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Abstract
Modern computing systems are based on multi-processor systems, i.e. multiple cores on
the same chip. Hard real-time systems are required to perform particular tasks within
certain amount of time; failure to do so characterises an unaccepted behavior. Hard
real-time systems are found in safety-critical applications, e.g. airbag control software,
flight control software, etc. In safety-critical applications, failure to meet the real-time
constraints can have catastrophic effects.
The safe and, at the same time, efficient deployment of applications on multi-processors
with hard real-time constraints is a challenging task. Scheduling methods and Models of
Computation, that provide safe deployments, require a realistic estimation of the Worst-
Case Execution Time (WCET) of tasks. The simultaneous access of shared resources by
parallel tasks causes interference delays, due to hardware arbitration, which affecs WCET.
Interference delays can be accounted for, with the pessimistic assumption that all possible
interference will occur. Resulting schedules would be exceedingly conservative, thus the
benefits of a multi-processor would be significantly negated. Producing less pessimistic
schedules is challenging due to the inter-dependency between WCET estimation and
deployment optimisation. Accurate estimation of interference delays -and thus estimation
of task WCET- depends on the way an application is deployed; deployment is an
optimisation problem that depends on the estimation of task WCET. Another efficiency
gap, which is of consequence in several systems (e.g. airbag control), stems from the
fact that rarely tasks execute with their WCET. Safe runtime adaptation based on the
Actual Execution Times, can yield additional improvements in terms of latency (more
responsive systems).
To achieve efficiency and retain adaptability, we propose that interference analysis should
be coupled with the deployment process. The proposed interference analysis method
estimates the possible amount of interference, based on an architecture and an application
model. As more information is provided, such as scheduling, memory mapping, etc, the
per-task interference estimation becomes more accurate. Thus, the method computes
interference-sensitive WCET estimations (isWCET).
Based on the isWCET method, we propose a method to break the inter-dependency
between WCET estimation and deployment optimisation. Initially, the isWCETs are
over-approximated, by assuming worst-case interference, and a safe deployment is derived.
Subsequently, the proposed method computes accurate isWCETs by spatio-temporal
exclusion, i.e. excluding interferences from non-overlapping tasks that share resources
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(space). Based on accurate isWCETs, the deployment solution is improved to provide
better latency guarantees.
We also propose a distributed runtime adaptation technique, that aims to improve
run-time latency. Using isWCET estimations restricts the possible adaptations, as
an adaptation might increase the interference and violate the safety guarantees. The
proposed technique introduces statically scheduling dependencies between tasks that
prevent additional interference. At runtime, a self-timed scheduling policy that respects
these dependencies, is applied, proven to be safe, and with minimal overhead.
Experimental evaluation on Kalray MPPA-256 shows that our methods improve isWCET
up to 36%, guaranteed latency up to 46%, runtime performance up to 42%, with a
consolidated performance gain of 50%.

Key words: hard real-time systems, interference-sensitive WCET, runtime adaptation,
Kalray MPPA-256
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Résumé
Les systèmes informatiques modernes sont basés sur des systèmes multiprocesseurs,
c’est-à-dire avec plusieurs cœurs sur la même puce. Des systèmes temps-réel durs sont
nécessaires pour effectuer des tâches particulières en un certain laps de temps ; un échec
caractérise un comportement non accepté. Des systèmes temps-réel durs se retrouvent
dans des applications critiques pour la sécurité, par exemple dans les logiciels de contrôle
des airbags, les logiciels de contrôle de vol, etc.. Pour des applications critiques pour la
sécurité, le non-respect des contraintes de temps réel peut avoir des effets catastrophiques.
Le déploiement sûr et, en même temps, efficace des applications sur un multiproces-
seur, sous des contraintes de temps réel dur, pose un problème difficile. Les méthodes
d’ordonnancement et les modèles de calcul visées à des déploiements sûrs nécessitent
une estimation réaliste du temps d’exécution le plus pessimiste (Worst Case Execution
Time - WCET) des tâches. L’accès simultané par des tâches parallèles aux ressources
partagées entraîne des retards d’interférence en raison de l’arbitrage hardware. Les retards
d’interférence peuvent bien être pris en compte, en faisant l’hypothèse pessimiste selon
laquelle toute interférence possible se produirait. Les ordonnancements résultants se-
raient extrêmement conservateurs, de sorte que les avantages du multiprocesseur seraient
significativement réduits. Cependant, produire des ordonnancements moins pessimistes
est difficile en raison de l’interdépendance entre l’estimation du WCET et l’optimisation
du déploiement. L’estimation précise des retards d’interférence - et donc l’estimation du
WCET des tâches - dépend de la façon dont une application est déployée ; le déploiement
est un problème d’optimisation qui dépend de l’estimation du WCET des tâches. Une
autre inefficacité, qui peut être lourde dans plusieurs systèmes (par exemple, le contrôle
des airbags), découle du fait que rarement les tâches s’exécutent avec leur WCET. Une
adaptation de l’exécution basée sur les temps d’exécution réels, pourvu qu’elle soit sûre,
peut apporter des améliorations supplémentaires en termes de temps de réponse (systèmes
plus réactifs).
Pour atteindre l’efficacité et conserver l’adaptabilité, nous proposons que l’analyse des
interférences soit associée au processus de déploiement. La méthode d’analyse d’inter-
férence proposée identifie les interférences possibles, en fonction d’une architecture et
d’un modèle d’application. À mesure que d’autres informations sont fournies, telles que
l’ordonnancement, la répartition de la mémoire, etc., l’estimation de l’interférence pour
chaque tâche devient plus précise. Ainsi, la méthode calcule un temps d’exécution tenant
les interférences en compte (interference-sensitive WCET - isWCET).
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Sur la base de l’isWCET, nous proposons une méthode pour découpler l’interdépendance
entre l’estimation du WCET et l’optimisation du déploiement. En une première phase,
les isWCET sont surestimés, en supposant les interférences les plus défavorables, et un
déploiement sûr est dérivé. Par la suite, la méthode proposée calcule des isWCETs plus
précis par exclusion spatio-temporelle, c’est-à-dire en excluant les interférences des tâches
qui partagent des ressources (espace) mais ne se chevauchent pas dans le temps. Basé sur
ces isWCETs précis, la solution de déploiement est améliorée pour optimiser les temps
de réponse.
Nous proposons également une technique d’adaptation répartie, qui vise à améliorer les
temps de réponse en temps réel. L’utilisation des estimations d’isWCET restreint les
adaptations possibles, car une adaptation pourrait augmenter les interférences et violer
les garanties de sûreté. La technique proposée introduit statiquement des dépendances
d’ordonnancement entre les tâches, ce qui empêche l’apparition d’interférences supplé-
mentaires. Au moment de l’exécution, une politique d’ordonnancement auto-cadencée
qui respecte ces dépendances est appliquée, et prouvée comme étant sûre et peu lourde.
L’évaluation expérimentale sur une plate-forme Kalray MPPA-256 montre que nos
méthodes améliorent les isWCETs jusqu’à 36%, les temps de réponse garantis jusqu’à
46%, et les performances jusqu’à 42%, avec un gain de performance consolidé de 50%.

Mots clefs : systèmes en temps réel durs, WCET sensible aux interférences, adaptation
d’exécution, Kalray MPPA-256, NoC
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1 Introduction

1.1 The need of Multi-processors

Modern computing systems are based on multi-processor systems, i.e. processors with
more than one processing element (PE) integrated in the same chip. Architectures
based on the multi-processor paradigm allowed systems to scale and accommodate more
demanding applications. This is apparent nowadays, from large distributed systems and
cloud services to mobile applications and autonomous vehicles. The main reason that
led the processor manufacturing industry to the multi-processor paradigm was the need
for higher performance. While it is not the purpose of this thesis to study the concrete
phenomena that mandated the use of multi-processors, it is important to outline the
main reasons, as they do affect hard real-time systems which did not scale as the rest
computing systems. From the ’80s until the beginning of the millennium, the processor
manufacturing industry was focusing its efforts in increasing the density of transistors
in a chip. Smaller transistors present smaller capacitive loads to their drivers, which
can thus switch faster. As an immediate consequence, transistor-based units could be
operated at higher clock frequencies, resulting in faster processors. This would lead in
faster processors that could meet the increasing processing demand.

Despite that the increase of transistor density continued at the same rate for years,
known as Moore’s Law [92], the processor manufacturing industry shifted its focus to
multi-processor architectures. The main reasons for this shift are related to power demand,
heat dissipation and operating frequency. As a higher operating frequency requires a
higher power supply, it results in higher heat dissipation due to power leakage. Therefore,
there is limit in frequency at which a chip can be operated for long periods of time
without overheating and requiring a reasonable amount of power [6]. This limit, often
called Power Wall [65], was reached in 2004 when prototypes of the Tejas processor (the
cancelled Pentium IV successor), operating at 2.8 GHz, required 150 Watts.

The proposed alternative to accommodate the demand for more processing power was

1



Chapter 1. Introduction

Figure 1.1 – Trends of required power for desktop processors [113]

multi-processor architectures, where multiple PEs — called cores — are bundled in the
same integrated circuit. The first designs and implementations consisted of 8 or fewer
cores on the same die, sharing resources of the chip, e.g. memories, bus interconnect,
buses to the shared and main memory, etc. This scheme could not scale up to several
dozens or hundreds of cores, as sharing the same communication medium was deemed
an impractical approach [55]. This gave birth to a new interconnection paradigm, the
Network-on-Chip (NoC) [12, 32], which consists of routing nodes, network interfaces
and links among them forming a network. Behind each network interface are located
one (or more) cores with a private memory. Cores can exchange data over the NoC,
accessed through the network interface, thus decoupling computation and communication
operations. NoC routers, as in computer networks, are responsible for data routing
between the source and target core.

1.2 Challenges in Hard Real-time Multi-processor Systems

While multi-processor and NoC based architectures were realised to meet the increasing
processing demand in several computing domains, the fact that multiple resources are
extensively shared, compared to uniprocessor systems, has a significant impact for real-
time computing. Real-time systems are computing systems which are required to perform
particular tasks within certain amount of time, called deadlines. Whether there is value in
responding beyond the deadline distinguishes hard from soft real-time systems [26, 14]. In
order to prove that deadlines are met, hard real-time systems are required to be formally
modelled, while soft real-time – being defined as not hard – have no such requirement,
in general. For example, the airbag control system of modern cars is a hard real-time
system, as deploying the airbag after its deadline can potentially harm the driver. On
the other hand, responding to keyboard strokes or mouse clicks is considered a soft
real-time, as it is desirable to react to such events even past their deadlines. Therefore,

2
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Figure 1.2 – A typical design process for hard real-time uni-processor systems

in order to prove that deadlines are met, it is important for hard real-time systems to
have analysable and predictable timing behavior.

Modelling, analysing and optimising the timing behavior of uniprocessor-based real-time
systems was the focus for several decades, for the Scheduling [14, 26, 82] and Verification
communities [53, 22, 75, 31]. Formal models of real-time systems are based on the notion
of tasks, which are units of execution, ranging from a bundle of instructions up to a
whole set of programming functions. Using such models, the timing behavior of the
system can then be studied, analysed and/or optimised. Typically, approaches that
provide hard real-time guarantees [14, 26, 34, 25] are based on the notion of Worst-Case
Execution Time (WCET) of tasks, i.e. the maximum amount of time required for a task
to execute in the target architecture under any possible valid input [112, 41]. Acquiring
the exact WCET for a task is rather challenging, and not feasible in all cases. Acquiring
exact WCET requires to consider all possible execution paths of the application (at
source/binary code level) an all possible execution scenarios of instructions at the target
architecture, including out-of-order execution, branch prediction, cache replacement
policy, data/instruction prefetching, etc. [112, 110]. This leads to an exponential number
of possible executions which have to be explored. Even for small-sized applications this
exploration cost is prohibiting, rendering acquisition of exact WCET impractical [112].

Figure 1.2 illustrates a typical design process [26, 34, 25, 14, 112, 31] for realizing hard
real-time uni-processor systems. Given a set of application tasks, the first step of such
a process is to perform timing analysis of those tasks in order to acquire their WCET
estimation for the target architecture. Using these WCET estimations, the process
performs a schedulability analysis, for a given scheduling policy decided at design-time,
to determine if all the real-time constraints (internal deadlines, latency guarantees, etc.)
are met. Upon success, the process may generate (offline) static schedules and timing
information, which could be used as input for a run-time scheduler. At runtime, the
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Time
1

Core3

Core2

2 3 4 5 6 7 8 9

             WCETiso

Interference

Core1                     v1

                    v2             v4

                    v3

Figure 1.3 – Example of varying WCET for four equivalent tasks executed on three cores.
Tasks v1, v2 will experience, in the worst-case, two time units of interference due to their
mutual overlapping and the overlapping with v3; Task v3 will experience three time units
from tasks v1, v2, v4, while task v4 only one time unit from v3 (WCETiso denotes WCET
in isolation, i.e. in absence of interference)

predetermined scheduling policy is implemented or, if additional information is provided,
a run-time policy is enforced which, nevertheless, must be proven that preserves the
acquired real-time guarantees (deadlines, latency).

Certainly, there are several variations of the “typical” design process for realising hard
real-time systems, each with its benefits and shortcomings, on a uni-processor. However,
with the rise of new architectures with multiple PEs, timing analysis and optimisation
becomes even more challenging [14, 33, 105, 70, 40]. This is due to sharing several
arbitrated resources among these PEs (memories and interconnects) which introduces
timing delays and changes the timing behavior in a non-deterministic manner. As pointed
out by Davis and Burns [34]: “A recent survey of WCET techniques [112] concluded that
no static analysis currently exists for multi-core processors which have such1 complex
hardware interactions. Research in this area has either aimed to develop a fully statically
analysable multi-core CPU, or to move from providing deterministic WCET estimates to
providing probabilistic ones with a high degree of confidence.”

A motivating example of the variability of WCET estimations, due to resource sharing,
is outlined in Figure 1.3. Consider four equivalent tasks, e.g. an image filter applied to
four different parts of an image. These tasks, being equivalent, have the same WCET
when executed in isolation. If the overhead per overlapping task is of one unit, it is clear
that the WCET of each task will increase, with the amount of WCET increase being
dependant on how and when these tasks are executed. Therefore, despite the fact that
these tasks are equivalent, thus have the same WCET in isolation, their WCET varies
according to the chosen deployment.

In order to naturally extend the uni-processor deployment approaches to multi-processor
architectures, one would have to over-approximate the tasks WCET, such that the WCET

1Referring to timing delays due to contention on shared resources
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WCET estimation
•WCETiso
• Interference

Deployment
•Mapping
• Scheduling
•Mem. Allocation

Figure 1.4 – “WCET estimation” and “deployment optimisation” inter-dependency;
optimisation of the former depends on the latter, and vice versa

accounts for all possible interferences. Nevertheless, such a pessimistic WCET estimation
will result in under-utilised systems, thus seriously undermining the advantages of utilising
multi-processors. This is often called the “one-out-of-m processors” problem [63], where
the additional processing capacity is negated by the pessimism of the WCET. In fact
recent research [64], including research performed within this dissertation [100, 99, 97]
shows that WCET estimations which account for interferences from parallel tasks can be
150%, or even 750%, of the corresponding estimations in absence of interference.

Yet, the vast majority of scheduling approaches that aim to address hard real-time
systems, either for standard task models [34, 14, 26, 82, 50] or Models of Computation
(MoCs) [68, 49, 67, 17, 72, 19], require the a-priori knowledge of tasks WCETs. This,
of course, is not without reason; one being that research performed from the ’60s until
late ’90s made a then reasonable assumption that delays due to arbitration of shared
resources are negligible since processors operated in low frequencies and comprised of a
low-number of cores.

Another, and more important reason for the a-priori knowledge of WCET assumption, is
the inter-dependency between “WCET estimation” and “deployment optimisation” that
appears in multi-processor systems [34]. Accurate estimation of interference delays -and
by extension estimation of tasks WCET- depends on the way an application is deployed.
But, optimisation of hard real-time deployment (in terms of latency) is a constrained
optimisation problem that depends on the estimation of tasks WCET, thus creating a
cyclic dependency between the two main aspects of realising hard real-time systems.
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Figure 1.5 – Overview of the state-of-art

In order to resolve this cyclic dependencies and still acquire reasonable WCET estimations,
several state-of-the-art approaches (Figure 1.5) employ resource isolation [34, 94, 21,
81], or resource regulation [78, 36, 66, 64] techniques. In resource isolation, access to
shared resources (buses, memories, NoC routers) is restricted to strictly one core (e.g.
spatial partitioning [102], memory coloring) or one core at a given time (e.g. temporal
partitioning [23, 48], temporal isolation [21, 81]). This is achieved either at the hardware
level (e.g. TDMA) or using software mechanisms [34]. Resource regulation techniques,
on the other hand, allow the simultaneous use of resources, but restrict the amount of
requests to a shared resource per core within a predefined time window.

While such approaches restrict the pessimism in WCET estimations, and thus provide
more efficient deployments, they can undermine run-time performance as they restrict
adaptability. Consider, as an example, the hypothetical scenario where the airbag (SRS)
control software of a vehicle is executed in the same multi-processor as the automatic
braking (ABS) control software. Both software have real-time guarantees and there is a
benefit in executing them as fast as possible. In the case of resource isolation techniques,
the SRS cannot access resources dedicated to ABS while ABS is executing, and vice
versa. In the case of resource regulation, while accessing a shared resource is permitted,
the amount of requests is restricted over time, which essentially slows down the execution
of both the SRS and ABS software.

This dissertation holistically provides methods for deployment of applications to multi-
processors architectures, as the authors of [33, 104], but with the aim of providing
hard real-time guarantees. In order to realise efficient hard real-time systems, without
sacrificing adaptability [94, 21, 81], task WCETs are improved as the deployment process
progresses. A similar idea [41] is being advocated by the on-going European-funded
project Argo [84].
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1.3 Thesis Statement and Contributions

This dissertation aims to stand between the two ends of the spectrum of approaches, that
is (i) methods that do not restrict adaptability, but overestimate WCET and provide
pessimistic latency guarantees, and (ii) methods that provide accurate WCET estimations
and tight latency guarantees, but restrict run-time performance. To bridge that gap,
this dissertation proposes novel methods for safely deploying a streaming application to
a generic homogeneous architecture, by coupling the WCET estimation method to the
deployment process.

The first proposed method is an interference analysis, called isWCET method, which
given an architecture model, an application model with data-dependencies, and the
WCET estimations of the application’s tasks (in absence of interference), estimates the
possible amount of interference. As more information is provided, such as task mapping,
scheduling, memory mapping, etc., the per-task interference estimation becomes more
accurate, but also more sensitive to changes. These interference-sensitive estimations are
considered safe only for deployments in which the maximum interference each task can
experience is at most as those interference-sensitive estimations.

The second proposal is to couple such an isWCET method to a deployment process for
a multi-processor architecture, as shown in Figure 1.6. The proposed process derives
safe (in terms or real-time constraints, buffer protection and deadlock freedom) and
efficient deployments, by gradually providing information to the isWCET method. To
illustrate the benefits of such coupling, we apply such an approach to a variant of SDF
graphs, called split-join graphs. Intuitively, split-join graphs model explicitly task-/data-
parallelism of actors, by allowing potentially parallel firings of actors to read/write to
the same channel.

Still, while the generated deployment solution is safe and improved in terms of guaranteed
latency, run-time performance can be severely undermined, since the worst-case is unlikely
to occur at runtime. While the isWCET-based deployments are more efficient, in order to
avoid violating the real-time guarantees, such deployments permit only certain adaptations
out of the possible many. The adaptations that are deemed safe should not increase the
interference any task may suffer in the worst-case. Therefore, the third contribution of this
dissertation is a novel, interference-sensitive, runtime adaptation technique, called isRA,
which is suitable for deployments based on isWCET estimations. Being a distributed
approach, the execution of the runtime monitors responsible for enforcing the adaptation
policy can also cause interference. For this reason, the runtime monitors are designed,
and implemented, having minimal execution time and induced interference, thus avoiding
undermining runtime performance and still meeting the real-time guarantees.

The final contribution of this thesis, is the realisation of all the aforementioned methods
and techniques for an actual multi-processor (Kalray MPPA-256). All of the approaches
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Figure 1.6 – Global overview of the proposed approaches

were evaluated on this multi-processor with real-life applications (StreamIt benchmark),
outlining the benefits that each method contributes to the the problem of application
deployment with real-time guarantees.

1.4 Dissertation Outline

Chapter 2 presents the fundamental models used for streaming applications and generic
architectures. Based upon these models, an execution model is derived which faithfully
captures possible executions of the application deployed on a generic architecture and
serves as the intermediate representation for the various steps of the proposed approaches.

Based on an execution model, in Chapter 3, a novel interference analysis and WCET
estimation method is presented, called isWCET. As more information is available about
the application deployment (such as memory mapping, task mapping, task scheduling,
etc.), the isWCET method provides more accurate interference estimations, via iteratively
applying spatio-temporal exclusion, thus acquiring more accurate, but sensitive, WCET
estimations. The method is formally proven to be (i) safe, (ii) exact and (iii) always
converges. Experimental results of the StreamIt benchmark deployed on the Kalray
MPPA-256 multi-processor show that the isWCET method is able to exclude 74% of the
interference delays on average, improve WCET estimations up to 36% and reduce the
average overhead due to interference to less than 10%.

In Chapter 4, a safe deployment process is presented that leverages the outcomes of
the isWCET method. The deployment method manages to break the inter-dependency
cycle by coupling the WCET estimation with the deployment process. Specifically, the
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proposed deployment process estimates tasks WCET using the isWCET method, without
any information regarding the deployment. Once a safe deployment is acquired, the
process provides the deployment information to the isWCET method to derive tighter
WCET estimations and adapts accordingly the acquired deployment. Extending the
results of Chapter 3, experimental evaluation shows that coupling the isWCET with the
deployment process, can improve guaranteed latency up to 46%.

Chapter 5 presents a novel distributed runtime adaptation technique, called isRA, which
builds upon isWCET estimations and aims at improving run-time latency. The proposed
isRA technique restricts executions that would introduce additional interferences, beyond
the ones already accounted for by the deployment process. The method is proven to be safe
and illustrated to have minimal overhead in execution time and induced interference. The
isRA is experimentally evaluated with the StreamIt benchmark deployed on the Kalray
MPPA-256 multi-processor, using the isWCET method and the proposed deployment
process. Experimental results show that the isRA improves runtime latency by 22%

on average, up to 42%. Thus, the consolidated improvement in latency, from all the
proposed methods, can be of more than 50%.
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2 Preliminaries

To provide real-time guarantees for an application deployed on an architecture, formal
models for the application and the target architecture are necessary. An application is
often considered in literature (e.g. [82, 14, 40, 34]) to consist of a set of computation
tasks which may be data-dependent. When all these computation tasks are executed, the
application is considered to have completed its execution, that is, the input data have
been consumed and the desired output has been produced. The output is considered to be
correct if during the execution there are no data-races, deadlocks etc. In a very abstract
manner, we can represent an application as a task graph A = (V ′,E ′) where V ′ is the set
of computation tasks and E ′ is the dependency relation among the computation tasks.
Deploying an application on a multi-processor architecture may also require additional
tasks in order to faithfully model architecture-specific operations of the underlying
architecture, such as hardware synchronisation, NoC transfers, etc. Therefore, the
resulting system can be viewed as a task graph S = (V ,E), derived from the application
graph, which contains the original computation and additional architecture-specific tasks
and respects the data-dependencies of the application.

Given a set of given real-time constraints for an application, the real-time deployment
of an application on a multi-processor architecture involves several decisions. These
decisions drill down to well known problems, that is (i) processor mapping, (ii) memory
mapping, (iii) NoC routing and (iv) processor scheduling. Processor mapping (often also
called task mapping) refers to the decision of assigning tasks to PEs (without considering
the order of execution), while processor scheduling is the decision of the order of task
execution. Often, especially in Scheduling Theory [82], these are collectively referred as
scheduling problem, but we will make the aforementioned distinction as it has a significant
impact on our approaches. The memory mapping problem refers to the decision of which
parts of the memory will be assigned to each task in order to perform its execution.
Finally, NoC routing is a typical network problem of deciding the sequence of routers that
packets or flows should traverse, in order to reach their destination. All these decisions
have an impact on the resource demands and execution times of tasks, thus affecting the
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efficiency of the system.

As a semi-formal definition of what a real-time deployment consists of, let the tuple
D = (µK ,µM ,ρ,β,ε) be the non-preemptive deployment solution, i.e the collective solution
of these problems, where:

• µK is the function which assigns tasks to PEs (processor or task mapping problem)

• µM is the function which maps tasks data-dependencies, private variables and
binary code to memory (memory mapping problem)

• ρ is the routing of the data-flows on the NoC (NoC routing problem)

• β and ε are the functions which denote the begin and end times of tasks, respectively
(scheduling problem)

In order to generate a deployment solution which meets certain real-time constraints,
e.g. tasks finish before some given deadlines and/or the execution finishes prior to a
given latency constraint, timing information of the application’s tasks must be provided.
The required timing information for each task is called Worst-Case Execution Time
(WCET), which is the maximum amount of time required for a task to execute in the
target architecture under any possible valid input. In architectures with multiple PEs
the actual WCET of any task v can vary according to the deployment, due to sharing
arbitrated resources among PEs which introduces interference delays and changes the
timing behavior in a non-deterministic way.

In principle, the WCET of a task v can be decomposed into the WCET in isolation, i.e.
in absence of interference, and the interference delays. Thus, given a deployment solution
D, for any task v its total duration of execution is:

δ
ιD

(v)
def= δi so(v) + ιD (v) (2.1)

where δi so(v) is the WCET in isolation, which is assumed constant regardless of the
deployment D, and ιD (v) is the amount of delays that task v experiences from simultane-
ously executed tasks. The assumption that the WCET in isolation is constant, and does
not depend on the deployment D, implies a homogeneous architecture, i.e. all PEs are
identical. Even in such architectures, while the WCET in isolation δi so(v) for any task v

does not depend on the deployment D, the same is not true for the interference delays
ιD (v) as they vary based on the deployment D. We will call δ

ιD
the interference-sensitive

WCET, or simply isWCET.

Our approaches involve several models (Figure 2.1); Initially, two abstract models are
consider as input, i.e. application model and architecture model. These are used to
construct the system model, which faithfully models the execution of the application
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Figure 2.1 – Abstract and concrete models

model to the target architecture model. The system model is transformed in the execution
model, which contains all the tasks of the system. The purpose is to solve the majority of
optimisation problems, required to acquire a safe deployment, on the abstract model, i.e.
system model. Whenever the system model cannot be used efficiently, its corresponding
execution model is used. The execution model, serves also another purpose. When the
safe deployment is derived, the execution model is transformed to the scheduled execution
model, which is the input for our runtime adaptation, along with the deployment solution.
This transformation of the execution model will play a crucial role in the efficiency of
the proposed runtime adaptation, but this will be discussed on Chapter 5.

In the next subsections the real-time deployment problem is formulated and the afore-
mentioned abstract and concrete models (in Figure 2.1) are formally defined.
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2.1 Real-time Deployment Problem Formulation

The optimal, in terms of time, deployment of an application on the target architecture
consists of finding the solution with the smallest latency to the i) processor mapping (µK ),
ii) memory mapping (µM), iii) NoC routing (ρ) and iv) scheduling (β,ε) sub-problems,
such that given real-time constraints are met. Thus, the real-time deployment problem
can be formulated as a constrained optimisation problem:

Find D = (µK ,µM ,ρ,β,ε) s.t. min

(
max
v∈V

(ε(v))

)
subject to CRT

where CRT is a set of real-time constraints of the form “some tasks should finish before
their deadline”, i.e. v ∈ V , ε(v) ≤ dv . To illustrate a simplified version of the whole
problem, consider Figure 2.2, where four tasks are deployed on two cores. Each task has
a (known) WCET of three times units and its respective deadlines is illustrated with a
dashed-line.

Time
1

Core2

Core1

2 3 4 5 6 7 8 9

             WCETv1

v2 v4

v3

d1,d2 d3 d4

Figure 2.2 – Optimal real-time deployment for known WCET

The focus of this dissertation is on non-preemptive, homogeneous systems. In homogeneous
systems the PEs of the architecture are identical and the WCET in isolation, δi so(v), of
any task v ∈V is the same on all PEs. Non-preemptive systems are those in which once a
task has started its execution, it cannot be interrupted and the task’s required resources
(memory locations, PE) cannot be used until the task finishes execution. Thus, given the
isWCET δ

ιD
the task-end function ε, for non-preemptive systems, is defined as:

ε(v)
def= β(v)+δ

ιD
(v) ∀v ∈V (2.2)

Notice that even for non-preemptive systems the optimisation problem becomes rather
complicated, as the exact valuation of the optimisation function ε depends on the solution
of the optimisation problem D.

There are several variations of the same problem depending on the type of architecture and
the assumptions made about the WCET. For example, for a multi-processor architecture
with a bus-based interconnect, the deployment reduces to a tuple without the NoC routing
function ρ (i.e. D = (µK ,µM ,β)), while if the WCET estimations are pessimistically
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estimated to include all possible interference delays, the deployment can even reduce to
D = (µK ,β). These variations can reduce the complexity of the deployment problem but
also lead to inefficient systems (details can be found in Section 3). As opposed to many
techniques in the literature, this dissertation does not rely on overly pessimistic WCET
estimations, since one of its aims is to explore and outline the impact of such pessimism
to the efficiency of the resulting system.

2.2 Processor Architecture Models

At the time this dissertation was written, several research [58] and commercial [61, 108,
60, 87, 46] computing platforms with multiple PEs were available. These broadly can be
categorised according to i) the type of PEs and ii) the on-chip memory organisation, as
illustrated in Figure 2.3.

Homogeneous (as opposed to heterogeneous) are the platforms where the PEs are of the
same type, e.g. CPU [60, 80], GPU [79], DSP, and have the same overall speed when
executing a task, i.e. all PEs have the same clock speed, cache size, I/O interfaces and
any other mechanism that can affect the PEs’ timing behavior. From the perspective of
how the shared memory is organised, there are three main categories, i.e. centralised,
distributed and mixed. In centralised memory organisation, the time for any PE to access
any memory location (typically via a bus) is uniform, when there is no interference, that
is the time does not depend on the targeted memory location/address. On the other
hand, in the distributed memory organisation, PEs use a different mechanism, such as
Direct Memory Access (DMA) engines or NoC, to access various memory locations, thus
having a Non-Uniform Memory Access (NUMA) in terms of timing. The mixed memory
organisation is a combination of the centralised and distributed memory organisations,
where a subset of PEs access their shared memory uniformly, but accessing the memory
shared by another set of PEs is non-uniform.

(Number of PEs)

Uni-processor Multi-processor
(Type of PEs)

Homogeneous Heterogeneous

Processor On-chip Memory
(Organisation)

Centralised MixedDistributed

UMA
(Bus-Based)

NUMA
(NoC-Based)

NUMA
(Mixed)

Figure 2.3 – Different types of processor architectures.
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2.2.1 Homogeneous Architecture Types

The focus of this dissertation is on homogeneous multi-processor architectures, with the
PEs being general purpose cores, for reasons explained in the Introduction. Following
is a description of the homogeneous architectures covered in this dissertation according
to their on-chip memory organisation. It must be pointed out that while the terms
“centralised”, “Uniform Memory Access”, “distributed”, “Non-Uniform Memory Access”
frequently refer to main memory organisation, here are used for the on-chip memory.

Centralised architectures

Memory         Bank0

Memory        BankM

...
...

CoreK

B
U
S

BUSCore0

Figure 2.4 – A typical centralised multi-processor architecture.

In centralised homogeneous architectures, a number of general purpose PEs, henceforth
cores, have a private cache memory (for instructions and data) but also share a part
of the on-chip memory. The shared memory can be divided in several banks and cores
can access a bank via a bus. Thus, in the general case, a bus connects a subset of the
cores with a subset of the banks. To resolve conflicts of simultaneous requests for shared
resources, i.e. buses, memory, these resources are arbitrated causing timing interference.
Thus, a simultaneous memory request can be arbitrated at the bus arbiter, to resolve
which core uses the bus first, and also at the memory arbiter, to resolve which memory
request is served first by the memory controller of the memory bank.

For the purpose of interference analysis, it is assumed that a memory arbiter is dedicated
to one memory bank. This is assumption is not restrictive as, in the case of multiple
banks per memory arbiter, these banks can be considered as one. Also, it assumed
that a continuous region on a memory bank can be allocated, as in sequential memory
addressing, e.g. Kalray MPPA-256 [37], or strided memory allocation, e.g. CUDA [51].
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Figure 2.5 – A typical distributed multi-processor architecture.

Distributed architectures

In distributed homogeneous architectures several computing nodes are interconnected
with a NoC. The computing nodes have a single core, with its private instruction and
data caches, connected with a bus to the shared memory. In that sense, it is no different
than a uni-processor. Additionally, a computing node has a NoC interface (NoC I/F)
through which data are sent/received from other computing nodes. In order to parallelise
data transfers, the NoC I/F can have multiple channels. A data transfer between a source
and a destination computing node, the source NoC I/F (using its channels independently
of what the core is executing) reads data from the shared memory, forms the network
packets and injects them into the NoC, via a link to its corresponding NoC router. The
packets are then forwarded from router to router, according to a routing policy, until
they reach their destination. At the receiving end, the destination NoC I/F retrieves
the data from the packets and places them into the destination shared memory, thus
completing the data transfer.

Apart from the bus and memory arbiter that exist to resolve conflicts between the
core and the NoC I/F of a computing node, there is an additional arbiter at each NoC
router. For the purpose of interference analysis, it is assumed that when two packets
simultaneously arrive at a NoC router from different input network links and are directed
to the same output links, the flow arbiter decides which packet will be served first. As,
the focus of this dissertation is in interference, it is also assumed that NoC routers will
not block and cause back-pressure (which can be achieved by flow regulation at the
source [36]). We consider that such assumption can be alleviated with proper adaptations
of the interference analysis, but in principle should be handled by the deployment process
and not the interference analysis.
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Figure 2.6 – A typical mixed multi-processor architecture.

Mixed homogeneous architectures are a combination of the centralised and distributed
architectures. Their main difference from the distributed paradigm is that the computing
node is replaced by a computing cluster, which essentially is a multi-processor with a
NoC I/F. In terms of arbitration points, mixed architectures are the same as distributed
architectures, i.e. they have memory, bus and flow arbiters. But, compared to distributed
architectures, the number of sources of arbitrated requests, and by extension sources of
timing interference, is larger.

Stemming out from the focus on homogeneous architectures, it is assumed that the
computing clusters are identical in the sense that the time to execute a task does not
depend on which computing cluster is executed.

2.2.2 Generic Architecture Model

In order to capture the different architectures with a single model that will be used in the
proposed methods of this dissertation, the generic architecture model is introduced. A
single model is important as it enhances applicability of the proposed methods, which in
the context of hard real-time systems is desirable, as safety properties have to be proven
only once.

Definition 2.2.1 (Generic architecture model). A generic architecture model is a tuple
GA = (C, K, L, M, N ) where:

• C is a set of computing clusters

• K is a set of processing cores per cluster
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• L⊆ C×C is a set of links among computing clusters that form the NoC

• M is a set of memory banks per cluster

• N is the set of NoC channels of a NoC I/F

When the generic architecture model is instantiated to a concrete architecture model
matching with one of the homogeneous architecture types described earlier, i.e. (i) the
centralised architectures MA = (C, K, ;, M, ;) which do not have a NoC interconnect,
(ii) the distributed architectures DA = (C, {k}, L, M, N ) with one core k per cluster,
and (iii) the mixed architectures MX = (C, K, L, M, N ) .

For the architectures that have a NoC it is assumed that each cluster has one NoC
I/F, with multiple channels, connected to a single dedicated NoC router [32] and has a
separate bus to access the shared memory.

2.2.3 Kalray MPPA-256

The Kalray MPPA-256 chip consists of 256 processing VLIW cores grouped in 16
computing clusters with each cluster comprising 16 processing cores at 400M H z and
2MB of shared scratchpad memory (Figure 2.7). The shared memory consists of 16
independent 128kB memory banks with 64-bit words organised in two sides, odd and
even. Each cluster has one NoC I/F, subdivided in transmit (Tx) and (Rx) interfaces,
implemented with an a 8-channel DMA engine [38].

Each cluster NoC I/F is coupled with a dedicated NoC router, which are organised in a
2D-torus topology (Figure 2.8). Each router has 5 full duplex links, one for each direction
plus one for its corresponding computing cluster. Each link to another router has an

Figure 2.7 – Kalray MPPA-256 compute cluster [37].
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Figure 2.8 – Kalray MPPA-256 NoC topology [36].

independent round-robin arbiter and 4 FIFOs, one per input direction. The link to its
dedicated cluster has one additional FIFO, so the cluster can send packets to itself. This
means that the router can send back received packets from its cluster, but not from other
routers.

Having this particular architecture that matches the generic architecture model GA, the
Kalray MPPA-256 can be reconfigured (depending on how an application is deployed)
according to the different types of architectures considered. In specific the Kalray
MPPA-256 can serve as:

• Centralised architecture: where only one computing cluster is utilised

• Distributed architecture: where only one core from each cluster is utilised

• Mixed architecture: where the full chip, i.e all 256 cores, are utilised

2.3 Application and System model

To provide real-time guarantees for an application, deployed on an architecture, a formal
model for the application is also necessary. An application consists of a set of computation
tasks. There is one significant distinction, encountered especially in the Scheduling Theory
community, for the set of computation tasks. Independent tasks are those tasks which,
if ready, can be scheduled in any order, while for dependent tasks there is an inherent
scheduling order imposed. For example, compressing an image according to the JPEG
standard requires that the image is split in blocks before it is transformed using the
Discrete Cosine Transformation (DCT) method. So, from a task perspective, there is a
data-dependency between the tasks that form the blocks and the DCT transformation
tasks.
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When all of these computation tasks are executed, the application is considered to have
completed an execution, that is, the input data have been consumed and the desired
output has been produced. The output is considered to be correct if during the execution
there are no data-races, deadlocks etc. This dissertation considers applications that are
composed of data-dependent computation tasks and are iteratively executed on a stream
of input data, called streaming [109] or data-flow [68, 49] applications. This particular
class of applications is suitable for architectures with large number of cores, as they
exhibit a high degree of task- and data- parallelism.

An application composed of a set of computation tasks with dependencies can be modelled
with various Models of Computations (MoCs), such as Synchronous Data-Flow graphs
(SDFs) [68] and Kahn Process Networks (KPNs) [49]. Such models provide necessary
correctness properties (such as deadlock freedom, absence of data-races, confluency, buffer
protection, etc.) by-construction, if their semantics are respected. Without being strictly
restricted to, an application will be modelled as a particular class of SDFs, called split-join
graphs [106]. The choice of this particular model is due to (i) the explicit modelling of
parallelisation factors and (ii) available tool-chain for these models.

Generally, an SDF model is a directed graph SDF = (U ,E) with U being a set of com-
putation actors and the binary relation E representing a set of FIFO channels among
them.. In this model, actors communicate with each other by sending ordered streams
of data elements (called tokens). When an actor is fired —which corresponds to the
notion of task execution— it consumes a fixed amount of data tokens from its input
FIFOs and produces a fixed amount of data tokens to its output FIFOs. These amounts
are called production-/consumption rates and are defined for each of the actor’s FIFOs.
The production/consumption of data tokens are blocking operations, that is, if an input
FIFO is empty (respectively an output FIFO is full) the corresponding read (respectively
write) operation will be blocked until the FIFO contains enough data (respectively has
enough free space).

Generally, it is considered acceptable in SDF models to fire an actor before input data
and output space is available, as the actor would block when it would try to access a
FIFO. Nevertheless, typical scheduling approaches generate schedules that avoid such
situations. In our case where timing correctness is of importance, blocking of an actor
would mean that its WCET would change. Thus, to guarantee correctness, a deployment
solution must ensure that prior to firing an actor, there is enough data at its input FIFOs
and enough free space at its output FIFOs. Otherwise, the actor would block, which
would alter its WCET in isolation. Additionally, for efficient utilisation of the on-chip
memory, it is assumed that actors can use their allocated space in their input/output
FIFOs, to load/store intermediate results of their computation.

To guarantee that there is an unbounded execution of the SDF with bounded FIFOs,
certain consistency constraints must be met. These are called balance equations [68]
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which essentially state that after a finite number of actor firings all data, which were
produced, are consumed.

Definition 2.3.1 (SDF Consistency). For each FIFO e ∈U , with e = (u,u′), let #u ,#u′ be
the number of times actors u,u′ are fired, respectively. Also let r e

out be the production
rate of u and r e

i n the consumption rate u′ for FIFO e; a SDF is consistent if there is a
non-zero integer solution to the following balance equations, for all edges e = (u,u′) ∈U :

∃#u ,#u′ ∈N+ : #u ∗ r e
out = #u′ ∗ r e

i n (2.3)

For consistent SDFs, the existence of unbounded, i.e. deadlock free, execution of that
SDF with bounded FIFOs is decidable [67]. ■

There are several advantages of SDF models apart from guaranteeing correctness proper-
ties; SDF models can be used to model complex applications and allows to explore the
latency-throughput-buffer trade-offs.

Given a solution to the balance equations, the execution model can be constructed, by
deriving a task graph containing one task for each actor firing and a dependency relation
that describes which firings of two dependent actors can be performed in parallel. This
is essential to compute the set of tasks that can be executed in parallel with a given task,
which affects the interference estimations in Chapter 3.

Definition 2.3.2 (Execution model). An execution model E M(ES) of a directed acyclic
task graph G = (V ,E) is its parameterised version E M(ES) = (V ,E ∪ES) where the data-
dependency relation E is augmented with additional scheduling dependencies ES , such
that E M(ES) is also a DAG. ■
Definition 2.3.3. Given a consistent SDF graph SDF = (U ,E) and the solution of the
balance equations (the number of firings #u for each actor u ∈ U) and r e

u (the rate of
actor u for its FIFO e), the execution model E M(;) with unbounded FIFOs is derived
as follows:

• V = {
v i

u | ∀u ∈U ,∀i ∈ [1,#u]
}
, that is v i

u denotes the i th firing of actor u

• E =
{

(v i
u , v j

u′) | (u,u′) ∈ E , (i −1)∗ r (u,u′)
u < j ∗ r (u,u′)

u′

}
, that is, between two data-

depend actors u,u′, the task v j
u′ cannot be executed before its input data from task

v i
u have been produced.

■

The dependencies of the execution model essentially prevent from FIFOs to underflow,
by preventing a task v ′ to execute, if the task v that produces the input data of v ′ has
not finished its execution. This is illustrated in the following example:
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u u'

rout =3 rin =2

(a)

vu1 vu'1

vu'2

vu'3

vu2

(b)

Figure 2.9 – Example of underflow protection through the dependency relation E of the
execution model E M

Example 2.3.4. Consider the SDF graph of Figure 2.9a, with actor u producing three
tokens at each firing and actor u′ consuming two. In Figure 2.9b, the corresponding
execution model is presented for the minimal solution of the balance equation of the SDF
graph. The dependency relation constructed prevents all tasks of actor u′, i.e. v1

u′ , v2
u′ , v3

u′ ,
to be executed before the first firing of actor u, i.e. v1

u . The second firing of u′ requires
tokens from the first and the second firing of u, according to production/consumption
rates, therefore task v2

u′ is forced to execute after v2
u. The same does not hold for the

first firing of u′, so task v1
u′ can executed in parallel with the second firing of actor u.

This is permitted in the execution model as task v1
u′ does not depend on v2

u . ■

2.3.1 Application Model

A split-join graph [106] S J = (U ,E ,α) is a directed acyclic (DAG) SDF graph (U ,E)

annotated with a parallelisation function α, assigning a parallelisation factor α(e) ∈Q+
for each edge e of the graph. An edge e with parallelisation factor α(e) > 1 is called
split, with α(e) < 1 is called join and with α(e) = 1 is called neutral. Split-join graphs
also require a well-formedness condition which states that “the product of parallelisation
factors should be 1 for any path from a starting actor (i.e. with no predecessors) to
an ending actor (i.e. with no successors) and the sequences of parallelisation factors
of those paths respect the matching-parenthesis grammar1. This condition essentially
ensures that all splits are joined in a meaningful manner, that is, all splits are eventually
joined and that a split factor a is matched with a join factor 1

a . For example consider
the following sequences:

1The matching-parenthesis, a.k.a. matching-braces, is a classic problem in compilers.

23



Chapter 2. Preliminaries

u u' u''

α 1/α

Figure 2.10 – A split join graph

u'1

u'α

...u1 u''1

Figure 2.11 – Corresponding task graph, with arrows denoting the input/output FIFOs

• “2 ·3 ·1/3 ·1/2” is well-formed

• “2 ·3 ·1/2 ·1/3” is not balanced as 3 is followed by the the non-matching 1/2

• “2 ·3 ·1/3” is not complete as the product of parallelisation factors is not 1

Split-join graphs are a natural variation of SDF graphs. In an SDF model a FIFO channel
between two actors cannot be shared with another actor, but tasks originating from
those two actors inherently share that FIFO. In a similar manner, in split-joint graphs
functionally equivalent actors can access the same FIFO according to. A split-join graph
S J = (U ,E ,α) is consistent if there is a non-zero integer solution to the following balance
equations, for all edges e ∈ E :

∃#u ,#u′ ∈N+ : #u ∗ r e
out = #u′ ∗ r e

i n ∗α(e) (2.4)

Intuitively, these balance equations relate the degree of parallelisation between the firing
of the connected actors. For example consider two adjacent actors e = (u,u′), with u

having a production rate r e
out = 4, u′ a consumption rate r e

i n = 1 and a parallelisation
factor α(e) = 4. This can be interpreted in multiple ways; tokens produced by a single
firing of u will be consumed either by four firings of u′, or two firings with double duration
of that actor or by a single firing with quadruple duration.

Generally SDF and split-join models have no timing information or model the size of
data exchanged between actors. Nevertheless, such information is important for hard
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real-time systems and WCET estimation. Thus, as in [105], we model an application as
an annotated split-join graph, as follows:

Definition 2.3.5 (Application Model). An application model is an annotated well-formed
split-join graph A = (U ,E ,α,δi so ,σ) where:

• U is the set of computation actors

• E ⊆U ×U is the set of FIFO channels

• α : E →Q+ is the parallelisation function

• δi so : U →N+ is the WCET in isolation function which represents the worst-case
execution time δi so(u) of single firing of an actor u ∈U when executed in isolated
environment with no interference

• σ : E ∪E−1 →N0 is the data-size function, representing the memory requests each
actor firing performs to FIFO e. That is, for a FIFO e = (u,u′) of two actors u,u′ ∈U
then σ

(
u,u′)= r e

out ∗ tk is the amount of memory requests that a single firing of u

will perform when producing tokens of size tk Similarly, σ
(
u′,u

)= r e
i n ∗ tk is the

amount of memory requests that a single firing of u′ will perform when consuming
tokens produced by u ■

2.3.2 System Model

While such a model is sufficient to describe the execution of an application on a multi-
processor architecture, it does not fit architectures that have a NoC interconnect, as
it does not capture the behavior of the NoC. A faithful model for the execution of an
application on a generic architectures should account for the NoC transfers.

For this reason additional actors have to be introduced in the model. These are called
communication actors, and model the three phases of a NoC communication. An inter-
cluster data-exchange between actors u and u′ consists of:

1. the NoC initialisation: where a core configures the NoC I/F with the length of the
data-transfer along with the base memory addresses from where to fetch and where
to deposit the data and the NoC channels that should be used for the transfer.

2. the NoC transfer: during which the NoC channel fetches the data from the memory,
forms the packets and forwards them to the destination cluster over the NoC. The
NoC I/F of the target cluster receives the data and places them in the destination
memory.

3. the NoC finalisation: where the core that initialised the transfer polls the NoC
interface to check if all the data have been transferred, so as to release the memory
space occupied by the data.
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u u'

(a) Application Model (Split-Join)

u v'iu,u’ tu,u’

fu,u’

iu’,u

tu’,u

Cluster 1 Cluster 2

(b) System model (Split-Join)

Figure 2.12 – Example of a system model

The worst-case duration of the NoC initialisation and finalisation is assumed to be
constant, while the duration of the NoC transfer depends on the amount of data and the
distance between the source and destination clusters. It is assumed that NoC packets
are not lost/dropped or that the WCET in isolation integrates the induced delays from
such effects.

Such a system model can faithfully model the behavior of the system in terms of
computation and communication. An application model A can be transformed into
a system model if some partial knowledge is available about the mapping of actors.
More precisely, to derive the system model, one would have to know in which cluster
each actor is going to be executed. As an illustrative example of system model for
a producer/consumer application model is illustrated in Figure 2.12. The producer
and consumer are executed on different clusters, thus the have to utilise the NoC to
exchange data. The dependency relation among the original actors and the, newly added,
communication actors protect the FIFOs. Further details will be presented in Section 4
were the precise transformation is formally defined.

A consistent split-join graph S = (U ,E ,α,δi so ,σ) that faithfully models the behavior of
the system is called system model. Given a system model S, the corresponding execution
model can be derived, which will be used for our interference-sensitive WCET analysis.

2.3.3 Deployment

Having defined the fundamental models for an application, an architecture and an
execution model, we know can formally define what constitutes a deployment and when
a deploymen is considered safe.

Definition 2.3.6 (Deployment solution). For a system model S = (U ,E ,α,δi so ,σ) and
its corresponding execution model E M(;) = (V ,E ∪;) a deployment to the architecture
GA = (C, K, L, M, N ) is the tuple D = (µK ,µM ,ρ,φ,β) where:
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• the task mapping function µK : V → C×K assigns tasks to PEs

• the memory mapping function µM : E → C×M maps FIFO channels to memory
banks

• the routing function ρ : T → 2L which assigns to a transfer task t ∈ T ⊂V an acyclic
path (c1,c2), (c2,c3), . . . , (cn−1,cn), of NoC links, upon which the transfer is routed

• the begin function β : V →N+ which denotes the begin times of tasks ■

Definition 2.3.7 (Safe deployment). Given a set of real-time constraints, i.e u ∈U , ε(u) ≤
du, for an application A = (U ,E ,α,δi so ,σ) a deployment D is called safe iff all actors
finish their firings before their deadlines, i.e. ∀v i

u ∈V , ε(v i
u) ≤ du , and the FIFO channels

remain protected. ■

In the following chapters we will show how a safe and efficient deployment solution can
be derived. In particular, in the next Chapter we focus on how to improve the WCET
estimations δ, based on the WCET in isolation δi so , by acquiring improved interference
estimations, while on Chapter 4 we illustrate the proposed deployment process and in
Chapter 5 the proposed runtime adaptation technique.
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3 Interference-sensitive WCET

Χρόνου φείδου

— Χίλων ο Λακεδαιμόνιος

Do not waste time
— Chilon of Sparta

Acquiring the optimal Deployment (D) of a streaming application onto a generic architec-
ture, providing hard real-time guarantees, requires to solve the deployment optimisation
problem using the task Worst-Case Execution Time (WCET). Generally, the WCET
of every task v is composed by its WCET in isolation (δi so), which includes delays to
load/store data, and the delays due to interferences (ι) that tasks can experience when
simultaneously access shared resources, e.g. buses/memories.

δι(v) = δi so(v) + ι(v) (3.1)

The accurate estimation of these interference delays depends on the deployment solution,
which results in an inter-dependency between “WCET estimation” and “deployment
optimisation”. Typically, this inter-dependency is avoided by over-approximating the
WCET, such that the WCET estimations include all possible interferences. While this
simplifies the problem at hand, it can lead to under-utilised systems or even render the
deployment of an application to the target architecture infeasible.

The focus of this chapter is to present the benefits of interference analysis in acquiring more
efficient deployments compared to traditional approaches. In order to acquire efficient
deployments, it is imperative to break the inter-dependency between WCET estimation
and deployment optimisation. Given an execution model, the proposed interference-
sensitive method (isWCET) illustrated in Figure 3.1, breaks the inter-dependency by
initially over-approximating the interference ιover and deriving a safe deployment. The
resulting WCET estimations διover are at most as pessimistic as the one derived with
traditional methods.

Having a deployment solution, the method tightens the interference estimations ιover by
spatio-temporal exclusion, i.e. excluding interferences from tasks that do not overlap in
time or share resources (space). Based on these newly estimated interferences (ιD ), tighter
WCET estimations are computed (δ

ιD
), which will be referred as interference-sensitive
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Safe
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Figure 3.1 – Overview of the isWCET approach

WCET, or for short isWCET. These isWCET estimations are only valid for the particular
deployment D, or for deployments D ′ such that the interference ιD ′(v) for each task v is
not greater than ιD (v), and still meet the given real-time constraints CRT . In others words,
while using interference-sensitive estimations enables realisation of efficient hard real-time
systems, such systems are restricted in flexibility at runtime, in terms of rescheduling,
memory management, etc. This is a known trade-off [76, 78], evidently also by the various
types of resource allocation and real-time scheduling approaches (global, partitioned,
with/without migrations, etc). We refer the reader for a thorough review [14, 82, 34, 25].

In the following sections of this chapter, we present the considered types of interference
and arbitration policies, our isWCET analysis and the evaluation results for reference
and real-life applications deployed on Kalray MPPA-256. The proposed isWCET method
excludes on average 68%, yields an average improvement of the WCET upper bound by
5% to 10% for all tasks of all benchmarks and reduces overhead due to interference 44%,
on average.

3.1 Interference Model

In a generic architecture GA there are three types of arbiters considered, that is (i) the
bus arbiter (ii) the memory controller and (iii) the NoC router. Within a computing
cluster, when two (or more) cores that share a bus simultaneously issue memory requests,
these requests will be arbitrated by the bus arbiter based on a predetermined arbitration
policy. Similarly, when two (or more) memory requests simultaneously arrive at a memory
controller, the memory controller will arbitrate these request to resolve which will be
served first. The same holds for NoC routers, that is when two (or more) packets arrive
at the same time, or already exist in the NoC buffers, these packets will be arbitrated.
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Recall that the there are two categories of tasks, computation (modelling the application)
and communication (introduced to model task communication). Out of these tasks, only
computation and transfer tasks utilise these arbitrated resources. Thus, the following
types of interference can occur in a generic architecture:

• Intra-cluster interference, where the interfering tasks reside on the same comput-
ing cluster. This occurs when any number of tasks (any combination of computation
and transfer tasks) are executed in parallel on the same computing cluster and
share resources (memory banks, buses).

• Inter-cluster interference, where the interfering tasks are executed in parallel on
different clusters. This category involves computation tasks of one cluster and
transfer tasks of different clusters which are trying to access the same memory
bank.

• NoC interference, where transfer tasks interfere with each other when their routes
intersect at a NoC router.

In addition to the types of interference, the granularity of requests has to be modeled.
Requests include, memory operations (reads, writes) that cores, or the NoC I/F, issue
to the shared memory and network operations (transmit) that the NoC I/F issues to
the shared NoC routers. We choose the granularity of the memory operations to be
performed on a word-level and network operations to be performed on a packet-level.
That is, for the purpose of interference analysis, data reads and writes to the shared
memory are performed as a sequence of word-by-word memory operations. Similarly,
network requests are performed as a sequence of packet-by-packet transfers. A single-word
memory operation is called a memory request and a single-packet network operation
is called a network request. This particular choice is based on what most processors
support for a single memory/network request. Recall that the baseline delay for the
bus to transmit the data, the memory controller to handle the request and the NoC to
transmit the data, are all accounted in the WCET in isolation of the corresponding tasks.
Thus, the aim is to estimate the additional time it would take for a task to complete its
execution, in the worst-case, due to interference. As we assume no other information
about the tasks, in the worst-case all requests will be single requests. Additional request
burstiness information, if provided by the WCET in isolation method, can be leveraged
to further improve these estimations.

It is considered that when a request interferes with other requests at any arbiter, the
extra delays that will occur due to conflicts, are linearly proportional to the number of
conflicting requests. That is, if n +1 requests conflict at the same time (and no other
requests arrive until they are served), then in the worst-case no request will suffer a delay
of more than n ∗ad, where ad is the single-conflict arbitration delay.
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3.1.1 Hardware Arbitration Policies

Prior to presenting the interference analysis, the considered arbitration policies have to
be presented. We consider the most commonly used arbitration policies that exhibit
these interference delays. For example, we do not consider Time-Division Multiple Access
(TDMA) arbiters, as the time for a request to be served depends on when the request was
issued and not on the number of simultaneous requests. This means, that such resource
partitioning techniques cannot benefit by an interference analysis. In particular, TDMA
arbitration has the same behavior as a Round-Robin (RR) arbitration policy when it
constantly receives requests from all the possible sources.

The interference delays introduced by the arbitration policies considered, i.e. round-robin
and fixed priority, will be described on a task-centric manner, in the sense of “what is
the worst-case delay task v can experience when executed in parallel with a set of tasks
V ”. For each arbiter, the single-conflict arbitration delay ad – the time to serve another
request – is assumed to be known and constant.

Definition 3.1.1 (Arbitration constants). Given a set of arbitrated resources R, adr ∈N+
is the single-conflict arbitration constants (in cycles) for a resource r ∈ R. ■

In particular we consider that the arbitrated resources in the generic architecture GA
are the buses, memory banks and NoC routers. That is, given the resource set R ={
Bus, Mem,Rt

}
• adBus ∈N+ is the arbitration delay for a memory request to access a shared bus

• adMem ∈N+ is the arbitration delay for a memory request to access a memory bank

• adRt ∈N+ is the arbitration delay for a network request to traverse a NoC router

Round-Robin

In Round-Robin arbitration, the sources of requests are served in a cyclic fashion, each
for a predetermined “quantum” of time.

Example 3.1.2. Consider three memory requests from two cores, that each would take
at most that quantum of time to be served. In specific, core k1 issues two memory
requests, denoted as k1

1 and k2
1 , and the arbitrated resource serves the first one, i.e. k1

1 .
Before the shared resource completes serving the request, core k2 issues also a memory
request k1

2 . When request k1
1 is served, the arbiter will choose to serve request k1

2 from
core k2, despite the fact that request k2

1 was issued earlier. Thus, the requests will be
served in the following order:

k1
1 ,k1

2 ,k2
1 ■
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In this example, request k1
1 does not suffer any delay, while requests k1

2 and k2
1 suffer

once the arbitration delay ad, each. This is due to request k1
2 waiting for request k1

1 to
complete and k2

1 waiting for k1
2 . Notice that while request k2

1 was served third, it only
experiences a delay of ad, since the first request was from the same core. We assume that
a core cannot interfere with itself, therefore that additional delay should be accounted in
the WCET in isolation.

Any request that would to take more than the predefined quantum of time to be served,
i.e. ad, is regarded as multiple simultaneously issued requests, with each request having
a duration equal to the quantum of time. Thus, let σr (v) be the number of requests of
task v to resource r , which is arbitrated in a round-robin fashion. Since round-robin is a
fair arbitration policy there is a theoretical maximum of arbitration delays, any task can
experience. For example, if resource r is shared by a set of cores K , then for any task v

the maximum delay is ad ∗ (|K |−1)∗σr (v). That is, every request from task v will wait
for |K |−1 requests from the rest of the cores before that request is served.

Considering the previous example, though, the requests from both cores will suffer at
most one arbitration delay ad, in all possible execution scenarios. Yet, the theoretical
maximum delay for core k2 is 2∗ad, as it issues two requests and shares the resource
with one core. This can lead to an non-neglible over-approximation for a large number
of requests.

To avoid such an over-approximation, the delay due to interference can be defined on a
per-task basis. That is, if task v is potentially executed in parallel with a set of tasks
V which use resource r , the maximum amount of delay due to interference from that
resource r is:

ιRR
adr

(v,V ) = adr ∗
∑

v ′∈V
min

(
σr (v) ,σr

(
v ′))

The rationale for this formula is that when two tasks with unequal number of requests
are arbitrated by a round-robin arbiter, only the smallest amount of requests of the two
tasks needs to be arbitrated.

Since the set of potentially parallel tasks V can grow arbitrarily large, the delay due
to interference is defined as the minimum of the per-task delay and the theoretical
maximum.

Definition 3.1.3 (Round-Robin interference delay). For a task v that can potentially
interfere with a set of tasks V on a resource r arbitrated with round-robin policy the
worst-case interference delay is:

ιRR
adr

(v,V ) = adr ∗min

(
(|K |−1)∗σr (v) ,

∑
v ′∈V

min
(
σr (v) ,σr

(
v ′))) (3.2)
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Essentially, the intereference delays exprerienced by a task v , due to Round-Robin
arbitration, is linearly proportional to the number of parallel request up to the theoretical
maximum, where the delays do not increase regardless of the ammount of requests.

Fixed-Priority

In Fixed-Priority (FP) arbitration of a resource r , some requests are always served before
others depending on their source. Following Example 3.1.2, if requests from core k1 are
given priority over requests from core k2, then the requests will be served in the following
order:

k1
1 ,k2

1 ,k1
2

whereas if requests from k2 are given priority over requests from core k1 and all the
requests arrive simultaneously, the requests will always be served in the following order:

k1
2 ,k1

1 ,k2
1

In both these cases, the requests with higher priority experience no delays, as they are
served immediately. Notice that in the case of fixed-priority arbitration there is no
theoretical bound for the delay of low-priority requests, as requests of higher priority can
be always issued before a lower priority request is served, thus leading to starvation.

Definition 3.1.4 (Fixed-priority interference delay). For a task v that can potentially
interfere with a set of higher priority tasks V on a resource r arbitrated with fixed-priority
policy, the worst-case interference delay is:

ιF P
adr

(v,V ) = adr ∗
∑

v ′∈V
σr

(
v ′) (3.3)

3.2 Interference Analysis

Having defined the interference model and arbitration policies and given an execution
model E M(ES) = (V ,E ∪ES), the interference for its tasks can be computed. This is
achieved by computing interference sets for the tasks of the execution model E M(ES).
An interference set of a task v for a resource r is the set of tasks that can potentially be
executed in parallel with v and share the resource r . The set of potentially parallel tasks
are computed based on the dependency relation of the execution model E M(ES and are
improved when the deployment D is acquired, based on the begin/end functions β,ε)

Thus, in order to acquire tight interference estimations the isWCET method performs
the following steps:
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1. Generate interference sets based on E M(;), assuming potentially parallel tasks
interfere at all of their common resources.

2. For every task v , derive the interference delays ιover (v) (up to the theoretical
maximum) based on these over-approximated interference sets.

3. For every task, derive over-approximated WCET διover (v) (according to Equa-
tion 3.1).

4. Given a safe deployment solution D = (µK ,µM ,ρ,φ,β) iteratively reduce the
interference sets by applying spatio-temporal exclusion according to the deployment
solution D.

5. Derive tighter interference delays ιD (v) and the interference-sensitive δ
ιD

(v) (isWCET)
estimations.

At the middle of the method, the deployment solution is required which is provided by
the method in Chapter 4 or by any conventional methods. At the end of the process,
the isWCET estimations are computed, which can be used to provide a more efficient
deployment solution D ′ = (µK ,µM ,ρ,φ,β′) which is also the focus of the next chapter.

The aim of this chapter, is to find the interference delays for the tasks of execution model
E M of a system model S for application A. Recall that only the computation and transfer
tasks can experience and cause interference. Let the set of these computation task be
denoted as VA ⊆ V (application tasks) and the set of transfer tasks denoted as T ⊂ V .
For any computation task v , let Mv , Bv and Tv be interference sets of tasks potentially
conflicting with v . Specifically:

• Mv ⊂VA ∪T is set of tasks (from the same cluster as v , hence intra-cluster) that
can potentially interfere on a memory bank with v .

• Bv ⊂VA is set of computation tasks (from the same cluster as v , hence intra-cluster)
that can potentially interfere on a bus with v .

• Tv ⊂ T is set of transfer tasks (from other clusters, hence inter-cluster) that can
potentially interfere on a memory with v .

Using these interference sets, the interference delays a computation task v can experience
is:

ι(v) = ι
APMem
Mem (v, Mv ) + ι

APBus
Bus (v,Bv ) + ι

AP ′
Mem

Comm (v,Tv ) (3.4)

where ι
APMem
Mem , ιAPBus

Bus , ι
AP ′

Mem
Comm are functions that are defined (in following subsections) for

intra-cluster (memory/bus) requests and inter-cluster (memory) requests, respectively,
based on the arbitration policies APMem , APBus , AP ′

Mem ∈ {
RR,F P

}
.
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Similarly, the interference delay for a transfer task t is:

ι(t ) = ι
APMem
Mem (t , Mt ) + ι

APRt
Rt (t ,Rt ) + ι

AP ′
Mem

Comm (t ,Tt ) (3.5)

where ιAPMem
Mem , ιAPRt

Rt , ι
AP ′

Mem
Comm are the respective functions for the interference t can experience

when reading from the memory of the source cluster, traversing NoC routers and writing
at the memory of the target memory.

In the following subsections, the exact definitions of interference sets and interference
functions are presented along with their instantiation for Kalray MPPA-256. Prior to
that, some essential formalism is presented regarding potentially parallel tasks, sharing
of resources and temporal overlapping of tasks.

Definition 3.2.1 (Spatio-temporal predicates). Given the begin function β of a de-
ployment D for an execution model E M(V ,E), for any two tasks v, v ′ the over l ap

(
v, v ′)

predicate evaluates to true, iff the execution of the tasks overlaps in time, i.e.:

over l ap
(
v, v ′)= max

(
β(v),β(v ′)

)≤ min
(
β(v)+δι(v),β(v ′)+δι(v ′)

)
Similarly, for a resource r the shar er

(
v, v ′) predicate evaluates to true, iff the tasks

share the resource r . If the deployment D is not known, they automatically evaluate to
true, only if it is possible for the tasks to be executed in parallel or share resource r ,
respectively. ■

Since the exact definition of the shar er depends on the architecture, it will be instantiated
in the following subsections for each resource r ∈ {Mem,Bus,Rt }

For any task v , the set of tasks that can interfere with that task, are those tasks that are
executed in parallel and share a resource. Whether the scheduling of tasks is known or
not, directly affects that set of parallel tasks. Tasks that transitively depend on v , or
v depends upon, cannot possibly be executed in parallel. The rest of the tasks can be
potentially be executed in parallel (if the scheduling is not known).

Definition 3.2.2 (Parallel tasks). Given an execution model E M(ES) = (V ,E), let Pv

be the set of tasks that can be executed in parallel with task v is:

Pv = {
v ′ ∈V | (v, v ′), (v ′, v) ∉ E∗∧over l ap

(
v, v ′)} (3.6)

where E∗ is the transitive closure of the dependency relation E . Also its projection Pvc is
defined according to Table 3.1 and its complement Pvc = Pv \ Pvc

Notice that, if the deployment solution D is not known, the set of parallel tasks is over-
approximated, as the over l ap predicate automatically succeeds, but still data-dependant
tasks are always excluded. When the deployment solution D is provided, this set is
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3.2. Interference Analysis

Table 3.1 – Projections of a task-set V , a dependency relation E and an execution model
E M = (V ,E)

Per cluster c ∈ C Vc
def= {v ∈V | π(v) = c} Ec

def= E ∩ (Vc )2 E Mc
def= (Vc ,Ec )

Per core k ∈ K Vk
def= {v ∈V | µK (v) = k} Ek

def= E ∩ (Vk )2 E Mk
def= (Vk ,Ek )

iteratively reduced until a fix-point is reached. The reason for the iterative reduction
is due to the fact that the over l ap predicate depends on the interference estimations ι.
Thus less overlaps leads (potentially) to less interference, which in turn can lead to even
less overlaps, etc. The same holds for the interference sets Mv ,Bv ,Tv ,Rv of any task v,
since they will be computed based on the set of parallel tasks Pv .

3.2.1 Intra-cluster Interference

Interference that originates within a particular cluster occurs on memory banks and bus
arbiters from computation tasks and transfer tasks that transmit data to another cluster.
The precise definition of the interference functions ιAPMem

Mem (v, Mv ), ιAPBus
Bus (v,Bv ) and their

interference sets are presented, along with examples.

To begin with, let us consider the interference delays that any task v will experience
on the memory banks of its cluster. These are defined by function ι

APMem
Mem (v, Mv ) where

essentially task v accesses a set of memory banks {m}. From the set of tasks Pvc that can
be executed in parallel with v , only the set of tasks Mv that share at least on memory
bank can interfere. This is formally expressed as:

ι
APMem
Mem (v, Mv ) = ∑

m∈M
ι

APMem

adm
(v, Mv ) with Mv = {

v ′ ∈ Pvc | shar eMem
(
v, v ′)} (3.7)

where adm = adMem for all memory banks m as we are considering homogeneous architec-
tures. By evaluating the interference function ι

APMem

adm
(v, Mv ) according to the arbitration

policy APMem, the estimated amount of interference delays is acquired (see Example).
Notice that ιAPMem

adm
(v, Mv ) always evaluates to zero if task v does not access memory m.

Example 3.2.3. Consider two tasks v1, v2 that are potentially parallel with each other,
and with no other. Also, let v1, v2 access the memory banks m1,m2 and m2,m3, respec-
tively, which are arbitrated with a round-robin policy. The interference delays that v1

will suffer from memory banks, using Equation 3.2 for the round-robin policy, are:

ιRR
Mem(v1, {v2}) = ∑

m∈M
ιRR
adm

(v1, {v2}) = ∑
m∈M

adm ∗ ∑
v ′∈{v2}

min
(
σm (v1) ,σm (v2)

)
Since tasks v1, v2 only share memory bank m2 and σm (v) evaluates to zero if task v does
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not access memory bank m, the equation reduces to the expected:

ιRR
Mem(v1, {v2}) = adm2 ∗min

(
σm2

(v1) ,σm2

(
v ′)) ■

In a similar manner, the interference delays that a computation task v can experience at
the bus arbiter when tries to access its memory banks are:

ι
APBus
Bus (v,Bv ) = ∑

m∈M
ι

APBus

adBus
(v,Bv ) with Bv = {

v ′ ∈ Pvc ∩VA | shar eBus
(
v, v ′)} (3.8)

Kalray MPPA-256

In Kalray MPPA-256, processing cores are organised in pairs, each pair shares two
data-buses, one for each of the memory sides (odd and even). In this configuration, when
one core of a pair accesses one memory side and the other core of the same pair accesses
the other memory side, there is no conflict [37].

Thus, the shar e predicates are defined as follows:

shar eBus
(
v, v ′)=

µK (v) = bµK (v ′)
2 c∧m%2 = m′%2 ∀m ∈µM (v),∀m′ ∈µM (v ′)

tr ue if µK or µM is unknown

shar eMem
(
v, v ′)=

µM (v)∩µM (v ′) 6= ;
tr ue if µM is unknown

The bus arbiter implements a round-robin policy among requests coming from each
instruction and data cache. The memory bank arbiter also follows a round-robin policy
among all intra-cluster requests, e.g. from processing cores and NoC transmit (NoC Tx).

3.2.2 Inter-cluster Interference

As opposed to intra-cluster, inter-cluster interference is caused by tasks that are located
in other clusters. That is for a cluster c, transfer tasks that are executed on a different
cluster but have as destination that cluster c. Notice that such tasks can interfere with
both computation and transfer tasks in cluster c. Thus, the set of parallelly executed
transfer tasks with a task v , located in a cluster other than c, is:

Tv =
{

t ∈ Pvc ∩T | shar eMem (v, t )
}

(3.9)
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3.2. Interference Analysis

Figure 3.2 – Kalray MPPA-256 memory bank arbitration [48]

Kalray MPPA-256

In Kalray MPPA-256, memory accesses from incoming NoC flows have priority over other
memory requests (Figure 3.2). That is, the NoC Rx interface is always given priority over
the the intra-cluster memory request. (The shar eMem for Kalray MPPA-256, required
to compute the set of parallel transfer tasks was defined in the previous subsection)

Example 3.2.4. Consider two tasks, a computation task v A and a transfer t that writes
to cluster µK (v A) such that those tasks are potentially parallel with each other, and
with no other. Also, let v A , t access the memory banks m1,m2 and m2,m3, respectively,
of cluster µK (v A) which are arbitrated with a fixed-priority policy (incoming transfers
have priority). The interference delays that v A will suffer from memory banks, using
Equation 3.3 for the fixed-priority policy, are:

ιF P
Mem(v A , {t }) = ∑

m∈M
ιF P
adm

(v A , {t }) = ∑
m∈M

adm ∗ ∑
v ′∈{t }

σm

(
v ′)

Since tasks v A , t only share memory bank m2 and σm (t ) evaluates to zero if task t does
not access memory bank m, the equation reduces to the expected:

ιF P
Mem(v A , {t }) = adm2 ∗σm2

(t )

3.2.3 NoC Interference

Arbitration on NoC routers in the assumed model resembles that of Kalray MPPA-256,
illustrated in Figure 3.3. In the assumed model each link is arbitrated independently,
thus flow interference with each other only when two flows merge in one i.e. coming
from different directions but continuing on the same direction. For ease of notation, it is
assumed that flows can merge once (e.g. when routed with XY-routing). Recall, that it
is also assumed that NoC routers will not block and cause back-pressure.
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Chapter 3. Interference-sensitive WCET

Figure 3.3 – Kalray MPPA-256 NoC router arbitration [36]

Thus, the interference a transfer task t can experience is:

ι
APRt
Rt (t ,Rt ) = ι

APRt

adr t
(t ,Rt ) with Rt =

{
t ′ ∈ Pt | shar eRt

(
t , t ′

)}
(3.10)

shar eRt
(
t , t ′

)=
ρ(t )∩ρ(t ′) 6= ;

tr ue if ρ is unknown

Kalray MPPA-256

In Kalray MPPA-256, the NoC links form a 2D-torus as was depicted in Figure 2.8. In a
NoC router there are five arbiters, one for each outgoing direction a flow can take, with
each having a separate FIFO buffer for each incoming direction. The arbiters enforce
a round-round policy seperately for each possible direction link (North, South, West,
East). Since each link is seperately arbitrated, a flow will suffer interference delays from
another flow only if they share a link on a NoC router.

Example 3.2.5. Consider three transfer tasks t1, t2, t3 that are potentially parallel with
each other, and the flows of transfer tasks t2 and t3 merge with the flow of t1 (at different
parts of the flow of t1) and not among them. The interference delays that t1 will suffer
at the NoC, using Equation 3.2 for the round-robin policy, are:

ιRR
Rt (t1, {t2, t3}) = adRt ∗

∑
t ′∈{t2,t3}

min
(
σRt (t1) ,σRt

(
t ′

))
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Similarly the the interference delays that t2 will suffer:

ιRR
Rt (t2, {t1}) = adRt ∗

∑
t ′∈{t1}

min
(
σRt (t2) ,σRt

(
t ′

))

3.2.4 Safety

As the proposed method is aimed at hard real-time systems, it is of utmost importance
to provide formal proofs regarding the safety of the method. A safe WCET estimation
δ(v) for any task v is safe iff it is not less that the actual WCET, i.e. ∀v : δact (v) ≤ δ(v).
Notice that, while the actual WCET δact (v) might not be known, it is still possible
to prove that the isWCET διD

(v) estimation is an upper bound for the actual WCET
δact (v).

To prove the safety of the proposed method, it is necessary first to establish that the
interference analysis does not exclude any possibly interfering tasks, a result upon which
the proof will be based.

Lemma 3.2.6. For a given task v of an execution model E M(ES) = (V ,E), each valuation
of the interference sets Mv ,Bv ,Tv ,Rv excludes only non-interfering tasks.

Proof. Two tasks v, v ′ can interfere iff their executions overlap and they share a resource.
The interference sets select all the tasks from the set of parallel tasks Pv with which task v

can possibly share a resource (according to Equations 3.7, 3.8, 3.9, 3.10). By definition of
the over l ap predicate only non-overlapping, and thus non-interfering tasks, are excluded
from the set of parallel tasks Pv . According to definitions of the shar er predicates only
tasks that do not share a resource with v are excluded from the set of parallel tasks Pv .
Thus each valuation of the interference sets excludes only non-interfering tasks.

Theorem 3.2.7 (Safety). The isWCET method is safe, i.e. for any task v of a given
execution model E M(ES) = (V ,E), the isWCET estimation δι(v) is at least as large as
the actual WCET δact (v).

Proof. Since the WCET time of any task is composed by its WCET in isolation (δi so(v))
and its interference (ι(v)) it is sufficient to prove that any interference estimation ι(v) is
at least as large as the actual interference ιact (v). It is also known, by Lemma 3.2.6, that
interference sets do not exclude any interfering task and the considered arbitration policies
make the worst case assumption. As an immediate consequence, interference estimation
ι(v) cannot be less than the the actual interference ιact (v), for any task v ∈V .

Recall, also, that when a deployment D for an execution model E M(ES) = (V ,E)

is provided to the isWCET method, the method iteratively reduces the interference
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estimations. It is also important to prove that the method eventually converges. The
proof of convergence is founded upon the fact that the estimated interfence for each
resource cannot increase if the corresponding set is reduced.

Lemma 3.2.8. For any task v , the interference functions ι
APMem
Mem (v,V ), ι

APBus
Bus (v,V ),

ι
AP ′

Mem
Comm (v,V ), ιAPRt

Rt (v,V ) are monotonic (non-decreasing) with respect to V .

Proof. Both arbitration policies ιRR
adr

(v,V ), ιF P
adr

(v,V ) according to Equations 3.2, 3.3, are
non-decreasing with respect to V . As a sum of non-decreasing functions, the interference
functions ιAPMem

Mem (v,V ), ιAPBus
Bus (v,V ), ιAP ′

Mem
Comm (v,V ), ιAPRt

Rt (v,V ) are also non-decreasing.

Essentially, the method starting from an initial interference estimation, when D = (µK ,µM ,ρ,β,ε)

is provided, iteratively improves the estimations by reducing the interference sets
Mv ,Bv ,Tv ,Rv . That is, the following sequence of computations are performed for each
task v starting from iteration 0: ι0(v) → δ

ι0
(v) → ε0(v) → (M 0

v ,B 0
v ,T 0

v ,R0
v ) → ι1(v) → . . . →

ιi (v) → . . . → ιD (v)

Theorem 3.2.9 (Interference improvement). For any task v ∈ V at iteration i , the
interference estimation ιi (v) and the WCET estimation δ

ιi
(v) of task v are lower than

or equal to the interference ιi−1(v) and WCET estimation δ
ιi−1 (v), respectively, of the

previous iteration.

Proof. Let us assume that there exists a task v ∈ v such that ιi (v) > ιi−1(v); then by
applying Equations 3.4,3.5 we deduce that at least one of the following holds:

ι
APMem
Mem (v, M i

v ) > ι
APMem
Mem (v, M i−1

v )

ι
APBus
Bus (v,B i

v ) > ι
APBus
Bus (v,B i−1

v )

ι
AP ′

Mem
Comm (v,T i

v ) > ι
AP ′

Mem
Comm (v,T i−1

v )

ι
APRt
Rt (v,R i

v ) > ι
APRt
Rt (v,R i−1

v )

By monotonicity of the interference functions we conclude that either M i
v ⊃ M i−1

v , or
B i

v ⊃ B i−1
v , or T i

v ⊃ T i−1
v , or R i

v ⊃ R i−1
v holds, which contradicts with Lemma 3.2.6. Since

the interference estimations cannot increase, the WCET estimations cannot increase
either (according to Equation 3.1)

Theorem 3.2.10 (Convergence). The iterative method will eventually converge.

Proof. Essentially the method computes a fix-point of the interference sets, and by
extension of the interference estimation. Since interference sets do not increase in size,
the method will converge.
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Table 3.2 – Kalray MPPA-256 arbitration constants

Memory arbiter adMem 7 cycles
Bus arbiter adBus 4 cycles
NoC router adRt 22 cycles
Initialization delay i dNoC 1000 cycles
Polling delay pdNoC 100 cycles

3.3 Evaluation

3.3.1 Experimental Setup

In order to evaluate the applicability and benefits of the isWCET analysis method, we
conducted experiments on a subset of StreamIt [109] benchmarks and a JpegDecoder
(same benchmark used in [104]for comparison. The benchmark set used consists of 8
distinct applications, differing in the amount of computation for a single element of
input, memory requirements and access patterns. Specifically, the sorting algorithms
(InsertionSort, MergeSort and CompCount) have complicated memory access patterns,
but are not as computationally heavy, compared to Beamformer, DCT and JpegDecoder.
We also modelled DCT in 10 different ways, to study the impact of different levels of
model parallelism. The size of the set of tasks ranges, for the aforementioned benchmarks,
from 6 tasks up to 200.

As there is no publicly available tool (for Kalray MPPA-256) that can provide the WCET
in isolation for the tasks of the applications of the benchmark, the WCET in isolation
was obtained by profiling the tasks on a single core of the Kalray MPPA-256 (SDK
version 1.4.1), with disabled caches and prefetch buffers. The amount of memory requests
is statically predetermined according to the FIFO token size required and the number
of token accesses each task performs. Additionally, in order for the profiling and the
results to be as accurate as possible, all FIFOs and their tokens are aligned to memory
boundaries, i.e. in memory address in multiples of a word, which affects the number of
memory requests. This alignment guarantees that requesting any single-word-sized data
request will not result into two single-word-sized memory requests.

The arbitration constants used for the Kalray platform are summarised in Table 3.2 and
are based on publicly available information [35, 37, 104, 48] or experimental evaluation.

In order to study the benefits of using isWCET estimations, the benchmarks are first
analysed without the knowledge of the deployment solution D, acquiring the over-
approximated WCET δover . Subsequently, the benchmarks are analysed by providing the
deployment solution D, which is constructed using the method proposed in Chapter 4.
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Table 3.3 – Worst-case latency (in Kcycles) of StreamIt benchmarks deployed on Kalray
MPPA-256 with cores operating at 400 MHz, based on the over-approximated WCET
estimations δover

Bench. Tasks Lat. Bench. Tasks Lat. Bench. Tasks Lat.
Dct1 6 91 Dct8 110 147 MergeSort 82 87
Dct2 9 153 Dct9 141 125 Fft 96 253
Dct3 29 130 Dct10 146 190 BeamFormer 180 159
Dct4 53 106 InsertionSort 14 64 MatrixMult 200 1087
Dct5 55 170 RadixSort 31 138
Dct6 60 177 Comp.Count 49 106
Dct7 62 174 JpegDecoder 50 516

Figure 3.4 presents the tightness of the isWCET over the WCET. For three benchmarks
there is no exclusion of interference as there was no interference in the first place (the
reason for which is explained the results , below). Since those benchmarks cannot possibly
be improved by subsequent steps of the method, they will be omitted from future results.

As a reference of the size of the applications of the benchmark, in Table 3.3 we list their
latency according to the over-approximated WCET estimations δover .

3.3.2 Evaluation Results

In Figure 3.4, the efficiency of the isWCET approach is illustrated over the set of
benchmarks. We measure the efficiency of isWCET, as the percentage of interference
the isWCET method was able to exclude from the original over-approximated WCET
δover , when the deployment D was not known, to the isWCET estimations διD , when
the deployment was provided.

The first observation is that for three benchmarks, i.e. DCT1, DCT2 and DCT4, the
isWCET method was not able to exclude any interference. For benchmarks DCT1 and
DCT2 there was no interference at all, as the amount of tasks was small (<10) due to
the low parallelisation considered. This resulted in deployment solutions where the tasks
are executed sequentially, thus having no interference. On the other hand, while DCT4
exhibits interference, the deployment process was unable to find an assignment that could
reduce interference.

For the remaining fourteen benchmarks, the percentage of reduction ranges from 37% up
to 100% with an average of approximately 74%. In fact, for half of those benchmarks,
the isWCET is able to reduce interference by 80% or more. Since the amount of
reduction highly depends on the application under study and the deployment solution, it
is challenging to draw concrete conclusions over which applications will benefit most from
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Figure 3.4 – Percentage of spatio-temporally excluded interference on the benchmark set,
ordered by increasing number of tasks (in parentheses)

the isWCET method. Yet, from the results of this benchmark, we can conclude that, in
most cases, the isWCET method is able to exclude a significant amount of interference.

Another important measure of efficiency for the isWCET method is the percentage of the
remaining interference ιD compared to the overall workload of each benchmark. This can
be expressed as the ratio between the the sum of interferences and the sum of isWCET
estimations for all tasks of the benchmark, i.e. ∑

v∈V
ιD (v)

/ ∑
v∈V

διD
(v) . We will call that

ratio interference overhead, as it attributes the amount of time wasted on waiting for
resource requests to be served compared to the total time of worst-case execution. For
each benchmark, the percentage of interference overhead is illustrated in Figure 3.5.

For benchmarks for which the interference reduction was more than 80% (i.e. Insertion-
Sort, RadixSort, JpegDecoder, DCT5, DCT7, MergeSort and DCT9), the remaining
interference overhead is less than 4%. For some benchmarks, the isWCET method was
able to completely exclude interference: InsertionSort, RadixSort, DCT7, MergeSort and
DCT9 in Figure 3.4. For those, the interference overhead (depicted in Figure 3.5) is zero,
as expected. On average, the interference overhead of the isWCET estimations is less
than 10%, which is an important result. An exception to that is the matrix multiplication
(MatrixMult) benchmark, which still exhibits an interference overhead of approximately
44%, despite the fact that more than 60% of its interference was excluded. The Matrix-
Mult benchmark is a special case, since it uses simple computational operations, but
requires that a significant amount of data shared among tasks. These data cannot be
spatially separated (without modifying the source code of the benchmark), such that
tasks do not access the same bank. This results in having many parallel tasks accessing
the same memory banks, and thus an increased amount of mutual interference.
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Figure 3.5 – Percentage of the overhead due to interference on the benchmark set, ordered
by increasing number of tasks (in parentheses)

To validate this observation, we designed a controlled experiment based on the producer-
process-consumer paradigm. In this experiment, there are at all times, one producer,
one consumer and 2∗|K| (= 32) process tasks. The process tasks process 32 data chunks
of 1kB , produced/consumed by the corresponding tasks. The difference in the various
instances of the experiment is the number of FIFOs between the process tasks and the
producer/consumer tasks, ranging from 2 up to 4∗|K| (illustrated in Figure 3.6).

As the data-parallelisation increases, the FIFOs are split in half and are doubled in
number (with a constant capacity of, i.e. 32kB). Splitting FIFOs enables the deployment
process to distribute FIFOs across more memory banks, thus reducing bus and memory
interference. Thus, at each increment of the data parallelisation the amount of interference
can be approximately halved by carefully mapping FIFOs to memory banks. In turn,
this reduces the total latency proportionally (as the WCET of producer/consumer tasks
remain constant). This anticipated results are illustrated in Figure 3.7. For data-
parallelisation factor equal to twice the number of cores and banks (32), the interference
has been already excluded, since the task count exceeds the number of cores and memory
banks. Therefore the latency cannot be further improved, and the increased FIFO count
brings a small constant overhead, thus the total latency increases slightly.

Finally, it is also important to compare the isWCET estimations (διD ) with the initially
over-approximated WCET (δover ). This is illustrated in Figure 3.8, where the average
task WCET reduction for each benchmark is presented. We can observe that, the isWCET
estimation are improved by 5−10%, on average, for all tasks over all benchmarks. This
has a significant impact as this implies less worst-case workload and less interference,
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Figure 3.8 – Average percentage reduction of task WCET on the benchmark set, ordered
by increasing number of tasks (in parentheses).

thus enabling better utilisation of the resources. Notice that, MatrixMult, which exhibits
the highest degree of interference, experiences the most dramatic reduction. In most
cases the results show that the count of interfering tasks is lower than the number of
cores (i.e. ≤ 16), but for MatrixMult up to 22.

Based on these results, we conclude that in several cases the interference introduced
by the parallel execution of tasks can have a significant impact on the WCET of tasks.
The proposed isWCET method can efficiently exclude interferences, 73% on average, on
the majority of the applications of the benchmark. In the cases where the benchmark
is small the isWCET has limited positive impact, while for highly-parallel applications
where data cannot be nicely partitioned, it can exclude the majority of interferences.
Yet the interference overhead is not negligible. Thus, based on a controlled experiment,
the data-parallelisation factor of an application has to be considered in the interference
analysis. In general, the isWCET method was able to reduce the WCET of tasks by 10%,
on average, up to 37% which is of major importance for the efficiency of hard real-time
systems.

3.4 Related work

Interference analysis is far from a new concept, with the first research efforts focusing
on resource usage on multi-processor appearing in the early ’70s [16, 10] or even earlier.
Such efforts focus only in determining the worst-case interference that can happen on
a particular architecture, without considering the application and/or the deployment.
To the best of the author’s knowledge there is exists no other work that couples the
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interference analysis to the real-time deployment process. In fact, the closest works to
the ones proposed are interference-sensitive WCET estimation method [77, 78, 76], where
the term isWCET was first coined, and the works of the on-going project ARGO [84, 41]
where a similar idea of iteratively improving the WCET estimation according to the
deployment decisions is advocated and evaluated [90].

The works of Nowotsch, et al., for isWCET (first appeared in [77, 78] and extended
in [76]) focus COTS platforms where the target architecture is a distributed homogeneous
architecture, yet the approach should be extendable to centralised and mixed architectures.
The shared resources that are considered are more, as I/O devices, PCI bus, etc. are
considered. These works, as opposed to our approaches, enforce resource regulation on
a per-task basis in order to ensure that tasks do not generate more interference than
permitted. That is, the accesses of task are monitored at runtime and if a task exceeds
its allotted resource usage is suspended. A first consideration is that runtime monitoring
of resource access can introduce non-negligible overhead to actual execution, which is not
addressed in these works. Another, potentially problematic situation, yet a corner case,
since mixed-criticality systems are considered is the following. A high-criticality task
with tight resource demands on the low-criticality mode to be suspended/slowed-down,
while low-criticality tasks run normally, until the criticality mode changes. Still, the
approach is of significance and illustrates experimental that a per-task resource-bounded
WCET, i.e. isWCET, can increase performance significantly.

Of particular interest are interference-free approaches [94, 21, 81]. These approaches
require that execution occurs in short phases of local accesses and shared-resources
accesses. This can be achieved by reordering/instrumenting the execution binary and
properly aligning, in time, the phases of each core such that shared-resource phases do
not overlap. This can minimise WCET estimations, as there is no interference, and lead
to efficient deployments. Nevertheless, we consider that runtime adaptation to shorter
executions of tasks is difficult, as the strict requirement of phase-alignment cannot be
violated, and rescheduling at earlier times requires a significant reduction of a single
phase. Therefore, such execution models, while efficient in deploying applications for
hard real-time, they lack in adaptability.

Following we review some state-of-the-art approaches that are related to WCET and
scheduling.

3.4.1 WCET Analysis and Scheduling

We focus on the works that, similarly to us, consider that the WCET of a task is composed
of its WCET in isolation, including data fetch and deposit time, with no interferences from
other tasks on shared resources plus time delays due to contentions on these resources.
There exist several works considering that the WCET of a task is composed of its WCET
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including data plus time delays due to contentions on these resources. Other papers
focus mainly on the WCET estimation of tasks with data dependencies deployed on
centralised-[73, 23] and distributed [44] architectures. Works on HW/SW co-design,
e.g. [42], can avoid interferences by deciding the amount of resources in the platform,
contrary to the commercial hardware that we consider.

In [73] the authors propose an ILP formulation of the task scheduling and mapping
problem for multi-core architectures with caches. They consider different communica-
tion times for data exchange between the tasks mapped to the same core (e.g. when
communication happens through caches) and two different cores (e.g. with the access to
shared memory). In [23] author are presenting the upper bound estimation of the WCET
also for a memory-centric architecture, similar to ours, by proposing a memory-aware
execution to compute the delays due to memory contention. The access to the shared
memory is assumed to be realised through Data Memory Access (DMA) units, while
the access delays are derived experimentally for different sizes of memory block. These
approaches are suitable for architectures with a small number of clusters having simple
inter-cluster interconnection network, e.g. TI Keystone I I T M [108]. However, the WCET
analysis for a multi-processor architectures with multiple clusters interconnected with
a NoC such as Kalray MPPA-256 [60] requires more detailed modelling and analysis.
There have been several works dedicated to WCET analysis for the tasks with data
dependencies deployed onto a multi-processor architecture. In [44] authors are presenting
the approach to compute the WCET of tasks running on Kalray MPPA-256 [60] platform
by assuming that the maximum number of interfering tasks is equal to the number of
processing elements of this cluster, when accessing the shared memory within a cluster,
which we experimentally observed that it does not hold in the general case.

In [48], the authors present a comprehensive theory for mixed-criticality scheduling on
cluster-based multi-processor architectures with shared resources developed within the
CERTAINTY project. To derive a feasible schedule the authors estimate the tasks’
worst-case response time (WCRT), which we call WCET1. The tasks are scheduled with
FTTS mixed-criticality scheduling policy that repeats over a hyper-cycle divided into
frames and sub-frames the beginning of which is synchronised among each cores of a
cluster. Each sub-frame contains only the tasks of the same criticality level, which ensures
that resource contention may happen only among the tasks with the same criticality
level. The WCRT for the same criticality level, is composed of a WCET and the total
delay due to contention on shared resources. Our model considers no criticality levels
but has a detailed representation of the communication mechanism over the NoC. Also,
in addition to the arbitration delays when accessing shared memory blocks accounted
in [48], we consider the arbitration delays occurring at shared buses. Moreover, we are
tightening the WCET by excluding non-interfering tasks, i.e. tasks non-overlapping in

1The reason for this conflict of terminology is that often the term WCRT refers to a set of tasks
and/or time in which the PE is not blocked and can be exploited
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time that share a resource, which is highly complex for the models used in [48].

3.5 Summary

We have presented an accurate estimation of the upper bound for the interference delays
of tasks for an application with data dependencies deployed onto a generic architecture.
The proposed method produces interference-sensitive WCET estimations, based on the
WCET in isolation and according to any provided information (scheduling, mapping etc.)
about the deployment.

We experimentally evaluated the isWCET method, on Kalray MPPA-256 for the StreamIt
benchmark. The proposed isWCET method yields an average improvement of the WCET
upper bound by 5% to 10% for all tasks of all benchmarks. In half of the benchmarks
considered, the approach was able to exclude more than 80% of the interferences, thus
reducing the interference overhead to less than 10% and improving guaranteed latency up
to 46%. Thus, excluding sources of interferences, i.e. using interference-sensitive isWCET
estimations, can have significant impact on tasks’ WCET, which is also reflected in an
improvement of overall application latency. This improvement can be achieved without
requiring specialised resource partition/regulation techniques, which can undermine
runtime performance.
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4 Application Deployment

Καιρὸς δ΄ ἐπὶ πᾶσιν ἄριστος

— Θέογνις (ο Μεγαρεύς)

There is a perfect time for everything
— Theognis of Megara

Given an application, represented with a Model of Computation (MoC) such as SDF [68],
KPN [49], etc., its deployment on a multi-processor is a constrained multi-criteria
optimisation problem [53, 33, 105, 106, 59, 70, 42, 14, 40]. Possible optimisation criteria
include latency, throughput, memory usage, etc., while respecting architecture-specific
limitations (available memory, number of PEs, communication mechanisms, etc.) and
application data-dependencies. Hard real-time systems, additionally, require that given
real-time constraints should be met in all possible execution scenarios.

Traditionally, scheduling methods that aim to solve this problem require the a-priori
knowledge of the WCET of tasks [34, 25]. For uni-processor systems, that was a
reasonable requirement. In multi-processor systems though, for such approaches to
be applied, the worst-case has to be assumed about the timing interference due to
arbitration of shared hardware resources. This is possible, for some architectures, but the
estimated timing interference analysis is performed without any knowledge about how
the application is deployed. Such an approach provides run-time adaptability by allowing
“any” possible task-migration, but it is rather pessimistic as shown in the previous Section
and, therefore, can impact latency guarantees. To reduce the pessimism in WCET
estimations due to interference, several approaches enforce resource partitioning [102] or
resource regulation [36, 66] which, nevertheless, hinder run-time performance as resources
cannot be shared or the execution is effectively slowed-down, respectively.

This dissertation proposes to couple the interference estimation with the deployment
process in order to cover the ground between scheduling methods and resource parti-
tioning/regulation. Such coupling essentially allows us to explore the trade-off between
tighter real-time guarantees and run-time performance. This is achieved by the notion of
isWCET estimation: depending on the amount of information provided to the interference
analysis method, the WCET estimation becomes more accurate, but also more sensitive
to deployment changes. This directly affects the number of safe run-time adaptions, such
as task rescheduling, migration, etc., available to an online resource manager
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Figure 4.1 – Overview of the deployment approach.

Another way to view the notion of isWCET is from the viewpoint of resource regulation.
The isWCET estimations are effectively resource-limited WCET guarantees expressing
that, if a certain amount of interference occurs when a task is executed, then it is guaran-
teed to finish within the isWCET estimation. The key difference with resource regulation
techniques lies in the fact that the resource limit of isWCET is not predetermined and
enforced by hardware or software techniques, but is defined per-task and is left to the
deployment process and run-time scheduler to guarantee that this limit will not be
violated.

Figure 4.1 illustrates a safe process for deploying an application A (modeled as a split-join
graph) to a generic architecture GA where the deployment is performed in combination
with the proposed isWCET method. This deployment process is an adaptation of the
soft real-time method [105], such that provable real-time guarantees can be provided.

The safe and, at the same time, efficient deployment of an application A to a generic
architecture GA involves solving the following problems:

• partitioning/placement π: assign actors to clusters

• task-mapping µK : assign tasks (actor firings) to cores

• scheduling β: decide the order and begin time of task execution

• FIFO allocation φ: decide the size of FIFO channels

• memory-mapping µM : assign FIFO channels to memory banks

• NoC-routing ρ: assign NoC routes to NoC transfers

Notice that, for a distributed architecture DA = (C, {k}, L, M, N ) the solution π to
the partitioning/placement problem is the exact solution of µK for the task-mapping
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problem, since there is only one core per cluster, but in the general case of a generic
architecture GA = (C, K, L, M, N ) , the placement solution π is only a partial solution
of the task-mapping solution µK .

To provide solutions to these optimisation problems, the approach outlined in Figure 4.1
utilises a Satisfiability Modulo Theory (SMT) solver. Multi-criteria optimisation problems
can be solved using SMT solvers for a bounded cost space, by requesting the SMT for
an initial solution within the cost space and, subsequently, iteratively requesting for a
solution improved over the current one. When it is not possible possible to improve
further the current solution, the solver either replies that the request is unsatisfiable or
times-out.

The choice of utilising SMT solvers to solve the optimisation problems, instead of a
traditional scheduling approach, is due to the fact that SMT solvers do not have a
predetermined behavior. On the contrary, they try to optimise based on an objective
function, when used on the previously described way, thus avoiding any probable bias
towards interference that other techniques might inherently suffer from. Since, the SMT
solver has an arbitrary behavior, it allows us to objectively study the impact of coupling
the interference analysis method with the deployment process.

The proposed deployment process, after solving the balance equations for the given split-
join graph, partitions the split-join graph (up to the number of clusters |C|) by minimising
the amount of data that have to be transferred over the NoC. For each partitioning
solution, the partitions are assigned (placed) to clusters by minimising the communication
delay (in isolation), which depends on the distance between the communicating clusters.
Having acquired a set of partitioning/placement solutions {πi }, the application model
A is transformed into the system model S according to each solution πi , in order to
faithfully model both the computation and communication behaviors of the system. Each
system model is then analysed with the isWCET interference analysis to acquire safe
WCET estimations. Subsequently, the SMT solver solves the task-mapping, scheduling
and FIFO allocation optimisation problems all together, trying to minimise the total
latency. Using the found solutions, the memory-mapping and NoC routing optimisations,
in such away that the number of conflicts in resources is minimised. Aggregating all these
solutions, the deployment D = (µK ,µM ,ρ,φ,β) is generated. As a final step, the system
model is analysed once more with the isWCET method, but this time, the deployment
solution D is provided as well. This results in tighter a isWCET, based on which the
deployment D is improved via rescheduling.

4.1 Safe Deployment

We shall review the deployment process of Figure 4.1 in a stage-by-stage fashion. For
each phase, the models used are defined (if not already), and the corresponding constraint
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optimisation problem submitted to the SMT solver is presented. Throughout this section,
the variables of each optimisation problem are underlined, i.e. “x” if x is variable and
“x” if x is known.

A constrained minimisation problem of the form “Find X s.t. min f (X ) subject to C” can
be transformed into a satisfiability problem of the form “find Xi s.t.

(
f (Xi ) < f (Xi−1)

)
∧C”

iteratively improving the valuation of variables X . That is, starting from an initial
valuation X0 or upper bound of f (X ), iteratively find a valuation of variables Xi that is
strictly better that Xi−1 according to optimisation criterion f . To simplify notation, only
the constrained version of the minimisation problems, rather than their corresponding
satisfiability problems, are presented in the next subsections, but providing information
how to acquire the initial valuation or upper bound. The interested readers are referred
to [104] for a detailed discussion on the exact formulation of the satisfiability problems.

4.1.1 Partitioning/Placement

In the partitioning step of the deployment process of the approach, the split-join graph is
partitioned by balancing the workload among clusters. Since the partitioning cannot be
directly linked to latency, that problem is posed a multi-criteria optimisation problem,
the two criteria being (i) the number of clusters used and (ii) how balanced a solution is,
i.e. the difference of each partition’s workload from the average workload.

The workload of an application A = (U ,E ,α,δi so ,σ) is the sum of the durations of all actor
firings:

WU = ∑
u∈U

#u ∗δi so(u) (4.1)

where #u is the number of firings according to the balance equations. Thus, if x is the
number of clusters used, the average workload is WU/x, and WUi is the workload of each
partition Ui of the graph. For each value of x ∈ [1, |C|], the optimisation criterion to be
minimised then is simply expressed as

x∑
i=1

|WUi −WU/x|, upper bounded by 2∗WU ∗ x−1
x .

The upper bound results from assuming the totally imbalanced case, where all the
workload is on one cluster, and the rest x −1 clusters have no workload at all.

A placement solution π is an assignment of the partitions to clusters. The optimisation
criterion used to acquire a placement solution is minimisation of communication delay on
the NoC. Clearly, the cost to transfer a specific amount of data depends on the distance
among the clusters. The data that are going to be transferred over the NoC are described
by the edges of the split-join graph that connect the graph partitions. Thus, the cost
function for the placement problem is:∑

u∈Ui ,u′∈U j

#u ∗ r (u,u′)
i n ∗σ (u)∗‖π(u),π(u′)‖L (4.2)
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where ‖π(u),π(u′)‖L is the topological distance according to the NoC links L. Implicitly,
the communication cost assumes that the time to traverse the NoC (in absence of
interference) is linearly dependent on the distance.

4.1.2 Acquiring the System Model

Having a placement solution π for the given application A, the system model is constructed
by adding communication actors that model the timing behavior of NoC transfers. Recall
that there are three types of operations that need to be modeled with actors for data
transfers over the NoC, namely initialisation, transfer and finalisation. The transformation
adds an initialisation actor i(u,u′), a transfer actor t(u,u′) and a finalisation actor f(u,u′) for
each data transfer between two actors u,u′, placed on different clusters. Each initialisation
and finalisation actor have a constant delay, while the duration of the transfer actor
depends on the distance among the communicating clusters. Such delays are based on
the following constants which are assumed to be known.

Definition 4.1.1 (NoC constants). For a generic architecture model GA = (C, K, L,
M, N ) , we define the following timing constants (in cycles):

• i d ∈N+ is the initialisation delay of the NoC interface

• d pp‖c,c ′‖L ∈N+ is the delay per packet for transferring data between two clusters
c,c ′ with distance ‖c,c ′‖L

• pd ∈N+ is the NoC interface polling delay ■

Distributing computation among clusters has a significant consequence for FIFO channels
that span across two clusters. From a model perspective that should not cause any issue,
but from the perspective of realising the system according to the model, an ambiguity is
resolved. A FIFO channel represents a part of the on-chip memory, that an actor can
also use as a buffer to store intermediate results. Therefore a FIFO channel spanning
across clusters should use either the memory of the source or destination cluster. Yet,
the source actor of that FIFO produces data in the source cluster memory, while the
destination actor consumes data from the destination cluster memory. The solution is
to duplicate the FIFO (one for each side) with the transfer actor transferring (copying)
data from one to the other.

This introduces a FIFO protection concern as the source actor has to be aware if the
destination FIFO is full or not, before initialising a new data transfer. A way of tackling
this concern is by adding a backward notification transfer (message) when the destination
actor consumes data, thus informing the source actor regarding the availability of space
in the destination FIFO. Thus, in the system model, for each data transfer among
actors u,u′, five new actors are introduced to model the two-way communication. For
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the forward data transfer these are, in order of execution, i(u,u′), t(u,u′), f(u,u′) for the
initialisation, transfer and finalisation respectively. For the backward notification transfer
the actors introduced are i(u′,u), t(u′,u). Notice the absence of a finalisation actor, since
there are no data exchanged and, therefore, this frees no space in any FIFO.

Let E A
i n (respectively, E A

ex) denote the data-exchange among actors residing in the same
cluster (respectively, in different clusters):

E A
i n = {

(u,u′) ∈ E A | π(u) =π(u′)
}

, E A
ex = E A \E A

i n

Essentially, the transformation of an application A to a system model S preserves all
the intra-cluster data exchanges and replaces the inter-cluster ones, by introducing
communication actors and dependencies. It also preserves the possible parallelisation
already existing in the application and encompasses possible parallelisation of data
transfers.

Additionally, for purposes of memory efficiency in implementation, the semantics of
split-join graphs permit the preservation of FIFO places until a subsequent actor is
fired, by adding backward edges. For example consider the following sequence of actors
u, i(u,u′), t(u,u′), f(u,u′) required for a data-transfer over the NoC. Using a FIFO inbetween
each of these actors would be inefficient, as the initialisation actor i(u,u′) and the finalisation
actor f(u,u′) do not alter the data to be transferred and simply copy data from their source
FIFO to their destination FIFO. The data to be transferred, are considered consumed
only when the data transfer is completed, i.e. after the execution the finalisation actor
f(u,u′), at which point the data are no longer needed.

For this reason for each data transfer, a backward edge is added to the appropriate actors
(as illustrated in Figure 4.2). The marking of those edges determines the size of the
corresponding FIFOs, and determing it is the objective of the next optimisation step to
determine.

Definition 4.1.2 (System model transformation). Given an application model A =(
U A ,E A ,αA ,δA

i so ,σA
)
, a generic architecture GA = (C, K, L, M, N ) and a placement

function π, the system model is the annotated split-join graph
S = (U A ∪UComm ,E A

i n ∪EComm ∪Eφ,α,δi so ,σ), such that:

• UComm = {
i(u,u′), t(u,u′), f(u,u′), i(u′,u), t(u′,u) | (u,u′) ∈ E A

ex

}
is the set of communication

tasks introduced for the forward and backward transfers among clusters

• EComm =
{

(u, i(u,u′)) , (i(u,u′), t(u,u′)) , (t(u,u′), f(u,u′)) , (t(u,u′),u′) ,

(u′, i(u′,u)) , (i(u′,u), (t(u′,u)),

∣∣∣∣∣ (u,u′) ∈ E A
ex

}
is the set of dependencies that are introduced among computation and communica-
tion actors such that the operation of the NoC is respected
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Table 4.1 – Extension of functions α,δi so ,σ for communication actors

u ∈UA δi so(.)

u δA
i so(u)

e ∈ E A
i n σ (e) σ

(
e−1

)
α(e)

u,u′ σA
(
(u,u′)

)
σA

(
(u′,u)

)
αA(e)

u ∈UComm δi so(.)

i(u,u′) or i(u′,u) i d

f(u,u′) or f(u′,u) pd

t(u,u′) d pp‖π(u),π(u′)‖L ∗σA

(
(u,u′)

)
t(u′,u) d pp‖π(u′),π(u)‖L

e ∈ EComm σ (e) σ
(
e−1

)
α(e)

u, i(u,u′) σA
(
(u,u′)

)
σA

(
(u,u′)

)
1

i(u,u′), t(u,u′) 0 0 |N |/αA(e)

t(u,u′), f(u,u′) 0 0 1/|N |
t(u,u′),u′ σA

(
(u,u′)

)
σA

(
(u′,u)

)
αA(e)/|N |

u′, i(u′,u) 0 0 1

i(u′,u), t(u′,u) 0 0 1

59



Chapter 4. Application Deployment

• Eφ = {
(u′,u) | (u,u′) ∈ E A

i n

}∪{
( f(u,u′),u) , (t(u′,u), i(u,u′)) | (u,u′) ∈ E A

ex

}
is the set of back-

ward channels that protect from FIFO overflows, the marking of which shall define
the size of FIFOs

• α,δi so ,σ are extended versions of αA ,δA
i so ,σA for the additional communication

actors and their dependencies, as described by Table 4.1 ■

This system model faithfully captures the behavior of the execution, both in terms of com-
putation and communication. Additionally, the system model properly exploits possible
parallelisation, as it retains application parallelism, and communication parallelism, as it
allows the transfers to be parallelised up to the maximum allowed by the architecture.
This is achieved by allowing each transfer actors to be fired in parallel up to the number
of channels |N |.

4.1.3 Scheduling, Task Mapping and FIFO Allocation

The acquired system model is used in this stage to solve the scheduling, mapping and
FIFO allocation problems. In order to acquire safe solutions, though, the solutions cannot
be based on the WCET in isolation δi so , since the possible interference is not accounted
in those. Thus, the system model S is transformed to its corresponding execution
model E M(ES) = (V ,E) upon which the isWCET interference analysis generates over-
approximated, but safe, WCET estimations δover .

Using these WCET estimations, the scheduling, task mapping and FIFO allocation are
solved altogether. The constrained optimisation, posed to the SMT solver, that provides
solutions to these problems aims to reduce latency. Thus the optimisation criterion is:

min
v∈V

ε(v) =β(v) + δover (v) subject to CD

where CD are the deployment constraints, which guarantee that (i) application depen-
dencies are respected (ii) the real-time constraints are met, (iii) there is enough on-chip
memory for the chosen size of FIFOs, (iv) tasks are mapped up to the maximum number
of cores per cluster. The cost space of this optimisation is bounded by the serial execution
of the actors, i.e. ∑

u∈U
#u ∗δover (u), as exploring solutions with latency larger than the

serial execution cannot possibly be beneficial. Given a system model with safe WCET
estimations S = (U ,E ,α,δover ,σ) and its corresponding execution model E M(ES) = (V ,E),
the deployment constraints are the conjunction of the following constraints.

• Application: The application dependencies require that some tasks are executed
before others, due to data dependencies. These are reflected in the dependency
relation E of the execution model E M . Thus, each task must finish before its
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ancestors can start their execution:∧
(v,v ′)∈E∗

ε(v) ≤β(v ′)

• Real-time constraints: Real-time constraints enforce that each actor u ∈U must
finish before its respective deadline du . This is equivalently expressed as, all tasks
vu ∈V of that actor must finish before the deadline du :∧

vu∈V
ε(vu) ≤ du (4.3)

• Task mapping constraints: Mapping tasks to cores must respect the actor
placement π acquired in the previous stage and enforce exclusive use of cores, that
is tasks cannot be executed at the same time on the same core. Let the cores of
the generic architecture GA be enumerated in the interval [1, |C|∗ |K|] with the first
|K| belonging to first cluster, etc. Thus, a task vu of actor u should be mapped
onto a core belonging to the cluster where u is placed, i.e.:∧

vu∈V
π(u)∗|K| ≤µM (v) < (π(u)+1)∗|K|

Additionally, tasks mapped in the same core cannot possibly be executed at the
same time. That is, for any two tasks mapped on the core, one should finish its
execution before the other starts:∧

v 6=v ′∈V
µM (v) =µM (v ′) ⇒ ε(v) ≤β(v ′)∨ε(v ′) ≤β(v)

• FIFO constraints The size of FIFOs has a direct impact on the optimisation
problem, as it affects the number of possible solutions. The first necessary condition
is that the total size of FIFOs should not exceed the total cluster memory:∧

c∈C

∑
e∈E A

c

φ (e)∗ tke ≤ |M|∗MSi ze

where tke is the size of a single token for FIFO e and MSi ze is the size of a memory
bank. Additionally, FIFOs should be protected from overflows and underflows,
which also affects possible scheduling solution. Recall that the execution model
already contains scheduling dependencies that protect from underflows. Overflow
protection dictates that an actor should not fire, if there is not enough space in one
of its output FIFOs. Knowing that actors produce and consume ordered streams
of data tokens, each at a constant rate, the amount of tokens present in the FIFO
can be statically known. For two dependent actors u,u′, the amount of tokens is
expressed as the difference of produced and consumed tokens between the i th firing
of actor u and the j th firing of actor u′, i.e. i ∗ r (u,u′)

out − j ∗ r (u,u′)
i n . Thus, if the i th
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firing of actor u starts before the j th firing of actor u′ ends, the amount of tokens
should be at most the size of the FIFO. Therefore, FIFO overflow protection is
enforced with the following constraint:∧

e=(u,u′)∈E

∧
v i

u ,v j
u∈V

β(v i
u) < ε(v j

u) ⇒ i ∗ r (u,u′)
out − ( j −1)∗ r (u,u′)

i n ≤φ (e) (4.4)

The solution of this constrained optimisation problem provides a deployment with a
guaranteed latency of max

v∈V

(
β(v)+δover (v)

)
. The acquired valuations of the task mapping

µK , scheduling β and FIFO allocation φ functions are part of the deployment solution
D = (µK ,µM ,ρ,φ,β) , based on which the memory mapping and NoC routing are solved.

4.1.4 Memory Mapping, NoC Routing

Having a solution for the task scheduling β, the memory mapping optimisation problem
consists in find an assignment of FIFOs to memory banks, such that the interference is
minimised. Knowledge of the arbitration policies with which the requests of a task will
be arbitrated can be exploited to define accurately the optimisation problem. However,
to enhance the applicability of the method, we cast the optimisation problem as a
minimisation problem of number of conflicts. Notice that, while this is a very reasonable
heuristic, an optimal solution of the minimisation of the number of conflicts is not
necessarily optimal in terms of interference.

The number of possible conflicts among two non-dependent actors u,u′ if one of their
FIFOs is mapped on the same memory bank, equals the number of requests of their
tasks, but only for those tasks that overlap in time according to the scheduling function
β. For example, if u,u′ each have only one FIFO e,e ′, respectively, mapped to the same
memory bank, this is formally expressed as:

over l ap
(
u,u′)∗min

(
σ (e) ,σ

(
e ′

))
where over l ap

(
u,u′) is the extension of the over l ap predicate for actors, evaluating

to the number firings that overlap in time according to β. For dependent actors, i.e.
(u,u′) ∈ E , changing the mapping of their in between shared FIFO cannot possibly alter
the number of conflicts, or amount of interference.

The memory optimisation problem can be solved on a cluster basis, as the memory
mapping of FIFOs on other clusters does not affect the interference occurring on a cluster.
Thus, the objective function for the memory optimisation problem is defined as finding a
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valuation of the mapping function µM for the FIFOs E A
c of cluster c:

∑
(u1,u2)=e
(u3,u4)=e ′∈ E A

c

(
µM (e) ==µM (e ′)

)
∗ ∑

u,∈{u1,u2}
u′∈{u3,u4}

over l ap
(
u,u′)∗min

(
σ (e) ,σ

(
e ′

))
subject to ∀m ∈M ∑

µM (e)=m
φ (e)∗ tke ≤MSi ze

(4.5)

where tke is the size of a single token for FIFO e and MSi ze is the size of a memory bank,
in words. Notice that this formulation will provide an optimal solution for actors that
issue equal numbers of requests. For the general case of unequal requests, the second
sum of the minimisation problem is replaced by its expanded form, properly accounting
for the different number of requests:

over l ap (u1,u3)∗min
(
σ (e) ,σ

(
e ′

))+
over l ap (u1,u4)∗min

(
σ (e) ,σ

(
e ′−1))+

over l ap (u2,u3)∗min
(
σ

(
e−1) ,σ

(
e ′

))+
over l ap (u2,u4)∗min

(
σ

(
e−1) ,σ

(
e ′−1))

where e−1 = (u2,u1) denotes the inverse edge of edge e = (u1,u2).

In all cases, the information regarding the number of overlaps, of requests etc. is already
known at this stage of the deployment process, and the only variables are the mapping
of clusters FIFOs to memory banks.

Similarly, the routing problem is defined as a minimisation problem of the number of
conflicts. Following the same convention, the number of possible conflicts among two
transfer actors t , t ′ on a NoC router is number of requests of their tasks, but only for
those tasks that overlap. Thus, the objective function for the routing problem is:∑

(t ,u)
(t ′,u′)∈ E

(
ρ(t )∩ρ(t ′) 6= ;

)
∗over l ap

(
t , t ′

)∗min
(
σ (t ,u) ,σ

(
t ′,u′)) (4.6)

Notice that according to the assumed NoC model, two flows that traverse some or all
common routers, but in opposite directions, do not interfere with each other, since the
NoC routers arbitrate flows towards different directions separately.

4.1.5 Deployment tightening

Having a constructed a safe (see proof in Section 4.1.6) deployment solution D = (µK ,µM ,ρ,β,ε)

for a system model S = (U ,Eα,δover ,σ), the WCET estimations can be improved using
the interference analysis of Chapter 3. Providing the deployment information D to the
isWCET method results in the tighter interference estimations ιD and the interference-
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sensitive WCET:

∀v ∈V : διD (v) = δi so(v)+ ιD (v)

Replacing the original WCET estimations δover with the newly acquired isWCET results
in the interference-sensitive system model SD = (U ,Eα,διD ,σ). Essentially, this means that
the interference-sensitive system model and corresponding execution model are faithful
only for deployment the given deployment D or for deployments D ′ where any task v

experiences at most ιD (v) interference delays. Among these deployments, only those
deployments that meet the real-time constraints CRT and can guarantee that FIFOs
remain protected, are safe.

In this stage of the deployment process, a safe and improved deployment D ′ is constructed,
based on the already acquired deployment D. This is achieved by modifying the scheduling
function β, such that tasks are rescheduled to the soonest possible without introducing
new interference.

Given the corresponding execution model E M(;) = (V ,E) for the interference sensitive
system model SD = (U ,Eα,διD ,σ), the execution model E M(;) = (V ,E ∪;) is transformed
into the scheduled execution model E M(ES) = (V ,E ∪ES), by augmenting the dependency
relation with scheduling dependencies ES . The scheduling dependencies enforce that for
any two non-overlapping tasks v, v ′ (i.e. β(v)+διD (v) <β(v ′)), that share a resource, task
v ′ must be executed only after v has finished:

ES = {
(v, v ′) ∈V | β(v) <β(v ′)∧¬over l ap

(
v, v ′)∧ shar er∈R

(
v, v ′)} (4.7)

This, transformation guarantees that if tasks are rescheduled to earlier times, no new
interference will be introduced, as tasks that can interfere on any resource are enforced
not overlap (Figure 4.3).

Using the scheduled execution model E M(ES) = (V ,E ∪ES), the improved deployment
D ′ = (µK ,µM ,ρ,φ,β′) is constructed by rescheduling tasks as early as possible. That is,
the scheduling function β′ is:

β′(v) = max
(v ′,v)∈E∪ES

{
β′(v ′)+δ

ιD
(v ′)

}
(4.8)

with β′(v) = 0 for tasks with no predecessors. The effect of this rescheduling is illustrated
in Figure 4.3

4.1.6 Safety

While we proved in the previous chapter that the isWCET method is safe, it is important
to prove that it has been utilised properly and that the resulting deployment solution is
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Figure 4.3 – Example of schedule β with data dependencies (black arrows) and β′ with
scheduling dependencies (red arrows) for one cluster with four cores; same patterned/-
colored tasks use the same bus/memory bank, respectively. The green task on Core0 is
rescheduled, but the blue task on Core1 is not, as it would introduce new interference to
Core2 and Core3.

also safe. A deployment D is safe, according to the Definition 2.3.7, iff all actors finish
their firings before their deadlines and the FIFO channels remain protected.

Theorem 4.1.3. Assuming that the system model S = (U ,Eα,δover ,σ) contains all the
actors that are executed, the deployment D acquired at the “Scheduling, Task Mapping
and FIFO allocation” stage is safe.

Proof. At that stage of the deployment process, since no other actor or task is executed
in parallel with the actors of S, the WCET estimations δover are proven to be safe
according to safety of the isWCET (Theorem 3.2.7). The fact that actors finish before
their respective deadlines is enforced by construction, due to real-time constraints
(Equation 4.3) that are supplied to SMT solver. Also, FIFO protection is guaranteed by
construction, since FIFOs are protected from underflows according to the transformation
of the system model S to the execution model E M(;) = (V ,E ∪;) (Definition 2.3.3) and
overflows due to the FIFO constraints (Equation 4.4).

Having proven that the deployment D is safe, we set to prove that the same holds for the
tightened deployment D ′ of the interference-sensitive system model SD = (U ,Eα,διD ,σ).

Theorem 4.1.4. Given a safe deployment D = (µK ,µM ,ρ,φ,β) for the system model
S = (U ,Eα,δover ,σ), the deployment D ′ = (µK ,µM ,ρ,φ,β′) for the interference-sensitive
system model SD = (U ,Eα,διD ,σ), acquired at the “Deployment tightening” stage, is safe.

Proof. According to Theorem 3.2.7 the isWCET estimations διD are also safe, but only
if the interference estimations ιD are not increased for any task. This is guaranteed
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by construction for the following reason: the additional scheduling dependencies ES

(Equation 4.7) of the scheduled execution model E M(ES) = (V ,E ∪ES) do not permit
additional overlaps of tasks, which share a resource, even if they are scheduled at earlier
times. Since only the start times of tasks β′ are modified (compared to the safe β), it
is not possible to increase the interference estimations ιD . Thus, rescheduling as soon
as possible, according to Equation 4.8, cannot possibly result in any task finishing later
compared to the safe deployment D, thus preserving the real-time guarantees

4.2 Evaluation

4.2.1 Experimental Setup

To experimentally evaluate the coupling of the isWCET approach with the deployment
process, we use the same setting as Chapter 3, that is 8 distinct applications of the
StreamIt [109] benchmark and a JpegDecoder, with Discrete Cosine Transformation
(DCT) being modeled in 10 different ways, varying the level of task parallelism.

To acquire safe deployment solutions, we coupled our implementation of the isWCET
method with the StreamExplorer [104] tool, which provides a set of near-optimal deploy-
ment solutions D = (µK ,µM ,ρ,φ,β) using an SMT solver. Each query to the SMT solver
(Z3 [39]) has a time-out of 30 sec. and for each benchmark a global time-out of 6 min.

For the considered benchmark, we chose not impose any deadline, but instead optimise
the latency of the application. This forces more tasks to be executed in parallel, thus
constructing tightly packed deployments. In these “stressed” deployments, the simulta-
neous access to resources should be higher, compared to more “relaxed” deployments,
thus rendering the improvement of the isWCET estimations harder. Therefore, this
evaluation of the isWCET approach is performed under rather unfavorable conditions,
which will outline the benefits of the isWCET.

4.2.2 Evaluation Results

Once a deployment solution it acquired, it is of importance to review the latency
improvement results in comparison with the results presented in Chapter 3 (for readability
and comparison purposes, Figures 3.4, 3.5, 3.8 repeated on the next page). In Figure 4.7,
the guaranteed-latency improvement is illustrated for the considered benchmarks. That
is, we compare the latency of the whole application computed with the over-approximated
WCET (the values of which are in Table 3.3 for reference) to the latency computed with
the isWCET.

We can observe that the latency improvement varies significantly. Comparing the
interference improvement (in Figure 3.4) with the latency improvement (in Figure 4.7),
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Figure 3.4 – Percentage of spatio-temporally excluded interference per benchmark (re-
peated from page 45)
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Figure 3.5 – Percentage of the interference overhead per benchmark set (repeated from
page 46)
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Figure 3.8 – Average percentage reduction of tasks WCET per benchmark (repeated
from page 48)
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Figure 4.7 – Percentage of guaranteed latency improvement due to spatio-temporal
exclusion.

we notice that while there was noticeable reduction of interference, the latency guarantees
are not as greatly improved. Especially, for some cases, e.g. MergeSort, even though all
the interference is excluded the latency improvement is less than 1%. This is explained
by the fact that interfering tasks are not in the critical path of the schedule, i.e. any
increase of that tasks execution time does not increase the total latency.

Similarly, for all benchmarks, the latency improvement is slightly lower than the average
WCET improvement. This is expected since the WCET improvement (in absolute values)
can have at most a linear effect on the overall latency, if those tasks are in the schedule’s
critical path. This is an important finding as it implies that a significant amount of
interference may have no impact on the total guaranteed latency, yet it is still important
when considering intermediate deadlines.

Nonetheless, we achieve an average latency-guarantee improvement of 5%, up to 46%,
which is significant when providing latency guarantees, with applications, where data
cannot be partitioned (MatrixMult), benefiting the most in terms of latency. Also,
in [100] we showed that the derived solutions provide guaranteed latency similar to
average case solutions of [105], requiring at most 150 KBytes more memory.

4.3 Related work

The latest tendency of migration from single core to multi-processor architectures has
raised a question of optimal use of multiple shared resources, e.g. processing cores, shared
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memories, buses and NoCs. Thus, the optimal deployment of an application, which may
have data dependencies, onto a multi-processor platform is regarded as a multi-criteria
optimisation problem [33, 105, 106, 59, 70].

Typical approaches from Scheduling Theory [82, 34, 25], although higly valuable, do
not cover the full deployment of an application onto a multi-processor architecture
with real-time constraints. Most of the existing works can be classified into two broad
categories: those optimising the application mapping, buffer allocations and scheduling
assuming that the WCET is given, and those estimating the WCET, based on some
given solution for allocation deploypement onto an architecture. We review the former,
as the latter was already presented in Chapter 3.

In [33, 105, 106] authors proposed to divide such optimisation problem into several stages.
Given an application, a multi-processor architecture model and the extra-functional
system specification (e.g. latency constraints, memory available for buffer allocation) the
set of constraints describing the overall system with its limitations is built and given to
an SMT solver to provide optimal solutions for the application mapping, scheduling and
buffer allocation. The approach of [105] focuses on achieving performance and not on
providing strong guarantees. For this reason the optimization steps are done based on
the average case-execution time (ACET) for the computation tasks. Such an approach is
suitable for best-effort systems but does not for hard real-time systems, which require
the real-time guarantees.

Following we review some state-of-the-art approaches that are related to the deployement
problem. Most of these works assume that the WCET time of tasks is known. Also in
various works, there are different assumptions about the allowed migrations, different task
priorities, etc. [14, 34]. A known issue in multi-processor architectures regarding WCET,
is that tasks experience interference thus having varying WCET. This renders such
approaches hard to use, as part of our offline phase and in accordance with an accurate
interference-based WCET analysis, as there is no guarantee that a newly acquired solution
will be better than any previous one or that the method will eventually converge.

In [30], the authors present an optimal scheduling algorithm, LLREF, for periodic task
execution on multi-cores which has bounded overhead. The scheduling is founded on
T-L planes, like budget or speed diagrams [31], but assumes no context/switching costs
nor bounds their number. Similarly, the authors of [88] present an offline/online optimal
algorithm, which schedules by reducing the problem to uniprocessor scheduling and
bounds the number of migrations/preemptions. The estimated complexity for the online
scheduler is O(kn2 logm) for n tasks being executed k times on m PEs. We consider that
this overhead is not always covered by the gain of avoiding migrations, as the application
size grows. The authors, also do not discuss the space complexity of the approach which
we consider important for real-time scheduling on many-core architectures, which have
rather limited on-chip memory.
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Although, such works are valuable, especially for the online part providing better perfor-
mance, it is hard to envision how these can be employed to provide stronger real-time
guarantees. The main reason is that such algorithms will not only change the mapping
and scheduling of tasks, thus affecting their WCET, but rarely quantify the latency gain,
thus being unable to provide stronger latency guarantee.

The works of [47, 93, 20, 19] discuss the deployment of data-flow applications on multipro-
cessor platforms. In [20] the authors present an approach to deploy data-flow applications,
modeled as SDF graphs, and based on a novel constraint programming algorithm that
explores different levels of parallelism and buffer sizes, acquiring solutions that provide
throughput guarantees. In [19] they extend the approach including heuristics for more
efficient exploration of the solution space. Similarly in [47], the deployment of SDF
graphs is addressed using parallel simulated annealing to explore the solution space. This
has a significant impact on the applicability of such methods as the model size grows.
Although, we do not address such issue as it is out of scope of our current work, our
approach is also parallelisable, by dividing the cost space and submitting parallel queries
to multiple SMT solvers. In [52] the authors address the issue of exploring the trade-off
between data and pipeline parallelism of data-flow applications and optimising buffer-size.
This is achieved by introducing a parameterised SDF graph which explicitly captures
both aspects of parallelisation. Such work constitutes an interesting direction for our
future work.

4.4 Summary

While many formal models for safety-critical real-time or mixed-criticality systems exist,
most of them do not explicitly account for interferences. Instead either the a-priori
knowledge of WCET is assumed, or interference is largely approximated or even safe-
guarded using either specialized hardware or sophisticated software and scheduling
techniques. The latter is especially true for mixed-criticality systems in order to avoid
interference from lower criticality tasks, and for some safety-critical approaches as well.

In this chapter, a deployment approach for generic architectures was presented. The
deployment approach efficiently deploys data-streaming applications modelled with a
complex MoC, while providing real-time guarantees. The deployment process breaks
the cyclic dependency between task WCET estimation and deployment solution, by
utilising the isWCET method, thus acquiring tight WCET and latency guarantees by
excluding interference delays. Our experimental evaluation of the StreamIt benchmark on
Kalray MPPA-256, shows that the isWCETperforms well even under unfavorable setups
and can improve guaranteed latency up to 46%. Also as outlined by our experimental
evaluation the amount of interference varies significantly and affects guaranteed latency
proportionally, but not linearly in the general case, especially in the case of data-
parallelisable applications.
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As a result, many theoretical approaches [34, 25] can result in inefficient implementations
of real-life systems [41]. On the other end of the spectrum, for safety-critical and
mixed-criticality systems, there are approaches that focus on a systems perspective. For
example the authors of [64, 76] provide sound scheduling and monitoring techniques for the
execution of tasks under the presence of interference. Specifically both propose monitoring
techniques to safe-guard the amount of interference a task experiences. Nevertheless,
such techniques, operating at a low level, cannot optimise according to the parallelisation
factor and can introduce non-negligible interference and overhead in the target system
by the constant monitoring of resource usage. Finally, model-based techniques [105, 106]
can be fitting for the problem as they can explicitly model parallelism and provide safe
deployments and are suitable for safe runtime adaptation. While they can achieve good
runtime performance, the fact that do not model the interference on the underlying
architecture results in pessimistic guarantees and under-utilized systems.
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Τί δε σοφώτατον; Χρόνος· ανευρίσκει γαρ πάντα

— Θαλῆς (ὁ Μιλήσιος)

What is the wisest of all? Time; it reveals everything
— Thales of Miletus

In the previous chapters, we proposed an interference analysis method that produces tight
and sensitive WCET estimations, which when coupled with the proposed deployment,
construct a safe and tight deployment D = (µK ,µM ,ρ,φ,β) for the system model
SD = (U ,Eα,διD ,σ) and its corresponding scheduled execution model E M(ES) = (V ,E∪ES).
Yet, these isWCET estimations διD are still over-approximations, as they consist of two
worst-case factors, WCET in isolation and worst-case interference:

διD
(v) = δi so(v)+ ιD (v), ∀v ∈V

It is guaranteed that an execution of the deployment D according to the start times
of the schedule function β is safe, even if the worst case happens. In actual execution
though, the worst-case rarely happens. Even if the worst-case happens for a single task,
it is even more unlikely to happen for all the tasks in a single execution iteration. In fact,
it is impossible for any pair of parallel tasks to execute with their isWCET. Recall that
the isWCET method, for safety purposes, accounts their mutual interference delays to
both tasks. But if one of the tasks executes with its isWCET, it is not possible for the
other to also execute with its isWCET, as the former suffer all the interference delays
and the latter none. Thus, a timed execution of the deployment solution according to
the schedule function β guarantees safety, but is likely to be inefficient.

Yet, there are systems where, apart from the hard real-time guarantees, the actual
performance matters. For example, consider the Automatic Braking System (ABS) in the
automotive domain, the flight control system in avionics, computer-assisted surgery in
the medical domain or even mixed-criticality systems in general. These types of systems,
benefit from a faster execution, compared to timed execution, as the system is more
responsive. In the case of mixed-criticality systems, a faster execution of higher-criticality
tasks would create more slack for the execution of lower-criticality tasks.

To improve the actual performance of the system for the average case, while still meeting
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the real-time constraints, a runtime adaptation scheme based on the actual execution time
(AET) of tasks is imperative. There are two categories of runtime adaptation approaches:

• static adaptation: where the partial order of tasks, defined by the schedule function
β, and mapping of tasks remains the same, but the begin times change.

• dynamic adaptation: where the scheduling order, mapping and/or begin times β of
tasks can change in any way.

In all cases of run-time adaptation, it must be proven that any rescheduling/remapping
decision will not violate the given real-time constraints and latency guarantees. It must
be noted that given set of task V , the schedule function β can be constructed offline for
any scheduling algorithm. This is can be achieved by applying the scheduling algorithm
to the set of tasks V with their WCET, and construct the schedule function β from
the WCET estimation and order of tasks. Thus, static adaptation is applicable for any
non-preemptive scheduling algorithm, provided that it is proven that such adaptation
will not violate the real-time constraints. Considering dynamic adaptation schemes,
there are several variations [14, 40] where only a subset of the changes (scheduling order,
mapping) are permitted, thus rendering formal proofs easier to achieve and also reducing
the algorithm complexity, and by extension its running time.

Another important aspect in runtime adaptation for multi-processor systems, and gen-
erally for scheduling algorithms applied at runtime, is the type of implementation, i.e.
centralised or distributed. Scheduling algorithms that are implemented in a centralised
manner take into account the global state of the system and typically are executed
on a dedicated core. There are several advantages to centralised implementations, as
they are easier to prove their correctness and simpler to implement, compared to their
distributed versions. Nevertheless, centralised implementations require a dedicated core,
which results in sub-optimal usage of resources. In addition, from the time instance when
such a scheduler is invoked, until the moment it decides what the adaptation should
be, an amount of time has passed and the global state of the system can, in principle,
change. This phenomenon can be a source of inefficiency, as the global state can become
obsolete and another adaptation may now be more appropriate.

Scheduling algorithms that can be implemented in a distributed manner, in general, take
into account a partial state of the system and/or can perform changes only in a subset of
the whole systems. A typical example is work-stealing [18, 43] methods, where idle cores
steal tasks from busy cores with pending tasks. In this case, the scheduler running on that
core can only add workload to its core, and not to others. Distributed implementations
distribute the workload of rescheduling onto all the available cores and can potentially
operate without requiring the global state of the system. The complexity/efficiency
trade-off depends on the implementation, among others.
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Both types of implementations raise an important issue when it comes to hard real-time
systems. The introduction of the schedulers into the system alters the timing behavior,
thus potentially violating the static guarantees. A straightforward way to overcome this
issue and preserve safety is to introduce upfront scheduling tasks/actors on the model
used to derive the safe deployment, or incorporate the WCET of a single invocation of
the scheduler to the WCET of each task. In the case of isWCET, though, the execution
of both centralised and distributed implementations will introduce interference as they
have to access the on-chip memory in order to acquire the state of the system, which
also have to be incorporated in the isWCET of tasks.

For these reasons, in order to acquire efficient and safe deployment solutions, such
runtime adaptation schemes should have the minimal WCET in isolation and minimal
interference. In this chapter, a novel static and distributed runtime adaptation technique
is proposed, that has minimal WCET and introduced interference. The technique, based
on the derived execution model E M and the deployment solution D, constructs a set
of dependencies EisR A among the tasks, which guarantee by construction that no new
interference will be introduced when rescheduling. This guarantee renders the technique
suitable for deployment solutions based on isWCET. During execution, based on the
actual execution times of tasks, the distributed schedulers apply self-timed scheduling, i.e.
whenever the next task is ready (according to the set of dependencies E) it is executed,
which is straightforward to implement.

Prior to the description of the adaption approach, several theoretical results are presented
that we use to reason about design choices for the proposed approach and aid in proving
its safety.

5.1 Theoretical Results

Scheduling algorithms are a deeply investigated field, as it is a fundamental component of
operating systems and has applicability from the smallest to the largest computing system.
In systems where real-time guarantees are mandatory, such as safety-/mixed-critical
systems, studying the behavior of scheduling algorithms is essential. In particular, timing
properties, e.g. robustness, freedom of timing anomalies, etc., of said algorithms must be
proved for a system to be verified with respect to the necessary real-time guarantees.

While, hard real-time scheduling algorithms assume the WCET, it is possible that when
some tasks take less time to execute, the scheduling decisions can actually lead to
subsequent tasks to be postponed. That is, if the scheduling algorithm is applied to the
WCET δ, the end times ε might not be always greater than the end times εact , when the
same algorithm is applied to some reduction δact (v) ≤ δ(v) for all tasks v . To make this
more clear consider the following example.

Example 5.1.1. Consider seven tasks with precedence constraints, illustrated in Fig-
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Figure 5.1 – Example task set that can cause a timing anomaly (δ(vi ) denotes the
execution time of that task)
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(a) The optimal scheduling solution
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(b) Adapted schedule when v2 (in red) executes only for two time
units, resulting in timing-anomaly

Figure 5.2 – Example of a timing-anomaly: seven tasks on three cores and with precedence
contraints denoted with arrows.
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ure 5.1, that are scheduled on three cores. In Figure 5.2a, a possible schedule is illustrated
for these tasks, under the assumption that they will take their WCET to finish execution.
Consider the scenario in which task v2 actually finishes one time unit earlier. This will
create a gap, between time instance 2 and 3, in which core 2 is idle. A scheduler could
try to reschedule in that gap another tasks which is ready at t = 2, e.g. v5, resulting in
v6 to finish later than its original time, as shown in Figure 5.2b. ■

This is a typical example of what is called timing or scheduling anomaly. Scheduling
algorithms that are free of such anomalies are particularly interesting as they are
guaranteed to preserve the safety of deployment solutions.

Recall that since non-preemptive execution is considered the end time of a task v is, by
definition, the sum of its start time and its duration, i.e. ε(v) =β(v)+δ(v)

Definition 5.1.2 (Scheduling Behavior). Given a set of tasks V , a scheduling function
β and the duration function δ, we shall say that a task v precedes another v ′, denoted
as v ≺ε,β v ′, iff v finishes its execution before v ′ begins (i.e. ε(v) = β(v)+δ(v) ≤ β(v ′)).
A scheduling behavior is the tuple (µK ,≺ε,β) that consists of the task mapping µK and
scheduling order ≺ε,β. ■
Property 5.1.3 (Time-anomaly freedom). A scheduling behavior (µK ,≺ε,β) is free of
timing anomalies, with respect to another scheduling behavior (µ,≺ε′,β′), iff the end times
of the timing behavior of the former (ε) are not greater than the end times of the timing
behavior of the latter (ε′):

ε(v) ≤ ε′(v) ∀v ∈V (5.1)

■

Another important property in Scheduling Theory, that aims at efficiency, is work-
conservancy. Work-conserving algorithms do not allow for a core to remain idle while
there is a task ready for execution. This property is fitting to achieve performance for
best-effort systems. The intuitive reasoning is, that allowing for a core to remain idle
would not contribute positively to the performance of the systems, in the average case.

Yet, such algorithms raise a safety concern, as they can cause timing anomalies and
therefore potentially violate the real-time constraints. In fact, we prove that there cannot
exist an anomaly-free, work-conserving scheduler, for tasks with dependencies executed
in a non-preemptive manner. In order to use such a scheduler, it must be proven that all
possible scheduling behaviors, resulting from any possible reduction δ

′ of the duration
function δ, meet the real-time constraints, which is a combinatorial problem in the
general case.

Theorem 5.1.4. For tasks with dependencies, there is no work-conserving non-preemptive
scheduler that is free of time-anomalies.
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Proof. (By counter example) Consider the case presented in Example 5.1.1; after the
reduction of v2, rescheduling v5 causes a timing anomaly, while not rescheduling violates
work-conservancy, as core 2 remains idle while there is a ready task. The same applies
for rescheduling v4.

Theorem 5.1.5. Given any set of tasks V with precedence constraints E , let a static
scheduler be the one who preserves the task mapping µK and the scheduling order ≺ε,β

for each core, under any reduction δ
′ in the duration function δ, i.e. ∀v ∈V ,δ

′
(v) ≤ δ(v).

Any non-preemptive static scheduler that schedules tasks as soon as possible is free of
timing anomalies.

Proof. Since tasks do not migrate and are executed according to the scheduling order
≺ε,β for each core, it is sufficient to show that tasks on each core are not postponed. On
each core, in order for a task v to be postponed, its predecessor must be postponed. As
tasks are scheduled as soon as possible and their duration is shorter δ′

(v) ≤ δ(v), it is not
possible for any task to be postponed.

5.2 Interference-sensitive Runtime Adaptation

Following Theorem 5.1.4, in the general case it is impossible to utilise all the timing gaps
resulting from shorter execution of tasks. Also, since the proposed runtime adaptation
method is aimed at isWCET, rather than WCET estimations which account for all
possible interference, any memory request performed by the runtime adaptation scheme
can potentially introduce interference and violate the already acquired safety guarantees
of the deployment D. In order to acquire a safe deployment solution, the additional
interference introduced by the runtime adaptation scheme should be a-priori accounted
for in the isWCET of tasks. In addition, the time that the implementation of the runtime
adaptation takes in order to decide what the adaptation should be, must be accounted
as well, as it can also be a source of violation of safety.

Thus, there is a trade-off among (i) the complexity of the adaptation scheme, (ii) the
amount of information that it requires, (iii) the efficiency of the guaranteed execution of
deployment D, and (iv) the actual performance gains. A clear intuitive example of the
trade-off, is the comparison of an optimal runtime scheduler with a static one. An optimal
runtime scheduler would require the full system state (thus more memory requests) and
would be more complex than a static one. Therefore, the optimal runtime scheduler
might yield better runtime performance compared to a static one, but worse latency
guarantees as it would require more time to execute and generate more interference.

Since this dissertation considers the efficiency of the provided guarantees to be of the
highest importance, the proposed approach is a static distributed runtime optimisation
technique that has minimal WCET in isolation and memory requests. In addition, as
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the focus of the dissertation is in isWCET-based deployments, the runtime optimisation
should guarantee that the real-time constraints, based upon which a safe deployment
was constructed, are preserved.

In order to fulfill the latter requirement, a static scheduler that executes the tasks of the
execution model E M(ES) = (V ,E ∪ES) as soon as possible according to the scheduling
dependencies ES would suffice, as the dependency relation ES guarantees that no new
interference would be introduced if tasks are scheduled at earlier times. Nevertheless,
the amount of dependencies that the scheduler would have to check can grow arbitrarily
large. As a consequence, the WCET and memory requests of such scheduler would grow
proportionally to the number of dependencies, which is opposed to the requirement for
minimal WCET in isolation and memory requests.

The proposed interference sensitive runtime adaptation approach, for short isRA, takes
advantage of the spatio-temporal exclusion, but in a much more efficient and predictable
manner, so that the WCET in isolation and memory requests are bounded and minimal.
Given the set of tasks V to be executed and the safe deployment D = (µK ,µM ,ρ,φ,β) ,
the proposed isRA constructs a set of scheduling dependencies that enforce that every
task v ′ is executed only after the set of tasks {v} that precede task v ′ have finished their
execution, with that tasks {v} being the last to access a resource that task v ′ uses:

EisR A =
{

(v, v ′) ∈V 2 | v ≺ε,β v ′∧ shar er∈R
(
v, v ′)∧max

v∈V
( ε(v) )

}
(5.2)

Intuitively, these scheduling dependencies preserve the scheduling order and ensure
that even if tasks are rescheduled to earlier times, because the AET outperformed the
WCET, no task v ′ will overlap with another task v , that is supposed to finish before
v ′, if they share a resource. In this manner, spatio-temporal exclusion is enforced for
tasks that are not supposed to overlap, thus preventing the introduction of additional
interference. Notice that according to the EisR A scheduling dependencies the amount of
incoming/outgoing dependencies for any task v are bounded by |K|∗ |C|, as the number
of the latest tasks that finished before v cannot be more than the amount of cores in the
architecture.

Having constructed a new scheduled execution model E M = (V ,EisR A) from the scheduling
dependencies EisR A, it is provided to the light-weight distributed monitors, one on each
core, for the execution to start. The runtime monitors iteratively execute the set of task
V adapting each time to the AET of task. Each monitor is invoked every time a task
v finishes, and it reschedules the next task on its core, thus adapting to the AET. In
order to preserve safety, the overhead of the monitors is added upfront to the isWCET
of every task.
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(d) At t=1.5, moni tor2 reschedules v4

Figure 5.3 – Example of monitor operation for four tasks on two cores. For each task the
ready mask is in square brackets. The dependency vector is in parentheses and is also
illustrated with arrows.

5.2.1 Runtime Monitor Operation

The main purpose of monitors is to yield control to the next task when it is ready to
execute. If not, a monitor must stall until all dependencies are met. In the proposed
implementation, each task v holds two bit vectors which are constructed according to
the dependency relation ES :

• the ready mask for the incoming edges of v

• the dependency vector for the outgoing edges of v

Each bit of these vectors represents the core of the architecture GA = (C, K, L, M, N ) on
which the incoming edge originates from/ the outgoing edge ends in, and is derived from
the dependency relation EisR A of the scheduled task model E M = (V ,EisR A) and the task
mapping function µK . To facilitate the explanation, it is considered that these vectors
always have the same size |K|∗ |C| bits, although for tasks that only have intra-cluster
dependencies, |K| bits are sufficient.

Each monitor also holds a status bit vector, of the same size and initialized at 0, tracking

80



5.2. Interference-sensitive Runtime Adaptation

from which cores a dependency has been met. Each monitor can write into the other
monitors’ status vectors, either locally or over the NoC.

After a task v ′ on core k completes, the k-th monitor updates the status of all the cores
on the dependency vector of v ′, setting their k-th bit, signifying that the dependency
from core k has been met. Subsequently, it notifies (e.g. with an interrupt) the monitors
of these cores, in case they are waiting for the dependencies of their next task to be met.
Finally, the monitor tries to start the next task of the core k; if not ready, it sets the
core in idle mode. This process is illustrated in Figures 5.3a, 5.3b and summarised in
Algorithm 1.

Algorithm 1: First invocation of a monitor on core k

/* Notifies other cores that v' has finished on core k and executes the

next task v when it becomes ready */

input :Task v', status array of all cores;
(status[i ][ j ]: the j -th status bit of the i -th core)

1 Function invokeMonitor(v',status[ ][ ]):
2 v← v'.next /* 1 on-chip memory read */

3 dependencies← v'.dependencies /* 1 on-chip memory read */

4 for i ← 1 to |K|∗ |C| /* |K|∗ |C| core-local increments/comparisons */

5 do
6 if dependencies[i ] = 1 /* |K|∗ |C| comparisons */

7 then
8 status[i ][k] ← 1 /* 1 core-local, |K|∗ |C|−1 on-chip, writes (max) */

9 notifyCore(i) /* |K|∗ |C| notifications (max) */

10 startTaskWhenReady(v, status[k])

To start the next task v , the monitor checks if all the required dependencies are met.
If not, it enables incoming notifications (e.g. interrupts) and waits for a notification to
recheck. When the task is ready, the monitor disables notifications, and resets only the
bits of its local status indicated by the ready mask of task v . (see Figures 5.3c, 5.3d and
Algorithm 2). This way, any already-met dependencies of subsequent tasks from cores
not indicated by the ready mask, are preserved.

5.2.2 Monitor Overhead

In order to evaluate the overhead of the isRA approach, but also to incorporate that
overhead into tasks WCET in isolation (as it is required), in Tables 5.1, 5.2 we present
the overhead of a monitor in terms of computation and induced interference. Notice
that these tables describe the worst-case of computation and induced interference, under
the assumption that all tasks have bit vectors of size |K|∗ |C|. Since this is true only for
transfer tasks, a proper implementation could have even less.
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Algorithm 2: Wait until task is ready
/* Executes task v when it is ready */

input :Task v, the status of this core
1 Function startTaskWhenReady(v,status):
2 readyMask← v.readyMask /* 1 on-chip memory read */

3 while (status & readyMask) 6= readyMask /* |K|∗ |C| AND op./comparisons */

4 do
5 enableNotifications() /* 1 core-local write */

6 waitNotify() /* |K|∗ |C| wait operation */

7 disableNotifications() /* 1 core-local write */

8 status← status⊕ readyMask /* 1 on-chip memory write */

9 v.execute()

Table 5.1 – Monitor computation overhead

Operation Type Number of Opearations

Comparisons 3∗|K|∗ |C|
Increments |K|∗ |C|

Assignments (local) 2
Wait Invocation (No-op) |K|∗ |C|

These tables are based on the information provided in the comments of Algorithms 1, 2.
Notice in Table 5.1 the wait invocation normally should have zero computation overhead,
as typically is a no-op, but for compeletness we list the number of times it is invoked.

5.2.3 Safety

As the proposed method is aimed at hard real-time systems, the safety of the proposed
isRA method must be formally proven. The deployment D = (µK ,µM ,ρ,φ,β) that is
acquired using the methods proposed in this dissertation, is guaranteed to meet the
real-time constraints and that the FIFOs will be protected, only if tasks are executed
according to the times provided by the schedule function β.

Table 5.2 – Monitor interference overhead

Opearation Type Number of Opearations

Reads (on-chip) 3
Writes (on-chip) |K|∗ |C|
Notifications |K|∗ |C|
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Lemma 5.2.1. For a deployment D, the adaptation scheme isRA protects FIFOs from
overflows/underflows, under any reduction δact the runtime adaptation scheme isRA if
they are protected according to the deployment D.

Proof. In order for a FIFO to overflow/underflow the order of the producing task v and
consuming task v ′ has to be inverted. That is, if according to the safe deployment task
v precedes v ′, i.e. v ≺ε,β v ′, then under any possible actual execution δact that order
must be preserved. According to the definition of the scheduling dependencies EisR A in
Equation 5.2, the same scheduling order ≺ε,β is enforced by construction.

Lemma 5.2.2. Given a deployment D, all tasks meet their deadlines under the runtime
adaptation scheme isRA if their deadlines are met under the timed execution of D.

Proof. Since the execution is non-preemptive, it is sufficient to show that no task will start
its execution after its assigned time according to deployment D. Since the adaptation
prevents by construction the introduction of new interference, it is guaranteed that the
actual execution of any task cannot be greater than its isWCET, i.e. δact (v) ≤ διD

(v),∀v ∈
V . According to the scheduling dependencies of Equation 5.2 and that tasks start as
soon as possible, any task v ′ starts as soon as its predecessors {v} have finished, i.e:

β(v ′) = max
(v,v ′)∈V

( ε(v) ) ⇒β(v ′) = max
(v,v ′)∈V

(
β(v)+διD (v)

)
Thus, a task can be postponed only if its predecessors are postponed. By backward
induction to the tasks with no predecessors, the given is proven.

Theorem 5.2.3. The isRA adaptation scheme is safe.

Proof. As an immediate consequence of Lemmata 5.2.1 and 5.2.2.

5.3 Evaluation

5.3.1 Evaluation Setup

In order to evaluate the proposed runtime adaptation scheme isRA, and outline its
benefits, we employ the same benchmark used in the previous chapters, that is 8 distinct
applications of the StreamIt [109] benchmark and a JpegDecoder, with Discrete Cosine
Transformation (DCT), being modeled in 10 different ways. The target platform is a
Kalray MPPA-256 chip with SDK version 1.4.1. Later versions of the SDK employ a
hypervisor, the source code of which is unavailable, and does not permit full control of
the chip. Thus, in order to collect accurate, comparable and reproducible results we
opted for version 1.4.1. rather than later versions.
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The deployment solution used for the benchmarks was acquired using the methods
presented in the previous chapters, with the additional overhead of the isRA being added
to the WCET in isolation of each task. The deployed solutions are interference-sensitive,
that is not all adaptations are safe, but the ones applied by the isRAare.

The deployment is described using an XML file, generated by our adapted version of
the StreamExplorer [104] tool coupled with the implementation of the isWCET method.
The deployment XML file is provided to our implementation environment, based on [107],
which at the initialisation phase creates the tasks with their bits vectors and allocates
the FIFOs on the appropriate memory banks. All FIFOs and their tokens are aligned to
memory boundaries, i.e. in memory address in multiples of a word, which affects the
number of memory requests. This alignment guarantees that requesting any single-word
sized data request will not result into two word memory requests, which could potentially
result in a viotation of safety.

Each benchmark application is then executed for 100 iterations, while our implementation
measures the latency at the end of each iteration. In order to remain true and accurate
regarding the performance results, all executions are performed with the private caches
and prefetch buffers of cores disabled. Thus the latency improvement results presented
in the next section are indeed benefits of the isRA adaptation scheme, and not due to
some performance improvement hardware (e.g. caches).

In all 1800 executions (and many more) there was no violation of the latency guarantee.

5.3.2 Evaluation Results

In Figure 5.4, we present a consolidated view of the latency improvements achieved from
the deployment stage and the runtime adaptation technique. The height of the column of
each benchmark represents the total latency gain (in %), moving from over-approximated
WCET, through isWCET, to AET.

Recall that the improvement in guaranteed latency achieved during the offline phase
varies significantly, for reasons explained in Chapter 4. Nevertheless, we achieve a
significant tightening of guaranteed latency of 5%, on average, up to more than 45%. In
addition to that, the runtime adaptation technique isRA achieves a significant latency
reduction, as seen in Figure 5.4. The latency reduction ranges from 3% to 41.5%. The
reason for this variation is that the WCET in isolation, and thus the isWCET, is still
an over-approximation which the runtime adaptation aims to compensate for. This
is most apparent in the cases that exhibit no improvement from the offline stage (e.g.
DCT1-2, FFT, etc.), which benefit the most from the runtime adaptation. The low
latency reduction on some applications (e.g. MergeSort, Beamformer) is justified by
the fact that their tasks have a small number of different execution paths, thus their
WCET in isolation is quite accurate, and their deployment exhibits no interference or
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Figure 5.4 – Guaranteed (offline) and runtime (online) latency gain

the interference has been already excluded by the offline phase.

Also, expanding the results of Chapter 3, we also evaluate our runtime adaptation
scheme with the produce-process-consume application in order to outline the impact
of interference as data parallelisation increases in actual executions. In Figure 5.5, we
compare the guaranteed latency, acquired through the method of Chapter 4, with the
observed latency.

We can observe that data parallelisation, as expected, allows for more parallel FIFO
mappings onto memory banks, which improves both the guaranteed and observed latency.
The guaranteed latency decreases proportionally to the data-parallelisation factor. The
observed latency rapidly decreases for the values of the data-parallelisation factor between
1 and 2, then slightly decreases until value 4, when it starts to slightly increase. This
difference is explained by the fact that the isWCET analysis expects, for lower values of
the data-parallelisation factor, that more memory requests will experience the worst-case
delay. In fact, not all memory requests are delayed and not with the worst-case delays.
The slight increase, for a data-parallelisation factor > 4, of observed latency is either due
to higher monitoring overhead or statistical error. The fact that there is only a small
difference between the average observed and maximum observed latencies is explained by
the fact that, the consumer task waits for all the input data, before executing. Thus, the
critical path of the application is defined by the slowest pair of tasks on a single core.
While, this changes from iteration to iteration, all the tasks have to perform faster in
a most iterations, in order to observe a significant difference between the average and
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Figure 5.5 – Comparison of the observed latency vs the guaranteed latency of the
produce-process-consume application, with 32 process tasks, for different values of data-
parallelisation factor deployed on 16 cores at 400MHz.

maximum observed latencies.

These results present interesting findings, as they confirm the need for both offline and
runtime optimisations. For the offline optimisation the gain in guaranteed latency can go
up to 46%, while the latency gain achieved by the runtime optimisation is approximately
18%, on average, and can reach more that 40%. Their combined gain is 22% on average
and can be of more than 50%. Overall, by considering the degree of data parallelisation
of the application, we were able to improve the guaranteed latency by 16%. By safely
adapting execution, we could compress the runtime by an additional 30%, creating slack
that could be used for power-saving modes or the execution of lower-criticality tasks (at
the end of execution or using interference monitors [64]).

5.4 Related work

Optimal1 hard real-time scheduling [14, 40, 34] and runtime adaptation techniques [31, 2]
has been the focus of research for a couple decades. For a uniprocessor, Earliest-
Deadline-First is known to be optimal, but not for multi-processors [82]. The majority
of the scheduling techniques assume known WCET [14, 40, 34] and are assumed to be
constant. Yet, we have shown that in order to achieve efficient hard real-time systems,
this assumption has to be revisited, and the alternative isWCET should be adopted.

According to Nowotcsh [76] and to the best of the author’s knowledge there is no previous

1Optimality, in the context of hard real-time, refers to ability of the scheduler to find a valid schedule
that meets the real-time constraints, rather than optimal in terms of latency.
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work on runtime suitable for isWCET, as it is a relatively new concept (first coined in
2014). Among the literature, we found particularly interesting, the following approaches.
The authors of [88] present an offline/online optimal algorithm, which schedules by
reducing the problem to uniprocessor scheduling and bounds the number of migra-
tions/preemptions. The estimated complexity for the online scheduler is O(kn2 logm)

for n tasks being executed k times on m PEs. We consider that this overhead is not
always covered by the gain of avoiding migrations, as the application size grows. The
space complexity of the approach is not discussed, but seems non-negligible, which we
consider important for isWCET and real-time scheduling on multi-processor architectures,
which have rather limited on-chip memory. The authors of [2], present an alternative
approach in solving classic scheduling problems, using timed-automata. By defining
the problem, as a timed- automaton they are able to construct adaptation strategies,
which is of particular interest for future directions. In [30], the authors present an
optimal scheduling algorithm, LLREF, for periodic task execution on multi-cores which
has bounded overhead. The scheduling is founded on T-L planes, like budget or speed
diagrams [31], but assumes no context/switching costs nor bounds their number.

5.5 Summary

In order to apply runtime adaptation approaches in hard real-time systems, the overhead
of the approach must be incorporated in task WCETs, if there is no proof that the
method will not violate safety due to its own computational overhead. Incorporating
the WCET, and its induced interference due to memory requests, of the runtime to the
WCETs of tasks can lead in over-approximated WCETs, thus resulting in inefficient
implementations.

In this chapter, a novel adaptation isRA scheme is proposes and proven to be safe
and having a minimal overhead. The isRA scheme is suitable for isWCET due to the
spatio-temporal isolation mechanism, and can be combined with the works of Nowotsch,
et al. [76, 77]. To the best knowledge of the author, there exists no other similar technique
that is fit for isWCET. The proposed technique is implemented in a distributed fashion
and evaluated against the considered benchmark of this dissertation. The results present
interesting findings, as they outline the benefits the need for both deployment and runtime
optimisations. The deployment process provided a gain in guaranteed latency of 10% up
to 46%, while the latency gain achieved by the isRA is approximately 18%, on average,
and can reach more that 40%. By considering the degree of data parallelisation of the
application, the isRAcould compress the runtime by an additional 30%, creating slack
that could be used for power-saving modes or the execution of lower-criticality tasks (at
the end of execution or using interference monitors [64]). The combined gain of all the
methods of this dissertation is 22% on average and can be of more than 50%. In all of
executions of the benchmark applications, we observed no violation of the guaranteed
latency of the deployments constructed with the rest of the methods proposed in this
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dissertation.

Yet, the isRA adaptation technique method is a first attempt to this problem. There
are several improvements that are considered as future work. One possible direction, is
to dynamically increase adaptability (allow additional overlapping, migrations, etc.) by
relaxing the dependency relation as the execution progress and tasks execute faster. This
could be possible at the time instance where the additional slack created by previous
tasks is larger than the worst-case interference.
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6 Conclusions and Future Work

Existing approaches for deploying applications with hard real-time constraints on multi-
processors systems, either assume the worst-case regarding interference delays, due to
hardware arbitration of shared resources, or impose resource partitioning/regulation
that bounds such delays. The former approaches results in adaptive, but inefficient
implementations, while the latter in efficient, but rather restricted.

The main goal of this dissertation is to stand between the two ends of the spectrum of
approaches by enabling to explore the trade-off between adaptability and efficiency. To
achieve efficiency and retain adaptability, we propose that WCET estimation methods and
interference analysis methods should be coupled with the deployment process. Specifically,
this is achieved by combining single-core WCET methods with interference analysis
techniques resulting in interference-sensitive WCET (isWCET). Such an interference
analysis should improve its estimations, thus improving the isWCET, as more information
regarding the deployment becomes available.

To this end, this dissertation brings several contributions. Initially proposes the isWCET
method, which based on WCET in isolation, estimates the possible amount of interference,
thus producing isWCET estimations. The method operates on a generic homogeneous
architecture model and an application model with data-dependencies. As more informa-
tion regarding the deployment is provided, the per-task interference estimation becomes
more accurate, but also more sensitive to changes. The second proposal, is a deployment
optimisation process, that is coupled with the isWCET. The method starting from a MoC
(a variant of SDF which explicitly models parallelisation), constructs an abstract system
model, based on which various optimisation problems are solved, and its corresponding
concrete execution model, on which the interference analysis is performed. The end result
of the process, is a tight deployment which when executed in a timely manner is safe.
Such deployments are not fully adaptable, as an isWCET can be violated if it suffers
more interference that specified. Thus, we propose a novel, interference-sensitive, runtime
adaptation technique (isRA). The isRA is suitable for deployments based on isWCET
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Figure 6.1 – Deployment process, revised for multi-processors.

estimations, as it enforces spatio-temporal exclusion. The overhead of such an approach
is minimal, thus suitable for any scale of tasks. All of the approaches were evaluated on
an actual multi-processor (Kalray MPPA-256) with real-life applications (StreamIt bench-
mark), outlining the benefits that each method contributes to the problem of application
deployment with real-time guarantees. Experimental results show that our methods
improve isWCET up to 36%, guaranteed latency up to 46%, runtime performance up to
42%, with a consolidated performance gain of more than 50%. These experimental results
indicate that to achieve efficiency it is important to 1) accurately estimate interference
delays, 2) consider possible data-parallelisation, as it affects interference, and 3) adapt at
runtime with minimal overhead, to preserve safety and efficiency.

Yet, there is more ground to cover, than the already covered by this dissertation. The
author envisions an iterative deployment process that improves isWCET until the given
real-time, and possibly thermal/power, constraints are met. Specifically, as illustrated in
Figure ??, such a process is a revised version of traditional one for uni-processors. Starting
from an application and architecture model the typical WCET analysis is performed,
providing core-local WCET in isolation. The process using the original models and the
timing information, iteratively improves the interference estimations and deployment
solution until the given constraints are met. At each iteration the solution becomes more
static, as more deployment decisions are fixed, thus less adaptive, but more efficient since
the estimations are improved. The resulting solution should be an interference-sensitive
deployment, which based on the deployment decisions, should permit only a subset of
the possible adaptations, in order to preserve safety.

90



This visionary deployment process, opens several questions for discussion, such as “Which
deployment decision should be taken first?”. As stated in the introduction of this
dissertation, these problems are interdependent and there is no clear justification or
reasoning to argue about in which order these problems should be solved and whether
the order affects the efficiency of the deployment solution or not. Another important
research question is “Can partial solutions to the optimisation problems, provide a safe
solution?”. Such partial solutions could be of the form “Actor u can be placed in cluster
c1 or c2” or “Task v should be executed before task v ′” without precisely identifying a
single deployment solution, but rather a family of safe solutions. This would result in
more adaptable system, as more adaptations are permitted to performed at runtime.
This fact, in turn, raises another important question “Apart from isRA, which runtime
adaptation scheme is safe to apply for a given deployment?”. While the resulting system
is more adaptable, it also would require a more sophisticated runtime adaptation scheme,
the overhead of which has also to be taken into account. Despite the system being more
adaptable, in principle, efficient runtime adaptation schemes should be devised in order
to preserve the safety and efficiency of the deployment solutions.

Such research questions, along with alleviating some of our assumptions, such as different
application models, non-preemptive execution, different NoC model, etc., and studying
the corresponding systems are left for future work.

Τέλος και τῷ Θεῷ δόξα!
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