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Abstract

Development of numerical methods for hydraulic fracture simulation has
accelerated in the past two decades. Recent advances in hydraulic fracture
modeling and simulation are driven by increased industry and research activ-
ity in oil and gas, a drive toward consideration of more complex behaviors
associated with layered and naturally-fractured rock formations, and a deep-
ening understanding of the underlying mathematical model and its intrinsic
challenges. Here we review the basic approaches being employed. Some of
these comprise enhancements of classical methods, while others are imported
from other fields of mechanics but are completely new in their application
to hydraulic fracturing. After a description of the intrinsic challenges associ-
ated with the mechanics of fluid-driven fractures, we discuss both continuum
and meso-scales numerical methods as well as engineering models which typ-
ically make use of additional assumptions to reduce computational cost. We
pay particular attention to the verification and validation of numerical mod-
els, which is increasingly enabled by an ever-expanding library of laboratory
experiments and analytical solutions for simple geometries in a number of dif-
ferent propagation regimes. A number of challenges remain and are amplified
with a drive toward fully-coupled, three-dimensional hydraulic fracture model-
ing that accounts for host-rock heterogeneity. In the context of such a drive to
complex models, we argue that the importance of best-practice development
that includes careful verification and validation is vital to ensure progress is
constrained by the appropriate underlying physics and mathematics with a
constant attention to identifying conditions under which simpler models suf-
fice for the intended modeling purposes.

1 Introduction
Mathematical modeling for the prediction of hydraulic fracture propagation is nearly
as old as hydraulic fracturing technology itself. The first successes demonstrating
hydraulic fracturing for oil and gas wells were obtained in the late 1940s and early
1950s (Montgomery and Smith, 2010), and by the mid 1950s tens of thousands of
wells were stimulated (Economides and Nolte, 2000, Ch. 5A). Hydraulic fracture
modeling followed closely behind, with seminal works such as Khristianovic and
Zheltov (1955), Howard and Fast (1957), and Perkins and Kern (1961), with models
laid out in these early works being revisited and refined by Geertsma and De Klerk
(1969) and Nordgren (1972). By the time of the first hydraulic fracturing review
paper (Hassebroek and Waters, 1964), the basic influences of fluid viscosity, injec-
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tion rate, and host rock permeability were recognized, albeit still in a somewhat
qualitative sense.

Over the decades that followed, hydraulic fracture simulation became an inte-
gral part of design and analysis of treatments both for stimulation and reservoir
characterization. Some major accomplishments include height growth prediction
(after Simonson et al., 1978), tip-screenout design for proppant scheduling (after
Nolte, 1986), and analysis of pressure decline following hydraulic fracture shut-in
for reservoir characterization purposes (after Nolte and Smith, 1981).

Following the boom in hydraulic fracturing associated with the development of
unconventional reservoirs since the mid 2000s, the number of technical contributions
on this topic has drastically increased. In addition to an increase in activity, the na-
ture of the hydraulic fractures used for stimulation of unconventional reservoirs has
driven the development of increasingly complex models that are able to account for
interaction between hydraulic fractures and pre-existing fracture networks, simulta-
neous growth of multiple hydraulic fractures, 3D fracture growth in the vicinity of
the wellbore, and so forth.

All of this has taken place with concurrent developments that more clearly recog-
nize the consequences of the fact that propagation of hydraulic fractures in rock is, by
nature, a moving-boundary problem (the fracture geometry evolves with time). In
its simplest form it couples the elastic deformation of the rock (a non-local equation)
with lubrication flow in the fracture as well as fracture propagation condition. It is
now well understood that hydraulic fracture propagation is directly influenced by the
competition of two dissipative processes (viscous flow and fracture surface creation)
as well as the relative amount of fluid leak-off in the rock matrix in comparison to
the amount of fluid stored in the fracture during propagation (Detournay, 2016).
The propagation behavior thus widely differs depending on the dominant effects
resulting in different propagation “regimes” depending on the problem parameters
(viscosity/storage dominated, toughness/leak-off dominated, and so forth). The
competition between these physical processes intrinsically amplifies near the tip of
the fracture resulting in a multi-scale structure of the solution which is now well
established theoretically (Garagash et al., 2011) and confirmed by laboratory ex-
periments (Bunger and Detournay, 2008; Xing et al., 2017). As a result of this
multi-scale structure, the estimate of the propagation velocity of hydraulic fracture
at a given time poses tremendous challenges to any numerical models even in the
simplest case of a planar fracture geometry.

Recent advances in hydraulic fracture modeling and simulation occur, then, at
the confluence of drivers that include increased activity, a drive toward expanded
complexity, and a deepening understanding of the underlying mathematical model
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and its intrinsic challenges. In this paper, we present an overview of some of these
recent advances. This work follows in the steps of previous reviews (Mendelsohn,
1984a,b; Adachi et al., 2007), providing a needed update in light of the past decade
of progress. Our focus is specifically on numerical methods, not on the application
of numerical modeling to a particular engineering problem or a specific field case.
We restrict our review to the propagation of hydraulic fractures and will not ad-
dress other important topics in the context of reservoir stimulation such as proppant
transport, fracture clean-up, production of hydraulically fractured reservoir, etc. In
an engineering sense, we focus here on the so-called fracture placement problem.
Our aim is to try to clarify the advantages and drawbacks of some different numer-
ical techniques in order to help in choosing the most adequate method for a specific
problem. We refer the reader to Economides and Nolte (2000); Smith and Mont-
gomery (2015) for a thorough description of the different engineering aspects of a
hydraulic fracturing treatment for the stimulation of oil and gas wells.

Before reviewing the benefits and limitations of the recently developed continuum
and meso-scale numerical methods, we first briefly review the basic of the hydraulic
fracture problem and its intrinsic peculiarities. We then discuss the advances of
engineering-type models which typically perform additional physical hypothesis in
order to speed up the numerical solution of the initial problem. We strongly argue
for the required verification and validation of numerical models against correct an-
alytical solutions and laboratory experiments. Finally, we discuss the importance
of such verification and the benefits associated with being able to quantitatively
compared different numerical options.

2 Problem Formulation
Hydraulic fractures predominantly propagate in mode I (opening mode) under the
action of a fluid whose pressure must overcome the in-situ compressive stress field
σo
ij encountered at depth. Hence it is clear that the energy required to create new

fracture surfaces must be accounted for in order to track the growth of a hydraulic
fracture. This is typically done using the well-established concepts of fracture me-
chanics (e.g. Kanninen and Popelar, 1985). The growth of a hydraulic fracture
differs, however, substantially from most other fracture mechanics problems. The
fracture is loaded internally by a fluid whose pressure is varying in time and space
along the fracture and is part of the solution of the problem. The elasticity problem
is thus intrinsically coupled to the flow of fluid inside the fracture. This coupling
is extremely stiff as the resistance to viscous fluid flow depends non-linearly on the
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fracture width. Another important aspect of the propagation of a fracture driven by
an injected fluid is that it is inherently a volume controlled process. At any given
time, the total injected volume Vinj since the beginning of pumping is equal to the
current fracture volume Vfrac plus the volume of fluid “leaked-off” Vleak−off from the
fracture faces onto the surrounding rock. Similarly to a test performed under dis-
placement control in classical fracture mechanics, the fracture growth is thus stable
(i.e. the pressure decreases in response to continuous injection and fracture growth).

In order to frame the discussion of the different numerical methods discussed in
this paper, we briefly recall below the formulation of the hydraulic fracture propa-
gation model (see also Detournay and Peirce (2014); Detournay (2016)) as well as
some of its particularities and typical extensions.

2.1 The basic hydraulic fracturing model

For clarity of presentation, we consider here the case of a hydraulic fracture prop-
agating in an infinite linear elastic isotropic medium (see Fig. 1) having an initial
compressive stress field σo

ij.

2.1.1 Linear elasticity

Under quasi-static conditions encountered during hydraulic fracturing (recall that
fracture growth is stable because it is volume controlled), the linear balance of
momentum reduces to

∂xj

(
σij − σo

ij

)
= 0 (1)

Here we use the convention of summation on repeated indices and write partial
derivatives along xj as ∂xj

. Tractions ti = σijnj are continuous across the fracture
surfaces S+ and S−, viz.

t+i + t−i = 0 (2)

That is to say, the shear stresses transmitted from the fluid to the medium on
the fracture face are negligibly small compared to the fluid pressure (a classical
hypothesis also done in poroelasticity). The fluid pressure field p acts on the normal
to the fracture face

t−i n
−
i = −p (3)
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Figure 1: Sketch of a hydraulic fracture with surface S and normal ni propagating
in a pre-existing in-situ stress field σo

ij due to fluid injection at a rate Qo. Here, the
contour C is the fracture front. The fracture opening w, fluid pressure p and local
coordinate system at a point is depicted in the inset.
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Assuming small strain linear elasticity, the relations between the stresses (σij) and
strains (εij) reduces to

εij =
1

2

(
∂xj

ui + ∂xi
uj
)

=
1 + ν

E

(
σij − σo

ij

)
− ν

E
(σkk − σo

kk) δij (4)

Because of the presence of the crack, the displacement field ui exhibits a jump across
the surfaces

JuiK = u+
i − u−i (5)

In particular, we write the fracture width (the opening component) as w =
(
u+
i − u−i

)
n−i

(see Fig. 1). Note that a non-negativity constraint on the fracture opening applies
in order to prevent any physical interpenetration w ≥ 0. This linear elastic problem
is closed by the condition of negligible displacement at infinity. The generalization
to a finite body with any proper boundary conditions is straightforward.

The elastic problem described by eqs. (1)-(4) with proper boundary conditions
can be solved by any type of numerical method (e.g. finite element). Among those,
the boundary element method is particularly popular for fracture problems in homo-
geneous (or piece-wise homogeneous) medium due to its domain reduction, accuracy
and ease of meshing. Using classical integral representations (Mogilevskaya, 2014,
e.g.), the elastic problem can be schematically re-written as the following non-local
operator:

t−i − to−i = Lij (JujK) (6)

where to−i = σo
ijn
−
j are the tractions on the fracture surfaces due to the initial com-

pressive stress field. The integral operator Lij is non-local and hypersingular (see
Mogilevskaya (2014); Bonnet (1999); Hills et al. (1996) for more details on elastic
fracture problems and their integral representations). Its numerical discretization
results in a fully populated matrix. The previous representation of the elastic rela-
tion between displacement discontinuity over the fracture surface and the fracture
net loading can also be obtained numerically after discretization by other numerical
methods - using a numerical Green’s function approach.

It is worth re-emphasing that both the fluid pressure field p and the displacement
jump KuiK are unknowns. Their solution results from the coupling between elastic
deformation and fluid flow.

2.1.2 Linear elastic fracture mechanics

The driving force for fracture growth is the energy release rate G, which is equal to
minus the derivative of the elastic potential energy with respect to an infinitesimal
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fracture surface S increment under a constant load

G = −∂P
∂S

where the elastic potential energy is P =
1

2

ˆ
Ω

σijεijdV −
ˆ
∂Ω

σijnjuidS (see Rice

and Drucker (1967); Rice (1968) for more details). More precisely, the linear elastic
fracture energy criteria for fracture growth can be written as:{

(G−Gc)dS = 0

Gc dS > 0

where the critical fracture energy release rate Gc is a positive material constant.
The previous criteria ensures that if G < Gc, no fracture growth occurs (dS = 0),
and G = Gc during fracture growth (dS > 0)) which corresponds to a hypothesis of
quasi-static growth equilibrium.

For a pure mode I hydraulic fracture growing in a plane perpendicular to the
minimum in-situ stress, the previous energy growth criterion can be replaced by the
equality of the mode I stress intensity factor KI with the material toughness KIc.
For such a fracture configuration, the mode I stress intensity factorKI is related to G

via Irwin’s relation: G =
K2

I

E ′
. The linear elastic fracture mechanics tip asymptotic

for the fracture width w as function of the distance to the fracture front x̂ )

w =

√
32

π

KI(1− ν2)

E
x̂1/2 x̂� 1

can notably be used to obtain the stress intensity factor KI .
For a pure opening fracture (i.e. a planar fracture), the quasi-static growth

criteria reduce to KI = KIc at all points locally along the fracture front C. In the
case of mixed-mode loading, it is well-established that the fracture will re-orient
itself in order to maintain condition of pure opening mode at the fracture front
Hutchinson and Suo (1991). Under mixed mode I & II (opening and shearing)
loading, different criteria to estimate the change of direction of fracture propagation
have been proposed. The principle of local symmetry (i.e. zero mode II stress
intensity factor locally), or the maximum tensile stress criteria (Erdogan and Sih,
1963) are the most commonly used. They both give relatively close estimate and
agree with experimental results.

The case where all three modes of fracture propagation (opening mode, shear and
anti-plane shear) occurs simultaneously along the fracture front remains challenging.
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The combination of opening and anti-plane shear modes results in the splitting of
the fracture front (Cooke and Pollard, 1996). No general criteria to handle such
a case is yet recognized as fully satisfactory although a number of recent advances
have been made (Lin et al., 2010; Lazarus, 2011; Pham and Ravi-Chandar, 2016;
Leblond et al., 2015; Chen et al., 2015) on that particular problem by the mechanics
community.

2.1.3 Fluid flow in the fracture

The hypothesis of lubrication flow holds in a fracture which is intrinsically a long
thin channel. The equations of thin-film lubrication are obtained from the width
averaging (in the direction normal to the fracture wall) of the fluid mass and mo-
mentum conservation (see e.g. Szeri (2010)). The width averaged mass conservation
for a fluid of density ρ is given by:

∂t(ρw) + ∂si(ρw Vi) + 2ρ vL = ρQinj(t)δ(x− xinj) (7)

where δ is the Kronecker delta, xinj the injection point, Vi is the width averaged
fluid velocity in the direction si (in the fracture plane), and vL is the velocity of
the fluid leaking out from the fracture face to the surrounding medium (i.e. the
fluid velocity normal to the fracture face at the fracture wall). The point source
Qinj on the right-hand side of the conservation equation models the injection from
a wellbore, the size of which is presumed negligible in comparison to the fracture
size. Extension to account for a finite size wellbore is straightforward.

Fracturing fluids (which are typically in liquid phase) have a low compressibility.
Under isothermal conditions, the fluid equation of state can thus be linearized (ρ ≈
ρo(1 + cf (p − po)), where ρo is the fluid density at the reference pressure po and cf
the fluid compressibility) and the mass conservation re-written as

∂tw + cfw∂tp+ ∂si(w Vi) + 2vL = Qinj(t)δ(x− xinj) (8)

recognizing that cf (ppo)� 1 for typical value of the fluid compressibility (inO(10−10)Pa−1)
and fluid pressure variations (in O(106)Pa). Moreover, as soon as the fracture is
open, its elastic compliance is much larger than the elastic compliance of the fluid,
that is, 1/w ∂tw � cf∂tp. This can be easily grasped as w ∝ p/E × L, where L
is a fracture characteristic length. The mass conservation for a fracturing liquid
therefore further reduces to volume conservation:

∂tw + ∂si(w Vi) + 2vL = Qinj(t) δ(x− xinj). (9)
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Integration over the entire fracture surface from the beginning of pumping to the
current time t results in the global volume conservation

Vfracture + Vleak−off = Vinj
where Vfracture, Vleak−off and Vinj are the fracture, total leaked-off and injected
volume respectively. This global volume conservation is valid in the case of a van-
ishingly small fluid lag (see section 2.1.5 for discussion on the vanishing size of the
lag for sufficiently deep fracture).

For an incompressible fluid, one obtains the following width-averaged balance of
momentum for the fluid (in the fracture plane):

ρ
(
∂tVi + Vj∂sjVi

)
= −∂sip−

2

w
τw (10)

where τw is the time-averaged fluid shear stress. The inertial terms on the left hand
side are negligible in all cases for a fracturing liquid except at extremely early time
(see discussions in Garagash (2006a); Zia and Lecampion (2017)). The fluid wall
shear stress is typically expressed as

τw = f(Re, k/w)× ρVi‖V ‖
2

(11)

where f is the Fanning friction factor. It is a function of both the local Reynolds
number of the flow Re = ρDeq‖V ‖/µ (where Deq is an equivalent hydraulic radius
for plane flow) and the fracture relative roughness k/w (where k is a characteristic
scale of the fracture roughness - typically related to the rock grain size). As first
discussed in Jones (1976), the definition of the equivalent hydraulic radius can be
directly obtained such that the laminar parallel plate flow relation (Poiseuille law)
for a Newtonian fluid is recovered when using the laminar expression of the Fanning
factor for pipe flow f = 16/ReDeq , i.e. Deq = 4/3w. A number of models exist for
the evolution of the Fanning factor from laminar to turbulent flow in pipes, most
are based on a combination of theory and phenomenological relations to capture ex-
perimental observations (Nikuradse, 1950). One should always treat those turbulent
models with great care and recognize the spatio-temporal statistics associated with
the transition to turbulence (Manneville, 2016). It is also extremely important to
bear in mind that in industrial practice, friction reducers (Virk, 1975) are always
added to low viscosity fluid in order to reduce drag under turbulent conditions.
These polymer additives drastically modify the transition to turbulence and signifi-
cantly lower the value of the friction factor in the turbulent regime (see discussions
in Zia and Lecampion (2017)).
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When laminar flow conditions are encountered, which can be shown to apply in
a majority of cases in industrial practice Zia and Lecampion (2017), the previous
width-averaged balance of fluid momentum reduces to the well-known Poiseuille law
between parallel plates, relating the fluid flux qi = wVi to the local pressure gradient
as

qi = w Vi = − w3

12µ
∂sip. (12)

where µ is the fracturing fluid viscosity. This so-called cubic law is valid for a fracture
with an opening sufficiently large compared to the aperture roughness (Witherspoon,
1980) which is typically the case for hydraulic fracture.

2.1.4 Carter’s leak-off

The leak-off rate vL from a hydraulic fracture located along y = 0 and spanning for
example −`(t) < x < `(t) is typically modelled as

vL = − k
µ

∂p∆

∂y

∣∣∣∣
y=0

(13)

where p∆ = pr−po, the difference between the fluid pore pressure in the rock (pr) and
the far-field (virgin) pore pressure (po), evolves according to the diffusion equation

∂tp∆(x, y, t) =
k

φcrµ
(∂x2p∆(x, y, t) + ∂y2p∆(x, y, t)) (14)

subject to

p∆(x, 0, t) = p(x, t)− po, −`(t) < x < `(t) (15)
lim
y→∞

p∆(x, y, t) = 0 (16)

p∆(x, y, 0) = 0 (17)

Here k is the permeability of the rock, µ is the viscosity of the fluid within the
hydraulic fracture, cr is the reservoir compressibility (combination of reservoir fluid
and pore compressibility), φ is the porosity of the rock, and p is the fluid pressure
in the fracture and po the far-field reservoir pore-pressure.

This 2D or 3D diffusion equation with time dependent boundary conditions that
involve the fluid pressure p – which is a part of the solution to the coupled hy-
draulic fracturing problem as well – poses a significant modeling challenge. The
most common approach to overcoming this challenge is to follow the approach of
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Carter (Howard and Fast, 1957), who introduces two major simplifying assump-
tions. The first assumption is that the hydraulic fracture propagates much faster
than the characteristic diffusion velocity. This assumption has been shown to be
violated in high permeability formations (Kovalyshen, 2010). However, when valid,
this assumption allows reduction to a 1D diffusion equation.

The second assumption is that the fluid net pressure (pnet = p−σo) is very small
compared to the far-field (virgin) effective stress, σo − po. By neglecting the net
pressure under this assumption (p− po = p− σo + σo − po ≈ σo − po, the boundary
conditions become uncoupled from the transient net pressure p − σo. Hence the
diffusion problem reduces to

∂tp∆(x, y, t) =
k

φcrµ
∂y2p∆(x, y, t) (18)

p∆(x, 0, t) = σo − po, −`(t) < x < `(t) (19)
lim
y→∞

p∆(x, y, t) = 0 (20)

p∆(x, y, 0) = 0 (21)

which is readily solved to give

p∆ = (σo − po) erfc

(
φcrµ

k

y

2
√
t

)
Substitution into Eq. (13) leads to

vL =
Cc√
t
, Cc =

√
kcrφ

πµ
∆pc, ∆pc = const. ≈ σo − po (22)

Carter’s leakoff model is then completed by two additional steps:

1. Introducing the dependence on the moving domain upon which the pressure
boundary condition is applied, that is, −`(t) < x < `(t), by replacing time t
in Eq. (22) with the fluid contact time t − to(x), where to(x) is the time it
takes for the fluid to reach point x.

2. Generalizing to allow the fluid loss rate to potentially also be controlled by the
need to displace reservoir fluid that has a different viscosity to the fracturing
fluid and/or by the building of a low permeability filter cake comprised of
particulate or polymer material carried by the fracturing fluid and left behind
as the fluid infiltrates into the rock.
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This latter generalization leads to possible contributions of two additional processes
with similar form to Eq. (22), but with different physical constants determining
the coefficient Cc. However, because these generalizations also lead to vL ∝ (t −
to(x))−1/2, the effects can be lumped into a single, composite fluid loss constant
CL, which is typically determined from calibration experiments such as diagnostic
fracture injection tests (Nolte, 1979; Castillo, 1987; Barree and Mukherjee, 1996)
and/or matching model predictions to fracture geometries inferred from microseismic
monitoring (Weng et al., 2011b). The resulting form of Carter’s leakoff equation is
thus given by

vL(x) =
CL√

t− to(x)
(23)

2.1.5 Boundary conditions

The propagation of hydraulic fractures is typically driven by a given fluid injection
rate from a wellbore which can be modeled as a point source in the fluid continuity
equation (9) (or eventually a line source if there are a line of perforations in a vertical
well for example).

A lag region filled either with vapour (at cavitation pressure) or pore fluid (at
reservoir pore pressure) respectively for an impermeable or a porous material may
be present at the fracture tip. In this case, where the fluid front Cf lags behind
the fracture front C, the boundary conditions at the fracture front Cf are (for an
impermeable medium)

p = pcav ≈ 0 and the Stefan condition Vi = qi/w

Meanwhile, the boundary condition at the fracture front C is w = 0 in complement to
the propagation condition KI = KIc. It has been shown (Garagash and Detournay,
2000) that the fluid and fracture fronts actually coalesce when

σoK
2
Ic

µVCE ′2
� 1 (24)

for an impermeable medium where VC denotes the fracture tip velocity, E ′ = E/(1−
ν2) is the rock plane-strain elastic modulus and σo is the minimum in-situ stress
acting perpendicular to the fracture (see Detournay and Garagash (2003) for the
case of a porous medium). This condition for negligible lag is almost always fulfilled
in practical applications at sufficient depth (i.e. above one hundred meters). For
planar radial and plane-strain hydraulic fracture, the coalescence of the fluid and
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fracture front under constant injection rate happens over a timescale t∗ = 12E ′2µ/σ3
o

(Bunger and Detournay, 2007; Lecampion and Detournay, 2007), which is of the
order of a few seconds or less for typical values of confining stress at depth, rock and
fluid properties. It can be shown that when the fluid and fracture front coalesces,
the Stefan condition degenerates to qi = 0 Detournay and Peirce (2014) and three
conditions must be satisfied at all points along the fracture front C when the fracture
propagates

w = 0 qi = 0 KI = KIc

Under mixed mode loading, an additional criteria for the curving of the fracture is
required, e.g. the maximum tensile stress criteria (Erdogan and Sih, 1963).

2.1.6 Multiscale tip asymptotics

The coupling of linear elastic fracture mechanics, elasticity, and lubrication flow
leads to a complex solution near the tip of a propagating hydraulic fracture, which in
turns leads to numerical difficulties as first recognized by Spence and Sharp (1985).
It is only over the past 20 years that this tip structure of the solution has been
recognized to play a critical role in the overall solution (see e.g. Garagash (2009)).
Garagash and Detournay (2000) argue that the tip behavior is governed by local
plane strain conditions, provided the crack front curvature is not too large. For
a hydraulic fracture growing with velocity V , the continuity Eq. (9) can then be
expressed for the tip region in terms of a moving coordinate attached to the crack
tip x̂ = V t− x) as

∂w

∂t
=

Dw

Dt
+ V

∂w

∂x̂
(25)

The key point is that the quantity ∂w/∂x̂ becomes large in the vicinity of the tip,
and as a result the advective term V ∂w/∂x̂ dominates the time derivative Dw/Dt.
Hence, the solution near the tip of a propagating finite hydraulic fracture is captured
by a stationary solution for a semi-finite crack moving at a constant velocity V –
a solution akin to a traveling wave solution. For more details, we refer to the
contributions of Desroches et al. (1994) for the zero toughness / zero leak-off case
(viscosity asymptote), Lenoach (1995) for the leak-off dominated case and Garagash
et al. (2011) for the complete solution with toughness, leak-off and viscosity in the
limiting case of a vanishing lag.

It is instructive to re-emphasize here the structure of this tip solution in the case
of a vanishing lag (where 24 is valid, i.e. for a deep fracture). Figure 2 displays
the scaled fracture width with respect to the scaled distance to the fracture tip for
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different values of leak-off. Near the fracture tip (x̂/`km . 10−3)), the classical linear
elastic fracture mechanics (LEFM) asymptotic (w ∝ x1/2) is valid while away from
the tip an “outer” viscosity asymptote appears (x̂/`km & 10−1). The effect of leak-off
appears as an intermediate asymptotic between the linear elastic fracture mechanics
and viscosity asymptote as a function of a dimensionless number

χ = (2C ′E ′)/(K ′V 1/2)

, i.e. a quantity determined by the leak-off coefficient, elastic plane-strain modulus,
fracture velocity and toughness. One can easily anticipate that in a numerical model
using a classical algorithm based on linear elastic fracture mechanics, the mesh size
must be sufficient to capture the region where the LEFM asymptote is valid. In that
respect, the actual value of the lengthscale `mk = K ′6/(E ′4µ′2V 2), which scales the
physical distance from the tip on Fig. 2, is particularly important. The condition
on the mesh size to capture the LEFM region will become more stringent as `mk

decreases.
As an example, let’s assume the following realistic rock properties: E ′ = 25 GPa,

K ′ =
√

32/πKIc =
√

32/π× 1.5MPa.m1/2, C ′ = 2CL = 2× 10−5m.s1/2 and fracture
velocity V = 0.1m/s. For these values, we obtain a small value for the leak-off
dimensionless parameter χ = 0.47. For such a small value of χ, the asymptotics are
close to the zero leak-off case. In the case where the fracturing fluid is water (µ′ =
12 × 10−3Pa.s), we obtain 5350 meters as an estimate of the transition lengthscale
`mk. According to Fig. 2, the LEFM region (where the square root asymptote is
valid) is thus of the order 10−3`mk ≈ 5.3 meters. On the other hand, if the fracturing
fluid is akin to a linear gel for which µ′ ≈ 12×0.5Pa.s, we obtain `mk = 0.021 meters
and thus a size of the LEFM region of the order of 21 microns. Such a simple example
illustrates the drastic reduction in the size of the LEFM region for the case of
viscous fluid (or equivalently faster fracture, stiffer material or/and lower toughness
material). The requirement on the mesh size to capture the LEFM region (and
therefore obtain an accurate numerical solution) can sometimes become prohibitive.
This effect is intrinsically related to the multiscale nature of the hydraulic fracture
solution near the fracture tip. It must be well understood in order to devise robust
numerical schemes being able to accurately simulate the process over the whole
possible range of values of the problem parameters (fluid viscosity, toughness etc.).

2.2 Model Extensions

A number of extensions to the base model previously described have been inves-
tigated in the literature. A few of the most often considered extension are briefly
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Figure 2: Dimensionless width ŵ/wmk with dimensionless distance from the tip
x̂/`mk for a semi-infinite plane-strain hydraulic fracture propagating at a con-
stant velocity V (Newtonian fluid). The characteristic width and length scales
are given respectively by wmk = K ′4/(E ′3µ′V ) and `mk = K ′6/(E ′4µ′2V 2), where
K ′ =

√
32/πKIc, µ′ = 12µ are related to fracture toughness and fluid viscos-

ity, and E ′ is the rock plane-strain modulus. In the absence of leak-off (χ =
(2C ′E ′)/(K ′V 1/2) = 0, where C ′ = 2CL), the near-tip width evolves from the lin-
ear elastic fracture mechanics (LEFM) square-root dependence close to the tip (for
x̂/`km . 10−3) to the viscosity asymptote (2/3 dependence) away from the tip (for
x̂/`km & 10−1). For χ = 10, the leak-off asymptote (5/8 dependence of width with
distance from the tip) appears as an intermediate asymptote, while the square-root
LEFM asymptote shrinks to a very small region close to the tip (x̂/`km <. 10−6),
and the viscosity asymptote is only valid far-away from the tip (x̂/`km & 104).
See Garagash et al. (2011) for a complete discussion of the solution and its inner
and outer asymptotes, we refer to Bunger and Detournay (2008) for experimental
validation in the zero leak-off case.
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reviewed here.

2.2.1 Poroelasticity

Instead of utilizing Carter’s leak-off approximation, one can instead simulate the
reservoir as a porous medium and couple the equations of poroelasticity with the
flow in the deformable hydraulic fracture (Boone and Ingraffea, 1990; Carrier and
Granet, 2012). Such an approach is, of course, attractive from a theoretical point of
view as it does not rely on the assumptions behind Carter’s leak-off. In the limit of
negligible poroelastic coupling and small rock diffusivity (compared to the injection
duration), the results obtained are similar to the Carter’s leak-off model (Carrier and
Granet, 2012; Kovalyshen and Detournay, 2013). Poroelastic effects are obviously
important when the injection duration is similar to the rock diffusion time-scales.
Due to the pore pressure increase in the surrounding of the fracture, a poroelastic
back-stress develops resulting in an increase of the fracturing pressure and shorter
fracture extension.

In practice, as already mentioned in sub-section 2.1.4, a “skin” always builds up
on the fracture walls. Such a skin build-up can be explicitly modeled although, sim-
ilar to Carter’s leak-off model, the coefficient(s) appearing in such a description are
rather ad-hoc, fluid chemistry dependent, and must be determined experimentally.
For industrial applications related to well stimulation, the need to use a complete
poroelastic model is therefore questionable. Prior to complexifying the modeling,
depending on the reservoir and injection condition, the scaling laws derived in Ko-
valyshen and Detournay (2013); Kovalyshen (2010) should be used in order to gauge
of the relevance of such a modeling. However, poroelastic effects must be addressed
to model fracture closure upon the end of injection. Multiphase flow effects must
also obviously be accounted for to properly model flow-back and production from
a hydraulic fracture. It should also be noted that classical poroelasticity based on
the assumption of a rock that is saturated by a single phase liquid may also be
inappropriate for use in many gas reservoirs for which the partial gas saturation can
be in the order of tens of percent.

2.2.2 Fluid non-linearities

A large number of fracturing fluids used in practice have a non-Newtonian behavior;
see Barbati et al. (2016) for a review of fracturing fluids. Although liquefied gas is
sometimes (but seldom) used, most of the fracturing fluids are polymer aqueous so-
lutions. These polymeric fluids typically exhibit shear-thinning properties, i.e. their
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viscosity decreases with shear-rate. Such types of fluid rheology can be modelled
by a power-law viscosity relationship for which an analytical solution equivalent to
Poiseuille’s law (12) can be easily obtained. A more refined rheological description
of any fracturing fluid should account for a limiting value of its viscosity at both
low and large shear rates using for example the Cross (1965) or Carreau (1972)
rheological models. Some of the fluids used in the industry also exhibits viscoelastic
properties, which are popular because these greatly enhance the ability of the fluid
to carry solids (proppant) particles. It is worth mentioning that these complex flu-
ids are typically sufficiently viscous such that the flow is always laminar within the
fracture.

The addition of proppant to the carrier fluid modifies the slurry rheology. A
proper two-phase (carrier fluid and solid particles) constitutive model is needed to
properly describe the flow of such suspensions in fracture (Lecampion and Garagash,
2014). After averaging across the fracture width at a given location, the effect
of solid concentration on the flow of such suspension can be accommodated by a
tangent viscosity function of the solid volume fraction while the conservation of
mass of the solid particles adds a coupled transport-like equation on top of the
slurry continuity equation (see Chekhonin and Levonyan (2012); Dontsov and Peirce
(2015b) for examples of numerical implementation of such type of models). We refer
to Osiptsov (2017); Hormozi and Frigaard (2017) for a recent discussion of a wide
range of issues related to the modeling of proppant transport in hydraulic fracturing.

2.2.3 Solid non-linearities

Extensions to account for the bulk plasticity of the rock have been addressed by
several authors (Papanastasiou and Thiercelin, 1993; Papanastasiou, 1997; Sarris
and Papanastasiou, 2013). Bulk plasticity results in an apparent toughening of the
rock. The necessity of such an added modeling complexity is obviously dependent
on the type of reservoir rock. Although, it appears critical for so-called “frack and
pack” applications in unconsolidated reservoirs, it will be of second order for brittle
reservoir rock (Germanovich et al., 2012).

The solid non-linearites associated with fracture propagation in a quasi-brittle
material like rocks are often captured by cohesive zone models. A large number
of cohesive zone models are available (see Park and Paulino (2011); Needleman
(2014) for review). These models condense all the solid non-linearities along the
fracture surface via a traction-separation constitutive law. They model the fact
that the fracture energy Gc is spent over a “process zone” lengthscale. Cohesive
zone models combining opening and shear fracture mode correctly are capable of
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reproducing mode I+II fracture growth but are unable to reproduce the splitting of
the fracture front occurring under combined mixed I+III opening / anti-plane shear
modes. Cohesive zone models are numerically attractive due to their simplicity of
implementation but the mesh resolution must be sufficient in order to capture the
fracture process zone.

2.2.4 Non-linear injection conditions

The condition of an imposed, known, flow rate Qo(t) at the inlet of the fracture does
not always hold. In particular, in the early stage of fracture growth, the flow rate
entering a fracture may be strongly influenced by the injection system compliance
(see Lhomme et al. (2005); Lakirouhani et al. (2016); Lecampion et al. (2017) for
detailed discussions of this effect). This is also the case where multiple hydraulic
fractures located at different positions along a well propagate simultaneously due to
a constant injection rate in the wellbore. In that case, the exact splitting of the fluid
injected at the well head into the different fractures is a priori unknown and may
evolve with time. It depends notably on the elastic interactions between the different
fractures as well as the exact characteristics of the flow constrictions between the
fractures inlet and the wellbore - so called perforation friction (see Bunger and
Peirce (2014); Lecampion and Desroches (2015b); Lecampion et al. (2015) for some
examples). The propagation of simultaneous multiple fractures from a wellbore
therefore adds another non-linearity which must be properly dealt with by coupling
the dynamics of the fluid flow in the wellbore with the growth of these multiple
hydraulic fractures (see Lecampion and Desroches (2015a) for the description of a
fully implicit scheme for such problem).

3 The challenges of a numerical solution and the
different schemes

A large variety of numerical methods have been proposed to model hydraulic frac-
ture growth. We will not attempt to exhaustively classify all of them. However, a
distinction between numerical schemes can be broadly made from the way the frac-
ture front is modelled and how the fracture propagation is handled. A first family of
schemes explicitly tracks the fracture front at each given time step. This is notably
the case of most of the schemes based on linear elastic fracture mechanics. It does
not necessarily imply that the fracture front always exactly coincides with the mesh
boundary although this is often the case.
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A second family of schemes “captures” the location of the fracture front. In other
words, the position of the fracture front is resolved up to the spatial discretization
size of the scheme. This is notably the case of algorithms using cohesive zone models
within finite element analysis, where the fracture follows cohesive zone elements. It
is also the case of meso-scale models like the ones based on the distinct element
method (or quasi-random lattice models). These types of schemes are usually sim-
pler to develop with respect to fracture propagation but typically require a finer
mesh discretization to capture the fracture process zone accurately. The accuracy
of the time evolution of the fracture footprint is intrinsically related to the spa-
tial discretization for those schemes. The numerical algorithms based on a phase
field approach to fracture also falls into such an interface capturing category as the
fracture is typically “smeared” over a number of elements in those methods.

It is worth noting that for some simple fracture geometries (planar fracture in
plane-strain or axisymmetry), a moving mesh approach is very efficient (Desroches
and Thiercelin, 1993; Lecampion and Detournay, 2007). In such approach, the
fracture domain is re-scaled to the interval [−1, 1] and the fracture length solved as
an additional scalar variable.

3.1 Solution of the elasto-hydrodynamics system

Different numerical techniques can be used to solve the coupled system of equations
arising from the coupling between elastic deformation and lubrication flow in the
fracture. The elasticity equation can be discretized via finite element or boundary
element methods, while finite elements, finite volumes or finite differences are typi-
cally used to discretize the lubrication flow in the fracture. As discussed in Adachi
et al. (2007), in all cases the resulting CFL (Courant Friedrichs Lewy) condition on
the time step ∆t for the stability of the coupled elasto-hydrodynamics system scales
as ∆t < h3/E ′D (where h is the mesh size and D ≈ w̄3/µ is a diffusivity which
is a function of a nominal fracture width w̄). Implicit time-stepping schemes (i.e.
backward Euler) are thus clearly favored for the solution of this coupled system of
equations.

For a given time-step ∆t, using an implicit time integration scheme, the resulting
system of equations is non-linear and extremely stiff. This is a direct consequence of
the relation between the fracture conductivity and the cube of the fracture opening
for a Newtonian fluid. Such a non-linear system can be solved either via fixed point
iterations or quasi-Newton methods (see e.g. Quarteroni et al. (2000) for a textbook
description). For more robustness, a quasi-Newton method can be started after few
fixed point iterations have been performed. In doing so, one benefits from a “good”
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starting guess for the quasi-Newton method. Adequate pre-conditioners for the solu-
tion of the quasi-Newton Jacobian residuals system have been investigated in Peirce
and Siebrits (2005); Peirce (2005), with ILU based pre-conditioners showing the best
compromise. Note that pinch-points (i.e. points where the fracture faces contact
themselves locally) may develop in the presence of in-situ stress jumps and elastic
modulus variations. An appropriately-chosen solver tackling such width constraints
must thus be used (Peirce and Siebrits, 2005; Peirce, 2005).

It is important to bear in mind that the solution of the elasto-hydrodynamics
system of equations over a given time-step is typically performed for a given fracture
footprint. This non-linear system must thus be solved a number of times for a
number of “trial” locations of the new fracture footprint, hence its computational
performance is critical.

3.2 Fracture front tracking

The way the new position of the fracture front is solved for over a time-step is critical
with respect to the accuracy of the solution of the problem. Different strategies are
possible, and the choices often define the type of algorithms. As aforementioned,
“capturing” schemes are typically simpler to develop but resolve the fracture front
up to the spatial discretization.

In the case where the fracture front is “tracked”, its new position can be obtained
either explicitly or implicitly. Explicit methods update the new fracture front at
time tn + ∆t from the velocity of the fracture front at time tn (and its propagation
direction if under mixed mode loading). Such explicit fracture front propagation
methods are often used in “dry” fracture mechanics problems, where ad-hoc laws
are sometimes adopted to estimate the local fracture velocity from the local value of
stress intensity factors, using for example Paris’ fatigue law which can be seen as a
regularization of brittle fracture (Lazarus, 2003). In the case of hydraulic fracturing,
the fracture velocity results from the strong fluid-solid coupling at play in the near
tip region and the use of such empirical growth laws are not warranted.

The elasto-hydrodynamics system of equations has a severe CFL condition (in
O(h3) where h is the mesh size). A fully explicit scheme for both fracture front po-
sition and the elasto-hydrodynamics system is therefore a poor choice if the fracture
front is “tracked” because the small time step requirements implies small increment
of the fracture front, smaller mesh size associated with the small fracture increment
results in a smaller critical time step, and so forth thus leading to a vicious cy-
cle of refinement of the length and time discretizations. The elasto-hydrodynamics
system is thus typically solved implicitly avoiding the restriction on time-step as-
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sociated with the CFL condition, while the fracture front is still evolved explicitly.
There are no real guidelines for the choice of the time-step ensuring stability for
such hybrid schemes. Such a implicit (for fluid-solid coupling) / explicit (for frac-
ture front increment) scheme will perform poorly in the presence of heterogeneities
and/or in-situ stress jumps if the time-step is too large, because the fracture front
position is estimated from quantities known at the end of the previous time-step.

The alternative is a fully implicit scheme, both for the position of the fracture
front and the solution of the elasto-hydrodynamics system (i.e. for a given position
of the fracture front). An implicit scheme to track the fracture front thus necessitates
iteration on the new fracture front, i.e. a number of trial positions of the fracture
front will be generated and the elasto-hydrodynamic coupling needs to be solved
on this trial domain. Such types of implicit scheme will typically consist of two
nested loops over a time-step: 1) an outer loop for the new location of the fracture
front, and 2) an inner loop solving for the elasto-hydrodynamics system (for every
trial position of the new fracture front). Such types of schemes are typically more
accurate and robust meaning that larger time-steps can be taken. However, their
developments are more intricate and a fast elasto-hydrodynamics solver is a must
for computational efficiency.

The treatment of fracture curving under mixed mode loading can be tackled
with method developed for dry fracture propagation. Typically, it is easier to use
an explicit treatment of the fracture front advance under such type of mixed mode
loading. However, one can also specify explicitly the direction of propagation from
quantities computed in the previous time-step and implicitly calculate the increment
of the fracture advance in the set direction.

Another very important point worth re-emphasizing regards the multiscale struc-
ture of the solution near the fracture tip and the mesh requirements associated with
the use of conventional linear elastic fracture mechanics (LEFM). When using a
scheme based on LEFM (i.e stress intensity factor based) to track the fracture front,
the mesh needs to be sufficiently fine to capture the LEFM region which scales with
`mk (See sub-section 2.1.6 for discussion).

4 Advances in algorithms for continuum models
In what follows, we review some of the new algorithms and numerical techniques
developed for continuum models of hydraulic fracture growth before discussing meso-
scale approaches in section 5.
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4.1 Schemes using the multi-scale hydraulic fracture tip asymp-
totes for fracture front tracking

In recent years, very efficient fully implicit schemes for the propagation of planar
hydraulic fractures have emerged. These schemes use the asymptotic semi-infinite
hydraulic fracture tip solution (see Fig. 2) coupled with a finite discretization of the
rest of the fracture. In doing so, these schemes bypass the strong requirement on
mesh size associated with the use of the linear elastic fracture mechanics propagation
condition in the case of viscosity dominated propagation (as previously discussed).
Extremely accurate and robust numerical solutions can thus be obtained even on
coarse meshes. We very briefly outline here the basic idea of these schemes. A
complete description of such implicit algorithms using either a boundary element or
an extended finite element discretization of the elasticity equation can be found in
a recent review (Peirce, 2016), see also Peirce and Detournay (2008); Peirce (2015);
Dontsov and Peirce (2017) for details and examples.

In the implicit schemes, the finite fracture is divided in a “tip” region (few el-
ements close to the fracture front) where the HF tip width solution holds and a
“channel” region, i.e the rest of the fracture away from the tip. The coupling of
the HF tip solution with a finite discretization of the fracture is performed via the
elements at the boundary between the channel and tip regions – so-called “ribbon”
elements. The opening of the ribbon elements is used to invert the complete HF
tip asymptote and thus obtain a trial estimate of the closest distance between each
ribbon element and the fracture front. It is important to point out that the frac-
ture velocity which enters the HF tip solution is unknown and solved for during
the process with such an implicit scheme. For planar 3D fractures, the fracture
front is a level set function and a fast marching method is used to estimate the new
fracture front position from the knowledge of the closest distance to the front at all
the ribbon elements center. Once the new trial position of the fracture front has
been obtained, the HF tip asymptotic solution is enforced in the tip elements (i.e.
fixing the element volume according to the tip asymptotics) in order to complete the
coupling with the rest of the fracture. For a given time-step, the process is repeated
iteratively until convergence.

The results obtained with such a scheme compared extremely well with known
semi-analytical solutions (Peirce and Detournay, 2008; Peirce, 2015). They have
shown extremely good convergence properties when compared to other numerical
codes (Lecampion et al., 2013).

A similar scheme can be used for 2D fracture in a much simpler way as the
fracture front reduce to single points in that case (see Gordeliy and Peirce (2013b);
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Lecampion and Desroches (2015a)). The algorithm has also been extended to mixed
mode I+II for plane-strain fractures. It is, however, unclear how it could be extended
to non-planar 3D fractures exhibiting full mixed mode loading. A closely related
scheme using the fluid velocity as a main variable and coupling the near-tip be-
haviour with a finite discretization of the rest of the fracture have been shown to
perform well for plane-strain and height contained hydraulic fractures (Wrobel and
Mishuris, 2013, 2015). It is also important to bear in mind that these algorithms
assume that the fracture propagates (positive velocity). They can, however, be eas-
ily adapted to simulate fracture initiation (or cases where part of the fracture front
does not propagate) by first checking for satisfaction of the propagation condition
(see e.g. Lecampion and Desroches (2015a); Dontsov and Peirce (2017).

4.2 Boundary element schemes

For uniform or piece-wise uniform media (e.g. layered media) of infinite extent, as
often encountered in applications, the boundary element method (BEM) has some
clear advantages. The discretization of the elastic problem reduces to defining the
unknowns only on the fracture surface, which in turn significantly lowers the size of
the problem.

If a displacement discontinuity based BEM (DDM) is employed (Crouch and
Starfield, 1983), the elasticity equations can be constructed readily by collocation
through the fact that stresses along the fracture are equal to the superposition of the
contributions of displacement discontinuities on all segments of the fracture. DDM-
based methods have been widely used in simulating hydraulic fracturing in two and
three dimensions for homogeneous as well as multi-layered medium ( see Vandamme
and Curran (1989); Siebrits and Peirce (2002); Yamamoto et al. (2004); Lecam-
pion and Detournay (2007); Gordeliy and Detournay (2010); Napier and Detournay
(2013); Kumar and Ghassemi (2016) among others). Contact and friction along the
fracture surface can also be readily detected through the changes of displacement
discontinuities with such type of methods. It can thus simulate the formation of
complex fracture networks generated by hydraulic fracture propagation and the in-
teraction between hydraulic fracture and natural fracture in two dimensions (e.g.,
Zhang et al. (2007); Weng et al. (2011a); Zhang and Jeffrey (2014) ).

A number of other types of BEM-based formulation for crack problems have
also been used in the hydraulic fracturing context. Among those, the Symmetric
Galerkin BEM (SGBEM) is a conforming method to enforce variable continuity
across element boundaries based on shape function like in the finite element method
(see e.g.Bonnet et al. (1998) for more details). The SGBEM formulation with dis-
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placement discontinuities as the main variables for the discretization of the fracture
have been used to solve for the elastic deformation in some 3D hydraulic fracture
simulators (Rungamornrat et al., 2005; Xu and Wong, 2013). Recently, a domain
modification BEM technique has been proposed in order to reduce the size of the
elastic problem compared to a DDM or dual BEM discretization of the elastic prob-
lem (Cherny et al., 2016).

In all models using boundary elements for the solution of the elastic equation,
the lubrication flow is discretized via either a finite volume (Peirce, 2005; Peirce and
Detournay, 2009) or a finite element scheme (Advani et al., 1990). Finite volume
methods are very efficient when coupled with DDM scheme for elasticity which do
not enforce continuity of displacement discontinuity between elements. Galerkin
finite element methods using continuous test functions have also been used, and are
especially well suited when coupled with SGBEM. In all cases, the discretization
results in a non-linear system of equations if an implicit time integration is used
(see section 3.1 for discussion). The details of the fracture front propagation differ
from scheme to scheme but usually involve the addition of new elements (Carter
et al., 2000) and/or remeshing near the fracture front (Advani et al., 1990).

4.3 Finite element schemes

When the body shape is irregular, material properties are heterogeneous, and/or
solid non-linearities are involved, the finite element method is often the method of
choice to solve the mechanical problem. The simulation of fracture propagation in
the framework of the finite element method can be performed with a large number
of different approaches. For sake of discussion, we broadly classify them in four
distinct categories as described in Fig. 3. The following provides an overview of
each of these categories.

4.3.1 Fracture growth with re-meshing

One can use adaptive re-meshing during fracture growth such that the finite element
mesh always exactly fits with the fracture surfaces (Simoni and Secchi, 2003; Secchi
et al., 2007) (see Figure 3a). Such a strategy is, of course, computationally expensive
especially in 3D. The use of adaptive remeshing in the context of hydraulic fracturing
simulation has recently received a renewed attention, see the recent work of Paluszny
and Zimmerman (2011) for dry fracture, and Salimzadeh et al. (2016) for planar 3D
hydraulic fractures. A local remeshing approach (i.e. limited only to the surrounding
of the fracture front) has been developed in 3D and coupled to fluid flow in a
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staggered way with limited testing of the different hydraulic fracture propagation
regimes (Profit et al., 2015, 2016a).

For multiphysics problems (e.g. poroelasticity etc.), the required interpolation
of field variables between time-step associated with re-meshing is a particularly
sensitive issue, especially in regards to mass conservation. Robust schemes for such
interpolation are notoriously difficult to develop (Secchi et al., 2007).

4.3.2 Growth along a pre-defined path

When the fracture trajectory is known in advance such as for example for the case
of a straight planar fracture (or T-shape/H-shape geometry where the fracture path
is predetermined along few interfaces), the use of cohesive zone element to model
fracture growth is relatively popular. Note that linear elastic fracture mechanics
model also simplifies when the fracture path is predetermined, reducing the com-
plexity of finding the fracture front within a priori known planes (Settgast et al.,
2016; Hunsweck et al., 2013; Golovin et al., 2015).

Cohesive zone models have been widely used for fracture nucleation and growth
in elastic and poroelastic solids (Simoni and Secchi, 2003; Sarris and Papanastasiou,
2011, 2013; Yao et al., 2015; Carrier and Granet, 2012; Chen et al., 2009; Chen,
2012; Yao et al., 2015). The cohesive zone model originates from the theory pro-
posed by Dugdale (1960) and Barenblatt (1962) to overcome the stress singularity
ahead of the fracture tip. In the cohesive zone, a constitutive relation between the
traction and the fracture surface separation and/or slip is controlled by a potential
(Tvergaard and Hutchinson, 1992; Park and Paulino, 2011). For hydraulic fracturing
problems, mode I crack propagation is typically assumed so that the contribution
of shear stress on fracture energy is neglected. In order to accurately simulate both
toughness and viscosity dominated hydraulic fracture propagation, a fine mesh is
required to properly capture the process zone length scale (see Lecampion et al.
(2013) for examples and discussions). The mesh needs to be even smaller than when
using linear elastic fracture mechanics. And furthermore, the details of the cohesive
constitutive law (tensile strength, maximum separation, softening shape etc.) are
known to have an impact when the cohesive zone size is large (compared to the
fracture size) (Needleman, 2014), see (Chen et al., 2009; Yao et al., 2015) for some
discussions in the hydraulic fracturing context.

Extension to unknown fracture path Cohesive zone models can be generalized
to an unknown path by either inserting cohesive interface elements between all finite
elements of the mesh (intrinsic approach), or inserting them on-the-fly when the
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interface between two elements reach its yield point (extrinsic approach). The latter
technique – although more difficult to implement – is much less computationally
expensive. In both cases, the fracture trajectory follows the mesh internal boundaries
(see Fig. 3b). The fracture solution will thus always possess a degree of mesh
dependency. Such a mesh dependency is of course minimized by using a random
but uniform mesh with small element sizes in order to avoid propagation bias in
some directions. However, whether a zig-zag fracture path can produce a reasonable
fluid pressure distribution or not requires further investigation.

Combined Finite Element/ Distinct Element techniques (FEM/DEM) are closely
related to the cohesive zone approaches just described; they usually involve an ex-
plicit time-stepping and an efficient node contact detection algorithm akin to discrete
element method. The hydro-mechanical coupling essential to hydraulic fracturing
has been investigated (Yan and Zheng, 2016), although no benchmarks with known
solutions for hydraulic fracturing have been reported thus far.Another scheme (Profit
et al., 2016a,b) combines FEM/DEM with a damage law in the bulk material and
a local tip remeshing scheme such that the fracture propagation is not constrained
to follow the initial mesh edges.

4.3.3 Extended / Generalized finite element formulations

The idea to separate the finite element mesh from the exact morphology of discon-
tinuities such as fractures and dislocations dates back to the 1990s (Melenk and
Babuška, 1996; Belytschko and Black, 1999; Moës et al., 1999). The method con-
sists in enriching the classical finite element representation of field unknowns with
an appropriately-chosen interpolation function and associated degrees of freedom.
In the extended finite element method (XFEM), the enrichment is performed locally
on the elements intersected by the discontinuity(ies) (see Fig.3c). For fractures, the
displacement field is thus interpolated as:

u =
∑
∀I

NI(x)uI +
∑
J∈SH

NI(x)[H(f(x))−H(f(xJ))]qJ (26)

+
∑
i

∑
K∈ST

NK(x)[Ψi(f(x))−Ψi(f(xJ))]qi
K (27)

where H denotes the Heavyside function given by 1 for f > 1 and 0 otherwise, f
is a level set function implicitly describing the fracture (for which f(x) = 0) and
Ψi are a set of enrichment functions approximating the near-tip behaviour of the
solution. Additional degree of freedoms qJ , qi

K are associated with these additional
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a) b)

c) d)

Figure 3: Four different categories of modeling fracture with finite elements ( The
“real” fracture geometry in this figure is displayed in red): a) with adaptive remeshing
(such that the mesh always fit the fracture faces), b) with cohesive zone elements
(the approximated fracture geometry is black and follows element edges), c) with
enriched degree of freedoms to model displacement discontinuities independently
of the underlying mesh (XFEM), d) with a phase-field approach to fracture (zero
damage in white for clarity).
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interpolation functions on the set of elements SH and ST which are crossed by the
fracture, with ST the set of elements near the fracture tip. Only those elements
require special treatment when assembling the finite element stiffness matrix. The
previous interpolation provides a local partition of unity essential in finite elements,
although special care needs to be taken in the blending elements around the set of
tip elements (see e.g.Belytschko et al. (2009) for more details). General discussions
of the different aspects of the method in the context of solid mechanics can be found
in Karihaloo and Xiao (2003); Belytschko et al. (2009); Fries and Belytschko (2010).

In order to address hydraulic fracturing problems, the lubrication flow inside the
fracture needs to be discretized and coupled to elastic deformation in a consistent
way. A number of different strategies can be adopted in order to solve for such a
coupling (see Gordeliy and Peirce (2013a) for a complete discussion and the benefits
of a mixed formulation). Another important point relates to the choice of the tip
enrichment functions. As the tip asymptote(s) may differ from the classical LEFM
case (see subsection 2.1.6 for details), different tip functions need to be used depend-
ing on the propagation regimes for better numerical performance (see Lecampion
(2009); Gordeliy and Peirce (2015)).

As with other categories of finite element simulations, different schemes can be
devised for tracking the fracture propagation. Implicit schemes using the knowledge
of the hydraulic fracture tip behaviour have been successfully developed for 2D
problems, properly reproducing semi-analytical solutions in the different propagation
regimes without leak-off (Gordeliy and Peirce, 2013b).

Cohesive zone models can also be easily used with XFEM. In 2D, using an ex-
tension of XFEM accounting for poroelasticity, a cohesive zone approach within an
XFEM formulation appears to properly reproduce the known solutions for a plane-
strain propagating hydraulic fracture (Faivre et al., 2016). See also Mohammadnejad
and Khoei (2013a,b); Salimzadeh and Khalili (2015) for the fully or partially satu-
rated case but with fewer benchmarks, and Mohammadnejad and Andrade (2016)
for the case of fracture closure and re-opening. Extensions to account for frictional
joints/fractures have also been proposed by Khoei et al. (2015). When using XFEM
for fluid infiltrated medium, a proper enrichment needs to be implemented to repro-
duce the pore-pressure variation in the solid matrix associated with the fracture (dis-
continuity in the pressure gradient normal to the fracture). Different schemes have
been proposed (Mohammadnejad and Khoei, 2013a; Faivre et al., 2016; Meschke
and Leonhart, 2015). The lack of consistent benchmarking and convergence studies
renders the discussion on the efficiency and robustness of these different schemes
rather difficult. Also, the problem of resolving the junction(s) of different fractures
(i.e. intersections etc.) is difficult in the classical XFEM framework, and properly
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handling the junction of several cracks via XFEM is known to be particularly dif-
ficult and requires the development of special techniques (see Karihaloo and Xiao
(2003) for discussion).

Three dimensional modeling with XFEM is notoriously more challenging from
an implementation point of view than the 2D case. In the limit of toughness dom-
inated propagation (which implies a uniform distribution of fluid pressure), Gupta
and Duarte (2014) have developed a formulation to model 3D mixed mode hydraulic
fracture propagation, although conserving the continuity of the fracture front and
therefore not fully reproducing the fracture front segmentation observed experimen-
tally under mixed mode I+III. The formulation has been extended to account for
the coupling with lubrication flow (Gupta and Duarte, 2015) and results for the case
of a static fracture (no propagation) presented.

4.3.4 Phase field methods

The phase field approach to fracture consists in introducing a continuous scalar vari-
able s – the field order parameter or crack field – describing the smooth transition
between the intact and the fully broken material state. In such a framework, the
sharp displacement discontinuity associated with a fracture is approximated, typi-
cally smeared out over few elements (see Fig. 3d). The approach can be seen as a
regularization of a variational formulation of brittle fracture (Francfort and Marigo,
1998). The fracture propagation (and initiation) problem can be seen as the solution
of E`(ui, s) = P (ui), where P is the work of external forces and E` is the following
regularized energy functional (Bourdin et al., 2000), that is

E`(ui, s) =

ˆ
Ω

(s2 + k)Ψ(εij(ui))dx+Gc

ˆ
Ω

(
1

4`
(1− s)2 + `‖∇s‖2

)
ds (28)

Here Ψ is the classical elastic energy density function Ψ(εij(ui)) = 1/2εij(ui)Cijklεkl(ui)
and Gc the fracture energy of the material. Additionally, ` is a regularization length-
scale (` > 0) which controls the width of the transition zone between the intact and
fully broken state. The parameter k models an artificial (small) stiffness of the bro-
ken phase, necessary to avoid numerical difficulties (see Bourdin et al. (2000) for
discussion). Such a regularized energy functional can be shown to exhibit so-called
Γ-convergence as ` → 0, i.e. it converges to the original variational form of brittle
fracture according to

E(ui, S) =

ˆ
Ω S

Ψ(εij(ui))dV +GcHN−1(S) (29)
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where HN−1(S) denotes the Hausdorff measure of the fracture S (Fig. 1), noting
that the surface area is in N = 3D while its length is in N = 2D. Numerically,
the regularization lengthscale ` must thus be taken small enough to avoid under-
estimating the bulk energy. Moreover, the mesh size h must be taken such that
h � ` (independent of the order of the chosen finite element description) in order
to accurately estimate the fracture energy. A criteria h < `/2 (for quadrilateral
element) appears to give a sufficient approximation of the fracture topology (Miehe
et al., 2010).

The previous formulation (28) does not distinguish between traction and com-
pression. It must therefore be modified in order to avoid non-physical fracturing
in compression. This is typically done by splitting the elastic energy density into
2 additive parts related to tension Ψ+ and compression Ψ−, respectively, and de-
grading only Ψ+ by (s2 + k). Different splitting approaches are possible, either by
considering the principal strain direction (Miehe et al., 2010) or via a decomposition
of the strain energy in volumetric and deviatoric components (Amor et al., 2009),
see Ambati et al. (2015) for a more detailed discussion. The extension to poroelastic
media is possible (Miehe et al., 2015; Mikelic et al., 2015; Lee et al., 2016; Wilson
and Landis, 2016), although details in the regularization differ among the various
published approaches.

In order to be able to solve hydraulic fracture propagation problems using a
phase field approach, two important issues need to be properly tackled due to the
smearing nature of the method. The first issue relates to the pressurized nature of
hydraulic fracture. Prescribing fluid pressure on the fracture surfaces can be done
by replacing the integral on the crack surface in the power of external forces on the
solid domain, viz. ˆ

S

p(u+
i − u−i )n−i dx

by a volume integral over the whole domain (cracked and uncracked). For example,
Bourdin et al. (2012) perform the following regularization

ˆ
S

p(u+
i − u−i )n−i dx =

ˆ
Ω

pui∂xi
s dx

Using such an approximation, the plane-strain solution for the propagation of a
hydraulic fracture in the toughness dominated regime (i.e. zero fluid viscosity) can
be recovered, albeit for small enough ` and h ≈ `. Another regularization has been
put forward by Mikelic et al. (2015) and Lee et al. (2016) based on

´
Ω
s2(ui∂xi

p +
p∂xi

ui) dx. In essence this regularization circumvents the need to compute the exact
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fracture displacement jump. However, to couple lubrication flow inside the fracture
with elastic deformation, the fracture width w = (u+

i −u−i )n−i must be reconstructed
precisely as it directly controls the non-linearity of such a coupling. Remember that
Poiseuille’s law (Eq. 12) is qi ∝ −w3∂xi

p, such that accuracy on the fracture width
is critical to obtain any meaningful results. This second issue is probably the most
demanding for any phase field methods in the context of hydraulic fracturing.

Some further discussion on the phase field estimate of the fracture width is
therefore in order. The fracture width can be approximated by w ≈ he(λn), where he
is the lengthscale associated with the discretization (mesh size) and λn the nominal
stretch ratio of a line element perpendicular to the fracture plane (Bourdin et al.,
2012). Such an approximation appears to over-estimate the fracture width. A
slightly different approach has also been used in the works by (Miehe et al., 2015;
Wilson and Landis, 2016; Miehe and Mauthe, 2016), approximating w ≈ he(1−λn).
This approach, combined with a proper transition between Stokes flow in the fracture
and Darcy’s flow in the solid (modeled as poroelastic material) using an adequate set
of transition indicator functions (depending on the phase field variable s), appears to
reproduce both viscosity and toughness dominated HF propagation in plane-strain
(Wilson and Landis, 2016). Note that the fracture width reconstruction appears
to be sensitive to the relative orientation of the fracture plan within the mesh, and
requires further improvements. Lee et al. (2016) have used an integral form using the
phase variable initially put forward in the context of cohesive fracture to reconstruct
the displacement jump across the fracture. In a recent work, Santillán et al. (2017)
have used a phase-field approach in plane-strain coupled in a staggered manner with
lubrication flow in the fracture using finite volume. Although restricted to a fracture
propagating along a mesh direction, this scheme appears to reproduces the different
propagation regimes in plane-strain over relatively short injection duration.

It is also important to make note of the drastic mesh requirements of the phase
field methods, specifically h � ` with ` in O(10−4) or less for accurate description
of the fracture process. For practical purposes, mesh refinement and adaptativity
together with robust parallel solvers are thus mandatory.

In summary, the smearing nature of the phase field approach is both a strength
and a weakness in the context of hydraulic fracturing. It is a strength because
it allows modeling of complex mixed mode fracture in 3D, fractures competition,
heterogeneities, and so forth. It is a weakness because it can be challenging to sat-
isfy the requirement for accurate reconstruction of the displacement discontinuities
across the fracture surface. As a result, although attractive, it is still unclear how
robust and accurate phase field methods can be in reproducing the whole range of
hydraulic fracture propagation regime (viscosity/toughness, leak-off/storage) over a
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practical range of length and time scales.

4.4 Meshless methods

Meshless methods such as Element Free Galerkin (EFG) and Smoothed Particle
Hydrodynamics (SPH) have been also used to model fracture propagation in both
elastic and poroelastic materials. However, applications to hydraulic fracturing are
relatively scarce and no thorough verification has been performed to date. We briefly
outline these methods below.

4.4.1 Element free galerkin

The Element Free Galerkin (EFG) method originally developed in the 1990s (Be-
lytschko et al., 1994) is based on nodal data only. The approximating functions in
this method are usually based on moving least-square approximants. Like in XFEM,
tip enrichment functions can be used to properly capture the stresses asymptotic in
the near tip region. Each node is associated with a domain of influence, i.e. with
a weight function which is strictly zero outside the domain of influence. In order
to model fractures / discontinuities, the method requires adaptation of the weight
functions of the nodes whose domain of influence is cut by the fracture. This can be
done either in a sharp / discontinuous way or via a smooth approximation (Suku-
mar et al., 1997; Krysl and Belytschko, 1999). Ultimately, this implies to carry and
update an important data structure and perform special operations to account for
fracture efficiently.

Despite its early attractiveness, the use of EFG for fracture propagation has
had limited success (Sukumar et al., 1997). The reasons for its limited success
are mostly related to integration procedures (underlying mesh), data structure, and
weight functions for handling fracture propagation in a simple and accurate manner.
Recently, Samimi and Pak (2016) have proposed a algorithm based on EFG and
an implicit time stepping scheme for the propagation of a hydraulic fracture in a
porous material under plane strain conditions. The fracture propagation appears to
be performed in an explicit way, using a computation of the stress intensity factor
to set a predefined new fracture increment. A thorough verification of the different
hydraulic fracture propagation regimes is however lacking.
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4.4.2 Smooth Particle Hydrodynamics

Smooth Particle Hydrodynamics (SPH) is a Lagrangian particle based method whose
development was initially geared toward complex fluid dynamics problems (see the
reviews of Monaghan (1992, 2005)). The extension to elasticity and fracture dates
back to the 1990s (Libersky and Petschek, 1991; Benz and Asphaug, 1995) focusing
mostly on fragmentation problem. It has been used to address some geological prob-
lems (Gray and Monaghan, 2004; Das and Cleary, 2010). Applications to hydraulic
fracturing (Douillet-Grellier et al., 2016) are preliminary in nature, i.e. they are
limited to uniform pressure cases for which the fluid coupling vanishes except for
the global volume balance. As a result it remains unclear how well SPH is suited
for the solution of quasi-static hydraulic fracturing problems.

5 Meso-scale models
The use of particle assemblies to represent solid deformation, the so-called Distinct
Element Method (DEM), can be traced back to the early work of Cundall (1971).
In the DEM, the mechanical behaviors are realized through the displacement of the
particles potentially with different sizes and shapes and the fractures are represented
in the states of the contacts between the particles. Later on, the lattice model
with point-like mass and small-displacement (including rotation) spring was used to
model solid deformation. The configuration is simplified from the bonded particle
assembly to the bond only. The stress and deformation of the springs are connected
by some constitutive laws that should be related to some deformation mechanisms
(Grassl et al., 2015).

In addition to mechanical responses, the fluid flow in these meso-scale models
is realized by fluid transport elements, another mesh different from the mechanical
mesh, represented by pipelines connecting the broken contacts in particle-based
models (Damjanac et al., 2013, 2015), or/and by conduits along the edge of the
Voronoi cells in lattice models (Grassl et al., 2015). Coupling with a finite volume
scheme has also been proposed (Papachristos et al., 2017) . Depending on the
formulation, some idealizations are performed to model fluid flow, for example, the
use of steady-state solution of fluid pressure in a saturated porous medium (Grassl
et al., 2015).

Recently, a nonlocal description of the bonds or springs was used to simulate elas-
tic deformation and fracture growth within the framework of peridynamics (Silling,
2000). In this model, the concept of stress is replaced by pair of forces in construct-
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ing the equation of equilibrium for a node. An integral form of all interacting forces
in a given domain (horizon) is produced and the long-range forces are included in
contrast to the local, discrete models like DEM or quasi-random lattice model. This
numerical technique has been coupled to fluid flow (Ouchi et al., 2015). In that
work, the critical energy density stored in a bond is used for material failure and the
flow in the fracture is described as a consolidation problem. Comparisons with the
plane-strain hydraulic fracture solution were performed with a reasonable agreement
on the fracture length only at early time.

Only a few of these meso-scale models have been tested against known solutions
for the propagation of a planar radial hydraulic fracture (Damjanac et al., 2015;
Lecampion et al., 2013). They appear to be able to reproduce these known solu-
tions, albeit at a very large computation cost and with these benchmarking exercises
limited to only specific combinations of model resolution, size, and initial stresses.

Besides large computational time, the main difficulty of these type of models
lies in the calibration of the micro constitutive parameters. This task can be partly
automated as shown by Damjanac and Cundall (2016). A particularly important
point relates to the macroscopic fracture energy. Macroscopic fracture toughness
is intrinsically related to the meso-scale discretization lengthscale (Huang and De-
tournay, 2008; Huang et al., 2013); it fixes the meso-scopic discretization length of
this type of model. These meso-scale models allow to investigate with little addi-
tional developments very complex fracture geometries, such as near-wellbore effects
on fracture growth (Grassl et al., 2015) and interactions with pre-existing fractures
in 3D (Damjanac and Cundall, 2016). To save computational time, a hybrid DEM
and continuum method with a discrete inner region embedded in an outer contin-
uum domain has recently been developed to solve the 2D problems with complex
fracture geometries (Zhang et al., 2017a). In this paper, the authors attempted to
verify their results with plane-strain analytic solutions.

6 Engineering models
By engineering models, we refer to models that make some further simplifications
within the basic model presented in section 2.1 in order to significantly decrease
computational cost, thus enabling practical engineering design. often these under-
lying simplifications are guitable for particular configuration(s). These models are
often fit for certain purposes and as such their limitations must therefore be prop-
erly understood, especially because the various models can vary significantly among
each other both in underlying simplifications and in solutions even to relatively sim-
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ple hydraulic fracturing problems. Some appreciation of the diversity of modeling
approaches can be gained from the classical comparative study of Warpinski et al.
(1993). In this review, after a brief description of the underlying simplifications
and limitations, our focus will be on some recent advances without attempting to
comprehensively review many various models and their specific approaches to sim-
plification and generalization.

The Pseudo-3D (P3D) models (Simonson et al., 1978), as an extension of the
well-known PKN (Perkins-Kern-Nordgren) model (Perkins and Kern, 1961; Nord-
gren, 1972; Kemp, 1990), divides the fracture into cells along the lateral direction,
the width and height of which are calculated solely based on local fluid pressure.
P3D models can handle the fracture height growth, and maintain the lateral cou-
pling for fluid pressure, so that the initial 3D problem is reduced to a 2D elastic
problem and a 1D fluid flow problem. The dimension reduction can significantly
reduce computational time. However, the original formulation of P3D models did
not consider the elastic coupling along the lateral direction and the effect of the
fracture toughness.

This drawback of the classical PKN model, which requires the fluid pressure to
be zero at the fracture tip, has been long recognized. Meyer (1989), for example,
addressed this issue by essentially assuming a semi-circular leading edge and com-
puting the stress intensity factor accordingly, making use of an influence function
both on the stress intensity factor and on the elasticity equation itself, in order to
ensure that the model captures in an approximated way the limits of a circular and
finger-like (PKN) hydraulic fracture. More recent remedies rely on a near-tip dis-
placement formulation derived from asymptotic analysis, as a measure for fracture
growth, which has been developed by Adachi et al. (2010) for a similarity solution
if the fracture front is flat and by Kovalyshen and Detournay (2009) for a finger-like
fracture. These latter approaches draw on a formal consideration of the non-local
elasticity for a finger-like fracture that was introduced by Adachi and Peirce (2008).

Related to the resolution of the near-tip displacement field, some recent ap-
proaches have been introduced to account for fracture propagation. These include
and energy approach based on near-tip nonlocal elasticity (Dontsov and Peirce,
2015a; Sarvaramini and Garagash, 2015). Moreover, the PKN and P3D models have
been recently extended to include both the non-local elastic interactions between the
cells and the near-tip displacement formulation (Dontsov and Peirce, 2015a, 2016).
This modification increases the overall accuracy of the model in fracture opening,
height and length, which especially affects toughness dominated cases. It should be
noted that in addition to accurately describing elastic deformation, further refine-
ment can be obtained by replacing the 1D fluid flow along the lateral direction by
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2D fluid flow within the vertical fracture surface, as done by Weng (1992). This in-
clusion of 2D fluid flow is sometimes essential for restricting unstable height growth
based on the uniform pressure assumption.

The cell-based P3D model is also the foundation for extensions that consider
growth of hydraulic fractures in formations with many pre-defined natural fractures
(e.g. Weng et al., 2011a; Meyer and Bazan, 2011). When the fracture height growth
is involved during the fracture network formation, the stacked cell model consisting
of many rows of elements in the vertical direction was proposed by Cohen et al.
(2015). The stress and fluid pressure profiles vary vertically and the fracture height
prediction becomes more accurate than the conventional P3D models if the in-situ
stress and material property differences cannot be neglected (Zhang et al., 2017b).
Moreover, for multiple fracture growth in a single layer along the horizontal well, a
3D correction factor has been used to extend bi-dimensional plane-strain model to
the 3D case (Wu and Olson, 2015b,a). Such a dimension reduction model enforces
the fracture(s) height to be constant and equal to a pre-defined value equal to the
layer thickness. While this assumption may be somewhat harsh and they reduce the
practicality of the model from the perspective of eliminating its ability to predict
fracture containment, the benefits lay in the possibility to simulate the propagation
of a large number of hydraulic fractures and their interactions with vertical pre-
existing ones at a reasonable computational cost.

It is important to note that other approaches to simulate hydraulic fractures
in naturally fractured formations are available using a 2D (e.g. Olson and Dahi-
Taleghani, 2009) or 3D Displacement Discontinuity Method (e.g. McClure and Horne,
2013), or using an adaptation of the Distinct Element Method (e.g. Damjanac et al.,
2010; Nagel et al., 2011). The latter one sacrifices computational time for a more
detailed and/or general description of the mechanics problem. On the other hand,
P3D-based are aimed at practical design. All of these models are aimed at address-
ing one of the major challenges of modern hydraulic fracture simulation, which is
to predict whether a given stimulation will result in a simple geometry with only
one or a few dominant, somewhat planar fracture branches or a multiply-branched
“complex” geometry. A recent reviews of field evidence, modeling insights, and lab-
oratory results is given by Bunger and Lecampion (2017). Also, for all of these
models, one of the greatest challenges lies in appropriately defining the conditions
under which a hydraulic fracture will cross each natural fracture it encounters. Be-
cause this issue is essentially one of physics and not of numerical simulation per se,
we will not attempt to review the large relevant literature but will instead refer to
the review provided by Chuprakov et al. (2014). Suffice it to say, however, that
regardless of the simulation method, this choice of crossing condition may have a
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predominant impact on the numerical predictions (Kresse et al., 2013).

7 The necessity of verification and validation
Verification (checking that a model indeed solves what it claims to solve) and valida-
tion (checking that a model hypotheses are indeed acceptable) of numerical models
are both essential. This is particularly needed for the simulation of hydraulic frac-
tures. Since it is a non-linear moving boundary problem, numerical errors may
accumulate in time resulting in widely different results between codes after the sim-
ulation of an hour of injection (Warpinski et al., 1994). Fortunately, over the last
two decades, a number of semi-analytical solutions for simple planar fracture ge-
ometries (plane-strain, axi-symmetric fracture) have been obtained (see Detournay,
2016, 2004, for a review). Any numerical models must thus be verified against these
analytical solutions before tackling more complex configurations for which analytical
solutions are unavailable. Nonetheless, it remains that a large number of authors
either do not perform any comparisons with these solutions, or actually use old and
incomplete solutions such as Geertsma and De Klerk (1969) for the plane strain
hydraulic fracture.

In Table 1, we list the known semi-analytical solutions valid in the different prop-
agation regimes for three simple fracture geometries (plane-strain, radial and height
contained). The proper verification of a simulator must be performed on all these
different limiting propagation regimes (storage / leak-off, viscosity / toughness).
In addition to these, complete analytical approximations have also been developed
recently for these two geometries (Dontsov, 2016, 2017). Some semi-analytical solu-
tions for power-law fluids also exist (Adachi and Detournay, 2002; Garagash, 2006a).
Transient numerical solutions also exist for the case of a fluid lag (Lecampion and
Detournay, 2007; Gordeliy and Detournay, 2010). For model verification, the evolu-
tion of fracture length versus time (for a sufficiently large time of injection spanning
at least two decades of time) as well as the fracture opening and net pressure pro-
files at different times must be compared to analytic solutions, and relative errors
computed. From our experience, it is relatively common that a scheme giving an
accurate solution in a given limiting regime (e.g. toughness/storage dominated),
may perform poorly in another (e.g. viscosity/storage dominated).

The comparisons with analytical solutions also allows to better understand the
benefits and constraints of different numerical schemes. Figure 4 shows an example
of such an exercise where the convergence to the plane-strain self-similar viscos-
ity dominated propagation solution was investigated for different numerical models
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Known analytical solutions for HF propagation
Plane-strain hydraulic fracture (KGD)
Storage (impermeable) / large toughness and small viscosity correction (Garagash, 2006b)
Storage/ large viscosity (Adachi and Detournay, 2002; Spence and Sharp, 1985)
Storage /large viscosity small toughness correction (Garagash and Detournay, 2005)
Large toughness with small or large leak-off (Bunger et al., 2005a)
Large viscosity with small or large leak-off (Adachi and Detournay, 2008)
Storage (impermeable) with a fluid lag: early time solution (Garagash, 2006c)
Radial hydraulic fracture (penny-shaped)
Storage / Large toughness (Abé et al., 1976)
Storage / Large viscosity (and small toughness correction) (Savitski and Detournay, 2002)
Large toughness with small or large leak-off (Bunger et al., 2005a)
Leak-off / Viscosity solutions (Madyarova, 2003)
Impermeable with fluid lag: early time solution (Bunger and Detournay, 2007)
Height contained hydraulic fracture (PKN)
Large viscosity with or without leak-off (Kemp, 1990; Kovalyshen and Detournay, 2009)
Inclusion of toughness (Dontsov and Peirce, 2016; Sarvaramini and Garagash, 2015)

Table 1: Analytical or semi-analytical (via truncated series) solutions of hydraulic
fracture propagation in limiting regimes for simple fracture geometries. Large tough-
ness implies zero viscosity, similarly large viscosity implies zero toughness. Solutions
for small or large toughness also exist. Impermeable versus porous cases are related
to the storage and leak-off dominated regimes. These different limiting solutions are
to be understood in the light of a proper scaling analysis (see the reviews (Detour-
nay, 2004, 2016), and discussions in the papers cited in this table). Some complete
solutions (storage / leak off / toughness/ viscosity) - although numerical- exist for
the plane-strain (Hu and Garagash, 2010) and radial geometries (Madyarova, 2003).
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based on different propagation criteria (LEFM, cohesive zone models, HF tip asymp-
totics, and so forth). Some models performed better than others. Through such an
exercise, the trade off between accuracy, computational efficiency, and robustness
(the ability to model more complex configuration without fine-tuning) can be clearly
demonstrated.

Besides analytical/semi-analytical solutions, carefully designed laboratory exper-
iments can also provide important benchmarks for numerical simulators. A number
of laboratory scale hydraulic fracture experiments have been performed with de-
tailed measurements of the evolution of the fracture front, fracture width profiles,
and the wellbore-pressure. Design of the experiments relies on scaling of the physi-
cal quantities (specimen dimensions, injection rate, material properties) so that the
laboratory scale hydraulic fractures are dominated by similar physical processes to
field scale hydraulic fractures (e.g. Bunger et al., 2005c; Bunger, 2008; Bunger and
Detournay, 2008). While scaling and experimental design can be challenging, espe-
cially for issues such as proppant transport and hydraulic fracture growth in media
with heterogeneities at a wide range of scales (like most rocks), there are a number
of recent examples that highlight the lessons that can be learned from benchmark-
ing simulators with experiments. Furthermore, in many cases experiments enable
benchmarking in configurations for which no analytical solution is possible. While
not attempting to review the substantial experimental hydraulic fracturing literature
(a broader recent review is available in Bunger and Lecampion (2017)), we present
here some illustrative examples mainly involving the present authors’ work, thus
enabling some commentary on overarching conclusions which may not be evident
from the original works along. These selected examples include:

• Experiments on height growth in stress layered media, which were used to
validate the basic Planar 3D approach to height growth prediction (Wu et al.,
2008; Jeffrey and Bunger, 2009). One of the striking findings in the course of
this work is that it is challenging to predict wellbore pressure even when the
simulator is matching well with the evolution of the hydraulic fracture front
and width. These experimental data have recently been extended to include
the influence of weak bedding planes by Xing et al. (In Review).

• Experiments demonstrating the theoretically-predicted multiscale nature of
the near tip region of hydraulic fractures (Bunger and Detournay, 2008; Xing
et al., 2017). These experiments confirm that the steady-state traveling wave
type solution (see Section 2.1.6) successfully predicts the family of near tip so-
lutions and each solution’s emergence at the observable scale in different prop-
agation regimes. Also, the experiments show that the predicted asymptotic
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Figure 4: Relative error on hydraulic fracture radius of different numerical schemes
as function of the number of elements discretizing the fracture. The results are for
the early-time storage/viscosity dominated regime where they can be compared to
the semi-analytical solution of Savitski and Detournay (2002) in that propagation
regime. All the simulations were performed with a regular mesh. The different
schemes reach the same accuracy at different numerical cost (i.e. different number
of elements). The implicit level set algorithm (ILSA) using the complete (universal)
hydraulic fracture asymptote (see sub-section 4.1) can achieve very accurate solu-
tion on very coarse mesh, more elements (about 10 times more) are needed when
using the linear elastic fracture mechanics asymptote. A finite element scheme with
a cohesive zone model reaches the same accuracy with a much larger number of ele-
ments (about 200 times more elements). Similarly, the meso-scale HF-lattice based
simulation is much less accurate at the same level of discretization. Figure adapted
from Lecampion et al. (2013).
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forms emerge even for curving hydraulic fractures and those with substantial
fluid lag (Bunger et al., 2005b), which is important for numerical simulations
but yet unproven theoretically.

• Experiments showing growth of curving hydraulic fractures in the presence of
a nearby free surface (Bunger et al., 2004; Bunger, 2005; Bunger et al., 2008)
and/or in the vicinity of a nearby, previously-placed hydraulic fracture (Bunger
et al., 2011). Numerical simulations have been shown to capture the behavior
of these experiments (Bunger et al., 2013), with the notable observation that
hydraulic fractures curve towards a free surface in all cases but can curve
towards or away from previously-placed hydraulic fractures depending on the
magnitude of the minimum confining stress. Note that the effect of the early
stage transient injection rate was also found to be important and a subsequent
study comparing to a wider range of experiments also found that capturing
this early transient behavior is essential to matching laboratory scale hydraulic
fractures (Lecampion et al., 2017).

The necessity of benchmarking hydraulic fracture propagation codes with both
analytical solutions and laboratory experiments is compounded by the fact that
field data are often insufficient to carry out a proper validation of a numerical code.
Even in the best possible case, where many measurements are performed and a mine-
back of the hydraulic fracture performed (e.g. Warpinski and Teufel, 1987; Jeffrey
et al., 2009), a degree of uncertainty on the response of the rock always remain as
measurements are always too scarce spatially. If the response of a field experiment
can not be reproduced by a numerical model, ones needs to have sufficient confidence
in the capabilities of the numerical model to be able to decipher between a missing
feature in the model (heterogeneity, other physical process not included) and poor
numerical performance. This can only be achieved if the numerical code has been
thoroughly tested beforehand.

8 Conclusions
Accelerating development of numerical methods for hydraulic fracture simulation in
the past two decades has led to both enhancements of classical methods as well as
methods that, while imported from other fields of mechanics, are completely new
in their application to hydraulic fracturing. Examples of enhancements of classical
methods include boundary element-based approaches that are enriched to recog-
nize the multi-scale nature of a propagation hydraulic fracture tip thereby enabling
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accurate simulation on very coarse meshes. Examples of completely new methods
to hydraulic fracturing include Smoothed Particle Hydrodynamics and Phase Field
methods among others. All these methods and the different fracture propagation
scheme have their benefits and pitfalls. Their suitability (and accuracy) depends on
the purpose of the modeling and the specific types of hydraulic fracture simulation
to be undertaken. None provides a universal, “off the shelf” solution to all hydraulic
fracturing problems.

In reviewing the different numerical techniques, we observe that some models
are presented with verification and validation, showing how even complex models
reduce in given limits to benchmark solutions or match in certain cases to laboratory
experiments. However, as the draw of “complexity” becomes ever stronger, there is
also an increasing tendency in the literature to present new models in terms of their
added features and ability to illustrate complicated behaviors which could occur, but
without verification and validation. Such a trend will certainly prove increasingly
problematic as we fall into the pitfalls forecasted three decades ago by Starfield and
Cundall (1988) in which we:

“...have an implicit credo that more detail implies a better model. It is an additive
credo: the modeller becomes hooked on bigger and “better” models and these in turn
need more data, leading to more field and laboratory measurements. At best these
efforts are a waste of time and resources; at worst they are counter-productive,
concealing the [forest] for the trees. After all, we build models because the real
world is too complex for our understanding; it does not help if we build models that
are also too complex. The art of modelling lies in determining what aspects of the
geology are essential for the model.”

The process of verification and validation, in the words of Starfield and Cundall
(1988), seeking to “gain confidence in the model”, is critical for avoiding such pitfalls,
ensuring understanding of the basic elements of each model and enabling users
making informed choices among different numerical schemes (see Fig. 4).

A large number of challenges remain in relation to the increasing demand for
high resolution modeling of ever more complex configurations, including:

• The still-unresolved 3D fracture propagation criteria under truly mixed mode
condition with the associated front segmentation and curving is seldom recog-
nized and addressed in the context of hydraulic fracture modeling.

• The possibility of predicting the micro-seismic activity associated with frac-
turing has received a lot of interest as it is often the only available data in
practice. However, most predictions are currently based on models which do
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not account for the details of the physical processes associated with these small
scale dynamic ruptures. How good are those predictions is yet unclear.

• The details of the interaction between pre-existing fractures and a growing
hydraulic fractures is not completely resolved, especially when accounting for
the three dimensional nature of such interactions. Here again, more labora-
tory experiments are clearly required to decipher between different modeling
approaches.

• The modeling of simultaneous hydraulic fracture propagation from a single
wellbore requires the coupling between multiple fracture growth and wellbore
flow dynamics in order to determine the fluid rates entering each of the prop-
agating fractures. The details are often overlook and introduce a set of addi-
tional non-linearities.

• The non-linearities of the fracturing fluid (complex shear-thinning behavior,
viscoelasticity) require an improved description beyond the simple power-law
model, not to mention the slurry rheology of the fracturing fluid/proppant
suspensions. Similarly, rock non-linearities (plasticity, damage) needs to be
accounted for in some cases.

Finally, one should always keep in mind that a large number of other features
must be included in order to perform an engineering design of a hydraulic fracturing
treatment. Notably, the temperature dependence of the rheology of fracturing flu-
ids, the details of proppant transport, fluid scheduling, the mechanics and physics
of fracture closure after shut-in, the degradation of fracturing fluid viscosity post
placement among others must all be properly modeled in any industrial software for
hydraulic fracturing engineering.

In summary, the acceleration of hydraulic fracture simulation in the past two
decades has led to astounding advances. A number of challenges remain and are
amplified with a pressing drive toward fully-coupled, three-dimensional hydraulic
fracture modeling that accounts for host-rock heterogeneity. In the context of such
a drive to complex models, we argue that the importance of best-practice develop-
ment that includes careful verification and validation is vital to ensure that progress
is constrained by the appropriate underlying physics and mathematics with a con-
stant attention to identifying conditions under which simpler models suffice for the
intended modeling purposes.
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