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THEORIES OF TOPOLOGICALLY-INDUCED PHENOMENA IN
SKYRMION-HOSTING MAGNETOELECTRIC INSULATORS

ABSTRACT

There once was a harsh competition between different computer memory technologies,
and now we cheer triumph for the Random Access-Memory (RAM) devices, — cheap,
fast, tiny, stable. The competing Magnetic Bubble Memory had faded away as magnetic
bubbles are undesirably large and pretty much not robust, manifesting both low data
density and high operational costs. However, what we do possess now are nanosize
objects of topological nature, magnetic skyrmions, which are protected from continuous
field variations and take very little energy cost to be moved. Thus, skyrmions are
considered as promising information carriers for future memory devices and ultradense
data storage, while skyrmion phases in bulk materials are interesting from fundamental
point of view in exploring topological states of matter.

In this thesis, I develop and advance several effective theoretical approaches, diverse
both in their methods and use, which were of appeal for several skyrmionic experiments
in our lab (LQM/EPFL). We were and are primarily interested in the open issues in
the applied field of skyrmionics, which may be taken under the umbrella of creation,
stabilization and control of magnetic skyrmions under electric fields, mechanical strains,
thermal gradients, etc. For the goals achieved and yet to be achieved, the magnetoelec-
tric insulator CuyOSeOs, which uniquely responses to all the above mentioned fields,
is a highly advantageous candidate. Magnetoelectric here means that the spins of a
magnetic material are coupled to external electric fields, while insulating properties are
very advantageous to preserve both the state and the very existence of skyrmions by
eliminating the Joule heating.

The novel results in this thesis are calculations for both individual and arrayed
skyrmions under electric fields, mechanical strains and uniform pressures, and ther-
mal gradients. Furthermore, several fundamental questions were addressed by develop-
ing an extended formalism for calculation skyrmion-pocket phase diagrams, studying

the topologically-governed crossover between skyrmions and magnetic bubbles, and dis-



cussing the possible role of merons (half-skyrmions) in skyrmion phase formation. The
result with the most immediate appeal is probably the theoretical and experimental
study of skyrmion lattices in electric fields, with a direct demonstration of writing and
erasing of the full skyrmion phase under electric fields of few Volts per micrometer, as

compatible with modern microelectronic devices.

Keywords: magnetism, skyrmions, topology, chiral magnets, magnetoelectricity, magnetic

memory, phase diagrams, effective field theories, quasiparticle formalism, physical modelling.
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THEORIEN TOPOLOGISCH INDUZIERTER PHANOMENE IN
SKYRMIONENTRAGENDEN MAGNETOELEKTRISCHEN ISOLATOREN

ZUSAMMENFASSUNG

Nachdem es einst einen harten Wettbewerb zwischen verschiedenen Computerspeichertech-
nologien gab, feiern wir mittlerweile den Triumph von giinstigen, schnellen, kleinen und
stabilen Geraten mit Random Access Memory (Direktzugriffsspeicher, RAM). Der Mag-
netblasenspeicher als Konkurrent geriet bald ins Hintertreffen, da magnetische Blasen
einerseits unerwiinscht gross und andererseits nicht sehr robust sind, was zu sowohl
niedriger Datendichte als auch zu hohen Unterhaltskosten fiihrt. Jedoch verfiigen wir
jetzt iiber Nanoobjekte topologischer Natur, magnetische Skyrmionen, die vor kontinuier-
lichen Felddnderungen geschiitzt sind und mit geringen Energieaufwand bewegt werden
kénnen. Daher werden die Skyrmionenphasen als vielversprechende Informationstréger
fiir kiinftige Speichergerédte und ultradichte Datenspeicher betrachtet, wobei Skyrmio-
nenphasen im Festkorper aus fundamentalen Gesichtspunkten in der Erforschung topol-
ogischer Materiezusténde ebenso interessant sind.

In dieser Arbeit werden verschiedene effektive theoretische Zugénge entwickelt, jew-
eils mit mannigfaltigen Methoden und Anwendungen, welche verschiedenen aktuellen
skyrmionischen Experimenten in unserem Labor (LQM/EPFL) zugutekamen. Wir waren
und sind vor allem interessiert an offenen Fragen im angewandten Feld der Skyrmionik,
welche unter anderem die Erzeugung, Stabilisierung und Kontrolle magnetischer Skyrmio-
nen mittels einfacher und nicht-fliichtiger Methoden unter dem Einfluss von z.B. elek-
trischem Feld, mechanischer Belastung und Temperaturgradienten umfasst. Fir die erre-
ichten und zu erreichenden Ziele ist der magnetoelektrische Isolator CuyOSeOs, welcher
einzigartigerweise auf alle oben erwdhnten Felder anspricht, ein sehr vorteilhafter Kandi-
dat. Magnetoelektrisch bedeutet in diesem Falle, dass die Spins des magnetischen Materi-
als mit externen elektrischen Feldern koppeln, wihrend die isolatorischen Eigenschaften
sehr vorteilhaft zur Erhaltung sowohl des Zustandes als auch der blossen Existenz des
Skyrmions sind, da sie die Effekte joulescher Warme eliminieren.

Die neuen Resultate dieser Arbeit sind Berechnungen sowohl an individuellen als
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auch an Anordnungen von Skyrmionen unter elektrischen Feldern, mechanischer Be-
lastung, uniformem Druck und Temperaturgradienten. Es wurde weiterhin ein erweit-
erter Formalismus eingefiihrt, welcher verschiedene fundamentale Fragen betrachtet: die
Berechnung von Skyrmionentrager-Phasendiagrammen, die Untersuchung des topolo-
gisch beherrschten Ubergangs zwischen Skyrmionen und magnetischen Blasen und eine
Diskussion der méglichen Rolle von Meronen (halber Skyrmionen) bei der Schmelze von
Skyrmionenkristallen. Das eindrucksvollste Resultat ist wohl die theoretische und experi-
mentelle Untersuchung von Skyrmionengittern in elektrischen Feldern, mit einer direkten
Demonstration des Schreibens und Loschens der kompletten Skyrmionenphase mittels
einer Spannung von einigen Volt pro Mikrometer, einem typischen Wert fiir moderne

mikroelektronische Geréte.
Stichworter: Magnetismus, Skyrmionen, Topologie, Chirale Magneten, Magnetische Spe-

icher, Magnetoelektrizitit, Phasendiagramme, effektive Feldtheorien, Quasiteilchen, Topologis-

cher Schutz, physikalische Modellierung.
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ETUDES THEORIQUE DE PHEMONENES TOPOLOGIQUEMENT-INDUIT
DANS DES ISOLANTS MAGNETOELECTRIQUES SKYRMIONIQUE

RESUME

Il y avait jadis une dure compétition entre différents systémes de stockage de mémoire
informatique - compétition remportée par la mémoire vive (ou RAM) qui a l'avantage
d’étre bon marché, rapide, compacte et stable. Les mémoires a bulles magnetique ont peu
a peu disparu a cause de leur grande taille et leur manque de robustesse, impliquant une
faible densité de stockage et des cofits de fonctionnement tres élevés. Cependant, nous
avons découvert des objets de nature toplogique d’échelle nanoscopique, les skyrmions
magnétiques, qui ont la particularité d’étre insensibles aux variations continues de champ
et dont la mise en mouvement requiert peu de cotlit en terme d’énergie. La commu-
nauté scientifique fonde ainsi de grands espoirs en ces skyrmions afin de créer une nou-
velle génération de systemes de stockage de mémoire ultradenses ainsi que de nouveaux
moyens de transport de données. L’étude des skyrmions d’un point de vue purement
fondamental a également connu un essort impressionant ces derniéres années, ceux-ci
présentant un grand intérét dans I'optique d’explorer les différents états topologiques de
la matiere.

Dans cette these, je développe et améliore plusieurs approches théoriques, différant de
par leur méthode et leur application, qui ont été largement utilisées lors du développe-
ment d’expériences de pointe sur les skyrmions dans notre laboratoire (LQM/EPFL).
Nous nous sommes particulierement intéressés au domaine, encore en phase de développe-
ment, de la skyrmionique, plus précisément a la stabilisation et au controéle de skyrmions
magnétiques au travers de méthodes simples et non volatiles - sous 'application de
champs électriques, contraintes méchaniques, gradients de température, etc. Pour attein-
dre nos objectifs expérimentaux, un candidat naturel a été 1’isolant magnetoélectrique
Cup,0Se03 qui posséde une réponse unique a chacune des contraintes précédemment
mentionnées. Par magnetoélectrique, il est entendu que les spins du matériau magné-
tique se couplent avec un champ électrique externe, tandis que ses propriétés isolantes

permettent de préserver 1’état du systéme ainsi que 'existence méme des skyrmions en
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éliminant D'effet Joule.

Les contributions que j’apporte a ce domaine au travers de ce travail de doctorat con-
sistent en plusieurs développements théoriques décrivant a la fois des skyrmions isolés
et des systemes entiers soumis a des champs électriques, contraintes méchaniques et
pressions uniformes, ainsi que des gradients thermiques. De plus, une série de ques-
tions fondamentales ont été soulevées en développant un formalisme avancé permettant
de tracer le diagramme de phases de matériaux pouvant potentiellement accueillir des
skyrmions. Ces nouvelles zones d’ombre sont apparues lors de I’étude du crossover, de
nature topologiquement préservé, entre les skyrmions et les bulles magnétiques ainsi
qu’en analysant l'influence potentielle des mereons (mi-skyrmions) dans la transition de
la phase topologiquement triviale a la phase skyrmionique. Notre résultat le plus intéres-
sant a sans doute été obtenu lors de 1’étude théorique et expérimentale de réseaux de
skyrmions dans un champ électrique, mettant en évidence la création et disparition to-
tale de la phase skyrmionique sous 'effet d’une tension de quelques Volts par micrometre

seulement, configuration présente dans les appareils microélectroniques modernes.
Mots clés: magnétisme, skyrmions, topologie, aimants chiraux, mémoire magnétique, mag-

nétoélectricité, diagrammes de phase, théories de champ effectifs, quasiparticules, protection

topologique, modélisation physique.
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Introduction

The latest Nobel prize in physics (2016) was awarded to Thouless, Haldane, and Koster-
litz for their contribution to diverse topological concepts carefully developed and tested
in condensed matter through three decades. Clearly now, topology had evolved from
an obscure mathematical concept to something useful, measurable, practical. Graphene,
topological superconductors, and skyrmion memory for computers are just some exam-
ples where the fundamental research in emergent topological phenomena is fuelled by

the technological potential. However more to be done as the field is extensively growing.

Historically, topology appeared as a study of shapes of different objects and relations
between them as abstract entities without physical density, rigidity, and ultimate tensile
strength. A good — but far from being full — analogy is imaging a children’s toy made
of plasticine. Clearly, if you have a ball rolled out of plasticine, it is very easy to deform
it smoothly into an ellipsoid or a pancake-like disk or another rather arbitrary shape
without holes: we say, a sphere is homeomorphic to any closed 2D figure without holes.
The continuity, — which mathematically is the existence and regularity of derivatives, —is
the key concept in topology. In fact, singularities (such as holes in the shape) often serve
for topological classification of the objects under study (see Figure 1.1). For a long time
though topology remained quite an obscure and metaphysical discipline not affecting the
direct experimental data. As an anecdote, in 1961 George Gamow even wrote in his book
[1], "only number theory and topology (analysis situs) still remain purely mathematical
disciplines without any application to physics”. In fact, just two decades after, topology
was called upon to explain integer quantum Hall effect - a phenomenon where the electric

conductance of material is exactly quantized in units of €?/h, - it can be only 1%, 2‘3—;,
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Figure 1.1: Topology in real life: Rolex Learning Center at EPFL is topologically equivalent
to a slice of cheese. [Figure from EPFL website]

38—;, 49—,:, etc., — in the same topological spirit as there can be 1,2,3,4, etc. holes in
the swiss cheese, but never e.g. v2 holes or anything else too irrational for the cheese
industry. The importance of this discovery (awarded with Nobel prize to von Klitzing in
1985) is such that it had impacted the standards of precise measurements: the definition
of a standard electrical resistance is the von Klitzing constant Rx = h/e® = 25.8kQ. In
fact, this year (2017) is expected to be the last when we still use the approximate set of

fundamental constants.

Topology is an elegant and a very powerful tool which allows constructing effective
condensed-matter models without much going into details of complicated microscopic
physics. In fact, many theories on both classical conductivity (e.g. metals, insulators)
and more recent advances in the field (e.g. topological insulators, Dirac and Weyl
semimetals, superconductors) are built very extensively on the topological notions; a
good example here is the Fermi surface, which is a topologically stable quantized vortex
in reciprocal space; conceptually, it can be further broken into Fermi arcs (for example,
as in Weyl semimetals), and further on even shrunken into a Fermi point (as in the
superconductive 3He-A). Thus it is currently believed that most of the conductive
features of the macroscopic systems can be captured by the topology of the reciprocal
space itself, while further material-specific properties can be sufficiently calculated by

merging microscopic calculations with topology ideas [2, 3].

The content of this thesis is however devoted to another rapidly expanding branch of
condensed matter physics where magnetism meets topology, in particular to skyrmionics,
- the study of properties of individual and arrayed magnetic skyrmions, their creation,
annihilation, and control in the prospect of magnetic memory applications. In one
sentence, the skyrmions are vortices made of spins in such a way that there is a sense of
rotation: normally, the spin points "down” at the very center of a skyrmion and gradually
twists "up” at its periphery. Below I very briefly review several important notions

for topological magnetic physics to place magnetic skyrmions in a broader theoretical
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Figure 1.2: Haldane gap: a "hydrogen atom” of topological matter physics. a) Spin-1/2
chain with antiferromagnetic coupling J. b) Spin-1 chain with the same antiferromag-
netic coupling J. ¢) The schematic spectrum of elementary excitations. Surprisingly,
the spin-1 chain develops a gapped triplet while the spin-1/2 chain elementary exci-
tations are gapless. Once having a finite Haldane gap A, the spin-1 chain cannot
be continuously mapped onto the spin-1/2 chain, — the two systems are topologically
non-equivalent.

background.

HALDANE GAP. The "hydrogen atom” of topological magnetic matter physics is the
appearance of the Haldane gap in a 1D spin-1 chain, — in the way it had influenced
the development of the field. Historically, a general algorithm was to start treating a
phenomenon from the lowest possible dimension (1D or 2D), and only after generalizing
the solution towards a 3D case. However, this was not the case with the Haldane problem,
even though the spin chains appeared more like a toy model of theoretical physics, as
the exact solution for S =1/2 chain and the quasiclassical asymptotes for S > 1 were
already known. It however turns out that for non-perturbative 1/S, the properties of a
1D spin chain with antiferromagnetic exchange interaction depend crucially on whether
the spin is integer or half-integer. For a naked eye it may seem rather strange, as in a
naive picture the Heisenberg Hamiltonian may seem rather "scalable” in terms of the
spin magnitudes S. In fact, for a long time people thought the model has a continuous
dependence on the spin quantum number. However, as it was reported by Haldane
back in 1988 [4], in contrast to a 1D spin—% chain which produces gapless elementary
excitations (pairs of spinons), the spin-1 chain manifests a gapped triplet for low-energy
quasiparticles. This observation is topologically nontrivial as once the spin-1 chain has a
finite gap in its spectrum it cannot be continuously mapped on the gapless spin-1/2 chain.
This apparent paradox has been a subject of long discussion. Nontrivially, the spin is
an operator with either integer or half-integer values, which cannot be transformed into

each other, — and this is a topological statement.

ToPOLOGICAL ORDER. Another crucial aspect is the concept of topological order, —
a type of ordering in a system when it is hard to introduce the local order parameter
(write down a formula describing the field at every point), however the hidden order is

indeed present in terms of algebraic correlations between the different points in space.
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Figure 1.3: Vortex-antivortex pair (VAP): an important object in many condensed matter
systems. In Kosterlitz-Thouless physics, a dense packing of VAPs contribute to the
topologically-ordered state, i.e. when it is impossible to mathematically formulate
the local order parameter, however the hidden order is present in terms of algebraic
correlations. Upon heating the system, the process known as unbinding of VAPs
takes place, and the system transforms to a topologically-trivial phase with well-
separated vortexes.

It was shown by Kosterlitz and Thouless in several simple models that this could be due
to the formation and unbinding of vortex-antivortex pairs. Imagine a two-dimensional
charged gas, cooled down to zero Kelvin. If it was a typical three-dimensional gas, at low
temperatures, it would overpass the known transitions, such as Bose-Einstein conden-
sation (if bosons), or Fermi liquid (if fermions). However, it was considered for a long
time that for flat (two-dimensional and uniform) systems, such phase transitions are
forbidden (the so-called Mermin—Wagner theorem [5, 6]). However, even though early
numerical studies of such systems showed no singularities, there was an indication that
something strange is going on: the correlation functions (the functions which show how
much a small part of the system knows about the other parts) behaved differently above
and below some critical temperature T¢, the signature that one would normally expect
for phase transitions! This was striking as it opposed the Mermin—Wagner theorem,
which had been proven in different contexts. The apparent contradiction was first qual-
itatively explained in the 1972 paper of Kosterlitz and Thouless [7] in which they argue
that below some T¢, it is very easy to create vortices, but only in pairs — a vortex and an
antivortex. Of course, the evolution of the vortex pairs is complex, but intuitively one
could expect that if we heat the system, we can destroy these vortex pairs. Indeed, the
calculations show that above T¢, all the vortex pairs unbind into single (uncorrelated)
vortices. Such a subtle topological mechanism gives no physically measurable singulari-
ties at T¢ in thermodynamic properties, however it does, indeed, change the correlation
functions of the system below and above T¢. The corresponding order in the system is a
topological order, which supports this quite strange (topological) phase transition. It is

interesting that in mathematically similar earlier arguments of Berezinskii [8, 9], there

4



was no mention of superconductivity or vortex-antivortex physics at all.!

SKYRME MECHANISM. An interesting concept here, be it not from condensed matter
physics, but closely related to this thesis, is the so-called Skyrme mechanism for ex-
plaining baryon (and later, meson) stability [11-18]. Baryons are quite a large group of
elementary particles, including, in particular, nucleons, - the constitutes of atomic nuclei:
protons and neutrons. According to Skyrme’s idea, a nucleon can be represented as a
whirl in pion liquid, leading to a so-called hedgehog solution of field equations on a sphere.
In fact, Skyrme had introduced a topological classification of solutions of nonlinear field
equations and introduced the topological (homotopic) conservation laws. The new con-
served quantity, the topological charge, was interpreted as baryonic charge, and baryons
themselves were interpreted as topological solitons. The Skyrme’s mechanism was based
on rather deep topological ideas which were quite distant to most of the physicists those
days, and for a long time the simple and beautiful Skyrme’s model was relatively little
explored, while the quark theory became a mainstream tool in the particle physics the-
ory. This status quo changed in the 1980s when it was shown that the Skyrme’s model
can be considered as a N, — oo limiting case? of quantum chromodynamics [19, 20], and
the conceptual model got progressively more attention in other fields of physics, such as
ultracold gases, superconductivity and magnetism. As an anecdote, Skyrme mentioned
[18] being influenced by an interesting yet terribly wrong vortex model of atoms by W.
Thomson (Lord Kelvin) who in 1867 proposed a toy model [21] in which atoms were

considered as vortex objects in hypothetical aether filling all the universe (in fact, not).

QUANTIZATION OF ELECTRIC CHARGE AND MAGNETIC MONOPOLES. The symmetry
of Maxwell equations is somewhat disturbed by the absence of magnetic charges, —
analogs of electric charges such as the one carried by electrons. For a long time a
field-theoretical reverie was to find the hypothetical particle which supports a monopole
term in magnetic field multipole expansion, — the so-called magnetic monopole, — but
all in vain.® It could be of course just an idée fize, if not a remarkable observation
made by Paul Dirac in 1931 [23]: if a magnetic monopole exists in nature, all electric
charges should be quantized. So here we are: Electric charge is, in fact, quantized:
+le, +2e, +3e, etc. Should we thus await for Dirac monopoles? Well, at least that
appears to be the only more-or-less reasonable explanation on why the electric charge
is quantized, so far. The real magnetic monopoles, if they exist(ed), — and I bet they
do, — are currently unreachable for experiments as they have an estimated mass of

order M, ~ 101®GeV (after renormalizations made on that mass scale, see [24]). For

I This paragraph is reused from my publication Ref.[10].

2N, is the number of ”colours” in quantum chromodynamics.

3For a detailed but rather pedagogical review of magnetic monopole physics, see Ref. [22]. In par-
ticular, special attention should be paid to the Wu-Yang monopole, which, similar to an electron, is a
point-like particle with a 1/r potential field everywhere.



Figure 1.4: Magnetic monopoles in Weyl semimetals (in reciprocal space): elementary excita-
tions near the linear band crossings (Weyl nodes) in Weyl semimetals follow the
Dirac equation for massless electrons, which act as left-polarized and right-polarized
chiral particles. The positive and negative Weyl nodes (red and blue in this figure)
can be interpreted as magnetic monopoles of Berry magnetic (pseudo)field, and are
connected with the Dirac string in bulk. Being projected on the surface, the Dirac
string is seen as a Fermi arc, i.e., topologically nontrivial "slice” of a Fermi loop.

comparison, the Higgs boson is only 125GeV and according to Forbes it had cost $13.25
billion to make it discovered. Condensed matter systems are amazing in the way they
can incorporate nontrivial field-theoretical concepts in a measurable way. To date, the
condensed matter community found several systems with low-energy analogs of magnetic
monopoles, such as, for example, in "spin ices” [25], Weyl semimetals [26], skyrmion-
hosting chiral magnets [27], etc. Topologically, magnetic monopole can be visualized
as a solenoid with magnetic flux 27/e and one ending point. This infinitesimal line
solenoid, also called a Dirac string, links a monopole and antimonopole together, thus
forming a magnetic dipole. One of the most beautiful condensed matter analogs of this
concept is observation of Fermi arcs in Weyl semimetals, which are surface projections of
Dirac strings (in reciprocal space); the Weyls nodes are magnetic monopoles of pseudo-

magnetic (Berry curvature) field in reciprocal space, see Fig. 1.4

MAGNETIC SKYRMIONS. - Magnetic skyrmions is a class of several nontrivial spin con-
figurations in chiral magnets. They are mainly distinguished by their topological charge,
chirality and helicity. The lowest-charged skyrmions observed in the bulk chiral mag-
nets and thin magnetic films are the Bloch-type and Néel-type skyrmions, topologically
equivalent (through a continuous map) to a hedgehog-like “hairy sphere”. In context of
magnetization vortices, the magnetic skyrmions were introduced in 1989 by Bogdanov
[28] and Ivanov [29, 30], as also indirectly mentioned in some earlier studies [31-33]. The
skyrmion crystalline in MnSi was introduced around 2006 in studies of Vishwanath and
Binz [34-37], which very shortly lead to experimental discovery of magnetic skyrmions

in MnSi [38, 39], and later in many other systems, including other chiral-lattice fer-
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Figure 1.5: Magnetic skyrmions are topologically-protected quasiparticle-like vortices of spins in
chiral magnets, typically of a nanoscale size. On the figure: a radially-symmetric
Bloch-type skyrmion. The spin points "down” (against magnetic field) in the very
center and gradually rotates towards pointing "up” at the periphery (along the ex-
ternal magnetic field). Skyrmionics is a study of creation, stabilization and control
of magnetic skyrmions in the viewpoint of magnetic data applications.

romagnets [40-45], centrosymmetric ferromagnets [46, 47], iterfaced systems [48, 49]
and systems with confined geometry [50-52]. Experimentally, the topological nature
of individual skyrmions was confirmed by predicting and observing the skyrmion Hall
effect [53-57]. To a known extent, magnetic skyrmions can be considered topologically
and energetically protected against continuous perturbations. To this point, magnetic
skyrmions are promising information carriers for future memory devices and ultradense
data storage, while skyrmion phases in bulk materials are interesting from a fundamental

point of view in exploring topological states of matter.

The novel results of this thesis are calculations for both individual and arrayed
skyrmions under electric fields, mechanical strains and uniform pressures, and thermal
gradients. Furthermore, several fundamental questions were addressed by developing an
extended formalism for calculation skyrmion-hosting magnetic-phase diagrams, study-
ing the topologically-governed crossover between skyrmions and magnetic bubbles, and
discussing the possible role of merons (half-skyrmions) in skyrmion crystal melting. The
most immediately appealing result is probably the theoretical and experimental study
of skyrmion lattices in electric fields, with a direct demonstration of writing and erasing
of the full skyrmion phase under voltages of few Volts per micrometer, compatible with

modern microelectronics.

This thesis is organized as follows: in the next chapter (Chapter 2) I introduce im-
portant skyrmionics concepts and present a rather pedagogical description of diverse
skyrmionic ideas which are otherwise scattered over multiple research papers only. In
Chapter 3 I discuss possible magnetic phases in bulk skyrmion-hosting materials, and

present a refined method for calculating bulk magnetic phase diagrams on the basis
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of fluctuation-induced stabilization of the skyrmionic phase with respect to the conical
phase. In Chapter 4, I consider the effective way of creation and annihilation of single
skyrmions and stabilization and destabilization of the skyrmion phase (in bulk) by ap-
plying mechanical strains and uniform pressure. In Chapter 5, I present two different
models: for single skyrmion in electric fields, as also for the skyrmion lattice stabiliza-
tion in electric fields, including results of experiments for writing and erasing magnetic
skyrmions with moderate voltages. In Chapter 6, I consider several models for different
aspects of topological physics in magnetic thin films, namely (i) mechanism for mov-
ing magnetic skyrmions with thermal gradients; (ii) topologically-preserved crossover
between fast and mobile skyrmions and slow magnetic bubbles; (iii) a simple model that
tracks topological charge saturation in thin films by tracing the pairs of merons (half-
skyrmions) in the system. The concluding chapter is made in the form of an overview

as the field is very rapidly growing.



Magnetic Skyrmions: Topology, Stability and

Quasiparticle Properties

Skyrmions were first introduced in 1950s-1960s in the context of topologically protected
states to explain the empirical stability of hadrons [17], by Tony Skyrme. Although
the quark theory proved to be more constructive, the concept of both the 3D and 2D!
skyrmions and related topologically-induced phenomena have found deep roots in di-
verse subfields of many-body physics, such as in 2D electron gases [58, 59], superconduc-
tors [60—68], spinor Bose-Einstein condensates [69-75] and, remarkably, quasiclassical
magnetic systems as described below. Initially, magnetic skyrmions were theoretically
proposed as topologically-protected microscopic analogs of chiral magnetic bubbles Bog-
danov in 1989 [28] and Ivanov in 1986 [29, 30], and for years were mainly called magnetic
vortices and topological solitons.? Tt is hard to trace when the term magnetic skyrmion
coined its modern shape, however for a 2D magnetic skyrmion in ferromagnetic (uni-
form) background one would probably name the paper on a skyrmion in ferromagnetic
thin films by Abanov in 1998 [78] and Bogdanov in 2002 [79]; throughout this thesis,
an effectively two-dimensional magnetic skyrmion (or a skyrmion tube) will be simply
referred to as the skyrmion if not stated otherwise. The experimental discovery of mag-
netic skyrmions in form of a hexagonal long-range-order lattice was reported by a joint
group of Pfleiderer, Boni and Rosch [38, 54, 80] in metallic chiral-lattice ferromagnet

MnSi (see also the real-space observation [39, 41], and Figure 2.1 in this regard), and

In some papers 2D skyrmions are also called ”"baby” skyrmions.
2Similar magnetic objects were also treated in some earlier studies, see Refs.[31-33, 76]. See also the
1989’s paper [77] for a single-vortex model.



Figure 2.1: Observation of the skyrmion phase in real space with transmission electron mi-
croscopy. Figure from Ref.[39].

later found in several other chiral-lattice ferromagnets [40-45], layered centrosymmetric
ferromagnets [46, 47], and interfaced systems [48, 49]. This discovery was preceded by
two independent theoretical proposals (2006) for the skyrmion phase as a possible candi-
date for the partially-ordered A-crystal in MnSi,® by Binz and Vishwanath [34-37] and
Réssler, Bogdanov and Pfleiderer [81]. In acknowledgement for masterminding the sem-
inal works [28, 34, 38, 54, 80, 81], Boni, Bogdanov, Pfleiderer, Rosch and Vishwanath
were awarded with 2016 EPS CMD Europhysics Prize “for the theoretical prediction,
the experimental discovery and the theoretical analysis of a magnetic skyrmion phase
in MnSi, a new state of matter.”

Because a topological barrier stabilizes the skyrmion [29, 30, 82], robust quasiparticle
properties can be assigned, together with a quantized topological charge (see next sec-
tion). Furthermore, skyrmions require very little energy cost to be moved with electric
currents in metallic environment [46, 80, 83-89], or, surprisingly, with thermal gradients
in insulating samples [90, 91]; a topologically interesting twist for skyrmionics is the
conjectured existence of charged skyrmions on the surface of topological insulators [92].
Several methods for creating ("writing”) and destroying (“erasing”) skyrmions were pro-
posed [49, 88, 93-98], depending on the specificities of the system. As quasiparticles, the
skyrmions can interact with each other [99-103], as also condense to and melt back from
a crystal made of quasiparticles, the skyrmion lattice [38, 99, 104, 105]. To this point,
magnetic skyrmions are promising information carriers for future memory devices and
ultradense data storage, while skyrmion phases in bulk materials are interesting from a
fundamental point of view in exploring topological states of matter [78, 106-111].

In this chapter, I mainly review some pivotal properties of the skyrmions, such
as topological numbers and their underlying connections with crystal symmetries, and

sketch a controllable numerical scheme for variational minimization of the energy func-

3Before understanding the skyrmion nature of the strange phase in MnSi, the skyrmion lattice was
mainly nicknamed as an ”A-phase” or ”A-crystal”.
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Figure 2.2: Skyrmion topology. Skyrmion is topologically equivalent to a "hedgehog sphere”.
Top left: a "hedgehog” spin configuration on a 3D sphere. Upon stereographic
projection P it gives a nonchiral (Néel-type) skyrmion (bottom left). The "south
pole” of the hedgehog sphere is projected into the center of a skyrmion, and the
spin points down. The "north pole” of the hedgehog sphere is projected on the
periphery of a skyrmion, where thus the spins point up. Top right: One can further
wrap spins around the hedgehog sphere with a rotation R in order-parameter space,
and the topological charge remains invariant. Being projected on the plane,
the wrapped configuration gives a chiral (Bloch-type) skyrmion (bottom right).
Topological protection: Note that it is impossible to continuously tilt spins on
the hedgehog sphere so that they all point in the same direction. In other words,
the model skyrmion cannot be continuously transformed into a topologically-trivial
state (e.g. ferromagnetic). Illustration taken from Ref.[112].

tional. In the last section of the chapter, I re-derive the skyrmion field afar from the
core (which is responsible for the low-energy skyrmion-skyrmion interaction vertex), as

it is unfortunately often shown wrongly in the literature.

2.1 TOPOLOGICAL INVARIANTS

Skyrmions are characterized by a few topological invariants, which are integer numbers
relatively robust against moderate perturbations unless a specific way for collapsing a
skyrmion is chosen [82]. The two main topological numbers are the topological charge,
which encapsulates how many times the spins winds around an order-parameter sphere,
and the helicity, which is responsible for how exactly do the spins twist from ”spin down”
at the very center of a skyrmion towards ”spin up” at the periphery, see illustration on
the bottom of Figure 2.2.

The topological charge of a skyrmion? shows the order of a topological knot formed

4a k.a. skyrmion number, winding number, Chern number, topological number - in different sources.
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by spins, and in continuous-field approximation is given conventionally as®

1 om Om
Q:Efdxdy m-(—xx—), (2.1)

where we have introduced the orientation of local magnetization m(x,y) = M(x, y)/|M]|.
By construction, the topological charge is an integer number — the number of times the
field wraps around the sphere — which for topologically nontrivial smoothly-varying field
configurations attains values +1,+2,+2 43, etc. One can also introduce the emergent
Berry field

B=-m-
2

_ X —

1 (am Om)
ox ay)’

that the emergent magnetic flux ® associated with a skyrmion is 27Q.

Natural parametrization of a skyrmion in a uniform background. — It is as
a general rule rather handy to parametrize a skyrmion field in spherical coordinates (in
spin space), as this field is homeomorphic to a "hedgehog” spin configuration on a 3D

sphere, see Figure 2.2. Thus for unit-lengthed vector |m| =1, we write

sinf cosy
m=| sinfsiny |, (2.3)

cosf

where the the angles are introduced on the figure 2.3. We define a model skyrmion as
0(0) = ("spin down” in the center of a skyrmion) and 0(co) =0 (”spin up” on remote
periphery), if not mentioned otherwise. In case of the axially-symmetric (perfect, non-
distorted) skyrmion, one may further simplify calculations by introducing real-space

cylindrical frame (7, ¢, z),

0=0(r, w=yl). (2.4)

We now perform implicitly the integration in (2.1). The straightforward algebra gives

5Here and in general, the magnetic skyrmions are two-dimensional or effectively two-dimensional
(skyrmion tubes), thus we consider a 3D spin space M = (Myx, My, M) defined on the 2D real space
r=(x,y), unless stated otherwise.
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Figure 2.3: Unit-sphere spin parametrization: a normalized continuous-limit local magneti-
zation m(r) = (sinf(r) cosy (r), sinf(r)siny(r), cosO(r)) is handy in the spherical spin
frame. Note that for the spatial coordinates, it is often more convenient to proceed
in the polar (cylindrical) frame, where 6 =0(r), w = y(¢p).

(2.5)

— +VvVo—, (26)

where we have introduced auxiliary vectors vy, vy,

v] = (cosf cosy, cosfsiny, —sinh), (2.7)

v, = (—sin@siny, sinf cosy, 0), (2.8)

which are handy to keep written down for further calculations. Using the properties
vy xv; =0, Vo xvp =0, and v} x v, = —v, x v; =msin6, and proceeding to polar frame, we

have

00 do oy ldy .

== , A , 2.
ox dr cos¢ o0x rdg sing (29)
00 do . oy ldy

— == ) L= , 2.10
oy dr sin¢ oy rd¢ cos¢ ( )

thus the emergent Berry field is

%=1m(

1 0m 6m) _sinf df dy
2

— X — == 2.11
0x * oy 2r dr d¢ ( )

which corresponds to a two-dimensional magnetic monopole with topological charge
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Figure 2.4: Vorticity w shows how many times a continuous vector field makes a full
(anti)clockwise turn. 0: the vector field (red arrows) can be continuously trans-
formed to a uniform field (all arrows point the same direction). 1: such a field con-
figuration cannot be continuously transformed into w =0. 2: such a double-twisted
flow cannot be mapped neither on w=0 nor w=1.

2n oo
_ _1 WA ar®ing=_1 oo 92.12
Q zﬂf’Bd r 4n0fd¢ dc[)o dr P sinf yp w()|," cosO(r)§ (2.12)

Assuming a skyrmion in the ferromagnetic background, 6(0) =, 8(c0) = 0, gives cos0(r)|g° =
2. If the function ¥ (¢) is a smooth continuous function defined mod 27, for the axially-

symmetric skyrmion one has

w(p)=wd+y. (2.13)

Thus the topological charge of a skyrmion in this definition is

Q=-w, weZ, (214)

where w is an integer-valued vorticity of a vector field (the number of times a vector field
twists around a closed loop, see Figure 2.4) and v is, in principle, an arbitrary phase,
which may or may not be defined by the underlying crystallographic symmetry. Thus,
even minimally charge skyrmions (Q = +1) represent a very broad family of topological
defects. Several most important of them are discussed in the next subsection. The vari-
ables w and y are called vorticity and helicity. The first one accounts for the topological
charge of the skyrmion (+1,+2,+3,..., see figure 2.4, and helicity reflects the angle be-
tween the normal to the chosen contour and magnetization vectors. The topologically

trivial field configurations are given by Q =0.
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Note that even though we used a particular symmetry of a skyrmion when wrote
down the ansatz (2.4), in the real life a skyrmion may or may not follow this idealiza-
tion. In fact, in most of the cases skyrmion are observed rather deformed, — because of
their dynamics or imperfections of the sample, — and sometimes even with an ameboid
form. This, however, does not matter, as they can be rather easily deformed into other
topologically equal shapes, — at least while they still possess the topological charge and
can be thus distinguished from the background. Moreover, in the skyrmion crystalline,
the skyrmions are in fact shaped up more like hexagons, and only the very core main-
tains the cylindrical symmetry itself. The axisymmetric model of a skyrmion, presented
in this subsection, is a however very important toy model allowing both classification
of magnetic skyrmions, — as they can be continuously distorted without changing their
topological charge, — and direct calculations of the skyrmionic (free) energy in case when
the distortions from the cylindricity is not important. This works well for skyrmions
in the ferromagnetic (field-polarized) phase in sufficiently large magnetic fields, and,
surprisingly, for long-range-ordered skyrmion arrays in the thin films. One however

shouldn’t misuse the good model outside the area of it’s validity.

SKYRMION ZOOLOGY

In the most cases, skyrmions can be distinguished by their topological charge. As a
general rule, the lowest-energy field configurations correspond to the lowest topological
charge, Q = =1, depending on the explicit form of the spin Hamiltonian. The underlying
crystallographic symmetry determines the type of helicity y in the system. Among
the several types of 2D skyrmion patterns the two most significant are the Néel-type
skyrmion and the Bloch-type skyrmion (see figure 2.5).

In order to observe a unique chirality and thus the topological charge for skyrmions,
one usually needs an inversion-breaking mechanism in the Hamiltonian. As such a
mechanism, Dzyaloshinskii-Moriya interaction (DMI)6 is present in non-centrosymmetric
magnets, and magnetic systems such as thin films with complex surface interactions and
interfaces with inversion breaking. The physics of chiral ("twisted”) spin structures dates
back to 1960s to the works of Dzyaloshinskii and Moriya [113-116]. In the most general

case, the DMI can be summarized as a microscopic Hamiltonian,

Fom1 = Y_Dij-(Si xS;), (2.15)
ij

where D;; is the Dzyaloshinskii vector.” In the two most common cases, this expression

6Also called an ”antisymmetric exchange” exchange, in analogy with symmetric (Heisenberg) ex-
change.
"Even centrosymmetric crystal structures can have DMI along noncentrosymmetric bonds, but the
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Figure 2.5: Bloch and Néel skyrmions: (a) In a Bloch-type skyrmion, the spin projections in a
diagonal cut (below) make a full twist like in a Bloch domain wall. On contrary, in
in a Néel-type skyrmion, the spins projections make a ”salto” across the diagonal.
Figure from Ref.[117]
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further simplifies depending on the underlying symmetry of the lattice (see further), as

ngl\(/)[fh——DZSi xSiyz-X+S; xSi+J7-)7, (2.16)
i

TN = =D Y Si xSiss-J=SixSiry- %, (2.17)
i

Originally, Dzyaloshinskii analized the anisotropic interaction in terms of Lifshitz invari-

ants - the lowest order inversion-breaking terms which contain spatial derivatives

omg mdma
ox,  Pox,’

Y _
< Myg——

7 (2.18)

here a, B = x,y,z are covariant coordinates and y contra-variant coordinates for conve-
nience. Note that f;/ﬁ is an antisymmetric tensor with respect to a — .

One can show that for uniaxial crystallographic classes, such as Cy, (gives Néel-type
skyrmion) and D, (gives Bloch-type skyrmion), the corresponding continuous-limit DMI

energies are given by

WO = (D(ZLE, - L)), (2.19)
wBloch = <D1($x + L1+ DolE ). (2.20)

In particular, the Bloch-type skyrmions are favoured if D; = D, = D, which is also the case
for the metallic cubic helimagnets such as MnSi, FeGe and in magnetoelectric insulator
Cup0SeO3. Thus one obtains

WENS® = (D(LE, + L+ £5)) = D (m- (V xm), (2.21)

DMI effect averages to zero over the unit cell except for noncentrosymmetric structures.
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Figure 2.6: Skyrmion zoology: depending on the underlying symmetry of the crystal, which
promotes the shape of the chiral (DM) interaction, the skyrmion may look differently.
On figure: spin projections of different skyrmions on the basal plane (a) D, skyrmion
(Bloch skyrmion, y =0); (b) Cy skyrmion; (¢) Cypy skyrmion (Néel skyrmion, y = 7/2);
(d) Dog skyrmion.

where (...) denotes bulk averaging. Introducing dimensionless W = W/D, and using the

axisymmetric form of a skyrmion (2.3)-(2.4), one thus obtains:

We = 0, cos(y — ) — %1//’, sin 20 sin(y — ¢) — %9('!, sin(y — ¢) + z—lrt//&, sin26 cos(y — ¢b),

(2.22)
- 1 1 1
WHGh = 0! sin(y — ¢) - 51//', sin26 cos(y — ) — ;9('/, cos(y — ) + ;W&) sin20sin(y — ¢).
(2.23)

In particular, the energetics considerations on basis of Eqgs. (2.22) and (2.23) give that
for w = w¢+7y, the helicity is y =0 for a Néel-type skyrmion and y =#/2 for a Bloch-type
skyrmion, see Figure 2.6. Thus, for a minimally topologically charged skyrmion (|Q|=1),
the Eqgs. (2.22) and (2.23) are both reduced to

ﬁ N sin26
dr 2r

(2.24)

‘ df sin260
WNeel — D ( ) .
DMI dr 2r

o i =p( g+

Finally, we note that a further symmetry analysis can guide the systematic search
for the new skyrmion hosts (see Refs.[118]). The analysis is based on considering which
point groups can provide a Fourier-transformed DMI term of from iDSy - (kxS_g), which
has broken inversion symmetry, and also broken mirror symmetry. A detailed analysis
presented in [118] shows that the non-vanishing DMI contribution appears in following
point groups, class-I: Cy, C,, Dy; class-11: C3, D3, C4, D4, Cg,Dg; class-111: Sy, Dyg4; class-
IV: T; class-V: O. Based on this approach, new skyrmion hosts were reportedly found
[118, 119].
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2.2 SKYRMION ENERGETICS: A VARIATIONAL APPROACH

In this section we consider a variational calculation for an axisymmetric skyrmion in
a ferromagnetic background. For definiteness, in this section we consider a Bloch-type
skyrmion with unitary topological charge. The minimal model in a coarse-grained case

reads

wo[M()] = J(VM)? + DM-(V xM) -M-H, (2.25)

where J is the Heisenberg stiffness resulting from a ferromagnetic exchange, and shortcut
(VM)2 means Z,-,j(aMi/dxj)z. Here D is a DMI constant the and H external magnetic
field. If DMI is absent, the ground state of (2.25) is a ferromagnet; with small but finite
DMI the ground state is the helical phase, where spin structure is periodically modulated
with wave vector ko = D/2], and the ferromagnetic (field-polarized) state exists only in
strong magnetic fields H (see Chapter 3 for further details). The averaged energy is thus
defined by

(WoM()]) = f d’r wo[M(@)], (2.26)

which is a functional of the local magnetization field M. Thus the value of (Wp) will
depend crucially on the field configuration chosen. Provided there is a local minimum
(which may or may not be a ground state), it is possible to address the variational
problem: if the skyrmion is present, what is its the most stable field configuration?

It can be shown that, statically, an isolated axisymmetric skyrmion in homogeneous
background is energetically more favourable than an isolated ameboid skyrmion; we
thus work in the framework of Eqgs.(2.3)-(2.4). For this, we first rewrite the functional
in convenient variables. We consider sufficiently smooth, monotonous 6(r) in single-
skyrmion parametrization m = M/M;, where M, is the saturation magnetization. Taking
explicitly Eq.(2.3), we thus have

Now, using the explicit definition of the cross product in 3D space

om, O0my 0m, Om, Omy amx)
\Y% = - , - , - , 2.27
m oy 0z 0z 0x Ox oy ( )
so the DMI term simply reads
d in26 d
m- (V xm) =sin(y — ¢) d_€+¥d_:l; , (2.28)
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For Heisenberg stiffness, we obtain (see Egs.(2.5),(2.6))

do\? sin’6 (dy)?
2 _ 2 2 _
(Vm)? = v2(V0)? + V2 (V) ‘(E) + 2 (d—¢) . (2.29)
Thus, for a Bloch-type skyrmion with |Q|=1, @ =¢—-n/2, and
_ [d6  sin26 , [(d6)\* sin?6
m-(Vxm)=-— E-i' or ], (Vm) —(E) + ]"2 , (230)

where we have used properties v% =1, v% =sin?6, v1-v, = 0 of auxiliary vectors defined in
Egs. (2.7)-(2.8). The skyrmion energy with respect to a field-polarized (ferromagnetic)

background therefore reads

2 202
AWzZanfdrr{][(@) S5 (2.31)

dr r2

df sin20\ H
—+ +—(1-cosO);.
dr 2r M
For numerical calculations, it is more convenient to introduce dimensionless variables

by measuring rest energy of a skyrmion in units of JM? and radial distance in units of

lattice parameter, x = p/a,

smj@) +2h(1 —cosh)

sin%0
X

12
0, + 5

+ 2k0 (9; +

AW T
—_— =2nfdxx
JM? d

, (2.32)

=Q(0,0';x)

where we have introduced the dimensionless quantity ko = Da/2] (this is modulation
vector times lattice constant), and magnetic field h = Ha?/2JM. After that, we solve
the variational problem with respect to the configuration 8(r) which minimizes the rest

energy for given ko and h. Namely, we write®

Q6,6'; in2 2

000,05 x) (?399 ) _op SIZI;29+kOC°S 9 tbsing), (2.33)
00.0,6';

% =2x [0 + ko], (2.34)
d 0Q0,8';x) ., 0 ko

LI okl L+ 22 2,
dx 00’ . * X * X ( 35)

Therefore, the Euler-Lagrange equation which extremizes the skyrmion configuration

%]
8For a generalized action A= [ L(q,§; t)dt, the Euler-Lagrange equation reads g—g - %g—f] =0, here ¢,
5]

g, t are the generalized coordinates, velocity, time. See e.g. Principle of Least Action in Ref.[120].
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reads

. 2 . 2
sin 26 2k sin“ @ _hsing =0, (2.36)
2x X

0" (x) + l9'(x)—
X

with boundary conditions: 6(0) =, 8(c0) =0, corresponding to the “spin down” in the
very center of the skyrmion and “spins up” on its periphery. In general case, the solution

of the nonlinear differential equation (2.36) can be done only numerically. The long-scale

e

N

asymptote to this equation can be found analytically; as x — oo, it is 6(x) ~ (see

next section).

It is the boundary conditions who dictate the exact form of a skyrmion and, in
many cases, the very existence of solution of the skyrmionic equation of type Eq.(2.36)°.
We stress here that the equation (2.36) with these boundary conditions should be solved
very cautiously. In particular, due to the structure of the equation, the second boundary
condition at infinity, 6(co) =0, should be implemented with a reliable and controllable
method. Setting some finite L such that (L) = 0 is not only wrong, but deeply unphysical
as the skyrmion radius in such a case becomes strongly dependent on the choice of L and
the function @(x > L) is dramatically divergent.'? In other words, one needs to satisfy
both 8(co) =0 and an intuitive 8’(co) = 0, — which follows from the long-scale asymptote

:’;;—r’ —so the (numerical) solution is physically reasonable at infinity. To my experience,
p

there are just a few numerical methods with a controllable output at x > 1/kg, and
probably the best combination of both the speed and reliability is secured by solving an
auziliary Cauchy problem.™t

The idea of solution is following: instead of solving the Dirichlet boundary value
problem with 6(0) = m, 8(c0) = 0, we try to reformulate the boundary value problem
(BVP) in such a way that we can easily address it numerically. One of the ways of
doing it is to formulate a set of "initial conditions” at some point, so the integration
would be straightforward. In general, there are two locations when we supposedly know
something about the skyrmion: at the very center or at the very periphery. Clearly, we
cannot address it from the periphery, as oo is not accessible numerically. Thus we focus
on the very center of the skyrmion, where we know that the spin points down (6(0) = x),
however, we do not know how fast it twists from that direction (i.e., what is 0'(0)). We
can however make an educated guess. We start from a small negative slope (in order
of ko), and look how the trajectory behaves in the phase space {H(x),%(x) EB’(x)}, by

solving a system of first-order differential equations,

9There could be further modifications to the skyrmionic equation by including e.g. anisotropies.

10The same stands for (L) = € « 1, as the radius of the skyrmion in this case strongly depends on the
choice of € and L.

L1y differential calculus, the Cauchy problem is a type of a boundary value problem, for which the
boundary conditions are given at the same point, e.g. by defining both the function and its derivative
at the ”starting” point for the second order ordinary differential equation.
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Figure 2.7: Phase portraits analysis of Euler-Lagrange Equation (2.36) to determine the
skyrmion solution. We look for a phase portrait which satisfies the skyrmion bound-
ary conditions on infinity (6(co) =0, 6'(c0) =0), which corresponds to crossing point
(0,0) on these plots. (a) The phase trajectory winds around attractor (-m,0) and
does not cross the plot origin; (c¢) The phase trajectory winds around attractor (i, 0)
and does not cross (0,0); (b) The phase trajectory crosses (0,0) for one and only one
initial 6'(0) with 6(0) = fixed. This curve is called a separatriz, as it separates two
unphysical branches of solutions. There are others attractors (not shown), e.g. +3,
+5, with separatrices corresponding to skyrmions of higher topological charges.
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Figure 2.8: A typical skyrmionic solution of Euler-Lagrange equation (2.36). a) Angular pro-
file 6(r) corresponding to unitary topological charge; b) cosf(r) represents the z-
projection of local magnetization, showing the 27 spin twist (c).
skyrmionic angular slope and angular curvature; f) radial topological charge den-
sity, Q= [podr. We define skyrmion radius such as integrated skyrmion charge is

)fORS der‘ ~1.

»(x) sin20 sin%0
( )+ —2ko +bhsinf =0,
2x2 X

7 (x)=-—
0'(x) = (%),
000)=m,  #(0)=k<O0.

d) and e): the

We thus treat s(x) and 0(x) as independent functions and look iteratively for such k that

the phase trajectory goes through s» =0, 8 =0. Depending on the starting point, the

trajectory in phase space winds around one of the attractors'? see figure 2.7. The line

which separates the two attractors is called separatriz and in our case it passes through

{9(00) =0,0'(co) = 0}. The value of k. =0'(0) corresponding to the separatrix depends

crucially on b and ky; for 6'(0) < k., the phase trajectory winds around 6'(0) > k.. It is

12 An attractor is is a state towards which a system evolves around for a wide region of initial conditions.
The definition of an attractor uses metrics of a given system, but as a general rule the resulting notion

depends only on topology of the phase space.
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thus possible to find iteratively the value k. with any beforehand given accuracy (maybe
limited by the computational power), and thus the behavior of 8(x) for large distances is
fully controllable. The value of a skyrmion radius does not depend on ultimate accuracy
of k., and for most calculations with skyrmions 3-4 digits is sufficiently enough.!® Note
that the solution of auxiliary Cauchy problem of (2.37)-(2.39) acquires a total twist
AG = fOOOH’(x)dx =n. However, the equation of form (2.36) allows other topologically
distinct solutions: the acquired phase 0(0) —0(c0) can be +m,+37,+57, etc., reflecting
topological charge Q.

The energetics of a skyrmion follows from substituting the solution to Euler-Lagrange
equation(2.36) in the energy density Q(0,0’;x) in Eq.(2.32), see Figures 2.8 and 2.9. In
our minimal model (2.25), the skyrmion experiences only three types of interactions:
Heisenberg exchange J, chiral interaction D, and Zeeman energy. The Heisenberg ex-
change, crucial at the very short scales where the system is effectively a ferromagnet,
tends to destabilize the skyrmion as a non-collinear field configuration; on contrary, chi-
ral interaction D not only promotes the tilting spins, but also stabilizes the skyrmion
energy density on moderate distances; finally, the Zeeman term (which is energetically
unfavorable for flipped spins) ensures the skyrmion solution in strong magnetic fields'
however, the skyrmion is not thermodynamically stable as the integrated energy is pos-
itive with respect to the field-polarized phase. This means that under such conditions

—AW/T’ and

a skyrmion can appear only as a field excitation with probability of order e
thus with a finite lifetime; this situation is seen in many experiments, where skyrmions
appear and vanish over the sample (see e.g. [96]). It is however possible to enrich the
minimal model (2.25) with other terms which lead to proliferation and even to thermo-
dynamic stability of skyrmions, be it in a weakly-interacting skyrmion gas or a skyrmion
lattice form. One further needs, for example, a rather strong uniaxial anisotropy [28] or
"higher-order” terms of different nature (including those of magnetocrystaline origin) to
thermodynamically stabilize skyrmions in bulk chiral magnets [34, 38].

The interplay of the energy terms, together with both the existence or non-existence
of skyrmionic solution to variational equation (2.36) determines the stability category
for a skyrmion. In a rather simple classification, the continuous-field skyrmions can be
stable, metastable and unstable, depending on the existence of skyrmionic solution to
(2.36) and the energy sign of the energy gap AW: unstable if no skyrmionic solution
exists; metastable, if the skyrmionic solution exists but the (free) energy barrier with
respect to the surrounding phase is positive, AW > 0; stable if both the solution exists
and AW <0, — often referred to as a thermodynamically stable skyrmion [28, 38]. Be-

cause the role of topology in the latest case is in providing a skyrmionic state being

13This is of course not the case for chiral magnetic bubbles, which have a wide flat core (9’ 0) =0),
however the method is still applicable in full.

M Beautiful it is: we supposed in Eq.(2.31) a skyrmion being embedded in the field-polarized phase,
— the phase which itself requires strong magnetic fields. The skyrmion solution is also present only in
strong magnetic fields with the minimal model (2.25).
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Figure 2.9: An energy profile of a metastable skyrmion: even though a skyrmionic solution of a
minimal model (2.25) exists in field-polarized phase (very strong magnetic fields), it is
metastable as the integrated energy is higher than the energy of the underlying phase;
short-scale Heisenberg interaction, as a general rule, destabilizes the skyrmion (red),
while DMI and Zeeman interaction tend to stabilize the skyrmion (see discussion in
main text), however, only with a partial success. One thus further needs either a
uniaxial anisotropy or “higher-order” terms of different nature (including those of
magnetocrystaline origin) to stabilize a skyrmion in chiral magnets. Radial energy
density is Q(0,0’;x) in Eq.(2.32) upon substitution of skyrmionic solution to Euler-
Lagrange equation(2.36).

energetically lower than the surrounding phase, such skyrmions are protected due to the
topologically-induced energetic barrier. However, in real systems, magnetization field is
discrete (magnetic moments are localized on atoms), so, as a general rule, the topological
protection is not strict; recent studies indicate the existence of a topological energy bar-
rier for dynamical skyrmion creation in order of J < AW <2J [98], and different channels

for topological charge dissipation are possible.!®

2.3 SKYRMION TAILS

As another quasiparticle property, skyrmion-skyrmion interactions are pivotal in a num-
ber of both theoretical and applied studies for skyrmionic behavior. In the general
case, because of the nontrivial topology and often deformed shapes and the presence
of impurities, this question may be in general addressed only numerically. However, in
a number of problems, — such as for the systems where skyrmions can be considered
as weakly non-ideal two-dimensional gas, — the crucial characteristic is the low-energy
(k — 0) asymptote of skyrmion-skyrmion interaction. Thus, to obtain an effective low-
energy skyrmion-skyrmion interaction vortex, I re-derive here the long-scale asymptote
of the skyrmion field, the "skyrmion tail”.

The general procedure for finding the asymptote of 2nd-order ordinary differential
equation is following: (i) linearize the ODE F(y(x); y'(x);y" (x); x) = 0 with respect to y(x)
and its derivatives; (ii) reduce the linearized equation to the oscillatory form u”(x)+

k?(x)u(x) = 0; (iii) solve the resulting equation and restore y(x) [124-126].

15See e.g. Refs.[82, 121-123].
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We thus consider a remote asymptote of the skyrmion in a uniform background. We

start form the Euler-Lagrange equation as derived above from the minimal model,

sin26(x) . sinZ6(x)

0" (x) + l{9’(x) - 5 2ko —bhsinf(x) =0, (2.40)
X 2Xx X

Linearization of this equations yields formally 8(x — oo) — 0, thus one gets

9"(x)+ie'(x)—%ﬁ(x)—be(x) =0, (2.41)

Now, we get rid of the term with first derivatives by proceeding to a new variable
u(x) = /x0(x), which gives

3

" 2 2

U (x) — k2 (%) u(x) KD =h+ (2.42)
As x(x) is slowly varying at x — oo, the long-scale asymptote is thus given by (see e.g.
Ref.[124-126])

e—fK(x)dx e—hx
u(x) = ———=— = Const x

VK(X)

(2.43)

Restoring the dimensional units, as also using 6(x) = u(x)/v/x, r = xa the long-scale

asymptote is given by

2]M Ha?r

0 o\ Hazr &P |~ 2y

. (2.44)

Thus the skyrmion tail, at least in ferromagnetic background, decays faster than
exponentially, e 9%//x. Note that in many papers there is a confusion about that: the
skyrmion tail is said to behave as e9* — apparently by inheriting from Ref.[127] and
some later papers of Bogdanov. The way it was obtained is by dropping all the terms
in (2.40), but 6”(x) —hO(x) = 0. This is simply wrong. You cannot drop terms in a

differential equation just because they are small.!6

2.4 CONCLUSIONS

In this chapter, I mainly reviewed the crucial properties of a skyrmion in chiral magnets.

A skyrmion is, simply speaking, a quasiclassical magnetic vortex; however its nanoscale

160ne of the most known manifestation of that is probably Navier-Stokes equations and turbulence.
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size and strict topological charge make the skyrmion a rather robust quasiparticle, with
a moderate lifetime even if it is energetically metastable. The skyrmion field is, as a
general rule, incommensurate with the atomic lattice (magnetic moments not pinned to
certain atoms), which allows the skyrmion to move rather freely through the sample. The
topological charge is independent of the underlying crystallographic symmetry, however
a particular helicity of a skyrmion (e.g. Bloch-type or Néel-type) is mainly influenced
by the particular form of chiral interactions (DMIs), which in the bulk materials is
indeed induced by the crystallographic symmetry. The axisymmetric skyrmions have
a rather fast-decaying (faster-than-exponentially) tails, through which they may weakly
interact with each other at moderate distances. In experiments, however, the shape
of skyrmions is somewhat distorted by random-field fluctuations, making them more
amoeboid, especially in case those large skyrmions (”skyrmion bubbles”) which are rather
soft in thin films and at interfaces. One thus should very carefully interpret any links
between the axisymmetric skyrmion model and direct experimental data, and, — in some
desperate cases, — shouldn’t at all.

Furthermore, if existence of a long-range order in the skyrmion phase is established, 7
one then needs to keep in mind that condensed matter techniques may serve as a better
descriptive tool for herding the skyrmion arrays as a thermodynamically stable magnetic
phase. In particular, this is crucial for the bulk systems, where the skyrmion phase is
stable only in a very narrow window near the ordering temperature, - mainly due to
the long-range-order critical fluctuations, without which the conical phase competes
better in free energies [38]. In thin films, however, due to a very rich sets of DMIs,
dipolar interactions and anisotropies, the skyrmions are well described even at the level
of abstraction of a ”"skyrmion gas” or a ”skyrmion liquid”, and usually a single-skyrmion
solution translated through the 2D space benefits in good results (see e.g. [105, 128],

and references therein).

Tkor example, by probing with neutron scattering or X-ray imaging.
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Universality of Phase Diagrams in Bulk

Skyrmion-hosting Materials

Experimentally, the study of skyrmions is very much shaped by the conditions under
which skyrmions exist or may exist under proper tuning. In this regard, a typical charac-
teristic of a skyrmion host material is a magnetic phase diagram, - a graphical summary
on how the spin order is influenced by magnetic field and temperature. The phase di-
agram of the most bulk skyrmion hosting materials reveals a remarkable universality
in its constitutional components and their arrangement. The phase diagram typically
consists of the four main magnetic phases, a disordered paramagnetic phase, which is re-
placed by one of three ordered phases, - helical, conical, and SkL, - as one cools down the
sample. Below the ordering temperature T¢ the thermal ground state (the ground state
in terms of H=0, 0< T < T¢) is a helical phase, with spins rotating within a plane that is
perpendicular to the propagation vector Q, usually set by magnetocrystalline anisotropy.
Upon the application of magnetic field H > H¢(T) the magnetic structure polarizes into
a conical phase, where spins precess within a surface of a cone, axially-aligned with the
direction of magnetic field. Going higher in magnetic fields, namely H > Hcy, the spin
structure is the so-called field-polarized ferromagnet (all spins are aligned up towards
the direction of magnetic field). In bulk, the skyrmion phase is placed very close to the
order-disorder line, usually within just a few % of T¢, in terms of temperature range. A
first-order phase transition separates the skyrmion phase from the paramagnetic state
at the high temperature side, while on the low temperature side the skyrmion phase is

surrounded with the conical phase. From the specific heat measurements on MnSi it
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Figure 3.1: A sketch of a bulk phase diagram: the five distinct magnetic phases are usually
present. At high temperatures (T > T¢), the system exists in a disordered param-
agnetic state. Upon cooling down, the ordered phases appears: the ground state
is the helical phase which is observed at low magnetic fields. With increasing mag-
netic fields, the helical phase polarizes into the conical phase which is defined for
Hc1(T) < H < Heo(T), but not in the vicinity of the T¢ where the bulk critical modes
promote the Skyrmion Lattice phase (SkL), which is a thermodynamically stable
long-range topological phase. For even higher magnetic fields, all the spins are po-
larized into a forced ferromagnetic state (all spins are aligned), which is labelled as
the Field-Polarized (FP) magnetic phase.

has been established that this transition is also first-order while recent AC susceptibility
measurements on CuyOSeO3 showed a more complex behavior [129] with a wide dissipa-
tion region and a double-peak feature at low frequencies. This field-temperature region,
where the skyrmion phase is stable, is often referred to as a skyrmion pocket.

The skyrmion lattice can to some approximation be considered as a regular, long-
range ordered hexagonal arrangement of individual skyrmions. For each of the skyrmions
in the vortex lattice, the central spin points in the opposite direction of the applied
magnetic field and there is a sense of rotation of spins around the central spin, thus
allowing to introduce the topological charge. The appearance of the hexagonal structure
can be illustrated by applying a modified closed packing theorem. The close-packing of
equal spheres is a mathematical problem which has been solved only in several finite
dimensions, see e.g. recent studies [130, 131]. For a 2D spheres (circles), the closest
packing is achieved for a hexagonal lattice, giving the surface occupancy m/2v/3 = 0.9069."
It can be shown that this theorem also applies towards the solid-core 2D circles with thin-
walled soft borders, thus fulfilling a qualitative explanation of why we have hexagonal
skyrmions in bulk. Thus the energetics of the skyrmion lattice could be, to some extent,
captured by considering many skyrmions with radially symmetric cores glued together.
This approach may work for a number of purposes, but in general is not qualified for

capturing phase transitions - in the same way as considering individual atoms cannot

1The square lattice packing is m/4 = 0.7854.
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capture the physics of crystallization and lattice melting.

In bulk materials, the role of critical fluctuations is very important in the skyrmion
phase. In fact, from the condensed matter point of view, the phase with lower sym-
metry is more sensitive to thermal fluctuations, simply because the higher symmetry
usually means breaking restrictions on thermal fluctuations propagation. For example,
the paramagnetic phase is essentially made up of thermal fluctuations and is of the
highest symmetry in the phase diagram on Figure 3.1. The skyrmion phase has lower
symmetry than both the conical and helical phases, so that the entropy of the critical
fluctuations could be high high enough to drive the free energy down, allowing the sta-
bilization of the skyrmion phase near T¢, where the SkL is closely competing with the
conical phase already in the mean-field sense.

This chapter is constructed as follows: first, we discuss the mean-field approach which
allows to qualitatively distinguish the transition between paramagnetic/field-polarized
and conical phases, and, in principle, the crossover between the helical and conical if
spatially anisotropic terms are added in the model. This approach, however, does not
allow to establish the phase diagram even qualitatively because the skyrmion phase is al-
ways higher in free energy. It does however compete very closely with the conical phase
near Tc. Thus the next model I very briefly review in this section is the path-integral
formulation (also referred here as Rosch model). This model allows now to qualitatively
calculate the phase diagram, including the conical and skyrmion phase. However, the
qualitative criterion of the breakdown of the ordered phases near T¢ does not allow quan-
titative comparison with experimental phase diagrams. In the next section, I described
the new model developed on the basis of the existing model in a more self-consistent way
and reviewing the role of critical fluctuations in the system. The developed approach
allows a deeper understanding of the role of the critical fluctuations near T¢, which in
the first approach can be viewed as noninteracting quasiparticles. Adding these quasi-
particles on top of the mean-field solution cost more entropy in the skyrmion phase,
which drives the stability of the skyrmion phase close to T¢. Additionally, the model
allows relatively easy expansion towards the interacting critical modes and qualitatively
captures the almost vertical (magnetic-field-independent) breakdown of ordered phases

near T¢, as observed in experiments.

3.1 MEAN-FIELD MODEL AND ITS LIMITATIONS

3.1.1 FREE ENERGY IN THE COARSE-GRAINED MODEL

The Skyrmion Lattice (SkL) is a long-range-order spin configuration and thus the
condensed-matter description here is more appropriate as it naturally encapsulates emer-
gent many-body phenomena. Conventionally, it is thus primarily important to establish
the corresponding order parameter of the skyrmion phase, and thus it is easier to work

within a continuous-limit order parameter of coarse-grained local magnetization.
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Qs

Figure 3.2: The multispiral (?3Q”) SkL structure in reciprocal space. Right-hand side of the
figure shows the auxiliary negative reflexes, so that the hexagonal real-space SkL is
built on the six wave vectors {Q1,-Qs,Q2,-Q1,Q3,-Q2}, see the main text.

Experimentally, the hallmark of the SkLL phase is appearance of a six-fold reflection
pattern in reciprocal space, as sketched in Fig. 3.2, each of the wave vectors are ro-
tated by 27m/3 (see e.g. Refs. [38, 132] for SANS patterns). In this study, we describe
the skyrmion lattice by a coarse-grained local magnetization vector S(r), which can be
built on the three Q-vectors (Fig. 3.2). With a good accuracy the SkL phase can be
approximated by the multispiral spin structure [37, 38|

S(r)=m+pu) Sq,e' WP+ 85 eI ATIOn, (3.1)
Qx
where m = (S(r)) is a uniform magnitization, with (spatial) average defined as (...) =
dvv(...) throughout the study, and p is the weight of the SkL helical modulations. The
sum in (3.1) runs over the “3Q-structure” (Figure 3.2), the relative phases ¢, in (3.1)
are important for minimization of the SkL energy.
The expectation of energy density in the coarse-grained model is given by calculating

the spatial average (#) with energy function

JLO=J£,0]D},+J£A+J£“E, (3.2)

where the helimagnetic term

Fpn=J(VS)*+DS-(VxS)~h-S (3.3)

where the shortcut (VM)? means i (6Ml~/6xj)2 and takes into account Heisenberg stiff-
ness (J), D is strength of Dzyaloshinskii-Moriya interaction and magnetic field h Zeeman
coupling to the external magnetic field.? We have already shown in the previous chapter

that this minimal model provides a necessary but not sufficient set of conditions allowing

2For practical reasons, it is easier to proceed to partially-dimensionless” formalism, where the
local magnetization is S(r) = M(r)/ Mg, with M being the saturation magnetization (magnetization
limit in strong magnetic fields), thus we introduce Wy = FOI(M§ a®), and dimensionless magnetic field
h=H/M;
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the topologically-nontrivial skyrmionic solution.

This coarse-grained model for magnetic energy works well when the following hier-
archy of energies is respected: (1) the strongest is Heisenberg exchange J which favours
the ferromagnetic alignment; (2) the Dzyaloshinskii-Moriya interaction (DMI) is slightly
tilting two adjacent spins thus resulting in helical modulations. (3) The cubic magne-
tocrystalline anisotropy #4 together with the higher order terms of different nature
plays the role for stabilization of the skyrmion lattice, and locks the helical modulation
in cubic [1 1 1] direction, but in principle can be relatively weak. The spatial modulation
of the ordered phase (the wavelength of the helices in the ground state) is given by a
wave length of order A/a~ J/D > 1, i.e. much larger than the crystal lattice parameter
a: for example, in Cup0SeO3, A =630A, a=8.9A, which gives Ala~70. In such case,
the magnetization on neighbouring lattice sites is varying very slowly and the physics of
the system in the ordered phase is appropriately described by a continuous-limit model
as assumed in (3.7).

In this study, we consider the fourth-order anisotropy as it represents the essen-
tial physics of the problem by stabilizing the SkL phase[38, 132]. The symmetry of
Cup,08Se03 is described by the P2;3 space group, which allows a fourth-order magneto-
crystalline anisotropy of the form A;(S%+ Sj‘, +SH+ Ay (SJZCSf, + Sf,Sﬁ +8282). Proceeding to
the unitary parametrization S/|S| = (sinf cosy,sinfsinw, cosf), one obtains S§S§+S§,S§+

§282 = —%(S;lc + S;‘, +8H)+ %, we thus have:

T = ASy+ S5 +S3) + US™. (3.4)

with A= Ay — A»/2 and U = Ay/2. Thus, there could be two qualitatively distinct situ-
ations, first with A; > A,, for which the anisotropy of the bulk is important, and the
opposite case with A; ~ A2/2, where the role of anisotropy is reduced to providing mode-
mode coupling U ~ Aj, A2. In this section, following my paper [133], we consider the
first case, while the second case will be presented in the next section as it provides a

qualitatively universal picture for bulk skyrmion hosts.

Finally, we make a remark on the importance of the anisotropy terms. The appear-
ance of the six-hold set {Q1,-Q3,Q2,-Q1,Q3,-Q2} of helices phased in such a way as to form
the two-dimensional skyrmion crystalline can occur only as a consequence of higher-order
energy terms represented in the model. A third-order term like S3 is however forbidden
by a symmetry promoted by magnetic field. Therefore, the anisotropy of at least the
fourth order can be considered as the source of the skyrmion lattice order parameter
(3.1) in bulk chiral ferromagnets.? Indeed, we can consider the fourth order anisotropy
which contains - fully or partially - the term $*(r) = S+ 531, + 83+ 2(S§S§ + S§S§ +8282).

After decoupling the uniform component, S(r) = (S) +s(r), the expansion will contain the

3In metallic chiral magnets such as MnSi, the §* term may appear as the result of conductive
mode-mode interaction [38].
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cubic term

S*(r) = [s(r) + (S = ... + 48> (1) s(r) - (S(X)) + ..., (3.5)

which thus generates a third-order term with momentum-conserving 3-helix condition

Q1 +Q2+Q3=0,

(s*()s®)) =) (Sq, - Sq,)Sq; (Q1 + Q2 + Q3). (3.6)

Qi

One can show that the solution of a higher symmetry phase (SkL) can be expressed
through the three in-plane Q vectors, equirotated by 2n/3, with an arbitrary rotation
¢ in the plane,? as it can be already guessed from the the right illustration in Fig. 3.2.
Therefore, the multispiral phase (SkL) is supposed to minimize the terms which include
the form of (3.6) after an appropriate variational choice of order parameter components.

We note that the effective description of the skyrmion-host magnetic phase diagram
in bulk materials is already possible within the US* formalism. The remarkable univer-
sality in phase diagrams of different materials, and qualitatively-invariant constitution
of the phase diagram under sample rotation, leads us to conjecture that the rotationally-
invariant US* term is responsible for most of the qualitative physics related with the
skyrmion lattices in bulk. Moreover, the observed Brazouvskii sphere of critical fluctua-
tions at T¢ [134] indicate that the fluctuation-induced phase transition in these systems
is of isotropic nature [135] (see also further discussion in the end of the chapter). Thus

we consider the effective Hamiltonian function as

Hpn=J(VS)? +DS-(VxS)+US* —h-S, (3.7)

and work within this effective model unless required otherwise.

LANDAU-LIKE FREE ENERGY To compare directly different thermodynamic phases,
one needs however to consider not the energy of the phase &, but the free energy F =
& —TS. Thus the entropy of the phase, — which also includes the entropy of phase-
promoted elementary excitations at finite temperatures, — is important as it may play

the key role in stabilization of one phase with respect to others. In this respect, Ginsburg

4Indeed, rewriting the equation kj +kp + k3 =0 in the complex form gives two equations: /ole"‘l’l +
pgei¢2 + 03 ¢®3 = 0 plus a conjugated equation. Looking now for a lowest Fourier harmonic, [k;| = |ka| =
k3| = ko, gives two equations 1+ etilda1 | oEilga1 — 0, where A¢o1 = P2 — Pp1, Ad31 = Pp3 — Pp1 are the
relative rotations of the wave vectors. Solution of these equations gives cosA¢3; —cosAga; = —1/2, or
A3z = Ap31 — Ap31 = £21/3. Now, because this treatment is independent of how we label the initial
momenta, we get the threesome of vectors with ¢, ¢p+27/3, ¢+4m/3, and the rotational parameter ¢ to
be determined further from the variational principle.
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and Landau came up with a phenomenological free energy functional of coarse-grained
local magnetization M(r) to address the spontaneous symmetry breaking, which for a

ferromagnet in its minimal set is given by

FerroM(®)] = (arM* + J(VM)* + UgM* — H-M), (3.8)

where (...) is the spatial average.® This functional is constructed by keeping lowest-
order terms in M which are not forbidden by the symmetry of the system, namely the
inversion I (r — —r) and time-reversal  (t — —t plus complex conjugation), together
with magnetic-field-induced symmetry (M — -M if H— —H). It was shown that all the
T-dependences can be encapsulated in phenomenological ar = ar(T), so that the model
(3.8) under minimization procedure gives either a paramagnetic (M) =0 for ar >0 or
a uniform M # 0 for ar <0, thus reproduces the ferromagnetic transition at ordering
temperature Tc if @y =0 at T¢. As a general rule, the exact dependence a7(T) is not
known and it is usually very hard to establish it microscopically; in some particular cases
it could be guessed indirectly from typical experimental features; otherwise, the linear-
like expansion at ~ (T — Tén'f‘) is acceptable. Note also that as the magnetic moment is
a normalizable quantity, one can in principle add an arbitrary term of form constxM?
to (3.8) as a Lagrange-multiplied term to adjust the model Tg“‘f' to the experimentally
observed T¢.

We note that the free energy of a ferromagnet resembles our model (3.7), however
one thing is missing: the DMI. In chiral magnets (such as skyrmion-hosting MnSi and
Cuz08e03) the atomic unit cell lacks inversion symmetry. The lack of this symmetry re-
laxes the above stated requirements for the Ginsburg-Landau-like free energy functional
and allows terms with an odd number of spatial derivatives to appear, — as they are odd
under inversion symmetry. The lowest-order such terms were already considered in the
previous chapter (Lifshitz invariants), which give the explicit form of DMI coupling in
chiral magnets as DM (V x M), thus

FIM®@®)] = (@rM? + J(VM)? + DM - (V x M) + UgM* —H-M), (3.9)

or in other units used for further calculations,

FIM(r)]/ M? = (a7S* + J(VS)* + DS - (V x S) + US* —h-S). (3.10)

We note that the Ginsburg-Landau model, which appeared as a purely phenomenolog-

ical concept in spirit of power-expansion in the middle of last century, actually managed

5For brevity, we will also refer to the mean-field spatial average (W) as an expectation value of W.
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not only to survive but also to produce a number of physically meaningful semi-quantitive
results in different fields of physics, and has been enhanced with additional superstruc-
tures on top of it, such as, e.g., renormalization group formalism. It is also possible to
establish an extended variational (”path-integral”) representation, by introducing aver-

aging over thermally-weighted contributions to free energy,

G= %fdMe‘F[M(r”/T. (3.11)

In the next sections I present a unified formalism for considering the modulated chiral
magnetic phases (helical, conical, SkL), show the importance of critical fluctuation, and
treat the critical fluctuations within this formalism, which will then allow to implement
electric-field-induced perturbation theory, self-consistently. The novelty here is therefore
the unification of several very different approaches existing in literature, in a more con-
sistent model which enhances both the calculation capabilities and our understanding
of the system, reduces the order of computational difficulty, as also allows to study new

mechanisms for enhancing skyrmion pockets in the bulk (see e.g. next chapter).

3.2 SOLUTION IN HELICAL PHASE

It has been known for a while [136, 137] that the ground state of model (3.10) is the
so-called helical phase, in which the spins make (in-plane) helical rotations with respect
to the propagation vector k, see Figure 3.3. Mathematically, it is thus given in compact

form by

Shel () = 1 (Skeikr+i‘p° + S_ke_ikr_i‘p"), (3.12)

defined up to normalization parameter u, which is the measure of order parameter in
the helical phase; here Sk is a Fourier-transformed spin modulation state.

Experimentally, the helical phase is seen by appearance of the helical stripes in mag-
netic contrast Lorentz transmission electron microscopy (LTEM). With the wavelength
between these stripes A (the typical distance between two same-contrast parallel lines),
the wave vector of the helical phase is naturally k = 2mx/A. This wave vector is often
addressed in literature as the modulation wave vector, in the sense it produces a long-
range-periodic ("modulated”) spin structure, as in the more recent skyrmion papers
simply called ”the heliz”. T thus shall use both of this terms here.

It is possible to deduce, in rather simple arguments, what shall the helix wave vector
be. It is clear that in the mean-field, without more advanced renormalization as will be
partially addressed further, the modulation wave vector is determined by the gradien-

tal terms of the model (3.10), and maybe by higher-order anisotropy terms containing
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spatial derivatives (not taken into account here). We thus start from a minimal model

containing®

+k
Wo = (J[VS(m)]? + DS(x) - [V x SI)]) = )_ S A8k, (3.13)
k

where we have re-written the spatial average (...) in the momentum space, with the

matrix operator’ %, given in the general case as

Jk*  —iDk; iDky
Hy=| iDk, Jk* —iDky |. (3.14)
—-iDk, iDky  Jk?

In the real samples, it is the anisotropy of material properties who picks up a helix
direction, — the feature undefined in the effective model (3.10). The physics of the
helical ground state was studied in past and we will not focus on it much here. For

simplicity, we denote k/|k| =[100] as the helical direction, thus

Jk* 0 0
Ho=| 0o Jk* -iDk |. (3.15)
0 iDk Jk?

For positive D, J, the normalized eigenvectors of this Hamiltonian matrix are

) 0 1 ) 0
sO_ 1 |; s =|o s¥ = _—|_; (3.16)
k \/E ) k ) k \/E )
1 0 1
with corresponding eigenvalues
0 _ 712 1) _ 712 2) _ r12
€, =Jk*- Dk, e =Tk, e’ =Jk"+ Dk, (3.17)

We note that for positive J, D, the lowest energy is favoured by Sg, which we will simply
call the helix. From now, we intentionally drop ”0” superscript and notice that due to
the form of matrix (3.15), one has the eigen vector of the lowest energy (”the ground

state”) as

6The Zeeman term can be dropped due to zero net magnetization.
71 will call it "Hamiltonian” for brevity.
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(a) The spectrum (b) The ground state (c) The ground state helix
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Figure 3.3: Appearance of the helical modulation: (a) The spectrum of 3 x 3 energy matrix Hy.

(b) Minimization of the state with lowest energy E{(O) = Jk? — Dk gives helix wave

vector ko =D/2]. (c) Real-space visualization of the helix with A =2mr/ky.

Energy

1
S.r=— 0 i D', 3.18
+k \/E( i1 ( )

This corresponds to the real-space helix

Shel(X) = (Skeik" + S_ke_ikx) =V2u(0, sinkx, cos kx), (3.19)

where (g is set to zero for simplicity. Finally, before proceeding further, we note that
in the limit k — 0 (that is, as we shall see, D =0), the model degenerates into a uniform
(ferromagnetic) magnetic phase.

With the ground state helix Sf,)c, the eigenvalue E;CO) = Jk? — Dk is minimized at ko =
D/2]; indeed,

d
ﬁe;‘” =2Jk-D=0, at local minimum. (3.20)

Within the absence of higher-order spatial derivatives in effective model (3.10), the free
energy gets

WISLa (0] = 2aru® + 2] ki u* — 2Dkop® +4Uu?, (3.21)

in the helical phase.® The mean-field temperature dependence of magnetization is thus

regulated by ar, by solving u(T) = p(ar) from

8We used the normalization condition (S(r)2> = ,uzzi k S};Sk = 2,u2, which can be identically deduced
from directly (3.19) by implying periodic boundary conditions.
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d

Y dlar - JKD)u+16UK° =0, (3.22)
dp

where we used straightforward identity Jkj = Dko/2. The nonvanishing solution of (3.22)

is

Jki—ar

1/2
) , in the mean-field. (3.23)
4U

Hhel = (

Restoring now My and a, the mean-field free energy in this phase is therefore given by?

Uk -ar)’
16U

Frel
S =2(ar—Tkg) g + AUk, = —

= 3.24
Mg a3 ( )

The above calculation is valid for arbitrary k-direction with respect to external (uniform)

magnetic field, as (h- Sy (1)) =0 according to (3.12).

3.3 SOLUTION IN CONICAL PHASE

Experimentally, the helical phase is favourable in the low magnetic fields, for the anisotropic
samples - below some first critical magnetic field Hgi(T), which is roughly determined
by the cubic magnetocrystalline anisotropy. In higher fields one would expect the local
spins to align with magnetic field, thus going to the phase of higher symmetry. In bulk
materials and low temperatures, this process is two-step: first, the helical phase trans-
forms into a conical phase, and then the conical phase degenerates into a field-polarized
ferromagnet (all spins aligned with the field). In this subsection, we will capture the
essential physics of the conical phase without focusing on deeper details which had been
studied elsewhere.

The conical phase simply took its name as spins are orbiting the surface of a cone

along the propagation of k-vector,

Seon (1) = Mé, + 1 (ske""”“ﬂo + s_ke—"kf—"%) , (3.25)

where &, is unit vector in direction of magnetic field, which is also the new direction of

spin modulation k, giving the cone converging to the ferromagnetic state at high fields.'?

9By the "mean-field” I here mean the expectation value given under assumption that Sk can be
approximated with (3.16), i.e. without further renormalization by critical fluctuations or high-order
anisotropies.

10Here U, ¢o, k have, of course, different values than that in Eq. (3.12), but carry the same mean-
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&

Magnetic field

Figure 3.4: Conical phase: spins tend to tilt towards external magnetic field. In saturated state
(H> Hcp), all the spins aligned with the magnetic field.

We firstly consider, again, the core model

Wo = (J[VSm)I? + DSI) - [V x Sm)]) = Y_ St Sk, (3.26)
k
and the matrix operator J?O now reflecting the conical symmetry (ki|lh||é,),
Jk* —iDk 0

Hy=| iDk Jk* 0 |. (3.27)
0 0 Jk?

For positive D, J, the normalized eigenstates of this Hamiltonian operator are given
similar to those in Eq.(3.16)

) i 0 ) —i
S(O) =—|11, S(l) =|o], S(z) =—111, 3.28
k \/E k k \/E ( )
0 1
corresponding to essentially the same helix-eigenvalues
0 _ 712 1) _ 712 2 _ 12
g, =Jk* =Dk, g, =Jk%, ey =Jk*+ Dk, (3.29)

which leaves ky = D/2] unaffected — the same as in the helical phase. Taking into account
Si = Lz(ii 1 0), the real-space representation of the conical phase (3.25) is given simply
by

Scon(2) = (\/Eusin koz, V2picos koz, m), (3.30)

or, in a more familiar notation

ing.
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Scon(®) = mé, +V2u (éxsinkoz+é,coskoz). (3.31)

We note that in this notation the conical phase is normalized as

(SZon @) = m* + 2417, (3.32)

thus the free energy is now given by'!

WiScon®] = ar(m? +2u?) — 2k — hm+ U(m? +2u*)?, (3.33)

The local minimum in mean-field free energy (3.33) is satisfied if

oW

5, =2mar—h +4Um(m? +2p%) =0, (3.34)
a—W—4 —4Jk2pu+8Uu(m? +2u?) =0 3.35
aﬂ_uaT oM ,Lt(m+/J—y ()

Solution of this system of equations yields

h

Jki—ar  h?
Dk

4U  2D2k?

Mcon =

1/2
, Ueon = ( ) , in the mean-field. (3.36)

The mean-field free energy of the conical phase is thus given by

Feon
M2 a3

= ar (Mo +200n) — 2T kg ioon — BMcon + U(MZqy + 2p120,)° (3.37)

___n_UK-ar) (3.38)
~ 2Dk 4U '

Note that the conical phase within effective model (3.10) is continuously transformed
into the helical phase in zero magnetic field (compare formulas (3.36) and (3.23)). Thus,
in this model, the pure helical phase exists only at h =0, giving preference to the conical
phase in the finite fields. This artefact is, of course, lifted, upon extending model (3.10)
with weak anisotropic terms, which give the first critical field (helical-conical phase
boundary) He¢; ~ A.

Finally, we can draw the mean-field value of the upper critical field Hcp, - the field

Hwe again used Dko :2]kg.

39



when the conical phase (3.25) collapse into the field-polarized (”ferromagnetic”) phase.

For this, we set =0 in (3.36), which gives

]k(z)—“T

hcy = Dk
C2 0 >U

, (3.39)

or, restoring the units

[Jk2 —a
HcZ(T) = MsDko OZ—UT (340)

this mean-field argument sketches the conical phase boundary with paramagnetic and

ferromagnetic phase (see section 3.5 and Figure 3.7).

3.4 SOLUTION IN SKYRMION LATTICE PHASE

The Skyrmion Lattice (SkL) is a long-range-ordered spin configuration which can be visu-
alized as a hexagonal lattice of magnetization vortices, see Figure 3.5). Experimentally,
it is seen as a sixfold scattering pattern with momenta |Q| = ko (see e.g. Refs. [38, 132]
for SANS patterns), and weaker higher-order scattering reflexes indicating |Q| > ko. In
a general case, any periodic long-range-ordered spin structure can be expanded into

Fourier series as

S(r) = mé, + ukZSkneik"”i"’" +S g, e i, (3.41)

n

which mathematically reminds topologically-trivial single-helix phases such as conical
(3.25) and helical (3.12).

We start here from empirical observation (see e.g. [38, 132] for SANS measurements),
that the hallmark of the SkL long-range order is a six-fold scattering pattern in reciprocal
space, each of the wave vectors are rotated by 2m/3, while the higher-order harmonics
are neglectibly weaker in their intensities [38, 132]. Thus to a good approximation, the

skyrmion lattice is determined by

SW=mé+pu Y Sk,e T8y eI, (3.42)
k,=Q1,23

The sum in (3.42) runs over the Q1,Qz,Qs, with properties |Q;| = ko = D/2] (in the mean-
field — critical fluctuation renormalize this value) and Qi + Q2 + Qs = 0, compare with

Figure (3.2). The relative phases ¢, in (3.42) are important for minimization of the SkL
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Figure 3.5: The hexagonal skyrmion lattice (projection on the basal plane)

(free) energy.
We start again from the minimal model

Wo = (J[VSW]?+DS@) - [V xS = Y St A4Sk, (3.43)
k

Here, again, %, is written in spin representation Sy = (Sx,Sl{,SlZ()T as a matrix operator

Jk*  -iDk, iDk,
=\ iDk, Jk* -iDk, |. (3.44)
-iDky, iDky Jk*

However we now direct the z-axis along the magnetic field. The Q-vectors of the skyrmion
lattice lie in the plane which is perpendicular to the magnetic field h. Consequently, each
of the six helices of the skyrmion lattice is parametrized as k = (k, ky,0) in the rotated

frame, thus the problem is effectively two-dimensional. The energy matrix (“hamilto-
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nian”) (3.44) is

Jk? 0 iDky
oy = 0 Jk?  -iDky |, (3.45)
-iDky, iDky Jk?

and is diagonalized on the eigenstates

1, .+ -

ISV = % (-iky, ik, 1)", (3.46)

ISy = (kx., ky,0)", (3.47)
1, .

ISPy = % (iky,-iky,1)", (3.48)

where ky, y,z = ky,y,z/ 1kl and we introduced "bra” and "ket” notations as shortcuts to write
the perturbation formulas of the matrix mechanics [138] in a familiar way. Consistent
with our previous notations, we denote (Syl...|Sk) = ZkS]T(...Sk, which is just a Fourier-

transform of the corresponding spatial averaging (...) as in Eq.(3.43).

The spectrum of matrix 4, consists of the three equidistant energy solutions, with

the energy separation +Dk,

e =Jk*-Dk, €l =Jk*, &2 =Jk*+Dk, (3.49)

For the positive J, D the lowest energy solution is the helix

1 A
SOy =—| ike |, (3.50)

which corresponds to the eigenvalue 8{(0). The modulation vector ky is determined by

further minimization of the energy, 661((0)/61(7 = 0. Consequently, the minimum of the
dispersion 55(0) = Jk* — Dk is satisfied if

]C() = 2—], (351)

see also Fig. 3.3a,b. Finally, it is instructive to rewrite one more time the eigenspectrum

of Ay as we use it in perturbation formulas further,

42



0 1 2
e =—Dko/2, & =Dkol2, & =3Dko/2. (3.52)

As a remark, it is usually convenient to measure the energy of the system in units of
Dky.

Next we consider the superposition of helices into a skyrmion lattice. Neglecting
higher-order harmonics, the skyrmion lattice is approximated as uniform magnetization

mé, along magnetic field and a 3Q multispiral configuration,

3
S =pY (Sq,e¥ +c.c.)+me,. (3.53)

i=1

In the ”braket” notation, the real-space skyrmion phase has a shortcut notation

{£Q1...£Qs} o
SWy=p Y, IS)e ik 4 m|S), (3.54)
k
where ISE(O)) is given by Eq.(4.21) and the ferromagnetic component is [Sp) = (00 1)T.

The skyrmion lattice possess some interesting properties. First, using the explicit

form (3.53), the first-order moments are

(Sx@)=0, (S,@®)=0, (S.(x)=m, (3.55)

so the uniform magnetization (the ”ferromagnetic component”) m = (S(r)) = mé; is the

only non-vanishing first-order moment. The second-order in-plane moments are

{£Q1...+Qs3}
(SGmy= Y. Sis* =31%/2, (3.56)
k
{£Q...=Qs}
(SSmy= Yy S8, =347/, (3.57)
k

while the longitudinal (z) second-order moment is

{£Q1...£Qs}
(Smy=m*+ Y SES% =m*+3p (3.58)
k

One can verify that all the mixed moments vanish,
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(SaSp)=0, a#p, (3.59)

so, in general, one has

3
(SaSp) = 5;125“,[;[1 +(1+2m?/3u?)8 4,2, (3.60)

where a,f = x,y,z. Formula (3.60) is handy for further expectation value calculations.
For a fixed temperature one can use normalization (S?(r)) = 1, thus the following con-
straint holds[132]

(8% =m*+6u =1. (3.61)

Finally, it is interesting to note that in this approximation the fourth-order moment for
the skyrmion lattice is surprisingly (8%) # (8%)?, i.e. the magnetization field is “soft”.

We now calculate the free energy corresponding to the skyrmion lattice. For this we
directly find that (3.10) gives

W, = ar(m? +6u?) —3Dkop® — hm + U(m4 +51ut +24m?pu® - 18\/§m/f’) (3.62)

We show in details the appearance of the last term for pedagogical reasons. It comes

from

W) =Ustm) (3.63)

upon substitution of (3.1). More detailly, we first decouple the ferromagnetic component

m = mé, from S(r) =m+s(r),

$* =m* +4m? (m-s) +4(m-s)(m-s) +2m?s? +4(m-s) s +s?. (3.64)

Taking the expectation value, the second term vanishes as (s(r)) =0, and the further

simplification gives

(8*(m)y = m* +2m? <s)26 + sf, +Ss§> +4m<sz(s§+ 3)2,+ s§)> + <(s§+ 3)2,+ s§)2> (3.65)

The second term here gives simply
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2m? <s§+s§,+3s§> =24m?1? (3.66)

due to relations (3.56)-(3.58). The third term in (3.65) gives

s o 3{Q1---%HQ1~--!16}{(hu-%} y
_ Z X X Z
<5z(5x+5y+5z)> =w Y X X (Sklsk28k3 S5k,

y Z Q% QZ
v +SESE sks)
k; ko ks

x ! Pt P tPks) 5 (K, + ko +k3), (3.67)

where we relabelled {q;...qe} = {+Q;...£Q3} for convenience (the order does not matter).
Note that this term is responsible for skyrmion lattice formation (see section 3.1). In
the basic (4.21), one thus obtains:

am <sz(s)26 + sf, + s§)> = 18vV2mu? cos(@y, + Pk, + Pk,) (3.68)

The minimum of this expression is given for ¢k, = ¢k, = @k, = +7/3 (mod 2x/3, which

reflects the symmetry of three-spiral modulation),

4m<sz(si+sf,+s§)> =-18v2mud. (3.69)

Finally,

4 {q1...96} {q1...96} {q1...96} {q1...q6}

V oV Q¥ QY
(s;gls;gzsfgssgw SJ S) S, +S% St SE S

2 2 2,2\ _
<(Sx+sy+sz) >_IJ ki ko Tk kg

k; k, ks ky
X QX Q¥ Y Y QY @z ¢z Z QZ QX QX
28} 5% S) S) +25) S) SE SZ +25F SE St Sm)

x e P TP g i) 5 (k) + ko + k3 + Ky),

(3.70)
After some lengthy but rather hackneyed algebra one obtains
<(s§+s§,+s§)2>:51p4. (3.71)
Thus, taking everything together, one gets:
W) = WS @) = U (m*+ 514+ 24m?u? - 18V2mp’ (3.72)
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if U is a constant.

Therefore, the skyrmion lattice in the mean-field can be approximated as a multi-
spiral spin structure with a ”soft magnetization”, i.e. with its norm slightly varying
over space. In fact, the skyrmion lattice has the lowest mean-field energy when these
fluctuations are minimized. It however costs very much energy (several J) to suppress
the SkLL magnetization locally to zero. In this regard, the multi-spiral skyrmion lattice
on one hand and single-spiral helical and conical phases on the other hand belong to
different topological classes. It is impossible to continuously transform a skyrmion lattice
into the conical phase, as it would require to crush magnetization locally to zero. We
further note that approximation (3.41) can be further improved with higher order Fourier
harmonics, which still respect the skyrmion lattice formation condition k; + k; + k3 = 0.
Upon this procedure, the topology of the skyrmion lattice remains unmodified. There
is an experimental evidence (see e.g. [132]) that higher-order reflexes are of negligibly

lower intensity, which indirectly implies that they are also energetically less important.

3.5 IMPORTANCE OF CRITICAL FLUCTUATIONS

Critical fluctuations are thermodynamic fluctuations near the critical point of phase
transitions. In contrast to the role of thermal fluctuations in a high-symmetry phase,
where the conventional thermodynamics can be sufficiently carried out by considering
statistical averages which make fluctuations unimportant, the critical fluctuations very
often are pivotal for phase-phase competition near the ordering temperature.

To illustrate the role of critical fluctuations for stabilization of the skyrmion phase
(in bulk), we plot a mean-field magnetic phase diagram (see also [38]). Considering
arx (T —T.), we obtain a qualitative phase diagram (a typical one is shown on Figure
3.7). We thus implement numerically the mean-field (fluctuation-free) calculations on the
basis of the model described above. As we know from experiments, the skyrmions pocket
appears embedded in the conical phase, thus we directly compare the variationally-
minimized skyrmion phase free energy (3.62) with the conical phase free energy (3.37).

A typical phase diagram consists of conical and helical phases'? + magnetically
trivial phases (paramagnetically-disordered and field-polarized). The skyrmion lattice
phase is always higher in free energies than the conical phase, if critical fluctuations are
not included. However, near the critical temperature, the skyrmion phase is competing
very closely to the conical. It was shown in Ref [38] that inclusion of even of the
Gaussian (=noninteracting) fluctuations helps to stabilize the skyrmion lattice phase as
the resulting fluctuative contribution is negative and more significant in the skyrmion
phase. Thus the skyrmion lattice free energies shifts down with respect to the conical (see

Figure 3.7). To elaborate the other possible mean-field effects, it was shown that further

12he helical phase appears only if adding the anisotropic term A. If it is absent, the conical phase
continuously transforms into the helical at H=0.
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Figure 3.6: Mean-field phase diagram (a) consists of helical, conical, field-polarized and param-
agnetic phases (The conical phase transforms continuously to the helical phase at
H =0 if anisotropy is vanishing A=0). The skyrmion phase is however not present:
it’s free energy is higher than in the conical phase (b). However, in the region de-
noted with dashed line (qualitatively), the skyrmion phase is competing very tight
with conicals. Upon inclusion of the critical fluctuation, the skyrmion crystalline is
stabilized [38].

inclusion of higher order harmonics (i.e. k= nky, ko= D/2], n>1) even though helps to
shape up the SKL order parameter, however does not contribute significantly to the mean-
field free energy [38]. However, the skyrmion lattice is observed as a thermodynamically
stable phase with neutron scattering, and the other parts of the phase diagram are
captured by the existing mean-field-theoretical formalism; it is on basis of this it is
believed that the critical fluctuations are responsible for stabilizing the skyrmion phase
in the form of skyrmion crystal.

A further twist on importance of critical fluctuations and stabilization of the skyrmion
lattice phase have been done in Ref.[134]. In particular, the authors of Ref.[134] directly
report the fluctuation-induced phase transition by observing appearance of Brazovskii-
like sphere exactly at T¢. Brazovskii in his seminal works [135, 139] proposed a mecha-
nism of first-order phase transition, for which the fluctuations become ”soft” '3 not only
for a for a single value of momentum (e.g. k=0 for a ferromagnet, k = ky for a helical
phase of a ferromagnet), but rather on a closed manifold, which for isotropic systems is a
sphere, the Brazovskii sphere. This crucially leads to the singularity in density-of-states
of the these critical modes. For example, for a critical mode with e} = A+ u?(k—k,)?,

the squared field-amplitude of these thermal fluctuations is [135]

dk T KT 1

WD | orieao = 2nuni ™ VA

(3.73)

thus, the fluctuation field for a soft mode (A = 0) diverges as A="?, which eventually leads

to the the fluctuation-induced discontinuous phase transition [135]. The critical mode

13In this terminology, the fluctuations are considered to be soft if their dispersion relation € = (k)
becomes zero at one or more points in reciprocal space {k}, i.e. e(k«) =0 denotes a soft mode at k=Kki.
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Figure 3.7: Fluctuations intensity (in reciprocal space) in skyrmion-hosting MnSi near Tc. Below
critical temperature [(c)—(e)]: countable scattering reflexes indicate the helical phase.
Above Tc [(g)—(j)]: the excitations are continuously presented on a Brazovskii sphere
|kl = ko . The black broken lines in (c¢) indicate weak reflections due to multiple
scattering effects along the [001] and [110] directions. Intensity in (c)—(f) is plotted
in the logarithmic scale for better comparison. Figure from [134].

which exhibits A(T,) =0 is called a dangerous mode as it leads to abrupt breakdown of
the ordered phases at T = T, (or vice versa, depending from which side of T, you are
considering the effect).

The main result of study [134] is that they have proved that at T = T¢ the fluctuations
indeed emerge on the (three-dimensional) Brazovskii sphere |k| = ko = D/2], at least in
zero magnetic fields. The intensity of the critical fluctuations distributed at |k| = kg
was shown to be almost homogeneous, with some small corrections due to the cubic
anisotropies.!* In paramagnetic phase (well above T¢), the collective modes are absent
(see Figure); when temperature is lowered to = T¢, the fluctuations concentrate a sphere
|k| = ko in reciprocal space. Finally, lowering temperature below, the correlation lengths
associated with cubic anisotropies favour the fluctuations along crystallographic [111]
direction (corresponding to the orientation of the helical phase) [134].

This, to my current understanding, have a substantial importance on understanding
of the multispiral physics and skyrmion lattice physics in this system, in particular it
addresses following questions: (i) why the periodicity of both the helical and skyrmion
lattice phase are given by 27/ky, ko = D/2]? (ii) what makes the system choosing between
a single-helix and three-helix solution? (iii) why does this selection happens at T¢? The
order-generating critical fluctuations appear firstly at Tc at the surface |k| = ky, which

has a spherical symmetry, however the further evolution breaks this symmetry towards

Mone more time confirms that the US* physics is predominant and neglecting the truly anisotropic

contribution A(S§ + 831, + S‘é) is for magnetic phase diagram calculations is qualitatively correct; see also
Ref.[135].
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either a plane (the three SkL helices form a plane, (k; +k; +ks =0), or a line (k in
helical and conical phase), however still this vectors are touching the Brazovskii sphere,
i.e. |kj| = ko for all helices. Thus, the skyrmion lattice phase, as the long-range-ordered
phase which promotes collective excitations, exists in bulk systems (U #0) only due the
fluctuative-governed symmetry breaking and the other mechanisms (such as e.g. glueing

individual skyrmions together as in Ref.[81]) are eliminated.'?

On the quasiparticle language, the large entropy produced by the critical fluctua-
tions results in the significant change in free energies, which is important especially near
T = T¢c where several phases meet. In this sense, the quasiparticle approach is often
useful as it allows to depict the very complicated underlying mechanisms on the level
of pictorial understanding and diagrammatic techniques. It is for this reasons I refor-
mulated the only existing before formalism for semi-analytical calculation of magnetic
phase diagrams with skyrmion lattices [38] on the quasiparticle language, which allows
not only to operate the magnetic phase diagram computationally, but also to address
the underlying physical mechanisms on the different stages of calculation on the level
of order-of-magnitude estimates, when the real physics is so close I can taste it. Less
importantly in general, however important here, I also restored all the dimensional units.
Finally, this new approach allowed to incorporate several newly discovered features of
the skyrmion lattice (e.g. [134]) and join the phase-diagram calculation with the other
mechanisms for studying the skyrmion lattices (e.g. electric fields); thus in the next
sections I present a concise description for the synthesized model for semi-quantitative
phase-diagram calculation which I condensed on the basis of reformulated mean-field
language of the previous sections and several heterogeneous theoretical approaches as
described in Refs.[35, 38, 81, 105, 132, 134].

3.6 SUSCEPTIBILITY TENSOR AND MEAN-FIELD FLUCTUATION SPECTRUM

The noninteracting (Gaussian) critical fluctuations around the mean-field solution are

described by the generalized susceptibility tensor y;;(r,r") [140], defined as

11 8%F
Xop®r) =

L 3.74
T SMe(r) 5 MP ") ( )

To calculate it explicitly for our effective free energy (3.10), we use auxiliary expressions

15This is not to say that the same is valid for magnetic thin films where US*-term promoting the
formation of the skyrmion crystalline is generally unimportant; instead, in thin films the skyrmion phase
exists in a somehow disordered state so the critical fluctuations are suppressed; the skyrmion physics
their is sufficiently captured within Bogdanov-like calculations for both interacting and non-interacting
skyrmions (”skyrmion gas”). For the thin-film discussion, see Chapter 6.
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M2(r) = 8o MO@MP (1),  M*(0) = 84560 ME@MP 1) M® (1) MP (1), (3.75)

which thereafter leads to susceptibility in spin variables S(r) as

THap@® 1) =60 —1) |(@r = JV?)8ap — Deapy Oy +4US (1) S 1)8 4 +8US“(r)sﬁ(r)] .
(3.76)

Even though it is formally possible to proceed in the real space, it will be more com-
fortable in several ways to work in the reciprocal space, thus the Fourier-transformed

susceptibility reads

TXah( K) = Oap (051 + 4u§ (6ap s SEtesrer +28%r Shiesicr)»

(3.77)
with @qp(k) = Jk? + aT)5aﬁ — iDegpyky. The spectrum of Gaussian fluctuations is thus
given by poles of the susceptibility y.p(k k'), and the eigenvalue equation reads

TY 1 K)vi (k) = wicvi(K) (3.78)
K

where v;(—k) are eigenvectors. It is fruitful to firstly consider the mean-field fluctuation
spectrum in the paramagnetic phase ((M;) =0, (Ml.2> =0) close to the critical point. The

corresponding spectrum has three branches!'®

o =Jk-ko)*+8(T), o =Jk*+k)+8(T), ol =Jk+k)*+8(T), (3.79)

where §(7) is the detuning parameter, see Ref[134] for more details. The dangerous mode
is w{(o) which is soft at kg = D/J at T, where 6(T;) = 0. This results to fluctuations on
the 3D Brazovskii sphere k = ky, which leads to field amplitude-squared singularity seen
by neutron scattering as a uniform scattering ring at T = T.. This symmetry on the 3D
sphere k = kg is broken further below the critical point, either into a 3Q-helices defining
a plane (the skyrmion phase: k; +k; +ks =0, i.e. the sixfold scattering pattern with
k=ko), or a 1-helix defining a line (helical or conical phase, two-fold scattering pattern).
The dispersions w{(o), wl((l), w{(z) are changed as below T¢ as the average magnetization
is not vanishing, and thus anisotropy-induced terms (e.g. those with U in (3.77)) come

into a play, however the limiting case k — oo for all the branches is wy ~ Jk?, which

16Here J and D are in proper-energetical units, i.e. with restored M and a.
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“dangerous” mode

0 ko K|

Figure 3.8: Appearance of the Brazovskii sphere: (a): Critical modes at T = T¢ (mean-field

approximation). The dangerous mode is a)i(m which becomes soft at the sphere |k| =

ko, leading to Van-Hove-like singularity in the density of states. The squared field
amplitude of these thermal fluctuations thus diverges giving rise to the Brazovskii
sphere in the reciprocal space (b).

physically means that on the short scales the chiral magnet has ferromagnetic nature.

3.7 FREE ENERGY IN NON-INTERACTING QUASIPARTICLE APPROACH

The surprising finding of the study [38] is that the main contribution to the fluctuative
free energy is given by the short scale fluctuations, which was also verified numerically
[38]. Here we consider a different way of deriving this result, which is more self-consistent
with quasiparticle picture of fluctuation-induced ordering transition. In the approxima-

tion of Gaussian (noninteracting) fluctuations, the fluctuative free energy is given by

kl<A | .
Fuet = Z Z wl((l)flil) - Tsﬁuctr (380)
i k

where A = 2n/a is the natural cutoff and flii) is equilibrium distribution function and

SAuct is the entropy of the noninteracting gas of fluctuations,

kj<A ' ' ) )
Sfuct =) ) {(1+fl§”)1n(1+ =P flg“}. (3.81)
i k

Note that this approach can be extended to the case of the interacting fluctuations. As a
general rule, the excitation energy is wx < T¢, thus the free energy (3.80) allows further

simplification; for low-energy collective excitations (Bose-Einstein statistics), one has

In(+ f) = pol’ -n o,  Inf=-Inpol?, (3.82)

51



-~ S
Eo T —  fo(k) E :
E" le —  fi(k) L :
— |
2 Ja(k) s
.S &
3 !
Z i
| i
= 2 i
L i
i X
i

. . . R

10 20 30 40 50 1

Wave vector, k/kq

O p) 4@
o h

Figure 3.9: Occupation f, i of the three critical modes at Tc (without showing the

k
divergent accumulation of wl(g))). Note that the fluctuation energy does not depend
on the choice of the momentum cut-off A > ky; however the entropy carried by
fluctuations does indeed depends however is naturally restricted by the short-scale
grid a.

where we took into account that the cut-off energy is smaller than ordering temperature.

Thus asymptotically one has

|k|<A
Fiuet =T ) InPowy (3.83)
k

At short length-scales, the collective excitations merge to a single effectively ferromag-
netic mode wy ~ Jk?, which gives the main contribution to the free energy. To take
effect of mode-mode interactions, which below T¢ promote propagation of collective ex-
citations in (3.77) only along the symmetry-broken directions of the underlying phase,

we thus keep main non-vanishing terms as

Fine = T2 In BIKE(1+T/Jk?) =T 2(n BIK +T1JK?). (3.84)
where
T = T1 + Fz, Fl =4U Z 5(1[3 Sgk” Slé—k’+k//r rz =8U Z Sgk” Sﬁ—k/+k"' (385)
k!'k” kl,k”

The first term in (3.84), In $7k?, does not contribute to free energy difference if helical and
skyrmion phase are treated on the same volume in momentum space. The second term

gives the fluctuative contribution dependent on the mean-field values of magnetization
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in two phases,!”

10UT
nD

5AUT
AFfyet = AFEEE? - 7'[2]](?

((ME) = (MZop)) = — —— ((MZ) = (MZ,,,)) - (3.86)
The phase diagram is plotted with the fluctuative energy (3.86) on top of the mean-field
solution. The described formalism is expected to capture the qualitative physics of the

system.

Order-Breakdown estimate. It is further possible to draw a qualitative criterion
on breakdown of ordered phase by considering the stability of the Brazovskii sphere.
Below we estimate the temperature range fluctuation 6 T which could break down the
Brazovskii sphere into paramagnetic phase. Accurately it should be done by studying
stability of the Brazovskii sphere surface with respect to surface distortions (in reciprocal
space), but below I present a simplified order-of-magnitude estimate by comparing the

typical involved energies. For this, we first estimate energy associated with fluctuations

(0)
Kk °

are neglectable. However, the integrals can be taken analytically

on Brazovskii sphere. Only the soft modes are important here, w,”, and contributions of

the other two w(l) f)

if we consider contributions from w{(o) together with a)l(f) modes, therefore

EBr.sph. (T=Tg)=V (3.87)

Pk [ J(k— ko) J(k + ko)?
@m)3 | dF—k?IT _ ] | gl kko?IT _ ]

The integral can be taken by proceeding to the dimensionless momenta « = k/ky and

dimensionless critical temperature 68 = T¢/J ké. Then the energy density is given by:

EBrsph ]kad (-1 G+’ 5 88
T 2772 k=12 _1  pc+1)2_q[" ( ’ )
After some algebra, one obtains
Ep; L
% - ~0 (6% +c,0°2), (3.89)
=lc

where ¢; = ¥1{(3/2) ~2.31 and ¢, = 2¥%{(5/2) ~ 1.78. Thus we have

5
EBr‘sph. ]kO Tc 3/2 Tc 5/2
I P o o ot e (3.90)
Vo olr=r, 2n JQ JQ
3
17Here we used the discrete summation approximation Z‘kl(A klz = A/ko d—%# = ﬁ.
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(b). Figure (b) taken from Ref. [141]
Thus a temperature fluctuation of order

3/2 5/2
T T
e |, 3.91
a ( g ) +c ( > ( )

will destroy the Brazovskii sphere by throwing system into a (more heated) disordered

2nla

state. This of course may or may not mean that each of the ordered phases (helical, con-
ical and SkL) always follows this criterion as more detailed analysis involves considering
both the conical and skyrmionic phase independently, however it (very) qualitatively
sketches the width of precursor region near T¢. Experimentally, this can be seen as an
abrupt breakdown of the ordered phases (conical or SKL) into a paramagnetic phase.

Restoring now the dimensional units, one obtains

]kg a’

OTc ~
C” onta

ky Te" 3/2+ 1t )" (3.92)
C Ol ——— .
yem2ad IR M2ad

Using now numerical values J = 4.85x 10723 Jm/A%, D=1.22x1074J/A?, ko= 2% =1.26 %
108m~', a=8.91x10"m, kp =1.38x10"2 J/K, My =1.11x10°A/m, T™ = T, = 58K, a =
107> Tm/AK, one obtains 6T, ~ 1.5K, which is in a reasonable agreement with precursor
phenomenon temperature width in experiments [134]. Note that the only free parameter
here is a, which is unknown. However, a similar value a ~ 107%+1075Tm/AK was
reported in Ref.[142] as a good fit with experiment. Thus the line T = T¢ -6 T¢, roughly
denotes the breakdown of the ordered state (in general, it is weakly magnetic-field-
dependent).

Phase diagram. Above I have sketched the underlying mechanisms leading to stabi-
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lization of a topologically-nontrivial Skyrmion Lattice phase with respect to competing
conical phase in bulk chiral magnets. A typical phase diagram within approximation
of Gaussian (non-interacting) critical modes is shown on Figure 3.10. For simplicity,
we consider the framework of M* theory within which the conical phase is continuously

transformed into the helical phase exactly at H =0.

3.8 CONCLUSIONS

In this chapter, I presented a synthesized model for semi-quantitative phase-diagram
calculation on the basis of several heterogeneous theoretical approaches as described in
Refs.[35, 38, 81, 105, 132, 134]. I tried to maintain the best physical features of each
of those approaches. In particular, an implementation of experimentally proved [134]
Brazovskii-like physics of broken symmetry of critical fluctuations, namely, the existence
of a soft mode on sphere k = ko around T = T¢ and further "breaking” of this spherical-k
symmetry into phase-dependent sixfold or twofold long-range critical fluctuations. These
implementations allowed not only to treat the phase fluctuations in a more consistent
way with the mean-field model, but also to establish a more substantiated criterion for
the abrupt breakdown of the modulated magnetic order near T¢, which was absent in
previous models [38, 81]. T would like to emphasize that this feature is an intrinsically
collective concept and thus it is impossible to capture it via a single skyrmion approach
(see e.g. Ref.[81] and references therein). Note however that the reduced dimensionality
(thin films and interfaces) may lead to qualitatively different physics by either appearance
of higher-order terms due to dipolar interactions (a.k.a. "demagnetizing” or stray field),
or a stablizations of skyrmion arrays in a skyrmion liquid, where the single-skyrmion

model translated over the space may work well.

55



56



Writing and Erasing Magnetic Skyrmions with
Electric Fields

An ultimate goal of skyrmionics is the usage of skyrmions as bits of data, which would
require a controlled and reliable mechanism of skyrmion writing, erasing and reading
at room temperature and small magnetic fields. For this, an external field is in general
required. As such a field, one possibility would be the electric field as being often em-
ployed in electronics. In this respect, the discovery of skyrmions in a magnetoelectric
insulator Cup,OSeO3 opened dramatically new ways for exploiting topologically non-
trivial magnetic phases under electric fields [44, 143, 144]. Thus, a natural question
rises: under which conditions writing and erasing of skyrmions with applied voltages is
possible. One of the first proposals in this direction was a usage of magnetoelectric in-
sulator Cup,OSeO3 where relatively moderate fields may support a dynamical nucleation
of skyrmions [94, 145], however recent progress was also demonstrated in substantially
different system manufactured with conducting thin films for the so-called skyrmion-
bubbles (huge skyrmions) [96].

In this chapter, I calculate the effect of electric field on the energy of skyrmions and
phase stability of skyrmions in insulating Cu,OSeOs. Using neutron scattering, we have
demonstrated that the skyrmion pocket either expands or shrinks significantly depending
on the direction of electric fields, allowing us to write or erase the skyrmion phase in bulk
[95]. To explain the observed phenomena, the effect is addressed theoretically by using
the framework of fluctuation-induced phase transitions and the first order perturbation
theory in electric fields [95, 132, 133]. As the electric field is almost not heating the
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insulating Cup,OSeO3 samples, our study provides further perspectives for dissipation-
free electrical control of skyrmions in insulators.

This chapter is organized as follows. In the first section I consider the energy of a
single skyrmion under electric fields in the field-polarized phase (strong magnetic fields).
In the next section, I push further the existing theory for the skyrmion lattice in electric
fields [132] in several ways, in particular by calculating implicitly all the terms of the first
order perturbation theory, developing the second-order corrections, and establishing the
link with phase diagram calculation by considering M* term, etc. To keep consistency
in the first two orders of the perturbation theory, we introduce the inelastic distortion
vector, and write down all the terms in first and second orders in dimensionless electric
fields coming from both elastic and inelastic contributions. The third section considers
experiments and theory on the writing and erasing the skyrmion phase all over the bulk.
The last two sections are mainly based on my papers [133] and [95], while the manuscript

containing calculation from the first part of the chapter is under preparation.

4.1 ENERGY OF ISOLATED SKYRMIONS UNDER ELECTRIC FIELDS

In this section we consider the energy of isolated skyrmions emerged in the magnetic-field-
polarized phase of magnetoelectric insulator CupOSeOs. The magneto-electric coupling
in Cuy0SeOs3 arises due to the weak p-d hybridization mechanism(see Refs. [44, 146—
148]), which gives rise to an electric dipole moment P = a;(S,S;,S:Sx, SxSy), i.e. the
electric dipole moment coupled to the spin variables Sy,S),S;. Therefore, in external

electric fields the ordered phase is perturbed by a dipole energy —P-E, or

Hx = aExSyS; +cyclic permutations, (4.1)

where E = (Ey, Ey, E;) is the external electric field and for simplicity we absorbed the
minus sign into a@ = —ay. For Cuy0SeOs3 the strength of magneto-electric coupling is
estimated as |a| ~ 10733 Jm/V, see Ref.[149)].

We consider now electric field along [1 1 1] (we put E= E[111] for simplicity'), which

coincides with an anisotropy axis. Proceeding to rotated spin frame,

-1 _1 1
V2 Ve V3
Se=2ZmySy,  Zny = \% —\/Lg \/% , (4.2)
0 AN
3 V3
so that the ME coupling (4.1) in the new frame reads:
T = laE(—sz - 82 +st) (4.3)
X 2 x’ yl zl 1 .

n this notation, E = |El/V3
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Figure 4.1: Stabilization of a single skyrmion emerged in the field-polarized phase (strong mag-
netic fields) with the external electric field aligned as E|[HJ|[111]. The skyrmion
energy is calculated for kg = 0.2/a and with respect to the field-polarized phase en-
sured by strong magnetic field h = 0.5; here Wy = 2JM? and Eo = 4JM2/3v/3|a|. The
decrease in the skyrmion energy is tiny as it is assumed in the field-polarized phase.
However it still indicates that the E-field-operated skyrmion stabilization mechanism
is qualitatively valid even under such extreme conditions. Note also that in strong
electric fields (E ~ Ep) the skyrmion topology breaks down (the skyrmion solution no
longer exists).

or in the spin-vector basis,

-1 0 0
1
H=7aE| 0 -1 0f, (4.4)
0 0 2

By using parametrization S, =sinfcosy, S =sinfsiny, Sy = cosf, one obtains

1 3
HaezéaE(EicoszH—l) =aE(1—ESin29)- (4.5)

The constant here can be dropped if comparing between two phases. Thus, the effect
of electric field in this particular case reduces to renormalizing the uniaxial anisotropy.

Thus, the energy functional reads:

3
W =(J(VS)*+DS-(Vx8)—hSy + KS% + EaESi) (4.6)

In this chapter we consider, for simplicity, a skyrmion in the field-polarized phase, that

is for H> H¢2(T). Thus the energy functional reads
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W, © dao 2 in?0 in20
]AEIIS;:ZﬂfO drr[ E"‘ko —k§+%+kosm +xp(l—cos’0) +h(1—cosh) |,
(4.7)
with parameters
D K+3aE/2 H
ko=, KE = Ll = . (4.8)
2] ] JM;

At finite temperatures, probability for a thermodynamical appearing of a skyrmion in

the field-polarized phase is thus

p=e Ws/T (4.9)

This approximation is good for a low density of isolated skyrmions, or non-interacting
skyrmion gas limit. If interactions are important, the meron and bimeron energy con-
siderations are however modified [150]. We solve the Euler-Lagrange equation corre-
sponding to the energy functional (4.7) (see Chapter 2 for further details), and consider
for simplicity case with K =0. We choose the conditions ensuring the field-polarized
phase (strong magnetic fields), b = 0.5, and model helical wave vector ko = 0.2/a (thus
helical period is A =2x/a=31a). After the skyrmion solution 6(r) is variationally found
for each of the electric fields E/Ey, Ey = 4]M§/3\/§Ia;tl, it is further substituted to the
energy functional (4.7), and the integration is carried out numerically. The results of
these calculations are summarized on Figure 4.1. Thus we see that a single skyrmion,
which appears as a metastable exited state, can be stabilized by applying external elec-
tric fields E|[H||[111], which lower its energy. Consequently, the probability of observing
isolated skyrmions will depend on the strength (and, in general, polarity) of electric
field. The effect in the field-polarized phase is however not dramatic, as according to
my calculations, it never stabilizes the skyrmion thermodynamically, and the skyrmion
remains a metastable stable of the field-polarized background. We will see however in
the next sections that even the moderate electric fields dramatically tune the skyrmion
lattice stability with respect to the conical phase, enabling to "write” or “erase” the

skyrmion phase all over the bulk.

4.2 SKYRMION LATTICE IN ELECTRIC FIELDS

Manipulation and control of skyrmions have become an active topic of skyrmionics. Re-
cent experiments succeeded manipulation of skyrmions with moderate electric fields,
electric currents, and thermal gradients [46, 80, 91, 93, 132, 151-153]. To avoid Ohmic
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heating effects which are undesirable for electronics, the application of moderate electric
fields to insulating skyrmion-host compounds (such as Cup,OSeOs [44]) is potentially
more advantageous for the current-driven devices. These observations motivated theo-
retical proposals for creation (“writing”) skyrmions in insulating helimagnets with the
help of external electric field, [94, 145, 153, 154] and subsequent electric-field guiding.
[155] To date, a key experimental challenge in this direction is stabilization and control
of the skyrmion lattice by an electric field. Therefore, there is a need for simple theories
of skyrmion lattice response to the E-field. In particular, what is of interest is the shift
of skyrmion lattice energy in electric field, with subsequent stabilization of the skyrmion
lattice.[154]

We treat the physics of the skyrmion lattice upon application of E-field to an in-
sulating skyrmion-host compound, such as Cup;OSeQOs3. In this material, the effect of
magnetoelectric coupling arises due to a hybridization mechanism originating from rel-
ativistic spin-orbit interaction (see Refs. [44, 146-148]), which gives rise to an electric
dipole moment which can be expressed in terms of the local spin variables. The strength
of the effect is however relativistically small, which allows us to build an accurate per-
turbation theory in E-fields.

In this paper, we treat the effect of electric field on skyrmion lattices in the two first
orders of perturbation theory. The skyrmion lattice in electric fields becomes slightly
distorted, and we introduce the elastic and inelastic distortion vectors. The shift of SkL
energy comes from expectation values of the electromagnetic coupling and anisotropic

contributions.

4.2.1 ENERGY DENSITY IN A COARSE-GRAINED MODEL

The Skyrmion Lattice (SkL) is a long-range-order spin configuration which can be visual-
ized as a triangular (hexagonal) lattice of vortices. Experimentally, the hallmark of the
SkL phase is appearance of a six-fold reflection pattern in reciprocal space, as sketched
in Figure 4.2, each of the wave vectors are rotated by 27/3 (see e.g. Refs. [38, 132] for
SANS patterns). In this study, we describe the skyrmion lattice by a coarse-grained local
magnetization vector S(r), which can be built on the three Q-vectors (Fig. 4.2). With
a good accuracy the SKL phase can be approximated by the multispiral spin structure
[37, 38]

S(r)=m+ /JZSQn e Qurtivn Sa" e—iQ,,r—izpn’ (4_10)

Qx
where m = (S(r)) is a uniform magnetization, with (spatial) average defined as (...) =
S d—‘}/(...) throughout the study, and p is the weight of the SkL helical modulations. The
sum in (3.1) runs over the “3Q-structure” (Fig. 4.2), the relative phases ¢, in (3.1) are

important for minimization of the SkL. energy. The expectation of energy density in the
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Q2 Q:

Qs

Figure 4.2: The hexagonal Skyrmion Lattice in reciprocal space. Right-hand side of the figure
shows the auxiliary negative reflexes, so that the hexagonal real-space SkL is built
on the six wave vectors {Q1,-Q3,Q2,-Q1,Q3,-Q2}, see the main text.

coarse-grained model is given by calculating the spatial average (A#) with spin function

T = T pp+ Tp+ Ha, (4.11)

where the helimagnetic term

F1pn=J(V8)? +DS-(VxS)—h-S (4.12)

takes into account Heisenberg interaction (J), Dzyaloshinskii-Moriya interaction (D) and
the Zeeman coupling to the external magnetic field h.

In this study, we consider the fourth-order anisotropy as it represents the essential
physics of the problem by stabilizing the SkL phase.[38, 132] The symmetry of Cu,OSeO3
is described by the P2,3 space group, which allows a fourth-order magneto-crystalline
anisotropy of the form A; (S} + S‘Jl, +83H+ Ay (S?CSf, + Sf,Sﬁ +8282). Proceeding to the uni-
tary parametrization S/|S| = (sinf cosy,sinf8siny, cosf), one obtains S§S§+ S§S§+ $282 =

—%(Si + S;‘, + Si) + %, we thus have:

Fr= A(Sy+ Sy +S3) + US". (4.13)

with A= A;—A/2 and U = A,/2. Thus, there could be too distinct situations, first with
Ay > Ay, for which the anisotropy of the bulk is important, and the opposite case with
Ay ~ A2/2, where the role of anisotropy is reduced to providing mode-mode coupling
U ~ A1, Az. In this section, following my paper [133], we consider the first case, while the
second case will be presented in the next section as it provides a qualitatively universal
picture for bulk skyrmion hosts.

The above expressions (3.7)-(4.1) are written in the natural frame. Experimentally,
one often needs to apply magnetic and electric fields along directions where particular
properties of the system are better revealed. In particular, in some E-field rotation
experiments,[132] the magnetic field h is parallel to [110], while the electric field is
parallel to [111] or [111], with |Ey| = |E,| = |E;| = E for simplicity of notations (thus the
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2,[100]

Figure 4.3: Rotated spin frame (red) for the magnetic field orientation [110].

magnitude is |[E| = v3E). It is easier to carry out calculations in the rotated spin frame
(x',y',2z"), with 2’ set by the direction of magnetic field h, see Fig. 4.3. In the case of
above-mentioned geometry (Fig. 4.3), the transformation of the rotated spin frame is

given by the rotation matrix

oo
Z=—|1 0 -1|. 4.14
7 (4.14)

0 V2

While the helimagnetic term (3.7) is a Lifshitz invariant, the fourth-order anisotropy

(4.13) is transformed under rotation (4.14) into

1 1
JfA=A(Es§,+s‘;,+3s§,s§,+Es‘;), (4.15)

The E-field perturbation (4.1) also transforms under rotation %,

E
Hw= S (Sh+2V2S Sy - 82, (4.16)

and the electric field is directed along éy +é,/. For simplicity, we drop the prime signs

in the subsequent calculations.

4.2.2 UNPERTURBED STATE

In this section I very briefly remind the concepts of the mean-field treatment of the
skyrmion lattice (Chapter 3), which will be important for the perturbation theory which
follows. First, we find the single-helix eigenstates, which give rise to a modulated spin
structures with wave length A =2n/kg=4nJ/D. After that, we construct the skyrmion
lattice order parameter, and calculate the mean-field energy of the skyrmion lattice.

We start from considering the interplay between the Heisenberg term and the DMI
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coupling,

Wo = (J[VS(®)]? + DS(x) - [V x S()]) = Y_ S Sk, (4.17)
k

where in we used the Fourier transform of the spatial average to reciprocal space. Here

J?O is written in spin representation Sy = (Sl’ﬁ,S]{,SlZ()T as a matrix operator

Jk? 0 iDk,
oy = 0 Jk?  -iDky |, (4.18)
-iDky, iDky Jk?

and is diagonalized on the eigenvectors

1

\/z(ifcy,-ﬂ%x,l)T, (4.19)

1 PO PN
0)y _ ; ; T Dy — T )y _
|sk >_ﬁ(‘lkyvlkx)1) ) |sk >_(kkay’0) ’ |Sk >_
where lAcx,y,z = kx,y,z/ [kl and we introduced ”bra” and "ket” notations as shortcuts to write
the perturbation formulas of the matrix mechanics [138] in a familiar way. Consistent
with our previous notations, we denote (Skl...|Sk) = ZkSI(...Sk, which is just a Fourier-
transform of the corresponding spatial averaging (...) as in Eq.(4.17). The spectrum of

matrix % consists of the three equidistant energy solutions, with the energy separation
+Dk,

eﬁ)) = Jk* - Dk, g{(l) = Jk?, ef) = Jk* + Dk, (4.20)

For the positive J, D the lowest energy solution is the helix

-ik,
|s{(°)>=£ iky |, (4.21)
1

which corresponds to the eigenvalue s{(o). The modulation vector ky is determined by

further minimization of the energy, def(o)/ak = 0. Consequently, the minimum of the
dispersion 8{(0) = Jk?—Dk is satisfied if ko = 2% Finally, I remind that the energies spectrum

under considerations is

0 1 2
e =—Dko/2, & =Dko2, &2 =3Dkyl2, (4.22)
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which is used in the following calculations.

4.2.3 SKYRMION LATTICE IN ELECTRIC FIELDS: ELASTIC PERTURBATION

In this section we consider the shift in the SkL energy caused by distortion of the
skyrmion vectors. We start by re-writing the magneto-electric coupling in the rotated

frame (4.16) in symmetrized form, which in units Dky is simply

1 V2 0
HwlDkg=22| V2 0 0 |, (4.23)
0 0 -1

where we have introduced the dimensionless electric field e,

aE

which plays the role of the small parameter of the theory. To illustrate its smallness,
we use typical electric fields E =5x10°V/m, and Cup,OSeOs parameters as J = 4.85 x
1073 Jm/A, ko = D/2] =108m, and ME coupling [94] is @ ~ 107 J/m?V. This gives
s ~0.01. Thus throughout this study, we build the perturbation theory in orders of ze!
and 22, which is sufficient for describing both the symmetric and asymmetric responses
in E-fields.

First, we consider the helix vectors in external electric field. Considering E-field as
a small perturbation (4.23) on top of the JD-matrix (4.18), matrix perturbation theory
gives[138]

(S| #x I8

ISE) = 18Py + Y I18) mT +0(x?). (4.25)

n#0 s{(o) — &

where 8;(”) are given by Eq.(4.22) and ISE(")), n=0,1,2, are eigenstates of A as given by
Eqgs.(14-16). The perturbed helix (4.25) is by construction normalized on unity up to

terms of order @ (a?),

SISy =1+ 0(=?). (4.26)

A direct calculation for the new helix, using formulas (4.25), (4.23), (3.46)-(4.19),

gives

S2) = 1Sy — e [Fye) + O (27, (4.27)
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Figure 4.4: Components of elastic distortion vector Fy as functions of the helix angle ¢. Flf Y are
2n-periodic while F is m-periodic. The dots denote stationary points which are not
effected by E-field.

where Fy = F(IAcx, IAcy) = Fi(¢) is the elastic distortion vector (here for each helix IAcx =cos ¢,
I%y =sin¢, that is ¢ is angle between k and %), so that

[Fi) = (iF(¢), iF) (@), FE ()T, (4.28)

with angle-dependent components

. . 2
Fi () = —% +2cos® ¢ — W —sin® ¢ cos ¢, (4.29)
2
Flf((b) = % —2sin ¢+ sin¢cos® ¢ — W (4.30)
2 1 sin? .
Fk((P)Z—ﬁ— N +sin¢ cos . (4.31)

The components FY, Fl{ , Fy¢ of the elastic distortion vector are 7 and 27 periodic func-
tions, and are illustrated in Fig. 4.4. Note that the x and y components of both Sl(?)
and S{fe) are imaginary, and z component is real for both S{(O) and Sl(fe). Physically it
means that the field-induced distortion of the skyrmion lattice does not change the ori-
entation of the skyrmion plane. One can verify both analytically and numerically that
Eqgs.(4.29)-(4.30) together with (4.28) satisfy normalization (4.26).

4.2.4 ENERGY SHIFT OF THE SKYRMION LATTICE IN ELECTRIC FIELDS

In this section, we calculate the shift of the SkL energy in the first two orders in terms of
dimensionless electric field s. This shift is contributed by the expectation value of the
magnetoelectric coupling, and the anisotropic contributions due to the skyrmion lattice

distortion.
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MAGNETO-ELECTRIC RESPONSE

The first contribution to the energy shift of the skyrmion lattice in electric field comes
from taking the expectation value of (4.23) in the appropriate order in . In this study,
we consider & to be small, thus the second order is sufficient for capturing the essential
physics in both antisymmetric (field reversion E — —E gives the energy shifts of different
signs) and symmetric (field reversion E — —E gives the energy shifts of same signs) cases

of interest. Using the explicit expression (4.27)—(4.31), one obtains

<<7—y233> (Skld—gae|sk> 2 2 189 2.2 3
— = — _ 6 . 4
. = E . 2m +3/,t )& Me” + (ee”) ( 32)

The expression (4.32) is the leading contribution in case if the anisotropy of the system
is small. Restoring the dimensional units, the shift of the SkL energy W in electric field
E is therefore given by

a@@m?+3u*)M?a® 5189 a’u?M?a®

AW, (E) = —
1(E) 4 64 Dk

E*+0(E%). (4.33)

where M is saturation magnetization (in A/m), a is the lattice constant. Note that the

helimagnetic term Hjpy, is not giving shift contributions to this order.

ANISOTROPY RESPONSE

Now, we calculate the direct contribution of anisotropy to the energy shift. The main
physical mechanism here is the distortion of SkL in electric field, which results to per-
turbation in the anisotropic energy. To proceed, we explicitly use formulas (4.27)—(4.31)
to calculate the expectation value of the anisotropic term in the new ground state. In

the leading order one therefore obtains

. 9 99 81
(Fa)1 = (S®)| A4Sy ngmz,u2 ®+ 3—2Au4 ®+ aAy4 2 (cos6¢pg + 2V/2 sin6¢hg)

+42—;§Aaemu3 cos(gp1 + @2+ @3). (4.34)
Here ¢ is the angle between the first skyrmion helix and % (note that due to 27/3
symmetry in SkL rotation, and 6¢-arguments in Eq.(4.34), one can take ¢ as the angle
between any of the skyrmion helices and %). The same angular dependence [third term in
Eq.(4.34)] were reported in study [132], where the minimization of SkL energy in electric
fields leads to the SkL rotation in real space with respect to X, if six-order anisotropy
is considered, however all the angular-independent anisotropic contributions were there

neglected.[132] We notice that expression (4.34) is dependent on the relative phases of the
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helices ¢;. The same situation occurs in (3.67), when the mean-field energy is dependent
on phase. We take again cos(gp; + @2 + ¢3) = —1, which minimizes the mean-field energy

for fixed positive m, u, therefore

9 11 2 81
Hoa = 5 At I—3\/5%+%)ae+6—4A,u4(c056(p0+2\/§sin6¢0)ae+@(ae2). (4.35)

This contribution gives the linear anisotropic response to the external field. However,
for the completeness of discussion, we need to take into account further terms @ (se?),
which come both from the elastic distortion of the SkL and the inelastic (quadratic in
ae) distortion of the SkL.

MIXED INELASTIC RESPONSE

To consider the nonlinear anisotropic response, we re-define the perturbed helix eigen-

states up to the second order, which are given by a perturbative expansion

(n)| 7 (0)
Sy = 5P+ Y IS (871718,
k k

n#0 5{(0)—5{(”)
o SIS (S | A8
LpIPY IS, 0 _ .m0 _ .(m)
n#0 m#0 (& —& ) —g )
o (S Hon|SONS | Aol S
_’;)' K ) €0 — gmy2
k k
(SO 7,18y (817,18
- Y IS e 4 o). (4.36)
120 k 2(5{(0)—51(("))2

This expansion leads to re-definition of (4.27) by adding a nonelastic distortion of the
skyrmion lattice,
1S =18 — & [Fyo) + &’ |Gyo) + O (), (4.37)

where Gy = G(ky, l%y) = Gk (¢p) is the main inelastic distortion vector,

G = (iG{ (@), iGL($), GE@) " . (4.38)

The direct calculation of the inelastic distortion vector, by using (4.36), (4.23), (3.46)-
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(4.19), gives

G (¢p) = 39 sing + 131 sin3¢ + sin5¢ + 33 cos¢ + 119 cos3¢ + 39 cos5¢
k 64v/2 1282 128v/2 16 32 32 ’
Gy(</>) -3 sing + 37 sin3¢ + 39 sin5¢ 93 cos¢ + 443 cos3¢ 5 Ccos5¢
k 16 32 32 64v/2 1282 128v/2 ’
Gi(p) = 3 sin2¢ + 15 sind¢ + 3 cos2¢ 105 cos4 17
« 8 16 16v2 64v/2 64v/2 wa9)
4.39

These dependencies are shown in Fig. 4.5. The comparison between the elastic and
inelastic distortion vectors is shown on Figure 4.6. Finally, for the numerical consistence

of calculations, one can verify that the new ground state is normalized on unity,

STy =1+ 0(=?). (4.40)
Therefore, the mixed elastic-inelastic response @ (a?) is obtained by calculating the ex-
pectation value in the new basis (4.37). The direct calculation gives
27 4 . 9
<=7£A>2 = aA/J (f()+f1 COSB¢0+f2 s1n6(,b0)3e , (441)

where we have introduced the following dimensionless factors

191 m m? m m? m m?
fo=———+62V2—-16—, fi=29-14V2—+56—, fo=-59V2+16——-32v2—.
8 Iz % % % % %

(4.42)

The mixed elastic-inelastic contribution (4.41) gives the second-order correction in &
which may be important in some particular cases, for example, when the first order

correction vanishes. Then, the electric field response does not depend on the field polarity

— G(9)

Inelastic Distortion

Figure 4.5: Components of the nonelastic distortion vector G as a function of the helix direction
angle ¢. Gi'y are 2z-periodic while Gy is m-periodic. The dots denote stationary
points which are not effected by E-field.

69



-

Y e

/2 ™ 3m/2 or
Figure 4.6: Comparison between magnitudes of elastic F = |[Fx| and nonelastic G = |G| distor-

tion vectors as the function of the helix angle ¢. There m-periodic stationary points,
which indicate the direction along which the helices are not disturbed, Fx = G =0.

(+E is absorbed in E?).
Thus we have three contributions to the shift in the Sk mean-field energy:

a2m? +3p2)M§a3E 189a’u’M2a®

AWL(E) =— E°, 4.43
1(B) 4 64 Dk (4.43)
9a Au*M2a® |11 wo w9
AWH(E)=———FE|—-3V2—+ —+— 60 +2V2sinb R 4.44
> (E) 32Dk 2 \/_m g 8(cos $o +2V2sin6¢hg) (4.44)
270’ Au* M2 a®
AW3(E) = ———2" E? x (fo + f1cos6¢yp + f>sin6¢y). 4.45
3(E) 1024 D°K2 (fo+ fi.cos6epo + f2sin6¢ho) (4.45)

Together, formulas (4.43)-(4.45) give the contribution up to the second order in electric
field E. In case of the weak anisotropy A < D?/], the term (4.45) can be usually neglected.
Note also that in the main-order approximation (z!) the E-field induced shift in energy
is also the shift in free energy of the skyrmion lattice for a fixed temperature near
Tc. We note that if combining a weaker six-order anisotropy, which contains field-
independent terms as u®cos6¢y, together with 6¢o-dependencies in (4.43)-(4.45), one
will get minimization of skyrmion lattice energy for ¢ = ¢ (E), that is, the electric-field
rotation of the skyrmion lattice discovered recently. [132]

Finally, we plot the dependence AW (E) for for magnetoelectric CupOSeOs (see Fig. 4.7).
We use J = 4.85x 1072 Jm/A? D =-9.85x10"1J/A% M;=111x10°A/m, A=6.2x
10°%Jm™'A™2 and a/Dky = 9.23x107°m/V. We also restore v3 coming from nota-
tions introduced in paragraph under Eq.(4.1) (recall for E[|[111] it was convenient to
set |E| = v3E), and we fix for simplicity the skyrmion lattice orientation as ¢ =0. As
indicated with a red bar on Fig. 4.7, the electric field ranges accessed in recent literature
[132, 151, 154] is well within the validity of first order perturbation theory calculations.
We come to conclusion that it is possible to stabilize (if AWiota1 < 0) or destabilize (if

AW;otal > 0) the skyrmion lattice by choosing the appropriate magnitudes and polarities
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Figure 4.7: Shift in the skyrmion lattice (free) energy in electric fields. Solid line: first + second
order (i.e. up to =?) perturbation theory, dashed line: contribution of the first order
(2e!) perturbation theory only. We sketch validity of the ! perturbation theory as
around |a| ~ 0.1, which for Cu,OSeO3 converts to approximately +20 V/um. Exper-

imentally accessed range of electric fields is of order +5 V/um, which is sufficiently
captured with the ! theory.

of electric fields. This coincides with the previous idea of Mochizuki [145] of creating
single magnetic skyrmions with external E-fields in multiferroic Cu;OSeOs. The present
study is therefore a bridge towards this idea in the bulk samples, where the skyrmions

usually exist in the form of long-range-ordered or partially-disordered skyrmion arrays.

An interesting output of the calculation is the existence of the stationary points if
a helix is directed in a proper way (Fig. 4.6). This feature comes both in the elastic
and nonelastic distortions of the skyrmion lattice. However, as the SkL is constructed
on the three helices, the mean-field energy of the SkL is still shifted.

We sketch the limitations of the calculation. First, this study describes the first two
perturbative corrections to the mean-field energy of the skyrmion lattice in the multi-
spiral approximation, without comparing the free energies of different possible phases
(helical, conical) in the system. Second, the energy functional is taken in the quasiclas-
sical continuous-field limit, which limits the use of the model only to the sufficiently
low DMI parameter (D/J <« 1) and excludes the quantum regime (low T). Third, the
effect of electric field on critical fluctuations on top of the mean-field SkL solution is not

considered as it comes as a higher-order contribution in the critical correlation length.

4.2.5 FEFFECTIVE M* MODEL

To capture universal physics of phase diagrams, we consider the effective M* model, that

is the asymptote of (4.13) where the main contribution is given by M?*.
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Fo[M@®)]/V = (@arM? + J(VM)? + DM - (V x M) —H-M + UyM*%), (4.46)

or

WolSm)] = (arS* + J(VS)* + DS-(V xS) —h-S+ US*). (4.47)

The importance of this model was already discussed in the previous chapter.

We consider now the other field geometry, namely, E|[H||[111], as it will be important
for discussing experiments in the next section. The rotated spin frame, — in which the

skyrmion tubes are aligned with the new z’ axis, — is given by a unitary linear transform

1 11
V2 VB V3
S:=2ZmySr,  Zpu = \/% _\/Lg \/Lg , (4.48)
0 2 1
3 V3
for which the ME coupling reads
-1 0 0 B IE|
a
HolDky =2 - , =—, E=(E,E,E), E=—. 4.49
wlDkg=2x[ 0 -1 0 T ( ) 7 (4.49)
0 O

In this section, we will be primarily interested in the first order perturbation theory,

thus only the higher-order terms contribute. We thus use

M 2 10
=)y _ <0 Sy [ HelS )
) = 18 + ¥ sy e m 0k

(4.50)
1170 e - ¢!

where ef(") are given by Eq.(4.22) and ISE(")), n=0,1,2, are eigenstates of A as given by

Eqs.(3.46) -(3.47). The direct calculation for perturbation (4.49) is

5)) =180 — e IFi), (4.51)
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with the elastic vector of form

3 —isin¢g 3
IFk>=m +icos :5|s;(°>>—2|sg°>>, (4.52)

where |S{(O)) is given by (3.46) and ISBO)) =(0,0,1)T is a field-polarized k =0 component.

Thus we have simply

! 3
sy = (1+Eae)|s;°’>—2ae|sg°)>, (4.53)

Thus, similar to calculation (3.65), in the skyrmion phase we have

(S*m) =m* +2m? Z{qliqs}{qliqs} ST ST +8) SV +35% 57 |60k +ko)
y=m +zm-f Z 2 ki Ok, T Ok Pk, T 99K, Ok, | 0 K1 T K2
1 2

3{q1~~~('16}{q1~~-QG}{Q1~--CI6} v ooy (O 400 +00)

Z QX QX z z @z @z | ik, +Pxr, +@
+amy kz kz kz (8,55, 5%, + 52, Sy Sy, + %, 5§, 5%, | /#1209 5 ky + ey + k)
1 2 3

4{ql.v.qe}{ql.v.qe}{ql...qe}{ql.v.qe} Yoy o o Vo
X X X X Z Z Z Z X X
+U kZ kZ kZ % (Sk1 Sk Sks Sk Sk, Ske, S Sk + Sk S Sk Skes + 25k, Sk, Sk, Sk
1 2 3

Y QY
+28) SISE St +28} St S SE, 6k +ko + ks + Ky).
(4.54)

The direct substitution of (4.53) gives

W) = (US W) = U (m* + 514 + 24m?ps? - 18v2mys®| - 90U 22 (614% + 4m? — 5V 2pm) ce.
(4.55)

As a comparison, in the conical phase we only have

+Q+Q
(S* e =+ 2me 35 (SE L+ Sy S, + 5 Sk 9tk + e
1 2
+Q+Q+Q+Q
4 Y QY YV QY Y QY
! L300 (i S S S S+ S S5+ 250,585,
1 2 A3 4

Y QY
+28) SISE St +28} St S SE, )6k + o + kg + Ka). (4.56)

as the cubic term is always zero, as also (m-s) = 0 which results to only sg instead of 33@

in the skyrmion phase.
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To compare with the conical phase, we repeat the perturbation approach (4.36) for
the conical phase (3.25). The calculation for the [111] E-field shows that the conical

vectors (5.7) remain unperturbed. Thus for this field configuration, we have

WY = (US 0y = U (m?+21%)°. (4.57)
Thus, in the main approximation the conical phase for E||H [111] is not subjected to
electric fields, thus allowing to observe a pure effect of electric field on the skyrmion
lattice. This observation is used for planning studies described in the next section. Note
however that the conical vectors will be indeed perturbed for H [110], however not
crucially.?

The present model describes the shift of the mean-field energy of the SkL, which is
either positive or negative depending on the direction of the electric field. In a particular
situation when the first order terms may vanish, the energy shift is of the same sign for
both positive and negative voltage polarities.

The main physical consequence of the phenomenon under study is the field-induced
stabilization of the skyrmion phase in the bulk, which has been so far indirectly observed
in Cup0Se0Os. [154] This mechanism if further developed would allow one either to
write or erase the skyrmion array over the full sample if it is properly placed in the H, T
phase diagram, and thus opens further routes for skyrmion-operating insulating logical

elements and data storage devices.

4.3 WRITING AND ERASING SKYRMIONS

To realise skyrmion-based applications, research into creation, control and stabilisation
of skyrmions is in an active phase [46, 80, 91, 93, 106, 132, 143, 151, 152]. In this context,
it could seem problematic that in bulk materials the skyrmion phase is only stable in a
finite temperature (T) and applied magnetic field (uoH) interval [38, 40, 45, 132, 156].
In Cuz08Se03 for example, the skyrmion pocket spreads downwards in T by just 3.5%
of T¢, occupying no more than 1% of the total ordered phase space [143, 157]. This
limited phase space is observed also in other known bulk skyrmion hosts [38, 40, 156,
158]. However, the finite extent of the skyrmion phase pocket is in fact an interesting
advantage. It means that relatively small perturbations can dramatically influence the
skyrmion phase stability. The ability to enhance or suppress the skyrmion phase space
in a sample can provide a flexible platform for the respective creation or destruction of

skyrmion states. Here we present a simple and reliable mechanism for the stabilisation

; ; 2
2The perturbed conical vector for this field configuration is given by S = \/Li - 2179% —;e— 98’%, Si =

A g 2 9 z _ i 4 4, g4, o4
5= ie+ 23 83 and Sk 0. For such a perturbation, both U(S*) and A(Sx+Sy+SZ> are not

perturbed even in x2. The magnetoelectric response is only (#)x/2Dkg = (,u2 —2m2)3e—9u2392, which is
of the smaller than in the SkL phase in the phase space under interest.

74



and destabilisation of the skyrmion phase exploiting electric (E) fields applied to an

insulating material.

To date, several approaches for skyrmion manipulation were demonstrated using
either moderate electric currents, electric fields, or thermal gradients [46, 80, 91, 93, 94,
132, 133, 145, 151, 152, 154, 155]. Progress towards tuning the bulk skyrmion phase
stability was also demonstrated using both applied uniaxial [159, 160] and hydrostatic
pressure [157]. For possible applications of the insulating skyrmion host materials, the
use of electric field to manipulate the skyrmions is a very promising option that remains

relatively little explored.

Here we report a combined experimental and theoretical study of SkLL phase stability
under moderate E-fields (V/um) in the model insulating skyrmion host Cu;OSeO3. We
use small-angle neutron scattering (SANS) to study microscopically how the E-field con-
trols the extent of the equilibrium skyrmion phase in CuyOSeOs. We find that both the
magnetic field and temperature extent of the skyrmion phase respectively expands and
shrinks dependent on the E-field polarity. Theoretically, the E-field effect is addressed
using first order perturbation theory for the free energy of the underlying phases. This
results in a small E-field driven shift of the SkL free energy that is nevertheless compa-
rable with the energy difference between the skyrmion and conical phases. Furthermore,
we develop a new approach for treating the fluctuative free energy by adding quasipar-
ticle modes near T¢ which prove to be pivotal in evaluating the free energy differences
between the phases. The developed model describe well our experimental data and

allows calculating phase diagrams for different magnetic and electric field orientations.

From recent bulk susceptibility y(E) measurements of Cu,OSeOs [154], it was sug-
gested that skyrmions may be ”created” or "annihilated” by applying a dc E-field in
suitable parts of the (T,uoH) phase diagram. In that study [154] the skyrmion phase
was identified as a small drop in y(E), which served as an indirect indication for the
existence of the skyrmion phase. Here we use the tool of small-angle neutron scattering
(SANS) to directly observe the microscopic skyrmionic magnetism in Cup,OSeOs, and
its response to an applied dc E-field. By SANS the skyrmion lattice phase is typically
observed as a sixfold symmetric diffraction pattern, consistent with the so-called multispi-
ral (triple-q) magnetic structure described by three propagation (g-)vectors rotated by
120° with respect to each other (note that both +q each give a Bragg spot) [38, 44, 132].
To maximise the E-field effect, in our SANS experiments we oriented the sample so
that El|poH||[111] and, in comparison with the size of the skyrmion phase for E=0, suc-
ceeded in observing an expansion (contraction) of the skyrmion pockets for an E-field
applied parallel (antiparallel) to the [111] axis. The changes in the phase diagram are

summarised in Figure 4.8.

For the SANS experiment, we used a single crystal crystal grown using chemical

vapour transport [161]. The crystal was of mass 6 mg and volume 3.0 x 2.0 x 0.50 mm?
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Figure 4.8: Skyrmion phase tuning by electric fields. (a) Phase diagram (skyrmion pockets)
measured by small-angle neutron scattering (SANS) for El|poH||[111]. The skyrmion
pocket spreads almost doubles in the positive field +5.0 V/um, while shrinking to
half under a negative field of —2.5 V/um. (b)-(g): Typical SANS diffraction patterns
obtained from the SkL phase under various electric fields. Here the [111] direction is
into the page. The black rings define an annular integration window used to evaluate
the total scattered intensity due to the skyrmion phase on the detector. The hallmark
six-fold symmetric scattering of the skyrmion lattice is clearly observed in (b),(d).
At 56.8 K, applying E < 0 suppresses both the SkI formation (compare (d) and
(f)). In panels (c),(e),(f) the six-fold symmetric scattering signal is not clear, but
it nevertheless arises from (orientationally-disordered) skyrmion arrays and displays
the same |q| as the Bragg spots in six-fold patterns shown in (b) and (d). In panel
(g) no SANS signal is observed above the background level.

with the thinnest axis ||[111], and [112] vertical. The sample was mounted onto a bespoke
sample stick designed for applying dc E-fields [162]. In our experiments we achieved E-
fields ranging from +5.0 kV/mm to —2.5 kV/mm. Evidence of electrical breakdown was
detected for E-fields outside this range.

The sample was loaded into a horizontal field cryomagnet at the SANS-II beam-
line, SINQ, PSI. The magnetic field (uoH) was applied parallel to both the [111] direc-
tion of the sample and the incident neutron beam to give the experimental geometry
EllpoH|[111]. In this geometry, the SANS signal is only detected from the skyrmion
phase, which typically presents as a hexagonal scattering pattern with propagation vec-
tors qLugH. In this geometry, we avoid detecting any SANS signal due to either of the
neighbouring helical (q[[{001)) or conical phases (qllgoH), since the propagation vectors
of these phases lie well out of the SANS detector plane.

We used incident neutrons with a wavelength of 10.8 A(AA/A=10%). The scattered
neutrons were detected using a position-sensitive multidetector. The SANS measure-
ments were done by rotating (‘rocking’) the sample and cryomagnet ensemble over angles
that brought the various SkL diffraction spots onto the Bragg condition at the detector.
Data taken at 70 K in the paramagnetic state were used for background subtraction.
Before starting each poH-scan, the sample was initially zero field-cooled from 70 K to

a target temperature, with the E-field applied when thermal equilibrium was achieved.
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The E-field was maintained during the pgH-scan. At each T we define the pyH extent
of the SKkL phase as that over which SANS intensity is detected. We use this criterion to
extract the parametric extent of the SkL phase for (uoH,T,E) as shown in Figures 4.8
and 4.9.

Figure 4.8 shows representative SANS data collected at various (T,uoH,E) conditions.
The sixfold symmetric SANS patterns due to a skyrmion lattice most clearly seen in Figs.
4.8b,d. In these particular SANS patterns, weaker spots are also detected to lie between
the six strongest spots. This indicates the co-existence at various (T, uoH, E) conditions
of differently oriented skyrmion lattice domains around the poH-axis, a phenomenon
that has also been reported in other scattering studies of Cu,OSeOs [44, 163, 164]. For
the patterns shown in Figs. 4.8c,e,f, each obtained near to an edge of the respective
skyrmion phase as determined in the SANS experiment, the Bragg spots become ill-
defined, and instead the intensity appears as azimuthally smeared patches, indicative of
orientationally-disordered SkLs (hereafter termed ‘skyrmion arrays’). Since the origin
of the SkL disordering is difficult to identify unambiguously, a systematic analysis of all
SANS data is done by evaluating the the total scattered SANS intensity observed on
the detector within the same annular integration window shown in each of Fig. 4.8b-g.
From this approach we account for the scattering due to all the skyrmion arrays in the
sample when determining the parametric extent of the skyrmion phase.

The main result of the SANS analysis is shown in Figure 4.8b. Importantly our results
show how it is easier to destabilise the skyrmion phase than stabilise it; a positive E-field
of +5.0V/um is required to expand the skyrmion pocket so that it becomes almost twice
larger, while a negative E-field of only E =-2.5V/um is needed to shrink the pocket by
approximately a factor of two. Since this controlled phase expansion and contraction can
occur in general for an insulating magnetoelectric skyrmion phase at any temperature,
our findings are very attractive for applications; for a device layer of thickness 100 nm the
skyrmion phase in a sample can be almost entirely destabilised (erased) or restabilised
(written) with less than 1 V, the voltage compatible with modern microelectronics.

Examining our SANS data more closely shows that at various points in the mag-
netic phase diagram, the moderate E-fields V/um either fully destabilise or stabilise the
skyrmion phase, when compared with data obtained at the same points but at E = 0.
As shown in Fig. 4.9a, both of these effects are observed to occur over large T windows
each roughly 1 K wide, corresponding to 2% bothway in AT/T¢ in CuyOSeOs.

The total scattered SANS intensity is indicative of both the population and quality
of the skyrmion arrays in the sample. As an example, consider the starting point when
skyrmions are essentially absent from the system, such as on the conical /skyrmion phase
border at the lower-T boundary of the unperturbed skyrmion pocket (E =0). Fig. 4.9b
shows g H-scan data obtained for this case at T = 54.8 K. While at E =0 the lack of SANS
intensity indicates the skyrmion phase to be absent, the application of E = +5.0V/um

leads to an enhancement of the skyrmion stability such that significant SANS intensity
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of the skyrmion phase is observed. In contrast, the destabilisation of skyrmion arrays
requires an E-field of opposite sign. Fig. 4.9c shows that at T = 55.8 K, a negative
E =-25V/um can completely destabilise the skyrmion arrays that were stable in the
unperturbed state (E=0).

We find that the T-window of 53-55.5 K is appropriate for enhancement of the
skyrmion phase stability under E = +5.0kV /mm, while a T-window of 55-56.5 K is suit-
able for suppression of the skyrmion phase stability for E = —2.5kV /mm. Positioning a
device at 55.5 K allows to demonstrate both a significant enhancement and suppression
of the skyrmion phase by E-fields of opposite polarities.

The underlying mechanism for enhancing and suppressing the skyrmion phase stabil-
ity by E-fields is mediated by the magnetoelectric (ME) coupling in insulating Cup,OSeOs.
Microscopically, the ME coupling originates from the d-p hybridisation mechanism (see
Refs. [44, 146-148]). The emergent electric dipole moment P = A(S,S;,S;Sx, SxS)) is
linked to the underlying spin structure S(r) = (Sx, Sy, S;) with the coupling parameter A
of relativistically small magnitude. Crucially, this effect results in a P-E shift of energy
in E-field because the skyrmion phase now has a nonvanishing electric-dipole moment.
This perturbation renormalises the elementary helices upon which the skyrmion phase
is built, and slightly distorts the skyrmion lattice [132].

In this study, we apply the ME perturbation to the free energy described by an ef-
fective Ginsburg-Landau functional with Dzyaloshinskii-Moriya interaction (DMI), and
consider the critical fluctuations which in bulk samples favour the skyrmion phase with
respect to the neighbouring conical phase. Due to the relativistically small size of 1, the
dimensionless E-field is rather small so that, &e = AE/Dky < 1, and we can build a pertur-
bation theory in s for the modified free energy neglecting all the terms of order a? and
higher. Our finding is that the perturbations of fluctuative terms come in only at second
order, while the mean-field energy already shifts in the first order due to the direct ME
and nonlinear contributions. The corresponding shift in free energy of the skyrmion
phase depends on the direction of E-field (see Fig. 4.10a), thus either enhancing the
skyrmion phase stability (E > 0) or destabilising (E <0) it. While at first sight it can be
surprising that perturbatively small E-fields play a crucial role here, this is facilitated
by the very close competition between the skyrmion and conical phases already in the

mean-field.

To calculate the phase diagram in E-field, we use a new approach developed on the
basis of effective models from Refs.[38, 132, 134]. Compared to these earlier studies the
new approach is self-consistent in the way that it captures phase diagram, provides a
deeper understanding of the role of quasiparticle modes near T¢, and covers the path-
integral approach for calculating the fluctuative free energy [38] as a limiting case. We
thus treat the first-order perturbation in E-fields on top of the mean-field solution, and
add the fluctuative contributions that stabilise the skyrmion lattice in the bulk. The
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Figure 4.9: Optimising skyrmion stability in electric fields. (a)-(c): Experiments (a)-(b)

SANS intensity versus magnetic field at (a) 55.8 K and (b) 56.8 K. Application of pos-
itive electric field 5V /u (red) enhances the stability and hence the neutron-scattering
quality of the skyrmion lattice at (a) and (b), while application of a negative electric
field 2.5V /um (blue) kills the skyrmion lattice at 55.8 K. (¢) Summary for maximum
SANS intensity versus temperature along the direction of the skyrmion pocket growth
(dashed line on the inset). The zone favourable for enhancing the skyrmion phase
stability ("writing” skyrmions) is 53 to 55.5 K, where the skyrmion array population
is the highest for E> 0 (+5.0V/um), while for E = 0 the skyrmion phase is absent. For
suppressing the skyrmion phase stability ("erasing” skyrmions), it is favourable to
place the sample between 55 to 56.5 K, where the skyrmion phase is well populated
under zero voltage, but becomes strongly suppressed under E <0 (-2.5V/um). (d-
f): Theoretical calculation for free energy difference between skyrmion and conical
phase neglecting the nonlinear (E?) effects. a) Free energy difference versus magnetic
field at 55.8 K. b) Free energy difference versus magnetic field at 56.8 K. ¢) Free
difference versus temperature along the direction of skyrmion pocket growth. Calcu-
lations are done neglecting second-order corrections i.e. for the same field-amplitude
E =45V /um, thus qualitative agreement is present.

main contribution to E-field effect here is given by the shift of the mean-field free energy

difference between the two phases (conical and SkL), while the fluctuative shift under

voltages can be considered quadratically small.

The effective mean-field theory is based on the coarse-grained magnetization ap-
proach M(r) = M S(r) as described in [38]; see also Chapter 3. One starts with the

mean-field approach with free energy

FIM] = (@7 M? + J(VM)?> + DM - (V x M) + UM* —H-M) (4.58)

with spatial average (...) = fd—‘}/..., and O7 < a(T — T¢) near T¢, J is the Heisenberg
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stiffness and D is DMI, H is the magnetic field, and the higher-order term U grants
the formation of the crystalline phase [38]. In the mean-field, the interplay between
Heisenberg and DMI energies determines the helical vector as kg = D/2]. The long-range-
ordered hexagonal skyrmion lattice is approximated as S(r) =m+puY g, Sq, el v Hitn 4.
where the summation runs over the crystalline order vectors q; +q2+q3 =0. In the mean-
field, the skyrmion phase is slightly gapped with respect to the conical phase, however
the two are closely competing. Further details of the mean-field theory described in Ref.
[38].

Perturbation theory in electric fields. The magneto-electric coupling in Cu,OSeOs3
is relativistically small, so the perturbation parameter is e = AE/4Dky < 1. It is suffi-
cient to use the first order perturbation theory on top of the non-perturbed free energy.
We go to the rotated frame defined by the magnetic field direction along [1 1 1], and

re-write the free energy. The first order perturbation theory gives eigenvectors:

(n), 7 (0)
(S| 71”)

IS7) =18 + Y I1S™) N0 +0(), (4.59)

)
n#0 €k~

which are now the basis for constructing the distorted skyrmion lattice. For other (H,

E)-field configurations, we re-do the calculations in the new rotated frames.

Fluctuation-induced phase stabilisation. We use a new approach, which cap-
tures as a limiting case the fluctuation free energy from [38], as described in Chapter 3.
The essential physics is captured already in Gaussian (noninteracting) fluctuations with

free energy density

k<A
Fouct = Z Z w{(l)flil) = T Sfiuct, (460)
i k

where A =2m/a is the natural cut-off, f(i)

« is the critical modes distribution, and the

entropy of Gaussian fluctuations is

lki<A . N
Suet =Y, 2 A0+ A I+ £ = £ In {7} (4.61)
k

1

in the case of bosons. Fluctuations around mean-field are described by the generalised
1 8%F

T SM;(06M; ()’
local scale (k> J/D), the chiral magnet is reminiscent of a ferromagnet, so the modes

susceptibility )(l._jl (r,r) = giving rise to several collective modes. On the

behave asymptotically wy o< k? for large k, thus asymptotically Fquc = log Bwi o< log k2,
which covers the model of Ref.[38]. The main contribution to (4.62) is given by the short
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length-scale ("ferromagnetic”) physics,

10U
AFfuce = (&1, — S T, (4.62)

The electric field also slightly affects the fluctuative energy, because it modifies the
correlation length near T¢ and so renormalises Jog, which is neglected here as a higher-

order (z?) effect.

Our approach allows to understand the stability of the skyrmion lattice on the in-
tuitive, pictorial level: the critical fluctuations (waves) are superposed on top of the

0,1,2)
k

variationally minimised free energies. There are three critical modes w around the

1((0) soft on the sphere |k| = kg, which means that it cost very little en-

mean-field, with w
ergy to add many such fluctuations if they are coherent with the helix kg. Thus wﬁ? is the
so-called "dangerous” mode since it results in a Van-Hove-like singularity at T¢ and even-
tually breaks down the ordered phases into the disordered (paramagnetic) phase [134].
Below T¢ the breaking of symmetry can be observed by SANS with either a six-fold pat-
tern (skyrmion phase) or two-fold pattern (helical or conical phase), both circumscribed
by a sphere |k| = kg in reciprocal space. Our calculation shows that the skyrmion phase
is favoured because adding fluctuations generates more entropy in the skyrmion phase.
This analysis leads also to a qualitative criterion capturing magnetic-field-independent
breakdown of the ordered phases at T¢. Asymptotically, the main contribution of the
fluctuative free energy is given in the short-scale physics, where Cuy;OSeOs is ”almost”
a ferromagnet, thus reproducing the result of the path-integral approach [38] as a lim-
iting case. The model described here captures the qualitative physics of the system, as

exemplified by the theoretical phase diagram shown in Fig. 4.10.

Experimentally, we have observed that the parametric extent (stability) of the skyrmion
phase become enhanced under E > 0. This observation can be addressed theoretically
by exploring the free energy density map across the phase space for different values of
E-fields. We find that the free energy minimum deepens with an increasingly positive
E-field. For example, if we sit at T =54.8K at E=0, the free energy of the skyrmion
phase has a gap with respect to the conical phase (see Figure 4.10a), which means that
the skyrmion phase is not favoured. If we now apply the E-field, there is a finite range
of uoH where the free energy difference is negative with respect to the conical phase and

the skyrmion lattice can now exist.

For our numerical calculations we use T¢ = 58 K, which approximately sets the Heisen-
berg stiffness as J =4.85 x 10723 Jm/A%. From the SANS measurement we establish di-
rectly the modulation period of 60nm, which estimatively differs by a few percents from
the mean-field value 2m/ky, because the mean-field ordering vector kg = D/2] is slightly
renormalised by the fluctuations near T¢. This sets the ”"bare” DM interaction enter-
ing (4.58) as D =—9.85x 10715J/A%. The lattice parameter is a = 8.91 x 10™'%m, which

gives the natural cutoff A =2nx/a =70ky. The saturation magnetization in Cuy;OSeOs3
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Figure 4.10: Bulk stabilization of the skyrmion lattices under electric fields (theory):
Phase diagram (skyrmion pockets) for E-fields +5kV /mm, for E|[H||[111].

is Mg=1.11x 105A/m and scales with temperature as Mg(T) = M;(1 — (T/T¢)*)%2, with
a; =1.95 and @, =0.393 [165]. We choose the nonlinear coupling responsible for SkL for-
mation K =6.2x1076Jm1A~? and Landau parameter at = HT/]k(Z)(T— Te)=3.5K™!. For
the qualitative phase diagram shown in Fig. 4.10, we use a symmetric-response model
(2e!), for which the best fit to SANS data is for & = 0.02, which corresponds here to
E =+5x10°V/m coupled with A/Dky=1.6x10"8m/V to the underlying spin structure
through ME mechanism.

In some respects, the observed E-field effect on the skyrmion phase stability resembles
that achieved due to either applied uniaxial [159, 160] or hydrostatic pressure [157].
However, integrating the pressure effect on skyrmion stability into a technological setting
is very challenging. In contrast, the E-field effect is a versatile and reliable external
parameter; providing an efficient control of both the skyrmion position [132, 149, 151]
and the stability of the phase as a whole.

Our present study lays both theoretical and experimental foundations for fully ex-
ploring alternative poH- and E-field configurations, not only in reciprocal-space mea-
surements like SANS, but e.g. real-space imaging techniques such as cryo-Lorentz trans-
mission electron microscopy (LTEM). The next steps shall be extending experimental
and theoretical studies to out-of-equilibrium and metastable configurations and confined
geometries, which can serve as platforms for skyrmion creation and annihilation in de-
vices.

In conclusion, we have demonstrated experimentally and theoretically the mecha-
nism by which a moderate electric field can enhance and suppress the stability of the
skyrmion phase in the magnetoelectric chiral magnet Cup,OSeOs. In addition, we provide

the parameters by which the theoretical approach achieves semi-qualitative agreement,
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which can be extended towards describing the E-field effect on stable and metastable

skyrmion states in devices, which are of paramount technological importance.

4.4 (CONCLUSIONS

In this chapter, I presented calculations which show stabilization of magnetic skyrmions
under applied electric fields in a skyrmion-hosting magnetoelectric insulators. The first
model calculation in Section 4.1, shows that even within the minimal model with absent
anisotropies, under conditions when the skyrmions are, thermodynamically speaking,
metastable, it is possible to lower their energy with respect to the ferromagnetic back-
ground upon applying external electric fields codirected with the magnetic field. This
ideologically leads to the second model in use, for the calculation of the skyrmion lattices
under electric fields in the bulk compounds. The essential formalism for this calcula-
tion was adopted form Ref.[132], and enhanced firstly towards calculating all the terms
within the first order-perturbation theory; secondly, the second-order perturbation the-
ory had been implemented, which is computationally more demanding [see Eq.(4.36)]
as one needs to calculate analytically a plethora of momentum-conserved summations;
thirdly, the range of validity of the present theory was sketched; fourthly, the calcula-
tions were repeated for the effective M* theory, which finally lead to the calculation of
effective magnetic-phase diagram and helped to coin the understanding of the neutron
scattering experiments for writing and erasing the skyrmion phase in bulk as shown in

the last section.
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Magnetic Skyrmions under Pressure

Mechanical-strain and pressure-induced control of topological magnetic phases is a valu-
able and fruitful approach in skyrmionics [157, 159, 160, 166—168]. Among its advantages
are the relatively cheap facility for establishing experiments, changing directions and in-
tensity of the applied pressure force. Under mechanical strain, a material is pushed in
volume so the distances between the constituting atoms are modified. This results to
further interlapping between the local wave functions (in a rather nonlinear way), so
the macroscopical properties, such as exchange stiffness, DMI, anisotropy is modified.
Our experimental observations indicate that the J and D remain almost unchanged as
the critical temperature and helix modulation wavelength have not noticeably modified
even under pressure of several GPa (tens thousand of atmospheric pressure), however
the H-field range of stability is shifted thus indicating on a very nonlinear change in
anisotropy under such pressure, which we on the basis of this estimate to be in order of
20%. As a result, the stability of the skyrmion phase is tuned very dramatically - in more
than 20 times comparing the initial phase space. Our findings thus provide a deeper
understanding on mechanisms of stability of the skyrmion phase in bulk, as also sketch
the possible route for pressure-controlled stabilization of topological magnetic phases in
other systems, e.g. under uniaxial strains. Additionally, it provides further ideas for
experiments towards increasing “chemical pressure”, i.e. doping the sample with other
atoms, which may lead to the discovery of bulk skyrmion hosts with better ranges of

stability of the skyrmionic phases.

In the first section of this chapter I show theoretically stabilization of a skyrmion

under uniaxial mechanical strain on the basis of the magnetoelastic effects on the spin-

85



density-wave phases in chiral magnets [169], which is important for relatively low strains
(MPas) and in thin films; while in the second section I mainly follow the paper which
I coauthor [157] on the study of effects of uniform pressure on bulk chiral magnet

Cup0Se03 and dramatic enhancement of the skyrmion phase therein.

5.1 STABILIZATION OF A SINGLE SKYRMION UNDER UNIAXIAL MECHANICAL
STRAIN

Here we consider a generic mechanical-strain-induced change to magnetic anisotropy in
the lowest order, valid for relatively weak mechanical strains of arbitrary directions, in
particular, in thin films. The magnetoelastic perturbation by a generalized strain tensor!

€qp (@, B=x,¥,2), to the lowest order can be represented by a quadratic form [169]

1
SW =2 Lo} £aaS-S+L1 (ExxlSyl* + €yl Szl? + €221Sx1?) + Lo (€xxl Sz I* + £y |Sxl® + €221 S, %)
a

_%Lg a;ﬁ (SaSj+52S5) €aps (5.1)
with all terms constructed invariant with respect to time-reversal symmetry and the
operations of the space group P2;3 of a chiral magnet (e.g. MnSi or Cu,OSeOs). The
coefficients L; » 3, responsible for lowest-order anisotropic effects under mechanical strain,
are induced by spin-orbit coupling (including magnetic dipole-dipole interactions), while
Lo o< J represents effective isotropic contribution. For simplicity, we further consider
L, =L, = L, and take into account Poisson’s coefficient v ~ 1/3 for most of materials? (e.g.
for skyrmion-hosting MnSi, v =0.28 [172]). We consider for simplicity mechanical strain
along [0 0 1] (and magnetic field [0 0 1]). Upon application of the pressure tensor oqp
(with 0xx =0, 0, =0, 0., =0) to material with elasticity modulus E, the strain tensor

is defined by diagonal elements,

Exx = (0xx—VOyy—v0 ;) IE, (5.2)
eyy=(0yy—vOxx—v0;)/E, (5.3)
€22=(022=VOxx—Vv0yy) IE, (5.4)

and thus we find exx =vo/E, €y, =v0olE, €;; = (1-v)o/E. The direct substitution to

(5.1) gives renormalization to uniaxial anisotropic contribution as

LOn conventional theory of elasticity, see e.g. Ref.[170].

2Poisson’s elastic coefficient v shows a dimensionless ratio between the transverse and axial strains.
Theoretically, it cannot overflow values from range (—1;1/2) [170]. Most of the real materials however fall
into group 1/5 < v < 1/2, with a very few exceptions; thus v ~ 1/3 as a general rule. The underlying physical
reasons for this has been only recently explained [171].
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0 00
0 Woo1; = —L£o Zsl{flosk, L= —, Qo =10 0 O0Of, (5.5)
) 00 1
and thus the surrounding conical phase becomes perturbed in the spin representation

Jk* -iDk 0
Hy=| iDk  Jk? 0 . (5.6)
0 0 Jk*-%o

normalized eigenstates of this Hamiltonian operator are given similar to those in Eq.(3.16)

1 1
S(O) :_(iyl)O)Tv s(l) :(0)0)1)Tv S(Z) = _(_iylvo)Ty 57
k \/Q k k \/z ( )
corresponding to essentially the eigenvalues
&Y = Jk* - Dk, &Y =Jk* - Lo, &P = Jk* + Dk, (5.8)

Thus for relatively small strain [leqpll < 1, S{(O) remains a groundstate, but under the

1
k

by 04p, see also [160]. In this section we consider the former case, i.e. when 0< £o < Dk,

stronger strains the ground state is S;”, so in general the conical helix is renormalized
thus the conical phase is not perturbed, and the mean-field correction to the first order

is simply 6 Weon = —Lom?.

We consider in this section a slab of a skyrmion-hosting material (a thick ”thin
film”) such that the skyrmions are thermodynamically stable in some finite skyrmion
pocket (see Figure 5.1), but the conical phase is still present at low temperatures. It
is know that because of the surface-induced changes in anisotropies, DMI or stray field,
the skyrmion phase can be stabilized in a much broader skyrmion pocket, in a form
of a disordered skyrmion lattice or a skyrmion liquid. We choose the field-temperature
conditions near the skyrmion-conical boundary (see figure 5.1) where a skyrmion is
thermodynamically metastable, by a fixed free energy difference AW, and imagine that
we know the equipotential contour characterized by the same barrier energy AW, (see
Figure 5.1). The probability of breaking a conical stripe and nucleating a skyrmion is,

very roughly,
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Figure 5.1: Stabilization and destabilization of (noninteracting) skyrmions with anisotropic me-
chanical stress (0). a) Qualitative phase diagram. Skyrmion positioning (red cross)
near the skyrmion-conical boundary, where it is metastable. We assume that we know
the equipotential contour (dashed line) characterized by a (2-meron) nucleation bar-
rier AWy > 0. b) By application a uniaxial stretching mechanical stress (o <0) a
randomly nucleated skyrmion (at AWy contour) becomes thermodynamically stable.
¢) Sketch of expected phase diagram under compressive (o > 0) and stretching (o <0)
uniaxial stress [001]; note that stretching o <0 along [001] is physically equivalent
to compressive ¢ >0 in direction [110] (see main text).

p~ e 2AW/ T (5.9)

(here 2 comes because nucleating a single skyrmion within a conical stripe requires
putting 4 merons (half-skyrmions)). Thus, on an intuitive level we understand that at
the red cross point on figure 5.1 there is always a finite probability that a skyrmion will
appear, however, as it is in the metastable state, it will fast decay within lifetime of
order 1/AW. Can we however ensure that it lives long enough, and eventually becomes
thermodynamically stable, by applying the mechanical strain? Let’s see.

The skyrmion energy in the helical phase, to a rather rough approximation, can be
consider as axisymmetric, thus the model discussed in Chapter 2 can be applied for an

order-of-magnitude estimate. Thus we write,

AW = Wy, — Wi (5.10)

while a single-skyrmion energetics under the uniaxial strain (5.5) is

d6)2 sin%6
— + [

(d@ N sin26
dr

(Wai) :271M2fdrr{][(
dr

H
)
= )+(KU+£0)sm B—A—/Icose},

(5.11)

where Ky represents the strength of this (second-order) uniaxial anisotropy3. Note that

3In “rather thin” slabs and thin films, the uniaxial anisotropy often comes from surface-induced
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in Chapter 2 we consider K, =0, which leads to existence of the skyrmionic solution,
however it is metastable. Including finite K, > 0 in moderate magnetic fields leads
to proliferation of skyrmion lifetimes. Thus Euler-Lagrange equation in dimensionless
x=r/a reads (see Chapter 2, Eq. (2.36)),

sin20 sinZ0

32 +2ko » — (g +ugo)sin20 — hsinb =0, (5.12)

0" (x) + l49’(x) -
X

with dimensionless uniaxial anisotropy uy = Kya?/2J, and strain-induced anisotropic
rigidity ug = £a?/2J. Thus we fix a finite 1y and linearize the solution of (5.12) around
up with a small perturbation ugo < ug. Thus for o <0 (stretching strain), the effective
value of u is decreased which upon reasonable set of parameters leads to proliferation of
a skyrmion as a quasiparticle (for numerical calculations, we used e.g. h=0.05, up = 1.0,
ko/a=2m/A, A =14a); a typical situation is sketched on Figure 5.1. We see that there
exists a critical strength |o] = 0. (with €. = 0./E <« 1) that leads to thermodynamical
stabilization of a skyrmion. In other words, the skyrmions which are spontaneously

nucleating with rate p ~ e 2AWIT

, become long-live quasiparticles upon application of
the critical strength o.. Thus 0. is a continuous function of AWy, so the skyrmion pocket
continuously expands upon application of arbitrary (but still rather small) strain o, <O0.
(see figure 5.1). This expansion is however a rather slow (roughly, linear) process.

Note that experimentally it is as a general rule not practical to apply stretching
strains (o < 0), but much more natural to apply compressive strains (o > 0) by just
pushing on the edges of the sample. Remarkably, within the above-described mecha-
nism an application of the compressive stress along [0 0 1] leads to destabilization of
the skyrmion phase, as is observed experimentally [160]. It is however possible to find
another pressure geometry under which the compressive deformations lead to stabiliza-
tion of the skyrmion phase. One of such options is by applying [1 1 0] strain, that is
Oxx=0,0,y=0, 0;;=0, which accordying to Eq. (5.2)- (5.4) leads to exx = (1-V)o/E,
€yy=(1=V)0o/E, €;; = -2vo/E. The direct substitution to (5.1) gives effective uniaxial

contribution as

0 0 O
A 4L A
5“/[110] =+Lo ZSEQOSk’ L= ﬁ’ Q() =|0 0 O], (513)
k
0 0 1

i.e. like in (5.5) but with opposite sign. Thus the above-described physics is valid and
the skyrmion is stabilized under a compressive strain o > 0.

Thus we have qualitatively shown that upon application of some critical anisotropic
stress 0. (that is, |logpll = +0. for [0 0 1] and ||loapll = —V20,), the skyrmion which if

phenomena, see also next Chapter 6.
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spontaneously nucleated remains thermodynamically stable. This, to my understanding,
leads to a situation when the conical phase starts ”boiling” with topological charge
(skyrmions and meron pairs), which ultimately leads to expansion of a skyrmion pocket
in a richer phase space.* Because the critical stress o, is a continuous function of AW,
the skyrmion pocket continuously expands upon application of arbitrary (but still rather
small) compressive strain €,, < 0. This expansion is a rather slow, mainly linear, process,
as it is supported by uniaxial anisotropy only.

However, in bulk materials surface-induced anisotropy is negligible, and instead the
cubic magnetocrystalline anisotropy is a key player for forming the skyrmion lattice. We
show in the next section how applied uniform pressure to a bulk material dramatically

expands the skyrmion pocket over a richer phase space.

5.2 DRAMATIC PRESSURE-INDUCED STABILIZATION OF THE SKYRMION PHASE
IN CU;OSEQO3: EXPERIMENT AND THEORY

So far the temperature width of the skyrmion pocket in bulk samples has been limited to
ATser! Tec ~ 3% in all investigated cubic chiral compounds. A substantial enhancement
of the size of the skyrmion pocket has been demonstrated for thin films and ultra thin
slabs of these materials [41, 44], with thickness d <100 nm. In these quasi-2D systems
the anisotropy is considered to play a major role in the enhanced stabilization of the
skyrmion lattice [173]. On the other hand, the resultant phase diagrams are not generic
and depend on the material as well as on the method of preparation [39, 174]. Thus,
finding a link between the universal phase diagram in bulk materials and the magneto-
crystalline anisotropy presents a major challenge for the deeper understanding of the
formation and stability of the skyrmion phase.

In the bulk skyrmion hosts, the cubic magnetocrystalline anisotropy, responsible
for the stabilization of the skyrmion lattice as a long-range-order phase, is often the
weakest of the energy scales present in skyrmion compounds A<« D « J, where D and J
are the Dzyaloshinskii-Moriya and the ferromagnetic exchange interactions, respectively.
D favours a perpendicular orientation of neighbouring spins, and is responsible for the
formation of the chiral helimagnet ground state with a long wavelength modulation
A~ JID> a, a being the inter-atomic distance. The anisotropy A then pins the helices
along preferred directions, and hence determines the value of the first critical magnetic
field B¢1 above which the conical structure is stabilized.

To further our understanding of the stability of the skyrmion lattice, it is imperative
to establish the parameter range in which the skyrmion lattice is physically favourable
with respect to other phases, and further how the size of the skyrmion phase depends
on J, D and A. In that context, the application of hydrostatic pressure is a well-known

technique which allows fine-tuning of energy scales through tiny shifts in atomic positions.

4See also next Chapter.
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Before the discovery of its skyrmion lattice phase, MnSi was intensively investigated [175,
176] due to a complete suppression of long-range magnetic order above a critical pressure
(pc ~ 1.5 GPa) and the discovery of non-Fermi liquid behaviour for p > pc. A similar
suppression of magnetic order has been observed in FeGe [177] around 19 GPa. In
contrast, the ordering temperature of Cu,OSeQOs increases under pressure [178, 179],
thus emphasizing the importance of detailed investigation of its pressure dependence.
In this section an extensive study of the phase diagram of Cuy;OSeO3 under hydro-
static pressure up to 2.3 GPa is presented (0xx = 0y, = 02z), and I follow Ref.[157] which
I co-author on discovery of dramatical enhancement of bulk skyrmion phase stability,

with some additional theoretical insights omitted in [157] due to length restrictions.

5.2.1 EXPERIMENTAL SETUP AND MEASUREMENTS

The single crystal sample was prepared by the chemical vapour transport technique.
It was aligned by x-ray Laue backscattering and cut along the [111] direction with
dimensions 4 x 1 x 1mm3. The ac susceptibility measurements were performed using
a balanced coils setup. Two detection coils were wound on an inox tube 2 mm in
diameter, with centers of the coils 2.5 mm apart. On top of each detection coil a
driving coil was made for generation of ac magnetic field. AC current was supplied by
a Keithley 6221 current source and the balance of the coils was achieved by changing a
resistance in series with each driving coil. The amplitude of ac magnetic field was 0.1
mT. The detection of the ac signal was done by the lock-in amplifier Signal Recovery
7265. The measurements of the phase diagram for each pressure were performed in a
slow temperature drift regime, where the sweeping rate has been controlled between 100
pK/s around the skyrmion phase and 700 uK/s below ~ 30 K. The magnetic field was
generated by a Cryomagnetics 9 T magnet with a sweep rate of 0.1 mT/s (the slowest
available on the instrument) between zero and a maximum field value of B=100 mT. At
higher temperatures the upper field value was regularly decreased in order to increase
the density of the measured points inside the ordered part of the phase diagram.

The pressure for AC susceptibility study was generated using a non-magnetic piston
cylinder pressure-cell with Daphne oil 7373 as a transmitting medium. Pressure was
determined using the relative change of the resistance of a manganine wire compared to
the zero-pressure case. The magnetization under pressure was measured in a Quantum
Design SQUID magnetometer MPMS using a commercial EasyLab pressure cell. The
sample used was 1x 1 x 1mm3 taken from the same batch.

High-quality magnetic ac susceptibility y = Re y+iIm y accurately traces the magnetic
phases, as illustrated in Figure 5.2a for zero-pressure. As can be seen from the zoomed-in
part in Figure 5.2e, the skyrmion phase is manifested as a region of lower susceptibility
(yellow) compared to the surrounding conical phase (red). For p =0 it occupies a

very small part of the phase diagram, adjacent to the order-disorder boundary, with a
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Figure 5.2: Evolution of magnetic phase diagram of Cu;0SeOs; under uniform pres-
sure. a: The phase diagram of Cu,OSeOj3 given by the real part of the magnetic
susceptibility Rey taken while ramping magnetic field down. Black dots mark the
upper boundary of scans. It consists of H - helical phase, C - conical phase, SkL
- skyrmion lattice, FP - field polarized phase, PM - paramagnet. b: Helical spin
arrangement. Magnetic moments rotate within the plane that is perpendicular to
the direction of the wave vector Q. c: Conical spin arrangement. The precession of
magnetic moments outlines the cone which is oriented along the direction of mag-
netic field B. d: Spin configuration of a single skyrmion. e-g: Pressure dependence
of the phase diagram around the skyrmion pocket. One can see that the skyrmion
phase stability was improved in more than 20 times by applying a moderate (for this
material) pressure ~2 GPa. From Ref.[157]
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maximum extent in temperature of 2 K. The maximum field range amounts to around
15 mT, and at lower field values the skyrmion pocket becomes narrower, forming a shape
of an inverted tear-drop. The situation drastically changes by the application of even a
small hydrostatic pressure (p =0.17 GPa, Figure 5.2f). The skyrmion pocket increases in
size, especially the low magnetic field region, more than doubling over the zero-pressure
extent. In addition to the observed growth, one can notice a qualitative change in
the way the phases are arranged in that part of the phase diagram. Namely, under
pressure the skyrmion phase borders directly with the helimagnetic phase without the
conical phase in-between. As shown in Figures 5.2g-k, further increase of the pressure
evidences a continuation of the growth of the low-susceptibility region, both towards

lower temperatures as well as towards larger magnetic fields.

Quantitatively, we can identify the phase boundaries and extract their pressure de-
pendence from individual scans. Figures 5.3a-b show field scans of real and imaginary
susceptibility at T =57 K, the middle of the skyrmion pocket at zero pressure. The
phase boundaries are determined by maxima in the imaginary component, except for
the transition between the conical (red) and the field polarized state (blue) where a
kink in the real part marks the boundary. On the high-field side the skyrmion pocket
(yellow) transforms into the conical phase by a steep increase of the real component,
while the imaginary part exhibits a sharp peak. On the low-field side the presence of the
conical phase between the helimagnetic (green) and the skyrmion phase at zero pressure
is revealed by two peaks in the imaginary part, while at elevated pressures a single peak
is observed. To our knowledge this represents the first experimental evidence that the
helimagnetic phase and the skyrmion phase are thermodynamically distinct. In the real
part this transition becomes less pronounced, because T¢ increases with pressure, placing
field scans at 57 K further away from the ordering temperature. We showed recently that
the strength of the susceptibility anomaly marking the border of the skyrmion pocket
becomes quickly suppressed for T < T¢ [129].

In our experiment the temperature was slowly increased while magnetic field was
continuously ramped between zero and a maximum value. Due to the slow temperature
change (dT/dt <100uK/s) and reduced field range around the skyrmion pocket (black
dots in Figure 5.2a), successive field scans were spaced by no more than 0.2 K, providing
a very good resolution in temperature. This enables us to determine the temperature
width of the skyrmion phase by plotting y(7T,B) for fixed B. Extracted temperature
profiles through the middle of the skyrmion pocket are displayed in Figure 5.3c. In
Figure 5.3d we compare y(7T) extracted from the y(7,B) maps to a temperature scan
recorded on cooling using a standard susceptibility setup. The overlap of the two curves
demonstrates that the extracted profiles presented in Figure 5.3c probe directly the

thermodynamic phase boundaries.
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Figure 5.3: Evolution of magnetic phases with pressure. a: real part and b: imag-

inary part of the magnetic susceptibility y at T =57 K. ¢: Extracted tempera-
ture profiles through the middle of the skyrmion pocket at magnetic fields B =
15,16.5,18,19.5,21,22.5 and 24 mT (from 0 to 2.3 GPa). d: Comparison of the
extracted temperature profile with a temperature scan taken in cooling measured
on the same sample using a standard setup (without the pressure cell) at zero pres-
sure and B =15 mT. A small difference is visible on the low temperature side of the
skyrmion pocket (< 0.2 K) where disintegration of the skyrmion lattice occurs and the
exact path through the phase diagram becomes important. e: Pressure dependence
of the helical-conical and conical-field polarized metamagnetic phase transitions in
the T=0 K limit. f: Magnetic field dependence of magnetization at p =1.0 GPa and
T =10 K. Inset: Pressure dependence of the saturation magnetization level. From
Ref.[157].
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5.2.2 PHYSICAL INTERPRETATION

First of all, we highlight that even at the smallest applied pressures an enhanced stability
of the skyrmion phase is readily observed: compared to the zero pressure case, where
ATsir =2 K (3% of T¢), it reaches ATsir = 10 K at 0.6 GPa, corresponding to 17% of
Tc. If the same relative increase is achieved in the recently discovered skyrmion com-
pound [156] CogZngMng with the ordering temperature at 322 K (49°C), the skyrmion
lattice would be stable even below 0°C, this covering the usual operational temperature

range for most electronic circuits.

With further increase of pressure the low-temperature boundary to the conical phase
becomes less pronounced, transforming into a wide cross-over. At the highest pressure
(p = 2.3 GPa) the low susceptibility region extends almost to 30 K, indicating that
skyrmions exist down to at least half of the ordered phase diagram in the high-magnetic
field region. It remains an open question as to what kind of a spatial distribution is

taken by skyrmions at high pressures and whether they still form a well-defined lattice.

Under mechanical strain, a material is pushed in volume so the distances between
the constituting atoms are modified, which results to further interlapping between the
local wave functions so the macroscopical properties, such as exchange stiffness, DMI,
anisotropy is modified. Our experimental observations indicate that the J and D remain
almost unchanged as the critical temperature and helix modulation wavelength have
not noticeably modified even under pressure of several GPa. At low temperatures the
helical and conical phases are thermodynamically stable, although with pressure the
area covered by the conical phase is substantially reduced from both high and low field
sides compared with ambient pressure, as revealed in Figure 5.3e. More importantly, we
observe an increase of the first critical magnetic field B¢ that marks the transition from
the helical to the conical phase. As has been introduced above, B¢ is linked directly to
the anisotropy energy which determines the direction of the helical propagation vector
in the absence of an applied magnetic field B. Therefore the B-field range of stability of
the helical phase (Bc;) is shifted thus indicating a very nonlinear change in anisotropy

under such pressure, which we thus estimate to be in order of 15-20%.

In bulk samples of skyrmion host Cu;OSeOs (and similar materials with P2;3 crys-
tallographic group) the spin anisotropy #4 arises in the form allowed by the effective
T23 symmetry group as

Tp = Ag(S5+ S5+ S3) + A1 (Sy + S5+ S2) + Ax(S3S5 + S782 + 55,50 + G (S°), (5.14)

the second-order effective ”anisotropy” (first term in (5.14)) can be dropped as it does
not contribute to the stability of the skyrmion lattice (see detailed discussion in Chapter

2). Note also that due to the same reason the isotropic terms in (5.1) can be also dropped.
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The remaining fourth-order cubic anisotropy can be thus regrouped as

FEr= A(Sy+ Sy +S3) + US". (5.15)

with A= A} — A2/2 and U = A»/2. Thus, there could be two qualitatively distinct situ-
ations, first with A; > A,, for which the anisotropy of the bulk is important, and the
opposite case with A; ~ A»/2, where the role of anisotropy is reduced to providing mode-
mode coupling U ~ A1, A,. However, taking into account the experimental observation
that the magnetic phase diagram remains qualitatively invariant under bulk rotations in
our experiments, we thus come to conclusion that the main role of the cubic anisotropy
in this system is to provide the higher-order term U which allows to stabilize the mag-
netic crystalline, while the purely anisotropic properties reflected in A are actually of
the lower importance. Furthermore, I would also like to stress one more time on the
argument from Binz and Vishwanath [35] (which can be traced back as a very general
condensed matter concept, see e.g. [180]) that one needs at least the fourth-order term
$*(r) to stabilize the skyrmion crystalline in such a way that spin density waves for a
hexagonal lattice (see also [38]). Indeed, after decoupling the uniform component, one

has

US* () = [s(r) + (SM)]* = ... + 4Us* (1) s(r) - (S(1)) + ..., (5.16)

Thus it generates upon Fourier-transform the term

(s?(msm) =Y (Sq, -Sq,)Sq, 6(Q1 + Q2 +Q3), (5.17)

i

which can be minimized (made strongly negative) if only Q; +Q2+Q3 = 0, which produces
the hexagonal skyrmion lattice [38]. The magnetic phase diagram of is thus expected
to be qualitatively captured by fluctuation-enriched Ginzburg-Landau formalism as dis-
cussed in Chapter 3. As this paper [157] was my first study of the skyrmion phases, I
actually simply adopted the the effective (numerical) calculation described in Ref [38] for
phase diagrams (before I developed and polished it further to the state as described in
Chapter 3, so it became semi-analytical); thus for the detailed description of the numer-
ical approach I hereby refer to Ref. [38] and just highlight here the main features of the
formalism. The calculations are made in the continuous-field approximation justified
by the large ratio of the skyrmion radius A to the lattice constant a. The Ginzburg-
Landau functional is taken up to fourth order in magnetization and second order in
magnetization gradients, thus including both the Dzyaloshinskii-Moriya interaction and
anisotropies. The magnetic structure is determined by minimization of the free energy,

where the order parameter is naturally taken as the local magnetization reduced by the
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average magnetization of the crystal. A mean-field treatment shows the conical phase
to be energetically favourable, but the skyrmion phase lies only slightly higher in energy.
By including the Gaussian fluctuations of the free energy the skyrmion phase becomes
favourable in a certain range of finite magnetic fields. The fluctuations contribute mainly
at the short-length scale and are calculated with the cut-off in the momentum space in
order of 2m/a. The transition to the paramagnetic state is expected to occur when the
fluctuations become significant (around 20% of the mean-field value), which determines
the ordered phase boundary through the relation B¢y (1) = v/2(T — 7). For the calculation
of the phase diagram at zero pressure we used the following parameters: y=JD/U =6.2,
A=Ala=28, zr =3.4 and 79 =3.1. The values of y and A are in good agreement with a
recent density functional calculation [142]. The Ginzburg-Landau approach is considered
to break down away from T¢ so we leave the field axis normalized to By =+/(JQ?)3/U.

We start from the magnetic path-integral approach with Ginzburg-Landau functional
for modulated spin structure M(r) (see Ref. [38]),

S:f@M e FIMOIT - piM(r)] :de[aTM2+](VM)2+DM-(VxM)+UM4—B-M],
(5.18)

where the M? term is related to the temperature-dependent tuning parameter 7(T) =1—
arJ/D?. Here, ar controls the transition and, in our approach, is adopted to reproduce
the experimental T¢(p) and enable us to predict the phase diagram in absolute units
of temperature. The microscopic parameters J, D and U are related to experimental
observables in a simple way: T¢ « J, ko =2n/A = D/2] while as mentioned previously
we assume Bey o< A, A2 ~ U. It has been shown [38] that when the (Gaussian) thermal
fluctuations around the mean-field solution are included, the skyrmion lattice phase
becomes stable close to Tc. However, it remained unknown as to the width of the
temperature window over which the stabilization can be expected to occur. In order to
address this question, first it is necessary to establish the functional relation between
the tuning parameter T and the thermodynamic temperature T. Around the mean-field
solution the upper-critical field B¢, is related to T through Bea (1) = v2(T — 1), where T¢
reflects the shift of the transition temperature away from its mean-field value due to the
linear effects of fluctuations. In addition, Bc2(T) can itself be directly extracted from
the experimentally established phase diagram, Figure 5.2a. We find that it follows the

form of a critical behaviour 4

Bea(T) =B -T/Te)", (5.19)

with critical exponent x = 1/4, as presented in the inset of Figure 5.4. This leads to the
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Figure 5.4: Modelling of the size of the skyrmion pocket using the Ginzburg-Landau
approach. The width of the calculated skyrmion pocket (~2 K) for p =0 has been
used to fix the values of all parameters within the model. To simulate the behaviour
at elevated pressures, we change the values of J, D and K as obtained at p = 0.6
GPa: AJIJ=25 %, AK/IK=15 % and AD/D = -3.5 %. The size of the skyrmion
pocket is significantly increased only if the change of anisotropy is incorporated
in the calculation. Inset: critical behaviour of the upper metamagnetic transition
between the conical and field-polarized phase Bea ~ (1 - T/T¢)*. From Ref.[157]

phenomenological relation for t(T)

T(T)—1o=B(1 - TITc)* =B/1-T/Tc. (5.20)

The square-root dependence is preserved across the pressure range investigated in this
study [157].

Now we can proceed with the discussion of the size of the skyrmion pocket in terms
of thermodynamic temperature T. As mentioned above, the inclusion of thermal fluc-
tuations is necessary to stabilize the skyrmion lattice over the conical spin arrange-
ment. However, it has been suggested recently [134] that the fluctuations close to T¢
are strongly interacting, lowering the transition temperature and making it first-order.
Within the effective model the reduction in T¢ is implemented [38] by setting the correc-
tions of the order parameter to be smaller than 20%. We keep this approach and in the
main panel of Figure 5.4 plot the resultant order-disorder boundary with the outline of
the skyrmion pocket for different values of J, D and K. For the zero-pressure case we ad-
just the coefficients of the model so that the skyrmion pocket is limited to ~ 2 K below T¢,
as found in the experiment. To explore the effect of pressure we consider the particular
case of p=0.6 GPa, where the skyrmion pocket is still well defined, and estimate AJ, AD
and AU from the experimental data: ATc/Tc=AJ/J=2.5 %, ABc1/Bci =AUIU =15 %,
while ABca/Bcz = =9 % translates to AD/D = -3.5 %. It can be shown that the skyrmion

pocket grows (expands its thermodynamical stability over a larger phase diagram vol-
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Figure 5.5: Cu,0SeOs3 crystallographic structure (space group P2;3).(a) The crystal
structure constitutes from Cu(2)O04 plaquettes (yellow) and Cu(1)O5 bipyramids
(orange), and covalent Se-O bonds (thick lines), forming a sparse three-dimensional
lattice. This lattice can be mapped as tetrahedra (dashed lines), each composed of
one Cu(1) and three Cu(2) sites, depicted by large light brown and light cyan spheres,
respectively. Small spheres denote the non-magnetic sites. (b) The magnetic Cu?*
ions form a distorted pyrochlore lattice, a network of corner-shared tetrahedra. (c)
The energetics of a single tetrahedron ((¢h)): magnetic spin ground state Sy, =1 is
separated from the closest energy excitation by a huge gap, A =5T. From Ref.[142]

ume) if the parameter JU/aD? increases, indicating that all of the observed changes
contribute positively. If we take into account only AJ and AD (AU =0) then we obtain
a small increase of the skyrmion pocket. However, a more significant growth is obtained
when the observed AU is included, giving AT ~ 10 K. The temperature extent is here
only indicative since it is known that even the well-modified Ginzburg-Landau approach
is not valid far away from T¢ [180]. Additionally, B¢cy ~ U is only a crude approxima-
tion which is expected to hold only in a narrow range of parameters. Nevertheless, our
analysis demonstrates the importance of anisotropy A;» which result into effective U
in stabilizing the skyrmion lattice at temperatures far from the immediate proximity of
the ordering temperature. Indeed just ~15% change in effective anisotropy can expand
the temperature range of the skyrmion stability by 600%, with conquering the overall

phase space in more than 20 times.

While the above-presented model is applied as a continuous-field approximation, an
important question is what qualitative changes occur with pressure on the level of the
unit cell. This is especially important for CuyOSeOj3 since there are two crystallographi-
cally distinct copper sites which couple strongly into tetrahedra with a quantum triplet
ground state [142], see Figure 5.5. These triplets form a trillium lattice which is identical
to the lattice of Mn ions in MnSi, and long-range order is then governed by the effective
exchange and Dzyaloshinskii-Moriya interactions between the triplets. It follows that
the effect of pressure on Cu,OSeO3 can be two-fold: (i) changing the quantum nature
of tetrahedrons and (ii) changing the inter-triplet interactions. In order to probe the

former effect, we have performed measurements of the magnetization plateau under pres-
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sure. The plateau occurs when the system enters the field polarized state for magnetic
fields B > 100 mT, see Figure 5.3f and inset. It turns out that within the error-bar
the observed magnetization plateau does not change, at least for pressures p <1 GPa.
This means that the tetrahedra remain relatively rigid, while pressure-induced shifts in
atomic positions occur dominantly between the tetrahedrons, influencing the effective

inter-triplet interactions and justifying the use of the continuous model.

5.3 CONCLUSIONS

In conclusion, we have manifested the pressure-induced tuning and control of the bulk
skyrmion phase in Cu,OSeQOs, which is carried out with a moderate pressure force. This
offers a new insight on the role of cubic magnetocrystalline anisotropy and provides a
further methodology for significant enhancement of skyrmion phase stability in labora-
tory conditions. As was explained from a semi-quantitive Landau-Ginsburg model, the
proposed pressure-stabilized mechanism is valid in a broad range of skyrmion-hosting
materials material with effective US* anisotropy-induced bulk contribution.

The crucial role of (fourth-order) anisotropy terms has also been explored in Monte
Carlo simulations [181] where it has been found that the correct phase diagram can be
reproduced if additional anisotropy-compensation terms are added because of bound-
ary effects. On the experimental side, in the recently discovered skyrmion compound
GaV,Sg the orientation of skyrmions is dictated by the magnetic easy axis and not by
the direction of magnetic field [182]. At the same time, the relative size of the skyrmion
pocket within the phase diagram of this polar magnet is substantially larger than in the
family of chiral magnets such as MnSi and CuyOSeOs.

The results presented in this chapter clearly demonstrate that although it is very
often the weakest of the energy scales, anisotropy plays a decisive role in stabilization
of the skyrmion lattice. Broadening the operational range for the skyrmion lattice
and making it more resistant to external fluctuations provides a promising route for
future investigations in order to enhance the potential of other skyrmion-supporting
materials, especially around room temperature [156], where skyrmion-based applications
are foreseen. The deeper theoretical understanding of the various mechanisms leading to
skyrmion stability may also guide the rational design of new compounds with favourable

characteristics for hosting stable skyrmion phases.
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Topological Objects in Thin Films: Magnetic

Skyrmions, Chiral Bubbles, Merons and Bimerons

Thin films, — samples made of slabs of bulk materials by e.g. polishing down to a
thickness of typically few interatomic distances, — provide a deeper understanding of
the skyrmion host materials by implying specific boundary conditions, and thus allow
to modify the relative strength of DMI and anisotropies in the system. Skyrmions in
thin films behave somewhat differently, - rather like a gas or a liquid, in contrast to
the skyrmions in bulk materials, which either prefer to group into a thermodynamically-
stable crystalline (the skyrmion lattice) or, under certain conditions, to exist metastable
and independent one of each other being isolated by stripes of the helical phase. One
of the remarkable consequences of the thin film behaviour of skyrmions is the exper-
imentally observed stability of the disordered-lattice skyrmion phase down to zero or
very low temperatures, and achievable nucleating of skyrmions in ferromagnetic phase.
As a general rule, there is a crucially different physics in skyrmion motion in thin films
comparing to the bulk counterparts, including the broad dispersion in skyrmionic sizes,
from nanometers to micrometers, thus skyrmion in thin films very often remind chiral
magnetic bubbles, — the magnetic objects of the same topology but dynamically more
inert. Furthermore, the conical phase is, as a general rule, conquered by the skyrmion
phase fully or almost fully in the thin films. The ordered phase diagram hence sim-
ply consists of helical phase at low magnetic fields and skyrmion phase at moderate
magnetic fields (the skyrmion phase further polarizes to the forced-ferromagnetic phase

at the very strong fields). An interesting experimental (and theoretical) observation is
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the presence of non-zero topological charge even in helical phase, due to relict merons
(half-skyrmions) at the boundary where stripes of one helical domain merge with stripes
of another helical domain. Thus the thin-film systems are topologically richer by the
presence of merons and bimerons, which apparently play a distinct role in, — or at least

somehow assess, — the helical-to-skyrmion transition.

In this chapter I consider three relatively simple models, describing (i) thin-film
dynamics of magnetic skyrmions under thermal gradients, (ii) topologically-preserved
crossover between skyrmion and magnetic chiral bubbles in thin films, and (iii) a toy
model phenomenologically capturing the topological charge saturation due to sponta-
neous boiling of helical phase with (bi)merons. Despite its simplicity, the very last
model in this thesis shows a qualitatively decent mechanism of the topological charge
saturation at some critical magnetic field (that is, helical-to-skyrmion transition), in a

resemblance with experimental feature Hey(T).

6.1 MAGNETIC SKYRMIONS UNDER THERMAL GRADIENTS

Normally, the Brownian motion and thermal diffusion in gases and liquids occurs in
the direction of lowering temperature, which is intuitively captured by understanding
that an average velocity of a particle or quasiparticle reflects the temperature in the
local region. However, magnetic skyrmions have a counter-intuitive feature to travel
towards the higher temperatures, totally confusing our concepts on how particles and

quasiparticles normally behave.

The study of thermal gradient effects on skyrmions started in 2012 when it was dis-
covered numerically that the skyrmion lattice can be rotated with spin torques and field
or thermal gradient in bulk [91]. Soon after, it was reported that contrary to the conven-
tional Brownian motion, the 2D skyrmions move towards a hotter region of the magnetic
film [90]. The study of Kong and Zang [90] presented both the numerical simulations
and a semi-quantitive analytical model, which proposed a magnon-scattering mechanism
for this phenomenon. The idea of the calculation lies in the assumption that the dif-
ference in thermal-gradient magnon flow, while moving from hotter to colder region,
scatters crucially on a skyrmion, which due to specifics of magnon-skyrmion scattering
[183] leads to the anti-gradient-directed component of momentum (flow against thermal
gradient), as also a weaker perpendicular component which indicates the skyrmion Hall
effect [90]. Even though a similar calculation could be applied towards the dynamics of
domain walls and magnetic bubbles, Kong and Zang argue that the effect under study
is topologically-induced and thus depends crucially on the quantized topological charge
[90].

The effect reported by Kong and Zang aspired further studies on the topic, as a direct

application of it would be a low-dissipative control over dynamics of both individual
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Figure 6.1: Thermally-driven ratchet motion of skyrmions under electron-flow induced radially-
directed thermal gradient. The thermal gradient from the periphery of the skyrmion
array to its center (and inverse) is induced by the electron-induced heating under
operation of the Lorentz Transmission Electron Microscopy (LTEM). Left: Skyrmion
array simulation for skyrmions confined in the circularly-shaped disk (shown the
in-plane components of magnetization). Center: Ratchet motion of a skyrmion
layer: skyrmions follow two rotational motions: a) clockwise rotation as a whole
with respect to the center of the skyrmion array; b) each skyrmion itself makes a
clockwise rotation with respect to its center. Right: Manifestation of the direct
correlation between the rotation sense and thermal gradient direction. Figure from
Ref.[152]

skyrmions and skyrmion arrays in insulating thin films.! In particular, an experimental
observation of the "ratchet motion” of skyrmion arrays under radially-directed thermal
gradients was shortly reported [152], see also Figure 6.1. Furthermore, in the other
studies, a chiral magnetic bubble? was shown to also be subjected to an anti-gradient
thermal motion [184], as also transverse skyrmion Seebeck effect was conjectured [185].

Even though the counterintuitive motion of skyrmions towards higher T was ex-
plained by a magnon-mediating mechanism, there is an alternative mechanism, which is
at least equally important over a non-homogeneously heated sample. We thus propose a
new elementary model underlying this feature, based on the variation of the skyrmion’s
“rest energy” as it goes from a colder to a warmer region. The resulting thermogradient
force moves a skyrmion (or an array of skyrmions) towards a warmer zone depending
on the parameters of the system.

To describe the force acting on a single skyrmion we use the axisymmetric model of
a skyrmion as described in Chapter 2, that is with the coarse-grained magnetic moment
varying as S = (sinf cosy,sinfsiny,cosf), on top of the otherwise ferromagnetic back-
ground. We thus consider a rotationally-invariant 2D Bloch skyrmion with 8 =0(p) and
w(p)=@+y, — with m=1, y=nr/2 and unitary topological charge Q = —1. On the micro-

scopical level, the energy of a skyrmion in a thin film magnet is given by the interplay of

LIn conductive thin films, the skyrmions are successfully moving under electric current.
28ee next section on difference between a skyrmion and a magnetic bubble.
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different spin interactions: the ferromagnetic Heisenberg exchange J, which prefers the
parallel arrangement of spins, the Dzyaloshinskii-Moriya interaction D, which favours
the mutual canting of the adjacent spins, and the Zeeman term stabilizing the skyrmion
along the moderate external field H, and anisotropies of different origin (including dipo-
lar interactions). To calculate the "rest energy” of the skyrmion, we however use here the

minimal model (2.25), as will capture the main features of the thermogradient motion,

WIM(r)] JZ(

) +DM-(VxM)-M-H, (6.1)
Xj

We consider a skyrmion nucleated in the field-polarized (FP) phase, were its energy with

respect to the FP background is

) dG) sin?0
Wil =2aM fdzfdpp{ [(dp + pe

df sin20 H
— —(1- 2
(dp 2 )+M( cos@)}, (6.2)

For numerical calculations, we introduce dimensionless variables starting from x = p/a,
and d =aD/J and h(M) = Ha?/JM,

s a2

1n

0% +-—
.

sin26

w(M) = WD :2n/drr +h(M)(1—cos0) |, (6.3)
0

JM2a2z

0
+d(6r+

(2o is thin film thickness). After that, we solve the variational problem with respect to
the configuration 0(x) which minimises the rest energy for given d and h. This leads us

leads to the Euler-Lagrange equation to determine a skyrmion configuration,

1 20 in0 h
0" (0 + Lo/ - 020 g S0 PO oo, (6.4)
x 2x2 X 2

with boundary conditions: 6(0) = m, 6(c0) = 0, corresponding to the ”spin down” in
the center of a skyrmion and ”spin up” far away. In general case, the solution of the
nonlinear differential equation (6.4) can be done only numerically, however always should
be veriﬁed that 0(x) is controllably small at long distances (the long-scale asymptote is
0(x) ~ = , with k = Vh/2, see Chapter 2 for details). To solve differential equation (6.4)
with the Dmchlet boundary value problem, we first solve an auxillary Cauchy problem
with boundary conditions 8(0) = 7 and 6'(0) = &, choosing @ such as it gives 0(oco) =

This involves numerically finding a separatrix between the two attractors (0,7) and (0, —r)
in the phase portrait. The value of a, corresponding to the separatrix depends crucially
on h that is a function of field and magnetization, and therefore temperature (meanwhile

d is fixed for a given material). For details of this numerical technique, see Chapter 2.

104



=
[es)
@

[0}
g

~

e} (=2}
Magnetization, [10*A /m]

Temperature, [K]]

-

10 20 30 40 5

(en)
= '

[ 3

[ 3

Figure 6.2: Magnetization of Cuy;OSeOs3 along [111] in the external magnetic field 10000e
(slightly above saturation). Data extracted from Ref.[165].

Note that the dimensionless energy depend on the value of magnetization in non-
trivial way: as w(M) is not a constant for the reason that h = h(M), and in turn the
length of magnetic moment is itself temperature-dependent. Moreover, M generally
depends on magnetic field, that is dependence M = M(H, T) is defined on the underlying
magnetic phase. Here we however consider a skyrmion in the field-polarized phase, with
saturated magnetization M = Mg(T). The renormalization group theory predicts this
dependence to be scaled as Mg(T) < (1-T/Tp)". In this study we consider for simplicity
Ms(T) = My(1-T/Ty)", where Mg = Ms(0); for Cu,OSeQOs, the exact dependence Mg(T)

in field-polarized phase is known from experiment (see Figure 6.2).

We therefore solve (6.4) with the method described in Chapter 2 for given Mg(T)
dependence and realistic bulk parameters for Cu,OSeQOs, in particular: at the critical
magnetic field He = 0.34T, Heisenberg exchange J = 4.85 x 10723 Jm/A?, DMI strength
D=1.22x 10_14J/A2, saturation magnetization Mg(0) = 1.11 x 10° A/m, and with lattice
constant a =8.91x107'°m. These numbers leads to dimensionless parameters d = Da/J =
0.224 and h= Ha?/MA=0.050. We find for example that at T =0 the "rest energy” of a
skyrmion is W =3.16 x 27AM3(0) = 1.19 x 10711 J. The detailed dependences W (M = Ms)

are given on Figure 6.3.

As the "rest energy” of a skyrmion is changing with temperature, a skyrmion in re-
gions with different temperature (for T < T, ) exists with energy difference between colder
and hotter regions. This, in turn, implies, that the potential energy W of the skyrmion
depends on the position in non-homogeneously heated sample. Therefore there will be a

gradiental force F = —-VW, which will be in fact co-directed with temperature gradient,
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Fy=-VW = —%d—]‘f[VT. Thus we come to conclusion that this force is expressed by

Fy(T) =f(M(T)) gradT, (6.5)

with temperature-dependent mobility function

sinZ0 sin26

02+
r r2

+g(1—c030) , (6.6)

+d(0r+

(M(T)) = —4 JMd—M]Odrr
f T dTO

Because local magnetization naturally decreases with temperature, ‘;—Aﬂ <0 (see Fig-

ure 6.2), after further algebra one deduces

w

(M(T)) —2]M(T)'d—M —
f B drT || JM?

—gf[l—cose(r)]rdr , (6.7)
0

Finally, we can rewrite the expression for the force acting on the skyrmion in the non-

homogeneously heated sample

aM (ZW(T)

aM B 2
a7 |\ v n(T)a”H|gradT, (6.8)

o0
where n=2n [(1-cos@)rdr; 0 =6(d, h(T)).
0

Finally, we plot several temperature dependecies for numerical values as listed above,
namely: (i) dependence of skyrmion "rest energy” on temperature; (ii) dependence of
force on temperature for the unit temperature gradient, see Figure 6.4. As VT points
in the direction of the greatest increase of temperature, the skyrmion will move in
the direction of the temperature gradient (i.e. from colder to hotter regions). Such a
nontrivial feature of this calculations comes from the following model assumptions: (i)
we place a skyrmion above the saturation field Hc2(T), namely at the line H = 1000
Oe, where we know the magnetization data [165]; (ii) the skyrmion is allowed to travel
only along the line H =1000 Oe, thus at hotter temperatures the effective magnetic field
H/Hc¢y increases with temperatures, and as we know from Chapter 2, single skyrmions
become more stable in higher dimensionless magnetic fields b.

We conclude that even though magnon may cause the thermal-gradient motion of the
skyrmion, there is an alternative effect based on variation of the skyrmion rest energy

in differently-heated places of the sample. To our surprise, this effect is not in literature
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Figure 6.4: Calculated rest energy and gradiental force of a single skyrmion in the ferromag-
netic background (above saturation field) for different temperatures, where the
temperature-dependent magnetization data are available. (a) Skyrmion exists in
a metastable state (E > 0) above saturation field, with its maximum rest energy near
the ordering temperature. (b) the resulting thermal-gradient force is co-directed
with temperature gradient (i.e. skyrmions are moving from colder to hotter areas),
as dM/dT <0 (see main text).
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as most calculations are done for fixed length of magnetic moments. This apparently
simple model however gives deeper insights on reasons why skyrmions can move against

thermal gradient, and this reason is hidden in their topologically-dictated energetics.

6.2 TOPOLOGICALLY-PRESERVED CROSSOVER BETWEEN SKYRMIONS AND MAG
NETIC BUBBLES IN THIN FILMS

While magnetic bubbles had been attracting attention in past as information carriers
in promising bubble memory technology (see e.g. Ref[186] and references therein), they
could not compete with other memory technologies, such as Flash RAM, because of
the micrometer bubble size, which was too large for the industry. The discovery of
magnetic skyrmions, a similar topological structures but of the nanoscale size, stabilized
by the chiral interaction, gave a boost for studying skyrmions both in thin films and bulk
materials. However, one of the intriguing observation is the broad dispersion in skyrmion
sizes: from nanometers to micrometers, which may indicate a possible skyrmion-bubble
crossover in systems with broken chiral symmetry.

The difference between skyrmions and magnetic bubbles is following: in skyrmions
the points down at the very center, and then almost linearly evolves towards pointing
up at the periphery of the skyrmion, and this rather linear progression comes essentially
from the competition between Heisenberg exchange J (VS)2 ~ /42 and chiral DMI coupling
DS (V x8)? ~ 1/x, thus for rather small x and without anisotropies 6 oc x (see Figure
2.8). The chiral magnetic bubbles are another types of magnetic defects, with a wide
spin-down plato forming the core of the bubble, — usually stabilized by interplay of
anisotropies and dipolar interactions, — and the a rather thin wall where the spins rapidly
twist as parallel to the field (see Figure 6.5). The bubbles are usually topologically trivial
(Q=0), however there are indeed chiral bubbles where on the periphery spins manifest
a fixed sense of rotation an thus the topological charge is finite.

The two objects, — magnetic skyrmions and chiral magnetic bubbles, — even though
very different in key mechanisms leading to their stabilization, are however identical
topologically speaking. The skyrmion and chiral magnetic bubble can have the same
topological properties: they are both homeomorphic to a sphere with tilted spins, and
one can obtain both the skyrmion and the bubble by using two different sphere-to-
plane projectors (See Figure 6.5 ). Both the bubble and the skyrmion are topologically
protected objects, and may be described within similar physical approaches, so one may
expect to find a crossover. Because this crossover respects the topology of the magnetic
skyrmions, one may hope to find it with a continuous change of parameters. This study
shows that, indeed, the crossover between magnetic skyrmions and magnetic bubbles
can happen with tuning either (uniaxial) anisotropy or stray field strength.

We consider both the magnetic bubbles and skyrmions in the quasiclassical continuous-

field approximation, i.e. magnetization is a smoothly varying function from site to site.
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For the convenience, we use the spherical parametrization for the local magnetization,
M = M; (sinG cosy,sinfsiny, cosH), while the spatial coordinates are considered in cylin-
drical frame (p, ¢, z) due to axial symmetry of a single skyrmion or magnetic bubble (see
Chapter 2). As a reminder, the rotationally-invariant vortices are described by 6 = 6(p)

and ¥ (@) = m@ +7v, where m is an integer called vorticity, taken here as m=1.

The main idea of the approach is to write down the energy functional, suitable for
both skyrmions and (chiral) bubbles, and look for the stable spin configurations by
solving a variational problem, i.e. minimizing the energy. We expect that for the same
functional there are sets of parameters giving a skyrmion or a bubble as a stable solution.

We consider a generalized energy functional of the form

2
WM@)] =fd3 ryy ) +DM-(V x M) - M-H} + Wy + Wy, (6.9)

(OMi
Lj

Xj

where J is the Heisenberg stiffness, D is Dzialonshkiy-Moriya interaction (DMI), H is
magnetic field, Wy is an anisotropic term and Wy, is the energy of the stray field. The
Dzialoshinskiy-Moriya interaction is responsible for stabilization of a skyrmion, however
magnetic bubbles do not require this condition. In this study, we consider for definiteness
the effect of the uniaxial anisotropy with the strength K.?> The energy functional can be

reduced to the functional of the azimuthal angle 8(p), that is

<>° ,[(d0)* sin?6 ,(dO sin20 s . o
W:2nz0f dr rqJMg ||| + +DMg|—+ + K Mg sin“0
0 dr r2 dr 2r (6.10)
+(MsH -2t M?)(1 - cos0) —2n M= cosO(r) 1(r)},

with the stray field term
1

I(r) = Z—f 1 — e k%) Jo(kr) Jo(kr') [1 = cosO(r)1r'dr' dk, (6.11)
0

where the stray field energy is considered for the infinite plate of thickness zy, see Refs.
[187, 188], where Jo(x) are the zeroth-order Bessel functions. Some simplifications can

be done by dropping the constant term and rewriting the functional in the following

3The lowest-order uniaxial anisotropy is of type constant + K(M-é,)2, thus effectively Kcos?0. This
leads to term Ksin?@ in Eq.(6.9) where the energy of a topological object is calculated with respect to
the ferromagnetically-ordered background (e.g. in the field-polarized phase). The sign of K should be
such that DK > 0.
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skyrmion magnetic bubble

Figure 6.5: A sphere with tilted spins can be projected to the skyrmion (left) or a magnetic
bubble (right) spin structure, both of them possess the same topological charge.
[Here, the length scales are not kept as magnetic bubbles are usually much larger
than skyrmions].
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+2mcosf(r)(1— f(r)},
(6.12)

where we have introduced the dimensionless magnetic field h = H/ Mg, and the stray

functions

f) =f G(r,1";20)[1 = cosO(r)]r'dr’, (6.13)
0

with the "Green function”

G(r,r';z0) = Zifo (1 — e 5%0) Jo(kr) Jo (k") d k. (6.14)
0

it is useful to derive the (very) thin film asymptote, that is zg < 1/ko = J/Da,

oo -
G(r,r';z < ko) :f Jo(kr) Jo(kr') kdk = 6(rr r), (6.15)
0
and therefore
00 ] — / N g
f(r)|z0<</1=f0 [~ cosfr )]f(r rrdr =1-cosf(r). (6.16)

The variational minimization of Equations (6.12), (6.16) gives the answer whether do
we have a magnetic bubble (6(r) behaves as a smoothed step function) or a skyrmion
(0(r) rapidly falls down and has an exponentially small tail).

Surprisingly, the crossover between the skyrmions and bubbles can be already seen
even in the zg/a — oo approximation, i.e. even if neglecting the stray field. (The dimen-
sionless stray field strength ¢ is roughly o o< a/zy for large zy). For this, the energy

functional can be rewritten in dimensionless parameters as

o0 do\?> sin%6 df sin20
W/(]Mfazzo):an dar r{(—) +Sln +d(—+sm J+Ksin29+h(1—cos0)},
0 dr r2 dr 2r

(6.17)
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Figure 6.6: Crossover between magnetic skyrmions and magnetic bubbles in zero (a) and (b)
finite magnetic fields, neglecting the stray field effect. x Surprisingly, the crossover
can be seen even in the zero magnetic field by tuning the anisotropy strength x by
25%, see inset (a). The moderate (for Cu,0OSeO3) magnetic field h = H/Ja*> M; = 0.01
affects mainly the bubble radius. For calculations, the dimensionless DMI is set d = 1.
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Figure 6.7: Influence of the stray field on the skyrmion-to-bubble crossover: (a) the qualitative
picture holds the same; magnetic field h =0.01, stray field strength o = h/2 (b) the
stray field just slightly effects the skyrmion (b) however, for the given x, the crossover
skyrmion is very sensitive to the same stray field and it turns into a bubble.

where the dimensionless parameters are:

a=2, k=L, =1 (6.18)
Ja Ja Ja? M

As an example, for Cup;0SeOs, d = 0.23 ~ 1. In this study, we fix d =1, and tune
anisotropy and magnetic field to change. We solve the variational problem by applying
the shooting method to Euler-Lagrange equation. For definiteness, throughout all the
calculation we call the solutions satisfying %9’ (0)=0.1, %9’ (0)=0.01, and %9’ 0)=10"% as
the skyrmion, the crossover, and the bubble correspondingly, and look how the tuning
parameters changes.

The first set of results, corresponding to the skyrmion-to-bubble crossover if neglect-
ing the stray field, is shown on Figure 6.6. The inset (a) shows the crossover between
the skyrmion (blue solid line, k1 = 0.39) and magnetic bubble (red solid line, x3 = 0.3098).
The crossover skyrmions are visually close to the skyrmion solution, however in terms
of the tuned anisotropy (xz =0.324), it is closer to the bubble solution (k3 =0.3098). In-
deed, while increasing x, just slightly, the radius of the skyrmion-bubble grows abruptly.
Note that the numerical method used is controllable both for the skyrmion and bubble
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solution, however one needs a greater accuracy for k3. The inset (b) shows the similar re-
sults in the finite magnetic field & =0.01. Qualitatively the physics of the crossover holds
the same, however the magnetic bubble becomes larger and the required anisotropies
now are shifted €; =0.38, 2 =0.300, k3 =0.2312 (i.e. still corresponding to %0’(0) =0.1,
167(0) =0.01, 26'(0) =107°).

The second set or results takes into account a moderate stray field . These results
are summarized on Figure 6.7. The inset (a) shows the crossover between the skyrmion
(blue) to the magnetic bubble (red) in finite magnetic field 7 =0.01 and stray field with
strength o = h/2. The qualitative physics of the crossover remains mainly the same,
showing that the crossover-skyrmion is unstable towards the bubble, with x; = 0.385,
K2 =0.319, k3 = 0.3048 again for 26(0) =0.1, 26'(0) =0.01, 16'(0) = 107°, correspondingly.
The inset (b) shows that the stray strength o = 0.005 = h/2 almost does not affect the
skyrmion solution, acting just like a small perturbation. This is however not true for a
crossover region, see the inset (b): the same stray strength o = 0.005 pushes the crossover
skyrmion (green) to a magnetic bubble (red). The stronger stray fields can even make
the bubble solution unstable.

We highlight here briefly the main features of the skyrmion/bubble crossover: (I) the
adiabatic (slow and continuous) tuning of x reveals the abrupt behaviour in the skyrmion-
bubble crossover, i.e. the radius of a skyrmion changes rapidly with just a tiny tuning of
the control parameter «; (ii) surprisingly, the crossover seems to happen even even when
the stray field is neglected, as in the bulk systems. (iii) furthermore, the crossover can be
observed even in the zero magnetic field, of course if the skyrmion has a sufficient lifetime.
(iv) the qualitative picture with the moderate stray field remains similar, showing that
the continuous crossover from a skyrmion to bubble is possible. However, the crossover
region is very sensitive even to the small stray fields (large thickness of material), and it
can happen that the solution becomes unstable if we try to push the skyrmion-bubble

radius.

A NOTE ON SCALING LENGTHS

DIMENSIONAL ARGUMENT. — We start for the effective quadratic form with second-order anisotropy

Jﬁeﬁr:fdvv{](VS)2+DS~(VxS)+KS%}. (6.19)

We now discuss the scaling arguments which follows from the natural length-scales which can be intro-

duced in the system. First, we consider dimensionalities (denoted as [...]) of J, D, K (in SI):

[]]=Exm2=é, [D]zéxmzé, [K]=$. (6.20)
We ask what are the most general scaling supported by the system. One would expect the domain-wall
width 7(J/K)!/2, however as we shall see the result is more interesting. We are looking for a typical
spatial parameter (in meters) which can be, in the most general case, a combination between J, D, K,

JYDPKa

114



where a, f, vy are real numbers. We demand now that this combination has a dimensionality of length
(L],

Y B @
UYDPKkY ==, - (%) x(i) x(i) =m, (6.21)

Thus we obtain the system of coupled equations,

a+B+y=0, 3a+2B+y=-1, (6.22)

We have 2 equations and 3 unknowns. Thus we fix one of the unknowns as a parameter (a), and the

solution is y=a+1, f=—-1-2a. Therefore the generalized scaling length is

]a+lKa
In particular, this qualitative scaling argument leads to the following length scales:
1/2
Domain wall width (@ =-1/2) — L_y~ (}) , (6.24)
. . ]
Skyrmion lattice (@ = 0) — Ly~ o (6.25)

Note that other scaling options are also possible. For example, for a skyrmion asymptote within model

(6.19), numerical fit gives a = -2.

SKYRMION-BUBBLE RADIUS vS. CROSSOVER PARAMETER

As we have seen previously, the skyrmion-to-(chiral)bubble crossover is already captured
by a simple model in the absence of magnetic field and stray field. In this subsection, I
present calculations for one of a very promising system where skyrmion-bubble crossover

seems to have place [56]. We start from the effective energy density (H =0),

av
;gcﬂ:f7{](v3)2+Ds-(sz)+KSf,}. (6.26)

First, to estimate the characteristic parameters of the system, we choose the typical
values of J, D, K as in Ref. [56], J=2x10"11L D=5x10"*-2 K=28x1052;. These
numbers correspond to the following characteristics: domain wall width Ipy =7/ J/K =
26.5nm, helix period A =4xJ/D = 500nm, and critical DMI: D, = %\/]T( =3x1073 %
Note that the only dimensionless parameter in the system is se = JK/D? =22.4. As the
length scale for the size of a pure individual skyrmion in zero field is, as a general rule,
comparable with DW width 7v/J/K, when we look at the inflation of a skyrmion to a
chiral bubble, it would be better to separate this normal variation for a pure skyrmion
due to changes in J or K from what is due to a transition to bubble. Thus we are looking
at the transition at different D as mv/J/K does not depend on D. For this, we rescale

115



TG(T')
. e D =0.2D,
——— D =0.4D,
——— D =0.6D,
ol D =0.8D,
D =0.9D,
/4 ——— D =0.99D,
——— D =10.999D.
-o > :
0 5 10 15 0, /IR

Figure 6.8: Crossover between skyrmions and magnetic bubbles in zero magnetic field and zero
stray field, for different values of DMI parameter. Distance from the center of a
skyrmion(bubble) is given in units v/J7K. The skyrmion-to-(chiral)bubble crossover
is very sensitive to the value of D and happens in the vicinity of D, = % JK.

the effective energy with r — x=r/vJ/K, HM;— h=HM;/K, and D —d =7 . Thus,

variating the energy, the dimensionless Euler-Lagrange equation takes shape

S

2 . ‘2
%+§%—%+%Dﬂcg—%smzezo. (6.27)
We solve this equation for boundary conditions (0) =7 (spin downwards in the center)
and 6(co) =0 (spins up at infinity). Several different solutions, including chiral bubbles,
are shown on Figure 6.8. We notice that the crossover between skyrmions and magnetic
bubbles is very sensitive to the DMI parameter. We thus introduce a more sensitive

crossover parameter o,

a:ln(l—ﬂ)l, D= é\/]T<, (6.28)
D, T
which is a dimensionless quantity in order of 10° — 10!, typically.*

The next step we plot the evolution of the skyrmion radius versus the crossover
parameter 0. To be on the same foot for both the skyrmion and bubble branches,
we define the radius R of a topological object under study as 8(R) = n/2, that is the
distance from the skyrmion center where spins are orthogonal to the external magnetic
field (if a tiny one is present to define the skyrmion axis). After finding numerically for

several o the angular profile 8(r) and solving the inverse problem 26(R)/x =1, we plot

4Note that for extremely small D — 0, the skyrmions-like topological objects can no longer exist
(Derrick theorem, see [189]). Thus the skyrmionic solution of (6.27) naturally breaks down at very small
D (corresponding to very small ¢). It would be interesting to address this minimal-D criterion in future
studies.

116



(=)
S 20 o -
= ° S 2 Skyrmion regime Q
%“ o ~ Y 8
S 415 - ]
& 5 0 =R EE o
: E 0
2 (@]
o)
(@]
o
5 o) 1/2
. o (@]
skyrmion o 00
S 50095 1 1.5 2
o
a9 3 4 5 6 Crossover parameter o

Crossover parameter o

Figure 6.9: Radius of a topological object (skyrmion or chiral bubble) in units of Ry = vJ/K
versus dimensionless crossover parameter o =In(l1—D/D;)~! (see main text). The
crossover from skyrmions to bubbles is assumed to take place around o =3 where
the radius of the crossover skyrmion is of order 2 xv/J7K, and its profile is convex (see
Figure 6.8). The "pure” chiral-bubble solution appears at around o = 4, with radius
two orders of magnitude larger than in the ultimate small-skyrmion limit o <« 1.

the dependence R(o) on Fig.6.9. Remarkably, in the skyrmion regime, the skyrmion
radius is non-vanishing even for D =0, however is rather small, that is Ry ;, = 0.015 x
VJIK so they are (most likely) physically unstable with the radius less than the lattice
constant; and then grows rather fast with o as a nontrivial power law. It is still hard to
distinguish where the "pure” skyrmion branch distinguished o < 2, the radius is =~ 2/J/K,
which visually looks more like a bubble (see Fig. 6.8). However, there is a rather clear
crosser towards the chiral bubbles: at o =4, the radius of abruptly grows, indicating a
pure bubble solution. For D/D,>1 no radially symmetric, topologically nontrivial spin
structures exist. This may or may not indicate a crossover towards a skyrmion lattice,
as in this case v/J/K ~ J/D, or a breakdown to other phase with topologically trivial
(non-chiral) bubbles.

Another interesting question which rises here, is what is the nature of nearly power-
law scaling R(o) in the skyrmion regime. This needs further discussion and may be
further addressed by considering the scaling flows. Even though not directly related to
the crossover towards the chiral bubbles, this feature indicates that it is in fact impossible
to introduce the universal length scale even in the limit D <« D., where one would expect
something simple as v/J/K. The impossibility of introducing the universal length scale

is usually a good hallmark for qualitatively different physics in the system.

Thus we numerically established that there are systems in which the same energy
functional gives both skyrmionic and chiral-bubble solutions, which are topologically

undistinguishable.

117



6.3 MERONS, BIMERONS AND TOY MODEL OF TOPOLOGICAL CHARGE SATU-
RATION

Since I started studying magnetic skyrmions in early 2015, I was appealed on how come
a topological magnetic phase abruptly emerges from what seems to be a topologically-
trivial (helical or conical) phase. Granted, there are several both numerical and semi-
analytical approaches on calculating magnetic phase diagram of skyrmion-hosting com-
pounds, but to my experience none of them directly tackles this question. Thus to
address the issue on how the topological charge appears from a trivial single-helix phase,
I below propose a model which tracks the evolution of topological charge density under
magnetic fields, and, indirectly, temperatures.

In an idealized situation, the helical phase is topologically trivial: it constitutes of
infinitely long helical stripes, and the integrated scalar Berry field ‘B = %m-@xm x dym
vanishes for any chosen region. In reality nevertheless, it is not the ultimate truth,
as the helical phase often constitutes from multiple helical domains. If one further
zooms on how a helical stripes ends on the domain wall, one finds that it ends with a
topologically-nontrivial object called a meron [190]. A meron is a half-skyrmion (Q = 1/2)
which is situated on the ends of a helix line (see Figure 6.10). To dissect a helix stripe
into two stripes, one therefore needs to inject at least 2 merons. By definition, an object
consisting of two merged merons is called a bimeron, and it is topologically equivalent
to a skyrmion. The amount of helical domains, and thus, the number of merons in the
system, is known to be related with the strength of applied magnetic field: in higher
fields we have more merons within the helical phase. In this section I therefore propose
a phenomenological model for topological charge saturation based on this observation.

The idea of the calculation is following: by applying the magnetic field the probability
of nucleating more merons in the system increases. Therefore, the average topological
charge density in the system is evolving from zero (in the ground state, i.e. the single-

domain infinite helical phase) to a maximum (in the skyrmion phase). We expect that

Figure 6.10: An illustration of a bimeron: a 3D scheme (a) and a top view (b). A single meron
is a half-skyrmion as schematically separated on the left and right of subfigure (b).
Several elongated bimerons piled parallel to each other constitute a helical domain
with a non-zero topological charge on the edge. Figures from Ref.[190].
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the helical-to-skyrmion phase transition happens when the topological charge density
saturates to its maximum, thus representing an array of densely packed skyrmions. Even
though the skyrmion phase in thin films reminds more of an (interacting) skyrmion liquid,
to recognize the effect of topological charge saturation its pure form we consider
an idealized model of topological transition from the helical phase towards the ideal

skyrmion gas (i.e. array of non interacting skyrmions).’

We start from considering an effective free energy of noninteracting meron gas.
Merons are distributed in pairs through the helical phase. Adding more merons in
the system breaks already existing helical channels into two parts. We therefore divide
the space into Nj cells of a typical meron-pair size and consider the situation when the

n; meron pairs cannot overlap. The entropy of the meron gas is thus given by

Nj!

S=InP=In[][———— 6.29
n‘,B Ill:[ ni!(Ni—ni)! ( )
=) (nN;!-Inn;! - In(N; - ny)Y) (6.30)
i
=3 (N;InN; — n;In N; - (N; - n) In(N; — ny)), (6.31)

where we used in (6.31) the Stirling’s formula for factorial. We hence construct the free

energy in conventional way F = E— TS, which upon substitution (6.31) yields

F= Z (2 (€meron — Ameron (H)) 1 = T (N;In N; — niInn; — (N; — n;) In(N; — n;))], (6.32)
i

where Aperon = @ H is the Zeeman energy contributed by a meron with respect to the
helical background, and €meron is the field-independent energy contribution (in the helical
phase, €meron > 0). Taking now a variation with respect to number of meron pairs n;,

one obtains

1 6F Nj — n;
?5_’11:; 2lﬁ(emeron_Amelron(l'l))_lnf =0, (633)

which immediately gives the fluctuationally-averaged number of meron pairs in the sys-
tem 71; = n;/ N; = {1 +exp [2f (Emeron —Ameron(H))]}fl. As each of the meron pair in our
model carries 1/2+1/2 topological charge, the fluctuationally-averaged topological charge

in the helical phase upon increasing magnetic field evolves as

5Surprising1y, a qualitatively correct physics is captured already in the ideal-gas approximation for
meron distribution [190].
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€meron — Ameron (H)

1 1
Q(H) = Qmax (5 + Etanh T , (634)

and, more importantly, reaches the saturation around

Ameron(Hs) = €meron, —  Topological Charge Saturation (TCS). (6.35)

Note that formula catches several important features of the helical-to-skyrmion tran-
sition: (i) in ground-state helical phase Aperon(Hx) < €meron, the topological charge is
vanishing, Q(H = 0) = 0, manifesting sufficiently large helical domains L2 > J?/D?; (ii)
the topological charge goes from (almost) zero to a rapid saturation at some critical
field Hy = €meron/ @, thus reminding the first critical field H;; determining the boundary
between helical and skyrmion phase; we show below that for thin films H, < D?/]. For
order-of-magnitude estimates, the "rest energy” (per thin-film thickness) of a meron
confined by helical lines is of order €yeron < J , the dimensional analysis gives Zeeman
energy roughly Anyeron & JH/D?, thus a ~ J?/D?; here M =1, a=1 for simplicity. This,
as we will see below, gives an estimate for the width of transition AH/H, « T/]zy, where
zg in the thickness of the thin film.

We introduce the normalized topological Charge6 q(H) = Q(H)/Quax and simplify the
formula for TCS (6.35) as

H-H,(T)

N (6.36)

1 1

q(H) = 3 + 3 tanh
This formula is sketched on Figure 6.11. We note that e 2/%/T is roughly a probability
of spontaneous creation of a meron pair in the helical phase (H =0); in other words, it
is of the same order as the density of merons in the system. As in the low fields this
density is very low, we thus come to conclusion that AH/H, <« 1. This simple estimate
clearly indicates a rapid transition to the skyrmion phase near H = H,(T), which has
the maximum topological charge among available thermodynamic phases. We also note

that taking into account M = M(T), both H, and AH are temperature-dependent.

We now estimate the energy of a single meron with respect to the helical phase. For

this, we start from the minimal model

(ﬁ + sze) - Ecose}, (6.37)
dar 2r

M

r ; df\? sin®0
0 0
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Figure 6.11: Normalized topological charge as the function of magnetic field H. In the helical
phase (H < H.1(T)), the normalized topological charge is almost zero, while it goes
to the saturation around H.;. When the topological charge density is sufficient to
create the Skyrmion lattice, the Sk phase becomes dominant for H > H;;. This
model however does not captures the skyrmion-to-field-polarized crossover (Hey), as
the bimeron mechanism is no longer appropriate. For visualization, we adopt AH =
0.05H;, while the numerical estimates give even more abrupt crossover, AH/H¢ ~
1073 -107%.

For numerical calculations, it is more convenient to introduce dimensionless variables by
measuring rest energy of a skyrmion in units of JM? (M? = M?(T) and radial distance in

units of lattice parameter x =r/a,

A2
(Wheron) sin?6 sin26
Bneon) f axx |07+ % +2k0(e;+ )—2[)0059 (6.38)
0
172k, g -
- f dxx (6;+ko)2—k§+%+ksm —2hcosf (6.39)
0

where we have introduced the dimensionless helical period A =2n/ky (in units of a), with
ko = Da/2] (i.e. modulation vector D/2] times lattice constant a), as also dimensionless
magnetic field h = Ha?/2JM. After that, we solve the variational problem with respect
to the configuration 6(r) which minimizes the meron energy for given ky and b, as was

discussed in Chapter 2.
The energy of a helical stripe per unit length is

(6. + ko) — k2 —2h cosB | . (6.40)

A
(Whel) :fdx
JM2Al J

6Below we consider for simplicity topological charge packing with effective occupancy 7/4.
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To compare the meron with the helical phase we consider a cell A x 1/2. The resulting
energetics of a meron merged on the helical stripe roughly determines the self-adjusted

quantities €meron, Ameron(h) as

éa([)) Eff‘meron_Ameron(h) :2]M2 (l_hi)’ b* ~ k(2)/4’ (641)
and thus restoring the dimensional units, one gets
) H D?
€meron (1) =2JM=(T), Ameron (H) = Femeron(T), H,.(T) = EM(T), (642)

Thus according to (6.34), we have introduced AH = T/a = H. T/€meron, and hence for
the relative width of topological-charge saturation (TCS width) in external magnetic
fields we obtain estimate AH/H, = (Bemeron) ', B = UT, see (6.34). Taking now esti-
matively J =10"2Jm/A?, My =10°A/m, a=10""m (we consider for simplicity a thin
film with thickness zyp = 100a, without dipolar effects); for temperature T = 20K, one
obtains AH/H, = 3%, while for warmer conditions T =50 K, the TCS width is estima-
tively AH/H, =7%. Thus we have a reasonable agreement with available experimental
signatures. We also come to conclusion that the TCS width is roughly proportional to
temperature and drops inversely with the sample thickness (at least, if stray-field effects
neglected). Thus the effect is expected to be rather crucial in the thin films than in the
bulk crystals.

It is interesting to show that the topological charge saturation field H, indeed corre-
sponds to the first critical field H¢, which determines the helical-to-skyrmion phase tran-
sition if speaking energetically. Indeed, in the present model the energy of a skyrmion
in the helical phase is given by €skyrmion = 2(€meron — Ameron (H)) (without interaction ef-
fects). We thus note that at H = H, the skyrmion energy turns to zero with respect the
helical phase, which qualitatively indicates the helical-conical phase transition [105, 190].
Therefore, H,(T) is the first critical field Hc;(T) and the rapid saturation in topological
charge described by (6.35) indeed reflects the topological phase transition.

Finally, I remind that the above calculations were done in approximation of non-
interacting meron gas. In this approximation there is no difference between adding
a skyrmion with a pair of merons or adding simply 2 pairs of merons [190]; however,
because of interactions between topological charges, the energetics of the adding merons
to the system is slightly perturbed. In particular, energetically 4 merons # 2 merons
+ 1 skyrmion because of the skyrmion-meron interaction [150]. Of course, by including
interactions one needs to consider the total accumulation of topological charge by all the
(energetically different) players, — that is meron pairs, skyrmions, bimerons and other

higher-order topological excitations. The qualitative physics however is the same even
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in the later case, but it is less intuitive to distinguish what causes the rapid topological

charge saturation and how it happens.

6.4 CONCLUSIONS

In this chapter I concluded with three different problems concerning physics of topologi-
cal charges in thin films, namely: (i) moving magnetic skyrmion with thermal gradients,
which is energetically cheap and easy; (ii) shown topologically-preserved crossover be-
tween (small) magnetic skyrmions and (huge) magnetic chiral bubbles, which is impor-
tant because these objects are often confused in literature which apparently leads to a
dissimilar reported data on both the sizes of “skyrmion-bubbles”, their nucleation and
mobilities; (iii) considered a problem of topological charge saturation during process of
helical-to-conical phase transition; within the non-interacting model it was shown that
the merons (Q = 1/2 topological quasiparticles) are responsible for topological magnetic
phase transition in this case. The merons can be to a good approximation considered
as robust quasiparticles however they come in pairs in the form of helix-splitting meron
couples, bimerons, skyrmions, and higher-order topological configurations.

Magnetic thin films is a very broad and exciting field of research, which potentially is
more advantageous for skyrmionic applications than the bulk systems. In many cases it is
possible to establish rather simple phenomenological models, and solve them analytically
or semi-analytically, which is highly attractive for both fundamental and applied research,

and I plan to focus on several eye-catching problems shortly.
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Conclusions and Overview

In this thesis, I thus presented theoretical results for application of different external
stimuli to promote skyrmion stabilization and control, such as applying external elec-
tric fields, mechanical strains and uniform pressures, and thermal-gradient fields for
skyrmion motion towards regions with enhanced stability. Different skyrmionic mod-
els as described in this thesis are taken under the umbrella title "Theories of the
topologically-induced phenomena in skyrmion-hosting magnetoelectric insulators”, as
the papers which I co-author [95, 133, 157] and others under preparation consider ex-
periments in the magnetoelectric insulator CuyOSeO3. Thus one of the most intriguing
results of this thesis (Chapter 4) is stabilization ("writing”) and destabilization (”eras-
ing”) of the bulk skyrmion phase in magnetoelectric insulator Cu,OSeO3 upon applying
moderate electric fields of a few Volts per micrometer. Such electric fields are com-
patible with the modern microelectronic devices, which opens prospects for the further
development of the skyrmion-based applications, in particular if room-temperature mag-
netoelectric skyrmion host is found. Importantly, many results of this thesis (such as e.g.
Chapters 2,5,6) can be applied to a much broader class of (bulk) skyrmionic materials,
namely chiral magnets without distinguishing in their conductive properties (e.g. both
to metallic MnSi and insulating CuyOSeO3); a good twist on calculating the magnetic
phase diagram is done comparing to the previously existed model of Ref.[38], See Chap-
ter 3. The magnetic phase diagram, as had been already discussed, is a remarkably
universal feature for all the bulk skyrmionic compounds, thus understanding of it in
further details is important from the fundamental perspective. It is as a general rule

very hard to simulate sufficiently large lattices to get critical fluctuations right. There-
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fore my semi-quantitative analytic approach presented in Chapter 3 is valuable. For
the skyrmions in bulk magnetoelectric insulator Cu,OSeOs, the summarized list of my
contributions here is following: 1) I improved the "tail” solution of a single skyrmion;
2) I attempted a more consisted formulation of the variational solution; 3) I improved
treatment of the critical fluctuations by taken into account recent experiments; 4) I pro-
posed a new criterion for critical fluctuations regime in bulk phase diagrams; 5) From
2)-4) framework I developed a numerical technique for fast calculation of magnetic phase
diagrams; 6) I developed phase diagrams in electric fields, and wrote code which allows
relatively fast modification for change in E and H directions; 7) I have shown that a
single skyrmion stabilizes under electric fields in field-polarized phase; 8) T have shown
that the uniaxial mechanical strains lead to stabilization of individual skyrmions; 9) I
have shown that applied pressure stabilizes the skyrmion lattice phase by modifying the
anisotropy-induced mode-mode interaction; 10) I have shown that there is a new mech-
anism underlying the phenomenon of skyrmion motion under thermal gradients in thin
films; 11) T have shown directly that there is a topology-preserving crossover between
the thin-films skyrmions and magnetic bubbles, within the same energy formalism; 12)
As a toy model which is still to be further explored, I proposed the meron-mediated
mechanism for explaining the rapid topological charge saturation as the helical phase is
turned into the skyrmion phase over the thin film.

In this thesis I thus presented several diverse both in their methods and goals calcu-
lations for magnetic skyrmions in chiral magnetoelectric insulators which I carried out
since early 2015. Several other projects on which I was working on since starting my
PhD in 2013, while being very successful, have not been included here for the reason that
they are too distant from the content of the present thesis. Those are my single-author
papers [191, 192] and earlier [193-195].
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