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A B S T R A C T

This paper presents an investigation into the ultimate behavior of a recently developed design for keyed shear
connections. The influence of the key depth on the failure mode and ductility of the connection has been studied
by push-off tests. The tests showed that connections with larger key indentations failed by complete key cut-off.
In contrast, connections with smaller key indentations were more prone to suffer local crushing failure at the key
corners. The local key corner crushing has an effect on the load-displacement response, which is relatively more
ductile. In addition to the tests, the paper also presents lower bound modeling of the load carrying capacity of
the connections. The main purpose of the lower bound model is to supplement an already published upper bound
model of the same problem and thereby provide a more complete theoretical basis for practical design. The two
models display the same overall tendencies although identical results are not possible to obtain, due to differ-
ences in the basic assumptions usually made for upper and lower bound analysis of connections. It is found that
the test results, consistent with the extremum theorems of plasticity, are all lying within the gap between the
upper and the lower bound solution. The obtained results finally lead to a discussion of how the two models can
be used in practice. The primary merit of the upper bound model lies in its simplicity (a closed-form equation).
On the other hand, the lower bound model provides safe results, but is more complicated to apply. It is therefore
argued that the upper bound model may be used in cases, where calibration with tests has been carried out. The
lower bound model should be applied in situations, where the design deviates significantly from the config-
urations of the available tests.

1. Introduction

A new design for keyed shear connections between precast wall
elements has recently been proposed and the structural performance
has been experimentally investigated [1]. The conceptual layout of the
design can be seen in Fig. 1. Unlike the conventional solution, where
the overlapping U-bars are looped in the horizontal plane [2,3], this
new layout consists of U-bars looped in vertical planes. The solution
contains double T-headed bars (lacer bars) placed perpendicular to the
plane of the wall elements to ensure efficient transfer of tension be-
tween the U-bars [4]. It is also possible to add a vertical locking bar
similar to the conventional design of keyed shear connections. As
shown in [1], the new design has a much more ductile shear behavior
than the conventional solution and can in addition be more construc-
tion-friendly in case of vertically lowered panels. Thus, the new design
has the potential to be used in e.g. high-rise buildings in cases where in
situ walls are replaced by precast concrete elements.

The experimental results reported in [1] showed that the geometry
of the shear keys, and in particular the depth of the keys, plays an
important role for the ductility of the connection. In addition, the
ability of the U-bars to develop yielding is decisive for a desirable be-
havior of the connection in the ultimate limit state. Inspired by ex-
perimental observations, rigid-plastic upper bound solutions have been
developed for prediction of the capacity of the connection [1].

The aim of this paper is twofold. First and foremost, there is a need
for additional tests to explore the behavior of the new design and in
details study the influence of the key depth. Therefore, an in-depth
experimental investigation of the failure of the shear keys has been
carried out. To widen the experimental database (not only with respect
to the number of tests but also with respect to parameter variations) U-
bar diameters smaller than those used in the first test campaign have
been investigated. Secondly, from an analytical point of view, there is a
need to establish lower bound solutions for the shear capacity of the
connections in order to evaluate the already developed upper bound
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solutions [1]. The set of solutions can be used to bracket the theoreti-
cally exact solution from below and above, which is extremely useful
for practice.

For looped connections, upper bound solutions are relatively
straight forward to establish when based on observed failure modes
[1,5,6], while optimal lower bound solutions are more difficult to de-
velop. Simple lower bound solutions for keyed shear connections have
e.g. been proposed by Christoffersen [7] and further developed in
Nielsen and Hoang [8]. However, the models contain only single uni-
axial strut action and are in many cases too conservative. Recently,
Herfelt et al. [9] presented a numerical framework for obtaining op-
timal lower bound solutions based on finite element limit analysis
(FELA). The numerical tool calculates the optimal stress distribution
and the corresponding failure mechanism in the joint mortar. In this
paper the results obtained by FELA will be used as inspiration to es-
tablish analytical lower bound solutions.

Compared to the single strut solution [7], the following numerical
and analytical models utilize combinations of struts with different in-
clinations to optimize the theoretical load carrying capacity. In addi-
tion, the ability of the grout-to-panel interface to transfer shear stresses
is utilized which eventually leads to non-hydrostatic biaxial stress
conditions in the nodal zones. The stresses in the nodal zones at the key
corners are modeled by use of the concept of homogeneous stress fields.
The concept was treated e.g. in Refs. [10–12].

2. Experimental program

The experimental program comprised 12 push-off specimens with
identical loop configuration and with a variation of the key depth, dk,
from 10mm to 20mm. Compared to the first test campaign [1], this
program used U-bars with a diameter of 6mm instead of 8mm and the
shear keys in all specimens had a height equal to the thickness of the
precast element, i.e. =h tk , which enabled identification of the local
failure of the individual shear keys by use of digital image correlation
(DIC). The general geometry of the test specimens can be seen in Fig. 2
and the material properties are given in Tables 1 and 2. The specimen
identification refers to the depth of the shear keys (e.g. D10 designates a
key depth of =d 10k mm). Each design was replicated twice, denoted A
and B. The connections were grouted with a mortar with a maximum
aggregate size of 4mm and a vertical locking bar was included to
minimize the extent of diagonal cracking between the shear keys. The

Fig. 1. (a) Shear connection between RC precast wall
elements and (b) conceptual design of new connec-
tion solution (illustrations from [4]).

Fig. 2. General layout of push-off test specimens (illustration from [1]).
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U-bar loops were designed according to Refs. [4,6] to transfer the full
yield force of the U-bars.

2.1. Test results

Fig. 3 shows examples of typical tested load-displacement re-
lationships. The depicted displacements correspond to relative long-
itudinal displacements between the two precast elements, measured at
both ends of the connection and averaged. The figure shows two

different behaviors depending on the failure mode of the shear keys.
The plots in Fig. 3(a) are the results of specimens with smaller key
depths (dk =10–16mm) where failure took place as a local shearing of
the key corners (as illustrated in the graph). For larger key depths
(dk =16–20mm), complete shearing of the shear keys governed the
first peak load, which leads to the load-displacement characteristics
shown in Fig. 3(b).

The transition from key corner shearing to complete key shearing
was dependent on a number of factors, including the geometry of the
shear keys, the material properties of the mortar, and the strength of the
reinforcement. From post-test examinations it was found that specimens
with dk =16mm could fail both by local key corner shearing (D16B)
and by complete failure of the shear key (D16A). This indicates that the
theoretical transition between the two failure modes for this particular
test series takes place at approximately this key depth. The load–dis-
placement relationships of D16A and D16B are both shown in Fig. 3. It
was found that both had comparable first peak loads, VFP (see Table 1).
However, the residual load level after first peak was higher for spe-
cimen D16B which experienced key corner shearing. This was a general
observation that specimens suffering local key corner shearing had a
more ductile load-displacement relationship (i.e. residual load level
closer to first peak load). In contrast to this, a relatively larger drop of
the load immediately after first peak was observed for all the speci-
mens, which failed by complete key shearing. Both types of failure were
accompanied by development of diagonal cracks in the grout. Fig. 4
shows examples of local failure of the keys in combination with diag-
onal cracks which formed the global failure mechanism. Post-test ex-
aminations also showed large plastic deformations in the U-bars. This
observation confirms that the design of the loop connection (i.e. the
overlapping length, the diameter of lacer bar and the internal bend
diameter of the U-bars) did enable transfer of the yield capacity of the
U-bars through the overlap.

It was generally observed that the first peak load, VFP, increased
with increasing key depth until complete shearing of the keys becomes
the critical failure mode. Then VFP remained practically constant and
independent of a further increase of the key depth, cf. Table 1. The
residual load level after first peak appeared somewhat constant within
the two types of failure and must thereby be related to the layout and
the properties of the loop reinforcement, which were kept constant in
this study.

Based on the experimental results, it seems that connections in
practice should be designed to be governed by local shearing of the key
corners, as this minimizes the difference between first peak load and the
residual load level.

Table 1
Specifications of the test specimens, including material properties.

No. fc [MPa] Lk [mm] Ak [mm2] dk [mm] As [mm2] VFP [kN]

D10 A 44.6 120 24000 10 113 448.56
B 44.6 120 24000 10 113 448.62

D12 A 44.6 120 24000 12 113 471.74
B 44.6 120 24000 12 113 496.36

D14 A 44.6 120 24000 14 113 510.91
B 44.6 120 24000 14 113 519.16

D16 A 44.6 120 24000 16 113 543.30
B 44.6 120 24000 16 113 541.57

D18 A 42.0 120 24000 18 113 540.73
B 42.0 120 24000 18 113 537.50

D20 A 42.0 120 24000 20 113 526.62
B 42.0 120 24000 20 113 517.03

fc refers to the compressive strength of the grout measured on ϕ100×200 mm cylinders.

As describes the reinforcement area per loop connection, i.e. ϕ4π
4

2.

Table 2
Material properties and geometric values.

Description Symbol

U-bar diameter ϕ 6mm
Yield strength of U-bar fy 517MPa

Lacer bar diameter ϕLacer 12mm
Yield strength of lacer bar fy Lacer, 552MPa

Internal bend diameter of loops D 45mm
Width of Joint b 80mm
Distance between loops s 300mm
Inclination of key corner θk arctan 1

2
Total length of joint L 1280mm
Max aggregate size in mortar dmax 4mm

Diameter of locking bar ϕL 12mm
Yield strength of locking bar fyL 599MPa

Panel thickness t 200mm
Strength of precast panels fc element, 58.2MPa

Fig. 3. Experimentally recorded load-displacement curves.
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3. Rigid-plastic analysis

The first peak load, VFP, can be estimated by use of upper or lower
bound models assuming rigid-plastic material behavior. Rigid-plastic
modeling can also be used to obtain an estimate of the inelastic
load–displacement curve. This, however, requires a second order plastic
analysis where change of geometry and large displacements are taken
into account [13–16].

The objective of this paper is limited to the calculation of VFP. As
mentioned, an upper bound model has already been established [1].
The model predicts the shear capacity of keyed connections in a sa-
tisfactory manner provided that an effectiveness factor, ν, is introduced.
The problem, however, with a pure upper bound approach is that it
remains an open question whether the adopted effectiveness factor,
obtained by calibration with tests, to a significant extent also accounts
for the fact, that the developed upper bound model is not necessarily
the exact/correct one. To answer the question and eventually to eval-
uate the developed upper bound model, lower bound solutions will be
established in the following. This includes both numerical solutions as
well as analytical ones.

4. Numerical lower bound solutions based on finite element limit
analysis (FELA)

The main purpose of the performed numerical lower bound calcu-
lations is to provide inspiration for the type of stress field to be adopted
in an analytical lower bound model. FELA can be considered as a

special case of the finite element method, where a rigid-plastic material
model is assumed. For lower bound solutions, a set of constraints ensure
that the equilibrium conditions and the yield criteria are satisfied, i.e. a
statically admissible and safe stress field, while the load is sought to be
maximized. A detailed description of the numerical framework for
modeling of keyed connections can be found in Herfelt et al. [9] and a
summary of the concept is given in Appendix A. Here only the main
assumptions are needed for comparison with the analytical model.

The relevant parameters for the numerical analysis are the geometry
of the shear keys, the mechanical degree of transverse reinforcement,
interface properties, and the grout properties. Based on the experi-
mental results the transverse reinforcement degree is determined by the
yield force of the U-bars. In the model, the overlapping loops are sim-
plified as continuous reinforcement crossing the connection. Moreover,
plane stress condition is assumed and the mortar is modeled as a
modified Coulomb material without tensile strength. For the interface
between the grout and the precast concrete, a Coulomb friction cri-
terion is assumed with a friction coefficient, =μ 0.75 (corresponding to
smooth casting joints [8,17]) and a neglectable cohesion. However,
friction is only considered active in the indented areas. The main ar-
gument for this is that the normal stress required to activate friction
stems from tension in the transverse reinforcement, which represents a
form of passive confinement in contrast to active confinement from an
external normal force. Hence, since the load is anticipated to be carried
mainly by strut action between the shear keys (when no active normal
force is applied), then only the indented areas (which experiences
compression from the strut action) can transfer friction. The

Fig. 4. Identification of failure modes just after first peak
load by use of digital image correlation.

Fig. 5. Distribution of the smallest principal stress
(MPa, tension positive) in connections with
dk =10, 14 and 20mm, obtained by FELA,

=f 42c MPa.
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longitudinal locking bar has not been included in the numerical model,
as it is judged to entail stress fields that, at the current stage, are too
complicated for the initial establishment of analytical lower bound
models.

Fig. 5 shows the calculated distribution of the smallest principal
stress (maximum compressive stress) in the joint mortar for some spe-
cimens from the experimental program. The stress field is only visua-
lized for the joint mortar, since the precast elements in the experimental
program as well as in the numerical model had over-strength. In the
calculations, the strength of the mortar was taken as fc, according to
Table 1. This entails that the effectiveness factor, ν, was chosen as unity
(note that the absolute value of ν is not important when the results are
used only to compare with the analytical solutions).

From the optimized stress distributions, it can be seen that the load
transfer mechanism consists of a combination of compression struts
spanning over one or two shear keys, i.e. struts with different inclina-
tions. This type of stress field is obviously more complicated than the
single strut solutions [7]. The numerical results will in the following
form the basis for how to choose the stress field in an analytical lower
bound solution and finally the results of the two methods will be
compared.

5. Analytical lower bound solutions

Inspired by the results of FELA, an analytical model for the load
carrying capacity of keyed shear connections will be established. Some
simplifications have to be introduced in order to carry out the analytical
calculations. Two basic stress fields are considered, in the following
denoted as Solution 1 and Solution 2, and the contribution from the
locking bar is disregarded. Solution 1 consists of parallel struts span-
ning over a single shear key (Fig. 6). Solution 2 combines struts span-
ning over one shear key and two shear keys, respectively (Fig. 8). The
struts carry uniaxial compression, while the nodal zones are stressed in
biaxial compression. A lower bound for the load carrying capacity will
in this context be taken as the larger of the two solutions. It turns out
that Solution 1 is optimal for smaller key depths, whereas Solution 2 is
optimal for larger key depths. For a further increase of the key depth,
the load may be carried almost completely by struts spanning over two
shear keys without combination with struts over a single key, see e.g.
Fig. 5(c). This is in accordance with the model of Christoffersen [7] (see
also Nielsen and Hoang [8]).

5.1. Solution 1: Single struts spanning over one shear key

For the purpose of analysis, a −l t coordinate system, referring to the
longitudinal and transverse directions of the connection, is defined, see
Fig. 6. The following relations for the geometrical parameters shown in
Fig. 6 are introduced:

=θ e
d

tan k
k

1

(1)

=
−θ L e
b

tan A
k

,1 (2)

= −a e d θtank A,1 (3)

In Fig. 6(b) the parameter e is an optimization parameter related to
the strut width. The capacity obtained by this solution is governed by
either the compressive strength of the strut or the stress state in the key
corner (in the following denoted Triangle I), which can be assessed as a
homogeneous stress field. The stress components for this solution will
be calculated in the following.

Fig. 6. (a) Distribution of struts spanning over a single key
(Solution 1) and (b) definition of geometrical parameters at
a key including the nodal zone, Triangle I.

Fig. 7. (a) Stresses along boundaries of Triangle I (Solution 1) and (b) resultants of
stresses on boundaries.
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5.1.1. Local equilibrium conditions for Solution 1
Fig. 7(a) depicts the nodal zone (Triangle I) of Solution 1 where

each of the three boundaries is assumed to be uniformly stressed by
normal and shear stresses. The stress field within the triangle is thus
homogeneous. Compressive normal stresses are taken as positive. The
stress resultants on the boundaries act at the centroid of each boundary
and are illustrated in Fig. 7(b) as forces related to the −l t coordinate
system.

The homogeneous stress field (σ σ τ, ,t l lt) within Triangle I may be
expressed in terms of the stress resultants shown in Fig. 7(b):

=
−

σ
C

a e h( )t I
t

k
,

,1

1 (4)

=
−

−

−σ
A C

d hl I
l

a e
a l

k
a e

a k
,

,1 ,1
1

1
(5)

=
−

τ
C

a e h( )tl I
l

k
,

,1

1 (6)

The relations between σA,1 and the stress resultants, Al,1 and At,1, are:

=A σ θ θ h ecos sinl A A A k,1 ,1 ,1 ,1 (7)

=A σ θ h ecost A A k,1 ,1
2

,1 (8)

From the three equilibrium conditions for the triangular area, the fol-
lowing relations between the stress resultants can be established:

− − =A C P 0l l l,1 ,1 ,1 (9)

− − =A C P 0t t t,1 ,1 ,1 (10)

−
− − =A a e C d C a

2 2 2
0t l

k
t,1

1
,1 ,1 (11)

5.2. Solution 2: Combination of struts spanning over one and two shear keys

In this solution, the struts are assumed to span in such a way so that
the entire key length, Lk, is utilized to transfer stresses (compare
Fig. 8(b) to Fig. 6(b)). Similar distributions can be seen in Fig. 5. The
inclination of Strut A may also in this case be described by Eq. (2). The
inclination of Strut B spanning over two keys is:

=
−θ s e
b

tan B (12)

where s is the distance between the shear keys and e describes the same
geometrical parameter as in Solution 1, see Fig. 8(b). As indicated in
Fig. 8(b) the nodal zone in the indented area has been subdivided into
two triangular areas (II and III), which as shown later are stressed in
biaxial compression. To describe the geometry of this zone, the distance
e2 is introduced as follows:

= − +e L e d θ( tan )k k B2 (13)

This relation ensures that the above mentioned assumption of stress
transfer over the entire indented length, Lk, is fulfilled. In this context,
it is assumed that e2 cannot attain negative values, and to fulfill this, a
maximum effective key depth that can be utilized in the model is in-
troduced:

= −d L e θ( )cotk k B,ef (14)

Hence, for larger key depths, the maximum effective key depth, dk,ef , is
adopted in the calculations. This eventually means that by using Solu-
tion 2, a capacity higher than that corresponding to a key depth of dk,ef
cannot be obtained. As for Solution 1, the capacity here will also be
governed by either the stress state in the struts or in the triangles.

5.2.1. Local equilibrium conditions for Solution 2
The equilibrium equations for Triangle I in Solution 1 also apply for

Solution 2 in which the outermost shear keys also contain a nodal zone
of the same type, see Fig. 8(b). In addition, equilibrium equations for
the nodal zone bounding Strut A as well as Strut B, i.e. Triangles II and
III, need to be developed. The stresses and stress resultants acting on the
boundaries of Triangle II and III are illustrated in Fig. 9. Triangle III
borders on Struts A and B as well as Triangle II.

The homogeneous stress fields within Triangle II and Triangle III can
be expressed in terms of the stress resultants (by use of equilibrium
considerations). These stresses are:

=
+ −

σ
C

e e e h( )t II
t

k
,

,2

2 1 (15)

=
−

+ −

+

+ −

+

σ
F C

d h
l II

l
e e e

e e l

k
e e e

e e k
,

,2
2 1

2
2 1

2 (16)

Fig. 8. (a) Distribution of struts in joint mortar
(Solution 2) and (b) geometry at a key for ver-
ification of stress transfer.
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The relations between σ σ,A B,2 , and their stress resultants are given by:

=A σ θ θ h ecos sinl A A A k,2 ,2 ,2 ,2 (21)

=A σ θ h ecost A A k,2 ,2
2

,2 (22)

= −B σ θ θ h L ecos sin ( )l B B B k k (23)

= −B σ θ h L ecos ( )t B B k k
2 (24)

From the three equilibrium conditions for Triangle III, the following
relations are established:

+ − =A B F 0l l l,2 (25)

+ − =A B F 0t t t,2 (26)

=
−

+
σ σ θ L e

θ θ d θ e
cos ( )

cos sin cosA B
B k

A A k A
,2

2

,2 ,2
2

,2 2 (27)

In Eq. (27), the relationships in (21)–(24) have been used to es-
tablish a relation between σA,2 and σB. Finally, equilibrium requirements
for Triangle II lead to:

− − =F C P 0l l l,2 ,2 (28)

− − =F C P 0t t t,2 ,2 (29)

+ −
− −

+
=F e e e C d C e e

2 2 2
0t l

k
t

2 1
,2 ,2

2
(30)

5.3. Global equilibrium for Solutions 1 and 2

With reference to the test specimen depicted in Fig. 2, the global
equilibrium conditions can now be used to establish relations between
the external load, V, and the internal stress resultants defined above. In
the longitudinal direction, l, the applied load is balanced by the stress
resultants Al i, and Bl stemming from Struts A and B, respectively, where

=i 1 for Solution 1 and =i 2 for Solution 2. The resultant Bl only exists

for Solution 2. The relation reads:

+ − =nA n B V( 1)l i l, (31)

where n is the number of shear keys in the connection.
In the transverse direction, where there is no external load, the

stress resultants of the struts must be outbalanced by tension in the
transverse U-bar loops crossing the connection. This condition can be
written as follows:

+ − − + =nA n B n A σ( 1) ( 1) 0t i t s s, (32)

where As is the total cross sectional area of transverse reinforcement in
one loop connection and σs is the stress in the reinforcement. Similar to
Eq. (31), Bt vanishes when applied to Solution 1. It should be noted that
the equation for global moment equilibrium may serve as a check of the
calculated stress distribution in the joint.

5.4. Yield condition for reinforcement

The stresses carried by the U-bars must fulfill:

⩽σ fs y (33)

By utilizing Eqs. (32) and (8), the yield condition (Eq. (33)), may be
reformulated in terms of the stress carried by Strut A in Solution 1:

⩽
+σ n
n

A f
θ h e

1
cosA

s y

A k
,1 2

,1 (34)

For Solution 2, Eq. (33) may in a similar way be reformulated as a
requirement to σB:

⩽
+ +

− − + +
σ

n A f θ d e
θ h L e n θ d e ne

( 1) (tan )
cos ( )(( 1)(tan ) )B

s y A k

B k k A k

,2 2
2

,2 2 (35)

This requirement in fact also contains the condition for the stress in
Strut A, cf. Eq. (27).

5.5. Failure criteria for joint mortar

In the following, the failure criteria adopted in the analytical lower
bound model to describe the joint mortar will be discussed. Distinction
is made between zones with uniaxial compression and zones with
biaxial compression. The tensile strength of the mortar is neglected and
the uniaxial compression strength is fc. For Struts Ai and B carrying
uniaxial compression, the stress level is limited to:

⩽ = ⩽σ νf i ν, 1,2, 1A i c, (36)

Fig. 9. (a) Stresses along boundaries of Triangles II and III (Solution 2) and (b) resultants of stresses on boundaries.
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⩽ ⩽σ νf ν, 1B c (37)

where ν is the effectiveness factor. This factor normally takes into ac-
count the material brittleness as well as the strength reduction due to
cracking and tensile strains perpendicular to the struts. It is argued that
in the present lower bound problem, with steep direct strut actions
within a narrow and long strip of mortar, the effect of tensile strains
perpendicular to the struts may be neglected. Hence, ν mainly accounts
for the material brittleness. In the following, ν will be taken as unity
when the analytical lower bound model is evaluated against the nu-
merical calculations (because =ν 1 was used in the numerical calcu-
lations). However, when using the analytical lower bound model to
compare with its upper bound counterpart [1] and with test results, a
value of =ν 0.89 is adopted as a qualified estimate of the effect of
material brittleness. This value is obtained from the formula,

=ν f f( / )c c,0
1/3 proposed in the fib Model Code [18], with fc,0 =30MPa.

Normally, concrete/mortar is identified as a modified Coulomb
material, which means that fc will also be the strength in a biaxial
compression field. However, as shown e.g. by Kupfer et al. [19], the
strength of concrete under biaxial compression may be larger than the
uniaxial strength. Furthermore, as the areas with biaxial compression
represent nodal zones in the model, the effectiveness factor can here be
taken as =ν 1, also in practice. This means that the failure criterion for
zones with biaxial compression may be expressed as:

⩽ ⩾σ cf c, 1c2 (38)

where c can be interpreted as a strength enhancement factor and σ2 is
the largest principal compressive stress. Test results of Kupfer et al. [19]
showed that c depends of the −σ σ/ ratio2 1 ( =c 1.27 for =σ σ/ 22 1 and

=c 1.16 for =σ σ/ 12 1 ). In the following, c is taken as unity when the
analytical lower bound model is evaluated against the numerical cal-
culations (in order to be consistent with the assumptions made for the
numerical model). However, for comparison with the upper bound
model and with test results, a qualified estimate of =c 1.15 is adopted.
This value is slightly higher than the recommendation of the fib Model
Code [18] for biaxially compressed nodes.

Due to the assumption of zero tensile strength, the following lim-
itation also applies to the biaxially stressed areas:

⩾σ 01 (39)

5.6. Failure criterion for interface

As an averaged description, the interface between mortar and pre-
cast elements with keys may be categorized as very rough, with a
pseudo cohesive resistance and a high pseudo frictional coefficient (see
e.g. Eurocode 2 [20]). However, in a detailed calculation where the
geometry of the keys is taken into account, the mechanical properties of
the real interface should be used. This means that the properties of the
formwork have an influence on the failure criterion of the interface.
Hence, like for the numerical model, the following Coulomb friction
criterion is adopted for the interface:

⩽τ μσ| |nt n (40)

where τnt is the shear stress on the boundary of the shear keys and σn is a
compressive normal stress acting on the same boundary, e.g.

=σ τ σ τ( , ) ( , )n nt t II tl II, , . It should be noted that Eq. (40) does not contain a
cohesion term. The main argument for neglecting the cohesion is that
smooth formwork was used to cast the reinforced concrete elements for
the experimental program (smooth formwork is commonly used also in
practice). Thus any small cohesive resistance in the interface may have
(partly or completely) vanished at the ultimate limit state. The coeffi-
cient of friction will in the following be taken as =μ 0.75, similar to the
assumption of the numerical model. The friction criterion implies that
the stress resultants, Cl i, and Ct i, , see Figs. 7(b) and 9(b), must fulfill the
following condition:

⩽ =C μC i| | , 1,2l i t i, , (41)

For the inclined part of the shear key, the friction criterion, expressed in
terms of the resulting forces, can be established as:

−

+
⩽ =

P θ P θ
P θ P θ

μ i
sin cos

sin cos
, 1,2l i k t i k

t i k l i k

, ,

, , (42)

5.7. Optimization of lower bound solutions

By examining the geometrical and equilibrium conditions of
Solution 1 as well as 2, it may be shown that the problems are in-
determinate with two free optimization parameters, namely the para-
meter e and one of the statical parameters. The resultant Cl i, will in the
following be chosen as the statical optimization parameter.

If the interface is not utilized to transfer shear stresses, Cl i, will
vanish and the solution will eventually be identical to the single strut
solution suggested by Christoffersen [7]. Therefore, to obtain better
solutions, the interface friction must be utilized as much as possible.
Hence, Cl i, should be taken as large as possible. According to Eq. (41),
this implies:

= =C μC i, 1,2l i t i, , (43)

By choosing the relation given in Eq. (43), the only remaining para-
meter left for optimization of the load carrying capacity is e. The op-
timization is naturally subjected to the strength constraints established
in Sections 5.4 and 5.5. Results are presented in the following.

6. Verification of analytical lower bound solutions

The results obtained by FELA (which are optimal under the as-
sumptions made) will in the following be used to verify the analytical
lower bound solutions. The purpose is to investigate if the analytical
solutions actually capture the main tendencies of the numerical results.
Calculations have been carried out based on the properties and para-
meters of the test specimens. The results, in terms of normalized shear
stresses versus the key depth, can be seen in Fig. 10(a), where the result
of the single strut solution [7] is also shown. The nominal shear stress
has been determined as follows:

=τ V
nh Lk k (44)

where V is calculated from Eq. (31). The full red curve in Fig. 10(a)
corresponds to the upper envelope of Solutions 1 and 2 and represents
the optimal results provided by the analytical lower bound model. It
can be seen that Solution 2 applies to larger key depths ( >d 8k mm)
whereas Solution 1 provides better results for smaller key depths. For
key depths larger than 13mm, Triangle I vanishes in Solution 1, as the
length a becomes smaller than e1. In this case σA,1 will act only on the
inclined part of the key corner, however, as the capacity is less than
Solution 2, it is not calculated. Contrary to the single strut solution, the
present model actually provides a significant capacity in the limiting
case of =d 0k mm (i.e. when the design is no longer a keyed connec-
tion). In this case, there is no nodal zone and the compression from the
diagonal struts is transferred through the interface by pure shear-fric-
tion. Fig. 10(b) depicts the optimal value of e versus the key depth. At
the transition point, the optimal value of e for Solution 1 is different
from that of Solution 2. This underlines that Solution 2 is not to be
considered as an extension of Solution 1, which is also seen in the fact
that the transition between the two solutions is not smooth.

Nevertheless, it is found that the analytical model provides results
that are almost identical to the numerical results obtained by FELA
(Fig. 10(a)). A small deviation is observed around the transition be-
tween Solution 1 and Solution 2. However, the deviation is insignificant
compared to the overall agreement. This strong correlation shows that
the analytical model is close to the optimal solution. In this context it
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should be noted that optimality here only refers to the best results that
can be obtained by the assumptions made and not necessary the ‘true’
results. Note further that other geometries and reinforcement degrees
may favor other stress fields not captured by the two developed ana-
lytical solutions.

It can be seen in Fig. 10(a) that the analytical model as well as FELA
estimate a higher capacity than the single strut solution developed in
[7]. This is partly related to the inclusion of friction in the grout-to-
panel interface at the keyed areas.

Fig. 11 depicts the stresses of Solution 1 versus the key depth. It can
be seen that the maximum compressive principal stress, σ I2, , acting in
Triangle I is governing in the entire interval of dk, where Solution 1 is
optimal. Moreover it appears that the minor principal stress, σ I1, , is also
compressive and that the stress in Strut A σ, A,1, is well below νfc for all
key depths. The magnitudes of the stresses depicted in Fig. 11 indicate a
local failure of the key corners (only Triangle I is critical). This is in
agreement with test results for specimens with small key depths.

The stresses of Solution 2 are plotted in Fig. 12. It can be seen that
=σ 0II1, when the key depth is approximately 4mm. This stress com-

ponent in fact becomes negative (i.e. tension) for lower values of dk,
which means that Solution 2 does not provide valid results for smaller

key depths (at least not for the assumed material parameters and geo-
metry considered). Furthermore, it can be seen that σ III2, is the gov-
erning stress component for key depths between 4mm and 10mm,

Fig. 10. (a) Comparison of analytical and numerical lower bound models and (b) the
optimal distance e calculated for Solutions 1 and 2.

Fig. 11. Normalized stresses versus key depth in Solution 1, note that =c 1 and =ν 1.

Fig. 12. Normalized stresses versus key depth in Solution 2, =c 1.

Fig. 13. Variation of σA,2 and σB as function of key depth in Solution 2, =ν 1.
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while σ II2, is governing for larger key depths. Triangle I vanishes at a key
depth of approximately 21mm. As <σ νfA c,2 , the stress can be safely
transferred without considering a nodal zone. At a key depth of about
28mm, the maximum effective depth according to Eq. (14) is in-
troduced and the capacity cannot be increased further beyond this key
depth.

Fig. 13 shows how the stresses in Struts A and B vary in Solution 2.
It can be seen that σB is larger than σA,2 in the entire interval of key
depths. At the transition to the effective key depth ( ≈d 28k mm), the
stress in Strut B has almost reached the capacity of νfc, however, it
remains slightly below. These results of course reflect the modeled

geometry and adopted material parameters = =ν c 1.

7. Comparison of analytical lower and upper bound models

In the following, the analytical lower bound model will be com-
pared with the previously developed upper bound model [1]. It is not
expected that the two models lead to identical results (i.e. a theoreti-
cally exact solution) since they are not fully based on the same set of
assumptions. For instance, plane stress condition is assumed in the
lower bound model while plane strain condition is imposed in the upper
bound model. However, the comparison can be used to evaluate the

Fig. 14. Collapse mechanisms considered in upper bound
model, (a) complete key shearing combined with diagonal
yield line and (b) local key corner failure, illustrations
from [1].

Fig. 15. (a) Comparison of upper and lower bound models with test results, (b) stresses in Struts A and B in Solution 2.
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tendencies of the two models and in particular the gap between them.
Eventually, by comparison of both models with test results, a qualified
discussion of the effectiveness factor adopted in the pure upper bound
approach [1] can be carried out.

The upper bound model presented in Ref. [1] is based on two basic
collapse mechanisms reflecting local key corner failure and complete
key shearing, respectively, see Fig. 14. The interface properties between
mortar and the precast elements are neglected and the mortar is treated
as a modified Coulomb material with zero tensile strength and with an
internal angle of friction taken as = °φ 30 . The assumption of plane
strain condition implies that the angle of displacement, α, due to the
normality condition cannot be smaller than φ, i.e. ⩾ °α 30 . For a de-
tailed derivation of the upper bound solution, the reader is referred to
[1]. It should be noted that the upper bound solution, in contrast to the
lower bound counterpart, can be formulated as closed-form equations
and is therefore easier to use in practice.

The results of the upper bound and lower bound models can be seen
in Fig. 15(a). As stated in the previous, =ν 0.89 is adopted for the
uniaxial compression struts while =ν 1 and =c 1.15 are used for the
biaxial compression zones in the lower bound model. Such a distinction
between types of stress field can of course not be made in the upper
bound model. Therefore, =ν 0.89 has been used when determining the
dissipation in all the yield lines in the upper bound model. The gap
between the upper and the lower bound solutions (Fig. 15) is however
not due to the difference in the material parameters. The gap would in
fact have been larger, had the lower bound calculations also been based
on =ν 0.89 and =c 1 everywhere. It is mainly the assumption of plane
strain condition versus plane stress condition that has an influence on
the observed gap. In addition, other more sophisticated collapse me-
chanisms (not yet analyzed) may lower the upper bound results.

Another discrepancy between the two models should also be
pointed out. A closer look at the two solutions (in Fig. 15) in the vicinity
of =d 0k mm reveals that the upper bound solution is lying below the
lower bound solution. This difference has no practical significant but is
apparently inconsistent with the extremum theorems of plasticity. The
reason is to be found in the fact, that the interface is assigned a friction
failure criterion, Eq. (40), in the lower bound model while this criterion
is ignored in the upper bound calculations. To obtain results consistent
with the extremum theorems, the upper bound calculations should be
modified to include the friction criterion for the interface and at the
same time fulfill the normality condition at the interface. It may in that
case be shown, that the upper bound solution will lie above the lower
bound counterpart and that the two solutions will yield exactly the
same result at the limiting case of =d 0k mm.

In the present calculations, the upper bound model reaches the
upper limit (corresponding to complete key shearing) at ≈d 13k mm.
This is actually close to =d 16k mm, which in the test series corre-
sponds to the transition between the two failure modes. The lower
bound Solution 2 on the other hand, reaches an upper limit at

≈d 28k mm corresponding to the maximum effective key depth (Eq.
(14)). Furthermore, in Solution 2, the Triangle II is critical when dk is
between approximately 9 to 17mm while Strut B is stressed to νfc and
therefore critical for dk larger than 17mm (see Fig. 15(b)). For

>d 17k mm, the thickness of Strut B increases with increasing dk which
explains the increase of the capacity for dk between 17 and 28mm. As
seen in Fig. 15(b), Strut A of Solution 2 is at no point critical. The fact
that only Strut B is critical when Solution 2 reaches the upper limit
makes it rather difficult to relate the result to a failure mechanism in-
volving complete key shearing. This simply underlines that Solution 2
(although it may be optimal subjected to the assumptions made) is still
a lower bound and thus a safe model for the real ultimate behavior of
the connection.

It is important for practical application that the two models (de-
veloped independently of each other) in fact display the same overall
tendencies, namely a shear capacity that increases with increasing key
depth until an upper limit has been reached. This improves the

reliability of the results. However, the most correct solution would
probably be somewhere between the two models since in reality, the
connection is not in a state of plane strain, nor plane stress, but
somewhere in between. This is clearly seen in the fact that the test
results as plotted in Fig. 15(a) are all lying in between the results of the
upper and lower bound models. Hence, an important conclusion that
can be drawn from the comparison in Fig. 15 is that the effectiveness
factor adopted in the pure upper bound approach (see Ref. [1] for de-
tails) not only reflects the material brittleness but also partly contains
an empirical reduction to compensate for the ideal assumption of plane
strain. In this context, it is interesting to note that the width, i.e. b
shown in Fig. 2, must have an influence on the stress and strain con-
ditions in the connection, but this parameter is absent in the failure
mechanisms based on the plane strain assumption that were considered
in Ref. [1]. Hence, it is reasonable to believe that the effectiveness
factor of the pure upper bound approach also compensates for the in-
fluence of b, which is not considered theoretically. The lower bound
model, on the other hand, includes the width, b, as an important
parameter. Still, if the plane stress lower bound solution should be
calibrated to fit the test results (Fig. 15), then artificially higher values
of ν and c would be required, most probably to compensate for the
triaxial stress state that in reality would develop locally in the joint
mortar.

It might be too optimistic to expect that a more correct/realistic
solution can be developed which at the same time is as user-friendly as
the closed-form upper bound solution. The upper bound model will
therefore still have preference from a practical point of view, even
though it has to be used in conjunction with an effectiveness factor that
not only accounts for the real material behavior but also functions as an
adjustment parameter to compensate for the unsafe nature of upper
bound solutions. Awareness of this is important when applying the
upper bound model to practical cases, which deviate significantly from
the experimentally tested configurations. In such situations, the lower
bound model presented in this paper will be useful.

8. Conclusions

This paper presented push-off tests of a recently developed keyed
shear connection design for precast concrete wall elements. The in-
vestigation focused on the influence of the key depth on the failure
mode and the load–displacement response of the connections. The ex-
perimental observations include:

• Connections with smaller key depths failed by local key corner
shearing while failure by complete key shearing was observed for
connections with larger key depths

• The maximum capacity (first peak load) was related to failure of the
keys and increased with increasing key depth until complete key
shearing became the critical failure mode

• The residual load level (beyond the first peak load) is relatively
higher for connections suffering local key corner shearing

The experimental observations suggest that for practical applica-
tions the connection should be designed to be governed by local key
corner crushing as this improves the ductility. In addition to the ex-
perimental results, an analytical lower bound model was developed for
prediction of the first peak capacity. The model was validated with
numerical calculations based on finite element limit analysis. The
model differs from existing analytical lower bound solutions for keyed
connections in the following way:

• The load can be carried by a combination of struts spanning over
one or two indentations

• Local strength increase at nodal zones and effects of interface fric-
tion are accounted for

• The nodal zones can be subjected to non-hydrostatic biaxial stress
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conditions

The lower bound model shows similar tendencies as a previously
developed upper bound model and the test results fall within the gap
between the two solutions. From the comparison, it can be concluded
that the lower bound solution is a safe one due to the assumption of
plane stress condition while the plane strain assumption adopted in the
upper bound solution is theoretically unsafe and must be compensated
for by adjustment with test results. This is reflected in the relatively low
effectiveness factor that has to be applied. The upper bound solution
should therefore only be used for configurations within the range
covered by tests. In other cases, the lower bound model is applicable

although it is more complicated to use. In conclusion, it can be stated
that the paper has contributed to a more complete theoretical basis for
practical design of keyed connections.
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Appendix A. Lower bound finite element limit analysis (FELA)

As discussed in Section 4, FELA can be considered as a special case of the general finite element method, where a rigid-plastic material model is
assumed. Unlike the finite element method, however, FELA is a so-called direct method where the collapse load is determined in a single step and no
incremental procedure is needed. The method is therefore rather efficient and numerically stable for calculation of the collapse load of structures.

The fundamental idea of the method is to formulate a given limit analysis problem as a convex optimization problem, where the ultimate load is
maximized. In order to obtain a lower bound solution, the determined stress field must be statically admissible and safe. This is ensured by a set of
linear equality constraints, representing the equilibrium conditions, as well as a set of convex inequality constraints, representing the convex yield
conditions. The general form of the optimization problem is given below:

maximize λ
subject to = +B σ pλ pT

0

≤f σ( ) 0,i = …i m1,2, ,

The external load comprises a constant part, p0, and a scalable part, pλ, where λ is the load factor, which is sought to be maximized. The external
load is balanced by the stress field described by the vector σ via the linear equilibrium equations, = +B σ pλ pT

0, where BT is the equilibrium matrix.
The yield function f σ( )i is checked in the m points to ensure a safe stress field. For concrete, the Mohr-Coulomb yield criterion is commonly used
which can be expressed as conic constraints [21,22].

The equilibrium matrix, BT , depends on the chosen lower bound finite elements and discretization. In this paper, lower bound plane stress
elements have been used together with bar and interface elements, representing the reinforcement and grout-to-panel interfaces of the keyed joint.
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