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Abstract
Semiconductor nanowires are interesting building blocks for a variety of electronic and opto-

electronic applications, and they provide an excellent platform to probe fundamental physical

effects. For the realization of nanowire based devices, a deep understanding of the growth

mechanism and the nanowire properties is required. In this thesis we investigate gold-free

growth of InAs(Sb) nanowires and their properties. Nanowires are grown by molecular beam

epitaxy on GaAs(111)B substrates.

In the first part of this thesis we demonstrate the growth of InAs and InAs1−x Sbx nanowires

and show that polytypism can be suppressed by the incorporation of antimony. The electric

properties of InAs(Sb) nanowires are studied by electrical measurements and by Raman

spectroscopy, and a higher electron mobility is found for defect-free InAs0.65Sb0.35 nanowires

compared to InAs nanowires. We also investigate surface passivation using aluminium oxide.

The oxide layer not only serves as passivation layer but it can also be used as gate-dielectric

for top-gated field-effect devices.

The second part of this thesis is dedicated to the nanowire growth direction and orientation

with respect to the substrate. We analyze the existence of tilted nanowires on (111)B substrates,

and demonstrate that in most cases they are a result of 3D twinning at the early stages of

growth. In addition, also a few unconventional crystalline directions are observed. The ratio

of tilted nanowires can be tuned by the growth conditions and substrate preparation. This

allows to achieve either all vertical nanowires or a high density of tilted nanowires, whichever

is desired for a certain application. Our results also shed light upon the growth mechanism of

InAs nanowires, since 3D twinning is associated with the presence of a droplet.

Being able to control the formation of tilted nanowires is important, but for certain applica-

tions it is also desired to modify the growth direction during growth. For example topological

qubits based on Majorana Fermions require junctions and networks. In the third part of this

thesis we show a new approach to change growth direction. For this, InAs nanowires are

annealed in vacuum in order to create indium droplets. The droplets first form on the top facet

of the nanowires and then slide down onto the nanowire side facets. These droplets can act as

catalyst-particle, and re-initiation of growth results in L-shaped nanostructures. Merging of

these nanostructures constitutes a new approach for the formation of nanowire networks.

Key words: III-V semiconductors, nanowires, molecular beam epitaxy, crystal structure, poly-

typism, twinning, growth direction, surface passivation, atomic layer deposition, electrical

properties
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Zusammenfassung
Halbleiter Nanodrähte sind interessant als elektronische und optoelektronische Bauteile

und sie bieten eine ausgezeichnete Platform, um grundlegende physikalische Effekte zu

messen. Für die Realisierung von Bauteilen ist ein tiefes Verständnis für das Wachstum und

die Eigenschaften der Nanodrähte notwendig. Diese Dissertation behandelt das Wachstum

und die Eigenschaften von InAs(Sb) Nanodrähten, welche mittels Molekularstrahlepitaxie

ohne Hilfe von Gold epitaktisch auf GaAs(111)B Substraten gewachsen werden.

Der erste Teil dieser Dissertation behandelt das Wachstum von InAs und InAs1−x Sbx Nanodräh-

ten. Wir zeigen, dass Polytypismus durch das Hinzufügen von Antimon unterdrückt werden

kann und die elektrischen Eigenschaften der InAs(Sb) Nanodrähte werden mit elektrischen

Messungen und mit Ramanspektroskopie untersucht. Fehlerfreie InAs0.65Sb0.35 Nanodrähte

zeigen eine höhere Elektronenmobilität als InAs Nanodrähte. Weiterhin untersuchen wir die

Möglichkeit der Oberflächenpassivierung mittels Aluminiumoxid. Das Oxid kann neben der

Passivierung auch als Gate-Dielektrikum verwendet werden.

Im zweiten Teil steht die Wachstumsrichtung und Orientierung der Nanodrähte im Fokus. Wir

zeigen, dass schiefe Nanodrähte auf (111)B Substraten hauptsächlich auf dreidimensionale

Zwillingsbildung im Anfangsstadium des Wachstums zurückzuführen sind. Zusätzlich finden

wir auch Drähte in unkonventionellen Kristallrichtungen. Das Vorkommen von schiefen

Nanodrähten kann durch die Wachstumsbedingungen und Substratpreparation beeinflusst

werden. Je nach Anwendung kann somit eine Probe mit komplett geraden Drähten, oder mit

einer hohen Dichte an schiefen Drähten gewachsen werden. Zusätzlich beleuchten unsere

Ergebnisse den Wachstumsmechanismus von InAs Nanodrähten, da die dreidimensionale

Zwillingsbildung mit der Existenz eines Indium Tröpfchens in Verbindung steht.

Für bestimmte Anwendungen ist es erwünscht die Richtung während des Wachstums zu

ändern. Topologische Quantenbits basierend auf Majorana Fermionen benötigen zum Beispiel

verzweigte Nanodrähte. Im dritten Teil zeigen wir ein Vorgehen, um die Wachstumsrichtung zu

ändern. Hierfür werden InAs Nanodrähte unter Vakuum aufgeheizt bis sich Indium Tröpfchen

bilden. Die Tröpfchen beginnen an der Spitze der Nanodrähte und rutschen dann auf die

Seitenflächen. Wird das Wachstum nun fortgesetzt, bilden sich L-förmige Nanostrukturen,

welche durch Zusammenwachsen die Bildung eines Netzwerkes ermöglichen.

Stichwörter: III-V Halbleiter, Nanodrähte, Molekularstrahlepitaxie, Kristallstruktur, Polytypis-

mus, Kristallzwilling, Wachstumsrichtung, Oberflächenpassivierung, Atomlagenabscheidung,

elektrische Eigenschaften
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Résumé
Les nanofils semi-conducteurs sont intéressants pour des applications électroniques et opto-

électroniques, et servent de plateforme pour étudier des effets physiques fondamentaux. A

cette fin, les mécanismes de croissance et les propriétés des nanofils doivent être compris

et maitrisés. Dans cette thèse nous examinons la croissance de nanofils d’InAs(Sb) et leurs

propriétés. La croissance est réalisée par épitaxie par jets moléculaires sur des substrats en

GaAs(111)B sans utilisation d’un catalyseur étranger.

Dans la première partie nous montrons la croissance de nanofils en InAs1−x Sbx . Nous trouvons

que le polytypisme peut être supprimé par l’incorporation d’antimoine. Les propriétés élec-

triques sont analysées par des mesures électriques et par spectroscopie Raman. Nous trouvons

que la mobilité des électrons des nanofils d’InAs0.65Sb0.35 est supérieure à celle des nanofils

en InAs. De plus, nous étudions la passivation de surface en utilisant de l’oxyde d’aluminium.

L’oxyde peut aussi servir comme couche diélectrique de grille pour des transistors.

La seconde partie concerne la direction de croissance cristalline des nanofils d’InAs et leur

orientation par rapport au substrat. Nous montrons que les nanofils inclinés sur des substrats

(111)B peuvent être expliqués par la formations de macles en 3D pendant les étapes initiales

de la croissance. Nous trouvons aussi des directions cristallines non-conventionnelles. La

formation des nanofils inclinés peut être contrôlée par les conditions de croissance et la

préparation du substrat. Ainsi, il est possible d’obtenir des échantillons avec seulement des

nanofils verticaux, ou avec une haute densité des nanofils inclinés, en fonction des besoins

d’une application. Nos résultats aident aussi à éclairer le mécanisme de croissance des nanofils

d’InAs, puisque la formation de macles en 3D indique la présence d’une gouttelette.

Pour certaines applications, il peut aussi être désirable de changer la direction des nanofils

pendant la croissance. Par exemple, des jonctions ou des réseaux de nanofils sont nécessaires

pour la réalisation de qubits topologiques basés sur les particules de Majorana. Dans la

troisième partie nous démontrons une nouvelle approche pour la formation de réseaux. Dans

ce but, les nanofils d’InAs sont chauffés sous vide jusqu’à la formation de gouttelettes d’indium.

Les gouttelettes commencent à croître à la pointe des nanofils avant de glisser sur les facettes.

Continuer la croissance aves ces gouttelettes donne lieu à des nanostructures en forme de ’L’.

Un réseau de nanofils peut être réalisé en fusionnant plusieurs de ces structures.

Mots clefs : III-V semi-conducteurs, nanofils, épitaxie par jets moléculaires, structure cristal-

line, polytypisme, macles, directions cristalline, passivation de surface, atomic layer déposi-

tion, propriétés électriques
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1 Introduction & Motivation

Nowadays it is hard to imagine life without digital technology. Economics, transportation,

social media, health care, daily communication - everything is based on digital electronics. It

all started in 1947 with the invention of the first solid-state transistor at Bell Labs. Since then,

research has enabled to rapidly decrease the size of electronic elements, going from several

centimeters in size to the 14 nanometer node by Intel in 2014. For the last 50 years, the trend

roughly followed the prediction by Gordon Moore, saying that the transistor density on a chip

would double every 18 months. The scaling allowed to increase performance and decrease

power consumption. To date, transistors in integrated circuits are fabricated by a top-down

approach, meaning that they are defined by a lithography process and etching. When reaching

the few nanometer dimension, this becomes increasingly difficult, since extremely precise

control of dimensions, impurities and doping is required. At those length scales, bottom-up

approaches based on self-assembly of atoms, become more interesting. Bottom-up growth

facilitates the fabrication of three-dimensional electronic devices, and allows for the use of

non-traditional materials. One very promising class of materials are III-V semiconducting

nanostructures. III-V semiconductors offer both optical as well as electronic properties which

are superior to silicon. GaAs for example has a direct band gap with an energy of 1.42 eV at

room temperature, thereby making it attractive for a variety of optoelectronic applications.

InAs and InSb on the other hand show extremely high electron mobilities up to 40000 cm2/Vs

and 77000 cm2/Vs at room temperature [Ioffe17], making them ideal candidates for high-speed

electronic devices.

High-quality III-V semiconductors can be grown in a bottom-up approach by molecular

beam epitaxy (MBE). Since MBE growth is performed under ultra-high vacuum (UHV) con-

ditions, it enables the control of impurity incorporation on a very precise level. Molecular

beam epitaxy allows to grow two-dimensional layers, low-dimensional nanostructures (e.g.

nanowires and nanomembranes), and zero-dimensional quantum dots. Nanostructures give

access to novel properties due to their small dimensions and large surface-to-volume ra-

tio. First of all, nanowires can be very efficient light absorbers. In combination with the

direct band-gap of GaAs, solar cells with the potential to exceed the Shockley-Queisser limit
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Chapter 1. Introduction & Motivation

have been demonstrated [Krogstrup13a]. Nanowire arrays not only allow to achieve higher

efficiencies, but bottom-up growth would also allow to dramatically reduce the material

use of solar cells. Nanowires also act as natural cavities, making them interesting for lasing

applications [Saxena13, Mayer13, Burgess16, Bermudez-Urena17]. In terms of electrical ap-

plications, III-V nanowires are very interesting due to the high electron mobilities, and they

can act as natural channels without the need for localized doping. Free-standing nanowires

therefore allow the fabrication of gate-all-around transistors, which show superior perfor-

mance [Goldberger06, Bryllert06, Tomioka12]. Furthermore, nanostructures facilitate the

fabrication of heterostructures, combining different materials into one structure. While for

two-dimensional heterostructures the lattice mismatch presents a big challenge, in nanowires

the strain can be relaxed radially, allowing to combine materials with relatively large mismatch

dislocation-free [Glas14]. The radial strain relaxation also allows to grow on different substrates

(heteroepitaxy), thereby reducing the need for exotic substrate materials, and facilitating the

integration of III-Vs with current silicon technologies. The fabrication of heterostructures is

an active field of research, for example for the fabrication of single-photon sources [Heiss13].

Recently the integration of a III-V quantum emitter in a silicon based photonic circuit has

been demonstrated [Zadeh16]. III-V heterostructures are also interesting for the realization

of tunnel field effect transistor (TFET) [Ionescu11]. TFETs are a promising avenue to achieve

further downscaling of transistors, since they are expected to show high performance at low

power consumption due to an increased sub-threshold slope and minimized current at the

off-state. It has been suggested that heterostructures showing a broken band-alignment (e.g.

InAs/GaSb) are ideal candidates of tunnel injection, and at the same time one can benefit

from the high carrier mobilities of III-V semiconductors [Ionescu11].

Current electronic technology does not only reach its limitations in terms of size, but there

are also problems which are extremely hard to solve using conventional classical logic: any

problem which requires the calculation of many different possibilities is extremely slow. This

includes for example factoring of big numbers, searching through large datasets, exploring the

properties of new materials, or simulating biological systems. While the difficulty of factoring

big numbers is an advantage for cryptography used in daily life, it would certainly be advanta-

geous to speed up the search for new catalyst materials or high temperature superconductors,

and it would be nice to be able to model complex quantum mechanical systems in order

to understand basic processes in living organisms. With these goals in mind, the quantum

computer shows great promise. A quantum computer is based on qubits which can be in a

superposition state of 0 and 1. This superposition allows a quantum computer to perform

several calculations in parallel, leading to a dramatic speed up for calculations which require

the testing of many different paths. Nowadays extensive research is dedicated to the realization

of a quantum computer. Different types of qubits are being explored, including cold-atoms,

superconducting circuits (Google, IBM), silicon quantum dots (Intel), and topological qubits

(Microsoft, Bell Labs) [Popkin17]. In 2016 IBM presented the realization of five qubits based

on superconducting circuits, and in May 2017 they already presented 16 qubit processor. With

Quantum Experience IBM also offers a platform through which the public can simulate basic
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calculations and run them on their quantum processor [IBM17]. Even though 16 qubits are

not nearly enough for useful computations, those recent advances show great promise for the

technology, and quantum computers have been mentioned as one of the ten break-through

technologies in 2017 [MIT17]. While the realization of IBM’s quantum processors is a great

step forward, scaling the technology is still a big challenge, and each of the qubit architectures

has advantages and disadvantages. In particular for superconducting qubits, problems arise

due to the short lifetime and relatively high error probability. Using topological qubits such as

Majorana zero-modes in nanostructures is expected to offer significant improvement, since

the excitation occurs at two ends of the nanostructure. This spatial separation makes it much

harder to disturb the system and create errors [Beenakker13]. Majorana zero-modes can be

realized by combining a semiconducting material with a large g-factor and high spin-orbit cou-

pling (e.g. InAs and InSb) with a superconductor. While signatures of Majorana zero-modes

have already been demonstrated for the first time five years ago [Mourik12], the implementa-

tion of several such excitations in the same nanostructure, as required for quantum operations,

remains a challenge. Here networks of semiconducting nanostructures show great promise

and are intensively being studied by many groups worldwide.

In order to advance materials which can be used both for the design of novel transistors

and for quantum computation, as well as out of scientific curiosity, bottom-up growth of

III-V semiconducting nanostructures by molecular beam epitaxy is studied in this thesis.

The focus here lies on the optimization of the crystalline quality, as well as control of the

growth direction, both of which are important requirements for the use of nanostructures

for electronic applications. The crystalline quality is important since stacking defects locally

change the band structure, thereby decreasing the mean-free path of carriers and leading to

additional recombination pathways. In this thesis we demonstrate the growth of pure zinc-

blende InAs1−x Sbx nanowires which are practically defect-free. A precise control of the growth

direction is important both for applications where nanowires are contacted in parallel (e.g.

photo detectors and transistor applications) as well as for the growth of nanowire networks.

In the first case it is desired that all nanowires grow in the same direction in order to avoid

leakage pathways. We therefore intensively study the origin of tilted nanowires, discuss the

underlying mechanism, and show how the occurrence of tilted nanowires can be suppressed.

For the formation of nanowire networks it is necessary to have nanowires growing in different

directions. One way to achieve nanowire networks is by changing direction during growth. In

this thesis we show a new approach to change growth direction of nanowires grown without a

foreign catalyst.
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This thesis is divided into five chapters:

Chapter I: Introduction & Motivation

In the first chapter the topic of this thesis is introduced. The project is placed in a wider

scientific context, and the motivation for this field of research is discussed.

Chapter II: Growth and properties of III-V Nanostructures

In the second chapter the growth mechanism and properties of III-V nanostructures are

reviewed. We start with a brief overview of epitaxial growth by molecular beam epitaxy,

and then explain the growth of nanowires in more detail. The rest of the chapter reviews

the properties of InAs nanowires which are relevant for this thesis. In particular we discuss

the crystal structure of self-catalyzed nanowires, the growth direction, and their electrical

properties. We also discuss several techniques to investigate the electrical properties of

nanowires.

Chapter III: Experimental Methods

In this chapter the experimental methods which are relevant for this thesis are presented. We

start by explaining the substrate preparation and growth conditions that were used. Then

we discuss about sample analysis using transmission electron microscopy. In particular we

describe a process to make nanowire cross-sections, and how to measure the composition

using energy dispersive x-ray spectroscopy. In the end we explain the fabrication of electrical

devices based on nanowires, and describe the measurements which were done in this work.

Chapter IV: Results & Discussion

The main results of this thesis are presented in this chapter. Our results include suppression of

polytypism by adding antimony, surface passivation using alumina, understanding the forma-

tion of tilted nanowires, and tuning to growth direction to achieve L-shaped nanostructures.

For every topic we first discuss its motivation and relevance and then present the article which

has been published in peer-reviewed scientific journals.

Chapter V: Conclusion & Outlook

In the last chapter we conclude the topic and present an outlook for further research.
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2 Growth and properties of III-V
Nanostructures

In this chapter, I will first give a general introduction to the growth of III-V materials using

molecular beam epitaxy (MBE), and then describe the growth of nanostructures. I will discuss

the properties of III-V nanowires, in particular focusing on InAs nanowires. This chapter is

by far not exhaustive, it rather focuses on the topics which are relevant for this thesis and

motivates the results which are presented in the publications in chapter 4.

2.1 Epitaxial growth using MBE

Epitaxy comes from the Greek words επι (above) and ταξιζ (in an ordered manner). It is

used to describe the growth of a crystalline material on a crystalline substrate, when there is a

relationship between the two crystals. Several techniques can be used for epitaxial growth. The

most common ones are metal-organic chemical vapour deposition (MOCVD) and MBE. For

MOCVD, the growth is based on metal-organic precursors which decompose on the surface.

The advantage of this technique is that it is more easily scalable than other epitaxy techniques,

and therefore interesting for industrial applications. The drawback is the possibility of unin-

tentional doping of the materials due to incorporation of parts of the organic precursors. MBE

on the other hand is based on the evaporation of pure materials and therefore ensures high

purity. Figure 2.1(a)-(b) shows a schematic representation and a picture of our MBE chamber.

It consists of an ultra-high vacuum chamber, which is kept at a base pressure of 1 ·10−10 Torr

by cryopumps and cryopanels (liquid nitrogen circulating in the reactor walls). Ultra-high

vacuum is an important requirement for MBE growth, not only to avoid unintentional incorpo-

ration of atoms, but also to ensure that atoms which are emitted from a cell can travel almost

ballistically to the substrate. The sample is mounted on a manipulator, which can be heated

and rotated. At the bottom of the chamber ten ports for cells are available. In our MBE system

we have gallium, indium and aluminum effusion cells, arsenic and antimony valved cracker

cells, and silicon and carbon current cells for doping. The antimony cell is relatively new to

our system, and was installed and calibrated as part of my PhD project during the first two

years. Our growth chamber is part of a cluster tool, which is shown schematically in Figure

2.1(c). The cluster tool consists of two growth chambers, one central distribution chamber
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Chapter 2. Growth and properties of III-V Nanostructures

Figure 2.1 – MBE system. (a) Schematic representation of an MBE chamber. (b) Photo of our
growth chamber. (c) Schematic representation of our DCA P600 MBE cluster tool (courtesy of
DCA).

with a robot arm for automatic sample manipulation, one load lock, a storage chamber, a

degassing chamber and a chamber for hydrogen cleaning.

Epitaxial growth differs from other deposition techniques by the epitaxial relationship between

the substrate and the new layer. This is achieved by very slow growth rates, in combination

with heating of the substrate. Exact control of the conditions and substrate morphology allows

diffusion of the incoming atoms on the substrate until they find a lattice site, allowing to

minimize the energy of the material. If the adatoms are not given enough time or energy to

reach their lowest energy position before they are buried by the next layer of material, then

random clusters are formed rather than an epitaxial crystal [Tsao93].

When growing a crystalline layer on top of a crystalline substrate, the lattice constant of the two

materials is an important parameter. The lattice mismatch is defined as (asubst−al ayer )/asubst ,

where asubst and al ayer are the lattice constant of the substrate and the epitaxial layer. A lattice

mismatch will lead to elastic strain in the growing layer. The strain can be relaxed, for example

by forming dislocation having Burgers vectors with a component in the plane of the interface,

by coherent roughening, or by dilatation in the case of nanowires where one end is fixed to the

substrate). For epitaxial growth, the choice of substrate material is therefore critical. Figure

2.2 shows a graph with the band gap energies and lattice parameters for III-V semiconductor

materials. It can be seen that III-Vs offer a variety of band gap energies, but there is also

a significant difference in lattice parameter, which makes it difficult to grow the materials

epitaxially. Nanostructures offer an important advantage for the growth of different III-V

materials, since the interface between the substrate and the nanostructure is very small,
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2.2. Growth of nanostructures

Figure 2.2 – Bandgap energy and lattice constant of III-V materials.

allowing to relax the strain via the surfaces of the free-standing nanostructure [Glas14].

Another critical parameter during the growth of III-V materials is the substrate morphology

and polarity. III-V materials are binary compounds. The smallest indivisible unit is a pair of

one group III atom and one group V atom, also called dumbbell. Therefore certain crystalline

directions of the material are polar, i.e. they can be either group-III terminated or group-V

terminated. When choosing a non-polar substrate material, the nucleation of the seed crystal

can either start with a layer of group III atoms or a layer of group V atoms. A schematic of two

seed crystal with different polarity on a (111) substrate is shown in Figure 2.3(a). In case of

poly-nucleation on the substrate, the merging of seed crystals with different polarity will lead

to the formation of antiphase boundaries, where atoms of the same type are connected as

shown in Figure 2.3(b). For arsenides, antiphase boundaries are electrically active and lead to

a high recombination velocity [Holt96]. On (100) substrates, also the existence of terraces can

lead to the formation of antiphase boundaries, even when the nuclei have the same polarity

[Kunert08].

Figure 2.3 – Growth on non-polar substrates. (a) Schematic representation of polynucleation
where one seed crystal is A-polar and the other one B-polar. (b) Merging of two seed crystals
with different polarity leads to an antiphase boundary.

2.2 Growth of nanostructures

Growth of nanostructures usually requires substrate preparation in order to promote growth

in certain positions and directions and preventing growth otherwise. The first observation
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Chapter 2. Growth and properties of III-V Nanostructures

of nanowire growth was based on using gold as a catalyst particle [Wagner64]. Today, this is

still the most common approach. Metal particles are deposited onto the substrate either by

lithography or by depositing a thin film and then annealing to form separate droplets. The

metal droplets then act as collector and catalyst particles. When they reach supersaturation,

crystalline material precipitates below the droplet. This growth process is called vapour-liquid-

solid (VLS) mechanism and is schematically illustrated in Figure 2.4(a).

Figure 2.4 – Nanowire growth mechanism. (a)-(b) Schematic representation of vapour-liquid-
solid growth and vapour-solid growth. (c) Growth of core-shell nanowires.

While the use of a foreign metal as catalyst allows to grow nanostructures of many different

materials [Wagner64, Yazawa92, Björk02, Thelander03, Krishnamachari04, Borgström07], un-

fortunately, it cannot be excluded that small amounts of the catalyst material get incorporated

into the growing nanostructure. Although the effect of using gold in III-V nanowires is still

controversial, small gold inclusions have been found in silicon and GaAs nanostructures

[Allen08, Bar-Sadan12]. These impurities can have dramatic effects on the optical and elec-

trical properties of the material [Brotherton80, Tambe10]. An alternative approach for the

growth of III-V nanowires is to use a droplet of the group III element as a catalyst particle. In

this case the growth proceeds also via the VLS mechanism shown in Figure 2.4(a), but this time

the droplet consists mostly of the group III element, which then becomes supersaturated with
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2.2. Growth of nanostructures

the group V element. The growth of self-catalyzed GaAs nanowires has been demonstrated

already almost one decade ago [Colombo08], and the resulting nanowires show a very nice

morphology with a gallium droplet on top, as well as excellent properties.

While the VLS growth mechanism is by far the most common, growth can also proceed with a

solid catalyst particle, then called vapour-solid-solid (VSS), or without any catalytic droplet via

the vapour-solid (VS) mode. Figure 2.4(b) shows a schematic of the VS mechanism. Here the

atoms are incorporated directly from the vapour phase or after diffusion along the nanowire

surface, and the growth direction is determined by surface energies. In the case of InAs

nanowires grown without a foreign catalyst, the underlying growth mechanism is debated

extensively, and both evidence for VS [Dimakis11] and for VLS [Grap13] has been reported. It

is also possible that the growth starts with a droplet and then switches to the VS mechanism.

In a recent study by Biermanns et al, the presence of a liquid indium droplet at the early

stages of growth has been associated with the possibility to grow a defect-free wurtzite section

[Biermanns14]. While our results presented in this thesis do not give a complete answer to

these questions, we provide additional insights in publication 2 and 3.

In order to initiate growth of nanowires without a foreign catalyst, the surface properties are

extremely important. In particular the surface energies have to favour the formation of droplets

rather than homogeneous wetting of the surface. This can be achieved for example by coating

the substrate with a thin dielectric layer (e.g. 5 nm of SiO2 on GaAs) [Grap13, Matteini14], or

by using a silicon substrate with a 1 nm thick layer of native oxide [Matteini15, Matteini16]. In

order to have a crystalline relation with the substrate, these approaches rely on the opening

of pinholes in the oxide. The nanowires are then randomly distributed across the substrate.

Control of the nanowire position can be achieved by patterning a thicker dielectric layer for

example by ebeam lithography and etching. This allows to open holes with well-defined

size and distribution across the sample [Vukajlovic-Plestina17]. By choosing the substrate

preparation and the growth conditions carefully, it is possible to achieve growth in all the

pre-defined openings and not elsewhere on the sample. This method has a major advantage

for applications where the distance between nanowires is critical, for example for photovoltaic

applications where the absorption depends on the pitch [Heiss14]. Recently it was also

demonstrated that elongated openings can be used as template to grow nano-membranes

[Tutuncuoglu15], opening a whole new field of research.

Nanostructures are particularly interesting for the investigation of heterostructures. As dis-

cussed above, lattice mismatch is less critical in nanostructures due to the possibility to relax

strain via dilatation permitted by the presence of free surfaces at a distance from the inter-

face [Glas14]. Both axial and radial nanowire heterostructures can be grown. A schematic of

core-shell growth is shown in Figure 2.4(c). First the nanowire core is grown using the VLS

or VS approach, and then the conditions are switched to favour growth on the side facets. In

the case of MBE growth, changing from axial to radial growth usually involves an increase in

group V flux and a decrease in growth temperature. The incoming group III atoms thereby

have less ability to diffuse on the nanowire surface, and get incorporated on the side facets,
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rather than being able to diffuse to the droplet at the tip.

2.3 Crystal structure

A big part of my thesis is dedicated to the analysis of the crystal structure of grown nanowires,

which has a significant impact on their properties. Due to their particular growth mechanism

and their large surface-to-volume ratio, nanowires can exhibit crystal phases that do not exist

in bulk crystals of the same material. For example, the bulk crystal phase of III-arsenides

is cubic zinc-blende (ZB), while in nanostructures also hexagonal Wurtzite (WZ) stacking

can be observed. Figure 2.5(a)-(b) shows a schematic representation of zinc-blende and

wurtzite stacking seen from a <110> zone axis. The two polytypes can be distinguished by

their stacking sequence in the <111> direction, which is A-B-C-A-B-C for ZB and A-B-A-B

for WZ. Nanowires often show a mixture of zinc-blende and wurtzite (called polytypism) and

other stacking defects. A very common defect in zinc-blende crystals is the formation of

a rotational twin, which corresponds to a rotation of 180◦ around a <111> direction. This

results in a stacking sequence of A-B-C-B-A, as shown in Figure 2.5(c). The crystal structure

of a nanostructure can be analyzed by transmission electron microscopy when the crystal

is aligned in a <110> zone axis. High resolution transmission electron microscope (TEM)

images allow to visualize the stacking sequence. Also fast Fourier transform (FFT) images of

the high resolution TEM micrograph and selected area diffraction (SAED) images are useful

to see the difference between zinc-blende, wurtzite und polytypic crystals. Figure 2.5(d)-(f)

show low-resolution TEM micrographs, SAED images, and high-resolution TEM micrographs

of nanowires with zinc-blende crystal structure, wurtzite crystal structure, and zinc-blende

with a rotational twin.

The origin of the formation of WZ in nanowires has been studied by many groups. In particular

the diameter of the nanowire, the supersaturation of the droplet, the contact angle of the

droplet, and the nucleation site (whether or not nucleation occurs at the triple phase line)

have an effect on the crystal structure [Glas07, Krogstrup13b, Jacobsson16]. The ionicity of

the bond and size of the atoms is also expected to play a role. III-V materials have partially

ionic or mixed bonds, and therefore favour WZ stacking, where the third-nearest neighbour

spacing is shorter. On the other hand steric hindrance favours ZB stacking. During growth, the

crystal will adopt the phase which has the lower formation energy, and the contributions from

both effects have to be considered. Comparing the ionicity of different III-V materials, it can

be observed that III-nitrides have the highest ionocity, and III-antimonides the lowest. These

considerations can explain why III-nitrides crystallize in the WZ form, while anitmonides

show ZB stacking [Dick10a]. For arsenides, the formation energy of ZB and WZ seems to be

very similar, therefore leading to the co-existence of ZB and WZ under certain conditions.

As a result of a different band structure, the two polytypes zinc-blende and wurtzite show

different optical and electrical properties, e.g. they have a different band gap, electron affinity,

and effective mass. The possibility to grow both ZB and WZ III-arsenide nanowires of the

10



2.3. Crystal structure

Figure 2.5 – Crystal structure of III-V materials. (a)-(c) Schematic representation of a zinc-
blende crystal, a wurtzite crystal and a zinc-blende crystal with a rotational twin (from a <110>
zone axis). (d)-(f) Low magnification TEM micrograph, SAED image, and high-resolution TEM
micrograph of a ZB nanowire, a WZ nanowire, and a ZB nanowire with a rotational twin.

same material allowed to study and compare the electrical and optical properties the two

polytypes for the first time [Hörmann11, Ketterer11]. For nanowires which show a polytypic

crystal structure, the band alignment between the two materials is important. In the case of

GaAs and InAs, a type-II staggered band alignment is expected, with the electron affinity of

WZ being lower than for ZB. In terms of optical properties the existence of different polytypes

leads to additional recombination pathways, i.e. from the conduction band of a zinc-blende

section to the valence band of a wurtzite section, as observed for GaAs nanowires [Heiss11].

In a controlled way, ZB/WZ sections can also be used to design crystal phase quantum dots

[Akopian10]. In terms of electrical properties, WZ sections can be used as tunneling barriers,

allowing the fabrication of electrical crystal-phase quantum dots [Nilsson16]. These examples

show that the existence of different polytypes in nanowires creates many opportunities, but it

also causes undesired effects if it does not occur in a controlled way.

In the case of gold-catalyzed InAs nanowires, impressive results have been obtained in terms of
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controlling the crystal structure of nanowires [Dick10b, Joyce10, Nilsson16]. For self-catalyzed

nanowires it is more challenging to control the formation of zinc-blende or wurtzite selec-

tively. Pure ZB GaAs nanowire have been demonstrated [Krogstrup10], but self-catalyzed

InAs nanowires always show polytypism [Grap13, Dimakis11]. In publication 1 we discuss the

growth of ternary InAs1−x Sbx nanowires, and show that incorporation of antimony allows to

suppress polytypism.

2.4 Nanowire growth direction and orientation on the substrate

For many applications it is important to achieve full control of the nanowire growth direction

and orientation. If several nanowires are contacted in parallel (e.g. for energy harvesting),

it is desired to have all vertical nanowires, in order to avoid short circuits within the sample.

For other applications, a change of crystalline direction can be advantageous. For example

for quantum computation based on braiding of Majorana Fermions, nanowire junctions and

nanowire networks are a requirement [Alicea11]. Furthermore, certain properties like the

g-factor depend on the crystalline orientation, thereby giving another motivation to achieve a

change of growth direction. Conventionally, III-arsenide and III-antimonide nanowires grow

in <111>B direction and exhibit a hexagonal cross section terminated by {11̄0} facets. The

preferential growth direction and morphology of the nanowires can be understood considering

that 3D crystals adopt the most energetically favourable configuration (equilibrium crystal

shape). For III-arsenide materials {110} surfaces have the lowest surface energy, thereby

favouring the formation of {110} facets in 3D crystals. One should note, that during growth,

the systems is out of thermodynamic equilibrium and also kinetic factors can play a role.

Therefore also other facets can be formed under certain conditions and have been observed

for example in the case of nanomembranes [Tutuncuoglu15].

Considering the preferential growth direction of nanowires, one would expect to observe all

vertical nanowires on a (111)B substrate. However, depending on the growth conditions, also

a significant amount of tilted nanowires can be observed. This finding has been studied exten-

sively in the case of self-catalyzed GaAs nanowires, and it has been found that the existence

of tilted nanowires can be explained by a 3-dimensional twinning process [Uccelli11]. As de-

scribed in section 2.3, rotational twins are commonly observed in III-arsenide nanostructures.

Typically they are found perpendicular to the growth direction, since the structure is growing

layer by layer. However, especially at the early stages of the growth the formation of other {111}

facets which are non perpendicular to the growth direction is possible.

Figure 2.6(a) shows a schematic representation of a seed crystal on a (111)B substrate. All

{111}B planes are highlighted in red. Rotational twins can in principle occurs around all <111>

directions. Figure 2.6(b) shows a secondary seed crystal which presents the orientation of the

crystalline planes after a 180◦ rotation around the [1̄11] direction. The indices of the planes of

the secondary seed crystal are not changed in order to demonstrate the 180◦ rotation. However

the planes are now oriented completely differently with respect to the primary seed crystal
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Figure 2.6 – Schematic of 3D twinning. (a) Cubic representation of a seed crystal on a (111)B
substrate. (b) Secondary seed crystal after a twin around the [1̄11] direction. The cubic model
was adapted from [Tsan17] (courtesy of Youri van Hees).

(and therefore to the substrate). For nanowire growth we are particularly interested in the

orientation of the new {111}B planes, which can be the growth directions of tilted nanowires.

Their direction can be calculated by basic linear algebra, as shown in publication 2. One

should note that on a (111)B substrate, there is one <111>B direction which is perpendicular

to the surface, and there are three <111>A directions pointing out of the substrate at an angle.

All the other <111>B directions are pointing into the substrate. 3D twinning therefore requires

either a twin in a <111>A direction, or it requires a very big seed crystal which allows the

formation of facets oriented towards the substrate. Both options are unfavourable, giving

another reason why typically mostly vertical nanowires are observed.

In the case of InAs nanowires, the existence of tilted nanowires has, to the best of our knowl-

edge, not been studied before. In this thesis we study the existence and orientation of tilted

InAs quantitatively and present that multiple order twinning can explain most of the nanowire

orientations. In addition, a few unconventional growth directions are observed. The calcula-

tions of 3D twinning orientations and our experimental results are presented in publication

2. Understanding the formation of tilted InAs nanowires does not only help to achieve more

homogeneous samples, it also provides additional insights about the initial stages of growth,

since the 3D twinning phenomenon can be associated with the existence of a droplet.

2.5 Electrical properties & surface passivation

InAs and InSb nanowires are particularly interesting for electronic applications due to their

high electron mobilities and low effective mass. The first experimental signatures of Majorana

Fermions in 2012 were based on InAs and InSb nanowires [Mourik12, Das12], and several

other experiments have been reported since then. The results are impressive and give a good

reason to continue optimizing the growth of InAs nanowires. Nevertheless, there are still some

open questions about the basic electronic properties of InAs nanowires. Here we discuss the

topics which are relevant for this thesis.

The electrical properties of a nanowire differ significantly from the bulk material. In particu-

lar InAs nanowires typically do not show electron mobilities above 10000 cm2/Vs [Dayeh10,
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Gupta13] and the exact value depends on the nanowire diameter [Ford09], while the bulk

mobility of InAs is reported to be up 40000 cm2/Vs at room temperature [Ioffe17]. This rela-

tively low mobility in InAs nanowires is attributed to crystal phase mixing and to scattering

at the surface. Recently, it has been shown that the mobility is three times larger for InAs

nanowires with pure crystal phase, compared to polytypic nanowires [Thelander11]. In the

case of InAs1−x Sbx nanowires an increase of mobility has been reported and explained by the

reduction of stacking defects upon incorporation of antimony [Sourribes14]. Apart from the

crystal structure, also surface scattering plays an important role. This not only causes a lower

mobility, but can also explain the large variation of conductivity values and the dependence

on the diameter that can be observed for nanowires of the same material [Scheffler09]. Ad-

sorbates on the nanowire surface or substrate have been reported to dramatically change the

electrical properties of InAs nanowires [Gül15], and hydrogen cleaning has been studied as

a tool to reduce scattering at the surface [Webb15]. The strong dependence of the electrical

properties on the nanowire surface create a need for measurements in vacuum or for passiva-

tion of the nanowire surface, since vacuum measurements are not a long-term solution when

going towards applications.

2.5.1 Fermi level pinning

It is generally assumed that InAs nanowires show n-type behaviour, even without intentional

doping, and it is easy to make ohmic contacts to the material using a variety of metals. This

behaviour can be related to non-intentional doping due to incorporated carbon, but it is more

commonly attributed to the existence of surface states which act as donors and lead to Fermi

level pinning. Figure 2.7 shows a schematic representation of Fermi level pinning due to the

Figure 2.7 – Fermi level pinning in InAs. (a) Donor states at the surface are located in the
conduction band. (b) Electrons are transferred from the donor states into the bulk, leading to
an electron accumulation layer at the surface.

existence of surface states in the conduction band. The theoretical location of the surface

states with respect to the band gap of intrinsic InAs is shown in Figure 2.7(a). In reality the

carriers will move to minimize their energy, leading to band bending at the surface, as shown

in Figure 2.7(b). The Fermi level of the nominally undoped InAs now lies above the conduction

band at the surface, which can explain the n-type behaviour of the nanowires. It also allows

for the fabrication of ohmic contacts, which would otherwise require the electron affinity of

the semiconductor to be larger than the work function of the contact metal.
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Fermi level pinning has been demonstrated for clean (100) and (111) InAs surfaces without

a native oxide [Mead63, Olsson96, Lowe03]. The donor states are related to dangling bonds

at the surface, and their properties depend on the surface orientation and reconstruction.

Therefore it is not clear whether Fermi level pinning also exists in nanowires which typically

have (110) surfaces. For oxide-free (110) surfaces, a dependence on surface defects has

been observed. Defect-free (110) surfaces show no Fermi level pinning [Olsson96, Wildöer97,

Hjort14], while the presence of defects results in the formation of an accumulation layer

[Castleton13]. In the case of nanowire devices, the nanowires are usually covered with a thin

layer of native oxide. With a native oxide, InAs (110) surfaces have been found to show Fermi

level pinning [Halpern12], and has also been predicted theoretically [Weber10]. The position

of the Fermi level is very sensitive to the composition of the oxide at the semiconductor-oxide

interface [Timm11, Webb15]. Considering the strong dependence on the surface preparation

and reconstruction, it is expected that the Fermi level pinning also depends on the material

composition. This has been shown for ternary InAs1−x Sbx nanowires [Thelander12].

2.5.2 Conductivity & Mobility

For a semiconductor, the conductivity and carrier mobility are important characteristics. The

conductivity σ= n ·e ·μe +p ·e ·μh depends on the carrier density of electrons n and holes p,

and on the mobility of the electrons μe and holes μh . Temperature dependent measurements

provide interesting information about the material. The carrier density depends on the

temperature n ∝ e−Ea /kB T , where kB is the Boltzmann constant, T is the temperature and Ea

is the activation energy. The activation energy is related to the bandgap energy in the case

of thermally excited carriers (Ea = Ec −EF = 0.5 ·Eg for undoped semiconductors), but it can

also be smaller than the bandgap energy in the case of dopants, impurities, or trap states. The

exponential relationship shows that a decrease in carrier density is expected for a decrease

in temperature. Figure 2.8(a) shows a schematic representation of the carrier concentration

n of a doped semiconductor (with doping concentration ND ) in dependence of the inverse

temperature 1/T (Arrhenius plot). Three regimes can be observed: At high temperature, the

carrier concentration changes due to excitation across the bandgap (intrinsic carriers). At

medium temperature the carrier density is constant because the dopants are fully ionized and

the energy is not enough to excite intrinsic carriers. And at low temperature freeze-out of the

dopants can be observed.

The mobility depends on the temperature in a more complex way, due to different scattering

mechanisms. The total mobility can be estimated by Matthiessen’s rule

1

μtot al
=∑

i

1

μi
= 1

μphonon
+ 1

μi mpur i t i es
+ 1

μsur f ace
... (2.1)

Figure 2.8(b) shows a schematic representation of the mobility of GaAs [Grundmann16]. The

contributions from different scattering mechanisms are shown. We observe that at high

temperature, the mobility is limited by phonon scattering. Since the phonon density decreases
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Figure 2.8 – Temperature dependence of electrical properties (a) Carrier concentration for
a doped semiconductor. (b) Carrier mobility and the contribution from different scattering
mechanisms. (c) Mobility dependence on the doping concentration. The schematics are
adapted from [Grundmann16].

with decreasing temperature, we observe an increase in mobility. At around 50 K scattering

due to ionized impurities becomes more pronounced than scattering due to phonons, leading

to a decrease in mobility. The temperature dependence of the mobility also depends on the

doping of the material, and typically a stronger temperature dependence is observed for lower

doping, as shown in Figure 2.8(c). From the mobility dependence we can also gain some

information about the scattering mechanism and the carrier location: if the carriers are at the

surface, a higher scattering contribution is expected due to surface effects.

Different techniques can be used to measure the carrier density and mobility of a material.

For nanowires, both electrical measurements and optical measurements are of interest. In

the following sections we provide a brief description of the techniques of electrical measure-

ments, Raman spectroscopy and Terahertz spectroscopy. A comparison and discussion of the

techniques is presented at the end of the section.

Electrical measurements

The basic electrical properties of a semiconductor nanowire can be studied by current/voltage

(I/V) measurements and field-effect measurements. From I/V curves the nanowire conductiv-

ity can be calculated using the dimensions (the cross sectional area A of the nanowire and

length of the device L) measured in SEM images. For the calculation we assume that the

current is uniform throughout the nanowire and the conductivity σ is therefore given by

σ= I

V

L

A
(2.2)

This assumption may not be correct, considering that the carriers may be predominantly on

the nanowire surface due to the Fermi level pinning. However without exact knowledge about

the location of the carriers, this formula still constitutes the most appropriate way to compare

different nanowires.

One way to extract the carrier concentration and mobility is to study the field-effect behaviour

of nanowire devices. A gate voltage is applied either through a highly doped silicon substrate

(back-gate measurements) or via a top-gate or side-gate. Figure 2.9(a) shows a schematic
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of a field-effect measurement with linear current axis for an n-type device. The field-effect

mobility can be calculated by

μ= gm
L2

C

1

Vd s
(2.3)

where gm = (d Id s)/(dVg ) is the transconductance in the linear operating region, L is the

length of the device, C is the nanowire-gate capacitance, and Vd s is the source-drain voltage

[Dayeh07]. The nanowire-gate capacitance needs to be modeled. Bottom-gated devices with

an oxide thickness much larger than the nanowire diameter are typically approximated by a

metallic cylinder on an infinite metallic plate [Dayeh07]. For this design, the capacitance is

given by

C = 2πε0εr L

acosh[(r + tox )/r )]
(2.4)

where r is the radius of the nanowire, and tox is the thickness of the dielectric layer. For

bottom-gated devices a relative dielectric constant εr of 2.25 is used to account for the fact that

the nanowire is not completely surrounded by the gate [Wunnicke06]. It is therefore possible

to compare the mobility of different nanowire devices based on field-effect measurements.

However a quantitative comparison is challenging since measurements typically show strong

hysteresis between the forward and backward sweep of the gate voltage. This is usually

attributed to trapped charges in the gate oxide or changes of the nanowire surface. In views

of this, it is not clear whether the measured mobility describes the bulk of the nanowire or is

rather limited by scattering at the surface (depending on the location of the carriers).

Figure 2.9 – Schematics of field-effect measurements. (a) A linear plot allows to extract the
transconductance gm . (b) A logarithmic y-axis allows to extract the sub-threshold swing.

Another important characteristic of a field-effect measurement is the sub-threshold swing,

which should be as low as possible for an ideal transistor device. Figure 2.9(b) shows a

schematic of a field-effect measurement, where the source-drain current Id s is plotted log-

arithmically on the y-axis and the gate voltage Vg on the x-axis. The sub-threshold swing is

defined as the gate voltage which is needed to change the current below the threshold by one

order of magnitude, and is usually given as mV/dec. For a conduction process limited by the

rate of thermal excitation over an energy barrier, the ideal value is 60 mV/dec.

17



Chapter 2. Growth and properties of III-V Nanostructures

Optical measurement techniques

Apart from electrical measurements, the carrier concentration and mobility can also be

calculated from Raman measurements and terahertz (THz) spectroscopy. These techniques

are interesting because they allow for contact-free measurements, and the analysis does not

depend on the estimation of a gate capacitance. For the nanowires presented in this thesis,

Francesca Amaduzzi (from LMSC) performed Raman measurements, and THz spectroscopy

was done by Jessica Boland (from the Johnston group in Oxford). The complete theory behind

the optical characterization is beyond the scope of this thesis, but the principal ideas are

briefly described here.

1) Raman spectroscopy

For Raman spectroscopy, nanowires are transfered to a silicon substrate wafer. The sample is

illuminated with a laser in the visible range and the inelastically scattered light is measured.

Both light at higher energy (anti-Stokes shift) and at lower energy (Stokes shift) is observed.

The energy shift is related to the vibrational modes in the material and provides information

about the crystal structure, composition and orientation. Furthermore, also information

about the electronic properties, for example the dopant concentration and carrier mobility

can be extracted from Raman measurements [Ketterer12]. Depending on the orientation of

the sample with respect to the laser, only certain modes are allowed. These selection rules

can require special measurement geometries, e.g. measuring the nanowires in transmission

geometry rather than backscattering geometry. This can also be achieved by positioning the

nanowires on trenches [Amaduzzi16].

The basic Raman modes can be understood by looking at the crystal structure of the material

and counting the number of atoms N in the unit cell. The primitive unit cell of a zinc-blende

material contains two atoms. Each unit cell has 3N degrees of freedom, resulting in a total of

six for a zinc-blende material. In a solid there are three modes corresponding to translations,

which are referred to as acoustic phonons. The other 3N -3 modes are related to vibrations and

are referred to as optical phonons. Optical phonon modes can be excited by illumination with

light. Even though the Indian physicist C. V. Raman claimed that he observed the Raman effect

using sunlight [Raman17], typically a laser is used in Raman spectroscopy. The high power of a

laser allows to get sufficient counts to plot a full spectrum in a reasonable amount of time. The

momentum of light is small compared to the Brillouin zone and therefore we probe the modes

at the Γ point. The optical phonons consist of one longitudinal optical (LO) mode and two

degenerate transverse optical (TO) modes. For nanostructures an additional surface optical

mode can be detected [Spirkoska08]. For wurtzite crystals, there are more phonon modes and

their dispersion relation is different, which allows to distinguish the two polytypes. However,

here we limit our description to ZB materials, since for our InAs(Sb) nanowires only ZB modes

were observed. For our work on InAs(Sb) nanowires the Raman modes for ternary alloys are

of interest. Ternary alloys typically show a two-mode behaviour. In the case of InAs1−x Sbx

we therefore expect to see both InAs-like and InSb-like LO and TO modes [Cherng88]. The
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intensity of those modes depends on the the bond fraction in the material, and the energy of

the InAs-like and InSb-like modes is slightly shifted with respect to the energy of the respective

binary compounds. In the case where a heavier Sb atom replaces a lighter As atom, the energy

of the mode decreases. This behaviour allows to extract the composition of a ternary alloy

[Alarcon-Llado13].

We are furthermore interested in extracting information about the carrier concentration and

mobility in our nanowires. For this, the phonon-plasmon interaction can be studied. In a

polar semiconductors like InAs(Sb) the Raman spectra may show additional features due

to the interaction of light with the free carriers. The energy and width of those additional

modes depend on the carrier density. Example Raman spectra are shown in Figure 2.10(a). At

Figure 2.10 – Raman measurements.(a) Schematic of the Raman spectra in dependence of the
carrier density (adapted from [Mooradian66]). (b) Schematic of the Raman shift of the two
coupled modes in dependence on the plasma frequency (adapted from [Tell68]).

low carrier concentration only the LO and TO peaks are observed. When the carrier density

increases, the LO peak broadens and shifts to higher energy. For even higher carrier density

another peak appears at lower energy, and approaches the LO energy for increasing carrier

density. This observation can be explained by phonon-plasmon interaction. Longitudinal

phonons interact with the free charge carriers in the material and two coupled phonon-

plasmon modes with frequencies ω+ and ω− appear. The energy of the coupled mode depends

on the plasma frequency ωp of the carriers in the semiconductor. Figure 2.10(b) shows a

schematic of the energy shift of the two coupled modes in dependence of the plasma frequency.

By fitting the position of the ω+ and ω− Raman peaks in the spectrum, we can therefore

calculate the plasma frequency. The carrier density n is related to the plasma frequency by

ω2
p = ne2

ε0ε∞m∗
e

(2.5)

where e is the charge of the electron, ε0 is the vacuum dielectric constant, ε∞ is the high

frequency dielectric constant, and m∗
e is the effective mass of the electron. The observation

of the coupled modes therefore allows to extract the carrier density. The mobility is related

to the width of the coupled mode peaks and can therefore also be calculated from the same

measurements. More information about the original model developed for GaAs can be found

in [Mooradian66]. The calculations in the case of InAs(Sb) nanowires are described in detail

in the supporting information of publication 1 and in the PhD thesis of Francesca Amaduzzi.
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2) Terahertz spectroscopy

For THz spectroscopy, nanowires are transfered to quartz disks and illuminated with light

in the THz range in transmission geometry. The THz range refers to frequencies between

0.1-10 THz, which corresponds to photon energies of 0.4-40 meV. In a semiconductor the THz

energy corresponds to the excitation energy of phonons, and can induce motion of free charge

carriers. An extensive review about THz spectroscopy can be found in the review by H. Joyce

et al [Joyce16].

The conductivity of a sample in equilibrium can be measured by THz-time-domain spec-

troscopy (TDS). For this, the sample is exposed to a short THz pulse and the transmitted

electric field is plotted over time. Figure 2.11(a) shows an example of a pulse. It is broadband

and typically contains frequencies between 0.1 and a few THz. Upon interaction with the

nanowires, the pulse is absorbed and delayed with respect to the original pulse measured on a

reference sample. The transmission function T (ω) is defined as

T (ω) = Enw (ω)

Er e f (ω)
(2.6)

where Enw (ω) and Er e f (ω) are the Fourier transforms of the electric fields of the pulses going

through the nanowire sample and a reference sample (a quartz disk without any nanowires),

respectively. The transmission function is directly related to the conductivity σ(ω) of the

semiconductor. In the THz regime, the conductivity is a complex quantity, where the real part

is related to the resistance and the imaginary part to the capacitance or inductance. To extract

the conductivity, an ensemble of nanowires is measured, and an effective medium consisting

of the nanowires surrounded by air is considered for fitting the data. The conductivity of the

nanowires can then be obtained by effective medium theory, as explained in Ref. [Joyce16]. A

schematic of the conductivity measured for GaAs nanowires is shown in Figure 2.11(b).

Figure 2.11 – Terahertz measurements. (a) Schematic of a terahertz pulse. (b) Schematic of the
experimental conductivity in dependence on the frequency for GaAs nanowires. Schematic of
the frequency dependence of the conductivity as expected from the Drude model. Figures
(a)-(c) are adapted from [Joyce16].

In order to obtain the carrier density n and mobility μ of the sample, the complex conductivity
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needs to be modeled. The easiest model is the Drude model. Here the conductivity is given by

σ(ω) = ne2

m∗
i

ω+ iγ
(2.7)

where e is the electric charge of the electron, m∗ is the effective mass, and γ= τ−1 is the inverse

of the average time between scattering events. The dc mobility is then given by μ= eτ/m∗.

Figure 2.11(c) shows the conductivity σ(ω) according to the Drude model. Comparing with

the experimental data, one can observe that the Drude model is not sufficient to explain the

measurement. This is due to the finite size of the nanowires, which changes the transport

properties for example by surface scattering and charge accumulation/depletion at the surface.

In order to fit the experimental curves, more sophisticated models are needed. An in depth

explanation can be found in Ref. [Joyce16].

THz spectroscopy not only allows to measure the conductivity in equilibrium, but it also allows

to study the photo-excited conductivity and the carrier lifetime. This is possible by optical

pump terahertz probe (OPTP) spectroscopy measurements. For OPTP spectroscopy, an optical

pump pulse with an energy above the bandgap of the semiconductor is used to photo-excite

carriers, and then the conductivity is measured by a THz pulse, similar to THz-TDS. The

excitation of charge carriers increases the conductivity and thereby reduces the transmission

of the pulse. The change in transmission ΔT = T ON (ω)−T OF F (ω) is given by substracting the

signal of a reference measurement without photo-excitation. The photo-induced change in

conductivity Δσ(ω) can be calculated from fractional change in transmission ΔT /T . Varying

the time between the photo-excitation pulse and the THz probe pulse allows to measure the

decay of the photo-conductivity with time. A detailed discussion of OPTP spectroscopy can be

found in Ref. [Joyce16].

It is interesting to note that in principle one THz-TDS measurement is sufficient to extract the

equilibrium carrier density. However, in practice pump-probe measurements with different

delay times are used to extrapolate the carrier density in equilibrium. Compared to a single

THz-TDS experiment, this approach allows to reduce the measurement error significantly. In

addition, the carrier lifetime can be calculated from the same dataset.

Comparison of electrical and optical techniques

In the previous sections we have presented how to extract the carrier mobility from field-effect

measurements, Raman spectroscopy, and THz spectroscopy. It is interesting to note that

electrical measurements and optical measurements are not necessarily expected to give the

same results. In the case of electrical measurements we measure the field-effect mobility in

the conductive channel of the device. Since the conductive channel is typically located near

the surface, the field-effect mobility is very sensitive to defects and traps at the semiconductor

surface and the interface with the gate-dielectric. In addition, the carrier density in the conduc-

tive channel of the device is typically very high, which further decreases their mobility. Raman
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and THz spectroscopy on the other hand are bulk techniques. The signal therefore includes

a contribution both from the surface and from the core of a nanostructure. Comparing the

mobility extracted from electrical and optical measurements we would therefore expect to

obtain a higher value from optical techniques. This is in agreement with our results presented

in publication 1. Using semiconductor nanostructures for electrical devices, we are limited by

the field-effect mobility, and surface treatment and passivation schemes are desired in order

to approach the bulk mobility.

2.5.3 Surface passivation

As discussed before, the electrical properties of nanowires depend significantly on the sur-

face, and surface scattering offers one possible explanation for the low mobility observed in

nanowires. It is therefore interesting to investigate surface passivation of nanowires.

III-V surfaces form a 2-5 nm thin layer of native oxide when exposed to air. The semiconductor-

oxide interface is typically of poor quality and shows a high density of interface states across

the bandgap. Valence band edge states are typically associated with filled dangling bonds

on arsenic atoms, while empty dangling bonds on group III atoms lead to conduction band

edge states. Furthermore, surface reconstruction can cause strained bond angles, and arsenic

atoms in non-tetrahedral sites can result in both valence band and conduction band edge

states (cf. [Ahn13] and references therein). The McIntyre group has shown that high-quality

dielectrics can be deposited onto III-V materials by atomic layer deposition (ALD) and they

have extensively studied InGaAs/Al2O3 stacks by capacitance-voltage (C/V) measurements.

In order to achieve a high passivation quality, the InGaAs surfaces are capped with a layer

of arsenic after growth. This capping layer prevents oxidation during transfer to the ALD

chamber. The arsenic layer is then evaporated in the ALD chamber, resulting in a clean surface.

In the case of a (100) surface it should ideally be terminated by arsenic-dimers. Alumina is then

grown using trymethylaluminium (TMA) and water as precursors. Starting with TMA allows to

create As-Al-As bonds and thereby restore the tetrahedral geometry of the arsenic atoms. The

aluminium atoms are consecutively oxidized by water, and the alumina growth is continued by

alternating TMA and water exposure until the desired thickness is reached. Exact control of the

decapping temperature and a TMA pre-dosing step have been found to be important in order

to achieve a low interface trap density [Ahn13]. Apart from interface traps, also border traps are

a problem for InGaAs/Al2O3 stacks. Border traps are related to defects in the oxide layer, and

can trap charges that tunnel into the oxide. They can be distinguished from interface traps by

measuring the frequency dispersion of the capacitance in accumulation where interface traps

are not active. Tang et al have shown that the border trap density can significantly be reduced

by lowering the temperature during the ALD growth [Tang15]. Furthermore, it is possible to

passivate both interface and border traps by annealing in a forming gas atmosphere. These

impressive results on high-quality InGaAs/Al2O3 stacks motivated us to investigate passivation

of InAs nanowires using ALD grown alumina.
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To study the possibility of surface passivation, we sent arsenic capped InAs nanowire forests

to the McIntyre group, where the alumina layer was grown by ALD. Electrical devices were

fabricated in order to extract the conductivity of passivated nanowires from I/V curves, and

top-gated field-effect devices were fabricated using the alumina as gate dielectric. In addition,

the electron density and mobility were extracted form Raman spectroscopy. The results are pre-

sented in publication 1. Future work includes Terahertz spectroscopy and C/V measurements,

as discussed in the outlook.
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3 Experimental Methods

In this chapter we present relevant information about substrate preparation and growth

parameters, TEM sample preparation (in particular the fabrication of cross-sections), the

fabrication of electrical devices and electrical measurement procedures employed in this

thesis.

3.1 Nanowire growth

In order to study the growth and properties of InAs(Sb) nanowires we used GaAs(111)B sub-

strates covered with 4-5 nm of silicon oxide. The substrates were first cleaned with buffered

oxide etch (7:1) for 20 s and then a solution of 2 % hydrogen-silsesquioxane (HSQ) and Methyl-

isobutyl-ketone (MIBK). The ratio was 1:10 and the spin-coating speed 6000 rpm for a 4-5 nm

SiO2 thickness. The substrates were annealed at 300 ◦C for 10 min under nitrogen atmosphere

in order to evaporate the solvent. After loading into our DCA P600 MBE systems, the sub-

strates were first heated to 160 ◦C for 2 h in the load-lock and then degassed at approximately

300 ◦C in a dedicated degassing chamber. This procedure ensures that the main growth cham-

ber of our MBE systems remains clean. A typical InAs nanowire growth is then started by

heating the substrate (30 ◦C/min) to the growth temperature of 530 ◦C under arsenic flux of

1.9·10−6 Torr. Simultaneously the indium cell is ramped up to the temperature resulting in a

flux of 1.4·10−7 Torr, which corresponds to a layer growth rate of 0.14 Å/s. After one hour of

ramping/annealing, the growth is started by opening the indium shutter. After the growth

time, the indium shutter is closed and the sample is rapidly cooled down (100 ◦C/min) under

arsenic flux. Finally the arsenic shutter and valve are closed and the sample is unloaded. The

procedure above describes the growth of standard InAs nanowires. For specific samples, the

conditions were changed, e.g. the V/III ratio was varied, or an annealing step for droplet

formation was included. The exact conditions are described along with the results in the

corresponding publications.
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3.2 Surface passivation

In order to passivate nanowires, we first capped them with thick layer of metallic arsenic

immediately after growth. For this, the sample was cooled down to approximately room

temperature (zero heating of the manipulator) and then arsenic was deposited for 30 min

at a flux of approximately 1·10−5 Torr. The resulting arsenic capping layer is amorphous

and prevents the surface from oxidation. Figure 3.1 shows the nanowires at different steps

Figure 3.1 – Alumina passivation of InAs nanowires (a) Top view SEM micrograph (15◦ tilt)
of a standard nanowire sample. (b)-(c) Top view and cross sectional SEM micrographs of
a nanowire sample after arsenic capping. (d)-(e) STEM-HAADF image and EDX map of an
arsenic capped InAs nanowire. (f)-(i) BF-TEM image, STEM-HAADF image, EDX maps of an
alumina passivated InAs nanowire. (j) High resolution TEM micrograph of the passivated
nanowire.

during the passivation process. Figure 3.1(a) shows a top view SEM micrograph (15◦ tilt) of a

standard nanowire without arsenic capping, as a reference. The typical hexagonal shape can

be observed. Figure 3.1(b)-(c) show a tilted top view and a cross-sectional SEM micrograph of

a nanowire sample after arsenic capping. The nanowires now have a round morphology due

the amorphous capping layer. A STEM-HAADF image and an EDX map of an arsenic capped

nanowire are shown in Figure 3.1(d)-(e), confirming the existence of a thick layer of arsenic

around the InAs nanowire. Figure 3.1(f)-(g) show a TEM micrograph and a STEM-HAADF

image of a nanowire after evaporation of the arsenic capping layer and ALD growth of alumina.

It can be observed that the crystalline nanowire is coated with a thin layer. Figure 3.1(h)-(i)

show elemental maps of InAs and aluminium, confirming that the shell contains aluminium.

A high resolution TEM micrograph of a passivated nanowire is shown in Figure 3.1(j). One

can observe the polytypic InAs nanowire and a 11 nm thick amorphous alumina layer around

it. In collaboration with Marta Rossell at EMPA, we also visualized the decapping process by

annealing of arsenic capped nanowires in a TEM. The results are presented in the appendix.
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3.3 TEM sample analysis

The crystal structure and composition are important characteristics that determine the physi-

cal properties of our nanowires. During this thesis the crystal structure of single nanowires

was analyzed using high resolution TEM and selected area electron diffraction. Free-standing

nanowires can easily be transferred to TEM grids, by placing the grid onto a nanowire forest,

and then slightly pressing down and scratching the surface with a Q-tip. The nanowires break

off of the substrate and then lie flat on the carbon film, often with the {11̄0} side facets perpen-

dicular to the electron beam. Orienting a nanowire in a <11̄0> zone axis is therefore typically

very easy and only requires tilting of a few degrees to compensate for bending of the grid.

This configuration allows to study defects perpendicular to the growth direction, for example

rotational twins and polytypism. It also allows to study how the crystal structure and elemental

composition may change along the nanowire. However, in particular for the case of radial

heterostructures, in this configuration it is difficult to study the exact dimensions of core and

shell, and it does not allow to get any information about the interface between the different

materials. For this case, it is very useful to study nanowire cross-sections, where the nanowires

are cut into thin slices perpendicular to the growth direction. During my thesis, I optimized

a procedure to produce nanowire cross-sections and a short explanation of the process is

presented here. We also used scanning TEM and energy dispersive x-ray spectroscopy to

study the composition of our nanowires. Since this analysis was key for our understanding of

InAs1−x Sbx nanowires we present a short overview of the technique in this chapter.

3.3.1 Fabrication of cross-sections

Conventionally, nanowire cross-sections can be prepared by mechanical grinding or by fo-

cused ion beam. In the first case the nanowires are transfered to a substrate, aligned to be

parallel to each other using micro manipulators, coated with an oxide film, and then cross-

sections can be prepared using typical processing techniques for thin-films. For focused ion

beam processing, the whole nanowire forest can be embedded, and then a TEM lamella is

cut in the region of interest. These processes, however, are very time consuming and expen-

sive, and result in only a few cross-sections per sample. A faster method for making many

cross-sections is to use ultra microtomy. This technique is often used for biological samples,

but it can also be adapted to make nanowire cross-sections [Guo13]. The process consists of

two steps, first the nanowires are embedded in an epoxy and then the epoxy is cut with the

microtome. A schematic of the embedding process is shown in Figure 3.2. First, a sample piece

is sticked with silver paste or liquid indium onto a dummy wafer, as shown in Figure 3.2(a).

A few dummy wafer pieces are attached next to it, allowing to use relatively small sample

pieces. Then a Polydimethylsiloxane (PDMS) mould is prepared by punching a hole (diameter

approximately 6 mm) into a cube of PDMS. This mould is then placed onto the nanowire

sample and filled with epoxy as shown in Figure 3.2(b). We found that Epoxy Embedding

Medium kit (available from Sigma-Aldrich) gives good results when mixing the ingredient with

the provided standard recipe [Epon17]. The epoxy is then cured in an oven at 60 ◦C for 12 h.
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Chapter 3. Experimental Methods

Figure 3.2 – Fabrication of cross-sections. (a) The sample (green) is sticked to a dummy wafer.
(b) A PDMS mould is placed on the nanowire forest and filled with epoxy. (c) After curing, the
PDMS mould is removed, resulting in an epoxy cylinder with embedded nanowires.

At 60 ◦C the epoxy first becomes very liquid and can spill out. We therefore established that

leaving the sample for a few days at room temperature before the curing step helps to avoid

the spilling. After the hardening, the PDMS mould is cut and peeled off, leaving a cylinder with

embedded nanowires behind as shown in Figure 3.2(c). This cylinder can can be detached

from the substrate by carefully cutting the edges with a very sharp and thin razor blade. This

step can be quite challenging, especially since a bit of the resist has likely spilled out. Carefully

detaching the sample is crucial in order not to break the substrate. From this point on, the

standard microtomy procedure is used. First a truncated pyramid (1x1 mm2) is prepared using

a razor blade. Then the sample with the pyramid is mounted in the ultra microtome and thin

slices (thickness below 60 nm) are cut with a diamond knife. The slices then swim in a water

bath behind the diamond knife and can be fished with a loop tool and placed onto a TEM grid.

This procedure allows to fabricate several slices with thousands of cross-sections at once. In

principle also series through the nanowire length can be acquired, however keeping the slices

ordered once they are in the water bath is is quite challenging.

3.3.2 Composition analysis

In order to study segregation effects, atom probe tomography (APT) is the ideal tool. However

APT requires intensive sample preparation and the tool is not widely available yet. A much

faster an easier approach is to use scanning transmission electron microscope (STEM). In

STEM, the electrons are focused into a small spot which is then used to raster the sample.

Several detectors can be used to acquire signal for each pixel of the image. For this thesis,

the bright field (BF) detector, the high angular annular dark field (HAADF) detector, and

the EDX detector are the most useful. The bright field image gives you an image of the

sample based on coherent elastically scattered electrons (diffraction and phase contrast). The

HAADF detector is a ring detector with a large collection angle, thereby collecting incoherently

scattered electrons. The intensity I is given by I = t Z x , where t is the sample thickness, Z

is the atomic number of the atom, and x typically is a number between 1.6 and 2. For a

sample with uniform thickness, it is thereby possible to get material contrast, which can
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be very useful for heterostructures. In our case, however, the heterostructure of interest is

InAs/GaSb, and the mass of the binary compounds (mIn +mAs = 114.8 u+74.9 u = 189.7 u and

mGa +mSb = 69.7 u+121.8 u = 191.5 u) give very similar intensity. Therefore it is very useful to

acquire EDX spectra in order to distinguish the two materials. An EDX spectrum consists of

the Bremsstrahlung signal convoluted with the characteristic x-ray lines of the elements. The

characteristic x-ray spectra can be understood considering the Bohr model as shown in Figure

3.3. Electrons are considered to be in orbits around a positively charged core. Figure 3(a)

shows a schematic representation of the orbitals. An electron from the inner orbit is ejected

due to the interaction with the focused electron beam. The vacant site can then be filled with

electrons from outer shells, and a photon is emitted with the energy corresponding to the

energy difference between the outer shell and the inner shell. Every element therefore has a

characteristic set of x-ray energies. X-ray lines are labeled as K, L and M lines, depending on

the quantum number n of the inner shell. The K-lines correspond to electrons which emit

energy while filling the K-shell (n=1), and equivalently there are also L (n=2) and M (n=3)

lines for heavier elements. For a transition with Δn = 1 (e.g. a transition from the L shell to

the K shell), one denotes the x-ray line as an α transition. Correspondingly a transition with

Δn = 2 is denoted as β line. The K, L and M lines consist of different energies, depending on

the energy of the electron and the hole. Figure 3.3(b) shows a schematic representation of

the energy of the different shells. Within one shell, the energetic levels differ in energy due

to the different angular momentum and spin. The selection rules for a transition are Δl =±1

and Δ j = 0,±1, where l is the angular quantum number and j is the total angular momentum

quantum number.

Figure 3.3 – Schematic of x-ray emission. (a) Bohr model showing the ejection of an electron
from the K-shell and two possibilities to fill the vacancy with electrons from higher shells. (b)
X-ray lines taking into account the selection rules.

When acquiring EDX spectra, it is important to note that the beam energy of course needs to be

high enough to excite an electron. In STEM, where the beam energy is typically above 100 keV,

this is not a problem and all characteristic x-ray lines can be observed. Indium, arsenic,

gallium and antimony are relatively heavy elements, we observe both K and L lines. X-ray
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lines at higher energy offer the advantage of often being well-separated from other x-ray lines,

while at low energy x-ray lines from many elements overlap. Sophisticated software tools (e.g.

Esprit) allow to extract the elemental composition by deconvolution of the x-ray spectra and

fitting them with a model (in our case we used the Cliff-Lorimer method). With STEM-EDX it

is possible to create elemental maps, where the resolution depends on the STEM resolution as

well as on the x-ray intensity, and the sample drift since typically maps need to be acquired

over several minutes in order to get high enough x-ray counts for a meaningful deconvolution.

In this thesis, EDX maps are extensively used to characterize the ternary material compounds

(e.g. InAs1−x Sbx ) and heterostructures (e.g. InAs/GaSb).

3.4 Electrical devices & measurements

Electrical devices were fabricated following the procedure and software initially established by

Daniel Rüffer and Martin Heiss at LMSC [Blanc13]. Highly doped 4 inch silicon wafers with

200 nm of thermal oxide are used as substrates. If the process includes a wet etching step (e.g.

to etch the oxide shell of InAs/Al2O3 nanowires) an additional 10 nm thick HfO2 etch-stop layer

is deposited on the substrate by atomic layer deposition. Then a pattern of alignment markers

is defined on the substrate by photo lithography, evaporation of Ti/Au (10 nm/100 nm) and

then lift-off. This results in a wafer with 128x128 cells which can be distinguished by a binary

code, and the nanowires can be deposited on the substrate. To this end, a piece of nanowire

sample is put into isopropanol and the nanowires are broken off the substrate in an ultrasonic

bath. The nanowire solution can then be dropcast onto the substrate, and the nanowires

adhere to the surface by van der Waals forces. After washing the substrate with acetone and

isopropanol to remove any stains, the nanowires can now be located using optical images

for contact fabrication. The images need to include one full cell and at least one nanowire to

be contacted. An example image is shown in Figure 3.4(a). The optical images can then be

loaded into the GUIContact software, which automatically adjusts the rotation of the image

based on the four outer dots, and the binary code of the cell is recognized as shown in Figure

3.4(b). In the software one can then choose the contact design, either using an existent one

or making a new one in the python pattern file (which was for example necessary for our

L-shaped devices). Also the ebeam parameters (e.g. dose and resolution) can directly be set

in the software. Then the file can be exported and used as an ebeam layout. After exposure,

developing, metalization and lift-off, the final devices are ready (Fig. 3.4(c)-(e)). On one wafer

there are 128x128 different cells, therefore in principle it is possible to make a large number of

devices. However in order to avoid overlapping devices and to be able to cleave the wafer into

smaller chips usually only up to 600 devices are fabricated (also, the software crashes if the file

gets too large). Figure 3.4(f) shows an image of a full waver with alignment markers and many

devices.

Nanowire devices were measured using several setups in our lab. Measurements at room

temperature and atmospheric pressure are done using a table-top probe station. Low tem-

perature measurements and magnetic field sweeps (up to 9 T) can be done using a Cryogenic
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Figure 3.4 – Fabrication of electrical devices. (a) Optical micrograph showing one cell with
alignment markers. (b) GUIContact software to make the ebeam layout. (c)-(e) SEM mi-
crographs of devices: overview of the contact pads, top-gated devices, L-shaped device. (f)
Overview image of a 4 inch substrate with alignment markers and many nanowire devices.

cryostat with variable temperature insert and superconducting magnet. Since recently, low

temperature measurements can also be performed in vacuum by using the dipstick developed

in collaboration with the Zumbühl group in Basel. The new dipstick does not only allow to

measure in vacuum, but it also significantly facilitates to measure temperature dependence,

since it can directly be inserted into a liquid helium dewar, and no pre-cooling with liquid

nitrogen or transfer of helium is necessary.

We typically performed 2-point and 4-point measurements to calculate the nanowire resis-

tance. Figure 3.5(a) shows a schematic of the measurements. In a 2-point measurement (blue)

the voltage is applied to two contacts and the current is measured between the same two

contacts. The disadvantage of this method is that the measured resistance also includes the

contact resistance R2pt = RNW +2 ·Rcont act . For InAs nanowires, the contact resistance is very

low and usually negligible. However to be on the safe side, 4-point measurements (green)

can be performed. Here the nanowire resistance is calculated from the current between the

outer contacts and the measured voltage drop-off between the inner contacts R4pt =Vi n/Iout .

We usually used a Keithley 6487 voltage source and picoampermeter to apply a voltage and

measure the current, and a Keithley 6517A nanovoltmeter to measure the voltage in 4-point

measurements. This approach is ideal for voltage sweeps in order to check if the behaviour of

the device is linear. For temperature dependent measurements we used a Stanford Research
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Systems SR830 lock-in in order to reduce the noise. A schematic of a constant-current lock-in

setup is shown in Figure 3.5(b). A shunt resistor with a high resistance allows to apply an almost

constant current to the device. The nanowire resistance can then be extracted by measuring

the voltage drop across the nanowire. Both 2-point and 4-point measurements are possible

with this setup. It should be pointed out than one should be careful when performing a 4-point

measurement, because the phase will change when the resistance changes. Therefore both

the x and y component of the voltage across the inner contacts need to be measured, and the

total voltage can be calculated by Vtot al =
√

V 2
X +V 2

Y . In addition, when measuring nanowire

devices it is extremely important to pay attention to avoiding electrostatic charging and to

implement a good grounding scheme. A ground bar was installed at both measurement setups

in order to allow to use the same ground potential for all measurement tools. Furthermore

it is important to avoid ground loops, by checking how the shields of the co-axial cables are

grounded. Typically on the measurement tools one can choose between grounding the shields

or leaving them floating, in case the shields are already grounded on the other side of the cable

(e.g. over the switchbox).

Figure 3.5 – Electrical measurements. (a) Schematic of 2-point (blue) and 4-point (green)
measurements. (b) Schematic of a constant current setup using a lock-in.
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4 Results & Discussion

In this chapter we present the main results of this thesis. The results were published in

scientific journals. Here we first give an introduction to the topic of each publication and then

include the article (with authorization of the corresponding publisher).

4.1 Defect-free nanowires & surface passivation

In this work we studied the possibility to suppress the defect formation in self-catalyzed InAs

nanowire by the incorporation of antimony. Self-catalyzed InAs and GaAs nanowires usually

show a high density of stacking faults perpendicular to the growth direction. In particular for

self-catalyzed InAs nanowires is has not been possible to grow defect-free crystals by changing

the growth conditions [Grap13, Dimakis11]. As discussed in section 2.3, the tendency to form

wurtzite can be seen in relation to the ionicity of the bond between group III and group

V atoms. One possible avenue to suppress defect formation is therefore the incorporation

of antimony atoms, thereby reducing the ionic character of the bonds in the material. For

GaAs1−x Sbx it has already been demonstrated that nanowires can be grown without any twins

or other stacking defects [Conesa-Boj14]. For InAs1−x Sbx nanowires a decrease of stacking

defects has been reported [Sourribes14, Farrell15], however so far the maximum antimony

content was 15% and at this composition the nanowires still showed a considerable density of

rotational twins. In this thesis we report InAs1−x Sbx with an antimony content of up to 35%

and show that the crystal structure can be considered defect-free (i.e. less than one defect per

micrometer) at antimony contents above 25%.

The growth of ternary materials offers interesting perspectives in terms of material properties,

for example by allowing to change the band gap, lattice constant, and crystal structure. Ternary

alloys are also interesting when growing heterostructures, because the two binary materials

typically have a different electron affinity, and the position of the conduction and valence band

of a ternary material therefore change with the composition. The energies can be estimated

by Vegard’s law, or more accurately by considering the bowing of the bands. A calculation of

InAs1−x Sbx can be found in Ref. [Wei95]. The possibility to tune the electron affinity can allow
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to choose between a type-II staggered or a type-III broken band-alignment when combining

InAs1−x Sbx with certain materials. On the other hand, new challenges are encountered with

ternary materials, including alloy scattering and the difficulty to achieve a homogeneous

chemical composition. Segregation effects can be undesired for certain applications, but

they can also bring additional functionality to the material system, for example allowing for

the formation of quantum dots in core-shell nanowires [Heiss13]. Segregation can occur

both along the nanowire axis as well as in radial direction. Typically nanowires show some

radial overgrowth on the side facets. Due to the difference in surface energy, the local growth

conditions on the side facets differ significantly from the conditions of the axial growth, which

may affect the composition of a ternary material. To investigate this effect we fabricated

nanowire cross sections and analyzed them using scanning transmission electron microscope

(STEM)-energy dispersive x-ray (EDX) spectroscopy.

Polytypism affects the optical and electrical properties of nanowires, as discussed in section

2.3. Therefore it is interesting to compare the properties of polytypic InAs nanowires and

defect-free InAs1−x Sbx nanowires. The conductivity of InAs1−x Sbx nanowires with different

antimony content was compared using electrical measurements. We found an increase in

conductivity upon incorporation of antimony. However we also observed a large variation

between measurements even for nanowires of the same material. This can be attributed to

surface effects, as discussed in section 2.5. The carrier density and mobility was investigated

both by field-effect measurements and by Raman spectroscopy (the Raman spectroscopy was

performed by Francesca Amaduzzi from EPFL). We found that nanowires with 35% antimony

have a higher electron density and higher electron mobility compared to InAs nanowires.

The mobility obtained from Raman measurements was higher compared to the values from

electrical measurements. This is expected considering that the field-effect mobility is related

to the mobility of the carriers in the conductive channel at the nanowire surface while Raman

spectroscopy is a bulk technique probing both the core and the surface of the nanowires (cf.

section 2.5.2).

The variations in conductivity and the lower mobility extracted from electrical measurements

motivated us to study surface passivation with ALD-grown alumina. To this end, the nanowire

surface was coated with a thick layer of metallic arsenic in the MBE chamber in order to avoid

the formation of a native oxide. The samples were then shipped to the McIntyre group, where

the arsenic capping layer was removed at 300◦C, and then the alumina shell was grown by

ALD. For more information about the decapping procedure, an in-situ STEM study during

annealing is presented in the appendix. The effect of the passivation was studied by electrical

measurements (including top-gated field-effect measurements) and by Raman spectroscopy.

Reprinted with permission from H. Potts et al. From Twinning to Pure Zincblende Catalyst-Free

InAs(Sb) Nanowires. Nano Letters 16, 637 (2016). c© 2017 American Chemical Society.
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Federico Matteini,† Esther Alarcon Llado,́† Paul C. McIntyre,‡ and Anna Fontcuberta i Morral*,†
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ABSTRACT: III−V nanowires are candidate building blocks for next
generation electronic and optoelectronic platforms. Low bandgap semi-
conductors such as InAs and InSb are interesting because of their high
electron mobility. Fine control of the structure, morphology, and
composition are key to the control of their physical properties. In this
work, we present how to grow catalyst-free InAs1−xSbx nanowires, which are
stacking fault and twin defect-free over several hundreds of nanometers. We
evaluate the impact of their crystal phase purity by probing their electrical properties in a transistor-like configuration and by
measuring the phonon−plasmon interaction by Raman spectroscopy. We also highlight the importance of high-quality dielectric
coating for the reduction of hysteresis in the electrical characteristics of the nanowire transistors. High channel carrier mobilities
and reduced hysteresis open the path for high-frequency devices fabricated using InAs1−xSbx nanowires.

KEYWORDS: InAs nanowires, InAsSb, catalyst-free, self-catalyzed, molecular beam epitaxy, crystal structure, electronic properties,
surface passivation, atomic layer deposition, mobility, phonon−plasmon interaction

III−V semiconductor nanowires are considered next
generation building blocks in electronics, optoelectronics,

and energy harvesting applications.1−4 At the same time, they
have proved to be an ideal platform to probe novel physical
properties resulting from the small size or lower dimension-
ality.5−7 Indium-based III−V nanowires are of particular
interest due to their high electron mobility, high spin−orbit
coupling, and large g-factor.8,9 III−V nanowires typically show
polytypism, that is, a mixture phases of zincblende (ZB) and
wurtzite (WZ) stacking, as well as stacking faults and rotational
twins. The coexistence of different polytypes can dramatically
modify the optical and transport properties. In particular, it has
been found that the photoluminescence energy changes due to
the presence of mixed crystal phases,10 the resistivity of
polytypic nanowires is up to 2 orders of magnitude higher11

and even a single twin plane acts as an optically active
nanodot.12 Using gold as a catalyst particle, it has been possible
to achieve control of the nanowire crystal structure.13,14

Although this is still highly controversial, gold could be
incorporated as an impurity in the nanowires, thereby harming
the functional properties.15−18 In order to avoid the risk of
metal incorporation, a self-catalyzed or catalyst-free growth
process is favored, though reducing the stacking fault density in
InAs nanowires grown without a foreign catalyst has been
found to be a difficult task.19−21 One pathway toward pure
phase nanowires is the incorporation of Sb, resulting in the
growth of ternary antimonide nanowires. For antimonide
crystals, zincblende stacking is favored due to the small ionicity
of the bond.22 In the case of GaAs, it has been shown that the
incorporation of antimony allows for the growth of defect-free
ZB GaAs1−xSbx nanowires both for gold-catalyzed nanowires

using metal organic vapor phase epitaxy23 and for self-catalyzed
nanowires using molecular beam epitaxy (MBE).24 In the case
of InAs1−xSbx nanowires, defect-free wires have been reported
using gold as a catalyst,25 whereas without a foreign catalyst,
even the least defective nanowires still show a considerable
density of rotational twins.26−28

In this work, we demonstrate the growth of InAs1−xSbx using
MBE and report for the first time that the stacking defect
density in InAs1−xSbx nanowires grown without a foreign
catalyst can be reduced to a few twins per micrometer by
increasing the antimony content. The change in crystal
structure as a function of the antimony content is studied
quantitatively while showing that increasing the antimony
content results in a strong reduction of the defect density in
InAs1−xSbx nanowires and the hexagonal wurtzite phase can be
completely suppressed. Pure ZB nanowires with only a few
rotational twins per micrometer are obtained for an antimony
content greater than 25%. The defect density is therefore more
than 1 order of magnitude lower than the best results reported
in literature.26 We further investigate the material composition
of InAs1−xSbx nanowires with energy dispersive X-ray (EDX)
spectroscopy maps that show that the antimony content along
the nanowire growth axis is homogeneous. Using nanowire
cross sections, we also observe a homogeneous antimony
content in the nanowire core and a slightly lower antimony
content in the radial overgrowth, with antisegregation at the
nanowire corners. Field-effect transistor measurements and
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Raman spectroscopy show that incorporation of antimony also
has a significant effect on the electrical and optical properties of
InAs1−xSbx nanowires. Finally, we demonstrate that a high-
quality ALD-grown aluminum oxide deposited around the
nanowires enables the fabrication of top-gated devices with
increased on−off ratios, steeper subthreshold slope and reduced
hysteresis during transconductance measurements. Our results
constitute an important step toward high electron mobility
InAs(Sb) nanowire-based devices.
We start by comparing the growth rate and morphology of

our InAs1−xSbx nanowires as a function of their antimony
content. Our nanowires grow vertically on GaAs(111)B
substrates and the optimum growth temperature was found
to be 520 °C (more details available in Supporting
Information). We refer to our growth process as catalyst-free
because no external metal is used to initiate and drive the one-
dimensional growth. We note the exact growth mechanism for
InAs nanowires without a foreign catalyst (self-catalyzed or
not) is still highly controversial and both vapor−liquid−solid19
and vapor−solid20 growth has been reported. In order to study
the effect of antimony incorporation on the nanowire
morphology and crystal structure, samples were grown at
different antimony fluxes, while keeping the rest of the growth
parameters constant. SEM micrographs of representative
samples are shown in Figure 1a−b. All nanowires exhibit a

hexagonal cross section with facets parallel to the {110}
orientation of the substrate. Nanowire lengths and diameters
were quantified as shown in Figure 1c. The incorporation of
antimony leads to a slightly increased nanowire diameter and a
decreased length. This observation stands in contrast to the
growth of pure InAs nanowires, where it is well established that
an increase of the group V flux results in longer and thinner
nanowires (more details available in Supporting Information).
We turn now to the analysis of the crystal structure of the

nanowires as a function of the Sb content. In order to show a
figure of merit that integrates both polytypism and stacking-
fault formation, we count the number of interfaces, that is, the
sum of ZB/WZ transitions, stacking faults and rotational twins.
Pure InAs nanowires show polytypism and a high density of

interfaces. Interestingly, wurtzite stacking predominantly occurs
at the nanowire stem, and pure WZ segments of several tens of
nanometers in length can be observed as shown in Figure 2a.
The existence of a WZ stem seems to be favored for thin
diameters, which occur at the early stages of growth and at
higher V/III ratios. A more detailed study is required to
confirm this assumption. In the rest of the wire, the defect
density is approximately 400 interfaces/μm (Figure 2b),
confirming the findings of other groups.19,26 We observe a
strong decrease of defects with increasing antimony content.
Representative HRTEM micrographs are shown in Figure 2c−
d, respectively. InAs1−xSbx nanowires with a Sb content of 16%
show a reduced defect density and the hexagonal phase is
completely suppressed. Nanowires with an antimony content
greater than 35% are almost defect-free, with only a few twins
per micrometer. Figure 2e summarizes the evolution of the
structure as a function of the Sb content, by plotting the
number of interfaces (ZB/WZ and stacking faults) as a function
of the Sb content in the nanowires. For increasing antimony
content, the number of interfaces is reduced steadily. At 11%
Sb, the number of interfaces is reduced to approximately 300
interfaces per micron and wurtzite sections are shorter and less
frequent. For an antimony content of 21%, there are only about
100 interfaces per micron, and for samples with a higher
content, there are only a few interfaces per micron. For all
InAs1−xSbx nanowires, we observe that the interface density is
lower at the nanowire stem and increases toward the nanowire
tip, implying slightly different conditions during growth. Our
findings are in agreement with the results in ref 28 and 26,
where the suppression of WZ stacking and a reduction of twin
defects was reported for wires with an antimony content up to
15%. By further increasing the antimony incorporation, we
were able to achieve almost complete suppression of defect
formation. Compared to gold-catalyzed nanowires in ref 25, we
observe that the threshold for defect-free nanowires is higher
without a foreign catalyst. Figure 3a shows a high angular
annular dark field (HAADF) scanning transmission microscope
(STEM) micrograph of a wire with 21% antimony, showing a
few twin defects along the wire. The antimony content along
the nanowire is uniform for all samples, as shown by
longitudinal EDX maps in Figure 3b−d.
To understand the growth of InAs1−xSbx nanowires in more

detail, nanowire cross sections were fabricated by first
embedding a nanowire forest in epoxy and cutting slices of
60 nm thickness with an ultramicrotome.29,30 Figure 3e shows a
HAADF STEM micrograph of a nanowire cross section,
confirming the hexagonal nanowire morphology with {110}
facets. A hexagonal core and a shell of approximately 15 nm
thickness can be observed, suggesting radial overgrowth of the
initial nanowire core. This radial overgrowth is further
supported by a time series of the nanowire growth (more
details available in Supporting Information). The interface
shows some strain contrast due to the lattice mismatch of two
materials with slightly different composition. Figure 3f shows a
HRTEM micrograph of one of the nanowires corners. From
the inverse Fourier transform image in the inset, we can see
that there are no misfit dislocations at the interface. EDX maps
of the cross section are shown for indium, arsenic, and
antimony in Figure 3g−h. Overlaying the arsenic and the
antimony map shows that the antimony content is homoge-
neous in the core, a bit lower in the shell, and there is
antisegregation of antimony at the six corners of the hexagonal
cross section. Our observations are in agreement with the

Figure 1. (a) and (b) Cross-sectional SEM micrographs of an InAs
sample and an InAs0.75Sb0.35 sample grown for 1 h. (c) Quantification
of the nanowire length and diameter as a function of the antimony
content.
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results in ref 24, where a similar antisegregation of antimony
was observed for GaAs1−xSbx nanowires. Quantification of the
EDX map indicates the Sb content is 23% in the core, 20% in
the shell, and 16% at the corners. Interestingly, it has been
shown for gold-catalyzed nanowires that the antimony content
in the core is lower compared to the radial overgrowth.25 In this
sense, catalyst-free growth may be a better approach for

achieving a high, homogeneous antimony content compared to
metal-assisted growth.
The impact of the crystal structure and composition on the

properties of the nanowires is evaluated using field-effect
transistor devices. All electrical transport measurements were
performed at room temperature. Figure 4a shows the SEM
micrograph of a nanowire device with four contacts. We studied
as-grown InAs(Sb) nanowires as well as InAs(Sb) nanowires
coated with a 10 nm shell of Al2O3. A high quality interface
between the nanowire and the oxide was achieved by capping
the nanowire with arsenic after growth and depositing 10 nm

Figure 2. (a)−(d) High resolution TEM micrographs and diffraction patterns of different nanowires. The scale bar is 5 and 2 nm−1 respectively. (a)
InAs nanowire stem where the crystal structure is pure WZ for several tens of nanometers. (b) Typical polytypic InAs nanowire crystal structure. (c)
Nanowire with 16% antimony where the crystal structure is ZB with rotational twins. (d) Nanowire with 35% antimony. The nanowire is pure ZB
with very few rotational twins. (e) Quantification of the number of interfaces as a function of the antimony content. The defect density dramatically
decreases with increasing antimony content. Wurtzite segments are suppressed at an antimony content above 15% (green region).

Figure 3. (a) HAADF STEM micrograph of a nanowire with 21%
antimony. (b)−(d) EDX maps of indium, arsenic, and antimony
showing a homogeneous composition along the wire. (e) HAADF
STEM micrograph of a nanowire cross section showing a hexagonal
nanowire core with a 15 nm thick shell. (f) High resolution image of a
nanowire corner showing no dislocations at the shell interface. (g)−
(h) EDX maps of the nanowire cross section. A homogeneous
composition can be observed in the nanowire core. The shell has a
slightly lower antimony content and shows antisegregation at the six
corners. Figure 4. (a) False-colored SEM micrograph of a nanowire device.

The nanowire (green) is contacted with four contacts (blue). (b) High
resolution TEM micrograph of an InAs nanowire coated with 10 nm
Al2O3. (c) Conductivity of InAs1−xSbx nanowires with different
antimony content. (d) Conductivity of Al2O3 coated InAs1−xSbx
nanowires with different antimony content. (e) Comparison of field-
effect data for an InAs nanowire device and a device with 16%
antimony using the substrate as back gate. (f) Comparison of field-
effect data for Al2O3 coated nanowire devices using a top gate. The
uncertainty in the conductivity measurements is about 10% due to
uncertainty in the measurement of the device dimensions.
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Al2O3 by atomic layer deposition.31 Figure 4b is a TEM
micrograph of an InAs−Al2O3 nanowire showing the crystalline
nanowire core and the amorphous alumina shell. For these
nanowires, a top gate was deposited between the two center
contacts. The four-point configuration was used to measure the
nanowire conductivity and the contact resistance. Ohmic
contacts with a contact resistance less than 5 × 10−7 Ω cm2

were obtained without annealing, confirming high-quality
contacts. We start by comparing the conductivity, σ, of four
types of wires with an antimony content of 0%, 16%, 18%, and
21%. In general, the conductivity is found to be higher for
antimony containing wires as shown in Figure 4c. This result is
consistent with our expectations because (1) the conductivity
of bulk InSb is higher compared to InAs32 and (2) InAs shows
a charge accumulation layer at the surface,33,34 which makes
scattering at surface defects a limiting factor for the
conductivity. Values ranging from σ = 10−100 S/cm for InAs
devices and σ = 100−400 S/cm for InAs1−xSbx devices have
been measured. We observe a large variance in the conductivity
values as well as fluctuation of the current over time. We
attribute this to the surface accumulation layer and surface
sensitivity of InAs nanowires, making it difficult to compare the
results in a quantitative and absolute manner. In contrast, much
more consistent values were achieved for wires coated with
Al2O3. For these nanowires, conductivity values of 200−400 S/
cm and 250−450 S/cm were obtained for InAs and InAs0.8Sb0.2
nanowires, respectively (see Figure 4d). The high conductivity
of the alumina coated nanowires is a sign of a high quality
oxide−nanowire interface and stands in contrast to previous
results, where highly deteriorated electrical properties have
been reported for oxide coated nanowires.35 Particularly for
InAs nanowires, we observe that the measured conductivity is
significantly higher when the wires are coated with Al2O3. This
result could be explained considering that Al2O3 often acts as a
negative charge dielectric.36 Negative fixed charges near the
interface would suppress electron trapping at interface defects,
resulting in a larger population of mobile carriers and therefore
in a higher conductivity. Furthermore, the alumina will prevent
water adsorption onto the nanowire, which has been shown to
have a detrimental influence on electrical properties.37

Figure 4e,f show the gate-dependent measurements. For
measurements of wires not coated by ALD-Al2O3, the two
inner contacts were used as source and drain, and the highly
doped silicon substrate was used as a back gate while nanowires
coated with Al2O3 were gated by a local top gate. A table with
all relevant device and measurement parameters can be found
in the Supporting Information. Figure 4e shows typical field-
effect measurements of an InAs nanowire and an InAsSb device
with 16% antimony. Both devices show n-type hysteretic
behavior, as commonly observed for InAs nanowires due to the
presence of surface states.38 The hysteresis was successfully
reduced by applying a pulsed gate sweep.39 The baseline
current at zero gate voltage varied as a function of time and
sweep history, which we attribute to the additional gating of
surface contamination. Nanowires coated with Al2O3 showed a
significantly reduced hysteresis, especially with the pulsed gate
sweep, see Figure 4f. In this case, we also do not observe any
major change in baseline current. This is consistent with a
reduced electron trapping at the interface due to fixed negative
charges in the alumina.
We move now to the quantitative analysis of the gate

dependent measurements. Assuming diffusive transport in the
linear regime of the standard transistor model, the field-effect

mobility can be calculated by μ = gm(L
2/C)/Vds. Here, gm is the

transconductance gm = (dIds)/(dVg), where Vg is the gate
voltage, and C is the nanowire-gate capacitance. For bottom
gated devices, the capacitance is typically approximated by C =
2πε0εrL/acosh[(r + tox)/r], where r is the nanowire diameter,
tox is the thickness of the dielectric layer, and εr is the relative
dielectric constant. Following ref 40, we use εr = 2.25 to
account for the fact that the nanowire is not completely
surrounded by the dielectric. Assuming bulk conductivity of
electrons the carrier density at zero gate voltage, the electron
density n can be estimated by n = σ/eμ, where σ conductivity
and e is the elementary charge of the electron. The
transconductance of the data shown in Figure 4e would be
consistent with a mobility of μ = 1540 cm2/(V s) and μ = 2560
cm2/(V s) and a charge density of n = 5.6 × 1017 cm−3 and n =
7.3 × 1017 cm−3 for the InAs and the InAsSb device,
respectively. The trend of increased mobility with antimony
content is in agreement with the results reported for gold-
catalyzed nanowires.11 The on−off ratios of the devices
presented here are 58 and 9, respectively. We observe that
the InAsSb nanowires cannot be turned off completely, which
might be related to the larger diameter of the nanowires though
future investigations are required to understand this behavior.
One should also note that we observe a change in baseline
current during the measurement, for example, the starting point
and the end point of the gate sweep are not the same (more
details in Supporting Information). Therefore, the mobility and
the on−off ratio tend to be overestimated by the extracted
values.
In order to extract the mobility in the case of Al2O3 coated

nanowires, we estimate the capacitance of the top-gated devices
by a parallel-plate capacitor, where the area is approximated as
three nanowire facets, assuming shadowing of the bottom three
nanowire facets during gate metal evaporation. A relative
permittivity of εr = 8 was used for the amorphous ALD-Al2O3.
The voltage across the gated nanowire length is obtained from
the applied source-drain voltage and normalized using the ratio
between the gated/nongated nanowire lengths (more details in
Supporting Information). Mobility values consistent with μ =
1005 cm2/(V s) and μ = 825 cm2/(V s), charge densities of n =
1.81 × 1018 cm−3 and n = 2.49 × 1018 cm−3, and on−off ratios
of greater than 2755 and 29 were extracted from the gate
sweeps respectively for InAs and InAsSb nanowires. However,
it has been shown that in top-gated devices, the semiconductor
capacitance has a significant contribution to the total
capacitance.41 To get a more realistic estimate of the mobility,
the semiconductor capacitance Cs at the peak transconductance
was calculated using a quasistatic model, which accounts for the
electron degeneracy at the conduction band, the non-
parabolicity effect of the Γ valley, and possible influence due
to the interface traps.42,43 In the calculation, the flat band
voltage of the MOS structure was approximated to be the same
as the threshold voltage in the Ids/Vg curve. Using the total
capacitance 1/Ctot = 1/Cox + 1/Cs, we estimate mobility values
of 1400 cm2/(V s) for InAs, which accounts for an error of 40%
with the state-of-the-art formula. The uncertainty in the
estimation of the gate capacitance along with hysteresis and
unstable baseline-currents make it difficult to quantitatively
assess mobility and carrier concentration from field-effect
measurements. More sophisticated mobility measurements can
be obtained by simulating the capacitance via finite element
methods and directly fitting the transconductance37 or also with
Hall effect measurements,44 Seebeck coefficient measure-
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ments,45 terahertz spectroscopy,46 and Raman spectroscopy. In
the following, we present our estimations of the mobility and
electron carrier concentration from Raman spectroscopy.
Figure 5 shows the Raman spectra of pristine InAs and

InAsSb with Sb 35% nanowires. In the spectra, LO and TO

phonons frequencies as well as the SO (surface optical modes)
typically detected in nanowires47,48 are indicated. In the case of
InAs, TO and LO modes of zincblende phase are present, no
modes related to wurtzite crystal phase are observed.49 In the
case of InAsSb, the position of the TO and LO modes are
consistent with the composition and follow a two mode model
of ternary alloys: Raman modes of InAs and InSb are present,
the position and intensity weighted by the composition.50,51

The Raman spectra show additional spectral features in the
LO region for the InAs and in the InAs-like TO mode region
for InAsSb, which are not related to the composition, crystal
phase, or shape of the nanowires. We attribute these additional
peaks to the interaction of the carriers with the polar phonons.
Longitudinal phonon−plasmon interaction is expected in polar
semiconductor with free carriers.52,53 Raman scattering by
coupled plasmon−optical−phonon modes in n-type ternary
III−V compounds results in three characteristic modes. In n-
type InAsSb there is an intermediate mode (L0) between the
InAs-like TO and InSb-like LO phonon, in addition to lower
frequency (L−) and higher frequency (L+) signatures.52 The
frequency position and the width of these modes are related to
the plasmon (carrier) density and the lifetime (mobility). We
fitted the whole spectra by modeling both the modes related to
the composition and to the presence of free carriers. A
Lorentzian profile was used for the TO and LO modes, whereas
the line shape of the coupled modes included the effect of
damping (mobility) as in ref 54. More details are given in the
Supporting Information. We extract an electron concentration
and mobility consistent with n = 3.0 × 1016 cm−3 and μ = 3900
cm2/(V s) for InAs and n = 1.7 × 1017 cm−3 and μ = 8300 cm2/
(V s) for uncoated InAsSb nanowires. Overall, Raman
spectroscopy gives higher mobility and lower carrier density
values. The origin of this difference will be investigated in the

future by contrasting with other measurements such as pump−
probe THz spectroscopy.55

In conclusion, we have grown InAs1−xSbx nanowires with an
antimony content up to 35% using a catalyst-free MBE growth
process on GaAs substrates. The nanowires have a hexagonal
cross section and show no tapering all along the wire. The
crystal structure and chemical composition has been studied
using HRTEM and EDX. We observed that the stacking fault
density can be reduced to a few per micron by increasing the
antimony content above 25%. These results confirm a universal
trend of Sb to reduce stacking faults and polytypism in III−V
nanowires, regardless of the synthesis method. We also studied
for the first time the radial composition of the InAs1−xSbx
nanowires using cross-sectional EDX analysis. A nanowire shell
with slightly lower antimony content and antisegregation at the
corners was observed, indicating that the nanowire diameter
increases due to radial overgrowth. The electronic properties of
InAs1−xSbx nanowires were studied using field-effect transistor
measurements and Raman spectroscopy. We find that the
incorporation of antimony increases the nanowire conductivity
and mobility. We further use high-quality ALD grown Al2O3 as
a gate dielectric for top gated nanowire devices and
demonstrate better gate control and lower current drift without
harming the nanowire properties. Raman spectroscopy shows
that both the mobility and the charge density are increased for
ternary antimonide nanowires. Our results shed light on the
growth mechanism of ternary antimonide nanowires, and pave
the pathway toward high-quality nanowire devices.

Experimental Methods. Nanowire Growth. The nano-
wires were grown in a DCA P600 MBE system on GaAs(111)B
substrates by self-assembly and without the use of a foreign
catalyst. The substrates were covered with a 4.5 nm silicon
oxide layer, obtained by spin coating a diluted solution of
hydrogen silsesquioxane (HSQ) (HSQ:MIBK 1:10) at 6000
rpm and annealing at 300 °C for 10 min. A similar substrate
preparation was previously used for InAs and GaAs nanowire
growth without a foreign catalyst.19,56 The substrates were
degassed at a manipulator temperature of 400 °C in ultrahigh
vacuum conditions for 2 h prior to growth. Once in the growth
chamber, they were annealed for 1 h at the growth temperature
under constant arsenic and antimony flux. Nanowire growth
was started by opening the indium shutter. After 60 min the
growth was terminated by closing the indium and antimony
supplies. The sample was cooled down under arsenic within 10
min. Standard fluxes are an indium beam equivalent pressure
(BEP) of 1.4 × 10−7 Torr (corresponding to a 0.14 Å/s growth
rate), and an arsenic BEP of 1.9 × 10−6 Torr. The antimony
content in the nanowires was controlled by adjusting the
antimony tank temperature, resulting in a BEP of 1.4−2.6 ×
10−7 Torr. The cracker and conductance zone temperature was
fixed at 800 °C for all samples. The crystal structure and
composition of the nanowires was characterized by high
resolution transmission electron microscopy (HRTEM) in a
FEI Tecnai OSIRIS microscope operated at 200 kV. The
antimony content of the nanowires was measured by EDX
spectroscopy in the same microscope.

Device Fabrication. Single-nanowire field effect transistors
(FET) were fabricated on highly p-doped silicon substrates
with a 200 nm thermal oxide layer following a standard
procedure.57,58 For devices based on standard InAs1−xSbx
nanowires the native oxide was removed by argon milling in
order to achieve ohmic contacts. Chromium/gold (20 nm/100
nm) contacts were then deposited by sputtering in the same

Figure 5. Raman spectra of InAs nanowires and of InAsSb nanowires
with 35% antimony. The solid lines are the convolution of the ternary
modes with a Lorentzian profile and the coupled modes’ line shape
obtained by fitting the model. The dashed lines show the coupled
modes obtained by the fitting. The star indicates a plasma laser line.

Nano Letters Letter

DOI: 10.1021/acs.nanolett.5b04367
Nano Lett. 2016, 16, 637−643

641



deposition chamber as the argon milling, thereby avoiding
reoxidation of the surface. For devices based on Al2O3-coated
InAs1−xSbx nanowires the nanowires were capped with arsenic
in the MBE chamber after growth by cooling down the sample
to room temperature and opening arsenic for 30 min. The
protective arsenic layer was then evaporated in the ALD
chamber before starting deposition of the oxide. This procedure
allowed us to prevent the growth of native oxide on the
nanowires and to obtain a high-quality interface between the
InAs and the alumina. Titanium/gold (10 nm/100 nm) was
deposited on the alumina as top gate using e-beam evaporation.
For the contacts, the alumina was removed by ion beam etching
before sputtering chromium/gold.
Raman Spectroscopy. Raman measurements were done

using the 488 nm line of Ar−Kr+ for excitation. The laser with
power of 250 μW was focused on the nanowire with a
microscope objective with numerical aperture NA = 0.75. The
scattered light was collected by a TriVista spectrometer and
detected by a CCD camera. The measurements were realized in
backscattering geometry with the nanowires suspended over a
trench, in order to enhance the response of the longitudinal
optical phonon mode.59
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Chapter 4. Results & Discussion

4.2 Understanding nanowire growth direction

Having complete control over the nanowire growth direction and their orientation with respect

to the substrate is important for many applications. However, in standard samples we observe

a significant density of tilted nanowires. In order to control or suppress their formation, it

is necessary to understand the underlying mechanism which leads to the growth of tilted

nanowires. To this end, we first measured the direction of the tilted nanowires, and then

we studied the crystal structure of the nanowires. In order to understand the direction of

the nanowires we considered several approaches: 1) Take atomic force microscopy (AFM)

images and analyze the angle with respect to the substrate and a reference direction. While

this approach would give the precise direction of a single nanowire, it is very challenging to do

AFM on a nanowire forest. 2) Take SEM images and tilt the sample in order to get an image of

the same nanowire from two different directions. This approach would also give the direction

of a single nanowire, however it is not easy to stay at the exact position of a specific nanowire

while tilting the sample significantly. (3) Take SEM images from two different directions

and measure the projection angles of many different nanowires, and then plot the observed

angles as histograms and compare with calculated projection angles for specific nanowire

orientations. This approach is relatively fast and straight forward. The drawback is that several

directions can show the same projection angles. Due to simplicity we chose the third approach,

and then verified our assumptions using TEM studies.

For the calculation of projection angles we started with all low index crystalline orientations,

i.e. <100>, <110>, <111>A, <112> and we only considered directions which point out of the

substrate. We furthermore calculated the directions of all <111>B directions after a twin which

are non-perpendicular to the [1̄1̄1̄] substrate normal (3D twin as explained in section 2.4),

and found that they are oriented in (1,1,5) directions. For those 3D twinning directions we

give their direction as a vector, using the crystalline orientation of the substrate as coordinate

system. The expected projection angles can then be calculated using the same reference

system as for the other low index crystalline orientations. It is important to keep in mind

that the vector describing the orientation does not correspond to the crystalline direction

of the nanowire: the nanowire is elongated in <111>B direction, even though it’s orientation

corresponds to a vector with higher indices.

Comparing the expected projection angles with the experimentally observed histograms we

found that most projection angles of tilted InAs nanowires can be explained by 3D twinning.

Our results are supported by TEM analysis, where twins non-perpendicular to the nanowire

axis were observed. The results are presented in the publication below. In addition we also

found a few angles which differ from the 3D twinning angles. Interestingly these nanowires

also show different facets compared to vertical or 3D twinned nanowires (which both have

hexagonal cross section). We found that their projection angles correspond to other low index

crystalline orientations, mostly <112̄>, but also <100> and <110> directions. Nanowires in

those unusual directions could also be observed in TEM.
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4.2. Understanding nanowire growth direction

Last but not least we also analyzed how the existence of tilted nanowires depends on the

growth conditions. The most interesting result is that their formation is suppressed for high

V/III ratios. This finding sheds light on the growth mechanism of the early stages of growth:

for the 3D twinning mechanism the formation of non-horizontal facets is a requirement. This

is unlikely during the VS growth mechanism, therefore suggesting that tilted nanowires started

with an indium droplet, while at high V/III the droplet is significantly smaller or completely

absent. Whether or not the droplet is consumed during later stages of growth remains unclear

at this point. The full results are presented the publication below.

Reprinted with permission from H. Potts et al. Tilting catalyst-free InAs nanowires by 3D-

twinning and unusual growth directions. Crystal Growth & Design 17, 3596 (2017). c© 2017

American Chemical Society.
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ABSTRACT: Controlling the growth direction of nanowires
is of strategic importance both for applications where nanowire
arrays are contacted in parallel and for the formation of more
complex nanowire networks. We report on the existence of
tilted InAs nanowires on (111)B GaAs. The tilted direction is
predominantly the result of a three-dimensional twinning
phenomenon at the initial stages of growth, so far only
observed in VLS growth. We also find some nanowires
growing in ⟨112⟩ and other directions. We further demonstrate how the tilting of nanowires can be engineered by modifying the
growth conditions, and outline the procedures to achieve fully vertical or tilted nanowire ensembles. Conditions leading to a high
density of tilted nanowires also provide a way to grow nanoscale crosses. This work opens the path toward achieving control over
nanowire structures and related hierarchical structures.

■ INTRODUCTION

Semiconductor nanowires are promising candidates for future
electronic, optoelectronic, and energy harvesting devices as well
as a platform to investigate low-dimensional phenomena.1−8 In
certain applications such as light emitting diodes or solar cells,
it is highly desirable that nanowires are contacted in parallel on
as-grown substrates. In this case, a complete control of the
nanowire growth direction is essential in order to avoid leakage
or open-circuit pathways. For other applications such as
Majorana Fermion quantum computing, the growth direction
determines the g-factor and spin−orbit interaction. In addition,
any quantum logic involving Majorana Fermions requires more
than one branch, e.g., nanowire crosses are desired.9−11

In general, III−V nanowires grow preferentially in the
⟨111⟩B direction, resulting in mostly vertical nanowires when
grown on (111)B substrates. Interest in nonconventional
growth directions has increased significantly during the last
years, and in the case of metal-catalyzed nanowires, a variety of
different directions have been reported.12 Recent examples
include ⟨111⟩A oriented GaAs and GaSb nanowires,13,14 and
InP nanowires for which the direction can be switched between
⟨111⟩B and ⟨100⟩.15 In addition, InAs nanowires in ⟨001⟩
direction and ⟨112⟩ direction have been demonstrated for gold-
catalyzed MOVPE growth.16 The change in growth direction
has been attributed to a change of contact angle of the liquid
droplet in the vapor−liquid−solid (VLS) mechanism, or by
dynamics at the growth interface. Recently, unconventional
growth directions have also been observed for self-catalyzed
nanowires. A small fraction of GaAsSb nanowires was found to
grow in ⟨112⟩ direction,17 GaAs nanowires in the ⟨111⟩A
direction have been engineered,18 and InAs nanowires turning

from ⟨111⟩B to ⟨112 ̅⟩ direction have been demonstrated.19,20

However, tilted nanowires are not in all cases related to the
growth in nonconventional crystalline directions. In some cases
they can also explained by nucleation from parasitic growth (no
crystalline relation with the substrate) or by multiple-order
three-dimensional twinning.21 3D twinning is based on the
formation of other {111} facets in additional to the (111)B
growth front. A rotational twin around a nonvertical ⟨111⟩
direction then allows formation of a secondary seed crystal, for
which the ⟨111⟩B directions are oriented differently compared
to the original seed crystal. A multiple-order twinning process
can therefore result in nanowires with a variety of quantized
orientations, while the growth always proceeds by the
formation of {111}B planes. 3D twinning was found in self-
catalyzed GaAs nanowires on silicon,21 as well as for gold-
catalyzed InP nanowires.22 In the case of GaAs nanowires,
further work has explained how multiple order twinning
depends on the substrate preparation,23 and it has been shown
that the wetting properties of the initial gallium droplets can be
essential.24 In the case of InAs nanowires grown without a
foreign catalyst, tilted nanowires have been observed.25,26

However, the exact orientation has never been determined.
Understanding the underlying mechanism of the formation of
tilted InAs nanowires is particularly interesting, since the
growth mechanism of MBE grown InAs nanowires is still a
matter of debate, and both VLS26 and vapor−solid (VS)
growth27,28 have been reported under different conditions. The
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observation of multiple-order twinning would suggest that the
growth is initiated with an indium droplet. The existence of
tilted nanowires could therefore be an indicator of vapor−
liquid−solid growth as opposed to vapor−solid growth.
In this work, we provide a quantitative analysis and

crystallography of tilted InAs nanowires grown by MBE
without a foreign catalyst. We find that tilted nanowires
occur at quantized angles, and show that most of these angles
match those which are theoretically expected from a 3D
twinning process. In addition, InAs nanowires oriented in ⟨112⟩
and other low-index crystalline directions are demonstrated for
the first time in the case of MBE growth without a foreign
catalyst. By showing how the existence of tilted nanowires
depends on the growth conditions we offer an approach to
increase the number of tilted nanowires or suppress their
formation completelywhichever is desired for a specific
application.

■ RESULTS AND DISCUSSION
InAs nanowires are grown by molecular beam epitaxy (MBE)
on GaAs(111)B substrates covered with 4.5 nm of HSQ oxide,
as explained in ref 19. Figure 1a,b shows representative top

view and cross-sectional scanning electron micrographs (SEM)
of samples obtained under typical conditions (530 °C, V/III
flux ratio of 13.5). We clearly observe not only nanowires
growing perpendicular to the substrate but also some tilted
nanowires. In order to determine the orientation of the
nanowires we analyze their alignment with respect to main
crystallographic directions of the substrate, both in top-view
and cross-sectional SEM images. In Figure 1c we define the top

view angle α as the angle between the nanowire projection onto
the (111) plane and the [2̅11] direction (or the equivalent
[21 ̅1 ̅] direction). For the cross-sectional analysis the samples
were cleaved along the (01 ̅1) plane. We define the cross-
sectional angle β as the angle between the projection of the
nanowire onto the (01 ̅1) plane and the [2 ̅11] or [21 ̅1 ̅]
direction as shown in Figure 1d. Top view and cross-sectional
projection angles were measured on several hundred nanowires
in samples obtained with a variety of growth conditions (V/III
ratios of 4.3−25; growth temperatures of 490−550 °C). The
resulting histograms are shown in Figure 1e,f for the top view
and cross-sectional angles, respectively. For the top view
projection angle, we observe that tilted nanowires occur
predominantly at α ≈ 19°, 41°, and 79°. Cross-sectional angles
show populations at β ≈ 35°, 41°, and 70−80°. These
measurements demonstrate that the tilted nanowires do not
grow in random orientations and confirm the existence of a
crystallographic relation with the substrate. The calculated
projection angles which are marked in Figure 1e,f are explained
in the following paragraph.
To analyze the orientation of the tilted nanowires, we

calculate the projection angles of all low index crystalline
directions (⟨100⟩, ⟨110⟩, ⟨111⟩A, ⟨112⟩), as well as the
expected angles for nanowires after 3D twinning. The
projection angles can be calculated by first calculating the
projection of the wire onto a projection plane

⎯ →⎯⎯ = ⎯ →⎯⎯⎯ −
⎯ →⎯⎯⎯ ·⎯ →⎯⎯⎯⎯

|⎯ →⎯⎯⎯⎯ |
⎯ →⎯⎯⎯⎯

proj wire
wire plane

plane
plane

2
(1)

where
⎯ →⎯⎯⎯wire is the vector corresponding to the nanowire growth

direction, and
⎯ →⎯⎯proj is the projection of the nanowire onto the

projection plane which is defined by its normal vector
⎯ →⎯⎯⎯⎯
plane.

Then the angle α with respect to the reference direction
⎯→⎯
ref can

be calculated by

α =
⎯→⎯ ·⎯ →⎯⎯

|⎯→⎯ ||⎯ →⎯⎯ |
cos( )

ref proj

ref proj (2)

For the top view projection angle we choose
⎯ →⎯⎯⎯⎯
plane as [111] and

⎯→⎯
ref as [2 ̅11] or [21 ̅1̅], while for the cross-sectional angle we

choose
⎯ →⎯⎯⎯⎯
plane as [01 ̅1]. For the calculation of nanowire

directions after multiple-order twinning we assume the
formation of a seed crystal with a (1 ̅1̅1 ̅) top facet since the
substrate is a GaAs(111)B wafer. While growth then
predominately occurs in the [1 ̅1 ̅1 ̅] direction with {11 ̅0} facets
leading to the hexagonal shape of nanowires, the seed crystal
can also form additional facets in other ⟨111⟩ directions.
Twinning can now also occur around those ⟨111⟩ directions
and is referred to as 3D twinning. The crystalline directions of
the 3D twinned crystal ⎯→⎯xrot can therefore be calculated by

⎯→⎯ = · ⃗x R xrot (3)

where x ⃗ is the original direction and R is the rotation matrix
around the direction u ⃗ = (u1, u2, u3) with u1

2 + u2
2 + u3

2 = 1.
For a twin, u ⃗ is the normalized vector of one of the ⟨111⟩
directions, and is R is given by a 180° rotation; therefore

Figure 1. (a,b) Top view and cross-sectional SEM micrographs of a
standard InAs nanowire sample. (c,d) Definition of the top view
projection angle α and cross-sectional projection angle β. (e,f)
Histograms of the occurrence of top view and cross-sectional
projection angles. Green hexagons: 3D twinned wires. Blue triangles:
⟨100⟩, ⟨110⟩, ⟨112⟩, or ⟨111⟩A wires.
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The coordinate system in our calculations corresponds to the
orientation of the original seed crystal (and therefore the
substrate). The rotated directions are obtained as a vector in
this coordinate system and can as a consequence have higher
indices. For clarity we denote the directions (and families of
directions) before 3D twinning as [x1x2x3] (and ⟨x1x2x3⟩),
while the rotated directions are given as a vector (x1, x2, x3).
One should note that the directions of the rotated crystal are
not in agreement with its crystalline orientations anymore.
Using this approach we calculate the orientations of the four

⟨111⟩B directions after twinning around the other three ⟨111⟩
directions. The resulting 12 first-order 3D twinned orientations
are all found to be in equivalent (1, 1, 5) directions. Figure 2a

shows a 3D model of nanowires growing in these new ⟨111⟩B
directions (only nanowires directed out of the substrate are
shown). Since the original seed crystal can also be twinned with
respect to the substrate (a twin around [1 ̅1̅1 ̅]), we obtain six
more directions. The two families of orientations are shown in
dark and light green, respectively. We also present a top view
projection and a cross-sectional projection of the model. The
table shown in Figure 2b gives the expected directions and
angles for new ⟨111⟩B directions after twinning around the
[11̅1] direction. In addition to the projection angles α and β we
also report γ, which corresponds to the angle between [1 ̅1̅1 ̅]
and the new ⟨111⟩B directions. We observe that one of the new
directions is pointing into the substrate (denoted by †). The
projection angles of the two out-of-plane directions α = 19.1°,

40.9°, and β = 35.3°, 41.5° are in good agreement with peaks
observed in the histograms presented in Figure 1e,f. The other
angles observed in the histograms can be explained by
calculating the twinning around the other ⟨111⟩B directions,
or other low index crystalline orientations (a complete table of
the expected projection angles is presented in the Supporting
Information). The observation that the most pronounced peaks
in the histogram correspond to angles which are expected after
first order 3D twinning are a strong indication for the origin of
tilted nanowires, but it is not enough as a proof since top view
and cross-sectional projection angles are never measured on the
same nanowire. Furthermore, as denoted in the histogram,
several projection angles can result from both 3D twinned
nanowires as well as other low index crystalline orientations
(e.g., β = 35.3° is expected for ⟨100⟩, ⟨111⟩A, ⟨112⟩, and 3D
twinned nanowires). To gain more insight, we propose a way to
calculate the real angle γ of the nanowire direction with respect
to the surface normal ([1̅1 ̅1 ̅] direction), by matching top view
angles α with cross-sectional angles β. This approach is based
on the observation that all 3D twinned orientations exhibit the
same real angle γ = 56.3°, while other low index orientations
exhibit different angles. We can then use that for nanowires
with the same angle γ; a small top view angle α corresponds a
small cross-sectional angle β (and vice versa). Therefore,
nanowires from top view images can be matched with
nanowires from cross-sectional images. Figure 2c,d shows
SEM micrographs of nanowires which are color-coded
accordingly. From this figure we also derive an empirical
relation between α and β as follows: In Figure 2c we define r to
be the length of the projection of the nanowire onto the (1̅1 ̅1 ̅)
plane, and s as the component of r along the [2̅11] or [21 ̅1 ̅]
direction. From this follows s = r · cos α. In Figure 2d we see a
projection of the nanowire onto the (01 ̅1) plane, and define p
as the component of this projection along the [1 ̅11̅̅] direction,
again finding s as the component along the [2 ̅11] or [21 ̅1 ̅]
direction. Taking β = ( )arctan p

s
and combining it with s = r ·

cos α we find the empirical relation between β and α as

β
α

=
·

⎜ ⎟⎛
⎝

⎞
⎠

p
r

arctan
cos (5)

From the histograms, we now match the three predominant
peaks of top view angles α with cross-sectional angles β. Figure
2e shows a plot of the matched angles, including two theoretical
points at β = 90° for α = ±90°. The data points are fitted with
eq 5 giving p/r = 0.66 ± 0.01. The accuracy of the fit indicates
that the predominant projection angles result from a family of
orientations which exhibit the same angle γ (and thereby
validates our direct matching approach). At α = 0° we find
γ β= ° − = ° − = ° ± °p r90 90 arctan( / ) 55.6 0.6 , which is
in agreement with the calculated angle of 56.3° for all first order
twin directions. We have thus comprehensively shown that the
predominant projection angles of tilted nanowires match those
expected from first order 3D twinning.
We now turn to the analysis of the nanowire crystal structure

of tilted nanowires by transmission electron microscopy
(TEM). Our focus lies on the foot of the nanowires, where
3D twinning is expected to occur. For the analysis, wires from a
sample showing a significant density of tilted nanowires were
broken off of the substrate and transferred to TEM grids by
sweeping the sample with a grid. Figure 3a shows cross-
sectional and top view SEM micrographs of a sample before
and after transferring the nanowires. From the cross-sectional

Figure 2. (a) 3D model of nanowire directions after first order 3D
twinning. (b) Table summarizing the expected angles and directions of
three new ⟨111⟩B directions after twinning around the [11 ̅1]
direction. (c,d) Top view and cross-sectional SEM micrographs with
wires in equivalent orientations color-coded, and projected lengths and
angles annotated. (e) Plot of β as a function of α and a fit of their
empirical relation.
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image we observe that the foot of vertical nanowires is
completely straight, while the top view image before nanowire
transfer shows that the foot of tilted nanowires exhibits facets at
a particular angle. After transferring the nanowires, the sample
appears almost empty, with small crystallites remaining from
the nanowires (indicated by arrows). This shows that most
nanowires break off directly from the base, and the specific
shape of the nanowire foot can therefore be used to distinguish
tilted from vertical nanowires on the TEM grid. Figure 3b,c
shows TEM micrographs of the foot of two different nanowires.
We observe no change in morphology along the nanowire
length. For the first sample, the crystal structure shows
perpendicular stacking faults all along the nanowire. The
polytypic crystal structure can also be observed in the selected
area electron diffraction (SAED) pattern shown in Figure 3j.
The second nanowire does not show any change in
morphology either, and the crystal structure also shows

stacking defects perpendicular to the growth direction. At the
very beginning of the nanowire, a short Wurtzite (WZ) section
can be observed, as shown by the fast Fourier transform (FFT)
in Figure 3k. More information about the standard nanowire
crystal structure of vertical nanowires can be found in the
Supporting Information. Figure 3d shows a low-magnification
TEM micrograph of a nanowire which exhibits a nanowire foot
that looks similar to the ones observed in SEM images of tilted
nanowires. A magnified TEM micrograph of the nanowire foot
is presented in Figure 3e, with a change in crystal structure at
the very beginning of the growth. Figure 3f−i shows high-
resolution TEM micrographs of different locations of the
nanowire foot (as indicated in (e)). In Figure 3f we observe the
standard polytypic crystal structure with stacking defects
perpendicular to the growth direction, which is also confirmed
by the selected area diffraction pattern in Figure 3l. Figure 3g
shows a high-resolution TEM micrograph of the left corner of

Figure 3. (a) Left: cross-sectional SEM micrograph of vertical nanowires. Right: top view SEM micrographs of a sample before and after transferring
the nanowires to a TEM grid. (b,c) TEM micrographs of the foot of two vertical nanowires. (d) Overview TEM micrograph of a nanowire showing a
similar foot as observed for the tilted nanowires by SEM. (e) Magnified image of the nanowire foot. (f−i) High-resolution TEM micrographs of the
polytypic nanowire, the bottom left part of the foot, the center, and the bottom right part. (j−o) Selected area electron diffraction pattern and FFT
images of the regions indicated.
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the nanowire foot. We observe a zincblende (ZB) region with a
few stacking defects on the left and then a pure zincblende
region. An FFT image of the pure zincblende region is shown
in Figure 3m and can be indexed, assuming that the image was
taken in the [1 ̅01 ̅] zone axis. The angle between the [111 ̅]
direction of the pure zincblende region and the nanowire
growth direction is found to be 141°. Figure 3h shows a high-
resolution TEM micrograph of the center of the nanowire foot.
The FFT of region 3 is shown in Figure 3n and can be indexed
to show the crystal from the [101] zone axis. The angles
between region 2, region 3, and the nanowire growth direction
are found to be 110°, which is in agreement with the angle
expected between two ⟨111⟩ directions. Figure 3i shows the
bottom right part of the nanowire foot. The corresponding
selected area diffraction image in Figure 3o confirms the
observation of the two zincblende regions with one rotational
twin. In Figure 3h one can also observe that the interface
between the bottom right part of the foot and the polytypic
nanowire is perfectly crystalline, while the interface between the
bottom left part and the polytypic nanowire (indicated with a
green arrow) is defective, indicating that two different seed
crystals merged here. Combining the information from the
different micrographs and FFTs images, we suggest that growth
started in region 2, followed by a twin around the [11 ̅1̅]A
direction to form region 3. Region 3 then started to exhibit a
growth front in a new ⟨111⟩B direction, which then continued
to grow as a nanowire. The growth front of the elongated
nanowire corresponds to the [111 ̅] direction in the coordinate
system of region 3. Converting this direction to the original
coordinate system of region 2 results in the vector (−1, −5, 1),
which indeed forms an angle of 141° with the [111 ̅] direction
of region 2. The bottom left part of the nanowire foot (region
1) then accumulated material until the gap was filled, explaining
the defective interface with the final nanowire. We conclude
that even though an unambiguous identification of the
crystalline directions of a nanowire that has been removed
from the substrate is not possible, a multiorder twinning
process can explain the change in crystalline direction which is
observed experimentally. More TEM images of other nanowire
feet which show stacking defects nonperpendicular to the
growth direction can be found in the Supporting Information.
We continue by exploring how the existence of tilted

nanowires depends on the growth conditions. Figure 4a−e
shows top view and cross-sectional SEM micrographs of
samples that were grown under a V/III flux ratio of 4.3, 7.1,
13.5, 17.9, and 25, respectively. For this, the arsenic beam
equivalent pressure (BEP) was changed as indicated in the
figure, while all other growth conditions were kept constant.
Figure 4a shows a high density of tilted nanowires for the
lowest V/III ratio. A slightly lower density can be observed in
Figure 4b. The sample in Figure 4c shows only very few tilted
nanowires, and the two samples presented in Figure 4d,e show
no tilted nanowires. To quantify our finding we counted the
density of tilted nanowires and vertical nanowires. The
percentage of tilted nanowires defined as p = tilted/(tilted +
vertical) is presented in Figure 4f, showing a dramatic decrease
of tilted nanowires with increasing V/III ratio. For each V/III
ratio, several SEM micrographs with hundreds of nanowires
were taken into account. The data represents the average and
standard deviation of the nanowire density on different SEM
images. The statistics also include a sample grown at a V/III
ratio of 15, for which SEM micrographs will be presented as
reference sample in Figure 6. One should note that with

increasing V/III ratio also the optimal growth temperature
slightly increases. For this study all samples were grown at a
temperature of 530 °C and the analysis was done on the part of
the wafer which showed the best nanowire homogeneity (i.e.,
the center for samples (a−c) and the edge for samples (d,e)).
The change in nanowire morphology across the sample is
related to a slight temperature gradient (∼10 °C) due to the
manipulator design in our MBE. The decrease in tilted
nanowires reported here, however, is not related to the
temperature; a higher growth temperature in fact favors the
formation of tilted nanowires, as discussed in the Supporting
Information. A strong dependence of the formation of tilted
nanowires on the V/III ratio is in agreement with results
observed in the literature, where nanowires are found to be all
vertical for samples grown at high V/III ratio of 120, 200, or
320 (refs 28−30.), while some tilted nanowires are observed at
a V/III ratio of 7−8 (ref 26.). One should note that the
effective V/III ratio also depends on the growth temperature
(due to re-evaporation from the substrate), explaining why no
tilted nanowires are observed at a V/III ratio of 6.3 and a
significantly lower growth temperature.27 The V/III ratio
dependence of the existence of tilted nanowires could be
explained considering indium droplets as seed particles: A
higher arsenic pressure leads to smaller indium seed droplets at
the early stages of growth (or a complete absence of droplets),
therefore avoiding the formation of additional {111} facets
leading to a change of growth direction. This explanation
implies that a catalyst droplet is present at the beginning of
growth under low V/III ratio where tilted nanowires are
observed, and absent (or significantly smaller) for nanowires
grown at higher V/III ratios. Additionally, the existence of an
elongated WZ section at the foot of nanowires grown at high
V/III ratios (ref 25) may suppress 3D twinning, since the

Figure 4. Arsenic dependence of the existence of tilted wires. (a−e)
Top view and cross-sectional SEM micrographs of samples grown at a
V/III ratio of 4.3, 7.1, 13.5, 17.9, and 25, respectively. (f) Percentage of
tilted nanowires.
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formation of new ⟨111⟩B facets would be difficult in a
hexagonal WZ seed crystal.
At very low V/III ratio we also observe projection angles that

cannot be explained by multiple-order twinning. Figure 5 shows
a more detailed SEM and TEM analysis of the sample
presented in Figure 4a, which was grown at a V/III ratio of 4.3
(arsenic pressure of 6 × 10−7 Torr). Top-view SEM
micrographs are presented in Figure 5a. We observe top-view
projection angles of approximately 20°, 41°, 60°, 79°, and 90°.
Projection angles of 60° and 90° (highlighted in green) cannot
be explained by multiple-order twinning (see table with all
projection angles of low-index crystalline orientations in
Supporting Information). Orientations corresponding a projec-
tion angle of 60° and 90° could be in fact ⟨100⟩, ⟨110⟩, ⟨112⟩,
and ⟨111⟩A growth directions. One should note that the
calculation of projection angles also includes certain ⟨110⟩ and
⟨112⟩ directions which are found to be parallel to the substrate
(crawling nanowires). Unfortunately, analyzing only top view
angles is not conclusive, since many wire orientations show
similar top view angles. In particular, the top view projection
angles of ∼20°, 41°, and 79° can result from both 3D twinned
nanowires as well as ⟨112⟩ nanowires. In Figure 5a we
highlighted a few nanowires that have the same projection angle
but different morphologies/facets with arrows. This can be
explained by different growth directions: while 3D twinned
nanowires have a hexagonal shape with six {110} facets, ⟨112⟩

oriented nanowires are expected to have rectangular shape with
two {110} and two {111} facets. Figure 5b,c shows cross-
sectional SEM micrographs of the same sample. Here we
observe projection angles of 0°, 29°, 35°, 41°, 55°, 71°, and
80°, where 0° corresponds to crawling wires as shown in the
15° tilted image. Comparing with the table of projection angles
we find that (i) 35° and 41° can be explained by 3D twinning;
(ii) 29°, 35°, 71°, and 80° would be consistent with ⟨112⟩
oriented nanowires; and (iii) 55° and 71° would agree with the
projection of ⟨110⟩ oriented nanowires. The angles 29°, 55°,
71°, and 80° which are exclusive to ⟨110⟩ and ⟨112⟩
orientations are highlighted in green. Again, we also highlighted
two nanowires with the same projection angle but clearly
different faceting with an arrow. We also remark that a cross-
sectional projection angle of 19° is not observed in any sample,
indicating that ⟨1 ̅1̅1⟩A oriented nanowires are very rare or not
present at all. This observation stands in contrast to the case of
GaAs nanowires grown at very low V/III ratio, where a
significant increase of A-polar wires was reported.18 Figure 5d−i
presents TEM micrographs of nanowires with unusual growth
directions. Figure 5d shows a low resolution image and SAED
pattern of the first nanowire. The SAED diffraction pattern
shows zincblende stacking and two twin orientations which can
be indexed assuming a [1 ̅1 ̅0] or [110] zone axis. By comparing
the growth direction of the nanowire with the diffraction
pattern, it can be observed that the nanowire axis corresponds

Figure 5. Detailed SEM and TEM analysis of a sample grown at a V/III ratio of 4.3. (a−c) Top view and cross-sectional SEM micrographs.
Projection angles that can be explained by multiorder twinning are marked in yellow and other angles are marked in green. (d−f) TEM micrographs
and SAED pattern of a nanowire growing in [11̅2 ̅] direction. (g−i) TEM micrographs and SAED pattern of a nanowire growing in [1 ̅00] direction.
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to the [11 ̅2̅] direction. Figure 5e,f shows a magnified image of
the nanowire foot and a high-resolution TEM micrograph of
the region indicated. The images show zincblende stacking with
two rotation twins running along the nanowire (parallel to the
growth axis). These longitudinal defects are characteristic for
nanowires in the ⟨112⟩ direction.16,31 TEM analysis of two
more ⟨112⟩ oriented nanowires are presented in the Supporting
Information. Figure 5g shows a low resolution TEM micro-
graph and SAED pattern of another nanowire. The diffraction
pattern can be indexed assuming a [01 ̅1] zone axis and the
nanowire growth direction therefore corresponds to the [1 ̅00]
direction. The expected rectangular shape of ⟨100⟩ nanowires
explains why the nanowire appears very dark and no thinner
region at the edges can be found. Figure 5h,i shows a magnified
image and a high-resolution TEM micrograph of the foot of the
nanowire, and confirms a defect-free zincblende crystal
structure.
As seen from the SEM micrographs in Figure 5, nanowires in

unusual orientations often show kinks and other changes in

morphology. Figure 6 presents TEM micrographs of two
nanowires showing an unusual morphology. Figure 6a shows a
low magnification TEM micrograph of a nanowire resembling
the morphology of the nanowire oriented in the [011 ̅]
direction, which is marked with a star in the SEM image in
Figure 5a. We observe a long defect-free part and then a change
of direction and a small droplet. A magnified image of the tip
region is shown in Figure 6b, showing a few defects at the
interface. Figure 6c,d shows high-resolution TEM images of the
defect-free nanowire and the defects at the tip. The SAED
image of the defect-free region is presented in (j) and shows a
pure ZB crystal structure which can be indexed assuming a
[01 ̅1 ̅] zone axis. We also present dashed lines corresponding to
the direction of the nanowire both in the TEM micrograph and
in the SAED image. From the SAED we observe that the
nanowire direction is [011 ̅], which matches the direction
observed in the SEM micrograph (it should be noted that this
corresponds to a crawling nanowire). The defects near the tip
can be identified as a few layers of WZ, and then the droplet

Figure 6. TEM analysis of nanowires with unusual morphology. (a−d) TEM micrographs of a nanostructure growing in [011 ̅] direction. Parts (j,k)
present the corresponding diffraction images. (e−i) TEM micrographs of a nanostructure growing in the [2̅1 ̅1̅] direction. The corresponding
diffraction images are shown in (j−o).
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itself shows a twin defect in a ⟨111⟩ direction at a 70° angle
with respect to the WZ layers. The existence of the two
polytypes and the rotational twin is confirmed by the SAED
image shown in (k). Figure 6e shows a low magnification TEM
micrograph of another nanowire, which resembles the small
nanowire marked with a star in the background of the SEM
image of Figure 5b. We observe a few defects at the foot of the
nanowire and then an elongated section showing two defects
parallel to the growth direction, and then a tip in a different
direction. A magnified image of the tip region is presented in
Figure 6f. Figure 6g−i shows high resolution TEM micrographs
of the foot of the wire, the main part, and the transition to the
tip. Figure 6g shows the foot of the nanowire and the beginning
of the main part. We observe a few layers of WZ at the foot of
the nanowire, which can also be seen in the FFT image in (l).
The beginning of the main nanowire core shows ZB crystal
structure with two twin defects, which can also be seen in the
SAED image in (m). The main core of the nanowire is ZB as
shown in (h) and the corresponding SAED shown in (n) can
be indexed assuming a [01̅1] zone axis. The dashed green line
corresponds to the growth direction of the nanowire and can be
found to be oriented in the [2̅1 ̅1 ̅] direction. The transition to
the tip (Figure 6i) shows again a few layers of WZ stacking and
then a ZB region with a twin defect in the ⟨111⟩ direction at an
angle of 70° with respect to the WZ layers. Figure 6o shows a
SAED image of the whole tip region, showing diffraction spots
from WZ stacking (very weak) as well as the ZB sections
showing twins in two different directions. Summarizing the
analysis in Figure 6, we find projection angles that can only be
explained by ⟨110⟩ and ⟨112⟩ oriented nanowires, and TEM
images support the existence of nanowires in those unconven-
tional directions.
We have suggested the existence of the droplet at the

beginning of growth as a possible explanation for formation of
tilted nanowires. To study this hypothesis we investigate
nanowire growth after the predeposition of indium droplets.
For this, we first heat up and anneal a sample for 1 h at 480 °C
under arsenic flux (as for standard samples). The arsenic valve
is then closed and indium is deposited at the standard indium
BEP of 1.4 × 10−7 Torr. Finally the sample is heated to the
growth temperature of 530 °C and nanowires are grown for
1 h. As growth conditions we choose a relatively high V/III
ratio of 15. Figure 7a shows a top view and cross-sectional SEM
micrograph of a reference sample without indium predeposi-
tion, showing a very low density of tilted nanowires, as expected
at high V/III ratio. Figure 7b shows a sample where indium was
deposited for 3 min and then nanowire growth was started
under identical growth conditions. A higher density of tilted
nanowires can be observed, while the density of vertical
nanowires dramatically decreases. The green arrow highlights a
nanocross which was formed by merging of two tilted
nanowires. Figure 7c shows a sample with a 10 min indium
predeposition. Almost no vertical nanowires are found and only
very few tilted nanowires. Instead the sample is covered with
parasitic growth. In the inset, a top view SEM micrograph of a
reference sample is presented, for which the process was
stopped after the 10 min indium predeposition. We observe
that the sample is covered with droplets, confirming that
indium droplets can be formed under the conditions studied.
Statistics on the percentage of tilted nanowires and the overall
density are shown in Figure 7d. Our results show that
predeposition of indium dramatically increases the occurrence
of tilted nanowires, even under growth conditions for which

normally only very few tilted nanowires are observed. This
finding supports our hypothesis that the formation of tilted
nanowires is related to the existence of an indium droplet at the
beginning of growth. We can therefore conclude that under low
V/III ratio nanowire growth starts with a droplet, while under
high V/III ratio the droplet is significantly smaller or absent
completely.
Finally, we also study the existence of tilted nanowires as a

function of the growth temperature and the oxide thickness. All
SEM micrographs and statistics can be found in Supporting
Information. We find that increasing the growth temperature
increases the ratio of tilted nanowires, which can be attributed
to a change in effective V/III ratio, as mentioned above. With
respect to the oxide thickness we find that a thicker oxide favors
the formation of tilted nanowires. This result can be compared
to the work by Matteini et al.,24 where a thicker native silicon
oxide was found to favor spilling of gallium droplets and
therefore nucleation of tilted nanowires. Whether or not the
explanation of the surface energy also applies in our case is
subject to further investigation. Last but not least, we also note
that incorporation of antimony suppresses the formation of
tilted nanowires, as can be observed from the antimony series
in ref 25. Considering that incorporation of antimony
dramatically reduces the formation of rotational twins, this
finding further supports the explanation of tilted nanowires due
to 3D twinning.

■ CONCLUSION
In conclusion we presented a complete analysis of the existence
of tilted InAs nanowires obtained without a foreign catalyst.
Tilted nanowires are found to occur at specific angles, which
can in most cases be explained by a 3D twinning process. At
very low V/III ratio, also angles corresponding to ⟨112⟩ or
other low-index orientations are found. TEM studies of both
3D twinned nanowires as well as nanowires growing in usual
crystalline directions are presented. The formation of tilted
nanowires depends on the growth conditions and on the
substrate preparation. Most importantly we find that increasing
the V/III ratio suppressed the formation of tilted nanowires
almost completely. This result suggests that at low V/III ratios

Figure 7. Nanowire samples grown at a V/III ratio of 15. (a) Top view
and cross-sectional micrographs of a reference sample without indium
deposition. (b,c) Samples with 3 and 10 min indium deposition,
respectively. The inset in (c) shows a sample just after 10 min indium
predeposition. (d) Statistics of the percentage of tilted nanowires and
the nanowire density.
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an indium droplet is present during the early stages of growth,
allowing for the formation of different {111}B facets, while at
high V/III ratio multiorder twinning is suppressed, possibly due
to the absence of a catalyst droplet. Our results contribute to
the understanding of the growth mechanism of InAs nanowires,
and provide several pathways to achieve all vertical nano-
wireswhich is an important requirement for the fabrication of
devices where several nanowires are contacted in parallel as-
grown on the substrate. Tuning the ratio of tilted nanowires
also constitutes a pathway to make nanowire junctions and
crosses, which are important building blocks for Majorana
Fermion braiding.
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Chapter 4. Results & Discussion

4.3 Tuning nanowire growth direction

While some applications require all vertical nanowires, other applications e.g. quantum

computation based on Majorana Fermions require the possibility to create nanowire networks,

as discussed in section 2.4. Different approaches have been used to create nanowire junctions

and networks, including growth from pyramids and groves which have {111} facets [Rieger16,

Heedt16], and a change in direction during nanowire growth [Plissard13, Car14]. The first

approach allows to create a high density of nanowire junctions, but it requires an additional

substrate preparation step in order to produce the pyramids or groves. Changing direction

during growth, on the contrary, does not require substrate processing. However the first results

were based on manipulation of the gold catalyst participle, and therefore it is not clear to

which extend this avenue works for self-catalyzed or even catalyst-free nanowires.

In this publication we studied the possibility to change growth direction of InAs nanowires

grown without a foreign catalyst. In particular we found that indium droplets can be created

by annealing of InAs nanowires under vacuum. The size of the droplets increases with time

and the droplets, which are first created on the top facet of the nanowires, slide down onto

the side facets once they exceed a certain size. The indium droplets can be used to initiate

growth, and the growth continues in the direction of the droplet position. This results in

nanowires that are vertical or L-shaped depending on the annealing time. The L-shaped

nanostructures are interesting for the creation of nanowire networks. The vertical nanowires

are also interesting, since they were grown following the VLS growth mechanism - at least

for the first couple of nanometers. As discussed in 2.2, there is an extensive debate about

the growth mechanism of InAs nanowires without a foreign catalyst. And it has also been

reported that the presence of an indium droplet would favour the growth of defect-free crystals

[Biermanns14]. Analyzing the vertical nanowires that were grown after droplet formation,

we often find a thin section of defect-free zinc-blende within the otherwise polytypic crystal

structure. This suggests that 1) the existence of a droplet is indeed related to a suppression of

stacking defects, and 2) the droplet is readily consumed and the standard nanowire growth

proceeds via the VS mechanism. Unfortunately, a direct observation of the growth mechanism

and crystal structure would still require in-situ measurements. The full analysis is presented

in the publication below. We furthermore also studied the droplet formation using InAs1−x Sbx

nanowires, and studied deposition of indium onto existing nanostructures. The latter could

be used as an avenue to create heterostructures.

Reprinted with permission from H. Potts et al. Tuning growth direction of catalyst-free InAs(Sb)

nanowires with indium droplets. Nanotechnology 28, 054001 (2017). c© 2017 IOP Publishing.
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Abstract
The need for indium droplets to initiate self-catalyzed growth of InAs nanowires has been highly
debated in the last few years. Here, we report on the use of indium droplets to tune the growth
direction of self-catalyzed InAs nanowires. The indium droplets are formed in situ on InAs(Sb)
stems. Their position is modified to promote growth in the 〈11–2〉 or equivalent directions. We
also show that indium droplets can be used for the fabrication of InSb insertions in InAsSb
nanowires. Our results demonstrate that indium droplets can initiate growth of InAs
nanostructures as well as provide added flexibility to nanowire growth, enabling the formation of
kinks and heterostructures, and offer a new approach in the growth of defect-free crystals.
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Introduction

InAs and InSb nanowires offer an interesting platform for
fundamental studies and electronic applications [1–8]. For
high performance devices it is important to achieve high
material purity, a defect-free crystal structure [9], and flex-
ibility in terms of dimensions, morphology and growth
direction [10, 11]. High purity nanowires can be obtained by
molecular beam epitaxy (MBE) without a foreign catalyst,
thereby avoiding the risk of impurity incorporation related to
the catalyst particle [12, 13]. However, a challenge remains
concerning the presence of stacking defects in self-catalyzed
InAs nanowires [14, 15]. One pathway towards defect-free
crystals is the growth of ternary nanowires, as recently
demonstrated by the growth of InAs1−xSbx nanowires
[16, 17]. Another approach to obtain defect-free nanowires
would include a change of polarity [18] or growth direction
[19], since the typical stacking defects observed in III–V
nanowires are related to the formation of {111}B planes [20].
In the case of InP nanowires, different crystalline growth

directions have been achieved by engineering the gold cata-
lyst [21–25], or by spontaneous kinking in the case of self-
catalyzed nanowires [26]. The resulting wires in 〈100〉
directions are defect-free [23]. Other directions, such as 〈112〉
exhibit twin planes non-perpendicular to the nanowire axis
[20, 27]. The change in growth direction is not only relevant
to suppress stacking defects, but also facilitates the integration
with CMOS platforms where (100) wafers are typically used.
Furthermore, in situ engineering of the droplet has opened
many more perspectives, such as the growth of novel
nanostructures, including nano-sheets [28–31] and nano-
crosses [10, 32]. Branched nanostructures have received
considerable attention as building blocks for braiding of
Majorana Fermions [33]. In the case of self-catalyzed
nanostructures droplet engineering is more difficult, and to the
best of our knowledge, only one group has reported an in situ
change of growth direction. In that work, branched GaAs
nanowires were obtained by the accumulation of gallium on
an InAs quantum dot on the nanowire side facet [34]. For
InAs nanowires changing the growth direction by droplet
engineering is particularly challenging, since there is still a
debate as to whether InAs nanowires grow with or without an
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indium droplet [14, 15, 35]. Catalyst-free growth of InAs
nanowires along the 〈100〉 direction can be forced by using
SiO2 nanotube templates, although this strategy does not
prevent the formation of stacking defects [36]. As far as we
know, template and catalyst-free InAs nanowires have so far
been limited to the 〈111〉B growth direction, and no in situ
change of growth direction has been demonstrated yet.

Results and Discussion

In this work, we demonstrate that indium droplets can initiate
and modify the growth direction of self-catalyzed InAs
nanowires, even though in the typical growth regime indium
droplets might not be present. Indium droplets are obtained
either by annealing nanowires in vacuum or by direct
deposition on the nanowires. We investigate the behavior of
both InAs and InAsSb nanowires, and demonstrate that the
indium droplet size and position can be tuned by changing the
annealing time. The indium droplets can then be used as seeds
to continue nanowire growth, thereby enabling the growth of
L-shaped InAs nanostructures (‘nano hockey sticks’) as well
as axial changes in composition. The L-shaped structures are
particularly interesting because they give access to self-cata-
lyzed InAs nanostructures grown in 〈11–2〉 directions which
adopt the crystal structure of the 〈–1–1–1〉 oriented host
nanowire. In the case of pure InAs nanowires as a starting
point, the resulting branches show stacking defects parallel to
the growth direction. In the case of InAsSb nanowire host
structures, branches with a very low defect density can be
obtained.

We start by explaining the formation of indium droplets
upon annealing of InAs nanowires. InAs nanowires are grown
on GaAs(111)B substrates covered with 4.5 nm of HSQ oxide
using a DCA P600 MBE system (more information about the
nanowire growth can be found in [16]). After nanowire
growth, all sources (In, As) are closed and the sample is kept
at the growth temperature (530 °C) for a varying amount of
time. We observe that arsenic evaporates at a higher rate
compared to indium, as expected from the difference in vapor
pressures. Since {111}B facets are thermally less stable than
{110} facets, the evaporation occurs predominantly at the top
facet of the nanowire, leading to the formation of an indium
droplet on top of the wire. Representative scanning electron
micrographs of the nanowires directly after growth and after
being annealed for 5, 10 and 15 min are shown in figure 1.
The indium droplets grow in size when increasing the
annealing time, and slide down onto the side facets of the
nanowire (figures 1(b), (c)) once they exceed a critical size.
No significant change in diameter of the wires is observed as
a function of the annealing time. This confirms that eva-
poration occurs mostly from the top facet and is negligible on
the side facets, as opposed to what is observed in GaAs [37].
The droplets are located on the corner between two {1-10}
facets and stay close to the tip of the nanowire as shown in the
3D schematic in figure 1(d). The pinning near the nanowire
tip would be in agreement with the results on gold-catalyzed
InSb nanosails [28], where it has been reported that a defect-
free crystal structure allows for the droplet to slide down,

while stacking defects cause pinning of the droplet. In our
case the host InAs nanowire shows a high density of stacking
defects, as shown in the high resolution transmission electron
micrograph (TEM) in figure 1(e), therefore pinning the dro-
plet near the nanowire tip. The indium droplet is found to be
amorphous after cooldown. We further performed energy
dispersive x-ray spectroscopy (EDX) in a scanning TEM to
study the elemental composition of the droplet. Figures 1(f),
(g) shows a high angular annular dark field image of a
nanowire tip with a droplet, and an elemental map showing
arsenic in red and indium in green. A linescan of the com-
position along the white dashed line is presented in
figure 1(h). The indium content is slightly above 50% on the
nanowire. This suggests that a small layer of indium may
accumulate at the nanowire surface. The formation of an
indium droplet upon annealing of the nanowires in vacuum is
also a critical point when discussing the exact growth
mechanism (vapor–liquid–solid or vapor–solid) of InAs
nanowires: the presence of an indium droplet is not neces-
sarily related to vapor–liquid–solid since it can also be formed
if the arsenic cell is closed before sufficient cooling of the
nanowires.

Since the formation of a droplet depends on the preferred
evaporation of arsenic at the nanowire tip, the question arises,

Figure 1. Droplet formation by annealing of InAs nanowires. (a)
Cross sectional SEM micrographs of a standard InAs nanowire
sample and after annealing for 5 min (b), (c) Nanowire samples
which have been annealed for 10 min, and 15 min respectively.
Droplets are formed on the top facet of the nanowires and then slide
down onto two of the {1–10} facets when the droplets increase in
size. Insert in (b) shows a top view SEM of a nanowire and droplet.
(d) Schematic representation of the droplet position. (e) TEM
micrograph of the tip of a nanowire with a droplet. (f), (g) STEM-
HAADF image and EDX map of the same nanowire. (h) Elemental
composition along the line indicated in (g), showing that the droplet
is almost pure indium.

2

Nanotechnology 28 (2017) 054001 H Potts et al



how does this effect change in ternary materials (with two
group V elements)? We chose to study InAsSb nanowires
with an antimony content of approximately 20%. The growth
conditions and crystal structure analysis of InAsSb nanowires
can be found in [16]. Figure 2(a) shows an SEM
micrograph of an InAsSb nanowire sample before annealing.
Similar to pure InAs nanowires, no droplet can be observed
on the tip of standard InAsSb nanowires. Figure 2(b) shows
an InAsSb sample which was annealed at 530 °C for 10 min,
in conditions similar to those that were found to lead to
droplet formation for pure InAs nanowires. We observe that
InAsSb is more sensitive to temperature; the nanowires eva-
porate at a much higher rate and the nanowire forest almost
disappears, leaving indium droplets and crystallites on the
substrate. Lowering the evaporation temperature by 30 °C
allows to form droplets on InAsSb nanowires. Figures 2(c)–
(e) corresponds to SEM micrographs of samples annealed for
10, 20 and 30 min at 500 °C. The droplet size increases at the
beginning, but then stays constant after a certain time. The

droplets do not slide down and instead the evaporation takes
place mostly from the side facets, resulting in thinner nano-
wires with tapering towards the droplet. It is as if the droplet
formed at the tip protects the top facet from evaporating
further. Figures 2(f), (g) shows high resolution TEM inves-
tigations after cooldown. A Moiré pattern between the
nanowire and the droplet is observed, suggesting an overlap
of materials with a different lattice constant. STEM and EDX
analysis of the nanowire tip and droplet are illustrated in
figures 2(h)–(j). This analysis reveals the formation of a thin
section of InSb just below a predominantly indium droplet.
An InSb section is present in all annealed InAsSb samples
(more details in supporting information). Since an InSb
section is not observed in any as-grown nanowire sample, we
assume that it is formed during cooldown; at the annealing
temperature, the droplet consists of indium and antimony.
During cooldown, the solubility of antimony in the indium
droplet decreases, leading to a crystallization of InSb. We
note that our results are qualitatively similar to the case of
self-catalyzed GaAsSb nanowires, where a thin GaSb section
has been reported [38]. A back-of-the-envelope calculation
was done to estimate the amount of antimony dissolved in the
indium droplet before cooldown. Assuming that the number
of antimony atoms corresponds to the InSb section of
19±5 nm in height, we get an antimony concentration of
15±4% in the indium droplet before cooldown. This value
is comparable with self-catalyzed InSb nanowires grown by
MOVPE, where an antimony concentration of up to 20% was
measured in the droplet [39].

We turn now to the use of indium droplets as seed par-
ticles to drive InAs nanowire growth in new growth direc-
tions. After growing the InAs nanowires, we anneal them to
form the indium droplets at the top or side facets of the
nanowires, and then continue growth. For the second part of
the growth we use typical InAs nanowire growth conditions
in terms of substrate temperature and indium flux (530 °C and
1.4×10−7 Torr indium beam equivalent pressure (BEP)),
while the arsenic BEP is lower and was varied between 2.5
and 7×10−7 Torr. Figures 3(a)–(c) show representative
SEM micrographs of InAs samples annealed for 5 min,
10 min and 15 min which were then subjected to further InAs
growth (1 h) at an arsenic BEP of 5×10−7 Torr. Figure 3(a)
shows that after only 5 min annealing, growth mainly con-
tinues in the original 〈–1–1–1〉 nanowire growth direction (the
expected droplet position is marked with a dashed line). After
10 min annealing we observe the growth of L-shaped struc-
tures as shown in figure 3(b). Those structures are always
perpendicular to the host nanowire, similar to the results by
Suyatin et al, where kinked InAs nanowires were grown by a
second gold deposition step and chemical beam epitaxy [40].
In figure 3(b) we also note that not all the wires form bran-
ches, as some wires also continue growing in the axial
direction. We attribute this variation of shapes to the presence
of indium droplets both at the nanowire tip and side facets
after 10 min annealing. Growth after 15 min annealing results
in 100% L-shaped nanostructures. This is in agreement with
the 100% yield of droplet formation at the intersection of two
nanowire side facets. It can therefore be concluded that the

Figure 2. Droplet formation by annealing of InAsSb nanowires. (a)
Standard InAsSb sample without annealing. (b) Nanowire sample
which has been annealed for 10 min at 530 °C. (c)–(e) Nanowire
samples which have been annealed at 500 °C for 10 min, 20 min, and
30 min respectively. (f), (g) TEM micrographs of a nanowire with a
droplet, showing an interference pattern due to crystals with a
different lattice constant. (h), (i) STEM-HAADF image and EDX
map of the same nanowire. (j) Elemental composition along the line
indicated in (i), showing an InSb section between the InAsSb wire
and the indium droplet.
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droplets act as seed particles to re-initiate growth following
the vapor–liquid–solid (VLS) mechanism. At this point it is
still unclear how long the droplet survives and whether or not
the mechanism changes to vapor–solid (VS). Figure 3(d)
shows a top view image (15° tilted) of the sample presented in
(b). It can be observed that the growth direction of the
L-shaped structures corresponds to one of the 〈11–2〉 direc-
tions, being in agreement with the positioning of the indium
droplets at the corners between two {110} facets. Interest-
ingly the 〈11–2〉 direction is also the growth direction for
which the growth of membranes and nanowires with elon-
gated cross sections is possible in the case of GaAs in pat-
terned silicon dioxide on GaAs(111)B [41, 42].

We will now discuss the role of the arsenic flux in the
growth of 〈11–2〉 oriented nanostructures. In figures 3(e)–(h)
we provide SEM micrographs of samples grown with an
increasing value of arsenic BEP, after annealing the InAs
stems for a duration of 10 min. The exact values of arsenic
BEP are 2.5×10−7 Torr, 3.5×10−7 Torr, 5×10−7 Torr,
and 7×10−7 Torr for samples (e)–(h), respectively (note that
(b) and (g) are the same sample). We observe that increasing
the arsenic flux significantly increases the growth both in the
〈–1–1–1〉 direction for the linear nanowires and in the 〈11–2〉
direction for the L-shaped nanostructures (figures 3(e)–(g)).
For very high arsenic flux growth in the 〈11–2〉 direction
stops to be favorable, and nanowires with elongated cross
sections are observed as shown in figure 3(h). Note that the
threshold is lower than the arsenic BEP which is used for the
growth of typical InAs nanowires (1.9×10−6 Torr). Time
series reveal that the flat membranes form gradually; it is as if
the droplets favor growth on the side facet they were initially
sitting on (more information available in supporting infor-
mation). The observed mechanism stands in contrast to gold
catalyzed nanowires, for which flat nanowires were reported
due to a downward movement of the catalyst particle [43].

In figure 4 we show how re-initiating growth with an
indium droplet affects the crystal structure. Previously it has
been suggested that the presence of liquid indium could favor
the growth of defect-free Wurtzite [44], and it has been
demonstrated that controlling the droplet is crucial for the
growth of defect-free GaAs nanowires [45, 46]. We start by
analyzing the crystal structure of the L-shaped nanostructures.
An SEM micrograph of the sample is shown in figure 4(a).
Figures 4(b), (c) show a low resolution TEM micrograph and
the corresponding diffraction pattern of an InAs branch. High
resolution TEM micrographs of different parts of the sample
are shown in figures 4(d), (e). We observe that the crystal
structure is polytypic, as is commonly observed for self-cat-
alyzed InAs nanowires. Twins form perpendicular to the
nanowire axis, as is also commonly observed for nanowires
grown in the 〈111〉 direction [20]. Comparing a high-reso-
lution TEM micrograph of the corner (figure 4(d)) with the
end of the branch (figure 4(e)) we observe that the defects of
the host nanowire propagate all along the horizontal part,
being parallel to the growth direction. The 〈11–2〉 oriented
part of the L-shaped structure therefore adopts the polytypic
crystal structure from the host InAs nanowire. This observa-
tion stands in contrast to the work by Plissard et al [10],
where the horizontal InSb nanowire has no epitaxial relation
with the InP nanowire stem. We also study the crystal
structure of the sample shown in figure 4(f), where the growth
continues in axial direction. Figures 4(g), (h) show a low
resolution TEM micrograph and the corresponding diffraction
pattern. We observe that the general crystal structure is
polytypic. However, in many wires we observe a thick pure
zinc blende (ZB) section 800 nm below the tip of the nano-
wire, as shown in figures 4(i), (j). The location of the pure ZB
region corresponds approximately to the expected position
where the growth was re-initiated after the droplet formation.
Since the existence of a pure ZB region in the middle of the

Figure 3. Growth of L-shaped InAs nanostructures. (a)–(c) Cross sectional SEM micrographs of InAs nanowire samples that have been
annealed for 5 min, 10 min and 15 min respectively. The growth of the branch was performed under 5×10−7 Torr arsenic flux for 1 h. We
observe that the growth direction after annealing is determined by the droplet position. (d) Top view image (15° tilted) of the sample which
was annealed for 10 min, showing the crystalline direction of the branches. (e)–(h) Cross sectional SEM micrographs and top view images
(15° tilted) of nanowire samples that have been annealed for 10 min and growth was re-initiated under an arsenic BEP of 2.5×10−7 Torr,
3.5×10−7 Torr, 5×10−7 Torr, and 7×10−7 Torr, respectively. We observe that growth in 〈11–2〉 direction is favored at low arsenic
pressure, while flat nanostructures are observed at high arsenic pressure.
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polytypic InAs crystal structure is very unusual, we attribute it
to the effect of the indium droplet and the VLS growth
mechanism. After the pure ZB section the nanowire continues
with the standard polytypic crystal structure, suggesting that
the droplet is readily consumed and the growth proceeds
droplet-free. Comparing our results to the findings of Bier-
manns et al [44], we agree that the existence of an indium
droplet supports the suppression of twinning defects. One
should note, however, that in our case the resulting crystal
structure is ZB, while the original paper reported on wurtzite
(WZ) stacking.

We go now a step further in the fabrication of hier-
archical structures, and investigate the formation of droplets
when annealing L-shaped nanostructures. Figure 5(a) shows a
sample which has been annealed for 10 min at 530 °C. Dif-
ferent positions of the indium droplets can be observed.
Figures 5(b)–(e) shows a sample where growth was re-initi-
ated after the second droplet formation step. Different
nanostructure shapes can be observed, including thicker
L-shaped structures, longer branches, and nano-bridges. The
nano-bridges are particularly interesting since the second
‘leg’, which is formed after the second annealing step, grows
in 〈111〉A direction. A-polar growth is very untypical for self-
catalyzed arsenide nanowires, and has only recently been
observed in the case of InAs growing around Si/SiO2 nano-
tubes [47]. Our results confirm that it is possible under certain
conditions. A low resolution TEM micrograph of a nano-
bridge is shown in figure 5(f). A high resolution TEM
micrograph of the host nanowire is presented in figure 5(g),
showing the standard polytypic crystal structure. In the high
resolution TEM micrograph of the second ‘leg’ (figure 5(f))
we can observe a 20 nm thick pure ZB region. We attribute
this pure phase section to the presence of a droplet when re-
initiating growth. The rest of the second leg shows polytyp-
ism, similar to standard InAs nanowires. Please note that
nano-bridges can also be formed when two L-shaped nanos-
tructures merge during growth. However, in such a case the
crystal structure of the horizontal part is not continuous (more

details in supporting information). We conclude that the
annealing and re-initiation process can be repeated multiple
times in order to grow more sophisticated hierarchical struc-
tures. Further research is necessary to achieve control over the
droplet position during consecutive annealing steps.

Next we present re-initiation of InAs growth in the case
of InAsSb nanowires after droplet formation. We have seen

Figure 4. Crystal structure of InAs nanostructures grown with a droplet. (a) SEM micrograph of an L-shaped nanostructure. (b)–(e) TEM
micrographs showing that the branch adopts the polytypic crystal structure of the InAs host nanowire. (f) SEM micrograph of an InAs
nanowire sample where the upper part of the nanowire was grown after droplet formation (g)–(j) TEM micrographs showing the polytypic
crystal structure with a pure ZB section of 10 nm.

Figure 5. Droplet formation and growth re-initiation on L-shaped
nanostructures. (a) Cross sectional SEM micrographs of a sample
after annealing, showing different droplet positions on the L-shaped
nanostructures. (b)–(e) Top view (15° tilt) and cross sectional SEM
micrographs of a sample which was first annealed and then had
growth continue to form a variety of different nanostructure shapes.
(f)–(h) TEM micrographs of a nano-bridge. Both legs have a similar
polytypic crystal structure. The upper leg, which was grown after the
second droplet formation, shows a 20 nm pure ZB insertion.
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that in this case the droplet forms at the nanowire tip. When
re-initiating growth after droplet formation all nanowires
continue to grow vertically. Interestingly, no InSb section can
be observed at the interface between InAsSb and InAs, sug-
gesting that the InSb is formed during cooldown (more
information is available in the supporting information). In
order to grow InSb sections embedded in InAsSb samples we
therefore investigate nanowire growth with a cooldown step
after droplet formation. Figure 6(a) shows an SEM
micrograph of a nanowire sample which was first annealed in
order to form a droplet, then cooled down to form an InSb
section and then overgrown with InAsSb. TEM micrographs
of the sample are shown in figures 6(b), (c). We can observe a
change in crystal structure within the otherwise defect-free
InAsSb nanowire. The EDX map and linescan shown in
figures 6(d), (e) confirm the existence of an InSb section of
approximately 20 nm in length and 70 nm in diameter. The
band alignment of an InSb section within InAs0.8Sb0.2 is
shown in figure 6(f). The bandgap energy and band offset was
calculated using the bowing parameters of [48]. We suggest
that the InSb insertion can be used as a quantum dot memory
for holes, or as an electron transport barrier after etching away
the InAsSb radial overgrowth.

To add more flexibility to the choice of host structure, we
also investigate the possibility to deposit indium on nanowires
in situ after growth. This is achieved by opening the indium
flux after growth while keeping arsenic closed. In order to
avoid evaporation of the nanowires, the sample temperature is
lowered to 480 °C (430 °C) for InAs (InAsSb) nanowires.
Figure 7(a) shows an SEM micrograph of an InAs nanowire
sample where indium has been deposited for 3 min. We
observe the formation of indium droplets on the {110} facets
of the nanowires. In this case the droplets are formed at the
base of the nanowires, without wetting the HSQ oxide.
Figures 7(b), (c) show SEM micrographs of an InAs sample
where indium droplets were deposited and then growth was
continued with the standard parameters for the growth of

branches (3.5×10−7 Torr arsenic BEP). We will refer to this
sample as InAs–In–InAs, according to the different steps
during growth. We observe that the deposited indium acts as a
seed particle to continue growth in 〈11–2〉 direction, similar
to the samples presented above. Here, the horizontal part of
the L-shaped structure is at the base of the nanowires, due to
the location of the indium droplets. Figures 7(d)–(f) show
SEM micrographs of the corresponding experiments on
InAsSb nanowires as host structures. We observe that dro-
plets also form at the base of the nanowires, resulting in
L-shaped structures where the horizontal part is close to the
substrate. Note that under the conditions presented here, not
all nanowires have an indium droplet after indium deposition.
Therefore there are also nanowires without the horizontal part
after re-initiating growth. Figures 7(g)–(k) shows a crystal
structure and composition analysis of the InAs–In–InAs
sample. We find that the sample horizontal part of the
nanostructure inherits the polytypic crystal structure of the
host nanowire, similar to the results presented in figure 4. The
STEM-EDX map shown in figure 7(i) confirms that the
nanostructure is pure InAs. Figures 7(l)–(p) shows a crystal
structure and composition analysis of the InAsSb–In–InAs
sample. The diffraction pattern (figure 7(m)), which was
acquired on the horizontal part, shows that the structure is
pure ZB. The STEM-EDX analysis in figure 7(n) confirms
that the host nanostructure is InAsSb, while the horizontal
part is InAs. At the tip of the horizontal InAs part we note a
few rotational twins, as shown in the high resolution TEM
micrographs in figures 7(o), (p). The samples presented here
show that depositing indium on a host structure allows to
form heterostructures, where the horizontal part adopts the
crystal structure of the host nanowire all along the branch.
However, we need to note that the horizontal part of the
structure can in some cases also exhibit defects which do not
propagate from the host nanowire and suggest a change of the
growth front (more information available in supporting
information). We attribute this finding to the close proximity
of the substrate.

Finally, we also study the electrical properties of the
L-shaped nanostructures grown by the annealing method.
Electrical contacts to the nanostructure were defined by
e-beam lithography, followed by argon milling to remove the
native oxide, and then sputtering of chromium/gold. A
detailed description of the process can be found in [16].
Figure 8(a) shows an SEM micrograph of a device allowing
2-point electrical measurements of the ‘main’, ‘branch’ and
‘corner’ sections of the L-shaped structure. Figure 8(b) shows
an AFM image of another such device with a linescan across
the branch section of the device, showing it to have an
approximately rectangular cross section. Figure 8(c) shows
representative I–V curve behavior of such devices. The line-
arity indicates ohmic contact behavior. For the devices stu-
died, the I–V characteristics were used to estimate the
conductivity of the different parts of the nanostructure based
on AFM height and SEM length/width measurements. The
average conductivity of the branches was found to be
81±23 S cm−1 (for four devices), which is comparable to
standard 〈111〉B self-catalyzed InAs nanowires [16].

Figure 6. Growth of an InSb insertion in an InAsSb nanowire. (a)
SEM micrograph of a nanowire sample which has an embedded InSb
region. (b), (c) TEM micrographs showing the change in crystal
structure due to the InSb section. (d), (e) EDX map and linescan
confirmation of the existence of an InSb region. (f) Band alignment
of the InSb section embedded in InAsSb at 4 K.
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Figure 8(d) shows representative behavior of these devices
when sweeping back-gate voltage for a fixed source-drain
voltage of 3 mV. It was found that, in general, all parts of the
device show n-type gate response, though the intensity of the
response varied significantly. None of the devices could be
turned off completely, probably due to charge screening of
the gate by the relatively thick devices. Upon inspection of
the devices after electrical testing, some of the devices

appeared melted and amorphous. The results of the melted
devices were not included in the conductivity calculation. At
this point it is still unclear at which point during the mea-
surements the melting occurred. More information on this
phenomenon is given in the supporting information section.

Conclusions

In conclusion, we have demonstrated how to change the
growth direction of self-catalyzed InAs nanostructures by
in situ formation and manipulation of indium droplets. We
have presented a detailed study on how to obtain indium
droplets by annealing both for InAs and InAsSb nanowires.
The indium droplets can then be used to initiate growth in
different crystalline directions, resulting in linear or L-shaped
nanostructures, depending on the position of the droplet. The
conductivity of the branches was found to be roughly com-
parable to standard InAs nanowires, and all parts of the
nanostructure show n-type gate response. Showing that
indium droplets can be formed upon annealing further offers a
new perspective when discussing whether or not a droplet is
present during the growth of self-catalyzed InAs nanowires,
and how the presence of liquid indium affects the crystal
structure. In the case of InAsSb nanowires, our approach can
be used to fabricate InSb sections within InAsSb wires, which
are expected to act as quantum dot memories for holes.
Furthermore, we demonstrate the flexibility of this technique
by deposition of indium on InAs(Sb) after growth. Applying

Figure 7. Deposition of indium droplets on InAs(Sb) nanowires to re-initiate growth. (a) InAs nanowires with indium deposition for 3 min
(b), (c) Top view (15° tilt) and cross sectional SEM micrograph of an InAs-In-InAs sample. (d) InAsSb nanowires with indium deposition for
10 min. (e), (f) Top view (15° tilt) and cross sectional SEM micrograph of an InAsSb–In–InAs sample. (g) Low resolution TEM
micrograph of an InAs–In–InAs nanostructure. (h) Diffraction pattern acquired on the horizontal part. (i) STEM-EDX map of the InAs–In–
InAs nanostructure. (j), (k) High resolution TEM micrographs of the regions indicated by the yellow rectangles. (l)–(p) Similar analysis on an
InAsSb–In–InAs nanostructure.

Figure 8. Electrical properties of L-shaped InAs nanostructures. (a)
SEM micrograph of an electrical device. (b) AFM image and
linescan of another electrical device, showing vertical profile of the
branch section. (c) Representative I–V curve behavior of all three
sections of a device as shown above. (d) Gate response of a typical
device for a fixed source-drain voltage of 3 mV.
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the indium deposition to different host nanostructures will
allow for the growth of heterostructures or defect-free bran-
ches. Our results contribute to the understanding of the role of
indium droplets in self-catalyzed InAs nanowire growth and
offer a whole spectrum of new opportunities for indium-based
nanostructures, including branched nanostructures, and the
possibility to control defect formation. Demonstrating a
change of growth direction for catalyst-free InAs nanowires
also paves the route towards 〈100〉 oriented nanowires, which
would facilitate the integration with CMOS technologies.
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5 Conclusion & Outlook

In this thesis we investigated the growth and characterization of InAs(Sb) nanowires. We

focused on their crystal structure, orientation with respect to the substrate, and the possibility

to tune their direction during growth. Our results contribute to the understanding of the

growth of InAs(Sb) nanowires and they provide a new pathway to the formation of nanowire

networks.

In publication 1 we showed that polytypism can be suppressed by the incorporation of an-

timony, and pure zinc-blende nanowires are obtained for an antimony content above 25%.

We also studied the homogeneity of the ternary alloy by fabricating nanowire cross sections,

and observed slight segregation effects. In terms of electrical properties, we found by Raman

spectroscopy that pure zinc-blende InAsSb nanowires have a higher electron mobility than

polytypic InAs nanowires. The increase in mobility can be attributed to the pure crystal struc-

ture, but it may also be related to the fact that the mobility of InSb is much higher than for

InAs. To gain more insights, temperature dependent Raman measurements and Terahertz

spectroscopy are currently being performed by Francesca Amaduzzi (from EPFL) and Jessica

Boland (from Oxford).

We further investigated the possibility to passivate the nanowire surface using ALD-grown

alumina. By fabricating electrical devices we showed that conductivity measurements of passi-

vated nanowires are more reproducible compared to unpassivated nanowires. We also demon-

strated the possibility to make top-gated field-effect devices based on the alumina as gate

dielectric. In future experiments we are planning to study the quality of the passivation layer in

a more quantitative way. Terahertz spectroscopy on nanowires with different diameters allows

to extract the surface recombination velocity and compare passivated with un-passivated

nanowires. In order to gain more insights about the nature of traps, C/V-measurements are

an interesting technique. The McIntyre group recently demonstrated C/V-measurements

in solution, which allow to measure not only flat surface but also nanostructures. Dmitry

Mikulik is currently adapting the process in order to extract information about the interface

and border trap density from passivated InAs nanowires.
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Chapter 5. Conclusion & Outlook

It future experiments it would also be interesting to gain more information about the loca-

tion of charge carriers in nanowires. For this, TEM holography is an interesting technique.

The carrier location can be extracted by studying nanowire devices with Schottky contacts,

which allows to change the carrier density in the nanowires. These measurements are par-

ticularly interesting in views of the debate about a carrier accumulation at the surface of

InAs(Sb) nanowires, and how it depends on the existence and the quality of a surface oxide or

passivation layer.

In publication 2 we studied the existence of tilted nanowires on (111)B substrates. We found

that the majority of the tilted nanowires can be explained by 3D twinning. The nanowires grow

in <111>B direction, but their orientation with respect to the substrate is different due to a twin

which is not perpendicular to the substrate normal. In addition, also nanowires growing in non-

conventional crystalline directions were observed, e.g. <112> nanowires. We demonstrated

how the ratio of tilted nanowires depends on the growth conditions and substrate preparation.

The most important factor was found to be the V/III ratio, suppressing the formation of tilted

nanowires completely for high V/III ratios. Also the oxide thickness has a significant impact.

Our results allow to grow purely vertical nanowire samples or samples with a high density

of tilted nanowires, whichever is desired for a specific application. Our results also provide

some more insights regarding the growth mechanism of InAs nanowires, considering that

the 3D twinning mechanism is expected to be related to the presence of a droplet. In future

experiments it would be interesting to compare our results with the simulations by Matteini

et al [Matteini16], which showed that in the case of self-catalyzed GaAs nanowires on silicon,

the position and contact angle of the droplet determine the formation of tilted or vertical

nanowires. The decisive factors in this case are the oxide thickness and surface energy.

In publication 3 we demonstrated a new approach to change the direction of InAs nanowires

from <111> to <112̄> during growth, resulting in L-shaped nanostructures. Our approach

is based on the formation of indium droplets by annealing of the nanowires in vacuum. We

found that the droplets are initially located on the top facet ot the nanowires, and then slide

down onto the side facets once they exceed a certain size. While our work demonstrates that

indium droplets can be created and then used to initiate growth in new directions, it is still

unclear why the droplets slide down onto the side facets. As presented in the article, this

is not the case for other material systems either. For example we studied the annealing of

InAs0.8Sb0.2 nanowires, and found that the droplets stay on the top facet of the nanowires.

After a certain point the droplets stops to increase in size, and material evaporates from the

side facets, resulting in thinner nanowires. Future studies by Lea Ghisalberti will focus on

modeling the nanowires and droplets, in order to understand the role of the contact angle

and the stability of the droplet. This will hopefully allow us to translate our approach to

other material systems. In particular branched nanowires based on InAs1−x Sbx are of interest,

because they are expected to be defect-free.

Finally, we would like to highlight the possibility to make more sophisticated nanowire net-

works by merging of several L-shaped structures. In our current approach the probability

66



to merge is very low, since the nanowires grow in random positions due to the spontaneous

pinhole formation. By controlling the position of the host nanowires, the merging probability

could be tremendously increased. Figure 5.1 shows a schematic of the proposed approach.

Nanowires are grown in position-controlled openings which are fabricated by e-beam lithog-

raphy and etching. A hexagonal pattern is chosen based on the six favoured <112> growth

directions of the L-shaped structures. The nanowires are then annealed to form droplets,

and re-initiation of growth leads to L-shaped structures. After a certain time, two or several

nanostructures will merge. Depending on the annealing time, it is possible to choose condi-

tions under which some nanowires continue to grow in <111> direction. Merging of those

straight nanowires with L-shaped nanowires would then lead to h-structures, as shown in the

schematic.

Figure 5.1 – Schematic of the growth of networks by merging of L-shaped nanostructures.
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A Additional experimental results

A.1 In-situ TEM studies during nanowire annealing

In-situ experiments can offer valuable information about self-assembly processes as well

as material changes due to temperature. Recently impressive insights have been obtained

by monitoring nanowire growth using a growth chamber equipped with an in-situ TEM

[Jacobsson16]. In our case we are interested in monitoring the decapping of arsenic capped

nanowires, and in the indium droplet formation during annealing of InAs nanowires. For this,

nanowires can be transferred to heatable TEM holders and then be imaged in a standard TEM.

During this thesis, annealing studies were performed using a Protochip Fusion TEM Heating

and Electrical System [Protochips17] in the group of Rolf Erni at The Swiss Federal Laboratories

for Materials Science and Technology (EMPA). For this, nanowires were transferred to a

designated chip. In order not to break the membrane on the chip, nanowires are picked

up with a corner of a cleanroom tissue and then transferred by carefully touching the chip

with the tissue. The sample was then installed in a JEOL JEM2200fs microscope and the holder

was connected to the Protochips temperature control unit. A temperature calibration file is

provided for every chip, allowing to precisely control the temperature. The experiments were

performed at EMPA with the help of Marta Rossell.

A.1.1 Decapping of arsenic capped nanowires

For the surface passivation of InAs nanowires using alumina, which was presented in pub-

lication 1, the nanowires were capped with a thick layer of arsenic in the growth chamber.

This arsenic capping layer prevents the formation of a native oxide layer. Before the growth

of alumina, the arsenic capping layer is removed by annealing under vacuum. In order to

visualize the decapping procedure, we transferred arsenic capped nanowires to a chip, and

then monitored the nanowires during annealing using STEM.

STEM bright field images of the annealing process are shown in Figure A.1. Figure (a) shows the
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Appendix A. Additional experimental results

Figure A.1 – Decapping of arsenic capped nanowires. (a) Arsenic capped nanowire at 220◦C. No
change in the capping layer can be observed. (b)-(d) Time series of the same nanowire at 230◦C,
showing that the arsenic layer starts evaporating slowly. (e)-(f) Time series at 240◦C. At this
temperature the capping layer fully evaporates, while the InAs surface does not decompose.
(g) Plot of the temperature ramping, indicating the times at which the images (a)-(f) were
acquired.

tip of an InAs nanowire with a thick arsenic capping layer. The image was acquired at 220◦C.

Up to this temperature no change in morphology of the capping layer could be observed. At

230◦C, the capping layer slowly starts to evaporate, as shown in Figure A.1(b)-(d). Increasing

the temperature to 240◦C increased the evaporation rate as shown in Figure A.1(e)-(f). We also

observe that the InAs nanowire surface does not decompose at temperatures up to 240◦C. A

plot of the temperature ramping is shown in Figure A.1(g), indicating also the times at which

images where acquired. Our results show that decapping of the nanowires is possible without

harming the nanowire surface.

A.1.2 Annealing of InAs nanowires

In publication 3 we presented the formation of indium droplets when annealing nanowires

in vacuum immediately after growth. The droplets were found to first form on the top facet

of the nanowires and then slide down onto the side facets. To understand this behaviour we

studied the annealing of InAs nanowires using the Protochips technology. In order to avoid any

influence of the native oxide, we started with arsenic capped nanowires, and evaporated the

capping layer in the TEM, as shown in the previous section. Figure A.2(a) shows a bright-field

STEM image of the capped nanowire. The InAs nanowire after decapping is shown in Figure

A.2(b). Surprisingly, a shadow of a shell can be observed. The origin of this shell is so far

unclear, but it may be related to contamination of the chip. An influence of the electron beam

can be excluded, since at the end of the experiment, a similar shell was also found on other
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nanowires which had not been imaged. At 250◦C, the InAs slowly starts to evaporate from the

tip of the nanowire, as can be seen when comparing the nanowire after 10 min (Figure (b))

and after 51 min (Figure (c)). At 300◦C slightly faster evaporation can be observed, as shown in

Figure A.2(d)-(e). At 350◦C the nanowire rapidly disappears, as shown in Figure A.2(f)-h). It

can be observed that the evaporation does not occur uniformly, which may be related to the

presence of the shell. The nanowire is finally consumed completely by heating to 400-450◦C. A

plot of the temperature ramping is shown in Figure A.2(k).

Figure A.2 – Annealing of InAs nanowires. (a)-(c) Sample at room temperature, showing the
arsenic capping layer. (b) At 250◦C the arsenic capping layer completely evaporated and
the nanowire starts decomposing very slowly. (d)-(j) The nanowire rapidly evaporates when
increasing the temperature above 350◦C. The evaporation starts from the tip of the nanowire.
(k) Plot of the temperature ramping, indicating the times at which the images (a)-(j) were
acquired.

Our results are unexpected for two reasons:

1.) No droplet is observed during the annealing. The experiment is therefore not suited to

study the dynamics of the droplet. The absence of an indium droplet is surprising, since

the experiment is done in vacuum (1·10−7 Torr) and predominant evaporation of arsenic

is expected due to the higher vapour pressure. On the other hand, the conditions of this

experiment are not identical to the annealing in the MBE chamber immediately after growth.
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The formation of a droplet could be suppressed by the presence of the observed shell, or due

to the fact that the nanowires are lying on the carbon film, allowing the indium to diffuse away.

2.) The InAs nanowire starts to evaporate at 250◦C. This temperature is significantly lower than

expected. In the case of alumina passivation by ALD, the arsenic capping layer is evaporated at

300◦C, leaving the InAs nanowire unaffected, as shown in publication 1. We therefore suspect

that the temperature calibration of the chips may not be very accurate.

A.1.3 Annealing of InAsSb nanowires

We also investigated annealing of InAs0.8Sb0.2 nanowires. For this experiment we used stan-

dard nanowires without any capping layer, meaning that they are covered with a thin layer of

native oxide. Figure A.3(a) shows two nanowires at the beginning of the experiment at room

temperature. At 400◦C the nanowires start to decompose slowly, as shown in Figure A.3(b)-(c).

Interestingly the evaporation is not limited to the tip of the nanowire, but it can be observed

in different locations along the nanowire. Also the triangular shape of the voids is different

compared to the case of InAs nanowires. At 500◦C the nanowires evaporate completely, as

shown in Figure A.3(d). We note that the evaporation temperature here is higher compared to

the experiment with InAs nanowires. This is unexpected since InSb is known to be less stable

than InAs. At this point we do not know whether this observation is related to the different

nanowire surface (native oxide versus prestine surface after arsenic decapping) or whether it

is an artifact, possibly due to a mistake in the temperature calibration of the Protochips. We

would like to thank Marta Rossell for carrying out this experiment and providing the images.

Figure A.3 – Annealing of InAs0.8Sb0.2 nanowires. (a) Sample at room temperature. (b)-(c) at
400◦C the nanowires slowly decompose, starting from different locations along the nanowire.
(d) At 500◦C the nanowires readily evaporate.

In conclusion, we have studied annealing of different nanowires by in-situ TEM. In particular

we monitored the decapping procedure of an arsenic passivated nanowire sample, and we

studied the decomposition of InAs and InAsSb nanowires. In these experiments we were not

able to reproduce the droplet formation reported in publication 3, probably due to a difference

of the exact conditions and nanowire environment. Nevertheless, in-situ TEM studies are

found to be a powerful tool and can provide interesting information about temperature

dependent processes.
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A.2 Thinning of InAs nanowires

Nanowires are interesting structures due to their one-dimensional morphology. Reducing the

size of a structure leads to the formation of sub-bands. Quantization effects can be observed if

the sub-band spacing is large compared to the thermal energy. The sub-band spacing scales

with the inverse of the dimensions and the inverse of the effective mass. For InAs the effective

mass of the electron is 0.023me [Ioffe17]. Due to the small effective mass, quantization effects

are expected already for relatively large dimensions. The exciton Bohr radius of a ≈34 nm is

often cited as a length scale [Norris05, Ford09].

Figure A.4 – Thinning of standard InAs nanowires. (a) Cross sectional SEM micrographs of a
reference sample (center and edge). (b)-(f) Samples which were annealed under 1.9·10−6 Torr
arsenic flux. (b) 530◦C for 30 min, (c)-(e) 550◦C, 570◦C and 590◦C for 10 min, (f) 590◦C for
20min. (g)-(h) TEM micrographs of the sample presented in (e). (i) TEM micrograph of the
sample presented in (f).

By bottom-up growth it is challenging to achieve nanowires with a diameter below 50 nm.

Therefore it can be desired to thin the nanowires after growth, in order to achieve dimensions

for which quantization effects can be observed. Thinning can be achieved by congruent

evaporation, i.e. by choosing conditions under which group III and group V atoms evaporate

at the same rate. The congruent evaporation temperature Tc defines the temperature below

which congruent evaporation is obtained. Above Tc , arsenic preferentially evaporates from the

surface, leaving behind droplets of the group III material, as observed in publication 3. The

conditions for congruent evaporation depend on the surface orientation and the pressure. It

73



Appendix A. Additional experimental results

has been demonstrated that the congruent evaporation temperature of GaAs can be modified

by the presence of an external arsenic flux [Zhou10].

Figure A.4(a)-(f) shows cross sectional SEM micrographs of nanowire samples which have

been annealed under different conditions. The image on the left of each subfigure was taken

at the center of the sample, while the image on the right corresponds to the edge of the sample.

Due to the design of the manipulator in our MBE system, a small temperature gradient

(< 10◦C) is present across the sample, leading to a change in nanowire morphology for very

temperature sensitive samples. Figure (a) shows a reference sample, which was cooled down

immediately after growth. The other samples were annealed at different temperatures under

constant arsenic flux of 1.9·10−6 Torr. Figure (b) shows a sample which was annealed at 530◦C

for 30 min. No significant change in nanowire morphology can be observed. The samples

presented in (c)-(e) were annealed for 10 min at 550◦C, 570◦C, and 590◦C respectively. We

observe that the nanowires get thinner with increasing temperature. The biggest change

happens at the foot of the nanowires at the sample edge, as shown in the inserts. Figure (f)

shows a sample which was annealed at 590◦C for 20 min, resulting in very thin nanowires in

the center and complete evaporation of the nanowires at the edge. The nanowire density in the

center is significantly lower compared to the other samples, suggesting that some nanowires

evaporated completely or broke off due to the predominant thinning at the foot. We also

observe that the diameter changes along the wires, often showing a thicker part in the center.

Figure (g)-(h) shows TEM micrographs of the sample presented in (e), where the nanowire foot

can be as thin as 20 nm but the rest of the nanowire is significantly thicker. Figure (i) shows a

TEM micrograph of the nanowire from the sample presented in (f).

Figure A.5 – Thinning of long InAs nanowires. (a) Cross sectional SEM micrographs of a
reference sample which was grown for 3 h (center and edge). (b)-(c) Samples which were
annealed under 1.9·10−6 Torr arsenic flux at 590◦C for 20 min and 40 min respectively.

In order to make electrical devices, the nanowires should ideally be at least 2μm in length.

During annealing the material not only evaporates from the side facets but also from the

top facet, leading to shorter nanowires. We therefore investigated annealing of nanowire

samples that were grown for 3 h, resulting in a nanowire length of approximately 5μm as

shown in the reference sample in Figure A.5(a). Figure (b)-(c) show samples after annealing

under 1.9·10−6 Torr arsenic flux at 590◦C for 20 min and 40 min respectively. The images on

the right of each subfigure show a magnified version of the nanowire tips. We observe a very

non-uniform nanowire morphology with significant changes in diameter along the nanowires.

We conclude that more investigations are needed in order to achieve long and thin nanowires.
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One should note that for annealing experiments the nanowire density also plays a role by

locally changing the pressure. Due to our substrate preparation process, slight variations in

the nanowire density cannot be avoided, making a quantitative comparison between different

samples difficult. Better control would be achieved by using position-controlled growth.

A.3 InAsSb nanowires - additional information

In publication 1 we presented the growth and properties of InAs1−x Sbx nanowires. We found

that the stacking defect density is dramatically reduced by the incorporation of antimony,

allowing to grow nanowires with a defect density on the order of 1/μm for an antimony con-

tent above 25%. Here we would like to add that the defect density usually changes along the

nanowire. While this effect is almost irrelevant for short nanowires (as presented in the article),

it is clearly visible in longer nanowires. Figure A.6(a) shows a low magnification TEM micro-

graph of a nanowire with 28% antimony. Apart from a few defects at the beginning of growth,

Figure A.6 – Crystal structure evolution of long InAsSb nanowires. (a) Low magnification TEM
micrograph of an InAs0.72Sb0.28 nanowire which was grown for 1 h. (b)-(c) Cross-sectional
SEM images of the corresponding nanowire forest. (d)-(e) High resolution TEM micrograph
and SAED pattern. (f) Low magnification TEM micrograph of a nanowire which was grown for
3 h under similar conditions. (g)-(h) SEM images of the corresponding nanowire sample. (i)-(j)
SAED images of the foot of the nanowire and the tip of the nanowire.

only four defects can be observed in the rest of the nanowire. In the low magnification image

the defects can be recognized as changes in contrast and are high-lighted with green arrows.
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Figure A.6(b)-(c) show cross-sectional SEM micrographs of the corresponding nanowire forest.

A high resolution TEM micrograph and a SAED pattern is presented in Figure (d)-(e), showing

a pure zinc-blende crystal structure.

Figure A.6(f) shows a low magnification TEM micrograph of a nanowire that was grown for

3 h instead of 1 h using similar parameters. The resulting nanowires are significantly longer

and have slightly larger diameters, as can be seen from the cross-sectional SEM images in

(g)-(h). In terms of crystal structure, we observe that the first two micrometers show a very

low defect density, similar to what has been observed in the short nanowire presented above.

Towards the tip of the nanowire the defect density increases. At the very end of the nanowire

the crystal structure shows a high density of stacking defects, almost comparable to pure InAs

nanowires. Two representative SAED images are shown in (i)-(j). A similar behaviour has been

found in many long InAsSb nanowires, suggesting that the growth conditions change along

the nanowire. One possible explanation is that the incorporation of antimony is higher at the

early stages of growth due to re-evaporation from the substrate. Unfortunately EDX analysis

at different locations along the nanowire does not show a clear decrease in antimony content

towards the nanowire tip. However the EDX analysis is also sensitive to the shell which is

formed due to radial overgrowth (refer to cross sectional analysis in publication 1), therefore

making it difficult to analyze the composition of the nanowire core.

A.4 InAs/GaSb core/shell nanowires

InAs/GaSb shows a broken band alignment, with the conduction band of InAs being lower than

the valence band of GaSb. Figure A.7(a) shows the band alignment of a AlSb/InAs/GaSb/AlSb

quantum well structure. The AlSb layers serve as barriers. Thin quantum wells show discrete

energy levels, as schematically depicted by E1 and H1. Hybridization of can occur if the energy

levels overlap, leading to the opening of a band gap. The band gap is called an inverted band

gap due to the fact that the hole-like band is higher than the electron-like band as shown

in Figure (b). Interest in InAs/GaSb heterostructures has arisen due to the work by Liu et

al, predicting that an InAs/GaSb quantum well heterostructure could show quantum spin

hall effect behaviour [Liu08]. At the edge of an InAs/GaSb heterostructure the band gap

closes, leading to conducting edge states. Since the prediction in 2008, several groups have

investigated InAs/GaSb quantum well structures and edge conduction has been reported

[Knez11, Spanton14, Du15, Qu15, Mueller15].

Considering the unique properties of InAs/GaSb quantum well heterostructures, the question

arises whether InAs/GaSb nanowire heterostructures could also show interesting properties.

For nanowires we distinguish radial and axial heterostructures. Figure A.7(c) shows a schematic

of a radial core-shell heterostructure on the top and an axial heterostructure on the bottom.

InAs/GaSb core-shell nanowires have been studied theoretically, and an inverted bandgap

has been found for certain core and shell dimensions [Kishore12, Luo16, Vinas17]. While the

exact numbers are slightly different, all articles show that it is important to have extremely thin
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Figure A.7 – InAs/GaSb heterostructures. (a) Band alignment of an AlSb/InAs/GaSb/AlSb
quantum well heterostructure (adapted from Ref. [Liu08]). (b) Opening of a hybridization gap.
(c) Schematic of a core-shell (top) and an axial (bottom) nanowire heterostructure.

nanowires with diameters on the order of 20 nm. The opening and closing of the hybridization

gap in dependence on the dimension would be interesting to observe. However the most

interesting feature would be the edge modes that may arise at the interface between of the

heterostructure with vacuum at the bottom and top facet of the nanowires, but unfortunately

none of the theoretical works have studied the edge modes at the ends of a core/shell nanowire.

Heterostructures with a broken band alignment are not only interesting due to the possible

opening of a hybridization gap, but they have also been studied as a material platform for a

tunnel field effect transistor (TFET) [Ionescu11]. With this goal in mind, several groups have

investigated InAs/GaSb nanowire heterostructures [Borg10, Ganjipour11, Dey13a, Dey13b].

Also basic physical phenomena like electron-hole interaction during transport have been

studied using InAs/GaSb nanowires [Ganjipour15].

In the following pages we present our preliminary results on the growth of InAs(Sb)/GaSb

core-shell nanowire heterostructures using MBE. The first attempt is shown in Figure A.8.

Figure (a)-(b) show a top view (15◦ tilt) and a cross sectional SEM micrograph. Big crystallites

can be observed on the nanowire surface. The LMSC Christmas card of 2014 is shown in (c).

Figure (d) shows a TEM micrograph and SAED image, showing additional diffraction spots

due to the crystallites. A STEM-EDX analysis is presented in Figure (e)-(h). From the elemental

maps we can observe that the crystallites consist of antimony. We assume that the crystallites

were formed during cooldown of the nanowires, where the antimony flux was left open in

order to avoid evaporation of antimony from the shell.

In the following experiments were terminated by closing the gallium and antimony fluxes

simultaneously, resulting in the absence of antimony crystallites, as shown in Figure A.9. Figure

(a)-(c) shows SEM micrographs of an InAs/GaSb sample. First the InAs core was grown for 1 h

using standard conditions. Then the the temperature was lowered to 500◦C and the GaSb shell

was grown for 10 min using a Ga BEP of 2.6E-7 Torr (corresponding to a layer growth rate of

1.1 Å/s) and a Sb BEP of 3.9 E-6Torr. The growth was stopped by closing both sources and the

sample temperature was ramped down rapidly. Figure (a) shows a top view (15◦ tilt) and a

cross-sectional micrograph of the nanowires at the center of the sample. Magnified images of

the tip and the foot of the nanowires are shown in Figure (b). We observe a nice uniform shell

at the tip of the nanowires and lots of faceting at the lower part of the nanowires. Towards the
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Figure A.8 – InAs/GaSb nanowires: first attempt. (a)-(b) Top view (15◦ tilt) and cross sectional
SEM micrographs. (c) 2014 LMSC Christmas card. (d) TEM micrograph and SAED image.
(e)-(h) STEM-HAADF image and EDX elemental maps.

edge of the sample, where, due to the design of our manipulator, the temperature is slightly

higher, the shell is slightly nicer. However, the nanowires are significantly shorter. Figure (d)

shows a STEM-HAADF image and EDX elemental maps of a nanowire from the same sample.

We observe that the InAs core is uniform along the whole nanowire, while the GaSb shell is

responsible for the faceting. From the contrast in the HAADF image one can see that the whole

nanowire shows a high density of stacking faults. Figure A.9(e) shows SEM micrographs of

InAsSb/GaSb nanowires, the core having an antimony content of approximately 20% according

to the growth conditions and stacking defect density. For this sample, the GaSb shell is uniform

all along the nanowire length, even though the shell growth conditions were the same as for

the InAs/GaSb sample presented before. Comparing the results from the two samples, one

can consider the following explanations: 1) GaSb preferentially grows with zinc-blende crystal

structure. On polytypic InAs it therefore does not grow uniformly. This explanation would

be in agreement with the findings from MOCVD grown nanowires, where the GaSb shell

growth was suppressed on WZ InAs segments [Namazi15]. However, it is then surprising that

the shell at the tip of the InAs/GaSb is nicely uniform, even though the tip is also polytypic.

2) The faceting could be a result of shadowing, and a uniform shell is observed for shorter

nanowires. To test this hypothesis we grew long InAsSb/GaSb nanowires. Figure A.9(f)-(g)

show SEM micrographs of a sample for which the InAsSb core was grown for 3 h. We observe

that most nanowires show a uniform GaSb shell all along the nanowire. The nanowires here

have a similar density and are significantly longer than the nanowires presented in (a), thereby

excluding shadowing as the only cause for the faceting. 3) As a third option one can consider

the lattice mismatch as the cause for faceting. The lattice constants are aIn As = 6.06 Å for InAs,

aGaSb = 6.10 Å for GaSb, and aInSb = 6.48 Å for InSb [Ioffe17]. Considering Vegard’s law (and
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Figure A.9 – InAs/GaSb and InAsSb/GaSb nanowires. (a) Top view (15◦ tilt) and cross sectional
SEM micrograph of an InAs/GaSb sample. (b) Magnified images showing a homogeneous
GaSb shell at the tip and irregular faceting at the stem. (c) Images at the sample edge, which
corresponds to a slightly higher temperature. (d) STEM HAADF image and EDX maps of a
nanowire from the same sample, showing that the faceting can be attributed to the GaSb
shell. (e) SEM images from a InAs0.8Sb0.2 sample grown for 1 h. (f)-(g) SEM analysis from a
InAsSb/GaSb sample grown for 3 h under similar conditions.

no bowing) the lattice constant of InAs0.8Sb0.2 can be estimated to be

aIn As0.8Sb0.2 = 0.2·aInSb +0.8·aIn As = 6.14Å (A.1)

The lattice mismatch of GaSb-on-InAs can therefore be calculated to be -0.62%, while the

lattice mismatch of GaSb-on-InAs0.8Sb0.2 would be 0.76%. From this rough estimation the

lattice mismatch does not seem to be the root cause either.

In order to further investigate the possibility of growing uniform InAs/GaSb core-shell nanowire

samples we also studied the effect of the shell growth temperature, the shell V/III ratio and the

nanowire spacing (by changing the SiO2 thickness).

Figure A.10 (a)-(c) show SEM micrographs of InAs/GaSb samples for which the GaSb shell

was grown at different temperatures, while all other growth parameters were kept constant.

The approximate shell temperatures of the samples are 460◦C, 530◦C and 560◦C for (a)-(c)

respectively. These sample can be compared to the reference sample which was grown at 500◦C

and is shown in (e). We observe from figure (a) that lowering the shell growth temperature
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Figure A.10 – Growth conditions of InAs/GaSb nanowires. (a)-(c) Top view (15◦ tilt) and cross
sectional SEM micrographs of a shell growth temperature series. The GaSb shell was grown at
460◦C, 530◦C and 560◦C with a V/III ratio of 15. (d)-(f) SEM analysis of a V/III ratio series. The
GaSb shell was grown at 500◦C and a Sb/Ga ratio of 13, 15 and 18. The sample presented in
(e) is also part of the shell temperature series. (g)-(h) SEM images of a sample grown using
a7.2 nm thick SiO2 instead of 4.5 nm. (i) Schematic of the angle of incoming fluxes in our MBE.

from 500◦C to 460◦C does not have a positive effect on the shell uniformity. Increasing the

temperature to 530◦C results in slightly nicer facets, as shown in figure (b). A further increase

of temperature to 560◦ allows to grow a quite uniform shell, as shown in figure (c). However,

one should note that also the nanowire density is significantly lower and droplets can be

observed on the substrate, suggesting that some of the InAs nanowires evaporated during the

shell growth. The shell homogeneity can therefore also be related to the absence of shadowing.

Our findings can be compared to the results by Rieger et al, who also found a dependence

of the GaSb uniformity on the shell growth temperature [Rieger15]. In the article the report

on an ideal shell temperature of approximately 360◦C, and show that both lower and higher

temperatures lead to faceting.

We further studied the influence of the GaSb V/III ratio. So far, all samples were grown at

a V/III ratio of 15, as shown in the reference sample in figure A.10(e). To change the V/III

ratio we changed the gallium cell temperature, resulting in a V/III ratio of 13 for the sample

presented in (d), and a V/III ratio of 18 for the sample presented in (f). Comparing with

the reference sample, we observe that a lower V/III ratio to 13 significantly reduces the shell

homogeneity, while increasing the V/III ratio to 18 shows little effect. Again, this study can not
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be analyzed independently from the other growth parameters, since the effective V/III ratio

always depends on the growth temperature due to re-evaporation. Due to the higher vapour

pressure, it is predominantly the group V material which re-evaporated from the surface,

therefore leading to a lower effective V/III ratio at higher growth temperatures.

Finally we also studied substrates with different oxide thickness. Figure A.10(g)-(h) show SEM

micrographs of a sample with an oxide thickness of 7.2 nm, which is higher than the standard

oxide thickness of 4.5 nm. We observe a significantly lower nanowire density, as expected

due to the absence of spontaneous pinhole formation. In terms of the GaSb shell, a higher

uniformity can be observed. However, faceting is not completely absent as shown in the

magnified images in figure (h). In our MBE system, the incoming fluxes arrive at an angle of

450◦, as shown in figure (i). Therefore one would expect shadowing to occur as soon as the

nanowire length is equal or higher than the spacing of the nanowires. However, shadowing

would only occur during a fraction of the time, due to the sample rotation which is set to 7 rpm

in all our experiments. Faceting as observed in figure (h) can therefore not only be a result of

shadowing, similar to what was concluded from the growth of long InAsSb/GaSb nanowires in

Figure A.9(f)-(g).

In conclusion, we have studied the growth conditions for InAs(Sb)/GaSb nanowires. We have

found that the GaSb shell shows faceting when grown around an InAs core nanowire, while

in the case of InAsSb core nanowires a homogeneous shell can be obtained. The faceting

depends on the exact growth conditions, but so far we have not been able to suppress it

completely. Position-controlled growth of nanowires would be helpful in order to be able to

exclude shadowing effects and study the effect of different growth parameters independently.

Finally, we would like to note that also the position of the gallium and antimony cell may

influence the results. In our MBE chamber the two cells are almost on opposite sides of the

chamber, therefore creating the need for adatom diffusion in order to create a homogeneous

layer.

In order to visualize the core-shell heterostructures we fabricated nanowire cross sections.

Figure A.11 shows cross sections of two different InAs/GaSb samples. The first sample was

grown with a 30 min waiting time between the core and shell and the shell. During this time,

the antimony shutter and valve were open, while waiting for the gallium and antimony cells

to heat up to operational temperature. TEM micrographs are shown in figure (a)-(b). The

SAED image in figure (c) confirms the alignment in a [111] zone axis. A STEM-HAADF image

and EDX maps are shown in figure (d)-(h). As discussed previously, only very little contrast is

observed in the HAADF image, since the mass of InAs and GaSb is approximately equal. In

the elemental maps in figure (e)-(h) indium, arsenic, gallium and antimony can be clearly

distinguished. Interestingly we find that the InAs core of the nanowire is round, rather than

hexagonal. This indicates some alloying during the shell growth, and may be related to the

waiting step under antimony flux. To analyze our hypothesis, we grew the following samples

by changing from InAs growth to GaSb growth immediately without any waiting step. Cross

sections of a representative sample are shown in figure A.11 (i)-(l). For this sample, the InAs
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Figure A.11 – InAs/GaSb nanowire cross-sections. (a)-(h) Cross sections of a sample with a
30 min waiting step between the core and the shell growth. (a)-(b) TEM micrographs. (c)
SAED image confirming a [111] zone axis. (d) STEM-HAADF image showing a round nanowire
core and a hexagonal shell. (e)-(h) EDX elemental maps, confirming a round InAs core and
a hexagonal GaSb shell. (i)-(l) Cross sections of a sample for which the shell growth was
performed immediately after the core growth. (i) TEM micrograph. (j) STEM-HAADF image
showing a hexagonal nanowire core and traces of a hexagonal shell. (k)-(l) EDX elemental
maps, showing an InAs core and a Ga shell. There are only traces of Sb left in the shell very
close to the nanowire core.

core is found to be hexagonal as expected. One should note, that a different epoxy was used

to embed the nanowires for the second cross sections. Using the EPO-TEK OG142-87 UV

curable epoxy, it was often difficult to detach the nanowires from the substrate, and most of

the substrates broke. Changing to EPON [Epon17], allowed to solve this problem. However in

the case of nanowires with a GaSb shell, we found that the epoxy attacks the GaSb. This results

in an amorphous shell with a very low antimony content rather than a crystalline GaSb shell,

as shown in Figure A.11(i)-(l). So far, no solution has been found to overcome this problem,

in particular after protecting the surface with a 10 nm layer of ALD grown TiO2 layer it was

impossible to detach the epoxy from the substrate.

Last but not least we also performed some initial experiments to study the electrical prop-

erties of InAs/GaSb core-shell nanowires. We started by contacting the InAs core. Nanowire
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devices were fabricated following the standard procedure. Before metalization of the contacts,

the sample was dipped in the etchant solution in order to remove the GaSb shell, ideally

without attacking the InAs core. The etching only takes place in the contact regions, while

the rest of the nanowire is covered with the ebeam resist. As an etchant we investigated

a KNa-tartrate solution, which has been reported to selectively etch GaSb in a GaSb/GaAs

stack [Kim13]. Figure A.12(a) shows an SEM micrograph of a nanowire device after etching

for 5 s and stripping the ebeam resist afterwards. The ratio of chemicals was chosen to be

(KNaC4H4O6·4H2O):H2O(deionized):HCl(30%):H2O2(30%)=0.5 g:250 mL:4 mL:10 mL where

the H2O2 was added just before the etching. This solution is strongly diluted compared to the

work by Kim et al [Kim13], because their solution was found to be too strong, and removed

the nanowires completely. We observe that the nanowire is etched in the contact openings,

however the etching is not selective and seems to attack the InAs core as well. In addition,

there is some under-etching as shown in the insert of Figure (a), meaning that the etchant

solution can propagate along the interface between the ebeam resist and the substrate. For a

first test, we continued using the samples and proceeded with the metalization of the contacts

using Cr/Au 20nm/100nm. An SEM micrograph of a finished device is shown in Figure A.12(b).

The devices were then tested by I/V measurements and back-gated field-effect measurements.

All devices showed ohmic behaviour as shown in Figure A.12(c). Assuming a shell thickness of

15 nm a conductivity of 308±5 S/cm was calculated from 8 devices. The average conductivity

therefore is slightly higher compared to standard InAs nanowire, possibly due to a passivation

effect of the GaSb shell at the surface. A representative field-effect measurement at a source-

drain voltage of 2 mV is shown in Figure A.12(d). We observe an n-type behaviour, confirming

that the transport happens in the InAs core. However the gate response is very low compared

to measurements on standard InAs nanowires.

Figure A.12 – InAs/GaSb electrical devices. (a) SEM micrographs of a nanowire where the GaSb
has been etched in the contact openings and then the ebeam resist was stripped. (b) SEM
micrograph of an InAs/GaSb nanowire device. (c) Current/voltage measurement of the InAs
core. (d) Back-gated field-effect measurement.

These preliminary experiments show that it is possible to contact the InAs core of InAs/GaSb

core-shell nanowires. Future experiments include finding a selective etch (testing for example

NaOH [Rocci16] or ammonia solution NHaq [Fahed16]), studying why the gate response

of InAs/GaSb nanowires is significantly lower compared to standard InAs nanowires, and

establishing a contacting procedure for the GaSb shell.
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B Supporting information of articles

In this section we include the supplementary information for each of the published articles

presented in Chapter 4.
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LO,InAs ��� ���� ��� ��−1 �
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TO,InAs  �� ���� �!" ��−1 �
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LO,InSb ��� ��#� !$! ��−1 �

ω0
TO,InSb  �� ��#� !%& ��−1 �

ωTO,InAs  �� ����'��(� �!! ��−1 �
ωTO,InSb  �� ��#�'��(� !%& ��−1 �

ΓInAs ���� �)���� �
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m∗(x) �������� �0������ �
�� (0.023− 0.039x+ 0.03x2)m0
��

ε∞,InAs ���� )�*)'���1	���- ���������� �����
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