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Abstract

High-resolution schemes for conservation laws need to suitably limit the numerical solution near
discontinuities, in order to avoid Gibbs oscillations. The solution quality and the computational cost
of such schemes strongly depend on their ability to correctly identify troubled-cells, namely, cells
where the solution loses regularity. Motivated by the objective to construct a universal troubled-cell
indicator that can be used for general conservation laws, we propose a new approach to detect
discontinuities using artificial neural networks (ANNs). In particular, we construct a multilayer
perceptron (MLP), which is trained offline using a supervised learning strategy, and thereafter
used as a black-box to identify troubled-cells. The proposed MLP indicator can accurately identify
smooth extrema and is independent of problem-dependent parameters, which gives it an advantage
over traditional limiter-based indicators. Several numerical results are presented to demonstrate the
robustness of the MLP indicator in the framework of Runge-Kutta discontinuous Galerkin schemes,
and its performance is compared with the minmod limiter and the minmod-based TVB limiter.

Keywords: Conservation laws, Discontinuous Galerkin, Limiting, Troubled-cell indicator,
Artificial neural network

1. Introduction

It is well know that solutions to conservation laws often develop discontinuities in finite time,
even for smooth initial data [1]. Thus, numerical methods need to be carefully corrected near
discontinuities to avoid spurious Gibbs oscillations. The approach used to handle discontinuities
numerically can be broken into two key steps. The first step involves detecting the (mesh) cells
where the solution loses regularity. Such cells are termed as troubled-cells. In the second step, the
solution in these cells are corrected to avoid spurious oscillations. Several correction techniques are
available for use in numerical schemes, such as slope limiting [2, 3, 4], adaptively choosing the stencil
for reconstruction [5, 6, 7], or adding artificial diffusion [8, 9, 10]. For most numerical methods, the
two stages are usually combined into a single step. However, it is useful to consider them separately
for Runge-Kutta discontinuous Galerkin (RKDG) schemes [11].

The correction (or limiting) of the numerical solution in troubled-cells can be computationally
expensive. To ensure cost-efficiency of numerical schemes, it is essential to use troubled-cell indica-
tors that only flag the genuine troubled-cells. In [12], a thorough numerical study was performed
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to assess the performance of various limiter-based troubled-cell indicators for RKDG schemes. It
was observed that the classical minmod limiter flags more cells than necessary, including cells with
smooth extrema, which can lead to an unnecessary increase in computational cost. As an alter-
native, the minmod-type TVB limiter [13] seeks to correctly identify troubled-cells, provided its
problem-dependent parameter M is chosen appropriately. In general, however, it is difficult to
estimate M a priori. Thus, there is a need to construct a troubled-cell indicator that flags genuine
troubled-cells, and is independent of problem-dependent parameters. In this paper, we propose a
new type of indicator enjoying both these properties, by constructing an artificial neural network
(ANN) that serves as a troubled-cell indicator.

In principle, ANNs can be seen as function approximators capable of capturing a high-degree
of complexity and non-linearity. The design of ANNs is based on the architecture of their biolog-
ical counterpart, and have the capacity to learn [14]. Once suitably trained on a given dataset,
ANNs are able to recover key features of the underlying model, and accurately predict the output
for data points lying outside the training dataset. Although the training of the network can be
computationally-intensive and time consuming, it is done offline and only once for a given applica-
tion. Thereafter, the trained network is used as a black-box, with the involved computations being
inexpensive. For this reason, ANNs are popular in applications such as image identification [15] and
speech recognition [16], as a substitute for complex rule-based algorithms which are often difficult
to program. ANNs have also been used to solve certain classes of ordinary and partial differential
equations [17, 18, 19].

In this paper, we consider a specific type of ANN, know as a multilayer perceptron (MLP), which
consists of neurons stacked in a series of layers. Under mild assumptions on the network design, it
has been shown that MLPs with one or two hidden layers, i.e., layers between the first and the last,
can approximate any continuous function [20, 21]. The approximation capabilities of simple MLP
networks have been studied quite extensively (see [22] and references therein). However, rigorous
results for more general and complex networks remain elusive.

We propose a deep MLP network, which is trained to inherit the properties of a troubled-cell
indicator. The training is performed offline on a robust dataset, and the final network is used
within the framework of RKDG schemes. The network is independent of any problem-dependent
parameter, thus making it attractive as a universal troubled-cell indicator for general conservation
laws.

The rest of the paper is structured as follows. In Section 2 we introduce the RKDG formulation,
followed by a brief discussion of a few existing troubled-cell indicators. We motivate the construction
of MLPs in Section 3, and give an overview of the key ingredients required to construct and train
such networks. In Section 4, we present the construction of an MLP based troubled-cell indicator.
Several numerical results are presented in Section 5 to demonstrate the capability of the proposed
network, as compared to existing limiter-cased troubled-cell indicators. We make a few concluding
remarks in Section 6.

2. Discontinuous-Galerkin Formulation

We consider the following one-dimensional scalar conservation law

∂u

∂t
+
∂f(u)

∂x
= 0 ∀ (x, t) ∈ [a, b]× [0, T ],

u(x, 0) = u0(x) ∀ x ∈ [a, b],
(2.1)
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where u is the conserved variable with the smooth flux f(u). To approximate the solution of (2.1),
the computational domain is discretized using N non-overlapping cells, with cell-interfaces a = x 1

2
<

x 3
2
< ... < xN+ 1

2
= b. The center of cell Ii = [xi− 1

2
, xi+ 1

2
] is denoted by xi = (xi− 1

2
+ xi+ 1

2
)/2. For

the rest of this paper, we assume the discretization to be uniform, with the mesh size denoted by
h = xi+ 1

2
− xi− 1

2
. We define the space of broken polynomials V hr = {v ∈ L2([a, b]) : v

∣∣
Ii
∈ P r(Ii)},

where P r(Ii) is the space of polynomials with degree d 6 r on the cell Ii. The semi-discrete DG
scheme can be formulated as follows.

Definition 2.1. Find uh(., t) ∈ V hr such that the following semi-discrete relation is satisfied for all
vh ∈ V hr , ∫

Ii

[
∂uh
∂t

vh − f(uh)
dvh
dx

]
dx+ f̂i+ 1

2
(t)vh(x−

i+ 1
2

)− f̂i− 1
2
(t)vh(x+

i− 1
2

) = 0, (2.2)

where vh(x±) = lim
ε↓0

vh(x ± ε) and f̂i+ 1
2
(t) = f̂

(
uh(x−

i+ 1
2

, t), uh(x+
i+ 1

2

, t)
)

is a consistent numerical

flux.

In practice, the solution in each cell Ii is represented using a suitable local basis {φij(x), j =
0, ..., r} as

uh(x, t) =

r∑
j=0

uij(t)φij(x) ∀ x ∈ Ii,

where the coefficients ui0(t), ...uir(t) are the degrees of freedom to be determined using the numerical
scheme. Defining the vector Ui = (ui0, ..., uir)

> and taking vh = φij gives us∫
Ii

∂uh
∂t

φijdx =

r∑
k=0

duik
dt

∫
Ii

φikφijdx =

r∑
k=0

M
(i)
jk

duik
dt

, (2.3)

where M
(i)
jk are the elements of the mass-matrix M(i), corresponding to cell Ii. Note that the

mass-matrix can be computed using a quadrature rule which is exact for polynomials of degree 2r.
The remaining terms of the (2.2) can be approximated as

R(i)(U(t))j =

∫
Ii

f(uh)
dφij
dx

dx− f̂i+ 1
2
(t)φij(x

−
i+ 1

2

) + f̂i− 1
2
(t)φij(x

+
i− 1

2

)

≈
∑
q

wiqf
(
uh(xiq, t)

)dφij
dx

(xiq)dx− f̂i+ 1
2
(t)φij(x

−
i+ 1

2

) + f̂i− 1
2
(t)φij(x

+
i− 1

2

),
(2.4)

where xiq and wiq are the nodes and weights, respectively, for a suitable q-point quadrature. Using
(2.3), (2.4) and the fact that the mass-matrix is invertible, we obtain the following system of
ordinary differential equations corresponding to cell Ii

dUi

dt
=
(
M(i)

)−1
R(i)(U(t)),

which is solved using a suitable time-marching scheme, such as the third-order strong stability
preserving Runge-Kutta (SSP-RK3) scheme [23].

While the scheme described above is capable of approximating smooth solutions with a high-
degree of accuracy, it suffers from Gibbs oscillations near discontinuities. A commonly used tech-
nique to mitigate this issue is by correcting the approximating polynomial in troubled-cells after
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each Runge-Kutta stage. This procedure comprises two steps: i) detection of troubled-cells, and ii)
a suitable limited reconstruction of the polynomial solution in the troubled-cells.

In general, troubled-cell indicators analyze the smoothness of the data in the cell Ii based on the
information extracted from a 3-cell compact stencil centered at i, as shown in Figure 1. In each cell,
the solution is approximated by a polynomial (solid lines), with corresponding cell-averaged values
ui−1, ui, ui+1 (dashed lines). In addition, we require the left and the right cell-interface values of
the polynomial in Ii, i.e., u+

i− 1
2

and u−
i+ 1

2

. Using these five quantities, we construct the forward and

backward differences,

∆−ui = ui − ui−1, ∆+ui = ui+1 − ui, ǔi = ui − u+i− 1
2

, ûi = u−
i+ 1

2

− ui. (2.5)

A troubled-cell indicator uses the differences (2.5) to modify the cell-interface values as

ũ+
i− 1

2

= ui +M
(
ǔi,∆

−ui,∆
+ui;Z

)
, ũ−

i+ 1
2

= ui −M
(
ûi,∆

−ui,∆
+ui;Z

)
, (2.6)

whereM is a slope-limiter and Z denotes additional parameters that the slope-limiter may depend
upon. The cell Ii is marked as a troubled-cell, if the modifications in (2.6) changes either of the
two cell-interface values, i.e., if ũ+

i− 1
2

6= u+
i− 1

2

or ũ−
i+ 1

2

6= u−
i+ 1

2

. A thorough numerical comparison

of various limiter-based indicator functions has been performed in [12]. We consider the following
two commonly used limiters:

Ii−1 Ii Ii+1

ūi−1 ūi
ūi+1

u+i−1
2

u−i+1
2

i + 1
2 i + 3

2i− 1
2i− 3

2

Figure 1: Stencil used by troubled-cell indicators. The polynomial approximation in each cell is denoted by solid
line, while the corresponding cell-average values denoted by dashed lines.

1. The minmod limiter : This slope-limiter modifies the cell-interface values to ensure that the
solution is total variation diminishing in the mean (TVDM) [8]. It is given by

Mmm(a, b, c) =

{
sign(a) min(|a|, |b|, |c|) if sign(a) = sign(b) = sign(c),

0 otherwise.
(2.7)

A disadvantage with the minmod limiter is that it also flags cells containing a smooth extrema,
which can lead to an increased computational cost, and limits local accuracy to first order.
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2. The minmod-type TVB limiter : In order to overcome the problems of the minmod limiter,
one can relax the TVDM condition by requiring the solution to be total variation bounded
(TVB). This can be achieved by the following modified slope-limiter

Mtvb(a, b, c;h,M) =

{
a if |a| 6Mh2,

Mmm(a, b, c) otherwise,
(2.8)

where the limiter now depends on the local mesh-size h and a problem-dependent parameter
M . For scalar conservation laws, M is proportional to the curvature of the initial condition
near smooth extrema [13]. However, it is difficult to estimate M for a general system of
conservation laws. If M is chosen too small, (2.8) essentially reduces to the minmod limiter
(2.7). On the other hand, if M is chosen too large, the indicator does not flag all the troubled-
cells, leading to the re-appearance of Gibbs oscillations.

Based on the two limiters discussed above, we seek a troubled-cell indicator which i) does not flag
cells with smooth extrema, and ii) is independent of problem specific parameters. To accommodate
both these traits, we propose a new approach to the problem of discontinuity detection, via an
artificial neural network (see Section 3).

For the reconstruction step, we can replace the polynomial in the troubled-cells by the cell-
average or a limited linear polynomial [24, 8]. This leads to a loss in accuracy if cells are incorrectly
flagged by the indicator. To overcome this issue, one can use WENO limiters to rebuild the
polynomial in flagged cells by extending the polynomial in neighboring cells [11]. However, finding
the WENO weights is computationally expensive, re-emphasizing the need to not flag more cells
than necessary as troubled-cells.

Since the focus of this paper will be on the constructing a suitable troubled-cell indicator, we
use the classical MUSCL [2, 8] reconstruction procedure for the second step. Specifically, if the
unlimited polynomial approximation in a troubled-cell Ii is written as

uh(x) = ui + (x− xi)si +O
(
(x− xi)2

)
,

then the limited linear polynomial is given by

ũh(x) = ui + (x− xi)M
(
si,

ui − ui−1
h

,
ui+1 − ui

h

)
,

where M is some slope-limiter.

3. Artificial Neural Networks

Our goal is to find a suitable approximation to an unknown function

G : Ω ∈ RNI 7→ RNO , given T = {(Xp,Yp) | Yp = G(Xp) ∀ p ∈ Λ}. (3.1)

For our problem, this corresponds to the underlying true indicator function that correctly flags
the genuine troubled-cells. Simple approaches such as linear-regression or least-squares polynomial
fitting, are unsuitable if G is highly non-linear. In fact, we have no information about the qualitative
features of the troubled-cell indicator. Thus, it is fruitful to look for an approximation which is
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capable of learning these unknown features based on the dataset T. This is precisely what we hope
to accomplish using artificial neural networks, inspired by biological networks.

The biological nervous system in vertebrates is responsible for transmitting information through
the organism, facilitating the coordination between different body parts. A specialized nerve cell,
known as the neuron, forms the fundamental building block of the nervous system. As shown
in Figure 2, a simplified model of the neuron consists of three main components, namely the
dentrites, the nucleus and the axon. The dentrites are nerve fibers through which the neuron
receives signals from several input neurons, with the connection between two neurons being termed
as a synapsis. The signal from the input neuron is pre-processed in the synapsis, before being
transmitted to the receiving neuron. Thus, the synapsis can be seen as a weighted connection.
The weighted accumulation of the signals received by the neuron is stored in the nucleus. Once
the accumulation crosses a certain threshold, the nucleus fires an electrical signal through the
axon to other connecting neurons. A complex network of neurons is involved in passing electrical
impulses throughout the body [25]. Various studies have shown that knowledge is gained through a
training process, in which synaptic connections are created or modified when exposed to different
environmental situations. Based on this learning, the organism is able adapt and react appropriately
to more general situations. An artificial neural network (ANN) can be seen as a numerical black-box,
designed to mimic the training procedure of the biological network.

Figure 2: A simplified model of the biological neuron. This image has been taken from [25].

Mathematically, an ANN is described by the triplet (N ,V,W). Here, N is the set of all artificial
neurons in the network, while V represents the set of all directed connection (i, j), i, j ∈ N , where
i is the sending neuron and j is the receiving neuron. The neural connections are weighted, with
W being the set of weights wi,j for the connections (i, j). A single neuron j, receiving signals
ys1 , ..., ysk from s1, ..., sk sending neurons, is depicted in Figure 3. The weighted accumulation qj
stored in the neuron can be expressed in terms of a propagation function

qj = fprop(ys1 , ..., ysk , ws1,j , ..., wsk,j).

In practice, the propagation function is chosen to be linear,

fprop(ys1 , ..., ysk , ws1,j , ..., wsk,j) =

k∑
i=1

wsi,jysi ,
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which is also the choice we adhere to in this paper. The neuron j transmits a scalar-valued signal,
provided the accumulation crosses a certain threshold or bias −bj (in literature, the bias is often
taken as the negative of the threshold value). This aspect is modeled using a non-linear activation
function

yj = fact(qj + bj).

The simplest example of an activation function is the Heavyside function

h(x) =

{
0 if x < 0

1 if x > 0
, (3.2)

which leads to the McCulloch-Pitts neuron model [26]. However, (3.2) is not preferred in practice
since its derivative vanishes everywhere (see discussion in Section 3.3).

ws1,j

ws2,j

wsk−1,j

wsk,j

ys1

ys2

ysk−1

ysk

qj bj

Activation function

yj

Figure 3: A single artificial neuron receiving signals from k neurons.

3.1. Multi-layer perceptron

Several architectures have been proposed for ANNs [25, 27], describing the arrangement and
connectivity of neurons in the network. We focus on a specific architecture known as a multi-layer
perceptron (MLP), in which the neurons arranged in several layers. The first layer with NI source
neurons is called the input layer, while the last layer with N0 neurons is termed as the output
layer. The remaining layers lying in between are called the hidden layers, with the k-th hidden
layer consisting of Nk neurons. The structure of an MLP with two hidden layers is shown in Figure
4. The neurons in a given layer receive signals from the layer preceding it, and send signals to the
succeeding layer. Furthermore, the neurons within a single layer do not communicate with each
other. No computations occur inside the input layer, and it simply provides the source signal to
the network. The signals from the output layer do not pass through an activation function, but
may pass through an output function to convert the signals to a meaningful form. For instance, for
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the classification problem, the output values should lie between 0 and 1 to indicate the probability
of the input belonging to a particular class. Since the signal transmitted by each neuron is scalar-
valued, the input and output of the MLP matches the dimensions of the domain and range spaces
of the function (3.1) being approximated.

X X1 X2

A
ct
.
fn

A
ct
.
fn

O
u
t.

fn

Ŷ

Source Layer

Hidden Layer 1
Hidden Layer 2

Output Layer

Figure 4: An MLP with 2 hidden layers. The input layer transmits the signal X to the first hidden layer. The final
output of the network is Ŷ, which is the prediction to the true output Y corresponding to X.

3.2. Training the network

The appropriate weights and biases of the network are obtained by training the MLP on a given
dataset T. The training procedure is essentially an iterative algorithm which tunes the network
weights to accurately predict the responses corresponding to the set T. In addition, the trained
network must be capable of predicting the responses for data outside T, with a suitable degree of
accuracy. This later property of the network is termed as generalization.

There are several training strategies that one can opt for, a detailed description of which can
be found in [25]. For our model, we consider the training paradigm termed as supervised learning,
where the true responses for the points in the training set are known a priori. The training aims
to minimize the error between the prediction and the truth. More precisely, a cost function C is
defined

C := C(Y, Ŷ), Y = G(X), Ŷ = Ĝ(X), ∀ X ∈ RNI ,

where Ĝ represents the approximation of G by the neural network. The function C can be seen as a
measure of the discrepancy between the predicted response Ŷ and the true response Y. Supervised
learning aims to find the optimal values for the weights and biases of the network to minimize C
over the training set T.

Remark 3.1. Even if C is convex function of Y, Ŷ, it need not be convex in terms of the weights
and biases. Thus, the optimization algorithm may converge to a local minima.

3.3. Activation function

The activation function used in the MLP network is responsible for introducing non-linearity
into the model. As mentioned earlier, the most obvious choice for the activation function is the
Heavyside function (3.2). To understand why this may not be a suitable choice, we note that most
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optimization algorithms, such as gradient descent, update the weight of the connection between the
neuron pair (i, j) iteratively as

ws+1
i,j = wsi,j + ∆wi,j , ∆wi,j = −η ∂C

∂wi,j
,

where ∆wi,j is the update step and η > 0 is the learning rate. The evaluation of the gradient
of the cost function involves the gradient of the activation function, which is essentially zero for
the Heavyside function. Thus, the updates in each iteration would be very small, leading to slow
convergence of the algorithm. Other non-linear choices for the activation function include the
logistic function and the hyperbolic tangent (see Figure 5), which are smooth functions capturing the
qualitative features of the Heavyside function. However, these too suffer from vanishing gradients
as we move away from the origin. A popular activation function used by most practitioners, is the
rectified linear unit (ReLU) [28], shown in Figure 5(c). Training with ReLU is often faster, when
compared to models using the logistic or hyperbolic tangent activation function [29]. This can
been justified by noting the linear, non-saturating form of the ReLU function, and the inexpensive
evaluation of the function itself. Unfortunately, the ReLU function can suffer from the issue of
dying neurons during the training process. If an update of weights and the bias for a particular
neuron j leads to its deactivation, i.e., qj + bj < 0, then the neuron may never activate again for
the rest of the training. Thus, by the end of the training, most of the neurons are left inactive in
the network. A proposed fix to this problem is to consider the leaky ReLU function [30], which
modifies the original ReLU by adding a small negative slope ν when x < 0, as shown in Figure
5(d).

4. An MLP trouble-cell indicator

We now describe the design of an MLP-based troubled-cell indicator. The function we wish to
approximate is the true troubled-cell indicator. As is the case with the slope-limiters discussed in
Section 2, the input for our MLP is the vector (ui−1, ui, ui+1, u

+
i− 1

2

, u−
i+ 1

2

)> ∈ R5, i.e., the input

layer has NI = 5 neurons. We use 5 hidden layers, whose widths vary as 256, 128, 64, 32 and 16 as
we move from the input layer to the output layer. Based on the discussion in Section 3.3, we choose
the leaky ReLU as our activation function. The output layer has a width of 2 neurons, giving the
output XO ∈ R2. Finally, the vector XO is put through the softmax output function to give the
output Ŷ

Ŷ 1 =
eX

1

eX1 + eX2 , Ŷ 2 =
eX

2

eX1 + eX2 , XO = (X1, X2)>.

The softmax transforms the vector of arbitrary real numbers into a vector of real values in [0, 1]
which sum up to unity. Thus, the final output can be viewed as the probability that the cell Ii falls
into either of two classes: a troubled-cell or a good-cell. Specifically, Ŷ 1 represents the probability
that the cell in question is a troubled-cell.

The cost functional used to train the model is given by the cross entropy function

C = − 1

S

S∑
k=1

[
Y 1
k log(Ŷ 1

k ) + Y 2
k log(Ŷ 2

k )
]
,

where S is the number of samples used for training, while Yk = (Y 1
k , Y

2
k )> is the true troubled-

cell probability distribution for a given sample k. Note that Y 1
k , Y

2
k can only take the discrete
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ν = 1
ν = 10

ν = 100

(a) Logistic function: (1 + e−νx)−1
(b) Hyperbolic tangent: ex−e−x

ex+e−x

(c) ReLU: max(0, x) (d) Leaky ReLU: max(0, x)− νmax(0,−x)

Figure 5: Choices for the activation function used in the MLP network.

values 0 or 1. The cross-entropy function is closely related to the Kullback-Leibler divergence,
which measures the discrepancy between two probability distributions [31]. In our case, we aim
to measure and minimize the discrepancy between the probability distribution about the type of a
given cell predicted by the MLP and the true boolean distribution.

The training is performed using a stochastic optimization algorithm, which uses mini-batches
of size Sb from the training set, to take a single optimization step. More specifically, the full
training set with S data-points is shuffled, following which mini-batches with Sb < S samples are
sequentially extracted to take S/Sb optimization steps. Once the entire training set is exhausted,
the training is said to have completed one full epoch. The training set is then reshuffled and the
process is repeated for several epochs. The shuffling introduces stochasticity in the training data
set, and has been observed to lead to faster convergence [32].

The network topology and the choice of cost function can lead to overfitting of the network to
the training dataset, which can severely effect the ability of the network to generalize. A commonly
used method to avoid overfitting involves the regularization of the cost functional [33] by penalizing
the weights W of the network

C̃ = C + β‖W‖22, β > 0, (4.1)
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where ‖W‖22 represents the squared sum of all the weights in the MLP. The early stopping of the
training is yet another approach commonly used, which makes use of a validation data set V that
is independent of the training set T [33]. After each epoch, the responses of the MLP is evaluated
over V and the accuracy of the output is evaluated. As the training evolves, the accuracy on the
validation set ideally increases, signifying that the MLP is capable of generalization. However, the
training is terminated once the validation accuracy starts decreasing, as it indicates that the MLP
is overfitting the data in T. In order to train our MLP, we evaluate the accuracy of the MLP
responses over the set V as

VAcc =
#{X ∈ V | Ŷ = Ĝ(X), Ŷ 1 > 0.5}

#V
× 100,

where Ŷ 1 is the probability of the cell being a troubled-cell.

4.1. Generating the training and validation sets

We briefly discuss the generation of the sets T and V used to train the MLP network. The
methodology can be described via the following steps:

1. Choose a function u(x) such that complete information about its regularity is available in the
interval [a, b]. For instance we can choose the sine-wave or a step-function.

2. Pick a point xi ∈ [a, b] and set a mesh size h ensuring that a 6 xi − 3
2h < xi + 3

2h 6 b. Thus,
we construct a 3-cell stencil centered at xi, which is contained in the interval [a, b] (see Figure
6).

3. In each cell, project the solution onto the space of polynomials of degree r. We use the
Legendre polynomials for the projection.

4. Find the cell-averages of the approximating polynomials in each of the three cells to obtain
the values ui−1, ui, ui+1. Also extract u+

i− 1
2

, u−
i+ 1

2

using the polynomial in the cell Ii. Thus,

we have generated the input vector X corresponding to the cell Ii.

5. The true output corresponding to X depends on the regularity of the solution in the stencil.
Ideally, if the solution in cell Ii loses regularity, i.e., has a discontinuity, or is continuous but
not differentiable, the cell is flagged as a troubled-cell with the output Y = (1, 0)>. Otherwise,
the output is Y = (0, 1)>.

6. Repeat steps 2-5 by varying the choice of the point xi, the mesh size h and the polynomial
degree r.

7. Repeat steps 1-6 for different known functions u(x).

Remark 4.1. In practice, we construct true outputs by flagging the cell Ii as a troubled-cell if
regularity is lost in the wider zone [xi − 3

2h, xi + 3
2h]. This ensures the the indicator is more robust

in terms of capturing the discontinuities.

5. Numerical results

We now demonstrate the capability of the MLP network when used as a troubled-cell indicator
with a RKDG scheme. The MLP is trained offline by setting the slope parameter for leaky ReLU
as ν = 10−3, and the cost regularization parameter as β = 10−2. We also use an early stopping
criteria, wherein the training is terminated if the accuracy on the validation set decreases for 10
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xixi−1 xi+1a b

Figure 6: Construction of a training sample for a known function u(x) (solid line) in the interval [a, b]. In each cell
of the stencil, the function is approximated using a polynomial (dashed line).

consecutive epochs. The momentum based Adam stochastic optimizer [34] is used to minimize the
cost function (4.1), with an initial learning rate η = 10−3. The training and validation datasets
are constructed using a number of functions, which are listed in Tables 1(a)-(b). Some of the
functions have additional parameters, which are also varied to generate additional sample points.
Furthermore, we use mini-batches of size Sb = 500 after reshuffling the training set for each epoch.

At the beginning of the training, the weights and biases are randomly initialized using a normal
distribution. Since the cost-function is not convex, the choice of initial conditions can strongly
influence the local minima to which the optimization converges. Thus, we restart the training
process several times with different initializations of the weights and biases, and select the trained
model with the best generalization (measured in terms of the final validation accuracy). The training
is performed using TensorFlow, which is an open-source software library for machine learning [35].

The DG scheme is evaluated using the local Lax-Friedrichs flux. We compare the performance
of the proposed MLP indicator with that of the minmod-limiter and the minmod-type TVB limiter.
The notation TVB-1, TVB-2, and TVB-3 refer to the TVB limiter with the TVB constants M = 10,
M = 100, and M = 1000, respectively. The limited reconstruction in troubled-cells is performed
using the MUSCL-scheme with the minmod limiter. The semi-discrete DG scheme is integrated in
time using SSP-RK3.

5.1. Linear advection

We first consider the linear scalar advection equation

∂u

∂t
+ c

∂u

∂x
= 0,

and set the advection speed c = 1 for all test cases. The time step is obtained by setting CFL =
0.4.
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u(x) Domain
Additional parameters

varied
Good
cells

Troubled
cells

sin(4πx) [0, 1] – 4470 0
ax [−1, 1] a ∈ R 10000 0
a|x| [−1, 1] a ∈ R 800 3200

ul.(x < x0) + ur.(x > x0)
(only troubled-cells selected)

[−1, 1]
(ul, ur) ∈ [−1, 1]2

x0 ∈ [−0.76, 0.76]
0 19800

15270 23000

(a) Functions used to create T.

u(x) Domain
Additional parameters

varied
Good
cells

Troubled
cells

5∑
p=1

sin(pπx) [0, 2] – 3740 0

sin(2πx) cos(3πx) sin(4πx) [0, 2] – 3740 0
sin(πx) + ex [−1, 1] – 3740 0

ul.(x < x0) + ur.(x > x0)
(only troubled-cells selected)

[−1, 1]
(ul, ur) ∈ [−20, 20]2

x0 ∈ [−0.76, 0.76]
0 13060

11220 13060

(b) Functions used to create V.

Table 1: Functions used to create the training and validation datasets. For each function, the mesh size h, the
approximating polynomial degree r and additional parameters (if present) are varied. The last two columns indicate
the number of good cell and troubled-cell sample points extracted from each function. The total number of good cell
and troubled-cell sample points present in each dataset are listed in the last row of each table.
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5.1.1. Test 1

This test case corresponds to a smooth initial condition consisting of sine waves with three
different frequencies

u0(x) =


sin(4πx) if x 6 0.5 ,

sin(8πx) if 0.5 < x 6 0.75 ,

sin(16πx) if x > 0.75 ,

on the domain [0, 1] with periodic boundary conditions. At the end of the final time T = 1, the
composite wave completes one full revolution and returns to its original position. The results with
various troubled-cell indicators on a mesh with N = 100 cells are shown in Figure 7. The profiles
with the minmod limiter and TVB-1 are almost identical, and lead to the most dissipative results
due to truncation near smooth extrema. TVB-2 performs partially better than minmod. On the
other hand, the MLP and TVB-3 give equally good results for the two lowest frequency waves,
with negligible truncation near the extrema. However, both methods suffer from loss of accuracy
near the extrema of the highest frequency wave, with TVB-3 performing marginally better. If we
refine the mesh and consider N = 150, the results in Figure 8 indicate an improvement for all
indicator functions, with the MLP clearly outperforming the other methods. Zooming into the
solution profile near the last high-frequency peak (see Figure 9), shows that the MLP indicator
is capable of correctly identifying the cells with smooth extrema if the mesh is able to resolve all
scales, while TVB-3 may fail to do so.

5.1.2. Test 2

This test case corresponds to a solution consisting of waves with different degrees of regularity.
The initial condition is given by

u0(x) =



10(x− 0.2) if 0.2 < x 6 0.3 ,

10(0.4− x) if 0.3 < x 6 0.4 ,

1 if 0.6 < x 6 0.8 ,

100(x− 1)(1.2− x) if 1 < x 6 1.2 ,

0 otherwise ,

on the domain [0, 1.4] with periodic boundary conditions. The solution completes one full revolution
at the end of time T = 1.4. The minmod and TVB-1 limiters give equally dissipative results, as can
be seen in Figure 10. TVB-2 performs significantly better, especially near the last two peaks of the
solution profile. Note that all TVB schemes and the MLP give rise to overshoots near the second
peak, which is the most significant with polynomial degree r = 1. However, the overshoots are
reduced as the polynomial degree is increased, as shown in Figure 11. Although TVB-3 is better at
resolving the discontinuity, it also gives the largest overshoots. The MLP gives milder overshoots,
with its resolution capabilities lying between TVB-2 and TVB-3.

5.2. Burgers equation

We compare the performance of the indicator functions for the non-linear Burgers equation

∂u

∂t
+

∂

∂x

(
u2

2

)
= 0.

The time step is obtained by setting CFL = 0.4.
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Figure 7: Test 1 for linear advection, simulated until T = 1 with N = 100 cells and polynomial degree r.
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Figure 8: Test 1 for linear advection, simulated until T = 1 with N = 150 cells and polynomial degree r.
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Figure 9: Test 1 for linear advection, simulated until T = 1 with N = 100 cells and polynomial degree r. The plot
is zoomed to focus on the last peak of the solution.

17



0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 Exact

Minmod

TVB-1

TVB-2

TVB-3

MLP

(a) r = 1

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 Exact

Minmod

TVB-1

TVB-2

TVB-3

MLP

(b) r = 2

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 Exact

Minmod

TVB-1

TVB-2

TVB-3

MLP

(c) r = 3

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 Exact

Minmod

TVB-1

TVB-2

TVB-3

MLP

(d) r = 4

Figure 10: Test 2 for linear advection, simulated until T = 1.4 with N = 100 cells and polynomial degree r.
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Figure 11: Test 2 for linear advection, simulated until T = 1.4 with N = 100 elements and polynomial degree r. The
plot is zoomed to focus on the central step wave.
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5.2.1. Test 1

This test describes the collision of three shocks of different strengths and speeds, which eventually
move as a single shock wave to the right. The initial condition is given by

u0(x) =


10 if x 6 0.2 ,

6 if 0.2 < x 6 0.4 ,

0 if 0.4 < x 6 0.6 ,

−4 if 0.6 < x ,

on the domain [0, 1] with open boundary conditions. The solutions are evaluated at time T = 0.1.
The results with the various indicators on a mesh with N = 100 cells are indistinguishable, as shown
in Figure 12. To compare and assess the performance of the indicators, we plot the cells flagged on
the mesh after each of the three Runge-Kutta steps, as time evolves. We notice from the results
in Figure 13 that the minmod limiter marks the most cells. Comparatively, the TVB limiter has
thinner zones of marked cells, which decays as the TVB parameter M is increased. Thus, TVB-3
ensures the most cost-efficient simulation for this problem, while the MLP lies between TVB-2 and
TVB-3.

0.0 0.2 0.4 0.6 0.8 1.0
x

0

5

10

Exact

Minmod

TVB-1

TVB-2

TVB-3

MLP

Figure 12: Test 2 for Burgers equation. Solutions at T = 0.1 with N = 100 cells and polynomial degree r = 4.

5.2.2. Test 2

The initial condition for this test is a composition of smooth and discontinuous data, expressed
as

u0(x) =



sin(πx) if |x| > 1 ,

3 if − 1 < x 6 −0.5 ,

1 if − 0.5 < x 6 0 ,

3 if 0 < x 6 0.5 ,

2 if 0.5 < x 6 1

on the domain [0, 1] with periodic boundary conditions. The initial condition is plotted in Figure 14.
As the solution evolves, alternating shock and rarefaction waves begin to develop. In all previous
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Figure 13: Test 1 for Burgers equation. The figures depict the cells in the mesh, flagged as troubled cells by various
indicators as time evolves. The left, middle and right columns represents the cells flagged after the first RK stage
(s=1), the second RK stage (s=2) and the third RK stage (s=3), respectively.
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test problems, the solutions obtained with TVB-3 were superior to those obtained with TVB-1 and
TVB-2. However, TVB-3 leads to large Gibbs oscillations near the discontinuities for the current
test case, as shown in Figure 15. This demonstrates that the same TVB parameter does not work
uniformly for all problems. On the other hand, the results with minmod, TVB-1, TVB-2 and the
MLP are equally well resolved. We track the flagged cells as time evolves in Figure 16, which clearly
shows that the minmod limiter marks most cells. The existence of Gibbs oscillations with TVB-3
is further supported by the fact that very few cells are flagged by the indicator. In terms of the
number of cells flagged, the MLP lies between TVB-1 and TVB-2.

Figure 14: Test 2 for Burgers equation, the initial solution profile.
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Figure 15: Test 2 for Burgers equation, simulated until T = 0.4 with N = 200 cells and polynomial degree r = 4.
The oscillatory solution with TVB-3 is shown in (a), while the solution with the remaining indicator functions is
compared in (b).
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Figure 16: Test 2 for Burgers equation. The figures depict the cells in the mesh, flagged as troubled cells by various
indicators as time evolves. The left, middle and right columns represents the cells flagged after the first RK stage
(s=1), the second RK stage (s=2) and the third RK stage (s=3), respectively.
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5.2.3. Buckley-Leverett

In order to demonstrate the performance of the MLP indicator for a non-convex flux, we consider
the Buckley-Leverett equations with the flux function

f(u) =
u2

u2 + 0.5(1− u)2
,

where u represents the water saturation in a mixture of oil and water [36]. We consider the initial
condition

u0(x) =

{
0.95 if x > 0.5 ,

0.1 if x > 0.5 ,

on the domain [0,1.5], which evolves into a compound wave consisting of a shock and a rarefaction.
The numerical solutions are evaluated at time T = 0.4 on a mesh with N = 150 cells and open
boundary conditions. As shown in Figure 17, the solutions with the various indicators are almost
indistinguishable. From the point of cost-efficiency, TVB-3 marks the least number of cells, while
MLP lies between TVB-2 and TVB-3 (see Figure 18).
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Figure 17: Riemann problem for the Buckley-Leverett equations at T = 0.4 with N = 150 cells and polynomial
degree r = 4.

5.3. Shallow-water equations
The proposed MLP indicator can also be used for systems of conservation laws. To demonstrate

this, we consider the one-dimensional shallow-water equations

∂

∂t

[
D
Du

]
+

∂

∂x

[
Du

Du2 + 1
2gD

]
where D represents the depth of the fluid, u denotes the fluid velocity and g denotes the acceleration
due to gravity. For system of conservation laws, it is important to limit the characteristic variables
instead of the primary or conserved variables, to avoid spurious oscillations [37]. We solve the
following Riemann problem simulating a dam-break

D0(x) =

{
3 if x < 0

1 if x > 0
, u0(x) = 0,
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Figure 18: Riemann problem for Buckey-Leverett equation. The figures depict the cells in the mesh, flagged as
troubled cells by various indicators as time evolves. The left, middle and right columns represents the cells flagged
after the first RK stage (s=1), the second RK stage (s=2) and the third RK stage (s=3), respectively.
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on a mesh with N = 100 cells. The results in Figure 19 show that TVB-2 and TVB-3 give solutions
contaminated with low amplitude oscillations, making them unsuitable for the current problem.
This once again demonstrates the issue of choosing a TVB parameter M that works for a wide
range of problems. The solution with the parameter-independent MLP indicator shows no spurious
oscillations, and is comparable to the solutions obtained with the minmod limiter and TVB-1 (see
Figure 20).
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Figure 19: Dam-break problem (depth profile) for the shallow-water equations, evaluated at T = 1 with N = 100
cells and polynomial degree r = 4. TVB-2 and TVB-3 indicators leads to solutions contaminated by low amplitude
spurious oscillations.

6. Conclusion

In this work, we propose a new approach to tackle the issue of troubled-cell detection, by de-
signing a multilayer perceptron. The network is trained offline on a robust dataset consisting of
canonical samples characterizing the local solution structure of conservation laws. The final trained
network is used as a black-box troubled-cell indicator in a RKDG solver. Traditional troubled-cell
indicators, such as the minmod-type TVB limiter, usually depend on problem-dependent parame-
ters. Thus, a fixed set of values for the parameters does not lead to uniformly satisfactory results
as the initial condition, or the underlying conservation law is varied. An advantage of the proposed
MLP indicator is that it does not depend on tunable problem-dependent parameters.

The proposed indicator has been successfully tested on both scalar and systems of conservations
laws in one-dimension. The numerical results presented in this paper demonstrate the ability of the
network to try and mimic the behavior of the TVB limiter with an optimally chosen parameter M
for a given problem. This ensures that the network correctly classifies cells with smooth extrema
as good-cells. Since the network attempts not to flag more troubled-cells than necessary, the
computational cost of the simulations can be significantly reduced.

In the present work, we have restricted our focus to one-dimensional conservation laws. Fu-
ture work will investigate the performance of similar MLP-based indicators for multi-dimensional
systems.
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Figure 20: Dam-break problem for the shallow-water equations, evaluated at T = 1 with N = 100 cells and polynomial
degree r = 4. Numerical solutions are obtained using the minmod limiter, TVB-1 and MLP.
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