1R Vprog=2.7V
VDS1 of 2T1R Vprog=2.8V
VDS2 of 2T1R Vprog=2.8V
VDS1 of 2T1R Vprog=2.9V
VDS2 of 2T1R Vprog=2.9V
VDS1 of 2T1R Vprog=3.0V
VDS2 of 2T1R Vprog=3.0V

1 2 3 4 5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Wprog(No. of min. trans.)

V
D

S1
/V

D
S2

 (V
)

 VDS1 of 2T1R Vprog=2.5V
VDS2 of 2T1R Vprog=2.5V
VDS1 of 2T1R Vprog=2.6V
VDS2 of 2T1R Vprog=2.6V
VDS1 of 2T1R Vprog=2.7V
VDS2 of 2T1R Vprog=2.7V
VDS1 of 2T1R Vprog=2.8V
VDS2 of 2T1R Vprog=2.8V
VDS1 of 2T1R Vprog=2.9V
VDS2 of 2T1R Vprog=2.9V
VDS1 of 2T1R Vprog=3.0V
VDS2 of 2T1R Vprog=3.0V

1 2 3 4 5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Wprog(No. of min. trans.)

V
D

S1
/V

D
S2

 (V
)

 VDS1 of 2T1R Vprog=2.5V
VDS2 of 2T1R Vprog=2.5V
VDS1 of 2T1R Vprog=2.6V
VDS2 of 2T1R Vprog=2.6V
VDS1 of 2T1R Vprog=2.7V
VDS2 of 2T1R Vprog=2.7V
VDS1 of 2T1R Vprog=2.8V
VDS2 of 2T1R Vprog=2.8V
VDS1 of 2T1R Vprog=2.9V
VDS2 of 2T1R Vprog=2.9V
VDS1 of 2T1R Vprog=3.0V
VDS2 of 2T1R Vprog=3.0V

1 2 3 4 5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Wprog(No. of min. trans.)

V
D

S1
/V

D
S2

 (V
)

 VDS1 of 2T1R Vprog=2.5V
VDS2 of 2T1R Vprog=2.5V
VDS1 of 2T1R Vprog=2.6V
VDS2 of 2T1R Vprog=2.6V
VDS1 of 2T1R Vprog=2.7V
VDS2 of 2T1R Vprog=2.7V
VDS1 of 2T1R Vprog=2.8V
VDS2 of 2T1R Vprog=2.8V
VDS1 of 2T1R Vprog=2.9V
VDS2 of 2T1R Vprog=2.9V
VDS1 of 2T1R Vprog=3.0V
VDS2 of 2T1R Vprog=3.0V

1 2 3 4 5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Wprog(No. of min. trans.)

V
D

S1
/V

D
S2

 (V
)

 VDS1 of 2T1R Vprog=2.5V
VDS2 of 2T1R Vprog=2.5V
VDS1 of 2T1R Vprog=2.6V
VDS2 of 2T1R Vprog=2.6V
VDS1 of 2T1R Vprog=2.7V
VDS2 of 2T1R Vprog=2.7V
VDS1 of 2T1R Vprog=2.8V
VDS2 of 2T1R Vprog=2.8V
VDS1 of 2T1R Vprog=2.9V
VDS2 of 2T1R Vprog=2.9V
VDS1 of 2T1R Vprog=3.0V
VDS2 of 2T1R Vprog=3.0V

1 2 3 4 5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Wprog(No. of min. trans.)

V
D

S1
/V

D
S2

 (V
)

 VDS1 of 2T1R Vprog=2.5V
VDS2 of 2T1R Vprog=2.5V
VDS1 of 2T1R Vprog=2.6V
VDS2 of 2T1R Vprog=2.6V
VDS1 of 2T1R Vprog=2.7V
VDS2 of 2T1R Vprog=2.7V
VDS1 of 2T1R Vprog=2.8V
VDS2 of 2T1R Vprog=2.8V
VDS1 of 2T1R Vprog=2.9V
VDS2 of 2T1R Vprog=2.9V
VDS1 of 2T1R Vprog=3.0V
VDS2 of 2T1R Vprog=3.0V

1 2 3 4 5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Wprog(No. of min. trans.)

V
D

S (V
)

 VDS1 of 2T1R Vprog=2.5V
VDS2 of 2T1R Vprog=2.5V
VDS1 of 2T1R Vprog=2.6V
VDS2 of 2T1R Vprog=2.6V
VDS1 of 2T1R Vprog=2.7V
VDS2 of 2T1R Vprog=2.7V
VDS1 of 2T1R Vprog=2.8V
VDS2 of 2T1R Vprog=2.8V
VDS1 of 2T1R Vprog=2.9V
VDS2 of 2T1R Vprog=2.9V
VDS1 of 2T1R Vprog=3.0V
VDS2 of 2T1R Vprog=3.0V

0.65V

0.45V

2.8×

Figure 3.6 – VDS1 and VDS2 in 2T1R structure under diverse Vpr og (Wi nv = 20)

3.3 2TG1R Programming Structure

In this section, we improve the previous 2T1R circuit by replacing the n-type transistors and

propose a 2TG1R programming structure. The 2TG1R circuit, comprising of four transistors,

increases the current density significantly and overcomes the bulk management problem. The

solution is validated using the electrical simulations.

3.3.1 2TG1R Circuit Structure

Replacing the n-type transistors in 2T1R structure with transmission gates is a solution to

the bulk management and driving strength. As shown in Fig. 3.9, the bulks of the n-type and

p-type transistors (in total 4 transistors) are connected respectively to the highest and lowest

potentials, similarly to common digital design practice, removing the bulk leakage and body

effects. The driving inverters are still required to provide the voltage levels of Vpr og T E and

Vpr og BE during the programming phases. Whatever in a set or reset process, there always exist

a p-type transistor and a n-type transistor whose VSB = 0. Therefore, these two transistors

62

3.3. 2TG1R Programming Structure

1 2 3 4 5
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Wprog(No. of min. trans.)

V
D

S1
/V

D
S2

 (V
)

 VDS1 of 2T1R Winv=1
VDS2 of 2T1R Winv=1
VDS1 of 2T1R Winv=5
VDS2 of 2T1R Winv=5
VDS1 of 2T1R Winv=10
VDS2 of 2T1R Winv=10
VDS1 of 2T1R Winv=15
VDS2 of 2T1R Winv=15
VDS1 of 2T1R Winv=20
VDS2 of 2T1R Winv=20

1 2 3 4 5
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Wprog(No. of min. trans.)

V
D

S1
/V

D
S2

 (V
)

 VDS1 of 2T1R Winv=1
VDS2 of 2T1R Winv=1
VDS1 of 2T1R Winv=5
VDS2 of 2T1R Winv=5
VDS1 of 2T1R Winv=10
VDS2 of 2T1R Winv=10
VDS1 of 2T1R Winv=15
VDS2 of 2T1R Winv=15
VDS1 of 2T1R Winv=20
VDS2 of 2T1R Winv=20

1 2 3 4 5
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Wprog(No. of min. trans.)

V
D

S1
/V

D
S2

 (V
)

 VDS1 of 2T1R Winv=1
VDS2 of 2T1R Winv=1
VDS1 of 2T1R Winv=5
VDS2 of 2T1R Winv=5
VDS1 of 2T1R Winv=10
VDS2 of 2T1R Winv=10
VDS1 of 2T1R Winv=15
VDS2 of 2T1R Winv=15
VDS1 of 2T1R Winv=20
VDS2 of 2T1R Winv=20

1 2 3 4 5
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Wprog(No. of min. trans.)

V
D

S1
/V

D
S2

 (V
)

 VDS1 of 2T1R Winv=1
VDS2 of 2T1R Winv=1
VDS1 of 2T1R Winv=5
VDS2 of 2T1R Winv=5
VDS1 of 2T1R Winv=10
VDS2 of 2T1R Winv=10
VDS1 of 2T1R Winv=15
VDS2 of 2T1R Winv=15
VDS1 of 2T1R Winv=20
VDS2 of 2T1R Winv=20

1 2 3 4 5
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Wprog(No. of min. trans.)

V
D

S1
/V

D
S2

 (V
)

 VDS1 of 2T1R Winv=1
VDS2 of 2T1R Winv=1
VDS1 of 2T1R Winv=5
VDS2 of 2T1R Winv=5
VDS1 of 2T1R Winv=10
VDS2 of 2T1R Winv=10
VDS1 of 2T1R Winv=15
VDS2 of 2T1R Winv=15
VDS1 of 2T1R Winv=20
VDS2 of 2T1R Winv=20

1 2 3 4 5
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Wprog(No. of min. trans.)

V
D

S (V
)

 VDS1 of 2T1R Winv=1
VDS2 of 2T1R Winv=1
VDS1 of 2T1R Winv=5
VDS2 of 2T1R Winv=5
VDS1 of 2T1R Winv=10
VDS2 of 2T1R Winv=10
VDS1 of 2T1R Winv=15
VDS2 of 2T1R Winv=15
VDS1 of 2T1R Winv=20
VDS2 of 2T1R Winv=20

0.55V

0.45V

Figure 3.7 – VDS1 and VDS2 in 2T1R structure under diverse Wi nv (Vpr og = 3.0V). (1 Wpr og =
320nm)

whose VSB = 0 can provide higher current than 2T1R structure. Although the other two

transistors (weak p-type and weak n-type) suffer serious body effects, they still contribute to

the currents. Hence, the total current offered by 2TG1R structure is higher than 2T1R structure.

3.3.2 Area Estimation

We consider the area of a 2TG1R structure in the context of a memory bank as well. By

considering the area of two p-type transistors, the area of a 2TG1R structure is:2·(1+βγ)Wpr og ,set +2·(1+βγ)Wi nv /N , Iset≥Ir eset

2·(1+βγ)Wpr og ,r eset +2·(1+βγ)Wi nv /N , Iset < Ir eset .
(3.4)

63

Chapter 3. RRAM-based Circuit Designs

1 2 3 4 5
0

100

200

300

400

500

600

700

Wprog(No. of min. trans.)

I ds
 (µ

A
)

Vprog=2.5V

Vprog=2.6V

Vprog=2.7V

Vprog=2.8V

Vprog=2.9V

Vprog=3.0V

3.4×

1 2 3 4 5
0

100

200

300

400

500

600

700

Wprog(No. of min. trans.)

I ds
 (µ

A
)

Winv=1

Winv=5

Winv=10

Winv=15

Winv=20

3.8×

(a)

(b)

Figure 3.8 – (a) Id s in 2T1R structure under diverse Vpr og (Wi nv = 20); (b) Id s in 2T1R structure
under diverse Wi nv (Vpr og = 3.0V). (1 Wpr og = 320nm)

64

3.3. 2TG1R Programming Structure

VG1

N1

+
-

VRRAMIds
VTE

VBE

Vprog

VprogTE

VprogBE

GND

Vprog
GND

GND

Vprog

VDS3

VDS4

Ids
P1

N3

P1
VG2

VDS2

Ids

VG3

N2 P2
VG4

Vprog
GND

Vprog
GND VDS1

Figure 3.9 – A 2TG1R programming structure extracted from system-level implementations in
Fig. 3.1

In summary, the area of 2TG1R circuit is still bounded to the largest of Wpr og ,set and Wpr og ,r eset .

When Iset < Ir eset , area investment on Wpr og ,r eset does not bring any improvement on perfor-

mance. This is extremely inefficient when Wpr og ,r eset is large. A 2TG1R circuit leads to a even

larger area overhead than 2T1R structure due to the use of p-type transistors.

3.3.3 Electrical Simulations

In this section, we show the electrical simulation results of 2TG1R structure. We focus on the

improvements on VDS and Id s of 2TG1R structure, compared to the baseline 2T1R element.

Transient Analysis

Basically, the waveforms of the transient analysis on a 2TG1R are the same as 2T1R structure.

The only difference lies in the slope rate of VT E and VBE during the programming phase. In

2TG1R, VT E decreases at the same rate as VBE increases. In the other word, VDS1 and VDS2 in

2TG1R grow at the same rate.

65

Chapter 3. RRAM-based Circuit Designs

1 2 3 4 5
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Wprog(No. of min. trans.)

V DS
 (V

)

 VDS1 of 2TG1R Vprog=2.5V
VDS2 of 2TG1R Vprog=2.5V
VDS1 of 2TG1R Vprog=2.6V
VDS2 of 2TG1R Vprog=2.6V
VDS1 of 2TG1R Vprog=2.7V
VDS2 of 2TG1R Vprog=2.7V
VDS1 of 2TG1R Vprog=2.8V
VDS2 of 2TG1R Vprog=2.8V
VDS1 of 2TG1R Vprog=2.9V
VDS2 of 2TG1R Vprog=2.9V
VDS1 of 2TG1R Vprog=3.0V
VDS2 of 2TG1R Vprog=3.0V

1 2 3 4 5
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Wprog(No. of min. trans.)

V
D

S (V
)

 VDS1 of 2TG1R Vprog=2.5V
VDS2 of 2TG1R Vprog=2.5V
VDS1 of 2TG1R Vprog=2.6V
VDS2 of 2TG1R Vprog=2.6V
VDS1 of 2TG1R Vprog=2.7V
VDS2 of 2TG1R Vprog=2.7V
VDS1 of 2TG1R Vprog=2.8V
VDS2 of 2TG1R Vprog=2.8V
VDS1 of 2TG1R Vprog=2.9V
VDS2 of 2TG1R Vprog=2.9V
VDS1 of 2TG1R Vprog=3.0V
VDS2 of 2TG1R Vprog=3.0V

1 2 3 4 5
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Wprog(No. of min. trans.)

V
D

S (V
)

 VDS1 of 2TG1R Vprog=2.5V
VDS2 of 2TG1R Vprog=2.5V
VDS1 of 2TG1R Vprog=2.6V
VDS2 of 2TG1R Vprog=2.6V
VDS1 of 2TG1R Vprog=2.7V
VDS2 of 2TG1R Vprog=2.7V
VDS1 of 2TG1R Vprog=2.8V
VDS2 of 2TG1R Vprog=2.8V
VDS1 of 2TG1R Vprog=2.9V
VDS2 of 2TG1R Vprog=2.9V
VDS1 of 2TG1R Vprog=3.0V
VDS2 of 2TG1R Vprog=3.0V

1 2 3 4 5
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Wprog(No. of min. trans.)

V
D

S (V
)

 VDS1 of 2TG1R Vprog=2.5V
VDS2 of 2TG1R Vprog=2.5V
VDS1 of 2TG1R Vprog=2.6V
VDS2 of 2TG1R Vprog=2.6V
VDS1 of 2TG1R Vprog=2.7V
VDS2 of 2TG1R Vprog=2.7V
VDS1 of 2TG1R Vprog=2.8V
VDS2 of 2TG1R Vprog=2.8V
VDS1 of 2TG1R Vprog=2.9V
VDS2 of 2TG1R Vprog=2.9V
VDS1 of 2TG1R Vprog=3.0V
VDS2 of 2TG1R Vprog=3.0V

1 2 3 4 5
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Wprog(No. of min. trans.)

V
D

S (V
)

 VDS1 of 2TG1R Vprog=2.5V
VDS2 of 2TG1R Vprog=2.5V
VDS1 of 2TG1R Vprog=2.6V
VDS2 of 2TG1R Vprog=2.6V
VDS1 of 2TG1R Vprog=2.7V
VDS2 of 2TG1R Vprog=2.7V
VDS1 of 2TG1R Vprog=2.8V
VDS2 of 2TG1R Vprog=2.8V
VDS1 of 2TG1R Vprog=2.9V
VDS2 of 2TG1R Vprog=2.9V
VDS1 of 2TG1R Vprog=3.0V
VDS2 of 2TG1R Vprog=3.0V

1 2 3 4 5
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Wprog(No. of min. trans.)

V
D

S (V
)

 VDS1 of 2TG1R Vprog=2.5V
VDS2 of 2TG1R Vprog=2.5V
VDS1 of 2TG1R Vprog=2.6V
VDS2 of 2TG1R Vprog=2.6V
VDS1 of 2TG1R Vprog=2.7V
VDS2 of 2TG1R Vprog=2.7V
VDS1 of 2TG1R Vprog=2.8V
VDS2 of 2TG1R Vprog=2.8V
VDS1 of 2TG1R Vprog=2.9V
VDS2 of 2TG1R Vprog=2.9V
VDS1 of 2TG1R Vprog=3.0V
VDS2 of 2TG1R Vprog=3.0V

1 2 3 4 5
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Wprog(No. of min. trans.)

V
D

S (V
)

 VDS1 of 2TG1R Vprog=2.5V
VDS2 of 2TG1R Vprog=2.5V
VDS1 of 2TG1R Vprog=2.6V
VDS2 of 2TG1R Vprog=2.6V
VDS1 of 2TG1R Vprog=2.7V
VDS2 of 2TG1R Vprog=2.7V
VDS1 of 2TG1R Vprog=2.8V
VDS2 of 2TG1R Vprog=2.8V
VDS1 of 2TG1R Vprog=2.9V
VDS2 of 2TG1R Vprog=2.9V
VDS1 of 2TG1R Vprog=3.0V
VDS2 of 2TG1R Vprog=3.0V

0.1V

1.8×

0.1V

Figure 3.10 – VDS1 and VDS2 in 2TG1R structure under diverse Vpr og (Wi nv = 20);

VDS Gap Improvement

As shown in Fig. 3.10 and Fig. 3.11, a 2TG1R structure reduces the VDS gap by 5×, compared to

a 2T1R structure. Like the 2T1R structure, boosting Vpr og can improve VDS2 of 2TG1R by 1.8×.

However, a 2TG1R still requires a large Wi nv = 20 to avoid the degradation on VDS gap, coming

from a non-negligible VDS3 and VDS4. When Wi nv = 1, the VDS gap degrades by 2×.

Programming Current Id s

Boosting Vpr og and Wi nv achieves a similar effect on the Id s than on the 2T1R structure.

Boosting Vpr og can improve Id s of 2TG1R by 1.8×. Increasing Wi nv from 1 to 20 can improve

Id s of 2TG1R by 4.3×. The Id s of 2TG1R is 1.2× higher than 2T1R structure.

3.3.4 Summary: Advantages and Limitations

From theoretical analysis and electrical simulations, 2TG1R structures have the following

advantages over 2T1R structure:

66

3.4. 4T1R Programming Structure

1 2 3 4 5

0.65

0.7

0.75

0.8

0.85

0.9

Wprog(No. of min. trans.)

V DS
 (V

)

 VDS1 of 2TG1R Winv=1
VDS2 of 2TG1R Winv=1
VDS1 of 2TG1R Winv=5
VDS2 of 2TG1R Winv=5
VDS1 of 2TG1R Winv=10
VDS2 of 2TG1R Winv=10
VDS1 of 2TG1R Winv=15
VDS2 of 2TG1R Winv=15
VDS1 of 2TG1R Winv=20
VDS2 of 2TG1R Winv=20

1 2 3 4 5
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Wprog(No. of min. trans.)

V
D

S (V
)

 VDS1 of 2TG1R Winv=1
VDS2 of 2TG1R Winv=1
VDS1 of 2TG1R Winv=5
VDS2 of 2TG1R Winv=5
VDS1 of 2TG1R Winv=10
VDS2 of 2TG1R Winv=10
VDS1 of 2TG1R Winv=15
VDS2 of 2TG1R Winv=15
VDS1 of 2TG1R Winv=20
VDS2 of 2TG1R Winv=20

1 2 3 4 5
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Wprog(No. of min. trans.)

V
D

S (V
)

 VDS1 of 2TG1R Winv=1
VDS2 of 2TG1R Winv=1
VDS1 of 2TG1R Winv=5
VDS2 of 2TG1R Winv=5
VDS1 of 2TG1R Winv=10
VDS2 of 2TG1R Winv=10
VDS1 of 2TG1R Winv=15
VDS2 of 2TG1R Winv=15
VDS1 of 2TG1R Winv=20
VDS2 of 2TG1R Winv=20

1 2 3 4 5
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Wprog(No. of min. trans.)

V
D

S (V
)

 VDS1 of 2TG1R Winv=1
VDS2 of 2TG1R Winv=1
VDS1 of 2TG1R Winv=5
VDS2 of 2TG1R Winv=5
VDS1 of 2TG1R Winv=10
VDS2 of 2TG1R Winv=10
VDS1 of 2TG1R Winv=15
VDS2 of 2TG1R Winv=15
VDS1 of 2TG1R Winv=20
VDS2 of 2TG1R Winv=20

1 2 3 4 5
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Wprog(No. of min. trans.)

V
D

S (V
)

 VDS1 of 2TG1R Winv=1
VDS2 of 2TG1R Winv=1
VDS1 of 2TG1R Winv=5
VDS2 of 2TG1R Winv=5
VDS1 of 2TG1R Winv=10
VDS2 of 2TG1R Winv=10
VDS1 of 2TG1R Winv=15
VDS2 of 2TG1R Winv=15
VDS1 of 2TG1R Winv=20
VDS2 of 2TG1R Winv=20

1 2 3 4 5
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Wprog(No. of min. trans.)

V
D

S (V
)

 VDS1 of 2TG1R Winv=1
VDS2 of 2TG1R Winv=1
VDS1 of 2TG1R Winv=5
VDS2 of 2TG1R Winv=5
VDS1 of 2TG1R Winv=10
VDS2 of 2TG1R Winv=10
VDS1 of 2TG1R Winv=15
VDS2 of 2TG1R Winv=15
VDS1 of 2TG1R Winv=20
VDS2 of 2TG1R Winv=20

1 2 3 4 5
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Wprog(No. of min. trans.)

V
D

S (V
)

 VDS1 of 2TG1R Winv=1
VDS2 of 2TG1R Winv=1
VDS1 of 2TG1R Winv=5
VDS2 of 2TG1R Winv=5
VDS1 of 2TG1R Winv=10
VDS2 of 2TG1R Winv=10
VDS1 of 2TG1R Winv=15
VDS2 of 2TG1R Winv=15
VDS1 of 2TG1R Winv=20
VDS2 of 2TG1R Winv=20

0.2V

0.1V

Figure 3.11 – VDS1 and VDS2 in 2TG1R structure under diverse Wi nv (Vpr og = 3.0V). (1 Wpr og =
320nm)

(1) the VDS gap is reduced by 5×, contributing to a 1.2× improvement in Id s ;

(2) its bulk connections are regular, removing the bulk leakage and body effects.

However, the 2TG1R still shares two limitations with the 2T1R structure:

(1) large driving inverters are still needed to avoid current density degradation;

(2) the area is still constrained by the worse case of Wpr og ,set and Wpr og ,r eset , which is ineffi-

cient when Iset < Ir eset and Wpr og ,r eset is large.

Note that the 2TG1R programming structure overcomes the limitations (1), (2) and (5) of the

2T1R programming structure (See Section 3.2.6). To fully address the limitations of the 2T1R

and the 2TG1R programming structures, we propose 4T1R programming structures in Section

3.4.

3.4 4T1R Programming Structure

In this section, we propose a 4T1R programming structure able to alleviate the addressed

limitations of 2T1R programming structures. We first introduce the circuit design and conduct

67

Chapter 3. RRAM-based Circuit Designs

theoretical analysis. Then, we compare the 4T1R structure with 2T1R and 2TG1R structures

using electrical simulations.

3.4.1 4T1R Circuit Structure

Fig. 3.12(a) illustrates the schematic of the 4T1R structure which consists of two p-type

transistors P1 and P2 and two n-type transistors N1 and N2. The sources of the transistors

in the 4T1R structure are directly connected to the voltage supplies, eliminating the driving

inverters used with the 2T1R and 2TG1R solutions. The programming phase is launched by

appropriately biasing the gates of the transistors. In a set process, the transistors P1 and N2

are turned on while the transistor P2 and N1 are turned off, applying a positive programming

voltage between VT E and VBE , as shown in Fig. 3.12(b). Conversely, when the transistors

P2 and N1 are turned on and the transistors P1 and N2 are turned off, applying a negative

voltage between VT E and VBE , a reset process is operated. When the programming segment

is finished, all the transistors are turned off. The 4T1R structure is compatible to the system-

level implementations in Fig. 3.1. In a scan-chain organization, VG1, VG2, VG3, VG4 can be

connected to Q0, Q0, Q1, Q1, respectively. In a memory bank organization, VG1, VG2, VG3, VG4

can be connected to BL[0], W L[2], BL[2], W L[1], respectively.

GND

Vprog

VG1

+ -

VDS1
P1 P2

VDS2VRRAM

Ids

GND
N1 N2

GND

Vprog

VG1

+ -

VDS1
P1

VRRAM

Ids

VG2
N2

VDS2VTE

VBE

(a)

(b)

VG4

VG3

VG2

VD1

VS1

Vprog

VB1

VD2

VS2

VB2

in

out

Figure 3.12 – (a) The proposed 4T1R structure (b) Extracted 4T1R structure in a set process

68

3.4. 4T1R Programming Structure

3.4.2 Theoretical Analysis on I-V Characteristics

We first focus on the set process (Fig. 3.12(b)). By applying Kirchhoff Circuit Laws, we can

express the following relationships:
Id s = f (VGS1,VDS1) = f (VGS2,VDS2)

VRR AM = Id sRRR AM

Vpr og =VDS1 +VDS2 +VRR AM .

(3.5)

VDS1 and VDS2 represent the drain-to-source voltages of transistors P1 and N2, respectively.

VGS1 and VGS2 represent the gate-to-source voltages of transistors P1 and N2, respectively.

Note that in the 4T1R structure, the sources of the transistors are connected to constant voltage

supplies, giving stable VGS during the programming phase. We can set VGS1 =VGS2. According

to the basic transistor model shown in (3.2), when VGS1 =VGS2, we can find:

VDS =VDS1 =VDS2. (3.6)

Combining (3.5) and (3.6), we can reach

Id s =
Vpr og

RRR AM
− 2

RRR AM
VDS . (3.7)

We plot the I-V curves of (3.2) and (3.7) in Fig. 3.13(a). The crossing points P (∼ 0,Vpr og /RHRS)

and Q ((Vpr og −Vset)/2, Iset) in Fig. 3.13(a) represent the starting and end points of a set pro-

cedure. From P to Q, VDS gradually increases to provide a large Id s . On the other side, RRR AM

decreases as Id s grows. The increment of Id s further induces a increase in VDS and a decrease

in RRR AM . When VRR AM reaches the threshold programming voltage Vset of the RRAM, the

set process stops (point Q in Fig. 3.13(a)). We can determine VDS,Q = (Vpr og −Vset)/2 and

Id s,Q = Vset /RRR AM ,Q at the ending point Q. Note that RRR AM ,Q is the programmed RLRS of

the RRAM while RRR AM ,P is RHRS of the RRAM.

In the reset process, let Vr eset be the threshold programming voltage of the RRAM. The I-

V curve of reset process could be different from set process because of the technological

constraints (Vr eset and Ir eset). Fig. 3.13 illustrates the three cases that could happen during

a reset process. Similar to the analysis in set process, we define the operating point P (∼
0,Vpr og /RHRS) as the ending point of a reset process and the operating point N ((Vpr og −
Vr eset)/2, Ir eset) as the starting point of a reset process. Fig. 3.13(a) is applicable to all the

conditions where Vset ≥Vr eset , Iset ≥ Ir eset , where point N overlaps point Q. In this case, the

reset process is an exact reverse trace of the set process. Fig. 3.13(b) covers the most difficult

condition: Vset <Vr eset and Iset < Ir eset . Compared to the set, the starting point N of the reset

process is most stringent. As a result, a Wpr og ,r eset /VGS ,reset larger than Wpr og ,set /VGS ,set will

have to be used to reach point N. Note that Fig. 3.13(b) is applicable for other conditions where

either Vset < Vr eset or Iset < Ir eset happens. Finally, Fig. 3.13(c) covers another case where

69

Chapter 3. RRAM-based Circuit Designs

IDS

0 VDS

VGS,set

Wprog,set

Vprog/2

Vprog/RHRS

Vprog/RLRS

(Vprog-Vset)/2

P,N

Q

Programming
Phase

Ids=Iset

VDS, P

IDS

0 VDS

VGS,set

Wprog,set

Vprog/2

Vprog/RHRS

Vprog/RLRS

(Vprog-

Vset)/2

P

Q

Programming
Phase

Ids=Iset

VDS, P

VGS,reset

Wprog,resetN

(Vprog-

Vreset)/2
IDS

0 VDS

VGS,set

Wprog,set

Vprog/2

Vprog/RHRS

Vprog/RLRS

P

Q

Programming
Phase

VDS, P

VGS,reset

Wprog,reset

N

(Vprog-

Vset)/2
(Vprog-

Vreset)/2

(a)
(b)

(c)

Ids=Ireset

Ids=Iset

Ids=Ireset

Figure 3.13 – I-V characteristics of the 4T1R structure: (a) Vset =Vr eset ; (b) Vset < Vr eset or
Iset < Ir eset ; (c) Vset >Vr eset or Iset > Ir eset .

Vset >Vr eset and Iset > Ir eset , while the case shown in Fig. 3.13(a) still applies in the case, it

would result in an oversizing for the reset process. In the case of Fig. 3.13(c), the starting point

of reset process N leads to a smaller Wpr og ,r eset /VGS ,reset than Wpr og ,set /VGS,set .

Note that Fig. 3.13 reveals another shortcoming of 2T1R and 2TG1R structures, which use

the same programming transistors for both the set and the reset processes. Due to this fact,

they must be sized according to the worse case max{Wpr og ,set ,Wpr og ,r eset }. Hence, for the

conditions illustrated in Fig. 3.13(b)(c), the 2T1R and 2TG1R structures have to use two

different VGS for the set and the reset processes (VGS,set 6=VGS,r eset). When two different VGS

are needed, the system-level implementations in Fig. 3.1 will require additional circuitry for

generating controlling signals, i.e., W L[1] and W L[2] should have three voltage levels: VGS,set ,

VGS,r eset and GN D .

70

3.4. 4T1R Programming Structure

IDS

0 VDS

VGS

Wprog,boost

Vprog/2

Vprog/RHRS

Vprog/
RLRS, boost

P

N'

Programming
Phase

VDS, P

VGS

Wprog
N

(Vprog-Vset)/2

(a)

Ids=Iset

IDS

0 VDS

VGS

Wprog

Vprog,boost

/2

Vprog/RHRS

Vprog,boost/
RLRS, boost

P

N'

Programming
Phase

VDS, P

N

(Vprog-

Vset)/2
(Vprog, boost-

Vset)/2

(b)

Vprog/RLRS

Vprog/2

Ids=Iset, boost

Vprog/RLRS
Ids=Iset, boost

Ids=Iset

Figure 3.14 – I-V characteristics of the 4T1R structure during set process when: (a) Boosting
Wpr og ; (b) Boosting Vpr og .

3.4.3 Current Density Boosting Methodologies

Vpr og and Wpr og are the two controllable parameters for circuit designers to boost Id s,Q . In this

part, depending on the working regions of the crossing point Q, we investigate the boosting

methodologies for Id s,Q by tuning Vpr og and Wpr og .

Linear Region

When the transistors work in the linear region at the crossing point Q, we can obtain the

following equations:
Id s,Q = kn

Wpr og

L [(VGS −VT)VDS,Q − 1
2VDS,Q

2]

VDS,Q <VGS −VT

Id s,Q = (Vpr og −2VDS,Q)/RRR AM ,Q

VDS,Q = (Vpr og −Vset)/2

(3.8)

From (3.8), we can determine Id s,Q :
Id s,Q = knWpr og [(VGS−VT)(Vpr og−Vset)− 1

4 (Vpr og−Vset)2]
L

RRR AM ,Q = 2L·Vset /Wpr og

kn [(VGS−VT)(Vpr og−Vset)− 1
4 (Vpr og−Vset)2]

Vpr og < 2(VGS −VT)+Vset

(3.9)

In this case, both Wpr og and Vpr og can influence Id s,Q . By increasing Wpr og and Vpr og , Id s,Q

can be magnified, leading to a higher current density.

Fig. 3.14(a) and (b) shows the I-V characteristics of 4T1R programming structure working

in linear region when Wpr og and Vpr og are boosted respectively. As depicted in Fig. 3.14(a),

71

Chapter 3. RRAM-based Circuit Designs

boosting Wpr og to Wpr og ,boost leads to that the operating point during set process following

another I-V curve, highlighted green in Fig. 3.14(a). Hence, the ending point of set process

shifts from N to N ′ and a higher programming current Iset ,boost can be achieved, contributing

to a reduction in RLRS . Fig. 3.14(b) shows the shift of operating point during set process

when Vpr og is boosted. Increasing Vpr og to Vpr og ,boost leads to VDS of transistors grows from

Vpr og −Vset)/2 to Vpr og ,boost −Vset)/2. Therefore, we see in Fig. 3.14(b) that the ending point

of set process shifts from N to N ′, contributing to a higher programming current Iset ,boost

than Iset . As a result, the achieved RLRS is reduced to RLRS,boost .

Saturation Region

When the crossing point Q lies in the saturation region, we obtain the following equations.
Id s,Q = kn

Wpr og

L (VGS −VT)2

VDS,Q ≥VGS −VT

Id s,Q = (Vpr og −2VDS,Q)/RRR AM ,Q

VDS,Q = (Vpr og −Vset)/2

(3.10)

From (3.10), we express Id s,Q as follows:
Id s,Q = knWpr og (VGS−VT)2

2L

RRR AM ,Q = 2L·Vset /Wpr og

kn (VGS−VT)2

Vpr og > 2(VGS −VT)+Vset

(3.11)

In the saturation region, only Wpr og can boost Id s,Q .

Equations (3.9) and (3.11) show that adjusting the Wpr og and Vpr og are the two methods in

boosting Id s,Q . The Wpr og is linearly proportional to Id s,Q whatever the working region is.

When Vpr og is bound to the linear region, it has a quadratic impact on Id s,Q . After Vpr og meets

the need of the saturation region, it has no impact on Id s,Q . Therefore, to enhance the current

density in the linear region, boosting Wpr og is effective but requires a large transistor size,

while boosting Vpr og does not increase the transistor size and should be considered as a first

choice. When Vpr og increases, the transistors move from the linear region to the saturation

region. In the saturation region, boosting Wpr og is the only boosting method. Referring to the

examples in Fig. 3.14(a)(b), boosting Wpr og can still shift the I-V curve and lead to a higher

programming current even in saturation region, while boosting Vpr og leads to no difference in

programming current since the ending point of set process always lies in the saturation region

of the same I-V curve. Similar conclusions can be found for reset process.

Constraints from Breakdown Limitations

As addressed in Section 3.4.3, boosting Vpr og can increase Id s,Q . However, there exists a

breakdown voltage Vbr eak for the source-to-drain voltage VDS of a transistor that provides an

72

3.4. 4T1R Programming Structure

upper-bound. In this section, we discuss the range of Vpr og that the 4T1R structure can safely

afford.

The VDS of all the transistors (P1,P2,N1,N2) in Fig. 3.12(a) should satisfy to:

(a) : max{Vpr og −VT E } = max{VDS1} ≤Vbr eak

(b) : max{VT E } =Vpr og −mi n{VDS1} ≤Vbr eak

(c) : max{Vpr og −VDS2} =Vpr og −mi n{VDS2} ≤Vbr eak

(d) : max{VBE } = max{VDS2} ≤Vbr eak

(e) : max{VDS1} = max{VDS2} = (Vpr og −Vset)/2

(f) : mi n{VDS1} = mi n{VDS2} =VDS,P .

(3.12)

Equations 3.12(a)(b)(c)(d) consider the breakdown limitations of VDS of the transistors P1,N1,P2,

N2, respectively. Equations 3.12(e)(f) are derived from the range of VDS of the transistors P1,N2

in Fig. 3.13. As illustrated in Fig. 3.13, max{VDS1} and max{VDS2} happen when the RRAM is

in LRS (point Q), while mi n{VDS1} and mi n{VDS2} happen when the RRAM is in HRS (point

P). VDS,P can be calculated by applying the transistor model (3.2) to the crossing point P in

Fig. 3.13:{
Id s

′ = kn
Wpr og

L [(VGS −VT)VDS,P −VDS,P
2/2]

Id s
′ = (Vpr og −2VDS,P)/RRR AM ,P .

(3.13)

Note that here, we only consider the linear region because typically the RRR AM ,P is large

enough to let the VDS of transistors P1,N2 less than VGS .

Solving (3.12) and (3.13), we find that the programming voltage Vpr og constrained by:

P1&N 2 : Vpr og ≤ 2Vbr eak −Vset

P2&N 1 : Vpr og ≤Vbr eak +VDS,P

VDS,mi n = 2
RRR AM ,P

knWpr og /L+ (VGS −VT)−p
∆

∆= [2+kn
Wpr og

L (VGS −VT)]2RRR AM ,P

−2Vpr og kn
Wpr og

L RRR AM ,P

(3.14)

Assume that RRR AM ,P of RRAM is large, VDS,P is approximately zero. In such case, the upper-

bound of Vpr og is tied to Vpr og ≤ mi n{2Vbr eak −Vset ,Vbr eak }.

3.4.4 Area Estimation

In a 4T1R structure, Vpr og and GN D are directly connected to power supplies. Compared to

the 2T1R and 2TG1R structures, no driving inverters are needed. The area of a 4T1R structure

is the sum of the sizes of transistors used in set and reset process:

2·(1+βγ)Wpr og ,set +2·(1+βγ)Wpr og ,r eset . (3.15)

73

Chapter 3. RRAM-based Circuit Designs

When Wpr og ,r eset is much larger than Wpr og ,set , all the transistors in the 2T1R and 2TG1R

structures have to be as large as Wpr og ,r eset while the 4T1R structure can use smaller transistor

sizes for set process. Hence, the 4T1R structure brings more flexibilities in transistor sizes than

the 2T1R and 2TG1R structures.

3.4.5 Benefits of 4T1R structures

In this section, we compare the 2T1R, 2TG1R and 4T1R structures in terms of three metrics:

VDS symmetry, Id s current, area, delay and power.

VDS Gap Reduction

In Fig. 3.15, we compare the VDS of 2T1R, 2TG1R and 4T1R structures, where Wi nv = 20

is considered for the 2T1R and 2TG1R structures. The VDS difference of 2TG1R and 4T1R

structures are 75% smaller than 2T1R structure, because they employ p-type transistors to

propagate Vpr og , as explained in Section 3.4.2. Note that if a small Wi nv , i.e., Wi nv = 1, rather

than Wi nv = 20 is used, the VDS gap of the 2TG1R structure would be larger than 4T1R.

Improvement on Programming Current Id s

As a result, the driving current shown in Fig. 3.16 of 4T1R structures is the best of the three

solutions. Id s of the 4T1R is 1.1× higher than 2TG1R structure, while 2TG1R improves Id s

by 1.3×, compared to 2T1R structure. Note that when Vpr og = 2.5V , the improvement in

driving current of 4T1R and 2TG1R structures are more significant than Vpr og = 3.0V . When

we investigate the driving current density of 2T1R, 2TG1R and 4T1R structures in Fig. 3.17,

4T1R structure is the best, which is 1.1× higher than 2TG1R structure and 1.4× higher than

2T1R structure. Note that the current density of 2T1R and 2TG1R are deceasing when Wpr og

increases, while the current density of 4T1R is increasing. When a larger Wpr og is used, Wi nv

has to be increased to alleviate the impact of VDS3 and VDS4. If Wi nv does not grow as Wpr og ,

VDS3 and VDS4 becomes non-negligible, resulting a degrading current density. Hence, without

re-sizing Wi nv , when Wpr og increases, 2T1R and 2TG1R provides a weaker Id s than a 4T1R

scheme. As a conclusion, 4T1R structure is more efficient in driving current than 2T1R and

2TG1R structures.

Area, Delay and Power

In this part, we evaluate the area, delay and power of SRAM-based transmission gate and

2TG1R, 4T1R RRAM-based programming structures. The area of RRAM-based multiplexers is

estimated with (3.4) and (3.15), where we assume N = 32, a typically size for a modern memory

bank [132]. The area model in [125] is used to estimate the transistor area. We consider the

propagation delay as the delay of the multiplexers, i.e., the signal delay from i n to out in Fig.

74

3.4. 4T1R Programming Structure

1 2 3 4 5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Wprog(No. of min. trans.)

V
D

S (V
)

 VDS1 of 2T1R Vprog=2.5V
VDS2 of 2T1R Vprog=2.5V
VDS1 of 2T1R Vprog=3.0V
VDS2 of 2T1R Vprog=3.0V
VDS1 of 2TG1R Vprog=2.5V
VDS2 of 2TG1R Vprog=2.5V
VDS1 of 2TG1R Vprog=3.0V
VDS2 of 2TG1R Vprog=3.0V
VDS1 of 4T1R Vprog=2.5V
VDS2 of 4T1R Vprog=2.5V
VDS1 of 4T1R Vprog=3.0V
VDS2 of 4T1R Vprog=3.0V

1 2 3 4 5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Wprog(No. of min. trans.)

V
D

S (V
)

 VDS1 of 2T1R Vprog=2.5V
VDS2 of 2T1R Vprog=2.5V
VDS1 of 2T1R Vprog=3.0V
VDS2 of 2T1R Vprog=3.0V
VDS1 of 2TG1R Vprog=2.5V
VDS2 of 2TG1R Vprog=2.5V
VDS1 of 2TG1R Vprog=3.0V
VDS2 of 2TG1R Vprog=3.0V
VDS1 of 4T1R Vprog=2.5V
VDS2 of 4T1R Vprog=2.5V
VDS1 of 4T1R Vprog=3.0V
VDS2 of 4T1R Vprog=3.0V

1 2 3 4 5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Wprog(No. of min. trans.)

V
D

S (V
)

 VDS1 of 2T1R Vprog=2.5V
VDS2 of 2T1R Vprog=2.5V
VDS1 of 2T1R Vprog=3.0V
VDS2 of 2T1R Vprog=3.0V
VDS1 of 2TG1R Vprog=2.5V
VDS2 of 2TG1R Vprog=2.5V
VDS1 of 2TG1R Vprog=3.0V
VDS2 of 2TG1R Vprog=3.0V
VDS1 of 4T1R Vprog=2.5V
VDS2 of 4T1R Vprog=2.5V
VDS1 of 4T1R Vprog=3.0V
VDS2 of 4T1R Vprog=3.0V

1 2 3 4 5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Wprog(No. of min. trans.)

V
D

S (V
)

 VDS1 of 2T1R Vprog=2.5V
VDS2 of 2T1R Vprog=2.5V
VDS1 of 2T1R Vprog=3.0V
VDS2 of 2T1R Vprog=3.0V
VDS1 of 2TG1R Vprog=2.5V
VDS2 of 2TG1R Vprog=2.5V
VDS1 of 2TG1R Vprog=3.0V
VDS2 of 2TG1R Vprog=3.0V
VDS1 of 4T1R Vprog=2.5V
VDS2 of 4T1R Vprog=2.5V
VDS1 of 4T1R Vprog=3.0V
VDS2 of 4T1R Vprog=3.0V

0.4V

0.1V0.1V
2×

Figure 3.15 – Comparison on VDS of programming transistors under diverse Wpr og and Vpr og

in 2T1R, TG-based 2T1R and 4T1R structures (Wi nv = 20). (1 Wpr og = 320nm)

3.12(a). To evaluate the switching energy, we assume that 50% of the inputs have switching

activities, which is representative in FPGAs [125]. Because I/O transistors are used in 2TG1R

and 4T1R structure while SRAM-based circuit use standard transistors, we consider that I/O

transistors have twice area than standard transistors.

Fig. 3.18 and Fig. 3.19 illustrate the area-delay product and the power-delay product of 2TG1R

and 4T1R structures respectively, when different target RLRS and Vpr og are considered. A

low RLRS requires large programming transistors, which introduces large capacitances to the

circuit. When the reduction on RLRS is not as significant as the increment on capacitances, the

delay of a RRAM-based circuit increases. In addition, large programming transistors increase

the area and large capacitances increase the power consumption. Therefore, a low RLRS does

not guarantee the best area-delay and power-delay products [6]. In Fig. 3.18 and Fig. 3.19, we

see that the 4T1R programming structure can be more area-delay/power-delay efficient than

the SRAM-based multiplexers when RLRS > 2kΩ. Boosting Vpr og is an efficient method to

reduce the area-delay and power-delay products of programming structures. To fully exploit

75

Chapter 3. RRAM-based Circuit Designs

1 2 3 4 5
0

100

200

300

400

500

600

700

800

900

1000

Wprog(No. of min. trans.)

I ds
 (µ

A
)

2T1R Vprog=2.5V

2T1R Vprog=3.0V

2TG1R Vprog=2.5V

2TG1R Vprog=3.0V

4T1R Vprog=2.5V

4T1R Vprog=3.0V

1.1×

1.2×
1.9×

Figure 3.16 – Comparison on Id s in 2T1R, 2TG1R and 4T1R structures (Wi nv = 20). (1 Wpr og =
320nm)

the area and delay of efficiency, it is better to apply the highest possible voltage within the

breakdown limit of transistors, i.e., above the standard VDD and close to the breakdown

voltage of transistors. It is worth pointing out that the large Vpr og is only raised during the

programming phase, i.e., for a short period of time. As a result, the use of larger programming

voltage does not introduce significant reliability hazards.

3.4.6 Summary on the 4T1R programming structures

In summary, the 4T1R programming structures have the following advantages over the 2T1R

and 2TG1R structures:

(1) the small VDS gap improves the driving strength of transistors;

(2) Since the set and reset processes use separated transistors, transistor sizes in 4T1R can be

more flexible than 2T1R and 2TG1R, leading to a better area efficiency.

(3) Drain/Source of transistors are directly connected to voltage supplies, eliminating the

driving inverters;

(4) the bulk connections of 4T1R structure follow the common digital design practice, and

avoid the hazards in 2T1R structure.

Note that the proposed 4T1R programming structure fully overcome the limitations of the

2T1R and 2TG1R programming structures listed in Section 3.2.6 and Section 3.3.4 respectively.

76

3.4. 4T1R Programming Structure

1 2 3 4 5
40

60

80

100

120

140

160

180

200

Wprog(No. of min. trans.)

I ds
/W

pr
og

 (µ
A

 p
er

 m
in

. s
iz

e
tr

an
s.)

 2T1R Vprog=2.5V
2T1R Vprog=3.0V
2TG1R Vprog=2.5V
2TG1R Vprog=3.0V
4T1R Vprog=2.5V
4T1R Vprog=3.0V

1 2 3 4 5
40

60

80

100

120

140

160

180

200

220

Wprog(No. of min. trans.)

I pr
og

/W
pr

og
 (µ

A
 p

er
 m

in
. s

iz
e

tr
an

s.)

 2T1R Vprog=2.5V
2T1R Vprog=3.0V
TGïbased 2T1R Vprog=2.5V
TGïbased 2T1R Vprog=3.0V
4T1R Vprog=2.5V
4T1R Vprog=3.0V

1 2 3 4 5
40

60

80

100

120

140

160

180

200

220

Wprog(No. of min. trans.)

I pr
og

/W
pr

og
 (µ

A
 p

er
 m

in
. s

iz
e

tr
an

s.)

 2T1R Vprog=2.5V
2T1R Vprog=3.0V
TGïbased 2T1R Vprog=3.0V
TGïbased 2T1R Vprog=3.0V
4T1R Vprog=3.0V
4T1R Vprog=3.0V

1 2 3 4 5
40

60

80

100

120

140

160

180

200

220

Wprog(No. of min. trans.)

I pr
og

/W
pr

og
 (µ

A
 p

er
 m

in
. s

iz
e

tr
an

s.)

 2T1R Vprog=2.5V
2T1R Vprog=3.0V
2TG1R Vprog=2.5V
2TG1R Vprog=3.0V
4T1R Vprog=2.5V
4T1R Vprog=3.0V

1 2 3 4 5
40

60

80

100

120

140

160

180

200

220

Wprog(No. of min. trans.)

I pr
og

/W
pr

og
 (µ

A
 p

er
 m

in
. s

iz
e

tr
an

s.)

 2T1R Vprog=2.5V
2T1R Vprog=3.0V
2TG1R Vprog=2.5V
2TG1R Vprog=3.0V
4T1R Vprog=2.5V
4T1R Vprog=3.0V

1.4×

1.1×

2.0×

Figure 3.17 – Comparison on driving current per minimum transistor width under diverse
Wpr og and Vpr og between 2T1R, TG-based 2T1R and 4T1R structures (Wi nv = 20). (1 Wpr og =
320nm)

3.4.7 Discussion

Programming structures are the most basic and common elements of all the RRAM-based

circuits, such as NV SRAMs, NV FFs, multiplexers etc.. Therefore, performance of programming

structures, i.e., the lowest achievable RLRS , transistor area and easiness in physical design,

are critical factors impacting the quality of all the RRAM-based circuits. Compared to the

2T1R and the 2TG1R programming structures, the proposed 4T1R programming structure

has demonstrated superior capability to achieve lower RLRS with smaller transistor sizes, and

also be more friendly to physical designs. The advance in programming structure will case a

significant impact on all the RRAM-based circuits and even FPGA architectures.

From a circuit design perspective: Most importantly, a lower achievable RLRS by using smaller

transistor sizes leads to smaller resistance and parasitic capacitances on the datapath, meaning

that 4T1R-based circuits can achieve better performance than 2T1R-based and 2TG1R-based

circuits. Using smaller transistor sizes also leads to that 4T1R-based circuits can be smaller

in transistor area than 2T1R-based and 2TG1R-based circuits. Furthermore, the 4T1R pro-

gramming structure is more adaptive for RRAM devices especially those with asymmetric

Vset and Vr eset than its 2T1R and 2TG1R counterparts, leading to better compatibility in

77

Chapter 3. RRAM-based Circuit Designs

1 2 3 4 5 6 7 8 9 10 11

0

2

4

6

8

10

12

14

x 10

4

R
LRS

 (k1)

A
r
e
a
ïD

e
l
a
y

P

r
o
d

u
c
t

(
#

o
f

m

i
n

w

i
d

t
h

t
r
a
n

s
.

*

p

s
)

2TG1R V
prog

=2.5V

2TG1R V
prog

=3.0V

4T1R V
prog

=2.5V

4T1R V
prog

=3.0V

SRAM Circuit

Figure 3.18 – Comparison on area-delay product of 2TG1R and 4T1R structures (Wi nv = 20).

1 2 3 4 5 6 7 8 9 10 11
60

80

100

120

140

160

180

200

220

240

260

RLRS (k1)

Po
w

er
ïD

el
ay

 P
ro

du
ct

 (f
J)

2TG1R Vprog=2.5V

2TG1R Vprog=3.0V

4T1R Vprog=2.5V

4T1R Vprog=3.0V

SRAM Circuit

Figure 3.19 – Comparison on power-delay product of 2TG1R and 4T1R structures (Wi nv = 20).

78

3.4. 4T1R Programming Structure

1 2 3 4 5
1

2

3

4

5

6

7

8

9

10

11

Wprog(No. of min. trans.)

R
LR

S (k
1

)

2TG1R Vprog=2.5V
2TG1R Vprog=3.0V
4T1R Vprog=2.5V
4T1R Vprog=3.0V

Performance
improvement region

Figure 3.20 – Comparison on RLRS in 2TG1R and 4T1R structures (Wi nv = 20). (1 Wpr og =
320nm)

integrating generic RRAM technology. In addition, the introduced boosting methodologies

(increasing Vpr og and Wpr og) are effective to all the programming structure. (2T1R, 2TG1R and

4T1R), being generic methods to improve the performance of 4T1R-based circuits. Note that

the methodology used in theoretical analysis can generalized to other non-volatile memory

technologies, such as Phase Change Memory [40], which have similar I-V characteristics as

RRAMs.

From an architecture perspective: RRAM-based FPGAs use a low RLRS to improve the per-

formance of routing elements. As it will be presented in Section 3.7 and Chapter 5, a proper

RLRS target for FPGA architectures is between 2kΩ and 6kΩ depending on the design context,

while RHRS should be at least 20MΩ to mitigate a leakage power increase. The mentioned

ranges of RLRS and RHRS , achievable as worst case target in current RRAM technologies, show

that, beyond the performance gain, FPGA architectures can tolerate a wide distribution of

RLRS and RHRS without delay and power increase [6, 114]. The performance of RRAM-based

routing elements are not only determined by the RLRS but also the parasitic capacitances of

programming transistors. As a result, programming structures offering a high current density,

e.g., the proposed 4T1R programming structure, are preferred. Fig. 3.20 shows the RLRS values

that can be driven by 2TG1R and 4T1R structures as a function of Wpr og . To obtain a proper

RLRS in FPGA, the applicable Wpr og of transistors are between 1.5 and 4. Boosting Vpr og can

significantly reduce the RLRS , which brings opportunities in further area and delay improve-

ment on RRAM-based FPGAs. When considering more advanced technology nodes, such as

79

Chapter 3. RRAM-based Circuit Designs

28nm, 14nm and beyond, it is expected that lower Vr eset and Vset voltages can be employed as

a consequence of the VDD reduction. As a result, the effect of boosting Vpr og is expected to

gain further in efficiency.

Part 2: RRAM-based Multiplexer Designs

As 4T1R programming structure (See Section 3.4) shows outstanding advantages over 2T1R

counterparts, it opens opportunities in improving RRAM-based routing multiplexer designs.

The second part of this chapter focus on studying how to efficiently integrate the 4T1R pro-

gramming structure in routing multiplexers. As explained in Section 3.4, both 2T1R and 4T1R

programming structures have to employ a high programming voltage, different from nominal

working voltage, in order to drive the set and reset currents. Therefore, in physical design, a

deep N-well (highlighted red in Fig. 3.21) is required to provide a different voltage domain for

the programming structure. However, deep N-wells typically require large spacing between

each other and also regular N-wells. This reveals a series of challenges at the physical design

level, such as how to co-integration of low-voltage nominal power supply and high voltage pro-

gramming supply, which have not been evaluated in previous works [6, 114, 26, 110, 9, 27, 133].

This motivates us to take the parasitics into account and study the physical design aspects of

integrating 4T1R programming structure into RRAM-based multiplexers.

This part is organized as follows: Section 3.5 introduces and analyzes a naive one-level 4T1R-

based multiplexer at the physical design level. Section 3.6 proposes improved one-level, two-

level and tree-like 4T1R-based multiplexers, overcoming difficulties in physical design. Section

3.7 deals with a generic optimizing technique for RRAM-based circuits, i.e., programming

transistor sizing technique, which enables large design space to be explored. Section 3.8

presents some experimental results and Section 3.9 analyzes the impact of process variations.

3.5 Basic 4T1R-based Multiplexer

In this section, we propose a naive multiplexer structure using 4T1R elements and discuss a

few limitations of the structure.

3.5.1 Multiplexer Structure and Programming Strategy

By following the general topology shown in Fig. 2.25, a basic one-level N : 1 multiplexer can

be developed with 4T1R elements. The resulting one-level N -input RRAM-based multiplexer

is illustrated in Fig. 3.21 and consists of N pairs of 4T1R programming structures, which are

controlled by N +1 Bit lines and N +1 Word lines. Since RRAMs require a programming voltage

which is higher than the nominal one, a Deep N-well isolation (highlighted red in Fig. 3.21) is

required for the programming structures, resulting in two power domains. Instead of providing

each RRAM with four independent programming transistors, all the RRAMs can share a pair of

80

3.5. Basic 4T1R-based Multiplexer

programming transistors (controlled by BL[N] and W L[N] respectively) at node B . As a result,

each RRAM can be individually programmed with either positive or negative voltage polarity.

For example, we can first set RRAM R0 by enabling BL[0] and W L[N]. Note that the rest of bit

lines and word lines should be off, to ensure the programming current (highlighted blue in Fig.

3.21) flows only through transistor P0, RRAM R0 and transistor N0. Then we can turn off BL[0]

and W L[N], and turn on BL[N] and W L[N −1] to reset RRAM RN−1. Sharing programming

transistors in the multiplexer structure is flexible enough from a reconfiguration standpoint.

In practice, in a N -input multiplexer, only one RRAM is in LRS while the others are in HRS.

Each time a multiplexer is reconfigured, one RRAM is reset from LRS to HRS and another is set

from HRS to LRS, implying two steps (one reset process and one set process). Note that set

and reset process have to be executed sequentially because set and reset processes require

different programming voltages at node B . Whether the multiplexer has shared programming

transistors or employs independent programming transistors for each RRAMs, we always need

two steps (one reset process and one set process) in each reconfiguration. More importantly,

sharing programming transistors can significantly reduce the parasitic capacitances at node

B in Fig. 3.21, leading to large delay and power improvements. Independent programming

transistors cause that the total parasitic capacitance at node B includes N pairs of program-

ming transistors. In contrast, sharing programming transistors lead to that the total parasitic

capacitance at node B includes only a pair of programming transistors.

in[0]

VDD,well

BL[0]
P0

GND,well

N0

+ -

in[N-1]
+ -

BL[N-1]

BL[N]

WL[0]

WL[N]WL[N-1]

out

GND
VDD

GND

GND
GND,wellGND,well

VDD

VDD

...

VDD,well

VDD,well

Input inverters

Output
inverter

A

B

C

R0

RN-1

P1

P2

N1

programming current crosstalk current

Deep N-Well

N2

CP,0

CP,N-1

Regular Well

...
Metal
wire

group1

Metal
wire

 group2

Regular
Well

Figure 3.21 – Circuit design and well arrangement of a naive N : 1 one-level 4T1R-based
multiplexer

81

Chapter 3. RRAM-based Circuit Designs

3.5.2 Limitations from a Physical Design Perspective

Such straightforward design suffers from three possible limitations due to the co-integration

of both datapath and programming channels.

Limitation 1: Programming Currents Contribution from Datapath Transistors

Whether a RRAM can be programmed into a reasonable RLRS highly depends on the amount

of programming current that can be driven through the RRAM. In order to accurately control

the programming current of a RRAM, only a pair of p-type and n-type transistors is turned on

during programming. However, during programming, some datapath transistors in on state

could inject or distribute the programming currents, leading to the achieved RLRS to be out

of specifications. Take the example in Fig. 3.21, assume that RRAM R0 is being programmed

by enabling transistors P0 and N0. Datapath transistors N1 and N2 could potentially be in

on state, sinking part of the programming current, as highlighted by red dashed lines. This

would cause the programming current (blue dashed lines) to be smaller than expected, leading

to a higher RLRS . Note that not only pull-down transistors, such as N1 and N2, but pull-up

transistors of input inverters, such as P1 and P2, can interfere with the programming current.

Such interference becomes serious as input sizes increases, which can significantly reduce the

programming current passing through RRAMs and even cause failure in configuring RRAMs.

Limitation 2: Breakdown Threats of Datapath Transistors

To achieve a reasonable RLRS , programming voltages pr og _V DD should be large enough

to drive a high enough programming current. For instance, [133] considers a programming

voltage as high as pr og _V DD = 3.0V while the nominal voltage of the datapath transistors

is only V DD = 0.9V . Such large gap between pr og _V DD and VDD could cause the datapath

transistors to breakdown during RRAMs’ programming phases. Take the example in Fig. 3.21,

the voltage of node A, VA , can reach pr og _V DD while programming RRAM R0, leading to the

source-to-drain voltage of transistor P1 being pr og _V DD −VDD . Assume that pr og _V DD =
3.0V and VDD = 0.9V , both the gate-to-source voltage VGS and source-to-drain voltage VDS

of transistor P1 are 2.1V , possibly leading transistor P1 to breakdown. Note that not only

transistor P1 but also all the transistors belonging to the input and output inverters in Fig.

3.21 can be in a breakdown condition. While exposed to these conditions, even if datapath

transistors do not break down, their reliability, i.e., lifetime, would significantly degrade.

Limitation 3: Long Interconnecting Wires between Wells

Since RRAMs require a programming voltage which is higher than the nominal one, a deep

N-well isolation (highlighted red in Fig. 3.21) is required for the programming structures,

resulting in three N-wells as shown in Fig. 3.21. In physical designs, a large spacing is required

between a deep N-well and a regular N-well, which introduces long interconnecting wires. As

82

3.6. Improved 4T1R-based Multiplexer

illustrated in Fig. 3.21, two groups of long interconnecting wires have to be employed: one is

between input inverters and programming structures while the other is between programming

structures and output inverters. The long metal wires introduce parasitic resistances and

capacitances to 4T1R-based multiplexers, potentially causing delay and power degradation.

Therefore, there is a strong need to study how to properly integrate 4T1R programming

structures into RRAM-based multiplexers without area and delay overhead while guaranteeing

robust operations.

3.6 Improved 4T1R-based Multiplexer

In this section, we address the limitations of the previously introduced naive 4T1R-based

multiplexers by employing power-gated inverters and rearranging the power domains. In

addition to the one-level 4T1R-based multiplexers, we also investigate two-level and tree-like

multiplexer structures, similar to baseline CMOS multiplexers.

3.6.1 One-level Multiplexer Structure

In order to address the identified limitations, we present, in Fig. 3.22(a), an improved one-level

N -input 4T1R-based multiplexer, which is different from the one in Fig. 3.21 in two aspects:

(a) the datapath input inverters are power-gated in order to eliminate the contribution of

the datapath transistors in the programming phase; (b) the two power domains (and the

isolation deep N-well) are organized differently to Fig. 3.21. Indeed, the input inverters

and part of 4T1R programming structures are driven by a constant voltage domain VDD and

GN D while the output inverter and the rest of 4T1R programming structures are driven by

switchable voltage supplies VDD,wel l and GN Dwel l . During operation, VDD,wel l and GN Dwel l

are configured to be equal to VDD and GN D respectively, as shown in Fig. 3.22(a). Note that

the RRAM programming voltages are typically selected to be larger than VDD , ensuring that

RRAMs are not parasitically programmed during operation. When a set operation is triggered,

input inverters are disabled and VDD,wel l and GN Dwel l are switched to be −Vpr og +2VDD and

−Vpr og +VDD respectively, as highlighted red in Fig. 3.22(b). During reset operations, input

inverters are disabled and VDD,wel l and GN Dwel l are switched to be Vpr og and Vpr og −VDD

respectively, as highlighted red in Fig. 3.22(c). As such, the voltage difference across the RRAM

during set or reset is ±Vpr og and the working principle of the 4T1R programming structure

can still be applied. Indeed, to enable the programming current path highlighted blue in

Fig. 3.22(b), bit line BL[0] is configured to be GN D and word line W L[N] is configured to

be −Vpr og +2VDD while other programming transistors should be turned off by configuring

BL[i] = V DD,W L[j] =GN D,1 ≤ i ≤ N −1,0 ≤ j ≤ N −1 and BL[N] =−Vpr og +2VDD . Table

3.1 summaries the voltages involved in the different operations.

The improved 4T1R-based multiplexer has a major advantage over the initial design in Fig. 3.21:

the voltage drop across each datapath transistor can be limited to VDD , allowing the use of

83

Chapter 3. RRAM-based Circuit Designs

(a) (b)

(c)

in[0]
+ -

BL[N]

WL[N]

out

BL[0]

WL[0]

in[N-1] + -

BL[N-1]

WL[N-1]

…

Deep N-Well

…

VDD VDD

GND
GND

VDD VDD

GNDGND

VDD,well

GNDwell

VDD,well

GNDwell

EN

EN

EN

EN

Deep N-Well

in[0]
+ -

BL[N]

WL[N]

out

BL[0]

WL[0]

in[N-1] + -

BL[N-1]

WL[N-1]

… …
GND

VDD

GND

VDD

GND

VDD

GND

VDD

-Vprog+VDD

-Vprog+2VDD

-Vprog+VDD

-Vprog+2VDD

programming current

EN

EN

EN

EN

in[0]
+ -

BL[N]

WL[N]

out

BL[0]

WL[0]

in[N-1] + -

BL[N-1]

WL[N-1]

…

Deep N-Well

…
GND

VDD

GND

VDD

Vprog-VDD

Vprog

Vprog-VDD

Vprog

VDD

EN

GND
EN

VDD

EN

GND
EN

P0

N0

RA
A

C

B

RB

RA

CP,A

CP,B

CP,A

CP,B

Figure 3.22 – Improved one-level N-input 4T1R-based multiplexer: (a) operating mode
(VDD,wel l = VDD , GN Dwel l = GN D); (b) set process (VDD,wel l = −Vpr og +2VDD , GN Dwel l =
−Vpr og +VDD); (c) reset process (VDD,wel l =Vpr og , GN Dwel l =Vpr og −VDD ;

logic transistors instead of I/O transistors (thicker oxides and higher breakdown voltage). Logic

transistors occupy less area and introduce less capacitances than I/O transistors, potentially

improving the footprint and delay of RRAM multiplexers. During the set and reset processes,

the voltage drop of each transistor can be boosted from VDD to VDD,max , approaching the

maximum reliable voltage without breakdown limitation. Boosted VDD,max leads to higher

current density driven by transistors, further contributing to a lower RLRS [133]. Note that the

set and reset processes typically require short amount of time, i.e., typically 200ns for each

84

3.6. Improved 4T1R-based Multiplexer

RRAM [133]. Since programming does not occur many times (non-volatility), very low stress is

applied on the transistors, further contributing to a robust operation.

Table 3.1 – Voltages arrangements for operation, set and reset examples in Fig. 3.22(a)(b)(c)

Control lines/ Operation Set process Reset process
Voltages Fig. 3.22(a) Fig. 3.22(b) Fig. 3.22(c)

BL[0] VDD GN D VDD

BL[i], VDD VDD VDD

1 ≤ i ≤ N −1

BL[N] VDD −Vpr og +2VDD Vpr og −VDD

W L[i], GN D GN D GN D

0 ≤ i ≤ N −2

W L[N −1] GN D GN D VDD

W L[N] GN D −Vpr og +2VDD Vpr og −VDD

E N GN D VDD VDD

E N VDD GN D GN D

VDD,wel l VDD −Vpr og +2VDD Vpr og

GN Dwel l GN D −Vpr og +VDD Vpr og −VDD

3.6.2 Physical Design Advantages

The improved 4T1R-based multiplexer layout has two major advantages over the initial design

in Fig. 3.21:

(1) the voltage drop across each datapath transistor can be limited to VDD , allowing the use of

logic transistors instead of I/O transistors (thicker oxides and higher breakdown voltage). Logic

transistors occupy less area and introduce less capacitances than I/O transistors, potentially

improving the footprint and delay of RRAM multiplexers. During the set and reset processes,

the voltage drop of each transistor can be boosted from VDD to VDD,max , approaching the

maximum reliable voltage without breakdown limitation. Boosted VDD,max leads to higher

current density driven by transistors, further contributing to a lower RLRS [133]. Note that the

set and reset processes typically require short amount of time, i.e., typically 200ns for each

RRAM [133]. Since programming does not occur many times (non-volatility), very low stress is

applied on the transistors, further contributing to a robust operation.

(2) Only one connection between regular and deep N-Wells is necessary. As a result, only one

group of long interconnecting wires is employed, potentially reducing the parasitics from

metal wires. To be more illustrative, we depict in Fig. 3.23 and compare the cross-sections of

the naive and improved designs at layout level. In each illustrative cross-section, we consider

an input inverter i n0, an output inverter, and a 4T1R programming structure. We assume that,

85

Chapter 3. RRAM-based Circuit Designs

in the naive design, input and output inverters can be accommodated with a regular N-well,

so as to be more area efficient. However, even when the regular N-well is shared, long metal

wires are still required because interconnections between datapath logics and programming

structures have to include a large space between regular N-well and deep N-well. The length

of metal wires MET 1 and MET 2 in Fig. 3.23(a) are dominated by the large well spacing L. Fig.

3.23(b) depicts the cross-section of the improved circuit in Fig. 3.22(a). Since RRAMs can be

fabricated between metal lines, they can be located in any position between the two wells.

Whatever location the RRAM is, there is only one long metal wire (MET 2 and part of MET 1)

across two wells, while the other metal wires MET 1 connect transistors inside the same well.

Note that the length of interconnecting wires inside the same well is much smaller than those

across two wells L. As a result, the length of metal wires in the naive design is dominated by

2 ·L, while the improved design is dominated by L. Therefore, the improved design can reduce

50% the length of interconnecting wire than the naive design, contributing to smaller parasitic

resistances and capacitances.

3.6.3 Two-level and Tree-like multiplexer Structure

Based on the circuit topology of CMOS multiplexers shown in Fig. 2.15, we also develop

N -input 4T1R-based multiplexers implemented with two-level and tree-like structures. The

resulting structures are depicted in Fig. 3.24 and Fig. 3.25 respectively. The two-level and

tree-like structures are implemented by cascading elementary one-level multiplexer struc-

tures similar to the one shown in Fig. 3.21. Note that even in two-level and tree-like 4T1R

multiplexers, only one DNW is needed, as highlighted red in Fig. 3.24 and Fig. 3.25 respectively.

To simplify the programming strategies, RRAMs in the even levels have opposite polarities

than those in the odd levels. Take the example in Fig. 3.24, the polarities of RRAMs in the

second level, highlighted in red, are opposite to the first level. As such, when set processes

are required, VDD,wel l and GN Dwel l are switched to −Vpr og + 2VDD and −Vpr og +VDD re-

spectively; while during reset processes, VDD,wel l and GN Dwel l are switched to Vpr og and

Vpr og −VDD respectively. Otherwise, if all the RRAMs have had the same polarity, switching

VDD,wel l and GN Dwel l depends not only on the type of process (either set or reset) but also

on the number of levels (either even or odd), requiring additional circuitry. In addition, DNWs

also can be efficiently shared between two cascaded 4T1R-based multiplexers, as illustrated in

Fig. 3.26. The input inverters and part of programming structures of MU X 1 in Fig. 3.26 can

share a DNW with the output inverter and part of programming structures of MU X 0. Note

that the polarities of RRAMs of MU X 1 are opposite to the RRAMs of MU X 0, allowing a similar

programming strategy as highlighted above.

The number of bit lines and word lines can be reduced, as the 4T1R programming structures be-

longing to the same level can efficiently share control lines, allowing RRAMs to be programmed

simultaneously. Take the example of Fig. 3.24, all the multiplexer structures from the first stage

can be connected to bit lines BL[j],0 ≤ j ≤p
N and word lines W L[j],0 ≤ j ≤p

N . RRAMs

that are controlled by BL[0] and W L[
p

N], i.e., RA and RB in Fig. 3.24, can be programmed

86

3.6. Improved 4T1R-based Multiplexer

(b
)

P+
+

N
+

N
+

P+
P+

N
++

VD
D

,w
el

l
BL

[0
]

W
L[

0]

P-
W

el
l

V D
D

G
N

D

N
++

P+
P+

N
+

N
+

P+
+

BL
[N

]
W

L[
N

]

P-
W

el
l

D
ee

p
N

-W
el

l

G
N

D
w

el
l

CO
N

TA
C
T

M
ET
2

C
O
N

TA
CT

VI
A

RR
AM

P+
+

N
+

N
+

P+
P+

in
[0

]
in

[0
]

G
N

D

N
-W

el
l

CO
N

TA
C
T

M
ET
1

N
+

M
ET
1

N
+

P+

ou
t

N
++

P+VD
D

,w
el

l

(a
)

P+
+

N
+

N
+

P+
P+

N
++

Vp
ro

g
BL

[0
]

W
L[

0]
VD

D

N
+

P+
P+

N
+

N
+

P+
+

BL
[N

]
W

L[
N

]

P-
W

el
l

D
ee

p
N

-W
el

l

P-
W

el
l

M
ET
2

VD
D

,w
el

l
G

N
D

w
el

l

M
ET
1

C
O
N

TA
CT

CO
N

TA
CT

N
++

VD
D

P+
+

N
+

N
+

P+
P+

in
[0

]
in

[0
]

G
N

D

N
-W

el
l

P+
P+

N
+

N
+

P+
+

G
N

D
CO

N
TA
C
T

VI
A

ou
t

VI
A

RR
AM

VI
A

W
el

l s
pa

ci
ng

: L

W
el

l s
pa

ci
ng

: L

x
y

F
ig

u
re

3.
23

–
C

ro
ss

-s
ec

ti
o

n
o

ft
h

e
la

yo
u

to
f4

T
1R

m
u

lt
ip

le
xe

rs
:(

a)
n

ai
ve

d
es

ig
n

;(
b

)
im

p
ro

ve
d

d
es

ig
n

.

87

Chapter 3. RRAM-based Circuit Designs

simultaneously, which is resembling to the control sharing in a CMOS multiplexer tree. RRAMs

belonging to different stages have to be programmed sequentially. A two-level or tree-like

4T1R-based multiplexer requires 2m steps (m reset processes and m set processes) to program

all the RRAMs, where m represents the number of stages. In contrast, a one-level 4T1R-based

multiplexer, consisting of fewer RRAMs, only need two steps, implying less reconfiguration

time and programming energy.

out

VDD

GND

+-

+-

BL[2i+1]

WL[2i+1]

GND

VDD
in[0]

VDD

BL[0]

GND

+ -

in[i]
+ -

BL[i-1]

BL[i]

WL[0]

WL[i]WL[i-1]

GND,wellGND

VDD,well

VDD
���

���

in[N-i]

in[N-1]

GND,well

VDD,well

GND,well

VDD,well

VDD

BL[0]

GND

+ -

+ -

BL[i-1]

BL[i]

WL[0]

WL[i]WL[i-1]

GND,wellGND

VDD,well

VDD
���

BL[i+1]

WL[2i]

WL[i+1]

BL[2i]

i = [N]
RA

RB

programming
current

Deep N-Well
EN

EN

VDD
EN

GND
EN

GND

VDD

GND
EN

GND
EN

VDD
EN

VDD
EN

CP,A

CP,B

Figure 3.24 – Schematic of a robust two-level N-input 4T1R-based multiplexer.

3.6.4 Sharing deep N-Well between multiplexers

Deep N-wells can be efficiently shared between two cascaded 4T1R-based multiplexers, as

illustrated in Fig. 3.26. The input inverters and part of programming structures of MU X 1 in

Fig. 3.26 can share a deep N-well with the output inverter and part of programming structures

of MU X 0. Note that the polarities of RRAMs of MU X 1 are opposite to the RRAMs of MU X 0,

allowing simple programming strategies. As such, when set processes are required, VDD,wel l

and GN Dwel l are switched to −Vpr og +2VDD and −Vpr og +VDD respectively; while during

reset processes, VDD,wel l and GN Dwel l are switched to Vpr og and Vpr og −VDD respectively;

88

3.6. Improved 4T1R-based Multiplexer

out

VDD,well

GND,well

+-

+-

BL[5]

WL[5]

GND

VDD
in[0]

VDD

BL[0]

GND

+ -

in[1]
+ -

BL[1]

BL[2]

WL[0]

WL[2]WL[1]

GND,wellGND

VDD,well

VDD

���

GND,well

VDD,well

GND,well

VDD,well

BL[3]

WL[4]

WL[3]

BL[4]
���

+ -

+ -

BL[i+1]

WL[i+1]

GND,well

VDD,well

GND

VDD

GND

VDD

BL[i-1]

WL[i]

WL[i-1]

BL[i]

���

���

���

i = [log2 N]

���

programming current

Deep N-Well

Deep N-Well

EN

VDD
EN

GND

EN

VDD
EN

GND

Figure 3.25 – Schematic of a robust tree-like N -input 4T1R-based multiplexer.

Otherwise, if all the RRAMs have had the same polarity, switching VDD,wel l and GN Dwel l

depends not only on the programming operation (either set or reset) but also on the location

of multiplexers, requiring additional circuitry.

3.6.5 Constraints on the Programming Voltage Vpr og

During set and reset processes, the necessary programming voltage Vpr og is determined by

the source-to-drain voltage drop across the programming transistors and the programming

threshold voltage of the RRAMs. The VDS of the programming transistors should be large

enough in order to drive sufficient programming current, but should also be selected under the

breakdown conditions. Therefore, there exists a limit for Vpr og to be respected. For instance,

in the set example of Fig. 3.22(b), Vpr og can be expressed as the sum of the voltages across

RRAM A and the programming transistors P0 and N0:VDS,P0 +VDS,N 0 +Vset ,mi n =Vpr og ,

VDS,P0 =VDS,N 0 ≤VDD,max ,
(3.16)

where Vset ,mi n is minimum programming voltage to trigger a set process for a RRAM. Note that

the VDS of the programming transistors should be the same to guarantee the best achievable

current density[133]. Similarly, for the reset example in Fig. 3.22(c), one can derive a similar

89

Chapter 3. RRAM-based Circuit Designs

D
ee

p
N

-W
el

l

...
in

A[
0]

in
A[

N
-1

]
ou

tA
...

in
B[

0]

in
B[

N
-1

]

M U X 0

M U X 1

ou
tB

C
M

O
S

lo
gi

c
ga

te
s

C
M

O
S

lo
gi

c
ga

te
s

in
A[

0]
+

-

BL
[N

]

W
L[

N
]ou
tA

BL
[0

]

W
L[

0]

in
A[

N
-1

]
+

-

BL
[N

-1
]

W
L[

N
-1

]

…
…

VD
D

VD
D

G
N

D
G

N
D

V D
D

G
N

D

VD
D

,w
el

l

G
N

D
,w

el
l

VD
D

,w
el

l

G
N

D
,w

el
l

ENEN ENEN
VD

D

G
N

D
M

U
X0

in
B[

0]

BL
[N

]

W
L[

N
]ou
tB

BL
[0

]

W
L[

0]

in
B[

N
-1

]

BL
[N

-1
]

W
L[

N
-1

]

…
…

VD
D

,w
el

l

G
N

D

G
N

D
,w

el
l

VD
D

,w
el

l

VD
D

G
N

D
,w

el
l

VD
D

,w
el

l

G
N

D
,w

el
l

+
-

+
-

G
N

D
,w

el
l

VD
D

,w
el

l

G
N

D

V D
D

ENEN ENEN

M
U

X1

F
ig

u
re

3.
26

–
C

as
ca

d
in

g
tw

o
N

-i
n

p
u

to
n

e-
le

ve
l4

T
1R

-b
as

ed
m

u
lt

ip
le

xe
rs

:s
h

ar
e

D
ee

p
N

-W
el

ls
ef

fi
ci

en
tl

y.

90

3.6. Improved 4T1R-based Multiplexer

+ -

P++ N+ N+ P+ P+ N++

VprogBL[0]WL[0]

P-Well
Idiode

(a)

VDDGND

N-Well

N+ P+ P+ N+ N+ P++

BL[N]WL[N]

P-Well

Deep N-Well

Vprog-VDD

+ -

P++ N+ N+ P+ P+ N++

-Vprog+2VDDBL[0]WL[0]

P-Well
Idiode

(b)

VDDGND

N-Well

N+ P+ P+ N+ N+ P++

BL[N]WL[N]

P-Well

Deep N-Well

-Vprog+VDD

D0

D1

Figure 3.27 – Cross-section of the layout of a 4T1R programming structure: (a) during reset
process; (b) during set process.

set of constraints with transistors P1 and N1:VDS,P1 +VDS,N 1 +Vr eset ,mi n =Vpr og ,

VDS,P1 =VDS,N 1 ≤VDD,max ,
(3.17)

where Vset ,mi n is minimum programming voltage to trigger a reset process for a RRAM.

In addition to the limitations mentioned above, the use of different wells also constrains

Vpr og as the diode across P-Well and Deep N-Well should be reversely biased, as illustrated

in Fig. 3.27(a) and (b). During the reset process in Fig. 3.27(a), diode D0 is always reversely

biased because the voltage of P-Well is GN D and the voltage of Deep N-Well is Vpr og >GN D .

However, during the set process in Fig. 3.27(b), diode D1 is reversely biased only when:

(−Vpr og +2VDD)−GN D ≥ 0. (3.18)

If we boost VDD to VDD,max during set and reset process, the constraint becomes:

(−Vpr og +2VDD,max)−GN D ≥ 0. (3.19)

91

Chapter 3. RRAM-based Circuit Designs

By combining (3.16), (3.17) and (3.19), we obtain:
Vpr og ≤ 2VDD,max +Vset ,

Vpr og ≤ 2VDD,max +Vr eset ,

Vpr og ≤ 2VDD,max .

(3.20)

As a result, the upper bound for Vpr og can be expressed as:

Vpr og ≤ 2VDD,max (3.21)

As discussed in [133], a larger Vpr og leads to a higher programming current and a lower RLRS .

In this paper, we consider Vpr og = 2VDD,max for the electrical simulations.

3.6.6 Analytical Comparison between 4T1R multiplexers

Note that the two-level and tree-like 4T1R-based multiplexers reduce the number of con-

trol/programming lines significantly but does not reduce the number of required RRAMs.

An analytical comparison of the area, delay and energy between 4T1R-based multiplexers

is shown in Table 3.2, and will be verified by electrical simulations in Section 3.8. In CMOS

technology, two-level multiplexers produce the best area-delay-power product because their

structure reduces not only the number of control lines but also the parasitic capacitances

introduced in the critical path. Since the parasitic capacitances of a RRAM is typically smaller

than a transistor, the delay and power of one-level 4T1R-based multiplexers scale better with

the number of inputs N than CMOS multiplexers. When the input size is small and total capac-

itance is dominated by programming transistors, the delay and power of one-level 4T1R-based

multiplexers are better than two-level and tree-like structures. When the input size is large

enough, the total capacitance is dominated by CP and two-level 4T1R-based multiplexers

become better in delay and power.

Table 3.2 – Analytical comparison on area, delay and switching energy of N-input 4T1R-based
multiplexers.

Multiplexer One-level Two-level Tree-like

Area1 N · Ar eatr ans (N + [
p

N]) · Ar eatr ans (2N −2) · Ar eatr ans

Delay2 RLRS · (Ctr ans +N ·CP) 4RLRS · (Ctr ans + [
p

N] ·CP) 0.5 ·α ·4 ·V 2
DD

·(Ctr ans + [
p

N] ·CP)
Energy3 0.5 ·α ·V 2

DD · 1
2 ([l og2N]2 + [log2N])RLRS 0.5 ·α · 1

2 (3[log2N]−1)
(Ctr ans +N ·CP) ·(Ctr ans +CP) ·(Ctr ans +CP)V 2

DD
1 Area of input and output inverters are not included here.
2 Elmore delay model [104] is considered here.
3 Only the switching energy of multiplexer structures is considered here.
α is the switching activity.
* RLRS is the equivalent resistance of a RRAM in LRS. CP is smaller than Ctr ans .

92

3.7. Optimal Physical Design Parameters

3.7 Optimal Physical Design Parameters

In previous works [26, 9, 110, 27, 8], the sizes of programming transistors are considered uni-

form to achieve the lowest RLRS of RRAM, which is assumed to produce the best performance

of RRAM-based interconnects. However, Fig. 3.18 and Fig. 3.19 demonstrates that the lowest

RLRS do not always guarantee the best Area-Delay Product (ADP) and Power-Delay Product

(PDP). Actually, the delay of RRAM-based programmable interconnects is determined by

various factors, such as the resistance of RRAMs, the parasitic capacitance of programming

transistors and also the parasitics of long interconnecting wires. As the RLRS value is strongly

correlated with the size of the programming transistors Wpr og (See Section 3.4), there is no

guarantee that using the lowest possible the RLRS will give the lowest delay. In addition, as

RRAMs can be located anywhere on the long interconnecting wire across the two wells as

illustrated in Fig. 3.23, the resulting parasitic capacitance is non-negligible and strongly im-

pacts the performance as well. Despite technology factors, such as RLRS and CP , there are a

few design parameters, such as physical location of RRAMs and programming transistor size

Wpr og , which can potentially impact the performance of RRAM-based multiplexers. Therefore,

it is worthwhile to study how to improve RRAM-based multiplexers through tuning the design

parameters. In this section, we will first introduce our methodology in modeling RRAM-based

multiplexers and then focus on studying the optimizing techniques for improving the perfor-

mance of 4T1R-based multiplexer designs in two aspects: (1) the impact of physical location

of RRAMs; (2) the impact of programming transistor size Wpr og . Note that the methodology

developed here is not dependent on the considered RRAM technology or on the transistor

technology nodes or even the circuit design topology, but is rather general.

3.7.1 RC modeling of General 4T1R-based multiplexers

Modeling circuits with equivalent RC tree is a widely used method in studying the delay of

digital circuit designs [132], which can bring instructive knowledge for circuit optimization.

In this part, we introduce the RC modeling for general cases of 4T1R-based multiplexers

including layout-level parasitics, based on which we study the optimizing techniques.

The critical path of a RRAM-based multiplexer is the path from an input to the output which

contains the largest number of RRAMs in the Low Resistance State (LRS) and the largest number

of programming transistors. For instance, the highlighted path in Fig. 3.28(a) is the critical path

of a N -input RRAM-based multiplexer. Note that the RRAM-based multiplexer in Fig. 3.28(a)

is a general case of multi-level multiplexers, which contains n stages of m-input one-level

multiplexing structure. Fig. 3.28(b) depicts all the relevant transistors and RRAMs impacting

the critical path, considering the general case of a n-stage RRAM-based multiplexer, while its

equivalent RC model is given in Fig. 3.28(c). Note that the parasitics of long interconnecting

wires across N-wells are included in Fig. 3.28(c), which are represented as Rx,i , Cx,i , Ry,i and

Cy,i , i = 1,2, ...,n. We define the distance between the RRAM and the regular N-well as x ∈ [0,L]

and the distance between the RRAM and the deep N-well as y ∈ [0,L], as shown in Fig. 3.23(b).

93

Chapter 3. RRAM-based Circuit Designs

(a)

(b)

out

+-

+-

BL[2m+1]

WL[2m+1]

GND

VDD
in[0]

VDD

BL[0]

GND

+ -

in[i]
+ -

BL[m-1]

BL[m]

WL[0]

WL[m]
WL[m-1]

GND

VDD

���

BL[m+1]

WL[2m]

WL[m+1]

BL[2m]

+ -

+ -

BL[nm+1]

WL[nm+1]

GND

VDD

GND

VDD

BL[(n-1)m
+1]

WL[nm]

WL[(n-1)m
+1]

BL[nm]

���

���

���

���

EN

VDD
EN

GND

EN

VDD
EN

GND

���

���

���

VDD

VDD

VDD

VDD

GND

GND
GND

GND

GND

VDD

... outin
+ -

+ -

...
+ -

+ -

...EN

EN

+ -

+ -

...

VDD

GND

VDD

GND

VDD

GND

VDD

GND

VDD

GND

VDD

GND

VDD

GND

VDD

GND

... out

C0

R0

(c)
VDD

GND

Rx1 Ry1

mCP
GND

R1

Cx1

GND
mCy1
GND

C1

GND

Rx2 Ry2

mCP

GND

R2

Cx2

GND
mCy2

GND

C2

GND

Rx,n Ry,n

mCP
GND

R2

Cx,n-1

GND
mCy,n

GND

Cn

GND

Deep N-Well

Figure 3.28 – (a) Critical path of a general RRAM-based multiplexer; (b) General critical path of
RRAM-based multiplexer; (c) Equivalent RC model.

(Rx,i , Cx,i) and (Ry,i , Cy,i) denote the parasitic resistances and capacitances of the long metal

wires at the i th stage of a 4T1R multiplexer, corresponding to (x, y) in Fig. 3.23(b) respectively.

In short, the resistance and capacitance in Fig. 3.28(c) can be extracted from Fig. 3.28(b) and

94

3.7. Optimal Physical Design Parameters

expressed as follows:

R0 = Ri nv = Rmi n

Wi nv
,

Ri |1≤i≤n = RLRS ,

C0 =Wi nvCi nv +2Wpr og Ctr ans ,

Ci |1≤i≤n−1 = 4Wpr og Ctr ans ,

Cn =CL +2Wpr og Ctr ans ,

Rx,i |1≤i≤n = xi ·R�,

Ry,i |1≤i≤n = yi ·R�,

Cx,i |1≤i≤n = xi ·C�,

Cy,i |1≤i≤n = yi ·C�,

(3.22)

where Rmi n denotes the equivalent resistance of a minimum size inverter, Ci nv represents

the parasitic capacitance at the output of a minimum size inverter, Wi nv is the size of driving

inverter in terms of the minimum width transistor [4]. RLRS denotes the equivalent resistance

of a RRAM in LRS, CP is the parasitic capacitance of a RRAM. Wpr og represents the width

of programming transistor in the unit of the minimum width transistor, and Ctr ans is the

parasitic capacitance of a minimum width programming transistor in off state. R� and

C� are the square resistance and capacitance of a unit metal wire respectively. xi denotes

the distance between the RRAM and the left half of 4T1R programming structure at the i th

stage of multiplexer, while yi denotes the distance between the RRAM and the right half of

4T1R programming structure at the i th stage of multiplexer. Note that xi + yi = L, where L is

minimum distance between a regular N-well and a deep N-well.

Considering the Elmore delay [104] of the critical path of a general n-stage RRAM-based

multiplexer (Fig. 3.28(b)), we obtain:

τ=∑
i

Ci
∑

j
R j

= (Ci nv +2Wpr og Ctr ans) ·Ri nv

+
n∑

i=1
xi C� · [Ri nv + (i −1)(RLRS +L ·R�)+xi R�]

+
n∑

i=1
m(L−xi)C� · [Ri nv + i (RLRS +L ·R�)]

+4Wpr og Ctr ans

n−1∑
i=1

[Ri nv + i (RLRS +L ·R�)]

+ (2Wpr og Ctr ans +CL) · [Ri nv +n · (RLRS +L ·R�)]

+m ·CP

n∑
i=1

(Ri nv + i RLRS + (i −1)L ·R�+xi R�)

(3.23)

As we see, despite from technology parameters, i.e., Ri nv , Ci nv , R�, C�, Ctr ans , CP and L, the

95

Chapter 3. RRAM-based Circuit Designs

delay is dependent on many design parameters, xi , n, m and Wpr og . To minimize the delay in

(3.23), it is worthwhile to study the optimal values of these design parameters. In the rest of

this section, we will focus the impact of xi (See Section 3.7.2) and Wpr og (See Section 3.7.3).

3.7.2 Physical Position of RRAMs

As illustrated in Fig. 3.23(b), RRAMs are flexible in their location between the two wells.

However, the choice of the location of RRAMs lead to different distribution of parasitics inside

the 4T1R-based multiplexer, and further resulting in difference in performance. In this part,

we study the impact of location of RRAMs on the performance, by using the Elmore Delay in

(3.23).

Since our target is to determine the optimal values of variables xi , we only focus on the terms

involving xi :

τ= f (L,Wpr og ,n,m,Ri nv ,Ci nv ,Ctr ans)

+
n∑

i=1
R�C�xi

2 + [(1−m)Ri nvC�+ (i −1−mi)(RLRS +LR�)C�+mR�CP]xi
(3.24)

where f (L,Wpr og ,n,m,Ri nv ,Ci nv ,Ctr ans) is the sum of terms without xi .

The delay τ reaches its minimal when xi is:

xi ,opt = (m −1)Ri nvC�+ (mi +1− i)(RLRS +LR�)C�−mR�CP

2R�C�

= m −1

2

Ri nv

R�
+ i (m −1)+1

2

RLRS

R�
+ [i (m −1)+1]

L

2
− mCP

2C�

(3.25)

Note that m ≥ 2 and i ≥ 1, xi ,opt is monotonically increasing with respect to i . This implies

that xi ,opt increases when the number of stages increases. Additionally, in a sophisticated

CMOS technology, CP ¿ C�, Ri nv À R� and RLRS À R�. As a result, xi ,opt is usually larger

than L and Fig. 3.29 depicts the relation between delay τ and xi in such case.

Our goal is to minimize the delay τ in the range of xi ∈ [0,L]. As highlighted red in Fig. 3.29,

the delay τ is monotonically decreasing when xi ∈ [0,L]. Hence, the optimal delay is achieved

when xi = L. From a circuit design perspective, the optimal location of RRAMs should be close

to the right half of 4T1R programming structures, especially in a multi-level multiplexer. In

the example of Fig. 3.23(b), the optimal location of RRAMs should be on the top of the deep

N-well.

The optimal location of RRAMs will be verified through electrical simulations in Section 3.8.4.

96

3.7. Optimal Physical Design Parameters

D
el
ay

0 xixi,optL

!min,theory

!max

!min

Figure 3.29 – Relation between xi and delay of a RRAM-based multiplexer.

3.7.3 Programming Transistor Sizing Technique

As we see in (3.23), Wpr og and RLRS appear in almost every term of the polynomial, imply-

ing their tight relationship with delay of RRAM-based multiplexers. This part is devoted to

determining the optimal value of Wpr og and RLRS in the goal of minimizing the delay τ.

As shown in equations (3.9) (3.11), the product of the RLRS of RRAM and the programming

transistor size Wpr og is a function of programming voltage:

RLRS = g (Vpr og)

Wpr og
(3.26)

Note that the product RLRSWpr og is a constant under a specific Vpr og .

With Equation (3.26), Equation (3.23) is simplified to be related to Wpr og only. Since our target

is to determine the optimal values of variables Wpr og , we only focus on the terms involving

Wpr og :

τ= h(L, xi ,n,m,Ri nv ,Ci nv ,Ctr ans)

+ [4n ·Ri nvCtr ans +2n2LR�Ctr ans] ·Wpr og

+ g (Vpr og)[nCL +m
n(n +1)

2
(CP +LC�)−C�

n∑
i=1

(mi − i +1)xi] · 1

Wpr og
,

(3.27)

97

Chapter 3. RRAM-based Circuit Designs

where h(L, xi ,n,m,Ri nv ,Ci nv ,Ctr ans) is the sum of terms without Wpr og .

According to (3.27), the relation between the n-stage multiplexer delay τ and the width of the

programming transistor Wpr og is depicted in Fig. 3.30.

D
el
ay

0 WprogWprog,opt

RLRS
RLRS

Figure 3.30 – Relation between Wpr og and delay of a RRAM-based multiplexer.

When Wpr og is small, the delay increases due to the large RLRS of RRAM. When Wpr og is large,

the delay increases as well. Indeed, while the RLRS is reduced, large parasitic capacitances are

introduced by the programming transistors and limit the performances. Therefore, as shown

in Fig. 3.30, there exists an optimal Wpr og ,opt giving the best performances by trading off the

RLRS with the parasitic capacitances from the programming transistors.

Equation (3.27) reaches minimum value (best delay) when:

Wpr og ,opt =

√√√√ g (Vpr og)[nCL +m n(n+1)
2 (CP +LC�)−C�

∑n
i=1(mi − i +1)xi]

4n ·Ri nvCtr ans +2n2LR�Ctr ans

(3.28)

In FPGA routing architecture, the number of stages and the number of inputs of multiplexers

are diverse. As Equation 3.28 depends on the n and m of the multiplexer, using a uniform size

of programming transistors[26, 9, 27, 8] does not ensure the best performance. To achieve the

best performances, the multiplexers in FPGA should have different Wpr og ,opt .

If we consider the optimal xi = L as explained in Section 3.7.2, the Wpr og ,opt can be simplified

98

3.8. Experimental Results

to

Wpr og ,opt |xi=L =
√

g (Vpr og)[2CL + (n +1)mCP + (n −1)LC�]

8 ·Ri nvCtr ans +4nLR�Ctr ans

(3.29)

Note that Wpr og ,opt is always larger than zero and lies in the valid range of Wpr og ∈ [1,∞).

Since the Elmore delay is an approximation of the delay, the estimated Wpr og ,opt in (3.28) may

not always guarantee the best delay. In practice, the best Wpr og ,opt can be found by sweeping

Wpr og in electrical simulations. In Section 3.8.3, we will examine the effect of programming

transistor sizing technique.

As input sizes and fan-out loads of multiplexers are diverse in the context of FPGA architectures,

the choice of multiplexing structure, transistor sizes and physical locations of RRAMs should

be well optimized by considering their architecture context. As a result, the two optimizing

techniques are effective methods to achieve optimal performance for multiplexers located in

different blocks of a FPGA architecture. Note that the design space of 4T1R-based multiplexer

could be even larger than what we have investigated here. For instance, in this thesis, we

assume that Wpr og and RLRS are uniform in a 4T1R-based multiplexer. Actually, Wpr og and

RLRS can be various in different stages, leading to more optimizing opportunity. We leave

these as part of our future work.

3.8 Experimental Results

In this section, we will verify the conclusions drawn by our analytical comparison with electri-

cal simulations and further evaluate the performance of the proposed multiplexers. We first

explain our experimental methodology. Then, we show and comment the transient behavior of

4T1R-based multiplexers, and finally we compare the area, delay and power between different

4T1R-based and CMOS multiplexer topologies.

3.8.1 Experimental Methodology

We consider a RRAM technology [114] with programming voltages Vset = |Vr eset | = 1.1V

and a maximum current compliance of Iset = |Ir eset | = 500µA. The lowest achievable on-

resistance RLRS of a RRAM is 2.2kΩ while the off-resistance RHRS is 23MΩ. The parasitic

capacitance of a RRAM CP is estimated to be 13.2aF by considering that the RRAMs are

embedded in the MET1 and MET2 vias of our considered technology. The pulse width of

a programming voltage in both set and reset processes is set to be 200ns. Stanford RRAM

compact model [130, 131] is used to model the considered RRAM technology. The TSMC 40nm

technology is used in the circuit designs of datapath logics and 4T1R programming structures.

Both datapath circuits and the 4T1R programming structures are built with standard logic

transistors (W /L = 140nm/40nm). The standard logic transistors have a nominal working

voltage VDD = 0.9V , and can be overdriven to 1.2V while staying in their reliability limits.

99

Chapter 3. RRAM-based Circuit Designs

Transmission gates are implemented with a pair of minimum-width n-type and p-type logic

transistor. Input and output inverters are sized to 3× minimum width in order to resist the

parasitics of metal wires. Delay and power results are extracted from HSPICE [47] simulations.

The datapath VDD is swept from 0.7V to 0.9V with a step 0.1V , in order to study the trade-off

between delay and power in sub/near-Vt regime. The programming voltage Vpr og is selected

to be 2.4V , respecting to the physical design limits, discussed in Section 3.6.5.

The comparison baseline is selected from the CMOS multiplexer topologies in Fig. 2.14 and Fig.

2.15 in terms of best delay. When input size N is lower or equal than 10, we consider one-level

CMOS multiplexers as baseline. When input size N is larger than 10, our baseline becomes a

two-level CMOS multiplexer. As for 4T1R-based multiplexers, we consider one-level, two-level

and tree-like structures for comparison on area, delay and power.

3.8.2 Transient Analysis

In order to validate the analytical comparisons in Table 3.2, we perform transient simulations

for 4T1R-based multiplexers, which consist of two phases: (1) the programming phase, where

set and reset operations are made to validate the RRAM programming strategy; and (2) the

datapath operation phase, where we verify if the multiplexer is functionally correct. Without

loss of generality, we focus on a representative example: a 2-input one-level 4T1R-based

multiplexer (consider N = 2 in Fig. 3.22). Such transient analysis was conducted for every

4T1R-based multiplexer. Before programming, we initialize a 4T1R-based multiplexer in Fig.

3.22 as follows: RRAMs RA and RB are formed and configured to HRS and LRS respectively.

During the programming phase depicted in Fig. 3.31(a), RB is first reset to HRS by a reset

procedure, then RA is set to LRS by a set cycle. Fig. 3.31(a) illustrates that both RA and RB can

be set or reset successfully according to the changes in programming currents Ivdd0 and Ivdd1.

Between the programming phase and operating cycles, there are a few idle cycles during which

programming transistors are all turned off. After then, input pulses are generated sequentially

to the two inputs, as shown in Fig. 3.31(b). We see that the multiplexer is functionally correct,

as i n[0] is propagated to the output while i n[1] is blocked. Transient analysis also verifies that

RRAMs can be programmed correctly without interfering each other.

3.8.3 Best Wpr og for RRAM-based Multiplexers

As explained in Section 3.7, the sizing of programming transistors can significantly impact the

delay and power number of RRAM-based multiplexers. In this section, we study the impact

of Wpr og on the delay of the improved 4T1R-based multiplexers through simulation results.

Throughout this thesis, Wpr og is expressed with the number of minimum width transistors.

For each 4T1R-based multiplexer structure (one-level, two-level and tree-like), we sweep

Wpr og from 1 to 3 with a step of 0.2, in order to identify the optimal Wpr og in terms of best

delay. Fig. 3.32 shows the delay difference of the improved one-level, two-level and tree-like

4T1R-based multiplexers (x = L) when input size is 50. A proper Wpr og indeed can reduce the

100

3.8. Experimental Results

-5
0u

pr
in

te
d

Th
u

Ju
n

15
 2

01
7

18
:4

8:
18

 b
y

xi
ta

ng
 o

n
ls

is
rv

8.
ep

fl.
ch

Sy
no

ps
ys

, I
nc

. (
c)

 2
00

0-
20

09

su
b-

vt
 m

ux
 h

sp
ic

e
be

nc
h

 0

6/
15

/2
01

7

17

:1
4:

20
w

av
ev

ie
w

 1

00

20
0n

20
0n

40
0n

40
0n

60
0n

60
0n

80
0n

80
0n

1u1u

1.
2u

1.
2u

t (
se

c)
 (l

in
)

-3
50

u
-3

00
u

-2
50

u

-2
00

u

-1
50

u

-1
00

u

-5
0u0

50
u

(lin)

i(v
pr

og
_v

dd
0)

 m
ux

2.
tr0

-3
00

u
-2

50
u

-2
00

u
-1

50
u

-1
00

u
-5

0u0

(lin)

i(v
pr

og
_v

dd
1)

 m
ux

2.
tr0

-0
.500.
511.
52

(lin)

xm
ux

2_
si

ze
2.

v(
m

ux
1l

ev
el

_i
n0

) m
ux

2.
xm

ux
2_

si
ze

2.
v(

m
ux

1l
ev

el
_i

n1
) m

ux
2.

xm
ux

2_
si

ze
2.

v(
m

ux
1l

ev
el

_o
ut

) m
ux

2.

(b
) O

pe
ra

tin
g

cy
cl

es
id

le
cy

cl
es

(a
) P

ro
gr

am
m

in
g

cy
cl

es
Re

se
t

RR
AM

s
Se

t
RR

AM
s

id
le

cy
cl

e

VA VB VC

Iv
dd

tim
e

(s
)

R
es

et

cu
rr

en
t

pu
ls

e

Se
t

cu
rr

en
t

pu
ls

e

Iv
dd

,w
el

l

in
[1

]
bl

oc
ke

d

in
[0

]
pr

op
ag

at
e

VB

VA VC

id
le

cy
cl

e

0

-1
00
u

-1
50
u

-3
00
u

1.
5 1

0.
5 0

-0
.52

-5
0u0

-1
00
u

-1
50
u

-3
00
u

50
u 0

20
0n

40
0n

60
0n

80
0n

1u
1.
2u

1.
19
9u

1.
2u

1.
20
1u

1.
20
2u

Fi
gu

re
3.

31
–

Tr
an

si
en

ta
n

al
ys

is
o

fa
2-

in
p

u
t4

T
1R

-b
as

ed
m

u
lt

ip
le

xe
r

in
Fi

g.
3.

22
(a

):
(a

)
si

gn
al

w
av

ef
o

rm
s

o
fp

ro
gr

am
m

in
g

p
h

as
e;

(b
)

si
gn

al
w

av
ef

o
rm

s
o

fo
p

er
at

io
n

.

101

Chapter 3. RRAM-based Circuit Designs

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0.88

0.9

0.92

0.94

0.96

0.98

1

Wprog (Minimum Transistor Width)

N
or

m
al

iz
ed

 D
el

ay

Improv. 1−level 4T1R MUX
Improv. 2−level 4T1R MUX
Improv. tree−like 4T1R MUX

-5%

-11%
-10%

Figure 3.32 – Impact of Wpr og on the delay of 50-input improved 4T1R-based multiplexers
(x = L).

delay of 4T1R-based multiplexers by 5%-11%. Fig. 3.32 shows that the best Wpr og depends

on the multiplexing structure because of different n and m, as predicted in Equation (3.29).

More than multiplexing structures, Fig. 3.33(a) and (b) present the best Wpr og is strongly

dependent on many other design factors, such as input size and VDD . As depicted in both Fig.

3.33(a) and (b), the best Wpr og basically increases when input sizes grows. This is consistent

to the prediction in Equation (3.29), where optimal Wpr og is positively related to m. In general,

optimal Wpr og of tree-like multiplexers are larger than two-level and one-level multiplexers,

which validates the dependency of Wpr og ,opt on the number of stages n shown in Equation

(3.29). Fig. 3.33(b) studies the relation between best Wpr og and VDD , considering one-level

multiplexers. In most cases, operating in near-Vt regime, such as VDD = 0.7V leads to a smaller

Wpr og ,opt than nominal working voltages. Indeed, when VDD is decreased, Ri nv increases due

to the degrading current density, leading to a smaller Wpr og ,opt as shown in Equation (3.29).

In short, we see that in Fig. 3.33(a) and (b), the optimal Wpr og ranges from 1 to 3, strongly

influenced by design choices. In addition to delay, the choice of Wpr og impacts strongly on

both area footprint and power consumption. Therefore, to achieve better trade-off in area,

delay and power, the optimal Wpr og can also be determined with respect to various metrics,

such as Area-Delay Product (ADP) and Power-Delay Product (PDP). In the rest of this chapter,

Wpr og of each 4T1R-based multiplexer is properly sized to achieve best delay metric.

102

3.8. Experimental Results

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

MUX size

W
pr

og
 (M

in
im

um
 T

ra
ns

ist
or

 W
id

th
)

Improv. 1−level 4T1R MUX (VDD=0.7V)

Improv. 1−level 4T1R MUX (VDD=0.8V)

Improv. 1−level 4T1R MUX (VDD=0.9V)

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

MUX size

W
pr

og
 (M

in
im

um
 T

ra
ns

is
to

r
W

id
th

)

Improv. 1−level 4T1R MUX
Improv. 2−level 4T1R MUX
Improv. tree−like 4T1R MUX

(a)

(b)

Figure 3.33 – Two case studies on the best Wpr og of improved 4T1R-based multiplexers (x = L):
(a) impact of the multiplexing structures when VDD = 0.9V (b) impact of VDD .

103

Chapter 3. RRAM-based Circuit Designs

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
10

15

20

25

30

35

40

45

MUX size

D
el

ay
 (p

s)

 CMOS MUX
Improv. 1−level 4T1R MUX (x=0)
Improv. 1−level 4T1R MUX (x=L)
Improv. 2−level 4T1R MUX (x=0)
Improv. 2−level 4T1R MUX (x=L)

2.5×-32%

Figure 3.34 – Delay comparison of improved 4T1R-based multiplexers featured by x = 0 and
x = L.

3.8.4 Optimal RRAM Location

As shown in Equation 3.25, the location of RRAMs can influence the delay of 4T1R-based

multiplexers. From the consider design kit, we extract process parameters L = 2.5µm, Ri nv =
4.5kΩ, R� = 2.1Ω/µm and C� = 72.4aF /µm. According to Equation 3.25, the best location

of the RRAMs is xopt = L. Therefore, in this part, we study only two locations for RRAMs :

x = 0 and x = L. Fig. 3.34 compares the delay of one-level and two-level improved 4T1R-based

multiplexers with different locations of RRAMs x = 0 and x = L. The improved designs with

x = L significantly reduce the delay by 35%− 2.5× as compared to the cases of x = 0. In

particular, x = 0 causes that delay of RRAM-based multiplexers linear to input sizes similar

to CMOS counterparts, while x = L can guarantee that delay of RRAM-based multiplexers is

almost independent from input size. To be intuitive, such delay characteristic can be explained

as follows. In the cases of x = 0, long metal wires are all connected to the output nodes of

multiplexing structure (See node C in Fig. 3.22(a)). As a result, the parasitic resistances

and capacitances at the output node stack at the output node, being linear to the input size.

Consequently, the delay of improved 4T1R-based multiplexers x = 0 is linear to the input size.

Differently, in the case of x = L, long metal wires are connected to each input inverter and the

parasitics at output node is only impacted by the intrinsic capacitance of RRAMs. Therefore,

we see in Fig. 3.34 that the delay of improved 4T1R-based multiplexers is almost independent

104

3.8. Experimental Results

on the input size.

Note that, thanks to such outstanding feature, improved 4T1R-based multiplexers with large

input sizes can be as delay efficient as smallest ones, encouraging the use of large multiplexers

in FPGAs. This potentially opens opportunities in optimizing FPGA architectures, which will

be explored in Chapter 5. In the rest of this thesis, we consider the improved design with x = L

in the comparison with CMOS multiplexers.

(a) 4.88µm

9.2
µm

Total Area of CMOS MUX = 44.9µm2

(b) 5.67µm

6.22
µm

Total Area of RRAM MUX = 35.3µm2

Figure 3.35 – Layout of 16-input multiplexers: (a) CMOS two-level structure; and (b) 4T1R-
based two-level structure.

3.8.5 Area Comparison

In order to properly study the physical area of the proposed structure, i.e., considering routing,

well organization etc., and draw fair area comparisons with regular CMOS, we realized the

layouts of a 16-input two-level CMOS multiplexer and a 16-input two-level 4T1R-based multi-

plexer with a semi-custom design flow, as depicts in Fig. 3.35(a) and (b) respectively. Since the

different wells can be efficiently shared among multiplexers as shown in Fig. 3.26, the layout

of 4T1R-based multiplexer consists of the programming structures and input inverters (MUX0

in Fig. 3.26) in a regular well. The output and associated programming structure of another

multiplexer (MUX1 in Fig. 3.26) can be shared in this same well. The output inverter and asso-

105

Chapter 3. RRAM-based Circuit Designs

ciated programming structure of MUX0 will be located in a deep N-well which also contains

programming structure and input inverters of another multiplexer. CMOS multiplexers must

employ SRAMs to store their configuration bits, while 4T1R-based multiplexers eliminate the

use of SRAMs as their configuration bits are stored in RRAMs. To access either the SRAMs

or the RRAMs, we assume a memory bank organization, i.e., using parallel word lines and

bit lines. Since CMOS and 4T1R-based multiplexers have similar number of configuration

bits, the area of their memory banks are similar and are not included in their layouts. The

benefit on removing SRAMs leads to that a 4T1R-based multiplexer (35.3µm2) is 21% smaller

than its CMOS counterpart (44.9µm2). We believe that the area comparison between 16-input

multiplexers is representative and also its conclusive trend is also valid for multiplexers with

other sizes.

3.8.6 Delay Improvements

Fig. 3.36(a) compares the delay of CMOS multiplexers and the improved 4T1R-based multi-

plexers with the different structures under analysis. Note that naive 4T1R and 2T1R-based

multiplexers are also evaluated with electrical simulations. Due to a low driving current

density, RRAM programming of the naive 2T1R-based multiplexers is regarded as a failure

because programming structures cannot drive enough current through RRAMs. As a result,

the RRAM LRS becomes too high and the multiplexer performance degrades significantly.

The performance of the naive 2T1R-based multiplexers are more than 5× worse than the

improved 4T1R-based multiplexer and best CMOS multiplexers. To keep a proper scale of

axis x and y , we do not plot them in Fig. 3.36(a). In the case of naive 4T1R multiplexers,

we consider Wpr og = 4 in order to compensate the loss in programming current due to the

input inverters in Fig. 3.21. Such large Wpr og enables success RRAM programming but at

cost of large parasitics of programming transistors. Consequently, the performance of naive

4T1R-based multiplexers is 2.6× worse than the improved ones. In contrast, the improved

4T1R-based multiplexers with one-level, two-level and tree-like structures can guarantee

RRAM configuration successful even when Wpr og is minimized. In the considered input sizes,

one-level structure performs better in delay than two-level and tree-like structures due to its

smaller parasitic capacitances. One-level structures and two-level 4T1R-based multiplexers

achieve up to 2.4× and 42% delay improvements respectively, as compared to their CMOS

counterparts. Note that even when the input size is small, i.e., N = 2, one-level 4T1R-based

multiplexers have similar performance than CMOS implementations.

We also investigate the performance of the multiplexers in the near-Vt regime. As illustrated

in Fig. 3.36(b), CMOS multiplexers suffer from 2.25× delay degradation when VDD decreases

from 0.9V to 0.7V . However, because, unlike transistors, the resistances of RRAMs are not

affected by a reduction of VDD , one-level 4T1R-based multiplexers keep a high-performance-

level even in the near-Vt regime. When VDD = 0.7V , one-level 4T1R-based multiplexers

improve delays by up to 3×, as compared to CMOS multiplexer. Note that, when compared to

CMOS multiplexers operating at VDD = 0.9V , one-level 4T1R-based multiplexers operating

106

3.8. Experimental Results

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
10

20

30

40

50

60

70

80

90

MUX size

D
el

ay
 (p

s)

 CMOS MUX (VDD=0.7V)

CMOS MUX (VDD=0.9V)

1−level 4T1R MUX (VDD=0.7V)

1−level 4T1R MUX (VDD=0.8V)

1−level 4T1R MUX (VDD=0.9V)

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
10

20

30

40

50

60

70

80

90

MUX size

D
el

ay
 (p

s)

CMOS MUX
Improv. 1−level 4T1R MUX
Improv. 2−level 4T1R MUX
Improv. tree−like 4T1R MUX
Naive 1−level 4T1R MUX

(a)

(b)

-36%

3×

2.6×-42% 2.4×

2× 2.4×

Figure 3.36 – Delay comparison between CMOS and 4T1R-based multiplexers: (a) delay
improvements of one-level, two-level and tree-like structures (VDD = 0.7V); (b) delay efficiency
of one-level structure at near Vt regime.

107

Chapter 3. RRAM-based Circuit Designs

with VDD = 0.7V outperform up to 36% in delay.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
5

10

15

20

25

30

35

40

45

MUX size

Po
w

er
 (µ

W
)

 CMOS MUX (VDD=0.7V)

CMOS MUX (VDD=0.9V)

1−level 4T1R MUX (VDD=0.7V)

1−level 4T1R MUX (VDD=0.8V)

1−level 4T1R MUX(VDD=0.9V)

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
0

0.5

1

1.5

2

2.5

3

3.5

4

MUX size

En
er

gy
 (P

ow
er
−D

el
ay

 P
ro

du
ct

) (
fJ

)

 CMOS MUX
Improv. 1−level 4T1R MUX
Improv. 2−level 4T1R MUX
Improv. tree−like 4T1R MUX
Naive 1−level 4T1R MUX

(a)

(b)

7.5×

-38%

-20%

3.7×2.2×

Figure 3.37 – Power comparison between CMOS and 4T1R-based multiplexers: (a) energy im-
provements of one-level, two-level and tree-like structures (VDD = 0.7V); (b) power reduction
of one-level structure at near Vt regime.

108

3.8. Experimental Results

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

MUX size

En
er

gy
 (P

ow
er
−D

el
ay

 P
ro

du
ct

) (
fJ

)

 CMOS MUX (VDD=0.7V)

CMOS MUX (VDD=0.9V)

4T1R MUX (VDD=0.7V)

4T1R MUX (VDD=0.8V)

4T1R MUX(VDD=0.9V)

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
0

2000

4000

6000

8000

10000

12000

14000

MUX size

A
re

a
−D

el
a
y
 P

ro
d

u
ct

(M
.W

.T
.A

 *
 p

s)

CMOS MUX (V

DD
=0.9V)

4T1R MUX (V
DD

=0.7V)

4T1R MUX (V
DD

=0.8V)

4T1R MUX(V
DD

=0.9V)

(a)

(b)

2.3×

4.7×3.7×

3.6×2.8×

Figure 3.38 – Comparison between CMOS multiplexers and 4T1R-based multiplexers: (a)
Area-Delay Product; (b) Power-Delay Product.

109

Chapter 3. RRAM-based Circuit Designs

3.8.7 Energy and Power Benefits

Fig. 3.37(a) shows the energy efficiency of naive one-level 4T1R-based multiplexers and

4T1R-based multiplexers with different improved structures. Note that naive 4T1R-based

multiplexers consumes 7.5× more energy than the improved one-level 4T1R-based multiplex-

ers due to the use of Wpr og = 4. In the considered range of input sizes, a one-level structure

multiplexer performs better in terms of energy consumption, bringing up to 3.7× reduction

compared to CMOS multiplexers, thanks to the smaller parasitic capacitances. 4T1R-based

multiplexers are not only efficient in energy but also in power, as shown in Fig. 3.37(b). At

nominal VDD = 0.9V , one-level 4T1R-based multiplexers reduce power by 20% as compared

CMOS multiplexers. In near-Vt regime, i.e., VDD = 0.7V , the power reduction of one-level

4T1R-based multiplexers is 38% as significant as VDD = 0.9V . Note that, the 4T1R-based

multiplexers operating at VDD = 0.7V can benefit power improvement up to 4× as compared

to CMOS multiplexers at nominal VDD = 0.9V , and such power reduction is achieved along

with significant delay improvements.

3.8.8 Area-Delay and Power-Delay Products Analysis

To explore the inherent trade-offs with area, delay and power, we compare Area-Delay Product

(ADP) and Power-Delay Product (PDP) of CMOS and 4T1R-based multiplexers, as shown in Fig.

3.38. Similar to CMOS multiplexers, we select the best structure for 4T1R-based multiplexers

with varying input sizes, in terms of best delay. When input size ranges from 2 to 50, we

consider one-level structure. Since 4T1R-based multiplexers reduce both area and delay

significantly, Area-Delay Product (ADP) of 4T1R-based multiplexers can be up to 2.3× more

efficient than CMOS multiplexers than CMOS multiplexers, as illustrated in Fig. 3.38(a). Since

4T1R-based multiplexers are more delay and power efficient than CMOS multiplexers in near-

Vt regime, Power-Delay Product (PDP) of 4T1R-based multiplexer improves over 4.7× the

one of CMOS multiplexers, as shown in Fig. 3.38(b). VDD = 0.7V guarantees the best PDP for

4T1R-based multiplexers. In summary, 4T1R-based multiplexers are delay and power efficient

at both nominal VDD and near-Vt regime.

3.9 Impact of Process Variations of RRAMs

RRAMs are more susecptible to device variations than transistors. As their mechanism is phys-

ically stochastic, there is a large observed cycle-to-cycle variability[1]. The variations on RRAM

parameters, such as Vset and Vr eset , could lead to a degradation of RRAM-based multiplexers

performance. Therefore, it is necessary to understand, for a given technology node, what is the

range of variations that the RRAM multiplexers can tolerate without significant degradation in

delay and power. In this section, we study the effect of three representative RRAM parameters:

CP , Vset and Vr eset , coupled with a commercial 40nm technology.

110

3.9. Impact of Process Variations of RRAMs

2 4 6 8 101214161820222426283032343638404244464850
10

15

20

25

30

35

40

45

MUX size

D
el

ay
 (p

s)

 CMOS MUX
1−level 4T1R MUX (CP=13.2aF)

1−level 4T1R MUX (CP=39.6aF)

1−level 4T1R MUX (CP=118.8aF)

2.4×

-15%

Figure 3.39 – Impact of parasitic capacitance of RRAM CP on the delay of one-level 4T1R-based
multiplexers (VDD = 0.9V).

3.9.1 Impact of Variations on CP

As shown in equation 3.23, the parasitic capacitance of RRAM CP is one of the crucial factor

impacting the delay of 4T1R-based multiplexers. A large CP introduces more capacitance

into datapath and therefore negatively influence the delay of 4T1R-based multiplexers. As

presented in Fig. 3.39, the delay of one-level 4T1R-based multiplexers degrades as CP is

increased from 13.2aF (the default value used in this thesis) to 118.8aF . A variation on CP

can indeed reduce the performance gain of 4T1R-based multiplexers from 2.4× to only 15%.

More importantly, an increased CP causes that the delay of 4T1R-based multiplexers becomes

strongly linear to the input size, similar to CMOS multiplexers. Therefore, the variation on CP

should be well controlled as it significantly impact not only the performance improvement

but also the performance characteristic of 4T1R-based multiplexers.

Note that, in this part, we assume that the increase in CP does not impact other device

parameters of RRAMs, i.e., RLRS . As explained in Section 2.1.1, a increased CP can lead to a

smaller RLRS , which may potentially limit the delay degradation on 4T1R-based multiplexers.

Hence, in practice, the impact of CP on 4T1R-based multiplexers may be less serious than that

shown in Fig. 3.39.

111

Chapter 3. RRAM-based Circuit Designs

RH
RS

 (Ω
)

23MΩ

1000 operating cycles

Vset=0.6V
Vset=0.4V

Vset=0.8V

46kΩ

4.9kΩ 12kΩ

Figure 3.40 – RHRS degradation when Vset = {0.4,0.6V ,0.8V } <VDD = 0.9V .

3.9.2 Impact of Variations on Vset

Process variations on Vset may cause Vset < VDD , where RRAMs could be parasitically set

during operation. Take the example in Fig. 3.31(b), during regular operation (highlighted in

red), where VA = GN D,VB = VDD and VC = GN D, the voltage drop across RRAM RB could

be large enough to trigger a set process. The RRAM RB in HRS could be gradually set to

LRS after a certain amount of time. In this part, we consider three representative cases

of RRAM technologies where Vset are 0.4V , 0.6V and 0.8V respectively, which are smaller

than VDD = 0.9V . Using electrical simulations, we run a fatigue test for a 2-input RRAM

multiplexer by running one thousands operating cycles, whose input waveforms are similar to

the one shown in Fig. 3.31(b). Fig. 3.40 illustrates the degradation trend of RHRS of RRAM RB ,

where RHRS decreases gradually from 23MΩ to 4.9−46kΩ and then no further degradation

is observed. The lower bound of RHRS degradation remains to be 4.9−46kΩ even when 100

thousands and 1M operating cycles are further applied. The existence of a lower bound of

RHRS can be explained as following: The voltage at node C in Fig. 3.22(a) is dependent on the

resistance of RB ,

VC =VDD · RRB

RRA +RRB

, (3.30)

where RRA and RRB represent the resistances of RRAM RA and RB in Fig. 3.22(a) respectively.

As RRB degrades, VC decreases as well, leading to the voltage drop across RRAM RB decreases.

When the voltage drop across RRAM RB is reduced to be lower than Vset , the parasitic set

112

3.9. Impact of Process Variations of RRAMs

process is stopped. The lower bound of degradation is independent from the number of

operating cycles but is related to Vset . In Fig. 3.40, we see that a high Vset = 0.8V leads to

less degradation on RHRS than Vset = 0.4V . Note that the degradation on RHRS could cause

significant leakage overhead [114]. In this paper, we consider a 20% margin between nominal

VDD and Vset . Additionally, the excellent performance of 4T1R-based multiplexers in near-Vt

regime allows the use of low VDD , i.e., = 0.7V , further increasing the margin to 60%. We believe

such margin is sufficient to resist Vset variations.

RL
RS

 (Ω
)

1000 operating cycles (unit: sec.)

A switching pulse (width=1.25ns)

RL
RS

 (Ω
)

VC
-V

A
(V

)

recovery
set

parasitic
reset

78ps

(b)

(c)

rising edge @ VA falling edge@VA

(a)

Figure 3.41 – (a) RLRS degradation when Vr eset = 0.3V over 1k operating cycles; (b) Voltage
across a RRAM in LRS (VA and VC in Fig. 3.22(a)) during operation; and (c) RLRS degradation
when Vr eset = 0.3V in a switching cycle.

3.9.3 Impact of Variations on Vr eset

A parasitic reset process could also happen to a RRAM in LRS when the voltage drop across

RRAM |VRR AM | < |Vr eset |. However, during normal operation, the voltage drop across a RRAM

113

Chapter 3. RRAM-based Circuit Designs

is typically smaller than 0.3V , as shown in Fig. 3.41(a), and the duration of such voltage

drop is as short as 78ps. Hence, as long as Vr eset varies to be above max{VC −VA}, i.e.,

= 0.3V , a parasitic reset process can be fully avoided. Using electrical simulation, we consider

Vr eset = 0.4V , 0.5V and 0.6V in the same torture test as described in Section 3.9.2, and the

resistances of RRAM in LRS remains unchanged in all the conditions. Even if Vr eset is smaller

than max{VC −VA}, RLRS degradation is much less serious than RHRS . Fig. 3.41(b) illustrates

that when Vr eset is below 0.3V , the parasitic reset caused by a rising edge of VA (VC >VA) can

be partly recovered by a falling edge of VA (VC <VA), resulting in a ∼ 10Ω RLRS degradation

per operation cycle. However, as compared to nominal Vr eset = 1.1V considered in this paper,

process variation can be well controlled to ensure Vr eset > 0.3V and thus parasitic reset can be

fully avoided.

3.10 Summary

In this chapter, we investigated essential RRAM-based circuit designs for FPGA architectures.

To the best of our knowledge, this is the first work contributing to systematical studies on

the programming structures and efficient integrating RRAMs into routing multiplexers by

considering physical design details. The proposed 4T1R programming structure and routing

multiplexer design have profound impacts on the RRAM-based circuit designs and also FPGA

architectures. We first studied the programming structures for RRAMs through both theoretical

analysis and electrical simulations. The proposed 4T1R programming structure outperforms

the widely-used 2T1R programming structure by a significant improvement of driving current

density. Thanks to the significant advance in area efficiency, lowest achievable RLRS and

physical designs, the proposed 4T1R programming structure can be widely used in all the

RRAM-based circuits, including but not limited to routing multiplexers. For instance, the

4T1R programming structure is adapted to non-volatile SRAM designs in Chapter 5. The

methodologies in analyzing and boosting programming structure is rather general and can

be extended to other non-volatile memory technology, e.g., Phase Change Memory [40]. This

implies that the 4T1R programming structure can be exploited for other non-volatile memory

technologies.

We then presented one-level, two-level and tree-like multiplexer designs based on the 4T1R

programming structure, addressed the physical design challenges in RRAM-based circuit

designs and analyze the impact of process variations. In addition, we proposed generic

optimization techniques, i.e., programming transistor sizing and optimal RRAM location,

which can significantly improve area, delay and power of RRAM-based multiplexers. Note that

the methodologies in analyzing programming transistor sizing and optimal RRAM location

are not limited to the proposed multiplexer design, but are rather general to all RRAM-based

circuits. Electrical simulations demonstrate the superiority of 4T1R-based multiplexers over

best CMOS multiplexers:

(1) their delay can be much less dependent on the input size.

(2) delay improvement is 2× and 3× when considering nominal and near-Vt working voltages

114

3.10. Summary

respectively.

(3) energy can be reduced by 2.8× and 3.7× when considering nominal and near-Vt working

voltages respectively.

The outstanding performance of 4T1R-based multiplexers can lead to strong architecture

impacts, including but not limited to FPGA architectures. For instance, multiplexers are also

intensively used in Network-On-Chips (NoC) [134]. In particular, the one-level 4T1R-based

multiplexers show superior delay and power characteristics over best CMOS multiplexers. As

for the RRAM-based FPGA architectures, such paradigm shift in the interconnection topology

potentially leads to a revisit of best architecture parameters. Last but not least, the impact of

process variations of RRAMs on the proposed 4T1R-based multiplexers are also examined.

Experimental results show that variations on Vr eset should be well constrained due to their

remarkable influence on multiplexer performance while variations on Vset can be relaxed

because of their trivial impact on multiplexer performance.

Chapter 3 hardcores for architecture-level studies about RRAM FPGAs and strongly motivates

Chapter 4 and Chapter 5. The improved multiplexer designs will be modelled from a CAD

perspective in Chapter 4 and their outstanding charactersitics will be intensively exploiting in

FPGA architectures in Chapter 5.

115

4 Simulation-based Architecture Explo-
ration Tool

As stated in Section 2.4, mainstream Field Programmable Gate Array (FPGA) architecture

exploration tools, e.g., VTR [44], face serious limitations in capturing the characteristics of

FPGAs architectures based on emerging technologies, due to the large design space offered

by FPGAs and the limits of analytical models. In addition, the novel RRAM-based circuit

designs shown in Chapter 3 bring new physical design constraints and hence require both

functional and electrical verification at architecture-level. To enable further studies about

RRAM-based FPGA architecture presented in Chapter 5, a novel architecture exploration tool

is desired to fill the void in accurately modeling and fast prototyping of FPGAs architectures

using unconventional device technologies.

In this chapter, we introduce a simulation-based FPGA architecture exploration tool suite,

called FPGA-SPICE, that is tightly integrated with the popular academic architecture explo-

ration tool suite VTR [44]. FPGA-SPICE aims at providing SPICE and Verilog modeling for

both SRAM-based and RRAM-based FPGA architectures, in order to perform accurate power

analysis, functional verification and prototyping. To support versatile architectures and circuit

designs, FPGA-SPICE extends the generic architecture description language of VTR [48] to

consider transistor-level parameters related to each module inside the FPGA architecture

under evaluation. With SPICE netlists, accurate power analysis can be conducted for large

FPGA fabrics through electrical simulators, i.e., HSPICE [47]. Verilog netlists allow full FPGA

fabrics to be rapidly prototyped through a semi-custom design flow [45], and also enables

functional verification with a HDL simulator [135]. Note that the SPICE and Verilog modeling

methodologies of FPGA-SPICE are general, which can be easily extended to studying FPGA

architectures based on other emerging technologies, such as Phase Change Memory (PCM)

[40].

This chapter is organized as follows. Section 4.1 introduces the working principles of FPGA-

SPICE. Section 4.2 presents the extended FPGA architecture description language. Section

4.3 discusses the core engine to generate transistor-level designs of circuit modules in FPGA

architectures. Section 4.4 covers critical techniques in auto-generating SPICE and Verilog

testbenches. Section 4.5 shows the experimental results about accurate area and power

117

Chapter 4. Simulation-based Architecture Exploration Tool

analysis of FPGAs.

FPGA-SPICE is available for download at [136].

4.1 Principles

FPGA-SPICE plays a role of interfacing various EDA tools, i.e., SPICE-based electrical simula-

tors and Verilog-based design tools, with the VTR tool suite. In order to accurately model a full

FPGA fabric with SPICE or Verilog netlists, FPGA-SPICE requires detailed routing information,

such as directionality, connectivity and channel width. Therefore, FPGA-SPICE is invoked

after routing stage, similar to VersaPower [46] in the classical EDA flow shown in Fig. 2.27.

Depending on the purpose of FPGA-SPICE, either for SPICE or Verilog netlist auto-generation,

the organization of EDA flow and even working principles of FPGA-SPICE could be different. In

the rest of this section, we will introduce FPGA-SPICE in two separated tracks: SPICE modeling

(Section 4.1.1) and Verilog modeling (Section 4.1.2).

Logic Synthesis
(ABC)

Architecture
Description (Extended) AA-Pack

Placer&Router

VPR
.blif

Area&Delay

.xml .net

Circuit-level
Description

Technology Library

Activity Estimator 2
(ACE2)

.blif
.act

FPGA-SPICE

User-defined Module
SPICE Netlists

SPICE Simulator

 Power

SPICE Netlists/
Testbenches of a FPGA

Figure 4.1 – FPGA-SPICE EDA flow for SPICE modeling purpose.

118

4.1. Principles

4.1.1 SPICE Modeling

In a SPICE-oriented design flow, FPGA-SPICE plays a role of automatically generating SPICE

netlists and testbenches for a mapped FPGA architecture. As illustrated in Fig. 4.1, FPGA-

SPICE exploits the description of the architecture provided by the architect to VTR, the mapped

netlists and the estimated signal activities to dump circuit netlists and the associated test-

benches for the implemented benchmarks. The tool subsequently invokes a SPICE simulator

to conduct power analysis.

FPGA-SPICE reads transistor-level design parameters from an extended architecture descrip-

tion XML file and use them to automatically generate detailed SPICE netlists of the basic circuit

elements used in the full FPGA architecture. The proposed extension of the VTR architecture

description language will be given in Section 4.2.

Alternatively, FPGA-SPICE can use user-defined SPICE netlists rather than automatically

generating them. This is an interesting feature to model fine-grain FPGA components, such

as SRAMs, whose performances are highly dependent on the technology and the circuit

structure. This brings the capability to study the system-level impact of full-custom optimized

circuit elementary blocks, thereby enabling interesting circuit/architecture co-optimization

opportunities. Details about transistor-level SPICE netlists generation are introduced in

Section 4.3.

FPGA-SPICE can generate its netlists at three levels of complexity: full-chip-level, grid-level

and component-level. Fig. 4.2, Fig. 4.3 and Fig. 4.4 illustrate the granularity of each level

respectively. In a full-chip-level testbench, all the components, such as CLBs, SBs and CBs, are

simulated within a unique top SPICE netlist, leading to an accurate simulation. Nevertheless,

a full-chip-level testbench simulation may require long runtime and large memory usage

because of the exponential complexity of SPICE solvers. To reduce both runtime and memory

usage, FPGA-SPICE can split the evaluation of a full-chip-level testbench into grid-level and

component-level testbenches. The grid-level testbenches consider separately each individual

CLBs, memory banks, DSP blocks, SB multiplexers and CB multiplexers. In the component-

level testbenches, the CLBs are further sliced into finer-grain modules, such as LUTs, FFs and

local routing multiplexers, for each of which an associated testbench is created. Section 4.4

focus on the partitioning strategies in grid/component-level testbenches.

4.1.2 Verilog Modeling

Different from SPICE modeling, the Verilog generator of FPGA-SPICE aims at automatically

generating synthesizable circuit netlists and testbenches in order to perform functional verifi-

cation and prototyping. As illustrated in Fig. 4.5, FPGA-SPICE reads the extended architecture

description file and dumps synthesizable Verilog netlists, associated testbenches and bit-

stream for a mapped FPGA fabric. Note that the detailed circuit designs, such as transistor

sizing and buffering, are typically handled by a semi-custom design flow. The synthesizable

119

Chapter 4. Simulation-based Architecture Exploration Tool

~

~

...

~

...

Figure 4.2 – Ilustration of the full-chip-level testbenches.

Verilog netlists are organized at structure-level, and hence FPGA-SPICE requires more circuit-

level modeling parameters to capture diverse circuit design topologies than transistor-level

modeling parameters. Section 4.3 will introduce the circuit-level modeling enhancements in

the VTR architecture description language.

Similar to SPICE modeling, FPGA-SPICE can also use a user-defined Verilog netlists rather

than automatically generating them. Thanks to the popularity of Verilog modeling in hard

Intellectual Property (IP) cores, such feature brings opportunities in modeling coarse-grained

FPGA architectures. As Verilog netlist are widely used in EDA tools, the Verilog generator

enables various FPGA research opportunities. In this thesis, we focus on exploiting the Verilog

generator to perform functional verification and automatic layout generation, as illustrated in

Fig. 4.5. The synthesizable Verilog netlists and the associated testbenches can be the input

of a Hardware Description Language (HDL) simulator, e.g., Modelsim™[135], and therefore

be used to verify the functionality of the mapped FPGA implementations. Section 4.5.2 will

introduce the techniques used in functional verification. The synthesizable Verilog netlists can

be the input of a semi-custom design flow, e.g., Cadence Innovus™[137], where the Verilog

netlists are optimized by physical synthesis and then converted to their corresponding layout.

120

4.2. Extended Architecture Description Language

M
em

ory B
ank

~

~

...

D
SP B

locks

~

~

...

...

...

...

CLB~

~

...

CLB~

~

...

CLB~

~

...

Hetergenonous Blocks and CLBs Switch Blocks

~

~
...

SB

~

~
... CB

Connection Blocks

Figure 4.3 – Ilustration of the grid-level testbenches.

The layout-level realization can be directly used for manufacturing and also for realistic area,

delay and power analysis for the investigated FPGA architectures. Section 4.5.6 is devoted to

present the layout-level results.

4.2 Extended Architecture Description Language

FPGA-SPICE extends the architecture description language of [48]. This architecture de-

scription language can model highly-flexible FPGA architectures at an abstract level. In the

extension, we add transistor-level circuit design parameters for:

1. elaborating the circuit components of the FPGA modules (See Section 4.2.1);

2. capturing the physical structure of circuit modules (See Section 4.2.2);

3. describing the topology of configuration circuits (See Section 4.2.3).

4.2.1 Transistor-level Module Declaration

First, transistor model and basic geometrical properties are defined in XML nodes tech_lib
and transistors, as follows:

<tech_lib lib_path=“45nmHP.pm” nominal_vdd=“1.0”/>

121

Chapter 4. Simulation-based Architecture Exploration Tool

~

~

... L
U
T ~ FF~

~
...

M
U
X

...

Hetergenonous Blocks CLB
MUXes LUTs FFs

~

~

... L
U
T ~ FF

... ...

SB
MUXes

CB
MUXes

...

...

~

~
...

M
U
X

~

~
...

M
U
X

D
SP B

locks

~

~

...

M
em

ory B
ank

~

~

...

~

~
...

M
U
X

~

~
...

M
U
X

~

~
...

M
U
X

~

~
...

M
U
X

~

~
...

M
U
X

~

~
...

M
U
X

~

~
...

M
U
X

Figure 4.4 – Ilustration of the component-level testbenches.

<transistors pn_ratio=“1.5">

<nmos chan_length=“45e-9” min_width=“140e-9”/>

<pmos chan_length=“45e-9” min_width=“140e-9”/>

</transistors>

The channel length, transistor width and ratio between p-type and n-type transistors are

122

4.2. Extended Architecture Description Language

Logic Synthesis
(ABC)

Architecture
Description (Extended)

AA-Pack

Versatile
Placer&Router

VPR
.blif

Area&Delay

*.xml

*.net

Circuit-level
Description

Technology Library

Activity Estimator 2
(ACE2)

.blif
.act

FPGA-SPICE

User-defined Module
Verilog Netlists

Modelsim

 Functionality
Verification

Verilog Netlists of a
FPGA

Bitstream

Verilog Testbench

Full-FPGA Layout

Cadence Innovus

Figure 4.5 – FPGA-SPICE EDA flow for synthesizable Verilog purpose.

defined in the XML properties nmos and pmos, respectively.

Then, transistor-level circuit design parameters of a FPGA module are defined under a

XML property called spice_model. The VTR architecture description language models all

logic blocks with a hierarchy of XML properties, called pb_type. We create a property

spice_model_name under pb_type to link the logic blocks to defined spice models. The

following code shows an example, where a 6-input LUT spice model, lut6, is defined and

linked to a logic block, n_lut6:

<spice_model type=“lut” name=“lut6” sp_netlist=“lut6.sp”

verilog_netlist=“‘lut6.v">

<port type=“input” prefix=“in” size=“6” is_global="false" is_clock="false"/>

<port type=“output” prefix=“out” size=“1”/>

<port type=“sram” prefix=“sram” size=“64” spice_model_name=“sram6T”

123

Chapter 4. Simulation-based Architecture Exploration Tool

default_val=“1”/>

<spice_model>

<pb_type name=“n_lut6” spice_model_name=“lut6”>

</pb_type>

Under the XML property spice_model, the ports of a LUT should be defined by providing the

size, port type and port name. In addition, whether the port is a global port in FPGA, such as

the clock signal, can be defined under the XML node port. FPGA-SPICE can automatically

identify the functionality of global ports and give proper stimuli in testbenches. Since the

circuit designs of some of the FPGA modules are highly dependent on the technology nodes,

such as SRAMs, hard logic blocks or FFs, FPGA-SPICE allows user-customized SPICE netlists

for each defined spice model. In the above example of lut6, user-customized SPICE and

Verilog netlists are defined in the XML properties, sp_netlist and verilog_netlist. Note

that, the circuit design of SRAMs used in a spice_model can also be customized by assigning

the XML property spice_model_name in the port. In the example of lut6, a spice_model
named by sram6T is declared to be used.

4.2.2 Physical Structure Modeling

To be efficient in mapping logic functions to circuit modules, VPR uses abstract-level mod-

eling to bridge the technology mapping results and FPGA architecture resources. The VPR

architecture description language focuses on describing the structure of circuit modules at

behavioral-level rather than at structural-level. For instance, an I/O pad is described with two

operating modes: input pad and output pad, as illustrated in Fig. 4.6(a). An input of a circuit

can be mapped to an input pad while an output of a circuit can be mapped to an output pad.

Indeed, the transistor-level design of a I/O pad in Fig. 4.6(b) can operate as either an input

pad or an output pad by configuring the SRAM. However, with the abstract-level modeling, the

physical structure of I/O pads cannot be accurately described, causing difficulties in transistor-

level modeling. Comparing to Fig. 4.6(b), an I/O pad modelled by VPR (in Fig. 4.6(a)) lacks

two critical elements: (1) the SRAM controlling the directionality of the I/O module; (2) two

ports direction and PAD of the I/O module. PAD is an bi-directional port that interfaces the

FPGA to outside world. direction determines whether the signal is propagated from PAD to

data_in or from data_out to PAD. Hence, in the purpose of accurate modeling FPGAs with

SPICE or Verilog netlists, the abstract-level modeling should be improved to exactly describe

the physical design.

We extend the architecture description language to model the physical design of an I/O pad,

as follows:

<pb_type name="io" idle_mode_name="inpad" physical_mode_name="io_phy">

124

4.2. Extended Architecture Description Language

Input
pad

Output
pad

Mode 1: inpad

Mode 2: outpad

IO PAD

data_out

data_in

IO

IO PAD

data_in
data_out

SRAM

PAD

direction

Physical design:VPR modeling

(a) (b)

Figure 4.6 – An I/O pad: (a) VPR abstract-level modeling, and (b) actual physical design.

<mode name="io_phy">

<pb_type name="iopad" num_pb="1" spice_model_name="iopad"/>

</mode>

<mode name="inpad">

<pb_type name="inpad" num_pb="1" mode_bits="1"/>

</mode>

<mode name="outpad">

<pb_type name="outpad" num_pb="1" mode_bits="0"/>

</mode>

</pb_type>

In parallel to the original abstract-level modeling, an extra mode named by io_phy is added to

the pb_type, under which the physical design of an I/O pad is described by the architecture

description language. An XML property physical_mode_name is added to the pb_type, in

order to identify which mode describes the physical design of the module. As a module

depends on the configuration bits to switch between operating modes, each operating mode,

e.g., inpad and outpad, contains a new XML property mode_bits, in order to define its unique

configuration bits. For instance, the mode_bits="1" under operating mode inpad specifies

that it is enabled when the SRAM is configured to logic 1. Note that the new mode io_phy
is only used by FPGA-SPICE for SPICE and Verilog generator, while the two original modes

inpad and outpad are used in VPR packing, placement and routing. As such, the extended

architecture description language does not influence any results of VPR packing, placement

and routing.

125

Chapter 4. Simulation-based Architecture Exploration Tool

4.2.3 Configuration Circuitry

As introduced in Section 2.2.4, memory bits of FPGAs can be accessed by different types of

configuration circuits, leading to difference in the full-chip area and also other merits. For

example, when scan-chain flip-flops are used, area of configuration circuits is linear to the

number of memory bits. When using BL and WL decoders, area of configuration circuits is in

square root relationship to the number of memory bits. However, since most FPGA researches

only focus on the core logics, the exact impact of configuration circuits has not been carefully

examined. As FPGA-SPICE aims at accurately model a full FPGA fabric with SPICE or Verilog

netlists, the architecture description language is extended to model the configuration circuits.

Under the XML node sram, details of configuration circuits can be specified separately for

SPICE and Verilog generator, as follows:

<sram area="6">

<verilog organization="memory_bank" spice_model_name="sram6T_blwl"/>

<spice organization="standalone" spice_model_name="sram6T"/>

</sram>

Take the example of the XML node verilog, the type of configuration circuit can be specified

by the XML property organization. The supported configuration circuits include memory-

bank-style (shown in Fig. 2.18) and scan-chains (shown in Fig. 2.19). The memory model ac-

cessed by the configuration circuits can be declared in the XML property spice_model_name,

which is linked to a defined spice model devoted to the transistor-level designs of a SRAM and

a scan-chain flip-flop (See details in Section 4.3.3 and Section 4.3.4).

As a result, FPGA-SPICE can automatically generate the bitstream used to program the config-

uration circuits, according to the selected implementations.

4.3 Transistor-level Circuit Netlist Generation

In an FPGA, the circuit-level implementations for the different blocks, such as channel wires,

multiplexers and LUTs, are highly dependent on the architectural choices. FPGA-SPICE can

automatically determine their design parameters and generate the associated SPICE netlists.

In this section, we will discuss the details of the circuit netlist generation engine. We will start

with the basic circuits, i.e., inverters, buffers and transmission gates, which are commonly

used by all the blocks. Then, we will introduce more complicated blocks, such as SRAMs,

multiplexers and LUTs.

126

4.3. Transistor-level Circuit Netlist Generation

4.3.1 Inverters/Buffers

Inverters and buffers are essential components of FPGA submodules, such as LUTs and

multiplexers, as shown in Fig. 2.14, Fig. 2.15 and Fig. 2.16. FPGA-SPICE allows inverters and

buffers to be either fully customized by specifying sp_netl i st or automatically generated.

...1x (f^n)x

n stagesGND

VDD

(a) (b)

in out
in outf x

Figure 4.7 – Transistor-level circuit design of (a) an inverter and (b) a tapered buffer.

The transistor-level circuit design of an inverter in Fig. 4.7(a) can modelled by the following

code:

<spice_model type=“inv_buf” name=“inv1”>

<design_technology type=“cmos” topology=“inverter” size=“1”/>

<port type=“input” prefix=“in” size=“1”/>

<port type=“output” prefix=“out” size=“1”/>

</spice_model>

The transistor sizes can be specified in the SPICE model definitions.

FPGA-SPICE can also model the transistor-level circuit design of a general multi-stage buffer

in Fig. 4.7(b) with the following code:

<spice_model type=“inv_buf” name=“tap_buf4”>

<design_technology type=“cmos” topology=“buffer” size=“1”

tapered=“on” tap_buf_level=“3” f_per_stage=“4”/>

<port type=“input” prefix=“in” size=“1”/>

<port type=“output” prefix=“out” size=“1”/>

</spice_model>

The size and design topology can be customized by properly setting the XML properties

127

Chapter 4. Simulation-based Architecture Exploration Tool

tapered, tap_buf_level and f_per_stage.

4.3.2 Pass-gate Logic

Pass-gate logic is the essential component in LUTs and multiplexers, as shown in Fig. 2.14, Fig.

2.15 and Fig. 2.16. The transistor-level circuit design of a transmission gate can be defined

with the following code:

<spice_model type=“pass_gate” name=“tgate”>

<design_technology type=“cmos” topology=“transmission_gate”

nmos_size=“1” pmos_size=“2”/>

<input_buffer exist=“off”/>

<output_buffer exist=“off”/>

<port type=“input” prefix=“in” size=“1”/>

<port type=“input” prefix=“sel” size=“1”/>

<port type=“input” prefix=“selb” size=“1”/>

<port type=“output” prefix=“out” size=“1”/>

</spice_model>

The sizes of the transistors used in the pass gate or transmission gate logic can be specified in

the XML properties nmos_size and pmos_size.

4.3.3 SRAM

SRAM is a critical component of SRAM-based FPGA, whose transistor-level design is mostly

dependent on the technology node and is usually hand-optimized. Therefore, SPICE and

Verilog netlists of SRAMs are required to be user-defined. The following codes exemplify how

to define a spice model for the SRAM circuit design shown in Fig. 2.18.

<spice_model type=“sram” name=“sram6T” spice_netlist=“sram6T.sp"

verilog_netlist=“‘sram6T.v">

<design_technology type=“cmos”/>

<input_buffer exist=“off”/>

<output_buffer exist=“off”/>

128

4.3. Transistor-level Circuit Netlist Generation

<port type=“input” prefix=“in” size=“1”/>

<port type=“output” prefix=“out” size=“2”/>

<port type=“bl” prefix=“bl” size=“1”/>

<port type=“wl” prefix=“wl” size=“1”/>

</spice_model>

Note that the modeling method can also support the non-volatile SRAM design in Fig. 2.24.

4.3.4 Scan-chain Flip-Flop

Similar to SRAM, SPICE and Verilog netlists of scan-chain flip-flop are required to be user-

defined. The following code exemplifies how to define a spice model for the scan-chain

flip-flop design shown in Fig. 2.19.

<spice_model type=“sff” name=“sc_dff” spice_netlist=“scff.sp"

verilog_netlist=“‘scff.v">

<design_technology type=“cmos”/>

<input_buffer exist=“on” spice_model_name=“inv4”/>

<output_buffer exist=“on” spice_model_name=“inv4”/>

<port type=“input” prefix=“D” size=“1”/>

<port type=“input” prefix=“Set” size=“1” is_global="true" is_set="true"/>

<port type=“input” prefix=“Reset” size=“1” is_global="true" is_reset="true"/>

<port type=“output” prefix=“Q” size=“1”/>

<port type=“output” prefix=“Qb” size=“1”/>

<port type=“clock” prefix=“prog_clk” size=“1” is_global="true"

is_clock="true"/>

</spice_model>

The presence or absence of input/output inverters/buffers can be declared by setting the XML

properties exist and spice_model_name. In the example, the input and output buffers are

linked to the spice model named by i nv1, which is defined in Section 4.3.1.

129

Chapter 4. Simulation-based Architecture Exploration Tool

4.3.5 IO Circuits

IO circuits are usually provided as a standard cell in a specific technology library, since their

transistor-level designs are strongly dependent on the technology nodes. The following codes

define a spice model called iopad which is linked to the IO module shown in Section 4.2.2.

Note that in the port sram, we specify it as a mode selector of IO module (in Fig. 4.6), and

declare that it is connected to a SRAM, which is defined in Section 4.3.3.

<spice_model type=“iopad” name=“iopad” spice_netlist=“iopad.sp"

verilog_netlist=“‘iopad.v">

<design_technology type=“cmos”/>

<input_buffer exist=“on” spice_model_name=“inv4”/>

<output_buffer exist=“on” spice_model_name=“inv4”/>

<port type=“inout” prefix=“pad” size=“1”/>

<port type=“sram” prefix=“en” size=“1” mode_select=“true”

spice_model_name=“sram6T” default_val=“1”/>

<port type=“input” prefix=“outpad” size=“1”/>

<port type=“output” prefix=“inpad” size=“1”/>

</spice_model>

4.3.6 Multiplexers

The multiplexers in FPGAs have diverse sizes and fan-outs, depending on their locations, i.e.,

in local routing or global routing.

In this context, different circuit-level optimization, such as transistor sizing and the use of

tapered buffer, may apply. The transistor sizes and buffer allocation can be specified in the

SPICE model definitions. The presence or absence of input/output inverters/buffers can

be declared by setting the XML properties exist and spice_model_name. The use of a pass

gate logic or a transmission gate logic design style can be specified in the XML property

pass_gate_logic.

Transistor-level circuit design examples of global routing multiplexers and local routing mul-

tiplexers are shown in Fig. 4.8(a) and Fig. 4.8(b), respectively. The tree-like structure of

multiplexers is depicted in Fig. 4.8(c). The transistor-level circuit design of a global routing

multiplexer in Fig. 4.8(a) can modelled by the following code:

130

4.3. Transistor-level Circuit Netlist Generation

input_buffer:
exist="on"

spice_model_name
="inv1"

in0

in(N-1)

out

SRAM

…

M
U

X
 Tree

…

SRAM0

SRAM0

SRAM0

SRAM1

SRAM1

SRAM1

…

in0

in1
…

SRAMn

SRAMn

SRAMn

in0

in(N-1)

SRAM

1×…

M
U

X
 Tree

1×

1×

1×

1×

1× 4× 16×

out

output_buffer:
exist="on"

spice_model_name
="inv1"

output_buffer:
exist="on"

type="inverter"
spice_model_name

="tap_buf4"

(a)

(b)

(c)

pass_gate_logic:
spice_model_name=

"tgate"

Figure 4.8 – Transistor-level circuit design of (a) a global routing multiplexer, (b) a local routing
multiplexer, and (c) the internal tree-like structure.

131

Chapter 4. Simulation-based Architecture Exploration Tool

<spice_model type=“mux” name=“sb_mux”/>

<design_technology type=“cmos” structure=“one-level”/>

<input_buffer exist=“on” spice_model_name=“inv1”/>

<output_buffer exist=“on” spice_model_name=“tap_buf4”/>

<pass_gate_logic spice_model_name=“tgate”/>

<port type=“input” prefix=“in” size=“4”/>

<port type=“output” prefix=“out” size=“1”/>

<port type=“sram” prefix=“sram” size=“4”/>

</spice_model>

Global routing multiplexers require an output tapered buffer [132], in order to drive the long

routing metal wires as well as downstream loads due to the SB and CB multiplexers [2]. The

output tapered buffer in Fig. 4.8(a) consists of three stages and the logical effort between

stages is four, whose spice model is defined in Section 4.3.1. Input buffers are added to restore

the input signals and drive the tree-like internal structure of the multiplexer. Fig. 4.8(b) depicts

the circuit design of a local routing multiplexer which interconnects CLB input pins to BLE

input pins. Because the fanout of the multiplexer is typically small (one or two inverters), there

is only a minimum-size output inverter.

To enable accurate power analysis for RRAM-based FPGAs, FPGA-SPICE is capable of modeling

one-level, two-level and tree-like 4T1R-based multiplexers, presented in Chapter 3. Transistor-

level circuit design examples of a one-level 4T1R-based multiplexer are shown in Fig. 4.9. The

transistor-level circuit design of a global routing multiplexer in Fig. 4.9 can modelled by the

following code:

<spice_model type="mux" name="mux_1level">

<design_technology type="rram" ron="3e3" roff="20e6"

wprog_set_nmos="1" wprog_reset_nmos="1"

wprog_set_pmos="2" wprog_reset_pmos="2"

structure="one-level"/>

<input_buffer exist="on" spice_model_name="inv1"/>

<output_buffer exist="on" spice_model_name="inv1"/>

<port type="input" prefix="in" size="1"/>

132

4.3. Transistor-level Circuit Netlist Generation

input_buffer:
exist="on"

spice_model_name
="inv1"

port:
prefix="progEN"

size="1"
is_global="true"
default_val="0"

is_config_enable="true"

in0

in(N-1)

out…

M
U

X
 Tree

1×

1×

1× 4× 16×

design_technology:
type="rram"

structure="one-level"
ron="3e3"

roff="20e6"
wprog_reset_nmos="1"
wprog_reset_pmos="2"
wprog_set_nmos="1"
wprog_set_pmos="2"

VDD,well

BL[0]
P0

GND,well

N0

+ -

+ -

BL[N-1]

BL[N]

WL[0]

WL[N]WL[N-1]

GND,wellGND,well

...

VDD,well

VDD,well

R0

RN-1

CP,0

CP,N-1

progEN

output_buffer:
exist="on"

type="inverter"
spice_model_name

="tap_buf4"

Figure 4.9 – Transistor-level circuit design of a 4T1R-based multiplexer.

133

Chapter 4. Simulation-based Architecture Exploration Tool

<port type="input" prefix="EN" size="1" is_global="true"

default_val="0" is_config_enable="true"/>

<port type="output" prefix="out" size="1"/>

</spice_model>

Compared to the SRAM-based multiplexers in Fig. 4.8, the 4T1R-based multiplexer has

an global port progEN, which is shared by all the 4T1R-based multiplexers in a FPGA. As a

programming enable signal, progEN is enabled periodically during configuration phase, while

being disabled during operation (See Chapter 3). In the XML definition, we specify that progEN
is enabled during configuration phase (is_config_enable="true"), while during operation,

it is stuck at logic 0 (default_val="0").

FPGA-SPICE translates the architectural needs and design topologies into multiplexer SPICE

netlists and initializes the SRAM or RRAM configurations according to VPR routing results.

4.3.7 Look-Up Tables

LUTs are crucial components in FPGAs as they serve as combinational function generators.

Fig. 4.10 illustrates the transistor-level circuit design of the LUT structure considered in this

chapter, including the configuration SRAMs, the decoding multiplexers, and buffers [125].

The following XML properties are used to describe the circuit characteristics of the imple-

mentation shown in Fig. 4.10. The input_buffer properties model the buffers between

the inputs of internal multiplexer and SRAM outputs. The lut_input_buffer properties

describe the buffers at LUT inputs, where f_stage denotes the logical efforts of the input

buffers. By setting the spice_model_name property under XML node pass_gate_logic, the

type of pass-gate logic used in the decoding multiplexers can be specified. In the example,

the LUT circuit employs the transmission gate defined in Section 4.3.2. FPGA-SPICE decodes

technology mapping results of LUTs to properly initialize the SRAM bits.

<spice_model type=“lut” name=“lut6”>

<lut_input_buffer exist=“on” spice_model_name="buf_size2"/>

<input_buffer exist=“on” spice_model_name=“inv1”>

<output_buffer exist=“on” spice_model_name=“inv1”>

<pass_gate_logic spice_model_name=“tgate”/>

<port type=“input” prefix=“in” size=“6” is_global="false" is_clock="false"/>

<port type=“output” prefix=“out” size=“1”/>

134

4.3. Transistor-level Circuit Netlist Generation

output_buffer
exist="on"

spice_model_name
="inv1"

pass_gate_logic
spice_model_name="tgate"

out

SRAM

…

…

…
SRAM

…

input_buffer
exist="on"

spice_model_name
="inv1"

lut_input_buffer
exist="on"

spice_model_name
="buf_size2"

1×

1×

1×

in0

1× 2×

2×

in1

1× 2×

2×

in(K-1)

1× 2×

2×

Figure 4.10 – An example of the transistor-level design of a LUT

<port type=“sram” prefix=“sram” size=“64” spice_model_name=“sram6T”

default_val=“1”/>

</spice_model>

4.3.8 Channel Wire

In modern FPGAs, the CLB area increases to contain heterogeneous blocks, resulting in long

interconnecting wires between Switch Blocks (SBs) and also inside CLBs. Take the example

in Fig. 2.7, the length of metal wires interconnecting between BLE outputs and local routing

multiplexers can be as long as the channel wires interconnecting two adjacent SBs. In addition,

difficulties in scaling down interconnecting metal wires cause that their parasitics can be as

significant as those of transistors [132]. As a result, channel wires have become non-negligible

modules when evaluating FPGA architectures. A length-L channel wire is abstracted as L

cascaded segments, each of which spans a unique CLB. Fig. 4.11(a) depicts a length-2 channel

wire in unidirectional routing architecture [4]. The channel wire is divided into two segments,

namely Seg ment0 and Seg ment1.

135

Chapter 4. Simulation-based Architecture Exploration Tool

CLB0 CLB1

SB0

CB0

4.6fF

52Ω

CB1

SB1

CLB2

CB0 CB1

(a)

(b)

SB0

SB2

SB3

SB2 SB3

SB1

Segment 0

Segment 0 Segment 1

Segment 1

wire_param
model_type=“pi”
res_val=“103.84”

cap_val=“13.80e-15”
level=“1”

52Ω

4.6fF 4.6fF

52Ω52Ω

4.6fF 4.6fF4.6fF

Figure 4.11 – (a) A length-2 unidirectional wire (highlighted in red) within FPGA routing
architecture; (b) Corresponding RC modeling of segments

We assume that the inputs of CBs are connected to the middle of segments, breaking segments

into two parts. We model each part of segments with distributed RC lines. The type of RC

lines, i.e., either π-type or T -type [132], is specified in the XML property model_type. The

number of levels of a RC line can be customized by setting the XML property level. The

total resistances and capacitance of a segment can be defined in XML properties res_val
and cap_val, respectively. The following example describes the RC models of segments in Fig

4.11(b), corresponding to the segments in Fig 4.11(a).

<spice_model type=“chan_wire” name=“chan_segment”>

<wire_param model_type=“pi” res_val=“103.84”

cap_val=“13.80e-15” level=“1”/>

</spice_model>

136

4.4. Netlist Partitioning Strategies

4.4 Netlist Partitioning Strategies

Full-chip-level netlists, that consider the full FPGA fabric in unique SPICE testbenches, would

produce accurate analysis but will come at the cost of large simulation time and memory usage.

FPGA-SPICE can distribute the individual elements of a full-chip-level testbench (See Fig.

4.2) into separate grid/component-level testbenches (See Fig. 4.3 and Fig. 4.4), significantly

reducing the simulation time and memory usage at the cost of a lower accuracy. In this section,

we introduce the two techniques, namely voltage stimuli/load extraction and parasitic activity

estimation, used in FPGA-SPICE to split a full-chip netlist.

L
U
T FF

BLE

...

... ...

... ...

Local Routing

...

CLB

...

SBs
...

BLE

L
U
T

...

FF

(a)

~

~

Inv. loads
from local

routing
Inv. loads
from SBs

(b)

 A

 B

 A

 B

f = clock _ freq
density(B)

PWH =
prob(B)

f

f = clock _ freq
density(A)

PWH =
prob(A)

f

M
U
X

MUX

MUX

Figure 4.12 – Ilustration of the voltage stimuli generation and load extraction techniques. (a)
BLE multiplexer with its architectural context; (b) extracted testbench.

137

Chapter 4. Simulation-based Architecture Exploration Tool

4.4.1 Voltage Stimuli and Loads Extraction

FPGA-SPICE generates its individual testbenches by extracting voltage stimuli and down-

stream loads. To illustrate the technique, Fig. 4.12 shows a BLE multiplexer (in blue) that is

driven by signals A and B, and that fanouts to local routing and global routing architectures.

First, voltage stimuli are added to model the signal activities of A and B. Their frequencies

and pulse widths are derived from signal density and activities. The signal density defines the

number of switching events of a signal in one clock cycle while the probability represents the

proportion that the signal is in logic 1 during one system clock cycle. To relate these activity

information, we set the frequency of the voltage stimuli to:

f r eq = clock_per i od

densi t y(Si g nal)
. (4.1)

The pulse width of a voltage stimuli is set to:

pul se_wi d th = f r eq ·pr obabi l i t y(Si g nal). (4.2)

Then, FPGA-SPICE adds the loads of the block by extracting the downstream elements in the

architecture (highlighted in red in Fig. 4.12(a)). The downstream loads of a grid/component

should be included in the testbench for two reasons: (1) these loads are charged/discharged

by the element and (2) the power consumption is sensitive to voltage slews, which are highly

dependent on the downstream loads [128]. Note that, if the downstream loads include channel

wires, the channel wires should be extracted and included to the testbench.

BLE

M
U
X

...

Local routing

CLB

SBs

...

CBs
net0

net0
net0

Figure 4.13 – An example for parasitic nets estimation.

4.4.2 Parasitic Activity Estimation

Input signals in grid/component-level netlists should accurately model the internal signal

activities of FPGA modules. In an FPGA, the signals of the used nets may be parasitically

138

4.5. Experimental Results

propagated to unused nets, depending on the topology of the routing architecture. ACE2

estimates the signal activities of the used nets but cannot foresee the parasitically propagated

activities because they are only predictable after the routing pass finishes [124]. Fig. 4.13

illustrates the parasitic net signals sourcing from a used net, called net0. Assume net0 is

only used by the CLB through local routing (green path) and not routed to the global routing

architecture. VPR assumes that all the downstream components driven by net0 are idle and

configures them to propagate their first inputs. However, in such condition, net0 will be

propagated through the routing structure (red path). These parasitic activities will cause

extra power consumption and should be taken into account. FPGA-SPICE performs parasitic

activity estimation for all the unused nets after routing stage by iteratively using Depth-First

Search (DFS) algorithms.

4.5 Experimental Results

As shown in Fig. 4.1 and Fig. 4.5, FPGA-SPICE is a versatile tool interfacing VPR with other EDA

tools, such as HSPICE [47], ModelSim [135] and Innovus [137], leading to various research

interests. In this section, we will first introduce general experimental methodology. Then, we

present experimental results by using FPGA-SPICE in four applications, not accessible with

standard academic tools:

1. Verify the functionality of FPGA implementations (Section 4.5.2);

2. Study the runtime, memory usage and accuracy of the different levels of testbenches

(Section 4.5.3);

3. Study the power breakdown of a modern FPGA architecture under different technology

nodes and compare the results to standard analytical models, i.e., VersaPower (Section

4.5.4);

4. Perform a detailed analysis on the full-chip-level area of SRAM-based FPGAs (Section

4.5.6).

4.5.1 Methodology

We use the FPGA-SPICE EDA flows shown in Fig. 4.1 and Fig. 4.5. MCNC big20 benchmarks

[138] are selected as the EDA flow inputs. First, ABC synthesizes the benchmarks and ACE2

estimates the signal activities. Then, VPR packs, places and routes. Afterwards, the FPGA-

SPICE generates the full-chip/grid/component-level testbenches and also Verilog netlists of

the modeled architectures. In the last step, we call different industrial EDA tools for various

purposes:

1. we run the HDL simulator ModelSim [135] to verify the functionality of Verilog netlists;

139

Chapter 4. Simulation-based Architecture Exploration Tool

2. we run the electrical simulator HSPICE [47] to analyzing power;

3. we run Cadence Innovus [137] to generate the layouts of a full FPGA chip by running a

semi-custom design flow, in order to perform accurate area evaluation.

The experiments are run on a 64-bit RedHat Linux server with 28 Intel Xeon Processors and

256Gb memory.

In this chapter, we resemble the architecture of an Altera Stratix IV FPGA [88], where each

CLB contains I = 33 inputs pins and N = 10 fracturable 6-input LUTs (K = 6). Length-4 uni-

directional routing architectures are employed to interconnect Wilton’s Switch Boxes (SBs),

where Fs = 3. We set Fc,i n = 0.15 and Fc,out = 0.10. The channel width, W , is set to 120 by

adding 20% margin to the minimum channel width that VPR can route the biggest tested

benchmark. All the architecture description files used in this chapter are available in [136]. For

the power analysis, we consider three technology nodes, 22nm, 45nm and 180nm using the

PTM model cards[139]. For the area analysis, we only consider a commercial 40nm technology

node. The transistor-level circuit designs of SRAMs, FFs and multiplexers are derived from

[125]. We model routing wire segments with a one-level π-type RC models and the wire

parameters are derived from ITRS [140]. We determine the simulation clock period by adding

a 20% slack to the VPR critical path delay, in order to consider errors between the timing

analysis engine and SPICE simulations [4]. The duration of electrical simulations should be a

full operating cycle by considering the least active signal, as follows:

si m_t i me_per i od = clock_per i od

mi n{densi t y(Si g nal)}
. (4.3)

However, the density of the least active signal is typically very low, which leads to long time

period and large simulation time. Instead, we replace the mi n{densi t y(Si g nal)} with the

average density of signals to reduce the the simulation time. The time step of SPICE simulator

is set to 0.1ps and fast simulation algorithm is turned on.

4.5.2 Functional Verification

Before presenting area and power results, all the SPICE and Verilog netlists generated by

FPGA-SPICE have passed functional verification with full-chip-level testbenches, to guarantee

that they behave exactly the same as pre-VPR netlists functionally. In this thesis, the functional

verification considers random input vectors. Indeed, to be more robust, formal verification

can be applied, and we leave this as part of future works.

The functional verification employs the EDA flow shown in Fig. 4.5. In a top-level Verilog test-

bench, stimulus are automatically added to all the inputs of a full FPGA module, as illustrated

in Fig. 4.14. A top-level Verilog testbench includes two phases:

1. Configuration phase, where each memory cell, i.e., SRAM or RRAM, is programmed

140

4.5. Experimental Results

prog_clock

Addr_BL

Addr_WL

config_done

op_clock

iopads

Data Data

Data Data

0... 0...

Data Data 0... 0...

Data Data 0... 0...

...

0... 0... Data Data
...
...

...

...

... ...

...

...

...

...

...

Operation phaseConfiguration phase

0...

0...

Data

Figure 4.14 – An illustration of the waveforms for functional verification purpose.

serially according to the bitstream. In Fig. 4.14, during each programming cycle, a

memory cell is configured by assigning their addresses to BL and WL decoders. During

this period, the programming clock is enabled, signal con f i g _done is disabled and all

the I/Os of FPGA stuck at logic 0.

2. Operating phase, where configuration circuits are powered off and testing input patterns

are fed to all the I/Os of FPGA. During this period, the programming clock is disabled

and signal con f i g _done is enabled.

The output waveforms are then compared to the simulation results of post-logic-synthesis

netlists, and ensure they are consistent. Fig. 4.15 shows the waveforms of functional verifica-

tion of a simple benchmark: an inverter. The red rectangle highlights the waveform during

configuration phase, while the blue rectangle highlights the waveform during operation phase.

Fig. 4.15(b) presents an example of the waveforms during a programming clock cycle. We

see that the BL and WL addresses are changed at each rising edge of programming clock

pr og _clock, resulting in configuring a SRAM. Fig. 4.15(c) presents an example of the wave-

forms during a operating clock cycle. We see that the output i nput_B of FPGA is always an

inversion of the input i nput_A, revealing the correctness of functionality.

4.5.3 Studies on Runtime, Memory Usage and Accuracy

Simulating full-chip-level testbenches is the most accurate approach to power analysis at

the cost of runtime and memory usage. Table 4.1 compares the runtime, memory usage and

power results of full-chip/grid/component-level testbenches at different technology nodes,

obtained for the MCNC big20 benchmark s298. Compared to the full-chip-level testbench,

141

Chapter 4. Simulation-based Architecture Exploration Tool
co
nfi
g_
do
ne

pr
og
_c
lo
ck

op
_c
lo
ck

re
se
t

BL
_e
na
bl
e

W
L_
en
ab
le

BL
_a
dd
re
ss

W
L_
ad
dr
es
s

in
pu
t_
A

in
pu
t_
B

pr
og
_r
es
et

co
nfi
g_
do
ne

pr
og
_c
lo
ck

op
_c
lo
ck

re
se
t

BL
_e
na
bl
e

W
L_
en
ab
le

BL
_a
dd
re
ss

W
L_
ad
dr
es
s

in
pu
t_
A

in
pu
t_
B

pr
og
_r
es
et

co
nfi
g_
do
ne

pr
og
_c
lo
ck

op
_c
lo
ck

re
se
t

BL
_e
na
bl
e

W
L_
en
ab
le

BL
_a
dd
re
ss

W
L_
ad
dr
es
s

in
pu
t_
A

in
pu
t_
B

pr
og
_r
es
et

A
pr

og
ra

m
m

in
g

 c
lo

ck
 p

er
io

d
A

op
er

at
in

g
 c

lo
ck

 p
er

io
d

(a
)

(b
)

(c
)

F
ig

u
re

4.
15

–
W

av
ef

o
rm

s
o

fa
sa

m
p

le
ci

rc
u

it
:i

n
ve

rt
er

,a
ch

ie
ve

d
b

y
M

o
d

el
Si

m
si

m
u

la
ti

o
n

:(
a)

fu
ll

w
av

ef
o

rm
w

it
h

co
n

fi
gu

ra
ti

o
n

p
h

as
e

h
ig

h
li

gh
te

d
in

re
d

re
ct

an
gl

e
an

d
o

p
er

at
io

n
p

h
as

e
h

ig
h

li
gh

te
d

in
b

lu
e

re
ct

an
gl

e;
(b

)
an

ex
am

p
le

o
fa

p
ro

gr
am

m
in

g
cl

o
ck

cy
cl

e;
(c

)
an

ex
am

p
le

o
fa

o
p

er
at

in
g

cl
o

ck
cy

cl
e.

142

4.5. Experimental Results

the grid-level testbenches achieve 12× speed-up in runtime with a moderate 14.5% error on

average over the different technology nodes. Compared to the full-chip-level testbench, the

component-level testbenches accelerate 14× in runtime with a 13.6% error on average over

the different technology nodes. Component-level testbenches lead to the best trade-off in

runtime and accuracy loss thanks to the efficient netlist partitioning strategies discussed in

Section 4.4. Therefore, in the following, we use component-level power results to study power

breakdowns.

Table 4.1 – Comparison of runtime, memory usage and total power of full-
chip/grid/component-level testbenches for 22nm, 45nm and 180nm technology nodes in the
case of the MCNC big20 benchmark s298.

Benchmark: s298 Runtime (No. of minutes) Improvement
Testbench/Tech. 22nm 45nm 180nm 22nm 45nm 180nm
Full-chip-level 129.48 106.15 102.56 - - -

Grid-level 10.27 9.82 8.25 -92%1 -91%1 -92%1

Component-level 7.42 6.97 6.23 -94%3 -93%3 -94%3

Benchmark: s298 Peak Used Memory (Mb.) Improvement
Testbench/Tech. 22nm 45nm 180nm 22nm 45nm 180nm
Full-chip-level 4780 4827 4306 - - -

Grid-level 768 768 825 -84%1 -84%1 -81%1

Component-level 589 584 621 -88%3 -88%3 -86%3

Benchmark: s298 Total Power (mW) Accuracy
Testbench/Tech. 22nm 45nm 180nm 22nm 45nm 180nm
Full-chip-level 1.56 4.13 15.63 100% 100% 100%

Grid-level 1.41 3.37 18.03 -9%2 -18%2 +15%2

Component-level 1.45 3.21 17.57 -7%4 -21%4 +12%4

1Gain(%) = (Grid-level/Full-chip-level-1)×100%
2Error(%) = (Component-level/Full-chip-level-1)×100%
3Gain(%) = (Grid-level/Full-chip-level-1)×100%
4Error(%) = (Component-level/Full-chip-level-1)×100%

4.5.4 Power Breakdowns

In this part, we use FPGA-SPICE to study the power breakdowns of the considered FPGA

architecture. Fig. 4.16 shows the power repartition by components for the three considered

technology nodes. These breakdowns are obtained by averaging the results over the complete

MCNC big20 suite. In general, the routing architecture consumes 90% of the total power

with the global routing architecture taking 60% of the overall power. When the technology

scales down from 180nm to 22nm, the power share of the global routing architecture increases,

resulting from the fact that interconnect does not scale down as the same ratio as transistors do.

Indeed, the parasitic transistor capacitance decreases by 90% from 180nm to 22nm technology

node but the interconnect capacitance per length is reduced by only 70% [46]. Consequently,

at 22nm and 45nm technology, the number of stages in the SB tapered buffers in typically

143

Chapter 4. Simulation-based Architecture Exploration Tool

Table 4.2 – Comparison of accuracy by modules in full-chip/grid/component-level testbenches
for 22nm, 45nm and 180nm technology nodes in the case of the MCNC benchmark big20 s298.

Benchmark: s298 CLB Power (mW) Accuracy
Testbench/Tech. 22nm 45nm 180nm 22nm 45nm 180nm
Full-chip-level 0.42 1.06 7.85 100% 100% 100%

Grid-level 0.44 1.17 10.00 +5%1 +10%1 +27%1

Component-level 0.47() 1.01() 9.54() +12%2 -5%2 +22%2

Benchmark: s298 CBs Power (mW) Accuracy
Testbench/Tech. 22nm 45nm 180nm 22nm 45nm 180nm
Full-chip-level 0.12 0.23 2.53 100% 100% 100%

Grid-level 0.11 0.22 2.67 -8%1 -5%1 -5%1

Component-level 0.11 0.22 2.67 -8%2 -5%2 -5%2

Benchmark: s298 SBs Power (mW) Accuracy
Testbench/Tech. 22nm 45nm 180nm 22nm 45nm 180nm
Full-chip-level 1.02 2.82 5.26 100% 100% 100%

Grid-level 0.86 1.99 5.37 -15%1 -29%1 +2%1

Component-level 0.86 1.99 5.37 -15%2 -29%2 +2%2

1Error(%) = (Grid-level/Full-chip-level-1)×100%
2Error(%) = (Component-level/Full-chip-level-1)×100%

larger in order to drive the interconnect wires. Therefore, the power share of SBs grows from

180nm to 22nm technology. The obtained results are in accordance with literature [46].

4.5.5 Accuracy Examination vs. VersaPower

In this part, we compare the power breakdown results between FPGA-SPICE and VersaPower,

as shown in Fig. 4.16. FPGA-SPICE predicts that the local routing architecture requires as

much power as the global routing architecture, which is different from the VersaPower. It can

be explained in the following reasons. First, FPGA-SPICE takes the parasitic net activities into

account which leads to additional power consumption in routing architectures. VersaPower

assumes that unused resources in FPGAs can be regionally powered-off and therefore parasitic

net activities can be neglected. Second, FPGA-SPICE uses electrical simulations and real

configuration information from VTR, i.e., SRAM configurations in LUTs, used and unused

routing multiplexer configurations, to accurately analyze the power of the architectures, while

VersaPower only considers worst-case scenario and basic scaling strategies [46]. Therefore, we

believe that the power results from FPGA-SPICE are more accurate and realistic.

4.5.6 Area Characteristics of SRAM-based FPGAs

With synthesizable Verilog netslits and a semi-custom design flow, FPGA-SPICE enables

accurate area study for FPGAs with realistic layouts at full-chip-level, as well as fast prototyping.

In this section, we consider the FPGA architecture described in Section 4.5.1 but with a reduced

144

4.5. Experimental Results

4.
36

%

34
.9

9%

13
.1

5%

37
.3

9%

14
.1

7%

46
.0

0%

9.
13

%

14
.4

4%

7.
97

%

6.
64

%

11
.2

7%

10
.6

4%

1.
01

%

0.
69

%

2.
69

%

1.
04

%

5.
07

%

1.
01

%

8.
92

%

17
.3

2%

18
.4

3%

21
.2

3%

13
.0

3%

27
.0

0%

75
.2

5%

32
.5

7%

66
.4

6%

33
.7

0%

55
.4

3%

15
.3

5%

V
er

sa
Po

w
er

FP

G
A

-S
PI

C
E

V

er
sa

Po
w

er

FP
G

A
-S

PI
C

E

V
er

sa
Po

w
er

FP

G
A

-S
PI

C
E

0%

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

C
L

B
 M

U
X

L

U
T

D

FF

C
B

 M
U

X

SB
 M

U
X

22
nm

 T
ec

hn
ol

og
y

45
nm

 T
ec

hn
ol

og
y

18
0n

m
 T

ec
hn

ol
og

y

F
ig

u
re

4.
16

–
P

ow
er

b
re

ak
d

ow
n

re
su

lt
s

o
ft

h
e

co
n

si
d

er
ed

F
P

G
A

ar
ch

it
ec

tu
re

b
et

w
ee

n
F

P
G

A
-S

P
IC

E
an

d
V

er
sa

P
ow

er
av

er
ag

ed
ov

er
th

e
M

C
N

C
b

ig
20

b
en

ch
m

ar
k

su
it

e
fo

r
22

n
m

,4
5n

m
an

d
18

0n
m

te
ch

n
o

lo
gy

n
o

d
es

.

145

Chapter 4. Simulation-based Architecture Exploration Tool

CLB array size 5×5 and a channel width of 300, in order to fit the capability of our Linux server

without losing representativity. We perform semi-custom design flows for two SRAM-based

FPGA different in configuration circuits: (1) using BL and WL decoders as illustrated in Fig.

2.18; and (2) relying on scan-chain flip-flops as depicted in Fig. 2.19; The achieved full-chip-

level layouts are used in studying area characteristics.

(a) (b)

SRAM-based FPGA with BL/WL Decoders
Channel Width=300
Area=979,387µm2

Core Utilization=82.3%
Wire Length=19,524,441µm

SRAM-based FPGA with Scan-chain FFs
Channel Width=300
Area=1,087,368µm2

Core Utilization=77.3%
Wire Length=8,901,159µm

Figure 4.17 – Full-chip layouts of 40nm SRAM-based FPGAs with CLB array size 5×5, a channel
width of 300.

Fig. 4.17 depicts two full layouts of SRAM-based FPGA chips: (a) configured by BL and WL

decoders and (b) scan-chain flip-flops, where we see most area is covered by interconnecting

metal wires, illustrating its dominant impact on the total area. It is reported that 8-10% of the

total area is exclusively devoted to the metal interconnect.

The total area of a SRAM-based FPGA with BL and WL decoders is reported to be 979,387µm2,

which is 9% smaller than a SRAM-based FPGA with scan-chains (1,087,368.68µm2). The

area saving comes from that control lines of SRAMs can be efficiently shared among rows

and columns, leading to the size of configuration circuit is square root of the number of

SRAMs. But scan-chains results in the configuration circuit area to be linear to the number

of SRAMs. Note that, even if the considered FPGA (array size 5×5 and contains 250 LUTs)

is far smaller than commercial FPGAs (which can contain millions of LUTs), the number of

SRAMs has already reached 180,470 (∼ 22MB). The choice of configuration circuits can indeed

significantly impact the total area. Additionally, when a larger array size is applied, the area

difference between the two FPGAs should be more significant.

Fig. 4.18 compares the area breakdown between SRAM-based FPGAs configured by BL/WL

decoders and scan-chain flip-flops. The scan-chain SRAMs can occupy 46.7% of the total area,

which is the major overhead. Note that the obtained area breakdown results are accordance

146

4.6. Summary

(a) (b)

LUT
5.5% Local

Routin
g MUX
16.8%

Flip-
flops
0.2%

IOs
5.6%

BL/WL
decode

rs
0.3%

CB/SB
MUX
30.9%

SRAM
40.7%

LUTs
5.1%

Local
Routin
g MUX
15.8% Flip-

flops
0.2%

IOs
5.2% CB/SB

MUX
26.9%

Scan-
chain

SRAM
46.7%

Figure 4.18 – Area breakdown of SRAM-based FPGAs which are configured by (a) BL/WL
decoders, and (b) scan-chain flip-flops.

with literatures [141]. LUTs and FFs stand only up to 6% in the total area, while routing

multiplexers (25-46%) are the major contributor in both SRAM-based FPGAs. Actually, the

share of routing multiplexer may be even larger if we consider the area of SRAMs associated to

the routing multiplexers. Note that BL and WL decoders only take 0.3% of the total area, but

their share would increase when array size and channel width of FPGA increases due to the

heavy use of SRAMs.

4.6 Summary

This chapter introduced FPGA-SPICE, a simulation-based architecture evaluation tool suite,

enabling accurate area and power analysis. This tool extends the VTR architecture description

language to include transistor-level modeling parameters of FPGA components, to capture the

physical structure of I/O circuits and to model different types of configuration circuits. Tightly

embedded within academic architecture exploration tool suites, FPGA-SPICE generates SPICE

and Verilog netlists at different levels of complexity, considering precise technology mapping,

placement and routing information as well as technological data. SPICE and Verilog netlists

can be subsequently exploited for different research purposes:

1. use HDL simulator to verify the functionality of implementations;

2. use SPICE simulators to perform accurate power analysis;

3. feed a semi-custom design flow to achieve full FPGA layouts and perform accurate area

analysis and enable fast prototyping.

147

Chapter 4. Simulation-based Architecture Exploration Tool

As a general-purpose architecture evaluation framework, FPGA-SPICE can support more

transistor-level circuit design topologies, such as one-level/two-level multiplexers, and such

support covers peripheral circuits, such as I/O circuits and configuration circuits. FPGA-

SPICE is also capable of one-level, two-level and tree-like 4T1R-based multiplexer designs

presented in Chapter 3, enabling accurate architecture-level evaluations for RRAM-based

FPGAs. In addition to accurate modeling for transistor-level circuit designs, FPGA-SPICE

adapts netlist partitioning strategies to better trade off the runtime and memory usage of

simulations with accuracy. Thanks to various techniques developed for accurate SPICE and

Verilog modeling, the area and power results provided by FPGA-SPICE are more accurate and

realistic, when compared to analytical power models, i.e., VersaPower. In the case study, FPGA-

SPICE are used to capture the area and power characteristics of SRAM-based FPGAs with

different configuration circuits. In Chapter 5, we will exploit FPGA-SPICE in studying area and

power characteristics of RRAM-based FPGA architectures and compare to their SRAM-based

counterparts.

148

5 RRAM-based FPGA Architectures

As presented in Chapter 2, SRAM-based FPGA architectures typically employ multiple levels

of small crossbars, instead of large multiplexers, due to a strong limitation of SRAM-based

multiplexer: whatever multiplexer structure is employed, their area, delay and power increase

linearly with the input size [4]. However, in Chapter 3, we have seen an outstanding feature of

RRAM-based multiplexers: their delay and power scale better with the input size and there-

fore the architectural design space can be extended beyond the limitations of SRAM-based

multiplexers. Indeed, the properties of RRAM-based multiplexers allow the FPGA architect

to size differently its routing multiplexers by: privileging one-level crossbars, made of large

multiplexers, as much as possible. This paradigm shift in the interconnection topology also

requires to rethink the optimal architectural parameters, which have been well determined for

classical SRAM-based architectures. Hence, it is worthwhile to identify properly-sized RRAM-

based FPGA architectures which can exploit the full potential of RRAM-based multiplexers,

and determine the associated optimal architectural parameters.

In this chapter, we will study and optimize RRAM-based FPGAs from an architecture per-

spective. By exploiting VPR [44] and FPGA-SPICE (introduced in Chapter 4), we perform

architecture-level simulations to:

1. determine the proper RHRS for RRAM-based FPGA architectures;

2. study area and power characteristics of RRAM-based FPGAs over their SRAM-based

counterparts;

3. validate the impact of architecture-level optimizations.

4. investigate the delay and power efficiency of near-Vt RRAM-based FPGAs

This chapter will be divided to two parts: Section 5.1 presents the generality of RRAM-based

FPGA architectures studied in this chapter and demonstrates the area and power characteris-

tics of general RRAM-based FPGA architecture by using FPGA-SPICE. Section 5.2 proposes

three architecture-level optimizations for RRAM-based FPGAs and validate their impacts.

149

Chapter 5. RRAM-based FPGA Architectures

5.1 General Vision

The RRAM-based FPGA introduced in this thesis has no architectural difference with respect

to the conventional SRAM-based FPGA shown in Fig. 2.6. It remains an island-style FPGA

where the cluster-based CLBs are surrounded by SBs and CBs. The differences lie in the circuit

design of those modules heavily relying on SRAMs, i.e., LUTs and multiplexers. Fig. 5.1 and Fig.

5.2 compare the circuit designs of LUT and multiplexer between a conventional SRAM-based

FPGA and the RRAM-based FPGA introduced in this thesis.

 SRAM

Routing Multiplexer

(b)

out
out

GND

VDD

GND

VDD

WL

BL

WL

BL

out

in[N-1]

GND

VDD

in[1]

GND

VDD

...

in[0]

GND

VDD

GND

VDD

SRAM
[M]

SRAM
[M+1]

SRAM
[M+N-1]

(c)

Cell
0

Cell
3

Cell
6

Cell
1

Cell
4

Cell
7

Cell
2

Cell
5

Cell
8

0 1 2 3

0

1

2

3
Bit Lines (BL)

W
or

d
Li

ne
s

(W
L)

Column Decoder

R
ow

 D
ec

od
er

(d)

...

...

...
out

M
U
X

SRAM
 [0]

SRAM
[M-1]

in[K-1:0]

M=2K

SRAM
 [1]

K-input LUT(a)

Figure 5.1 – Memory access organization in SRAM-based FPGA: SRAMs are placed in an array
and SRAMs in the same column/row share the same BL/WL.

5.1.1 Choice of Non-volatile Modules

In our FPGA, the logic elements exploit Non-Volatile (NV) LUTs. Such FPGA does not need

to be re-programmed during each power on and can benefit instant-on and normally-off

properties. Typically, a LUT consists of a bank of SRAMs and a multiplexer as shown in Fig

150

5.1. General Vision

Non-volatile 4T1R-based SRAM(d)(c)

in[0]
+ -

BL[N]

WL[N]

out

BL[0]

WL[0]

in[N-1] + -

BL[N-1]

WL[N-1]

…

Deep N-Well

…

VDD VDD

GNDGND

VDD VDD

GNDGND

VDD,well

GNDwell

VDD,well

GNDwell

EN

EN

EN

EN

4T1R-based multiplexer(a)

in[i]
+ -

BL[N+1]

WL[N+1]

out,k

BL[0]

WL[0]

in[j] + -

BL[N-1]

WL[N-1]

…

Deep N-Well

…

VDD VDD

GNDGND

VDD VDD

GNDGND

VDD,well

GNDwell

VDD,well

GNDwell

EN

EN

EN

EN

4T1R-based multiplexer(b)

N+1

Bit Lines (BLs)

W
or

d
Li

ne
s

(W
Ls

)
Column Decoder

R
ow

 D
ec

od
er

...

N+3

0

1

2

Cell
[0,0]

Cell
[1,0]

Cell
[2,0]

Cell
[0,1]

Cell
[1,1]

Cell
[2,1]

Cell
[0,2]

Cell
[1,2]

Cell
[2,2]

N+2

N+1 N+2 N+3

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

...

...

...
Vprog GND

Vprog GND

Vprog GND

Vprog GND

BL[0]

BL[N+2] WL[N+2]

WL[0]

BL[0]

BL[N+2] WL[N+2]

WL[0]

READ

GND GND

out out

GND

VDD

GND

VDD

READ

VDD VDD
EQ

EQ

Figure 5.2 – Memory access organization in RRAM-based FPGA: RRAMs belonging to the same
multiplexer/NV SRAM are placed in the same column and share BL/WL.

5.1(a). The SRAM bank stores a truth table which is decoded by the multiplexer, enabling LUT

to realize any logic function. In this chapter, we replace the SRAMs (Fig. 5.1(b)) in LUTs with

Non-Volatile (NV) SRAMs borrowed from previous work [5]. Note that the NV SRAM used in

this thesis (Fig. 5.2(b)) employ 4T1R programming structures to configure RRAMs, instead of

2T1R programming structures in [5].

The multiplexers in LUTs are still implemented by pass-transistors considering that their

decoding results keep changing when the FPGA is operating. If RRAMs are inserted in the data

path of LUTs for decoding, their operating speed will drastically limit frequency. Compared

151

Chapter 5. RRAM-based FPGA Architectures

to SRAM-based, the NV LUTs have no difference in performance because of the same de-

coder implementation. Data path DFFs are also Non-Volatile with the same circuit elements.

These FFs operate as standard volatile CMOS FF during regular operation but they are also

capable to store the data non-volatily on demand before a sleep period. Data stored in the

NV DFFs can then be restored during wake up. In these flip-flops, RRAMs are written only

before the sleep period. These events have very low frequency and are compatible with the

endurance capabilities of RRAMs. While supported by the presented architecture, instant-on

and normally-off operation will not be evaluated in this thesis. Similar to NV SRAM, the NV

FFs in this thesis also employ 4T1R programming structures to configure RRAMs. More details

about the NV DFF architecture can be found in [5].

While the decoded paths of the LUT multiplexer change at runtime, the selected paths in

the routing multiplexers (i.e., in BLE output selector, local routing, SBs and CBs) remain

unchanged during runtime. Note that we do not consider partial reconfiguration during

runtime for FPGA architectures in this thesis. Therefore, RRAMs can be inserted in the data

path of routing architecture without challenging the endurance. Fig. 5.2(a)(b) illustrate the

4T1R-based multiplexer introduced in Chapter 3, which replaces the SRAM-based multiplexer

shown in Fig. 5.2(c). Compared to the SRAM-based multiplexers, the 4T1R-based multiplexers

exhibit both high performance and low-power accounted to the low RLRS of the RRAMs and

smaller parasitic capacitances introduced in the data path.

5.1.2 Configuration Circuits

SRAMs in FPGAs can be configured through Bit Lines (BLs) and Word Lines (WLs), similar to

the principle of memory bank, as depicted in Fig. 5.1. SRAMs are organized in an array, where

SRAMs in one column share the same BL, while SRAMs in one row share the same WL. As

such, the number of BLs and WLs are square root to the number of SRAMs, leading to small BL

and WL decoders. To configure a SRAM, the associated WL is enabled while the configuration

bit is fed to the corresponding BL. Note that during configuration, other BLs and WLs should

be disabled in order to avoid mistakenly accessing other SRAMs in the same column/row. In

this rest of this chapter, our baseline SRAM-based FPGAs employ the BL/WL decoders in Fig.

5.1 to access each SRAM.

In our RRAM-based FPGA architecture, each RRAM is accessed by BLs and WLs as well but

requires a different BL and WL sharing strategy. BLs and WLs of each 4T1R-based multiplexer

and each RRAM of LUTs are divided into two groups:

1. Common BLs and WLs that are shared by all the 4T1R-based multiplexer and also the

RRAM of LUTs. Take the example in Fig. 5.2(b), (c) and (d), the two N -input 4T1R-based

multiplexers share BL[0...N −1] and W L[0...N −1], and the NV SRAM share BL[0] and

W L[0] with the multiplexers. Considering the different input size of multiplexers in

FPGA architecture, the number of shared BLs and WLs is determined by the largest input

size of multiplexers.

152

5.1. General Vision

2. Independent BLs and WLs, which are unique for each 4T1R-based multiplexer and also

RRAM of LUTs. As shown in Fig. 5.2(c) and (d), the programming transistors close to

output inverters in the two 4T1R-based multiplexer are controlled by two unique BLs

and WLs, (BL[N],W L[N]) and (BL[N +1],W L[N +1]), respectively. Similarly, the NV

SRAM in Fig. 5.2(b) has an unique pair of BL and WL, BL[N +2],W L[N +2].

As such, each RRAM can be configured in the same way of assigning BL and WL signals

as SRAM-based FPGAs. Since each RRAM has a unique address, it is accessible only when

its associated couple of BL/WL is activated, providing the programming current exclusively

for one RRAM. Therefore, the BL and WL sharing strategy in Fig. 5.2 can avoid parasitic

programming and guarantee the number of BLs and WLs linear to the number of NVSRAMs

and 4T1R-based multiplexers.

Indeed, our RRAM-based FPGA architecture requires more BLs and WLs than SRAM-based,

leading to large decoder circuits and potentially area overhead. However, our RRAM-based

FPGA eliminates the use of SRAMs in routing multiplexers, bringing significant area reduction.

Considering that in general routing multiplexers occupies more than 50% of the total area, the

area overhead from decoder circuits can be fully compensated by the 4T1R-based multiplexers.

Overall, our RRAM-based FPGA will be area efficient as its SRAM-based counterpart or even

better, depending on the scale of routing architecture. In Section 5.1.4, we will focus on study

the area characteristics of proposed RRAM-based FPGA architecture with layout-level results.

5.1.3 Experimental Methodology

To be representative, both the SRAM-based and the RRAM-based FPGA architectures consider

the same set of architectural parameters: K = 6, N = 10, I = 40, Fc,i n = 0.15, Fcout = 0.1, Fs = 3

and L = 2, with unidirectional routing architecture. SRAM-based and RRAM-based FPGAs

employ the configuration circuits depicted in Fig. 5.1 and Fig. 5.2 respectively. Note that in this

section, we focus on studying the difference in area and power characteristics of SRAM-based

and RRAM-based FPGAs. The area and power of hard adder chains and heterogeneous blocks

are highly dependent on the choice of Intellectual Property (IP) blocks, and hence they are

not included in the evaluated FPGA architectures here. In addition to the core logic of FPGAs,

i.e., LUTs, FFs and routing multiplexers, the architecture evaluation in this section includes

peripheral circuitry, i.e., I/O pads, BL and WL decoders, in order to draw realistic conclusions.

In terms of the circuit designs, both SRAM-based and RRAM-based FPGAs are built with a

commercial 40nm technology. All the multiplexers and LUTs use transmission gates and

are also buffered according to their realistic fan-out in the architectural context. For SRAM-

based FPGAs, LUTs employ the design in Fig. 2.16 (Section 2.2.3). For best area-delay-power

product, routing multiplexers in local routing architecture adopt a two-level multiplexing

structure, as shown in Fig. 2.15(a) (Section 2.2.3). Routing multiplexers in global routing

architecture, i.e., CBs and SBs, consider a one-level multiplexing structure, as shown in Fig.

2.14(b) (Section 2.2.3). For RRAM-based FPGAs, routing multiplexers uniformly adopt a one-

153

Chapter 5. RRAM-based FPGA Architectures

level 4T1R-based multiplexing structure for best area-delay-power product, which has been

introduced detailedly in Chapter 3. The 4T1R-based multiplexers are properly sized by the

optimization techniques introduced in Section 3.7. Similar to Section 3.8.1, we consider

the Stanford RRAM model [130] with the following parameters: RLRS = 5kΩ, RHRS ranging

from 1MΩ to 200MΩ, Iset = 500µA, Vset = Vr eset = 1.1V . The parasitic capacitance of a

RRAM is considered to be CP = 13.2aF . RRAM-based FPGAs follow the principle explained

in Section 5.1.1. Both SRAM-based and RRAM-based FPGA architectures have passed the

functionality verification with FPGA-SPICE, validating that they can be configured and also

operate correctly.

Area results are based on analyzing full FPGA layouts generated by a semi-custom design

flow. FPGA-SPICE are used to provide Verilog netlists containing a full FPGA chip for the

semi-custom design flow (See Section 4.1). The experiments are conducted on a workstation

with 256G memory and Xeon processors. For sake of the capability of our workstation, we

consider a CLB array size of 5×5 and swept the channel width from 50 to 300 with a step of 50

for both FPGA architectures, which are surrounded by 160 I/O pads. Note that the achieved

area results with a 5×5 CLB array can be representative because large FPGAs can be regarded

as an assembly of the small CLB arrays. Studying area characteristics of large FPGAs will be

part of the future works.

Power results are achieved by SPICE simulations. FPGA-SPICE automatically generates the

component-level testbenches and latest HSPICE simulator (Version 2017.03) perform power

analysis. The power analysis considers FPGA architectures implemented with the twenty

biggest MCNC benchmarks [138]. Note the power analysis will focus on the core logic of

FPGAs, that is LUTs, FFs and routing multiplexers, in order to examine the architectural

impact of RRAM-based circuit designs. I/O pads and configuration circuits are not included.

Note that the methodology developed here is not dependent on the considered RRAM tech-

nology or on the transistor technology nodes or even the circuit design topology, but is rather

general.

5.1.4 Area Characteristics

Fig. 5.3 compares the full-chip layouts of SRAM-based and RRAM-based FPGAs, both of which

contain a 5×5 CLB array and a global routing architecture with a channel width of 300, as well

as I/O pads and BL/WL decoders.

Fig. 5.4(a) and (b) compare the area breakdown of RRAM-based and SRAM-based FPGA chips

when channel width is set to 300. In both FPGAs, routing multiplexers occupy > 40% of the

total area, while LUTs and FFs only have a ∼ 6% share. More than 40% of the total area is

consumed by SRAMs in the SRAM-based FPGA, while only 15% of the total area is consumed

NV SRAMs in the RRAM-based FPGA. Note that BL/WL decoders take 4.5% of the total area in

RRAM-based FPGA while they are negligible in SRAM-based FPGA. This is due to the BL and

154

5.1. General Vision

RRAM-based FPGA
Channel Width=300
Area= 904,267µm2

Core Utilization=76.8%

(b)SRAM-based FPGA
Channel Width=300
Area=979,387µm2

Core Utilization=82.3%

(a)

Figure 5.3 – Full-chip layouts of 40nm SRAM-based and RRAM-based FPGAs with CLB array
size 5×5.

(a) (b)

LUTs
5.9%

Local
Routing

MUX
23.3% Flip-

flops
0.2%

IOs
6.1%

BL/WL
decoders

4.5%

CB/SB
MUX
44.3%

NV
SRAM
15.8%

LUT
5.5% Local

Routin
g MUX
16.8%

Flip-
flops
0.2%

IOs
5.6%

BL/WL
decode

rs
0.3%

CB/SB
MUX
30.9%

SRAM
40.7%

Figure 5.4 – Area breakdown of (a) RRAM-based FPGA and (b) SRAM-based FPGA.

WL sharing strategy in RRAM-based FPGA is not as efficient as SRAM-based FPGA (See Section

5.1.2). Therefore, improving the BL and WL sharing strategy is well worth investigation and is

part of the future work. Thanks to 4T1R-based multiplexers, the area of routing multiplexer

in RRAM-based FPGA is smaller than SRAM-based FPGA because the SRAMs are eliminated.

Indeed, the SRAM-based FPGA contains 180,470 SRAMs, while the RRAM-based FPGA reduce

the number to only 16,160 NV SRAMs. Despite the reduced number of volatile elements, we

see the total area of SRAM/NV SRAM is similar due to the large area of NV SRAM. As shown

in Fig. 5.1(b) and Fig. 5.2(b), a NV SRAM requires 12 more transistors than a normal SRAM,

155

Chapter 5. RRAM-based FPGA Architectures

resulting in an area overhead as large as 6×. Therefore, compact NV SRAM designs can be

another challenge in RRAM-based FPGA study.

50 100 150 200 250 300
4

5

6

7

8

9

10 x 105

Channel Width

Fu
ll

C
hi

p
A

re
a

(µ
 m

2)

SRAM FPGA
RRAM FPGA

+16%

-8%

Figure 5.5 – Full-chip area comparison between SRAM-based and RRAM-based FPGAs by
sweeping channel widths from 50 to 300.

50 100 150 200 250 300
3

3.5

4

4.5

5

5.5

6

6.5

7 x 105

Channel Width

St
an

da
rd

 C
el

l A
re

a
(µ

 m
2)

SRAM FPGA
RRAM FPGA

+25%

-10%

Figure 5.6 – Standard cell area comparison between SRAM-based and RRAM-based FPGAs by
sweeping channel widths from 50 to 300.

Fig. 5.5 compares the full-chip area of SRAM-based and RRAM-based FPGAs by considering

different channel widths. When channel width is smaller than 250, the proposed RRAM-based

156

5.1. General Vision

FPGAs require more area than their SRAM-based counterparts. The area overheads results

from two factors:

1. The number of routing multiplexers is positively related to the channel width. Indeed,

RRAM-based multiplexers are more area efficient than their SRAM-based counterparts.

However, when channel width is small, the area saved by RRAM-based multiplexers

cannot fully mitigate the area overhead of NV SRAMs.

2. RRAM-based FPGAs potentially requires more area exclusively devoted to routing metal

wires. Fig. 5.6 compares the total area of standard cells in SRAM-based and RRAM-based

FPGAs by considering different channel widths. Considering the case where channel

width is 200, the total area of standard cells in RRAM-based FPGAs is smaller than

SRAM-based implementations, while the full-chip area of RRAM-based FPGAs is larger.

This implies that RRAM-based FPGAs contain more routing area than SRAM-based

FPGAs. According to detailed area reports, there is 30% of the full-chip area is exclusively

dedicated to routing wires in RRAM-based FPGAs while only 20% of the full-chip area is

exclusively dedicated to routing wires in SRAM-based FPGAs.

Therefore, when channel width is larger than 250, the proposed RRAM-based FPGAs become

more area efficient than SRAM-based FPGAs, owing to the increased number of routing

multiplexers in global routing architecture. We see the proposed RRAM-based FPGA consumes

4% and 10% smaller in terms of full-chip area and total area of standard cells respectively, as

compared to the SRAM-based FPGA, when channel width is set to 300. And we believe that

the area reduction can be more significant when larger channel widths are applied.

5.1.5 Power Characteristics

As presented in Chapter 3, SRAM-based and RRAM-based multiplexers have different struc-

tures, which lead to differences in power characteristics. Chapter 3 focused on comparing the

power characteristics of SRAM-based and RRAM-based multiplexers at circuit-level. However,

non-volatility allows RRAM-based FPGAs to be normally powered off and instantly powered

on, leading to different power characteristics at architecture-level. As illustrated in Fig. 1.2,

RRAM-based FPGA can be simply powered-off during long idle period, consuming zero static

power. Therefore, studying the power characteristics of RRAM-based FPGAs should focus on

the static and dynamic power consumed during standard operation time.

In addition, similar to SRAM-based multiplexers, whose static power is mainly determined by

the off -resistance of transistors, static power of 4T1R-based multiplexers is highly dependent

on the RHRS of RRAMs. At the first glance, RHRS should be as large as the off -resistance of a

transistor in order to keep the a low static power consumption [114]. However, thanks to the

non-volatility, the lower bound of RHRS can be relaxed owing to the following considerations:

1. Static power of RRAM-based FPGA only occurs during standard operation time, which

157

Chapter 5. RRAM-based FPGA Architectures

is typically along with high dynamic power consumption.

2. RRAM-based FPGAs still include pure CMOS circuits, such as LUTs, FFs and tapered

buffers, which can alleviate the impact of RHRS on total static power.

3. Dynamic power of 4T1R-based multiplexers is smaller than CMOS multiplexers (See

Section 3.8), leaving more budget in static power during standard operation time.

4. As explained in Section 5.1, RRAM-based FPGA requires less volatile elements, poten-

tially reducing the power consumption.

Therefore, the choice of RHRS should be studied in the context of FPGA architecture, rather

than in the context of standalone 4T1R multiplexers.

In this section, we will analyze the power consumption of RRAM-based FPGAs from an archi-

tecture perspective. We first study the static power characteristics of 4T1R-based multiplexers

by considering the architectural context. We then study the impact of RHRS on the power

consumption of RRAM-based FPGAs during standard operation time.

Static Power of 4T1R-based Multiplexers

The static power of a multiplexer is dominated by the number of the leakage paths from

V DD to GN D and also the resistance of sneak paths. We study the N -input multiplexers

in Fig. 5.7 as an example and focus on analyzing what dominates the static power of 4T1R-

based multiplexers. We will focus on the leakage paths through input inverters, transmission

gates and programming structures since they are highly sensitive to the input size and input

patterns. Without losing generality, we assume that the inputs i n[0] of both SRAM-based and

4T1R-based multiplexers in Fig. 5.7(a) and (b) are propagated to the output node.

In Fig. 5.7, we see that RRAM-based multiplexers contain more leakage paths than SRAM-

based implementations. The pull-up transistors of programming structures introduce addi-

tional sources of leakage paths and the pull-down transistors of programming structures lead

to additional sources of leakage paths. Note that even though the programming transistors are

all turned off during operating period, they indeed increase the leakage current from VDD to

GN D .

Take the example of Fig. 5.7(a), assume that i n[0] is set to GN D and i n[N −1] is set to VDD ,

transmission gate tg0 is turned on while transmission gate tg1 is turned off. A leakage paths

can start from a p-type transistor p0, pass through transmission gates tg0 and tg1, and end

at a n-type transistor n1. We define the resistance of a transistor in on state as Ron while the

resistance of a transistor in off state is denoted by Ro f f . Since typically Ro f f >> Ron , the

resistance of the leakage path p0 to tg0 to tg1 to n1 is dominated by Ro f f :

Rl eak1 = Ron +Ron ||Ron +Ro f f ||Ro f f +Ron ≈ Ro f f /2 (5.1)

158

5.1. General Vision

in[0]
+ -

BL[N]

WL[N]

out

BL[0]

WL[0]

in[N-1]
+ -

BL[N-1]

WL[N-1]

… …

VDD VDD

GND
GND

VDD VDD

GNDGND

VDD

GND

VDD

GND

EN

EN

EN

EN

RB

RA

CP,A

CP,B

SRAM[0]

(a) (b)

out

VDD

GND

VDD

GND

SRAM[0]

SRAM[N-1]

VDD

GND

SRAM[N-1]

in[0]

in[N-1]

…………

p0

n0

p1

n1

tg0

tg1

p3

n3

p4

n4
n7n6

n5

Figure 5.7 – Leakage paths of N -input multiplexers: (a) SRAM-based (b)RRAM-based

The leakage power contributed by p0 → t g 0 → t g 1 → n1 is:

Pleak1 ≈ 2V 2
DD /Ro f f (5.2)

Similarly, in the 4T1R-based multiplexer (Fig. 5.7(b)), assume that i n[0] is set to GN D and

i n[N −1] stuck at VDD , RRAM RA is in LRS while RRAM RB is in HRS. Note that all the pro-

gramming transistors are in off state during operating mode. Compared to the SRAM-based

multiplexer in Fig. 5.7(a), the leakage path starting from a p-type transistor p3 in Fig. 5.7(b)

has more ending points, due to the programming transistors connected to GN D. A leakage

path can start from a p-type transistor p3, pass through RRAM RA and RRAM RB , and end at a

n-type transistor, such as n4, n5, n6 and n7. Table 5.1 lists the leakage paths from p3 to n4,

n5, n6 and n7 and their resistance.

Table 5.1 – Resistance of leakage paths of the 4T1R-based multiplexer in 5.7(b) whose starting
point is p3 and ending points are n4, n5, n6 and n7

Leakage paths Resistances on leakage paths
Path 1: p3 → RA → RB → n4 Ron +RLRS +RHRS +Ron

Path 2: p3 → n5 Ron +Ro f f

Path 3: p3 → RA → RB → n6 Ron +RLRS +RHRS +Ro f f

Path 4: p3 → RA → n7 Ron +RLRS +Ro f f

Note that RHRS >> Ron , the resistance of the leakage path listed in Table 5.1 is dominated by

159

Chapter 5. RRAM-based FPGA Architectures

RHRS and Ro f f . As a result, the leakage power contributed by the leakage paths in Table 5.1 is

Pl eak1 ≈ 2V 2
DD /RHRS +2V 2

DD /Ro f f (5.3)

which is obviously larger than the leakage power contribution in Equation 5.2. We see that in

Equation 5.3, RHRS is one of the important factors influencing the leakage power.

10 20 30 40 50 60 70 80 90 100
60

65

70

75

80

85

90

95

100

105

110

RHRS(MΩ)

Le
ak

ag
e

Po
w

er
 (n

W
)

SRAM MUX
4T1R MUX

+66%

+9.4%

Figure 5.8 – Impact of RHRS on the average static power of a 2-input 4T1R-based multiplexer

In the rest of this section, we will rely on simulation results in studying the impact of RHRS

on the leakage power of 4T1R-based multiplexers, rather than a full analysis on the leakage

paths. Fig. 5.8 compares the average leakage power of a 2-input 4T1R-based multiplexer to

its SRAM-based counterpart by sweeping RHRS from 10MΩ to 100MΩ. The leakage power

overhead can be limited to 9.5% when RHRS = 100MΩ. Note that the simulation results is

achieved by enumerating all the possible input patterns for both SRAM-based and RRAM-

based 2-input multiplexers. Additionally, considering the architectural context, multiplexers,

such as those of Switch Blocks (SBs), usually contain tapered buffers at their outputs, which

can also reduce the leakage power overhead. Fig. 5.9 depicts the average leakage power of a

2-input 4T1R-based and SRAM-based multiplexers with tapered buffers at outputs. Note that

when RHRS = 10MΩ, the leakage overhead is reduced to 33% as compared to Fig. 5.8.

However, due to that the number of input patterns is exponential to the input size, it is un-

realistic to enumerate all the input patterns for a N -input multiplexer, in order to conduct

a full simulation-based analysis on the leakage power. Furthermore, due to the diverse con-

figurations, any combination of propagating path and input pattern can happen to all the

160

5.1. General Vision

10 20 30 40 50 60 70 80 90 100
150

160

170

180

190

200

210

220

RHRS(MΩ)

Le
ak

ag
e

Po
w

er
 (n

W
)

SRAM MUX
4T1R MUX

+33%

+10%

Figure 5.9 – Impact of RHRS on the average static power of a 2-input 4T1R-based multiplexer
with tapered buffer at output

multiplexers of FPGA. Therefore, accurate leakage power analysis for RRAM-based FPGAs

should consider electrical simulations based on realistic circuit implementations. In addition,

thanks to the non-volatility, static power of RRAM-based FPGA only occurs during standard

operation time, which is typically along with high dynamic power consumption. Hence, in

the rest of this thesis, the power analysis on RRAM-based FPGAs consider both the static and

dynamic power consumed during standard operation time.

Impact of RHRS on Power Consumption

As explained in Section 5.1.5, the RHRS can influence the power consumption of RRAM-based

routing elements. We evaluate in Fig. 5.10 the impact of RHRS on the average power of the

considered FPGA architectures implementing in MCNC big20 benchmarks by using FPGA-

SPICE. Basically, the power consumption of RRAM-based FPGA increases as RHRS decreases.

Note that the power differences between RRAM-based and SRAM-based FPGAs is within 3%

when RHRS is 20MΩ. And when RHRS is larger than 20MΩ, RRAM-based FPGAs becomes more

power efficient than SRAM-based FPGAs. In particular, when RHRS = 100MΩ, RRAM-based

FPGAs consumes 23% less power than SRAM-based FPGAs. Indeed, RRAM-based multiplexers

consume larger leakage power consumption than their SRAM-based counterparts. Also, in

Chapter 3, we have presented that RRAM-based multiplexers are more power efficient in terms

of dynamic power than SRAM-based implementations. Therefore, when RHRS is smaller than

161

Chapter 5. RRAM-based FPGA Architectures

10 20 30 40 50 60 70 80 90 100
0.8

0.85

0.9

0.95

1

1.05

RHRS(MΩ)

N
or

m
al

iz
ed

 T
ot

al
 P

ow
er

SRAM FPGA
RRAM FPGA

+3%

-16%
-8%

Figure 5.10 – Normalized power consumption of SRAM-based and RRAM-based architectures
with different RHRS

20MΩ, the leakage power overheads of RRAM-based FPGAs is too large and shadows the

gain in dynamic power, resulting in power overhead in total. When RHRS is large than 20MΩ,

the dynamic power advantages can fully mitigate the leakage power overhead, contributing

to power reduction in total. Note that all the power results in Fig. 5.10 are achieved when

both SRAM-based and RRAM-based FPGAs operate at nominal working voltage. Since that

RRAM-based circuits exhibit high-performance especially in near-Vt regime (See Chapter 3),

RRAM-based FPGAs can be more delay efficient than SRAM-based FPGAs when the working

voltage is reduced to near-Vt . Note that such high performance is achieved along with the

power reduction. Therefore, in terms of Power-Delay Product, the minimum requirements of

RRAM devices in FPGAs can be further relaxed.

In this thesis, we consider RHRS = 20MΩ as the minimum requirement for RRAM devices, in

order to ensure the power efficiency of RRAM-based FPGAs.

Power Breakdown

In this section, we study the power breakdown of RRAM-based FPGA and compare to its SRAM

counterpart. To be fair, we consider RHRS = 20MΩ for RRAM-based FPGA, which guarantees

zero power difference between RRAM-based and SRAM-based FPGAs average over MCNC

big20 benchmarks (See Section 5.1.5). Fig. 5.11 compares the static power breakdown between

RRAM-based and SRAM-based FPGAs. In general, routing multiplexers consumes over 40% of

the total static power, while LUTs and FFs only consumes up to 20% of the total. Due to the

heavy use of SRAMs, 36% of the static power is consumed by SRAMs in SRAM-based FPGA.

162

5.1. General Vision

Differently, in RRAM-based FPGA, only 14% is required by SRAMs. This reduced share of SRAM

power comes from that 4T1R-based multiplexers eliminate the use of SRAMs, giving more

power budget to other components.

LUTs
6%

Local
routing

24%

Switch
block
41%

Connection
block
21%

NV
SRAM

8%

LUTs
6%

Local
routing

17%

Switch
block
28%

Connec
tion

block
14%

SRAM
35%

(a) (b)

Figure 5.11 – Static power breakdown of (a) RRAM-based FPGA and (b) SRAM-based FPGA.

Fig. 5.12 compares the dynamic power breakdown between RRAM-based and SRAM-based

FPGAs. We see that over 70% of the total power is consumed by routing multiplexers, while

only 12% is consumed by LUTs and FFs. By removing the SRAMs in routing multiplexers, the

power share of SRAMs is reduced from 14% (SRAM-based FPGA) to 5% in RRAM-based FPGA.

LUTs
6%

Local
routing

21%

Switch
block
48%

Connection
block
20%

NV
SRAM

5%

LUTs
5.7%

Local
routing
19.4%

Switch
block
35.5%

Connec
tion

block
16.2%

SRAM
23.1%

(b)(a)

Figure 5.12 – Dynamic power breakdown of (a) RRAM-based FPGA and (b) SRAM-based FPGA.

163

Chapter 5. RRAM-based FPGA Architectures

5.1.6 Overall Performance

Fig. 5.13 compares the overall performance of SRAM-based and RRAM-based FPGAs operat-

ing in both nominal and near-Vt regimes. When operating at nominal voltage (VDD = 0.9V),

RRAM-based FPGA can improve delay by 22% over its SRAM-based counterpart. Even

when VDD is reduced to near-Vt regime, i.e., 0.8V , RRAM-based FPGA remains at the same

performance-level as the SRAM-based FPGA at nominal voltage. Significantly, the near-Vt

RRAM-based FPGA benefits from energy reduction, leading to a 2−2.3× improvement on

energy. Note that the energy of RRAM-based FPGA operating at VDD = 0.9V is similar to the

best SRAM-based FPGA (VDD = 0.7V). In terms of Energy-Delay Product (EDP), SRAM-based

FPGA at nominal voltage is the best, while RRAM-based FPGA at VDD = 0.8V is the best with a

close to 2× improvement compared to the best SRAM-based FPGA. Note that only runtime

power consumption is evaluated in Fig. 5.13. We believe that the energy improvement of

RRAM-based FPGA can go beyond 2×, when non-volatility is taken into account.

40%
60%
80%

100%
120%
140%

Area Delay Energy EDP

SRAM FPGA, VDD=0.9V SRAM FPGA, VDD=0.8V
SRAM FPGA, VDD=0.7V RRAM FPGA, VDD=0.9V
RRAM FPGA, VDD=0.8V RRAM FPGA, VDD=0.7V

8%

2.3×

2%

1.9×22%

Figure 5.13 – Area, delay and energy comparison between SRAM-based and RRAM-based
FPGAs operating at nominal and near-Vt regime.

5.2 Architecture-level Optimizations

Most SRAM-based FPGA architectures typically employ multiple levels of small crossbars,

instead of large multiplexers, due to a strong limitation of SRAM-based multiplexer: Whatever

multiplexer structure is employed, their area, delay and power increase linearly with the

input size [4]. However, we saw in Chapter 3 that the delay of RRAM-based multiplexers is

independent from the input size. Table 5.2 compares the delay of SRAM-based and 4T1R-

based multiplexer in their architectural context, i.e., by considering realistic sizing and loads.

In high fan-in and low fan-out condition, such as local routing, the 4T1R-based multiplexer

can achieve 48% reduction in delay. In contrast, when fan-in is low and fan-out is high, e.g.,

164

5.2. Architecture-level Optimizations

Table 5.2 – Delay comparison between SRAM-based and RRAM-based routing multiplexers.

Multiplexer Input fan-out SRAM-based 4T1R-based Improvements
Location Size MUX (ps) MUX (ps)

Local Routing 80 1 57.7 30.4 -48%
BLE output selector 2 70 38.8 42.2 +11%
Connection block 48 60 76.0 48.2 -36%

Switch block 4 1241 57.8 49.6 -14%
* Output buffers are considered and sized according to the fan-outs of routing multiplexers
in architecture.
1 The fanout includes the parasitics of long metal wires driven by SBs.

the BLE output selector, 4T1R-based multiplexer guarantees a similar performance level as an

SRAM-based implementation. Therefore, considering such feature of one-level 4T1R-based

multiplexers, the FPGA architectural design space can be extended beyond the limitations

of SRAM-based multiplexer. Indeed, the properties of RRAM-based multiplexers allow the

FPGA architect to size differently its routing multiplexers by: privileging one-level crossbars,

made of large multiplexers, as much as possible. This paradigm shift in the interconnection

topology also requires to rethink the optimal architectural parameters, which have been

well determined for classical SRAM-based architectures. Hence, it is worthwhile to identify

properly-sized RRAM-based FPGA architectures which can exploit the full potential of RRAM-

based multiplexers, and determine the associated optimal architectural parameters.

To exploit the high-performance of 4T1R-based multiplexers, in this section, we propose three

architectural optimizations:

1. The realization of a Unified Connection Block;

2. The increase of Switch Blocks capacity;

3. The decrease of the best length of routing wire;

For each architectural optimization, we study its impact on both SRAM-based and RRAM-

based FPGAs.

This section will be organized as follows. Section 5.2.1 introduces the general experimental

methodology in this part. Section 5.2.2, Section 5.2.3 and Section 5.2.4 present the three

architectural optimizations and validate their impacts on both SRAM-based and RRAM-based

FPGAs. Section 5.2.5 compares the optimized RRAM-based FPGA to its SRAM-based counter-

part, considering both nominal working voltage and near-Vt regime.

5.2.1 Experimental Methodology

In this part, we will base our analysis using a commercial 40nm technology, whose nominal

working voltage is VDD = 0.9V . Area is estimated and expressed by the number of mini-

165

Chapter 5. RRAM-based FPGA Architectures

mum width transistors, based on the area model in [125]. Delay results are extracted from

electrical simulations by running HSPICE simulator[47]. Both datapath logic gates and pro-

gramming structures are built with standard logic transistors (Wlog i c /Ll og i c = 140nm/40nm,

WP MOS,l og i c /WN MOS,log i c = 2). SRAM-based multiplexers are built with two-level structures

and transmission gates for best area-delay product [2]. RRAM-based multiplexers are built

with one-level structure and I/O transistors [133]. Electrical simulations use the Stanford

RRAM model [130] with following parameters: RLRS = 2kΩ, RHRS = 27MΩ, Iset = 500µA,

Vset = Vr eset = 1.1V . The parasitic capacitance of a RRAM is considered to be CP = 13.2aF .

The considered RRAM parameters are sufficient to guarantee that the RRAM-based circuits

are as power efficient as SRAM-based circuits [114]. To determine the size of CB and SB

multiplexers, we set the channel width to W = 320, which is close to the practical number in

commercial products [85, 82].

Since each architectural optimization involves different routing architecture parameters, such

as Fc,i n , Fs and L, for a fair comparison, we vary a single parameter in each comparison and

find a reasonable value for each parameter. Once we find the best value of one parameter,

we set it to this value and vary another. All the investigated tile-based FPGA architectures

share the Stratix IV-like CLB architecture [88], which contains 10 BLEs, consisting of 6-input

fracturable LUTs and FFs (K = 6, N = 10). We consider a uni-directional routing architecture

and the CLB output connection flexibility, Fc,out , is fixed to 0.1. All the baseline architectures

have 40 inputs for each CLB (I = 40). Because the local routing is removed in the proposed

architecture, we provide 60 inputs for each CLB (I = K ·N = 60). We will focus on studying

the effect of the different architectural modifications on both SRAM-based and RRAM-based

FPGAs. Both SRAM-based and RRAM-based implementations of the proposed architecture are

then investigated and their benefits are examined by comparing to the baseline SRAM-based

and RRAM-based architectures, respectively. We believe that such methodology helps to

identify where RRAM FPGAs can be improved beyond SRAM FPGAs. Then, we will discuss the

benefits of a properly-optimized RRAM-based FPGA compared to the SRAM counterpart.

We use the VTR flow [44] to evaluate the area, delay, power and channel width of the investi-

gated FPGA architectures. The twenty biggest MCNC [138] and VTR benchmarks [44] suites

are logic optimized by ABC [123] and then packed, placed and routed by VPR7. We add a

30% slack to the minimum routable channel width Wmi n , in order to simulate a low-stress

routing [4]. For a fair comparison, the maximum routing iterations are set to 50 for the classical

architecture, while 100 routing iterations are used for the proposed architectures. Indeed, our

proposed architecture requires more routing efforts because local routing is removed and

more nets have to be routed by the global router.

5.2.2 Unified Connection Block

In SRAM-based FPGA architectures, a routing track has to pass through a CB multiplexer and

a local routing multiplexer before reaching a LUT input, as shown in Fig. 5.14. Such routing

166

5.2. Architecture-level Optimizations

architecture efficiently reduces the number of CB multiplexer to be used. Indeed, the number

of the inputs of a CLB, typically I = K (N +1)/2, is smaller than the total number of LUTs inputs,

K ·N , where K is the input size of a LUT and N is the number of BLEs in a CLB. However, it

requires tapered buffers at the outputs of CB multiplexers, in order to drive the high fan-outs.

Take the example in Fig. 5.14, each CB multiplexer has to drive K ·N local routing multiplexers.

The use of large tapered buffers potentially increase the delay from a routing track to a LUT

input. This situation is extremely inefficient for RRAM-based FPGAs since the delay of a

tapered buffer may be far larger than the delay of the RRAM-based multiplexer itself.

...

OPIN

OPIN

OPIN

Standard CLB architecture

...

LUT FF

LE[1]

+

LUT FF

LE[2]

+

LUT FF

LE[N]

+

Local Routing

IPIN

IPIN

IPIN

IPIN

...

...

Figure 5.14 – Classical interconnection from routing tracks to LUT inputs.

Therefore, we propose that RRAM-based FPGA should use a one-level RRAM-based crossbar

to provide interconnections between routing tracks and LUT inputs, as illustrated in Fig.

5.15. Note that feedback connections are also resolved by the unified Connection Block. The

proposed routing architecture is well suited to RRAM-based multiplexers for three reasons:

(a) Each CB multiplexers now has a unique fan-out, and tapered buffers can be avoided; (b)

Only one large multiplexer interconnects between a routing track to a LUT input; Both routing

delay and feedback delay can be significantly reduced when a RRAM-based multiplexer is

used; (c) The number of inputs of a CLB is increased to I = K ·N , which can potentially lead

167

Chapter 5. RRAM-based FPGA Architectures

...

OPIN

OPIN

OPIN

IPINIPIN

Proposed CLB architecture

LUT FF

LE[1]

+

LUT FF

LE[2]

+

LUT FF

LE[N]

+

IPINIPIN

IPINIPIN

Global routing track
Local routing wires

(Feedback connections)

Figure 5.15 – Proposed interconnection from routing tracks to LUT inputs.

to a total area reduction even for SRAM-based FPGAs [142]; Since RRAM-based multiplexers

require a smaller footprint, the area reduction could be more significant.

The proposed routing architecture requires to redefine the best fraction of routing tracks

that can be reached by each CB multiplexer, Fc,i n . Note that in the classical architecture

(Fc,i n = 0.15), all the nets mapped to the inputs of a CLB are different because the local routing

can connect a net from a CLB input to multiple LUTs. The proposed architecture may have a

net mapped to multiple CLB inputs due to the absence of local routing. Therefore, we need to

increase Fc,i n to allow more CLB inputs to be reached by a single routing track, to compensate

the potential loss in routability. In an FPGA tile, all the LUT inputs are connected to the right

and bottom sides of a CLB. Each LUT has K /2 input connected to the right/bottom side of

a CLB. To ensure that different LUT inputs can be connected from a common routing track,

Fc,i n should be at least 2/K . Fig. 5.16 depicts such an example when K = 6. Input i n0 of LU T 0

and input i n0 of LU T 1 can be reached by the same track Tr ack0. Note that there is no need

to allow two inputs of the same LUT to share a routing track. The case where two inputs of

a LUT share the same net can never happen because the inputs of a LUT are naturally logic

168

5.2. Architecture-level Optimizations

CLB 1

LUT 0

in0 in1 in2

Track0

Track1

Track2

LUT 0

CLB 0 Track3

Track4

out

LUT 1

in0 in1 in2

Track

SB MUX

CB MUX

Input pin

Output pin Track6

Track7

Track5

netA

Figure 5.16 – An illustrative example of the proposed routing architecture(K = 6) with Fc,i n =
0.33 and Fs = 6.

equivalent. By considering architecture parameters K = 6, the proposed architecture requires

Fc,i n to be at least 0.33, in order to ensure routability. In this part, we sweep Fc,i n to examine

the best Fc,i n for the proposed architecture.

Fig. 5.17(a) and (b) show normalized area, delay, power and channel width of SRAM-based and

RRAM-based proposed architectures with Fc,i n = {0.15,0.25,0.33,0.5}, when compared to base-

line architectures respectively. The SRAM-based proposed architecture with Fc,i n = 0.33 pro-

duces a slightly better area-delay product (-4%) than the classical architecture, but performs

worse (+2%) in delay. In contrast, the RRAM-based proposed architecture with Fc,i n = 0.33

reduces delay by 3% and area-delay product by 15%, when compared to the classical ar-

chitecture. In either SRAM-based or RRAM-based FPGAs, the proposed architecture with

Fc,i n = 0.33 produces the best area-delay product. Note that we see a 5% area reduction in both

SRAM-based and RRAM-based proposed architectures when Fc,i n = 0.33, which is close to the

conclusion of literature [142]. The proposed architecture with varying Fc,i n reduces power by

10%-13% for SRAM-based and RRAM-based FPGAs. In the classical architecture, there are

two-stages of multiplexers (local routing and classical connection blocks) that lead to four lev-

els of transmission gates between the routing tracks and the LUTs. However, in the proposed

unified connection block, there is only one-stage of multiplexers (two-levels of transmission

gates) between the routing tracks and the LUTs, contributing to power efficiency. Besides,

the unified connection blocks eliminates the need for intermediate buffers between the local

routing and the connection block, which further reduce the power. Channel width overheads

169

Chapter 5. RRAM-based FPGA Architectures

Figure 5.17 – Normalized average area, delay, power and channel width of baseline and
proposed architecture by sweeping Fc,i n : (a) SRAM-based architectures; (b) RRAM-based
architectures.

170

5.2. Architecture-level Optimizations

are observed in both SRAM-based and RRAM-based proposed architectures, because their

routability is lower than their baselines due to the absence of local routing. However, these

overheads can be potentially eliminated because the routability can be significantly improved

when we increase Fs and decrease L. In terms of the best overall performance, we consider

Fc,i n = 0.33 for the proposed FPGA architectures in the rest of this chapter.

Fig. 5.18 compares the tile area of a classical FPGA architecture (I = 40,Fc,i n = 0.15) and the

proposed RRAM FPGA architecture (I =W ·Fc,i n ,Fc,i n = 0.33) for a sweeping channel width

W from 100 to 350. Note that the input size of local routing multiplexers in traditional SRAM

FPGAs is fixed for every W , while that of proposed RRAM FPGAs is directly related to W .

When a small W , e.g. = 100, is used, the size of the local routing multiplexers in the proposed

RRAM FPGAs is smaller than for a classical FPGA architecture. Therefore, when W < 300,

the proposed RRAM FPGA architecture benefits up to 36% area reduction as compared to

classical FPGA architecture. When W > 300, the input size of multiplexers in the proposed

RRAM FPGAs becomes larger, leading to a 9% area overhead when W = 350. The considered

W = 320 in this part promises that the proposed RRAM FPGAs is as area efficient as classical

SRAM FPGAs.

100 150 200 250 300 350
2

3

4

5

6

7
x 10

4

Channel Width W

T
il

e
A

re
a
 (

#
.
o
f

M
in

.
W

id
th

 T
ra

n
s.

 A
re

a
)

Classical SRAM FPGA

Proposed RRAM FPGA

-36%

+9%

Figure 5.18 – Tile area comparison between a traditional FPGA architecture and the proposed
RRAM FPGA architecture for different channel width W .

171

Chapter 5. RRAM-based FPGA Architectures

5.2.3 Increase Capacity of SB MUXes

Since RRAM-based multiplexer is more delay-efficient than SRAM-based multiplexer, the

connection flexibility parameter of Switch Block (SB) Fs can be increased. Classical FPGA

architectures typically set Fs = 3, where each routing track on one side of a SB can reach

three other routing tracks on different sides of a SB. In SRAM-based FPGAs, Fs = 3 promises

the best area-delay product [98]. Indeed, a larger Fs can improve the routability but it may

produce area and delay overhead coming from the larger SB multiplexers to be used. However,

considering RRAM-based routing architecture, the delay overhead is no longer a concern

thanks to the advantage of RRAM multiplexers. Therefore, a larger Fs , i.e. = 6, can considered,

where a routing track can drive six different tracks, as shown in Fig. 5.16 with Tr ack3. Note

that a large Fs significantly improves the routability of the proposed routing architecture. Take

the example of Fig. 5.16 where net A is routed through Tr ack3. If Fs = 3, Tr ack3 can only

drive Tr ack0, Tr ack4 and Tr ack6. If Tr ack0 is not available, the output of LU T 0 has to

seek for another routing track by increasing the channel width. If Fs = 6, Tr ack3 can reach

both Tr ack0 and Tr ack2. When Tr ack0 is occupied by another net, Tr ack3 can easily use

Tr ack2 to route net A.

CLB
[0]

CLB
[L-1]

CLB
[L]

SB MUXRouting TrackCB MUX

��

��

L

��

��

...

...

(a)

...
Ro

CoTdel

VDD

Cin,CB Cin,SBCm/2 Cm/2 Cm/2 Cm/2

Cin,CB

Cin,SB

(b)

Rm Rm

Figure 5.19 – (a) Driver multiplexer and fan-outs of a Length-L wire; (b) Equivalent RC model
of a Length-L wire.

We sweep Fs to determine its best value for the proposed architecture. Fig. 5.20(a) and (b)

show normalized average area, delay, power and channel width of SRAM-based and RRAM-

based proposed architectures with Fs = {3,6,9}, when compared to the baseline architectures,

respectively. The proposed RRAM-based architectures can benefit larger delay reduction (-7%)

than SRAM-based (-4%), because RRAM-based multiplexers are more delay efficient for the

172

5.2. Architecture-level Optimizations

Figure 5.20 – Normalized average area, delay, power and channel width of baseline and
proposed architectures by sweeping Fs : (a) SRAM-based architectures; (b) RRAM-based
architectures.

173

Chapter 5. RRAM-based FPGA Architectures

unified connection block. However, Fs > 3 introduces larger SB multiplexers, which potentially

increases the area of both SRAM-based and RRAM-based proposed architectures. On the other

hand, larger SB multiplexers improve the flexibility of the routing architecture and reduce

the number of necessary SB multiplexers, as explained in Fig. 5.16. In the end, the proposed

architecture can maintain the same power efficiency as baseline SRAM one. Therefore, Fs = 6

produces the best area-delay-power product for both SRAM-based and RRAM-based proposed

architectures. Note that, even when Fs = 9, RRAM-based proposed architecture leads to a

8% delay reduction thanks to its RRAM-based multiplexer, while, the SRAM-based proposed

architecture has a 5% delay overhead. As a large Fs boosts the routability, a 20% channel

width reduction is achieved in both SRAM-based and RRAM-based proposed architectures, as

compared to those with Fs = 3. In terms of the best overall performance, we consider Fs = 6

for the proposed FPGA architectures in the rest of this part.

5.2.4 Smaller Best Length Wire < 4

In FPGA architectures, a length-L wire is a wire that spans across L CLBs [4]. As illustrated in

Fig. 5.19(a), a length-L wire is driven by an output of C LB [0] and ends at C LB [L−1]. All the

CLBs and SBs along the length-L wire can be directly routed from the driving output of C LB [0].

When only one type of wires is allowed to be used in an FPGA, the type of length-L wires

that produces best area-delay product is called best single wire length. Commercial FPGAs

typically provide different types of wires, i.e. length-1 for short connections and length-8 for

long connections. However, best single wire length is useful in deciding which type of wires

should be predominant within the architecture.

Length-4 wires are the best choice for classical SRAM-based FPGA architectures (Fc,i n =
0.15,Fs = 3) [4]. V. Betz et al. show that a length-4 wire is faster than shorter wires in terms of

delay per logic block (= Tdel ay,wi r e /Leng th). In other words, for a routing path spanning X

CLBs, length-4 wires promise the best average delay. Indeed, when there is a routing path with

X < 4, shorter wires such as length-1 or length-2 will give better delay. However, for a routing

path with X ≥ 4, multiple cascaded length-4 wires are faster than not only any length-X (X > 4)

wire but also multiple cascaded length-1 or length-2 wires. Therefore, on average, length-4

wires provide the best trade-off between short and long connections.

In SRAM-based FPGAs, why long length wires, such as length-4 wires, are preferred is estab-

lished on the fact that the delay of a SB multiplexer is larger than a long metal wire across

a logic block. However, RRAM-based multiplexers are more delay efficient and can be even

faster than a long metal wire. Therefore, as the cost function between a SB multiplexer and

a long metal wire has been twisted, the best single wire length L should be revisited. Fig.

5.19(a) illustrates the different elements composing a length-L wire, while Fig. 5.19(b) shows

the extracted RC model. We use Elmore delay [104] to estimate the delay per logic block of a

174

5.2. Architecture-level Optimizations

Length-L wire:

Tdel ay,wi r e /L = 1

L

L−1∑
i=0

Ri

L−1∑
j=i

C j

= L · RmCm

2
+ 1

L
· (Tdel +RoCo −2RmCSB −2RmCC B)

+Rm(CSB +CC B −Cm)+Ro(Cm +CSB +CC B)

(5.4)

where Rm and Cm are the resistance and capacitance of a metal wire spanning a logic block,

respectively, Tdel represents the intrinsic delay of a SB multiplexer, Ro and Co denote the

equivalent resistance and capacitance of the tapered buffer that drives the metal wire, re-

spectively, CSB and CC B are the equivalent input capacitance of each SB and CB, respectively.

According to (5.4), there exists a Lopti mal which guarantees the minimum Tdel ay,wi r e /L:

Lopti mal =
(Tdel +RoCo −2RmCSB −2RmCC B)

2RmCm
(5.5)

Note that CSB and CC B are related to Fs and Fc,i n respectively:

CSB = Fs ·Ci n

CC B =W ·Fc,i n ·Ci n
(5.6)

In the proposed RRAM-based routing architecture, where both Fs and Fc,i n increased and Tdel

decreased thanks to RRAM-based multiplexer, Lopti mal will definitely decrease. In addition,

the tile area of the proposed architecture may be slightly larger than the classical architec-

ture because of the Fs and Fc,i n increases, leading to an increased Rm and Cm . This would

further decrease the Lopti mal . Therefore, the best single wire length of the proposed routing

architecture will be smaller than 4. When a smaller L (< 4) is used, previous work [4] show

that the routability is improved significantly. Therefore, the proposed RRAM-based routing

architecture can achieve routability improvement without delay overhead.

We sweep L to determine its best value for the proposed architecture. Fig. 5.21(a) and (b)

show normalized average area, delay, power and channel width of SRAM-based and RRAM-

based proposed architectures with L = {1,2,4}, when compared to the baseline architectures,

respectively. In SRAM-based architectures, whatever Fs is, length-4 wires achieve the best

delays and area-delay-power products. However, the proposed RRAM-based architecture with

length-2 wires promises the best delay (-11%) and also the best area-delay-power product

(-24%), thanks to its better routability and lower routing congestion. As L is reduced from 4 to

2, we see a 26% channel width reduction because short wires are more flexible. Conversely,

length-1 wires have the smallest channel width but more SB multiplexers have to be used in

long routing paths. Therefore, we see significant area and power overhead. Length-4 wires

guarantee the best power results since less multiplexers are required in a SB compared to the

case where length-2 and length-1 wires are used. In terms of the best overall performance,

L = 2 is the best single wire length for the proposed FPGA architecture.

175

Chapter 5. RRAM-based FPGA Architectures

Figure 5.21 – Normalized average area, delay, power and channel width of baseline and
proposed architectures by sweeping L: (a) SRAM-based architectures; (b) RRAM-based archi-
tectures.

176

5.3. Summary

5.2.5 RRAM-based FPGAs vs. SRAM-based FPGAs

In Section 5.2.2, Section 5.2.3 and Section 5.2.4, we have determined that Fc,i n = 0.33,Fs = 6

and L = 2 produce the best performances for the proposed FPGA architecture. In this section,

we make a general comparison between SRAM-based and RRAM-based FPGAs architectures.

Fig. 5.22 shows the area, delay, power and channel width of three FPGA architectures: (1)

SRAM-based FPGA with classical architecture; (2) RRAM-based FPGA with classical archi-

tecture; (3) RRAM-based FPGA with architectural optimizations. When implemented with

classical architecture, RRAM-based FPGAs improve the delay by 32% and the area by 15%, as

compared to SRAM-based FPGAs, thanks to the delay efficiency of the RRAM-based routing

elements. By properly optimizing the architecture, RRAM-based FPGAs can further reduce the

area by 15%, the delay by 10% and the channel width by 13%, leading to a total improvement

of 38% in delay and 43% in area compared to an SRAM-based FPGA architecture. In terms of

Area-Delay Product (ADP) and Delay-Power Product (PDP), the proposed RRAM-based FPGA

architecture brings a reduction of 57% and 38% respectively.

As explained in Chapter 3, the resistance of RRAMs is only impacted by programming voltage

and therefore a near-Vt working voltage leads to less performance degradation for RRAM-

based circuits, when compared to pure CMOS implementations. Such outstanding feature

strongly motivates us to evaluate the potential of the proposed RRAM-based FPGA architec-

ture in the near-Vt regime. In this section, we consider the SRAM-based FPGA with classical

architecture operating at nominal working voltage (VDD = 0.9) as the baseline. We investigate

the area, delay and power of the RRAM-based FPGAs with architectural optimizations operat-

ing at both nominal (VDD = 0.9) and near-Vt (VDD = 0.7 and VDD = 0.8) working voltages. As

shown in Fig. 5.23, when operated in the near-Vt regime, the proposed RRAM-based FPGA

at VDD = 0.7 can achieve 42% and 5× improvement on Area-Delay Product and Power-Delay

Product respectively, as compared to a classical SRAM-based FPGA running at a nominal

voltage. Note that such significant power reduction is achieved with zero delay overhead and

such feature can not be achievable by any SRAM-based FPGA.

5.3 Summary

This chapter combines the efforts from 4T1R-based multiplexers (introduced in Chapter 3) and

FPGA-SPICE (introduced in Chapter 4), in studying RRAM-based FPGA architectures. We first

presented a generic RRAM-based FPGA architecture exploiting the 4T1R-based multiplexers

and BL/WL sharing strategy, whose functionality has been verified by FPGA-SPICE. With

layout-level implementation and accurate electrical simulator, we analyze the area breakdown

and power characteristics of the proposed RRAM-based FPGA architecture and compare to its

SRAM-based counterpart. Thanks to the 4T1R-based multiplexers, the propose RRAM-based

FPGA can be as area efficient as SRAM-based FPGA, and meanwhile achieve non-volatility.

Electrical simulations show that to guarantee power efficiency, RHRS of RRAMs does not need

be as large as the off -resistance of a transistor, but should be at least 20MΩ. To further leverage

177

Chapter 5. RRAM-based FPGA Architectures

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Area Delay Channel
Width

Area-Delay
Product

Energy

SRAM-based baseline FPGA, L=4, Fs=3, Fc,in=0.15
RRAM-based baseline FPGA, L=4, Fs=3, Fc,in=0.15
RRAM-based proposed FPGA, L=2, Fs=6, Fc,in=0.33

Figure 5.22 – Normalized average area, delay, energy and channel width of baseline and
proposed architectures: (a) baseline SRAM-based architectures; (b) baseline RRAM-based
architectures; (c) proposed RRAM-based architectures

0.00%
20.00%
40.00%
60.00%
80.00%

100.00%

Area Delay Power Channel
Width

ADP PDP

SRAM-based classical FPGA, VDD=0.9V
RRAM-based proposed FPGA, VDD=0.9V
RRAM-based proposed FPGA, VDD=0.8V
RRAM-based proposed FPGA, VDD=0.7V

0.00%
20.00%
40.00%
60.00%
80.00%

100.00%

Area Delay Power Channel
Width

ADP PDP

SRAM-based classical FPGA, VDD=0.9V
RRAM-based proposed FPGA, VDD=0.9V
RRAM-based proposed FPGA, VDD=0.8V
RRAM-based proposed FPGA, VDD=0.7V

0.00%
20.00%
40.00%
60.00%
80.00%

100.00%

Area Delay Power Channel
Width

ADP PDP

SRAM-based classical FPGA, VDD=0.9V
RRAM-based proposed FPGA, VDD=0.9V
RRAM-based proposed FPGA, VDD=0.8V
RRAM-based proposed FPGA, VDD=0.7V

Classical SRAM-based FPGA, VDD=0.9V

Proposed RRAM-based FPGA, VDD=0.9V

-42% 5×-43%

Proposed RRAM-based FPGA, VDD=0.8V
Proposed RRAM-based FPGA, VDD=0.7V

Figure 5.23 – Normalized average area, delay, power, channel width, ADP and PDP of classical SRAM-
based and proposed RRAM-based architectures.

the potential of 4T1R-based multiplexers, we propose three architecture optimizations: (a)

The traditional CB and local routing are replaced with a unified CB, leading to ultra-fast

interconnection from routing tracks to LUT inputs; (b) The CB connectivity parameter Fc,i n

should be at least 0.33 to ensure routability, while the SB connectivity parameter Fs can be

178

5.3. Summary

increased to achieve routability improvements without delay overhead; (c) The best single

wire length L is reduced, leading to better routability. We study the best values of Fc,i n , Fs

and L in terms of area, delay, power and channel width. Experimental results show that

a RRAM-based FPGA properly optimized should employ (Fc,i n = 0.33, Fs = 6 and L = 2) to

achieve optimal performances. Compared to best SRAM-based FPGAs, a optimized RRAM-

based FPGA architecture brings a reduction of 57% on Area-Delay Product (ADP) and 38%

on Delay-Power Product (PDP) respectively. In particular, when operating at near-Vt regime,

RRAM-based FPGAs demonstrate a 5× improvement on the power with zero delay overhead

as compared to optimized SRAM-based FPGA operating at nominal working voltage.

179

6 Conclusion and Future Work

Before this thesis, merits of RRAM-based FPGAs, i.e., area, delay and power, were predicted

without solid circuit-level studies nor specialized CAD tools, which caused architecture-level

conclusions to be less meaningful. In this thesis, we have provided a systematic study on

RRAM-based FPGAs by considering realistic device modelling, circuit designs under physical

design considerations and accurate architecture-level simulations. The major principle of our

works is to leverage the potential of RRAMs in FPGA architectures by integrating RRAMs and

programming structures into the datapaths, replacing the classical SRAM-based routing ele-

ments. In order to achieve the research goal, our contributions involve three related research

fields: circuit designs (Chapter 3), CAD tool (Chapter 4) and architecture-level optimizations

(Chapter 5). From a circuit design perspective, we investigated the fundamental of RRAM-

based programming structure, proposed a high-current-density 4T1R programming structures

and 4T1R-based multiplexer designs. Compared to best CMOS implementations, the proposed

RRAM-based circuits significantly reduce the area, delay and power. From a CAD perspective,

we propose a simulation-based architecture exploration tool suite for FPGAs, which is called

FPGA-SPICE. Compared to the existing VTR tool suite, FPGA-SPICE enables more accurate

and realistic area and power analysis for both SRAM-based and RRAM-based FPGAs, From an

architecture perspective, we present a generic RRAM-based FPGA architecture, quantified the

minimum requirements for RHRS of RRAM devices and proposed architecture-level optimiza-

tions. Accurate experimental results show that the proposed RRAM-based FPGAs improve

Area-Delay Product (ADP) by 57% and Power-Delay Product (PDP) by 38% when compared to

well-optimized SRAM-based FPGAs.

The rest of this chapter is divided into two parts. Section 6.1 highlights our contributions in

each research fields. Section 6.2 envisages the future work.

6.1 Summary of Contributions

Table 6.1 summarizes our contributions in three research fields: circuit designs, CAD tool and

architecture-level optimizations.

181

Chapter 6. Conclusion and Future Work

Table 6.1 – Summary of Contributions in Differnt Research Fields.

Research field Contributions

Circuit designs

• Analysis of 2T1R programming structure.
• Proposition of 4T1R programming structure.
• Proposition of boosting methodologies for improving driving current
density of programming structures.
• Proposition of one-level, two-level and tree-like 4T1R-based multi-
plexer designs with physical design details.
• Proposition of programming transistor sizing technique.
• Proposition of optimal physical location of RRAMs.
• Investigation of the excellence on delay and power of RRAM-based
circuits at near-Vt regime.
• Investigation of the robustness of 4T1R-based multiplexers to process
variations of RRAMs.

CAD

• Proposition of FPGA-SPICE enables automatic generation of SPICE
and synthesizable Verilog netlists for full FPGA fabric.
• Extension of FPGA architecture description language to support
modelling transistor-level circuit designs, the physical structure of I/O
circuits and different types of configuration circuits.
• Proposition of netlist splitting strategies to better trade-off between
simulation runtime and accuracy.
• Study on the accuracy of analytical power model VersaPower, with
respect to simulation results.
• Study on the area characteristics of SRAM-based FPGAs with different
configuration circuits.

FPGA architecture

• Proposition of novel RRAM-based FPGA architecture with efficient
BL and WL sharing strategy.
• Determining the lower bound of RHRS to be 20Ω for a power efficient
RRAM-based FPGA.
• Study on the area characteristics of SRAM-based and RRAM-based
FPGAs.
• Proposition of three architecture-level optimizations for RRAM-
based FPGAs: (1) unified connection blocks; (2) increase capacity
of SB multiplexers; (3) smaller best length wire.
• Investigation of the performance and power efficiency of near-Vt

RRAM-based FPGA.

In addition, the contributions of this thesis include the novel and general approaches that we

developed to study RRAM-based circuits and FPGA architectures:

1. Previous works typically bound their circuit designs and FPGA architectures tightly to a

specific RRAM technology. Differently, this thesis selects another angle: we target generic

RRAM technologies and quantify the minimum requirements on the RRAM devices,

such as RLRS and RHRS , which can guarantee good circuit-level and architecture-level

182

6.1. Summary of Contributions

performance. In other words, we determine the specifications for RRAM devices which

can guarantee efficient circuit designs and FPGA architectures.

2. Previous works typically ignored physical design details of RRAM-based circuits, such

as the parasitics and physical location of RRAMs. However, this thesis considers both

resistive and capacitive characteristics of RRAMs and also parasitics of programming

transistors when evaluating RRAM-based circuit designs and FPGAs. In particular, we

propose two general optimizing techniques for RRAM-based circuits: programming

transistor sizing (See Section 3.7.3) and optimal physical location of RRAMs (See Section

3.7.2), derived from RC modeling and Elmore delay model. Both optimizing techniques

have demonstrated significant performance improvement on RRAM-based circuits.

3. Previous works mainly depended on analytical models when evaluating FPGA architec-

tures, strongly limiting the accuracy of the analysis and probably leading to misleading

conclusions especially for FPGAs based on emerging technology, e.g., RRAMs. In this

thesis, we develop FPGA-SPICE and used electrical simulations and semi-custom P&R

flows to accurately capture the difference in area and power characteristics of both

SRAM-based and RRAM-based FPGA architectures. Note that the methodology provides

accurate results and can be generalized to studying more generic FPGA architectures

which are not limited to SRAM and RRAM technologies.

Novel research approaches leads to more realistic conclusions than previous works:

1. Previous works [26, 113, 9, 27, 8, 110, 6, 114, 111] commonly insisted that a low RLRS is

the guarantee for the high-performance of RRAM-based circuits and FPGA architectures.

In some extreme case [113, 9], researches employ a RLRS as low as 100Ω. However,

the experimental results in Section 3.8 overturn these stereotypes: in terms of best

performance, a proper RLRS should ranges from 2kΩ to 6kΩ in the considered 40nm

technology, which is similar to the equivalent resistance of a transmission gate. Actually,

a low RLRS do not guarantee the best performance for RRAM-based circuits in most

cases. To achieve a low RLRS , large programming transistors have to be used, which

introduce large parasitic capacitances. Consequently, the performance of RRAM circuits

with a low RLRS is even worse than a moderate RLRS . The high-performance of RRAM-

based circuit actually comes from the efficient circuit design topology rather than RLRS .

As explained in Section 3.6, the delay and power efficiency of 4T1R-based multiplexers

is owing to the smaller parasitic capacitances in the datapath.

2. Previous works [26, 113, 9, 27, 8, 110, 6, 114, 111] commonly assumed that RRAMs

should be programmed by transistors operating in saturation region, and n-type tran-

sistors are preferred because of their high saturation current. However, the analysis

and experimental results in Section 3.4 overturn these stereotypes once again: a pair of

p-type and n-type transistors performs best in the driving current density. Even in the

most efficient programming structure, i.e., 4T1R, the programming transistors usually

183

Chapter 6. Conclusion and Future Work

operate in linear region. In practice, since saturation current may never be reached,

programming efficiency should be boosted through increasing programming voltage

Vpr og and sizes of programming transistors Wpr og .

3. Previous works [26, 113, 9, 27, 8, 110, 6, 114, 111] typically concluded a remarkable

area reduction (15%-50%) for RRAM-based FPGAs. However, the layout-level results

in Section 5.1.4 overturn these stereotypes: area saving of RRAM-based FPGAs is in

general up to 15%, and the area of RRAM-based FPGAs can be slightly larger than SRAM-

based FPGAs when channel width is small. In fact, programming transistors occupy

similar transistor area as transmission gates (See Chapter 3). Indeed, the transistor area

contributed by SRAMs in multiplexers can be saved. But, considering their contribution

is below 30% in the total area, the overall area reduction is limited.

4. Previous works [26, 113, 9, 27, 8, 110, 6, 114, 111] usually focused on RRAM-based FPGAs

operating at nominal working voltage. However, this thesis intensively investigates the

opportunity of RRAM-based circuits and FPGAs operating at near-Vt regime. Experimen-

tal results in Section 3.8 and Section 5.2.5 reveal that near-Vt regime may be the golden

working voltage for RRAM-based circuits and FPGAs, because of the outstanding energy

efficiency. Since the resistance of RRAMs is only impacted by programming voltage, a

near-Vt working voltage leads to less performance degradation for RRAM-based circuits

and FPGAs, when compared to pure CMOS implementations. Hence, RRAM-based

circuit and FPGAs operating at near-Vt working voltage can remain as performant as

they are in nominal working voltage. Note that RRAM-based circuits and FPGAs can

still benefit from significant power reduction as their CMOS counterparts do in near-Vt

regime.

5. Previous works [26, 113, 9, 27, 8, 110, 6, 111] commonly assumed a large RRHS of RRAMs

in order to avoid serious leakage power overhead. In some extreme case [113, 9], re-

searches employ a RHRS as large as 1GΩ. However, the experimental results in Section

5.1.5 overturn these stereotypes: RHRS can be as low as 20MΩwithout causing power

overhead. The reduction on RHRS is owing to the different operating mechanism of

RRAM-based FPGAs: non-volatility allows them to be simply powered-off during long

idle period, consuming zero leakage power. Therefore, leakage power of RRAM-based

FPGAs only occurs during standard operation time, which is typically along with high

dynamic power consumption. In addition, there are other factors alleviating the effect

of RHRS on the power consumption of RRAM-based FPGAs: the use of CMOS circuits

(such as LUTs), smaller dynamic power consumption of RRAM-based multiplexers and

the reduced usage of SRAMs in FPGA architecture. As a result, considering the context of

FPGA architectures, RHRS can indeed be smaller than the off -resistance of a transistor,

without leading to any power overhead.

In short, the benefits of integrating RRAMs into FPGAs can be summarized as follows:

1. A smaller area footprint. The total area of a full FPGA fabric can be reduced up to 15%.

184

6.2. Future Work

2. High performance at both nominal and near Vt working voltages. The performance of

multiplexers can be improved by up to 3.7×. The performance of FPGA can be improved

by up to 39%.

3. Low power achieved without performance loss beyond the limitation of SRAM-based

FPGAs. The energy efficiency of multiplexers can be improved by up to 4.7×. The energy

efficiency of FPGA can be improved by up to 5×.

4. Non-volatility. FPGAs can be normally powered off and instantly powered on without

losing configurations.

6.2 Future Work

As this thesis contributes to three research fields: circuit designs, CAD and FPGA architectures,

the future works can also be split into the three categories:

1. Circuit-level: Considering the generality and efficiency of the 4T1R programming struc-

ture, we can investigate their opportunities in other RRAM-based applications, such as

neuromorphic computing. In addition, we can also extend the use of the 4T1R program-

ming structure to other emerging non-volatile memory technologies, such as Phase

Change Memory. In Section 5.1.4, the NV SRAMs have a significant impact of the area

of RRAM-based FPGAs. To further improve area efficiency, more compact NV SRAM

design well worth an investigation. In Section 3.9, we have investigated the impact of

process variations of Vset and Vr eset on the 4T1R-based multiplexers. Such study can be

extended to more RRAM device parameters such as writing speed. In addition, more

robust RRAM-based circuit designs can be proposed to resist the process variations.

2. CAD: FPGA-SPICE has been developed to provide accurate area and power analysis for

full FPGA fabric. Note that the area and power results can also be used to evaluate the

effectiveness of CAD algorithms, such as packing, placement and routing algorithms

for FPGAs. In addition, area and power results can serve as baselines for the purpose

of examining the accuracy of analytical area and power models. For instance, accurate

leakage power models can be developed for 4T1R-based multiplexers and examined with

FPGA-SPICE. We believe that as an open-source tool suite, FPGA-SPICE can motivate

more creative works in this research field.

3. FPGA architecture: In Section 5.1.4, we saw that the current BL/WL sharing strategy

leads to larger configuration circuits for RRAM-based FPGAs than their SRAM-based

counterpart. Therefore, it is necessary to study more efficient BL/WL sharing strategy

or even novel configuration circuits for RRAM-based FPGAs. The architecture-level

optimizations proposed in this thesis still is confined to the principles of SRAM-based

FPGA architectures. To further leverage the potential of RRAM-based circuits, we believe

that future work on RRAM-based FPGA architecture should break the routing topology

185

Chapter 6. Conclusion and Future Work

of conventional FPGA architectures. For instance, the routing architecture can be fully

re-designed to leverage the high-performance of RRAM-based multiplexers. In addition,

the proposed LB architecture in Chapter 5 eliminates the complex routing efforts during

packing stage, which is required for the local routing in a classical architecture. But

the default packer in VPR still performs full routing efforts, leading to an increase in

the overall routing (local and global) runtime by 2.4× on average. We believe that the

runtime of EDA flow can be significantly reduced by developing a lighter packer.

186

A An appendix

A.1 Examples of FPGA-SPICE Architecture Modeling

The following XML description models a representative homogeneous SRAM-based FPGA

architecture featured by K = 6, N = 10, I = 40, L = 4, Fc,i n = 0.15 and Fc,i n = 0.1. Note that all

the SRAMs are configured by BL/WL decoders, as shown in Fig. 5.1.

<architecture>

<models>

<model name="io">

<input_ports>

<port name="outpad"/>

</input_ports>

<output_ports>

<port name="inpad"/>

</output_ports>

</model>

</models>

<!– Physical descriptions begin –>

<layout auto="1.0"/>

<spice_settings>

187

Appendix A. An appendix

<parameters>

<options sim_temp="25" post="on" captab="off" fast="on"/>

<measure sim_num_clock_cycle="auto" accuracy="1e-13" accuracy_type="abs">

<slew>

<rise upper_thres_pct="0.95" lower_thres_pct="0.05"/>

<fall upper_thres_pct="0.05" lower_thres_pct="0.95"/>

</slew>

<delay>

<rise input_thres_pct="0.5" output_thres_pct="0.5"/>

<fall input_thres_pct="0.5" output_thres_pct="0.5"/>

</delay>

</measure>

<stimulate>

<clock op_freq="auto" sim_slack="0.2" prog_freq="2.5e6">

<rise slew_time="20e-12" slew_type="abs"/>

<fall slew_time="20e-12" slew_type="abs"/>

</clock>

<input>

<rise slew_time="100e-12" slew_type="abs"/>

<fall slew_time="100e-12" slew_type="abs"/>

</input>

</stimulate>

</parameters>

<tech_lib lib_type="industry" transistor_type="TOP_TT" lib_path="commercial_40nm_tech.l"
nominal_vdd="0.9" io_vdd="2.5"/>

<transistors pn_ratio="2" model_ref="M">

188

A.1. Examples of FPGA-SPICE Architecture Modeling

<nmos model_name="nch" chan_length="40e-9" min_width="140e-9"/>

<pmos model_name="pch" chan_length="40e-9" min_width="140e-9"/>

<io_nmos model_name="nch_25" chan_length="270e-9" min_width="320e-9"/>

<io_pmos model_name="pch_25" chan_length="270e-9" min_width="320e-9"/>

</transistors>

<module_spice_models>

<spice_model type="inv_buf" name="INVTX1" prefix="INVTX1" is_default="1">

<design_technology type="cmos" topology="inverter" size="1" tapered="off"/>

<port type="input" prefix="in" size="1"/>

<port type="output" prefix="out" size="1"/>

</spice_model>

<spice_model type="inv_buf" name="buf4" prefix="buf4" is_default="1">

<design_technology type="cmos" topology="buffer" size="4" tapered="off"/>

<port type="input" prefix="in" size="1"/>

<port type="output" prefix="out" size="1"/>

</spice_model>

<spice_model type="inv_buf" name="tap_buf4" prefix="tap_buf4" is_default="1">

<design_technology type="cmos" topology="buffer" size="1" tapered="on"
tap_buf_level="2" f_per_stage="4"/>

<port type="input" prefix="in" size="1"/>

<port type="output" prefix="out" size="1"/>

</spice_model>

<spice_model type="pass_gate" name="TGATE" prefix="TGATE" is_default="1">

<design_technology type="cmos" topology="transmission_gate" nmos_size="1"
pmos_size="2"/>

<input_buffer exist="off"/>

<output_buffer exist="off"/>

189

Appendix A. An appendix

<port type="input" prefix="in" size="1"/>

<port type="input" prefix="sel" size="1"/>

<port type="input" prefix="selb" size="1"/>

<port type="output" prefix="out" size="1"/>

</spice_model>

<spice_model type="chan_wire" name="chan_segment" prefix="track_seg" is_default="1">

<design_technology type="cmos"/>

<input_buffer exist="off"/>

<output_buffer exist="off"/>

<port type="input" prefix="in" size="1"/>

<port type="output" prefix="out" size="1"/>

<wire_param model_type="pie" res_val="0" cap_val="0" level="1"/>

</spice_model>

<spice_model type="wire" name="direct_interc" prefix="direct_interc" is_default="1">

<design_technology type="cmos"/>

<input_buffer exist="off"/>

<output_buffer exist="off"/>

<port type="input" prefix="in" size="1"/>

<port type="output" prefix="out" size="1"/>

<wire_param model_type="pie" res_val="0" cap_val="0" level="1"/>

</spice_model>

<spice_model type="mux" name="mux_2level" prefix="mux_2level" is_default="1"
dump_structural_verilog="true">

<design_technology type="cmos" structure="multi-level" num_level="2"/>

<input_buffer exist="on" spice_model_name="INVTX1"/>

<output_buffer exist="on" spice_model_name="INVTX1"/>

190

A.1. Examples of FPGA-SPICE Architecture Modeling

<pass_gate_logic spice_model_name="TGATE"/>

<port type="input" prefix="in" size="1"/>

<port type="output" prefix="out" size="1"/>

<port type="sram" prefix="sram" size="1"/>

</spice_model>

<spice_model type="mux" name="mux_1level" prefix="mux_1level" dump_structural_verilog="true">

<design_technology type="cmos" structure="one-level"/>

<input_buffer exist="on" spice_model_name="INVTX1"/>

<output_buffer exist="on" spice_model_name="INVTX1"/>

<pass_gate_logic spice_model_name="TGATE"/>

<port type="input" prefix="in" size="1"/>

<port type="output" prefix="out" size="1"/>

<port type="sram" prefix="sram" size="1"/>

</spice_model>

<spice_model type="ff" name="static_dff" prefix="dff" spice_netlist="ff.sp"
verilog_netlist="ff.v">

<design_technology type="cmos"/>

<input_buffer exist="on" spice_model_name="INVTX1"/>

<output_buffer exist="on" spice_model_name="INVTX1"/>

<pass_gate_logic spice_model_name="TGATE"/>

<port type="input" prefix="D" size="1"/>

<port type="input" prefix="Set" size="1" is_global"true" default_val="0"
is_set="true"/>

<port type="input" prefix="Reset" size="1" is_global="true" default_val="0"
is_reset="true"/>

<port type="output" prefix="Q" size="1"/>

<port type="clock" prefix="clk" size="1" is_global="true" default_val="0"

191

Appendix A. An appendix

/>

</spice_model>

<spice_model type="lut" name="lut6" prefix="lut6" dump_structural_verilog="true">

<design_technology type="cmos"/>

<input_buffer exist="on" spice_model_name="INVTX1"/>

<output_buffer exist="on" spice_model_name="INVTX1"/>

<lut_input_buffer exist="on" spice_model_name="tap_buf4"/>

<pass_gate_logic spice_model_name="TGATE"/>

<port type="input" prefix="in" size="6"/>

<port type="output" prefix="out" size="1"/>

<port type="sram" prefix="sram" size="64"/>

</spice_model>

<spice_model type="sram" name="sram6T_blwl" prefix="sram_blwl" spice_netlist="sram.sp"
verilog_netlist="sram.v">

<design_technology type="cmos"/>

<input_buffer exist="on" spice_model_name="INVTX1"/>

<output_buffer exist="on" spice_model_name="INVTX1"/>

<pass_gate_logic spice_model_name="TGATE"/>

<port type="input" prefix="in" size="1"/>

<port type="output" prefix="out" size="2"/>

<port type="bl" prefix="bl" size="1" default_val="0" inv_spice_model_name="INVTX1"/>

<port type="blb" prefix="blb" size="1" default_val="1" inv_spice_model_name="INVTX1"/>

<port type="wl" prefix="wl" size="1" default_val="0" inv_spice_model_name="INVTX1"/>

</spice_model>

<spice_model type="iopad" name="iopad" prefix="iopad" spice_netlist="io.sp"
verilog_netlist="io.v">

<design_technology type="cmos"/>

192

A.1. Examples of FPGA-SPICE Architecture Modeling

<input_buffer exist="on" spice_model_name="INVTX1"/>

<output_buffer exist="on" spice_model_name="INVTX1"/>

<pass_gate_logic spice_model_name="TGATE"/>

<port type="inout" prefix="pad" size="1"/>

<port type="sram" prefix="en" size="1" mode_select="true" spice_model_name="sram6T_blwl"
default_val="1"/>

<port type="input" prefix="outpad" size="1"/>

<port type="input" prefix="zin" size="1" is_global="true" default_val="0"
/>

<port type="output" prefix="inpad" size="1"/>

</spice_model>

</module_spice_models>

</spice_settings>

<device>

<sizing R_minW_nmos="8926" R_minW_pmos="16067" ipin_mux_trans_size="1.222260"/>

<timing C_ipin_cblock="1.47e-15" T_ipin_cblock="7.247000e-11"/>

<area grid_logic_tile_area="0"/>

<sram area="6">

<verilog organization="memory_bank" spice_model_name="sram6T_blwl"/>

<spice organization="standalone" spice_model_name="sram6T" />

</sram>

<chan_width_distr>

<io width="1.000000"/>

<x distr="uniform" peak="1.000000"/>

<y distr="uniform" peak="1.000000"/>

</chan_width_distr>

<switch_block type="wilton" fs="6"/>

193

Appendix A. An appendix

</device>

<cblocks>

<switch type="mux" name="cb_mux" R="0" Cin="1.47e-15" Cout="0" Tdel="7.247e-11"
mux_trans_size="2.630740" buf_size="4" spice_model_name="mux_1level" structure="multi-level"
num_level="1">

</switch>

</cblocks>

<switchlist>

<switch type="mux" name="0" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12"
mux_trans_size="2.630740" buf_size="27.645901" spice_model_name="mux_1level"
structure="one-level" num_level="1">

</switch>

</switchlist>

<segmentlist>

<segment freq="1" length="4" type="unidir" Rmetal="101" Cmetal="22.5e-15"
spice_model_name="chan_segment">

<mux name="0"/>

<sb type="pattern">1 1 1 1 1</sb>

<cb type="pattern">1 1 1 1</cb>

</segment>

</segmentlist>

<complexblocklist>

<!– Define I/O pads begin –>

<pb_type name="io" capacity="8" area="0" idle_mode_name="inpad" physical_mode_name="io_phy">

<input name="outpad" num_pins="1"/>

<output name="inpad" num_pins="1"/>

<!– physical design description –>

<mode name="io_phy" available_in_packing="false">

194

A.1. Examples of FPGA-SPICE Architecture Modeling

<pb_type name="iopad" blif_model=".subckt io" num_pb="1" spice_model_name="iopad">

<input name="outpad" num_pins="1"/>

<output name="inpad" num_pins="1"/>

</pb_type>

<interconnect>

<direct name="inpad" input="iopad.inpad" output="io.inpad">

<delay_constant max="4.243e-11" in_port="iopad.inpad" out_port="io.inpad"/>

</direct>

<direct name="outpad" input="io.outpad" output="iopad.outpad">

<delay_constant max="1.394e-11" in_port="io.outpad" out_port="iopad.outpad"/>

</direct>

</interconnect>

</mode>

<!– IOs can operate as either inputs or outputs.

Delays below come from Ian Kuon. They are small, so they should be interpreted
as

the delays to and from registers in the I/O (and generally I/Os are registered

today and that is when you timing analyze them.

–>

<mode name="inpad">

<pb_type name="inpad" blif_model=".input" num_pb="1" spice_model_name="iopad"
mode_bits="1">

<output name="inpad" num_pins="1"/>

</pb_type>

<interconnect>

<direct name="inpad" input="inpad.inpad" output="io.inpad">

<delay_constant max="4.243e-11" in_port="inpad.inpad" out_port="io.inpad"/>

195

Appendix A. An appendix

</direct>

</interconnect>

</mode>

<mode name="outpad">

<pb_type name="outpad" blif_model=".output" num_pb="1" spice_model_name="iopad"
mode_bits="0">

<input name="outpad" num_pins="1"/>

</pb_type>

<interconnect>

<direct name="outpad" input="io.outpad" output="outpad.outpad">

<delay_constant max="1.394e-11" in_port="io.outpad" out_port="outpad.outpad"/>

</direct>

</interconnect>

</mode>

<fc default_in_type="frac" default_in_val="0.15" default_out_type="frac"
default_out_val="0.10"/>

<pinlocations pattern="custom">

<loc side="left">io.outpad io.inpad</loc>

<loc side="top">io.outpad io.inpad</loc>

<loc side="right">io.outpad io.inpad</loc>

<loc side="bottom">io.outpad io.inpad</loc>

</pinlocations>

<gridlocations>

<loc type="perimeter" priority="10"/>

</gridlocations>

<power method="ignore"/>

</pb_type>

196

A.1. Examples of FPGA-SPICE Architecture Modeling

<!– Define I/O pads ends –>

<pb_type name="clb" area="53894" opin_to_cb="false">

<pin_equivalence_auto_detect input_ports ="off" output_ports="off"/>

<input name="I" num_pins="40" equivalent="true"/>

<output name="O" num_pins="10" equivalent="false"/>

<clock name="clk" num_pins="1"/>

<pb_type name="fle" num_pb="10" idle_mode_name="n1_lut6" physical_mode_name="n1_lut6">

<input name="in" num_pins="6"/>

<output name="out" num_pins="1"/>

<clock name="clk" num_pins="1"/>

<mode name="n1_lut6">

<pb_type name="ble6" num_pb="1">

<input name="in" num_pins="6"/>

<output name="out" num_pins="1"/>

<clock name="clk" num_pins="1"/>

<!– Define LUT –>

<pb_type name="lut6" blif_model=".names" num_pb="1" class="lut" spice_model_name="lut6">

<input name="in" num_pins="6" port_class="lut_in"/>

<output name="out" num_pins="1" port_class="lut_out"/>

<delay_matrix type="max" in_port="lut6.in" out_port="lut6.out">

261e-12

261e-12

261e-12

261e-12

261e-12

261e-12

197

Appendix A. An appendix

</delay_matrix>

</pb_type>

<!– Define flip-flop –>

<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop" spice_model_name="static_dff">

<input name="D" num_pins="1" port_class="D"/>

<output name="Q" num_pins="1" port_class="Q"/>

<clock name="clk" num_pins="1" port_class="clock"/>

<T_setup value="66e-12" port="ff.D" clock="clk"/>

<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>

</pb_type>

<interconnect>

<direct name="direct1" input="ble6.in" output="lut6[0:0].in"/>

<direct name="direct2" input="lut6.out" output="ff.D">

<pack_pattern name="ble6" in_port="lut6.out" out_port="ff.D"/>

</direct>

<direct name="direct3" input="ble6.clk" output="ff.clk"/>

<mux name="mux1" input="ff.Q lut6.out" output="ble6.out" spice_model_name="mux_1level">

<!– LUT to output is faster than FF to output on a Stratix IV –>

<delay_constant max="25e-12" in_port="lut6.out" out_port="ble6.out"
/>

<delay_constant max="45e-12" in_port="ff.Q" out_port="ble6.out" />

</mux>

</interconnect>

</pb_type>

<interconnect>

<direct name="direct1" input="fle.in" output="ble6.in"/>

198

A.1. Examples of FPGA-SPICE Architecture Modeling

<direct name="direct2" input="ble6.out" output="fle.out[0:0]"/>

<direct name="direct3" input="fle.clk" output="ble6.clk"/>

</interconnect>

</mode>

</pb_type>

<interconnect>

<complete name="crossbar" input="clb.I fle[9:0].out" output="fle[9:0].in"
spice_model_name="mux_2level">

<delay_constant max="95e-12" in_port="clb.I" out_port="fle[9:0].in" />

<delay_constant max="75e-12" in_port="fle[9:0].out" out_port="fle[9:0].in"
/>

</complete>

<complete name="clks" input="clb.clk" output="fle[9:0].clk">

</complete>

<direct name="clbouts1" input="fle[9:0].out[0:0]" output="clb.O[9:0]"/>

</interconnect>

<fc default_in_type="frac" default_in_val="0.15" default_out_type="frac"
default_out_val="0.10"/>

<pinlocations pattern="spread"/>

<!– Place this general purpose logic block in any unspecified column –>

<gridlocations>

<loc type="fill" priority="1"/>

</gridlocations>

</pb_type>

<!– Define general purpose logic block (CLB) ends –>

</complexblocklist>

</architecture>

199

Bibliography

[1] H. S. P. Wong, H. Y. Lee, S. Yu, Y. S. Chen, Y. Wu, P. S. Chen, B. Lee, F. T. Chen, and M. J.

Tsai, “Metal-Oxide RRAM,” Proceedings of the IEEE, vol. 100, no. 6, pp. 1951–1970, June

2012.

[2] E. Lee, G. Lemieux, and S. Mirabbasi, “Interconnect Driver Design for Long Wires

in Field-Programmable Gate Arrays,” in 2006 IEEE International Conference on Field

Programmable Technology, Dec 2006, pp. 89–96.

[3] X. Tang, E. Giacomin, G. D. Micheli, and P. E. Gaillardon, “Circuit Designs of High-

Performance and Low-Power RRAM-Based Multiplexers Based on 4T(ransistor)1R(RAM)

Programming Structure,” IEEE Transactions on Circuits and Systems I: Regular Papers,

vol. 64, no. 5, pp. 1173–1186, May 2017.

[4] J. R. V. Betz and A. Marquardt, Architecture and CAD for Deep-Sub-micro FPGAs. Kluwer

Academic Publishers Norwell, MA, USA, 1999.

[5] I. Kazi, P. Meinerzhagen, P. E. Gaillardon, D. Sacchetto, Y. Leblebici, A. Burg, and G. D.

Micheli, “Energy/Reliability Trade-Offs in Low-Voltage ReRAM-Based Non-Volatile Flip-

Flop Design,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 61, no. 11,

pp. 3155–3164, Nov 2014.

[6] X. Tang, P. E. Gaillardon, and G. D. Micheli, “A High-Performance Low-Power Near-Vt

RRAM-based FPGA,” in 2014 International Conference on Field-Programmable Technol-

ogy (FPT), Dec 2014, pp. 207–214.

[7] J. Greene, S. Kaptanoglu, W. Feng, V. Hecht, J. Landry, F. Li, A. Krouglyanskiy, M. Morosan,

and V. Pevzner, “A 65nm Flash-based FPGA Fabric Optimized for Low Cost and Power,”

in Proceedings of the 19th ACM/SIGDA international symposium on Field programmable

gate arrays (FPGA ’11). New York, NY, USA: ACM, 2011, pp. 87–96.

[8] P. E. Gaillardon, D. Sacchetto, G. B. Beneventi, M. H. B. Jamaa, L. Perniola, F. Clermidy,

I. O’Connor, and G. D. Micheli, “Design and Architectural Assessment of 3-D Resistive

Memory Technologies in FPGAs,” IEEE Transactions on Nanotechnology, vol. 12, no. 1,

pp. 40–50, Jan 2013.

201

Bibliography

[9] J. Cong and B. Xiao, “FPGA-RPI: A Novel FPGA Architecture With RRAM-Based Pro-

grammable Interconnects,” IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 22, no. 4, pp. 864–877, April 2014.

[10] P. Friess, Internet of Things - Global Technological and Societal Trends From

Smart Environments and Spaces to Green ICT, ser. River Publishers Series in

Communications. River Publishers, 2011. [Online]. Available: https://books.google.

ch/books?id=Eug-RvslW30C

[11] Evans and Dave, “The Internet of Things: How the Next Evolution of the Internet Is

Changing Everything,” Cisco, Tech. Rep., April 2011.

[12] L. D. Xu, W. He, and S. Li, “Internet of Things in Industries: A Survey,” IEEE Transactions

on Industrial Informatics, vol. 10, no. 4, pp. 2233–2243, November 2014.

[13] K. Srinidhi, D. John, and W. Oliver, “BLAS Comparison on FPGA, CPU and GPU,” in

Proceedings of the IEEE Annual Symposium on VLSI (ISVLSI). Washington, DC, USA:

IEEE Computer Society, 2010, pp. 288–293.

[14] A. Caulfield, E. Chung, A. Putnam, H. Angepat, J. Fowers, M. Haselman, S. Heil,

M. Humphrey, P. Kaur, J.-Y. Kim, D. Lo, T. Massengill, K. Ovtcharov, M. Papamichael,

L. Woods, S. Lanka, D. Chiou, and D. Burger, “A Cloud-Scale Acceleration Architecture,”

in Proceedings of the 49th Annual IEEE/ACM International Symposium on Microarchitec-

ture. IEEE Computer Society, October 2016.

[15] GrandView Research, “Field Programmable Gate Array (FPGA) Market Analysis By

Technology (SRAM, EEPROM, Antifuse, Flash), By Application (Consumer Electronics,

Automotive, Industrial, Data Processing, Military & Aerospace, Telecom), And

Segment Forecasts, 2014 - 2024,” GrandView Research Inc, Tech. Rep., December

2016. [Online]. Available: http://www.grandviewresearch.com/industry-analysis/

fpga-market/segmentation

[16] P. Dillien. And the Winner of Best FPGA of 2016 is. [Online]. Available: http:

//www.eetimes.com/author.asp?section_id=36&doc_id=1331443

[17] Y. Zhou, W. Wang, and X. Huang, “FPGA Design for PCANet Deep Learning Network,” in

IEEE 23rd Annual International Symposium on Field-Programmable Custom Computing

Machines (FFCM), May 2015, p. 232.

[18] I. Kuon and J. Rose, Quantifying and Exploring the Gap Between FPGAs and ASICs, 1st ed.

Springer Publishing Company, Incorporated, 2009.

[19] D. S. Jeong, R. Thomas, R. S. Katiyar, J. F. Scott, H. Kohlstedt, A. Petraru, and C. S. Hwang,

“Emerging Memories: Resistive Switching Mechanisms and Current Status,” Reports on

Progress in Physics, vol. 75, no. 7, p. 076502, 2012.

202

https://books.google.ch/books?id=Eug-RvslW30C
https://books.google.ch/books?id=Eug-RvslW30C
http://www.grandviewresearch.com/industry-analysis/fpga-market/segmentation
http://www.grandviewresearch.com/industry-analysis/fpga-market/segmentation
http://www.eetimes.com/author.asp?section_id=36&doc_id=1331443
http://www.eetimes.com/author.asp?section_id=36&doc_id=1331443

Bibliography

[20] G. W. Burr, B. N. Kurdi, J. C. Scott, C. H. Lam, K. Gopalakrishnan, and R. S. Shenoy,

“Overview of Candidate Device Technologies for Storage-Class Memory,” IBM Journal of

Research and Development, vol. 52, no. 4.5, pp. 449–464, July 2008.

[21] J. R. Stephen D. Brown, Robert J. Francis and Z. G. Vranesic, Field-Programmable Gate

Arrays. Springer US, 1992, vol. 180.

[22] Y. C. Chen, H. Li, W. Zhang, and R. E. Pino, “The 3-D Stacking Bipolar RRAM for High

Density,” IEEE Transactions on Nanotechnology, vol. 11, no. 5, pp. 948–956, September

2012.

[23] S. Ambrogio, S. Balatti, V. Milo, R. Carboni, Z. Q. Wang, A. Calderoni, N. Ramaswamy,

and D. Ielmini, “Neuromorphic Learning and Recognition With One-Transistor-One-

Resistor Synapses and Bistable Metal Oxide RRAM,” IEEE Transactions on Electron

Devices, vol. 63, no. 4, pp. 1508–1515, April 2016.

[24] A. Chen, “Comprehensive Assessment of RRAM-based PUF for Hardware Security

Applications,” in 2015 IEEE International Electron Devices Meeting (IEDM), Dec 2015,

pp. 10.7.1–10.7.4.

[25] O. Turkyilmaz, S. Onkaraiah, M. Reyboz, F. Clermidy, C. A. Hraziia, J. Portal, and

M. Bocquet, “RRAM-based FPGA for "Normally off, Instantly on" Applications,” in

2012 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH), July

2012, pp. 101–108.

[26] S. Tanachutiwat, M. Liu, and W. Wang, “FPGA Based on Integration of CMOS and RRAM,”

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 19, no. 11, pp.

2023–2032, Nov 2011.

[27] P.-E. Gaillardon, D. Sacchetto, S. Bobba, Y. Leblebici, and G. D. Micheli, “GMS: Generic

Memristive Structure for Non-Volatile FPGAs,” in 2012 IEEE/IFIP 20th International

Conference on VLSI and System-on-Chip (VLSI-SoC), October 2012, pp. 94–98.

[28] X. Tang, G. D. Micheli, and P. E. Gaillardon, “A High-performance FPGA Architecture

Using One-Level RRAM-based Multiplexers,” IEEE Transactions on Emerging Topics in

Computing, vol. 5, no. 2, pp. 1–12, 2016.

[29] I. G. Baek, M. S. Lee, S. Seo, M. J. Lee, D. H. Seo, D. S. Suh, J. C. Park, S. O. Park, H. S.

Kim, I. K. Yoo, U. I. Chung, and J. T. Moon, “Highly Scalable Nonvolatile Resistive

Memory Using Simple Binary Oxide Driven by Asymmetric Unipolar Voltage Pulses,” in

IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004., Dec 2004, pp.

587–590.

[30] P. E. Gaillardon, L. Amarú, A. Siemon, E. Linn, R. Waser, A. Chattopadhyay, and G. D.

Micheli, “The Programmable Logic-in-Memory (PLiM) Computer,” in 2016 Design,

Automation Test in Europe Conference Exhibition (DATE), March 2016, pp. 427–432.

203

Bibliography

[31] Y. Zha and J. Li, “Reconfigurable In-Memory Computing with Resistive Memory Cross-

bar,” in 2016 IEEE/ACM International Conference on Computer-Aided Design (ICCAD),

Nov 2016, pp. 1–8.

[32] S. Shirinzadeh, M. Soeken, P. E. Gaillardon, and R. Drechsler, “Fast Logic Synthesis for

RRAM-based In-Memory Computing Using Majority-Inverter Graphs,” in 2016 Design,

Automation Test in Europe Conference Exhibition (DATE), March 2016, pp. 948–953.

[33] J. F. Kang, B. Gao, P. Huang, L. F. Liu, X. Y. Liu, H. Y. Yu, S. Yu, and H. S. P. Wong, “RRAM

based Synaptic Devices for Neuromorphic Visual Systems,” in 2015 IEEE International

Conference on Digital Signal Processing (DSP), July 2015, pp. 1219–1222.

[34] G. Indiveri, E. Linn, and S. Ambrogio, “ReRAM-Based Neuromorphic Computing,” Resis-

tive Switching: From Fundamentals of Nanoionic Redox Processes to Memristive Device

Applications, pp. 715–736, 2016.

[35] R. Liu, H. Wu, Y. Pang, H. Qian, and S. Yu, “A Highly Reliable and Tamper-Resistant RRAM

PUF: Design and Experimental Validation,” in 2016 IEEE International Symposium on

Hardware Oriented Security and Trust (HOST), May 2016, pp. 13–18.

[36] Y. Pang, H. Wu, B. Gao, N. Deng, D. Wu, R. Liu, S. Yu, A. Chen, and H. Qian, “Optimization

of RRAM-Based Physical Unclonable Function With a Novel Differential Read-Out

Method,” IEEE Electron Device Letters, vol. 38, no. 2, pp. 168–171, Feb 2017.

[37] T. Breuer, L. Nielen, B. Roesgen, R. Waser, V. Rana, and E. Linn, “Realization of Minimum

and Maximum Gate Function in Ta2O5-based Memristive Devices,” Scientific reports,

vol. 6, 2016.

[38] R. Patel, S. Kvatinsky, E. G. Friedman, and A. Kolodny, “Multistate Register Based on

Resistive RAM,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23,

no. 9, pp. 1750–1759, Sept 2015.

[39] D. Apalkov, B. Dieny, and J. M. Slaughter, “Magnetoresistive Random Access Memory,”

Proceedings of the IEEE, vol. 104, no. 10, pp. 1796–1830, Oct 2016.

[40] H. S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi, and

K. E. Goodson, “Phase Change Memory,” Proceedings of the IEEE, vol. 98, no. 12, pp.

2201–2227, Dec 2010.

[41] F. Li, Y. Lin, L. He, D. Chen, and J. Cong, “Power Modeling and Characteristics of Field

Programmable Gate Arrays,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 24, no. 11, pp. 1712–1724, Nov 2005.

[42] B. H. Calhoun, J. F. Ryan, S. Khanna, M. Putic, and J. Lach, “Flexible Circuits and Archi-

tectures for Ultralow Power,” Proceedings of the IEEE, vol. 98, no. 2, pp. 267–282, Feb

2010.

204

Bibliography

[43] L. Cheng, P. Wong, F. Li, Y. Lin, and L. He, “Device and Architecture Co-optimization

for FPGA Power Reduction,” in Proceedings. 42nd Design Automation Conference, 2005.,

June 2005, pp. 915–920.

[44] J. Rose, J. Luu, C. W. Yu, O. Densmore, J. Goeders, A. Somerville, K. B. Kent, P. Jamieson,

and J. Anderson, “The VTR Project: Architecture and CAD for FPGAs from Verilog

to Routing,” in Proceedings of the ACM/SIGDA International Symposium on Field

Programmable Gate Arrays, ser. FPGA ’12. New York, NY, USA: ACM, 2012, pp. 77–86.

[Online]. Available: http://doi.acm.org/10.1145/2145694.2145708

[45] Cadence Design Systems Inc. (2016) Virtuoso Layout Suite. [Online].

Available: https://www.cadence.com/content/dam/cadence-www/global/en_US/

documents/tools/custom-ic-analog-rf-design/virtuoso-layout-suite-gxl-ds.pdf

[46] J. B. Goeders and S. J. E. Wilton, “VersaPower: Power Estimation for Diverse FPGA

Architectures,” in 2012 International Conference on Field-Programmable Technology,

Dec 2012, pp. 229–234.

[47] Synoposys Inc. (2010) HSPICE: The Gold Standard for Accurate Circuit Simulation.

[Online]. Available: https://www.synopsys.com/content/dam/synopsys/verification/

datasheets/hspice-ds.pdf

[48] J. Luu, J. H. Anderson, and J. S. Rose, “Architecture Description and Packing for

Logic Blocks with Hierarchy, Modes and Complex Interconnect,” in Proceedings of

the 19th ACM/SIGDA International Symposium on Field Programmable Gate Arrays,

ser. FPGA ’11. New York, NY, USA: ACM, 2011, pp. 227–236. [Online]. Available:

http://doi.acm.org/10.1145/1950413.1950457

[49] W. Kim, S. I. Park, Z. Zhang, Y. Yang-Liauw, D. Sekar, H. S. P. Wong, and S. S. Wong,

“Forming-free Nitrogen-doped AlOX RRAM with Sub-µA Programming Current,” in

2011 Symposium on VLSI Technology - Digest of Technical Papers, June 2011, pp. 22–23.

[50] Z. Fang, H. Y. Yu, X. Li, N. Singh, G. Q. Lo, and D. L. Kwong, “H f Ox /Ti Ox /H f Ox /Ti Ox

Multilayer-Based Forming-Free RRAM Devices With Excellent Uniformity,” IEEE Elec-

tron Device Letters, vol. 32, no. 4, pp. 566–568, April 2011.

[51] M.-J. Lee, S. Han, S. H. Jeon, B. H. Park, B. S. Kang, S.-E. Ahn, K. H. Kim, C. B. Lee, C. J.

Kim, I.-K. Yoo et al., “Electrical Manipulation of Nanofilaments in Transition-Metal

Oxides for Resistance-based Memory,” Nano letters, vol. 9, no. 4, pp. 1476–1481, 2009.

[52] C. Y. Mei, W. C. Shen, Y. D. Chih, Y.-C. King, and C. J. Lin, “28nm High-k Metal Gate

RRAM with Fully Compatible CMOS Logic Processes,” in 2013 International Symposium

on VLSI Technology, Systems and Application (VLSI-TSA), April 2013, pp. 1–2.

[53] D. Pramanik, T. Chiang, and D. Lazovsky, “Creating an Embedded Reram Memory from

a High-K Metal Gate Transistor Structure,” Aug. 12 2014, uS Patent 8,803,124. [Online].

Available: https://www.google.com/patents/US8803124

205

http://doi.acm.org/10.1145/2145694.2145708
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/custom-ic-analog-rf-design/virtuoso-layout-suite-gxl-ds.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/custom-ic-analog-rf-design/virtuoso-layout-suite-gxl-ds.pdf
https://www.synopsys.com/content/dam/synopsys/verification/datasheets/hspice-ds.pdf
https://www.synopsys.com/content/dam/synopsys/verification/datasheets/hspice-ds.pdf
http://doi.acm.org/10.1145/1950413.1950457
https://www.google.com/patents/US8803124

Bibliography

[54] J. Liang and H. S. P. Wong, “Cross-Point Memory Array Without Cell Selectors — Device

Characteristics and Data Storage Pattern Dependencies,” IEEE Transactions on Electron

Devices, vol. 57, no. 10, pp. 2531–2538, Oct 2010.

[55] M. J. Lee, Y. Park, B. S. Kang, S. E. Ahn, C. Lee, K. Kim, W. Xianyu, G. Stefanovich, J. H.

Lee, S. J. Chung, Y. H. Kim, C. S. Lee, J. B. Park, I. G. Baek, and I. K. Yoo, “2-stack 1D-1R

Cross-point Structure with Oxide Diodes as Switch Elements for High Density Resistance

RAM Applications,” in 2007 IEEE International Electron Devices Meeting, Dec 2007, pp.

771–774.

[56] Z. Wei, Y. Kanzawa, K. Arita, Y. Katoh, K. Kawai, S. Muraoka, S. Mitani, S. Fujii,

K. Katayama, M. Iijima, T. Mikawa, T. Ninomiya, R. Miyanaga, Y. Kawashima, K. Tsuji,

A. Himeno, T. Okada, R. Azuma, K. Shimakawa, H. Sugaya, T. Takagi, R. Yasuhara,

K. Horiba, H. Kumigashira, and M. Oshima, “Highly Reliable TaOx ReRAM and Direct

Evidence of Redox Reaction Mechanism,” in 2008 IEEE International Electron Devices

Meeting, Dec 2008, pp. 1–4.

[57] W. Guan, S. Long, Q. Liu, M. Liu, and W. Wang, “Nonpolar Nonvolatile Resistive Switching

in Cu Doped Zr O2,” IEEE Electron Device Letters, vol. 29, no. 5, pp. 434–437, May 2008.

[58] Y. S. Chen, H. Y. Lee, P. S. Chen, P. Y. Gu, C. W. Chen, W. P. Lin, W. H. Liu, Y. Y. Hsu, S. S.

Sheu, P. C. Chiang, W. S. Chen, F. T. Chen, C. H. Lien, and M. J. Tsai, “Highly Scalable

Hafnium Oxide Memory with Improvements of Resistive Distribution and Read Disturb

Immunity,” in 2009 IEEE International Electron Devices Meeting (IEDM), Dec 2009, pp.

1–4.

[59] J. Sandrini, M. Thammasack, T. Demirci, P.-E. Gaillardon, D. Sacchetto, G. De Micheli,

and Y. Leblebici, “Heterogeneous Integration of ReRAM Crossbars in 180nm CMOS

BEoL process,” Microelectronic Engineering, vol. 145, pp. 62–65, 2015.

[60] B. Govoreanu, A. Redolfi, L. Zhang, C. Adelmann, M. Popovici, S. Clima, H. Hody,

V. Paraschiv, I. P. Radu, A. Franquet, J. C. Liu, J. Swerts, O. Richard, H. Bender, L. Al-

timime, and M. Jurczak, “Vacancy-Modulated Conductive Oxide Resistive RAM (VMCO-

RRAM): An Area-Scalable Switching Current, Self-Compliant, Highly Nonlinear and

Wide On/Off-Window Resistive Switching Cell,” in 2013 IEEE International Electron

Devices Meeting, Dec 2013, pp. 10.2.1–10.2.4.

[61] A. Schönhals, J. Mohr, D. J. Wouters, R. Waser, and S. Menzel, “3-bit Resistive RAM

Write-Read Scheme Based on Complementary Switching Mechanism,” IEEE Electron

Device Letters, vol. 38, no. 4, pp. 449–452, April 2017.

[62] B. Govoreanu, G. S. Kar, Y. Y. Chen, V. Paraschiv, S. Kubicek, A. Fantini, I. P. Radu,

L. Goux, S. Clima, R. Degraeve, N. Jossart, O. Richard, T. Vandeweyer, K. Seo, P. Hen-

drickx, G. Pourtois, H. Bender, L. Altimime, D. J. Wouters, J. A. Kittl, and M. Jurczak,

“10×10nm2 H f /H f Ox Crossbar Resistive RAM with Excellent Performance, Reliability

206

Bibliography

and Low-energy Operation,” in 2011 International Electron Devices Meeting, Dec 2011,

pp. 31.6.1–31.6.4.

[63] H. W. Pan, K. P. Huang, S. Y. Chen, P. C. Peng, Z. S. Yang, C. H. Kuo, Y. D. Chih, Y. C. King,

and C. J. Lin, “1Kbit FinFET Dielectric (FIND) RRAM in Pure 16nm FinFET CMOS Logic

Process,” in 2015 IEEE International Electron Devices Meeting (IEDM), Dec 2015, pp.

10.5.1–10.5.4.

[64] S. G. Kim, T. J. Ha, S. Kim, J. Y. Lee, K. W. Kim, J. H. Shin, Y. T. Park, S. P. Song, B. Y. Kim,

W. G. Kim, J. C. Lee, H. S. Lee, J. H. Song, E. R. Hwang, S. H. Cho, J. C. Ku, J. I. Kim, K. S.

Kim, J. H. Yoo, H. J. Kim, H. G. Jung, K. J. Lee, S. Chung, J. H. Kang, J. H. Lee, H. S. Kim, S. J.

Hong, G. Gibson, and Y. Jeon, “Improvement of Characteristics of NbO2 Selector and

Full Integration of 4F 2 2x-nm Tech 1S1R ReRAM,” in 2015 IEEE International Electron

Devices Meeting (IEDM), Dec 2015, pp. 10.3.1–10.3.4.

[65] S. Yu, X. Guan, and H. S. P. Wong, “On the Stochastic Nature of Resistive Switching in

Metal Oxide RRAM: Physical Modeling, Monte Carlo Simulation, and Experimental

Characterization,” in 2011 International Electron Devices Meeting, Dec 2011, pp. 17.3.1–

17.3.4.

[66] D. Kim, M. Lee, S. Ahn, S. Seo, J. Park, I. Yoo, I. Baek, H. Kim, E. Yim, J. Lee et al.,

“Improvement of Resistive Memory Switching in Ni O using Ir O2,” Applied physics letters,

vol. 88, no. 23, p. 232106, 2006.

[67] S. Yu, B. Gao, H. Dai, B. Sun, L. Liu, X. Liu, R. Han, J. Kang, and B. Yu, “Improved

Uniformity of Resistive Switching Behaviors in H f O2 Thin Films with Embedded Al

Layers,” Electrochemical and Solid-State Letters, vol. 13, no. 2, pp. H36–H38, 2010.

[68] Q. Liu, M. Liu, S. Long, W. Wang, M. Zhang, Q. Wang, and J. Chen, “Improvement of

Resistive Switching Properties in Zr O2 based ReRAM with Implanted Metal Ions,” in

2009 Proceedings of the European Solid State Device Research Conference, Sept 2009, pp.

221–224.

[69] W.-Y. Chang, K.-J. Cheng, J.-M. Tsai, H.-J. Chen, F. Chen et al., “Improvement of Resistive

Switching Characteristics in Ti O2 Thin Films with Embedded Pt Nanocrystals,” Applied

Physics Letters, vol. 95, no. 4, p. 042104, 2009.

[70] B. Lee and H. S. P. Wong, “Ni O Resistance Change Memory with a Novel Structure for

3D Integration and Improved Confinement of Conduction Path,” in 2009 Symposium on

VLSI Technology, June 2009, pp. 28–29.

[71] J. Lee, J. Shin, D. Lee, W. Lee, S. Jung, M. Jo, J. Park, K. P. Biju, S. Kim, S. Park, and

H. Hwang, “Diode-less Nano-scale Zr Ox /H f Ox RRAM Device with Excellent Switching

Uniformity and Reliability for High-density Cross-point Memory Applications,” in 2010

International Electron Devices Meeting, Dec 2010, pp. 19.5.1–19.5.4.

207

Bibliography

[72] Y. Wu, J. Liang, S. Yu, X. Guan, and H. S. P. Wong, “Resistive Switching Random Access

Memory - Materials, Device, Interconnects, and Scaling Considerations,” in 2012 IEEE

International Integrated Reliability Workshop Final Report, Oct 2012, pp. 16–21.

[73] S. Yu, B. Gao, Z. Fang, H. Yu, J. Kang, and H. S. P. Wong, “A Neuromorphic Visual System

using RRAM Synaptic Devices with Sub-pJ Energy and Tolerance to Variability: Exper-

imental Characterization and Large-scale Modeling,” in 2012 International Electron

Devices Meeting, Dec 2012, pp. 10.4.1–10.4.4.

[74] F. M. Puglisi, P. Pavan, L. Larcher, and A. Padovani, “Analysis of RTN and Cycling Variabil-

ity in H f O2 RRAM Devices in LRS,” in 2014 44th European Solid State Device Research

Conference (ESSDERC), Sept 2014, pp. 246–249.

[75] A. Levisse, B. Giraud, J. P. Noël, M. Moreau, and J. M. Portal, “SneakPath Compensation

Circuit for Programming and Read Operations in RRAM-based CrossPoint Architectures,”

in 2015 15th Non-Volatile Memory Technology Symposium (NVMTS), Oct 2015, pp. 1–4.

[76] F. Puglisi, C. Wenger, and P. Pavan, “A Novel Program-Verify Algorithm for Multi-Bit

Operation in H f O2 RRAM,” IEEE Electron Device Letters, vol. 36, no. 10, pp. 1030–1032,

2015.

[77] H. Aziza, M. Bocquet, M. Moreau, and J.-M. Portal, “A Built-In Self-Test Structure (BIST)

for Resistive RAMs Characterization: Application to Bipolar OxRRAM,” Solid-State Elec-

tronics, vol. 103, pp. 73–78, 2015.

[78] Altera Corporation. (2014, December) MAX 10 FPGA Device Overview. [Online].

Available: http://www.altera.com/literature/hb/max-10/m10overview.pdf

[79] B. Gao, J. F. Kang, Y. S. Chen, F. F. Zhang, B. Chen, P. Huang, L. F. Liu, X. Y. Liu, Y. Y. Wang,

X. A. Tran, Z. R. Wang, H. Y. Yu, and A. Chin, “Oxide-based RRAM: Unified Microscopic

Principle for Both Unipolar and Bipolar Switching,” in 2011 International Electron

Devices Meeting, Dec 2011, pp. 17.4.1–17.4.4.

[80] C. Clos, “A Study of Non-Blocking Switching Networks,” Bell Labs Technical Journal,

vol. 32, no. 2, pp. 406–424, 1953.

[81] Xilinx Inc. (1997) XC4000E and XC4000X Series Field-Programmable Gate Arrays.

[82] Xilinx Inc. (2017) All Programmable 7 Series Product Selection Guide (XMP101).

[Online]. Available: https://www.xilinx.com/support/documentation/selection-guides/

7-series-product-selection-guide.pdf

[83] S. Mühlbach and A. Koch, “A Dynamically Reconfigured Multi-FPGA Network

Platform for High-speed Malware Collection,” International Journal of Reconfigurable

Computing - Special issue on Selected Papers from the International Conference on

Reconfigurable Computing and FPGAs, vol. 2012, pp. 4:4–4:4, Jan. 2012. [Online].

Available: http://dx.doi.org/10.1155/2012/342625

208

http://www.altera.com/literature/hb/max-10/m10 overview.pdf
https://www.xilinx.com/support/documentation/selection-guides/7-series-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/7-series-product-selection-guide.pdf
http://dx.doi.org/10.1155/2012/342625

Bibliography

[84] M. Stepniewska, A. Luczak, and J. Siast, “Network-on-Multi-Chip (NoMC) for Multi-

FPGA Multimedia Systems,” in 2010 13th Euromicro Conference on Digital System Design:

Architectures, Methods and Tools, Sept 2010, pp. 475–481.

[85] Intel Corporation. (2017) Stratix 10 GX/SX Device Overview. [Online]. Available:

https://www.altera.com/documentation/joc1442261161666.html#joc1443027925492

[86] D. Tavana, W. Yee, and V. Holen, “FPGA Architecture with Repeatable Tiles Including

Routing Matrices and Logic Matrices,” Oct. 28 1997, uS Patent 5,682,107. [Online].

Available: http://www.google.com/patents/US5682107

[87] D. Lewis, E. Ahmed, G. Baeckler, V. Betz, M. Bourgeault, D. Cashman, D. Galloway,

M. Hutton, C. Lane, A. Lee, P. Leventis, S. Marquardt, C. McClintock, K. Padalia,

B. Pedersen, G. Powell, B. Ratchev, S. Reddy, J. Schleicher, K. Stevens, R. Yuan,

R. Cliff, and J. Rose, “The stratix ii logic and routing architecture,” in Proceedings

of the 2005 ACM/SIGDA 13th International Symposium on Field-programmable Gate

Arrays, ser. FPGA ’05. New York, NY, USA: ACM, 2005, pp. 14–20. [Online]. Available:

http://doi.acm.org/10.1145/1046192.1046195

[88] D. Lewis, E. Ahmed, D. Cashman, T. Vanderhoek, C. Lane, A. Lee, and P. Pan,

“Architectural Enhancements in Stratix-III™and Stratix-IV™,” in Proceedings of

the ACM/SIGDA International Symposium on Field Programmable Gate Arrays,

ser. FPGA ’09. New York, NY, USA: ACM, 2009, pp. 33–42. [Online]. Available:

http://doi.acm.org/10.1145/1508128.1508135

[89] D. Lewis, D. Cashman, M. Chan, J. Chromczak, G. Lai, A. Lee, T. Vanderhoek,

and H. Yu, “Architectural Enhancements in Stratix V™,” in Proceedings of the

ACM/SIGDA International Symposium on Field Programmable Gate Arrays, ser.

FPGA ’13. New York, NY, USA: ACM, 2013, pp. 147–156. [Online]. Available:

http://doi.acm.org/10.1145/2435264.2435292

[90] D. Lewis, G. Chiu, J. Chromczak, D. Galloway, B. Gamsa, V. Manohararajah, I. Milton,

T. Vanderhoek, and J. Van Dyken, “The Stratix™10 Highly Pipelined FPGA Architecture,”

in Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable

Gate Arrays, ser. FPGA ’16. New York, NY, USA: ACM, 2016, pp. 159–168. [Online].

Available: http://doi.acm.org/10.1145/2847263.2847267

[91] Xilinx Inc. (2017) All Programmable SoC with Hardware and Software Programmability.

[Online]. Available: https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.

html

[92] J. H. Kim and J. H. Anderson, “Synthesizable FPGA Fabrics Targetable by the Verilog-to-

Routing (VTR) CAD Flow,” in 2015 25th International Conference on Field Programmable

Logic and Applications (FPL), Sept 2015, pp. 1–8.

209

https://www.altera.com/documentation/joc1442261161666.html#joc1443027925492
http://www.google.com/patents/US5682107
http://doi.acm.org/10.1145/1046192.1046195
http://doi.acm.org/10.1145/1508128.1508135
http://doi.acm.org/10.1145/2435264.2435292
http://doi.acm.org/10.1145/2847263.2847267
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html

Bibliography

[93] J. Luu, C. McCullough, S. Wang, S. Huda, B. Yan, C. Chiasson, K. B. Kent, J. Anderson,

J. Rose, and V. Betz, “On Hard Adders and Carry Chains in FPGAs,” in Proceedings of the

2014 IEEE 22Nd International Symposium on Field-Programmable Custom Computing

Machines, ser. FCCM ’14. Washington, DC, USA: IEEE Computer Society, 2014, pp.

52–59. [Online]. Available: http://dx.doi.org/10.1109/.23

[94] A. Petkovska, G. Zgheib, D. Novo, M. Owaida, A. Mishchenko, and P. Ienne, “Improved

Carry Chain Mapping for the VTR Flow,” in 2015 International Conference on Field

Programmable Technology (FPT), Dec 2015, pp. 80–87.

[95] Z. Chu, X. Tang, M. Soeken, A. Petkovska, G. Zgheib, L. Amarù, Y. Xia, P. Ienne,

G. De Micheli, and P.-E. Gaillardon, “Improving circuit mapping performance through

mig-based synthesis for carry chains,” in Proceedings of the on Great Lakes Symposium

on VLSI 2017, ser. GLSVLSI ’17. New York, NY, USA: ACM, 2017, pp. 131–136. [Online].

Available: http://doi.acm.org/10.1145/3060403.3060432

[96] H. Parandeh-Afshar, P. Brisk, and P. Ienne, “Improving Synthesis of Compressor Trees

on FPGAs via Integer Linear Programming,” in Design, Automation and Test in Europe,

2008. DATE’08. IEEE, 2008, pp. 1256–1261.

[97] M. Hutton, J. Schleicher, D. Lewis, B. Pedersen, R. Yuan, S. Kaptanoglu, G. Baeckler,

B. Ratchev, K. Padalia, M. Bourgeault et al., “Improving FPGA Performance and Area

Using an Adaptive Logic Module,” Field Programmable Logic and Application, pp. 135–

144, 2004.

[98] G. Lemieux, E. Lee, M. Tom, and A. Yu, “Directional and Single-Driver Wires in FPGA In-

terconnect,” in Proceedings. 2004 IEEE International Conference on Field- Programmable

Technology (IEEE Cat. No.04EX921), Dec 2004, pp. 41–48.

[99] J. Tyhach, M. Hutton, S. Atsatt, A. Rahman, B. Vest, D. Lewis, M. Langhammer, S. Shu-

marayev, T. Hoang, A. Chan, D. M. Choi, D. Oh, H. C. Lee, J. Chui, K. C. Sia, E. Kok, W. Y.

Koay, and B. J. Ang, “Arria ™10 Device architecture,” in 2015 IEEE Custom Integrated

Circuits Conference (CICC), Sept 2015, pp. 1–8.

[100] G. Lemieux and D. Lewis, “Using sparse crossbars within lut,” in Proceedings of

the 2001 ACM/SIGDA Ninth International Symposium on Field Programmable Gate

Arrays, ser. FPGA ’01. New York, NY, USA: ACM, 2001, pp. 59–68. [Online]. Available:

http://doi.acm.org/10.1145/360276.360299

[101] G. Lemieux, P. Leventis, and D. Lewis, “Generating Highly-Routable Sparse Crossbars

for PLDs,” in Proceedings of the 2000 ACM/SIGDA Eighth International Symposium on

Field Programmable Gate Arrays, ser. FPGA ’00. New York, NY, USA: ACM, 2000, pp.

155–164. [Online]. Available: http://doi.acm.org/10.1145/329166.329199

[102] X. Tang, P. E. Gaillardon, and G. D. Micheli, “Pattern-based FPGA Logic Block and

Clustering Algorithm,” in 2014 24th International Conference on Field Programmable

Logic and Applications (FPL), Sept 2014, pp. 1–4.

210

http://dx.doi.org/10.1109/.23
http://doi.acm.org/10.1145/3060403.3060432
http://doi.acm.org/10.1145/360276.360299
http://doi.acm.org/10.1145/329166.329199

Bibliography

[103] X. Tang, P.-E. Gaillardon, and G. De Micheli, “A Full-Capacity Local RoutingArchitecture

for FPGAs (Abstract Only),” in Proceedings of the 2016 ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays, ser. FPGA ’16. New York, NY, USA:

ACM, 2016, pp. 281–281. [Online]. Available: http://doi.acm.org/10.1145/2847263.

2847314

[104] W. C. Elmore, “The Transient Response of Damped Linear Networks with Particular

Regard to Wideband Amplifiers,” Journal of applied physics, vol. 19, no. 1, pp. 55–63,

1948.

[105] T. Tuan and B. Lai, “Leakage Power Analysis of a 90nm FPGA,” in Proceedings of the IEEE

2003 Custom Integrated Circuits Conference, 2003., Sept 2003, pp. 57–60.

[106] J. J. Wang, S. Samiee, H. S. Chen, C. K. Huang, M. Cheung, J. Borillo, S. N. Sun, B. Cron-

quist, and J. McCollum, “Total ionizing dose effects on flash-based field programmable

gate array,” IEEE Transactions on Nuclear Science, vol. 51, no. 6, pp. 3759–3766, Dec

2004.

[107] W. D. Brown, J. E. Brewer et al., “Nonvolatile Semiconductor Memory Technology,” IEEE,

New York, 1998.

[108] M. Zangeneh and A. Joshi, “Performance and Energy Models for Memristor-based

1T1R RRAM Cell,” in Proceedings of the Great Lakes Symposium on VLSI, ser.

GLSVLSI ’12. New York, NY, USA: ACM, 2012, pp. 9–14. [Online]. Available:

http://doi.acm.org/10.1145/2206781.2206786

[109] Y. C. Chen, W. Wang, H. Li, and W. Zhang, “Non-volatile 3D stacking RRAM-based FPGA,”

in 22nd International Conference on Field Programmable Logic and Applications (FPL),

Aug 2012, pp. 367–372.

[110] P. E. Gaillardon, M. H. Ben-Jamaa, G. B. Beneventi, F. Clermidy, and L. Perniola, “Emerg-

ing Memory Technologies for Reconfigurable Routing in FPGA Architecture,” in 2010

17th IEEE International Conference on Electronics, Circuits and Systems, Dec 2010, pp.

62–65.

[111] X. Tang, S. R. Omam, P. Meinerzhagen, P.-E. Gaillardon, and G. De Micheli, “Low Power

FPGAs Based on Resistive Memories,” CRC Press, Tech. Rep., 2015.

[112] K. H. et al., “A Low Active Leakage and High Reliability Phase Change Memory (PCM)

based Non-Volatile FPGA Storage Element,” IEEE TCAS I, vol. 61, no. 9, pp. 2605–2613,

2014.

[113] J. Cong and B. Xiao, “mrFPGA: A Novel FPGA Architecture with Memristor-based Recon-

figuration,” in Proceedings of the 2011 IEEE/ACM International Symposium on Nanoscale

Architectures. IEEE Computer Society, 2011, pp. 1–8.

211

http://doi.acm.org/10.1145/2847263.2847314
http://doi.acm.org/10.1145/2847263.2847314
http://doi.acm.org/10.1145/2206781.2206786

Bibliography

[114] X. Tang, P. E. Gaillardon, and G. D. Micheli, “Accurate Power Analysis for Near-Vt RRAM-

based FPGA,” in 2015 25th International Conference on Field Programmable Logic and

Applications (FPL), Sept 2015, pp. 1–4.

[115] N. Jovanović, O. Thomas, E. Vianello, J. M. Portal, B. Nikolić, and L. Naviner, “OxRAM-

based Non Volatile Flip-Flop in 28nm FDSOI,” in 2014 IEEE 12th International New

Circuits and Systems Conference (NEWCAS), June 2014, pp. 141–144.

[116] J.-M. Portal, M. Bocquet, M. Moreau, H. Aziza, D. Deleruyelle, Y. Zhang, W. Kang, J.-O.

Klein, Y. Zhang, C. Chappert et al., “An Overview of Non-Volatile Flip-Flops based on

Emerging Memory Technologies,” J. Electron. Sci. Technol., vol. 12, no. 2, pp. 173–181,

2014.

[117] Y. Y. Liauw, Z. Zhang, W. Kim, A. El Gamal, and S. S. Wong, “Nonvolatile 3D-FPGA with

Monolithically Stacked RRAM-based Configuration Memory,” in Solid-State Circuits

Conference Digest of Technical Papers (ISSCC), 2012 IEEE International. IEEE, 2012, pp.

406–408.

[118] K. Huang, R. Zhao, W. He, and Y. Lian, “High-Density and High-Reliability Nonvolatile

Field-Programmable Gate Array With Stacked 1D2R RRAM Array,” IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, vol. 24, no. 1, pp. 139–150, Jan 2016.

[119] P. E. Gaillardon, M. H. Ben-Jamaa, M. Reyboz, G. B. Beneventi, F. Clermidy, L. Perniola,

and I. O’Connor, “Phase-change-memory-based Storage Elements for Configurable

Logic,” in 2010 International Conference on Field-Programmable Technology, Dec 2010,

pp. 17–20.

[120] E. Linn, R. Rosezin, C. Kügeler, and R. Waser, “Complementary Resistive Switches for

Passive Nanocrossbar Memories,” Nature materials, vol. 9, no. 5, pp. 403–406, 2010.

[121] M. A. Zidan, H. A. H. Fahmy, M. M. Hussain, and K. N. Salama, “Memristor-based

Memory: The Sneak Paths Problem and Solutions,” Microelectronics Journal, vol. 44,

no. 2, pp. 176–183, 2013.

[122] Y. Cassuto, S. Kvatinsky, and E. Yaakobi, “Sneak-Path Constraints in Memristor Crossbar

Arrays,” in Information Theory Proceedings (ISIT), 2013 IEEE International Symposium

on. IEEE, 2013, pp. 156–160.

[123] Berkeley Logic Synthesis and Verification Group. ABC: A System for Sequential Synthesis

and Verification.

[124] J. Lamoureux and S. J. E. Wilton, “Activity Estimation for Field-Programmable Gate

Arrays,” in 2006 International Conference on Field Programmable Logic and Applications,

Aug 2006, pp. 1–8.

[125] C. Chiasson and V. Betz, “COFFE: Fully-Automated Transistor Sizing for FPGAs,” in

2013 International Conference on Field-Programmable Technology (FPT), Dec 2013, pp.

34–41.

212

Bibliography

[126] F. N. Najm, “A Survey of Power Estimation Techniques in VLSI Circuits,” IEEE Transac-

tions on Very Large Scale Integration (VLSI) Systems, vol. 2, no. 4, pp. 446–455, 1994.

[127] J. H. Anderson and F. N. Najm, “Power estimation techniques for fpgas,” IEEE Transac-

tions on Very Large Scale Integration (VLSI) Systems, vol. 12, no. 10, pp. 1015–1027, Oct

2004.

[128] K. K. Poon, S. J. Wilton, and A. Yan, “A Detailed Power Model for Field-Programmable

Gate Arrays,” ACM Transactions on Design Automation of Electronic Systems (TODAES),

vol. 10, no. 2, pp. 279–302, 2005.

[129] S. R. Vemuru and N. Scheinberg, “Short-Circuit Power Dissipation Estimation for CMOS

Logic Gates,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and

Applications, vol. 41, no. 11, pp. 762–765, Nov 1994.

[130] Z. Jiang, S. Yu, Y. Wu, J. H. Engel, X. Guan, and H.-S. P. Wong, “Verilog-A Compact

Model for Oxide-based Resistive Random Access Memory (RRAM),” in Simulation of

Semiconductor Processes and Devices (SISPAD), 2014 International Conference on. IEEE,

2014, pp. 41–44.

[131] Z. Jiang, Y. Wu, S. Yu, L. Yang, K. Song, Z. Karim, and H. S. P. Wong, “A Compact Model

for Metal-Oxide Resistive Random Access Memory With Experiment Verification,” IEEE

Transactions on Electron Devices, vol. 63, no. 5, pp. 1884–1892, May 2016.

[132] J. M. Rabaey, A. P. Chandrakasan, and B. Nikolic, “Digital Integrated Circuits,” 2002.

[133] X. Tang, G. Kim, P.-E. Gaillardon, and G. De Micheli, “A Study on the Programming

Structures for RRAM-based FPGA Architectures,” IEEE Transactions on Circuits and

Systems I: Regular Papers, vol. 63, no. 4, pp. 503–516, 2016.

[134] L. Benini and G. De Micheli, “Networks on Chips: A New SoC Paradigm,” IEEE Computer,

pp. 70–78, 2002.

[135] Mentor Graphics. (2017) ModelSim. [Online]. Available: https://www.mentor.com/

products/fv/modelsim/

[136] Laboratory of Integrated Systems (LSI) of EPFL . (2011) FPGA-SPICE Introduction

Webpage. [Online]. Available: http://lsi.epfl.ch/downloads

[137] Cadence Design Systems Inc. (2017) Innovus Implementation System: Meet PPA and

TAT Requirements At Advanced Nodes. [Online]. Available: https://www.cadence.

com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/

hierarchical-design-and-floorplanning/innovus-implementation-system.html

[138] S. Yang, Logic Synthesis and Optimization Benchmarks User Guide: Version 3.0. Micro-

electronics Center of North Carolina (MCNC), 1991.

213

https://www.mentor.com/products/fv/modelsim/
https://www.mentor.com/products/fv/modelsim/
http://lsi.epfl.ch/downloads
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/hierarchical-design-and-floorplanning/innovus-implementation-system.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/hierarchical-design-and-floorplanning/innovus-implementation-system.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/hierarchical-design-and-floorplanning/innovus-implementation-system.html

Bibliography

[139] Nanoscale Integration and Modeling (NIMO) Group at Arizona State University (ASU).

(2011) Predictive Technology Model (PTM). [Online]. Available: http://ptm.asu.edu/

[140] B. Hoefflinger, ITRS: The International Technology Roadmap for Semiconductors.

Springer, 2011.

[141] M. Lin, A. E. Gamal, Y. C. Lu, and S. Wong, “Performance benefits of monolithically

stacked 3-d fpga,” IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 26, no. 2, pp. 216–229, Feb 2007.

[142] W. Feng and S. Kaptanoglu, “Designing Efficient Input Interconnect Blocks

for LUT Clusters Using Counting and Entropy,” ACM Trans. Reconfigurable

Technol. Syst., vol. 1, no. 1, pp. 6:1–6:28, Mar. 2008. [Online]. Available: http:

//doi.acm.org/10.1145/1331897.1331902

214

http://ptm.asu.edu/
http://doi.acm.org/10.1145/1331897.1331902
http://doi.acm.org/10.1145/1331897.1331902

Xifan Tang
 tangxifan@gmail.com

+41 78 943 6628
EPFL-IC-LSI

Chemin du Bochet 18, Nr. 17, Ecublens CH-1024, Vaud, Switzerland

EDUCATION
École Polytechnique Fédérale de Lausanne (EPFL) Lausanne, Switzerland 09/2013-Present
PhD Candidate
École Polytechnique Fédérale de Lausanne (EPFL) Lausanne, Switzerland 09/2011-08/2013
Master in Electrical Engineering GPA: 5.23/6.0
Fudan University Shanghai, China 09/2007- 07/2011
Bachelor in Science, Concentration in Micro-Electronics GPA: 3.38/4.0

RESEARCH EXPERIENCE
Supervisor: Prof. Pierre-Emmanuel Gaillardon and Prof. G. De Micheli
Laboratory: LSI, EPFL 01/2013-Present
l Circuit Design, architecture exploration and EDA for FPGAs (Focus on RRAM-based FPGAs)
l Reconfigurable architecture with ambipolar Logic

Supervisor: Lecturer Vasileios F.Pavlidis and Prof. G. De Micheli
Laboratory: LSI, EPFL 09/2011-09/2012
l Resonant Clock Tree Network
l Clock and Power Distribution Network on 3-D ICs
l Accurate Power Analysis on LUTs

Supervisor: Prof. Lingli WANG
Laboratory: State Key Lab of ASIC & System, Fudan University 08/2009-07/2011
l RABBIT (Routing Automation of Breadboard Integrated Tools)
l Power Estimation in FPGA
l The Effect of LUT size on Nanometer FPGA Architecture

 Wangdao Project Funded by Fudan’s Undergraduate Research Opportunity Program (FDUROP)
l Team member in Error Check and Correct System (ECC) on FPGA
l Team member in RAM-BIST (Built In-Self Test) in FPGA

AWARDS AND HONORS
Chinese Government Award for Outstanding Self-Financed Students Abroad 2015
Best paper award nomination at ICFPT 2014 conference 2014
EPFL EDIC Fellowship 2013
Wangdao Scholar honored by FDUROP 2010-2011
Third Prize of Excellent Students at Fudan University 2010-2011
Third Prize of Excellent Students at Fudan University 2007-2008

BOOK CHAPTERS
[1] Xifan Tang, S. Rahimian Omam, P. Meinerzhagen, P.-E. Gaillardon and G. De Micheli, “Low Power

FPGAs based on Resistive Memories” in P.-E. Gaillardon, Editor, "Reconfigurable Logic: Architecture, Tools
and Applications," CRC press, 28th October 2015, pp. 399-432.

JOURNAL PUBLICATIONS (fully refereed)

215

[1] Xifan Tang, E. Giacomin, G. De Micheli and P.-E. Gaillardon, “Circuit Designs of High-performance and
Low-power RRAM-based Multiplexers based on 4T(ransistor)1R(RAM) Programming Structure”, IEEE
Transaction on Circuits and Systems I: Regular Papers (TCAS-I), Vol. 64, No. 5, 2017, pp. 1173-1186. (In
the list of top 50 most popular papers in May 2017)

[2] Xifan Tang, P.-E. Gaillardon and G. De Micheli, “A High-performance FPGA Architecture Using One-level
RRAM-based Multiplexers”, IEEE Transaction on Emerging Topics in Computing (TETC), Vol. 5, No. 2,
pp. 210-222. (In the list of top 50 most popular papers in June and July 2017)

[3] Xifan Tang, K. Gain, P.-E. Gaillardon and G. De Micheli, “A Study on the Programming Structures for
RRAM-based FPGA Architectures”, IEEE Transaction on Circuits and Systems I: Regular Papers (TCAS-I),
Vol. 63, No. 4, 2016, pp. 503-516. (In the list of top 50 most popular papers in April 2016, and top 10
most popular papers in May 2016)

[4] P.-E. Gaillardon, Xifan Tang, G. Kim and G. De Micheli, “A Novel FPGA Architecture Based on Ultrafine
Grain Reconfigurable Logic Cells”, IEEE Transactions on VLSI (Very Large Scale Integration) Systems
(TVLSI), Vol. 23, No. 10, pp. 1063-8210, 2015.

[5] J. Zhang, Xifan Tang, P.-E. Gaillardon and G. De Micheli, “Configurable Circuits Featuring
Dual-Threshold-Voltage Design With Three-Independent-Gate Silicon Nanowire FETs”, IEEE Transaction on
Circuit And Systems Part 1: Regular Papers (TCAS-I), Vol. 61, No. 10, pp. 2851-2861. 2014.

[6] Hu Xu, V. F.Pavlidis, Xifan Tang, Wayne P. Burleson, G. De Micheli, “Timing Uncertainty in 3-D Clock
Trees due to Process Variations and Power Supply Noise”, IEEE Transactions on VLSI (Very Large Scale
Integration) Systems (TVLSI), Vol. 21, No. 12, pp. 2226-2239, 2013.

[7] S. Rahimian Omam, V. F.Pavlidis, Xifan Tang and G. De Micheli, “An Enhanced Design Methodology for
Resonant Clock Trees”, Journal of Low Power Electronics, Vol. 9, No. 2, pp. 198-206, 2013.

CONFERENCE PUBLICATIONS (fully refereed)
[1]. Xifan Tang, G. De Micheli and P.-E. Gaillardon, “Optimization Opportunities in RRAM-based FPGA

Architectures”, IEEE Latin American Symposium on Circuits and Systems (LASCAS), 2017, pp. 281-284.

[2]. Xifan Tang, E. Giacomin, G. De Micheli and P.-E. Gaillardon, “Physical Design Considerations of One-level
RRAM-based Routing Multiplexers”, ACM/SIGDA International Symposium on Physical Design (ISPD),
2017, accepted for publication.

[3]. Xifan Tang, P.-E. Gaillardon and G. De Micheli, “A Full-capacity Local Routing Architecture for FPGAs”,
International Symposium on Field Programmable Gate Arrays (FPGA), Monterey, U.S.A, 2016, pp.
281-281.

[4]. Xifan Tang, P.-E. Gaillardon and G. De Micheli, “FPGA-SPICE: A Simulation-based Power Estimation
Framework for FPGAs”, International Conference on Computer Design (ICCD), New York, U.S.A., 2015,
pp. 696-703.

[5]. Xifan Tang, P.-E. Gaillardon and G. De Micheli, “Accurate Power Analysis for Near-Vt RRAM-based FPGA”,
Field Programmable Logic and Applications (FPL), London, United Kingdom, 2015, pp. 1-4.

[6]. Xifan Tang, P.-E. Gaillardon and G. De Micheli, “A High-performance Low-power Near-Vt RRAM-based
FPGA”, Field Programmable Technology (FPT), Shanghai, China, 2014, pp. 207-214. (Best paper
nomination)

[7]. Xifan Tang, P.-E. Gaillardon and G. De Micheli, “Pattern-base Logic Block and Clustering Algorithm”, Field
Programmable Logic and Applications (FPL), Munich, Germany, 2014, pp.1-4.

[8]. Xifan Tang, J. Zhang, P.-E. Gaillardon and G. De Micheli, “TSPC Flip-flop Circuit Design with
Three-Independent-Gate Silicon Nanowire FETs”, International Symposium on Circuit And Systems
(ISCAS), Melbourne, Australia, 2014, pp. 1660-1663.

[9]. Xifan Tang, L. Wang, “The Effect of LUT Size on Nanometer FPGA Architecture”, IEEE International
Conference on Solid-State and Integrated Circuit Technology (ICSICT), Xi’An, China, 2012, pp. 1-3.

216

[10]. Xifan Tang, L, Wang and H. Xu, “An Accurate Dynamic Power Model on FPGA Routing Resources”, IEEE
IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT),, Xi’An, China,
2012, pp. 1-4.

[11]. Z. Chu, Xifan Tang, et al., “Improving Circuit Mapping Performance Through MIG-based Synthesis for Carry
Chains”, accepted to 27th ACM Great Lakes Symposium on VLSI (GLSVLSI), 2017.

[12]. P.-E. Gaillardon, Xifan Tang, J. Sandrini, M. Thammasack, S. Rahimian Omam, D. Sacchetto, Y.
Leblebici and G. De Micheli, “A Ultra-low-power FPGA based on Monolithically Integrated RRAMs”, Design,
Automation and Test in Europe Conference and Exhibition (DATE), Grenoble, France, 2015, pp.
1203-1208. (Invited Paper)

[13]. P.-E. Gaillardon, G. Kim, Xifan Tang, L. Amaru and G. De Micheli, “Towards More Efficent Logic Blocks
By Exploiting Biconditional Expansion”, International Symposium on Field Programmable Gate Arrays
(FPGA), Monterey, U.S.A, 2015, pp. 262-262.

[14]. S. Rahimian Omam, Xifan Tang, P.-E. Gaillardon and G. De Micheli, “A Study on Buffer Distribution for
RRAM-based FPGA Routing Structures”, IEEE Latin American Symposium on Circuit And Systems
(LASCAS), Montevideo, Uruguay, 2015, pp. 1-4.

[15]. P.-E. Gaillardon, Xifan Tang and G. De Micheli, “Novel Configurable Logic Block Architecture Exploiting
Controllable-Polarity Transistors”, IEEE International Symposium on Reconfigurable and
Communication-Centric Systems-on-Chip (ReCoSoC), Montpellier, France, 2014, pp. 1-3. (Invited
Paper)

INVITED TALKS
[1]. Xifan Tang, P.-E. Gaillardon, G. De Micheli, "High Performance Near-Vt RRAM-based FPGA:

Opportunities for Low-Power Versatile Computing," HiPEAC (European Network on High Performance
and Embedded Architecture and Compilation), Athens, Oct. 8th, 2014.

PATENTS
[1]. Xifan Tang, P.-E. Gaillardon, G. De Micheli, "Pattern-based FPGA Logic Block and Clustering Algorithm,"

Application, US 14/808,506, 26 August 2014.
[2]. P.-E. Gaillardon, X. Tang, G. De Micheli, "A High-Performance Low-Power Near-Vt RRAM-based FPGA,"

Application, US 14/444,422, 28 July 2014, granted.

PROFESSIONAL SERVICE
Reviewer for the IEEE Transactions on Circuits and Systems I: Regular Papers (TCAS-I)
Reviewer for the IEEE Transactions on Very Large Scale Integration Systems (TVLSI)
Reviewer for the ACM Computing Surveys (CSUR)
Reviewer for the IEEE Transactions on Nanotechnology (TNANO)
Reviewer for the IEEE Journal on Emerging and Selected Topics in Circuits and Systems (JETCAS)
Reviewer for the ACM Journal Transactions on Design Automation of Electronic Systems (TODAES)
Reviewer for the 2017 IEEE International Symposium on Circuits And Systems (ISCAS)
Reviewer for the 2017 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)
Reviewer for the Journal of Circuits, Systems and Computers (JCSC)

TEACHING ACTIVITY
Design Technology for Integrated System, Master/PhD course at EPFL 09/2016-12/2016
Responsible for exercise/homework, laboratory sessions and projects.
Design Technology for Integrated System, Master/PhD course at EPFL 09/2015-12/2015
Responsible for exercise/homework, laboratory sessions and projects.
Design Technology for Integrated System, Master/PhD course at EPFL 09/2014-12/2014

217

Responsible for exercise/homework, laboratory sessions and projects.

INTERNSHIP
Melexis Bevaix, Switzerland 10/2012-12/2012
Supervisor: Christophe Guillaume-Gentil
Internship Project: Modeling a Near-Field Communication (NFC) Chip with Verilog-A

EXTRACURRICULAR ACTIVITIES
Volunteer of World EXPO 2010 Shanghai 05/2010

COMPUTING SKILLS AND OTHERS
Computer skills: Linux, C, Perl, VHDL, VHDL-AMS, Verilog-A, HSPICE, Matlab, ModelSim, Design

Compiler, Virtuoso, Quartus II, LabView NI, Visual Basic, Qt, Hadoop
Languages: Chinese(Native), English (Fluent)

218

