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that the only thing to do is to say hang the sense of it

and just keep yourself occupied.

— D. Adams
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Abstract
Controlled thermonuclear fusion for large scale energy production is one of the main goals of

plasma physics. At the Swiss Plasma Center (SPC) in Lausanne, Switzerland, the institute that

supported this thesis’ research, the Tokamak à Configuration Variable (TCV) constitutes the

main experiment on fusion research. In a tokamak, one of the most promising concepts for

fusion, high temperature toroidal-shaped plasmas are confined by means of magnetic fields.

The confinement of plasma energy and particles, which is necessary for a net energy gain, is

limited by transport, collisional or turbulent, naturally arising from the gradients between

the hot-dense plasma core and the cold-rarefied plasma edge, and by instabilities, driven by

gradients and plasma current.

Due to the geometrical topology, plasma can rotate in the toroidal and poloidal directions.

Plasma rotation has a strong influence on confinement and stability, which makes its under-

standing one of the priorities in fusion, where prediction on a reactor relevant scenario are

demanded. There are many open issues and discrepancies between the theoretical rotation

description and experiments, which stimulated active research in the field. In this context

this work provided experimental results of unprecedented accuracy in TCV, where plasma

rotation and impurity parameters are measured with the charge exchange recombination

spectroscopy (CXRS) diagnostic. CXRS exploits the active CX signal induced by a low power

diagnostic neutral beam injector (DNBI), which applies negligible torque to the plasma, per-

mitting localised measurements of “intrinsic” rotation. Impurity, either Carbon or Boron,

density and temperature are also measured by CXRS, resulting in a complete set of kinetic

profiles.

During this work, the CXRS diagnostic was extended with the development of a new high-

spatial (<3 mm) and temporal (≥2 ms) resolution system, termed CXRS-EDGE, devoted to the

study of edge profiles. The accuracy improvements with respect to the legacy systems were

obtained through an expressly designed high throughput lens spectrometer and numerical-

aperture matching optics, resulting in rotation uncertainties <1 km/s, required for significant

poloidal flow characterisation.

The upgraded CXRS diagnostic was used in the study of the impact of the sawtooth (ST)

magneto-hydrodynamic (MHD) instability on rotation in L-mode limited plasmas and on

the changes in edge impurity parameters at the onset of the H-mode in diverted discharges.

The EDGE spectrometer was also exploited for the characterisation of the spectral (H and D)
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Balmer and molecular emission in the resonant antenna ion device (RAID) and for a survey

fast ion Dα (FIDA) diagnostic in TCV.

The evolution of rotation and kinetic profiles during a “canonical” ST were studied with a 2 ms

time resolution for ST periods ranging from 8 to 36 ms, obtained by locking the ST period with

the electron cyclotron heating (ECRH) modulation. Rotation profiles suddenly change at the

ST crash, with a more complex dynamic than a simple flattening expected from an augmented

transport, passing from peaking counter-current to hollow co-current in the core, showing

evidence of a co-current torque at the crash of increasing magnitude with the ST period. This

explains the 1/Ip scaling observed in TCV L-mode plasmas, where the maximum rotation is

limited by ST dynamics. This effect must be included in realistic theoretical models and might

be exploited in tailoring rotation using ST period and radius as actuators. The crash is also

characterised by expulsion of impurity from the core, resulting in hollow post-crash profiles,

that can be exploited in a reactor scenario for avoiding impurity accumulation and for ash

removal, the process being more efficient for short ST periods.

The first accurate measurement of the changes in impurity flow across the transition to ELM-

free H-mode were performed in this work. A narrow (' 5.5 mm) and deep (|uθ| ≥ 20 km/s)

poloidal rotation well develops at the last closed flux surface (LCFS) at the transition, together

with a density pedestal <15 mm wide and an uniform increase of the impurity temperature of

' 100 eV, lacking a clear evidence of a pedestal. From the kinetic profiles the radial electric field

Er was computed, revealing the development in TCV of the well characteristic of H-mode as

observed in other devices, whose width agrees with inter-machine scaling. The evolution of Er

components suggests involvement of the poloidal rotation in the triggering of the transition,

although the time resolution is insufficient to prove the causality. Estimates of the main ion

flow suggests that the Er well main contributor is the main ion pressure gradient term. This is

consistent with the reasonable agreement found in the comparison of the impurity rotation

with neoclassical analytical and numerical predictions.

The observations reported in this work constitute a strong constrain for theoretical models,

demonstrate the strong influence that fast MHD events have on transport and set more

stringent conditions for edge impurity behaviours.

Keywords: Plasma physics, nuclear fusion, tokamak, TCV, charge exchange, CXRS, poloidal

rotation, toroidal rotation, intrinsic rotation, momentum transport, impurity, temperature,

density, plasma diagnostic, spectroscopy, Carbon, Boron, Balmer, negative ions, NBI, sawtooth,

ECRH, ECCD, MHD activity, radial electric field, L-H transition, H-mode, shearing rate.
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Sinossi
La fusione termonucleare controllata per la produzione di energia su larga scala è uno degli

obiettivi principali della fisica del plasma. Il Tokamak à Configuration Variable (TCV) costitu-

isce il principale esperimento nella ricerca sulla fusione al Swiss Plasma Center (SPC), l’istituto

che ha sostenuto questo progetto di ricerca, con sede a Losanna, in Svizzera. In un tokamak,

uno dei più promettenti design per la fusione, plasmi ad alta temperatura e di forma toroidale

sono confinati per mezzo di campi magnetici. Il confinamento dell’energia e delle particelle

del plasma, che è necessario per un guadagno netto di energia, è limitato dal trasporto, sia

esso collisionale o turbolento, che sorge spontaneamente dai gradienti tra il centro del plasma,

caldo e denso, e il plasma al bordo esterno, freddo e rarefatto, oltre che dalle varie instabilità,

causate da gradienti e dalla corrente del plasma.

Il plasma può ruotare nella direzione toroidale e in quella poloidale, grazie alla topologia

geometrica del tokamak. La rotazione del plasma ha un forte impatto sul confinamento e sulla

stabilità del plasma, il che rende la sua comprensione una delle priorità della ricerca sulla

fusione, dove le sue previsioni in regimi rilevanti per un reattore sono tuttora richieste. Ci sono

molte discrepanze tra le previsioni teoriche e i risultati sperimentali sulla rotazione, che hanno

stimolato una ricerca attiva in questo campo. In questo contesto, questo lavoro ha prodotto

risultati sperimentali aventi un’accuratezza senza precedenti in TCV, dove la rotazione del

plasma e i parametri delle impurità sono misurati tramite la diagnostica di spettroscopia di

ricombinazione per scambio di carica (CXRS). Il CXRS utilizza il segnale attivo di scambio di

carica (CX) generato da un iniettore di fasci neutri diagnostico (DNBI) avente bassa potenza, il

quale applica sul plasma un momento torcente trascurabile, permettendo misure localizzate

della rotazione “intrinseca”. Anche la temperatura e la densità delle impurità del plasma,

Carbonio o Boro, sono misurate dal CXRS, che quindi fornisce un set completo di profili

cinetici delle impurità.

Durante questo lavoro, la diagnosica CXRS è stata migliorata con l’aggiunta di un nuovo

sistema avente una alta risoluzione sia spaziale (< 3 mm) che temporale (≥ 2 ms). Il nuovo

sistema, chiamato CXRS-EDGE, ha lo scopo di studiare i profili al bordo del plasma. L’aumento

dell’accuratezza del nuovo sistema rispetto ai vecchi sistemi è stato ottenuto tramite uno

spettrometro a lenti ad alto throughput, appositamete progettato, e tramite ottiche aventi

un’apertura numerica combaciante. Il risultato è una diagnostica con un’incertezza inferiore

a 1 km/s sulla rotazione poloidale, che risulta necessaria per la caratterizzazione dei flussi

poloidali.
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La nuova diagnostica è stata usata sia nello studio sull’impatto che ha sulla rotazione l’in-

stabilità magnetoidrodinamica (MHD) chiamata sawtooth (ST) in plasmi limitati e a basso

confinamento (L-mode) che sui cambiamenti dei parametri delle impurità che avvengono

al bordo del plasma quando viene raggiunto l’alto confinamento (H-mode) in scariche nella

configurazione diverted. Il nuovo spettrometro è anche stato utilizzato per la caratterizzazione

dell’emissione spettrale delle linee molecolari e di Balmer (in H e D) nel resonant antenna

ion device (RAID) e per una diagnostica pilota per la misura dell’emissione Dα di ioni veloci

(FIDA) a TCV.

L’evoluzione della rotazione e dei profili cinetici durante un ST “canonico” sono stati studiati

con una risoluzione temporale di 2 ms per ST aventi un periodo da 8 a 36 ms, ottenuti fissando

il periodo dei ST con la modulazione del riscaldamento a onde ciclotroniche elettroniche

(ECRH). Il profilo di rotazione cambia repentinamente al crash del ST, con una dinamica più

complicata che un semplice appiattimento come ci si aspetta da un semplice aumento del

trasporto. Il profilo passa da piccato contro-corrente a bucato in direzione della corrente nella

zona centrale del plasma, segnalando la presenza di un momento torcente in direzione della

corrente al momento del crash, con una intensità crescente con il periodo del ST. Questo spie-

ga lo scaling 1/Ip osservato a TCV in plasmi a L-mode, dove il valor massimo della rotazione è

limitato dalla dinamica del ST. Questo effetto deve essere incluso in modelli teorici realistici e

può essere utilizzato per controllare la rotazione, usando il raggio ed il periodo del ST come

degli attuatori. Il crash, inoltre, è caratterizzato dall’espulsione delle impurità dal centro del

plasma, che risulta in profili bucati dopo il crash. Questo effetto può essere usato per evitare

l’accumulo di impurità nel reattore e per la rimozione delle ceneri (elio), questo processo

risulta più efficace per ST con periodo corto.

Le prime misure accurate dei cambiamenti nel flusso delle impurità attraverso la transizione

all’H-mode senza ELM sono state eseguite in questo lavoro. Una depressione stretta (' 5.5

mm) e profonda (|uθ| ≥ 20 km/s) nella rotazione poloidale si sviluppa all’ultima superficie

di flusso chiusa (LCFS) durante la transizione, oltre che un “pedestal” largo < 15 mm nel-

la densità unito ad un uniforme aumento della temperatura delle impurità di circa 100 eV,

sprovvisto quest’ultimo di un pedestal. Dai profili cinetici il campo elettrico radiale Er è stato

calcolato, dimostrando anche a TCV la formazione del caratteristico “pozzo” osservato in altre

macchine durante l’H-mode. La larghezza del pozzo di Er rispetta lo scaling inter-macchina.

L’evoluzione delle componenti di Er suggerisce una relazione di causalità della rotazione

poloidale nell’innesco della transizione, anche se la risoluzione temporale è insufficiente per

dimostrare tale relazione. Stime del flusso degli ioni principali suggeriscono che il maggior

termine contribuente al campo elettrico radiale sia il gradiente della pressione degli ioni prin-

cipali. Questo è consistente con il ragionevole accordo trovato nel paragone tra la rotazione

misurata e quella predetta dalla teoria neoclassica.

Le osservazioni riportate in questo lavoro costituiscono dei forti vincoli per i modelli teorici,

dimostrano la forte influenza che i rapidi eventi MHD hanno sul trasporto e impongono
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condizioni più stringenti al comportamento delle impurità al bordo del plasma.

Parole chiave: Fisica del plasma, fusione nucleare, tokamak, TCV, scambio di carica, CXRS,

rotazione poloidale, rotazione toroidale, rotazione intrinseca, trasporto di momento, impurità,

temperatura, densità, diagnostica per plasma, spettroscopia, Carbonio, Boro, Balmer, ioni

negativi, NBI, dente di sega, ECRH, ECCD, attività MHD, campo elettrico radiale, transizione

L-H, modo-H, tasso di taglio.
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1 Introduction

1.1 Nuclear fusion and Tokamaks

The World energy consumption is for many decades in constant growth, with hydrocarbons

accounting for the lion’s share ≥ 65%. The indiscriminate use of fossil fuels is bound to end

relatively soon, either due to reserve depletion or to the realization of its negative effects on

world climate. The conventional renewable energy sources, wind-solar-hydro-geothermal

power, although in constant growth, are not sufficient to completely supplant fossil fuels.

Nuclear fission of uranium is a mature technique, that has been used from the late 1950’s

and provides ' 12% of the world’s electricity demand. However this energy source has many

drawbacks: it produces long lived radioactive waste (like plutonium-239) that has to be secured

for thousands of years, the supply of fissile material is limited, and it is intrinsically unsafe

due to the nature of the reaction (chain reaction). This last point is known to raise concerns in

the population, that are not unfounded in the light of historical events like Chernobyl in 1986

and more recently Fukushima in 2011. For these reasons fission power is unlikely to ever be

acceptable as a complete replacement for fossil fuel.

Nuclear fusion is considered the most promising energy source to replace, in the long term,

fossil fuel and satisfy the world’s energy needs. Fusion is a process where light nuclei fuse

together to form heavier elements. For light elements, like hydrogen and its isotopes, the

final mass of the products is smaller than the initial mass, i.e. ∆m < 0, with the difference

converted into energy following Einstein’s well-known equation E = m c2 [1]. Fusion presents

many advantages in comparison with the legacy energy production methods, the fuel is

accessible and abundant (at least Deuterium, that can be extracted from water), the reaction is

intrinsically safe and it produces relatively short-lived (' 100 year) waste (activated materials)

and Helium ash. For several decades, scientists have been working on the development of

self-sustaining nuclear fusion as an economically viable energy source, but many challenging

issues remain to be resolved before the realization of a working device. Some of these problems

can be seen from the analysis of the Earth’s closest working self-sustained fusion reactor, the

Sun. In order for the fusion reaction to occur, the nuclei must overcome their Coulomb
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electric repulsion. For thermonuclear fusion, this is achieved when the reactants have high

enough kinetic energy, or in other terms, for high enough temperature (' 1.5 keV in the Sun

core). At these temperatures matter is in the plasma state, conceivable as a “gas” of free

electrons and positively charged ions susceptible to electric and magnetic fields. Plasma

cannot be confined with conventional materials, as any contact with a solid surface would

result in damage to the device and plasma contamination/cooling. The problem of plasma

confinement in the Sun is solved by gravity, which is not a viable solution on Earth. Scientists

eventually considered two ideas to solve the confinement problem, using the particle inertia

in an imploding pellet (inertial confinement) or using electro-magnetic fields to constrain

particle movement (magnetic confinement). The latter option has been the most successful,

and although several concepts of magnetic confinement devices are being tested, the tokamak

design (the concept on which the majority of this thesis is based) has, to date, provided to

demonstrate the best performance.

The electron density ne and temperature Te of tokamak plasmas are around ne ' 1020 m−3

and Te ' 10 keV. In this range the thermal energy dominates over the Coulomb energy [2]

ECoul =
e2

4πε0
n1/3

e (1.1)

The perturbing effect of a charge in a plasma is shielded by the displacement of other charges,

it is therefore relevant on spatial scales below the Debye length λD [2]:

λD '
√
ε0 kb Te [K ]

ne e2 (1.2)

On larger scales quasi-neutrality, expressed by the relation

ne −Zi ni

ne
¿ 1 (1.3)

is attained typically within 10−6. The number of electrons in a sphere of radius λD is termed

Debye number ND = 4/3πneλ
3
D , in a plasma ND À 1. The typical time response of electrons

to perturbations is given by the plasma frequency ωp [3]:

ωp =
√

ne e2

meε0
(1.4)

Electromagnetic waves with lower frequency cannot propagate and are reflected, while waves

with higher frequency can enter the plasma and propagate. The plasma state is defined by the

2
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conditions [2]:

λD ¿ L (1.5)

ND ¿ 1 (1.6)

ωpτn > 1 (1.7)

where L is the plasma size and τn the electron-neutral collision time.

The rest of this chapter is devoted to the explanation of basic concepts in fusion research and

tokamak devices necessary in the understanding of this thesis.

1.1.1 Thermonuclear fusion concept

Fusion reactions occur when nuclei get close enough, ' 10−15 m, for the nuclear force to

dominate and overcome Coulomb repulsion. In a thermonuclear fusion reactor the thermal

energy of the energetic charged particles is exploited to reach this condition and engender the

reaction. The cross section of the fusion process depends on the reactants and on their relative

energy, it increases with energy up to a peak value, then it rolls over due to the decreasing

interaction time. Research on thermonuclear fusion presently focusses on the most accessible

Deuterium-Tritium (D-T) reaction [3]

2
1D + 3

1T → 4
2He (3.5 MeV) + 1

0n (14.1 MeV) (1.8)

as it has the highest cross-section with its peak located at a lower temperature [3] than for the

other hydrogen isotopic reactions. The reaction rate is maximised, assuming Maxwellian dis-

tributions, at T ' 70 keV, which is not attainable in present devices. However we shall see that

optimization of a fusion device only requires lower, and thus more accessible, temperatures.

Notice that in the core of the Sun the temperature is more than one order of magnitude lower

than this, with a correspondingly lower reaction rate that is too low for practical terrestrial

application.

The temperature is only one of the plasma parameters that needs to be satisfied in order

to reach ignition, that is a self-sustained reaction where plasma is maintained by its self-

generated fusion power. By balancing the power losses with the α-heating, i.e. the heating

due to the thermalisation of the high energy α particles generated by the fusion reactions,

the Lawson criterion [4], a.k.a. “triple product”, expresses that ignition is reached when the

product of plasma density n, energy confinement time τE and temperature T , surpass a value

determined by the reaction rate <σv > and the energy per reaction E f :

nτE T ≥ 12kb

E f

T 2

<σv > (1.9)

3
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The confinement time in steady state is defined as the ratio of the plasma energy W to the

injected power Pheat , i.e. τE = W
Pheat

[3]. Considering that any device has an upper operation

limit for the pressure p = n T , the access to ignition is optimised when the quantity <σv>
T 2 is

maximised. For the D-T reaction this reads:

nτE T ≥ 3 ·1021 keV s /m3 (1.10)

and the optimal temperature is T ' 14 keV [5], considerably lower than the temperature

that maximises the reaction rate. Magnetic fusion’s goal is to satisfy the Lawson criterion by

confining a tenuous plasma (n ' 1020 m−3) at high temperature (T ' 10 keV) with a sufficient

energy confinement time (τE ' 1 s). These three quantities are closely intertwined: injecting

gas to increase the density would cool the plasma, raising the temperature often results in

confinement degradation. A welcome exception is the transition to high confinement mode (H-

mode) [6] in tokamaks, where above an injected power threshold the confinement improves by

a factor of two with respect to the low confinement mode (L-mode) τE−H ' 2 τE−L attained at a

lower power. H-mode operation is, however, often characterised by quasi-periodic disruptive

instabilities occurring at the plasma edge, termed edge localised modes (ELM), which pose a

major threat to the device integrity, due to their high energy transfer rate.

A reactor does not strictly need to reach ignition to operate, it must just produce more energy

than the energy required to maintain a stable burning plasma with enough margin to compen-

sate the complete system losses (power supply efficiencies, required auxiliary systems, etc.).

The ratio Q of produced fusion power P f us to the power needed for steady operation Pheat is

called fusion energy gain factor:

Q =
P f us

Pheat
(1.11)

and is the main figure of merit for a reactor, where the condition Q = 1 is called breakeven.

Present devices are not able to reach this condition, the highest values being achieved by the

JET [7] tokamak with Q Jet = 0.65 [8, 9]. The challenge of next-generation devices is to reach and

surpass breakeven, which shall be attained by improving confinement. It is well established

that confinement scales favourably with machine size [3, 5] and with magnetic field [3],

therefore design for future devices concentrates on bigger and more costly devices, such as the

international thermonuclear experimental reactor (ITER) [10, 11] currently under construction

at Cadarache in France. Operation in H-mode is envisioned but requires strategies for ELM

handling (mitigation or suppression).

1.1.2 Magnetic confinement and Tokamaks

The plasmas used in fusion research are mainly composed of light elements, that are fully

ionised at the typical working temperatures ' 10 keV. In magnetic confinement devices the

charged particles of the plasma are confined by externally applied magnetic fields. It is

4
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Figure 1.1: Gyration motion of an ion and an electron in a uniform and stationary magnetic
field B (pointing inside the page). Ions and electrons gyrates in opposite directions around
their guiding centre and are confined in the perpendicular direction on a distance ρi and ρe ,
known as Larmor radius.

instructive to first describe the trajectory of a charged particle in a uniform and stationary

magnetic field B [T] to understand the working mechanism of magnetic confinement. The

Lorentz force bends the trajectory of the particle, of mass m [kg] and charge q [C], into an

helix, with axis parallel to B and radial (perpendicular to B) extent ρ [m], called the Larmor

radius [2, 3, 12], equal to:

ρ = γm v⊥
q B

(1.12)

where v⊥ is the velocity v [m/s] of the particle in the direction perpendicular to the magnetic

field B, i.e. v⊥ = v×B
|B | , and γ=

√
1/(1− v2/c2) is the relativistic Lorentz factor. The (angular)

frequency of gyration of the particle around B, is the cyclotron frequency Ωc [rad/s] [2, 3],

given by

Ωc =
q B

γm
(1.13)

with the elementary relation ρ = v⊥
Ωc

. In this simplified picture (see figure 1.1) the magnetic field

completely restrains the particle motion in the perpendicular direction, allowing the flow only

along the parallel direction to B. However in a realistic situation Coulomb collisions and drift

motions due to B non uniformity and perpendicular electric fields, induce a perpendicular

particle transport, degrading confinement.

The tokamak concept

Several configurations, differing in the magnetic field geometry, have been proposed for a

fusion device, among which the tokamak produced the best performances. The word tokamak

is a transliteration of the Russian acronym “TOKAMAK”, meaning “toroidal chamber with

magnetic coils”, which is a crude description of the device, that is sketched in figure 1.2. A

torus is a surface of revolution generated by a circle and it can be parametrised by the toroidal

5
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Figure 1.2: Sketch of a tokamak device, with the coils generating the toroidal field, the coils
for inducing plasma current (that induces a poloidal magnetic field) and the poloidal coils
for shaping. The combination of toroidal and poloidal magnetic fields results in a helical
magnetic field. Source: EUROfusion website [13].

φ and poloidal θ angles with the equation:

x(θ,φ) = (R + r cosθ)cosφ (1.14)

y(θ,φ) = (R + r cosθ)sinφ (1.15)

z(θ,φ) = r sinθ (1.16)

where r is the radius of the circle and R the distance of the circle centre from the axis of

revolution. The toroidal, poloidal and radial directions are defined by eφ, eθ and er respectively.

In effect in a tokamak plasma is contained in a vacuum vessel of toroidal shape, and the

external coils generate a strong toroidal magnetic field Bφ, that in most fusion relevant devices

attains a few Tesla. A toroidal field solves the problem of losses at the magnetic field edges, as

the field lines close upon themselves without touching a physical surface. In this geometry

however the magnetic field have an unavoidable 1/R dependence resulting in a vertical drift

and particle drifts arising from the field non uniformity leading to instabilities [3]. Due to

this field dependence, the zone inside the vessel closer to the torus axis is called high field

side (HFS) and the one closer to the outer wall is named low field side (LFS). A purely toroidal

field is hence not sufficient for confining a plasma. The specific geometry of the confining

magnetic fields has resulted in several additional terms to improve confinement and a set of

6



1.1. Nuclear fusion and Tokamaks

Figure 1.3: Nested flux surfaces formed by the helical magnetic field in a tokamak configuration.

relatively universal plasma coordinates that are now described.

In a tokamak a toroidal current Ip is induced in the plasma usually by the coils in the central

column (see figure 1.2), that work as a primary circuit of a transformer, the plasma ring being

the secondary circuit. Plasma current in a tokamak has two fundamental tasks, to heat the

plasma by the power dissipated through plasma resistivity (Ohmic heating) and to generate

a poloidal field Bθ, that compensate the particle drift due to Bφ gradient, stabilising the

configuration [3, 5]. An inductive current cannot be sustained indefinitely, since the ramping

magnetic field is limited by hardware restrictions, and so the inductive operation is intrinsically

pulsed. Alternative non-inductive current drives, based on beams, EM waves and pressure

gradients, are under investigation to overcome this limit allowing continuous operation.

An additional vertical (parallel to the torus axis of revolution) magnetic field Bv is also required,

the Lorentz force acting on the plasma due to Ip prevent the outward plasma expansion due

to the ‘hoop force’ [5] and the ‘tire tube force’ [5].

The magnetic configuration resulting from the sum of the free magnetic field components

is essentially helical, since the vertical component is much lower than the others, with the

generic relations Bv ¿ Bθ ¿ Bφ. This configuration can be viewed as an infinite set of nested

toroidal magnetic surfaces centered on the magnetic axis 1.3. By definition of magnetic surface

the magnetic field does not cross any magnetic surface, instead each magnetic line lays on a

specific surface, the magnetic flux enclosed in each magnetic surface is hence constant (hence

the name flux surface) and can be used to label the surface. Since the flux varies monotonically

from one closed surface to the next, either the poloidal flux ψpol or the toroidal fluxΦ, can be

used as radial variable. A more common expression for the radial coordinate is the normalised

poloidal flux ρψ, defined as:

ρψ =
√

ψ−ψ0

ψLC F S −ψ0
(1.17)

7
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where ψ=ψpol /2π is the stream function at the considered surface, ψ0 and ψLC F S the stream

function at the magnetic axis and at the last closed flux surface (LCFS) respectively, the

latter being the outermost flux surface on which the plasma is confined. A detailed analysis

of flux coordinate systems and magnetic configurations can be found in [14]. A compact

representation of the magnetic field is given by [14]

B =∇φ×∇ψ+R Bφ∇φ (1.18)

recalling the relation ∇φ= 1/R eφ.

By balancing the magnetic and pressure forces acting on the plasma, it can be shown that

the pressure is constant on magnetic surfaces [15]. It is usually however assumed that equi-

librium quantities such as density and temperature (and often the electric potential φel ) are

constant [16] along the magnetic field, since heat and particle transport timescales are much

shorter along the field than across it. This can be used to reduce the description of the 3D

plasma to a simplified 1D model, with equilibrium quantities functions of only the radial

variable ρψ. Hereafter we use simply ρ for the radial variable ρψ.

The amount of “twist” of the field lines is characteristic for each flux surface and it is quantified

by the safety factor q , that is defined as [17]:

q = dΦ

dψ
(1.19)

with Φ the toroidal flux. It represents the number of toroidal turns needed to complete

a poloidal turn. Flux surfaces with a rational q = m/n are termed rational surfaces, the

magnetic field lines of those surfaces close on themselves after m toroidal and n poloidal turns.

The periodicity of these surfaces encourages the development of magneto-hydrodynamic

(MHD) instabilities [15], that develop on fast timescales (' ms) and can lead to performance

degradation and plasma disruption. The name safety factor mirrors this important feature, for

example when q ≤ 2 on the LCFS plasma is MHD unstable [3, 18] and quickly disrupts, while

inside the q = 1 surface an MHD instability known as sawtooth [19] is observed. In standard

scenarios with the plasma current preferentially circulating in the hotter plasma center, q rises

monotonically from the plasma centre to the edge, while current research includes advanced

scenarios with central negative shear (i.e. radial derivative of q). A more common expression

for the safety factor is found applying the large aspect ratio approximation in pseudo-toroidal

geometry (circular cross-section tokamak) to the definition 1.19, leading to [20]:

q = r Bφ

R Bθ
(1.20)

where the minor radius r is the distance of the (circular) flux surface from the magnetic axis,

and the major radius R is the distance of the considered point from the torus axis. The inverse
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1.1. Nuclear fusion and Tokamaks

Figure 1.4: Cross section of a tokamak with definition of cylindrical (R,φ, Z ) and pseudo-
toroidal (r,θ,φ) coordinate.

aspect ratio ε is defined by

ε= a

R
(1.21)

where a is the minor radius at the plasma boundary. The pseudo-toroidal coordinate (r,θ,φ)

and the cylindrical coordinate (R,φ, Z ) are shown in figure 1.4. For non-circular plasma shapes

the radial coordinate r can be defined by the equation

∂r

∂ψ
= 1

2πR Bθ
(1.22)

The plasma shape, i.e. the geometrical shape of the magnetic surfaces on a poloidal cross sec-

tion, has great influence on stability and transport. Shape is often described by the moments

in sinusoidal expansion of the poloidal cross section, the first two moments are elongation κ

and triangularity δ and are usually sufficient for the flux surface description. It has been seen

that triangularity, a parameter that describe a deformation of the plasma cross section into a D

shape (see figure 1.5), can improve energy confinement by a factor of 2 [21]. Elongation is also

an important parameter for plasma stability [3], it describes how elliptical is the plasma and is

defined as the ratio of the plasma vertical to the horizontal semi-axis (see figure 1.5). Plasma

shape can strongly affect plasma turbulence and also plays a fundamental role in developing

intrinsic rotation in tokamaks [22].

The plasma must, in some way, interact with its enclosing vacuum vessel. In a tokamak the

plasma boundary is defined by the the last closed flux surface (LCFS), also called separatrix,

that separates the confined region (plasma core and edge regions) from the scrape off layer [18]

(SOL). In the SOL the magnetic field lines intersect the wall (usually within a few meters at

9



Chapter 1. Introduction

Figure 1.5: Definitions of elongation κ and triangularity δ.

most), the plasma exiting the LCFS is therefore rapidly (≤ ms) convected (lost) on the wall.

Depending on the topology of the LCFS two configurations are defined (see figure 1.6): limited

and diverted. In the limited configuration the LCFS is in direct contact with a solid target

called a limiter. This is historically the first configuration used in tokamaks and has the

disadvantage that impurities released by the limiter are easily transported into the core,

causing plasma contamination. This sets a restrictive limit on plasma edge temperature and

density depending on the limiter materials. It can be shown that contamination, particularly

for higher Z materials, can seriously prejudice our plans for a viable fusion-based reactor. The

diverted configuration was introduced to avoid the direct contact of confined plasma with

solid materials. This separation is realised by inducing a null point (or X-point) of the poloidal

magnetic field component inside the vessel often using external shaping-control coils. The

field lines that pass outside the X-point and intersect the divertor plates at the strike points

are called separatrix legs, and constitute the main directed exhaust route for the plasma. The

distance between the X-point and the striking point is the connection length Lc , that can be

approximated by [18]:

Lc 'πR q (1.23)

The SOL plasma cools down and can be strongly attenuated across its flow towards the strike

point in the separatrix legs, due to radiation, charge exchange (CX) and volumetric recombi-

nation, reducing the power loads on the divertor plates. Sputtering in this configuration is

reduced and the impurities are released far away, and no longer directly re-directed back to

the confined plasma, reducing plasma contamination.

10



1.1. Nuclear fusion and Tokamaks

divertor
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Figure 1.6: Sketch of a limited and diverted configuration. The confined plasma (core-edge)
are separated from the SOL by the LCFS (also called separatrix).

1.1.3 Confinement and particles drifts

In section 1.1.2 we observed that particles in an uniform magnetic field are radially (direction

perpendicular to B) confined by the gyro-motion caused by the Lorentz force. Their averaged

trajectory can be described by the motion of the guiding centre that is a straight line parallel to

B. If a force F with a non-null perpendicular to B component is applied, a drift of the guiding

centre in the perpendicular direction of both F and B occurs. The general expression for such

drift is [2, 23]:

vd = F×B

q B 2 (1.24)

In a tokamak there are three fundamental particles drifts:

1. the E×B drift vE×B 1.25,

2. the curvature drift vc 1.26,

3. and the grad-B drift v∇B 1.27.

The E×B drift is due to the Coulomb force F = q E and is independent of the particle charge:

vE×B = E×B

B 2 (1.25)

It engenders uni-directional plasma motion, since it’s in the same direction for both positive

and negative charges, and it’s one of the fundamental sources of rotation.

11
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If the magnetic lines are bent, with a curvature radius Rc, the centrifugal force acting on the

particle results in a curvature drift:

vc =
m v2

∥
qR2

c

Rc ×B

B 2 . (1.26)

The grad-B drift is caused by the change in the Larmor radius due to the non uniformity of B

and can be expressed as:

v∇B =
1
2 m v2

⊥
qB

B×∇B

B 2 . (1.27)

In a tokamak the toroidal field has a 1/R spatial dependence and the grad-B drift is unavoid-

able.

The curvature and the grad-B drifts acting in the toroidal magnetic field combine together

to cause charge separation, since they are opposite for ions and electrons. The electric field

induced by the charge separation causes a radial E×B drift of the whole plasma, resulting in

disruption. The poloidal field, generated by the plasma current in a tokamak, compensates

this drift, stabilising the configuration.

1.2 The TCV Tokamak

This work was carried out at the Swiss Plasma Center (SPC), on the Tokamak à configuration

Variable (TCV). TCV is a medium size tokamak designed to study the influence of plasma

shape on stability, confinement and transport. In order to maximise the shaping flexibility

the vacuum vessel is highly elongated (height 1.5 m, width 0.5 m) and there is no dedicated

divertor chamber, as can be observed in the TCV sketch of figure 1.7. The TCV first wall is

almost completely covered by graphite tiles that serve either as limiter or as divertor targets.

This gives almost complete freedom on plasma and X-point positioning, that in other devices

is, at least partially, fixed by design. The Carbon released from the plasma erosion of the tiles

constitutes the main impurity in TCV. Boron is another impurity found in TCV, that comes

from boronisation [24], a procedure that reduces oxygen and other impurities release from

the wall.

The main TCV mechanical specifications [24] and achieved plasma parameters are reported

in table 1.1.

The toroidal Ohmic plasma current is induced by a transformer composed by 7 coils, (A) in

figure 1.7. The toroidal magnetic field is generated by a set of 16 Ohmic coils (B) connected in

series, and can reach a maximum value of 1.5 (normally 1.44) T on axis. A set of 16 poloidal

field (PF) coils (D) is mounted on both sides outside of the TCV vessel (C), each coil has a

dedicated power supply to maximise the plasma shaping flexibility. Figure 1.8 shows some

12



1.2. The TCV Tokamak

Parameter Symbol Value

Major radius R0 0.88 m
Minor radius a 0.255 m
Aspect ratio 1/ε= R0/a ≤ 3.5
Vessel height h 1.54 m
Vessel elongation κTCV 3
Vessel base vacuum pTCV ≤ 10−7 mbar
Vessel time constant τT CV 6.7 ms
Toroidal field on axis B0 ≤ 1.54 T
Loop voltage Vl oop 1-2 V
Plasma current Ip ≤ 1 MA
Installed power PTCV ≤ 200 MW
Ohmic heating power POH ≤ 1 MW
NBH heating PN B H ≤ 1 MW
ECRH X2 heating PX 2 ≤ 2.8 MW
ECRH X3 heating PX 3 ≤ 1.4 MW
Plasma species D (He,H)
Main impurities C,B
Plasma elongation κa 0.9-2.8
Plasma triangularity δa -0.8 +0.9
Electron density ne ≤ 2 ·1020 m−3

Electron temperature (OH) Te ≤ 2 keV
Electron temperature (ECRH) Te ≤ 15 keV
Ion temperature (OH-ECRH) Ti ≤ 1 keV
Ion temperature (+ NBH) Ti ≤ 3.7 keV
Electron cyclotron frequency fce 41 Ghz
Plasma frequency fpe 30-120 Ghz
Electron Larmor radius ρe 50-250 µm
Ion Larmor radius ρi 2-7 mm

Table 1.1: Main TCV technical specs and plasma parameters.
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Figure 1.7: Sketch of TCV. (A) central solenoid for inducing ohmic current, (B) toroidal field
coils, (C) vacuum vessel, (D) shaping coils (poloidal field coils), (E) flanges (access windows)
and (F) in vessel vertical (poloidal) field coils.

examples of the most extreme plasma shapes achieved in TCV.

Vertical plasma stability is particularly challenging for highly elongated plasmas κ> 2; in TCV

a feedback stabilisation is enhanced exploiting a set of two vertical field coils located inside

the vacuum vessel (F), able to react on the plasma within 0.1 ms. These coils, in conjunction

with a high conductivity (stabilising) vacuum vessel and the PF coils, enabled TCV to reach a

record plasma elongation of κ= 2.8 [25].

1.2.1 TCV heating systems

In TCV the initial plasma heating is induced by the Ohmic current that is able to heat the

plasma up to a temperature of Te ≤ 1 keV [26]. Two auxiliary heating systems are available in

order to reach fusion-relevant temperatures: the electron cyclotron resonant heating (ECRH,

or just ECH) and the neutral beam injection heating (NBI or NBH). The former system directly

heats the electrons, the latter heats preferentially the ions.

TCV ECRH systems

The ECRH system exploit the resonant interaction between microwave beams and the gyro-

motion of the electrons in the confining magnetic field. The interaction is resonant when
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Figure 1.8: Magnetic reconstruction (LIUQE) of some selected TCV discharges showing TCV
plasma shape capabilities.
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Figure 1.9: Sketch of the TCV ECRH launchers for the X2 and X3 systems.

the electromagnetic (EM) wave frequency is an integer multiple of the electron cyclotron

frequencyΩc . We showed above thatΩc is proportional to |B| and that in a tokamak B ∝ 1/R,

it follows that the ECRH deposition heating is highly localised (≤ 1 cm) on an approximatively

vertical resonant layer (fixed R), that can be adjusted varying Bφ. The power coupling is

optimised for EM wave polarization in the extraordinary mode (X-mode), where the EM

electric field is orthogonal to the tokamak magnetic field. The EM wave is also able to drive

current if injected with a toroidal direction component, this effect is explained in [27] and

it is known as electron cyclotron current drive (ECCD). The TCV ECRH system presently

consists of up to six gyrotrons tuned to the second harmonic at 82.7 GHz termed X2, and

three X3 gyrotrons tuned to 118 GHz. Each gyrotron can provide a nominal power of 465 kW

for the X2 and 480 kW for the X3, for a total of 4.23 MW available ECH power. EM waves can

propagate in a plasma only if their frequency is above the cut-off frequency, that is, itself,

proportional to the square root of the electron density. The corresponding cut-off densities

are ne,max,X 2 = 4.25 ·1019 m−3 for X2 and ne,max,X 3 = 11.5 ·1019 m−3 for X3. The EC X2 waves

are injected in TCV through steerable launchers from lateral ports (see figure 1.9), allowing

control on the poloidal and toroidal power (and ECCD) deposition. The ECCD-X2 system was

extensively used for this work in the experiments devoted to the study of momentum transport

across the sawtooth cycle. The final mirror of each system can be displaced during the plasma

discharge allowing a modification of the absorption position as the discharge evolves.

TCV NBI heating system

The commissioning of the first NBI heating system in January 2016 TCV expanded the working

parameter space to regimes where Ti /Te > 1 [28], filling the gap between predominantly
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Figure 1.10: NBI CAD drawing.

Parameter Value

Power injected in TCV 0.09 - 1 MW
Beam energy 10-25 keV
Max NB pulse duration 2 s
Full energy power fraction 73%
Beam main species D - H
100% power modulation ≤ 200 Hz

Table 1.2: NBH specifications.

electron heated experiments and fusion reactor conditions. It also opened access to the study

of fast ion physics, that can now benefit of the peculiar TCV plasma shape flexibility. To this

end, a FIDA survey diagnostic was implemented in TCV, details of the implementation and

results are presented in appendix A. The upgrade required to install the neutral heating beam

took ' 19 months, that occurred during this thesis project, causing delay in the CXRS EDGE

diagnostic commissioning and exploitation (the implications are further discussed later in

this thesis). Figure 1.10 shows a CAD drawing of the NBH, whose main operational parameters

are listed in table 1.2.

The beam power can be smoothly changed from 0.09 to 1 MW (albeit with a simultaneous

change in ion energy from ' 15 keV to ' 25 keV), and can be modulated at up to 200 Hz.

The beam energy depends on the requested power ranging from 10 to 25 keV, with a full

energy fraction (in power) of 73%. An injection geometry tangent to the plasma axis at the

machine mid-plane was chosen to maximise heating efficiency for the widest range of plasma

parameters whilst satisfying machine access limitations.

Following initial tests, the total energy delivered by the NBH into TCV was limited to 0.5 MJ in

2016 and 2017 due to excessive beam divergence that caused overheating and damage to the

beam duct. A modification of the beam duct and an improvement of the ion optics are under

study to solve this problem to unlock the NBI’s full potential.

The intensive testing of the NBI provided evidence that, on balance, it facilitates H-mode

access, it changes sawtooth and ELM frequencies, and provides a significant plasma current

drive. A new TCV record ion temperature of 3.7 keV was achieved early in the first medium

size tokamak (MST1) campaign, a campaign involving multiple machine of European Fusion

Programme organised by the EUROfusion Consortium [13].

The NBI provides TCV with an active source of torque allowing study of momentum transport

other than the one related to intrinsic rotation. With the use of NBI torque, toroidal velocities

up to 200 km/s in the beam direction (−eφ) have been recorded, while the intrinsic rotation in

TCV is limited to ≤ 60 km/s.
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1.2.2 TCV diagnostics

TCV is equipped with an extensive set of diagnostics that measure most of the relevant ex-

perimental plasma parameters. The strong TCV versatility in plasma shaping has a heavy

repercussion on diagnostics design, the measurement spatial coverage and dynamic range

have to cover a large range of plasma densities and temperatures on a shot-to-shot basis. A

brief description of the main diagnostics particularly relevant for this work can be found in

the following paragraphs.

Magnetics

The magnetic equilibrium of TCV is reconstructed by the Grad-Shafranov solver LIUQE [29–

32] exploiting the measurements of the Mirnov coils installed inside the TCV vacuum vessel,

between the vessel and the graphite tiles, to avoid the finite magnetic diffusion time of the

conducting vessel. These probes are also used in the MHD analysis to detect instabilities and

modes. Four sets of poloidal probes arrays, of 38 probes each, measure the component of the

poloidal field tangential to the vacuum vessel at fixed toroidal positions (equispaced by 90°).

Three pairs of toroidal arrays are positioned at different vertical positions: TOP Z =+35 cm,

MIDDLE Z = 0 and BOTTOM Z =−35. Each pair consists of a set of equispaced probes, 8 at

the HFS and 16 at the LFS, with an additional probe in the LFS set (total of 17 probes) with the

breaking of symmetry permitting the detection of modes with toroidal numbers up to n = 16.

Three (TOP, MIDDLE and BOTTOM) sets of saddle loop, 8 probes each, complete the MHD

acquisition system.

The maximum acquisition frequency is 1 MHz, although for standard operation an acquisition

frequency of 250 kHz is used, which is satisfactory to measure MHD activity in most TCV

plasmas and more than sufficient for plasma shape reconstruction.

The poloidal Mirnov coil array of TCV are treated as a discrete approximation of a Rogowski

coil and are used to estimate the plasma current Ip [33].

Electron diagnostics

There are two main diagnostics in TCV dedicated to the measurements of the main electron

parameters, which are density ne and temperature Te . These diagnostics are the Thomson

scattering system (TS) and a far infrared interferometer (FIR).

Thomson scattering

The Thomson scattering diagnostic [34] provides local measurements of both electron density

ne and temperature Te . It exploits the elastic scattering of EM waves from electrons called

Thomson scattering. The electron density is proportional to the intensity of the scattered

light, whilst the temperature can be calculated by a spectral analysis of the scattered signal,

whose wavelength differs from the incident light due to Doppler broadening (this is somewhat
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complicated by a relativistic term in the cross section that depends on the electron energy

distribution but the principle remains as described). The incident light is provided by three

Nd-YAG lasers. Their wavelength is 1064 nm, with a 20 Hz repetition rate and a maximum

energy of 0.85 J each. The optical path of the lasers within the TCV vessel almost overlap, so

they can operate either with a simultaneous trigger, to achieve a higher signal/noise ratio

(S/N) required for low density plasmas, or with independent triggering to increase the time

resolution of the system. The latter configuration can be exploited in the study of fast events,

it allows the acquisition of 3 profiles with a short temporal inter-space of ' 2 ms, which is the

sensor system sampling time, with a 20 Hz repetition rate imposed by the lasers’ performance.

The laser beams traverse the plasma at R = 0.9 m (mid radius of the TCV vessel, figure 1.11-(a)).

Currently there are 47 observation positions covering the region Z = (-31, + 66) cm, with a

spatial resolution that depends on the channel location, higher at the plasma edge [35] (top

and bottom). A set of 35 chords with intermediate resolution (integration length 16mm)

has recently been installed to increase the diagnostic coverage and additional upgrades are

planned. The radial profiles are calculated by mapping the measurements to the vertical laser

path and the magnetic equilibrium reconstructed by LIUQE. Profile symmetry can also be

used as an additional constraint for the magnetic reconstruction, although this approximation

is sometimes seen to fail in particular plasma conditions on Tokamaks.

The scattered light is analysed using filter polychromators (4-6 spectral channels) optimised

for measurements of the electron temperature over a range from 10 eV to 20 keV. The system

is absolutely calibrated using Raman scattering of a N2 gas filled TCV vessel, but drifts in the

alignment of the laser beams and in the detection optics affect the calibration consistency.

The absolute, but line-integrated, FIR diagnostic is used as a reference to adjust the TS density

profile.

The TS diagnostic is the most important electron diagnostic in TCV, it is essential in many

post-shots analysis routines and in the interpretation of other diagnostics, including CXRS.

FIR

The FIR exploits a Mach-Zender interferometer to provide line integrated electron density

measurements, along 14 vertical paths showed in figure 1.11-(b). The interferometer measures

the phase difference, due to the refractive index of the plasma, of the laser beam (wavelength

184.3 µm) passing through the 14 line of sight (LOS) with a reference external path. The line

integrated electron density is proportional to this shift. The standard acquisition rate is 20

kHz, with a typical accuracy of 1%. The system is fully automated and is part of the essential

diagnostic set in TCV operation, as the measurement along the central chord (R = 0.9 m) is

used for real time control of the plasma density. The density profile can be reconstructed by

Abel tomographic inversion, either employing Minimum Fisher regularisation or using the

Singular Value Decomposition technique and base functions selected from the TS profiles

results [36].
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Figure 1.11: Graphical representation of the LOS for the diagnostics: a) Thomson scattering, b)
FIR, c) DMPX and d) XTOMO.

Ion diagnostics

The main ion diagnostic in TCV are the charge exchange recombination spectroscopy (CXRS),

that measures impurity parameters, and the compact neutral particle analyser (CNPA), for

line integrated measurements of the plasma main specie.

CXRS

The CXRS diagnostics in TCV [37–39] provides local measurements (see figures 2.10 and 2.11)

of plasma impurity density ni mp , temperature Ti mp and rotation velocity vi mp . The system

exploits the active charge exchange (CX) reaction between the impurity ion and an high energy

neutral hydrogen atom of a diagnostic NBI (DNBI), which is detailed in section 2.2.1. The

low power (≤ 80 kW delivered into the vessel) of TCV DNBI allows for unperturbed rotation

measurements, which are preferable for intrinsic rotation studies. The recombined impurities,

excited after the CX reaction, emit line radiation that is analysed by spectrometers. The

measured quantities are related to the first three moments of the impurity emission line.

The main TCV intrinsic impurity is Carbon, that is released from the wall, and it is routinely

measured through the CVI line at 529.06 nm.

The maintenance, development and upgrade of this diagnostic constituted the major work of

this thesis. The CXRS diagnostic is thus described in detail in chapter 2.

CNPA

The compact neutral particle analyser (CNPA) [40] measures the high energy (0.64-50 keV H,

0.56-33.6 keV D, 0.98-18.1 keV He) neutrals (either the couple H-D or D-He can be measured

simultaneously) escaping the plasma. These neutrals are produced by CX reactions of the

main ions species with the background neutral atoms that penetrate in the plasma confined

region, therefore from their energy distribution information on the initial ion distribution
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can be inferred. Active measurements employing LOS intersecting a NBI are feasible for this

diagnostic, although in TCV mostly passive measurements are performed. The CNPA has a

single LOS situated on the midplane, that can be set either perpendicular or tangent to the

magnetic axis, to study either the perpendicular or parallel ion velocity distribution. The

CNPA provides complementary measurements to CXRS, in particular of the high energy tail

of the distribution, to which the CXRS diagnostic is much less sensitive. With the help of the

Monte Carlo code DOUBLE-TCV [41] it is possible to estimate the neutral density profile in

TCV, which is fundamental for the passive CX that constitute the principal background in

active CXRS measurements.

Plasma EM emission diagnostics

The passive EM emission of fusion plasmas encompass a wide range of phenomena and

energies, and TCV is equipped with a variety of diagnostics to characterise these emissions.

The principal EM emission are [34]:

• line radiation, due to electronic excitation, recombination or CX;

• continuum radiation, due to recombination and bremsstrahlung.

The EM diagnostics relevant for this work are:

1. Photodiodes for Dα line radiation (PD);

2. duplex multiwire proportional X-ray counter (DMPX);

3. Tomographic soft X-ray diagnostic (XTOMO).

PD

Eighteen photodiodes are installed on TCV [42], equipped with a set of spectroscopically

chosen interference filters to acquire different specific spectral lines, at a typical acquisition

frequency of 125 kHz. Ten photodiodes have a Dα filter and are used for plasma survey and in

the identification of fast phenomena, such as the L-H transition.

DMPX

The duplex multiwire proportional X-ray counter [43] is a soft X-ray (SXR) detector composed

of 2 Krypton-CH4 wire-chambers, that have a total of 64 LOS in a TCV poloidal section (see

figure 1.11-(c)). The diagnostic is sensitive to X-rays in the energy range 1-30 keV, the lower

limit of 1 keV is imposed by a fixed beryllium filter, that can be increased to 15 keV by inserting

additional filters. It is particularly suitable in the study of fast events, like the sawtooth

MHD instability, due to a 200 kHz sampling rate and high spatial resolution (' 8 mm at the

midplane).
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XTOMO

The XTOMO [44] is a 10 camera tomographic system working in the 1-15 keV X-ray range.

The camera are placed in a poloidal cross section of TCV, 3 on top, 4 on the LFS and 2 on the

bottom. Each camera houses 20 silicon photodiodes, for a total of 200 LOS that cover the whole

TCV poloidal cross section (figure 1.11-(d)), allowing a full 2D tomographic reconstruction.

This implies that XTOMO is capable of resolving the poloidal structure of the SXR emissivity,

enabling the study of modes and instabilities. The maximum sampling rate of 80 kHz and the

space resolution of 3-4 cm are the limiting factors for the reconstruction.

1.3 Thesis objectives and outline

1.3.1 Motivations

With the construction of ITER and the design of DEMO, fusion physics research is concen-

trating on improving our understanding of fundamental performance criteria such as the

transport of particles and energy in the reactor plasma.

The radial transport of particles and heat in a tokamak is a complex and not fully understood

process [45], that sets the performance limits of a fusion device.

Explanations of the measured level using collisional transport, either with a simplified model

(classical transport) or considering the full magnetic geometry and particle drift (neoclassical

transport), often underestimate the experimental transport by 1-2 orders of magnitude [46].

This observed enhanced transport, referred to as ‘anomalous’ transport, is considered to be

the result of small scale turbulence, driven by temperature and density gradients.

Much of the theoretical work requires detailed knowledge of many plasma parameters that are

not experimentally possible to measure. One of the plasma parameters that can be measured

is bulk plasma flow, most often seen as a plasma rotation about some axis (often poloidal

and/or toroidal). Rotation has, in some situations, been shown beneficial in stabilising and

thus reducing turbulence, in particular is commonly accepted that the E×B velocity shear can

suppress turbulence by decorrelating the turbulence eddies and vortex thinning [47]. Rotation

has a stabilising effect also on a variety of MHD modes, such as the resistive wall modes

(RWM) [48], neoclassical tearing modes (NTM) [49] and sawtooth, and it helps preventing

locked modes at rational q surfaces.

Bulk plasma rotation is thought to play a role in the transition to the H-mode [6]. The reduction

of turbulence caused by the poloidal sheared flow [50] may be a trigger for the transition, but

definitive experimental evidence supporting this hypothesis is still lacking.

Since a Diagnostic Neutral Beam was installed on TCV, previous work focussed on the charac-

terisation and interpretation of toroidal rotation, in particular on the dependence of intrinsic

rotation on plasma parameters [38] and in the role of sheared rotation in the formation of
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transport barriers [39]. During this period, understanding intrinsic rotation became a strong re-

search avenue with the joint goals of developing a consistent model of a fusion reactor [11, 51],

and in predicting the intrinsic rotation in a fusion device, where the torque driven by NBI is

expected to be negligible [52] with respect to the intrinsic drive. In other fusion experiments

plasma rotation is often dominated by external sources (NBI) and studies on intrinsic rotation

are possible only in dedicated experiments by employing a power ‘blip’ technique [53, 54]. In

this framework TCV’s measurements are directly pertinent to fusion reactor research.

From TCV’s earlier experiments, the light throughput of the spectroscopic system, together

with a reliable calibration were paramount in obtaining physics results. The main objective of

this thesis was to improve the accuracy and the spatial and temporal resolution of poloidal

velocity measurements on TCV and to extend them across the LCFS. This could then resolve

the detailed structure of the poloidal rotation inside and across the LCFS where, particularly

for H-mode configurations, strong activity was expected.

A preliminary overview of TCV’s CXRS diagnostic indicated that the commercial spectrometers,

employed at the start of this thesis, would not provide the throughput, nor spatial resolution,

necessary to track changes in this region. It was decided to construct an “in house” visible

spectrometer, employing commercial lenses, with a much higher étendue and, where possi-

ble, change the plasma viewing optics to enhance the spatial resolution. During this thesis,

three such lens-based spectrometers were constructed and employed and further devices

constructed to replace the remaining legacy spectrometers.

To complete this overview, TCV went through a major shutdown from 2013 to 2015, where

the vacuum chamber was open to air. This was then followed by nearly another year of TCV

operation in the European first medium size tokamak (MST1) framework [55] with major crises

involving poor performance of the newly installed 1 MW neutral heating beam. These events

compressed the available time for TCV experimentation, and thus data analysis, considerably

more than for a conventional Ph.D. thesis at the SPC.

This time was, however, gainfully employed in building and testing the new spectroscopic

system and collection optics on a high efficiency negative ion plasma source to be used for high

power, high neutral energy (' 1MeV ), NBH on ITER and beyond (chapter 3). This resulted in

the first spectroscopic characterisation of the helicon source in the linear resonant antenna

ion device (RAID) at the SPC [56]. Analysis of the passive spectroscopic data collected in 2015-

2016 on RAID was completed using the collisional-radiative (CR) code YACORA [57], through

a collaboration with IPP Garching. The CR model required a measurement of the complete

Fulcher α Q diagonal spectrum and the first three Balmer lines, with the determination of the

absolute line intensity for both H2 and D2. The work done resulted in an article published by

the journal Nuclear Fusion [58].

The intensive use of the newly installed NBI in the MST1 campaign provided yet another

task for the new spectrometer involving testing and commissioning of a new diagnostic

able to detect the fast ion population generated by the NBI (max injection energy ' 25 keV).
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Characterising and understanding the physics of fast ions and their confinement dynamics is

a major objective towards the development of a working fusion reactor. The lens spectrometer

was therefore used for the first TCV fast ion D-alpha (FIDA) diagnostic, using the toroidal

LOS of the CXRS LFS system (SYS1). This diagnostic measures the active Dα emission from

CX of the DNBI neutrals with the fast ions in the plasma following high energy neutral beam

injection. The FIDA survey diagnostic, explained in appendix A, contributed to the final TCV

FIDA design.

The physics aims of this thesis on TCV were to study the behaviour of momentum transport in

the plasma edge.

One of the main questions was to ascertain whether poloidal rotation in TCV is similar to

other devices and whether it is well described by neoclassical theory. The reduced uncertainty

in the poloidal velocity measurements of the new spectroscopic system, called EDGE CXRS

(or simply SYS4 in order to distinguish it from the three CXRS systems already installed on

TCV) was achieved using an high throughput spectrometer and by optimising, for poloidal

measurements, the geometry of the diagnostic LOS, using a new periscopic view. This system

required a review of the CXRS software suite to encompass situations with large signal intensity

variations and complex triggering.

The role of MHD activity in determining the plasma rotation has already been the subject

of Ph.D. work at the SPC [38, 39]. In this thesis, the sawtooth (ST) instability [19], a periodic

relaxation of the plasma core that causes flattening of the electron density and temperature

profiles, was again studied, where strong ST-period control was used to optimise the CXRS

diagnostic’s performance, permitting time resolved measurements of the plasma rotation and

plasma electric field across a ST period. The strong role of just one of the possible known

MHD modes in a Tokamak could then be quantified in terms of momentum conservation to

probe whether such modes can act as a direct plasma torque. In this context the experiments

on TCV provided evidence of a co-current kick in the core intrinsic toroidal rotation at the ST

crash, with a resulting hollow profile, followed by steady relaxation to a peaked monotonic

profile. This effect must be explained by a comprehensive ST theory.

Another reactor relevant topic is the H-mode operation, appealing for the confinement prop-

erties. The H-mode threshold is reduced by strong rotation [6], which is also considered to be

a trigger for the transition; hence a characterisation of impurity parameters at the edge, where

the H-mode transport barrier develops, has been performed to improve the understanding

of the transition. In particular the changes in the poloidal flow and in the radial electric field

across the transition suggested a strong importance of poloidal rotation for triggering the tran-

sition, although only time resolved measurement of the transition itself, which is unattainable

in TCV yet, might definitively confirm the hypothesis.

This work was almost all performed with only the lower power diagnostic beam that is used to

probe the ion kinetic profiles without perturbing the experiment directly. Although plasma

momentum transport was the main goal of this thesis, the behaviour of impurity transport,
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through absolute diagnostic calibration, is also available and of strong interest to the Fusion

community [59]. In this thesis the transport of intrinsic Carbon impurity measured for the

rotation experiments is also described showing that a simple diffusive model is not physically

sustainable. In particular,there are evidence of impurities expulsion from the core at the crash,

consistent with predictions in [60], that cannot be reduced to simple turbulence transport.

Measurements with other impurities (N2 and He) are described where it is shown that the

DNBI is not appropriate for this research. An extension, by using the high power heating beam

(installed in 2016 on TCV), is discussed.

1.3.2 Outline

This chapter introduced the reader to general concept related to nuclear fusion and to the

tokamak device used in this work. The remainder of this thesis is structured as follow:

• Chapter 2 describes in details the CXRS diagnostic in TCV. The measurements princi-

ples are exposed and the status of the diagnostic is described, with emphasis on the

design and characterisation of the EDGE system. Finally the analysis procedure of the

experimental spectra is described.

• Chapter 3 presents the methodology and the results of the spectroscopic characterisa-

tion of helicon plasmas in RAID. With the delay in TCV operations, this was also used as

a test bed for the EDGE system spectrometer and required considerable effort and time.

• Chapter 4 introduces some fundamental concepts of plasma rotation and momentum

transport that are used in the following chapters.

• Chapter 5 illustrates the evolution of rotation and momentum transport across a saw-

tooth event in L-mode limited discharges. The measurement method is described in

details and the results of a scan in ST period are interpreted.

• Chapter 6 describes the changes in rotation and impurity profiles that characterise the

L-H transition, together with a characterisation of the electric radial field ‘well’.

• Chapter 7 summarises the work described in this thesis and provides an outlook on

future CXRS studies on TCV.
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2 CXRS diagnostic in TCV

The study and understanding of momentum transport and rotation in tokamaks requires

high accuracy and precision in the measured profiles. The charge exchange recombination

spectroscopy (CXRS) represents the most widespread diagnostic employed for the localised

measurement of impurity ion kinetic profiles. Local measurements are achieved exploiting

active CX emission at the intersection of the CXRS spectrometer LOS with an NBI, that supplies

high velocity donors for the reaction. Worldwide, it is customary to utilise a high power

(≥ 1 MW) NBI, primarily installed for auxiliary plasma heating, for CXRS measurements.

Although this provides a strong active signal, it perturbs the measured parameters by injecting

momentum and heat into the plasma, particularly the ions themselves. In TCV, an elegant

solution was adopted to avoid these perturbations, where a diagnostic neutral beam (DNBI)

is employed for CXRS measurements, which injects into the plasma ' 50 keV H atoms in a

near-radial direction, for a total power delivered in TCV ≤ 80 kW (with a considerable power

fraction deposited upon the electrons). This configuration allows measurements of kinetic ion

parameters including plasma intrinsic rotation, i.e. the rotation profile that spontaneously

develops in momentum source-free tokamaks.

In the first part of this chapter, the principles and theoretical background of CXRS diagnostics

are explained, with particular focus on the atomic physics effects that, if not taken into

account, can influence and/or introduce systemic deviations in the measurements. A brief

theoretical evaluation of uncertainty in these measurements is also introduced, that was then

implemented into the CXRS analysis functions.

In the second part of this chapter, after a brief discussion on the current status of the legacy

CXRS systems, a newly developed EDGE system is described, in both the hardware imple-

mentation and in the measured performance. Following an explanation of the alignment and

calibration procedures, the specifics of analysis routines are discussed.

The chapter concludes with the results of the first attempts of Helium and Nitrogen CXRS

measurements on TCV.
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Chapter 2. CXRS diagnostic in TCV

2.1 Measurement principle

The charge exchange reaction consists in a transfer of a bound electron from a donor neutral

atom (typically for CXRS a H 0 or D0 of an NBI) to a plasma ion, hereby represented by A+Z .

The reaction may be written as:

A+Z +D0(nd , ld ) → A+(Z−1)(n, l )+D+ (2.1)

The electron after the reaction has a finite probability of occupying an excited state in the target

ion of principal quantum number n and orbital quantum number l , with a maximum prob-

ability at nmax ' Z 3/4 [61] and l ≥ nmax for high energy (≥ 1 keV) donors. For fully stripped

Carbon C 6+, the typical impurity measured in TCV, nmax = 4. The donor excitation level is

also of fundamental importance, as the CX cross section magnitude and energy dependence

are drastically dependent on nd , as shown in figure 2.1.
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Figure 2.1: Cross section for the CX reaction populating the upper level of the CVI(n = 8 → 7)
transition for donors at ground nd = 1 and first excited nd = 2 levels. Source ADAS
database [62]. The vertical dashed lines represent the Hydrogen DNBI energy components
with E0 = 50 keV. Fractional energy components are explained in section 2.2.1.

The radiative de-excitation timescales (few ns) are much faster than ionisation timescales ('
ms) for the usual tokamak plasma parameters, so the excited electron de-excites to the ground

level n = 1 through a cascade of radiative transitions, in particular (n, l ) → (n−1, l −1) for high

l , before re-ionising. The emission lines of the cascade ranges from X-rays to the visible light,

the latter is of particular interest for CXRS diagnostics due to the ready availability of high

quantum efficiency sensors, optics and high resolution and dispersion imaging spectrometers.

From the spectral analysis of a single emission line, the density, velocity and temperature can

be calculated, which are related respectively to the zeroth, first and second moments of the
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2.1. Measurement principle

line spectral distribution (see below).

The Carbon transition chosen in TCV for CXRS is the CVI(n = 8 → 7) line, that is in the green

region of the visible spectra at the wavelength λ= 529.06 nm. Carbon concentrations of few

% are common after conditioning of the C-tiled TCV wall, whereas just after a boronisation

procedure the C density drops significantly, due to the Boron coating on the graphite tiles

preventing Carbon release. The wall conditioning typically lasts a few weeks (several tens of

full power TCV discharges) and in this period a Boron emission line is observed instead. The

selected emission line for Boron is in the blue visible range, from the transition BV(n = 7 → 6)

centered at λ= 494.467 nm.

2.1.1 Main plasma ion and impurity profile comparison

The CXRS diagnostic measures impurities density nα, temperature Tα and velocity vα profiles,

hence it is of great interest to identify how these quantities relate to the main ion corresponding

parameters (ni ,Ti and vi ). From a comparison of the ion-electron equipartition time, in the

range of τe−i ' 10−100 ms for typical TCV plasmas, and ion-ion equipartition time, τi−i '
0.1−1 ms, it is estimated that the impurity and the main ions are, to a good approximation, in

thermal equilibrium: Ti ' Tα, which is confirmed by comparison with CNPA measurements

in [40].

The connections between the impurity, main ion and electron density is embedded in the

definition of the plasma effective charge Ze f f , which is:

Ze f f =
∑

l Z 2
l nl∑

l Zl nl
(2.2)

where l labels the ions in the plasma (both impurities and main ions). By including plasma

charge neutrality
∑

l Zl nl = ne the relation between all the species densities is found. Equa-

tion 2.2 is usually relaxed in TCV by considering only the dominant impurity C 6+; with this

approximation Ze f f profile is estimated using just the CXRS and TS data.

The relation between impurity and main ion rotation is more complicated, since neoclassical

theory [63] allows for considerable differences in species’ velocities, especially for poloidal

rotation and in the presence of strong pressure gradients. This is caused by the diamagnetic

contributions for each species and inter species friction forces. In previous works on TCV [38,

64], impurity toroidal velocity was studied and features unexplained by neoclassical theory, like

rotation reversal, were found. Poloidal rotation, on the other hand, resulted more controversial,

experiments on other devices resulted in cases of adequate agreement [65–69] and in cases of

complete discrepancy [70–73] between the measured rotation and the neoclassical theory. The

debate is still ongoing and improvements in both the experimental and theoretical knowledge

are necessary in obtaining a conclusion.
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2.1.2 Line shape

The spectral profile of the emission line used in CXRS measurements is considered in this

section. A full understanding on the physical processes and atomic physics involved in the

emission is paramount to correctly interpreting the measurements.

Considering a thermalised plasma impurity, Carbon in the following, the velocity distribution

function follows the Maxwell-Boltzmann distribution function:

fC (vC ) = nC(
2πσ2

C

) 3
2

e−(uC−vC )2/(2σ2
C ) (2.3)

with nC [m−3] the Carbon density, uC [m/s] the rotation (bulk) velocity, and σC the standard

deviation of the Gaussian, that is related to the Carbon temperature TC [eV] by the equation

σ2
C = e TC

mC
(2.4)

where mC [kg] is the Carbon mass and e [C] the elementary charge.

The spectral emissivity ελ [ph/s/m3/sr/Å] of the active CXRS signal viewed by a LOS in direction

eLOS can be described, to first approximation, by a Gaussian function:

ελ(λ,εI ,λ1,σλ) = εI(
2πσ2

λ

) 1
2

e
− (λ−λ1)2

2σ2
λ (2.5)

where εI ,λ1 and σλ are the first three moments of ελ, termed respectively line emissivity, line

central wavelength and line spectral width. A detailed derivation of this formula, with the

assumption it implies, is found in appendix B. The moments of the spectral emissivity are

related to the moments of the Carbon distribution function by the following equations

εI =
∑
b

∑
k

1

4π
nC nd ,k,b qe f f

k (Eb ,ne ,Te ) (2.6)

λ1 = λ0

(
1+ uc ·eLOS

c

)
(2.7)

σλ =
√

e TC

mC

λ0

c
(2.8)

where qe f f
k [ph m3/s] is the effective emission coefficient for the transition (n → n′) charac-

terised by the rest wavelength λ0.

The effective emission coefficient is calculated through the collisional radiative (CR) code

ADAS [62], and depends on the donor energy Eb and plasma parameters.

The density nd ,k,b of donors at the excited level k and energy Eb must be calculated or mea-
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sured independently in order to extract nC from radiance measurements, which is the LOS

integrated emissivity of the active CXRS signal. In TCV, the DNBI neutral density is calculated

across the plasma cross section for each energy component through a beam attenuation

code [37, 40]. The population ratios Rk1 of k level to ground level atoms are estimated from

the local plasma parameters through a look-up table (see appendix C) generated from ADAS

calculations. The procedure for absolute calibration of the CXRS system, which is necessary in

the conversion counts-to-photons for radiance evaluation, is explained in section 2.2.3. An

absolutely calibrated diagnostic directly measures the radiance LLOS [ph/s/m2/sr]

LLOS =
∫

LOS
εI (s)d s =

∑
b

∑
k

1

4π

∫
LOS

nC (s)nd ,k,b(s) qe f f
k (s)d s (2.9)

which shows the necessity of a careful choice in the LOS geometry if localised measurements

are desired, since the integral of the emissivity on the position s [m] along the LOS degrades

the spatial resolution.

In TCV, with a quasi-perpendicular CXRS LOS to the small diameter DNBI (≤ 10 cm, see figures

2.10 and 2.11), nC and qe f f
k are considered constant across the intersection CXRS LOS-DNBI,

equation 2.9 can be directly inverted, leading to an equation for the local density:

nC [m−3] = 4π LLOS∑
b
∑

k qe f f
k

∫
LOS nd ,k,b(s)d s

(2.10)

The integral
∫

LOS nd ,k,b(s)d s is calculated from the beam attenuation code using the geometry

of the CXRS-LOS and DNBI.

The rotation velocity projected on the LOS direction uLOS is found by inverting equation 2.7:

uLOS [m/s] = uc ·eLOS = λ1 −λ0

λ0
c (2.11)

From equation 2.11 a velocity resolution of 1 km/s requires a diagnostic wavelength resolution

δλdi ag ≤ 0.018 Å.

The Carbon temperature is then calculated from the measured line spectral width using the

relation:

TC [eV ] = mC c2

e

σ2
λ

λ2
0

(2.12)

which assumes only the Doppler line broadening. In section 2.1.2 the dominant broadening

mechanisms are described and included in the analysis when relevant.

The spectral analysis is complicated by passive emission due to CX reactions of the Carbon

with the neutral gas surrounding the plasma, that diffuses in the confined region, and direct

excitation of CV species. In TCV, using the lower density diagnostic neutral beam, the intensity
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of the passive component dominates, with typical ratios active/passive in the range 25−5%,

necessitating the adoption of a passive intensity subtraction technique (see 2.2.4).

Atomic physics corrections to the line shape

The description of CX line emission in the previous section is a simplified model of the

actual emission as it neglects atomic physics effects that can modify the spectral emissivity

distribution, inducing additional line shifts and broadening, that would be interpreted as

apparent contributions to the measured velocity and temperature. These effects are:

1. Multiplet structure of the emitted line,

2. Stark splitting

3. Zeeman splitting

4. Energy dependence of the cross section.

Multiplet structure

The description of the transition CVI(n = 8 → 7) as a single atomic transition is inadequate.

In the (n, l , s) wavefunction view, the spin-orbit interaction removes the degeneracy in the

orbital quantum number l and l ′ of the Carbon energy levels n = 8 and n′ = 7, resulting in 37

multiplet transitions (nl → n′l ′) ‘allowed’ by the dipole selection rules.

The emission from each transition depends on the branching ratio and on the population

of the (n, l ) sub-levels, which is influenced by the surrounding plasma parameters through
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Figure 2.2: Critical density for l-mixing of Carbon and Boron excited levels. The transitions of
interest for CXRS are CVI(n = 8) and BV(n = 7), both have critical densities < 1018 m−3.
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collisions. To calculate the population structure a full CR mode is needed if no assumptions

on the sub-levels can be made. This calculation is highly simplified if the levels are populated

accordingly to their statistical weight (l-mixing). In [61] an expression for the critical density

for l-mixing is found, with the results for Carbon and Boron shown in figure 2.2. The l-mixing

assumption is applicable for both CVI(n = 8) and BV(n = 7) for densities above a critical density

(ne ' 5 ·1017 m−3), that is well exceeded in the typical TCV parameter space (ne ' 1018 −1020

m−3). For this reason initial estimations were be performed with the l-mixing assumption.

The CR code ADAS [62] calculates the emissivity for each line of the 37 transitions forming

the multiplet as function of plasma parameters by estimating the sub-level populations,

considering initial distributions due to CX reactions (l-resolved cross-sections), redistribution

within an n-shell and radiative cascade. An example of the multiplet structure of the transition

CVI(n = 8 → 7) is shown in figure 2.3. The spectral emissivity of each transition in the multiplet

is taken to be Gaussian, as expressed in 2.5. The change in the relative emissivity within the

multiplet with plasma parameters cause a shift in the reference wavelength λ0,mul t and in the

broadening σλ,mul t of the total spectral emissivity.
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Figure 2.3: Multiplet-resolved structure emission of CVI(n = 8 → 7). The vertical blue lines
show the wavelength for each transition of the multiplet while in orange is the spectral emis-
sivity.

These effects are corrected in the TCV data analysis. A shift up to 0.05 Å with respect to the

l-mixing estimations, corresponding to a velocity ' 3 km/s, is found in the typical range of

TCV parameters. The multiplet effect on temperature is also not negligible, with maximum

broadening of ' 1 Å, corresponding to ' 60 eV. The multiplet structure broadening must be

also considered when in synergy with other broadening mechanisms, like the Zeeman effect.
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Stark splitting

The Stark effect due to local electric fields is another mechanism that influences the atomic

energy levels and population. An equation that estimates the critical n for l-mixing as function

of Ti and B , for both linear and quadratic Stark effects, is reported in [61] and was used to

generate figure 2.4-(a). The Stark effect therefore can further relax the condition for collisional

l-mixing of figure 2.2. The change in the apparent temperature, also estimated in [61], are

shown in figure 2.4-(b). The correction is within 1% for TCV relevant temperatures and is

neglected in TCV’s CXRS standard analysis.
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Figure 2.4: (a) critical n above which l-mixing is reached, as function of Ti , due to either
linear or quadratic Stark effect, for both Carbon and Boron hydrogenic ions. (b) correction on
Carbon temperature due to the Stark effect.

Zeeman splitting

The Zeeman effect is yet another mechanism that modifies the atomic energy levels. It is

caused by the interaction of the external magnetic field with the electron angular and spin

momentum. The net effect is to divide the transitions in three components depending on

their polarisation: σ−,π and σ+. The energy levels of the π component are unperturbed (i.e.

λπ =λ0,mul t ), while the changes in the energy levels of the components σ− and σ+ lead to a

shift in the transition wavelength linear in B and given by

∆λσ± =λσ± −λπ = KZλ
2
πB (2.13)

with the constant KZ = 4.67 ·10−9 [1/(Å T)] found in [74], which agrees with results of [75].

The Zeeman effect is not isotropic, the radiant intensity of the three polarized components

strongly depends on the angle θZ of emission with respect to the magnetic field direction. The

pattern is described by the following equation

Iπ
I±σ

= 2 sin2(θZ )

1+cos2(θZ )
(2.14)

found in [75] and it is shown in figure 2.5-(a).
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Figure 2.5: (a) pattern of the radiant intensity ratio Iπ
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as function of the angle θZ of emission
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σ+(magenta) for selected plasma parameters at θZ =π/2.
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Figure 2.6: Difference between apparent temperature and true temperature due to the Zeeman
effect. The correction is not negligible at low temperature and high magnetic field.

The modification in the total spectral emissivity are calculated from equations 2.13 and 2.14

and used to generate a correction look-up table, as function of plasma parameters and LOS

geometry.

An example of the correction introduced considering the Zeeman effect is shown in figure 2.6.

The Zeeman effect is not negligible at low temperatures (≤ 100 eV) and the correction increases

with the magnetic field strength. E.g. the Doppler broadening at TC = 50 eV is σDoppl er =
0.83 Å, the shift in the emission wavelength of each σ component is ∆λσ± = 0.35 Å for an

effective broadening ∆σZ eeman ' 0.7 Å, which is comparable with the Doppler broadening.
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Energy dependence of cross section

The equation for the spectral emissivity 2.5 represents an approximation of the emissivity

even for a single transition. The assumptions and its analytical derivation are described in

appendix B. Here the assumption σC X (|ud −v|) ' σC X (|ud −uC |) is removed and its effects

are tested.
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Figure 2.7: Errors in (a) the temperature and (b) rotation induced by neglecting cross section
effects for all the EDGE system LOS, colour-coded. The corrections are negligible and are
therefore neglected in the analysis.

This effect, that modifies both the central wavelength and the emission width, is treated

in [61], for which an analytical approach can be used [76]. The profile shape deviates from a

Gaussian when considering the detailed dependence of the CX cross-section on the particles’

relative velocity. For example, ions moving towards the DNBI have a different probability of

undergoing a CX reaction than those moving away, modifying the observed line emissivity

accordingly.

This effect increases with Tc , as a more extended range of the cross section is sampled in-

creasing the impurity temperature. If the diagnostic LOSs have a non vanishing component

along the beam, this effect cause a change in the central wavelength that is not associated

with ion flow, but to the derivative of the CX cross section. In TCV CXRS systems, this effect is

minimised by adopting LOSs quasi-perpendicular to the DNBI.

The effects on perceived temperature, that are associated to the second derivative of the

CX cross section, can not be countered by an astute LOS geometry and were estimated by

numerical integration of equation B.9, as explained in appendix B.

The error induced by neglecting the cross section effect for the EDGE system LOS is shown in

figure 2.7 and found to be negligible for all TCV plasma parameter ranges examined in this

thesis.

Gyro-motion and finite lifetime

An additional effect is produced by the energy dependence of the cross section when con-
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sidering the detailed particle motion in the poloidal plane. It was explained above that an

apparent shift in the central wavelength, associated with an apparent velocity, is produced in

the direction of the beam. This apparent shift is projected in the poloidal plane as an effect of

the ion gyro-motion and the finite lifetime of the excited state [77].

Figure 2.8: Graphical representation of the Ωcτ effect. The apparent velocity due to the
energy dependence of CX cross section (a) is projected in the poloidal plane due to the curved
trajectory of the ion gyro-motion (b).

The mechanism is explained in figure 2.8: the neutral atom-ion relative velocity depends on

the ion gyro-motion phase (blue arrows) and for instantaneous emission (τ = 0, figure 2.8-

(a))the effect would be of an apparent velocity (violet arrow) in the DNBI direction. The finite

lifetime of the excited state τC however causes the emission to be turned by an angleΩcτC in

the poloidal plane, producing an apparent velocity with a non vanishing vertical component

(figure 2.8-(b)).

This effect scales with the magnetic field B (throughΩc ), with the temperature TC and with

rotation (both through σC X ). An analytical approach to estimate the corrections due to theΩτ

effect is reported in [78] and was used in testing the EDGE CXRS system behaviour. The results
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Figure 2.9: Apparent poloidal velocity ∆vi for CXRS EDGE LOS due to the ion gyro-motion
and finite lifetime (Ωτ) effect as function of (a) ion temperature and (b) toroidal rotation, for a
set of transition lifetimes. The correction are negligible for TCV relevant plasma parameters.
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are shown in figure 2.9 for a set of CVI lifetimes, limited by the values reported in [77]. The

apparent velocity correction is limited to vapp < 1 km/s for TCV relevant plasma parameters

and is therefore neglected in the analysis. It should be noted that for states with a long enough

lifetime [79] this helpful result is no longer valid.

2.1.3 Theoretical uncertainty

The aim of this section is to develop a consistent procedure to estimate uncertainties in CXRS

measurements.

There are two main sources of uncertainty in spectral measurements: the first one due to

photons statistics and intrinsic in the measurement, the other due to the additional noise

induced by the measurement instruments, and determined by the implemented technology.

This section focuses on the first source of uncertainty assuming the photons follow classical

statistics, i.e. a Poisson distribution. The total uncertainty is then calculated as the root mean

square of all the contributions. Instrumental noise is treated in section 2.2.2.

Line position

Consider a set of measurements (index k) of a source of fixed spectral radiance Ls(λ), each

collecting a total of N photons. The centroid (line position) µk,s for each measurement in the

set is:

µk,s =
1

N

N∑
i=1

λi (2.15)

where λi is the wavelength for the i -photon of the measurement. If the width of the spectral

radiance is σs , the uncertainty in the line position σµ is:

σµ =
σsp

N
(2.16)

which states that the uncertainty in the line position decreases with the square root of the

collected number of photons. The width considered in equation 2.16 is the experimentally

measured spectral width, including the effects of the instrumental function (instrumental

broadening).

A case of interest for spectral measurements is when the measured spectral radiance is consti-

tuted of two components, an active component (subscript A), that represents the signal of

interest for the measurement, and a background (or passive, subscript B) component, that

acts as an additional source of uncertainty.

The total number of photons is then the sum of the two components N = NA +NB . Each

component has a spectral shape characterised by a centroid, µA and µB respectively, and a
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spectral width σA and σB . The uncertainty σµA in the centroid of the active component is

then

σµA =

√√√√σ2
A

NA
+

(
µA −µB

)2 NB

NA N
+
σ2

B NB

N 2
A

(2.17)

The statistical analysis supporting equation 2.17 is found in [80].

The first term of the right hand side (RHS) of equation 2.17 is the uncertainty due to photon

statistics of the active signal. Interesting enough, if the active and passive components have

similar spectral width (σA 'σB ), and the passive emission is higher (NB À NA), typical of TCV

CXRS measurements, the uncertainty is dominated by the passive component, represented

by the third RHS term. The second term on the RHS is relevant only when NA ' NB and for

µA 6=µB .

Considering a fixed spectral source, equation 2.17 states that the uncertainty still decreases

with the square root of the collected photons N , since an increase in the total counts implies a

proportional increase in both NA and NB . This highlights the importance of optimising the

transmission efficiency in optical measurements to obtain a higher N [81].

Line width

The uncertainty of the line width is more complicated to treat, since general statistical theo-

rems are not directly applicable without approximations. A detailed analysis of the problem is

found in [80].

The best estimate of the spectral width σA of the active component, used in the equations of

the previous section, for each set of measurements, is:

σk,A =

√√√√∑NA
i=1

(
λi −µk

)2

NA −1
(2.18)

The uncertainty σσA in the line width of the active component is

σσA '
1

2σA

√√√√2σ4
A

NA
+

2σ4
B NB

N 2
A

(2.19)

which is roughly proportional to the spectral width of the dominant signal divided by the

square root of the counts.

Equations 2.17 and 2.19 show that an increase of the transmission efficiency of an optical

diagnostic by a factor of 10 results in an increased precision in both line position and width by

a factor of ' 3.
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The CXRS analysis was upgraded to use the best estimates for the line position 2.15 and

width 2.18, for both the measured active and passive components, to calculate the statistical

uncertainties from 2.17 and 2.19. These uncertainties, previously neglected, determine the

maximum precision reachable by each version of the CXRS diagnostic.

2.2 CXRS diagnostic systems

This section is devoted to the description of the TCV CXRS diagnostic, which consists of

four separated systems dedicated to the measurements of impurity parameters at different

positions and/or geometries. The four systems are termed:

1. LFS (SYS1): toroidal velocity measurements in the LFS;

2. HFS (SYS2): toroidal velocity measurements in the HFS;

3. VER (SYS3): poloidal velocity measurements in the LFS;

4. EDGE (SYS4): poloidal velocity measurements at the edge of the LFS.

Although different in design, all the four systems are composed by the following components:

1. an input optical system, that collects the light emitted by the CX reaction and focuses it

on the optical fibres, determining the geometry of the LOS;

2. an optical fibre bundle that carries the photons from the collection optics to the spec-

trometer;

3. a spectrometer that disperses the collected light allowing its spectral analysis;

4. a charge coupled device (CCD) detector, i.e. CCD camera, that convert the photons

composing the spectra into digital counts.

The computational steps that follow the data acquisition and lead to the desired impurity

parameters are explained in section 2.2.4.

2.2.1 Legacy systems

The first version of the diagnostic was commissioned in 2004 [37], featuring only the low

field side (LFS) system. The CXRS diagnostic in TCV was upgraded and optimised several

times over the following years, and the major upgrades are described in [38] and [39], with the

development of the high field side (HFS) and VER (‘vertical’) systems.

In the present manuscript the LFS, HFS and VER systems are labelled legacy systems, al-

though their optimisation and upgrade continued during my work. The differences with the

description in [39] consist in:

40



2.2. CXRS diagnostic systems

• The replacement of the HFS spectrometer: the Acton AM-506 spectrometer, that suffered

from a strong comma aberration was replaced by a SPEX750Mi model, which is a copy

of the LFS spectrometer.

• The replacement of the VER spectrometer with a copy of the EDGE lens spectrometer,

to improve the system transmission efficiency and the image quality.

• A new input optical system, with improved imaging properties, for the LFS and HFS

systems, composed of high transmission (≥ 99% in the visible range) coated lenses.

• An upgrade of the wavelength calibration function, that includes non-linear dispersion

to improve the wavelength determination of the emission line and that enables spectral

calibration at any spectrometer setup.

• An improvement in the robustness of the minimisation spectral fitting algorithm used

in CXRS analysis.

• Improvements in the uncertainty estimation, with the addition of the minimal uncer-

tainty due to photon statistics 2.1.3 and a residual verification following the convergence

of the fitting algorithm.

In this section a brief description of the legacy systems is given. For the interested reader a

more complete description is presented in [39].

Each of the legacy systems features 40 LOS, arranged in pair of 20 fibres per slit (hence 2

slits per system) at the spectrometer entrance. The spectra of the 2 slits overlap on the CCD

sensor, as no narrowband filter is used. A total of 120 fused silica optical fibres are employed

by the three legacy systems to transmit the light to the spectrometers. The core diameter is

636 µm, while the total diameter, including the cladding of each fibre , is 1000 µm, resulting

in a fibre separation of ' 400 µm when arranged vertically on a slit. The fibres numerical

aperture is N A = 0.12, which doesn’t limit the étendue of the systems, which is limited by the

spectrometers.

The LOS geometry of the legacy systems is shown in figure 2.10 together with the DNBI

orientation. The spatial resolution is ±1.5 cm for the toroidal systems (SYS1 and SYS2) and

±0.7 cm for SYS3.

The time resolution is limited by the photon statistics and the requirement of accurate back-

ground subtraction (section 2.2.4), with a typical range of 30-60 ms. An integration time of

2 ms is available for all the systems, and was used in the setup for ST related experiments,

although this required modification of the data analysis.

The toroidal systems are equipped with the same Czerny-Turner spectrometer model, the

SPEX750Mi, with 0.75 m focal length and f-number f/7.5. The image at the spectrometer

output is demagnified of a factor 0.58 by an optical reducer to fit simultaneously all the 20

fibres onto the CCD detector. The VER spectrometer is an f/2, 200 mm focal length lens
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Chapter 2. CXRS diagnostic in TCV

Figure 2.10: Toroidal (left) and poloidal (right) cross sections of TCV showing the LOS geometry
of the legacy CXRS systems: LFS, HFS and VER. The intersections of the LOS with the DNBI
provide a localised measurement.

spectrometer. The optical reducer for this system is placed at the spectrometer input to avoid

an increase of the reciprocal dispersion. All systems are equipped with 2400 l/mm holographic

grating, for an effective reciprocal dispersion of ' 8 Å/mm in SYS1 and SYS2 and 18 Å/mm for

VER. The corresponding spectral range is 66 Å and 148 Å respectively.

The detector for both toroidal systems is the Andor camera iXon X3 EM+ DU897D-CSO-BV [82],

that features a readout frequency of 10 MHz, the VER system employs the iXon Ultra EM+

DU897U-CSO-BV model, the same as the EDGE system, that attains 17 MHz. A detailed

description of the CCD camera working principles and performance are given in section 2.2.2.

The estimated uncertainties for the toroidal systems in the core region of ohmic L-mode

discharges are usually in the range σTC = 10−50 eV and σuφ
= 3−10 km/s, with absolute

measured values up to TC ' 800 eV and uφ ' 60 km/s. The uncertainties for the VER system

are in the range σTC = 5−15 eV and σuθ
= 1−4 km/s, with absolute values up to TC ' 500 eV

and uθ ' 5 km/s. With the introduction of a heating NBI on TCV, these limits were increased up

to TC ≤ 3 keV in the core and uφ ≤ 200 km/s. The relative uncertainties generally increases due
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Parameter Value

Power injected in TCV ≤ 80 kW
Beam energy 20-50 keV
Injection angle (from perpendicular) 11.25°
Max integrated pulse duration 400 ms
Energy [1 1/2 1/3 1/18] fraction (current) 58.4 : 9.5 : 29.1 : 3%
Energy [1 1/2 1/3 1/18] fraction (density) 43.3 : 10 : 37.3 : 9.4%
Beam main species H (D)
100% power modulation ≤ 200 Hz (typical 20 Hz)
Beam divergence 0.5°
Beam waist FWHM 78 mm

Table 2.1: DNBI parameters from [83]

to augmented passive emission variability during NBH operation, with relative uncertainty in

the temperature ≤ 15% and in toroidal velocity ≤ 20%.

DNBI

The diagnostic neutral beam injector in TCV provides the neutral donors for the CX reactions

while minimising the perturbations to the plasma for these measurements.

A detailed description of the injector is beyond the scope of this thesis, but is detailed in [40, 83],

so here only the features concerning the CXRS diagnostic are reported and summarised in

table 2.1.

The DNBI injects in TCV Hydrogen atoms (Deuterium operation is possible) at full energy ≤ 50

keV/amu. The beam energy was chosen to optimise the CX CVI emissivity, since the CX cross

section reaches the maximum value in that region (' 48 keV/amu, see figure 2.1, although

recent ADAS data locate the peak at ' 52 keV/amu), whilst ensuring a good beam penetration

at high plasma density (ne ' 1020 m−3). An upgrade of the DNBI power supply unit (PSU) is

envisioned to allow operation at ≤ 55 keV.

The injection geometry is horizontal at the vessel midplane, i.e. Z = 0, quasi-perpendicular

to the toroidal direction. The beam cross section is Gaussian with a FWHM of ' 7.8 cm at

the waist, which is at half LFS TCV radius. A small divergence of 0.5° allows a pencil-beam

description of the DNBI. The injection angle of 11.25° to the normal to eφ (in the counter-

clockwise direction as seen from above) prevents trapping of the (re-ionised) injected particles,

whilst minimising the injected toroidal momentum. An estimate of the torque from the direct

collisional momentum transfer and from the J×B term due to the trapped particles [84], was

performed in [38] and revealed a maximum DNBI induced toroidal rotation ≤ 1 km/s, which

is smaller than the diagnostic sensitivity and hence ignored. The estimated effect on poloidal

rotation [84] is lower and is also neglected in this work.
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The DNBI total injected power in TCV is limited to 80 kW, but only a fraction is absorbed by

the plasma. The absorbed power is estimated by the attenuation code [40] varying from 20%

at low density (ne = 1 ·1019 m−3) to 80% at high density (ne = 6 ·1019 m−3). Moreover, most of

this power is transfer to the electrons, with often only ' 10% absorbed by the ions, resulting in

a direct power transfer of only ' 2 kW to the ions. This is 1-2 orders of magnitude less than

the electron-ion equipartition power, showing that the DNBI should, indeed, not perturb

the impurity kinetic parameters. It also does not perturb plasma density, since it provides

a limited amount of fuelling. The total amount of neutral atoms injected in a 12 ms DNBI

pulse, estimated from the equivalent current, are NDN B I ' 2 ·1017 [atoms], which is an order

of magnitude lower than the fuelling from the NBH NN B H ' 2 ·1018 [atoms]. The fuelling from

the DNBI is negligible compared to the gas injected by the gas valve, which has typical flows of

10-30 [mbar l/s], corresponding to Ng as ' 2−8 ·1019 [atoms] in 12 ms.

The DNBI operates in a pulsed regime, with typical pulse duration of∆TDN B I = 10−30 ms and

a duty cycle of 33% (ON-OFF ratio = 1/2). The pulses are synchronised with CXRS acquisition,

allowing the acquisition of passive spectra during the beam OFF phase and the total emission

(passive + active) during the ON phase. The DNBI rise time of ≤ 3 ms impedes the use of

pulsed operation in the study of fast phenomena, but can be ignored for the typical CXRS

exposure times (10-30 ms). Again, these limitations are, to a great degree, imposed by the

DNBI PSU unit that will soon be upgraded.

The DNBI injected atoms have an energy spectra composed of four main components: E0,

E0/2, E0/3 and E0/18, due to the acceleration of H+,H+
2 , H+

3 and H2O+ respectively. The beam

energy optimisation is considered for the full energy component E0 and ground level donors

(nd = 1 in figure 2.1), which constitute ' 65% of the beam density. The measured energy

fractions (in particle density) are [43.3% 10% 37.3% 9.4%] respectively. The contribution to CX

emissivity of the lower energy components is negligible for ground level donors, due to both a

decrease in CX cross section and in the donor density, but can be substantial for the excited

donors, since the CX cross section increases at those energies (see figure 2.1). Appendix C

explains how the excited nd = 2 beam population was estimated, that for typical TCV plasma

parameters (Ti = 500 eV, ne = 1019 m−3) is R21 ' 0.5%. An evaluation of the emissivity reveals

that the contributing fractions due to nd = 1 donors is [76.2% 4.36% 7.6% 0.07%] and for nd = 2

[0.49% 0.68% 5.7% 4.3%]. The dominant contribution in the measured spectrum therefore

remains due to the full energy component.

Plume effect

As stated above, the ionisation timescale for the CX recombined impurities is of 'ms, while

the radiative de-excitation is on the ns scale. The recombined ion can be excited by electronic

collision before being ionised, causing emission of line radiation at the same wavelength of

the CX signal. If it crosses the CXRS LOS while radiating, it contributes to the measured signal,

causing a deterioration of the measurement localisation. This effect is termed the ‘plume’

and it is of particular concern for toroidal viewing lines. Low Z ions (i.e. He) are particularly

affected by this effect, as the electronic excitation is more efficient for low excited levels [79].
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This effect was evaluated for CVI 529.1 nm and found negligible [37], due to the small electron

excitation cross section for the transition upper level n = 8. As mentioned above, this helpful

property can not be employed for He measurements.

Halo

The CX reaction of the DNBI donors with the main plasma ions generates a halo of plasma

thermal neutrals (Thal o ' Ti ) originating from the beam. This halo acts as an additional source

of donors for CX reactions with the impurity, generating an additional, DNBI modulated,

contribution to the active CX signal that interferes with the target density measurement. If the

extent of the halo is relevant, with respect to the beam size, it will affect the spatial resolution

of CXRS measurements. Since the halo effect is proportional to the injected neutral density,

the relative intensity of the NBI active signal and halo signal is independent of the beam power,

and hence potentially relevant for the low power TCV DNBI. The halo produced by the TCV

DNBI was estimated in [40], and the effects on the measured density are estimated to be ≤ 10%

(often far less) and are neglected in the analysis.

2.2.2 CXRS EDGE system

The CXRS EDGE system (or SYS4) is design to resolve small scale (< 3 mm) spatial features of

the poloidal rotation in the TCV plasma edge and across the LCFS. A high spatial resolution

profile must be supported by a high precision in the measurement to be meaningful. The

optimisation of the whole system for transmission efficiency gave an increase in photon

statistics, resulting in an increased precision as explained in section 2.1.3

In the following all the subsystems of the EDGE diagnostic are detailed. This system was one

of the major instrumental contributions of this thesis work. It combined all the optical and

spectroscopic upgrades during this thesis with a much improved poloidal view of the TCV

plasma edge providing unprecedented spatial resolution and sensitivity across the plasma

LCFS.

Periscope and input optics

A periscope is installed on the lower lateral port in sector 14, approximatively 40 cm below

the DNBI duct, as shown in figure 2.11-(c). It consist of a movable cylindrical aluminium

pipe of external diameter 44.5 mm, that houses the input optic lens system, a vacuum tight

window and a mirror. The pipe displacement is horizontal, with a 1.55°tilt angle from the

TCV radial direction, to ensure centering the periscope aperture with the DNBI when the

periscope is fully inserted. The periscope is retracted automatically after every discharge to

prevent damage during the glow discharge cleaning between TCV discharges. An automatic

check for predicted periscope-safe operation was implemented. It considers the target shot

parameters and inhibits operation if the plasma shape and position are considered too risky.

The construction was hugely complicated by passing the periscope though the duct of one
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Figure 2.11: (a) TCV poloidal cross section showing the 20 EDGE LOS. (b) alignment of the
EDGE input optics for a focal plane at Li n = 483 mm. (c) picture of the EDGE periscope
installed on TCV on sector 14, below the DNBI. (d) input optics schematics.
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of TCV’s main vacuum pump assemblies. This took a large amount of work from the design,

construction and vacuum teams for which this author is extremely thankful.

The elliptic (52x40) mirror has a Beral coating [85], with a transmission ' 90% in the range

400-700 nm. It is tilted 44.1°with the horizontal direction and reflects the light entering the

periscope elliptic aperture towards the vacuum window.

The circular window of diameter 37 mm and 4 mm thick has a transmission ' 92 % in the

range 250-1000 nm.

The input optics is a system of 2 lenses of 25.4 mm (1 inch) diameter, see figure 2.11-(d) that

images the optical fibres at a distance Li n = 483 mm from the optical head with an acceptance

f-number of 2, matching the fibre and spectrometer acceptance, with a magnification of 7.5.

The lenses have an anti-reflection coating for a transmission in the visible range (450-750 nm)

above 99%. The alignment of the system was performed outside the TCV vessel, the quality of

the image of the optical fibres is demonstrated in figure 2.11-(b). The sampling spot of each

fibre is ≤ 3 mm in diameter, for a total radial coverage of ' 60 mm at the TCV outer midplane.

The resulting LOS geometry is depicted in figure 2.11-(a), in section 2.2.3 the experimental

LOS verification procedure is explained.

The optical fibres bundle is composed of 20 CeramOptec fused silica Optran UV 365/400-T

fibres of numerical aperture N Ao f = 0.22. The fibres are 25 m long with an attenuation of 10

dB/km, resulting in a transmission ≤ 95% on the fibres length. In addition the extremities are

not anti-reflection coated, the estimated loss of ' 4% due to reflections at each ends results in

a total optical fibres transmission of ' 87%.

With the periscope view, a quasi-vertical observation geometry was obtained, with a tilt angle

range of 0.15°-5°, in comparison the legacy VER system tilt range is 3°-14°(see figure 2.10). The

resulting increased resolution in ρ provided a huge increase in the spatial resolution of the

plasma edge profile. Eg: for a Z = 0 positioned discharge with κ= 1.5 and δ= 0.4 the extent of

the ρ positions sampled (CXRS LOS-DNBI overlapping region) with SYS3 is ∆ρ3 = 0.12−0.08

while for SYS4 is more than two times lower,∆ρ4 = 0.05−0.03. This results in improved profiles

for SYS4, as the smoothing effect due to measuring a range of flux surfaces ∆ρ with each LOS

is minimised to the lower viable geometrical limit.

Lens spectrometer

The EDGE system employs a custom-made lens based spectrometer, whose design is shown

in figure 2.12-(a). A detailed description of the spectrometer operating principle is given in

appendix D, in this section only the relevant parameters for the CXRS diagnostic are debated,

with a comparison with the legacy spectrometers shown in table 2.2

The input slit is a commercial Standa 10AOS10-1 adjustable model, with a clear aperture of

26 mm, large enough to contain the optical fibres head, and attached directly to the c-mount
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Figure 2.12: (a) CAD rendering of the EDGE spectrometer design, with its main components
specified. (b) Zoom of a CVI spectrum in ohmic L mode (optimal conditions) for the 20 LOSs.
The CVI line is the sum of the passive and active components.

joint of the collimating lens (ensuring a reliable mechanical alignment). The entrance slit is

usually set to ' 100 µm width, but can range from 0 to 10000 µm. The optical fibres’ head

position is adjusted through a set of 3 orthogonal linear translation stages and it is placed in

direct contact of the input slit to minimise the LOS cross talk and maximise the throughput.

Both the collimating and focusing lens, are commercial Nikon 200 mm focal length Nikkor-

ED, with maximum f-number of 2. Their transmission was experimentally measured (see

figure D.10) to be ' 80% between 450 and 650 nm (CVI and BV lines), with a sharp decrease

below 450 nm. By using the same focal length for the collimating and focusing lenses a vertical

magnification of 1 is obtained, which is required to fit the 20 optical fibres vertically aligned in

the 8.19 mm sensor chip (see section 2.2.2). The angle between the two lenses optical axes is

2φ= 20°.

The spectrometer employs an Horiba [86] 2400 l/mm holographic grating of size 120X140

mm. The lenses clear aperture of 100 mm, smaller than the grating, ensures a minimisation of

both vignetting and internal reflections. The combination of the Nikon lenses and the grating

results in a reciprocal linear dispersion at 5290 Å of 0.288 Å/pix, corresponding to 18 Å/mm

and a spectral range of 147 Å. The spectral bandpass for the typical slit width of 100 µm is 1.33

Å (4.6 pix).

The spectrometer central wavelength is selected through the scanning angle θ (see appendix D),

which is controlled by the Newport rotary table RVS80CC [87]. The reproducibility of the image

after a θ scan is better than 1/10 of pixel, corresponding to < 0.03 Å, which is of the order of the

precision requested in CXRS measurements. Therefore a wavelength calibration is necessary

after each θ modification, but is not worse than a legacy sine-bar arrangement.

Figure 2.12-(b) shows a raw spectrum acquired with the EDGE spectrometer in CVI setup

during a DNBI ON phase of the shot 55447, in ideal conditions for CXRS Carbon measurements.

Multiple emission lines are identifiable in this wavelength range, the CII @ 5257.2 Å and
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Spectrometer Acton SPEX Lens (EDGE)

f-number 5.6 7.5 2-22
focal length [mm] 660 750 200

grating [l/mm] 2400 2400 2400
entrance slit [µm] 200 200 100

optical fibre diameter [µm] 636 636 365
optical reducer 0.475 0.58 none

dispersion [Å/mm] 11.6 8.08 18
spectral range [Å] 95 66 148

étendue [10−8 m2 sr] 3.2 1.8 7.3

Table 2.2: Comparison of legacy, Acton and SPEX750Mi, and the lens based spectrometer
parameters.

OIV @ 5305.5 Å are highlighted. The relative brightness of the nearby lines depends upon

plasma parameters that, for particular conditions, can appear to dominate the spectrum.

CCD camera

The charge coupled devices (CCD) camera is the sensor used in all TCV CXRS systems to

convert the photons exiting the spectrometer in digital counts.

The sensor consist of a 2-D array of silicon MOS capacitors, termed pixels (pix), able to absorb

the incoming photons, producing an electron-hole pair by photoelectric effect. Photons in

the range 1.14−4 eV produce a single electron-hole pair, resulting in a linear response of

the sensor. Lower energy photons are not detected, as their energy is lower than the silicon

band gap, while higher energy photons can produce multiple pairs, causing a non-linear

response. The quantum efficiency of the photon-pair conversion (ratio of incoming photons

over produced pairs) reaches values higher than 90% in the spectral range of interest for TCV

CXRS, as shown in figure 2.13-a. This is achieved using a back side illuminated CCD and

anti-reflection coating. The TCV CXRS cameras have a 512x512 pixels chip, each pixel of size

16x16 µm. The chip is positioned in the image plane of the spectrometer, the convention is

to name horizontal direction the direction of the spectral dispersion. Each (couple of) fibre

is therefore imaged on a different vertical position (direction perpendicular to the spectral

direction).

The photo-electrons accumulate in each pixel’s potential well during the acquisition time, i.e.

integration time (IT). The pixels are composed of 3 conductive structures (gates) that can be

placed at different potentials, controlled by clocking circuits. The shift of electrons in a vertical

column of the chip is achieved by changing the gates potential sequentially (figure 2.13-b), the

process has an efficiency close to 100%, quantified by the charge transfer efficiency (CTE). All

rows are shifted simultaneously by one pixel in the vertical direction, the shift is completed in

either [0.3 0.5 0.9 1.7 3.3] µs, depending on the selected vertical shift speed (VSS). The shift
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a) b)

Figure 2.13: (a) quantum efficiency of the CCD camera chip used in the CXRS system (BV-BVF
curve). (b) sketch of the CCD-EM working principle. The photo-electrons are collected in each
pixel during the acquisition time and then shifted to the readout register. The shift is achieved
by changing the capacitor’s potential (b-a). In the EM-register the potential applied for the
shift is higher than the one needed for charge transfer (b-b), resulting in the production of
secondary electrons by impact ionisation. The signal is hence amplified before the readout,
reducing the impact of the read-out amplification noise.

speed influences the frame transfer time (i.e. optical smearing) and CTE. The optimal VSS for

these cameras is 0.5 µs.

The Andor cameras are frame transfer devices, the charges collected during the IT are shifted

into a copy of the sensor chip that is unexposed, and it is then decoupled from the light

sensitive region and used in the readout phase, while a new IT “starts after” this frame transfer

(for a more detailed explanation of the acquisition cycle see appendix E).

The last row of the chip shifts into the readout register (figure 2.13-b), that transfer the charge

to the analog-to-digital converter, where the charge of each pixel is converted in a digital

number, i.e. counts or analog-to-digital unit (ADU). The converter of system 1 and 2 are

14 bit (max ADU= 214 = 16383 ), for system 3 and 4 are 16 bit (max ADU= 216 = 65535), but

depending on the camera parameters, the saturation limit can be different (see figure 2.14 and

table 2.3). The speed of this readout process (horizontal shift speed-HSS) heavily influences

the readout noise and the camera performance, as shown in figure 2.14. The signal is amplified

during the readout by an on-chip output amplifier, characterised by a gain Gr o [e−/ADU],

which represents the number of electrons to produce 1 ADU.

NADU = Ne−out

Gr o
(2.20)

with Ne−out the number of electrons at the output of the readout register and NADU the

resulting counts. A set of 3 readout gains Gr o are available, their values are shown in table 2.3

for both the camera models iXon X3 EM+ DU897D-CSO-BV (SYS1 and SYS2) and iXon Ultra
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EM+ DU897U-CSO-BV (SYS3 and SYS4).

IT [s]

0 0.5 1 1.5

A
D

U

×10
4

0

1

2

3

4

5

6

7

camera ID 8708

i
pre-am p

 = 2

i
hss

 = 2

camera ID 8708

i
pre-am p

 = 2

i
hss

 = 2

max counts

average max count

average min count

saturation limit

min IT 

max counts linear regime

a)

IT [s]

0 0.2 0.4 0.6 0.8 1

A
D

U

×10
4

1

2

3

4

5

6

7

camera ID 8708

i
pre-am p

 = 3

i
hss

 = 3

camera ID 8708

i
pre-am p

 = 3

i
hss

 = 3

max counts

average max count

average min count

saturation limit

min IT 

max counts linear regime

b)

EM gain

0 20 40 60 80 100

A
D

U

×10
4

0

1

2

3

4

5

6

camera ID 8708
i
pre-am p

 = 1

i
hss

 = 1

camera ID 8708
i
pre-am p

 = 1

i
hss

 = 1

max counts

average max counts

average min counts

saturation limit

min EM linear gain

max count linear gain

c)

EM gain

0 20 40 60 80 100

A
D

U

×10
4

0

1

2

3

4

5

6

camera ID 8708
i
pre-am p

 = 2

i
hss

 = 3

camera ID 8708
i
pre-am p

 = 2

i
hss

 = 3

max counts

average max counts

average min counts

saturation limit

min EM linear gain

max count linear gain

d)

Figure 2.14: Camera linearity test. The conventional register (a) and (b) has a linear response
for almost the whole dynamic range. The linearity of the EM register ((c) and (d)) is influenced
by the readout setup.

The charge of multiple (vertical) pixels can be summed into the readout register before readout.

This technique is called binning and have both the effects of reducing the readout time

and increasing the S/N at the expense of reduced vertical resolution (which corresponds

to integrating across the fibre height at the entrance slit). The standard CXRS acquisition

is performed binning all the pixels receiving light from an optical fibre pair in the vertical

direction, resulting in 20 regions of interest (ROI) or tracks. The tracks are defined before

acquisition, the alignment is verified after each plasma discharge from the full-frame image

acquired for wavelength calibration.

There are two readout registers available: a conventional register (CONV), where the readout

is performed as explained above, and an electron multiplier (EM) register, where the photo-

electrons are multiplied by an EMCCD process [88, 89] before readout. The multiplication of

the photo-electrons is realised by the production of secondary electrons when the potential

applied in the EM register for the charge shift is above the threshold for impact ionisation.
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Figure 2.13-(b) shows this principle. The gain probability at each stage is < 2% and depends

on the applied potential and temperature, a large number of multiplying elements assures a

total gain in the range Gem = 2−300. The number of photo-electrons Npe and the number of

electrons at the output of the EM register are hence:

Ne−out = Npe Gem (2.21)

For the CONV register equation 2.21 is still valid with Gem = 1.

From equations 2.20 and 2.21 the counts are related to the photo-electrons by the equation:

NADU = Npe GE M

Gr o
(2.22)

Tests on the camera indicate strong deviations from linearity for the lower output amplifier and

the higher HSS (figure 2.14-(c)). A lookup table for the measured camera dynamic range, linear

and saturation limits was determined, in order to validate experimental data. Knowledge of

the saturation limit is fundamental in avoiding blooming, that consists of the spreading of

the photo-electrons from one pixel to the neighbouring pixels when the pixel well capacity

is exceeded, causing erroneous count even in the non saturated pixels. The phenomenon is

emphasised in the vertical direction and can resemble optical smearing.

Optical smearing, due to light falling on pixels during the frame transfer, results in photo-

electrons being erroneously attributed to a different pixel. It can be prevented by using

physical shutters and it is mitigated in frame transfer camera. Still when the transfer time is a

non-negligible fraction of IT it must be taken into account, especially for short IT (' 2 ms). An

algorithm for smearing correction was developed and successfully tested during this work(see

appendix E), and it is now applied by default in the data analysis.

Noise sources

There are three main sources of noise in a CCD camera:

1. readout noise σr o ;

2. dark current noise σdc ;

3. shot noise σsn .

The readout noise [e−/pix] is due to spurious electrons generated by the readout electron-

ics and in errors in the digital conversion. It is dependent on HSS configuration and chip

temperature.

The dark current is a thermal noise due to electron-hole pairs generated by electrons collisions

due to thermal energy. Cooling the chip to −85 C°assures a negligible contribution of the dark

current ¿ 0.001 [e−/s/pix ], in particular considering IT ¿ 1 s. At room temperature the dark
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current can become the major contributor to the total counts, Ntot ' Ndc , therefore the dark

current noise σdc =
√

Ndc can dominate the noise for longer integration times.

The shot noise is due to photon statistics, as explained in section 2.1.3 it is Poissonian and it is

proportional to the square root of the photo-electrons σsn =√
Npe .

There is an additional noise when the signal is amplified in the EM register, due to the stochas-

ticity of the process. The noise factor F defines this increase as

F = σe−out

Gem σpe
(2.23)

where σe−out [e−/pix] is the electron noise at the output of the readout register and σpe

[e−/pix] is the electron noise at its input, which is:

σpe =
√
σ2

dc +σ2
sn (2.24)

For the EM register the noise factor is F '
p

2 [90],while for CONV register F = 1.

The total noise σtot [e−/pix] is then:

σtot =
√
σ2

r o +σ2
e−out =

√
σ2

r o +F 2 G2
em σ2

pe =
√
σ2

r o +F 2 G2
em

(
σ2

dc +σ2
sn

)
(2.25)

In a bias frame, which is a frame with null integration time and closed shutter, the histogram

of the ADU is Gaussian. The mean is the offset, a value that is added in the readout to prevent

negative conversion values. The width σADU ,d ar k is related to σr o and Gr o by the equation:

σADU ,d ar k = σr o

Gr o
(2.26)

A procedure to measure σr o and Gr o is to take two sets of bias frame (B1 and B2) and two sets

of exposed frame (F1 and F2). Then for each pixel to compute the average value of each set

(< B1 >, < B2 >, < F1 >, < F2 >) and compute the standard deviation of the difference between

B1 and B2, σB1−B2 and between F1 and F2, σF1−F2 . The readout gain is:

Gr o = F 2 Gem
(< F1 >+< F2 >)− (< B1 >+< B2 >)

σ2
F1−F2

−σ2
B1−B2

(2.27)

and the readout noise:

σr o = Gr o σB1−B2p
2

(2.28)

The measured readout gain were compared to the manufacturer specifications and found in

agreement (see table 2.3).
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CONV readout register
3 MHz 1 MHz 0.08 MHz

SYS PreAmp PreAmp PreAmp
Gr o 1,2 10.7 4.2 1.88 10.7 4.2 1.88 9.95 3.91 1.71

[e−/ ADU ] 3,4 3.9 3.0 1.4 3.88 2.99 1.38 3.87 2.98 1.39

σr o 1,2 14.3 10.7 9.6 14.3 10.6 9.6 11.7 8.9 8.4
[e−/ pix ] 3,4 13.8 12 9.7 7.2 6.5 5.4 3.5 3.3 2.9

saturation 1,2 1.64 1.64 1.64 1.64 1.64 1.64 1.64 1.64 1.64
[104 ADU] 3,4 6.37 6.31 6.43 6.10 6.19 6.20 6.17 6.36 6.39

EM readout register
17 MHz 10 MHz 5 MHz 3 MHz 1 MHz

SYS PreAmp PreAmp PreAmp PreAmp PreAmp
Gr o 1,2 60.7 26.4 12.0 57.0 23.0 10.5 57.2 22.8 10.4 57.3 22.7 10.4

3,4 15.1 9.1 4.9 15.4 7.9 4.7 17.0 8.2 4.3 16.9 8.2 4.2

σr o 1,2 90.4 61.5 50.6 82.5 51.0 41.6 63.0 37.1 30.6 49.7 26.7 21.2
3,4 199 130 80 171 94 64 70 46 36 25.5 17.6 15

sat. 1,2 1.61 1.64 1.64 1.64 1.64 1.64 1.57 1.64 1.64 1.59 1.63 1.64
3,4 5.83 5.06 4.91 5.63 5.86 5.45 5.89 5.99 5.97 6.20 6.29 6.16

Table 2.3: CXRS cameras specifications: gain Gr o [e−/ ADU ], σr o [e−/ pix ] and saturation
limit [104 ADU] for the three output amplifier (PreAmp) settings for each HSS configuration
and for both CONV and EM readout registers.

The signal to noise ratio S/Ntot is expressed by

S/Ntot =
Npe√

σ2
r o

G2
em

+F 2
(
σ2

dc +σ2
sn

) (2.29)

which shows that the EM register is beneficial when the readout noise would otherwise have

been the dominant noise source. By increasing the EM gain the σr o term becomes negligible

at the expense of an increase in the shot noise of a factor F '
p

2. The EM setup is particularly

useful when short integration times are needed (' 2 ms) since the readout noise, that increases

with the readout speed (' 200 [e−/pix] for Andor cameras at maximum HSS speed), can be

moderated by EM gain. For slow integration times (I T > 5 ms ) and high intensity light

applications the CONV register is more advisable, since the dominant term is the shot noise

(with F = 1), with a negligible readout noise σr o < 15 [e−/pix] (for all HSS speed).

Performance

The throughput optimisation of all the subsystems of the EDGE CXRS diagnostics resulted

in an increased transmission efficiency of about one order of magnitude with respect to the

legacy systems (section 2.2.3, which considers the lens-spectrometer upgraded SYS3).

Figure 2.15 shows an example of profiles of Carbon (a) poloidal velocity, (b) temperature and

(c) density for both the VER and the EDGE systems in the time window [1. 1.16] s of shot
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Figure 2.15: Profiles comparison of (a) poloidal velocity, (b) temperature and (c) density for
VER (red squares) and EDGE (blue circles) systems, for shot 55597 in the time window [1. 1.16]
s. The higher precision of the EDGE system, inferred from the smaller calculated errorbars, is
confirmed by the data scattering in time.

55597, which is in a stationary regime. The error bar (standard deviation) are calculated from

the photon statistics and the estimated fitting uncertainties as explained in sections 2.1.3

and 2.2.4. The scattering of data points in time for each LOS is consistent with the estimated

uncertainties for both systems.

The typical parameters range of the EDGE system are nC ≤ 5·1017 m−3, less than 5% of the local

electron density, with uncertainties σn ' 1016 m−3, TC ≤ 400 eV with uncertainties σT < 10 eV

and vθ ≤ 10 km/s with uncertainties σv ≤ 1.5 km/s. These improvements in the poloidal CXRS

measurements represent a fundamental step forwards in the study of impurity transport in

TCV, by providing accurate edge conditions that were previously unavailable.

2.2.3 Alignment and calibrations

In this section the alignment and calibration procedures for the CXRS systems are explained.

A proper spatial alignment is essential to localise the measurement and obtain accurate pro-

files. The absolute calibration is necessary for density calculation and it is also useful, over

time, in detecting transmission problems, such as displacement or degradation of optical ele-

ments. Finally the wavelength calibration, which is fundamental for velocity and temperature

calculation, is presented.

LOS alignment

The viewing chord alignment is performed by inserting a target, covered with a millimetre

paper, inside the vacuum vessel along the DNBI path, a precision of ' 5 mm in the absolute

positioning is achievable (' 1 mm in the radial direction). This procedure can be performed

only with direct access inside TCV, and was made during the opening for the upgrade in 2014.

The optical fibres are back-illuminated with a lamp (white light), the positions of the images

are adjusted and then, when considered adequately aligned to the DNBI, recorded in a digital

picture (figure 2.16). There are marks on the optimal positions to facilitate the alignment, as
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a) b)

Figure 2.16: Picture of (a) 2012 alignment (HFS system) and (b) 2014 alignment (both HFS and
LFS LOS). The new input optical system strongly reduced the aberrations for the outboard
LOS of the toroidal systems.

shown in figure 2.16-(a). Then the target is moved to a different position and another picture

recorded.

After removing the target another picture is taken, the 40 optical fibres images spot positions

on the tiles for each system is used both to further constrain the LOS geometry and as reference

for future alignment checks without requiring TCV entry.

The digital pictures are then analysed through a in-lab made software and the diagnostic

chord description (DCD) obtained. The estimated final uncertainty in the absolute position is

< 5 mm (often much less), which is smaller than the sampling size of the legacy systems.

The improvement of the imaging quality and aberration reduction of the newly designed input

optics (2014 alignment, figure 2.16-(b)) for the toroidal systems is clear from the comparison

with the 2012 alignment of figure 2.16-(a).

The alignment of the EDGE system was performed outside the vessel (figure 2.11) and the DCD

were evaluated employing only the images of the fibres on the tiles, shown in figure 2.17-(a).

A green laser for the back-illumination was employed to obtain a sufficient contrast. The

origin of the DCD position was assumed to be consistent with the design, since no direct

measurements from outside the vessel were possible during this thesis.

An alternative check for the alignment is to consider the experimental temperature profiles. Ion

temperature is a flux function [69], so measurements corresponding to the same ρ must agree

and the profiles from different systems must overlap. Figure 2.17-(b) shows the temperature

profile of all the CXRS systems for shot 55447, the overlap of all the systems corroborates

the correctness of the DCD description. In the future, a direct in-vessel alignment will be

performed.

56



2.2. CXRS diagnostic systems

a)

0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600
TCV #55447  t=1.15 [s]

ρ

T
c
 [

e
V

]
 

 

SYS1

SYS2

SYS3

SYS4

A

o

b)

Figure 2.17: (a) picture used for EDGE DCD identification and corresponding 3D model. (b)
TC profile of shot 55447 showing the agreement of all CXRS systems, corroborating the DCD
description of all systems.

Absolute and relative calibration

The aim of the absolute calibration is to work out the relationship between the photon counting

rate on the ccd sensor Rs [phs /s], of a certain wavelength range ∆λ0 centered at λ0, to the

radiance in the emission zone Lemi measured in [phemi /s /m2 /sr], that is the LOS integrated

emissivity of the source εemi [phemi /s /m3 /sr]. Here phs and phemi are respectively the

number of photons detected by the sensor (ccd camera) and emitted by the source in the

measured zone in the considered wavelength range, so that the emissivity εemi is the spectral

emissivity εemi ,λ [phemi /s /m3 /sr/Å] integrated over the appropriate wavelength range ∆λ0:

εemi (x, y, z) =
∫ λ0+∆λ0/2

λ0−∆λ0/2
εemi ,λ(x, y, z,λ)dλ (2.30)

Lemi (x, y) =
∫

l os
εemi (x, y, z)d z (2.31)

where z is the variable in the LOS direction.

Rs and Lemi satisfy the relation:

Rs = Lemi Gi n T (2.32)

where Gi n is the étendue of the input optics of the acquisition system and T is the total

transmission of the system. T is a function ofλ0 and of the spectrometer parameters (scanning

angle θ, f-number, etc...).
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The transmission T of the system can be measured using a source with known radiance Lcal

and the experimental photon counting rate Rs,cal :

T = Rs,cal

Lcal Gi n
(2.33)

in this notation it has the ‘dimension’ [phs / phemi ]. The radiance Lcal is calculated for

each pixel of the sensor from the known spectral radiance of the calibration source Lcal ,λ by

integrating on the wavelength range covered by the pixel ∆λp :

Lcal (pi x) =
∫ λp+∆λp /2

λp−∆λp /2
Lcal ,λ(λ) dλ (2.34)

A more rigorous method to perform the integral in wavelength would be to include the

normalized instrumental function gi f in the calculation, as a weight to take into account the

spreading of photons of a fixed wavelength to the neighbours pixels, with the formula

Lcal (pi x) =
∫ +∞

−∞
Lcal ,λ(λ)

∫ +∞

−∞
Π(λ̃,λp ,∆λp ) gi f (λ− λ̃) d λ̃ dλ (2.35)

where the integral in λ̃ is the convolution of the instrumental function gi f with the normal-

ized rectangular functionΠ(λ̃,λp ,∆λp ) centered at λp and ∆λp wide. Since the spectrum is

continuous and near to linear when the ∆λp region is small and the instrumental function

FWHM is usually only a few pixels, including this effect gives a negligible correction to the

previous method, with the disadvantage of a greatly increased complexity.

The calibration source used is a commercial Ulbricht sphere Labsphere, model US-060-SF,

which is considered as an ideal Lambertian source (constant radiance independent on the

viewing angle and on the sampled area). The Labsphere was placed inside the TCV vacuum

vessel on a movable support, able to translate in the image plane of the CXRS systems input

optics. A set of ' 20 acquisitions per systems (only the legacy systems were available at that

time) were performed, ensuring that each of the optical fibres was completely filled at least in

one of the acquisitions.

A brief description of étendue , a.k.a. throughput, is here presented, to elucidate its basic

properties. An infinitesimal element of étendue dG [m2 sr] for a light beam passing through

an infinitesimal surface dS at an angle θs with the normal of the surface n̂ and confined in a

solid angle dΩs , as depicted in figure 2.18, is defined as:

dG = n2 dS cosθs dΩs (2.36)

where n is the refractive index of the medium where the light propagates.
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Figure 2.18: Sketch with quantities defining the infinitesimal étendue dG of a light beam
crossing a surface dS at an angle θs with the normal of the surface n̂ and confined in a solid
angle dΩs .

The radiance of such surface is then, neglecting transmission losses,

Le,Ω = n2 ∂Φe

∂G
= ∂2Φe

∂S cosθs∂Ωs
(2.37)

whereΦe is the radiant flux [W] or [phemi /s]. For Lambertian sources Le,Ω is independent of

θs . The quantity Le,Ω/n2 is an invariant (again for no losses), so if the input and the output of

an optical system are in the same medium Le,Ω itself is conserved at the ends of the system.

Taking into account the transmission losses, from equations 2.32 and 2.33 we can obtain

the radiance emitted by a source Lemi from the measured photon rate Rs with the following

equation:

Lemi =
Rs

Gi nT
= Rs

Rs,cal
Lcal = kABSRs (2.38)

that shows that the knowledge of the input étendue Gi n of the whole acquisition system is not

critical in the determination of Lemi as long as the absolute calibration Rs,cal is performed

in the same conditions as the experiment, i.e. same geometry and optical elements. This

forces an in-vessel calibration source approach. The ratio Lcal
Rs,cal

is the coefficient of absolute

calibration kABS and its inverse (related to the system transmission) is shown in figure 2.19

for the last absolute calibration (2014 data set). The absolute calibration for the EDGE system

was performed in 2016 outside the vessel, since no access inside the vessel was possible,

by considering the transmission of the flange and the periscope mirror provided by the

manufacturer. The total transmission of the EDGE system is strongly dependent on the

position of the ROI with respect to the optical axis. The highest transmission (see figure 2.19)

is for ROIs close to the optical axis, while transmission of the most distant ROIs is lower by a

factor ' 0.65. This is a consequence of the Nikon lenses vignetting, which gets stronger for

off axis beams, effectively increasing the working f-number with the distance from the axis

(see also appendix D). This effect is reduced in SYS3 due to the non-matching f-number of the

spectrometer’s input optics.

It remains useful to analyse the properties of the input optics in improving the system perfor-

mances and calculating the optical transmission. The étendue of an optical fibre of numerical
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Figure 2.19: Inverse of the absolute calibration coefficients, 1/kABS , for all CXRS systems for
the CVI line. The coefficients for each LOS are shown as function of the intersection position
with the DNBI for clarity. The 2014 coefficients are obtained from the in-vessel absolute
calibration. The 2016 coefficients are obtained from the Dβ BES, which is a relative calibration,
rescaled to the absolute calibration. The difference in the ABS-REL slopes for the toroidal
systems might be related to beam-LOS misalignments, mirror degradation or invalidity of the
assumption of constant emissivity.

aperture N Ao f and core radius ro f is:

Go f = (πN A2
o f )(πr 2

o f ) (2.39)

this value should be used as the system input étendue Gi n , assuming no vignetting in the

input optics.

Relative calibration

The absolute calibration procedure is lengthy and can be performed only during a prolonged

TCV vacuum vessel opening, which, as a result, only occurs every 3-4 years. A novel relative cal-

ibration procedure was tested during this thesis to verify the reference calibration coefficients

and possibly correct them.

The procedure is based on beam emission spectroscopy (BES), that consists in acquiring the

Hβ wavelength-shifted lines produced by the interaction of the fast H DNBI atoms with a

low pressure D2 gas filling TCV. The Hβ line emitted by the four DNBI energy components

is shown in figure 2.20-(a) for the first track of the HFS system (double slit configuration),

together with the rest Dβ line from the background gas.

The beam attenuation, calculated with impact cross section with D2 [91],is below 7% at a
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pressure of 5 ·10−4 mbar, and since the emission cross section of H and H+ projectiles are

comparable (data found for Hα line in [92]) and the beam divergence is negligible, the total

beam line emissivity εHβ
is taken to be constant across the device. The radiance LHβ

observed

for each LOS is then the product of the line emissivity and the DNBI-LOS intersection length

Li nt , and the transmission coefficients kABS−Hβ
are calculated from 2.38. The total photon

rate calculated from the sum of all the Hβ components for each LOS and each system is shown

in figure 2.20-(b).
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Figure 2.20: (a) Spectra of DNBI Hβ emission for SYS2 ROI number 1, shot 55176. All four DNBI
energy components and the Dβ line from the background gas are highlighted for both slits. (b)
BES total Hβ photon rate for all the CXRS systems and for each LOS, shot 55176, represented
as function of the DNBI-LOS intersection position. The EDGE system photon rate is one order
of magnitude higher than LFS and HFS, and peaks at almost twice the value of SYS3, which
also employs the new optical spectrometer but with a not optimised optical transmission line.

Since the transmission T is wavelength and system dependent, the procedure is used only to

cross calibrate LOS within the same system and the kABS coefficients at different wavelengths

are estimated by renormalising the kABS−Hβ
coefficients to the averaged value of the absolute

calibration and then rescaled to match the profiles between all the systems. The resulting

kABS coefficients for CVI are shown in figure 2.19. The difference in the slope of the absolute

and relative calibrations for the toroidal systems might be related to a possible beam-LOS

misalignment, change in relative ROI transmission at the different wavelength, mirror degra-

dation or invalidity of the assumption of constant emissivity (due to both beam divergence

and H depletion). Explaining this “discrepancy” should be one main goal of the next absolute

in vessel calibration.

Wavelength calibration and instrumental function

The interpretation of the measured spectrum requires an extremely precise wavelength cal-

ibration of each system. For rotation measurements, this is particularly challenging, as an

error in the wavelength assignment of only ∆λ1−km/h = 0.018 Å, corresponding to a fraction of
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a pixel (0.06 pix), engenders an erroneous velocity estimation of ' 1 km/s. A change in the

barometric pressure of only 2%, typical in weather fronts, causes a wavelength shift of the

same order [65], invalidating the calibration reference values. Mechanical drifts and tempera-

ture excursions also influence the spectrometer dispersion properties in time [38]. For these

reasons periodic wavelength calibrations are necessary, for which the CXRS legacy systems

are equipped with a remotely controlled pneumatic system that position a calibration lamp

in the LOS optical path, filling the fibres’ light acceptance cone. This solution allows for an

automatic wavelength calibration after each TCV discharge, ensuring a continuous diagnostic

wavelength calibration. The EDGE system wavelength calibration instead is performed manu-

ally and, requiring human access to the TCV zone, it is performed more sparsely. An upgrade

for automatic wavelength calibration after each shot, requiring the installation of a window

on the pump duct, is envisioned.
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Figure 2.21: (a) zoom of a full frame Ne spectrum for SYS4 wavelength calibration, horizontal
lines delimit the tracks definition. The slit image curvature and channels imperfections
are visible. (b) corresponding measured normalised instrumental functions for a subset of
channels. The drift in the average position is due to the slit curvature.

The calibration procedure employs a full frame image of the spectrum of a Pen-Ray Neon lamp,

averaged over multiple acquisitions, for a total integration time ≥ 10 s. An example of such

image is shown in figure 2.21-(a), where a sub-section of the frame shows the three brightest

lines (NeI 5330.78 Å, NeI 5341.09 Å and NeI 5343.28 Å) in the wavelength range for the CVI setup.

The full frame image is also used to verify the track alignment, which are represented in the

figure by horizontal lines. The curvature of the straight entrance slit image visible in figure 2.21-

(a) is a consequence of the dependence of the dispersion on the vertical tilt angle for non

axial rays. It is approximatively parabolic [93], as described in equation D.18, and influences

the wavelength-pixel relation and the spectrometer instrumental function (figure 2.21-(b)),

since spectra at different heights belonging to a ROI are summed in the binning operation.

For very strong slit curvature this can result in asymmetric instrumental function (IF). Other

factors influence the IF, such as imperfections of the entrance slit and of the optical fibres,

misalignments, the presence of dust, etc. Accounting for all these effects by describing the IF
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with an analytic function, which following common practice is performed with combinations

of Lorentz and Gaussian functions, may not be possible and can engender ambiguity in the

calibration. The solution adopted for TCV CXRS is to use directly the experimental IF in the

calibration fitting procedure, which removes the ambiguity in the wavelength definition, since

the same IF, that perfectly fits the reference line (zero variance), is then employed in the fitting

of the active CXRS signal. The uncertainty in the absolute wavelength position for a measured

line is then determined by the uncertainty in the reference Ne line position, which is < 10−3 Å

(in the case of perfect convergence of the fitting algorithm).
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Figure 2.22: Parameters resulting from the wavelength calibration (SYS4 shot 55597): (a)
relative pixel shift of CVI reference position among ROI, (b) uncertainty of the CVI reference
line position (c) IF FWHM and (d) IF FWHM and position uncertainties.

The grating equation D.4 express the non-linear relation between the light wavelength and

its position on the CCD. In the legacy systems calibration the relation was linearised and a

linear regression fit of the measured spectrum was employed to assign a wavelength at each

horizontal pixel for each ROI. The non-linearity of the EDGE spectrometer dispersion, that

increases for shorter focal lengths, required an upgrade of the calibration functions, that

now employs the full model described in equation D.4. This resulted in improvements to the

calibration convergence and in the diagnostic precision, as shown by the uncertainty in line

position and width of figure 2.22. The uncertainties are estimated from the Hessian of the

minimisation matrix, the same procedure used in the CXRS active spectrum fit. The typical

uncertainty achieved in the reference line position of ≤ 0.01 pix, corresponding to δλ≤ 0.003

Å, generates a negligible uncertainty in the velocity δv ≤ 0.2 km/s.

Figure 2.23 shows the experimental Ne spectrum used in the wavelength calibration plotted as

function of wavelength. The alignment of all the Ne emitted lines for all the tracks suggests

convergence of the calibration, which is not achievable employing the simpler linear model.
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Figure 2.23: Experimental calibration Ne spectrum as function of wavelength (from the wave-
length calibration function). The correct convergence of the calibration results in the align-
ment of the Ne lines of all the tracks. The reference CVI wavelength is shown by the cyan
dashed vertical line.

2.2.4 CXRS analysis routines

In this section, the computational steps that are applied to the raw data (CCD counts) to obtain

the final temperature, velocity and density profiles are presented in detail. The procedure

consists of:

1. CCD offset subtraction and counts-photon conversion.

2. estimation of passive (P) contribution to the spectrum during the DNBI pulse.

3. calculation of the active (A) CX spectrum, by subtracting P from the total spectrum

(P+A).

4. fit of A with a Gaussian function convolved with the IF.

5. calculation of the impurity parameters for each LOS from the fit output values and the

DNBI attenuation code.

6. mapping of the LOS-DNBI intersection positions (R, Z ) with the LIUQE magnetic recon-

struction to obtain profiles in the radial variable ρ.

The first point was explained in sections 2.2.2 and 2.2.3, with any offset (bias and stray light)

evaluated from the initial frames recorded by the camera before the onset of the discharge.
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Passive spectra subtraction

The passive spectrum represents the larger contribution to the total spectrum in TCV CXRS

measurements, typically ≥ 75%. An accurate recognition and processing of this contribution is

mandatory for a correct interpretation of the experimental data. The main physical processes
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Figure 2.24: CXRS overall signal that illustrates the increased in photon rate in phase with the
DNBI pulse due to active CX, for (a) L-mode shot #55424-∆tI T = 12 ms and (b) H-mode shot
#55899-∆tI T = 4 ms. The passive signal (P) in shot 55424 is stationary, allowing a good passive
signal subtraction from the total signal (P+A). In shot 55899 the signal is perturbed by ELMs,
the perturbed frames (labelled Neither beam) are excluded from the analysis, reducing the
diagnostic effective IT.

that cause passive emission are, in order of importance:

1. CX of neutrals diffusing from the plasma edge with impurity ion.

2. Free electron recombination.

3. Electronic excitation.

The contribution of electronic excitation in the visible range was evaluated in previous

works [37] and found negligible. The free electron recombination and CX are competing

processes, the smaller cross section of the first is compensated by a higher concentration

of electrons than neutral donors needed in the second. Their emission profile differ, as the

contribution of recombination is relevant across the whole plasma cross section, while the CX

reactions are limited in a shell where the overlap of impurities and donors are relevant. In TCV

the main CX passive contribution is due to reactions with excited donors [37].

The passive spectra evaluation is realised exploiting full modulation of the DNBI. The purely

passive spectra measured during the DNBI-OFF phase are interpolated by means of a cubic

spline on the DNBI-ON phase to estimate the corresponding passive spectra P. This requires the

CXRS acquisition to be synchronised with the DNBI pulse within a fraction of a ms. The active
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component of the spectrum is then calculated by subtracting the estimated passive spectrum P

from the total (P+A) measured spectrum. Figure 2.25 shows the P and A components, together
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Figure 2.25: Components of the spectra measured in shot #55424 for a selected ROI of (a) SYS1
and (b) SYS4 (∆tI T = 12 ms for both). The estimated passive component (P) is the dominant
component, ∆P is the estimated noise due to the passive signal time variation.

with the total spectrum, for the L-mode shot #55424.

A DNBI duty cycle of 33%, meaning that the basic beam pulse sequence is OFF-ON-OFF, is

usually employed. During this thesis, the DNBI PSU limited the total beam injected power

for a TCV discharge, so this approach allowed coverage of the entire ' 2 s TCV discharge

duration. The presence of multiple passive acquisition for each active phase is essential to

correctly evaluate the passive variation in time and validate the procedure. A duty cycle of

50%, for increased diagnostic time resolution, is available; it is nevertheless advisable to use

this setup only in repeated experiments, where the constancy of the passive spectrum has

been previously verified.

The subtraction procedure relies on a slow variation of the passive signal τP ¿ I T , such that

shown in figure 2.24-(a). In presence of fast MHD events such as sawtooth crashes and ELMs

this assumption is invalid and the standard procedure fails. During this thesis a different

approach was successfully tested to allow measurements in these extreme conditions. A fast

IT ≤ 5 ms allows multiple acquisition during each DNBI phase. The frames recorded during

ELMs and other perturbing events, identified by an algorithm exploiting the PM Dα data, are

then excluded. Figure 2.24-(b) shows the result of this process, the remaining frames are then

used in the analysis. If the frequency of the perturbing events is higher than the limit imposed

by the minimum IT, which is ' 200 Hz, the procedure is not applicable and an unambiguous

interpretation of the spectra is not possible with TCV’s DNBI.

Active spectra fit

The assessment of the spectral features (section 2.1.2) of the active signal, needed for the ion

parameters estimation, is complicated by the modification of the spectral shape induced by the
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spectrometer instrumental function. The measured spectrum provided by the spectrometer is

a convolution of the actual spectrum with the spectrometer IF. The wavelength calibration

(section 2.2.3) provides the experimental IF from measurements of a cold Ne spectral line.

A direct deconvolution of the spectrum is however not performed, as the deconvolution is

an ill posed mathematical problem, whose solution is strongly dependent on the noise in

the input spectrum. A more robust and elegant solution to this problem consists in fitting

the experimental spectrum with a convolution of the IF and a Gaussian function. The fitting

procedure is a χ2 minimisation implemented with the gradient expansion algorithm described

in Bevington [94] developed by Marquardt [95]. The minimisation is implemented for an

arbitrary number of entrance slits and it is performed simultaneously over the active spectra

of all the slits. Figure 2.26 shows the fit result for a double slit (SYS1) and single slit (SYS4)

configurations. The time frame, shot number and selected ROI are the same as in figure 2.25.
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Figure 2.26: Graphical representation of the result of the fitting procedure for the selected ROI
of (a) SYS1 and (b) SYS4 (∆tI T = 12 ms for both).

The Marquardt algorithm provides an estimate of the uncertainty in the fitted parameters by

evaluating the Hessian matrix. These uncertainties are considered in the impurity parameter

uncertainty evaluation.

An additional check of the convergence quality consists on the evaluation of the residuals in

the active line spectral region for each slit. If the sum of the absolute values of the residuals

normalised to the line intensity exceed a threshold value ¿ 1, the spectrum is considered

inadequate and the automatic fit results are rejected. This is often the case when the passive

subtraction procedure fails but the algorithm still converges to reasonable values, but human

intervention is required to estimate the data validity for these situations.

Profile evaluation

The impurity parameters (nC , TC and vC ) are then calculated for each LOS. The direct ap-

plication of equations in 2.1.2 can be used for an approximated evaluation of the physical
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parameters, but a more comprehensive analysis, that accounts for the relevant atomic physics

effects of section 2.1.2, is implemented.

The corrections found to be relevant in section 2.1.2 are due to the multiplet structure of the

emission line and the Zeeman splitting, the former influencing both the line rest position and

the width, the latter only the line width. The density calculation is therefore unaffected by

these effects, that are pertinent to the velocity and temperature.

The inclusion of these effects in the analysis is performed through a correction look-up

table, that was generated in the following plasma parameter ranges, which include the whole

TCV operational space, for both the CVI and BV lines: Te (10−3 ·104) eV, Ti (10−1.5 ·104) eV,

ne (1016 −5 ·1021) m−3, Ze f f (1−5), B(0.9−1.6) T, θZ (0,π/2) [rad]. The multiplet structure,

i.e. relative intensity of the (n, l ) transitions, is calculated by the ADAS 306 function on a 5D

plasma parameter grid encompassing the reported plasma values (emission independent

from θZ ). For each transition the Zeeman pattern, i.e. the lines position and relative emissivity

in dependence of B and θZ , is calculated through equations 2.13 and 2.14. Each of the emitting

lines is then modelled as a Gaussian of width given by the ion temperature (equation 2.8), with

the calculated position and relative emissivity. A synthetic spectrum, sum of all the transition

lines, is then generated. The contribution of both active CX from ground and first excited

level donor is considered. The synthetic spectrum is then fitted with a Gaussian function,

with the same procedure adopted for the evaluation of the experimental spectrum, and the

corresponding fit values are used in the construction of the look-up table. The procedure

of fitting with a Gaussian function ensures to account for each of the multiplet transitions

with the same weight in both experimental and synthetic spectra, rather than comparing

just the moments of the two distribution, since the fitting is a non-linear procedure. A direct

comparison of the generated reference fitting values with the experimental fit results gives the

required plasma parameters.

The last step is to remap the local measurements on the reconstructed magnetic equilibrium

to obtain profiles in the variable ρ. The position of the LOS-DNBI intersections is basically

fixed by the diagnostic setup in the (R, Z ) parameters, with a possible small displacement

(< 2 mm) in case of strong beam attenuation, which is calculated for each shot. The LIUQE

magnetic equilibrium reconstruction is then employed to map the (R, Z ) positions in the ρ

space for each time. An uncertainty ≤ 1% of the plasma radius is estimated on the final ρ

positions.

Figure 2.27 shows the resulting profiles (in ρ space) of the CXRS analysis for shot 55424 and

the LFS (SYS1) and EDGE (SYS4) systems, for a selected time of the discharge (t = 1.082 s).

Uncertainty and error evaluation

The root mean square (RMS) of the uncertainties from the fitting procedure (section 2.2.4) and

the photon statistics (section 2.1.3) is computed and constitutes the total uncertainty in the
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Figure 2.27: Profiles of (a-b) temperature, (c-d) rotation and (e-f) density resulting from the
analysis of SYS1 and SYS4 for a selected time in shot #55424 (∆tI T = 12 ms for both systems).
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spectral shape parameters. These uncertainties are propagated with a standard error propaga-

tion technique in order to evaluate the impurity parameters uncertainties. The errorbars of

figure 2.27 represent one standard deviation in the parameter uncertainties.

There are multiple possible sources of uncertainties in CXRS measurements, particularly for

rotation, which have been considered and minimised during this work:

• Passive subtraction. When the plasma parameters evolve rapidly the passive spectrum

subtraction procedure may fail. The presence of spurious lines in the active spectrum

reveals the error and the evaluation of the fit residuals is used to discriminate the failed

frames. The automatic analysis is therefore able to exclude heavily polluted spectra, but

estimated contaminations of the A spectrum from P of ≤ 30% are not detectable and

can affect rotation, temperature and density estimations.

• Reference line position. An error in the rest wavelength produces a systematic differ-

ence in the absolute rotation value. Although this effect is not easily detected, modelling

the emission with the use of the CR code ADAS will minimise this source of error.

• Wavelength calibration. An inadequate wavelength calibration engenders a systematic

error in the velocity and in principle in the temperature. Since each ROI is evaluated

independently, different mismatch in different channels can result in different relative

errors and change the profile shape, not only the absolute value. By evaluating the

position of known lines from a different source (Hg is available on TCV) both these

errors can be detected. Tests for several spectrometer configurations confirmed the

convergence of the wavelength calibration to the correct value.

• DCD. Misalignments and errors in the LOS description cause mismatch in profiles.

Comparison of different CXRS systems and with known features (e.g. H-mode pedestal)

is the main procedure to assess errors in the alignment.

• Absolute calibration. The coefficients for the counts-photon conversion suffers from

variable uncertainties in the range 10− 30% due both to the various camera setups

and uncertainties in the calibrated source. Damage and misalignments due to inter-

action with plasma, such as mirror erosion, or to mechanical shocks, can modify the

transmission efficiency and invalidate the calibration, resulting in incorrect density

measurements. The periodic repeat of a standard shot is mandatory to detect such

events.

• CX qe f f . CX cross sections from both experiments and theoretical calculations are

used as input in ADAS for calculating qe f f . Errors in the cross section would induce

systematic mismatch in the estimated density. An absolute uncertainty of ≤ 20% is

usually assumed.

• Atomic physics. The effects due to the multiplet structure of the emission line and the

Zeeman energy level splitting is accounted for in the analysis. Other effects such as Stark
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splitting, energy dependence of CX cross section and finite lifetime-gyromotion, were

evaluated, found negligible and omitted from the analysis.

• DNBI attenuation. An incorrect evaluation of the DNBI attenuation directly affect

the density evaluation, modifying the profile shape. A solution is the experimental

evaluation of the DNBI density by means of BES. In TCV a strong difference in the LFS

and HFS density profiles can be used to detect problems in the attenuation calculations.

• DNBI halo and plume. Both halo and plume have the effect of increasing the ac-

tive emission, causing density overestimation. Their effect was evaluated in previous

works [37] and found negligible.

• LIUQE reconstruction. Errors in the magnetic reconstruction results in profile shape

modification, that can be detected by inter-system comparison. Uncertainty ≤ 5 mm in

the reconstruction is usually accepted.

Test measurements of HeII and NVII

The implementation of wavelength calibration routines working in all the accessible regions

of the spectra opened the opportunity to study different impurities other than Carbon and

Boron, used for the majority of the physics interpretation described later in this thesis.
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Figure 2.28: Test of HeII CXRS measurements on TCV, (a) HeII spectrum for EDGE LOS, (b)
time trace of the maximum counts of HeII line (blue), reference CCD background level (cyan)
and Dα line (red) from PD, for shot #56052 (∆tI T = 2 ms). Although the HeII line radiance is
intense (a), the time trace (b) do not show correlation with the DNBI pulses (in magenta), but
correlates with the Dα emission perturbations, suggesting that the signal is passive.

A first attempt was performed for the HeII(n = 4 → 3) line @ 4685 Å. HeII CXRS is of interest for

the next generation devices like ITER, where the concentration and transport of the Helium

ash produced by the fusion reaction must be experimentally determined and characterised. To

this purpose, study on HeII spectrum are undertaken in several fusion devices: ASDEX [79, 96],
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Figure 2.29: (a) He concentration decay for shots without conditioning He glow, estimated
from passive emission. (b) time trace of the maximum counts of HeII line (blue) for shot
#56062 (∆tI T = 5 ms), having a He puff at 0.6 s. The injected He increases the HeII passive
emission without beneficial effects for the active component.

TEXTOR [97, 98], PDX [61] with the goal of improving the understanding and interpretation

of the HeII spectrum, which is more complex than the CVI and BV lines, due to a strong

plume contribution [79]. Helium is routinely used in TCV between experiments (Helium glow)

to clean and conditioning the tiles, hence significant He concentrations and recycling are

expected and often observed.

First measurements on TCV revealed an unforeseen problem; the active CX component could

not be extracted from the measurements with the passive subtraction technique. This was

due to the strong passive emission, whose fluctuations dominate the time evolution of the

emissivity, concealing the active component, which is estimated to constitute < 5% of the

passive. To prevent camera saturation the EDGE spectrometer f-number was increased to 2.8

and IT≤ 5 ms were used. Figure 2.28-(a) shows the spectrum measured by SYS4 in HeII setup,

the HeII line is well resolved and isolated from other lines. Nevertheless the time trace of the

maximum value of the HeII radiance, figure 2.28-(b), reveals that a clear active component is

not detected.

The reference shot 56052 was repeated multiple times (56054-56057) without inter-shot clean-

ing glow to verify the influence of He concentration on the A/P ratio. The passive emission

indeed decreased as a function of the shot number, as shown in figure 2.29-(a). At the begin-

ning of the shot (blue line) the He concentration after 4 shots without glow decreases to ' 20%

of the reference value, while towards the end of the shot these values diverges less ' 40%, due

to the He released during the discharge. The decrease in He concentration had no influence on

the A/P HeII ratio, but allowed testing He puffing without saturating the sensors. The results

remained discouraging: the effect of the He puff (figure 2.29-(b)) was to increase the passive

signal, without any increase of the active component.

In conclusion, the test on HeII revealed that the active component of the spectrum is too
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weak to produce meaningful results. Decreasing the DNBI energy from ' 50 keV/amu to '
40 keV/amu, where the HeII effective emissivity coefficient peaks [62] would not be beneficial,

since the degradation of the beam focussing properties and hence density, would annul the

increased efficiency of the CX process. A solution is envisioned by employing LOS viewing

the NBH, that is expected to produce a stronger active component by a factor of ' 13 [99], but

requires hardware modifications.

Another impurity of interest for the fusion community is Nitrogen, used in study on plasma

radiation cooling [97]. Measurements of the NVII(n = 9 → 8) line @ 5669.37 Å were performed

in ASDEX [93] and TEXTOR [97], the availability of the CX cross section for the transition

(ADAS [62]) allows density calculations and study of the impurity diffusion. The measurements

of this spectral line in TCV is particularly challenging, due to strong passive NII lines polluting

the spectrum, see figure 2.30.
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Figure 2.30: Raw spectra for a NVII setup of SYS3 in the DNBI ON phase (shot #53647, ∆tI T = 3
ms). The NVII(n = 9 → 8 @ 5669.37 Å) line for both slits is encircled. The spectra is clearly
dominated by the passive NII lines, that saturates the sensor. The observed NVII line is
overlapping with the passive NII line @ 566.66 nm, complicating the measurement.

An additional problem in the radiation cooling experiments is the strong temporal variation of

the passive spectrum that invalidate the passing subtraction technique, making an adequate

recognition of the active spectrum problematic. Figure 2.31 show the time plot of the average

counts of NVII and two selected passive NII lines (5666.6 Å and 5679.6 Å) for shots 53647 and
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Figure 2.31: Time trace of NVII (cyan and yellow) and few selected NII lines for shot (a) #53647
and (b) #53648 (∆tI T = 3 ms for both). The transition to H-mode is at 0.8 s, the passive
spectrum variation in time invalidate the passing subtraction technique. The A/P ratio is
below the threshold for a meaningful analysis for the duration of both shots.

53648. The transition to H-mode is at 0.8 s for both discharges, while the Nitrogen injection

is at 0.95 s and 0.9 s respectively. After the gas injection the passive spectrum increases as

expected, without improvements in the A/P ratio, which is below 5% for the duration of both

shots, preventing a successful analysis. The use of LOS viewing the NBH is a viable option for

CXRS NVII measurements in TCV.

In conclusion CXRS measurements in TCV of both He and N are particularly challenging due

to the predominance of the passive component of the spectrum, and proximity of polluting

line for NVII. To date, these tests were inconclusive, due to the weak active emission from the

80 kW DNBI. Measurements with LOS intersecting the NBH are envisioned for future with

an expected increase in the active CX component about an order of magnitude. These cases

are described to highlight the limits of using a diagnostic neutral beam in a plasma with a

strong passive emission. The benefits of a purely diagnostic beam setup can be quickly eroded

in these situations. Fortunately, all the spectroscopic and analysis improvements described

above can be applied to CX observations of TCV’s new heating beam to gain insight into these

more challenging situations.

2.3 Conclusions

In this section the CXRS diagnostics on TCV were described in detail for the current configura-

tion, with particular focus on the newly developed EDGE system, that constitutes the main

diagnostic development of my work. The CXRS measurement principle was explained, with

the appropriate corrections from atomic physics necessary to interpret the measured spectra.

Improvements in the diagnostics’ uncertainty estimations were described and implemented,

with consideration of both photon statistics and accuracy of the active spectra fit, together
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with the instrumental noise.

The legacy systems, from before this thesis, and their upgrades were briefly described and their

performance elucidated. The low power DNBI used by the CXRS diagnostic was described

and its effects on plasma were evaluated. The peculiarity of TCV CXRS relies in the ability of

the DNBI of not perturbing the plasma, allowing for intrinsic rotation measurements. The

drawback in employing a low power beam is the relatively low level of active signal and the

corresponding low ratio A/P that forced the development of a passive spectra subtraction

technique (DNBI modulation) and that can prevent the study of more challenging impurities

(HeII and NVII).

The EDGE hardware, optimised for high throughput, was described and the transmission

properties compared with the legacy systems. The optimisation of the LOS for poloidal mea-

surements and high spatial resolution produced an increase in the measurement localisation

in ρ with respect to the legacy VER system. A full non-linear grating equation in the wavelength

calibration function was developed to increase the calibration accuracy, that combined to

the diagnostic improved photon statistics resulted in an accuracy on the line position better

than 0.02 Å, corresponding to an uncertainty in the velocity ≤ 1 km/s. The accuracy on both

the temperature and density regularly attain levels < 10% and < 15% respectively. All these

measurements, employed a DNBI that was shown to not directly perturb the measurement.

Here the active signal can only be discerned by careful subtraction of the, often dominant,

background light emission. This is to be positively compared to more usual measurements

that piggy back a high power heating beam that provides spectral intensities that often domi-

nate the background emission but strongly affect the plasma itself. Measurements from such

systems have to rely on extrapolating the measured values back to a hypothetical negligible

beam and just “hope” that the plasma behaviour in terms of transport and/or turbulence were

not changed.

The improvements of the CXRS profile accuracy at the plasma edge, which constitute the

boundary condition for all the plasma parameters, achieved by the EDGE system set the scene

for a comprehensive transport studies in TCV and answer to the pressing request by the theory

of more accurate experimental measurements. The application of the EDGE system to studies

of impurity parameter evolution across ST and at the L-H transition resulted in unprecedented

characterisation of the poloidal velocity well developing just inside the LCFS.

In conclusion, a large increase in the spectrometer throughput and improved collection optics

can now be used to make measurements that were previously only accessible using perturbing

methods.
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3 Spectroscopic characterisation of H2
and D2 helicon plasmas

A spectroscopic characterisation of helicon plasmas in the resonant antenna ion device (RAID)

was the first scientific application of the spectrometer designed for the EDGE system. This work

was initially launched as a test bed for the EDGE optical spectrometer, to verify the correctness

of the acquisition functions and of the wavelength and intensity calibrations by benchmark-

ing the instrument with another spectrometer, a Princeton instruments’ IsoPlane-320 [100].

After the validation of the spectrometer performance the project scope was augmented to

encompass a complete characterisation of the source, for both the scientific and technological

importance of the development of the RAID source and the unavailability of TCV during the

closure for NBH upgrade. This chapter, following the reasoning reported in [58], explains

the motivations, the procedure and the results of the project, with a brief introduction on

the context of negative ion helicon source development, a description of the RAID, of the

experimental procedure and of the data analysis. This work resulted in a journal paper publi-

cation [58] on which this chapter’s contents are based. The chapter ends with the estimated

species densities and outlook for future works.

3.1 Introduction

The heating scheme for future fusion reactor, as DEMO, relies on multiple actuators, among

which NBI systems play a major role [101]. In order to reach the core region, the neutrals must

have high energy, ∼ 800 keV or higher. At the same time, to effectively heat the plasma, high

(up to 50 MW) powers are necessary. Most NBIs are presently based on positive ion sources

that have been developed to attain high reliability and easy maintenance. After acceleration

to the desired energy, the positive atoms are neutralised by charge exchange reactions with

a neutral gas. However the neutralisation efficiency of positive ions decreases drastically

above 100 keV/amu [102] prohibiting their use for high particle energy NB. Conversely, the gas

neutralisation (in reality ionisation) efficiency of negative ions remains essentially constant

above 100 keV/amu, with typical values of 60 %, and also other more efficient methods that

can exceed 80% can be implemented, such as photodetachment [103]. Present negative ion

sources supply negative ion densities one order of magnitude lower than those of positive
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sources, which has led to a strong research and development on alternative negative ion

sources. The requirements on such sources are stringent. Eg: in DEMO the target extraction

current density is 200 A/m2, the pressure 0.2 Pa, the pulse duration up to 2 h, the extraction

area 0.1 m2 with a beam uniformity ± 10 % and a co-extracted electron fraction < 1. The last

requirement is particularly challenging due to the higher mobility of electrons compared to

negative ions. The generation of negative hydrogen or deuterium (represented throughout

this chapter by the character H when referring to both) ions is based on two processes [102]:

1. surface production, where negative ions are the result of the interaction of a neutral

atom H or an ion H+ with a low work function surface:

H +esur f → H−

H++2esur f → H−

2. volumetric production, where the negative ions are produced by dissociative attachment

(DA) of electrons to molecules that are in an excited ro-vibrational level ν:

H2(ν)+e → H−+H .

Most present-day efforts in the development on new negative ion sources focus on surface

production, using caesium for its low surface work function. Eg: filament arc sources [104]

and radio frequency (RF) sources [105]. Recently, it was proposed to use a helicon plasma

source from consideration of its high ionisation efficiency [106], (particularly at low pressures)

and its volumetric ion production. The cross section for DA production is strongly dependent

on the molecular vibrational level ν. It increases by four order of magnitude from ν= 0 to ν= 4

[102]. A high vibrationally-excited molecular population requires relatively high electronic

energies ≥ 10 eV, as the radiative decay of excited electronic states, known as E-V singlet

excitation [102], is an effective source of vibrationally excited molecules. This mechanism

is responsible for the peak in DA cross section at ' 14 eV [107, 108]. Te must, however, be

kept below 2 eV to reduce H− detachment from electronic collisions, which is a very effective

process due to the low binding energy (0.75 eV) of the extra captured electron [109]. To

fully understand the negative ion production mechanism, a complete characterisation of the

electron energy distribution function (EEDF) may therefore be required, especially for helicon

sources, which have revealed, under certain conditions, the presence of non-Maxwellian

features [110, 111], although for the purpose of this project a Maxwellian EEDF was assumed.

The negative ion volumetric production in helicon plasmas is efficient with a high temperature

electron population, confined by the magnetic field in the plasma-producing region, and

a low temperature population diffused over a larger area, which provides the electrons for

DA whilst reducing collisional losses. The main disadvantage of the volumetric production

compared to surface production for negative ion beam application is the higher co-extracted

electron fraction. It is also not proven yet whether volumetric processes could produce the

same quantity of negative ions as in surface conversion at low pressure.

78



3.2. RAID experimental setup and spectroscopic system

to spectrometer

68 cm

input optics

optical !bers

resonant antenna

x

y

z

magnetic coils

(b) (c)

(a)

Figure 3.1: CAD drawing of (a) RAID and the helicon resonant antenna ((b) and (c)). The
device has a circular cross section of 0.4 m diameter and a length of 1.8 m. The input optics
for OES measurements are mounted on a port ∼ 68 cm from the resonant antenna.

This chapter is focussed on the characterisation of the helicon resonant birdcage network

antenna recently developed at SPC, for application as negative ion source in the source NBI

test Cybele [103]. The experimental setup is described in section 3.2, with emphasis on

the spectroscopic configuration for this application. Section 3.3 explains the steps used to

compute the emissivities from the measured spectra, which consists of the same procedure as

CXRS for radiance measurements and an ad hoc tomographic inversion (3.3.2). Emissivities

are interpreted in section 3.4 to estimate the density of ions and neutral atoms. Emphasis is

given on the dissociation degree, the ionisation degree and on the negative ion density. The

results are discussed in section 3.5 and, finally, the conclusions and outlook are illustrated in

section 3.6.

3.2 RAID experimental setup and spectroscopic system

The reported optical emission spectroscopy (OES) measurements are performed in the reso-

nant antenna ion device (RAID) shown in figure 3.1, where the antenna and the input optics

for OES are highlighted. The vacuum chamber is cylindrical, with a length of 1.8 m and a 0.4

m diameter. RAID is equipped with 6 magnetic field coils, able to generate an axial magnetic
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Figure 3.2: (a) LOS for the two sets of measurements, red and blue lines corresponds to the
core measurements, above and below the plasma column centre respectively. In cyan the
LOS for the edge set. The plasma column is schematically represented by a violet circle. The
dashed green line simulates a LOS for the definition of the impact parameter p. The orange
circle is used to define the radius r from the device axis. (b) Profile consistency check, same
colours as figure (a), the cylindrical symmetry and the connection of the core and edge set are
verified.

field up to 800 G. A coil current Icoi l = 150 A provides an axial B field in the vacuum chamber

axis of 150 G, which meets the specifications of the Cybele source [103]. The current of the

first coil next to the antenna is reversed, Icoi l1 =−30 A, that increases the B gradient to give

better antenna performance [106, 112]. The pressure is controlled by the gas inflow through

a Bronkhorst mass flow controller at constant pumping speed and monitored by a Balzers

pressure gauge. The pressure of 0.3 Pa, also required for operation in Cybele, is attained with a

7.5 mln/min flow. This relatively low gas pressure is one of the ITER NBI’s source requirements,

whose purpose is to minimise the negative ion losses due to collisions with molecules in the

accelerator. Pressure variations are limited to < 20% during the measurements. The antenna

(see figure 3.1-(b) and (c)) is designed to efficiently couple with the plasma helicon wave field,

for modes m = ±1 [113]. It has 9 straight copper rods 15 cm long, an internal diameter of

13 cm, and a single RF power injection. It contains 16 high current, high Q, non-magnetic

capacitors, each with a capacitance of 3.96 nF. The antenna, able to deliver up to 10 kW at the

standard ISM frequency of 13.56 MHz, is installed at one end of RAID, outside the main coil

region, as shown in figure 3.1-(a). The plasma generated by the antenna forms a column of

approximately constant radius that ends on a target at the other end of the device.

The spectroscopic setup consists of a field lens coupling through an optical fibre bundle to a

high throughput spectrometer and a detector. The input optics is a Navitar f/1.4 35mm lens

and the image focal plane is optimised to image the RAID axis at 25 cm from the lens. The

input lens is mounted on a port ∼ 68 cm from the antenna to sample the plasma column far

from the source. The fibre bundle is composed of 19 fibres of numerical aperture 0.22, with a

fused silica core of diameter 365 µm, 2.5 meters long. The diameter of their adjacent images
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Figure 3.3: H2 spectrum of Fulcher-α 22QN lines for different RF powers.

on the focal plane is 2.9 mm, resulting in a 55.1 mm wide sampling region. The geometry of

the Lines Of Sight (LOS) is shown in figure 3.2-(a), together with the sketch of RAID’s cross

section. A violet inner ring schematically represents the plasma column position. In the figure

are also defined the impact parameter p for a LOS, i.e. the distance of the LOS from the centre

of the plasma column, and the radius r for a generic point, that is the distance of the point

from the device axis. In RAID, the centre of the plasma column coincides with the mechanical

axis. A core observation set that views the plasma column and an edge set that focuses on the

outer region are available. Core LOSs view the plasma column both above and below its centre

and are represented by red and blue lines respectively. Their goal is to ascertain the cylindrical

symmetry of the plasma column emission. The edge measurements set observes impact

parameter ranges up to 8 cm and partially overlaps with the core set, so that the consistency

across the set merge region can be assessed as shown in figure 3.2-(b), where the nLOS = 38

LOS are displayed. The LOS geometry was verified by back illuminating each fibre with a

He/Ne laser and measuring the projected spot position on a reference anti-reflection graphite

ring installed inside the vacuum vessel, represented by a black semicircle in figure 3.2-(a).

Collected light is analysed by the EDGE lens spectrometer described in section 2.2.2. The

spectrometer spectral coverage in the red region of the visible spectrum is ∼ 14 nm and is

too small to cover all the lines of interest within a single exposure. A set of 8 scanning angles,

that include a partial overlap in the Fulcher-α range between 600 and 650nm, was used.

This method is viable only if the emission of all lines is stable in time for the whole scan, an

assumption that was verified by repeating the full angular scan at least twice for each antenna

power. A constant emissivity (within 5 %) is observed within a few seconds for each input

power value. The spectrometer input slit width was set to 80 µm for a spectral bandpass

of 0.9 Å at 615 nm. This is sufficient to resolve most of the Fulcher-α molecular lines. The

Andor camera (section 2.2.2) integration time and EM gain are adjusted at each scanning angle

and power to maximise the counts and signal-to-noise ratio whilst avoiding saturation. The

allowed integration time is in the range 3.5 ·10−4-0.2 s where EM gains between 8 and 60 were

employed. A complete spectrum is the result of an average of 15-30 of such acquisitions, with

81



Chapter 3. Spectroscopic characterisation of H2 and D2 helicon plasmas

0

5

10

15
x 10

18

L
 [

p
h

/s
/m

2
/s

r]

 

 

2500 W

3000 W
3500 W

5000 W

A

o

H
α

0

0.5

1

1.5

2

2.5
x 10

18
A

o

H
β

0 0.02 0.04 0.06
0

2

4

6
x 10

17

p [m]

L
 [

p
h

/s
/m

2
/s

r]

A

o

H
γ

0 0.02 0.04 0.06
0

1

2

3

4

5
x 10

16

p [m]

A

o

22Q1

Figure 3.4: Radiance profiles L
(
p

)
of Balmer and 22Q1 lines for H2. Different colours indicate

different RF powers.

the experimental uncertainty estimated from the inter-spectra standard deviation. Figure 3.3

shows a spectrum of the H2 Fulcher-α 22QN lines for different RF powers, obtained with the

procedure described above.

3.3 Absolute radiance measurements and emissivity profiles

The procedure to calculate absolute line emissivity is described in this section. It consists of

two steps: a radiance calculation from the measured spectra and the tomographic inversion

of these radiance profiles. The experiments were performed at a constant pressure of 0.3 Pa,

in both hydrogen and deuterium. A scan in the antenna input power was performed for both

isotopes, but with a different power range. The minimum possible power was determined by

plasma stability: 2.5 kW for H2 and 2 kW for D2. The maximum power for these experiments

was limited by thermal loads on the device. A measurement at 5 kW was performed in H2, and

resulted in damage to the target. The scan in D2 was therefore limited to 3.5 kW.

3.3.1 Radiance calculation

The absolute radiance is computed from the acquired spectra. The light from each optical

fibre is imaged by the spectrometer into a region of interest (ROI) on the CCD. 19 ROIs of

approximately 20 vertical pixels are defined. The remaining section of the CCD that is not
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illuminated was used for CCD-shift smear correction. The photon rate Rexp [ph/s] of each

emitted line for each ROI is evaluated using the same multi-Gaussian fitting procedure de-

veloped for CXRS, that in this case is applied to the full spectrum. The photon rate of lines

that are partially overlapped was still computed with satisfactory accuracy. The radiance Lexp

[ph/s/sr/m2] of a line is calculated with the same procedure as CXRS (see section 2.2.3), here

equation 2.38 is rewritten for clarity

Lexp = Rexp

Rcal
Lcal (3.1)

where Rcal and Lcal are the calibration source (Labsphere) photon rate and radiance respec-

tively. An example of a H2 molecular spectrum in the range of the 22QN (N from 1 to 4) lines is

shown in figure 3.3, where the molecular lines are identified from reference wavelengths in

Dieke [114]. The same procedure is implemented for D2 using the reference lines in Lavrov’s

Atlas [115]. Figures 3.4 and 3.5 show the resulting radiance profiles for the first three Balmer

lines and the molecular 22Q1 line, for H2 and D2 respectively. Each line has a characteristic

radiance profile shape that is independent of the input RF power, which only determines

the absolute radiance value. There is a noticeable isotope effect too on both profile shape,

broader in deuterium, and radiance level, higher in deuterium for the atomic lines. The 22Q1

D2 line radiance is much lower than the 22Q1 H2. This is partially due to the different nuclear

spin of the isotopes, that interchange the statistical weight for even-odd rotational molecular

levels [116]. Nevertheless, the total D2 Fulcher-α Q-branch emission is lower than for H2.
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The radiance of Balmer lines increases linearly with the RF power, while there is no clear

dependence for the molecular line radiance.

3.3.2 Tomographic inversion

A tomographic inversion is then applied to extract the emissivity profiles from the radiance.

The inversion of the line integrated data, in this case the radiances L j with j = 1,2 · · ·nLOS ,

is a well known ill-posed mathematical problem, as the system of integral equations for the

emissivity ε

L j =
∫

LOS j

εdl (3.2)

is under-determined. To make it treatable further conditions must be applied [117]. This is

increasingly problematic with a limited number of LOS, as is the case for the measurements

reported here. In comparison, in medical tomography, ∼ 105 LOS are routinely used. An im-

portant improvement for accurate Abel tomographic inversion is having multiple observation

positions, not possible on RAID due to diagnostic access limitations at the time of the experi-

ment. This requirement can be relieved in cases where the object has symmetry properties

and, as mentioned above, the RAID plasma column has cylindrical symmetry. The chosen

approach was to subdivide the cross section into nr radially-concentric pixels of constant

emissivity εi , i = 1,2, · · ·nr and recast the integral problem as a system of algebraic equations

in matrix formalism:

εi = Ti j L j (3.3)

where the element Ti j of the transfer matrix T is the intersection length of the LOS j with the

pixel i . The transfer matrix size is nr ×nLOS . A unique solution of system 3.3 can be found

by choosing nr < nLOS and imposing a further regularisation on the solution, achieved by

minimising the functional

h̃ = 1

2
χ2 +αR. (3.4)

The positive parameter α acts as a weighting factor between the regularising functional R and

a least-squared optimized fitting. A desirable property for the regularisation is to perform a

strong smoothing when the emissivity is low yet allow larger variations when the emissivity is

high, to better distinguish features in the luminous core region. The Fisher information,

I f =
∫ (

dε(l )
dl

)2

ε
dl (3.5)

has this property [118], and was chosen as regularising functional. The implemented al-

gorithm, called minimum Fisher regularisation method [119], solves the system of normal
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Figure 3.6: Emissivity profiles ε (r ) of Balmer and 22Q1 lines for H2. Different colours indicate
different RF powers.

equations, equivalent to minimising the functional of equation 3.4,(
T T ∗T +αH̃

)∗ε= T T L (3.6)

where the H̃ matrix contains the Fisher information. The parameter α is optimally chosen by

the algorithm. Appropriate convergence of the algorithm is verified by reconstructing the input

radiance profiles from the output emissivities and comparing with the initial data. A value

nr ≤ nLOS is selected to preserve as many of the smaller features as possible in the inverted

profile. Particular care must be taken in choosing the boundary conditions. Measurements

were limited to impact parameter pmax ∼ 8 cm, where the radiance has yet to vanish; a

straightforward inversion thus yields a non-physical spike in the emissivity profile at this

position. The correction of this feature required an extrapolation of the radiance profile,

before the inversion, to the unknown zero radiance point p0. Several extrapolation methods

were tested, linear, quadratic and exponential, to choose p0. The resulting emissivities are thus

robust against variations of the extrapolating methods and p0 position, with an uncertainty

within 25% at pmax , decreasing to less then 10% at 6 cm, for impact parameters of p0 in

the range 16-20 cm. From these assessment results, a linear extrapolation with p0 at 20

cm was chosen for all the inversions as the lowest order, and thus more stable, approach.

An uncertainty estimate of the Abel-inverted profiles was performed using a Monte Carlo

approach [69]. For each radiance profile a set of 400 virtual profiles was generated, varying the

radiance value at each position according to a normal distribution centered at the original

profile value, with a standard deviation given by the computed uncertainty. Each one of these
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Figure 3.7: Emissivity profiles ε (r ) of Balmer and 22Q1 lines for D2. Different colours indicate
different RF powers.

virtual profiles was then inverted using the methods described above, with the emissivity

uncertainty taken as the standard deviation of the virtual emissivity profiles. The average

value of the virtual profiles was verified to converge to the inversion of the original profile.

Figures 3.6 and 3.7 show the computed emissivity profiles and their uncertainties for the

Balmer lines and the molecular 22Q1 line, for H2 and D2 respectively. Emissivity profiles are

generally hollow and their shape is preserved for different input powers. The most hollow

profile is for the Balmerβ line (for both H2 and D2), that is a consequence of the already hollow

radiance profile. The Balmer α line is only slightly hollow, and, considering the estimated

uncertainties, remains compatible with a flat profile. The molecular line profiles are also

slightly hollow, with a similar behaviour as the Hα line. The estimated uncertainties from the

Monte Carlo assessment provide a high confidence in the inverted profiles in the 1.5-6 cm

radial range, where their values are typically ≤ 15 %.

3.4 Analysis with YACORA code and power scan results

Now that the experimental emissivity profiles are measured and their uncertainties estimated,

we seek to deduce the ion population profiles in the RAID plasma. The radial profiles of the

first 3 Balmer lines and the sum of the diagonal Fulcher-α lines are interpreted using the

collisional-radiative (CR) code YACORA [57]. The code solves the CR rate equations for the

population density ns of the hydrogen atom, resolving the lower 40 energy states (s = 1,2 · · ·
40). The reactions included in the model are: excitation and de-excitation by e− collisions,
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Figure 3.8: Profiles of (a) dissociation degree Dd , (b) ionisation degree Di , (c) H+ density and
(d) H− density estimated by YACORA for input power 3 kW in hydrogen.

spontaneous emission, ionisation, (radiative, dielectronic and three-body) recombination

of H+, dissociative excitation of H2, dissociative recombination of H+
2 and H+

3 and mutual

neutralisation of H− with H+, H+
2 and H+

3 . When available, cross sections are preferred to rate

coefficients, which gives YACORA the ability to perform calculations with non-Maxwellian

EEDF. The analysis was performed assuming a Maxwellian EEDF. YACORA is able to include

effects due to opacity, but these are neglected in the current analysis since they are expected

to be negligible at the low plasma density of these experiments [120]. The densities of the

6 species H , H−, H2, H+, H+
2 and H+

3 are varied independently, together with the electron

density ne and temperature Te , for each code run that is then compared with the measured

emissivity, with a trial and error procedure. When the deviation from the experimental value

is lower than 10% a match is determined. The use of H+
2 and H− is mandatory to reach

convergence. This implies that other, simpler, OES analysis methods, that neglect some of the

species considered by YACORA, could lead to erroneous estimations if the excluded channels

are important [121]. In these plasmas, the mutual neutralisation channel of H+ is fundamental

in the analysis while the H+ recombination channel is essentially irrelevant. Uncertainties of

20% are assigned to the electron density and temperature accordingly to results from code

validation in similar low pressure plasmas [57]. The uncertainty on the density ratio of atoms

to molecules is given by the uncertainty of the corresponding emissivities, as the ratio of the

rate coefficients is insensitive to Te and ne . For this reason an upper limit for uncertainty of

20% is chosen. The uncertainty for the other species (H−, H+, H+
2 and H+

3 ) depends strongly

on the contribution of the corresponding process to the Balmer line radiation. In this case an
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Figure 3.9: Comparison of experimental (a) ne and (b) Te profiles (LP) with YACORA conver-
gence values for input power 3 kW in hydrogen.

estimated upper limit to the uncertainty of 40% is applied. The procedure is time consuming

and is performed manually; so only a reduced set of three radial positions (at 1.5, 3 and 4 cm)

was considered for the analysis. These positions were chosen from the results of the 3 kW

RF power in hydrogen, which was the only case for which the full profile was completed, as

detailed below.

Figure 3.8 shows the dissociation degree, the ionisation degree and the H+ and H− density

profiles estimated by YACORA for this latter case. The dissociation degree Dd is defined as

Dd = f

f +2
(3.7)

with f the ratio of atomic to molecular density and is approximately constant for radii smaller

than 5 cm, with values larger than 15%. The ionisation degree Di , defined as

Di =
ne

nH +nH2

, (3.8)

is peaked in the core region, r ≤ 1.5 cm, where it almost reaches 1%. It decreases linearly with

radius by one order of magnitude at 4.5 cm, remaining constant at larger radii. The H+ density

is strongly peaked on axis, for r < 1 cm, while the negative ion density has a peak in the edge

region, between 4 and 5 cm. The radial position 1.5 cm is representative of the core region, the

3 cm point is a transition region for both nH+ and nH− and the final position at 4 cm is where

the negative ion density peaks. The ne and Te profiles determined via YACORA are compared

in Fig. 3.9 with experimental profiles, measured with an RF-compensated Langmuir probe

(LP), by integrating the EEDF. A voltage sweep of [-60, +35] V was used in order to characterize

the I-V curve. The Te profile is in agreement but there remains a discrepancy of about a factor

2 in the ne profile in the core region that is still under investigation. Nevertheless the hollow

electron density profile measured by the LP probe is in agreement with the hollow emissivity
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Figure 3.10: Results of YACORA analysis for power scans in hydrogen H2 at radial positions
1.5,3,and 4 cm, as function of input power. (a) dissociation degree Dd , (b) ionisation degree
Di , (c) ne , (d) Te , (e) nH− and (f) nH+ .

profiles. The gas translational and vibrational temperatures are estimated from Boltzmann

plots of the Fulcher lines [122] and are respectively Ttr an = 900±200 K and Tvi b ≥ 6000±1000

K for the first 5 vibrational levels in the ground state. These values are found not to depend

upon input power and remain constant at all radii.

Figures 3.10 and 3.11 show the results of the analysis for hydrogen and deuterium respectively,

at the three radial position considered, as a function of the input power, clearly displaying the

isotope effect. For the same conditions, the dissociation degree and the ion densities are larger

for deuterium than for hydrogen, while electron temperatures are lower. Trends with power

are generally similar for both isotopes. Both ne and Te are decreasing functions of the radius,

as already seen in figure 3.9, but while ne increases linearly with input power, Te is almost

insensitive at all positions. Being able to increase the plasma density without increasing the

temperature is a typical feature of helicon sources, and it is highly desirable for a negative

ion source for NB, as it would permit an easy tuning of the negative ion production rate. The

dissociation degree slightly increases with power and with the radius, reaching 35% and 25%

at 4 cm for deuterium and hydrogen, respectively. The weak dependence of the dissociation

degree on position could be explained by the H mean free path, which is estimated to be
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Figure 3.11: Results of YACORA analysis for power scans in deuterium D2 at radial positions
1.5,3,and 4 cm, as function of input power. (a) dissociation degree Dd , (b) ionisation degree
Di , (c) ne , (d) Te , (e) nD− and (f) nD+ .

of a few centimetres. The neutral hydrogen atoms are generated by dissociation in the core

region, where Te and ne are high, and diffuse to larger radii. The flat neutral density profile is

related to a relatively large mean free path compared to the observation volume. The positive

ions H+ exhibit the same behaviour as ne , but with lower values, H+
2 and H+

3 (not shown)

ensuring quasi-neutrality. The negative ion density is relatively low and insensitive to the

input power inside the plasma column, radius < 3 cm, where the relatively high Te reduces

stable H− formation and lifetime. At the edge of the plasma column, for r ≥ 4 cm, the negative

ion density attains high values of strong interest for a negative source development. The trend

at 4 cm is different between the two isotopes (see figures 3.10-(e) and 3.11-(e)). For hydrogen,

the negative ion density increases linearly with power, reaching 3 ·1016 m−3 at 5 kW, while for

deuterium it saturates to 4.5 ·1016 m−3 at 3 kW, with a similar trend, but lower values, at 3 cm.

3.5 Discussion

The results shown above are extremely encouraging for the application of the helicon antenna

as negative ion source for high energy NBI that will be tested in the Cybele configuration, which
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exploits an extremely elongated extraction geometry. The dissociation degree Dd reaches

relevant values for surface production at all the powers of the scan. The ionisation degree Di ,

which directly determines the ability to extract negative ions from a source, is a limiting factor

at these input powers. However the application of this plasma source for surface production is

still feasible (in both H2 and D2) if the Di linear increase is maintained at higher powers.

The scan in power was interrupted at 5 kW following damage assessment on the machine

during hydrogen operation. Furthermore, the antenna matching box was not compatible with

higher powers. A new matching box and improvements on the chamber cooling system were

designed and are now in commissioning phase, to extend the antenna exploitation to its full

potential.

A first analysis of the possible application of this antenna as a volumetric source is presented.

Direct extraction and acceleration of the negative ions surrounding the plasma column should

be feasible, without the positive ion flux which is essential for surface production. The limiting

factor in this case is the maximum attainable negative ion density and the ratio nH−/ne ,

which is directly related to the co-extracted electron fraction. The negative ion density has

contrasting trends for the two isotopes tested. In deuterium, it appears close to saturation

while for hydrogen it retains a linear dependence so that extrapolation at higher powers

remains unclear. The ratio of negative ions to electron density is likely to decrease with power,

from the deduced values of about 0.3, whereas the required ratio should be higher than one. It

is possible that this behaviour can be corrected by modifying the magnetic configuration and

an extensive study will be necessary to assess this possibility.

3.6 Conclusions and outlook

OES measurements were performed in RAID to characterise the performance of both the

spectrometer designed for CXRS EDGE measurements and a newly developed resonant net-

work helicon antenna. The spectrometer complied with the expected performance in terms of

a high throughput and dispersion, a stable wavelength configuration and reliable radiance

estimation. Since this work was performed during TCV’s long vacuum opening, this was taken

as a highly successful commissioning of the new EDGE spectrometer.

Absolute emissivity profiles for the first three Balmer lines and the molecular diagonal Fulcher-

α lines were computed by Abel-inverting multi-channel radiance profile measurements. The

emissivities were interpreted using the collisional radiative code YACORA, which provided an

estimated density for the 6 species H , H−, H2, H+, H+
2 and H+

3 . The population trends with

input power were initially studied at three different radial positions. The results obtained are

promising for application of the antenna as a negative ion source if maintained and should

extraction and acceleration in a beam source behave as expected on the beam test stand. The

plasma is effectively confined in a column all along the length of RAID. On the device axis,

a high plasma density ne ≥ 6 ·1017 m−3 is attained at low input power, with a relatively high

electron temperature ' 5 eV. At the edge of the plasma column, r ≥ 4 cm, where the electron
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density and temperature decrease to ' 1 ·1017 m−3 and ' 2 eV respectively, high dissociation

degree ≥ 35 % and high negative ion density ' 4.5 ·1016 are obtained. It should be noted that

these negative ion densities already reach values close to those near the extraction region of

caesium negative sources [105]. Extrapolation of these results to a nominal antenna power

of 10 kW remains complicated by the large gap between the upper power in deuterium and

the observed isotope dependencies. To reduce the extrapolation uncertainties, source perfor-

mance at 10 kW will be verified with a new set of measurements after the commissioning of the

chamber cooling system and installation of the new matching box are completed. Increasing

the diagnostic array around this new source will allow us to harden these conclusions. In

addition to refining the spectroscopic and Langmuir measurements, a photodetachment

diagnostic is under development that can independently measure the negative ion density. A

helicon antenna based system may provide the negative ion injectors, considered necessary

for fusion reactor development, with a welcome alternative source.

For the main purpose of this thesis, the high throughput spectrometer was already tested and

analysed in detail before its implementation for TCV poloidal measurements. Furthermore,

in view of the large increase in light throughput, two new EDGE-type spectrometers were

commissioned to replace the legacy 0.75 m toroidal TCV spectrometers. Following the success

of this work, a further spectrometer is planned for permanent installation for RAID-like

research.
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4 Rotation: theoretical background

This chapter presents an overview of the theoretical description of plasma rotation, with

particular focus on the processes that will allow a better understanding and interpretation of

the experimental measurements. It should be stressed that, not only is rotation and rotation

shear strongly related to changes in Tokamak plasma transport and susceptible to magnetic

field geometry errors, but that it can be directly measured: a luxury compared to many other

plasma parameters that are known to strongly affect performance.

4.1 Momentum balance equation and rotation

A plasma is statistically described by the distribution function fα(x,v, t) of each species α

it contains (main ions α = i , electrons α = e, impurities α = C ,B , · · ·). The evolution of the

distribution function is determined by the Fokker-Planck [123], a.k.a. Boltzmann equation [23,

124]:

∂ fα
∂t

+v ·∇ fα+
qα
mα

(E+v×B) ·∇v fα =Cα

(
fα

)
(4.1)

where the right hand side is the collisional operator Cα

(
fα

)=∑
βCαβ

(
fα

)
, which describes

the change in time of fα due to collisions (mostly Coulomb in a plasma) both between the

same species β = α and different species β 6= α, that can be described as a combination of

friction forces, viscosity and electrical resistivity. In a plasma, small deflection collisions

dominate [17], which allows a description of the collisions by the Fokker-Planck operator [17],

which is basically a diffusion operator in velocity space, resulting in a simpler description than

the more general and complex Boltzmann collisional operator.

The charge qα of an impurity is often represented by the charge state Zα and the elemen-

tary charge e, i.e. qα = Zα e. The solution of Maxwell’s equations [125] and the Boltzmann

equation 4.1, describes the plasma evolution. This problem is however too complex for either

an analytical or a numerical general solution. A significant reduction in the complexity is

provided by considering a multi-fluid plasma description, and then calculating only the first
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few moments of the Boltzmann equation. The first and second moments gives the mass 4.2

and momentum 4.3 conservation equations respectively:

∂nα
∂t

+∇· (nαuα) = Sn (4.2)

nαmα

(
∂uα
∂t

+uα ·∇uα

)
= nαqα (E+uα×B)−∇pα−∇·πα+Rα+Sα (4.3)

with Sn the particle source and Sα the momentum source due to external torques and the

definitions [2, 17, 23]:

particle density: nα =
∫

fα d 3v (4.4)

fluid velocity : uα =
∫

v fα d 3v (4.5)

temperature : Tα = 1

nα

∫
mα |v−uα|2

3
fα d 3v (4.6)

isotropic pressure: pα =
∫

mα |v−uα|2
3

fα d 3v = nαTα (4.7)

pressure tensor : Pα = 1pα+πα =
∫

nαmα (v−uα) (v−uα) fα d 3v (4.8)

friction force : Rα =
∫

v Cα

(
fα

)
d 3v '

∑
β

Rαβ =
∑
β

−mαnαναβ
(
uα−uβ

)
(4.9)

where the tensor πα is termed viscosity and the approximation Rα ' ∑
βRαβ of the friction

term is made by considering the momentum transfer due to collisions with different species,

with ναβ the collision frequency.

In a steady-state plasma ( ∂·∂t = 0) with subsonic flow (uα · ∇uα term negligible), isotropic

pressure (πα = 0), neglecting friction (Rα = 0) and external torques (Sα = 0), equation 4.3

reduces to the force balance equation [2, 23]:

∇pα = nαqα (E+uα×B) (4.10)

which states that, to the lowest order, the pressure force balances the Lorentz force.

The expression for the perpendicular velocity uα,⊥ (to the magnetic field B) is found from the

cross product of equation 4.10 with B:

uα,⊥ = E×B

B 2 − 1

qαnα

∇pα×B

B 2 (4.11)

The first term is the E×B velocity (equation 1.25) with the second termed the diamagnetic
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drift [2, 23],

uα,∇p =− 1

qαnα

∇pα×B

B 2 (4.12)

since it is an effective mass flow (not a guiding centre drift), caused by unbalance in the

diamagnetic current (due to B gradient) [23], which is proportional to ∇pα. The lowest order

solution (equation 4.11) of the momentum equation 4.3 projected in the radial direction

states that the perpendicular flow drives are the electric field and the pressure gradient. The

E×B drift is independent of particle parameters, hence it’s the same for all species, while

the diamagnetic drift is in opposite directions for electrons and ions, allowing differential

species’ rotation. The timescales on which the flow described by 4.11 is established is in

the fast compressional Alfvenic range τA ' 1−100µs, which represent the zero order of the

gyroradius expansion [124]. On longer timescales the rotation evolves accordingly to the

parallel force balance equation [124] on ion collisional timescales (τi i 'ms) and to the toroidal

force balance on transport timescales (τtr ' 10−100 ms in TCV), which determines the final

rotation state.

4.2 Rotation decomposition

The rotation may be decomposed in the parallel and perpendicular directions:

uα = uα,∥ b+uα,⊥ (4.13)

where b = B/|B| is the unit vector in the magnetic field direction and uα,⊥ is given by equa-

tion 4.11. When valid, as expected for tokamaks, the first order flows lie on a magnetic surface,

as uα,⊥ is perpendicular to the radial direction ∇ψ since both ∇pα and E =−∇φel are parallel

to ∇ψ.

Another common decomposition of the velocity is in the toroidal and poloidal directions:

uα = uα,φ eφ+uα,θ eθ (4.14)

where eφ = 1/R ∇φ is the unit vector in the toroidal direction, and eθ is the unit vector in

the direction ∇φ×∇ψ that corresponds to the geometrical angle θ direction only for circular

concentric flux surfaces. In case of a straight field coordinate system, where θ is not the

geometrical angle, uα,θ = uα ·∇θ/|∇θ|.
The velocities uα,φ and uα,θ lie on a magnetic flux surface and define plasma rotation (alterna-

tively uα,∥ and uα,⊥ can be used).

The radial component uα,ρ = uα ·∇ψ/|∇ψ| is neglected in the first order flows, but represents

the radial particle flux Γρ

Γρ = mαnαuα,ρ (4.15)
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It is important to note that, although uα,∥ and uα,φ are similar in magnitude due to the relation

BφÀ Bθ, and often confused, their theoretical distinction is fundamental in the calculation of

momentum transport that determines the rotation profiles [124]. In particular, the parallel

dynamics sets the value of poloidal rotation on the ion collisional timescales, while the toroidal

dynamics generates the radial fluxes that determines the rotation evolution on the transport

timescales (τtr ' 10−100 ms).

The rotational flow is usually assumed incompressible [17, 126], i.e. ∇· (nαuα) = 0, the addi-

tional assumption of constant impurity density on a flux surface leads to the following general

expressions [69] (dropping the subscript α for clarity):

u = ω̂
(
ρ
)

R eφ+ û
(
ρ
)

B (4.16)

uφ = ω̂
(
ρ
)

R + û
(
ρ
)

Bφ (4.17)

uθ = û
(
ρ
)

Bθ (4.18)

where the functions ω̂ and û are explicitly constant on a flux surface (depending on ρ alone).

The term ω̂ describes a rigid toroidal rotation, that can be visualised as a spinning doughnut,

so that the toroidal rotation uφ is composed by a rigid rotation plus a correction related to the

poloidal velocity and the toroidal magnetic field. When the poloidal velocity is negligible, e.g.

in presence of strong external injection of toroidal momentum from NBIs, the rigid rotation

description is expected to hold. This is however not the case for TCV intrinsic rotation, where

the poloidal intrinsic rotation contribution is not, in general, negligible.

Equations 4.17 and 4.18 imply that neither the toroidal nor poloidal velocities are exact flux

surface quantities, and neither are the angular velocities ωφ = uφ/R and ωθ = uθ/r . The flux

surface quantities ω̂ and û can be calculated either by measuring uφ and uθ at the same

position or by measuring just uφ at different positions on the same flux surface. The latter

measurement provides an indirect measurement of the poloidal velocity that was tested in

TCV [69] that found qualitative agreement with neoclassical prediction. The method relies on

the inboard-outboard rotation measurement capabilities of TCV, by defining uφ,H and uφ,L the

toroidal velocities measured at the HFS and LFS on the same flux surface, at radial positions

RH and RL respectively, the functions ω̂ and û are given by:

ω̂(ρ) = uφ,H RH −uφ,L RL

R2
H −R2

L

(4.19)

û(ρ) = 1

F

(
uφ,H

RH
− uφ,L

RL

)(
1

R2
H

− 1

R2
L

)−1

(4.20)

where F = RBφ is a constant on a flux surface; and hence applying equations 4.17 and 4.18

both the poloidal and toroidal rotation are calculated on a 2D poloidal cross section. The

advantage of this method is that the uncertainty in the calculated poloidal velocity is reduced
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4.3. Radial electric field

from the uncertainty of the directly measured toroidal rotation by a factor 4q , as given by the

approximated relation for uθ,L , the poloidal velocity on the LFS [69]:

uθ,L ' 1

4q
(1+ε)

(
uφ,H −uφ,L

)
(4.21)

while simultaneously avoiding the atomic physics contributions (see section 2.1.2) of a direct

poloidal measurement. However uncertainties in the magnetic reconstruction, which intro-

duces errors in the LFS-HFS mapping, limit the precision of the method. In TCV, the complete

coverage of the cross section of the toroidal systems allows for a global evaluation of the

poloidal rotation across the whole section, but the spatial resolution (≤ 1 cm) is insufficient to

resolving sheared flows structures, particularly at the edge, where the EDGE system provides

unmatched results.

4.3 Radial electric field

Although the origin of the radial electric field Er are not theoretically fully understood, its

presence at the edge of tokamaks, particularly in H-mode, AUG [93], C-Mod [127], DIII-D [128],

JET [129], JFT-2M [130], NSTX [65] and MAST [131] is well documented. Several processes are

considered as sources of the electric radial field [132]: plasma heating, that expands ion orbits

more than electrons’ causing charge imbalance, turbulent transport that may not be ambipo-

lar [133], imperfections in the magnetic field surfaces that allows electrons to escape and first

orbit losses in fast particles generated by NBIs. A comprehensive theoretical description able

to predict its magnitude is still missing. The connection of the radial electric field with plasma

flow is of fundamental importance in tokamaks physics. It is indeed the strong perpendicu-

lar rotation shear generated by Er that is thought to cause the edge transport barrier (ETB)

characterising the H-mode, by suppressing turbulence [50]. It is worth underlining that any

electric field, including this radial field, simultaneously influence all plasma species and thus

must be the self-consistent sum of the effects on all these species.

The force balance equation 4.10 evaluated in the radial direction ∇ψ allows the determination

of the radial electric field from any of the plasma species:

Er =
1

nα qα

∂pα
∂r

−uα,θ Bφ+uα,φBθ (4.22)

On TCV, the magnetic field components Bθ and Bφ are provided by the magnetic reconstruc-

tion code LIUQE, and the CXRS systems provide all the remaining quantities to calculate Er

from equation 4.22.

The representation of the first order flow 4.16 allows a reshape [69] of equation 4.22 into

Er =
1

nα qα

∂pα
∂r

+ ω̂R Bθ (4.23)
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Chapter 4. Rotation: theoretical background

allowing the determination of Er in TCV even at positions not covered by the poloidal systems,

thanks to the complete coverage of the cross section of toroidal systems and equation 4.19.

For improving confinement it is important not only the absolute value of the electric field

but also the rate of change of Er across the flux surfaces, quantified by the E×B shearing

rate [134, 135], which is defined as:

ωE×B = r

q

d

dr

[
q

r

Er

B

]
(4.24)

High values of shearing rate are often thought related to turbulence suppression and transition

to H-mode [136].

4.4 Neoclassical rotation

Classical theory describes the plasma particle, momentum and energy flow (transport) in a

cylindrical plasma in a homogeneous magnetic field. In tokamaks, the magnetic field has a

significant curvature and it is not constant along the particle trajectory, being stronger closer

to the torus axis (B ∝ 1/R), introducing additional effects that are not considered in classical

theory, such as the trapping of particles in a magnetic mirror, field curvature (equation 1.26)

and ∇B (equation 1.27) drifts. Neoclassical theory [16, 63] was developed to include the

effects of the magnetic field toroidal geometry, resulting generally in enhanced transport in all

channels.

The trapped particles bounce both in the toroidal and poloidal directions describing a trajec-

tory that projected in the poloidal cross section resemble a banana on the low field side, from

which the name banana orbit. The bouncing frequency ωb is

ωb = ε1/2 vT

R q
(4.25)

The interplay between bouncing (or transit for passing particles) and collisions (de-trapping

effect) determines the actual particle trajectory, dividing the neoclassical description in three

regimes:

1. Pfirsch-Schlüter, or high collisionality ν∗ > ε−3/2;

2. plateau regime 1 < ν∗ < ε−3/2

3. banana regime, or low collisionality ν∗ < 1.

The collisionality ν∗ is the parameter defining the regime, and it is given by:

ν∗ = νε−3/2 R q

vT
(4.26)
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4.4. Neoclassical rotation

where ν = ναα is the collision frequency for a species and vT its thermal velocity. For the

Pfirsch-Schlüter regime a fluid description of the plasma is sufficient, while a kinetic descrip-

tion is required for passing particles in the plateau regime and for both passing and trapped

particles in the banana regime. The regime heavily influences the transport properties, and

although the main ions and electrons are roughly in the same regime, due to the effective

mass cancellation in ν/vT , impurities are often more collisional.

Neoclassical theory predicts an, often considerably, smaller radial particle and energy trans-

port than measured in tokamaks [16, 63], for example the electron heat flux is ' 100 higher

than the neoclassical prediction and, under certain conditions, also the ion heat transport

is underestimated by neoclassical theory [137]. This ‘enhanced’ transport is referred to as

anomalous transport, and although still not fully explained, it is commonly believed origi-

nating from plasma micro-instabilities, commonly known as turbulence, that are not take

into account in the standard neoclassical theory. However, in the edge region of H-mode

discharges turbulent transport is strongly reduced and the ion heat and particle transport,

particularly for impurities [138], approach neoclassical values, even though the electron heat

transport remains higher than neoclassical predictions. Neoclassical theory predicts the flux-

surface averaged particle, momentum and heat fluxes. In the following we will focus on the

momentum flux.

The poloidal velocity expected from neoclassical theory has been calculated with the Hirshman-

Sigmar moment approach [63] in the Pfirsch-Schlüter regime [139], neglecting friction with

electrons and the orbit squeezing (reduction of ion banana width due to any gradient in

Er ) [140], giving the results (expressed here for the main ions i and impurity C ):

ui ,θ = 1

2
vTiρi

(
K1

1

LTi

)
B Bφ

〈B 2〉 (4.27)

uC ,θ = 1

2
vTiρi

[(
K1 +

3K2

2

)
1

LTi

− 1

Lpi

+ Zi TC

ZC Ti

1

LpC

]
B Bφ

〈B 2〉 (4.28)

where the length scales are given by the logarithmic derivative, i.e. L−1
Tα

= d(lnTα)/dr etc., the

thermal velocity is defined as vT,α =p
2Tα/mα (adding the appropriate conversion factor for

Tα for the unit system used) and the Larmor radius (equation 1.12) is evaluated at the thermal

velocity vT,α. The coefficients K1 and K2 are defined in [139] (in cgs-Gaussian units) and

depend on the inverse aspect ratio ε and the main ion collisionality ν∗i . These equations imply

that the poloidal velocity of impurities can substantially deviate from the main ion poloidal

rotation, particularly at the edge and in presence of large density gradients, due to the strong

coupling of the parallel flows (friction forces) and the weak coupling of poloidal flows due

to magnetic pumping [132, 141–143]. Since the impurity rotation 4.28 depends strongly on

the main ion parameters and weakly on the impurity parameters, only through ∇pC , similar

poloidal velocities are expected for trace low-Z impurities, which are expected to be in the

electron diamagnetic direction. The main ions’ rotation is expected close to zero, the direction
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Chapter 4. Rotation: theoretical background

can go either with the electron or ion diamagnetic velocity, depending on ν∗i through the sign

of K1. The poloidal rotation for both main ions and impurities is proportional to Bφ, hence it

changes sign upon Bφ inversion, while it is invariant to Bθ, leading to insensitivity upon Ip

reversal.

The magnetic pumping mechanism is very effective in damping the poloidal velocity to neo-

classical values [132]. This damping is caused by the tokamak magnetic field non uniformity; a

plasma volume element rotating in the poloidal direction experiences a time varying magnetic

field, stronger on the HFS and weaker on the LFS. The magnetic pumping [132] converts the

rotation energy into thermal energy through ion viscosity, heating the plasma and damping

the rotation on timescales of the order of ion-ion collision, τi i ' 1 ms in TCV.

The heating mechanism can be separated into collisional and collisionless processes.

The collisional process dominates when the collision time is smaller than the period of the

magnetic perturbation. The magnetic moment µ= mαu2
⊥/2B is a constant of motion between

collisions, which implies that moving towards the HFS, where B increases, the particle perpen-

dicular kinetic energy mαu2
⊥/2 increases. Due to energy conservation, the parallel velocity

u∥ decreases towards the HFS. When a collision occurs at the HFS, on average, the extra

perpendicular kinetic energy is redistributed, heating the plasma and reducing µ. When the

particle reaches the LFS, it has, on average, a lower kinetic energy, resulting in a net reduction

of uθ.

The collisionless process, when the collision time is larger than the magnetic perturbation

period, is also termed transit-time magnetic pumping and involves the trapped particles.

Since trapped particles do not complete a full poloidal turn, they do not contribute directly

to the poloidal momentum, but their interplay with the periodic magnetic field produces an

effect which is akin to Landau damping [132], reducing the poloidal flow across the whole

plasma volume.

Analogous equations to 4.27 and 4.28 are found for the toroidal velocity with the assumption

E∥ = 0, with a structure depending on the impurity-main ions density ratio. The toroidal

velocity in the banana-plateau regime, with nC Z 2
C ≥ ni Z 2

i , can be estimated as [139]

ui ,φ = Er

Bθ
− 1

2
vTiρi ,θ

(
Kni

Lni

+ KTi

LTi

)
(4.29)

uC ,φ = Er

Bθ
(4.30)

where the coefficients Kni and KTi are functions of ε and ν∗i , and the poloidal Larmor radius

ρi ,θ is calculated from equation 1.12 with the thermal velocity vTi and the poloidal magnetic

field Bθ. In the case nC Z 2
C < ni Z 2

i the difference of impurity and ion toroidal velocity becomes:
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∆uφ = uC ,φ−ui ,φ = 3

4
K2

vTi ρi ,θ

LTi

(4.31)

which can become significant at low current (∆uφ∝ B−1
θ

) and high Ti . The toroidal rotation

changes sign with Bθ due to the explicit dependence of equations 4.29 and 4.30, while it is

insensitive to the sign of Bφ. The radial electric field Er of equations 4.29 and 4.30 is not

predicted by the model, hence, to solve the system of equations, experimental rotation profiles

are needed. Typically the toroidal impurity rotation is measured [144], allowing the estimation

of the main ion flow, the impurity poloidal rotation and Er .

4.5 Momentum transport

The objective of transport theory is to describe the space-time evolution of the density, tem-

perature and rotation of all species by identifying their fluxes and sources. Focussing on the

momentum, we can recast the momentum balance as a continuity equation of the form [17]

∂mαnαuα
∂t

+∇·Πα = nαqα (E+uα×B)+Rα+Sα (4.32)

where the momentum fluxΠα is formed by three terms: the isotropic pressure, the viscosity

and the inertial terms.

Πα = 1pα+πα+mαnαuαuα (4.33)

Equation 4.32 states that the rate of momentum change in a volume element is determined by

two factors: the exchange of momentum through the volume surface due to the momentum

flux and the sum of the forces (electro-magnetic forces, friction force and external forces)

acting on the volume. In the neoclassical framework the momentum flux Πα is composed

by terms that are proportional to the velocity (convective term) and its gradient (diffusive

terms), and additional terms proportional to the gradients of the temperature and the density

known as residual stress. It is termed “residual” simply because it neither fits with a convective

nor diffusive term yet the plasma still reacts proving it was still out of equilibrium. The

residual stress is thought responsible for the intrinsic rotation that develops in tokamaks, with

experimental results often disagreeing with neoclassical predictions [145], that are unable to

explain features such as the intrinsic rotation reversal observed in TCV [146], ASDEX [54] and

C-Mod [147].

A more comprehensive treatment, that also includes effects due to turbulence, was performed

in the framework of gyrokinetics [148]. The conservation of toroidal angular momentum takes

the form:

∂

∂t
〈
∑
α

nαmαRuφ〉
ψ

+ 1

V ′
∂
(
V ′Π

)
∂ψ

= Tφ (4.34)
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where < ·· · >ψ represent a flux surface average, V ′ = ∂V
∂ψ is the derivative of the volume V (ψ)

enclosed by the flux surface of stream function ψ, Tφ is the total torque applied by direct

sources like NBH [149], andΠ is the radial flux of toroidal angular momentum, that is, itself,

composed of three terms:

Π=−χ̂φ
∂ωα,φ

∂ψ
+ P̂φωα,φ+Πi ntr (4.35)

The momentum diffusivity χ̂φ has contributions from a neoclassical and a turbulence term.

The momentum convection P̂φ has three components: two are ascribed to the particle trans-

port from neoclassical effects and turbulence respectively and an additional term from the

Coriolis pinch [150]. Contributions to the intrinsic momentum flux Πi ntr arise from sym-

metry breaking in the second order expansion of the distribution function in the parameter

ρ∗ = ρi /a, which can result from: up-down plasma shape asymmetry [151–153], neoclassi-

cal flows [154], radial variation of the turbulence characteristics [155], particles turbulence

acceleration and finite orbit widths.

The following heuristic equation for momentum transport [156], that mimics equation 4.34 in

cylindrical coordinate, is adopted in interpreting experimental data [157]

∂
(
nαmαuα,φ

)
∂t

= 1

r

∂

∂r

[
r nαmαΓφr

]+Sφ (4.36)

Γφr = −χφ
∂uα,φ

∂r
+Pφuα,φ+Cφ vT,α (4.37)

where the radial flux of toroidal momentum Γφr has three terms: the product of the diffusive

coefficient χφ [m2/s] with the radial derivative of the toroidal velocity represent the diffusive

term, the convective (or pinch) coefficient Pφ [m/s] is multiplied by the toroidal velocity uα,φ

for the convective term and the residual term is parametrised by the coefficient Cφ [m/s] and

the thermal velocity vT,α. The last term of equation 4.36 accounts for the local direct injected

toroidal momentum [149] and the possible sinks, i.e. friction with neutrals [158], interaction

with magnetic islands and field ripples [159], etc. The determination of the coefficients of

equation 4.37 from experimental data allows a detailed comparison with theoretical predic-

tions and a complete description of the profile evolution, but requires dedicated experiments

of non-trivial interpretation [160–163] , so often a less complex description is used [157],

assuming only diffusive momentum transport [164–166]. An effective momentum diffusion

coefficient χe f f
φ

is then computed, for comparison with models, using the following equation:

Γφr =−χe f f
φ

∂uα,φ

∂r
(4.38)

that can be solved from steady-state transport analysis after determining all the momentum

sources. Typical measured χe f f
φ

in TCV are ' 1 [m2/s], which exceed the prediction of neoclas-

sical theory, given by χe f f ,neo
φ

= 0.14ε2νi iρ
2
i [167]. It was experimentally found in different
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devices [168, 169] that the Prandtl number, which is the ratio of the momentum diffusion to

the heat diffusion coefficient χi , is of the order of unity, suggesting that the main transport

channel for both quantities is similar and of turbulent origin. Seen another way, the charac-

teristic timescales and gradients of the ion temperature and rotation observations are often

similar and highly correlated.

Momentum transport in the poloidal direction is based on an equation with a different

structure than the equation in the toroidal direction 4.34. In the poloidal projection of the

force balance equation 4.3 the effect of poloidal flow damping (magnetic pumping) must be

included, as a non-negligible term of the viscous tensor [170]:

〈(∇·π)θ〉 =α
(
uθ−uneo

θ

)
(4.39)

where uneo
θ

is the poloidal velocity predicted by neoclassical theory (equation 4.28) and α is a

parameter that depends on plasma parameters, particularly on the collisionality regime [132].

The poloidal force balance equation, neglecting the inertia term and adding the friction with

neutrals, becomes [170]

α
(
uθ−uneo

θ

)=− jr Bφ−
(
1+q2)nnmnνC X uθ (4.40)

which does not include the radial derivative of the velocity, contrary to the toroidal momentum

equation. This implies that the poloidal velocity is radially decoupled, allowing the develop-

ment of strong and persistent radial gradients. This also implies that the effect of a poloidal

torque on poloidal rotation is strongly localised at the position where it is applied. High spatial

resolution diagnostics are therefore essential to resolve any narrow features that may even be

expected to develop in the poloidal rotation.

4.6 Conclusions

This chapter summarises the most important results in theory of momentum transport and

introduced concepts useful in the analysis of experimental data. The dynamics starts with the

force balance equation, which implies that it is the equilibrium between rotation, pressure and

radial electric field that determines the rotation profile on fast Alfven timescales. This can be

used to determine the radial electric field from CXRS experimentally measured quantities as

expressed by equation 4.22. The parallel force balance equation that determines the dynamics

on ion collisional timescales (τi i ' ms), is particularly important in determining the poloidal

rotation, as magnetic pumping acts on these timescales, that should damp the poloidal

rotation to neoclassical values. On longer transport timescales (τtr ' 10−100 ms), toroidal

dynamics determines the radial fluxes and the final relaxed evolution.

Experimental evidence of anomalous transport led to the development of more sophisticated

theoretical considerations than neoclassical, that include many varieties of turbulence effects

[154]. The effects of large scale instabilities, like the ST MHD instability, that can result in
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strong redistribution of particles, momentum and energy, are often neglected, complicating

any comparison of experimental results with theoretical estimates, or predictions for reactor

relevant machines.

In an experimental measurement, as provided in this work, a combination of all these factors

will be required in any attempt to describe what is observed. Where possible, these theoretical

considerations can be used to design experiments where one or another of the predicted terms

might be expected to dominate.
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5 Effects of sawteeth on rotation

5.1 Introduction

MHD activity has a strong influence on transport due to its ability to modify the magnetic

field topology through magnetic reconnection, temporarily rupturing the nested flux surface

configuration. Particles in the reconnection zones are not radially confined, as streaming

along the field line effectively results in radial transport due a generally non null radial field

component, leading to strong enhancement of transport coefficients. The flattening of elec-

tron temperature and density in magnetic islands forming on rational q surfaces during MHD

activity (NTM, ST, etc.) is well documented [3]. Magnetic reconnection could, therefore, influ-

ence momentum transport, but since the rotation diagnostics’ time resolution is insufficient to

resolve this MHD phenomena, its effect are often accounted as simple diffusion, or completely

neglected in transport models, as only time-averaged plasma parameter profiles are available.

In this chapter the effect of the MHD instability known as sawtooth (ST) [19] on the Carbon

impurity profiles, particularly momentum, is addressed, with sufficient time resolution to

resolve the effects of the ST from MHD-free transport. The ST is a macroscopic periodic

instability first described by Von Goeler [171], which has an effect on a significant portion of

the plasma core. Its effects are dominated by a periodic relaxation of the plasma core gradients,

resulting in flattening of the electron density and temperature profiles. The ST cycle is divided

in three phases, as shown in figure 5.1-a:

1. A ST ramp phase, where the plasma core pressure increases in time, with little MHD

activity detected;

2. A precursor phase, when a helical magnetic perturbation grows, resulting in the typical

oscillatory traces in ne and Te diagnostics (DMPX,ECE,XTOMO...);

3. A crash phase (or fast phase), in which the plasma core gradients collapse and mag-

netic reconnection occurs, flattening the Te and ne profiles, demonstrated by sudden

decreases in the core emissivity.
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Figure 5.1: (a) typical core FIR and/or soft-X ray time trace during a ST period, defining the
ramp phase, the precursor phase and the crash (fast phase). (b) sketch of a pre and post ST
crash electron profile defining the inversion radius ri nv and the mixing radius rmi x .

The particles and energy expelled from the core region are redistributed in a region enclosed

by the mixing radius rmi x , such that outside rmi x plasma is barely perturbed. Inside rmi x two

regions are identified: the region expelling (on average) particles and energy and the region

receiving these fluxes, separated at the inversion radius ri nv . Figure 5.1-b shows the positions

of rmi x and ri nv deduced from a comparison of schematic electron profiles before (pre) and

after (post) the ST crash. At TCV an algorithm exploiting the GTI package and the XTOMO

signal is routinely used to experimentally determine ri nv [118] and is employed in the analysis

of this chapter.

The period of a complete ST cycle τST depends on plasma parameters and magnetic config-

uration [172], increasing with the machine size [19]: τST ' 20 ms in TEXTOR (R0 = 1.75 m),

τST ' 100 ms in JET (R0 ' 3 m). In TCV the natural ST period in ohmic discharges is of few ms,

which is comparable to the minimal CXRS integration time, making natural ST resolved mea-

surements presently unattainable. The ST period can be considerably extended depositing

ECRH and/or ECCD close to the q = 1 flux surface [173, 174]. This was exploited in TCV for

ST pacing [173], i.e. extending the ST period to a predetermined value, and locking [175], i.e.

to lock the ST period to the ECRH modulation period, effectively fixing the ST timing before

the experiment. This last technique was exploited in the experiments reported in this chapter,

making possible to perform multiple CXRS measurements across the whole ST cycle with the

minimal achievable diagnostic IT ∆tI T = 2 ms. A large portion of the ST period is constituted

by the ramp phase, the precursor phase being of the order of a tenth of the ST cycle with the

crash phase on Alfvenic timescales (τA ≤ 100µs) [176]. In TCV due to the short ST period and

strength, the precursor phase is often unresolved.

The ST instability is identified as an internal resistive m/n = 1/1 kink mode [177] driven by

a plasma pressure gradient threshold. It occurs only when the safety factor q drops below
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Figure 5.2: (a) pre and post crash profiles of Ψ∗ and q for the Kadomtsev (red) and Porcelli
(blue) models. The pre crash profiles (black) are identical for both models. (b) sketch of the
magnetic surfaces reconnection in a ST crash. The kink displaces the core (1), when surfaces
of identical helical flux touch (2) reconnection begins (3) resulting in the expulsion of the core
plasma into the region ri nv ≤ r ≤ rmi x , preserving the area Ax .

one, i.e. when there is a resonant surface q = 1 located in the confined plasma region, which

usually is the case when the current profile is sufficiently peaked.

The first attempt to explain the ST dynamics was performed by Kadomtsev [177], which

developed a full ST reconnection model in a cylindrical geometry. The hypothesis of the model

are two:

1. Magnetic surfaces with equal helical fluxΨ∗ reconnect;

2. Toroidal fluxΦ is conserved.

The helical fluxΨ∗ is defined as

Ψ∗(r ) =
∫ r

0

(
Bθ−

r

R
Bφ

)
dr ′ (5.1)

that in cylindrical approximation becomes

Ψ∗(r 2) =
∫ r 2

0

(
1

q
−1

)
dr ′2 (5.2)

A sketch of theΨ∗ profile in the pre and post crash conditions,Ψ∗
pr e andΨ∗

post respectively,

is shown in figure 5.2-a. The maximum of Ψ∗
pr e is at the q = 1 surface, denoted by rs . A

generic radius inside (outside) rs is denoted by r1 (r2), and clearly for each r1 exists an r2

satisfyingΨ∗
pr e (r1) =Ψ∗

pr e (r2); that defines the surfaces that reconnects during the crash. The

reconnection starts when the two surfaces touch, as result of a displacement due to the kink

mode (see figure 5.2-b). The second condition of Kadomtsev’s model implies the conservation
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of the area Ax enclosed by the two reconnecting surfaces:

π(r 2
2 − r 2

1 ) = Ax =πr 2
k (5.3)

which defines rk , the radius of the reconnected surface. The m = 1 magnetic island of the kink

mode is assumed to grow until it fills the whole volume inside rmi x and the new magnetic axis

is the O-point of the island, therefore the flux surface that reconnects with the magnetic axis

defines the mixing radius:

Ψ∗
pr e (0) =Ψ∗

pr e (rmi x ) (5.4)

The resulting safety factor qpost profile after the full reconnection is monotonic, increasing

from the axis q0,post = 1, which is now stable to internal kink modes.

Although the Kadomtsev model describes many features of the ST instability, the predicted

crash time τkam ' (τητA)1/2, with τη = µ0r 2
1 /η the resistive time and τA = r1(µ0ρ)1/2/Bθ(1−

q0) the Alfvenic time, exceeds the experimental measured crash time [176]. There is also

experimental evidence of ST cycles featuring partial reconnection, with q0,post < 1 [178]. In

1996, Porcelli proposed an incomplete relaxation model [179], in which the magnetic island

is allowed to grow until it reaches a critical width wcr i t , after which the core undergoes a

Taylor relaxation process [180] while the island relaxes to a constant helical flux Ψ∗
post (r1 ≤

r ≤ r2) =Ψ∗
pr e (r1) (see figure 5.2-a); here r1 and r2 satisfy r2 − r1 = wcr i t /2 and r2 acts as the

effective mixing radius, which is smaller than the predicted rmi x from Kadomtsev’s model (see

figure 5.2-a). The predicted qpost profile is lower than unity in the relaxed core region r < r1,

and equal to unity in the relaxed island region qpost (r1 < r < r2) = 1.

Both models explain the measured effect of ST on electron density and temperature, which is

well documented experimentally, but no predictions are made on impurity profile changes nor

momentum transport, i.e. rotation. Recently numerical studies were carried out to quantify the

effect of ST on impurity density, mostly to verify the effectiveness of ST in exhausting impurities

from the core [60], but extensive studies on rotation are still missing. In the remainder of this

chapter a phenomenological approach is adopted to quantify the effects of ST on Carbon, in

order to significantly increase the constrains for a realistic ST model, verify the ability of ST

to remove core impurities and study the momentum evolution across the ST cycle. It will be

shown that the ST effect on Carbon rotation and density is strong and dominates the dynamics

governing the core profiles.

5.2 Toroidal rotation in limited L-mode plasmas in presence of saw-

teeth

Previous studies in TCV [38, 39] showed that the averaged effect of ST activity on rotation

is to bulge the velocity profile in the co-current direction. To separate the ST influence on

profiles from turbulent transport a scan in plasma current was performed in [39], that is
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Figure 5.3: Normalised TS profiles dependence on plasma current for the TCV discharges:
#40117/-126 kA, #40118/-177 kA, #40119/-228 kA, #40130/-279 kA. The position of the q = 1
flux surface is shown by vertical dashed lines. Profiles for the discharge #48884 with Ip =−282
and 450 kW of ECRH are shown in black for comparison. The electron temperature increases
with Ip and flattens inside ρq=1. (a) the temperature normalised to Te (ρ = 0.8) is shown to
emphasise the flattening effect. The effect of ECRH (black) is to further flatten the profile.
(b) the electron density normalised to ne (ρ = 0.8) shows that the density is flat inside ρq=1.
Adding ECRH has no significant effects on the density profile.

summarised in this section. A limited Ohmic scenario was developed featuring a stationary

sawtoothing phase with B0 =−1.44 T, qed g e = 3.2−3.6, δed g e = 0.17−0.3, κed g e = 1.4−1.5 and

line averaged density ne,ave = 2.2−2.7 ·1019 m−3, below the threshold for rotation reversal, i.e.

in the counter-current intrinsic rotation regime. The scan consisted in the couplets shot/Ip

[kA]: #40117/-126, #40118/-177, #40119/-228, #40130/-279 and #41385/-301. A discharge with

PEC RH = 450 kW of ECRH power, shot #48884 Ip =−282 kA, B0 =−1.191 T, was also performed

to rule out possible additional effects on averaged profiles introduced by auxiliary heating

(see below). A lower than standard toroidal magnetic field was used to optimise the ECRH

deposition close to the q = 1 surface, resulting in lower ne,ave = 1.1 ·1019 m−3.

Increasing the current results in increased Te and ne , but the transport mechanism appears

unaltered. This is verified by considering the profiles normalised to their value at ρ = 0.8, that

constitute the boundary condition for the core plasma. Figure 5.3 shows the normalised (a)

Te and (b) ne profiles for the discharges of the scan. The position of the q = 1 surface ρq=1

calculated by LIUQE, shown by vertical dashed lines, is displaced outwards for increasing

currents, resulting in an increased ST radius. The electron temperature and density profiles

flattens inside ρq=1, a result expected from the ST crash. The normalised gradients remain

remarkably similar in the region ρq=1 < ρ ≤ 0.8 for all the shots of the scan, supporting

an invariance of the underlying transport mechanism. Adding ECRH power (#48884) does

increase Te , without substantially modifying the normalised, both Te and ne , electron profiles.

This gives us confidence that employing ECRH does not modify the transport phenomena

under study.
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Figure 5.4: LFS CXRS profiles for a scan in plasma current, TCV discharges: #40117, #40118,
#40119, #40130, #41385 and #48884 (ECRH). The position of the q = 1 flux surface is shown by
vertical dashed lines. The (a) toroidal rotation profile for all the discharges is overlapping and
has a linear dependence (magenta line) in ρ from the edge (ρ = 0.85) up to ρq=1. The rotation
profile inside ρq=1 is hollow, bulged in the co-current direction (uφ,C < 0). Adding ECRH
(discharge #48884) does not essentially perturbs core rotation, compared to similar current
discharges #40130-#41385. The Carbon temperature increases with Ip and tends to flatten
inside ρq=1, but to a lower degree than Te . This results in a weak dependence on Ip of the TC

gradient between ρq=1 and ρ = 0.8, that suggests minor changes in the ions heat transport
within the Ip scan. The (b) temperature normalised to TC (ρ = 0.8) is shown to emphasise the
flattening effect. The effect of ECRH (black) is to further flatten the profile. The (c) Carbon
density normalised to nC (ρ = 0.8) shows that the density in ohmic discharges is hollow inside
ρq=1, the ECRH effect is to flatten the density profile.
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Carbon profiles are shown in figure 5.4 for CXRS measurements with standard IT ∆tI T = 20

ms, with ∆tI T À τST ' 2.5 ms, which provides profiles averaged on several ST cycles. The

core toroidal rotation (figure 5.4-a) is in the counter-current direction (Ip < 0), with a linear

dependence on ρ, independent on Ip , in the region ρq=1 ≤ ρ ≤ 0.8, represented by the magenta

line. The current determines the position of ρq=1 (i.e. ST radius) and hence the rotation peak

value, with little influence on the linear fit coefficient, that is set by transport which, as seen

before for the electron profiles, is unaltered by Ip changes. This was concluded as responsible

for the 1/Ip scaling reported in [64], and also implies that the residual stress, essential to

generating toroidal intrinsic rotation, scales with Ip together with the momentum transport,

resulting in constant rotation gradients. A flattening of the rotation profile in the region

ρ < ρq=1, as observed for Te and ne , was expected if the mixing of core with edge plasma at

the ST crash due to magnetic reconnection occurs. Figure 5.4-a show a more complicated

dynamics, with an inversion of the rotation gradient just inside ρq=1 leading to a differential

core rotation from the peak rotation of ∆uφ '−6 km/s, directed in the co-current direction.

Applying ECRH close to the q = 1 flux surface, in discharge #48884, does not essentially

perturb core rotation, compared to similar current discharges #40130-#41385, although it

increases the measurement uncertainties by increasing background fluctuations. In [38]

rotation measurements above the critical density for rotation reversal were reported. The

rotation inside the ST mixing radius resulted bulged in the co-current direction also in that

case, suggesting that the ST net effect is to generate a core torque in the co-current direction.

The aim of ST cycle resolved CXRS measurements is to ascertain whether this torque results

from modifications of the transport characteristics, i.e. a ’continuous’ torque between crashes,

or it is localised at the crash time and, thus, ascribable to magnetic reconnection.

The normalised Carbon temperature, figure 5.4-b, is less sensitive to ST activity than Te .

The profile slope inside ρq=1 changes, with less steep gradients, but profiles do not flatten

completely. The gradient of the normalised temperature also has a weak dependence on

Ip in the region ρq=1 < ρ < ρ = 0.8, that suggests minor changes in the ions heat transport

within the Ip scan. ECRH increases the TC profile flatness inside ρq=1. In contrast, the Carbon

density profile peaks in the proximity of ρq=1 resulting in hollow core density. This implies

a stronger effect of ST on impurity rather than electron transport, for which only a simple

flattening occurs (figure 5.3-b). The effect of ECRH on nC is stronger compared to the other

Carbon kinetic profiles (uφ,C and TC ) resulting in a monotonically decreasing profile that is

close to flat in the ρ < ρq=1 region. It will, however, be shown that Carbon ejection from the

core region at the crash is substantial even with ECRH.

5.3 CXRS profiles evolution across the sawtooth period

To resolve the ST cycle with the CXRS diagnostic, which on TCV has a lower IT ∆tI T = 2 ms

limit determined by both readout speed and photon statistics, (without reducing the spatial

resolution by multiple fibres binning), one option available is to increase the ST period to

τST ≥ 10 ms. Multiple studies, in JET [181], MAST [182], ASDEX [183] and TEXTOR [184],
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demonstrated ST stabilisation from fast ions [185] generated from NBI, with the fast rotation

induced by the NBI torque masking at the same time the effect of ST on rotation, which

excluded this option for our study. A solution for our goal was identified in the stabilising

effect of ECRH and ECCD on ST, which has been extensively studied, mostly to control/reduce

τST (ST destabilisation) [186] in order to avoid NTM triggering [187–191] by power deposition

inside the q = 1 surface. Conversely, by depositing ECRH power just outside the q = 1 surface

a strong stabilisation of the ST is obtained [192]. Removing the ECRH power at a determined

time after the crash, using a real time (RT) controller [38, 39], was used to control single

ST periods [173] (ST pacing) becoming a valuable tool in ST related experiments. The only

drawback of the procedure is that the actual ST crash time is not known, effectively preventing

synchronisation with the CXRS system, that is programmed before the plasma discharge.

Furthermore, with each ST period slightly different, dividing a ST cycle into regular sub-

periods is not possible. A further improvement of the ST control technique termed ST locking

solved this last issue.

5.3.1 Locking technique and target discharge

ST “locking” [175] uses ECRH power modulation with a period τEC RH smaller than the maxi-

mal ST period τST−max reachable with continuous stabilisation (continuous, optimally located,

ECRH power). During the ECRH “on” phase the ST is stabilised and the core pressure builds up.

The crash following the ECRH switch off time often occurs within δto f f −cr = 0.3 ms. With this

method is possible not only to choose τST , as in ST pacing, but to also impose the ST timing,

since the ST locks to the ECRH modulation timing that is selected before the experiment. This

can then be used to synchronise CXRS timing (both the DNBI and camera timing) with benefi-

cial consequences on the coherent averaging based analysis (see section 5.3.1). Determining

τST−max experimentally first requires a discharge where the ECRH deposition location is

scanned across the q = 1 surface, by slowly ramping either Ip or B0 whilst monitoring the soft

X-ray emission. In discharge #54474, a scan in B0 was used to identify the optimal conditions

for the ST stabilisation, with τST−max ' 38 ms, allowing to successfully lock the ST period to

values up to τST = 36 ms in discharge #54487 (see table 5.1).

The target limited L-mode discharge #54477, shown in figure 5.5, was developed following the

scenarios in [38, 39]. The low density ne,ave = 1.1 ·1019 m−3, high current Ip =−288 kA, low

magnetic field B0 =−1.191 T target discharge was developed for long ST periods with a large

ST mixing radius (ρmi x ' 0.9), to maximise the effect of ST on rotation and Carbon density

transport, whilst simultaneously limiting the safety factor to qed g e = 3.2, which is relevant for

ITER. The resulting q = 1 surface is located at ρq=1 = 0.65. Time traces of some important

plasma parameters, together with the LIUQE magnetic reconstruction, are shown in figure

5.5 for shot #54477. The elongation κed g e = 1.5 and triangularity δed g e = 0.37 were chosen for

high plasma vertical stability, long ST periods [172] and to enhance the observation geometry

of the EDGE system.
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Figure 5.5: Time traces of plasma parameters of the target discharge, TCV #54477, used in
the ST locking experiment: (a) plasma current, (b) electron temperature from XTE and TS, (c)
Dα from PM, (d) elongation κed g e , triangularity δed g e and edge safety factor qed g e , (e) line
integrated electron density from FIR. The discharge is composed of four phases: the ramp
up phase (t =0-0.4 s) in pink, constant ECRH (t =0.4-0.5 s) in green, ECRH modulation and
ST locking (t =0.5-1.56 s) in yellow and ramp down in azure. The magnetic reconstruction at
t = 0.984 s is shown on the right.

The ECRH deposition was verified with the ray-tracing TORAY-GA code [193], whose output is

visualised in figure 5.6 for shot #54477. The deposition is in a layer ∆ρ ' 0.1 at ρEC RH = 0.66,

just outside ρq=1 = 0.65 for both gyrotrons 4 and 6. Their maximal power is 480 kW and

560 kW respectively, for a total injected power PEC RH = 1040 kW. The ECRH total power

was lowered for some discharges (see table 5.1) to ascertain the ECRH influence on the

measured plasma quantities. Both gyrotrons have a 12° toroidal launching angle, which

produces a non-inductive total current IC D =−16.2 kA, directed with the ohmic current. This

ECCD, although small compared to the Ohmic current Ip =−288 kA, is highly localised and

contributes significantly on the ST stabilisation, by replacing the missing bootstrap current

in the ST island, improving the local q profile shear [186]. The ECRH deposition and ECCD

profile proved to be stable and reliable over many discharges, allowing multiple parameter

scans.

Table 5.1 shows the relevant parameters of some successful discharges of the mission. A scan

in the ST period τST from 20 ms to 36 ms was achieved at constant ECRH power, while for

shorter periods (12 and 8 ms) lower power was required for ST locking. Shots #54480, #54481

and #54482 feature a scan in ECRH power, while #54478 and #54479 ascertain that there is

no influence of the CXRS setting on the results (smearing effects, readout noise, etc.). The

camera fastest configuration, 17 MHz (10 MHz for SYS1 and SYS2) HSS readout, EM register,
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Figure 5.6: ECRH power deposition profile for TCV discharge #54477. The deposition is in a
layer ∆ρ ' 0.1 at ρEC RH = 0.66, just outside ρq=1. The 12°toroidal launching angle produces a
non-inductive current IC D =−16.2 kA, directed as the ohmic current, Ip =−288 kA.

was employed, with relatively high EM gain Gem = 70 to compensate for the readout noise of

the EM register. Table 5.1 lists the applied ECRH on-off modulation times, which for technical

reasons are different from the programmed times, with an extension of the off phase of 2

ms, corresponding to a minimum applied off phase of 3 ms. The experimentally determined

τST demonstrates the success of ST locking, that can be deduced also from the time traces

of figure 5.7. The time delay δtcr of the first CXRS frame after the crash is also shown. The

CXRS frame time is defined by the centroid of the camera IT, so that the beginning of the

frame acquisition is δtcr −∆tI T /2. For the low power discharges #54484 and #54486, this

delay is reduced to ' 1 ms, meaning that the post-shot frame represent exactly the post-crash

conditions, while for high power discharges there is a 1 ms additional delay. The exact CXRS

frame phase in the ST cycle is paramount for data processing, as explained in the next section.

Coherent averaging

The reduction of the CXRS IT from the standard 12-20 ms to 2 ms implies a reduction of the

active CXRS signal to an unacceptable level, excluding an application of the standard CXRS

analysis to these experiments. An additional problem is that the computation of the active

signal from the total signal requires an evaluation of the passive signal, which is expected to
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shot τST ECRH on-off ECRH power CXRS ∆tI T CXRS δtcr

[ms] [ms] [kW] [ms] [ms]
54477 28 24-4 1040 2 2.26
54478 28 24-4 1040 4 3.24
54479 20 16-4 1040 4 2.98
54480 20 16-4 1040 2 1.96
54481 20 16-4 936 (90%) 2 2.01
54482 20 16-4 832 (80%) 2 2.13
54483 32 28-4 1040 2 1.99
54484 12 9-3 728 (70%) 2 1.06
54486 8 5-3 728 (70%) 2 1.04
54487 36 32-4 1040 2 1.94

Table 5.1: Parameters of the ST experiment discharges: ST period obtained with the locking
technique τST , applied ECRH ON-OFF time modulation and power, CXRS diagnostic integra-
tion time and time delay δtcr of the centroid of the first CXRS camera frame time from the ST
crash, averaged across all the ST of the discharge.

vary on smaller timescales than the DNBI minimum modulation, invalidating the assumption

adopted by the standard CXRS analysis (section 2.2.4). To overcome these limitations the

analysis procedure exploited the periodicity of the ST instability, by using a coherent averaging

(CA) approach.

CXRS frames are grouped in sets depending on their phase within the ST cycle, i.e. on the time

since the preceding ST crash. Frames in the DNBI ON and OFF phases are sorted into sets,

which are used to compute an averaged total and passive signal for each ST phase. The aver-

aged active signal is then computed, on which the standard CXRS analysis can be applied. It is

paramount to sample each ST at exactly the same phase, i.e. CXRS frames within each ST cycle

with always the same delay from the previous crash, for an optimal CA implementation and to

obtain as many comparable observation cycles as possible. This was achieved by exploiting the

ST locking technique, that allowed for a programmed synchronisation of the ST cycle (ECRH

modulation) with the CXRS acquisition time. In previous approaches [38, 39], synchronisation

was achieved by RT triggering the CXRS cameras using a ST crash detection observer, but this

procedure restricted measurements to only the early ST phases and generated irregular ST

periods that were not optimal for CA. The new procedure achieved impressive improvements

in synchronisation and ST cycle coverage. The ST resolved measurements in those attempts

were also restricted to the LFS system, giving an incomplete picture of the dynamics. To

overcome the low photon statistics multiple LOS binning was performed, resulting in a spatial

resolution unable to resolve the features reported here.

Figure 5.7-a shows the (normalised) time traces of two plasma diagnostics used in the ST

phase recognition (Dα and DMPX), together with the pre-programmed ECRH modulation,

the DNBI modulation and the CXRS signal level. The identified ST crash times, highlighted by
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Figure 5.7: Time traces showing locked ST in shot #54477. (a) normalised time traces of the
programmed ECRH and plasma diagnostics, showing the regularity of ST events obtained with
the locking technique, the green vertical lines represent the crash times. The CXRS counts
increase in the DNBI ON phase constitutes the active CXRS signal. (b) DMPX time trace
rescaled on the CXRS triggering times, represented by the vertical green lines. The DMPX
signal during the DNBI ON (OFF) phase is in blue (red), showing the similarity of ST cycles
used in the active and passive CXRS frames for the coherent averaging.

vertical green lines, are locked to the ECRH modulation, with the condition

τEC RH = ns∆tI T (5.5)

ensuring synchronisation of the ST cycle with the CXRS acquisition. Here ns is the (integer)

number of CXRS frames (samples) per ST period. The synchronisation is verified in figure 5.7-b

by plotting the DMPX signal as function of the ST cycle time together with the CXRS triggering

times (vertical green lines). An entire ST cycle is sampled with ns = 14 CXRS frames, and the

time delay of each of the ns frames from the ST crash (t = 0) is invariant for all the ST crashes.

As an additional check, DMPX signals during different DNBI phases are plotted with different

colours (ON-blue, OFF-red), to highlight possible biases. From figure 5.7-b we deduce that

the ST used in the CA are indeed similar and that the deviations of each ST cycle from the

averaged ST are expected to be negligible (which for these experiments means ≤ 20%).

The analysis therefore focussed on the properties of an averaged, or canonical, ST rather than

each individual event. An example of the total (DNBI ON) and passive (DNBI OFF) canonical

CXRS spectra, resulting from the coherent averaging applied to discharge #54477, is shown in

figure 5.8-a for a core ROI (track #1) of SYS1 in the post-crash phase, together with the active

signal computed by their difference. The near perfect subtraction of the background and

nearby passive lines gives high confidence on the adequacy of the CA method. A comparison

between the active CXRS spectra in the pre and post ST crash phases is shown in figure 5.8,

again for track #1 of SYS1 in shot #54477. A wavelength shift of few pixels is noticeable,

indicating, just by eye, clear changes in toroidal rotation velocity across the crash. In the next

116



5.3. CXRS profiles evolution across the sawtooth period

0 100 200 300 400 500
0

5000

10000

15000

pixel

c
o
u
n
ts

Post crash spectra ROI 1 #54477

 

 

total

passive

active

a)

150 200 250 300 350 400

0

500

1000

1500

2000

2500

3000

3500

pixel

c
o

u
n

ts

Pre and Post crash spectra ROI 1 #54477

 

 

Post−crahs

Pre−crash

b)

Figure 5.8: CXRS spectra resulting from the coherent averaging in discharge #54477 for a core
ROI of SYS1. (a) total, passive and active spectra of the post-crash frame, (b) comparison of
the active spectra of the pre and post crash CXRS frames. The effective integration time is
∆tI T = 36 ms, considering the sum of the 2 ms integration time for all the 18 coherent active
measurements.

sections the outcome of the CXRS analysis will be described.

5.3.2 EDGE profiles: stable boundary conditions

This section treats the evolution of the Carbon impurity profiles (uθ,C , TC and nC ) across a

canonical ST, which resulted from the CA analysis of CXRS data of the EDGE system, and

constitutes the EDGE-SOL boundary conditions for Carbon in the considered discharges.

From our understanding of the ST dynamics, no relevant perturbations are expected in the

EDGE profiles across the ST cycle, since the plasma portion observed by the EDGE system is

well outside the mixing radius, that from TS ne profiles is estimated as ρmi x ' 0.9.
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Figure 5.9: Raw profiles of EDGE systems: (a) uθ,C , (b) TC and (c) nC for shot #54477. Colours
are used to distinguish the phase of the profile from the ST crash. Selected errorbars for few
radial points and phases are shown for clarity. The poloidal rotation is almost insensitive to
the crash, while the temperature and density in the post-crash phase are noticeably lower
than in the pre-crash phase.
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Figure 5.9 shows the raw profiles for shot #54477. The poloidal velocity profile features a ’well’

(i.e. differential velocity ∆uθ) in the electron diamagnetic direction just inside the LCFS of

amplitude∆uθ ≤−12 km/s, well resolved with the experimental uncertainty (' 1 km/s), which

is represented by errorbars, plotted only for the pre (red) and post (blue) crash profiles for

clarity. Colours are used to distinguish the time delay (phase) of the profile from the ST crash.

In shot #54477 there are ns = 14 CXRS frames per ST cycle, but only 13 phases are shown in

figure 5.9 since the frame containing the crash is excluded, being a mixed condition between

the pre and post crash phases. In the discharges of this mission the maximum radial position

for reliable EDGE measurements is identified as ρmax−EDGE = 1.025, deduced by the increase

in uncertainties for ρ > ρmax−EDGE , the rise in TC and flattening of the nC profiles in the SOL

(see appendix E).

There is a clear change in the Carbon temperature and density profile following the crash,

shown in figure 5.10 for shot #54487, where a spline fit of the raw profiles is plotted. The
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Figure 5.10: Profiles of EDGE systems: (a) uθ,C , (b) TC and (c) nC for shot #54487. The post-
crash poloidal rotation is damped, but retains the same shape than the pre-crash profile. The
temperature and density behaves as in #54477 (figure 5.9).

decrease in both the Carbon temperature and density profiles after the crash cannot be

explained by inaccuracies in the magnetic reconstruction, since a translation of the ρ variable

of δρ ' [0,0.04,0.02] for uθ,C , TC and nC profiles respectively are required to match the pre-

crash conditions.

The decrease in the TC and nC profiles is common for all the discharges featuring an ECRH

off time of 4 ms (see table 5.1). Discharges #54484 and #54486, featuring an ECRH off time

of 3 ms and lower ECRH power (70% of the full power), are barely perturbed by the crash.

This is in agreement with the energy confinement time computed from the diamagnetic loop,

which is τE− f ul l ≤ 3.2 ms for the full ECRH power and τE−70 ' 3.8 at 70% of the power. In

shots #54484 and #54486 the ECRH off time is shorter than the energy confinement time,

reducing considerably changes to these near edge plasma parameters. Figure 5.11 shows the

profiles for shot #54484, the lower ECRH power resulting in lower relaxed temperatures and

densities, although the profile shapes are nearly invariant that can be seen by comparing with

figure 5.10.

A more complete understanding of the dynamics is possible comparing the time evolutions
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5.3. CXRS profiles evolution across the sawtooth period
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Figure 5.11: Profiles of EDGE systems: (a) uθ,C , (b) TC and (c) nC for shot #54484. The profiles
perturbation due to the crash is within the experimental uncertainty. The reduced profiles
perturbation is ascribed to the reduced ∆TEC RH−o f f .

of the measured quantities as function of the ST cycle phase for all the shots in the τST scan.

Figure 5.12-a shows the evolution of the differential velocity ∆uθ: the difference between the

minimum rotation in the well and the maximum rotation in the region 0.95 ≤ ρ ≤ 0.99. The
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Figure 5.12: Time evolution of (a) differential poloidal velocity ∆uθ, (b) TC and (c) normalised
nC for selected positions. The differential poloidal velocity evolution is consistent in all the
shots, with a relaxation time τr el−∆uθ

< 8 ms. The temperature and density perturbations in
the post-crash frame are considerably smaller in shots #54484 and #54486, due to the reduced
∆TEC RH−o f f . The relaxation times are τr el−T < 4 ms and τr el−n < 8 ms respectively.

evolution is remarkably similar for all the discharges, that encompasses shots with different

ECRH parameters #54484 and #54486. The differential velocity relaxes to a saturated value

∆uθ '−12 km/s within τr el−∆uθ
≤ 8 ms, following the post-crash condition ∆uθ ≤−5 km/s.

The trend is followed even for shot #54486 that does not reach the relaxed rotation state in its

shorter ST period τST ≤ τr el−∆uθ
. This suggests a common mechanism for poloidal rotation

evolution independent of the ECRH power level and τST .

The perturbations on the temperature, figure 5.12-b, are relevant for the 4 ms ECRH off shots,

where drops of 20−50% are observed at positions ρ = 0.927 and ρ = 1 respectively. The tem-

perature relaxation time is faster than for the velocity, and is estimated to be τr el−T−ed g e < 4

ms. This allows us to decouple the poloidal rotation dynamics from the temperature evolution,

that is more strongly influenced by the ECRH modulation and power.
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Chapter 5. Effects of sawteeth on rotation

The density perturbation, figure 5.12-c, resembles the temperature, with decreases of 20−50%

at the same positions as TC . The time evolution resembles the velocity evolution, with a

relaxation time τr el−n−ed g e < 8 ms. This is expected as the rotation dynamics at the edge is

coupled with the density gradient (see section 4.4).

We can conclude that the EDGE boundary conditions for Carbon are remarkably resilient,

with saturated values and relaxation times independent of τST . Perturbations of the profiles

following the crash are observed, with drops in ∆uθ, TC and nC , but the profiles shapes are

preserved and all relax within 8 ms. Relaxed profiles from different shots are similar, and only

the low power shots are distinguishable by their lower relaxed temperature and density.

5.3.3 Toroidal profiles

This section focusses on the ST resolved profiles obtained from the toroidal CXRS systems, HFS

and LFS. The two systems cover the complete cross section of TCV, allowing for an accurate

measurement of the entire profile and to investigate possible asymmetries, particularly for the

lower plasma densities where the beam attenuation is smaller.
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Figure 5.13: Raw profiles of toroidal systems: (a) uφ,C , (b) TC and (c) nC for shot #54477.
Selected errorbars at few radial points and phases are shown for clarity. uφ,C > 0 is counter-
current.

The raw profiles are shown in figure 5.13 for shot #54477, with errorbars representing the

evaluated standard deviations. The perturbation in the profiles due to the crash is clearly

resolved by the diagnostic, with an evident redistribution, particularly in the toroidal rotation

and density channels.

Perhaps the easiest way of understanding the effect of ST on toroidal rotation is to consider the

pre and post crash profiles as function of τST , as shown in figure 5.14. The pre-crash rotation

strongly depends on τST . For τST < 20 ms, hollow profiles are observed, with an asymmetric

counter-current velocity peak, ' 6 km/s higher at the LFS. The pre-crash profile evolves with

τST towards an asymmetric counter-current peaked profile, steeper on the LFS (also in the

radial variable ρ). The peak is located on the LFS and migrates towards the magnetic axis as

function of τST ; its value increases linearly with τST , reaching a maximum value of uφ,C ' 30

km/s at τST = 36 ms. This is not believed to be a limiting value, as relaxed core rotation ' 50
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5.3. CXRS profiles evolution across the sawtooth period

km/s are expected for a ST-free scenario (see figure 5.4-a), but further extending the ST period

at the time of the experiment was technically not possible, due to the τST−max limit, and was

not attempted.

In contrast, the post-crash profiles (figure 5.14-b) are remarkably similar for all the shots

in the τST scan. They are strongly hollow, with the core plasma rotating in the co-current

direction and the edge rotation peaking in the counter-current direction, resulting in a rotation

difference ∆uφ '−20 km/s. The only relationship between these profiles and τST seems to

be a ’rigid’ translation of the profile towards more counter-current velocities with longer τST .

The co-current core acceleration occurring at the crash, assuming the main ions rotate at the

same velocity as Carbon, cannot be explained by plasma mixing with an associated enhanced

transport, as can be deduced from the pre-crash rotation in the case τST = 36 ms, which is

positive (counter-current) across the entire TCV section. The negative (co-current) velocity

in the post-crash frame requires some co-current torque applied to the core plasma across

the crash. In contrast, the velocity peaking at the q = 1 surface appears strongly related to

momentum conservation (see below). Following Kadomtsev’s model, momentum is expelled

outside ρi nv , where a sudden change in the velocity gradient is indeed observed.

A comparison of the rotation evolution in the canonical ST cycle, for five selected positions,

is shown in figure 5.15-b for all the τST in the scan. Figure 5.15-a shows the evolution of the

complete profile for shot #54477, for reference. The rotation evolves alike at each position

for all the shots, depending only on the time elapsed since the crash, up to the rotation

value change that is reset by the ST crash and thus determined by the ST period. This is also

inferable comparing, for the same elapsed time, a profile of figure 5.15-a with a pre-crash

profile (figure 5.14-a). The shape for profiles at the same elapsed time are identical, supporting

the conclusion that the transport mechanism remains unchanged.
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Figure 5.14: Pre and post crash toroidal rotation velocity profiles for multiple shots, colours
distinguish the ST period τST imposed with ECRH locking for each shot, displayed in the
legend. uφ,C > 0 is counter-current.
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Figure 5.15: Toroidal rotation evolution across the ST cycle: (a) radial profiles for all the ST
phases of shot 54477, (b) time traces at selected positions for multiple shots. The profile
evolution of shot 54477 is remarkably similar to the pre-crash rotation for the scan in τST of
figure 5.14-a. uφ,C > 0 is counter-current.

The relaxation time for toroidal velocity is constrained to τr el−uφ
> 36 ms, as core rotation is

still evolving for the maximum ST period of the scan (figure 5.15-b), although the edge rotation

relaxes within 20 ms, e.g. to 5 km/s at R = 0.99 m.
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Figure 5.16: Pre and post crash Carbon temperature profiles. The temperature profiles are
independent of the ST period. The pre-crash profiles are peaked at the axis. The post-crash
profiles are flat in the core region up to the q = 1 flux surface.

The temperature profile agrees reasonably well with the model from Porcelli with wcr i t ' 0.25

m. The peaked pre-crash profile (figure 5.16-a) is completely flattened by the crash up to ρq=1

(see figure 5.16-b). Kadomtsev’s model predicts flattening in the region enclosed by ρmi x ' 0.9,

which is more extended than ρq=1 = 0.65. This suggests a possible partial reconnection is

occurring at the crash, reducing the extent of the flattening at the q = 1 surface. The collapse

in the core ion temperature is only ∆TC ' 50 eV and it is rapidly recovered: τr el−T−cor e < 10

122



5.3. CXRS profiles evolution across the sawtooth period

ms, as shown in figure 5.18-a. The post-crash TC profiles inside the q = 1 surface behave

similarly to the electron temperature profiles, as shown in figure 5.19-a by the flatness of the

post-crash profile of the ratio TC /Te .
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Figure 5.17: Pre and post crash Carbon density profiles. The pre-crash density profiles get
more peaked on axis with the ST period, reaching a stationary profile within 25 ms. The
post-crash profiles are flat in the core region up to the inversion radius ri nv , between ri nv and
the q = 1 flux surface there is a bump in the density profile.

The effect of the crash on Carbon density is important for impurity exhaust applications. The

pre-crash profiles, shown in figure 5.17-a, are strongly peaked on axis, for τST > 10 ms. The

density attains a stationary profile within τr el−n−cor e < 25 ms in the ST cycle, as shown by the

time traces of figure 5.18-b and confirmed by the pre-crash profiles of ST longer than τST > 25

ms. The effect of the crash is stronger than on electron density, as shown in figure 5.19-b by

the post-crash profile of the ratio nC /ne . The post-crash nC profiles (figure 5.17-b) are hollow

in the core region enclosed by ρi nv . In the layer ρi nv < ρ < ρq=1 a bump is observed, with
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Figure 5.18: Time traces at selected positions of (a) TC and (b) nC across the ST cycle for all the
discharges of the τST scan.
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Figure 5.19: Post-crash profiles of the ratios (a) TC /Te and (b) nC /ne for all the discharges of
the τST scan.

densities 20% higher than in the core region. This high density ring feature rapidly dissipates

by particle transport within < 5 ms, and it is consistent with prediction in [60], where the two

fluid XTOR-2F code simulated the transport of an impurity ion species, modelled as a passive

scalar. The overall post-crash profile is observed to be asymmetric, featuring higher density

on the HFS. These observations suggest that ST with short τST < 10 ms and large ρi nv are

beneficial in reducing impurity core accumulation, again confirmed by comparison to the

pre-crash profile of shot #54486, which presents the highest density profile for the canonical

τST = 8 ms ST. This profile maximum reaches less than 60% of the relaxed peak density profile

observed in longer ST shots.

5.3.4 Toroidal angular momentum and radial electric field

In absence of torques, the total toroidal angular momentum is conserved. This can be ex-

ploited to probe the presence of momentum sink or sources, particularly across the ST crash.

The total plasma angular momentum Ltot [Js] is computed from the Carbon density and

rotation through:

Ltot =
∫

V ol
(mC nC +mD nD )uφ,C R dV ol (5.6)

where dV ol is an element of the plasma volume V ol , routinely calculated by LIUQE. It is

assumed here that rotation for main ions (Deuterium, of mass mD and density nD ) and

Carbon is the same across the ST period, although it is known that toroidal acceleration due

to induced electric fields, as it is the case in reconnection events, is stronger for main ions

than impurities [194]. The momentum carried by the electron is here neglected. The main ion

density is estimated from the electron and Carbon density:

nD = ne −6nC (5.7)
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5.3. CXRS profiles evolution across the sawtooth period

The flux surface averaged angular momentum density, i.e. the integrand of 5.6, is also a

noteworthy quantity, that highlights the transport and redistribution of momentum in the

radial direction. It is drawn in figure 5.20 for shots: #54484-short τST = 12 ms, #54480-medium

τST = 20 ms and #54487-long τST = 36 ms. The hollow profile of the angular momentum
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Figure 5.20: Flux surface averaged toroidal angular momentum density profiles as function of
ST phase for discharges: (a) 54484, (b) 54480 and (c) 54487.

density in the post-crash phase (t = 0) is similar in shape for all the shots (the magnitude is

however influenced by τST ), with a negative momentum change in the core and a positive

change that peaks at ρq=1. The angular momentum density subsequent evolution clearly

involves an inward pinch of the positive momentum peak, estimated at Vp = 7 [m/s]. Simulta-

neously, the core negative momentum is convected/diffused outwards, and with the positive

momentum influx a completely positive (counter-current) momentum profile is obtained

in < 8 ms. A bulged profile structure persists until the relaxation time τmono ≥ 14 ms, where

a monotonic profile is reached. In shot 54484 τST is shorter than τmono and the angular

momentum profile can not attain a monotonic shape. At later times, the momentum peaking

in the core follows the density build up, that saturates at τr el−n−cor e ≤ 25 ms, and the change

in the velocity, that does not saturate within the τT S range of the scan.

Now that we have a clear picture of the radial evolution of the angular momentum, we can

focus on the total angular momentum evolution. Figure 5.21 shows the evolution of Ltot

across the ST cycle for a scan in (a) τST and (b) PEC RH . A trend in the total angular momentum

is deduced from figure 5.21-a: both the pre and post-crash momentum increase with τST . This

is a consequence of the observed increase in the toroidal rotation with τST both in the pre and

post crash phases (figure 5.14).

The momentum evolution after the crash is complicated, but a general trend can be identified.

An initial phase where the total momentum is further reduced is followed by a phase where

Ltot increases, eventually surpassing the post-crash value. The duration of the two phases

changes on a shot-to-shot basis and for short τST is hard to distinguish. A possible explanation

of the initial decrease in the angular momentum is ascribable to diffusion of the positive

momentum bump located near ρq=1 following the crash. The outward diffusing momentum

may then reach the plasma edge, where contact with the wall (limited configuration) and

friction with neutrals act as a source/sink term, i.e. as a boundary condition uφ,C ' 0 [195].

Another explanation is provided by a differential acceleration of impurities and main ions
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Figure 5.21: Total toroidal angular momentum as function of the ST phase in discharges where
(a) the ST period and (b) the ECRH power is scanned.

at the crash. If acceleration at the crash, due to transient Eφ generated during reconnection

is stronger for the main ions, as suggested in [194], the inter-species friction would tend to

accelerate impurities in the co-current direction after the crash.

The total angular momentum just after the crash appears reduced, the braking effect being

stronger for longer τST , suggesting a co-current torque at the crash that scales with τST . The

estimated torque acting on the plasma (assuming τcr ash = 1.5 ·10−4 s, as inferred from DMPX

measurements) ranges from 0.24 Nm for #54486 to 0.75 Nm for #54487. For short τST (shots

#54486 and #54484), the momentum change at the crash is within uncertainties and hence

compatible with total momentum conservation, which is not the case for longer τST .

The influence of the ECRH power, shown in figure 5.21-b for #54480-100%, #54481-90% and

#54482-80%, does not show a clear trend, although the pre-crash (and post-crash) Ltot appear

consistent. This again suggests that the Carbon evolution has a weak dependence on ECRH

power and is essentially set by intrinsic transport across the whole ST period.

The radial electric field was computed from the Carbon profiles, in the core (figure 5.22-a)

by exploiting the combination SYS1-SYS2 and equation 4.23 and at the edge (figure 5.22-b)

using SYS1-SYS4 and equation 4.22. The core Er is negative, with peak values '−6 kV/m. In

the post-crash phase Er is hollow, close to zero inside ρi nv and peaking close to ρq=1. The

evolutions resemble the rotation evolution, with the peak region moving towards the magnetic

axis with an amplitude that decreases with time. The Er profile outside ρi nv tends to relax to a

value close to zero during the ST cycle.

At the very edge, the boundary condition are best evaluated from SYS4. Er profiles of fig-

ure 5.22-b sets the condition |Er | < 2 kV/m at ρ = 0.95. A strong shear inside the LCFS is

observed, with an Er negative peak of '−10 kV/m and a positive Er in the SOL. The dominat-

ing component of Er in the EDGE is due to the uθ,C term of equation 4.22.
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Figure 5.22: Radial electric field profile for each ST phase of TCV shot #54477 calculated from
(a) SYS1-SYS2 and (b) SYS4-SYS1.

5.4 Synthetic averaged profiles

Carbon profiles averaged over the ST period are obtained from the τST scan discharges per-

forming the standard CXRS analysis on the sum of the active spectra. These profiles are

compared in figure 5.23 with ST-unresolved measurements performed on discharge #41385,

which has a plasma current Ip = −301 kA comparable with the current of the ST-resolved

discharges. This reference discharge features natural ST of period τST ' 3 ms, as ECRH was

not applied. The Carbon temperature and density shown for shot #41385 in figure 5.23-b and
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Figure 5.23: Profiles resulting from the CXRS analysis of the sum of the ST resolved spectra,
corresponding to a ST averaged profile (∆tC X = τST ), for (a) uφ,C , (b) TC and (c) nC .

5.23-c are divided by a factor of 1.5 and 11 respectively, to facilitate the comparison.

The profiles shape for the reference discharge strengthen the deductions of the previous

sections: the core rotation (0.9 < R < 1) has an average value which is lower (more co-current)

than what observed in the discharges of the τST scan, as expected due to the higher crash

frequency, resulting in a higher average core co-current torque. This results also in an averaged

rotation profile similar to the post-crash profile for short τST , as shown in figure 5.24-a. The

more the ST period is extended, figures 5.24-b and 5.24-c, the larger is the difference of the

averaged profile from the post-crash profile. At the same time, the temperature profile is flatter
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Figure 5.24: Comparison of pre-crash, post-crash and ST averaged profiles for shots: (a) 54486-
τST = 8 ms, (b) 54480-τST = 20 ms and (c) 54487-τST = 36 ms. For short τST the averaged
profile i

and the flattening region is larger, a behaviour that is again in agreement with the finding of

the scan and the increase in inversion radius due to the slightly higher current. The density

also follows the τST scan trend, with a hollow core profile that is deeper than the profiles of

the scan, due to the higher frequency of the core Carbon ejection occurring at the crash.

The striking similarity of the short τST uφ,C profiles with the profile of discharge #41385, where

no ECRH power is used, is additional evidence that employing ECRH power to stabilise the

ST for these experiments does not directly influence Carbon momentum transport, which is

dominated by the dynamics at the crash.

5.5 Conclusions

The effect of ST activity on rotation and Carbon transport was experimentally addressed from

a scenario developed in early works that allowed multiple measurements of Carbon profiles

time resolved across the ST cycle. The scenario employed a locking technique to obtain

regular and long ST synchronised with the CXRS acquisition, acquiring at the fastest readout

∆tI T = 2 ms. The plasma parameters were chosen to increase the impact of ST, by positioning

the q = 1 surface far from the machine centre at ρq=1 ' 0.65. Profiles with unprecedented,

at least for TCV and probably worldwide, spatial and time resolution were obtained from

coherent averaging of the raw data, describing the evolution of a “canonical” ST. This so

termed “canonical” ST is expected to be highly similar to each individual ST and therefore can

be used to describe the parameters evolutions within the ST cycle.

The main features observed in the profiles evolution are here resumed. The toroidal rotation

shows a discontinuity across the crash. The pre crash profile is peaked in the counter-current

direction, with a magnitude that increases with τST . After the crash, the core rotation is

in the co-current direction, even for fully counter-current pre-crash profiles, revealing the

presence of a co-current torque acting at the crash. The positive (counter-current) momentum

expelled from the plasma core at the crash is redistributed on a ring of plasma centered at

the q = 1 surface, rotating in the counter-current direction. The decrease of the total angular
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momentum after the crash suggests an unidentified active torque acting in the co-current

direction. The toroidal rotation after the crash evolves continuously towards a peaked counter-

current profile, without reaching a saturation level for the τST available in the experiments.

This phenomena explains the 1/Ip scaling presented in [64] as a crash-fast transport & co-

current torque effect, contradicting what assumed in theoretical models, e.g. in [196], where

MHD phenomena are neglected. Furthermore this can be exploited to actively set the intrinsic

rotation level, a feature extremely convenient and yet currently neglected, in a reactor relevant

scenario, by using the ST period and inversion radius as actuators.

By using CXRS, time resolved information on the ion temperature and Carbon profiles are

also available. The Carbon temperature is flattened by the crash up to the q = 1 surface and

recovers an on axis peaked profile within τr el−T−cor e < 10 ms.

Impurities are effectively expelled from the core by the ST crash. A high Carbon impurity

density ring, 120% of the pre-crash core density, is formed at the crash between ρmi x and

ρq=1. The ring dissipates within 5 ms probably by the prevalent transport processes of particle

transport and diffusion, but the core recovery time is significantly longer, with a peaked

saturated profile attained in τr el−n−cor e < 25 ms. This supports the possibility of impurity

control through ST, with fast ST τST < 10 ms and large ρi nv being beneficial in preventing

impurity core accumulation.

The boundary conditions (EDGE profiles) were shown to be fairly stable, as expected from the

magnetic recombination models. With short ST periods, where the ECRH power was lower,

although the profiles could not completely recover, no effects on the ST dynamics was noticed.

This permits to concentrate more on the core behaviour, as it has been shown on TCV that the

edge boundary can strongly influence the core rotation.

The technique developed in this work is relevant for a substantial number of future studies on

ST dynamics. Those studies should encompass the development of a scenario with smaller

ρq=1 to ascertain the influence on momentum conservation of the boundary conditions. With

a ρmi x ≤ 0.7 (actual value ρmi x ' 0.9) the core dynamic would be decoupled from the edge,

ensuring a better understanding of momentum conservation/transport following the crash.

A scenario in diverted configuration should also be developed, where the influence of the

boundary conditions on profiles evolution could be tested in a different magnetic topology.

The commissioning of higher power gyrotrons, planned in TCV for the near future, can be

exploited to access longer τST , extending the ST period scan and possibly determine the

ST-free velocity saturation level and relaxation time.

This represents, to this author’s knowledge, the best rotation, ion temperature and impurity

profile ST resolved measurements ever achieved. It provides the basis for a new analysis of

the ST phenomena where the ion transport behaviour is available. Although ECRH was used

in these measurements, it was concluded to not have had a direct effect on the reconnection

ST-crash physics. With the new NBI heating beam, these measurements can be extended to

the dynamics of fast ion ST stabilisation processes.
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6 Rotation changes at the L-H transi-
tion

6.1 introduction

Plasmas confined in toroidal devices (tokamaks and stellarators) in diverted configuration

exhibit a sudden improvement in confinement when an input power threshold, dependent

on plasma parameters and geometry, is reached [197]. This enhanced confinement regime,

discovered at ASDEX in the early 1980’s [6], is termed high confinement mode, or H-mode, in

contrast to the low confinement mode, or L-mode, below the transition threshold. The energy

confinement time τE increases by about a factor of two: τE−H ' 2 τE−L . After including other

empirical and theoretical consideration, this is better quantified in the ITER confinement

time scaling [198]. The improvement results from the development of a transport barrier at

the plasma edge (ETB), where turbulence and fluctuations are suppressed (see figure 6.2),

leading to the development of steep gradients in electron (and ions) density and temperature.

In this region, termed pedestal, both ne and Te are well described by hyperbolic tangent

functions [199]. The improvement in the edge boundary conditions directly increases plasma

core performances due to stiffness of the core profiles [200] on top of this pedestal.

The physics of the ETB formation is not yet understood, but observations of strong perpendic-

ular flows at the onset of the H-mode suggests that rotation is involved in the transition [201],

as it is analytically proven that a sheared poloidal rotation quenches turbulence [50]. A self-

consistent evolution of the poloidal flow, the kinetic profiles and the radial electric field inside

the LCFS has not yet been satisfactorily explained. Toroidal rotation is also reported to increase

at the transition, propagating inward from the plasma edge [147, 202] on timescales of the

order of the observed energy confinement time, in a manner connected with a modification

in the SOL flow [203]. A relatively narrow negative radial electric field well is seen to develop

just inside the LCFS at the onset of H-mode, causing the sheared E×B flow that suppress

the turbulence [204], while L-mode is characterised by a small, in both magnitude and shear,

radial electric field. Although the Er well is observed in every device reaching H-mode, its

characteristics vary, with a well depth of -35-50 kV/m and ' 1 cm wide in AUG [68], a deep (up

to -300 kV/m) and narrow 4-6 mm well in C-Mod [127], a shallow (-15-25 kV/m) and wide ' 1
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cm well in DIII-D [205], a depth of -15-60 kV/m and very wide ' 2 cm well in JET [129, 206] and

a shallow -15 kV/m and wide 1−2 cm well in MAST [131, 207]. The newly developed EDGE

CXRS system allowed the first observation and characterisation of the Er well developing in

TCV H-mode discharges, that will be detailed below. A phenomenological description of the

rotation and Er changes at the transition can shed light on the physics involved and help

develop an adequate explanation of the transition and of the sustaining of H-mode. It should

be stressed that TCV has been able to achieve H-mode without auxiliary heating so the TCV

observation can be contrasted with that observed on other machines where, particularly for

NBI heating, the parallel plasma flow can be strongly perturbed by the heating scheme itself

possibly changing the physics of the transition itself.

The power threshold for the L-H transition depends on plasma parameters and geometry [208].

It is lower for a diverted configuration rather than limited, particularly when the ion grad-B

drift v∇B ,i is directed towards the X point, which is termed a “favourable” configuration (see

section 1.1.2). Wall conditioning (He glow discharges and boronisation) can also engender a

lower power threshold, while decreasing the gap between the confined plasma and the wall

increases the threshold power, which also depends close to linearly on Bφ and on ne , where the

latter dependence is only valid for a plasma above a minimum density ne,mi n . Experimental

evidence suggests that the threshold is closely related to the edge ion heat flux [209], which

influences the radial electric field well induced by the main ions. In general, although there

are many experimental observations and empirical scaling for the H-mode transition, its

base cause remains unclear although it has been seen on many devices. The ITER standard

configuration will depend on H-mode like confinement so any improvement in our empirical

or theoretical understanding remains of strong interest.

The steep gradients in the plasma parameters of the pedestal region often reach an MHD

instability threshold, particularly for Peeling-Ballooning modes [210], resulting in bursts of fast

duration, τELM ≤ 1 ms, of particles and energy from the edge into the SOL, commonly termed

edge localised modes (ELMs) [211, 212]. ELMs have a filamentary structure with elevated

toroidal number (n = 5−22) [213, 214] and can have a significant influence on the plasma

energy balance; the decrease in plasma stored energy and density due to a single ELM event

can be 5−20% [213], constituting an escape channel for particles that can be used to enable a

quasi stationary operation when periodic ELMs occur. The energy release however can pose

a severe threat to the divertor exhaust region, where, for example, heat fluxes exceeding 20

MJ/m2 are predicted in ITER [215], clearly exceeding the acceptable material thermal load

limit of 0.5 MJ/m2 [216]. ELMs are easily detected, in most machines, as spikes in the Dα

signal in the plasma edge and divertor regions (see figure 6.1 and 6.2), corresponding to the

increase in the ionisation rate in the plasma edge following the momentarily breach of the

ETB. The Dα line is not the only emission line perturbed by ELMs, the passive emission from

plasma impurities are also affected by the sudden release of energy and particles, that perturbs

and thus limits an accurate CXRS measurement on TCV (see section 2.2.4), where the passive

emission often dominates the spectrum. For this reason, discharges featuring H-modes

without ELMs, the so called ELM-free H-mode, are particularly attractive for impurity studies
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in TCV. ELM-free H-modes exhibit higher confinement than ELMy H-modes [217], resulting in

monotonic increase of electron density and in impurity accumulation (see figure 6.8), which,

due to radiative losses, eventually leads to a H-L back transition or to a high density disruption.

The radiated power causes a decrease in Te and τE after an initial peaking (see figure 6.7) and

can eventually exceed the power input resulting in discharge termination. ELM-free H-modes

are therefore intrinsically transient with evolving plasma parameters, which constitutes a

challenging regime for studies on the edge poloidal rotation and on the radial electric field.

Understanding the physics of the L-H transition and reaching a stable H-mode operation

avoiding ELMs [218] are among the main current challenges for the fusion community, since

an economically sustainable thermonuclear reactor would likely operate in H-mode, to benefit

from the higher confinement, as foreseen for ITER standard scenario [219]. To this end an

experimental characterisation of the edge plasma flow and the connected Er evolution are of

paramount importance; in this thesis accurate edge CXRS measurements were performed for

the first time in TCV providing the first characterisation of the changes in Carbon impurity

profiles at the H-mode transition. Noticeably the H-mode was obtained without employing

auxiliary heating, providing truly intrinsic rotation measurements, relevant for a reactor scale

physics, for which the effect of NBI on rotation is expected to be negligible. This could also

allow in TCV a comprehensive study of the H-mode power threshold, not attempted for lack of

time, by direct comparison of the power across the LCFS in Ohmic H-modes and in transitions

triggered with auxiliary heating (NBH and ECRH), to test the present day theoretical and

empirical transition models [208, 209, 220, 221].

6.2 Target discharge

ELM-free H-mode discharges are readily obtained in TCV ohmic discharges with input powers

close to the threshold for the transition [222], in diverted geometry with the favourable B ×∇B

drift configuration. For a full coverage of the plasma cross section of the CXRS systems the

plasma vertical position was centred at Z = 0, and the geometrical coefficients δed g e and

κed g e optimised to centre the intersection of the LCFS with the DNBI on the central chord

of SYS4, whilst simultaneously retaining a relatively large gap between the X point and the

wall, to favour the transition and reduce any measurement contamination from plasma wall

interactions. High values of δed g e and κed g e are also favourable for ELM-free operation.

Plasma parameters and geometry of the target discharge are shown in figure 6.1 and listed in

table 6.1.

Ip [kA] −315 B0 [T] −1.36
δed g e 0.5 κed g e 1.5
qed g e 3.9 Zaxi s [mm] ' 5

ne0 [m−3] ' 5 ·1019 Te0 [eV] ' 1000

Table 6.1: Parameters of the L-H transition experiment discharges.
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The moderate density ne0 ' 5 ·1019 m−3 provided a reliable access to H-mode, high DNBI pen-

etration and reasonable duration of the often resulting ELM-free phase (where the plasma den-

sity monotonically increases, sometimes reaching large fractions of the Greenwald limit [223]

before disrupting). The current in the flat-top phase of the discharge is then reduced in the

interval (0.95,1.2) s to encourage an H-L back transition (already occurred in the discharge

shown in figure 6.1) that avoids a disruption and possibly engender another transition. The

current was increased to −330 kA in two discharges, #55608 and #55610, to probe the plasma

response.

A list of the mission successful shots is shown in table 6.2 with the time of the transitions to

ELM-free H-mode and its duration. The parameters of CXRS acquisition are also reported.

Early runs used a fast acquisition IT, ∆tI T = 3 ms, represented here by shots #53920 and

#54031 for the CVI and BV lines respectively. The initial goal was to identify the rotation

changes with this high time resolution by employing an inter-shot passive spectral subtraction,

that would then allow measurements within 3 ms of the transition. This method requires

high repeatability in the discharge parameter evolution, that for a ohmic discharge, devoid
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Figure 6.1: Time traces of plasma parameters of the target discharge, TCV #55602, used in the
L-H transition experiments: (a) plasma current, (b) electron temperature from XTE and TS,
(c) Dα from PM, (d) elongation κed g e , triangularity δed g e and edge safety factor qed g e , (e) line
integrated electron density from FIR. The discharge is composed of six phases: an L-mode
next to the threshold (t =0-0.66 s) in pink, an ELM-free H-mode phase (t =0.66-0.723 s) in
green, an ELMy H-mode (t =0.723 -0.95 s) in yellow, another L-mode next to the threshold
(t =0.95-1.266 s) in azure followed by an ELM-free H-mode phase (t =1.266-1.55 s) and a
disruption at t = 1.55 s. The magnetic reconstruction at t = 1.384 s is shown on the right with
the CXRS sampling positions, LFS in blue, HFS in red, VER in green and EDGE in magenta.
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6.2. Target discharge

shot time L-H transition (duration ELM-free) CXRS ∆tI T line
[s] ([ms]) [ms]

55545 0.536 (360) 12 CVI
55547 0.628 (290) 12 CVI
55597 1.240 (220) 12 CVI
55599 0.8 (60) - 1.232 (260) 12 CVI
55600 0.681 (250) 12 CVI
55602 0.664 (59) - 1.266 (270) 12 CVI
55605 0.76 (190) 12 CVI
55607 1.405 (260) 12 CVI
55608 0.640 (260) 12 CVI
55610 0.750 (150) 12 CVI
53920 0.58 (190) - 1.281 (240) 3 CVI
54031 0.774 (40) 3 BV
57580 0.530 (130) 12 BV
55748 0.568 (210) - 0.883 (110) 6 CVI
55751 0.703 (190) - 1.226 (250) 10 CVI

Table 6.2: Parameters of the L-H experiment discharges: time of the L-H transition and
duration of the ELM-free regime, CXRS IT and observed line.

of direct actuators for the transition, was unattainable. ELM-free H-mode was regularly

achieved, but the plasma parameters at the transition and the transition time differed for

each shot, impeding a reliable passive subtraction. The standard CXRS analysis also displayed

only modest reliability of the measurements close to the LCFS, i.e. the zone of interest,

due to poor photon statistics and excessive smearing (see appendix E). This last effect is

particularly important for H-mode plasmas, where the strong density gradient at the plasma

edge results in a difference in LOS brightness that can exceed 2 orders of magnitude between

the top of the pedestal and near-SOL chords. Measurements with longer IT and a DNBI

duty cycle of 1:1 (ON:OFF) were also attempted in shots #55748 and #55751, with 6 and 10

ms IT respectively, showing improvements in the photon statistics and smearing, but again

displaying a unsatisfactory passive subtraction. The standard CXRS acquisition, ∆tI T = 12 ms

with a DNBI duty cycle of 1:2, provided the best trade-off between time resolution and spectra

quality, and was hence employed for the bulk of the mission discharges.

Measurements of both CVI and BV lines were carried out, but the presence of a nearby strong

passive line for BV, identified as a BII 494.0376 nm, strongly perturbed the BV spectrum

of bottom pedestal LOS, preventing a reliable reconstruction of B+5 profiles. The mid-top

pedestal LOS of Boron follow a similar behaviour as the Carbon profiles, with acceleration

at the transition and the formation of a well (characterised in the following), although the

estimated uncertainty are much higher than for CVI. For this reason only CVI profiles are here

reported.

Figure 6.2-a shows the Dα PM signal together with (figure 6.2-b) a spectrogram of an MHD coil
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Figure 6.2: (a) Dα signal from PM showing the two ELM-free phases of the discharge, delimited
by the vertical dashed black lines at the forward transition and vertical dashed red lines at the
end of the ELM-free H-mode. (b) spectrogram of the MHD Mirnov coils signal showing the
reduction in magnetic fluctuations during ELM-free H-mode.

signal for discharge #55602. The Dα intensity is used to identify the phases of the discharge,

with the onset of the H-mode clearly marked by the sudden drop in the Dα level and fluctu-

ations (RMS), which is a consequence of the improved particle confinement. A drop in the

magnetic perturbations during the ELM-free phase is observed, with the disappearance of the

115 kHz and 11 kHz modes, the reduction of the 5.4 kHz mode amplitude and a reduction in

the broadband signal level in general. In the first H-mode phase of the discharge, ELMs are

detected (spikes in the Dα signal), in correspondence with an increase of the magnetic pertur-

bations and reappearance of the 115 kHz and 11 kHz modes. Profiles during the ELMy H-mode

phase are not considered in this work, as the spectra perturbation caused by ELMs introduces

sources of error in the LCFS measurements that can not, at present, be compensated.

In the following section, the results of the CXRS standard analysis applied to the discharges

listed in table 6.2 employing a ∆tI T = 12 ms IT will be discussed. Profiles for which the active

acquisition IT was closer than one and a half ∆tI T to the transition are rejected, as the back-

ground subtraction is not sufficiently accurate. This leaves a minimum gap between the L-H

transition and the closest CX profile of∆T = 18 ms. Although measurements reached positions

in the far-SOL, up to ρ = 1.08, only profiles up to ρ = 1.02 are considered, as measurements

for the outer LOS in the H-mode phase appeared dominated by smearing and reflections

(see appendix E). It is worth pointing out that these measurements on TCV are particularly

challenging in view of the low intensity of CX spectra with a diagnostic neutral beam and that

the CX intensity does not dominate the overall spectral intensity that can thus be strongly

perturbed by changes in the background emissivity. This is to be contrasted to measurements

that employ a heating neutral beam where the background can often be considered as a

relatively small perturbation to the total signal.
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6.3 Edge profiles before and after the transition

From the comparison of the TS profiles before (pre) and after (post) the L-H transition, shown

in figure 6.3 for discharge #55602, the onset of an edge particle and energy barrier can be

deduced. The spatial resolution of the TS diagnostic (the 2016 version), δLT S ' 1 cm, is not

sufficient to resolve the pedestal structure, but is sufficient to assess its main features. The

TS time resolution is δtT S ' 16.6 ms; in this discharge profiles 1 ms after the transition are

available.

The temperature profile develops a pedestal in less than 1 ms from the transition, figure 6.3-a.

Te at the LCFS is ≤ 100 eV in both L and H-mode, while at ρ = 0.95 the temperature jumps

from ' 120 to ≥ 200 eV in less than 1 ms (assuming there is no evolution before the transition

during the L-mode, which is supported by measurements from similar discharges). The time

evolution of the pedestal-top temperature is shown in figure 6.7, where is compared with the

Carbon temperature. It increases to 300 eV in the first 100 ms, and then shows a roll over that

may be ascribed to an increase of impurity radiated power, reaching ≤ 200 eV at 300 ms. The

temperature pedestal is hence fully formed 1 ms following the transition.

The density pedestal development is slower, where the density 1 ms after the transition (yellow

profiles in figure 6.3-b) at ρ = 0.95 is only ' 15% higher than in L-mode (the Te increase is

≥ 66%), and does not reach a saturation value, but increases linearly in time, as shown in

figure 6.8.

The resulting pressure pedestal, pe = ne Te , shown in figure 6.9, reaches a saturation value of

pe ≤ 3000 Pa within 100 ms, then remaining more or less constant, where any increases in

density are compensated by decreases in temperature.
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Figure 6.3: Edge profile of (a) Te and (b) ne across the transition for shot #55602 showing
the formation of a pedestal. Experimental points are represented by circles. Cold colours
(blue-cyan) represent the pre-transition profiles, warm colours (yellow-red) the post transition,
with cyan and yellow for profiles closer to the transition.
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Figure 6.4: EDGE Carbon profiles across the L-H transition for shot #55602: (a) poloidal
velocity, (b) temperature, (c) density and (d) radial electric field.
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Figure 6.5: EDGE Carbon profiles across the L-H transition for shot #55608: (a) poloidal
velocity, (b) temperature, (c) density and (d) radial electric field.
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Figures 6.4 and 6.5 show the measured profiles of CVI poloidal velocity, temperature, density

and the calculated radial electric field for discharges #55602 and #55608. Profiles during

L-mode, just before the transition, are plotted in cold colours (blue-cyan), profiles after the

onset of H-mode are in warm colours (orange-red). In the legend of figures 6.4 and 6.5, “tr:1”

and “tr:2” refer respectively to the first and second L-H transition of the discharge. There are

clear changes in the Carbon profiles after the transition to H-mode:

• formation of a negative well with a poloidal rotation up to -20 km/s;

• TC profile increases of ∆TC ' 100 eV, preserving a constant gradient inside the LCFS;

• formation of a density pedestal inside the LCFS of width 13±2 mm, and top density in-

creasing linearly with time (see figure 6.8), eventually stopped by ELMs, back-transition

to L-mode or plasma disruption;

• formation of a negative electric field well of depth ≤−30 kV/m.

In L-mode, the poloidal rotation inside the LCFS is approximately zero.The increase of poloidal

rotation at the transition is not temporally resolved, as it is faster than the CXRS integration

time; the first measurement after the transition presents already a fully developed rotation

well in all discharges. The parameters of the poloidal velocity well are determined by fitting the

velocity profiles with a Gaussian function (with typical adjusted coefficient of determination

R
2 > 0.99). Their averaged values are listed in table 6.3. The acceleration is in the electron

diamagnetic velocity direction, consistently with what observed in [127]. The rotation well

parameters time evolution are depicted in figure 6.6. The velocity well depth reduces in time
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Figure 6.6: Poloidal velocity well parameters evolution in time for all the discharges: (a) depth,
(b) FWHM and (c) position. The well depth reduces in time while the width and position are
preserved.

from the transition, from uθ,C ' −16 km/s to −10 km/s in 200 ms (figure 6.6-a), while the

position and the width are roughly constant, with average values Rwel l = 1.098 and FW H M =
5.5 mm. The corresponding position in the radial variable ρ is ρwel l = 1.003, i.e. just outside

the LCFS, highlighting the importance of accurate near-SOL measurements.
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depth −14±3 km/s position R 1.098±0.002 m
FWHM 5.5±1 mm position ρ 1.003±0.004

Table 6.3: Parameters of the poloidal velocity well developed in H-mode.

The Carbon temperature profiles in H-mode reach a stationary state that, inside the LCFS,

looks like the L-mode profile displaced to ∆TC ' 100 eV higher values. In the near-SOL,

1 < ρ ≤ 1.02, an unexpected feature is observed, the temperature strongly increases with ρ.

This effect is probably ascribed to a reflection of active signal originated in the inner plasma

(see appendix E) and is reported here for completeness. It prevents a clear identification

of a pedestal in the Carbon temperature, but a possible detrimental effect on the electric

field calculation is mitigated by the low values of the SOL Carbon density. The timescale

of the increase in temperature is slower than the CXRS temporal resolution, with the new

steady state at higher temperature attained after ' 60 ms. During the transient period, the

profile shape remains unchanged, with just lower values than the final stationary state. This

’rigid translation’ of the TC profile is seen across the whole plasma cross section by the other

CXRS systems. The time evolution of TC at the top of the pedestal, taken at ρ = 0.95 as for

the electron temperature, is shown in figure 6.7, where the ' 60 ms transient is visible. The

stationary value of the temperature should be contrasted with the electron temperature, that

starts to decline after 100 ms.
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Figure 6.7: Pedestal-top (a) C+6 and (b) electron temperature as function of time from the
H-mode transition for all the considered shots. The electron temperature rolls over 100 ms
after the transition to H-mode, while Carbon temperature remains constant at TC ' 230 eV.

The density profile in L-mode monotonically increases towards the plasma core, without

strong gradients at the LCFS. After the transition to H-mode, a pedestal forms inside ρ = 1.

The density at the top of the pedestal increases linearly with time, as shown in figure 6.8, with

coefficient 7.83 ·1018 m−3t−1, until the end of the ELM-free phase.
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Figure 6.8: Pedestal-top (a) C+6 and (b) electron density as function of time from the ELM-free
H-mode transition for all the considered shots. The red line is a linear fit, that satisfactorily
represent the data.
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Figure 6.9: Pedestal-top (a) C+6 and (b) electron pressure as function of time from the H-mode
transition for all the considered shots. The Carbon density increases linearly in time, while the
electron pressure saturates within 100 ms.

From the pedestal-top density and temperature, the pedestal-top Carbon pressure is com-

puted, and shown in figure 6.9. It increases linearly in time, due to the density evolution,

contrary to the electronic pressure, that saturates within 100 ms.

The kinetic Carbon profiles across the transition for all the CVI discharges in table 6.2 are

shown in figure 6.10 for completeness.

The radial electric field, that is approximately zero in L-mode inside the LCFS and is positive in

the far-SOL (for ρ > 1.02, measurements are probably not sufficiently reliable), develops a well
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Figure 6.10: SYS4 CVI profiles across the L-H transition (blue for L-mode, red for H-mode) for
all the discharges of the experiment: (a) edge poloidal velocity, (b) TC and (c) nC .

just inside the LCFS, but otherwise remains unchanged at other locations. A more detailed

analysis of Er is given in the next section.

The toroidal velocity, shown in figure 6.11-a for shot #55605, increases in the co-current

direction (negative direction) after the transition to H-mode. The L-mode profiles exhibit a

gradient in the edge region, with a flat velocity core profile uφ,C ' −25 km/s and a velocity

at the LCFS of uφ,C ' −10 km/s. The co-current increase is stronger in the edge region, as

can be seen in figure 6.11-b where the time evolution of uφ,C at selected R positions is shown,

resulting in a flat profile across the TCV cross section around ' 200 ms after the transition with

a rotation of uφ,C ≤−30 km/s.

The profiles of Carbon density (figure 6.11-c) and temperature (figure 6.11-e) are also shown

for the two confinement modes of shot #55605.

The increase in time of the carbon density in H-mode, shown in figure 6.11-d, agrees with the

measurements of the EDGE system.

Similarly the Carbon temperature, figure 6.11-f, saturates in H-mode to a value ' 100 eV higher

than during L-mode, as previously reported for the EDGE system.
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Figure 6.11: Profiles from CXRS systems 1 and 2 across the L-H transition for discharge #55605
for: (a) uφ,C , (c) nC and (e) TC . Time evolution at selected positions across the transition for
all the shots in the database is shown for (b) uφ,C , (d) nC and (f) TC . The dashed lines are
linear fit during either the L-mode and H-mode phases. In (b), uφ,C increases in the co-current
direction after the transition, resulting in flat profiles after ' 200 ms.
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6.3.1 Electric field contributions

Figure 6.12 shows the radial electric field profile (blue line) calculated through equation 4.22 for

shot #55608. The three terms forming the electric field are also shown, namely the diamagnetic

term ∇pα

qαnα
in black, the poloidal velocity term −uθ Bφ in red and the toroidal velocity term

+uφBθ in magenta.
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Figure 6.12: Er profiles and its components (a) 45 ms before (L-mode), (b) 27 ms, (c) 63 ms and
(d) 99 ms after the transition for shot #55602. The dashed lines after the transition represent
the fit to a Gaussian function. The −uθ Bφ components is dominant after the transition and
decays in time, while the diamagnetic component is stationary.

The toroidal velocity term is positive in both L and H-mode, although it reaches higher values in

H-mode following the increase in uφ,C . The profile here reported results from an interpolation

of SYS1 (toroidal) measurements on the SYS4 (periscope poloidal) positions. The original

data is composed by only ≤ 4 LOS in this region, due to the lower spatial resolution of the

depth −25±4 kV/m position R 1.097±0.002 m
FWHM 7.3±1 mm position ρ 0.997±0.004

Table 6.4: Parameters of the radial electric field well developed in H-mode.
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toroidal diagnostic, that may be the reason of the approximately flat profile. On the other

hand, similar measurements on other devices [68, 127, 131, 205] showed little or no influence

of the toroidal rotation on the radial electric field well, providing some justification for the use

of interpolation methods in this region.

The poloidal velocity and the diamagnetic terms are negative inside the LCFS and effectively

counter the positive toroidal term in L-mode, resulting in a total field near zero in the confined

region. In H-mode, the contribution of the toroidal term is higher and the resulting field is

positive in the core region. In the far-SOL (not shown) the electric field is positive due to the

contribution of both the toroidal and poloidal velocity terms, in both L and H-mode.
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Figure 6.13: Time evolution of the radial electric field well parameters, and its components,
in the H-mode phase. (a) depth of the Er well for the total electric field and its diamagnetic
and poloidal velocity components. (b) difference of the well depth of the poloidal velocity and
diamagnetic components, the poloidal term dominates after the transition but within 50 ms
the difference nullify. (c) FWHM of the well, increases linearly with time for both the total Er

and the diamagnetic component, while is constant for the poloidal term. (d) position in ρ of
the well minimum. The minimum of the diamagnetic component is always inside the LCFS,
for the poloidal velocity component it is in the SOL, resulting in a minimum just inside the
LCFS for the total Er .
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Figure 6.14: Er well width (FWHM) inter-machine comparison (a) as function of major radius
and (b) normalised to the minor radius a0. The normalisation to a0 improves the matching
with the high aspect ratio tokamaks MAST.

The negative well in the radial electric field that develops in H-mode inside the LCFS is

due to both the diamagnetic and the poloidal terms, with the diamagnetic term displaced

inwards. The radial electric field well and its components were fitted with Gaussian functions,

represented by dashed lines in figure 6.12. The well depth is calculated from the Er baseline,

that is positive in H-mode. The resulting parameters for the reported discharges are shown in

figure 6.13 as function of the time elapsed from the transition to ELM-free H-mode. The Er

well averaged parameters calculated for all the selected shots are listed in table 6.4.

The well depth (figure 6.13-a) just after the transition is dominated by the poloidal term, which

can be as much as twice the value of the diamagnetic component. The two contributions

become comparable (figure 6.13-b) ≥ 50 ms after the transition, due to a decrease of the

poloidal component depth, whereas the diamagnetic contribution remains fairly constant

after the increase in the initial ' 30 ms. This is consistent with measurements in C-mod [127]

and AUG [93], but contrary that found in MAST, where a diagnostic with similar spatial

resolution of the EDGE systems verified that the main contribution to Er is given solely by the

diamagnetic term [131].

The well width (figure 6.13-c) instead is constant for the poloidal term and increases for the

diamagnetic term. The resulting total well is larger than the poloidal velocity well, close to the

diamagnetic and increases with time. A scaling of the electric well FWHM with machine size

was reported in [93, 127], and agrees with the averaged FWHM measured in TCV, as shown in

figure 6.14-a, where results from MAST are included [131]. Normalising the well width to the

minor radius a0 (figure 6.14-b), improves the congruence with the spherical tokamak MAST,

suggesting that the well size is influenced more by the aspect ratio than just the major radius

of the device. This also suggests that the electric field well width is not directly affected by the

heating scheme, different for each device (Ohmic in TCV), but determined by the local edge

conditions.
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6.3. Edge profiles before and after the transition
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Figure 6.15: E×B shearing rate across the transition for shot #55602 and #55608. Errorbars are
shown for clarity in a reduced set of points.

The two contributions also differ in their profiles, with the diamagnetic term peaking inside

the LCFS, at ρdi ag ' 0.993, while the poloidal term is outside the LCFS, at ρpol ' 1.002; the

total field peaking just inside the LCFS, at ρEr ' 0.997. Note that this difference cannot be

ascribed to misalignments with other diagnostics or with the magnetic reconstruction, as it

would affect the Carbon pressure and rotation profiles simultaneously. The scatter in the peak

positions data masks any possible time dependence.

The shearing rate, calculated from equation 4.24, is shown in figure 6.15 for the representative

discharges #55602 and #55608. It is nearly zero in L-modes, but develops a negative well inside

the LCFS, with peaking at '−5 MHz (comparable to what found in C-mod [127]), balanced by

a positive well in the near-SOL, which result in a steep profile at the LCFS, where the shearing

rate changes sign. Shearing rates are higher at the beginning of the H-mode, suggesting that

they play an important role in the transition [134, 135], as it is known to reduce turbulence,

particularly in synergy with magnetic shear [204].

Comparison with the main ion pressure gradient

The radial electric field Er , although estimated from impurity measurements in most of the

fusion devices due to the aforementioned difficulties in measuring directly the main ion

parameters (chapter 2), is driven by the main ions. Although the poloidal (and toroidal) flow

may differ for each species, as reported in section 4.4, the electric filed must be consistent; by

using the Er calculated from impurities and electron kinetic profiles, main ion parameters

can be inferred.

The main ion pressure gradient for example can be estimated from the electron density profile

assuming constant dilution di [93] and from the Carbon temperature TC , assuming the species
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Chapter 6. Rotation changes at the L-H transition

are thermalised:

∇pi

ni
= ∇ (ni Ti )

ni
' di∇ne

di ne
TC +∇TC = ∇ne

ne
TC +∇TC (6.1)

From ∇pi

ni
and Er the main ion perpendicular velocity u⊥,i can be estimated by rearranging

the term of the radial electric field equation 4.22 expressed for the main ions:

u⊥,i =
1

B

(
Er −

1

e

(∇pi

ni

))
= 1

B

(
Er −

1

e

(∇ne

ne
TC +∇TC

))
(6.2)

while for electrons, the formula for the perpendicular velocity u⊥,e requires only electron

parameters and Er :

u⊥,e =
1

B

(
Er +

1

e

(∇ne

ne
Te +∇Te

))
(6.3)

Both the main ion and electron perpendicular velocity profiles are shown in figure 6.16 for

a time frame during ELM-free H-mode, together with the main ion diamagnetic velocity

udi a,i and the E × B drift. The perpendicular ion velocity is always positive (i.e. plasma

rotates in the ion diamagnetic direction) and is close to zero in the edge region, where the

Er well is located. This follows from the ion diamagnetic velocity balancing the E×B flow at

the edge, similarly to that described in [93] and [127], suggesting that the main ion pressure

gradient is the dominant term establishing the electric field well [224]. Conversely, the electron

perpendicular velocity udi a,e is always negative (electron diamagnetic direction) and peaks

in the edge region, reaching udi a,e ≤−40 km/s. The electrons speed up in the edge region to
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Figure 6.16: Main ion perpendicular velocity u⊥,i (red), diamagnetic velocity udi a,i (blue)
and E×B velocity uE X B (black) during ELM-free H-mode in discharges (a) #55602 and (b)
#55608. The electron diamagnetic velocity udi a,e is in green. The ion diamagnetic velocity
compensates the E×B drift at the edge, resulting in a main ion perpendicular velocity close to
zero.
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6.3. Edge profiles before and after the transition

compensate for the missing ion contribution to the current density j to the zero order MHD

equilibrium equation ∇p = j×B.

6.3.2 Profiles approaching the transition

Shot #55607 provides further insight on the conditions at the transition. Figure 6.17 shows the

outline of the shot, there is a phase (phase-a, green) well below the L-H transition threshold,

there are 2 phases (phase-b: pink and orange where the plasma conditions are just at the

threshold and a phase in ELM-free H-mode (phase-c: blue). Electron density and temperatures

are similar in both phases a and b, after the transition ne increases linearly and the temperature

decreases, as observed from both XTe and Thomson. In figure 6.18 the profiles of uθ,C ,uφ,C ,

TC and nC , averaged over a 200 ms time window, are shown for the three phases.

The poloidal velocity well starts developing in phase-b (near the threshold), see figure 6.18-a,
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Figure 6.17: Time traces of plasma parameters for discharge #55607: (a) plasma current, (b)
electron temperature from XTE and TS, (c) Dα from PM and (d) line integrated electron density
from FIR. The discharge is composed of three phases, highlighted in different colours: phase-a
in green, phase-b in pink and orange and phase-c in blue.
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Figure 6.18: Profiles (averaged on a 200 ms time window) comparison in the three phases
(a-below the threshold, b-at the threshold, c-during H-mode) of shot #55607 for (a) uθ,C , (b)
uφ,C , (c) TC and (d) nC .

where it reaches values of uθ,C '−4 km/s, which is still much lower than during phase-c, with

typical values of uθ,C '−20 km/s. Towards the core, for ρ < 0.97, the poloidal velocity remains

negative but close to zero during all three phases.

Changes in the toroidal velocity are also observed (figure 6.18-b). In phase-b the toroidal

velocity reaches the values of phase-c in the core (i.e. uφ,C ' −30 km/s), but in the edge it

retains the conditions of phase-a, with a velocity close to -10 km/s. This shear in the toroidal

velocity is also thought to be involved in the triggering of the transition, through its projection

on u⊥ [225].

The temperature profiles in phases a and b are linear inside the LCFS. At ρ = 0.9 Ti is 50 eV

higher in phase-b than phase-a, consistently with the increased ohmic power. Their separa-

tion decreases at the LCFS, where their value is close to 100 eV, indicating an increase in the

temperature gradient in phase-b. During the H-mode (phase-c), a temperature ≥ 200 eV is

observed at the LCFS, while the same gradient as in phase-a is attained.
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6.4. Comparison with neoclassical predictions
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Figure 6.19: Er profiles and its components (a) below the H-mode threshold, (b) next to the
threshold and (c) during H-mode for shot #55607. The development of the electric field well is
observed in phase-b.

The Carbon density profile shows the presence of a very small pedestal in phase-b 6.18-d,

which is not present in phase-a.

The electric radial field, with its components, calculated from sample profiles, is shown in

figure 6.19 for the three phases. The main difference between phase-a and phase-b is the

development of a relatively shallow well |Er | < 10 kV/m inside the LCFS, principally from the

poloidal rotation term. This suggests that the increase in the electron diamagnetic direction of

the poloidal velocity could be component of the trigger for the transition, as the contribution

of the diamagnetic term to the radial electric shear is negligible in phase-b.

A possible alternative interpretation of phase-b is that there are rapid transitions to H-mode

closely followed by back-transitions to L mode, a.k.a. dithering H-mode [226], with multiple

events occurring during the CXRS integration time. The observed profiles would, in this case,

suggest that the timescales of poloidal velocity increase are faster than the density pedestal

build-up, which is, in turn, faster than the temperature profile increase. This interpretation

is still compatible with the triggering mechanism being the increase of poloidal rotation,

however a direct causality cannot be inferred unambiguously.

6.4 Comparison with neoclassical predictions

In this section the measured Carbon poloidal rotation is compared with predictions from

neoclassical theory in the three phases defined in the previous section 6.3.2 for discharge

#55597.

The expected neoclassical rotation is calculated using two different methods: employing the

analytical formula of Kim-Diamond 4.28, introduced in chapter 4 and using the neoclassical

code NEO (courtesy of Y. Camenen).

The code NEO [227] exploits an Eulerian numerical discretisation scheme, based on a δ f ex-

pansion, for the solution of the multi-species first-order drift-kinetic-Poisson equations [228].
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Chapter 6. Rotation changes at the L-H transition

It provides second order neoclassical transport fluxes and first order flows, enabling a direct

comparison with CXRS rotation measurements. The code includes self-consistent cross-

species (e−, ions and impurities) collisional coupling, intrinsically satisfying ambipolarity,

allowing calculation of the electrostatic potential. It is therefore particularly suitable for studies

of edge flows, and was employed here for this reason.

Both methods required the edge electron density and temperature profiles, that were estimated

by fitting the TS experimental profiles with a cubic spline function over a selected time window

in each phase, characterised by stable plasma conditions. In phase-a, a time window of 150 ms

centered at ta = 1.075 s was selected, in phase-b, the time window was of 300 ms centered at

tb = 0.75 s, and in phase-c, a window of 60 ms at 1.4 s was employed. The window in phase-c

was smaller due to the strong time evolution of the electron density in ELM-free H-mode. For

the Kim-Diamond formula ion species are considered thermalised Ti = TC .

The predictions of the Kim-Diamond formula and the code NEO are shown in figure 6.20

together with the raw experimental CXRS results in the selected time window and a spline fit to

the raw data. The experimental impurity measurements are in general in moderate agreement

with the neoclassical predictions.

In phase-a and phase-b, the measured poloidal rotation is in excellent agreement with Kim-

Diamond predictions, while NEO provides slightly faster flows in the electron diamagnetic

direction, that remain, however, compatible with the measurements.

Predictions of the H-mode poloidal rotation (phase-c, figure 6.20-c) seem to be less compatible

with the experimental results. In this phase, the analytical formula and NEO provide similar

results, differing by less than 2 km/s over the whole profile. The neoclassical predictions are

able to describe accurately the inner edge region 0.9 ≤ ρ ≤ 0.92 and the rotation value at the

LCFS, but fail in the prediction of the poloidal well shape, providing a wider and less steep

rotation profile. This effect however can be ascribed to the TS spatial resolution (∆R ' 1 cm, or

∆ρ ' 0.03), that was unable to resolve the pedestal features occurring at smaller spatial scales.
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Figure 6.20: Comparison of experimental Carbon uθ,C profiles with the neoclassical predic-
tions of the NEO code and of Kim-Diamond formula 4.28 in the phases: (a) below the H-mode
threshold, (b) next to the threshold and (c) after the transition to ELM-free H-mode, for shot
#55597.
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6.5. Conclusions

Actually the positions where the neoclassical predictions and the CXRS measurements agree,

ρ ' 0.93 and ρ ' 1, correspond to TS measurements positions, somewhat inward with respect

to the pedestal-top and at the bottom of the pedestal respectively (see figure 6.3). The third

measurement position of TS in the range 0.9 ≤ ρ ≤ 1 is at the top of the pedestal, influenced

by the steep gradients of the region. Conversely, the lack of strong gradients in L-mode can

explain the better agreement there. This give us confidence that improving the resolution of

the TS diagnostic may result in a better agreement between the neoclassical predictions and

the EDGE measurements.

It can be concluded that Carbon impurity flow at the edge of TCV is compatible with neoclas-

sical theory, both in L-mode and H-mode operation regimes. An improvement of the electron

pedestal measurement, with a higher spatial resolution TS diagnostic, is desirable to harden

these conclusions.

6.5 Conclusions

The new high resolution CXRS EDGE system has permitted, for the first time in TCV, the

measurement and characterisation of the Carbon behaviour across the L-H transition at the

plasma edge and in the near-SOL. A relatively long integration time ∆tI T = 12 ms together

with ELM-free H-mode operation were necessary with this diagnostic-beam based intrinsic

rotation measurement, to minimise uncertainties in the Carbon profiles by optimising the

photon statistics and reducing spectral perturbations.

The transition to H-mode is characterised by the formation of a narrow (' 5.5 mm) and deep

(|uθ,C | ≥ 20 km/s) poloidal velocity well centered at the LCFS, by the development of a steep,

continuously evolving, pedestal in nC of typical width ≤ 15 mm and by the increase in Carbon

temperature of ∆TC ' 100 eV across the whole profile.

The radial electric field was computed from the kinetic Carbon profiles. It is positive and

relatively small, Er,L ¿ 10 kV/m, in L-mode, while a significant negative well (|Er,H | ≤ 30

kV/m) develops just inside the LCFS after the transition to H-mode. The well parameters

were computed after fitting by a Gaussian function, showing that the well depth decreases in

time while widening, following a drop in the poloidal rotation term. On TCV, this is consistent

with the E×B shearing, generated by the poloidal velocity, being the main responsible for the

transition.

The averaged total Er well width on TCV was found to agree with the scaling found from other

machines [127].

The main ion perpendicular flow was estimated from Er , ne and TC , showing that, in the

Er well region, the diamagnetic ion velocity balances the E×B drift. This suggests that the

main ion pressure gradient is the dominant contributor to the electric field well, as reported

in [93, 127].
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Chapter 6. Rotation changes at the L-H transition

The measured Carbon poloidal flows were finally compared with neoclassical predictions

from the analytical formula of Kim-Diamond 4.28 and the code NEO. Good agreement is

found for the L-mode profiles, with impurity rotating slowly, |uθ,C |¿ 5 km/s, in the electron

diamagnetic direction. Only a reasonable agreement was obtained in H-mode, where the

acceleration in the electron diamagnetic direction is qualitatively reproduced by the models,

but with significant discrepancies in the profile shape. This discrepancy could be ascribed

to the limited spatial resolution of the electron kinetic measurements, that can be further

investigated with the increased resolution of the upgraded TS system (2017, but too late for

this thesis).

These results were only obtainable with the periscope aided enhanced poloidal rotation

measurements. Here again, the EDGE spectrometer’s improved throughput captured the

physical changes with a relatively short exposure time. This may be further improved by

replacing the EDGE spectrometers’ focussing lenses and by using the over a factor of 2 increase

in the upgraded Thomson scattering system to resolve sharp features in the H-mode gradients.

TCV’s regularly achievable Ohmic-only heated H-mode transition has been analysed for the

first time and compares well with other H-mode transitions from other published machine

data. The measured plasma rotation, and the deduced electric field, are reliably free of any

direct contamination by any auxiliary heating scheme (particularly NBI heating). An increase

in the temporal resolution is mandatory to harden these conclusions.

Smearing can be countered employing a shutter synchronised with the camera readout trigger,

or by sharing the observation chords over more spectrometers such that the lower intensity

chords are not mixed with the inner, much more intense, chords. The new, high intensity,

heating beam features a very fast pulsing capability that may also be used to improve the

temporal resolution, using the same method as employed on other machines, with the dif-

ference that the H-mode transition itself, does not depend on the NBI power, but remains

ohmic, alone. These are necessary steps for reaching the temporal resolution limits dictated

by the CX cameras of ∆tI T ' 2 ms retaining accurate measurements This would improve the

constrains on the transition, but it would be insufficient to resolve the changes during the

transition. By shading the unused spectral regions and using the “sensor cropped” readout

mode, or alternatively the specialised “kinetic-spectral” readout mode, available with these

CCD detectors [82], sub-ms measurements are possible, with effectively only photon statistics

limiting the IT. CXRS measurements transition-resolved may thus become possible and thus

provide a definitive causality between the changes in the poloidal rotation and L-H transition.

This work has, for the first time, achieved one of the main and initial goals of CXRS on TCV over

more than a decade in probing the physics around an ohmically heated H-mode transition.
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7 Conclusions and outlook

This thesis focussed on the upgrade and then the application of the CXRS diagnostic for studies

of rotation and impurity behaviour in the TCV tokamak. The CXRS diagnostics, coupled with

a low power diagnostic neutral beam injector in TCV, provides spatial and temporal resolved

measurements of impurity intrinsic plasma rotation, usually Carbon, together with its density

and temperature, by a spectroscopic analysis of an actively induced CX emission line.

The continuous search in research for better results and understanding results in always

increasing challenging problems, that requires a continuous improvement in the diagnostic

capabilities. An overview of the TCV legacy CXRS systems permitted to identify the possible

upgrades, which culminated in the development of a new CXRS system, devoted to the study

of the edge impurity behaviour. The new system attained unprecedented accuracy exploiting

a new, in-house designed, high throughput lens spectrometer, by employing numerical-

aperture matching optics and by improving the sampling viewing lines. The installation of a

periscope with direct view on the DNBI was paramount to reach the target diagnostic space

resolution≤ 3 mm, while preserving the system étendue , in particular for the H-mode pedestal

work. Furthermore the hardware optimisation and upgrade of the legacy systems continued

during this work, with the replacement of the Acton HFS spectrometer by a SPEX750Mi

model (same as LFS), and the upgrade of the VER spectrometer with a copy of the EDGE

spectrometer, that improved the system transmission efficiency and the image quality, as well

as the measurement accuracy. The transmission and resolution of the two toroidal systems

was also improved with an optimised input optical system. These hardware optimisations

were supported by improvements in the analysis routines, with a revision of the wavelength

calibration function to include non-linear dispersion, improvements in the robustness and

reliability of the minimisation spectral fitting algorithm and in the uncertainty estimation,

and a complete characterisation of the cameras performance (linearity and saturation).

The upgraded CXRS diagnostic was successfully employed both in the continuation of previous

lines of research, obtaining more sophisticated and reliable results, and in the opening of new

search roads for spectroscopy at the SPC.
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Characterising the absolute emissivity of H and D plasmas produced by a helicon source

in RAID, was the first experimental application of the new spectrometer, that demonstrated

the designed high optical quality, the great adaptability of the instrument and resulted in

a successful commissioning of the EDGE hardware and software packages. The analysis of

the measured emissivities through the CR code YACORA, provided the first estimation of the

source negative ion production and level of dissociation for this source, which are relevant for

applications in reactor-scale negative NBIs [58]. The antenna performance, if found to comply

to the presented estimations in an extraction configuration, would allow an increase in the

NBI source efficiency of ' one order of magnitude, with potentially strong repercussions on

the feasibility of a commercial fusion reactor, due to the importance of the heating scheme

efficiency in the overall device energy balance.

Another application for the new spectrometer was the measurement of the fast ion Dα emis-

sion line by the survey FIDA diagnostic on TCV. The high quality of the measured spectra

was used to accurately characterise the fast ion dynamics, that identified an anomalous fast

ion transport mechanism and unexpectedly strong CX losses [229]. The high light efficiency

and strong immunity to stray light were paramount to a reliable measurement. Following

the results of the survey diagnostic, a FIDA system featuring a modified version of the EDGE

spectrometer, optimised for the Dα spectral region, with viewing lines across the NBI was

commissioned. A new spectrometer was mandatory to obtain active FIDA measurements, as

the DNBI LOSs of the survey system had insufficient intensity, highlighting the limits of the

active signal strength from the low power diagnostic beam. The design of a more sophisticated

FIDA diagnostics is ongoing, with toroidal and poloidal viewing lines on the NBH for a com-

plete characterisation of the fast ions distribution function and is expected to be constructed

and installed on TCV in the coming months.

The combination of new spectrometers and/or enhanced measurement techniques was

applied to two outstanding problems on TCV.

The study of the effects of ST on the impurity transport strongly benefited from the CXRS diag-

nostic improvements. Profiles with unprecedented spatial and time resolution were obtained

from coherent averaging of the CXRS spectra, resulting in simultaneous profiles of C density,

temperature and bulk rotation temporally resolved across the ST cycle. A novel technique

that could externally set the ST timing employing ECRH modulation, i.e. ST locking, was

developed and proved robustly reproducible over many experimental sessions, permitting a

scan in ST period from 8 to 36 ms. The physics of the ST crash itself was used to simultane-

ously improve the synchronisation with CXRS acquisition, with a huge beneficial effect on the

quality of the coherent averaging. The overall effect was to clearly separate the inter-crash to

the crash dynamics that could then be compared to “natural” ST by calculating a ST-averaged

behaviour for comparison with legacy ST studies. A co-current torque is detected acting in

the core at the ST crash, resulting in hollow post-crash rotation profiles. Simultaneously the

counter-current core momentum is redistributed to a ring region outside the ST inversion

radius. This effect places a limit on the maximum rotation attainable for any particular plasma
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conditions, explaining the 1/Ip scaling reported from TCV ST-unresolved intrinsic rotation

measurements. Reversing the argument, the ST period and inversion radius can be used as

actuators for rotation control in the absence of effective direct momentum injectors. This

result shows that the internal, intrinsic, plasma rotation can be strongly affected by very fast

MHD Tokamak phenomena that, like the electron kinetics, must be included in any model

that hopes to predict plasma rotation in any future device.

The absolute calibration of the CXRS system permitted the measurement of the density pro-

file evolution across the ST, with a most interesting event at the crash, where impurities are

preferentially removed from the core (more than the main ions). In a reactor scenario this can

be exploited for preventing impurity accumulation and for ash removal. Again, a model of

impurity confinement that ignore these determinant MHD events (e.g. using turbulent and

neoclassical transport alone) can not hope to predict the impurity transport behaviour on

future machines.

The performance of the EDGE system was most strongly tested in the extreme conditions of

the ELM-free H-mode pedestal. The new system was crucial in the characterisation of the

changes in impurity parameters at the onset of H-mode, where a narrow and deep well in the

poloidal velocity, that was impossible to observe with the legacy systems, was measured. An

improvement in confinement during H-mode is confirmed by the development of a pedestal

in the impurity density and the increase in the temperature. The Carbon kinetic profiles were

then used to estimate the radial electric field, whose width agrees with the scaling found on

other machines. The evolution of the Er components suggests a strong importance of the

poloidal rotation term in triggering the transition, although an increase in the temporal resolu-

tion (by a factor of ' 5−10) is mandatory to confirm this hypothesis. Further improvements in

the system transmission, with adoption of single aspherical lenses and the replacement of the

periscope window, are relatively simple upgrades that could overcome the current diagnostic

resolution time limits for these plasma conditions. A more complicated, but potentially more

advantageous, upgrade would be to exploit viewing lines on the NBH and a fast beam modula-

tion. The higher emissivity of the NBI, due to the higher density, despite the reduction in the

CX cross section for the 25 keV NBH, would permit a reduction of the diagnostic integration

time to scales comparable to the transition, retaining a photon statistics sufficient for the

measurement. This experiment would be even more productive with the second planned

NBH, that should inject 50 keV neutrals into TCV, close to the optimal energy for the Carbon CX

cross section. With fast NBH modulation of the TCV design, and the increased active emission,

inter-ELM measurements would became possible, extending the accessible measurement

space to ELMy H-mode and to studies on the transition itself.

The design, construction and use of the modular EDGE spectrometer has been demonstrated

on TCV and a laboratory plasma device related to auxiliary heating on a fusion reactor. To-

gether with the specialised data analysis techniques and detector optimisations, it represents a

new spectroscopic “toolbox” for exciting new experiments on TCV. With increased dispersion,

lens changes to extend operation into the UV and new detector modes, many new spectro-

scopic CXRS challenges can be attempted. Furthermore, following this work, the DNBI power
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Chapter 7. Conclusions and outlook

supplies may be upgraded to allow 1 ms full beam power modulation that can be used to

access faster TCV events and further benefit from these increases in diagnostic sensitivity. It is,

however, only with a combination of this kind of diagnostic enhancement, together with other

diagnostic enhancements (notably the TS improvements), that some of the more speculative

results of this thesis work can be hardened and new physics probed.

In the future, when the both 1 MW heating beams will be available on TCV, many new experi-

ments on plasma ion dynamics will become accessible. By continuing to develop the DNBI

view lines, together with new diagnostics on the heating beams themselves, the ion profiles

can be tracked with and without axillary heating and the relaxation following strong heating

can be measured. TCV’s heating beams are to be mounted to provide an opposite toroidal

torque. The ANDOR detectors used in all CXRS diagnostics feature a CAMLINK real-time

output that can be used to extract and process the CXRS data in real time opening up the

possibility of toroidal rotation RT control with all the possible effects on MHD modes and their

stabilisation that may entail. Furthermore, together with real time control of a set of heating

schemes (Ohmic, NBH and ECRH) this can provide a fusion testing device the ability to control

the Ti /Te ratio in addition to the usually implemented observables. This thesis has not only

demonstrated that strong MHD events, such as sawteeth, can dominate the ion profiles but

has demonstrated methods that resolve these effects in time. The measured profiles must

now be modelled by the codes we use to predict future reactor behaviour and the physical

processes that cause the observed behaviour identified. Since many other relevant MHD

modes are known to affect the plasma behaviour (e.g. NTMs) it is legitimate to speculate that

these observations should be extended to cover more of these phenomena. As a final example,

fast particle ST-stabilisation, already observed on TCV [230]can be investigated and contrasted

with the ECRH stabilisation results presented in this thesis.
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A Survey FIDA diagnostic on TCV

Following the restart of TCV at the end of 2015, the intensive use in the MST1 campaign of

a newly installed 1 MW NBI provided a strong demand of new diagnostic able to detect and

characterise the fast ion population (max injection energy ' 27 keV) generated by the NBI. A

survey FIDA diagnostic was therefore implemented, exploiting the spectrometer designed for

SYS4.

A.1 FIDA principles

The fast ion Dα (FIDA) is a CXRS method applied to fast Deuterium ions [231]. The CX reaction

of a fast D+ with neutrals, either provided by NBI or penetrating into the plasma from the

edge, provides excited fast (vD0 À vTi ) recombined D0 that emits line radiation.

FIDA exploits the Balmer Alpha emission line Dα (n = 3 → 2) @ λ0 = 656.1 nm to probe the

fast ion distribution function, through the modification of the observed wavelength due to the

Doppler shift:

∆λD0 = λ0

c
vD0 ·eLOS (A.1)

The analysis of the spectrum is complicated by the property of the Doppler formula, which

impedes resolved measurements in energy and pitch, since the same value of the projection

of a particle velocity on the LOS direction eLOS can be observed for different combinations of

energy and pitch; the latter being defined as the ratio of the particle parallel (to the magnetic

field) velocity over the velocity absolute value:

pitch = v∥
|v | (A.2)

Note that this degeneracy is irrelevant for CXRS measurements, where the distribution function

is assumed to be Gaussian. As in the standard CXRS diagnostics, the radiance can be used

to determine the density of the recombining ions, if the density of donor is known or can be

estimated.
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Appendix A. Survey FIDA diagnostic on TCV

The interpretation of FIDA spectra is difficult, a direct deconvolution of the signal is not possi-

ble due to the unresolved energy-pitch distribution. A method to interpret quantitatively the

FIDA spectrum, developed and implemented in [232], is to use a theoretically calculated neo-

classical ion distribution function and simulating the corresponding Dα emission (synthetic

spectrum), that can then be compared with the experimental measurements.

In the next sections, the first implementation of this diagnostic together with the data inter-

pretation, as reported in [229], are explained.

A.2 FIDA on TCV

The first TCV FIDA survey diagnostic exploited the spectrometer of SYS4 for spectral analysis,

using toroidal LOS borrowed from the CXRS LFS system (SYS1), as shown in figure A.1. The
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Figure A.1: NBI, DNBI and survey FIDA LOS (toroidal and poloidal) geometry. In red the orbit
of a 25 keV ion with a 0.9 pitch.

fast ions are generated by ionisation of the neutrals injected by the NBI, whose geometry is

also shown in figure A.1, together with the orbit (in red) of a 25 keV ion with a pitch of 0.9.

The active signal for this system (toroidal), is given by the interaction of the DNBI neutrals

and the fast ions. The comparison of the acquired spectra, figure A.2-a, in the NBI ON and

OFF phases, showed a strong passive Dα signal, generated by the interaction of the fast ions

with the background neutrals, and an extremely weak active signal from the DNBI, as can be

deduced by figure A.3-b, that is insufficient for the extraction of spatially resolved information

on the fast ions. These considerations led to the installation of a further FIDA diagnostic with

LOS intersecting the NBI itself, the poloidal viewing lines of figure A.1, and the construction of

yet another dedicated spectrometer, with a design similar to that built for SYS4, but optimized

for wavelengths in the Dα region, with a 2000 l/mm grating to improve the étendue at higher
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wavelengths.

648 650 652 654 656

1015

1016

1017

1018

P
h

/(
s 

n
m

 m
2
 s

r)

wavelength [nm]

R: 0.911 [m]

a) #53783

 ~1.39s  ~1.17s
during NBI   w/o NBI

OV

CIII FIDA

650 655 660

1015

1016

1017

1018

P
h

/(
s 

n
m

 m
2
 s

r)

wavelength [nm]

R: 0.896 [m]

#53783

 ~1.39s  ~1.17s

OV

CIII

FIDA

CII
CII

beam emission
edge D-alphab)

during NBI   w/o NBI

full

half third

Figure A.2: Measured spectra from a central LOS of (a) the toroidal and (b) the poloidal FIDA
systems, in the NBI ON (black) and OFF (red) phases.

Representative spectra of the poloidal FIDA system are shown in figure A.2-b, for both the

NBI ON and OFF phases. In this system the active FIDA emission is produced by the NBI

itself, while passive emission of the cold edge Dα line is minimised due to the LOS geometry,

allowing the observation of the complete Dα spectrum with only a modest sensor saturation

at 656.1 nm. This wavelength is avoided in the toroidal system to prevent over-saturation and

possible damage to the CCD camera.

The time traces of the integrated FIDA signal, in the wavelength range 653−654 nm, are shown

in figure A.3 for both the toroidal and poloidal systems, and are used for a first interpretation of

the measurements. As noted above, the radiation observed by the toroidal system is dominated
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Figure A.3: Time evolution of the integrated (653−654 nm, in gray in figure A.2) FIDA signal
for both (b) toroidal and (c) poloidal systems. (a) sum of the DNBI and NBI power. DNBI ON
phases are marked in red.

by the passive FIDA emission. This is deduced from the low correlation of the integrated signal

with the DNBI modulation, and from the but modest drop of the signal when the NBI is turned

off at 1.63 s, explained by the relatively long slowing down time τs ' 60 ms of the fast ions,
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Appendix A. Survey FIDA diagnostic on TCV

while the background neutrals (donors for the CX reaction) remain unaltered. The rapid

response of the poloidal signal, in contrast, is ascribed to the sudden depleting of the donors

from NBI, indicating that the active FIDA signal is the dominant component for this system.

The TRANSP code [233] was used to calculate the neoclassical fast ion distribution function,

employing the NUBEAM package for modelling the NBI deposition and TORAY for ECRH-

ECCD. A synthetic spectrum is then computed from the resulting distribution function through

the Monte Carlo FIDA simulation code FIDASIM [234], accounting for the diagnostic LOS

geometry, and then compared to the measurements. The passive FIDA emission is estimated
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Figure A.4: Synthetic spectra for (a) toroidal-DNBI and (b) poloidal-NBI FIDA systems.

using the background neutral density from the FRANTIC code [235].

The output of FIDASIM for the L-mode, low density ne ' 2 · 1019 1/m3 and high electron

temperature Te ≤ 4 keV, discharge #53783 is shown in figure A.4, for the toroidal and poloidal

systems. The estimated passive emission (blue) in the toroidal system is clearly dominating

the FIDA signal (note the logarithmic scale), the active signal from DNBI (red) being almost

one order of magnitude lower. The simulated spectra for the poloidal system, in contrast to the

DNBI result, confirms that the active signal from NBI is stronger than the passive, permitting

an easier reconstruction of the fast ion distribution profile.

A good match of the synthetic spectrum with measurements is obtained assuming a relatively

long particle confinement time τp ' 14 ms and anomalous fast-ion transport χa = 0.5 m2/s.

Using these parameters also the predicted (from TRANSP) toroidal beta and loop voltage agree

with the experimental measurements. This leads to an estimated NBI heating efficiency of

15% of the nominal beam power in low density plasmas, ascribed to strong fast-ion CX losses

that competes with the fast-ion slowing down at these low plasma densities. These losses are

caused by a high background neutral density in TCV, compared to other machines, hypothesis

supported by both the toroidal FIDA and the CNPA measurements.
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A.3 Conclusions

A survey FIDA system exploiting the spectrometer designed during this thesis, permitted

the first FIDA measurements on TCV during the first MST1 campaign. Employing multiple

systems, with viewing lines on both the DNBI and NBH, enabled a complete characterisation

of the FIDA signal, characterised in TCV by a strong passive component.

A detailed analysis of the FIDA spectra and of CNPA data confirmed the presence of high

background neutral densities together with an anomalous fast-ion transport, resulting in

substantial CX losses and so in low NBI heating efficiency (at low density and high Te ).

From the results of the survey FIDA systems the design of a more sophisticated FIDA diagnostic

is under development, with toroidal and poloidal viewing lines observing the NBI, potentially

enabling a phase-space tomographic reconstruction of the fast-ion distribution and a better

understanding of the anomalous transport mechanism. Some of the initial data from this

work was published at the 2016 IAEA in Japan [236] and on PPCF [229].
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B Details on line shapes

This appendix performs a detailed description of the CX emission line shape, explaining the

typical approximations used for interpreting the CXRS measurements.

B.1 Emissivity in the coronal model

The spectral emissivity ελ [ph/s/m3/sr/Å] due to CX line emission of the impurity ions, de-

scribed by the distribution function fi (xi,vi), with a donor fd (xd,vd) can be calculated, in the

coronal approximation (assuming all atoms are in their unexcited ground state), considering

that the number of photons emitted (per unit time, volume and solid angle) in the wavelength

range dλ around λ is:

ελdλ= Bt

4π

∫
dvd

∫
dvi⊥ fd (vd) fi (vi) |vd −vi|σC X (|vd −vi|)d vi∥ (B.1)

where parallel and perpendicular directions for velocities are with respect to the LOS direction,

and σC X [m2] is the cross section for the CX process that populates the upper level of the

emitted line. Bt is the branching ratio for the transition. This is usually stated in coronal

models by the equation for the radiant flux per unit volume Ii→k [ph/s/m3] for the transition

i → k:

Ii→k = Ai→k n∗i = Ai→k∑
j Ai→ j

n1 nd 〈σ1i v〉 = Bi→k n1 ne 〈σ1i v〉 (B.2)

where the excited population density n∗i [m−3] is calculated from the ground level population

n1 through the direct CX rate coefficient q1i = 〈σ1i v〉. The bracket for a quantity A(v) represent

the integral:

< A >=
∫

A(v) f1(v) fd (v)d v3∫
f1(v)d v3

∫
fd (v)d v3

(B.3)

The branching ratio for the transition Bi→k is simply the contribution to radiative de-excitation
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from spontaneous decay, given by the Einstein coefficient Ai→k , to the total decay rate consid-

ering all the possible transition
∑

j Ai→ j , i.e. it’s the ratio: Bi→k = Ai→k /
∑

j Ai→ j .

The relation between the parallel velocity and the wavelength is

λ−λ0 =
λ0

c
vi∥ (B.4)

dλ= λ0

c
d vi∥ (B.5)

with λ0 [Å] the rest wavelength of the considered transition.

If the donors are neutrals of a neutral beam, their distribution function for each energy

component can be described by a Dirac delta function in velocity space

fd (xd,vd) = nd (xd)δ (vd −ud) (B.6)

and equation B.1 reduces to (for each energy component)

ελdλ= Bt nd

4π

∫
dvi⊥ fi (vi) |ud −vi|σC X (|ud −vi|)d vi∥ (B.7)

Equation B.7 shows that even for the case of a perfectly mono-energetic neutral beam, the line

shape (i.e. the spectral emissivity) can significantly deviate form the impurity velocity distri-

bution function if the term [|vd −vi|σC X (|vd −vi|)] vary significantly in the range of collision

energies. We can express the relative velocity vr = |ud −vi| as function of the wavelength:

vr = |ud −vi| =
√

(vi⊥−ud⊥)2 +
(

c

λ0
(λ−λ0)−ud∥

)2

(B.8)

and, using the variable λ instead of vi∥, recast equation B.7 in the form

ελdλ= Bt nd

4π

∫
dvi⊥ fi (vi⊥,λ) vr σC X (vr )

c

λ0
dλ (B.9)

We consider now a thermalised population of impurity, its distribution function follows the

Maxwell-Boltzmann velocity distribution function:

fi (vi) =
ni(

2πσ2
i

) 3
2

e
− (ui−vi)2

2σ2
i (B.10)

with ni the impurity density, ui the rotation velocity, or bulk impurity velocity, and σi the

standard deviation of the Gaussian, that is linked to the impurity temperature by the equation

(in SI units)

σ2
i =

kb Ti

mi
(B.11)
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B.1. Emissivity in the coronal model

with kb the Boltzmann constant [J/K], Ti [K] the impurity temperature and mi [kg] the impurity

mass. The condition of small variation of the term |vr σC X (vr )| is then met for low enough

impurity temperatures. The replacement of the parallel velocity with the wavelength gives:

fi (vi⊥,λ) = ni(
2πσ2

i

) 3
2

e
− (ui⊥−vi⊥)2

2σ2
i e

−
(

ui∥− c
λ0

(λ−λ0)

)2

2σ2
i (B.12)

and using the definitions for the central wavelength λ1 and spectral standard deviation σλ:

λ1 = λ0

(
1+ ui∥

c

)
(B.13)

σλ = σi
λ0

c
=

√
kb Ti

mi

λ0

c
(B.14)

form equation B.12 we get:

fi (vi⊥,λ)
c

λ0
= ni(

2πσ2
i

) 2
2

e
− (ui⊥−vi⊥)2

2σ2
i

1(
2πσ2

λ

) 1
2

e
− (λ−λ1)2

2σ2
λ (B.15)

Equation B.9 can be solved numerically for a generic distribution function fi (vi), but usually a

Maxwellian distribution (B.12) is assumed and the following approximations are used:

vr = |vi −ud| ' |ui −ud| = vr,app (B.16)

σC X (|ud −vi|) ' σC X
(
vr,app

)
(B.17)

which allow an analytical solution to the integral in the form of a Maxwellian distribution:

ελ(εI ,λ1,σλ) = εI(
2πσ2

λ

) 1
2

e
− (λ−λ1)2

2σ2
λ (B.18)

where the constant εI is the line total emissivity [ph/s/m3/sr]. Its value depends upon the

impurity and donor density and the CX cross section at the beam velocity:

εI =
Bt

4π
ni nd vr,app σC X

(
vr,app

)
(B.19)

Since the relative velocity is unknown, the additional following approximation is commonly

applied:

vr,app ' |ud| (B.20)
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Figure B.1: Errors in the temperature ∆T (a and c) and rotation ∆v (b and d) induced by
neglecting cross section effects for selected LOS angles to the normal of the NB.

B.2 Cross section effects

The consequence of the approximations B.16 and B.17 were tested by solving numerically

equation B.9 and comparing with the analytical solution B.18. Both functions were evaluated

and then fitted with Bevington’s Gradient Expansion Algorithm [94], i.e. the same algorithm

used in the standard CXRS data analysis. The analytical solution is found to converge to the

parameters input test value (Ti and vi ) which implies that the difference between the apparent

values obtained from B.9 and the input values represent the error in the measurements

introduced by the approximations B.16 and B.17.

These errors are termed ’effect due to the energy dependence of cross section’ in [61, 76].

Figure B.1 shows the errors in temperature∆T and rotation∆v induced by the approximations

B.16 and B.17. The effect on velocity is present only when the LOS has a non vanishing

projection in the beam direction (angle 6= 0), while the error in the temperature is always

present.

This effect, considering all the LOS geometry of the CXRS systems, is negligible for typical TCV

plasma parameters and is therefore neglected in the standard CXRS analysis.
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Figure B.2: Graphical representation of the coronal, the CR and the Boltzmann models applied
to a 3 energy level atom. Straight lines are used for collisional transitions, wavy lines for
radiative transitions.

B.3 Emissivity in the collisional radiative model

The collisional radiative model represents the most comprehensive model available in atomic

physics [237]. It takes into account simultaneously all the collisional and radiative excitation

and de-excitation processes. A graphical representation of CR model is shown in figure B.2,

together with a representation of the coronal and Boltzmann models for comparison. In

the coronal model, valid at low collisionality, only direct collisional excitation and radiative

de-excitation are considered, while in the Boltzmann model, valid at high collisionality, only

collisional processes need to be considered.

A similar derivation as in section B.1 of the emissivity can be performed in the CR model, by

substituting the CX direct excitation cross section with the effective cross section calculated

by the model. The dominant processes that modify the emission are the redistribution of the

energy levels within the n-shell (l-mixing) and the radiative cascade from upper levels. The

resulting line shape is still described approximatively by the Gaussian of equation B.18 but

with a modified total emissivity εI−C R :

εI−C R = 1

4π
ni nd qe f f (ud ,ne ,Te ,B) (B.21)

where qe f f is the effective emission coefficient for the transition, that depends also upon

plasma parameters and the background magnetic field.

The description above assumes a single line emission from a transition n → n′. The L-S

coupling removes the energy degeneracy in l developing a fine structure for the atomic levels

that leads to multiple transitions (nl → n′l ′) with slightly different wavelength (multiplet

emission). The line emission is therefore a sum of Gaussian functions of the form B.18

having different central wavelength λ1,l but still the same variance. The fine structure is not

resolved by CXRS spectrometers, and since a sum of closely spaced Gaussian functions is

approximatively Gaussian, its effect on the line shape is a broadening σλ→σλ−tot and a shift

in the central wavelength λ1 →λtot of the total signal, that depends on plasma parameters.
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Taking into account the different contributions due the donor excited level k for each beam

energy component (index b) the total CX emissivity can be written as:

εtot =
∑
k

∑
b

∑
l
ελ(εI−C R,k,b,l ,λ1,l ,σλ) (B.22)

where the emissivity εI−C R,k,b,l reads:

εI−C R,k,b,l =
1

4π
ni nd ,k,b qe f f

k,l (B.23)

where nd ,k,b is the density of donors at level k of beam’s energy component b and qe f f
k,l is the

effective emission coefficient for the transition (nl → n′l ′) from donors at excited level k.

The spectral radiance LLOS [ph/s/m2/sr/Å] measured by a diagnostic LOS is then:

LLOS(λ) =
∫

LOS
εtot (λ, s) d s (B.24)

The CXRS analysis in TCV employs equations B.24 and B.22 to calculate the impurity den-

sity from radiance measurements, accounting for the four beam energy components b =
(1,2,3,4) → [E E/2 E/3 E/18] and for the ground and first exited donor levels k = (1,2).
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C Beam excited population

The program ADAS 310 is used to calculate Rn1 the ratio of excited (level n) to ground (n = 1)

neutrals of the beam. It calculates the excited population structure by solving the statistical

balance equation:∑
n′>n

[
An′→n +Ne q (e)

n′→n +Np q (p)
n′→n +N (i mp)q(i mp)

n′→n

]
Nn′+

+
∑

n′′<n

[
Ne q (e)

n′′→n +Np q (p)
n′′→n +N (i mp)q(i mp)

n′′→n

]
Nn′′+

+Ne N+α(r )
n +N 2

e N+α(3)
n +NH N+α(cx)

n +
∫

u(ν)Bk→ndk =

=
{ ∑

n′>n

[
Ne q (e)

n→n′ +Np q (p)
n→n′ +N (i mp)q(i mp)

n→n′

]
+

+
∑

n′′<n

[
An→n′′ +Ne q (e)

n→n′′ +Np q (p)
n→n′′ +N (i mp)q(i mp)

n→n′′

]
+

+Ne q (e)
n→ε+Np q (p)

n→ε+N (i mp)q(i mp)
n→ε +

∫
u(ν)Bn→k dk

}
Nn (C.1)

where Nn is the density of the beam’s atom in the excited state n, Ne the electron density,

N+ the ionized beam’s atoms density, Np the density of plasma hydrogen nuclei and NH the

density of neutral atoms in the plasma other then the beam’s. The collective rate coefficients

q are used to include the effects of electron collisional excitation (q (e)
n′′→n and q (e)

n→n′) and

de-excitation (q (e)
n′→n and q (e)

n→n′′), ion collisional excitation and CX (q (p)
n′′→n and q (p)

n→n′) and

de-excitation (q (p)
n′→n and q (p)

n→n′′), and similar for the impurity, Carbon in this case, and qn→ε

denotes the rate coefficient for ionization due to electrons q (e)
n→ε, ions q (p)

n→ε and impurity

q(i mp)
n→ε . α(r )

n , α(3)
n and α(cx)

n are the radiative, three-body and CX rate coefficients respectively.

A and B are the Einstein coefficients and u(ν) the radiation field energy density. Equation C.1

assumes statistical population for the l states within each n state and it is solved with single

state resolution up to the level n = 20, for higher states a condensed representation is used up

to the level n = 110. It is also assumed that the ions and electrons are thermalised, Ti = Te .

The output of the program ADAS 310 are the Saha-Boltzmann deviation factors bn and the
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Appendix C. Beam excited population

normalized populations αn , that satisfy the following relationships:

Nn = N (S)
n bn (C.2)

bn = F (1)
n

N1

N+
+F (2)

n +F (3)
n

NH

Ne
(C.3)

αn = Nn

bn N+
= N (S)

n

N+
(C.4)

where N (S)
n is the Saha-Boltzmann population for the level n, F (1)

n , F (2)
n and F (3)

n are the con-

tributions to the corrector factor bn due to excitation processes, free-electron capture and

CX respectively. To evaluate the ratio Rn1 = Nn
N1

of the beam’s donors for CXRS, only the F (1)
n

contribution is needed, as explained in [238], and enters the equation:

Rn1 =αn ∗F (1)
n (C.5)

The program ADAS 310 was used to generate a lookup table, with the parameters shown in

table C.1, that is used to compute Rn1 for a plasma within the studied parameter range (and

DNBI energies). In figure C.1 the ratio R21 is shown as function of the beam energy, Te , ne

and Ze f f . The four main beam energy components, namely full, one half, one third and one

eighteenth of the nominal energy E f ul l = 5.0 ·104 [eV] are shown with dashed lines, with the

corresponding averaged value, weighted with the nominal beam energy fraction fn (expressed

as density fraction). The measured beam energy current fraction is fc =[0.584 0.095 0.291 0.03],

and is calculated from the total extracted current Jtot :

Jtot =
∑
k

Jk (C.6)

with the current value Jk for the energy fraction k given by

Jk = fck Jtot = q vk nk (C.7)

where q [C] is the fundamental electrical charge, vk [m/s] the velocity of component k and nk

[m−3] its density. From the relationships

fck Jtot = q vk ntot fnk (C.8)

quantity range units
Te 10−3 104 eV
ne 1010 −5 ·1015 cm−3

Ze f f 1−5 -

Beam energy 103 −5.55 ·104 eV/amu

Table C.1: Parameters used in the program ADAS 310 to generate the lookup table for the
estimation of the excitation fraction.
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Figure C.1: Ratio R21 of excited to ground beam neutrals as function of: (a) neutral beam
energy, (b) electron density, (c) electron temperature, (d) Ze f f (only Hydrogen and Carbon).
The reference full energy is 50 keV/amu.

where fnk is the density fraction for beam energy component k, we can find:

fnk = Jtot

ntot

1

q vk
fck ∝ fck

vk
(C.9)

and the beam energy density fractions are fn =[0.433 0.10 0.373 0.094].

The ratio R21 has a maximum for temperature Te ' 100 eV and increases with the density,

almost following a power law (linear in the logarithmic plot of figure C.1-(b)). The dependence

on Ze f f is linear, as shown in figure C.1-(d). An insensitivity of the ratio R21 to the beam

energy is noticeable, the values are close for all the beam energy components, allowing the

application of the weighted ratio for all the plasma cross section, and neglecting the differential

attenuation of beam energy components (higher at lower energy). The dependence on Te

and ne is not negligible and local values, from experimental measurements, are necessary to

evaluate the population ratio. Notice that the ratio of excited n = 2 to ground level neutrals for

typical TCV parameters (Ti = 500 eV, ni = 5 ·1019 m−3, Ze f f = 2.5) is R21 ' 0.005.
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D Spectrometer description

This appendix is devoted to a theoretical description of the lens spectrometer, with the aim of

understanding the performance and transmission properties.

D.1 Equations and conventions

Formulas and conventions used in the description of the spectrometer (and in the functions

on the SPC computational cluster LAC) are explained. The angles measured from the grating

normal (α0 incidence optical axis angle, β0 diffraction optical axis angle and θ scan angle) are

shown in figure D.1, with the positive direction defined in the counter-clockwise direction

(top-view). In the figure these angles are all negative (α0 < 0 , β0 < 0, θ < 0 and |β0| < |θ| < |α0|).

The angle φ, called half-included angle, is positive defined and is half the angle between the

incident direction and diffracted direction. The following relations are easily verified:

θ = 1

2
(α0 +β0) (D.1)

2φ = β0 −α0 (D.2)

θ = α0 +φ=β0 −φ (D.3)

The grating equation is

λ= n d

m
cosγ (sinα+ sinβ) (D.4)

where λ is the radiation wavelength [Å], α is the angle of incidence (the subscript 0 refers to

the optical axis, without it a generic beam is considered), β is the angle of diffraction, γ is the

tilt angle in the vertical direction of the light beam with respect to the optical axis, n is the

air refraction index (n = 1.00027 is assumed), d is the grating groove spacing (measured in

[Å/groove], corresponding to d = 107/G for the grating groove density G [groove/mm]) and m
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Appendix D. Spectrometer description

is the diffracting order. The rule to distinguish the sign of the diffracting order is the following

β > −α positive order: m > 0 (D.5)

β = −α mirror configuration: m = 0 (D.6)

β < −α negative order: m < 0 (D.7)

and is shown in figure D.2 for negative α. For the EDGE spectrometer configuration the

diffracting order is negative, m =−1 (see figure D.1).

The components of a lens-based spectrometer (figure D.3) are:

• Entrance slit;

• Collimating lens;

• Diffraction grating;

• Focusing lens;

• CCD detector.

The collimating lens (a.k.a. first lens, or lens n.1) has a focal length f1 and a diameter D1 (both

measured in [mm]). Similarly the focusing lens (a.k.a. second lens, or lens n.2) has a focal

length f2 and a diameter D2.

The commercial SRL Nikon lenses used for the EDGE spectrometer are composed of 12 ’simple’

lenses and the focal length is defined in the lens specs, f = 200 mm (it is measured from the

rear nodal point, which is next to the diaphragm). D is then the diameter of the bigger (frontal)

lens, D = 100 mm, resulting in an f-number f# = f
D = 2.

A generic point in the object plane (plane of the entrance slit) is represented by the coordinate

(x1, y1), with the x coordinate in horizontal direction (that is the dispersion direction) and the

y coordinate in the vertical direction. Similarly a point in the image plane, where the CCD

is located, has coordinate (x2, y2). The positive direction for the x coordinate follows by the

definition of the angle sign convention, from the relations:

α = α0 + tan−1
(

x1

f1

)
(D.8)

β = β0 + tan−1
(

x2

f2

)
(D.9)

and is shown in figure D.4, valid for both the object and image planes. The positive x direction

points to the left, as seen from the lens position, or in general as seen by the grating position.
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D.1. Equations and conventions

Figure D.1: Angles definition: in red incident optical axis and its angle with the grating normal
α0, in green diffracted optical axis and its angle with the grating normal β0. The bisector
divides the angle between the incident and diffracted optical axis in two equals angles, named
half-included angle, φ. Also shown is the scan angle θ, the angle between the grating normal
and the bisector. The positive direction is counter-clockwise as viewed from the top.

Figure D.2: Diffracting order definition.
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Appendix D. Spectrometer description

Figure D.3: Spectrometer basic components. The object and image planes are also shown.

Figure D.4: Positive x direction: pointing to the left both for the object and image planes, as
seen from the lens.

Figure D.5: The image produced by the EDGE spectrometer (see figure D.3) of an object is
flipped in both horizontal and vertical directions in the chosen reference system, i.e. image
viewed from the last lens towards the screen (or CCD sensor). Notice that with the usual
optical reference system (i.e. viewing the image from behind the screen) only the vertical
direction would be flipped, due to the grating that behaves as a mirror.
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D.1. Equations and conventions

The positive y direction is the ascending vertical direction in both the planes, so that:

tanγ= y1

f1
= y2

f2
(D.10)

Notice that this is not the typical definition of reference system used in optics, since the image

of a single lens in this coordinate system is reversed only in the vertical direction, and not in

the horizontal one, while in the usual reference system both direction would be flipped.

The main spectrometer parameters are defined as follow:

• Horizontal magnification, relating the entrance slit width Wsl i t [mm] with the width of

its image in the image plane (on the CCD) W ′
sl i t

Mhor =
W ′

sl i t

Wsl i t
= f2 cosα

f1 cosβ
(D.11)

• Vertical magnification, relating the entrance slit height hsl i t with the height of its image

in the image plane (on the CCD) h′
sl i t

Mver =
h′

sl i t

hsl i t
= f2

f1
(D.12)

• Reciprocal linear dispersion [Å/mm]

∂λ

∂x2
= d n

m f2
cosγ cosβ cos2(β−β0) (D.13)

which is one of the most important quantities for a spectrometer. It measures how

squeezed together the wavelengths are on the sensor;

• Resolving power

R = λ

δλ
= n

λ
WLU X

∣∣cosγ
∣∣ ∣∣sinα+ sinβ

∣∣ (D.14)

where δλ is the smallest difference in wavelengths that can be detected and WLU X is the

illuminated width of the grating (it can be smaller than the grating width Wg r ). This is

the theoretical value, but resolution is often limited by diffraction;

• Throughput or étendue [m2 sr]:

Ge = AΩ (D.15)

characterizes the ability of an optical system to accept light. Here A is the area of the

limiting element (entrance slit for a spectrometer) andΩ the solid angle of acceptance

for an incoming beam. The main purpose of the EDGE spectrometer was to increase
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Appendix D. Spectrometer description

the CXRS system throughput with respect to the legacy systems, to improve the photon

statistics. An increase of one order of magnitude in the system étendue permitted the

unprecedented accurate measurements presented in this thesis.

• Spectral bandpass (or spectral line-width) [Å], calculated for the central wavelength

∆λl i ne =
d n

m

Wsl i t

f1
cosα0 (D.16)

which depends on the horizontal magnification and on the dispersion of the instrument.

It determines the instrumental function of the spectrometer, since monochromatic light

entering the slit forms an image on the sensor having this width. To resolve features

of a wavelength size ∆λ, the spectral bandpass must be smaller than that: ∆λl i ne <∆λ.

It should be noted that the minimum limit for the spectral bandpass δλ is set by the

resolving power, hence decreasing the entrance slit width to improve (i.e. decrease)

the spectral bandpass only works above this value. On the other hand a high resolving

power is only possible in conjunction with a small spectral bandpass. This argument

encourages the reduction of the slit width, however, reducing the entrance width reduces

the system throughput, i.e. the quantity of light transmitted by the spectrometer, that

can result in inaccurate measurements. Optimising the measurements usually means

to reach a good trade-off between spectral bandpass and throughput.

• Wavelength range on the sensor [Å]

∆λr ang e =
d n

m

WD

f2
cosβ0 (D.17)

with WD the width of the detector in [mm].

It’s worth notice that, with this conventions, the image of an object for the EDGE spectrometer

design is flipped both in the horizontal and vertical direction (see figure D.5).

The spectral image of a vertical slit on the sensor is approximatively parabolic, due to the

dependence of the dispersion on the tilt angle γ for non axial rays. By expanding the grating

equation D.4 for a wavelength λc , centered at an angle βc for γ= 0, the following equation

describing the slit image curvature can be found [93]:

∆x2 '
n d λc

2m f2

sec2
(
βc −β0

)
cosβc

(∆y2)2 (D.18)

The slit curvature must be considered in the spectrometer wavelength calibration and in the

diagnostic design. A strong slit curvature can degrade the instrumental function (IF) quality

of the spectrometer when combined with pixel binning. It is possible to design curved slit in

order to obtain a straight slit image, but the correction is only exact at a single wavelength,

limiting the usability of the spectrometer.
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Parameter Value Parameter Value
Angle θ -40.131 deg Angle φ 10 deg

f1 200 mm f2 200 mm
Grating width Wg r 138 mm Grating height 118 mm
Groove density G 2400 groove/mm Diffraction order m -1
Slit width Wsl i t 0.1 mm Slit height hsl i t 8 mm

Distance Z1 380 mm Distance Z2 380 mm
Horizontal Vertical

magnification Mhor 0.74 magnification Mver 1
Resolving Wavelengths
power R 3.312 105 range ∆λr ang e 147 Å

Spectral bandpass ∆λl i ne 1.33 Å or 4.6 pix
Slit max. curvature 0.083 mm or 5.2 pix

Reciprocal
linear dispersion 18 Å/mm or 0.288 Å/pix

Table D.1: Edge spectrometer parameters at central wavelength 529 nm.

The wavelength in (x2, y2) as function of x1, y1, θ, φ and all the other spectrometer parameters,

as well as the quantities mentioned above, are calculated (on LAC) by the function grat-

ing_lambda.m. The results for the EDGE spectrometer configuration are shown in table D.1.

D.2 Spectrometer transmission

It is of fundamental importance studying how the light propagates inside the spectrometer, in

order to estimate and maximize the transmission efficiency, particularly at the target working

wavelengths. The overall transmission is the product of the lens transmission, the grating

transmission and the spectrometer’s geometric transmission.

The lens transmission coefficient Tlens(λ) can be estimated by the number of elements in the

lens or measured directly. The diffraction grating transmission coefficient Tg r a(λ) is usually

provided by the manufacturer. The following analysis of the geometric transmission TG (λ) of

the spectrometer assumes that the losses are engender from the geometrical mismatch of the

light ray with the various components (vignetting).

The object is a point source in the position (x1,y1) characterised by a numerical aperture N A,

so that the cone of light emitted by the object has an half angleΨ= sin−1(N A/n). The lenses

are represented by a simple thin lens with focal length f1 and f2 respectively. The geometric

transmission is defined as:

TG (λ) =
Sover− f 2

Stot− f 2
(D.19)

where Stot− f 2 is the area of the light beam, of wavelength λ, projected on the second lens’s

surface plane without considering any vignetting, and Sover− f 2 is the same quantity, but

considering vignetting due to all the spectrometer components.
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D.2.1 Lens-grating distance

The distances between the grating centre and the two lenses has to be minimized in order to

improve the geometrical transmission, as discussed in the next section. The solution of this

simple but tedious geometrical problem is:

Z1 = 1

4

1

tanφ
(D1 +D2)− 1

4
tanφ (D1 −D2) (D.20)

Z2 = 1

4

1

tanφ
(D1 +D2)− 1

4
tanφ (D2 −D1) (D.21)

where Z1 and Z2 are the requested distances.

These are the closest theoretical positions for optimising transmission, but taking into account

the mechanical constrains these distances for any real device are usually longer, and those

values should be used for the computation of the transmission.

D.2.2 Beam propagation

To calculate the areas in equation D.19, a coordinate system is defined with the origin in

the object plane, at the optical axis. The x coordinate is defined as above in the dispersion

direction, positive when pointing towards the left as seen from the grating, the y coordinate in

the ascending direction, and the z coordinate coinciding with the optical axis (see Figure D.6

and Figure D.7). We follow the beam propagating in the z direction. The light beam area, i.e.

the projection of the beam in the plane perpendicular to the optical axis, will be generically

described by an ellipse of equation:[
x −x0(z,β)

]2

r 2
x (z,β)

+
[

y − y0(z)
]2

r 2
y (z)

≤ 1 (D.22)

where x0 and y0, the coordinate of the centre of the ellipse, depends on the position on the

axis z. x0 is also function of the angle β. rx and ry describe the extent of the beam in the x and

y directions.

As the beam propagates, 4 zones are identified:

• Zone 1 (0 < z ≤ f1): the beam’s area is a circle centered at (x0 = x1, y0 = y1) and increasing

in radius with z, due to the divergenceΨ.

• Zone 2 ( f1 ≤ z < f1 +Z1−mod ): the circular shape (in the optical axis reference frame) is

constant, i.e. perfect beam collimation is assumed. The shape in the beam reference

frame is elliptic. The centre translate both in x and y directions.

• Zone 3 (z = f1 +Z1−mod ): the beam is “reflected” by the grating (with diffraction angle
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D.2. Spectrometer transmission

β) and is stretched in the x direction (horizontal magnification), becoming elliptic.

• Zone 4 ( f1 + Z1−mod < z ≤ f1 + Z1−mod + Z2−mod ): the beam’s cross section remains

elliptic, while the centre translates in the x direction (for light with diffraction angle

β 6=β0 ) and keep translating in the y direction.

where the quantity Z1−mod , the distance in z direction from the first lens to the point of

intersection of the beam with the grating, is different from Z1 due to the tilt of the beam with

respect to the optical axis for a source with initial position x1 6= 0 (see Figure D.7 and Figure

D.8). From Figure D.8 the following equations can be verified:

Z1−mod = Z1 −x1

(
1− Z1

f1

)
cos(α−α0)

sinα0

cosα
(D.23)

The quantity x0G = x0( f1+Z1−mod ), the horizontal displacement of the beam calculated at the

grating-beam crossing point zG = f1 +Z1−mod in the first lens optical axis reference system is:

x0G = x1

(
1− Z1

f1

)
cos(α−α0)

cosα0

cosα
(D.24)

while this distance in the second lens optical axis is:

x0Gβ0 = x1

(
1− Z1

f1

)
cos(α−α0)

cosβ0

cosα
(D.25)

Similarly for Z2−mod we have:

Z2−mod = Z2 −x0Gβ0 tanβ0 (D.26)

The light beam propagating in the spectrometer is then described by the following equations,

where any vignetting effect is neglected. In the x direction:

x0(z,β) =


x1 Zone 1

x1 − (z − f1) x1
f1

Zone 2

x0Gβ0 +
[
z − ( f1 +Z1−mod )

]
tan(β−β0) Zone 3-4

(D.27)

rx (z,β) =


z tanΨ Zone 1

f1 tanΨ Zone 2

f1 tanΨ cos(α−α0)
cosα Zone 3 (on grating!)

f1 tanΨ cos(α−α0)
cosα

cosβ
cos(β−β0) Zone 4

(D.28)
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Figure D.6: View of the spectrometer y − z plane for a source point with position (x1 = 0,h).

in the y direction:

y0(z) =
{

y1 Zone 1

y1 − (z − f1) y1

f1
Zone 2-3-4

(D.29)

ry (z) =


z tanΨ Zone 1

f1 tanΨ Zone 2

f1 tanΨ Zone 3 (on grating)

f1 tanΨ Zone 4

(D.30)

The surface of the collimating lens Slens1 is described in the optical axis reference system as:

Sl ens1 =
{(

x, y
)

: x2 + y2 ≤ (D1/2)2} (D.31)

the surface of the grating Sg , in the optical axis reference system, is:

Sg = {(
x, y

)
: |x| ≤Wg r /2 cosα0, |y | ≤ hg r /2

}
(D.32)

it’s worth noting that in this reference system the horizontal extent of the beam is

rx−oa = f1 tanΨ
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Figure D.7: View of the spectrometer x − z plane for a source point with position (x1,h = 0).
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Figure D.8: Sketch for calculating Z1−mod .

that is the one used in the computations, while in the reference system of the beam is

rx−beam = f1 tanΨcos(α−α0)

and in the reference system of the grating is

rx−g r ati ng = f1 tanΨ
cos(α−α0)

cosα

as specified in equation D.28 for Zone 3. The surface of the focusing lens Slens2 is

Sl ens2 =
{(

x, y
)

: x2 + y2 ≤ (D2/2)2} (D.33)

The surface of the beam passing the collimating lens Sover− f 1 is then:

Sover− f 1 = Stot− f 1 ∩Slens1 (D.34)

where Stot− f 1 is the surface of the beam without vignetting at position z = f1, as described by

equations D.27, D.28, D.29 and D.30. Then the surface is translated in both x and y directions as

the beam reaches the grating, this is the surface Svi g−g , that takes into account the vignetting

of the first lens. The surface without vignetting is translated to the surface Stot−g . The part of

the beam that is reflected by the grating Sover−g is:

Sover−g = Svi g−g ∩Sg (D.35)

The shape of the diffracted beam is described by the points of Sover−g but stretched in the

horizontal direction:

Sover−ag (β) =
{(

x, y
)

:

(
x

rx (Zone 2)

rx (Zone 4)
, y

)
∈ Sover−g

}
(D.36)
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Figure D.9: Theoretical geometrical transmission of the EDGE spectrometer for a scan in the
angle θ from −27°to −79°. The transmission

as described in equation D.28, that explicitly depends on β. Here is where we pass from the

first lens optical axis reference system to the second lens one, and that’s the reason why the

center of the beam passes from x0G to x0Gβ0 . The same procedure is applied to Stot−g to

obtain Stot−ag (β), the beam surface after the grating without considering vignetting. Then

both Sover−ag and Stot−ag are translated to obtain Svi g− f 2 and Stot− f 2, the surfaces at the

focusing lens. The part of the beam that passes through the second lens is:

Sover− f 2 = Svi g− f 2 ∩Slens2 (D.37)

which completes all the elements needed to compute TG from equation D.19.

The program Get_geometrical_transmission.m performs these calculations, the results are

shown in Figure D.9 for the EDGE spectrometer (parameters of table D.1), and a scan in the

angle θ, from θ =−27°to θ =−79°. The overall tendency for the transmission is to decrease

with increasing wavelength (larger angles), due to the grating tilt, effectively limiting the

spectrometer operation to wavelengths < 8000 Å. This limit in wavelength depends on the

Bragg angle, that is determined by the grating groove density G . This explains why we chose

a 2000 l/mm grating for the FIDA optimised spectrometer. The shape of the transmission

coefficient at a fixed angle θ, calculated for the spectrometer spectral range, strongly depends

on the θ value (see figure D.9) as vignetting of the light beam depends on the details of the

propagation path, mostly determined by θ.

D.2.3 Lens transmission

The nikon lens transmission coefficient as function of wavelength Tni kon(λ) has been experi-

mentally measured, the results are shown in Figure D.10. The blue line is the experimentally
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Figure D.10: Nikon lens transmission coefficient as function of wavelength. Experimental
results in blue, in red values used in modelling. Discrepancies due to poor photon statistics
below 3800 [Å].

measured transmission coefficient, while the values of the red line are used to model the lens

transmission. The discrepancies at wavelengths below 3800 Å are due to a strong background-

stray light, that invalidates the measured values, the model values are extrapolated values. A

transmission coefficient of ' 0.8 is measured for most of the visible spectrum, which results in

a transmission of ' 0.64 for a lens spectrometer configuration. Aspherical single lenses with

anti-reflection coating [239] (typical transmission ' 0.98) can be employed to further improve

the transmission efficiency, if needed, but at the cost of image quality and resilience in spectral

scans. This was tested and confirmed in the optimised FIDA spectrometer. Note that the

transmission coefficient is measured with low-divergence beams to decouple the effect of

vignetting from transmission losses due to reflections and absorption, but in experimental

applications vignetting can affect strongly the total light transmission, particularly for objects

emitting off-axis (see figure D.6).

D.2.4 Grating transmission

The grating transmission coefficient Tg r ati ng (λ) is shown in Figure D.11, as supplied by the

manufacturer.

D.2.5 Theory-experiment comparison

The theoretical predicted values can be compared to the experimental measurements if the

spectral radiance of the light source is known. The nominal spectral radiance Lsour ce (λ) of the

calibrated Labsphere source, available at SPC, is shown in Figure D.12.

The theoretical photons rate (number of photons per second Nph−T h) collected by a pixel of
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Figure D.11: Grating transmission as function of wavelength.
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Figure D.12: Labsphere nominal spectral radiance.

the CCD sensor, for an input slit of width equal to the demagnified pixel size, is:

Nph−T h = Lsour ce (λpi x ) Gpi x ∆λ TG (λpi x ) Tg r ati ng (λpi x ) T 2
ni kon(λpi x ) (D.38)

where ∆λ is the wavelength range on the pixel and Gpi x is its étendue :

Gpi x = hpi x

Mver

Wpi x

Mhor
Ω (D.39)

with hpi x the pixel height, Wpi x its width andΩ the solid angle of the incident beam

Ω=π (N A)2 (D.40)
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Figure D.13: Comparison between the theoretical predicted photon rate and the observed
photon rate.

where N A = mi n(N Asour ce , N Aspectr ometer ) is the smallest numerical aperture between the

source and spectrometer. If the input slit is larger than Wpi x /Mhor the light of the neighbour

pixels spreads to the considered pixel, increasing the counts proportionally. It is sufficient

to divide the experimental number of photons by the input slit size in pixel units to correct

for this effect. This procedure is valid for Wsl i t ÀWpi x , for Wsl i t comparable or smaller than

Wpi x a convolution of the spectrum with the instrumental function is required.

The results are shown in Figure D.13 for a scan in the angle θ, from θ =−27°to θ =−79°for the

experimental data and the theoretical prediction. The overall transmission is well described by

the model, but there is a significant discrepancy in the shape at each fixed scan angle. In the

experimental profile the vignetting at the sensor edge is much more pronounced than in the

model. This is due to the simple lens assumption of the model, since the real lens vignetting is

considerably more complex. Nevertheless the description of the spectrometer transmission is

satisfactory and was taken into account for the spectrometer optimisation.

D.3 Conclusions

In this appendix a comprehensive description of the lens-based spectrometer design was

reported. The major parameters of interest in spectroscopy are illustrated and the model for

the transmission analysis explained. A posteriori comparison of the modelled transmission

with experimental measurements validated the procedure as an approximated description, for

a detailed transmission analysis a more accurate description of the Nikon lenses is required.

In particular, for the minimum lens’ f-number f# = 2, strong vignetting is observed for external

beams, reducing the effective f-number, probably a choice of the constructor to optimise

resolution in that region. With the single aspherical lenses this vignetting is strongly reduced
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and transmission is flatter and reaches higher values, thanks to the anti-reflection coating.

This improves overall transmission at the expense of lower peripheral resolution. Furthermore

a single lens cannot be apochromatic, resulting in the need of fine tuning of the spectrometer

at each wavelength change. These considerations must be taken into account when designing

a spectrometer for any particular purpose.
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E Smearing correction and reflections

In this appendix smearing and reflection effects are investigated to better assess the EDGE

system performance. Here it is considered smearing only the signal generated by the photo-

electrons produced during the frame transfer, and hence erroneously attributed to a different

pixel, i.e. frame transfer smearing. There are potentially other smearing mechanisms, the

charge transfer smearing and blooming. The former is due to a defective charge transfer,

i.e. for CTE<1 (see section 2.2.2), and can minimised with a suitable VSS. The latter consists

in charges leaking from one pixel to the neighbours pixels when the potential well limit is

reached, but this effect is limited in recent anti-blooming chips and therefore neglected in the

following.

E.1 Smearing correction

The data analysis of the legacy CXRS systems neglected CCD smearing effects. Smearing

effects increase as the integration time approaches the CCD frame-transfer time and they

cannot be neglected when there is a large difference (≥ 1 order of magnitude) among ROIs

brightness. The consequence of neglecting this effect were studied repeating three time the

same target TCV discharge while changing the EDGE CXRS system setup. The main plasma

parameters for these three shots, 56244, 56245 and 56247, are shown in figure E.1. The stronger

influence of smearing is expected for the LOS viewing the SOL, where the measured brightness

can be orders of magnitude lower than in core LOS and the slit image curvature reach the

maximum distance. In shot 56244 core LOS were masked, only the light coming from the

8 outermost LOS could reach the CCD, preventing this source of smearing and allowing an

accurate SOL CXRS measurement. In shot 56245 the seven outermost LOS were masked, in

order to measure directly the smearing of the core LOS on the masked ROIs. Shot 56247 is

used as reference, with the standard CXRS EDGE setup (i.e. no masking).

The result of applying the data analysis without correction is shown in figure E.2 for the L-mode

phase and in figure E.3 for the H-mode phase. In L-mode the brightness difference between

all the ROIs is less than an order of magnitude, therefore the smearing effects are not expected

to be strong. The agreement of measurements for shots 56244 (only SOL LOS) and 56247 (full
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Figure E.1: Comparison of plasma parameters for shots 56244, 56245 and 56247. (a) Ip , (b) Te ,
(c) Dα and (d) ne .

LOS set) confirms this hypothesis. In H-mode the discrepancy of all the systems suggests that
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Figure E.2: Comparison of (a) poloidal velocity,(b) Ti and (c) ni for shots 56244 (red-core LOS
masked), 56245 (black-SOL LOS masked) and 56247 (blue-no LOS masked), at time 1.105 s,
during L-mode phase. The smearing is negligible and the measurements agree.

the smearing becomes non negligible. There is agreement for shots 56245 and 56247 in the

core region, where smearing is expected to be negligible with respect to the actual signal, while

all the three shots disagree in the SOL region. The difference in the calculated velocity can be

explained by smearing: its increase in shot 56245 with ρ in the SOL, where the signal is purely

due to smearing, is due to the curvature of the slit image, that changes the pixel-wavelength

relations for each track, while the smearing signal remains at the same horizontal pixel for

all the tracks. The velocity calculated for shot 56247, where both the smearing and the actual

signal are present, is consistently between the correct (pure) signal of 56244 and the pure
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smearing of 56245, weighted by the relative intensity of the two components. The temperature

profiles are explained similarly, they are comparable for both the pure signal and smearing

(56244 and 56245), while there is an increase of temperature in the SOL for shot 56247 due

to the increase in the separation of the two components. There is an intensity ratio (directly

related to the calculated density) of ' 2 between the true signal 56244 and the smearing signal

56245, even though this last shot had a higher density (see figure E.1). The sum of the two

components (signal and smearing) measured separately in 56244 and 56245 is consistent with

the measurements in 56247.
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Figure E.3: Comparison of (a) poloidal velocity,(b) Ti and (c) ni for shots 56244 (red-core LOS
masked), 56245 (black-SOL LOS masked) and 56247 (blue-no LOS masked), at time 0.755 s,
during the first H-mode phase. The discrepancy in the outer LOS at ρ > 1 is due to smearing
effects.

E.1.1 Smearing correction algorithm

It is assumed that the light reaching the CCD is constant in time (stationary source) and that

no light is reaching the sensor outside the ROI.

The intensity (or more precisely the radiant flux) Icl (i ) [counts/s or ph/s] of light falling on

the track (or ROI) i pollutes the other ROIs during the frame transfer, this effect is separate for

each column, i.e. it works only in the sensor vertical direction. Since the intensity is assumed

constant in time, the contamination of the other ROIs is proportional only to the transfer time

and the intensity of the polluting track. The correct (i.e. clean spectra) number of counts (or

photons) for the track i is then:

Ccl (i ) = Icl (i )∆Te f f (i ) (E.1)

where the effective integration time ∆Te f f is the time between 2 camera triggers ∆TACQ

corrected by the transfer time. If track l is composed by nv p vertical pixels and the frame shift

rate is vs [s/pix], the transfer time for the track ∆Tshi f t (l ) is:

∆Tshi f t (l ) = nv p (l ) vs (E.2)
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the total transfer time, considering only pixels belonging to a ROI, is then

∆Tshi f t−tot =
ntr∑
l=1
∆Tshi f t (l ) (E.3)

and the effective integration time for track i is:

∆Te f f (i ) =∆TACQ −∆Tshi f t−tot +∆Tshi f t (i ) (E.4)

The total counts Ctot (i ) for track i obtained from the readout of the sensor, for a fixed horizon-

tal pixel index, are then:

Ctot (i ) = Icl (i )∆Te f f (i )+
ntr∑

l=1 l 6=i
Icl (l )∆Tshi f t (l )+kbg (i ) (E.5)

where kbg (i ) is the background counts level for track i . In matrix formalism the equation can

be written as:

Ctot−k = Ctot −kbg = Mtot−k Icl (E.6)

where Ctot−k is the background corrected counts vector. The matrix Mtot−k adds the smearing

and performs the time integration to the clean intensity (column) vector Icl [counts/s]. It is

composed by the tracks shift and integration times:

Mtot−k (i , j ) =
{
∆Te f f (i ) if i = j

∆Tshi f t ( j ) if i 6= j
(E.7)

The solution of equation E.6 is simply:

Icl = Mtot−k \Ctot−k (E.8)

and the smearing-free clean spectrum in counts (or photons) is:

Ccl = Icl ∆Te f f (E.9)

All the parameters entering Mtot−k are known from the camera acquisition parameters, hence

from the measured smeared spectrum Ctot−k it is possible to calculate the smearing-free

spectrum Ccl .

The use of a stationary source is a strong assumption, particularly when the timescales of the

phenomenon under study are comparable with the diagnostic integration time, therefore an

experimental verification of the algorithm viability is necessary.
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E.1.2 Smearing correction test

In order to verify the reliability of the smearing correction algorithm the acquisition setup

of the EDGE system was modified for shot TCV 56245 by blocking the light coming from

the SOL ROIs (i.e. LOS from 1 to 7). The resulting readout counts of these masked ROIs are

then originate from photoelectrons generated by the unobstructed LOS that reached the

masked tracks by smearing. The smearing pattern for the CVI line calculated through the

algorithm was fitted with a Gaussian function and compared to the fit of the measured data.

The comparison is shown in figure E.4 for the fitted line intensity, width and position. The

three fitting parameters are in agreement confirming the correctness of the algorithm.
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Figure E.4: Comparison of predicted-calculated (blue) and measured (red) smearing effect
for the CVI line in TCV shot 56245. The (a) intensity, (b) line width σ and (c) position are in
agreement.
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Figure E.5: Comparison of (a) poloidal velocity,(b) Ti and (c) ni for shots 56244 (red- core
LOS masked), 56245 (black - SOL LOS masked) and 56247 (blue - no LOS masked) after the
application of the smearing correction algorithm. The profiles are consistent and in agreement
for ρ < 1.05, confirming the correctness of the algorithm.

The result of the analysis of shots 56244, 56245 and 56247 with smearing correction are shown

in figure E.5. The improvement in the profile agreement for the 3 quantities, particularly the

density, demonstrates that the previous discrepancies were due to smearing effects and that

the correction algorithm is properly implemented. However the smearing subtraction cannot

completely correct the signal, if the smearing signal is order of magnitudes higher than the

active CX signal, a strong influence of the smearing signal on the measurements remains

after the correction, as it is the case for measurements in the far-SOL, ρ ≥ 1.05. The situation

becomes worse as the signal intensity fluctuates during the frame transfer (e.g. for strong fast
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events such as ELMs).

The unphysical smearing-free results (see figure E.5) in the SOL temperature profile, that

increases with the distance from the LCFS, and in the density profile, that flattened to a

constant value, are assessed in the next section.

E.2 Wall reflection

The application of the smearing correction algorithm allowed a consistent profile reconstruc-

tion from the similar shots 56244, 56245 and 56247 (figure E.5), but a critical assessment of

the physical admissibility of the results reveals important issues. An increase in impurity

temperature outside the LCFS and the flattening of the density in the same region was highly

unexpected, where an exponential decay of both quantities is usually assumed [18].

Three possible sources of the measured “active” signal were here identified:

1. direct active CX signal due to the interaction of the DNBI with the studied impurity.

2. reflection of the active CX signal (coming from the core region) on the wall tiles and

metallic parts that intersect the CXRS system LOS.

3. reflection of the active CX signal in the periscope-input optics.

Considering the unphysical results, the first source has been neglected (on the basis that it is

improbable) as the dominant term, leaving the reflection of the active CX signal (from another

plasma region than the DNBI-LOS intersection) either by the wall or the input-optics, as the

main signal source.

A simple model that assumes Lambertian reflection was used to verify the level of pollution

in the EDGE system LOS due to the reflection of the active signal on the wall. The beam is

modelled as a cylinder of length Lb and radius rd =Wb/2, where Wb is the DNBI FWHM ' 8

cm. The emissivity profile of the active signal along the DNBI is estimated from the radiance

profile measured by SYS1 and SYS2 divided by the intersection length of the DNBI with the

systems LOS. The cross section area of the beam is Ab =πr 2
d . The radiant fluxΦw−i n impinging

on an area Aw of the wall is:

Φw−i n =
∫

Lb

ε(R) AbΩb(R)dR (E.10)

where the solid angleΩb subtended by the element Aw of the wall is:

Ωb ' Aw cosδ

r 2
w

(E.11)

and the angle δ between the normal to the tile n̂ and the distance of the emitting element

to the tile ˆrw is δ= θb −γ. The angle θb is the angle between ˆrw and R̂ and γ is the angle of
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Figure E.6: Sketch of the model used for reflection calculation, with geometrical definitions.

the tile with the vertical. Figure E.6 shows a sketch of this model. The radiant intensity of the

reflected light is:

Iout =Φw−i n
Rg r cosθL

π
(E.12)

with the reflection coefficient of graphite Rg r ' 0.3 [240] and θL the angle between n̂ and the

LOS. The radiant fluxΦw−out of the reflected light collected by the optical fibre of a LOS is

Φw−out =
∫
ΩL

Iout dΩ' Iout ΩL (E.13)

and the corresponding radiance LL is

LL = Φw−out

Go f
(E.14)

with Go f the étendue of the optical fibre. Here we are implicitly using Aw as the area of the

wall from which the LOS is collecting the reflected light. The conservation of étendue gives

Go f = Ao f Ωo f = Aw ΩL cosθL and the radiance reads

LL = Rg r

π
Ab

∫
Lb

ε
cosδ

r 2
w

dR (E.15)

Figure E.7 shows the radiance profile measured by SYS4 in the SOL region (the LCFS is at

RLC F S = 1.1 m) for both L-mode and H-mode phases. Colours represents different shots

for which the periscope insertion depth into the TCV vessel Lp was changed. Shots 56244
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and 56247 (blue and cyan) are at the standard (reference) position Lp = 0, a displacement

towards the plasma core is represented by a positive value. In shot 56443 (green) Lp =−37.7

mm (outermost setup), in shot 56432 (yellow) Lp = −30.7 mm and in shot 56448 (orange)

Lp =−18.5 mm. The black profiles are the radiance expected from the model. The expected
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Figure E.7: Radiance of the SOL LOS of SYS4 in (a) L mode and (b) H mode. Shots 56244 and
56247 (blue and cyan) Lp = 0, 56443 (green) Lp =−37.7 mm ,56432 (yellow) Lp =−30.7 mm,
56448 (orange) Lp =−18.5 mm. The black profiles are the expected reflected radiance.

radiance is highly sensitive to the position of the reflection area throughΩb , which is calculated

assuming a vessel simplified geometry.

There is a factor ≥ 10 discrepancy in the radiance for the LOSs that have the intersection on

the ceiling. The expected radiance is too low, a possible explanation is that for these angles

the specular reflection, that is neglected in the model, could be the dominant term on the tile

reflection. The expected radiance reaches values comparable with the measured radiance only

for LOSs that intersect the external vertical wall close to the DNBI position, corresponding to

R ' 1.14 m in the EDGE mapping (figure E.7).

The measured radiance profiles are characterised by a steep region and a plateau region.

The dominant signal of the steep region is the direct active CX signal, while in the plateau

region the reflected signal is dominant. The plateau region extends up to the LCFS in H-

mode, while in L-mode it’s displaced outwards in the SOL. Some radiance profile features

are detectable in this region: the spike of the outermost LOS in shots 56443 and the bump

at R = 1.143 m for shots 56432 56448 and 56443. The position of the bump in the measured

radiance is consistent with the maximum of the tile-reflected signal. They are present in both

L and H mode, although in H mode they are more distinguishable, as it is expected from a

reflected signal coming from the confined region, where the brightness in H mode increases.

This is a strong argument in favour of the reflection-origin of the signal in the SOL LOS of

SYS4, although a direct experimental verification is not feasible without in-vessel hardware

modifications (in the planning).

The radiance base-level in the plateau region may originate from reflections in the input optics.
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E.2. Wall reflection

The vacuum tight window is not anti-reflection coated, resulting in a reflection coefficient

(2 air-glass surfaces) ' 8%. Considering the amount of light entering the periscope from

the aperture, only a fraction of the reflected light is required to explain the plateau base-

level, which is only a few % of the core signal. Upgrading the periscope window with an

anti-reflection coated glass could confirm or disproof this hypothesis and would, in any case,

be an excellent precaution for the future.

Covering the CXRS LOS-tiles intersection surfaces with anti-reflection/absorbing materials

and the replacement of the periscope window are two essential steps for reaching the EDGE

diagnostic full potential.
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