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Abstract

Route choice analysis concerns the understanding, modeling and prediction of the itinerary

of an individual who travels from one position to another. In this thesis we elaborate on

aggregate route choice analysis. The objective is the development of a flexible framework

for analysing and predicting route choice behavior.

The research is motivated by the need to reduce the structural complexity of the state

of the art route choice models and aims at facilitating their practical applications. Our

approach is inspired by the environmental images of the physical space that individuals

form in their minds. The framework is based on elements designed to mimic these

representations. In this context, we introduce the concept of mental representation item

(MRI) in route choice analysis. The MRIs represent the strategic decisions of individuals

and constitute the building blocks of the alternatives of the aggregate model. They

play the same role as the links do in the specification of a disaggregate model. In

contrast to the links, the MRIs are not dictated by the definition of the network model.

Their definition depends on the analyst, allowing her to control the trade-off between

complexity and realism, according to the needs of the specific application and the data

availability.

We start by presenting a methodology for the definition of operational random utility

models based on MRIs. As a proof of concept, we define a simple model for the town of

Borlänge, in Sweden, and test it using real data. We further discuss applications of the

proposed model to traffic assignment and route guidance. The results demonstrate that

the use of simple methods leads to a meaningful model that can be estimated and used

in practice.

We then investigate the capability of the proposed MRI model to derive route choice

indicators for practical applications, through comparison with a state of the art dis-

aggregate model. The recursive logit (RL) model is selected as the representative of

the existing disaggregate approaches. An extension of the MRI framework with the

definition of a graph of MRI elements is presented and methods to derive route choice

indicators from a model that does not correspond to the intended level of analysis are

proposed. The evaluation of the models’ performance at the aggregate level shows that

the MRI model should be preferred against a disaggregate model that is subjected to

aggregation, if an aggregate analysis is of interest.
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Abstract

To demonstrate the generalization and applicability of the framework, we use a dataset

from the city of Québec, in Canada. Our approach is motivated by (i) the additional

complexity in the definition of the model due to the size of the city, and (ii) the lack

of a detailed disaggregate network model. The proposed model is (i) operationalized

using simple techniques, (ii) compatible with the standard estimation procedures and

(iii) by integration with the RL model, readily applied to the prediction of flows on the

major segments of the network. This model is not as simple as the first MRI model, yet

still of much lower structural complexity in comparison with the disaggregate approach,

allowing for fast computation times. The results demonstrate its capability to reproduce

the patterns in the observed flows.

This thesis contributes by (i) gradually addressing the challenges related to the defini-

tion, operationalizaton and application of aggregate route choice models and (ii) demon-

strating their applicability and validity using real data. This is important as it has the

potential (i) to reduce the structural complexity of the state of the art approaches, and

(ii) to allow for project-specific models that do not require a detailed network model.

In a broader context, the framework is relevant and can be adapted to pedestrian route

and activity choice modeling.

Keywords: route choice analysis, operational aggregate models, discrete choice models,

environmental images, applications, route choice indicators, revealed preference data,

sensor data, flexible framework
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Résumé

Dans cette thèse, nous proposons une approche agrégée pour l’analyse des choix indi-

viduels d’itinéraire. L’objectif est le développement d’un cadre flexible pour analyser et

prédire les comportements de choix d’itinéraire.

Cette recherche est motivée par la nécessité de réduire la complexité structurelle des

modèles de choix d’itinéraires contemporains. Elle vise aussi à faciliter leurs mises en

œuvre pratiques. La démarche propose un cadre normatif d’analyse qui s’inspire de la

construction de l’imaginaire personnel, en particulier des représentations subjectives de

l’espace physique que les individus se créent. Le concept d’ “unité de représentation

mentale” (MRI) est au cœur de cette approche. La spécification et l’assemblage de

plusieurs de ces unités permet de mimer ces représentations. Les MRI caractérisent les

décisions stratégiques des individus en termes de choix d’itinéraire. Ils constituent les

éléments générateurs des choix potentiels d’itinéraire. Par analogie, ils jouent le même

rôle que les choix d’arcs routiers dans les modèles conventionnels de choix d’itinéraires.

Contrairement à ces derniers, les MRI ne dépendent pas de la structure précise d’un

réseau routier. Leurs définitions et la manière dont ils sont assemblés dépendent de

l’analyste, ce qui lui permet d’arbitrer entre degré d’abstraction et réalisme au vu de

l’application souhaitée et des données disponibles.

Nous débutons par la définition d’une architecture générale combinant modèles de choix

d’itinéraire, maximisation de l’utilité aléatoire, et “unités de représentation mentale”

(MRI). Sur la base de données collectées dans la ville de Borlänge (Suède), un modèle

simplifié sert de premier cas d’étude. Outre la spécification et l’estimation du modèle,

nous discutons des performances attendu d’un tel modèle en terme d’affectation du trafic

et de guidage routier. Les résultats montrent que l’utilisation de telles méthodes sont

fiables et robustes dans un cadre opérationnel.

Nous comparons ensuite les capacités d’une telle approche à prédire les flux routiers et

autres indicateurs avec l’état de l’art des modèles désagrégés de choix d’itinéraire: le

modèle logit récursif. A ce titre, un graphe d’unités MRI est détaillé. Les résultats de

comparaison montre qu’un modèle à base de MRI proprement sélectionnés est préférable

à modèle désagrégé soumis à agrégation ultérieure.

Pour montrer l’extension et la mise en pratique de notre approche, nous utilisons un
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Résumé

ensemble de données de la ville de Québec (Canada). Ce cas d’étude est motivé par (i)

la complexité supplémentaire dans la définition du modèle, i.e. des unités MRI, en raison

de la taille de la ville, et (ii) l’absence d’un modèle de réseau désagrégé détaillé pour la

ville. Le cadre est mis en œuvre en utilisant des techniques usuelles: compatibilité avec

les procédures d’estimation standard et aisance quant à la prédiction des flux sur les

principaux segments du réseau. Ce modèle n’est pas aussi simple que le premier modèle

MRI. Sa complexité structurelle reste cependant beaucoup plus commode par rapport

à l’approche désagrégée. Les résultats démontrent la capacité du modle à reproduire les

profils dans les flux observés.

La thèse contribue (i) à aborder progressivement les défis liés à la définition, à la mise

en œuvre pratique et à l’application des modèles de choix d’itinéraires globaux et (ii)

à démontrer leur validité er leur réalisme en utilisant des données empiriques. Ceci est

important car une telle approche montre que l’on peut réduire la complexité structurelle

des modèles de choix d’itinéraire sans perdre en qualité en termes de prévision des flux

de trafic. Dans un contexte plus large, le cadre est pertinent et peut être adapté à la

modélisation des itinéraires piétonniers et des choix d’activités.

Mots-clés: analyse de choix de route, modèles d’agrégats opérationnels, modèles de

choix discrets, images environnementales, applications, indicateurs de choix de route,

données de préférence révélées, données de capteurs, flexibilité
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1
Introduction

In this chapter, we start by framing the thesis in its broader context and outlining

the research motivation (Section 1.1). Sections 1.2 and 1.3, present respectively, the

research objectives and the research contributions. Section 1.4 describes the structure

of the thesis.

1.1 Context and motivation

Nowadays, a plethora of ceaselessly collected data accompanies the increasing interest

in human behavior. Researchers and analysts strive to access and exploit this data in

order to (i) understand and describe the processes of generating the observed patterns

in human behavior and (ii) be able to anticipate future behaviors. A vast amount of

the collected data pertains to human mobility (e.g. Cottrill et al., 2013), i.e. to the

various dimensions of individuals’ travel behavior through the transportation system.

Travel behavior comprises the choices of individuals with respect to the usage of the

transportation system, such as the choice of the location to perform a given activity,

the choice of the mode of transport, and the choice of the route to reach the location of

interest.

As urban areas continue to expand, an increase in the number and use of different

transportation modes is taking place (Gallotti and Barthelemy, 2014). Likewise, trans-

portation networks expand in order to serve the increasing demand for transport. The

availability of large-scale data is a powerful tool in monitoring, analyzing the perfor-
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mance and eventually optimizing, through efficient management, the operations of to-

day’s transport systems. The efforts towards this goal are focused on better understand-

ing, describing and predicting the individual travel choices. Benefiting from the data

abundance, a great deal of research has taken, and continues to be taking, place in the

domain of travel demand modeling.

Route choice models are at the core of travel demand analysis. They are applied to

predict the distribution of travelers on the transportation network, allowing for the

identification of congestion and supporting a variety of mobility analyses for planning

and management, as well as real-time operations — such as route guidance. Given an

origin (o), a destination (d) and a transportation mode, the objective is to develop a

model that describes how individuals select their itineraries between the o and d in the

transportation network. A comprehensive review of the route choice modeling problem

can be found in Bovy and Stern (1990) and Frejinger (2008).

The complexity of the transportation network, inherent in most modern cities, brings

about challenges for individuals, during their navigation and way-finding tasks (Rosvall

et al., 2005; Gallotti et al., 2016; Venigalla et al., 2016), as well as for transport analysts

tackling route choice analysis. Regarding the modeling side, classical route choice models

assume a mathematical representation of the network G = (A,V), defined in terms of

links (oriented arcs) A and nodes (vertices) V, and a number of link additive attributes

associated with each link. Following this network representation, a route is defined as

a sequence of links connecting the o and the d of the trip in the network model. It is

commonly referred to as a path. The need to go beyond the initial shortest and fastest

path models (Dijkstra, 1959) has triggered a great deal of research. Route choice analysis

is commonly performed within the framework of discrete choice modeling (Ben-Akiva

and Lerman, 1985). The primary element for the development of an operational random

utility model consists in the definition of the choice set Cn of each individual n in the

data. The identification of the path alternatives that form the Cn of a route choice

model in a real network is an intricate task, as it is subjected to the high complexity of

the transportation network. As a consequence, route choice models are characterized by

high structural complexity and their application to large networks is computationally

expensive.

Different heuristics have been proposed to generate subsets of paths, commonly referred

to as consideration sets (Ben-Akiva et al., 1984; Azevedo et al., 1993; de la Barra et al.,

1993; van der Zijpp and Fiorenzo Catalano, 2005; Friedrich et al., 2001; Hoogendoorn-

Lanser, 2005; Prato and Bekhor, 2006), to which the observed path is subsequently

added for the estimation of the model (Bekhor et al., 2006). The values of the parameter

estimates are dependent on the definition of the choice sets (Frejinger et al., 2009) and

may vary significantly for different instances of sampled sets. Considering all feasible

paths in the choice set is hence an important assumption in order to avoid biases in

the model (Frejinger et al., 2009). Sampling approaches considering all feasible paths
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between each od pair and correction of paths utilities for sampling have been proposed for

this reason (Frejinger et al., 2009; Flötteröd and Bierlaire, 2013; Lai and Bierlaire, 2015).

Triggered by previous works developed in the context of traffic assignment (Akamatsu,

1996; Baillon and Cominetti, 2008), Fosgerau et al. (2013a) present the recursive logit

(RL) model, where the path choice problem is formulated as a sequential link choice

problem in a dynamic framework. The proposed technique avoids the full enumeration

of paths and does not require sampling of alternatives. The RL model is the most

tractable disaggregate approach to route choice analysis.

Besides the complexity that it entails for the specification and estimation of the model,

the path representation is not quite consistent with the way individuals perceive and

describe their itineraries (Golledge, 1999).

“As the accessible space is larger than the space that they can perceive and

since most destinations are located beyond the perceptual boundaries, people

need to break down the complexity and form representations of the surround-

ing space in order to move effectively and efficiently in the environment.”

Büchner (2011)

In the research fields of cognitive science, environmental psychology and geography,

and in their attempt to answer questions such as How individuals perceive and process

information during travel in spatial networks, one comes across concepts such as the

mental map, the mental representation, or the anchor point, that had been first discussed

by Tolman (1948) and extensively researched thereafter (see e.g. Chase, 1983; Couclelis

et al., 1987; Taylor and Tversky, 1992; Golledge, 1999; Golledge and Gärling, 2003). Each

field approaches these concepts from a different perspective and defines them accordingly.

Lynch (1960) decomposes the image of the city into paths, edges, districts, nodes and

landmarks. Suttles (1972) defines a cognitive map as the mixture of qualitative and

spatial information that allows us to make decisions in a spatial context. Golledge

(1999) argues that individuals relate to anchor points in the spatial environment and

that the anchors have a dual role: (i) they serve as organizing elements of individuals’

mental maps, and (ii) they enable way-finding. Hannes et al. (2008), defines the mental

map as “The whole of spatial and travel related information used and stored in memory”.

Arentze and Timmermans (2005) use the concept of mental maps in a micro-simulation

model for activity choice. A few attempts to use perceptual concepts in route choice

analysis include the labelling approach by Ben-Akiva et al. (1984) for path generation and

sampling, and the subnetworks approach by Frejinger and Bierlaire (2007) to capture

correlation of alternatives. Yet, the modeling element in these works is still a path.

Outside the framework of discrete choice, Manley et al. (2015a) and Manley et al. (2015b)

perform an empirical analysis of taxi data and propose a heuristic model for route choice

based on the concept of anchor points.

A question with respect to the definition of the route choice problem within the context
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of discrete choice analysis is then How long does the description of the alternatives —

associated with the representation of the route choice decisions of individuals — needs

to be, in order to obtain a meaningful model that is adequate for relevant analysis? Sim-

ilarly to the way individuals make simplifications of the physical space to facilitate their

navigation and way-finding, route choice analysts may make use of aggregate modeling

elements — associated with the mental representations of individuals — to adjust the

level of complexity of the model, depending on the needs of its application and the avail-

ability, or not, of an adequate detailed network model. To put this in context, route

choice behavior of individuals manifests itself as flow in the transportation network. The

link and route flows are the most important route choice indicators. From an application

point of view, both disaggregate and aggregate indicators are of interest.

The general trend in the literature is to propose more and more complex models tackling

route choice (Fosgerau et al., 2013a; Yang and Juang, 2014; Lai and Bierlaire, 2015;

Ramos, 2015; Mai et al., 2015; Mai, 2016; Mai et al., 2017). In this thesis, we are

investigating in the opposite direction, i.e. we aim at simplifying the problem. This

is done by modeling the strategic decisions of individuals instead of the operational

ones. We build a modeling framework that (i) has a level of complexity similar with

the one handled by the individuals and (ii) attenuates the curse of dimensionality of

the path-based formulation. Along these lines, we introduce a modeling element that

designates the mental representations of the physical space formed by the individuals.

It is called Mental Representation Item (MRI). To derive a systematic definition of

the MRI as a modeling element we combine theory and data. Contrary to the research

conducted in the disciplines pertaining to cognition, this thesis does not look at how the

representations of space are formed or learned. It rather exploits the intuition gained

from these fields to achieve the goal of a flexible and operational modeling framework

for route choice analysis.

1.2 Objectives

The goal of this thesis is the development of a flexible framework that facilitates the

analysis and prediction of route choice behavior, by allowing to control the level of

aggregation in the representation of the alternatives. Within this context, we address

the following:

1. Development of aggregate route choice models

(a) We use a confirmatory approach for the definition of the modeling elements,

where the consistency of the theoretical behavioral framework is verified by

the data.

(b) We define operational random utility models based on the aggregate modeling

elements and

(c) identify suitable methods for the model specification.
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(d) Finally, we integrate the framework with state of the art estimation proce-

dures.

2. Use of route choice models to derive route choice indicators for practical applica-

tions

(a) We describe methods to derive route choice indicators using both existing

disaggregate approaches and the proposed aggregate approach.

(b) We then analyze the features of each approach in deriving the indicators of

interest.

(c) Finally, we evaluate the adequacy of the proposed aggregate approach in

deriving indicators for aggregate analysis, through comparison with a state

of the art disaggregate approach that is subjected to aggregation.

3. Application

(a) We apply the models using real data, in order to evaluate the performance

and validity of the framework.

(b) Our analysis allows to draw insights into the use of a specific model, depending

on the needs of the application and the data availability.

(c) Finally, we demonstrate the generalisation and applicability of the framework

to a large network.

1.3 Contributions

This thesis contributes towards simplifying the structure of route choice models and

facilitating their use for practical applications. The main scientific contributions of the

research include:

1. Development of aggregate route choice models

(a) Mental representation item (Chapter 3) The definition of a new modeling

element for the representation/ definition of the alternatives in the model. It

is designed to mimic the mental representations of individuals and allows to

simplify the description of the alternatives.

(b) Aggregate route choice (Chapter 3) The definition of a route choice modeling

framework that is based on the concept of a MRI and is compatible with the

state of the art specification and estimation procedures. It contains the defini-

tion of an aggregate graph composed of MRI elements, that is the equivalent

of G of the disaggregate approach.

2. Use of route choice models to derive route choice indicators for practical applica-

tions

(a) Derivation of route choice indicators (Chapter 4) The provision of a practical

scheme for the derivation of route choice indicators using both disaggregate

and aggregate models.
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(b) Method to evaluate the MRI approach (Chapter 4) The scheme incorporates

a method that allows to evaluate the performance of the MRI model for

the purposes of aggregate analyses, through comparison with a disaggregate

model.

3. Application

(a) Route choice analysis in a large network (Chapter 5) A paradigm for the

operationalization of the MRI approach, that illustrates its flexibility and

applicability to large networks.

The proposed models are applied to the case study of Borläge, that serves as a proof

of concept, in order to demonstrate their validity and identify their advantages and

disadvantages with respect to their applications. The use of simple methods for the

operationalization of the proposed aggregate approach, leads to a meaningful model

that can be estimated and used in practice. The evaluation of the performance of the

models at the aggregate level of analysis shows that the MRI model should be preferred

to a disaggregate model that is subjected to aggregation. The case study of Québec

city is employed to demonstrate the capability of the proposed framework to adapt to

a large scale application, while remaining computationally affordable. By integration

with the RL model (Fosgerau et al., 2013a), the proposed model is readily applied to

the prediction of flows on the major segments of the network.

1.4 Thesis structure

The thesis is structured as follows.

Chapter 2 is a literature review pertaining to route choice modeling.

The chapter borrows from the book chapter

Kazagli, E., Chen, J., and Bierlaire, M. (2014). Individual Mobil-

ity Analysis Using Smartphone Data. In Soora Rasouli and Harry

Timmermans eds., Mobile Technologies for Activity-Travel Data Col-

lection and Analysis pp.187-208. IGI Global.

Chapter 3 describes the methodology for the development of aggregate route choice

models and illustrates its use for traffic assignment.

The preliminary ideas of the methodology presented in this chapter are published as

Kazagli, E., and Bierlaire, M. (2014). Revisiting Route Choice Mod-

eling: A Multi-Level Modeling Framework for Route Choice Behavior.

Proceedings of the Swiss Transportation Research Conference (STRC)

14-16 May, 2014.
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Kazagli, E., and Bierlaire, M. (2015). A Route Choice Model based on

Mental Representations. Proceedings of the Proceedings of the 15th

Swiss Transport Research Conference (STRC) April 15-17, 2015.

Kazagli, E., Bierlaire, M., and Flötteröd, G. (2015). Revisiting the

route choice problem: A modeling framework based on mental repre-

sentations. Technical report TRANSP-OR 150824.

The chapter has been published as

Kazagli, E., Bierlaire, M., and Flötteröd, G. (2016). Revisiting the

route choice problem: A modeling framework based on mental repre-

sentations, Journal of Choice Modelling 19:1-23.

Chapter 4 investigates tractable route choice models and evaluates how they perform in

deriving disaggregate and aggregate route choice indicators. An extension of the MRI

framework with the definition of a graph of MRI elements is presented and MRI models

incorporating the effect of correlation are tested.

The preliminary ideas of the methodology presented in this chapter are published as

Kazagli, E., and Bierlaire, M. (2016). Assessing complex route choice

models using mental representations. Proceedings of the 16th Swiss

Transport Research Conference (STRC) May 19-20, 2016, 2016.

The chapter is based on the article (under review)

Kazagli, E., Bierlaire, M., and Lapparent, M.(de) (2017). Operational

route choice methodologies for practical applications. Technical report

TRANSP-OR 170526.

Chapter 5 applies the framework to a large network. The model specification is en-

hanced by the inclusion of more variables. As an example, an attribute representing

the complexity of a route is introduced. The model is estimated using the RL model

formulation and is readily applied to the prediction of flows on the major segments of

the network.

The chapter is based on the article (working paper)

Kazagli, E., Bierlaire, M. (2017). Route choice analysis in a large

network: Québec city. Working paper.

Chapter 6 summarizes the contributions of the thesis and determines future research

directions.
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2
State of the Art

Discrete choice modeling, formulated within the random utility framework, is the most

common modeling approach to route choice analysis. Probabilistic models are developed

on the basis of the utility maximization decision rule and statistical methods — with

maximum likelihood being the most common method for the estimation of the model

parameters — are used for the estimation of the models. We refer the reader to the

textbooks by Ben-Akiva and Lerman (1985) and Train (2003) for a comprehensive review

of discrete choice theory. In the following we provide a short overview.

Within the random utility framework, each individual n is assumed to associate a random

utility Uin with each alternative i in her choice set Cn and subsequently chose the alter-

native with the highest utility. This is expressed as P (i | Cn) = P (Uin ≥ Ujn, ∀ j ∈ Cn),
with Uin being a latent construct, i.e. a component that is not observed by the analyst.

It is decomposed as Uin = Vin + εin. Vin is called the deterministic or systematic part

of the utility. It is defined as a function of observed factors, that is the attributes of

the alternative xin and the socioeconomic characteristics of the individual zn. εin rep-

resents the random variation due to e.g. incomplete knowledge of the analyst about the

individual preferences, heterogeneity of preferences, measurement errors. It captures the

factors that affect the utility but are not included in Vin. It relies on the analyst to make

an assumption about the distribution of εin relative to her representation of the choice

context (Train, 2003). This determines the type of model.

The fundamental model within this framework is the logit model. It assumes that εin
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are independent and identically distributed (i.i.d.) extreme value. The logit probability

has a closed form and it is given by

P (i | Cn) = eμVin∑
j∈Cn e

μVjn
, (2.1)

where μ is the scale of the distribution. Vin = β(xin+ zn) with β a vector of parameters

to be estimated.

To estimate the unknown parameters β of the choice model

1. the availability of choice data is the first element that the modeler needs to have,

2. the choice set Cn is the first element that the modeler needs to define.

Additionally, the correlation of alternatives needs to be incorporated in the model specifi-

cation. This is particularly important in the context of route choice, as the definition of a

path entails a high overlap among the possible itineraries between an od pair. Therefore,

a logit model, assuming independence of the error terms, is usually not appropriate.

The two types of data used in the literature for choice modeling are revealed prefer-

ence (RP) and stated preference (SP). RP data consists in observed behavior, i.e. in

choices that individuals actually made and are requested to report. SP data consists in

individual responses to hypothetical scenarios, that are constructed by the analyst and

presented to them. The estimation of discrete choice models for route choice analysis

with RP data involves specific challenges that are related to the three elements identified

above, i.e. to the data itself, the choice set and the correlation of alternatives. In sum-

mary, the demanding requirements in data collection and processing, the combinatorial

nature of the choice set, and the structural correlation due to the physical overlap of

paths (Ben-Akiva and Bierlaire, 2003) are the main issues of the estimation with RP

data. These issues apply to a much lesser extent to the estimation of models with stated

preference (SP) data, which is therefore easier to handle. In this thesis we focus on RP

data.

The remainder of this chapter provides an overview of the existing route choice data

collection approaches and reviews approaches that deal with the choice set generation

and correlation of alternatives. It is organized in four parts. The first part (Section 2.1)

focuses on data acquisition and processing pertaining to route choice analysis with RP

data. The second part (Section 2.2) summarizes approaches tackling the definition of the

choice set. The third part (Section 2.3) summarizes approaches tackling the correlation

of alternatives. Section 2.4 concludes the chapter.
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2.1 Route choice data

This Section borrows from the book chapter

Kazagli, E., Chen, J., and Bierlaire, M. (2014). Individual Mobility

Analysis Using Smartphone Data, in Soora Rasouli and Harry Timmermans eds.,

Mobile Technologies for Activity-Travel Data Collection and Analysis, IGI

Global, chapter 2, pp.187-208.

The primary data elements for the specification and estimation of a route choice model

are (i) route choice observations, (ii) a network model, and (iii) information about the

network attributes.

Choice data is traditionally collected by means of surveys where people are asked —

among other context information questions — to describe their travel choices, such as the

route they followed for a specific trip, or the mode of transport they used to perform the

trip. Traditional surveys are conducted via mail, telephone or computer assisted tools.

They entail complex logistics and are costly, limited by accuracy of recall, reliability, and

respondents’ compliance. Route choice studies based on survey data include Ben-Akiva

et al. (1984), Mahmassani et al. (1993), Abdel-Aty et al. (1997), Ramming (2002), Vrtic

et al. (2006) and Prato et al. (2011).

Recent advances in data collection technologies based on global positioning system

(GPS) and GPS-enabled smartphones provide a wealth of spatiotemporal data at the

individual level. These methods have revolutionized the data acquisition and have be-

come a powerful tool in studying mobility patterns (e.g. González et al., 2008), as well

as extracting traffic information and analyzing the performance of the transportation

network (e.g. Jenelius and Koutsopoulos, 2013; Stipancic et al., 2017). Examples of

smartphone-based travel surveys include Hato and Asakura (2001), Eagle and Pentland

(2006), Murakami et al. (2012), Cottrill et al. (2013) and Miranda-Moreno et al. (2015).

GPS technologies allow to collect choice observations through passive monitoring, i.e. by

tracking users as they traverse the network. GPS tracking is hence particularly relevant

to the collection of route choice data. The first route choice models based on GPS

data are presented by Broach et al. (2012) modeling route choice behavior of cyclists,

and Murakami and Wagner (1999), Jan et al. (2000), Li et al. (2005) modeling car

drivers route choice behavior. Halldórsdóttir et al. (2014) use GPS data to evaluate the

efficiency of choice set generation methods in the case of bicycle routes and test their

ability to produce relevant and heterogeneous routes. Prato et al. (2014) use a big GPS

data of route choices to estimate the values of congestion and reliability and identify

their effect on travel behavior. More recently, various methodological advances in route

choice modeling for car traffic have benefited from the availability of GPS data (see
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Frejinger and Bierlaire, 2007; Bierlaire and Frejinger, 2008; Fosgerau et al., 2013a; Mai

et al., 2015, 2016). Ramos (2015) models car route choice in a dynamic framework and

investigates the effect of travel information using GPS data.

GPS-enabled smartphones have an advantage over the vehicle-based GPS loggers. This

is because (i) there is no need to carry any additional device as, nowadays, most people

carry a smartphone with them throughout the day, and (ii) smartphones are embedded

with various other sensors such as accelerometers, Wifi and Bluetooth, and therefore,

important context information, such as the trip purpose, that is typically missing from

the GPS data (Stopher et al., 2007), can be inferred through the development of models

(e.g. Bierlaire et al., 2013).

The main challenge related to route choice data — either this comes from traditional

surveys, or from GPS records — is that, typically, it is not directly applicable to use

in the model (Frejinger, 2008). The data in its raw format rarely corresponds to paths,

which is the established modeling element.

“The concept of path, which is the core of a route choice model, is usually

too abstract for a reliable data collection process.” Bierlaire and Frejinger

(2008)

The observations need to be matched to the network that the modeler uses and the

required processing entails a high risk of introducing biases in the later steps of es-

timation. Along these lines, Bierlaire and Frejinger (2008) develop a framework for

estimating route choice models that combines “network-free” data with a network based

model. The idea is that since the underlying route choices, as represented in the model,

are based on paths — while the observations are not — there is a need to establish a

link between them. This is accomplished by determining physical areas in the network

where each piece of data, e.g. a reported location along a trip or a GPS point) is relevant.

They are called domains of data relevance (DDRs). The framework treats the errors in

a probabilistic manner. Measurement equations are used to associate the network-free

data with the network through the DDRs. By allowing several paths to correspond to

the same observation, data manipulation and assumptions on missing observations are

avoided. Later work by Bierlaire et al. (2013) further exploited this idea to develop

a probabilistic map-matching algorithm1 tackling the inaccuracy and sparseness of the

data by proposing several candidate paths — each associated with a likelihood to be the

true one — corresponding to the same observed sequence of records.

In summary, obtaining the resolution of information required for disaggregate route

choice analysis, that treats the route alternatives as link-by-link sequences, is a chal-

lenging task. In addition, network models are often incomplete, and detailed informa-

tion about their attributes, e.g. link travel times, is not available. With respect to the

1Technique from which the actual paths of the users are reconstructed from the GPS records (e.g. Quddus
et al., 2007; Rahmani and Koutsopoulos, 2013).
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network model, researchers often take advantage of open source models such as Open-

StreetMaps. This is a valuable source as such, yet these models often require additional

processing as the coding of the network is usually incomplete or inconsistent with the

physical network. Finally, travel time estimation on the link level consists in a research

topic per se. Hence, this type of information is usually not available and assumptions

about link travel times or their distribution need to be made.

2.2 Choice set

The choice set of a route choice model is a latent construct and therefore needs to

be defined by the analyst. Three approaches are proposed in the literature for the

generation of the alternatives in the choice set. The first one relies on heuristics to

construct the choice set that is assumed to be considered by the travelers (Bovy and

Fiorenzo Catalano, 2007; Prato and Bekhor, 2007). Examples such as the labelling

approach (Ben-Akiva et al., 1984), the link elimination (Azevedo et al., 1993), the link

penalty (de la Barra et al., 1993), and the constrained k-shortest path approach (van der

Zijpp and Fiorenzo Catalano, 2005) assume deterministic shortest paths to generate

the choice set. Constrained enumeration approaches based on branch-and-bound are

proposed by Friedrich et al. (2001), Hoogendoorn-Lanser (2005), and Prato and Bekhor

(2006). However, Bekhor et al. (2006) showed that all methods fail to generate a set

that is guaranteed to include the observed routes. More recently, Halldórsdóttir et al.

(2014), Rasmussen et al. (2016) and Rasmussen et al. (2017) demonstrate good coverage

of the observed routes using double stochastic methods respectively for bicycle, public

transport and car route choice set generation.

The second approach assumes that the choice set contains all feasible paths between

the origin and the destination. This is called the universal set, denoted by U . The

assumption of U — although not necessarily realistic — allows to avoid biases in the

model, as the values of the parameter estimates are dependent on the definition of the

choice sets (Frejinger et al., 2009) and may vary significantly for different instances

of sampled sets. U cannot be defined explicitly. Therefore, to make this approach

operational, sampling techniques have been proposed (Frejinger et al., 2009; Flötteröd

and Bierlaire, 2013). Frejinger et al. (2009) proposes an importance sampling approach

that simulates a random-walk on the network. The limitation of this approach is that

it generates paths with loops. Flötteröd and Bierlaire (2013) propose an importance

sampling approach based on the Metropolis-Hastings algorithm to sample non-cyclic

paths with predefined sampling probabilities. Although the method is presented in the

context of choice set generation, it is general and appropriate for various applications

that require sampling of paths, such as dynamic traffic assignment and route guidance.

We exploit this approach for the application of the proposed aggregate route choice

model to the prediction of link flows in Chapter 3.
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The third approach follows a technique that does not rely on sampling, while avoiding

the full enumeration of paths. It has been proposed by Dial (1971) and more recently

by Fosgerau et al. (2013a). Fosgerau et al. (2013a) build upon previous works developed

in the context of traffic assignment (Akamatsu, 1996; Baillon and Cominetti, 2008),

and present an approach that circumvents the challenge of choice set generation. The

authors decompose the path choice problem into a Markovian link choice problem. It

is called the recursive logit (RL) and is equivalent to a path-based logit model. The

RL is solved in a dynamic discrete choice framework, given a directed connected graph

G = (A,V), where A denotes the set of links and V the set of nodes. At each state

(link) k the individual n chooses the next state (next link) a that maximizes the sum of

the instantaneous utility un(a | k) and the expected downstream utility V d ′
(a) to the

destination, with d ′ being a destination dummy link — that is an absorbing state with

no successors. The instantaneous utility is given by

un(a | k) = vn(a | k) + μεn(a), (2.2)

where εn is i.i.d. extreme value type I with zero mean. μ is the scale parameter of the

model. vn(a | k) = v(xn,a|k;β), where xn,a|k is the vector of attributes associated with

the link pair (k, a) and β the vector of parameters to be estimated. v(d ′ | k) = 0, ∀ k

that are connected to d ′. The next link choice probability is given by the logit model

P d ′
n (a | k) = e

1
μ
(vn(a|k)+V d′ (a))∑

a′∈A(k) e
1
μ
(vn(a′|k)+V d′ (a′))

, (2.3)

where A(k) is the set of outgoing links from link k. V d ′
(a) are value functions computed

using the Bellman equation (Bellman, 1957)

V d ′
(k) = μln

∑
a∈A

δ(a | k)e 1
μ
(vn(a|k)+V d′ (a))

, ∀ k ∈ A. (2.4)

Given its advantage over the classical route choice models, i.e. (i) it can be consistently

and efficiently estimated on the universal set of paths without sampling of alternatives

and (ii) it is equivalent to a logit model, the RL is selected as the representative of

the disaggregate approaches in the investigation of route choice models for practical

applications in Chapter 4.

2.3 Correlation of alternatives

Amajor challenge pertaining to route choice modeling concerns the structural correlation

among the path alternatives, due to their physical overlap. The approaches proposed in

the literature can be divided into two categories; those dealing with the correlation in

the deterministic part of the utility function, and those dealing with it in the stochastic

part. Examples of the former include the c-logit proposed by Cascetta et al. (1996) and
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2.3. Correlation of alternatives

the path size logit proposed by Ben-Akiva and Bierlaire (1999). Examples of the latter

include the multivariate extreme value (MEV) models, such as the paired combinatorial

logit and cross-nested logit (CNL) (Vovsha and Bekhor, 1998; Lai and Bierlaire, 2015),

as well as non-MEV models, such as the probit (Daganzo and Sheffi, 1977) and the logit

kernel model (Bekhor et al., 2002; Frejinger and Bierlaire, 2007).

Tackling the correlation of alternatives in the stochastic part of the utility function entails

higher model complexity and estimation times. For route choice analysis in particular,

the estimation of the CNL or mixed logit models is cumbersome. The CNL belongs to

the MEV family that was first proposed by McFadden (1978). Letting i = 1, 2, ..., J

be an alternative in the choice set and m = 1, 2, ..., M be a nest, the choice probability

generating function (CPGF) of the CNL is then given by

G(y) =
M∑

m=1

⎛
⎝ J∑

j=1

α
μm
μ

jm y
μm

j

⎞
⎠

μ
μm

, (2.5)

where αjm are parameters indicating the degree of membership of an alternative j to a

nest m (also called inclusion coefficients), μ is the scale for the model, μm is the scale

parameter associated with nest m, and yj = eVj . For (2.5) to be a CPGF, the following

conditions need to be satisfied (Bierlaire, 2006): (i) αim ≥ 0, ∀i, m, (ii) ∑
m αim > 0, ∀i,

and (iii) 0 < μ < μm, ∀m. Finally, for the estimation of the inclusion coefficients the

normalization
∑M

m=1 αim = 1, ∀i = 1, ..., J is applied.

The cross-nested logit probability is given by

Pn(i) =

M∑
m=1

(∑
j∈Cn α

μm
μ

jm e
μmVjn

) μ
μm

∑M
p=1

(∑
j∈Cn α

μp
μ

jm e
μpVjn

) μ
μp

α
μm
μ

im eμmVin∑
j∈Cn α

μm
μ

jm e
μmVjn

, (2.6)

that corresponds to

Pn(i) =

M∑
m=1

Pn(m | Cn)Pn(i | m), (2.7)

where Pn(i | m) is the probability of an alternative i conditional to nest m and Pn(m |
Cn) as the probability of nest m given the choice set Cn of individual n. Vovsha and

Bekhor (1998) are the first to use a CNL model, also known as the link-nested model,

in the context of route choice analysis. According to their formulation, each link of

the network corresponds to a nest m and each alternative i, i.e. each path, is allocated

to nests according to αim. The αim parameters are fixed and assumed to be equal to
lengthlink
lengthpath

. This nesting structure entails a very big number of nests and renders the

estimation of the model a challenging task. Nest specific coefficients cannot be estimated.

Ramming (2002) estimated this model for a network of 34000 links, where the estimation
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of nest-specific coefficients was impossible. Lai and Bierlaire (2015) tackle sampling of

alternatives within a MEV model. They present a CNL model and adopt the Metropolis-

Hastings algorithm proposed by Flötteröd and Bierlaire (2013) with an expansion factor

inspired by Guevara and Ben-Akiva (2013) allowing to avoid the enumeration of paths.

The estimation of this model in large networks remains a challenging task. Recently,

Mai et al. (2017) have presented a dynamic programming approach allowing to estimate

large network-based MEV models in reasonable computational times.

The error component (EC) model (Bolduc and Ben-Akiva, 1991) is a mixed logit model

incorporating elements that cause correlations among the utilities of the alternatives.

The utility function of alternative i is specified as

Uin = Vin + ζnfin + εin, (2.8)

where Vin is a vector of deterministic utilities based on observed variables. ζnfin + εin
represents the stochastic part of the utility, where ζn is a vector of randomly distributed

terms with zero mean, fin are the error component terms that consist in observed vari-

ables relating to alternative i and εin is a vector of independently and identically dis-

tributed extreme value error terms. fin are specified so that they capture the desired

correlation pattern. Exploiting the notion of perceptual correlation of the alternatives,

Frejinger and Bierlaire (2007) introduce the concept of subnetworks within a factor an-

alytic specification of an EC model. A subnetwork component captures the perceptual

correlation of alternatives passing through the same part of the network. The authors

argue that they capture correlation in a behaviorally realistic way without increasing

the complexity of the model. Yet, the estimation of such a model for large networks is

cumbersome.

More recently, Mai et al. (2015), Mai (2016) and Mai et al. (2016) benefit from the

tractability of the RL model by Fosgerau et al. (2013a) and extend it to account for cor-

relation of alternatives by means of a nested, cross-nested and mixed logit formulation,

respectively.

2.4 Summary

Most state of the art models are path based2. The concept of path is evidently hard to

handle due to the operational limitations discussed in this chapter. Hence, state of the art

models are either very complex or often fail to capture observed behavior. No realistic yet

simple model based on RP data has been proposed. This is where the contribution of this

thesis lies. We propose an aggregate model, that is not based on paths, and exploits RP

data. It uses modeling elements mimicking the mental representations that are formed

by the individuals. They are called mental representation items (MRIs). They are

2Link-based probit stochastic user equilibrium models are proposed by Daganzo and Sheffi (1977), Sheffi
and Powell (1982) and Sheffi (1984).
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designed to give the analyst the flexibility to control the level of aggregation in the model

specification. As such, the use of MRIs allows to reduce the combinatorial complexity

of the model with respect to (i) the choice set, and (ii) the correlation of alternatives.

Finally, the proposed approach is less dependent on detailed data, both with respect

to the observations and the network model, yet useful for practical applications of the

model.

In Chapter 3 we define the novel modeling element and we propose the methodology for

the development of aggregate route choice models based on MRIs, within the context

of discrete choice. In Chapter 4 we focus on route choice indicators, i.e. link and route

flows, and consider their representation both at the disaggregate and the aggregate level.

We use the RL and the MRI model to derive these indicators and identify the pros and

cons of each approach in doing so. We present an extension of the MRI model by the

definition of a MRI graph and we tackle the correlation of alternatives within the MRI

framework. Chapter 5 presents the application of the approach to a large network and

demonstrates its capability in dealing with the additional complexity, due to the size of

the application, while reaming computationally affordable.
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3
Aggregate route choice

This chapter is based on the article

Kazagli, E., Bierlaire, M., and Flötteröd, G. (2016). Revisiting

the route choice problem: A modeling framework based on mental

representations, Journal of Choice Modelling 19:1-23.

The work has been performed by the candidate under the supervision of Prof. Michel

Bierlaire and the collaboration of Prof. Gunnar Flötteröd.

In this chapter, we propose a new approach to route choice modeling. We replace the

path representation — used in most of the state of the art route choice models — by

an aggregate representation that describes the strategic decisions of individuals. The

approach associates the strategic decisions of individuals with the mental representations

that they form during their travel in the transport system. In this context, we introduce

the concept of Mental Representation Item (MRI) as a modeling element for aggregate

route choice analysis, and present a methodology for the definition of operational random

utility models based on MRIs.

The chapter is organized as follows. Section 3.1 describes the proposed methodology.

Section 3.2 presents empirical evidence of the MRI assumption and discusses modeling

considerations regarding data issues and applications of the model. Section 3.3 applies

the framework to a real case study and illustrates its use for traffic assignment. Sec-
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tion 3.4 discusses critical aspects of the proposed framework in general, and of the case

study in particular. Finally, Section 3.5 summarizes the findings of the chapter.

3.1 Methodological framework

In this section, we outline the methodology for the definition of an aggregate route

choice model based on mental representations. In addition to the mental representations

themselves (Section 3.1.1), four main elements need to be defined for the development

of an operational random utility model

1. the choice set Cn (Section 3.1.2),

2. the utility functions (Section 3.1.3),

3. the likelihood function and the measurement equations that are necessary for the

estimation of the model parameters (Section 3.1.4), and finally

4. the mapping of the modeling elements to the elements of the application of the

route choice model (Section 3.1.5).

The key feature of the present framework is the representation of routes as sequences of

MRIs. Contrary to the current state of the art route choice models, the MRI framework

is of greater generality. For instance, it is possible to define a MRI model that is

independent from a network model.

In what follows, we start by providing a formal definition of the MRI as a modeling

element and proceed with a description of the procedure for the specification, estimation

and application of an operational MRI model.

3.1.1 The Mental Representation Item

A “Mental Representation Item” is a modeling element that captures the strategic de-

cisions of individuals. It is formally characterized by

1. a name,

2. a description,

3. a geographical span, and

4. a set of representative geocoded points.

The first two components capture the conceptual aspects, and the last two are needed

for the model to be operational.
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3.1. Methodological framework

Figure 3.1: Example of two MRIs and their components.

3.1.1.1 The MRI components

Figure 3.1 provides an illustration of the four MRI components in the context of a route

choice problem in the city of Athens. The choice consists in going through the city

center or avoiding it. In what follows, we briefly discuss the purpose and use of each

component and refer the reader to Section 3.2 for further insights and examples.

Conceptual components

1. The name is the label of the MRI that is determined based on a toponym, such

as “Katechaki” in Figure 3.1. It is similar to the identification of a link in a

network model. The difference is that the name of the MRI is not merely based

on a numbering convention — as it is the case with the link identification. It

characterizes the modeling element.

2. The description of the MRI completes the conceptual definition of the modeling

element. It is typically a wording that would be used by an individual describing

the itinerary to somebody, such as the “Peripheral” in Figure 3.1.

Operational components The operational components are designed to associate the

MRI with a more objective representation, such as a map or a network.

3. The geographical span of the MRI may be an area, a polyline, or any other shape,

convex or not, that determines the extent of the MRI on a map or a network model.

If a network model is available, the span may be defined as a set of links or nodes.

If not, it can be defined as a geomarked element on a map. The geographical span

allows the analyst to relate the observations to MRIs.
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4. A set of representative points. A representative point is any point or item that

is characteristic for the MRI. It may be any landmark in the area of interest.

Depending on the scope of the analysis, a representative point may be a major

intersection in a city, or a city itself — in the case of urban and interurban route

choice analysis, for instance. The representative points play a central role in the

model specification as described in Section 3.1.3.

3.1.1.2 Modeling considerations

A MRI is associated with a prominent element of a city or an area, such as a highway, a

city center, a bridge or a tunnel. Defining the MRI is a similar exercise as defining the

alternatives of a choice model. It is context dependent and it may be complex. In the

context of route choice, the complexity may depend on the size of the city, the dispersion

of the origin-destination pairs, etc. The key difference is that the level of complexity is

not constrained by the network topology as in a path-based formulation. The analyst

has the flexibility to select the right level of complexity, consistently with the behavioral

assumptions and the type of application of the model.

The definition of the MRI is the output of modeling considerations that draw insights

from the relevant literature, the expert’s knowledge of the area of interest and, ideally,

travelers’ description of their itineraries.

The MRI must be designed such that (i) it has a meaningful behavioral interpretation

reflected by the conceptual components and (ii) its level of aggregation is high enough for

the model to be simple and operational, yet low enough for the model to be useful — as

reflected by the operational components. As a rule of thumb, the analyst should keep in

mind that defining the MRIs to be geographically disjoint would allow for simpler model

structures. It is also advisable to keep the number of MRIs low so that the number of

MRI sequences is also low and can be enumerated to characterize the choice set.

3.1.2 Definition of the alternatives

Following the definition of the MRI, a route in the MRI framework is defined as

1. an origin,

2. an ordered sequence of MRIs (possibly only one), and

3. a destination.

An illustrative example of a MRI sequence connecting the origin and the destination

is presented in Figure 3.2. The alternative is associated with two elements; the East

highway and the North bridge. The case study presented in Section 3.3 deals with the

simplest possible case, where each route is described by a single MRI and where there

is a common choice set for all individuals. In Chapter 4, we define a graph of MRI
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3.1. Methodological framework

Figure 3.2: Example of an aggregate route alternative in the MRI framework.

elements on which sequences of MRIs can be generated, in the same way that paths are

generated on a disaggregate network model, to define the choice set.

3.1.3 Specification of the utility functions

As soon as the MRIs are defined and the choice set (Cn) is determined, we are able

to specify a route choice model and define the choice probabilities P (r | Cn) for each

alternative MRI r. Like for any random utility model, each alternative is associated

with a utility, which is a function of the attributes of the alternatives xrn and the

characteristics of the individual zn. Once the utility functions have been defined, any

choice model P (r | Cn, xrn, zn) (logit, nested logit, cross-nested logit, etc.) can be

considered.

As the main modeling elements are conceptual, the alternatives and their attributes are

in general latent, that is, based more on perceptions than on objective measurements.

The exact way to deal with this issue is application dependent. Below, we propose

three simple methods to generate attributes for each alternative. The third one does

not require a network model. More advanced specifications, exploiting the literature on

perceptions, could be investigated as well.

3.1.3.1 A deterministic approach with representative paths

We assume that a network model of the area of interest is available and that the repre-

sentative points of each MRI are nodes of this network. A unique representative path

is associated with each alternative (Figure 3.3). The procedure consists of the following

steps prior to the estimation of the model:

1. For each MRI and each choice context, select one of the representative points cor-

responding to a node in the network. The selected representative point can be

different for different origin destination pairs, or for different individuals. Sub-

sequently, for each individual and each alternative, there is a sequence of nodes

connecting the origin and the destination of the trip.

2. Generate one path connecting the nodes for each observation. Typically, this can

be done by connecting each pair of successive nodes by the shortest path accord-

ing to a given metric, such as length, travel time, or any relevant performance
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Figure 3.3: Schematic representation of the specification of utilities through representa-
tive paths.

measure3. The resulting path is the representative path of the MRI alternative.

3. The utility function of an alternative — that would be used in a classical route

choice model — is specified as the utility function of the representative path.

We apply this approach in the case study presented in Section 3.3. The objective is

to show that such a simple approach can provide meaningful results, although we ac-

knowledge that more sophisticated procedures may be more appropriate. For instance,

an extension of this procedure to a stochastic context is described below.

3.1.3.2 A stochastic multi-path approach

A direct generalization of the previous method would be to generate a set of paths

associated with each MRI sequence. Each of these paths would be associated with a

utility function, in a way similar to a classical path-based route choice model. Following

the utility maximization principle, the utility associated with the MRI alternative would

be the highest utility among these paths (expected maximum utility). If a MEV model is

considered, generated by the function G, the expected maximum utility would be given

by ln(G) (Fosgerau et al., 2013b).

3.1.3.3 A network-free approach

Within the MRI framework, it is not necessary to use a network model and paths. As

each MRI is associated with a geographical span, it is possible to use attributes that

are associated with a geographical area, such as the density of landmarks or points of

interest. For example, Boarnet et al. (1998) propose a congestion index associated with

3During this step, it must be ensured that the geographical span of the MRIs that do not belong in
the sequence is not traversed by the representative path. This can be done by associating the links
belonging to the geographical span of the remaining MRIs with very high costs.
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geographical areas. Along the same lines, and in the context of pedestrian route choice,

Frank et al. (2009) propose a walkability index. The use of the MRI framework in

a network-free context opens new research opportunities for route choice analysis and

applications. We elaborate towards this direction in Chapter 5.

3.1.4 Model estimation

The estimation of the model parameters is accomplished by maximum likelihood estima-

tion. In the MRI framework, the available data may not be expressed in terms of the

MRIs. Consequently, the development of measurement equations is necessary.

3.1.4.1 Measurement equations

To estimate a MRI choice model, a measurement equation is necessary. It captures the

contribution of each piece of data to the likelihood function. Let r be an alternative of

the MRI model — that is an ordered sequence of MRIs — and y be an observation —

it can be a reported sequence of places in a survey, or a GPS trace. Its contribution to

the likelihood function is

∑
r∈Cn

P (y | r)P (r | Cn, xrn, zn), (3.1)

where P (r | Cn, xrn, zn) is the MRI choice model, and P (y | r) is the measurement equa-

tion. The latter models the data generation process, and is the probability to observe

y given a MRI alternative r. The geographical span of a MRI plays an important role

in the specification of the measurement equation. An observation y is deterministically

associated with a MRI sequence r if it traverses the geographical span of all its MRIs in

the correct order. A simple example involving only one MRI m in the sequence is pre-

sented in Figure 3.4. The exact definition of such measurement equations is application

dependent. Examples of measurement equations can be found in Bierlaire and Frejinger

(2008) and Chen and Bierlaire (2013).

3.1.5 Model application

The generality of the MRI framework may not allow a direct application of the model

in a desired context. Similar to the necessity of measurement equations for the model

estimation, it may be necessary to relate the MRIs to concrete elements for a given

application. To illustrate that, consider the traffic assignment problem, which is a

typical application of a route choice model.

Let us consider the assignment of a single traveler n with known origin and destination.

We are interested in the probability P (a | Cn) that traveler n crosses any network link
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Figure 3.4: Illustration of the measurement equation.

a, given her choice set Cn. In order to exploit the MRI choice model, this probability is

written as

Prob(a | Cn, xrn, zn) =
∑
r∈Cn

P (a | r) · P (r | Cn, xrn, zn), (3.2)

where P (r | Cn, xrn, zn) is the MRI choice model, and P (a | r) is the probability of using

link a given MRI sequence r. P (a | r) can be seen as the operational component, that

is the implementation of decision r, while P (r | Cn, xrn, zn) is the behavioral component

represented by the MRI choice model. One possibility to specify P (a | r) consists in

using a path-based representation. In that case, the specification would be

P (a | r) =
∑
p

δap · P (p | r) (3.3)

where δap is the zero/ one indicator of path p containing link a and P (p | r) is the prob-
ability of traveling along path p given that MRI r is chosen. For the sake of illustration,

a simple model specification is described in Appendix A. It is used in Section 3.3.5 to

illustrate the application of the MRI model to traffic assignment for the case study of

interest.
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3.2 Additional considerations

In this section, we elaborate on specific features of the MRI approach. The discussions

pertain to both the development and the application of a MRI model.

3.2.1 Defining the MRI

The flexibility of the framework allows to use various types of data for the estimation

of the model. But data is also useful to drive the model specification and, in particular,

the definition of the MRIs. Conducting interviews and surveys is particularly useful in

this context. Reported itineraries are an ideal data source. In what follows, we present

an example of a small qualitative survey providing insights into the MRI assumption.

In order to investigate how mental representations could be exploited for modeling pur-

poses, we interviewed three drivers in the cities of Athens and Stockholm. Respondents

were asked to give a description of the routes that they follow to go from home to work,

or to a relative’s place. We noted the wording they used to describe their itineraries.

All the respondents have good knowledge of the city’s network and, if asked explicitly,

they are able to describe the exact itinerary they follow in details, for instance: “I go

right in the first traffic light, continue straight for about 300 meters and turn left in the

third traffic light that I encounter”. However, in their initial response to the question

Describe your itinerary from home to work, they never provide details. Instead, they

identify two to three alternatives that they choose in rotation depending on the time

of day — indicating different expectations of congestion — that are always associated

with some conceivable element of the city, such as the city center, the highway H, the

neighborhood N, the bridge B. These elements are used to identify alternatives. In some

cases respondents also identify an alternative that they never choose; e.g. entering specific

areas that are in the congestion pricing zone in Stockholm.

An example of a described itinerary is: “I take E4 (major highway traversing Sweden)

and then enter the city from the entrance in Solna (one of the main municipalities in

Stockholm). I avoid Södermalm (district in central Stockholm) because of the tolls.”, or

“I go through Arsta (district in Stockholm) and then take the bridge to Kungsholmen (one

of the islands that Stockholm comprises of).”. The comparisons of these alternatives are

described as “longer but faster”, “faster because of less traffic lights”, “more pleasant”,

“more boring”, etc., meaning that not only the routes but also their attributes are

perceived in an aggregated manner.

For the case of Athens, it appears that a natural example of a MRI is “the city center”.

From the example of Stockholm, a possible MRI would be a bridge. Indeed, Stockholm

spreads across 14 islands, which are connected through bridges and tunnels.

Figure 3.5 illustrates examples of MRI sequences in the city of Stockholm. The figure
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Figure 3.5: Example of MRI sequences in the city of Stockholm.

depicts three alternatives for a home to work trip, as identified by one of the drivers.

Two of the alternatives first cross the district of Arsta and then entail a bridge choice

either through Essingeleden, or through Liljeholmensbron, while the third alternative

passes by the Gullmarsplan square (metro station), traverses the Söderledstunneln and

then goes through the city center.

The experiments conducted in the two cities support the hypothesis that route choice

takes place at a higher conceptual level and that the exact sequence of links — related

to the concept of path — is the implementation of this decision at the operational

level. In Appendix B we present one of the interviews for the city of Athens in details.

Through the interviews we get (i) insight into peoples’ perception of route options, and

(ii) intuition of how to define MRIs in a behaviorally realistic way.

3.2.2 Model-to-data approach

A MRI aims at representing how travel options are grouped and perceived; it does not

necessarily aim at representing groups of realized travel patterns. Clustering GPS track

segments may be a possible approach to defining MRIs if both groupings — of perception

and realization — overlap. However, this is in general difficult to ascertain. Hence, the

concrete choice of a MRI structure should be left to the analyst.

In the context of GPS records, we do not suggest a data-driven approach that automat-

ically extracts MRIs from the records. Instead of answering the question “How to define

the MRIs given the availability of GPS data?”, we suggest to address the question “Is
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the definition of the MRIs consistent with the observations?” Our approach can be seen

as “confirmatory”, as opposed to “exploratory”.

3.2.3 Route guidance

The proposed MRI approach is particularly relevant in the context of route guidance

systems. The nature of the MRI makes it a natural way to provide information and

guidance directly to users, without the necessity to use a navigation system. Variable

Message Signs (VMS), radio announcements and oral instructions can benefit from the

output of the model. Still, the model can be incorporated in navigation systems using

the same decomposition as described in Section 3.1.5.

At the behavioral level, a recommendation of the sequence of MRIs is provided “to go

to the airport, avoid the city center and use the peripheral”. If this recommendation

must be transformed into a path, methods similar to those described above, exploiting

the representative geocoded points, can be considered. Note that current navigation

systems already work with this concept: if one provides as a destination the name of a

city, without being more specific, the system itself selects a specific location in the city

center and leads one there.

With the help of the MRI-based model, in-vehicle navigation systems could be adjusted

according to the needs of the driver. As an example, drivers with good knowledge of the

network do not always need step-by-step instructions to reach their destination, rather

suggestions that would help them to avoid congestion in specific parts of the network

(e.g. avoid the city center). In this context, the navigation systems could provide the

option to choose between detailed itineraries in case of new destinations, or aggregate

route suggestions in case of everyday trips, such as the trip to work, according to the

current traffic conditions.

3.3 Case study

This case study serves as a proof of concept. The objective is to demonstrate that the

model is applicable with real data. We focus on a case where only GPS data is available,

and we show that, despite the need to use methods that may seem arbitrary in the first

place, sensible results can be obtained. For this purpose, we use the network of Borlänge

in Sweden (Figure 3.6). It consists of 3077 nodes and 7459 unidirectional links. The

estimation results presented in this section are based on real GPS data collected from

private vehicles in the city of Borlänge. The data had been previously processed to obtain

map-matched trajectories useful for route choice analysis4. Each observation consists

in a sequence of links from the origin to the destination. Apart from the map-matched

4We refer to (Frejinger and Bierlaire, 2007) and (Axhausen et al., 2003) for a description of the Borlänge
dataset.
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Figure 3.6: Borlänge road network.

trajectories, no further information regarding the trip and individual characteristics,

such as departure time, trip purpose, age etc., is available.

The set of attributes for the network model of Borlänge includes the link lengths, the

turning angles between each pair of links and the in- and out-degree of each node,

allowing us to identify intersections. The travel time of each link had been computed

as the ratio of the link length divided by an average speed, the latter being the average

observed speed over all observations and all links with the same speed limit. A limitation

of this case study is that the raw GPS data, with the timestamps of the records, is not

available. Therefore, it is not possible to perform analysis that would allow to identify

the effect of congestion on the link travel times.

In what follows, we present one possible way to operationalize the MRI choice model

using the available network model, according to Section 3.1. Consistently with the

objective of our research, we have tried on purpose to keep the modeling as simple as

possible.

3.3.1 Definition the choice problem

In lack of survey data where people describe their itineraries, we rely on examining the

network of Borlänge for the definition of the MRIs.
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The center of the city (shaded area in Figure 3.6) is the first distinct element in the

network of Borlänge. It is characterized by higher density of small streets in comparison

with the rest of the network. This core is encircled by the national roads (R.50 and

R.70) that are highlighted in Figure 3.7. In most of their parts, the national roads have

four lanes — two in each direction — and the pavement is divided by guard-rails. These

features signify higher operating speeds, as well as higher convenience, in comparison

with the rest of the streets that have at most one lane per direction and lower speed

limits.

Figures 3.8 and 3.9 show the output of Google Maps Directions API for route options

given two arbitrarily selected origin-destination pairs. After investigating options pro-

vided by Google Maps for various origin-destination pairs, three high level possibilities

appear: (i) going through the city center, (ii) following orbital routes around the city

center and along its boundaries, and (iii) avoiding the city center. Patterns correspond-

ing to these three possibilities have also been observed in the dataset.

Consequently, we identify three major elements: the “city center”, the “perimeter of

the city center”, and the “avoid the city center”. We further separate the “perimeter of

the city center” in two elements: (i) “clockwise movement”, and (ii) “counter-clockwise

movement”, indicating left and right turn accordingly. These are two clear options for

individuals as they approach the center. Therefore, we obtain four MRIs. We label them

as CC, CL, CO and AV, equivalently for the “city center”, the “clockwise movement”,

the “counter-clockwise movement” and the “avoid the city center”. Finally, we observe

Figure 3.7: National roads, R50 and R.70, in Borlänge.
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Figure 3.8: Example of route options provided by Google Maps Directions.

that there is a river on the eastern boundary of the city. There are two bridges connecting

the center of Borlänge to the neighboring settlements and the city of Falun. In this case

study, we focus on trips within the city of Borlänge, while in Chapter 4 we extend the

area of study to include trips between the two shores.

Figure 3.9: Example of route options provided by Google Maps Directions.
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We now characterize the four MRIs. According to Section 3.1.1.1

1. the name for the

(a) CC corresponds to the “city center” of Borlänge,

(b) CL and CO corresponds to the name of the streets defining the perimeter;

these are the Backaviadukten (south half of the perimeter), Siljansvägen

(north-east part of the perimeter), and Ovanbrogatan (north-west part of

the perimeter),

(c) AV may correspond to the name of any street that can be used to avoid the

center.

2. the description for the

(a) CC would correspond to a sentence equivalent to “go through the center”,

(b) CL would correspond to a sentence equivalent to “take the national road on

the left as approaching the city center”,

(c) CO would correspond to a sentence equivalent to “take the national road on

the right as approaching the city center”,

(d) AV would correspond to a sentence equivalent to “take the peripheral to avoid

the city center”.

3. the geographical span for the

(a) CC is the set of all links of the network that are inside the perimeter that

defines the boundaries of the center,

(b) CL and CO is the set of all links on the perimeter defining the boundaries of

the center,

(c) AV is the set of all the remaining links, that is, excluding the ones inside and

on the perimeter of the center.

4. the set of representative geocoded points (Figure 3.10) for the

(a) CC consists in the two nodes that roughly correspond to the middle points

of the two main streets in the center (Figure 3.11),

(b) CL and CO consists in the three nodes that roughly correspond to the middle

points of the three streets.

(c) AV consists in the two nodes that correspond to the two main peripherals

that can be used to avoid the center.

We consider the four elements to be mutually exclusive and consequently each alternative

involves exactly one MRI. Moreover, the choice set is the same for every individual in

the population, that is Cn = {CC, CL, CO, AV}, for all n, independently of their origin

and destination.
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Figure 3.10: Representative points of the MRIs.

Figure 3.11: The two main streets in the city center.

34



3.3. Case study

3.3.1.1 Data processing

The network of Borlänge has been divided into 7 origin and destination zones, denoted

respectively by O and D (Figure C1). The city center area serves both as a MRI and

a zone (zone 7). Each observed trajectory is associated with an O and a D zone. The

association of the trajectories with the OD zones is used to facilitate the selection of the

representative points for each alternative and each observation. The operationalization

of the MRI utility functions is dependent on this selection. A different representative

point (Figure 3.10) for the same MRI alternative may be necessary depending on the

O and D of the trip. As an example, avoiding the center usually corresponds to a long

detour (Figure C2e). Indeed, for a trip with a direction from the south to the north

part of the city, and vice versa, this is the only way to avoid the center, by using a rural

street. Only for trips between the zones 1 and 2 it is possible to avoid the center through

other streets. For these trips we have defined a different representative node5.

The method described in Section 3.1.3 is used for the specification of the utility functions.

The representative path for each MRI is the fastest path. An indicative example of the

four alternatives in the MRI choice set, as generated by this process, is depicted in

Figure 3.12.

5An additional MRI alternative could be considered in this case, but due to the low number of observa-
tions we did not consider this demarcation.

Figure 3.12: Illustration of the MRI choice set with representative paths.

35



Chapter 3. Aggregate route choice

Observations with a minimum length of 2 km are considered. The 2 km length threshold

is adopted in order to obtain trips of relevant length, that can be associated with the

strategic choices in the city of Borlänge. Due to the small size of the city, the majority

of the observations concerns trips of less than 5 km. Recalling that in the present case

study, we exclude trips between the two shores, we have a sample of 139 observations

for the estimation of the model — out of the 1832 trips that are included in the dataset.

Figure 3.13 shows the distribution of the travel times for the four MRI alternatives,

while statistics on the attributes of the MRI alternatives are provided in Table 3.1.

3.3.2 Model specification

From the distribution of travel times of the four alternatives in Figure 3.13, one can

see that the deterministic travel times of the CC, CL and CO alternatives are quite

similar. Furthermore, the travel times of the four alternatives are highly correlated

with the corresponding lengths of the alternatives. This is a consequence of the way

that the link travel times are computed (see the introduction paragraph of this section).

Hence, only one of the two variables is included in the final specification of the model.

This is a limitation of the case study that precludes the development of more advanced

specifications that could tackle the trade-offs between length and time and that would

allow to identify the effect of congestion on the choice of MRI alternatives. Yet, such

specification can be estimated within the MRI framework. We elaborate further on this

matter in the discussions section of the chapter.

In order to test for nonlinearities of the utility function with respect to the travel time

variable, we use a power series specification of degree three for the travel times of the four

alternatives. We identify a non-linearity of the utility occuring for travel time intervals

shorter and higher than 10 minutes in the case of the CL and the CO alternatives

Table 3.1: Descriptive statistics on attributes

mean median min max std. dev

Travel time CC (min) 10.18 8.38 3.88 38.03 6.41
Travel time CL (min) 9.98 8.18 2.86 38.93 6.32
Travel time CO (min) 10.21 8.37 3.81 36.47 6.23
Travel time AV (min) 11.80 13.12 2.66 38.58 11.81
Intersections CC (#) 27 26 9 51 9
Intersections CL (#) 25 24 6 58 10
Intersections CO (#) 26 26 4 48 11
Intersections AV (#) 34 37 10 75 15
left turns CC (#) 2 2 0 8 2
left turns CL (#) 2 2 0 5 1
left turns CO (#) 2 2 0 4 1
left turns AV (#) 3 3 0 9 2
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Figure 3.13: Distribution of travel time for the four MRIs.
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Figure 3.14: Power series of degree three for the travel time of the CL and the CO
alternatives.

(Figure 3.14). To capture this effect, we consider a piecewise linear specification for the

travel time variable of these two alternatives. We partition the travel times into two

intervals, that is shorter than or equal to 10 minutes and longer than 10 minutes, and

we define the corresponding coefficients. The corresponding results for the CC and the

AV alternatives do not demonstrate nonlinearity.

Table 3.2 shows the specification of the model. We include the variables number of left

turns (LEFT) and number of intersections (IS) in the specification. Finally, as the choice

set consists of four alternatives, it is possible to estimate alternative specific constants

(ASCs). The ASCs can partially account for the lack of the trade-offs between length

and time in the specification.

The fact that the MRIs consist of physically disjoint network elements justifies the use

of a logit model.

3.3.3 Model estimation

The available dataset of map-matched trajectories is transformed into a dataset consis-

tent with the model specification. The measurement model defined by (3.1) is determin-

istic; each observation is associated with one alternative of the MRI model, according to

the definition of the geographical span. Each r involves exactly one MRI in the sequence,

as the four elements are mutually exclusive. More precisely, P (y | r) = 1, if the observed

path traverses the geographical span of the MRI associated with r, and zero otherwise.
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Table 3.2: Specification table with piecewise linear travel time formulation

Parameter CC CL CO AV

ASCCC 0 0 0 0
ASCCL, CO 0 1 1 0
ASCAV 0 0 0 1

βTIME CC TT (min) 0 0 0

β
[0−10min]
TIME CL, CO 0 TT (min) ≤ 10 TT (min) ≤ 10 0

β
[>10min]
TIME CL, CO 0 TT (min) > 10 TT (min) > 10 0

βTIME AV 0 0 0 TT (min)

βLEFT # left turns # left turns # left turns # left turns
βIS # IS # IS # IS # IS

Examples of observed routes, and the MRI that they correspond to, are provided in

Figure C2a-e. Table 3.3 shows the number of times that each MRI is chosen.

The model is estimated using Biogeme, an open source software for discrete choice

models (Bierlaire, 2003). The parameter estimates are presented in Table 3.4. Despite

the small number of observations that is used for the estimation of the model, we are

able to obtain significant parameters for the attributes of the alternatives, with their

expected signs. The ASCs are not significant. The estimates of travel time parameters

indicate that the users are more sensitive to travel time when they have to go through

the center, in comparison with the rest of the alternatives. The piecewise specification

of the travel time coefficients for the two around the CC alternatives reveals that the

sensitivity of the users to changes in the travel time is smaller for shorter travel times

— that is travel times shorter than 10 minutes — while it increases as the travel time

becomes larger.

Intuitively, the CL and CO alternatives, that are associated with the orbital move-

Table 3.3: Frequency of the chosen alternatives

Choice # times chosen

CC 13
CL 53
CO 51
AV 22

Total 139
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Table 3.4: Estimation results

Model 1
Parameter Value (Rob. t-test 0)
ASCCL, CO -2.110 (-1.47)
ASCAV 1.870 (0.89)

βTIME CC -0.772 (-2.82)

β
[0−10min]
TIME CL, CO -0.286 (-1.74)

β
[>10min]
TIME CL, CO -0.616 (-2.86)

βTIME, AV -0.583 (-3.11)

βLEFT -0.288 (2.22)
βIS -0.047 (-2.16)

Number of observations 139
Number of parameters 8

ρ2 0.375
LL(0) -183.201

LL(β̂) -106.563

ments around the city center, may share unobserved attributes. In order to test this

assumption, a nested logit formulation was specified and estimated. The nested logit

was rejected by the likelihood ratio test against the logit model. The small sample of

observations that is used for the estimation of the models may be the reason for not

detecting the correlation between the two alternatives, according to our expectations.

3.3.4 Forecasting results & validation

In order to validate the model and test its performance with respect to the predicted

choice probabilities, we adopt a cross validation approach. The procedure is outlined

below

1. Randomly select 80% of the data for estimation.

2. Use the estimated model to predict the remaining 20%.

3. Repeat 100 times.

The results are summarized in the box plot in Figure 3.15, where we present the resulting

sample shares for each alternative. In the same plot, we overlay the sample shares

from the estimation on the full dataset (average probability), as well as their 5% and

95% percentiles. The average probability and its confidence interval are obtained via

simulation, by drawing from the multivariate normal distribution N (β̂, Σ̂), where β̂
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Figure 3.15: Box plot of the market shares from the application in 20% of the data.

where is the vector of estimated parameters, and Σ̂ is the variance-covariance matrix6.

The result is quite satisfying, as the level of precision for the forecast, using the point

estimates of the parameters, is consistent with the confidence interval of the full model

considering the distribution of the estimators.

3.3.5 Model Application

Following Section 3.1.5, and the specification of the model in Appendix A, we apply

the MRI model to traffic assignment. For this illustration we assume a single traveler

performing a trip from o, in the south of the center, to d , in the north of the center

of Borlänge. The MRI choice probability P (r | Cn) follows the specification given in

Section 3.3.2. For the selected od pair we obtain: P (AV | C) = 0.002, P (CC | C) =

0.084, P (CL | C) = 0.247, P (CO | C) = 0.667.

For the specification of P (p | r) we have chosen κ = 25 and λ = −2.5. Figure 3.16 depicts

for each link a of the network, the probability — as defined in (3.2) and approximated by

(A.3) — that a single traveler executing a single trip passes through that link. On this

figure one can identify the links that are most probable to be traversed by the traveler

going from o to d with darker shades, while links with lower probability to be traversed

are denoted by lighter shades. Figures 3.17 to 3.20 show the link choice probabilities

— as defined in (3.3) and approximated by (A.2) — conditional on the choice of the

6The estimates are obtained from maximum likelihood, hence they are asymptotically normally dis-
tributed.
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Figure 3.16: Link choice probabilities given the MRI choice set.

indicated MRI. On these figures one can identify the most attractive links for each MRI.

With respect to the sampling protocol, the selection of the value for the λ parameter —

controlling, in the assignment context, the importance of travel time for the traveler — is

manifested as variability in the sampled paths given a MRI alternative (Figures 3.17 to

3.20). More specifically, selecting a value for low sensitivity allows to obtain paths away

from the fastest path, while selecting a value for high sensitivity restricts the sampled

paths to be closer to the fastest path. More generally, in a simulation context for traffic

assignment, this parameter can be calibrated on data.

3.4 Discussions

In this section, we identify (i) critical aspects of the MRI approach and (ii) limitations

of the case study.
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Figure 3.17: Link choice probabilities conditional on the choice of the AV alternative.

Figure 3.18: Link choice probabilities conditional on the choice of the CC alternative.
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Figure 3.19: Link choice probabilities conditional on the choice of the CL alternative.

Figure 3.20: Link choice probabilities conditional on the choice of the CO alternative.
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3.4.1 Critical aspects of the MRI approach

As discussed in this chapter, the framework has to be adapted on a case by case basis.

While the definition of the MRI as a modeling element is context independent, the

application is context and data dependent. The definition of a specific MRI draws from

theory and knowledge about the context, and is confirmed by the data. It is the same

exercise as defining an alternative in the choice set. When we model car choice for

instance, the question is “How do we characterize the car?” Is it with the brand, and/

or the year of construction, and/ or the fuel type etc.? The exact answer to this question

is context dependent, like for almost any modeling element. In this context, a potential

danger associated with the MRI approach is that the analyst may not appropriately

chose the level of aggregation, in accordance of the needs of the application.

The specification of the utility functions based on the representative paths approach

may increase the complexity when it comes to the operationalization of the framework

for large networks. That is, it may not be straightforward as in the present case (i)

to identify the representative points for each alternative and observation, and (ii) to

generate a unique representative path for each aggregate alternative without biasing the

parameter estimates. We further elaborate on this matter in Chapters 5 and 6.

3.4.2 Limitations of the case study

The case study that is used as a proof of concept for the proposed framework entails

some limitations with respect to the specification of the model. As the link lengths

are used to compute the link travel times — and no information about congestion is

available or can be derived — it is not possible to specify a model that captures the

trade-offs between length and time/ speed. In practice, the trade-offs between shorter

but slower and longer but faster routes are modeled using mixed logit formulations,

for instance based on value of time distributions. The MRI approach can incorporate

such specifications. We provide an example for the shake of illustration. Starting from

V = β · time + γ · cost, and assuming that the total cost is a linear function of length,

i.e. cost = c̄ · length, with c̄ being the unit cost, the utility function of a MRI alternative

can be written as

V = ... β · time + γ · cost ... ⇒
V = ... β · time + γ · c̄ · length ...

(3.4)

the trade-off between time and length is then equal to β
γc̄ . This corresponds to VoT · 1

c̄ ,

with VoT denoting the value of time. Equation (3.4) can be further decomposed as a
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generalized cost function:

V = ... β · length
speed

+ γ · c̄ · length ... ⇒

V = ... γ · length · (β
γ
· 1

speed
+ c̄) ... ⇒

V = ... γ · c̄ · length · (VoT · 1
c̄
· 1

speed
+ 1) ...

(3.5)

3.5 Summary

In this chapter, we present a new approach to route choice analysis that is designed

to be flexible and simple. It explicitly separates the strategic decisions of individuals,

associated with aggregate elements, from the operational decisions resulting in explicit

paths. The concept of MRI as a modeling element is introduced, and a methodology to

build and apply operational route choice models based on MRIs is outlined. We have

shown, using a real case study and RP data, that the use of simple methods leads to a

meaningful model that can be estimated and used in practice.

The MRI approach allows the analyst to control the level of complexity of the model.

In particular, the definition of the MRIs for the city of Borlänge, allows to obviate

the need for sampling of alternatives. Despite the limitations of the case study, the

MRI approach is quite general and can handle various model specifications. It has the

potential to provide better insights into the travel behaviour of individuals, if a relevant

dataset to the problem at hand is available.

In Chapter 4, we extend the framework with the definition of a graph of MRI elements,

and we build upon tractable disaggregate approaches proposed in the literature, in order

to describe how both disaggregate and aggregate models can be used in practice to derive

relevant indicators for route choice applications.
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Derivation of route choice indicators

This chapter is based on the article

Kazagli, E., Bierlaire, M., and Lapparent, M.(de) (2017).

Operational route choice methodologies for practical applications.

Technical report TRANSP-OR 170526.

The work has been performed by the candidate under the supervision of Prof. Michel

Bierlaire and Prof. Matthieu de Lapparent.

In this chapter, we focus on the application of tractable route choice models and present

a set of methods for deriving relevant disaggregate and aggregate route choice indicators,

namely link and route flows. Tractability is achieved at the disaggregate level by the

recursive logit (RL) model (Fosgerau et al., 2013a), and at the aggregate level by the MRI

approach, presented in Chapter 3. These two approaches are evaluated here. Extensions

and specific features of the MRI approach are discussed. The analysis identifies the

advantages and the limitations of each model and allows to draw insights into the use

of a specific model, depending on the needs of the application and the data availability.

The chapter is organized as follows. Section 4.1 summarizes the RL model and presents

an extension of the MRI model that concerns the definition of a graph of MRI elements.

Section 4.2 describes the derivation of the indicators of interest using the link -/ path-

and the MRI-based choice models. Section 4.3 presents (i) an evaluation process for the
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performance of the models at the aggregate level of analysis and (ii) the incorporation of

the correlation of alternatives within the MRI framework. Section 4.4 applies the models

and methods presented in the previous sections and presents estimation and prediction

results using real data. Section 4.5 summarizes the findings of the analysis.

4.1 Disaggregate and aggregate route choice models

We start by presenting the RL model. After a short recap of the MRI approach we

proceed with the definition of the MRI graph.

4.1.1 The recursive logit model

Based on the literature review, the recursive logit (RL) model has an advantage over

the classical route choice models, i.e. (i) it can be consistently and efficiently estimated

on the universal set of paths without sampling of alternatives and (ii) it is equivalent to

a logit model.

The RL model decomposes the route choice problem into a sequential link choice prob-

lem. The model has the Markov property and is solved in a dynamic discrete choice

framework, given a directed connected graph G = (A,V), where A denotes the set of

links and V the set of nodes. At each state, that is at each link, k the individual n

chooses the next state, that is is the next link, a that maximizes the sum of the instan-

taneous utility un(a | k) and the expected downstream utility V d ′
(a) to the destination.

Figure 4.1 illustrates the relevant notation. d ′ denotes a dummy link that is defined for

each destination in the data sample. The dummy links constitute the absorbing states

of the network with no successors. The instantaneous utility is given by

un(a | k) = vn(a | k) + μεn(a), (4.1)

where εn is independently and identically distributed (i.i.d.) extreme value type I with

zero mean. μ is the scale parameter of the model. vn(a | k) = v(xn,a|k;β), where

xn,a|k is the vector of attributes associated with the link pair (k, a) and β the vector of

parameters to be estimated. v(d ′ | k) = 0, ∀ k that are connected to d ′. The next link

choice probability is given by the logit model

P d ′
n (a | k) = e

1
μ
(vn(a|k)+V d′ (a))∑

a′∈A(k) e
1
μ
(vn(a′|k)+V d′ (a′))

, (4.2)

where A(k) is the set of outgoing links from link k. V d ′
(a) are value functions computed

using the Bellman equation (Bellman, 1957)

V d ′
(k) = μ ln

∑
a∈A

δ(a | k)e 1
μ
(vn(a|k)+V d′ (a))

, ∀ k ∈ A. (4.3)
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Adapted from Fosgerau et al. (2013a).

Figure 4.1: Illustration of notation for the RL model.

As A(d ′) = ∅, the value function at the destination is 0, V d ′
(k) = 0, ∀k = d ′. The link

choice probabilities are organized in destination specific matrices denoted by P d ′
. The

model is estimated under the assumption of the universal set of paths U . A path p is

defined as a sequence of links and its probability is computed as the product of the link

probabilities in the sequence

P d ′
n (p | U) =

I−1∏
i=0

P d ′
(ki+1 | ki) (4.4)

where k0 is the origin and kI = d′.

4.1.2 The mental representation items model

The definition of a MRI model is based on the identification and definition of the MRI

elements for the case study of interest. They are the building blocks of the alternatives,

in the same way that the links are for the paths. A route is defined as a sequence of

MRIs that connects the origin to the destination of the trip. Consequently, the choice

set Cn of an individual n consists of MRI sequences.

A MRI characterizes the strategic decisions of travelers. It is associated with the mental

repesentations used in daily language to describe a route. It may correspond to an area

(e.g. the center of a city), a road segment (e.g. a major arterial) or any other prominent

element in the transportation network that can be traversed, such as a bridge or a

cordon. The definition of the items is context and application dependent.

In Chapter 3, we have presented a MRI model P (r | Cn, xrn, zn) where each alternative r

involved exactly one MRI element in the sequence, and where the choice set Cn consisted

of four labeled alternatives, common for all individuals. These assumptions may not

be applicable in a different and/or more complex choice context. The next paragraph

presents the definition of a graph of MRI elements, which is the equivalent of G = (A,V)
of the disaggregate approach. The definition of the MRI allows for the generalization of

the applicability of the approach.
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4.1.2.1 The MRI graph

The MRI graph is denoted by GM = (L′,M′), where L′ is a set of links and M′ is a set

of nodes. The definition of the graph observes the following steps:

1. Identification and definition of the MRI elements and the origin O and destination

D zones for the case study of interest.

The set of MRIs M, the set of origin zones O and the set of destination zones

D compose the set of nodes M′ of the aggregate graph.

2. Determination of the possible transfers between pairs of nodes in M′.

For each possible transfer between a pair of nodes in M′, a link is added in

L′.

GM is a directed connected graph. It is defined in terms of aggregate nodes — that

represent the MRIs and the origin and destination zones of the case study — and virtual

links, that represent the possible transfers between pairs of nodes. We use capital letters

to differentiate between the disaggregate representation of an od pair — that corresponds

to specific locations on the network — and the aggregate representation of an OD pair

— that corresponds to a zone (area) comprising several od pairs. Each o ∈ O and d ∈ D
is a set of origins and destinations, that belong to the same O/D zone. An OD zone

is defined as a geomarked area on a map or a network model and is represented by a

centroid. A MRI alternative r is then defined on GM as r = o, m1, ..., mh, d, where

mi ∈ M and h the number of nodes in the sequence.

A link in the MRI graph does not correspond to a single piece of infrastructure, as in

the path-based approach defined on G . This is why we refer to it as a virtual link.

Unlike the path-based approach, the most important elements, for the specification of

the model on GM, are the nodes in M′. We further discuss the implications of these

features of GM in the remainder of the chapter.

4.2 Deriving indicators

The focus of this section is on the use of route choice models to derive useful indicators for

practical applications. Both disaggregate and aggregate indicators are considered. We

assume that a RL and/ or a MRI model are available, and present a set of methods aiming

at bringing together and analyzing the results from the various levels of aggregation.

The derivation of disaggregate indicators from a disaggregate model, and of aggregate in-

dicators from an aggregate model, is straightforward. On the other hand, the derivation

of indicators from a model that does not correspond to the intended level of aggregation

is not. An application of the aggregate MRI model to calculate disaggregate indicators is

described in Section 3.1.5. We summarize it here and, in order to complete the toolbox,

we present methods to assimilate the output of the disaggregate models to calculate ag-
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gregate indicators. Although the RL model is link-based, we also present the derivation

of aggregate indicators for a path-based formulation.

We begin by delineating the disaggregate and aggregate route choice indicators of inter-

est. Table 4.1 summarizes some important notations for the remainder of this section.

4.2.1 Disaggregate and aggregate route choice indicators

The flow is the most important route choice indicator, as its distribution reflects the

route choice behavior of individuals. Table 4.2 presents the “element” and the route at

the disaggregate and aggregate level. At the disaggregate level, the links and the paths

— defined on a detailed network model represented by G — are the reference elements

for which the flows shall be computed. At the aggregate level, it may not always be

relevant to talk about link flows. Consistent with the definition of the MRI framework,

it rather makes sense to talk about element flows. For a given origin-destination demand

G and network configuration, the only ingredient for the computation of the flows are

the choice probabilities. These are proportionate to the flows and the outcome of the

route choice model on hand.

The scale of the application determines the relevant reference elements for which flows

shall be computed. For instance, route flows may be distributed among highways be-

tween two cities or, among combinations of major arterials between two areas in one

city. For high level of aggregation in the analysis, the route flows may degenerate to

element flows, i.e. to flows across single elements. As an example, an aggregate analysis

of the route flows between the cities of Geneva and Lausanne, in Switzerland, may only

consider the split of flow between (i) the highway and (ii) the lake road. In this case,

route flows are self-same to single element flows.

4.2.2 Deriving disaggregate indicators

4.2.2.1 Application of the RL model

The application of the RL model allows to compute disaggregate link flows in a straight-

forward way. The output of the model consists of destination specific link transition

probability matrices P d ′
(see Section 4.1.1). The expected link flow F(a) on link a is

Table 4.1: Notations

notation element — quantity

p disaggregate route representation, i.e. path in G
r aggregate route representation, i.e. MRI sequence in GM

k, a disaggregate element, i.e. link of G
m aggregate element, i.e. MRI node of GM
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Table 4.2: Route choice indicators

route flows element flows

disaggregate level Fod (p) = God · P (p) F(a) =
∑

p P (a | p) · F(p)
aggregate level FOD(r) = GOD · P (r) F(m) =

∑
r P (m | r) · F(r)

computed for a given destination as the summation of the flow originating at link a and

the expected incoming flow, that is

Fd ′
(a) = Gd ′

(a) +
∑
k∈A

P d ′
(a | k) · Fd′(k), (4.5)

where G(a) is the demand originating at link a and ending at destination d ′.

Link flows can be computed for a specific destination and multiple origins using the link

transition probabilities by solving the following system of linear equations (Fosgerau

et al., 2013a)

(I− P T )F = G, (4.6)

where I is the |A| × |A| identity matrix, P is the d ′ specific |A| × |A| link transition

probability matrix, F is a |A| × 1 vector representing the expected link flow given by

(4.5) and G is a |A| × 1 vector representing the demand G(a) originating at any link

a ∈ A and ending at d ′.

Link flows for multiple destinations can then be computed by summation over the el-

emental link flows for specific destinations. The route flows F(p) for a specific od pair

are the product of the demand God and the route probabilities

Fod (p) = God · P d ′
(p | U), (4.7)

where P (p | U) is given by (4.4).

4.2.2.2 Application of the MRI model

Given the choice probabilities P (r | Cn) of the MRI model, the probability that individual

n, traveling from o to d , traverses link a can be computed as

Prob(a) =
∑
r∈Cn

P (a | r) · P (r | Cn), (4.8)

where P (a | r) is the probability of using link a given MRI sequence r. An example of

model specification for P (a | r) is proposed in Section 3.1.5. It relies on a path-based

52



4.2. Deriving indicators

representation and is specified as

P (a | r) =
∑
p

δap · P (p | r), (4.9)

where δap is the zero/ one link-path incidence and P (p | r) is the probability of trav-

eling along path p given MRI sequence r. A specification of P (p | r) is presented in

Appendix A. It incorporates two factors: (i) a consistency score of each path p for every

MRI sequence r and (ii) a cost-dependency term favoring faster paths. As the number

of paths with nonzero probability given a MRI r is too high to be enumerated, this

specification requires sampling of paths. The Metropolis-Hastings algorithm proposed

by Flötteröd and Bierlaire (2013) is used for this purpose, to sample a large number of

paths for a given od pair. The flows for multiple od pairs can be computed by summation

over the elemental link flows for specific od pairs.

The same specification of P (p | r) applies to the computation of the disaggregate route

choice probabilities that is given by

Prob(p) =
∑
r∈Cn

P (p | r) · P (r | Cn). (4.10)

4.2.3 Deriving aggregate indicators

An aggregate route flow corresponds to the flow on a specific sequence of MRIs, e.g a

sequence of major arterials in a city, while an aggregate element flow corresponds to

the flow on a specific MRI, e.g. a specific arterial that is the sum of route flows passing

through the arterial.

4.2.3.1 Application of the MRI model

The application of the MRI model allows to directly compute aggregate flows. The

aggregate route flow is given by

FOD(r) = GOD · P (r | Cn), (4.11)

and the aggregate element flow by

F(m) =
∑
r

P (m | r) · F(r), (4.12)

independently of the OD , where P (m | r) is a zero/ one MRI element-sequence incidence.

53



Chapter 4. Derivation of route choice indicators

4.2.3.2 Application of the RL model

Consider the probability P (r | Cn) of a MRI sequence r as obtained from the MRI model.

We are interested in reconstructing this probability using the output of a disaggregate

model and use it to compute aggregate flows. This can be formulated as

Prob(r) =
∑
p

P (r | p) · P (p | U), (4.13)

where P (r | p) is the probability of going through r given a path p, and P (p | U) is the
probability of p given the universal set of path U 7.

If the MRIs are associated with a well identified geographical span, it is convenient to

specify P (r | p) as a deterministic zero/ one mapping of p to r: P (r | p) = 1, if p traverses

the geographical span of the MRIs in the sequence r, and zero otherwise.

P (p | U) is obtained from the disaggregate choice model on hand, e.g. from the RL

model by applying (4.4), or from a path-based model. The sum in (4.13) spans over all

paths for a given od pair. The number of paths may be too high, and consequently the

computation of the sum over p may require sampling — if a RL model is not available.

The following paragraphs propose two ways to derive Prob(r) using the RL, with and

without sampling.

From link to MRI sequence probabilities The link transition probability matrices

obtained from the RL model can be exploited to compute MRI sequence probabilities.

The method to derive the MRI sequence probabilities from the destination specific link

transition probability matrices builds upon the routine for the computation of link flows

given by (4.6) and, consistently with the RL formulation, it does not require sampling

of paths. We start with a simple example to demonstrate the idea and then we present

a general algorithm that, given a graph G = (A,V) and the corresponding transition

probabilities between each pair of links k, a ∈ A, handles the derivation of MRI sequence

probabilities.

The toy network presented in Figure 4.2 is used to illustrate the derivation of the aggre-

gate probabilities, given the disaggregate link choice probabilities. The numbers above

the edges denote the link transition probabilities given by the RL model. The numbers

below the edges denote link flows, obtained by applying the RL model. Dashed ar-

rows signify links that are connected to the destination. The derivation of an aggregate

probability assumes a demand of one vehicle at the origin link G(o) = 1, and zero at

any other link of the network, that is G(k) = 0 for all k �= o. The flow F(d ′) at the

destination link is then proportionate to a probability.

7The assumption of U is not necessary, but important following the discussions in Chapter 2. Hence, we
adopt it throughout the thesis, when dealing with the choice set of a disaggregate model.
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(a) The unit flow reaches d .

(b) Setting P (a | k) = 0, ∀ a ∈ {city center} results in F(d) < 1.

Figure 4.2: Illustrative example.
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Assume now that the toy network is demarcated into two MRIs, namely the city center

and the avoid the city center. Each link is assigned to the geographical span of one of

the two MRIs. We are interested in the probability of each MRI to be traversed. Let

M = {CC, AV} be the set of MRIs in the choice context8. Let HCC and HAV denote

the set of links defining the geographical span of the two MRIs, respectively for the city

center and the avoid the city center options. Not passing through the city center entails

using links in HAV only9.

The probabilities of the two MRIs can be computed as follows

1. Block the city center MRI by setting the transition probabilities to all links in

HCC to 0:

P (a | k) = 0, ∀ a ∈ HCC.

2. Calculate F(d ′) using (4.6):

This corresponds to Favoid(d ′).

3. Set Prob(avoid) = Favoid(d ′).

4. Compute Prob(city center):

Prob(city center) = 1− Prob(avoid).

This process does not affect the link transition probabilities that have been previously

estimated from the RL model. It only results in a loss of flow entering the city center

area (Figure 4.2b). This flow does not reach the destination and therefore F(d ′) is lower
than 1. The flow that reaches d ′ corresponds to the probability of choosing to avoid

the city center. In this example Prob(avoid) = 0.775. Then, the probability of the city

center is simply Prob(city center) = 1− 0.775 = 0.225. This process can be generalized

to handle more MRIs and sequences of MRIs. Algorithm 1 summarizes the process. It

does not specifically capture the sequence of the elements in r, but if the link transition

probabilities of going backwards or forming loops are negligible10, we end up with a

reasonable approximation of the sequence of interest. Note that, the MRIs should be

disjoint for this method to be operational.

The method outlined here gives direct access to an approximation of Prob(r) for a given

od pair.

From path to MRI sequence probabilities The method that we propose in this

paragraph applies to any path-based model through the use of a sampling approach. It

relies on the fact that several paths in the road network may be associated with the

8In this example, M = Cn, as there are only two mutually exclusive MRIs and no possibility to follow
a sequence of them.

9In this specific example HCC ∪ HAV = A. From an operational perspective, the links that define the
span of avoid must be used to reach the city center.

10Under the assumption that most observations do not contain loops, the disaggregate model shall assign
very low probabilities to paths with loops.
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Algorithm 1: Derivation of Prob(r) for a specific od using the output of the RL
model.

Input: the origin link o ∈ A at the disaggregate level

Input: the d′ specific link transition probability matrix P d′
n as obtained from the

RL model estimation
Input: the set of the geographical spans of the MRIs in the choice context

H = {H1, ..., H|M|}, where Hi ⊂ A, ∀ i ∈ {1, ..., |M|} and Hi ∩Hj = ∅, ∀i �= j

Input: the MRI sequence of interest r = m1, ..., mh, where mi ∈ M
Output: Prob(r) the probability of MRI sequence r

1 Set P = P d′
n

2 Set P(a | k) = 0, ∀ a ∈ Hi, ∀ i ∈ {1, ..., |M|}, i.e. block all the MRIs in the choice
context

3 Set G(o) = 1 and calculate F(d′) using (4.6)
4 Set

∑
q Prob(q) = F(d′), where q any path whose links belong exclusively to

A \ {H1 ∪ ... ∪H|M|}, i.e.
∑

q Prob(q) corresponds to the probability of not using

any MRI m ∈ M
5 Set P = P d′

n

6 Set P(a | k) = 0, ∀ a ∈ Hi, ∀i ∈ {1, ..., |M|} : mi /∈ r, i.e. block all MRIs except
for the ones belonging to the sequence r

7 Set G(o) = 1 and calculate F(d′) using (4.6)
8 Set Prob(r) = F(d′)−∑

q Prob(q)

In the case where blocking a specific MRI, for instance a bridge, would result in a disconnected graph
G for a given od pair, the MRI must not be blocked. If more than one such element exists, e.g. several
competing bridges, their probabilities must be identified in advance and taken into consideration in the
computations as an extra step in the algorithm. This can be done in the same way as above — after
noting that the sum of the probabilities of these elements is equal to one — by blocking each element m
and computing Prob(m) = 1− F (d′). Each of these probabilities has then to be multiplied by Prob(q),
in order to identify the cases of not using any other MRI except for a bridge. This product must then be
subtracted from F (d′) in the last step of the algorithm for the computation of the probability Prob(r)
of the MRI sequence of interest.

same MRI sequence11. The path choice probabilities are aggregated to MRI sequence

probabilities using (4.13). The P (r | p) = 0 or 1 mapping of paths to MRI sequences is

adopted.

For a given od pair, it may be possible to enumerate the number of MRI sequences in

the MRI choice set Cn, while it is mostly not possible to enumerate the number of paths

in U . Hence, sampling of paths is required to calculate the sum in (4.13). The procedure

observes the following steps:

1. For each od pair, a large number of paths is sampled.

• Simulation of a random walk on the network is used to draw from the RL

link transition probabilities a large number of paths.

11An equivalent statement would be that the choice of an MRI sequence may be implemented using
various paths in the road network.
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2. The probability P (p | U) of each sampled path p is computed and corrected for

sampling.

• P (p | U) are computed using (4.4).

• The expansion factor wLai
p proposed by Lai and Bierlaire (2015) is used to

correct for sampling (see Section 4.4): wLai
p =

kp
ks

b(s)
b(p) , where k(p) is the number

of times a path p is sampled and b(p) is the sampling probability. s denotes

the most sampled path, and each p is deterministically assigned to a MRI

alternative.

3. The P (r | p) = 0 or 1 incidences are computed.

4. The Prob(r) are computed using (4.13).

Remarks The flow-at-the-destination approach is significantly faster than the sam-

pling approach. The latter requires sampling of a large number of paths and further

processing to assign them to MRI sequences. Both tasks are computationally expen-

sive. On the other hand, for the flow-at-the-destination approach matrix multiplications

suffice. Both methods are applied to the RL model in Section 4.4. We show that, for

a large number of sampled paths, the two methods provide equivalent results and we

establish the flow-at-the-destination approach for the remaining steps of the analysis.

4.3 Additional considerations

This section identifies issues towards the consolidation of the aggregate route choice

approach based on MRIs and proposes ways to address them.

4.3.1 Evaluation at the aggregate level

The aim of the process presented in this paragraph is to evaluate the adequacy of the

MRI model that is intended for aggregate analyses. Along these lines, we are interested

in whether or not the proposed aggregate model gives an adequate result in comparison

with the disaggregate model that is subjected to aggregation.

An important performance indicator for any choice model is the probability of the chosen

alternative. It may reveal limitations in the specification of the model and is used to

compute the likelihood of the sample in order to evaluate the model fit. Note that both

models that we investigate here are estimated using maximum likelihood estimation.

In order to test the performance of the models at the aggregate level of analysis we

perform the following steps:

1. The output of the RL model is aggregated to compute the probabilities Prob(r).

The aggregate route choice probabilities Prob(r) are computed using the flow-

at-the-destination approach (see Section 4.2.3.2).
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2. Prob(r) are used to calculate an aggregate log likelihood value for the RL model.

We denote this likelihood as LLRL.

3. The log likelihood LLMRI of the MRI model is calculated from the choice proba-

bilities P (r | Cn).
4. LLRL and LLMRI are compared.

The effect of small probabilities on the log likelihood values is identified and

analyzed.

5. A cross validation approach is elaborated on the basis of the LLRL and the LLMRI.

4.3.2 Addressing the correlation of alternatives

The model presented in Fosgerau et al. (2013a) and the MRI model presented in Sec-

tion 3.3 are logit models. Both the RL and the MRI models can be extended to account

for the correlation among the alternatives. We refer the reader to Mai et al. (2015), Mai

(2016) and Mai et al. (2016) for the extensions of the RL model accounting for correlation

using nested, cross-nested and mixed logit formulations, respectively. In the following

paragraphs, we describe how the MRI model addresses the correlation of alternatives.

4.3.2.1 The nested and cross-nested logit with MRIs

Consider a MRI graph as defined in Section 4.1.2.1 and a MRI model specified on this

graph. The correlation of the alternatives in the choice set can be captured at the MRI

level by a nested logit (NL) or a cross-nested logit (CNL) after noting that each MRI

may correspond to a nest. An alternative r belongs to a nest m if the MRI m appears

in the sequence r (Figure 4.3). This specification is similar to the link nested model

proposed by Vovsha and Bekhor (1998). The difference is that the nests correspond

to MRIs instead of links, allowing for a much lower level of model complexity. The

estimation of nest specific scales is not precluded by the MRI nesting structure, as the

number of nests is low and under the control of the modeler. In addition, it is possible

to estimate the inclusion coefficients αrm using, for instance, a parametrization as the

one presented below

αrm =
δrm · ewm∑
m δjm · ewm

, (4.14)

where δrm is 1 if alternative r uses MRI m, and zero otherwise, and wm is a nest-specific

parameter to be estimated. As only m−1 nest-specific parameters can be estimated, one

has to be normalized to zero.
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Figure 4.3: The underlying MRI nesting structure.

4.3.2.2 Error component model with MRIs

The error component (EC) model is a mixture of logit models incorporating elements

that cause correlation among the utilities of the alternatives. Frejinger and Bierlaire

(2007) introduced the concept of subnetworks within a factor analytic specification of an

error component model. The subnetwork components capture the perceptual correlation

of alternatives passing through the same part of the network.

This framework applies particularly well to the MRI model, where the correlation can

be captured on the basis of aggregate elements. Each MRI is associated with an error

component, and an alternative r is correlated with alternative j if they have at least one

MRI in common. This is modeled by introducing MRI specific constants with which

the random coefficients ζ are associated. The underlying assumption is that alternatives

using the same MRI m share the random terms ζm. The random terms are assumed

to be normally distributed ∼ N (0, σ2
m) and the σm parameter of each component is

estimated from the data.

4.4 Case study

In this case study, we discuss specific features of, and compare, the RL and MRI models

on the basis of the indicators presented in Section 4.2. We evaluate the performance

of the models at the aggregate level and test for correlation of the MRI alternatives,

following the process described in Section 4.3. We conclude with some remarks regarding

critical aspects of the MRI approach.

The case study exploits the GPS dataset from the city of Borlänge12 that has been

used as a proof of concept in Chapter 3. It is extended here to include trips between

the two shores, that is OD zones 5 and 6 are now in the study area. Consequently,

12The same dataset is used for the application of the RL model and its extension in Fosgerau et al.
(2013a), Mai et al. (2015) and Mai (2016).
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apart from the four MRIs identified in Chapter 3, two additional MRIs appear in the

choice context. These are the two bridges. Recall that the network model of Borlänge

(Figure 3.6) consists of 3077 nodes and 7459 unidirectional links, and each observation

y is defined as a sequence of links from the origin to the destination.

A sample of 239 observations, with a minimum length of 2 km, is used for the estima-

tion and validation of the model. The MRI-based models presented in this section are

estimated using Biogeme (Bierlaire, 2003).

4.4.1 The MRI graph of Borlänge

The MRI graph depicted in Figure 4.4 is defined according to the following:

1. The city is divided into seven OD zones.

The natural barriers of the city are used to divide the zones. These are (i)

the river, which splits the city in two parts and entails a bridge choice, and

(ii) the main national roads (trunk highways R70, R50) passing through the

city and granting its connection with the rest of the country (see Figure C1,

of Appendix C).

2. Six MRIs are identified. These are:

1: the city center (CC), 2: the clockwise movement around the center (CL),

3: the counter-clockwise movement around the center (CO), 4: the possibility

to avoid the center (AV), 5: the secondary bridge (B1), 6: the main bridge

(B2). The CC serves as an OD zone (zone 7), and a MRI.

3. For each MRI a node is added in M′.

4. For each OD zone a node is added in M′.

5. Links are defined according to the possible transfers between the MRIs themselves

and the MRIs and the zones.

(a) A map of the city associating the OD zones and the MRIs is provided in

Figure C3, of Appendix C.

(b) MRIs 1 to 4 that are associated with the city center are mutually exclusive,

i.e. there are no common links among them. Evidently, the same counts for

the two bridges.

(c) A decision among the four MRIs associated with the city center occurs for all

trips originating or ending in zones 1 to 4.

(d) A bridge choice occurs for all trips originating or ending in zones 5 and 6.

In summary, the MRI graph consists of 12 nodes and 56 links, allowing for the enumera-

tion of all the routes between an OD pair. Individuals with the same OD pair are faced

with the same choice set of MRI sequences. The detailed list of alternatives is presented

in Table D1, of Appendix D.
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Figure 4.4: The MRI graph.

4.4.2 Operational aspects of the MRI model

Specification of utilities For the specification of the utility functions of the MRI

model, we adopt the method proposed in Section 3.1.3. The representative points of

the MRIs are used to generate a representative path for each observation and each al-

ternative. This is done by connecting the origin and the destination of each individual,

through the fastest path that passes through the representative points of the correspond-

ing MRIs in the sequence.

The utility function of a specific MRI sequence is different for individuals with the same

OD pair, as the attributes are computed for each individual based on the exact od at the

disaggregate level. An example of representative paths associated with MRI sequences

for a given od pair is presented in Figure C4, of Appendix C.

Measurement model Recall that the observations are represented at the disaggre-

gate level by sequences of links from the origin to the destination of the trip. For the

estimation of the MRI model, each observation y must be associated with an aggregate

alternative, as described in Section 3.1.4.1. This mapping relies on the geographical

span of the MRI elements. The geographical span of a MRI m is defined as a set of links

Hm ⊂ A in G . An observation y is deterministically associated with a MRI sequence r

if it traverses the span of all the MRIs in r in the correct order. The geographical span

of the MRIs in Borlänge is depicted in Figure C3, of Appendix C.
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4.4.3 Model specifications and estimation results

We first present the specifications and the estimation results for the two models. The

RL and the MRI models are specified and estimated on G and GM, respectively. Note

that both the RL and the MRI models estimated below are logit models, that is the

correlation of alternatives is not taken into consideration.

4.4.3.1 RL model

The specification of the RL model is similar to the one proposed by Fosgerau et al.

(2013a), including link travel times TT(a), a constant LC(a) which is equal to 1 for all

links in order to penalize paths with many crossings, a left turn dummy LT(a | k) that
is equal to one if the turning angle from link k to link a is larger than 40 and less than

177, and zero otherwise, and a u-turn dummy UT(a | k) if the turning angle is larger

than 177. We let the parameter associated with the u-turn to be estimated, instead of

fixing it to −20 (assumption in Fosgerau et al. (2013a)).

The instantaneous utility v(a | k) of a link pair is given by the following expression

v(a | k) = βTravelT imeTT(a) + βPenaltyLC(a)

+βLeftTurnLT(a | k) + βUTurnUT(a | k). (4.15)

The estimation results are presented in Table 4.3. The estimated parameters are sig-

nificant and have the expected signs. The estimates are approximately the same as the

ones reported in Fosgerau et al. (2013a) using the dataset of 1832 observations13.

13Recall that here we consider observations with a minimum length of 2 km, that are relevant to the
aggregate model.

Table 4.3: Estimation results for the RL model

Parameter value (rob. t-test)

βTravelT ime −2.91 (−13.15)
βPenalty −0.32 (−12.60)
βLeftTurn −1.00 (−16.10)
βUTurn −7.46 (−7.48)

Number of observations 239
Number of parameters 4

LL(β̂) −1255.538
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4.4.3.2 MRI-based logit model

The utility functions of the MRI model are specified as follows:

Vrn = βTravelT imeTTr + dummyAVδrAV + dummyAroundδrAround, (4.16)

V cross
rn = βTravelT imeTTr + dummyAVδrAV + dummyAroundCL

δrAroundCL
+

+dummyAroundCO
δrAroundCO

+ dummyB2δrB2,
(4.17)

where δrm is 1 if alternative r includes MRI m, and 0 otherwise. V cross
rn is specified for

alternatives entailing a bridge choice. Apart from the necessary normalizations, dummy

variables are associated with each MRI. dummyCC and dummyB1 are normalized to

zero. The parameters related to the number of left turns and number of intersections

were tested and not found significant.

The estimation results are presented in Table 4.4. The travel time parameter is signifi-

cant and negative. The dummy variables play a significant role in explaining the choice

probability. As the trade-offs between length and time are not modeled here, their effect

is captured by the dummy variables for the MRIs14. This limitation pertaining to the

specification of the model cannot be circumvented due to the lack of relevant variables

for the case study. We acknowledge this limitation of the case study in drawing better

insights into the travel behavior of individuals. Yet, the focus of the chapter is on the

illustration of the methods that allow for the transfers between disaggregate and ag-

gregate representations — and the comparison of the corresponding outcomes — rather

than advancing the specification of the models.

14As discussed in Section 3.3 the travel times in Borlänge are deterministic, computed based on length.
Therefore, it is not possible to capture the trade-offs between the two variables in the case of congestion.

Table 4.4: Estimation results of the MRI logit model

Parameter value (rob. t-test)

βTravelT ime −0.991 (−7.47)
dummyAV 3.93 (5.81)

dummyAround 1.80 (3.37)
dummyAroundCL

2.50 (3.16)
dummyAroundCO

3.27 (4.48)
dummyB2 −1.43 (−1.94)

Number of observations 239
Number of parameters 6

LLMRI(β̂) −112.440
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4.4.4 Route choice indicators

In the following paragraphs, we elaborate on the results of the models with respect to

the derivation of the route choice indicators of interest. We particularly focus on the

aggregation approaches, proposed in Section 4.2 to derive aggregate indicators. In lack

of detailed demand information, we either omit it or make the assumption of a unit

demand.

4.4.4.1 Disaggregate flows

The RL model is directly applicable to obtain link flows, according to Section 4.2.2.1,

while the application of the MRI model is subjected to the model presented in Sec-

tion 4.2.2.2.

Indicative links flows, assuming a demand of one vehicle for a given od pair, are presented

in Figure 4.5 for (a) the RL and (b) the MRI model. The example concerns a trip from

the south to the north of the city. Both models indicate that the bulk part of the

choice probability (dark shade) is concentrated in the west perimeter of the center. It

corresponds to the clockwise movement around the center. Although the two models

agree on which part of the network is the most probable to be traversed, the RL model

appears to be more conservative on the distribution of the link flows in comparison with

the MRI model. The RL model is specified and estimated on the detailed network model,

represented by G . Its specification is mainly minimizing time. As we do not account for

the correlation of alternatives due to path overlap, the RL tends to assign the choices

(a) Application of the RL model using (4.6). (b) Application of the MRI model using (4.8).

Figure 4.5: Link flows for a given od pair assuming a demand of one vehicle.
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to one major alternative with local variants. Consequently, it is characterized by very

high probabilities for specific itineraries, resulting in low probabilities for the remaining

alternatives.

On the other hand, the specification of the MRI model is a product of aggregation,

subjected to the assumptions regarding the operationalization of GM. The MRI model

tends to distribute the probabilities among the aggregate alternatives. Its specification

is less sensitive to small differences in the travel times of the alternatives. Now, the

variability that is observed around each MRI alternative is the result of the sampling

protocol. This variability can be controlled through the λ parameter that defines, in

the assignment context, the importance of travel time for the traveler, as explained in

Section 3.3.5. Selecting a value for low sensitivity allows to obtain paths away from the

fastest path, while selecting a value for high sensitivity restricts the sampled paths to

be closer to the fastest path, that is the representative path of each alternative.

To conclude, the high probabilities of the RL model restrict the flows on specific links,

while the MRI probabilities, that are disaggregated to link probabilities based on the

proposed mapping, allow for the flow to distribute among the possible itineraries.

4.4.4.2 Aggregate route flows

We now focus on the probabilities of the MRI sequences that are proportionate to aggre-

gate route flows. Their computation is straightforward for the MRI model. For the RL

model, the two methods presented in Section 4.2.3.2 are employed to compute Prob(r).

These are (i) the flow-at-the-destination and (ii) the sampling of paths approaches15.

Figure 4.6 illustrates the probabilities Prob(r) of the chosen MRI alternatives for each

observation in the data, as obtained from the two methods that handle the RL output. A

deviation in the result as derived from the two methods is noted for three observations.

Regressing the probabilities of the first approach against the ones of the second, and

including an intercept, gives a coefficient estimate of 1.004 and an intercept ∼ 0. That

is, the two methods give an equivalent result.

The probability of the chosen alternative is used as a reference to investigate the behavior

of the two models in details. Figure 4.7 depicts for each observation the probability of the

chosen MRI alternatives, as derived from the two models. The RL model forecasts, on

average, marginally higher probability for the chosen alternatives. Both models are faced

with low probabilities for the chosen alternative (bottom-left of the chart). Examining

the instances for which low probabilities occur though, reveals that, in comparison with

the MRI model, the RL model is faced with much lower probabilities, that for some

observations are ∼ 0. In summary, the RL model is characterized by extreme instances

15500000 paths are sampled for each od pair, by simulating a random walk on the network to draw from
the RL link transition probabilities.
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Figure 4.6: MRI choice probabilities as derived from the two aggregation approaches.
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Figure 4.8: Indicative example of an observation for which the RL is faced with low
probability for the chosen alternative.

For a few instances the RL model is outperformed by the MRI model. Figure 4.8 shows

an indicative example. The dashed line denotes the observed path. The pale-color is

an indicator of a low probability. The highlighted, dark line denotes the most probable

path. Evidently, the RL model assigns a low probability to the chosen alternative at the

disaggregate level.

Let us now examine what happens at the aggregate level. The observed path corresponds

to choosing the AV alternative. Its probability according to the RL model is 0.117,

against 0.454 for the CC, 0.429 for the CO, and ∼ 0 for the CL. This is consistent

with the output at the disaggregate level. On the other hand, the MRI model assigns

a probability of 0.899 to the chosen alternative. The reason why the RL model is faced

with low probabilities for the chosen alternative, both at a disaggregate and an aggregate

level, is the low transition probability of the link (encircled on Figure 4.8) that grants

access to (i) the observed path and (ii) to paths realizing the chosen MRI alternative,

respectively for the disaggregate and aggregate levels. The low transition probability

of specific links explains the instances for which the RL model is faced with low choice

probabilities, even at an aggregate level when it is expected to perform better. The

reason why these low link transition probabilities occur is not clear. One explanation is

the small data sample that is used for the estimation of the models.

The MRI model is also faced with low probability for the chosen alternative. The source
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Figure 4.9: Indicative example of an observation for which the MRI model is faced with
low probability for the chosen alternative.

of the problem in this case is the limited specification of the model. Travel time is the only

attribute included in the utility function. Consequently, the dummy variables associated

with the MRIs play an important role in the specification (see Table 4.4). If the travel

times of two or more alternatives do not differ considerably, the dummy variables take

over their choice probabilities. One such instance is depicted in Figure 4.9. The chosen

MRI alternative is the CC (dashed line). Its travel time does not differ considerably from

the ones of the clockwise and CO. As dummyAround = 1.80, CL and CO are favored in

expense of the CC alternative, for which the dummy variable is normalized to zero.

The MRI model assigns a probability of 0.045 to CC, against 0.421, 0.533 and 0.001,

accordingly for the CL, the CO and the AV alternatives. The RL model outperforms

the MRI model in this case. It assigns 0.766, 0.133, 0.101 and ∼ 0, for the CC, the CL,

the CO and the AV alternatives, respectively.

We further elaborate on the effect of the small probabilities on the performance of the

models in the following section.

4.4.5 Performance at the aggregate level

The evaluation process outlined in Section 4.3.1 is conducted here. We start by com-

menting on the final aggregate log likelihood values of the two models, and identifying the
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impact of small probabilities on them. We complete the analysis with a cross validation.

4.4.5.1 Final aggregate log likelihood

The final log likelihood of the MRI model is LLMRI = −112.440 (Table 4.4). The

corresponding final log likelihood given by the RL model, computed based on Prob(r),

is LLRL = −271.118. We elaborate on this result and explain why one cannot claim

that the MRI model has a better fit or predictive performance based on it.

Following up on the analysis of Section 4.4.4.2 and the discussions about Figure 4.7,

the instances for which low probabilities occur in the case of the RL model are, in

comparison with the MRI, more extreme, that is ∼ 0 for some observations. This,

results in a significant decrease of the log likelihood. Several instances of the RL model

are characterized by decreases of more than 10, with the worst one being ∼ 26. On

the other hand, the worst instance of the MRI model is characterized by a decrease of

∼ 7.5. The extreme instances concern 9 observations. Summing the logarithms of the

probabilities of these 9 observations gives a downgrade of ∼ 165 in the LLRL.

Excluding these 9 observations from the computation of the log likelihood values results

in LLMRI = −91.222 and LLRL = −94.446. This is an important result as it demon-

strates two things: (i) the two models give compatible results and (ii) the efficacy of the

MRI model to produce meaningful results intended for an aggregate analysis.

4.4.5.2 Forecasted and predicted aggregate likelihood

A cross validation approach is used to evaluate the performance of the MRI and RL

models with respect to the predicted MRI choice probabilities. 80% of the observations

are randomly drawn and used to estimate the models, while the remaining 20% is used

to apply them. 100 training and test samples are generated for this purpose. The same

samples are used across all models. The resulting log likelihood values are conditional

on the samples. The average of the log likelihood values over the samples is computed

in order to obtain unconditional values as

LLt =
1

t

t∑
s=1

LLs, ∀t = 1, · · · , 100 (4.18)

where s is a sample. The values of LLt are plotted in Figures 4.10-4.1316. Figures 4.10

and 4.11 depict the final and the predicted log likelihood values of each replication for the

training and the test samples, respectively. The MRI LL0 line shows the log likelihood

of the null model corresponding to the MRI choice set17 and serves as a reference for

16The log likelihood converges to the unconditional value as long as t → ∞. 100 samples are used so
that the analysis can be conducted in a reasonable computational time.

17The null model predicts equal probabilities for all alternatives, as all its parameters are fixed to zero.
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the performance of the models. The box plots in Figures 4.12 and 4.13 summarize the

output of the 100 samples for each model.

The effect of the extreme instances, with probability of ∼ 0 for the chosen alternative,

on the performance of the RL model is manifest in Figures 4.10 and 4.11. Note that

during the validation process we do not identify and exclude these observations. The

output of the RL model is characterized by more variance. This is explained by the fact

that it is estimated on the detailed network, and due to the small data sample, it is

more sensitive to network attributes than the MRI model.

4.4.6 Capturing correlation with the MRI model

4.4.6.1 Model specifications

The logit model presented in Section 4.4.3.2 serves as a benchmark for testing for cor-

relation within the MRI framework. We make the reasonable assumption that MRI

sequences using the same MRI are correlated. It is tested using a NL and an EC specifi-

cation. One nest, or component, is assumed accordingly for the NL and the EC models.

It corresponds to the option of going around the city center, either using the clockwise or

the counter-clockwise movement. Regarding the EC model, the underlying assumption

is that alternatives using the same MRI m share the random terms ζm. ζm are normally

distributed ∼ N (0, σ2
m) and the σm of each component is estimated from the data. The

utility functions are specified as follows

Vrn = βTravelT imeTTr + dummyAVδrAV + dummyAroundδrAround+

+ζAroundδrAround,
(4.19)

V cross
rn = βTravelT imeTTr + dummyAVδrAV+

+dummyAroundCL
δrAroundCL

+ dummyAroundCO
δrAroundCO

+

+dummyB2δrB2 + ζAroundδrAround.

(4.20)

This specification is the same as the one of the logit model (see Section 4.4.3.2) with the

inclusion of the error components. A CNL model, following the specification described

in Section 4.3.2.1, was estimated and tested as well. It was not possible to obtain a

specification for which the parameters corresponding to the scales μm of the nests were

not hitting the bounds. This is attributed to the small sample that is used for the

estimation.
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Figure 4.10: Log likelihood of the training samples.
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Figure 4.11: Log likelihood of the test samples.
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Figure 4.12: Box plot of the log likelihood for the training samples.
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Figure 4.13: Box plot of the log likelihood for the test samples.
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4.4.6.2 Estimation and forecasting results

Table 4.5 presents the parameter estimates for the three models. The parameters for

travel time are significant and have the expected signs.

The parameters μAround and σAround are significant, indicating that the alternatives

using the MRIs of clockwise movement around the center and the counter-clockwise

movement around the center are correlated. Consistent with this result, there is an

improvement in the final log likelihood of the NL and EC models, as compared to the

logit model.

The cross validation approach (see Section 4.4.5.2) is also performed for the NL model.

Figures 4.14 and 4.15 demonstrate the improvement in the final log likelihoods due to

the NL specification, as opposed to the logit model.

4.5 Summary

This chapter presents a practical scheme for the application and assessment of tractable

route choice models. It builds upon the current state of the art and identifies a modeling

paradigm, where different levels of aggregation are targeted for different purposes of

analysis.

We demonstrate the derivation of relevant disaggregate and aggregate indicators for the

Table 4.5: Estimation results

Logit NL EC
Parameter value (rob. t-test)∗ value (rob. t-test)∗ value (rob. t-test)∗

dummyAV 3.93 (5.81) 3.77 (6.45) 6.70 (3.10)
dummyAround 1.80 (3.37) 2.24 (4.08) 3.99 (2.26)

dummyAroundCL
2.50 (3.16) 2.72 (4.26) 4.77 (2.40)

dummyAroundCO
3.27 (4.48) 3.09 (4.97) 5.40 (2.77)

dummyB2 −1.43 (−1.94) −0.824 (−1.33) −1.16 (−1.21)

βTravelT ime −0.991 (−7.47) −0.790 (−7.52) −1.43 (−4.88)

μAround × 2.36 (2.75) ×
σAround × × 3.13 (2.71)

# draws × × 1000
# observations 239 239 239
# parameters 6 7 9

LL(0) −392.742 −392.742 −392.742

LL(β̂) −112.440 −105.053 −106.867

∗t-test against 0 for all the parameters except for μm, for which the reported t-test is against 1.
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Figure 4.14: Log likelihood of the training samples.
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Figure 4.15: Predicted log likelihood of the test samples.
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application of route choice models. The derivation of indicators from a model corre-

sponding to a different level of aggregation than the one required from the application is

not straightforward. Therefore, we present methods to derive aggregate indicators from

a disaggregate model and vice versa.

The RL and the MRI models are investigated and their performance is tested on real

data. Despite the limited specification of the MRI model, the results indicate that it can

capture the strategic route choices of individuals, and be used for a meaningful aggregate

analysis. In comparison with the RL model, its performance at the aggregate level is

found to be at the same, and slightly better, level of sufficiency. This is important as

the MRI approach enables the development of models for areas without an existing or

an inadequate detailed network model, where the disaggregate approach would not be

possible.
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5
Route choice in a large network: Québec city

This chapter is based on the article

Kazagli, E. and Bierlaire, M. (2017). Route choice in a large

network: Québec city. Working paper.

The work has been performed by the candidate under the supervision of Prof. Michel

Bierlaire.

In this chapter we apply the MRI approach to a large network. The motivation comes

from (i) the additional complexity in the definition of the model due to the size of the

city of interest, and (ii) the lack of a detailed disaggregate network model. The goal

is the definition of a conceptual model that is realistic and meaningful, that can be

operationalized using simple techniques and applied to aggregate route choice analysis.

We present concrete model specifications that are compatible with the standard estima-

tion procedures. We demonstrate the capability of the framework to adapt to a complex

choice context — while remaining computationally affordable — using RP data from the

city of Québec, in Canada. The proposed model provides a description of the aggregate

route choice of individuals, and by integration with the RL model, is readily applied to

the prediction of flows on the major segments of the network.

The chapter is organized as follows. Section 5.1 presents the modeling steps for the
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application of the MRI approach to the city of Québec. Section 5.2 provides estimation

and prediction results, and applies the model to compute aggregate element flows. Sec-

tion 5.3 discusses assumptions and specific features of the model. Section 5.4 summarizes

the outcomes of the analysis.

5.1 Modeling

In this section, we start by providing a short description of the available data and

identifying the prominent elements of the area of study, relevant to the determination

of the MRIs. We proceed with a detailed description of the modeling steps for the

definition and operationalization of the MRI model for the city of Québec. We follow

the same methodological steps as in Section 3.1 for the definition of the MRI framework.

The specifics of each step are adapted according to the needs of the current application.

The whole analysis is elaborated at the aggregate level — based on the definition of the

MRI graph — yet its output can be directly interpreted on representative segments of

the physical network.

5.1.1 Available dataset

This case study exploits a dataset from the city of Québec, in Canada. It has been

collected through Montraject, a smartphone application for recording and analyzing

route GPS data (Miranda-Moreno et al., 2015). The campaign involved around 4000

individuals. The data collection spanned over a three-week-period (April 25 to May 16,

2014), providing more than 20000 trajectories for analysis. The GPS trajectories were

map-matched on the Québec city’s OpenStreetMap18 road network using TrackMatching

(Marchal, 2015) — a cloud based map-matching service. Subsequently, each observation

is expressed as an ordered sequence of links of the OpenStreetMap network model. For

more details regarding the data processing and relevant applications we refer the reader

to Stipancic et al. (2017).

We use a sample of 2321 trips, with a minimum length of 10 km, for which the map-

matching provided complete trajectories19. Figure 5.1 depicts the map of the city and

the origins and destinations of the trips in the sample. The highlighted area indicates

the center of the city, including the old part that is still surrounded by walls (old city

fortress). Figure 5.2 shows the trajectories of the 2321 trips and indicates the extent of

the study area.

18We use the OpenStreetMap network model for all the illustrations of the physical network in the
remainder of this chapter.

19There are instances for which the map-matched trajectories have gaps, i.e. there are missing segments in
the sequence resulting in discontinuities. In order to avoid additional biases, and given the abundance
of data, we keep only complete trajectories.
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Figure 5.1: Québec city: origins and destinations in the data sample.

Figure 5.2: Observed trajectories and boundaries of the study area.
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5.1.2 The mobility image in Québec city

The roadway network of Québec city is part of a big system of “Autoroutes” (highways)

that connects the major cities in the province of Québec. The city has an extended

network of expressways that serves the everyday commuting needs of the inhabitants.

Two bridges and a ferry line provide connections to the city of Lévis, in the south shore

of the Saint Lawrence river.

Figure 5.3 depicts the most visited segments of the network — as observed in the data.

They are characterized by darker shades. They correspond to the highways, the major

primary streets that run across the city and the two bridges. These segments approx-

imately form a grid system. Their schematic, emerging from Figure 5.3, resembles the

schematic of the urban road network shown in Figure 5.4, that follows the functional

classification of roads of the U.S. Federal Highway Administration guidelines. Indeed,

the highways and the major arterials serve the bulk of the mobility in the city, while the

streets of lower types grand access to important locations, such as home and work.

We build upon these observations regarding the mobility scheme in Québec city, to

formulate the principles of the aggregate route choice model. The “Autoroutes”, the

primary arterials and the two bridges listed in Table 5.1 are identified as the prominent

Figure 5.3: Most visited segments in the data sample.
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Adapted from the Functional Classification Guidelines: U.S. Department of Transportation, Federal Highway Administration.

Figure 5.4: Mobility versus accesibility.

elements of the city’s mobility. They are used as the basis for the definition of the MRIs

and the MRI graph. We elaborate on the level of aggregation with the respect to these

definitions in the following section. The ferry line is omitted, as that there are only very

few observed trips that presumably use it — i.e. with records in the proximity of the

ferry platforms in the two sides of the river and a loss of signal in between.

Table 5.1: The prominent routes in Québec city

reference road type side (river reference)

1 Autoroute 40 motorway upper
2 Autoroute 73 motorway upper/ lower
3 Autoroute 40; 73 motorway upper
4 Autoroute 573 motorway upper
5 Autoroute 440 motorway upper
6 Autoroute 740 motorway upper
7 Autoroute 540 motorway upper
8 Autoroute 973 motorway upper
9 Route 175 primary upper/ lower
10 Route 138 primary upper
11 Route 136 primary upper
12 New bridge bridge/ motorway river pass
13 Old bridge bridge/ primary river pass
14 Autoroute 20 motorway lower
15 Route 132 primary lower
16 Route 116 primary lower
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5.1.3 Definitions

In this section, we determine the level of aggregation in the representation of the alter-

natives, and we define accordingly the MRI elements and the MRI graph.

5.1.3.1 The MRIs of Québec city

Several of the elements identified in the previous Section are several kilometers long,

running all across the city. For this reason we divide them into segments. We define

representative segments of each element in Table 5.1 based on the bounds of the city,

i.e. north (N), south (S), east (E), west (W), while taking into account the main inter-

sections/ interchanges, where transfers from one route to another are possible. Conse-

quently, each element listed in Table 5.1 is either associated with one MRI, or segmented

to two, three or a maximum of four MRIs. The segmentation is detailed in Table 5.2,

along with information regarding the length and the speed limit of each segment. All

the segments are bidirectional, yet there is no consideration of direction with respect to

the attributes of the segments. The direction of movement is captured implicitly by the

definition of the MRI graph that is presented in the following section.

There are in total 30 elements: 19 running across the upper side of the river, 9 in the

lower part and two bridges granting the connection between the two shores. Each of

them corresponds to a motorway or a primary road segment. Figure 5.5 depicts the

geographical span of each element. It is associated with the corresponding roadway

segment and defined as a set of links H of the OpenStreetMap network model. On the

same figure, we illustrate the aggregation of the trip origin (o) and destination (d) nodes

into O and D zones, respectively. Natural barriers such as the shores, the city walls,

railway tracks, etc. are taken under consideration for the aggregation of the trip origins

and destinations. The OD zones are represented by the light-grey shaded polygons and

the black circles denote their centroids. There are in total 138 aggregate OD zones,

101 in the upper and 37 in the lower side. Finally, the round shaded areas represent

the central part of the city as well as the major interchanges, where additional costs

(travel time) are incurred when transferring among the segments. A bigger diameter

signifies higher costs of transfer. The features depicted in Figure 5.5 are relevant for the

definition of the attributes in Section 5.1.4.

5.1.3.2 The MRI graph of Québec city

The MRI graph is depicted in Figure 5.6. It is defined as GM = (L′,M′), where

1. M′ is the set of nodes including the set of MRIs M, the set of origin zones O and

the set of destination zones D, that is M′ = M∪O ∪D.

2. L′ is the set of links determining the possible transfers among the nodes of M′,
that is the incidence matrix of the graph.

82



5.1. Modeling

Table 5.2: The MRIs in Québec city

reference segment MRI id length [km] maximum speed [km/ h] side (river reference)

Autoroute 40 40E 3.1 100 upper
Autoroute 40 40W 4.8 100 upper
Autoroute 73 73N 5.9 100 upper
Autoroute 73 73S Upper 3.1 90 upper

Autoroute 40; 73 4073 40 3.6 100 upper
Autoroute 40; 73 4073 73 2.2 90 upper
Autoroute 573 573 4.8 100 upper
Autoroute 440 440E 2.7 100 upper
Autoroute 440 440M 2.3 100 upper
Autoroute 440 440W 2.0 100 upper
Autoroute 740 740 3.7 100 upper
Autoroute 540 540 2.8 100 upper
Autoroute 973 973 3.0 70 upper
Route 175 175N 4.5 50 upper
Route 138 138E 3.2 70 upper
Route 138 138M E 3.7 70 upper
Route 138 138M W 3.1 70 upper
Route 138 138W 5.2 70 upper
Route 136 136 5.3 60 upper

New bridge NB 2.3 90 river pass
Old bridge OB 2.0 50 river pass

Autoroute 20 20E 5.9 100 lower
Autoroute 20 20M 2.3 100 lower
Autoroute 20 20W 6.1 100 lower
Route 132 132E 5.9 50 lower
Route 132 132M 3.1 50 lower
Route 132 132W 5.6 70 lower

Autoroute 73 73S Lower 5.8 90 lower
Route 175 175S 5.4 70 lower
Route 116 116 7.9 70 lower

For clarity reasons, we omit the illustration of the nodes corresponding to the OD zones

from the graph presented in Figure 5.6. An illustration of the detailed list of the OD

zones is provided in Figure C5, of Appendix C. The following assumptions pertain to

the definition of GM:

1. Trips are generated in o ∈ O and attracted by d ∈ D. In particular, each o ∈ O
has only outgoing links and each node in d ∈ D has only incoming links20.

2. By using the local network, individuals from any node in O/D are assumed to be

able to reach any m ∈ M that is located at the same side of the river.

The two big interchanges highlighted in Figure 5.5 can be identified on the graph in

Figure 5.6 by the radial scheme that they form, involving transfers among several MRIs.

The city center is also represented by an area where connections from the NE to the SW

MRIs, and vice versa, allow individuals to transfer among MRIs that do not physically

20Note that all zones serve both as origin and destination zones. Two nodes are then defined for each
zone to distinguish between its use as an o and as d.
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Figure 5.5: Geographical span of the MRIs and the OD zones in Québec city.

intersect.

Finally, in accordance with the definition of the MRI framework, the 30 elements illus-

trated in Figure 5.6 constitute the building blocks of the alternatives of the aggregate

model. An alternative r is an ordered sequence of MRI nodes in M′ that connects the
o ∈ O and the d ∈ D of the trip, such that r = o, m1, ..., mh, d, where mi ∈ M and h

the number of nodes in the sequence.
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Figure 5.6: The MRI graph of Québec city.
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5.1.4 Attributes

The main feature for the operationalization of GM is the geographical span of the ele-

ments. Element additive attributes are associated with each node inM and each transfer

between pairs of nodes in M′. More specifically, each node m ∈ M is associated with a

Travel time that is computed as

Time(m) =
Length(m)

maxSpeed(m)

the ratio of the length and the maximum allowed speed on the corresponding segment

(second column of Table 5.3).

Type of road two dummy variables related to the type of the segment, i.e. motor-

way and primary, are defined for each element (third and fourth columns of Table 5.3).

That is, Motorway(m) = 1 if the segment corresponds to a motorway, and zero other-

wise, and Primary(m) = 1 if the segment corresponds to a primary, and zero otherwise

Cognitive load following the ideas of Gallotti et al. (2016) and Rosvall et al. (2005) —

who use a measure of entropy as a proxy for the accumulated cognitive load associated

with a trip that characterizes the complexity of the navigation task — we define an

attribute representing the amount of information that an individual needs to process at

any given node m ∈ M along a route. Gallotti et al. (2016) and Rosvall et al. (2005)

intend to characterize the overall complexity of the city network. We make use of their

principles to characterize the complexity of a given route across the city network. The

underlying assumption is that the higher the connectivity of a node is, the higher its

complexity and hence the cognitive load that it entails for the individual. In that sense,

individuals are expected to minimize the cognitive load of their routes, by selecting

“simpler” nodes and routes with less transfers. The cognitive load is approximated by

the measure of entropy of each node and is equal to

CognitiveLoad(m) = log2(cm),

where cm is the degree of connectivity of node m. An illustrative example is given in

Figure 5.7. Node m1 requires log2(3) bits of information, while node m2 requires log2(7),

in order to locate the desired exit to the destination.

The cognitive load attribute is reported in the last two columns of Table 5.3. Same as in

Gallotti et al. (2016) and Rosvall et al. (2005), the degree of connectivity is discounted

by one for every node along a route except for the first one, in order to take into account

the information that is gained by traveling along the route; that is, at each node m

an individual has a choice among cm − 1 nodes, assuming that she will not visit again

the previous node. As all m ∈ M located in each side of the river are connected to all
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Figure 5.7: Illustration of a simple (m1) and a complex (m2) node.

o ∈ O and d ∈ D of the same side, the connections to the o/d nodes are not counted

in cm (fifth column of Table 5.3). We only measure the cognitive load while traveling

throughout the part of the GM that is illustrated in Figure 5.6.

The attributes of each element are reported in Table 5.3. Additionally,

Transfer time transfer times are defined for each pair of nodes m′, ν ∈ M′. More

specifically:

1. if both m′ and ν ∈ M, then TransferTime(ν | m′) = 0, except if m′ and ν are

involved in the two major interchanges or the city center area. In this case, the

transfer times are set to 5, 10 or 15 minutes, depending on the transfer. Table D2,

of Appendix D, reports the detailed list of transfer times between each pair of

nodes in M;

2. else if m′ ∈ O and ν ∈ M, or alternatively if m′ ∈ M and ν ∈ D, then the

TransferTime(ν |m′) is computed using the Google Maps Distance Matrix API. A

total of 5034 distances were computed to derive the corresponding transfer times.

5.1.5 Model specification and estimation approach

The MRI model is specified on GM and estimated using maximum likelihood estimation

through the recursive logit (RL) formulation (Fosgerau et al., 2013a)21. For this purpose,

dummy states d′ are defined for every destination node d ∈ D. They correspond to the

21We refer the reader to Section 4.1.1 for a detailed description of the RL model.
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Table 5.3: The MRI attributes

travel time # of connections measure of entropy measure of entropy
MRI [min] motorway primary cm first node after origin: log2(cm) node in the sequence: log2(cm − 1)

40E 1.83 1 0 3 1.58 1.00
40W 2.87 1 0 4 2.00 1.58
73N 3.53 1 0 3 1.58 1.00

73S Upper 2.04 1 0 8 3.00 2.81
4073 40 2.15 1 0 6 2.58 2.32
4073 73 1.46 1 0 7 2.81 2.58
573 2.86 1 0 2 1.00 0.00
440E 1.78 1 0 4 2.00 1.58
440M 1.38 1 0 4 2.00 1.58
440W 1.22 1 0 5 2.32 2.00
740 2.43 1 0 6 2.58 2.32
540 1.89 1 0 7 2.81 2.58
973 2.54 1 0 9 3.17 3.00
175N 5.46 0 1 7 2.81 2.58
138E 3.17 0 1 2 1.00 0.00

138M E 3.15 0 1 4 2.00 1.58
138M W 2.63 0 1 4 2.00 1.58
138W 4.49 0 1 3 1.58 1.00
136 5.31 0 1 6 2.58 2.32

NB 1.55 1 0 11 3.46 3.32
OB 2.38 0 1 11 3.46 3.32

20E 3.52 1 0 2 1.00 0.00
20M 1.39 1 0 9 3.17 3.00
20W 3.65 1 0 6 2.58 2.32
132E 7.06 0 1 2 1.00 0.00
132M 3.78 0 1 9 3.17 3.00
132W 4.77 0 1 6 2.58 2.32

73S Lower 3.86 0 1 8 3.00 2.81
175S 4.60 0 1 8 3.00 2.81
116 6.81 0 1 6 2.58 2.32

absorbing states with no successors. The set of dummy states is denoted by D′, and the

set of nodes M′ is further extended to include them, that is M′′ = M′ ∪ D′.

At each state, that is at each node m ∈ M′, the traveler chooses the next state (next

node) ν ∈ M′ that maximizes the sum of the instantaneous utility un(ν | m) and the

expected downstream utility V d′(m) to the destination, where

un(ν | m) = vn(ν | m) + μεn(ν), and (5.1)

V d′(m) = μ ln
∑
ν∈M

δ(ν |m)e
1
μ
(vn(ν |m)+V d′ (ν)) ∀m ∈ M. (5.2)

εn is i.i.d. extreme value type I with zero mean; μ is the scale parameter of the model;

vn(ν |m) is the deterministic part of the node-pair-utility that is equal to v(xn,ν |m;β),

with xn,ν |m being the vector of attributes associated with the node pair (m, ν) and β

the vector of parameters to be estimated. V d′(m) are the value functions representing

the downstream utility to the destination. The rest follows the RL formulation, with

the next node choice probabilities given by the logit model and the probability of a MRI

sequence r being the product of the node probabilities in the sequence.
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5.1. Modeling

5.1.5.1 Model specifications

We test four specifications of the MRI model, given by (5.3)-(5.6). We use the attributes

described in Section 5.1.4. Additionally, the departure time of the trip is interacted with

the travel time and the type of road attributes, in order to implicitly capture the effect

of congestion on the choice between motorways or primary roads. In order to do so,

we define for each individual n two socioeconomic variables, namely the OffPeakn and

the Peakn, as dummy variables. The Peak periods take place between 7 and 9 am

and 4 and 8 pm, accordingly for the morning and afternoon commuting (Figure 5.8).

The RL formulation allows to incorporate this effect by defining observation dependent

attributes. That is, for each observation the travel time attribute is interacted with the

dummy variables denoting the departure time period.

v(ν |m) = βtime Time(ν) + βTransferT ime TransferTime(ν |m). (5.3)

v(ν |m) = βtime,Motor Time(ν) Motorway(ν) + βtime,Prim Time(ν) Primary(ν) +

+βTransferT ime TransferTime(ν |m).

(5.4)
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Figure 5.8: Distribution of departure time in the data sample.
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v(ν |m) = βtime,Motor Time(ν) Motorway(ν) + βtime,Prim Time(ν) Primary(ν) +

+βTransferT ime TransferTime(ν |m) + βLoad CognitiveLoad(ν).

(5.5)

v(ν |m) = βtime,Motor,Off Time(ν) Motorway(ν) OffPeakn +

+βtime,Motor,Peak Time(ν) Motorway(ν) Peakn +

+βtime,Prim,Off Time(ν) Primary(ν) OffPeakn +

+βtime,Prim,Peak Time(ν) Primary(ν) Peakn +

+βTransferT ime TransferTime(ν |m) +

+βLoad CognitiveLoad(ν).

(5.6)

5.1.5.2 Measurement model

The available data is map-matched on the OpenStreetMap model of Québec city; each

observation y is expressed as an ordered sequence of links. This provides the representa-

tion of the chosen alternatives at the disaggregate level. Their mapping at the aggregate

level is necessary for the estimation of the MRI model. Following the same reasoning

as in the previous case studies, each observation y is deterministically associated with

an ordered MRI sequence r, according to the geographical span of the elements that

it traverses. Recall that, at the disaggregate level, G = (A,V) gives the mathematical

representation of the physical network, defined in terms of a set of links A and a set of

nodes V. At the aggregate level, each node m ∈ M is associated with the geographical

span Hm of the corresponding MRI, which is defined as a set of links of G .

Let H = {H1, ..., H|M|} denote the set of the geographical spans of the MRIs, where

|M| is the number of MRIs in the choice context and Hj ⊂ A, ∀ j ∈ {1, ..., |M|}.
One can then associate each y with an ordered sequence of Hj and consequently with

an ordered sequence of nodes m ∈ M. Algorithm 2 summarizes the mapping process.

The algorithm assumes that the MRIs are disjoint. The od of the trip is assigned to the

corresponding nodes o ∈ O and d ∈ D and added in the sequence. An example of the

mapping, from the disaggregate to the aggregate graph, is given in Figure 5.9. The dark

line denotes the observed trajectory on the physical network. The labels of the MRIs

that are traversed along the trip are indicated on the plot. In this example, the traveler

follows the sequence: 573 → 40;73 73 → 73SUpper → NB → 20W.

5.1.6 Model application

The model is applied to compute MRI element flows using the routine proposed by

Fosgerau et al. (2013a) for the computation of link flows. The output of the RL model

consists in destination specific state transition probability matrices, denoted by P d′ .
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Algorithm 2: Mapping of an observed map-matched trajectory y to a MRI se-
quence r.

Input: y = k0, ..., kI , where ki+1 ∈ A(ki)
∗, ∀ i < I

Input: H = {H1, ..., H|M|}, where Hj ⊂ A, ∀ j ∈ {1, ..., |M|}
Input: a function H, such that H(m) = Hm, ∀m ∈ M, where Hm ∈ H
Output: r as an ordered sequence of m ∈ M
1 Initialize r as an empty ordered sequence
2 for ∀ ki ∈ y do
3 for ∀m ∈ M do
4 if ki ∈ H(m) and m /∈ r then
5 r = r, m
6 end

7 end

8 end

∗A(ki) is the set of outgoing links from link ki.

Figure 5.9: Observed trajectory and the corresponding mapping on GM.

91



Chapter 5. Route choice in a large network: Québec city

The expected flow F(ν) on element ν is the summation of the flow originating at ν and

the expected incoming flow. It is given by

Fd′(ν) = Gd′(ν) +
∑
m∈M

P d′(ν |m) · Fd′(m). (5.7)

where Gd′(ν) is the demand originating at ν and ending at destination d′.

MRI element flows can be computed for a specific destination and multiple origins using

the element transition probabilities by solving the following system of linear equations

(Fosgerau et al., 2013a)

(I− P T )F = G, (5.8)

where I is the |M′| × |M′| identity matrix, P is the d′ specific |M′| × |M′| element

transition probability matrix, F is a |M′| × 1 vector representing the expected element

flow given by (5.7) and G is a |M′| × 1 vector representing the demand G(ν). Subse-

quently, element flows for multiple destinations can be computed by summation over

the elemental flows.

5.2 Results

In this section we estimate and apply the proposed model. We present the results of

the four model specifications described in Section 5.1.5.1. A cross-validation approach

is performed to evaluate the performance of the model with respect to (i) the predicted

choice probabilities and (ii) the aggregate element flows F (ν).

5.2.1 Estimation results

The estimation results for the four model specifications are reported in Table 5.4. All

parameter estimates are significant and have the expected signs. The transfer time pa-

rameter is stable across the model specifications. A significant improvement in the final

log likelihood LL(β̂) is observed due to the interaction of the travel time variable with

the type of the road. The inclusion of the cognitive load attribute in the specification

further improves the final log likelihood.

The cognitive load factor appears to absorb part of the effect of the travel time attribute.

This may be related to the fact that this attribute in the utility penalizes “complex”

nodes but also itineraries with many nodes. Many nodes, i.e. longer sequences, may be

associated with longer travel times. As the travel time attribute is computed for each

representative segment based on the length and the maximum speed, it may not fully

represent the travel time experienced by the travelers. It is then possible that part of

this effect is captured by the cognitive load coefficient.
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5.2. Results

Table 5.4: Estimation results

Model 1 Model 2 Model 3 Model 4
Parameter value (t-test) value (t-test) value (t-test) value (t-test)

βTransferT ime −0.56 (−72.17) −0.58 (−78.62) −0.54 (−72.04) −0.54 (−72.10)
βtime −1.12 (−152.25) × × ×

βtime,Motor × −1.24 (−148.41) −0.50 (−28.94) ×
βtime,Prim × −0.85 (−75.39) −0.52 (−38.37) ×

βtime,Motor,OffPeak × × × −0.48 (−25.60)
βtime,Motor,Peak × × × −0.51 (−27.78)

βtime,Prim,OffPeak × × × −0.54 (−25.28)
βtime,Prim,Peak × × × −0.51 (−32.95)

βLoad × × −0.70 (−40.65) −0.70 (−40.68)

# observations 2321 2321 2321 2321
# parameters 2 3 4 6

LL(β̂) −8145.1 −7593.6 −6935.0 −6930.7
Estimation time (min) 2.5 3.1 4.0 7.2

Finally, the interaction of the travel time, type of road and departure time variables

significantly improves the final log likelihood. Individuals appear to be more sensitive

to travel time on highways during peak hours in comparison to off-peak hours.

We consider Model 4 to be the best model and use it to perform further analysis. We

compute the choice probabilities for each observation in the data sample. The choice

probability of an observed MRI sequence r is computed as the product of the node

transition probabilities in the sequence. Figure 5.10 shows the distribution of the choice

probabilities for the chosen alternative. The model is characterized by many small

probabilities. This is expected given the big state space of each node, and the large

number of alternatives in the choice set22, and the level of aggregation in the attributes

of the model. Even one low state probability in the sequence may downgrade significantly

the likelihood of the observed sequence. Indeed, the distribution of the observed state

choice probabilities in Figure 5.11 shows that the model performs quite well, that is the

distribution of the observed state probabilities is shifted on the right side — of high

probabilities.

5.2.2 Forecasting results and validation

We perform a cross validation approach. We generate 100 training samples by randomly

drawing 80% of the observations. We use these samples to estimate the model. The

remaining 20% of the observations of each draw are used to apply the model and evaluate

its prediction capabilities.

22We simulate a random walk on G M based on P d′ for one od pair. Even after drawing more than
100000, the number of unique sequences kept increasing, reaching a level of ∼ 2000 sequences. A null
model, assigning equal probabilities to all alternatives, would forecast the probability of the chosen
alternative to be in the order of 1

2000
= 5.000e-04. Only 6% of the observations are predicted with

probability lower than 5.000e-04 by the model.
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Figure 5.10: Distribution of the forecasted choice probabilities of the chosen alternative.
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Figure 5.11: Distribution of the state (next node) choice probabilities.
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Same as in Mai et al. (2015), we use the log likelihood loss to further evaluate the

prediction performance of the model. That is, for each training and test sample s we

use the vector of the estimated parameters to compute the errors errs

errs =
1

| Ss |
∑
r∈Ss

lnP (r, βs), (5.9)

where | Ss | is the size of sample s. We use Model 1, with the effect of the time variables

only, as a benchmark for comparison. The average test error values for the two models

are depicted in Figure 5.12 and in Figure 5.13, for the training and the test samples

respectively. Model 4 is characterized by a lower test error in comparison with the

benchmark model.

5.2.3 Aggregate element flows

The model is applied for the prediction of flows F (ν) on the MRI elements m ∈ M.

We use the observed OD demands in the data sample as a proxy of the real demand

and apply (5.8). Figure 5.14 illustrates the observed flow on each element ν against the

element flow predicted from the model by applying (5.8).

We now adapt the same cross validation approach as in the previous section, to investi-

gate the performance of the model with respect to the prediction of element flows. The

procedure observes the following steps

1. We compute the element flows based on each training sample.

2. We compute the element flows based on each test sample.

3. We sum the element flows computed from the corresponding training and the test

samples to derive the flows for the full dataset.

Figure 5.15 depicts for each element (i) the observed flow and (ii) the box plots that

summarize the outputs of each of the 100 samples following the procedure described

above. There are instances for which the model over/ underestimates the observed

flows. Despite these instances, the model is able to capture the patterns in the observed

flows and for several instances it provides an approximation very close to the real flow.

5.3 Discussions

In this section, we elaborate on specific features of the MRI model for the city of Québec,

that differentiate it from the one developed for Borlänge.

The two case studies for Borlänge use the representative paths approach (Section 3.1.3),

for the operationalization of the utility functions of the MRI model. The selection of the
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Figure 5.12: Average test error over the training samples.
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Figure 5.13: Average test error over the test samples.
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Figure 5.14: Aggregate element flows.
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Figure 5.15: Boxplot of the aggregate element flows over the validation samples.
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representative points for a large network with complex interactions and interdependen-

cies of the elements, such as the one of Québec city, is not straightforward; it entails the

complexity of the path approach23. In order to tackle this challenge, we have investigated

in the direction of the “network-free” approach, already identified in Section 3.1.3. We

have used a “path-free” approach which (i) is less dependent on detailed network data,

such as link travel times, and (ii) allows for low model complexity and computational

times. In this context, the representative points are not used for the definition of the

MRI model and the geographical span is the only important component for its opera-

tionalization. On the other hand, this approach lowers the precision in the derivation of

the attributes. This is one aspect of the model that needs to be further investigated.

As discussed in Section 5.1.3.1, several of the elements identified as potential MRIs

are several kilometers long, running all across the city. Associating them with a single

MRI would be too restrictive, in other words, too aggregate. This is where a modeling

decision regarding the level of aggregation had to be made. Dividing the segments in

every existing intersection would correspond to the disaggregate approach. Instead, only

the major intersections in each part of the city (N, S, E, W) have been considered for

the segmentation. With respect to the OD zones, the idea is to keep the origins and

destinations as disaggregate as possible. This is because the o ∈ O and the d ∈ D
don’t constitute part of the decision process, they are merely the locations where trips

are generated and absorbed. Hence, they do not affect the efficiency of the model with

respect to the estimation time. Yet, some sort of aggregation has been applied in order to

facilitate the computation of the transfer times using the Google Maps Distance Matrix

API in Section 5.1.4.

Finally, one principal difference of the present MRI model from the ones of the two

previous case studies is that explicit enumeration of alternatives is not possible. Despite

the fact that the model is therefore more complex than the initial MRI models, it has

a cardinal asset in comparison with the disaggregate approach. Note that the physical

network of the city that falls under the area of study is composed of 17883 links. On

the other hand, the G M is composed of 30 (MRIs) + 138 (O zones) + 138 (D zones) +

138 (dummy nodes) = 444 nodes, out of which only the 30 constitute part of the choice

problem. Even if it is not possible to enumerate all the alternatives in GM — due

to the high connectivity and the existence of loops that characterize the graph — the

dimension of the problem is significantly smaller, allowing for the fast computation of

the model. As reported in Table 5.4 the estimation time ranges from ∼ 2 to ∼ 8

minutes. Figure 5.16 shows for each trip in the data sample, the number of links in the

map-matched (OpenStreetMap network model) trajectory versus the number of nodes

in corresponding MRI sequence (GM). There is a remarkable reduction in the length of

the description of each observation when transferred in GM.

23This issue applies to a much lesser extent in the Borlänge case, given the small size of the city and the
low complexity of the network.
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Figure 5.16: Number of links in the map-matched trajectory versus the corresponding
number of nodes of the MRI sequence.

5.4 Summary

In this chapter, we combine the knowledge acquired from the previous case studies

with the tools that were developed, in order to advance the framework and generalize

its applicability. More specifically, we tackle the operational challenges related to the

specification of the utility functions — entailed by the path-based approach — and

develop a model that is not as simple as the first MRI model presented in Section 3.3, yet

still of much lower structural complexity in comparison with the disaggregate approach.

To illustrate the proposed model, we use a smartphone dataset from the city of Québec,

in Canada. We introduce a variable representing the complexity of a route, that is

associated with the cognitive load that individuals are expected to minimize. We use

the departure time of the trip and interact it with the travel time and the road type

variables in order to investigate different sensitivities and implicitly capture the effect

of congestion. These inclusions in the specification have significantly improved the fit of

the model. In summary, the model provides reasonable results, is fast to compute and

readily applied to the prediction of flows on the major segments of the city’s network.
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6
Conclusion

This chapter summarizes the main findings of the research (Section 6.1), discusses its

scientific and practical implications (Section 6.2), and identifies aspects and features

that require further investigation (Section 6.3).

6.1 Research summary

The research conducted in this thesis has shown that it is possible to circumvent the

inherent complexity of route choice models. The analyst can explicitly control the trade-

off between complexity and realism, and obtain operational models that are useful and

applicable in practice. This has been accomplished by allowing for flexibility and cre-

ativity in the representation of the alternatives towards the aggregation of the model.

The thesis presents such a modeling paradigm, within which the modeling elements are

not dictated by the network model. They are rather inspired by the individuals’ mental

representations of the physical space. Their definition relies on a modeling decision,

consistent with the level of aggregation that the analyst identifies as adequate.

The framework that we have developed contributes significantly towards the simplifi-

cation of route choice models and facilitates their application to large networks. The

validity and applicability of the approach has been demonstrated using two case stud-

ies. In Chapter 3, we introduce the concept of a mental representation item (MRI) as

a modeling element in route choice analysis. This is the key feature of the aggregate

and flexible approach that we design. Subsequently, a route is defined as a sequence of
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MRIs. Each MRI is characterized by a name, a description, a geographical span and

a list of representative points. The last two components allow to associate the concep-

tual elements with a network model and/ or a map for the operationalization of the

model. In this context, we have presented the methodology for the definition of random

utility models based on MRIs. We have proposed simple methods for the specification

of the utility functions and have presented an importance sampling approach for the

application of the model to traffic assignment.

Through the definition of the MRIs the analyst has control over the level of aggregation

in the representation of the route choice alternatives. The definition of the MRIs for

the first case study, for the city of Borlänge, allows to obviate the need for sampling of

alternatives for the generation of the choice set. The two main features of this model

are (i) the common choice set for all individuals in the data, and (ii) the assumption of

representative paths for the specification of the utility functions of the alternatives of

each individual. These two features have been justified by the small size of the city and

the ease to identify the high level decisions of individuals, given the limited and distinct

options that the network offers; that is to go through the central part of the city, to

go around it or to completely avoid it. As such, the identification of the representative

points for each MRI and the generation of the corresponding representative paths for

each individual have been straightforward tasks for the town of Borlänge. The results,

based on RP data, have demonstrated the validity of the approach.

In Chapter 4, we present the definition of a graph composed of MRI elements. Same as

for the disaggregate models specified on G = (A,V), the MRI graph is the basis for (i)

the generation of the MRI alternatives of each individual and (ii) the application of the

model. We have also shown how the MRI model tackles the correlation of alternatives.

To further explore and exploit the capabilities of the proposed approach we have tested

its performance in deriving disaggregate and aggregate route choice indicators, namely

element (link and MRI) and route (path and MRI sequence) flows. In parallel, we have

demonstrated the derivation of the same indicators using a disaggregate model. We

have used the RL model as a benchmark. The results demonstrate that for the purposes

of aggregate applications, the MRI model provides an adequate result that is at the

same, and slightly better, level of performance in comparison with the RL model that

is subjected to aggregation.

To show the capability of the approach to adapt to more complex choice contexts, we

have tested the methodology in a large network and data sample (Chapter 5). We have

exploited the idea of the “network-free” approach — previously discussed in Chapter 3

— for the specification of the utility functions. We have used a method that relies

on the geographical span of the MRIs, instead of representative paths, and yields a

simple model specification. The MRI model is integrated for estimation and application

with the RL formulation. The proposed model is not as simple as the first MRI model

— enumeration of alternatives is not possible in this case — yet still of much lower
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complexity in comparison with the disaggregate approach, and therefore fast to estimate.

In addition, thanks to the integration with the RL approach, the model is readily applied

to the prediction of flows on the major segments of the city’s network. The results

demonstrate that the model is capable of capturing the observed patterns in the flows.

To conclude, the MRI concept is sufficiently general to capture a great deal of behav-

iorally meaningful aspects of route choice, yet sufficiently specific to yield operational

models. The framework has to be adapted on a case by case basis. We have shown,

using real case studies and RP data, that the use of simple methods leads to meaningful

models that can be estimated and used in practice. If relevant data is available, the

approach can handle, and more importantly simplify, model specifications such as NL,

CNL and EC models tackling the correlation of alternatives, and mixed logit models

tackling trade-offs between major variables, i.e. length and time, and taste heterogene-

ity. Finally, the approach may be of great use for (i) applications without an existing

or an inadequate detailed network model and (ii) large scale applications, such as the

European Transport Model24 (TransTools) or national models, where a detailed network

representation of cities is not realistic.

The framework opens the door to more modeling opportunities and has important prac-

tical implications. We discuss about these extentions in the following Section.

6.2 Theoretical and practical implications

In comparison with the state of the art route choice models, the MRI framework is of

greater generality. For instance, it is possible to define a MRI model that is independent

from a network model. Along the same lines, the framework does not require detailed

route choice observations. The data may be expressed in terms of locations, areas, major

segments. Therefore, the analysis is not constrained by the availability of detailed data.

The integration of the MRI approach with the RL model has a great potential to sim-

plify the consolidation of route choice models within simulation frameworks. As an

example, this integration maybe be particularly useful for the dynamic traffic assign-

ment component of a traffic simulator (see e.g. Yildirimoglu et al., 2015), by allowing for

significant memory savings and a realistic representation of the regions. In this context,

macroscopic traffic assignment that is currently researched (see Batista et al., 2016) may

benefit to from the tractability of the MRI approach.

The concept of MRI and its attributes is extremely relevant to the provision of travel

information and route guidance. As complexity and congestion in today’s metropoles

keep increasing, the provision of information, in a manner that can easily be handled by

the individuals and allow them to reduce the uncertainty about their travel, is essential.

Helbing (2004) discusses the potential of optimal guidance for traffic optimization. Using

24http://energy.jrc.ec.europa.eu/transtools/index.html
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decision experiments on day-to-day route choice, he proposes guidance strategies to reach

user equilibrium based on empirical transition and compliance probabilities. His work is

employed by (Stark et al., 2008) in an experimental study that investigates cooperation

strategies in route choice. The MRI representation of route choices would exactly fit the

implementation of such strategies in practice.

Finally, the MRI approach is particularly relevant and can be extended to pedestrian

route/ activity choice. Similar to the case of vehicular traffic, the MRI model can

support pedestrian simulation models for major hubs that are currently researched (see

e.g. Molyneaux et al., 2017).

6.3 Future research directions

In this Section we discuss specific aspects of the MRI approach that can be further

investigated. Starting by the definition of the MRI elements, an interesting direction of

research would be to investigate data-driven approaches in two different dimensions, i.e.

1. the traditional approach: to conduct specific surveys where travelers describe their

routes and the perception of the performance of the identified alternatives;

2. the algorithmic approach: to automate the identification of MRIs using data min-

ing or machine learning techniques, such as clustering analysis;

and compare the consistency of their output with the elements identified by the analyst.

The extension to new case studies would then be of interest.

With respect to the specification of the model an important aspect concerns the attributes

in the utility functions. In Chapter 5 we have tackled the operational challenges that

the representative paths approach entails, by defining aggregate attributes for the MRI

elements. The proposed “network-free” approach allows the model to be operational even

under low data availability, yet lowers the precision in the derivation of the attributes

of the alternatives. This has a direct impact on the model’s performance. A higher

precision in the derived attributes would justify the extension of the representative paths

approach. Keeping in mind that

1. the selection of the representative points for a large network, with complex inter-

actions and interdependencies of the elements, is not straightforward, and that

2. the model parameters may be sensitive to the selection of these points,

simulation techniques, such as Monte-Carlo, could be investigated to test the stabil-

ity of the estimates’ across various instances of representative point configurations. A

comparison of the model’s performance using the “network-free” and the simulation-

based-representative-paths approach could then provide further insights into the use of

a specific technique, once again, depending on the needs of the application and the data
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availability.

Finally, a future research direction with respect to the application of the model may

concern its use for traffic assignment. More advanced specifications of the assignment

model presented in Appendix A should be explored and tested on the basis of a detailed

demand input — i.e. origin-destination matrix. In addition, the investigation of statis-

tical tools, such as bootstrapping, to asses the effect of sampling on the results of the

assignment at the disaggregate level, would be an asset.

105





A
Specification of the assignment model

This appendix presents a simple example for the specification of the assignment model

defined by (3.2) in Section 3.1.5.

Let srv be a real number representing the consistency of node v with MRI r. The determi-

nation of srv reflects the definition of the MRIs on the basis of the geographical span and

the representative points. In particular, if a node is contained in the MRI’s geographical

span it has a consistency equal to 1, and 0 otherwise. The nodes corresponding to the

representative points of a MRI may receive a consistency value higher than 1.

Each path p consists in a sequence of nodes. We can then compute the score srp =
∑

v∈p s
r
v

of each path for every MRI r ∈ Cn, where
∑

v∈p · represents the sum over all nodes v

contained in path p. srp denotes the consistency of a path p with a MRI r.

The path choice probability from the universal path choice set given a MRI r is then,

apart from normalization, specified as

P (p | r) ∼ exp

(
κ

srp∑
j∈Cn s

j
p

+ λtp

)
(A.1)

where
∑

j∈Cn · spans over all MRIs in Cn, tp is the travel time on path p, and κ > 0,

λ < 0 are real-valued coefficients. The consistency favors paths that have relatively high

node overlap with MRI r. It represents, at the path level, the individual’s operational

decisions leading at the link-by-link level to an implementation of MRI r. The second
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factor favors paths that are faster. Some cost-dependency of this type is needed because

otherwise it becomes more important to stay in the MRI than to reach the destination.

Now, the link choice probabilities defined by (3.2) need to be computed. The number of

paths with nonzero probability of being selected given that MRI r was chosen may be

too high to be enumerated and used in the traffic assignment context. We propose to use

the Metropolis-Hastings Algorithm of Flötteröd and Bierlaire (2013) to draw, for each

MRI r, a large number of Qr paths from the unnormalized distribution (A.1). Letting

pqr be the qth path drawn for MRI r, P (a | r) is then approximated by

P̂ (a | r) = 1

Qr

Qr∑
q=1

1(a ∈ pqr). (A.2)

This is, for a given MRI r, the ratio of the number of times link a is contained in a

sampled path divided by the total number of sampled paths. The MRI-unconditional

link probabilities (3.2) are then approximated through

ˆProb(a | Cn, xrn, zn) =
∑
r∈Cn

P̂ (a | r) · P (r | Cn, xrn, zn). (A.3)
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B
Description of a work trip in Athens

This appendix provides a qualitative example in support of the MRI assumption. The

case study area is located in Athens, Greece. Athens is a big city and its transportation

network is very dense and complicated. The characteristics of the driver are:

• Male;

• 54 years old;

• Familiar with the route as he has been doing this trip for more than 20 years;

• Experienced driver with very good knowledge of the network (living in Athens all

his life and driving from the age of 18);

• He either uses a motorcycle or a car for his transportation.

Figure B1 depicts all the relevant components that we discuss hereafter. We asked

the driver to describe his regular route from home to work. He said that there are

two alternatives: either to go through the city center (red-shaded area) or to take the

peripheral road (green polyline).

After asking the driver to give more details regarding the two itineraries, he described

different options associated to each of these two alternatives. Given that he chooses to

go through the peripheral he has several ways to reach it: (i) neighbourhood Y and

then neighbourhood V , or (ii) neighbourhood I. Continuing describing his route, he

stated that after exiting the peripheral and a while before reaching the destination he

has another two options: (i) either through a main arterial (extension of the green line),
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or (ii) through cutting though neighbourhood P (blue line). The name of the peripheral

road (Katechaki) came up several times during the description as it is associated with

all of these itineraries.

When he chooses to go through the city centre, he regularly follows one specific itinerary

along main arterials. He only pointed one minor deviation to a minor street in order

to avoid a traffic light in cases of congestion. After being explicitly asked, the driver

mentioned that he adjusts his itinerary in the level of minor streets, mainly due to

bottlenecks that he may encounter. In this case though, he did not refer to the exact

options.

Being asked what defines his choice, he said that it depends on his mood and on the

current traffic conditions. He prefers to go through the city centre as it is more pleasant

for him than the peripheral, that he called monotonous. The city centre alternative is

also the shorter option with respect to kilometres, but it is usually more congested in the

morning. For this reason he usually takes the peripheral road on his way to work. On

the other hand, on his way back home in the evening he always chooses to go through

the centre as it is not congested during this time of day. It worths noticing that apart

from abstraction in the representation of the possible alternatives, there is abstraction

in the association of attributes to them. It is highlighted by the use of adjectives, like

fast, pleasant etc.

While talking, the respondent made use of major streets’ names and neighbourhoods as

described above, but he also referred to schools in one of the neighbourhoods, park in

another, squares, an ancient stadium which is a landmark in Athens, a cemetery (the

first and biggest of the city), several churches that are located along these routes, a

cinema, the tower of Athens, and also home location of friends and relatives that signify

reference points (anchor points and landmarks) along the way. When asked if locations

such as the stadium play any role in his choice of route the answer was: ”No, I just meet

them on my way”. These elements facilitate the description of his route. They are used

to improve communication and understanding, and they characterize the alternative

routes. It should be underlined that there is a distinction between these reference points

and landmarks along the way and the representations that consist alternatives. The

former though can be used to construct explanatory variables. For instance, areas with

increased number of landmarks and points of interest might be more attractive, or more

familiar, to travelers. They may also serve as representative points for the definition of

the MRIs that we discuss in this paper.
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Figure B1: Sketch of the described route alternatives.
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C
Additional figures

Figure C1: The OD zones in Borlänge.
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(a) Through CC.

(b) Clockwise CC. (c) Counter-clockwise CC.

(d) Avoid CC. (e) Avoid CC.

Figure C2: Characteristic examples of observed trajectories in Borlänge.
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Figure C3: The geographical span of the MRIs in Borlänge.

Figure C4: Example of MRI sequences in Borlänge.
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Figure C5: The OD zones in Québec city.
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D
Additional tables

Table D1: List of alternatives of the MRI model (Borlänge)

a/a MRI choice set OD pairs

1 {CC, CL, CO, AV} [12, 13, 14, 21, 23, 24, 31, 32, 34, 41, 42, 43]
2 {CC, CL, CO, AV}1 → {B1, B2}2 [15, 25, 35, 45, 16, 26, 36, 46]
3 {B1, B2}1 → {CC, CL, CO, AV}2 [51, 52, 53, 54, 61, 62, 63, 64]
4 {B1, B2} [57, 67, 75, 76]

{MRI1, MRI2}1: first step decision, {MRI3, MRI4}2: second step decision
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Table D2: Transfer times (non zero) between MRI pairs (Québec)

from MRI to MRI transfer time [min]

73S Upper 540 5

73S Upper 175N 5

73S Upper 136 5

440E 440M 10

440E 973 5

440E 175N 10

440E 136 10

440M 440E 10

440M 973 10

740 175N 5

540 73S Upper 5

540 175N 5

540 138W 5

540 136 5

973 440E 5

973 440M 10

973 175N 10

973 136 15

175N 73S Upper 5

175N 440E 10

175N 740 5

175N 540 5

175N 973 10

138W 540 5

136 73S Upper 5

136 440E 10

136 540 5

136 973 15

NB 132M 5

NB 132W 5

NB 175S 5

NB 116 5

OB 20M 5

OB 20W 5

OB 132M 5

OB 132W 5

OB 73S Lower 10

OB 175S 10

continued . . .
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. . . continued

from MRI to MRI transfer time [min]

OB 116 10

20E 132M 5

20M OB 5

20M 20W 5

20M 132E 5

20M 132W 10

20M 73S Lower 5

20M 175S 5

20M 116 10

20W OB 5

20W 20M 5

20W 132M 10

20W 73S Lower 5

20W 175S 5

132E 20M 5

132M NB 5

132M OB 5

132M 20E 5

132M 20W 10

132M 132W 10

132M 73S Lower 5

132M 175S 5

132M 116 10

132W NB 5

132W OB 5

132W 20M 10

132W 132M 10

132W 73S Lower 5

132W 175S 10

73S Lower OB 10

73S Lower 20M 5

73S Lower 20W 5

73S Lower 132M 5

73S Lower 132W 5

73S Lower 175S 5

73S Lower 116 5

175S NB 5

175S OB 10

175S 20M 5

continued . . .
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. . . continued

from MRI to MRI transfer time [min]

175S 20W 5

175S 132M 5

175S 132W 10

175S 73S Lower 5

175S 116 10

116 NB 5

116 OB 10

116 20M 10

116 132M 10

116 73S Lower 5

116 175S 10
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