# **Supporting Information**

# **Room temperature** C(sp<sup>2</sup>)**-H oxidative chlorination via photoredox catalysis**

Lei Zhang and Xile Hu\*

Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland

E-mail: xile.hu@epfl.ch.

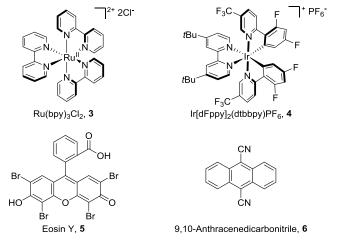
## Table of Contents

| 1. | General Information                                           | . S3 |
|----|---------------------------------------------------------------|------|
| 2. | Optimization of Reaction Conditions                           | . S4 |
| 3. | Preparation of Substrate                                      | . S5 |
| 4. | Chlorination of Aromatic Compounds                            | . S6 |
| 5. | Synthesis of Clofibrate and Some Pharmaceutical Intermediates | S21  |
| 6. | Mechanism study                                               | S24  |
| 7. | References                                                    | S28  |
| 8. | NMR Spectra                                                   | S28  |

### **1. General Information**

#### a. Materials

All manipulations were carried out under air. The following chemicals were purchased and used as received:  $Ru(bpy)_3Cl_2GH_2O$  (Aldrich or TCI),  $Na_2S_2O_8$  (Aldrich), aromatic compounds (Aldrich or TCI).  $Ru(bpy)_3(ClO_4)_3^{[1]}$ , substrates  $1i^{[2]}$ ,  $1j^{[2]}$ ,  $1o^{[3]}$ ,  $1s^{[4]}$ ,  $1t^{[5]}$ ,  $1x^{[2]}$ ,  $7^{[3]}$  and  $9^{[6]}$  were prepared according to previously reported procedures. All other reagents and solvents were purchased from commercial sources and used without purification.


#### **b.** Analytical Methods

NMR spectra were recorded on Bruker Avance 400 MHz spectrometers. <sup>1</sup>H NMR chemical shifts were referenced to residual protio solvent peaks or tetramethylsilane signal (0 ppm), and <sup>13</sup>C NMR chemical shifts were referenced to the solvent resonance. Data for <sup>1</sup>H NMR are recorded as follows: chemical shift ( $\delta$ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, coupling constant (s) in Hz, integration). Data for <sup>13</sup>C NMR are reported in terms of chemical shift ( $\delta$ , ppm). GC measurements were conducted on a Perkin-Elmer Clarus 400 GC with a FID detector. GC-MS measurements were conducted on an Agilent Technologies 7890A GC system equipped with a 5975C MS detector. HRMS (ESI, APCI and EI) measurements were conducted at the EPFL ISIC Mass Spectrometry Service with a Micro Mass QTOF.

## 2. Optimization of Reaction Conditions

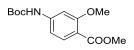
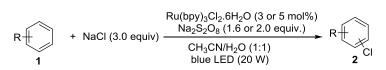
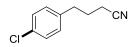

|                   | + NaCl (x equiv.)  | photoredox can<br>Na $_2$ S $_2$ O $_8$ (y ec<br>CH $_3$ CN/H $_2$ O<br>blue LED (20 V | uiv.)<br>(1:1) ← CI +                                    |           | +     | CI   |
|-------------------|--------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------|-----------|-------|------|
| 1                 |                    |                                                                                        | 2a                                                       | 2a'       | 2     | a''  |
| Entry             | photo catalyst     | NaCl (x equiv.)                                                                        | Na <sub>2</sub> S <sub>2</sub> O <sub>8</sub> (y equiv.) | Yield (%) |       |      |
| Linuy             |                    |                                                                                        |                                                          | 2a        | 2a'   | 2a'' |
| 1                 | <b>3</b> (3 mol%)  | 3.0                                                                                    | 1.6                                                      | 56%       | 34%   | 0%   |
| 2                 | <b>4</b> (3 mol%)  | 3.0                                                                                    | 1.6                                                      | 0%        | 0%    | 0%   |
| 3                 | <b>5</b> (10 mol%) | 3.0                                                                                    | 1.6                                                      | 0%        | 0%    | 0%   |
| 4                 | <b>6</b> (10 mol%) | 3.0                                                                                    | 1.6                                                      | 0%        | 0%    | 0%   |
| 5                 | <b>3</b> (3 mol%)  | 3.0                                                                                    | 1.2                                                      | 46%       | 27%   | 0%   |
| 6                 | <b>3</b> (3 mol%)  | 3.0                                                                                    | 1.4                                                      | 49%       | 29%   | 0%   |
| 7                 | <b>3</b> (3 mol%)  | 3.0                                                                                    | 1.8                                                      | 56%       | 32%   | 0%   |
| 8                 | <b>3</b> (3 mol%)  | 3.0                                                                                    | 2.0                                                      | 54%       | 31%   | 0%   |
| 9                 | <b>3</b> (3 mol%)  | 1.5                                                                                    | 1.6                                                      | 40%       | 24%   | 0%   |
| 10                | <b>3</b> (3 mol%)  | 2.0                                                                                    | 1.6                                                      | 47%       | 30%   | 0%   |
| 11                | <b>3</b> (3 mol%)  | 2.5                                                                                    | 1.6                                                      | 50%       | 33%   | 0%   |
| 12                | <b>3</b> (1 mol%)  | 3.0                                                                                    | 1.6                                                      | 29%       | 18%   | 0%   |
| 13                | <b>3</b> (2 mol%)  | 3.0                                                                                    | 1.6                                                      | 48%       | 30%   | 0%   |
| 14 <sup>[b]</sup> | <b>3</b> (3 mol%)  | 3.0                                                                                    | 1.6                                                      | 0%        | 0%    | 0%   |
| 15                | 0                  | 3.0                                                                                    | 1.6                                                      | 0%        | 0%    | 0%   |
| 16                | <b>3</b> (3 mol%)  | 3.0                                                                                    | 0                                                        | 0%        | 0%    | 0%   |
|                   |                    | 2+ 2CI-                                                                                | F <sub>3</sub> C                                         | F         | ]+ PF | 6    |

Table S1: Optimization of reaction conditions<sup>[a]</sup>

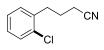



[a] Reaction conditions: Toluene (0.25 mmol) in CH<sub>3</sub>CN/H<sub>2</sub>O (1 mL) at 25 °C. Yields were obtained from the crude reaction mixture by GC relative to mesitylene internal standard. [b] Without light.

### 3. Preparation of Substrate

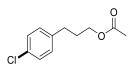



**Methyl 4-((tert-butoxycarbonyl)amino)-2-methoxybenzoate (11)** was prepared according to previously reported procedure.<sup>[7]</sup> White solid (1.22g, 72%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.77 (d, *J* = 8.6 Hz, 1H, aryl-*H*), 7.37 (s, 1H, aryl-*H*), 6.90 (s, 1H, N*H*), 6.74 (dd, *J* = 8.5, 2.0 Hz, 1H, aryl-*H*), 3.88 (s, 3H), 3.84 (s, 3H), 1.49 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  166.2, 160.9, 152.4 (aryl-*C*), 144.0 (aryl-*C*), 133.1 (aryl-*C*), 113.6 (aryl-*C*), 109.3 (aryl-*C*), 101.6 (aryl-*C*), 81.2 (*C*(CH<sub>3</sub>)<sub>3</sub>), 56.1 (ArOCH<sub>3</sub>), 51.9 (COOCH<sub>3</sub>), 28.4 (C(CH<sub>3</sub>)<sub>3</sub>). HRMS-ESI (m/z): Calcd for [(C<sub>14</sub>H<sub>19</sub>NO<sub>5</sub>+H)+], 282.1342 ; found: 282.1343.

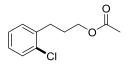

### 4. Chlorination of Aromatic Compounds



General procedure for chloronation of aromatic compounds: In the air,  $Ru(bpy)_3Cl_2GH_2O$  (11.2 mg, 3 mol% or 18.7 mg 5 mol%),  $Na_2S_2O_8$  (190 mg, 0.8 mmol, 1.6 equiv or 238 mg, 2.0 equiv), NaCl (88 mg, 1.5 mmol, 3 equiv), substrate (0.5 mmol) and solvent (CH<sub>3</sub>CN/H<sub>2</sub>O = 1/1, 2 mL) were added to a 8 mL vial equipped with a magnetic stir bar. The reaction was placed in the photoreactor and stirred at room temperature for 15~24 h. The resulting solution was extracted with ethyl acetate (3 mL x 3), after which the organic solution was combined and dried over Na<sub>2</sub>SO<sub>4</sub>. Then the solvent was evaporated under vacuum and the residue was purified by chromatography on silica gel, eluting with the mixture of ethyl acetate/hexane to give the corresponding products.

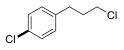



**4-(4-chlorophenyl)butanenitrile (2d). 2d** and **2d'** were synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (20:1) to give the title compound as colorless oil (42.0 mg, 49%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.30 (d, *J* = 8.5 Hz, 2H, aryl-*H*), 7.14 (d, *J* = 8.3 Hz, 2H, aryl-*H*), 2.77 (t, *J* = 7.5 Hz, 1H), 2.34 (t, *J* = 7.0 Hz, 1H), 1.97 (p, *J* = 7.2 Hz, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  138.2 (aryl-*C*), 132.4 (aryl-*C*), 129.9 (aryl-*C*), 128.9 (aryl-*C*), 119.4 (CN), 33.8, 26.8, 16.4. HRMS-NSI (*m*/*z*): Calcd for [(C<sub>10</sub>H<sub>10</sub>ClN+H)+], 180.0575; found: 180.0570.

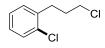



**4-(2-chlorophenyl)butanenitrile (2d'). 2d** and **2d'** were synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting

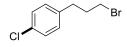
with hexane/ethyl acetate (20:1) to give the title compound as colorless oil (38.0 mg, 42%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.36 (dd, *J* = 6.8, 2.0 Hz, 1H, aryl-*H*), 7.25 – 7.16 (m, 3H, aryl-*H*), 2.90 (t, *J* = 7.6 Hz, 2H), 2.36 (t, *J* = 7.1 Hz, 2H), 2.01 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  137.6 (aryl-*C*), 134.1 (aryl-*C*), 130.7 (aryl-*C*), 129.9 (aryl-*C*), 128.2 (aryl-*C*), 127.2 (aryl-*C*), 119.5 (CN), 32.5, 25.4, 16.7. HRMS-NSI (*m*/*z*): Calcd for [(C<sub>10</sub>H<sub>10</sub>ClN+H)+], 180.0575; found: 180.0569.




**3-(2-chlorophenyl)propyl acetate (2e). 2e** and **2e'** were synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (30:1~10:1) to give the title compound as colorless oil (49.6 mg, 47%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.25 (d, *J* = 7.8 Hz, 2H, aryl-*H*), 7.11 (d, *J* = 8.0 Hz, 2H, aryl-*H*), 4.07 (t, *J* = 6.5 Hz, 2H), 2.66 (t, *J* = 7.7 Hz, 2H), 2.05 (s, 3H, COC*H*<sub>3</sub>), 1.97 – 1.88 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  171.2 (COOCH<sub>3</sub>), 139.8 (aryl-*C*), 131.9 (aryl-*C*), 129.9 (aryl-*C*), 128.7 (aryl-*C*), 63.7, 31.7, 30.2, 21.1. These spectroscopic data correspond to reported data.<sup>[8]</sup>




**3-(4-chlorophenyl)propyl acetate (2e'). 2e** and **2e'** were synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (30:1~10:1) to give the title compound as colorless oil (45.0 mg, 42%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.34 (dd, *J* = 7.7, 1.4 Hz, 1H, aryl-*H*), 7.23 – 7.11 (m, 3H, aryl-*H*), 4.10 (t, *J* = 6.5 Hz, 2H), 2.81 (t, *J* = 7.6 Hz, 2H), 2.06 (s, 3H, COC*H*<sub>3</sub>), 2.01 – 1.92 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  171.2 (COOCH<sub>3</sub>), 138.9 (aryl-*C*), 134.1 (aryl-*C*), 130.5 (aryl-*C*), 129.7 (aryl-*C*), 127.7 (aryl-*C*), 126.9 (aryl-*C*), 63.9 (COOCH<sub>3</sub>), 30.2, 28.6, 21.1. HRMS-NSI (*m/z*): Calcd for


 $[(C_{11}H_{13}ClO_2+Na)+]$ , 235.0496; found: 235.0488.



**1-chloro-4-(3-chloropropyl)benzene (2f). 2f** and **2f'** were synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (50:1~30:1) to give the title compound as colorless oil Colorless oil (47.3 mg, 50%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.27 (d, *J* = 8.4 Hz, 2H, aryl-*H*), 7.13 (d, *J* = 8.4 Hz, 2H, aryl-*H*), 3.52 (t, *J* = 6.4 Hz, 2H), 2.76 (t, *J* = 7.4 Hz, 2H), 2.10 – 2.02 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  139.2 (aryl-*C*), 132.0 (aryl-*C*), 130.0 (aryl-*C*), 128.7 (aryl-*C*), 44.1, 34.0, 32.2. These spectroscopic data correspond to reported data.<sup>[9]</sup>



**1-chloro-2-(3-chloropropyl)benzene (2f'). 2f** and **2f'** were synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (50:1~30:1) to give the title compound as colorless oil (47.3 mg, 50%). Colorless oil (33.0 mg, 35%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.35 (dd, *J* = 7.6, 1.7 Hz, 1H, aryl-*H*), 7.24 – 7.13 (m, 3H, aryl-*H*), 3.56 (t, *J* = 6.5 Hz, 2H), 2.91 (t, *J* = 7.6 Hz, 2H), 2.15 – 2.07 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  138.5 (aryl-*C*), 134.8 (aryl-*C*), 130.8 (aryl-*C*), 129.8 (aryl-*C*), 127.8 (aryl-*C*), 127.0 (aryl-*C*), 44.4, 32.4, 30.9.<sup>[9]</sup>



**1-(3-bromopropyl)-4-chlorobenzene (2g). 2g** and **2g'** were synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (50:1~30:1) to give the title compound as colorless oil (45.0 mg, 39%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.27 (d, *J* = 8.4 Hz, 2H, aryl-*H*),

7.14 (d, J = 8.4 Hz, 2H, aryl-H), 3.38 (t, J = 6.5 Hz, 1H), 2.76 (t, J = 7.4 Hz, 1H), 2.18 – 2.10 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  139.1 (aryl-C), 132.1 (aryl-C), 130.0 (aryl-C), 128.7 (aryl-C), 34.1, 33.4, 32.9. These spectroscopic data correspond to reported data.<sup>[10]</sup>

**1-(3-bromopropyl)-2-chlorobenzene (2g'). 2g** and **2g'** were synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (50:1~30:1) to give the title compound as colorless oil (39.1 mg, 33%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.35 (dd, J = 7.5, 1.7 Hz, 1H, aryl-*H*), 7.26 (dd, J = 7.3, 2.0 Hz, 1H, aryl-*H*), 7.23 – 7.13 (m, 2H, aryl-*H*), 3.43 (t, J = 6.6 Hz, 2H), 2.90 (t, J = 7.4 Hz, 2H), 2.30 – 2.15 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  138.3 (aryl-*C*), 134.1 (aryl-*C*), 130.8 (aryl-*C*), 129.8 (aryl-*C*), 127.9 (aryl-*C*), 127.0 (aryl-*C*), 33.2, 32.5, 32.2. These spectroscopic data correspond to reported data.<sup>[10]</sup>



**2-(4-chlorophenyl)propan-2-ol (2h). 2h** and **2h'** were synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (20:1~5:1) to give the title compound as colorless oil (48.2 mg, 57%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.41 (d, *J* = 8.6 Hz, 2H, aryl-*H*), 7.29 (d, *J* = 8.6 Hz, 2H, aryl-*H*), 1.94 (s, 1H, O*H*), 1.55 (s, 6H, CH(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  147.7 (aryl-*C*), 132.5 (aryl-*C*), 128.4 (aryl-*C*), 126.1 (aryl-*C*), 72.4 (CH(CH<sub>3</sub>)<sub>3</sub>), 31.9 (CH(CH<sub>3</sub>)<sub>3</sub>). These spectroscopic data correspond to reported data.<sup>[11]</sup>

ОН

**2-(2-chlorophenyl)propan-2-ol (2h'). 2h** and **2h'** were synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (20:1~5:1) to give the title compound as colorless oil (15.2 mg, 18%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.69 (dd, J = 7.8, 1.8 Hz, 1H, aryl-H), 7.38 (dd, J = 7.8, 1.5 Hz, 1H, aryl-H), 7.28 (td, J = 7.6, 1.5 Hz, 1H, aryl-H), 7.21 (td, J = 7.6, 1.8 Hz, 1H, aryl-H), 2.70 (s, 1H, OH), 1.76 (s, 6H, CH(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  144.7 (aryl-C), 131.4 (aryl-C), 131.3 (aryl-C), 128.3 (aryl-C), 127.0 (aryl-C), 126.9 (aryl-C), 73.1 (CH(CH<sub>3</sub>)<sub>3</sub>), 29.4 (CH(CH<sub>3</sub>)<sub>3</sub>). These spectroscopic data correspond to reported data.<sup>[12]</sup>

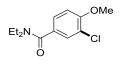


**N-(4-chlorophenyl)acetamide (2i). 2i** and **2i'** were synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (2:1~1:1) to give the title compound as white solid (43.7 mg, 52%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.17 (s, 1H, N*H*), 7.29 (d, *J* = 8.9 Hz, 2H, aryl-*H*), 7.04 (d, *J* = 8.9 Hz, 2H, aryl-*H*), 1.79 (s, 3H, COC*H*<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  168.4 (COCH<sub>3</sub>), 134.7 (aryl-*C*), 129.1 (aryl-*C*), 127.8 (aryl-*C*), 124.7 (aryl-*C*), 122.7 (aryl-*C*), 121.8 (aryl-*C*), 25.0 (COCH<sub>3</sub>). These spectroscopic data correspond to reported data.<sup>[13]</sup>



**N-(2-chlorophenyl)acetamide (2i'). 2i** and **2i'** were synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (2:1~1:1) to give the title compound as white solid (25.6 mg,

30%). <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>CN)  $\delta$  8.36 (d, *J* = 8.3 Hz, 1H, aryl-*H*), 7.66 (s, 1H, N*H*), 7.37 (d, *J* = 7.9 Hz, 1H, aryl-*H*), 7.28 (t, *J* = 7.8 Hz, 1H, aryl-*H*), 7.05 (t, *J* = 7.5 Hz, 1H, aryl-*H*), 2.25 (s, 3H, COCH<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CD<sub>3</sub>CN)  $\delta$  170.2 (COCH<sub>3</sub>), 139.5 (aryl-*C*), 130.1 (aryl-*C*), 129.1 (aryl-*C*), 122.1 (aryl-*C*), 24.8 (COCH<sub>3</sub>). These spectroscopic data correspond to reported data.<sup>[7]</sup>




N-(4-chlorophenyl)-N-methylacetamide (2j). 2j was synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (1:1) to give the title compound as white solid (62.0 mg, 67%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.37 (d, *J* = 8.2 Hz, 1H, aryl-*H*), 7.12 (d, *J* = 8.2 Hz, 1H, aryl-*H*), 3.22 (s, 3H), 1.85 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  170.3 (COCH<sub>3</sub>), 143.1 (aryl-*C*), 133.5 (aryl-*C*), 130.0 (aryl-*C*), 128.5 (aryl-*C*), 37.2, 22.4. These spectroscopic data correspond to reported data.<sup>[14]</sup>

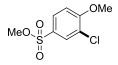
**3-chloro-4-methoxybenzonitrile (2m). 2m** was synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (15:1~10:1) to give the title compound as white solid (60.0 mg, 72%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.65 (d, *J* = 2.1 Hz, 1H, aryl-*H*), 7.55 (dd, *J* = 8.6, 2.1 Hz, 1H, aryl-*H*), 6.98 (d, *J* 8.6 Hz, 1H, aryl-*H*), 3.96 (s, 3H, ArOCH<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  158.6 (aryl-*C*), 133.6 (aryl-*C*), 132.5 (aryl-*C*), 123.6 (aryl-*C*), 117.9 (aryl-*C*), 112.3 (aryl-*C*), 104.8 (ArCN), 56.5 (ArOCH<sub>3</sub>). These spectroscopic data correspond to reported data.<sup>[15]</sup>



1-(3-chloro-4-methoxyphenyl)ethan-1-one (2n). 2n was synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (20:1) to give the title compound as white solid (75.6 mg, 82%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.92 (d, J = 2.2 Hz, 1H, aryl-H), 7.80 (dd, J = 8.6, 2.2 Hz, 1H, aryl-H), 6.91 (d, J = 8.6 Hz, 1H, aryl-H), 3.92 (s, 3H, ArOCH<sub>3</sub>), 2.50 (s, 3H, COCH<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  195.7 (COCH<sub>3</sub>), 158.7 (aryl-C), 130.8 (aryl-C), 130.6 (aryl-C), 128.8 (aryl-C), 122.8 (aryl-C), 111.3 (aryl-C), 56.4 (ArOCH<sub>3</sub>), 26.3 (COCH<sub>3</sub>). These spectroscopic data correspond to reported data.<sup>[16]</sup>



**3-chloro-N,N-diethyl-4-methoxybenzamide (20). 20** was synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (3:1~2:1) to give the title compound as colorless oil (104.2 mg, 86%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.38 (d, *J* = 2.1 Hz, 1H, aryl-*H*), 7.23 (dd, *J* = 8.4, 2.1 Hz, 1H, aryl-*H*), 6.89 (d, *J* = 8.4 Hz, 1H, aryl-*H*), 3.87 (s, 3H, ArOC*H*<sub>3</sub>), 3.37 (br, 4H, NC*H*<sub>2</sub>CH<sub>3</sub>), 1.13 (br, 6H, NCH<sub>2</sub>C*H*<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  169.7 (CONEt<sub>2</sub>), 155.7 (aryl-*C*), 130.3 (aryl-*C*), 128.7 (aryl-*C*), 126.3 (aryl-*C*), 122.4 (aryl-*C*), 111.7 (aryl-*C*), 56.2 (ArOCH<sub>3</sub>), 43.3 (NCH<sub>2</sub>CH<sub>3</sub>), 39.6 (NCH<sub>2</sub>CH<sub>3</sub>), 14.1 (NCH<sub>2</sub>CH<sub>3</sub>), 12.9 (NCH<sub>2</sub>CH<sub>3</sub>). HRMS-ESI (m/z): Calcd for [(C<sub>12</sub>H<sub>16</sub>ClNO<sub>2</sub>+H)+], 242.0948; found: 242.0952.


MeOOC CI

Methyl 3-chloro-4-methoxybenzoate (2p). 2p was synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with

hexane/ethyl acetate (10:1) to give the title compound as white solid (84.5 mg, 84%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.05 (d, *J* = 2.1 Hz, 1H, aryl-*H*), 7.93 (dd, *J* = 8.6, 2.1 Hz, 1H, aryl-*H*), 6.94 (d, *J* = 8.6 Hz, 1H, aryl-*H*), 3.96 (s, 3H, COOCH<sub>3</sub>), 3.89 (s, 3H, ArOCH<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  165.8 (COOCH<sub>3</sub>), 158.6 (aryl-*C*), 131.6 (aryl-*C*), 129.9 (aryl-*C*), 123.3 (aryl-*C*), 122.5 (aryl-*C*), 111.2 (aryl-*C*), 56.3 (ArOCH<sub>3</sub>), 52.2 (COOCH<sub>3</sub>). These spectroscopic data correspond to reported data.<sup>[17]</sup>

**2-chloro-1-methoxy-4-nitrobenzene (2q). 2q** was synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (20:1~10:1) to give the title compound as white solid (51.0 mg, 55%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.05 (d, *J* = 2.1 Hz, 1H, aryl-*H*), 7.93 (dd, *J* = 8.6, 2.1 Hz, 1H, aryl-*H*), 6.94 (d, *J* = 8.6 Hz, 1H, aryl-*H*), 3.96 (s, 3H), 3.89 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  160.2 (aryl-*C*), 141.3 (aryl-*C*), 126.0 (aryl-*C*), 124.1 (aryl-*C*), 123.3 (aryl-*C*), 111.1 (aryl-*C*), 57.0 (ArOCH<sub>3</sub>). These spectroscopic data correspond to reported data.<sup>[18]</sup>

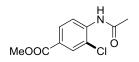
**3-chloro-4-methoxyphenyl acetate (2r). 2r** was synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (20:1~10:1) to give the title compound as yellow oil (77.1 mg, 77%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.14 (d, *J* = 2.7 Hz, 1H, aryl-*H*), 6.96 (dd, *J* = 8.9, 2.7 Hz, 1H, aryl-*H*), 6.88 (d, *J* = 8.9 Hz, 1H, aryl-*H*), 3.86 (s, 3H, OCOCH<sub>3</sub>), 2.25 (s, 3H, ArOCH<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  169.5 (OCOCH<sub>3</sub>), 153.0 (aryl-*C*), 143.9 (aryl-*C*), 123.7 (aryl-*C*), 122.6 (aryl-*C*), 120.7 (aryl-*C*), 112.1 (aryl-*C*), 56.5 (ArOCH<sub>3</sub>), 21.0 (OCOCH<sub>3</sub>). HRMS-APCI (m/z): Calcd for [(C<sub>9</sub>H<sub>9</sub>ClO<sub>3</sub>+H)+], 201.0313; found: 201.0314.



Methyl 3-chloro-4-methoxybenzenesulfonate (2s). 2s was synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (10:1~5:1) to give the title compound as pale yellow oil (50.0 mg, 42%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.89 (d, J = 2.3 Hz, 1H, aryl-H), 7.79 (dd, J = 8.7, 2.3 Hz, 1H, aryl-H), 7.04 (d, J = 8.7 Hz, 1H, aryl-H), 3.98 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  159.4 (aryl-C), 130.1 (aryl-C), 128.6 (aryl-C), 127.4 (aryl-C), 123.7 (aryl-C), 111.9 (aryl-C), 56.7, 56.5. HRMS-NSI (m/z): Calcd for [(C<sub>8</sub>H<sub>9</sub>ClO<sub>4</sub>S+Na)+], 258.9802; found: 258.9795.



**2,4-dichloro-1-methoxybenzene** (**2t**). **2t** was synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (30:1) to give the title compound as pale yellow oil (55.0 mg, 62%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.36 (d, *J* = 2.6 Hz, 1H, aryl-*H*), 7.19 (dd, *J* = 8.8, 2.6 Hz, 1H, aryl-*H*), 6.84 (d, *J* = 8.8 Hz, 1H, aryl-*H*), 3.88 (s, 3H, ArOCH<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  154.0 (aryl-*C*), 130.1 (aryl-*C*), 127.7 (aryl-*C*), 125.8 (aryl-*C*), 123.4 (aryl-*C*), 112.9 (aryl-*C*), 56.5 (ArOCH<sub>3</sub>). These spectroscopic data correspond to reported data.<sup>[19]</sup>



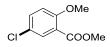

**1-(3-chloro-4-ethoxyphenyl)ethan-1-one (2u). 2u** was synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (10:1) to give the title compound as pale yellow solid (78.7 mg, 79%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.95 (d, *J* = 2.2 Hz, 1H, aryl-*H*), 7.80 (dd,

J = 8.6, 2.2 Hz, 1H, aryl-*H*), 6.90 (d, J = 8.6 Hz, 1H, aryl-*H*), 4.15 (q, J = 7.0 Hz, 2H, ArOCH<sub>2</sub>CH<sub>3</sub>), 2.51 (s, 3H, COCH<sub>3</sub>), 1.47 (t, J = 7.0 Hz, 3H, ArOCH<sub>2</sub>CH<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  195.8 (COCH<sub>3</sub>), 158.3 (aryl-*C*), 130.7 (aryl-*C*), 130.6 (aryl-*C*), 128.8 (aryl-*C*), 123.0 (aryl-*C*), 112.1 (aryl-*C*), 65.0 (ArOCH<sub>2</sub>CH<sub>3</sub>), 26.3 (COCH<sub>3</sub>), 14.6 (ArOCH<sub>2</sub>CH<sub>3</sub>). HRMS-ESI (m/z): Calcd for [(C<sub>10</sub>H<sub>11</sub>ClO<sub>2</sub>+H)+], 199.0526; found: 199.0527.



**3-chloro-4-ethoxybenzonitrile** (**2v**). **2j** was synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (30:1~10:1) to give the title compound as white solid (71.2 mg, 78%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.60 (d, *J* = 2.1 Hz, 1H, aryl-*H*), 7.49 (dd, *J* = 8.6, 2.1 Hz, 1H, aryl-*H*), 6.93 (d, *J* = 8.6 Hz, 1H, aryl-*H*), 4.14 (q, *J* = 7.0 Hz, 2H, ArOC*H*<sub>2</sub>CH<sub>3</sub>), 1.48 (t, *J* = 7.0 Hz, 3H, ArOCH<sub>2</sub>CH<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  158.1 (aryl-*C*), 133.6 (aryl-*C*), 132.4 (aryl-*C*), 123.7 (aryl-*C*), 118.0 (aryl-*C*), 113.0 (aryl-*C*), 104.3(*C*N), 65.2 (ArOCH<sub>2</sub>CH<sub>3</sub>), 14.4 (ArOCH<sub>2</sub>CH<sub>3</sub>). HRMS-APCI (m/z): Calcd for [(C<sub>9</sub>H<sub>8</sub>ClNO+H)+], 182.0367; found: 182.0370.




Methyl 4-acetamido-3-chlorobenzoate (2w). 2w was synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (3:1) to give the title compound as white solid (100.3 mg, 88%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.48 (d, *J* = 8.7 Hz, 1H, aryl-*H*), 8.02 (d, *J* = 1.9 Hz, 1H, aryl-*H*), 7.90 (dd, *J* = 8.7, 1.9 Hz, 1H, aryl-*H*), 7.81 (s, 1H, NH), 3.88 (s, 3H, COOCH<sub>3</sub>), 2.25 (s, 3H, NHCOCH<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  168.5, 165.5, 138.6 (aryl-*C*), 130.3 (aryl-*C*), 129.2 (aryl-*C*), 126.0 (aryl-*C*), 122.0 (aryl-*C*),

120.5 (aryl-*C*), 52.3 (COOCH<sub>3</sub>), 24.9 (NHCOCH<sub>3</sub>). These spectroscopic data correspond to reported data.<sup>[20]</sup>

**N-(2-chloro-4-(trifluoromethyl)phenyl)acetamide** (2x). 2x was synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (3:1) to give the title compound as white solid (105.1 mg, 89%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.53 (d, *J* = 8.7 Hz, 1H, aryl-*H*), 7.78 (s, N*H*), 7.61 (s, 1H, aryl-*H*), 7.49 (d, *J* = 8.6 Hz, 1H, aryl-*H*), 2.26 (s, 3H, COC*H*<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  168.6 (*C*=O), 137.8 (aryl-*C*), 126.5 (q, *J* = 33.5 Hz, aryl-*C*), 126.2 (q, *J* = 4.1 Hz, aryl-*C*), 125.0 (q, *J* = 3.7 Hz, aryl-*C*), 123.4 (q, *J* = 271.9 Hz, *C*F<sub>3</sub>), 122.4 (aryl-*C*), 121.2 (aryl-*C*), 25.0 (COCH<sub>3</sub>). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  = -62.3. These spectroscopic data correspond to reported data.<sup>[21]</sup>



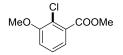
**5-chloro-2-methoxybenzonitrile (2y). 2y** was synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (10:1~5:1) to give the title compound as white solid (76.6 mg, 91%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.53 – 7.47 (m, 2H, aryl-H), 6.92 (d, *J* = 8.9 Hz, 1H, aryl-*H*), 3.93 (s, 3H, ArOC*H*<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  159.9 (aryl-*C*), 134.4 (aryl-*C*), 132.9 (aryl-*C*), 125.6 (aryl-*C*), 115.1 (aryl-*C*), 112.8 (aryl-*C*), 103.0 (ArCN), 56.5 (ArOCH<sub>3</sub>). These spectroscopic data correspond to reported data.<sup>[22]</sup>



Methyl 5-chloro-2-methoxybenzoate (2z). 2z was synthesized following the general

procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (10:1~7:1) to give the title compound as pale yellow oil (72.9 mg, 73%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.74 (d, *J* = 2.8 Hz, 1H, aryl-*H*), 7.39 (dd, *J* = 8.9, 2.8 Hz, 1H, aryl-*H*), 6.90 (d, *J* = 8.9 Hz, 1H, aryl-*H*), 3.87 (s, 3H, COOCH<sub>3</sub>), 3.87 (s, 3H, ArOCH<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  165.4 (COOCH<sub>3</sub>), 157.8 (aryl-*C*), 133.1 (aryl-*C*), 131.3 (aryl-*C*), 125.2 (aryl-*C*), 121.3 (aryl-*C*), 113.5 (aryl-*C*), 56.3 (ArOCH<sub>3</sub>), 52.2 (COOCH<sub>3</sub>). These spectroscopic data correspond to reported data. <sup>[23]</sup>

**2-bromo-4-chloro-1-methoxybenzene** (**2aa**). **2aa** was synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (20:1) to give the title compound as pale yellow oil (86.0 mg, 78%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.52 (d, *J* = 2.6 Hz, 1H, aryl-*H*), 7.23 (dd, *J* = 8.8, 2.5 Hz, 1H, aryl-*H*), 6.80 (d, *J* = 8.8 Hz, 1H, aryl-*H*), 3.87 (s, 3H, ArOCH<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  154.9 (aryl-*C*), 132.9 (aryl-*C*), 128.4 (aryl-*C*), 126.1 (aryl-*C*), 112.7 (aryl-*C*), 112.2 (aryl-*C*), 56.6 (ArOCH<sub>3</sub>). These spectroscopic data correspond to reported data.<sup>[24]</sup>

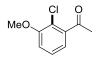



**1-chloronaphthalene (2ab). 2ab** was synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (30:1) to give the title compound as colorless oil (55.0 mg, 68%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.30 (d, J = 8.4 Hz, 1H, aryl-H), 7.87 (d, J = 8.1 Hz, 1H, aryl-H), 7.78 (d, J = 8.2 Hz, 1H, aryl-H), 7.65 – 7.53 (m, 3H, aryl-H), 7.40 (t, J = 7.8 Hz, 1H, aryl-H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  134.7 (aryl-C), 132.0 (aryl-C), 130.9 (aryl-C), 128.3 (aryl-C), 127.3 (aryl-C), 127.2 (aryl-C), 126.8 (aryl-C), 126.3 (aryl-C),

125.8 (aryl-*C*), 124.5 (aryl-*C*). These spectroscopic data correspond to reported data.<sup>[25]</sup>

MeO COOMe

Methyl 2-chloro-5-methoxybenzoate (2ac). 2ac and 2ac' was synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (20:1~15:1) to give the title compound as colorless oil (57.3 mg, 57%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.36 – 7.32 (m, 2H, aryl-*H*), 6.97 (dd, *J* = 8.9, 3.1 Hz, 1H, aryl-*H*), 3.94 (s, 3H), 3.83 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  166.1 (COOCH<sub>3</sub>), 158.0 (aryl-*C*), 131.9 (aryl-*C*), 130.7 (aryl-*C*), 125.0 (aryl-*C*), 119.0 (aryl-*C*), 116.1 (aryl-*C*), 55.8, 52.6. These spectroscopic data correspond to reported data.<sup>[26]</sup>




**Methyl 4-chloro-3-methoxybenzoate (2ac'). 2ac** and **2ac'** was synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (20:1~15:1) to give the title compound as colorless oil (19.7 mg, 20%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.33 (dd, J = 7.8, 1.6 Hz, 1H, aryl-*H*), 7.26 (t, *J* = 7.9 Hz, 1H, aryl-*H*), 7.05 (dd, *J* = 8.1, 1.6 Hz, 1H, aryl-*H*), 3.92 (s, 3H), 3.91 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  166.6 (COOCH<sub>3</sub>), 155.8 (aryl-*C*), 132.3 (aryl-*C*), 127.2 (aryl-*C*), 122.5 (aryl-*C*), 122.1 (aryl-*C*), 114.7 (aryl-*C*), 56.7, 52.6. These spectroscopic data correspond to reported data.<sup>[27]</sup>

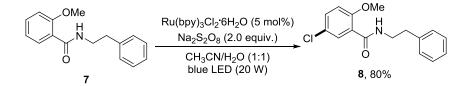


1-(2-chloro-5-methoxyphenyl)ethan-1-one (2ad). 2ad and 2ad' was synthesized following the general procedure. The residue was purified by chromatography on

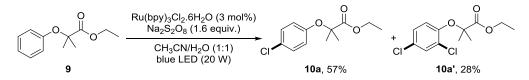
silica gel, eluting with hexane/ethyl acetate (30:1) to give the title compound as colorless oil (38.4 mg, 42%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.28 (d, *J* = 8.8 Hz, 1H, aryl-*H*), 7.04 (d, *J* = 3.1 Hz, 1H, aryl-*H*), 6.91 (dd, *J* = 8.8, 3.1 Hz, 1H, aryl-*H*), 3.79 (s, 3H, ArOCH<sub>3</sub>), 2.63 (s, 3H, COCH<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  200.4 (COCH<sub>3</sub>), 158.4 (aryl-*C*), 139.8 (aryl-*C*), 131.6 (aryl-*C*), 122.7 (aryl-*C*), 118.3 (aryl-*C*), 114.2 (aryl-*C*), 55.8 (ArOCH<sub>3</sub>), 30.8 (COCH<sub>3</sub>). HRMS-NSI (*m*/*z*): Calcd for [(C<sub>9</sub>H<sub>9</sub>ClO<sub>2</sub>+H)+], 185.0364; found: 185.0358.



1-(2-chloro-3-methoxyphenyl)ethan-1-one (2ad'). 2ad and 2ad' was synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (30:1) to give the title compound as colorless oil (25.0 mg, 27%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.27 (t, *J* = 7.9 Hz, 1H, aryl-*H*), 7.04 (dd, *J* = 7.8, 1.4 Hz, aryl-*H*), 7.01 (dd, *J* = 8.2, 1.4 Hz, 1H, aryl-*H*), 3.92 (s, 3H, ArOCH<sub>3</sub>), 2.62 (s, 3H, COCH<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  201.2 (COCH<sub>3</sub>), 155.5 (aryl-*C*), 141.5 (aryl-*C*), 127.8 (aryl-*C*), 120.3 (aryl-*C*), 119.5 (aryl-*C*), 113.9 (aryl-*C*), 56.6 (ArOCH<sub>3</sub>), 31.0 (COCH<sub>3</sub>). HRMS-NSI (*m*/*z*): Calcd for [(C<sub>9</sub>H<sub>9</sub>ClO<sub>2</sub>+H)+], 185.0364; found: 185.0358.



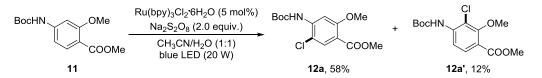

**1-bromo-4-methoxybenzene** (**2af**). **2af** was synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (10:1) to give the title compound as yellow oil (73.7 mg, 79%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.38 (d, *J* = 8.9 Hz, 1H, aryl-*H*), 6.78 (d, *J* = 8.9 Hz, 1H, aryl-*H*), 3.78 (s, 2H, ArOC*H*<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  158.8 (aryl-*C*), 132.3 (aryl-*C*), 115.8 (aryl-*C*), 112.9 (aryl-*C*), 55.5 (ArOCH<sub>3</sub>). These spectroscopic data correspond to reported data.<sup>[28]</sup>




**N-(4-bromophenyl)acetamide (2ag). 2ag** was synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (1:1) to give the title compound white solid (103.1 mg, 96%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.67 (bs, 1H, N*H*), 7.39 (s, 4H, aryl-*H*), 2.15 (s, 3H, COC*H*<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  168.9 (COCH<sub>3</sub>), 137.1 (aryl-*C*), 132.0 (aryl-*C*), 121.7 (aryl-*C*), 117.0 (aryl-*C*), 24.6 (COCH<sub>3</sub>). These spectroscopic data correspond to reported data.<sup>[13]</sup>

## 5. Synthesis of Clofibrate and Some Pharmaceutical Intermediates



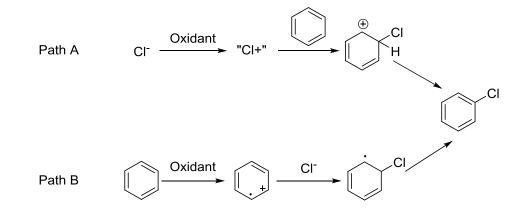

**5-chloro-2-methoxy-N-phenethylbenzamide (8). 8** was synthesized following the general procedure of chlorination. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (5:1~3:1) to give the title compound as colorless oil (115.6 mg, 80%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.16 (d, J = 2.8 Hz, 1H, aryl-H), 7.85 (s, 1H, aryl-H), 7.37 – 7.22 (m, 6H, aryl-H), 6.82 (d, J = 8.8 Hz, 1H, aryl-H), 3.80 – 3.69 (m, 5H, OCH<sub>3</sub> and NHCH<sub>2</sub>), 2.92 (t, J = 6.8 Hz, 2H, PhCH<sub>2</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  163.8 (CONH), 155.9 (aryl-C), 139.1 (aryl-C), 132.1 (aryl-C), 121.7 (aryl-C), 128.8 (aryl-C), 128.5 (aryl-C), 126.4 (aryl-C), 126.4 (aryl-C), 122.9 (aryl-C), 112.8 (aryl-C), 56.0, 40.8, 35.4. These spectroscopic data correspond to reported data.<sup>[29]</sup>



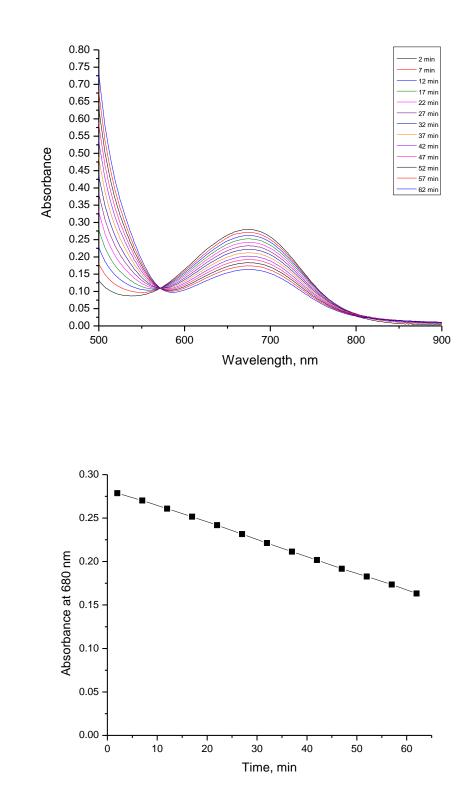
Clofibrate (10a). 10a and 10a' was synthesized following the general procedure of chlorination. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (10:1) to give the mixture of 10a and 10a'. These two compound were further separated by preparative HPLC (CHIRALPAK IC column, hexane/*i*PrOH = 99.2:0.8) to give the title compound as colorless oil (69.6 mg, 57%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.18 (d, *J* = 8.9 Hz, 2H, aryl-*H*), 6.78 (d, *J* = 8.9 Hz, 2H, aryl-*H*), 4.22 (q, *J* = 7.1 Hz, 2H, OCH<sub>2</sub>CH<sub>3</sub>), 1.57 (s, 6H, C(CH<sub>3</sub>)<sub>2</sub>), 1.24 (t, *J* = 7.1 Hz, 3H, OCH<sub>2</sub>CH<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  174.1 (*C*=O), 154.2

(aryl-*C*), 129.2 (aryl-*C*), 127.3 (aryl-*C*), 120.7 (aryl-*C*), 79.6, 61.6, 25.4, 14.2. These spectroscopic data correspond to reported data.<sup>[30]</sup>

Ethyl 2-(2,4-dichlorophenoxy)-2-methylpropanoate (10a'). 10a and 10a' was synthesized following the general procedure of chlorination. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (10:1) to give the mixture of 10a and 10a'. These two compound were further separated by preparative HPLC (CHIRALPAK IC column, hexane/*i*PrOH = 99.2:0.8) to give the title compound as colorless oil (39.0 mg, 28%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) 7.37 (d, J = 2.6 Hz, 1H, aryl-H), 7.09 (dd, J = 8.8, 2.6 Hz, 1H, aryl-H), 6.85 (d, J = 8.8 Hz, 1H, aryl-H), 4.23 (q, J = 7.1 Hz, 2H, OCH<sub>2</sub>CH<sub>3</sub>), 1.60 (s, 6H, C(CH<sub>3</sub>)<sub>2</sub>), 1.27 (t, J = 7.1 Hz, 3H, OCH<sub>2</sub>CH<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  173.8 (C=O), 150.5 (aryl-C), 130.2 (aryl-C), 127.9 (aryl-C), 127.7 (aryl-C), 127.3 (aryl-C), 120.9 (aryl-C), 81.4, 61.8, 25.2, 14.2. These spectroscopic data correspond to reported data.<sup>[30]</sup>

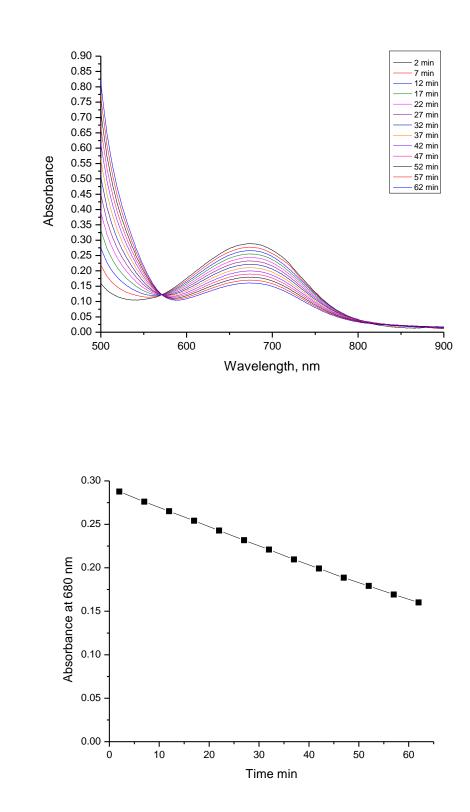



Methyl 4-((tert-butoxycarbonyl)amino)-5-chloro-2-methoxybenzoate (12a). 12a and 12a' was synthesized following the general procedure of chlorination. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (15:1~10:1) to give the title compound as colorless oil (91.3 mg, 58%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.02 (s, 1H, aryl-*H*), 7.84 (s, 1H, aryl-*H*), 7.17 (s, 1H, N*H*), 3.93 (s, 3H), 3.85 (s, 3H), 1.53 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  164.9, 159.4, 151.8 (aryl-*C*), 139.8 (aryl-*C*), 132.1 (aryl-*C*), 113.7 (aryl-*C*), 111.9 (aryl-*C*), 102.4 (aryl-*C*), 81.8 (*C*(CH<sub>3</sub>)<sub>3</sub>), 56.3 (ArOCH<sub>3</sub>), 51.9 (COOCH<sub>3</sub>), 28.2 (C(*C*H<sub>3</sub>)<sub>3</sub>). HRMS-ESI (m/z): Calcd for [(C<sub>14</sub>H<sub>18</sub>CINO<sub>5</sub>+H)+], 316.0952; found: 316.0956.


Methyl 4-((tert-butoxycarbonyl)amino)-3-chloro-2-methoxybenzoate (12a'). 12a and 12a' was synthesized following the general procedure of chlorination. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate

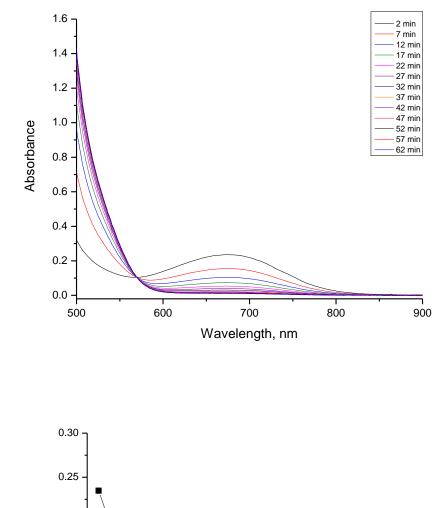
(15:1~10:1) to give the title compound as colorless oil (18.2 mg, 12%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.06 (d, *J* = 8.9 Hz, 1H, aryl-*H*), 7.78 (d, *J* = 9.0 Hz, 1H, aryl-*H*), 7.23 (s, 1H, N*H*), 3.91 (s, 3H), 3.90 (s, 3H), 1.54 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  165.2, 156.7, 151.8 (aryl-*C*), 140.2 (aryl-*C*), 130.5 (aryl-*C*), 119.2 (aryl-*C*), 117.0 (aryl-*C*), 113.7 (aryl-*C*), 81.8 (*C*(CH<sub>3</sub>)<sub>3</sub>), 61.9 (ArOCH<sub>3</sub>), 52.1 (COOCH<sub>3</sub>), 28.2 (C(CH<sub>3</sub>)<sub>3</sub>). HRMS-ESI (m/z): Calcd for [(C<sub>14</sub>H<sub>18</sub>ClNO<sub>5</sub>+H)+], 316.0952; found: 316.0957.

## 6. Mechanism study

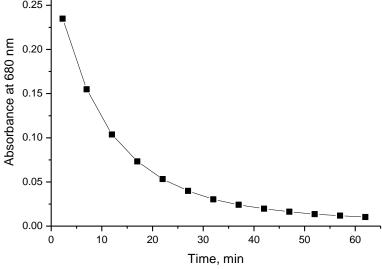



Scheme S1. Two probably pathways of oxidative chlorination of aromatic compounds




**Figure S1.** (A) Time-dependent UV-vis spectra of  $\text{Ru}(\text{bpy})_3^{3+}$  (1x 10<sup>-3</sup> M) in CH<sub>3</sub>CN/H<sub>2</sub>O (1:1); (B) The variation of absorbance at 680 nm on UV-vis spectra.

B:

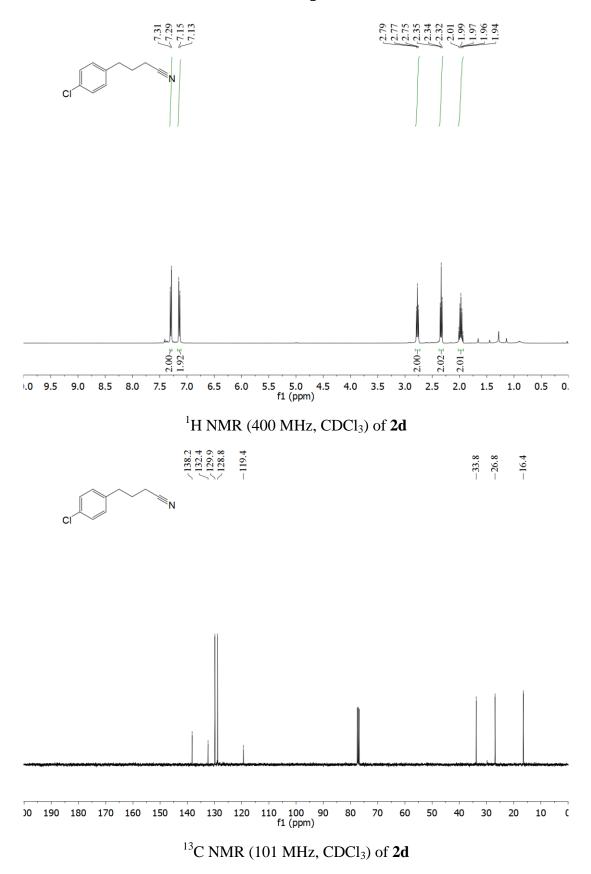



**Figure S2.** Time-dependent UV-vis spectra of  $Ru(bpy)_3^{3+}$  (1x 10<sup>-3</sup> M) with added toluene (2x 10<sup>-2</sup> M) in CH<sub>3</sub>CN/H<sub>2</sub>O (1:1) ; (B) The variation of absorbance at 680 nm on UV-vis spectra.

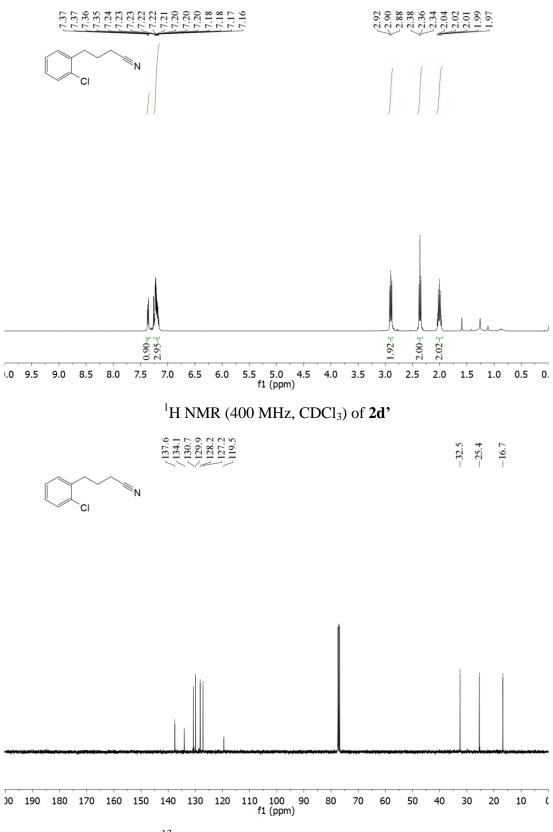
в:



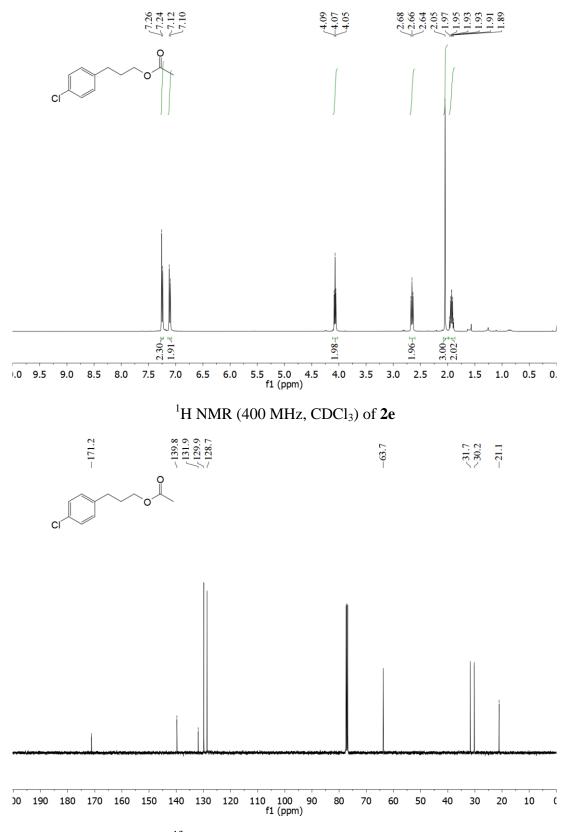
в:



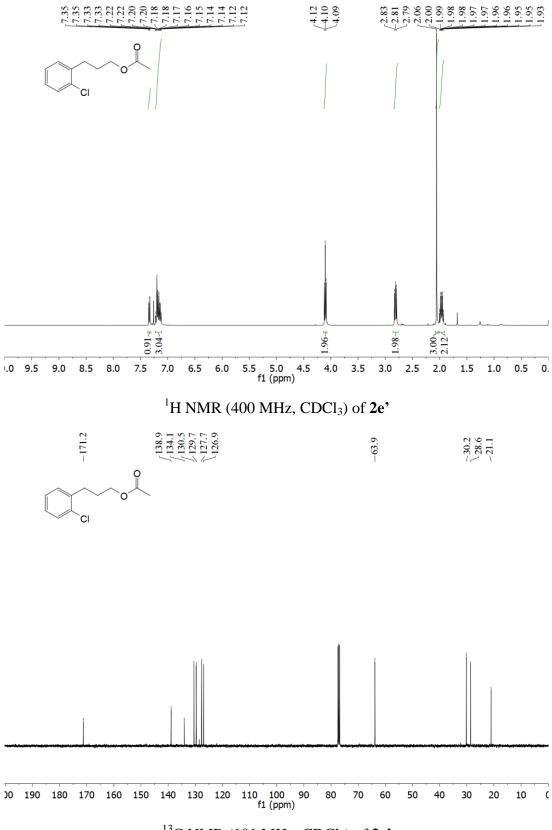

**Figure S3.** Time-dependent UV-vis spectra of  $Ru(bpy)_3^{3+}$  (1x 10<sup>-3</sup> M) with added NaCl (6 x 10<sup>-2</sup> M) in CH<sub>3</sub>CN/H<sub>2</sub>O (1:1); (B) The variation of absorbance at 680 nm on UV-vis spectra.


### 7. References

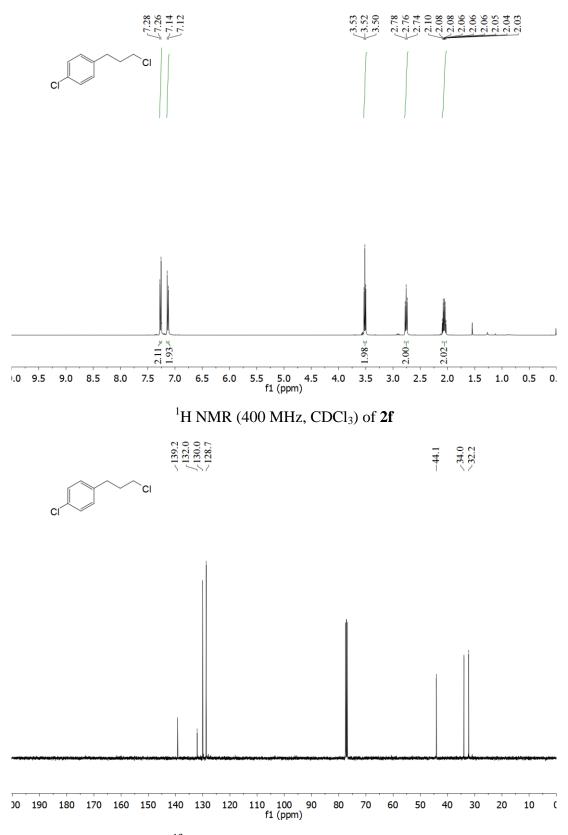
- H. Lv, J. Song, Y. V. Geletii, J. W. Vickers, J. M. Sumliner, D. G. Musaev, P. Kögerler, P. F. Zhuk, J. Bacsa, G. Zhu, C. L. Hill, J. Am. Chem. Soc. 2014, 136, 9268.
- [2] Y. Gao, Y. Huang, W. Wu, K. Huang, H. Jiang, Chem. Commun. 2014, 50, 8370.
- [3] Z. Zhuang, Z.-P. Hu, W.-W. Liao, Org. Lett. 2014, 16, 3380.
- [4] C. K. Lee, J. S. Yu, H.-J. Lee, J. Heterocycl. Chem. 2002, 39, 1207.
- [5] C. Yamamoto, K. Takamatsu, K. Hirano, M. Miura, J. Org. Chem. 2016, 81, 7675.
- [6] L. Kevin, W. M. James, A. N. Stewart, L. W. Paul, 2004, WO2004092117A1.
- [7] X. Xiong, Y.-Y. Yeung, Angew. Chem. Int. Ed. 2016, 55, 16101.
- [8] C. Leveque, L. Chenneberg, V. Corce, J.-P. Goddard, C. Ollivier, L. Fensterbank, Org. Chem. Front. 2016, 3, 462.
- [9] K. Gao, N. Yoshikai, J. Am. Chem. Soc. 2013, 135, 9279.
- [10] D. G. C. Philip, R. D. Brian, O. David, A. A. Paul, N. Manuel, S. Frank, A. Stephanie, B. Nick, R. B. Thomas, B. Angelica, B. Judd, A. C. Robert, R. E. Bruce, K. Harpreet, M. David, P. Vinh, R. Andrew, W. Phil, W. Jeffrey, 2011, WO2011126567A1.
- [11] N. Miyoshi, T. Matsuo, M. Wada, Eur. J. Org. Chem. 2005, 4253.
- [12] P. I. Fedorov, T. P. Fedorova, V. P. Sheverdov, G. P. Pavlov, A. V. Eremkin, *Russ. J. Org. Chem.* 2016, **52**, 806.
- [13] P. S. Mahajan, V. T. Humne, S. D. Tanpure, S. B. Mhaske, Org. Lett. 2016, 18, 3450.
- [14] Y. Peng, H. Liu, M. Tang, L. Cai, V. Pike, Chin. J. Chem. 2009, 27, 1339.
- [15] J. B. McManus, D. A. Nicewicz, J. Am. Chem. Soc. 2017, **139**, 2880.
- [16] X. Zhang, C. Lou, N. Li, X. Xu, R. Qiu, S. Yin, J. Organomet. Chem. 2014, 749, 241.
- [17] R. M. Riggs, D. E. Nichols, M. M. Foreman, L. L. Truex, J. Med. Chem. 1987, 30, 1887.
- [18] T. D. Huber, F. Wang, S. Singh, B. R. Johnson, J. Zhang, M. Sunkara, S. G. Van Lanen, A. J. Morris, G. N. Phillips, J. S. Thorson, ACS Chem. Biol. 2016, 11, 2484.
- [19] R. Prebil, K. K. Laali, S. Stavber, Org. Lett. 2013, 15, 2108.
- [20] S. Kathiravan, I. A. Nicholls, *Chem. Eur. J.* 2017, 23, 7153.
- [21] M. Gantenbein, M. Hellstern, L. Le Pleux, M. Neuburger, M. Mayor, *Chem. Mater.* 2015, 27, 1772.
- [22] T. Tamura, K. Moriyama, H. Togo, *Eur. J. Org. Chem.* 2015, 2023.
- [23] A. Ueno, M. Takimoto, W. W. N. O, M. Nishiura, T. Ikariya, Z. Hou, *Chemistry An Asian Journal* 2015, **10**, 1010.
- [24] M. A. B. Mostafa, E. D. D. Calder, D. T. Racys, A. Sutherland, Chem. Eur. J. 2017, 23, 1044.
- [25] G. A. Molander, L. N. Cavalcanti, J. Org. Chem. 2011, 76, 7195.
- [26] S. M. Wilkinson, H. Gunosewoyo, M. L. Barron, A. Boucher, M. McDonnell, P. Turner, D. E. Morrison, M. R. Bennett, I. S. McGregor, L. M. Rendina, M. Kassiou, ACS Chem. Neurosci. 2014, 5, 335.
- [27] A. M. Costero, M. Pitarch, J. Org. Chem. 1994, 59, 2939.
- [28] F. Mo, J. M. Yan, D. Qiu, F. Li, Y. Zhang, J. Wang, Angew. Chem. Int. Ed. 2010, 49, 2028.
- [29] D. Obermayer, D. Znidar, G. Glotz, A. Stadler, D. Dallinger, C. O. Kappe, J. Org. Chem. 2016, 81, 11788.
- [30] D. Ok Jang, D. Hyan Cho, J.-G. Kim, Synth. Commun. 2003, 33, 2885.
- [31] T. M. Donald, A. Daniel, P. P.Norton, D. W. John, 2010, WO2010118046A1.



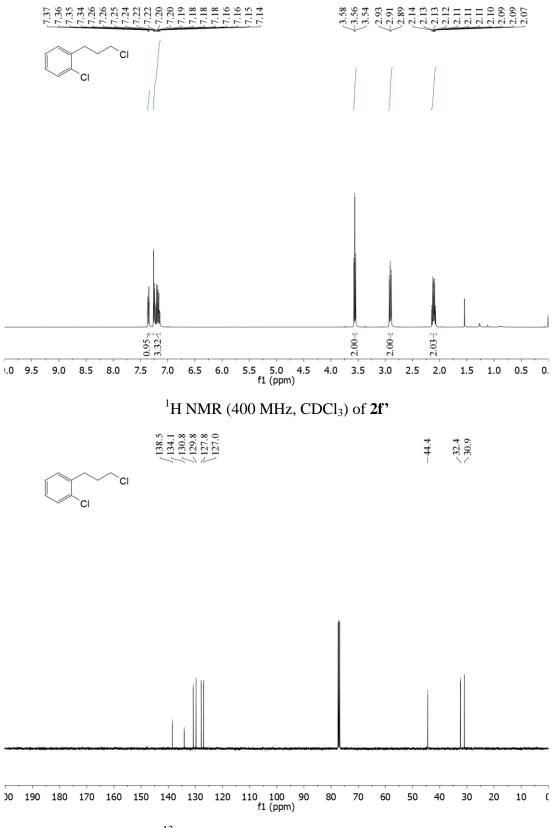




S29

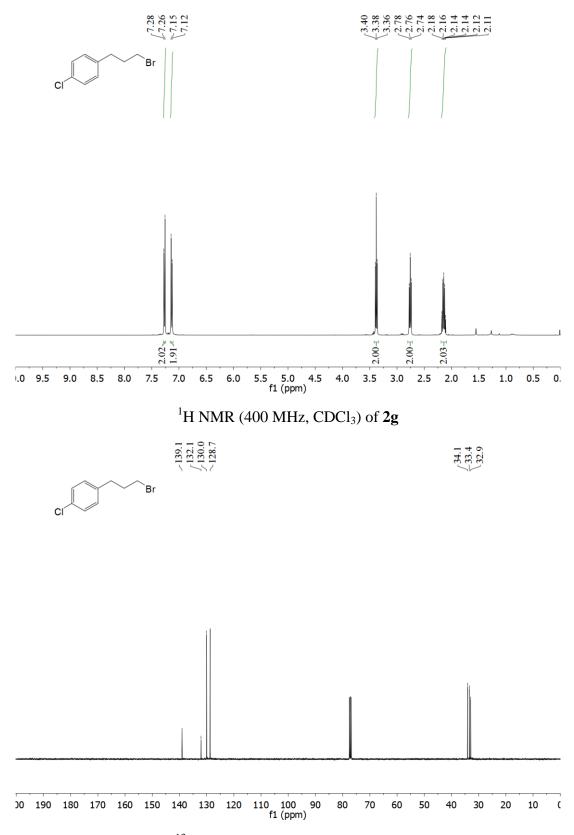



 $^{13}$ C NMR (101 MHz, CDCl<sub>3</sub>) of **2d'** 

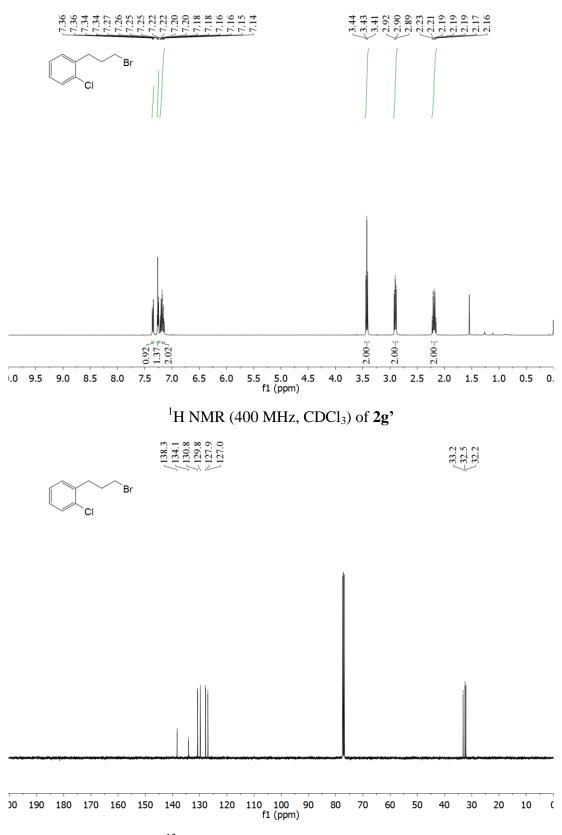



<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) of **2e** 

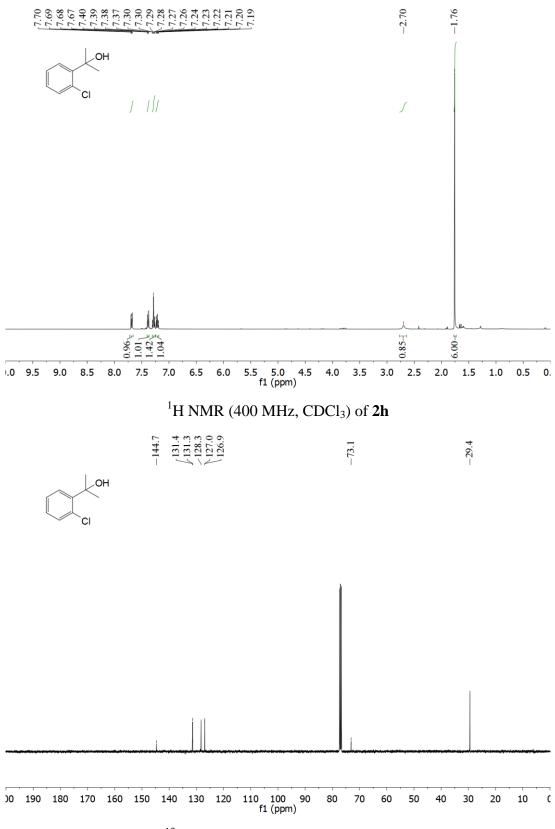



<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) of **2e'** 

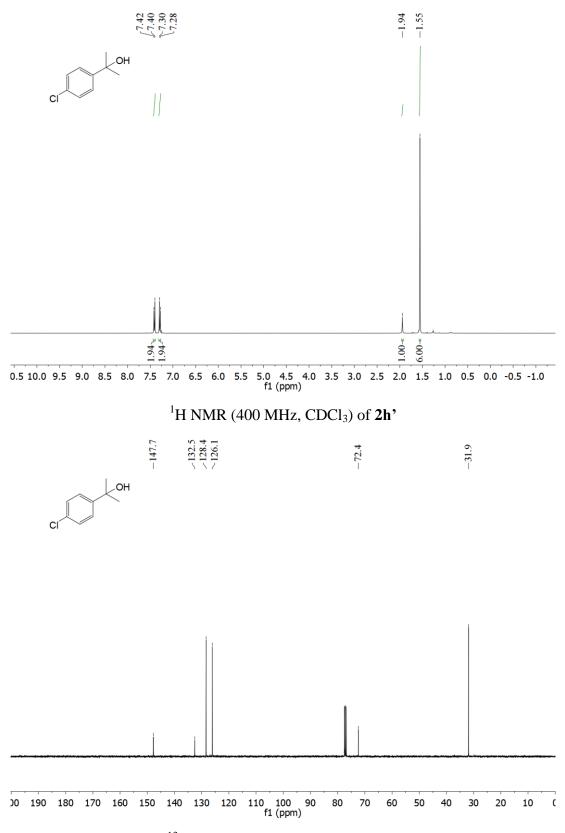



 $^{13}$ C NMR (101 MHz, CDCl<sub>3</sub>) of **2f** 

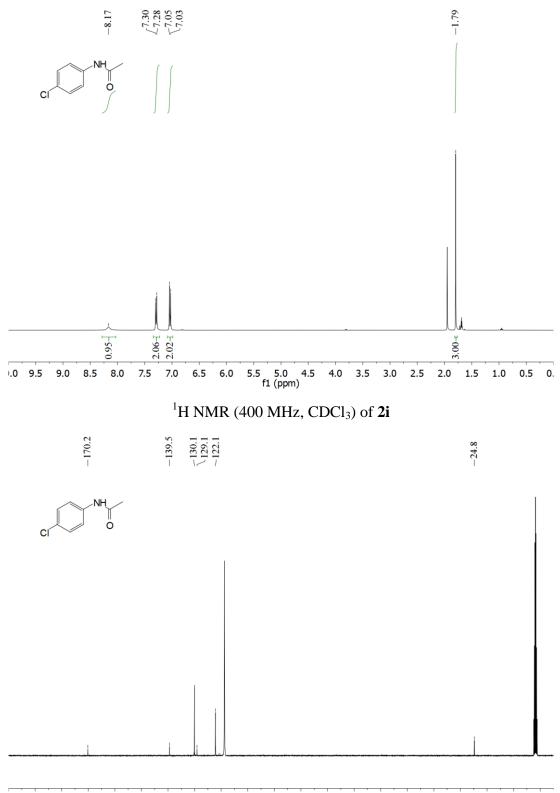



<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) of **2f**'



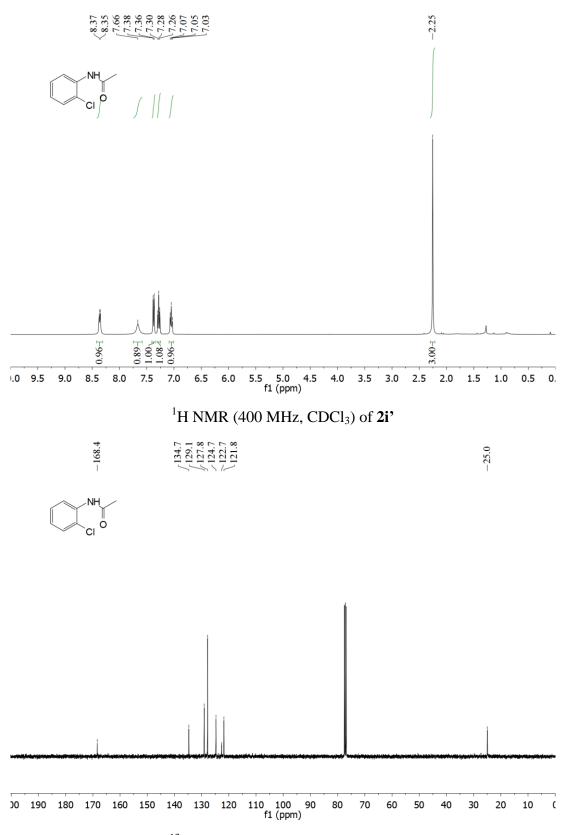

 $^{13}$ C NMR (101 MHz, CDCl<sub>3</sub>) of 2g



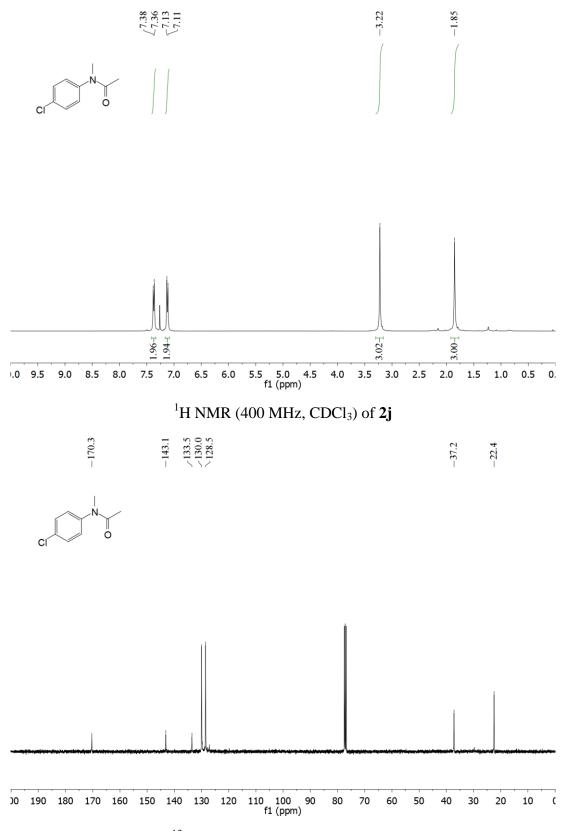

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) of **2g**'



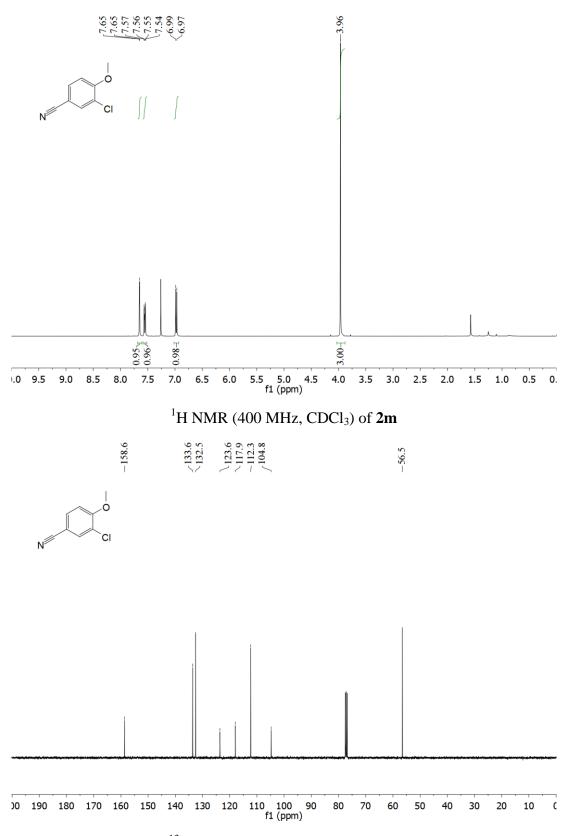
 $^{13}\text{C}$  NMR (101 MHz, CDCl<sub>3</sub>) of **2h** 




 $^{13}\text{C}$  NMR (101 MHz, CDCl<sub>3</sub>) of  $2h^{\prime}$ 



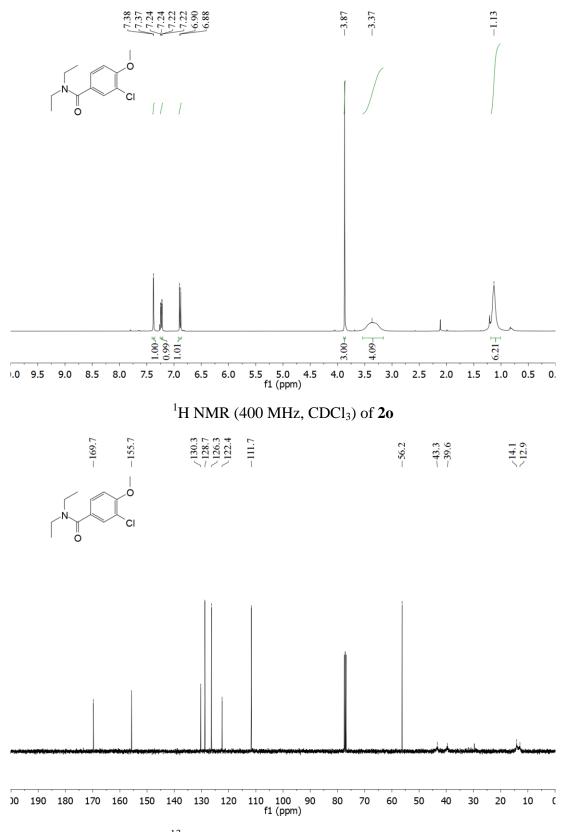

0 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)


<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) of **2i** 

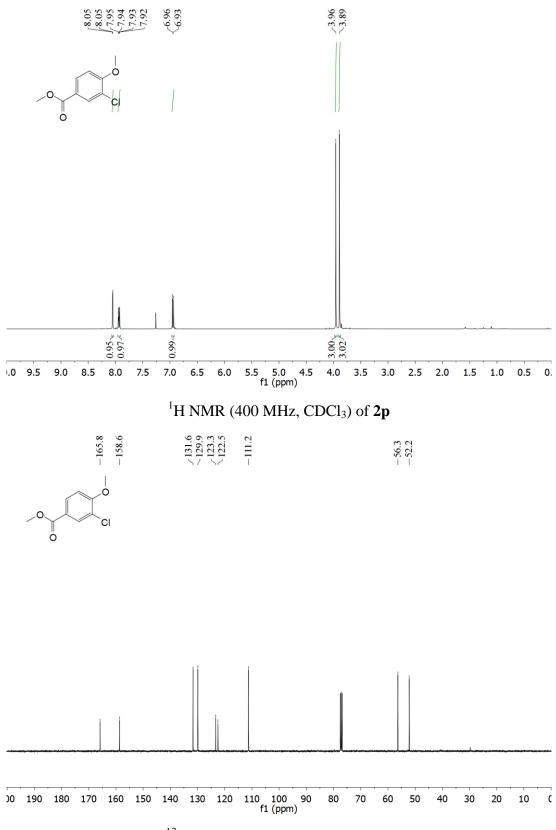


<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) of **2i**'

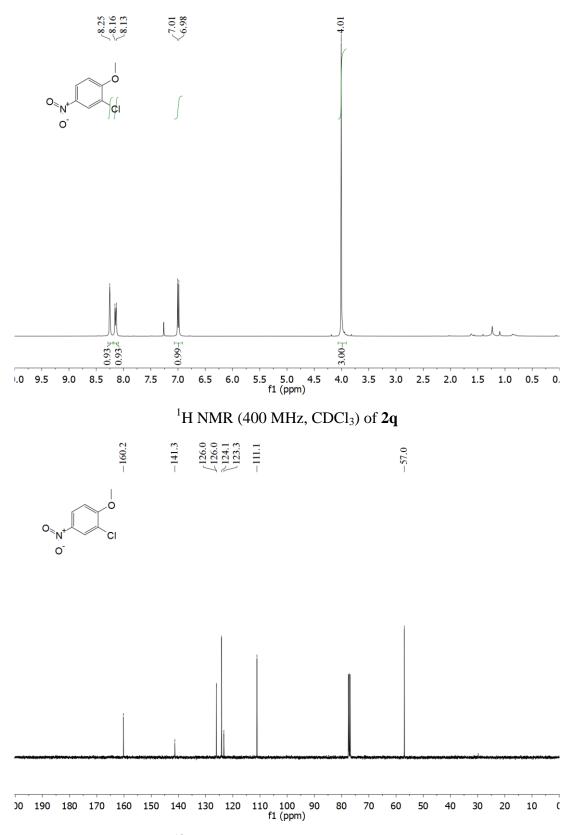



<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) of **2j** 

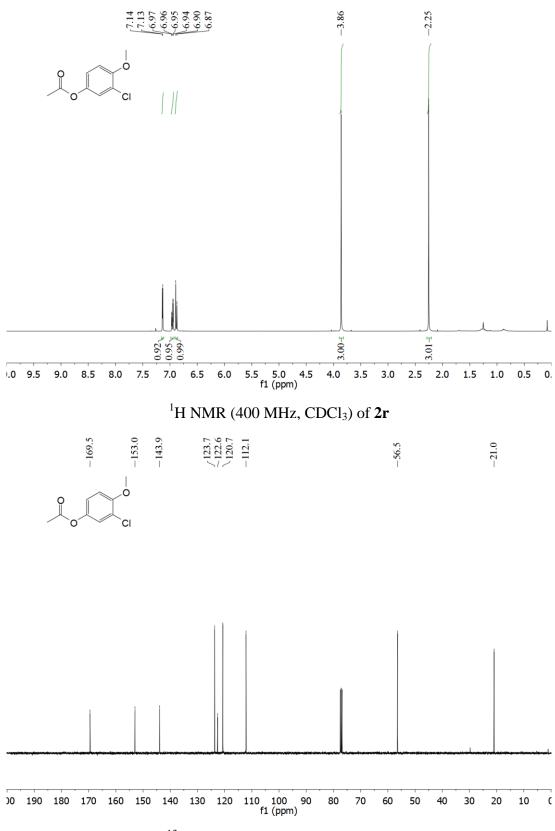



 $^{13}$ C NMR (101 MHz, CDCl<sub>3</sub>) of 2m

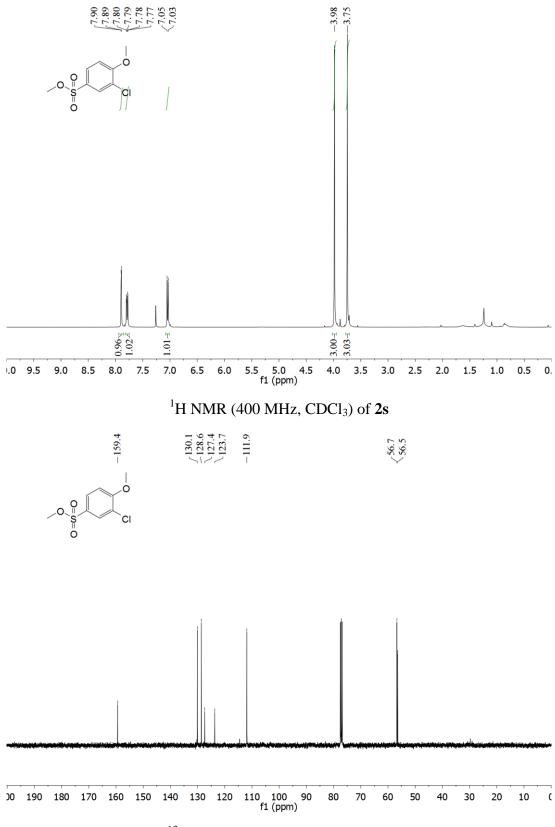



<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) of **2n** 

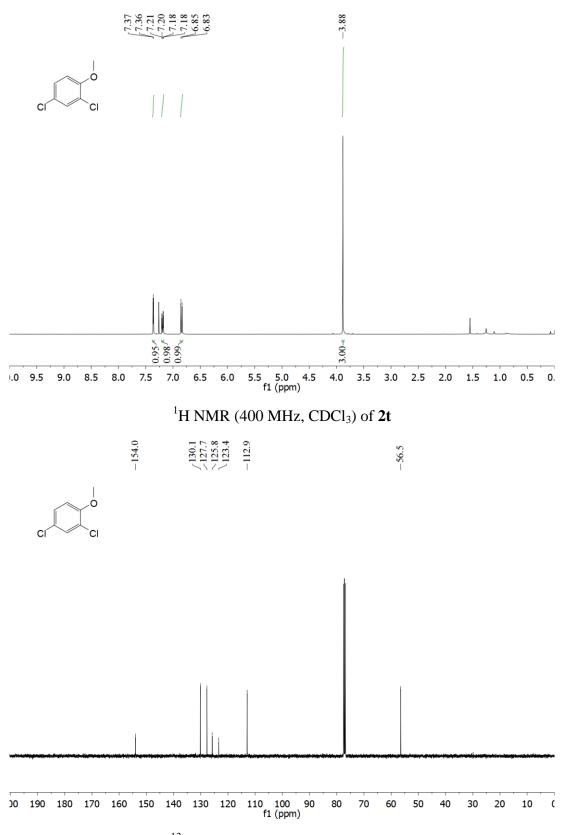



<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) of **20** 

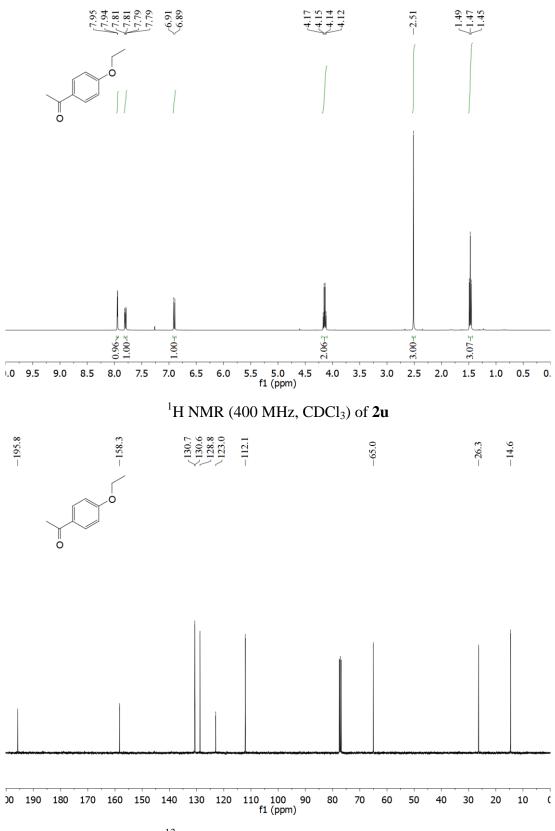



<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) of **2p** 

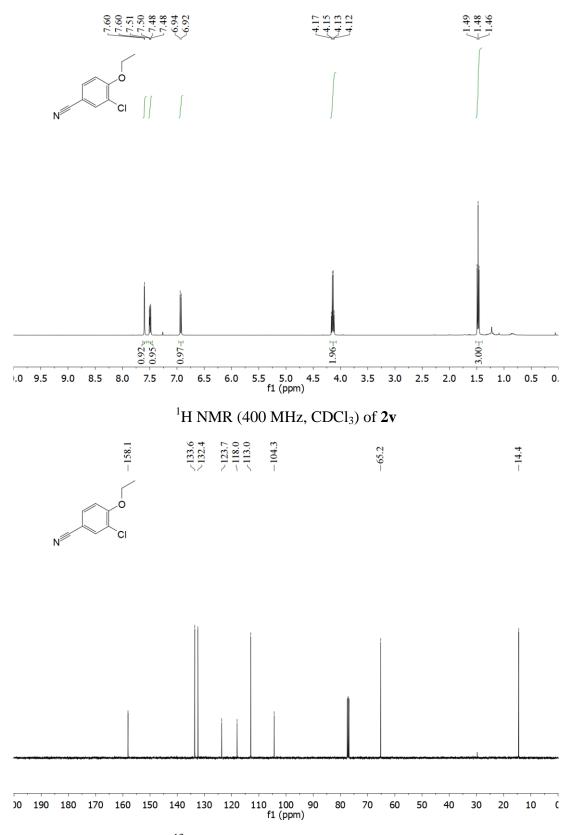



 $^{13}\text{C}$  NMR (101 MHz, CDCl<sub>3</sub>) of 2q




 $^{13}\text{C}$  NMR (101 MHz, CDCl<sub>3</sub>) of 2r

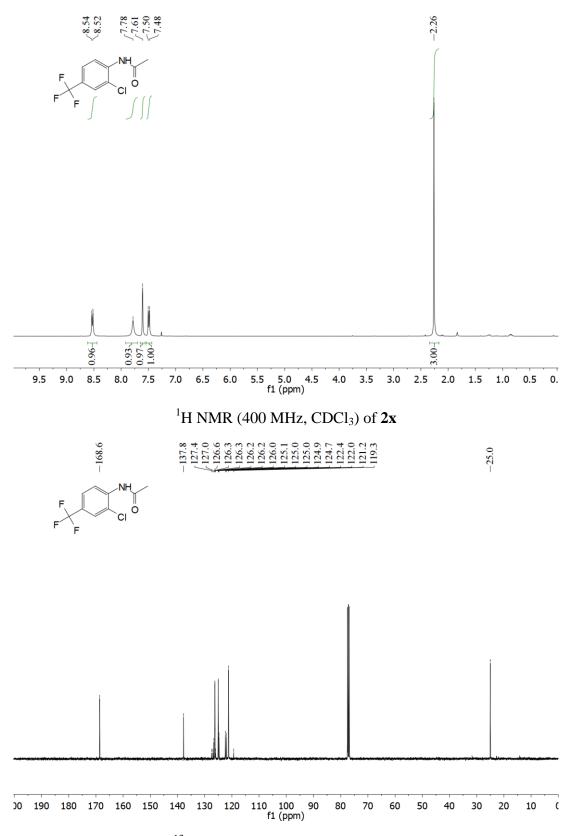



<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) of **2s** 

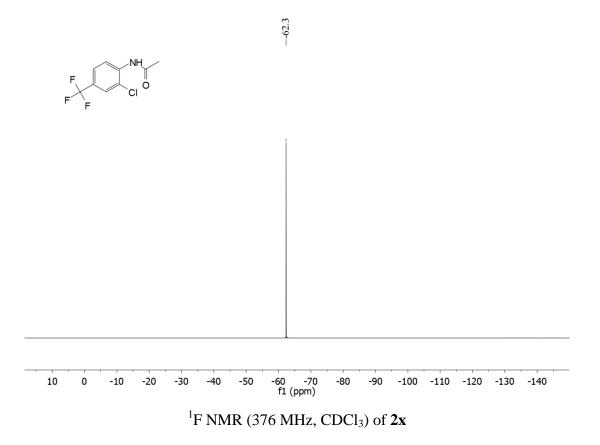


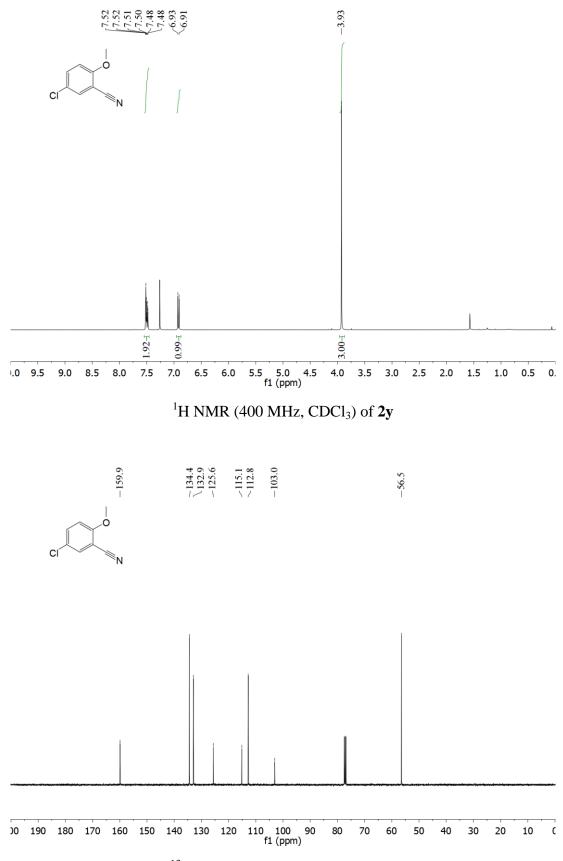
<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) of **2t** 



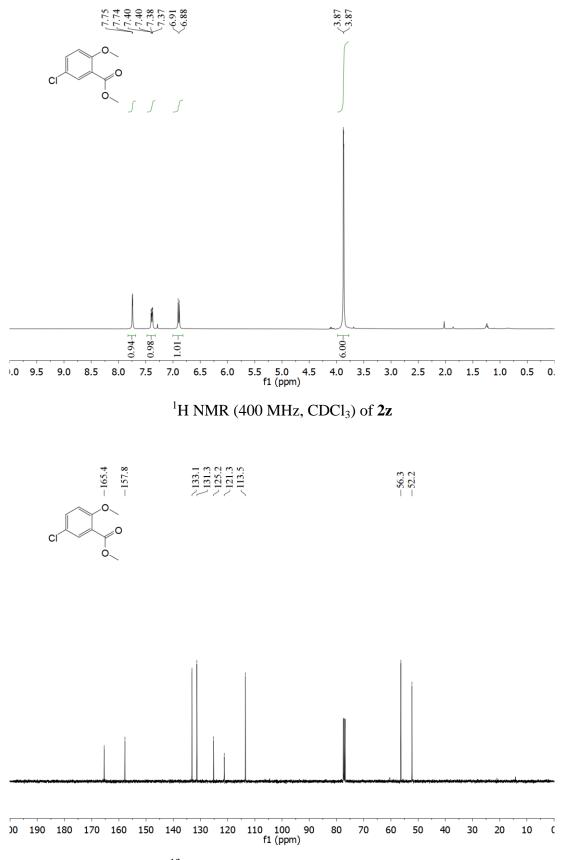

 $^{13}$ C NMR (101 MHz, CDCl<sub>3</sub>) of 2u



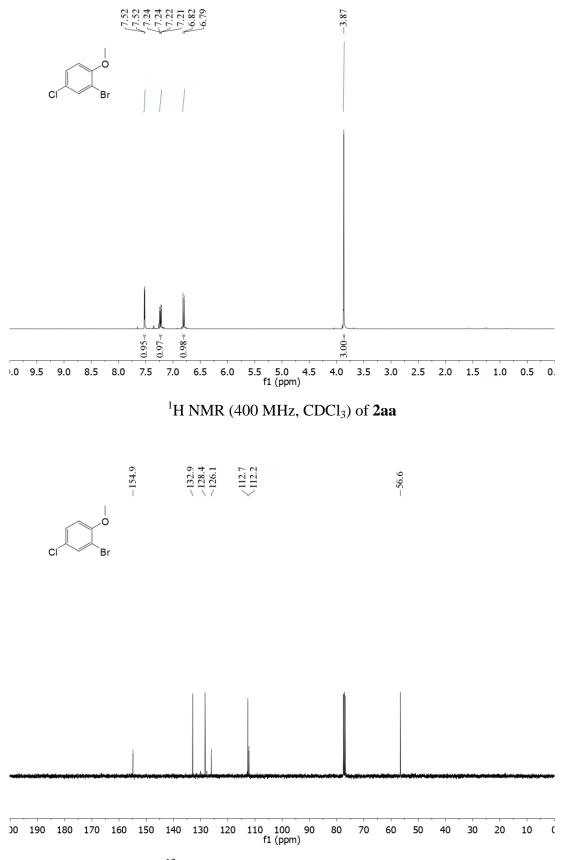

 $^{13}$ C NMR (101 MHz, CDCl<sub>3</sub>) of 2v



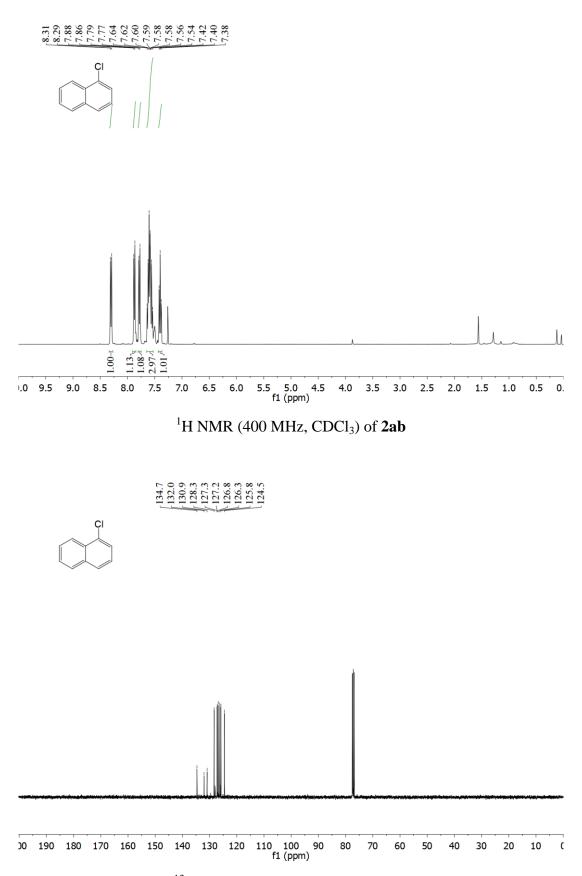

 $^{13}$ C NMR (101 MHz, CDCl<sub>3</sub>) of **2w** 



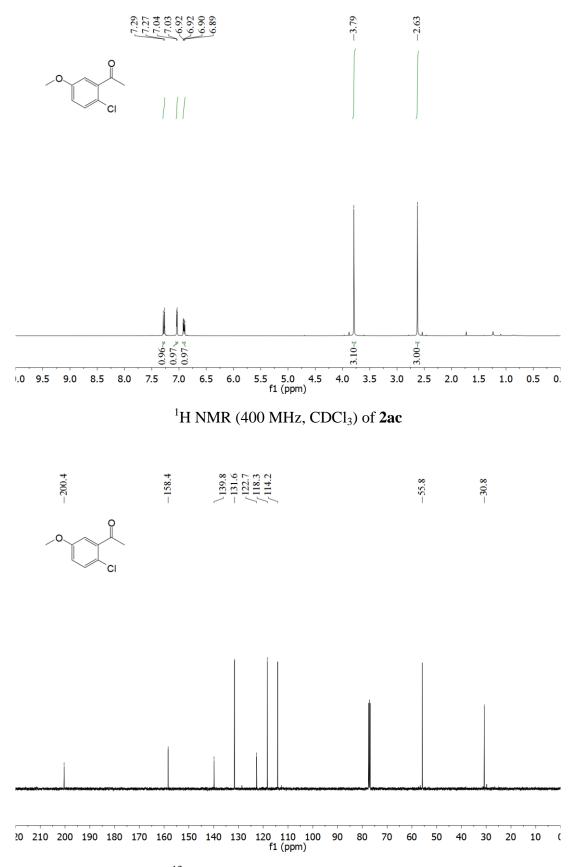

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) of **2**x



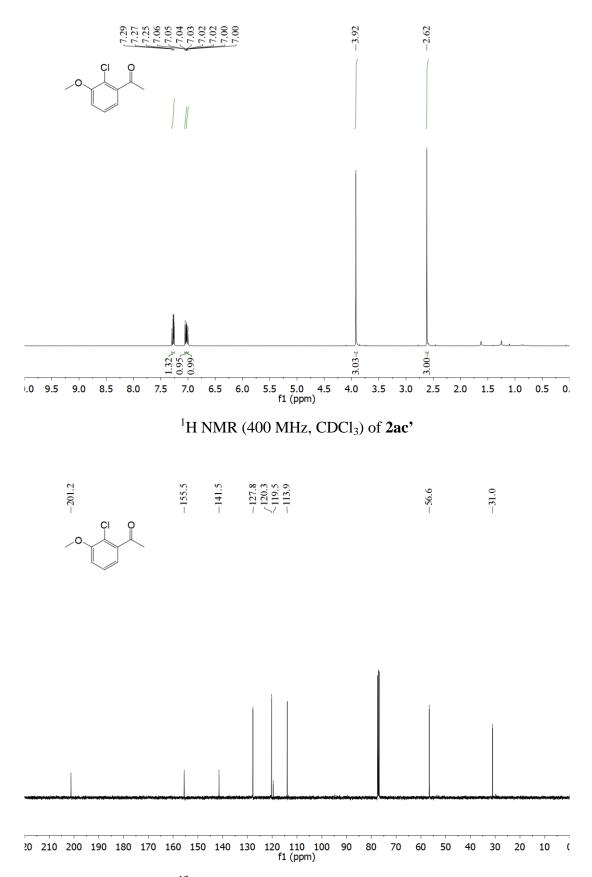




<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) of **2y** 

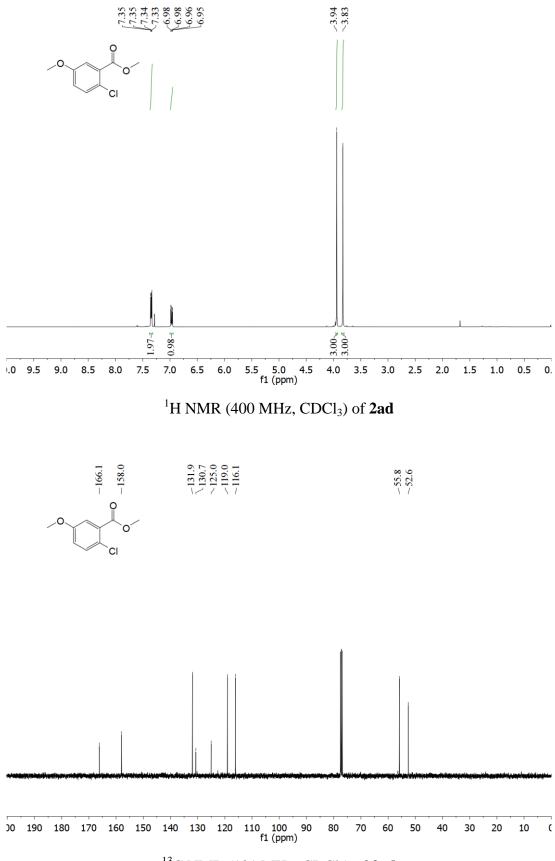



 $^{13}$ C NMR (101 MHz, CDCl<sub>3</sub>) of **2z** 

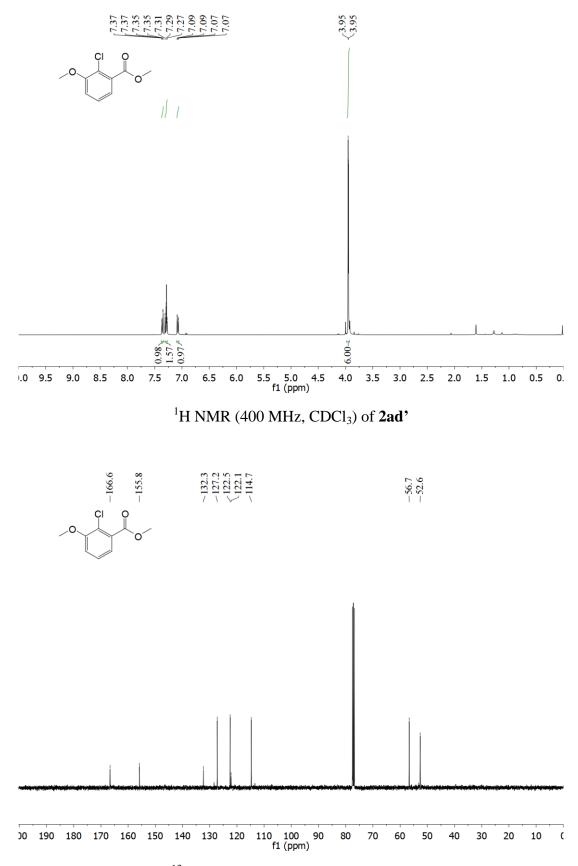



<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) of **2aa** 

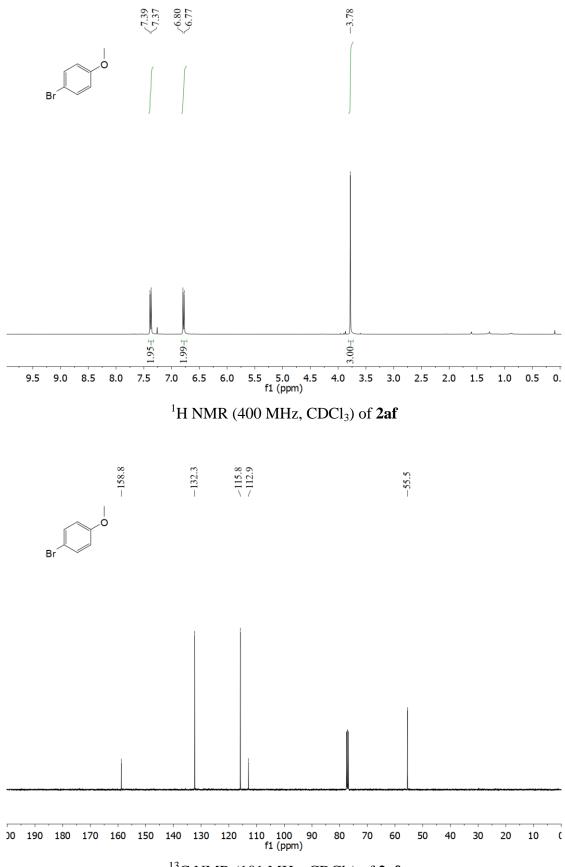



 $^{13}\text{C}$  NMR (101 MHz, CDCl<sub>3</sub>) of 2ab

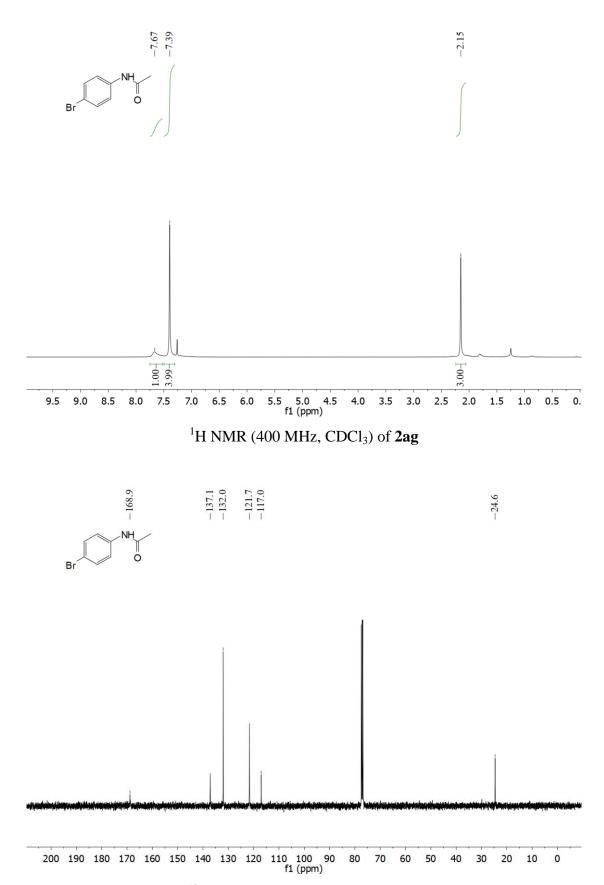



 $^{13}\text{C}$  NMR (101 MHz, CDCl<sub>3</sub>) of **2ac** 

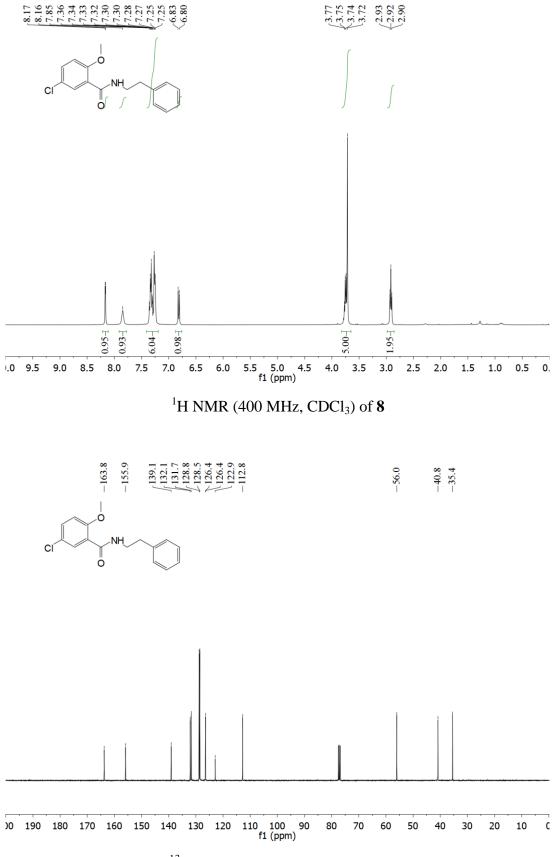



<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) of **2ac'** 

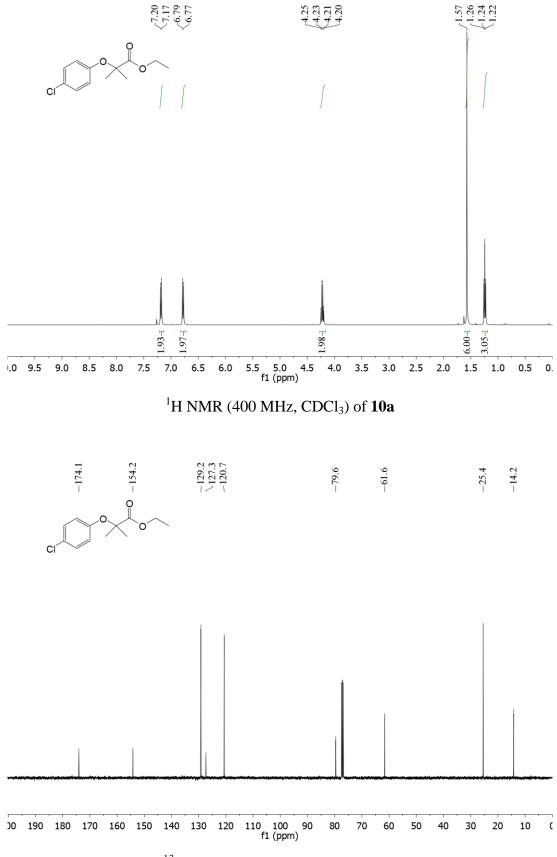



 $^{13}\text{C}$  NMR (101 MHz, CDCl<sub>3</sub>) of **2ad** 

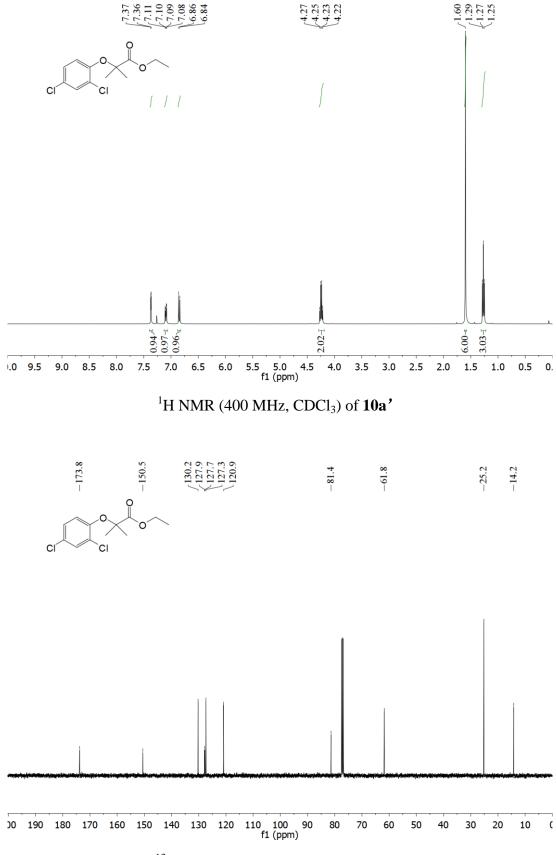



<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) of 2ad'




 $^{13}\text{C}$  NMR (101 MHz, CDCl<sub>3</sub>) of 2af

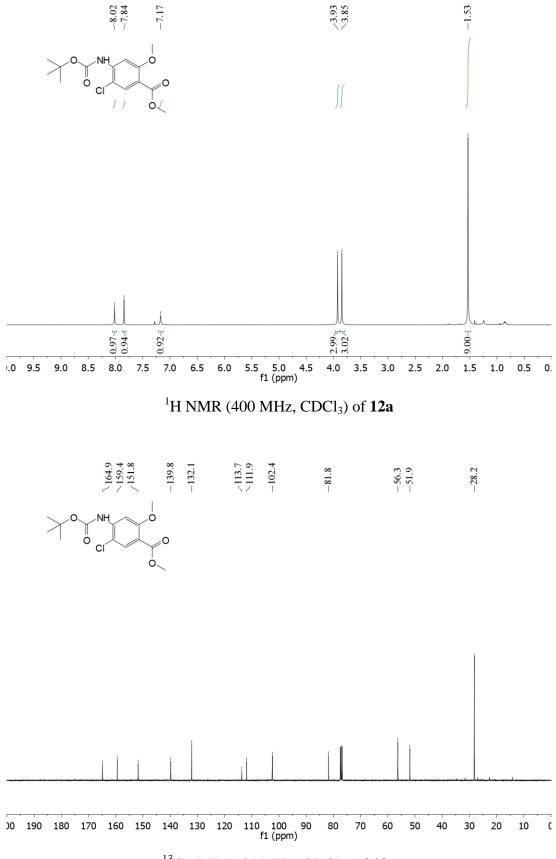



 $^{13}\text{C}$  NMR (101 MHz, CDCl\_3) of 2ag

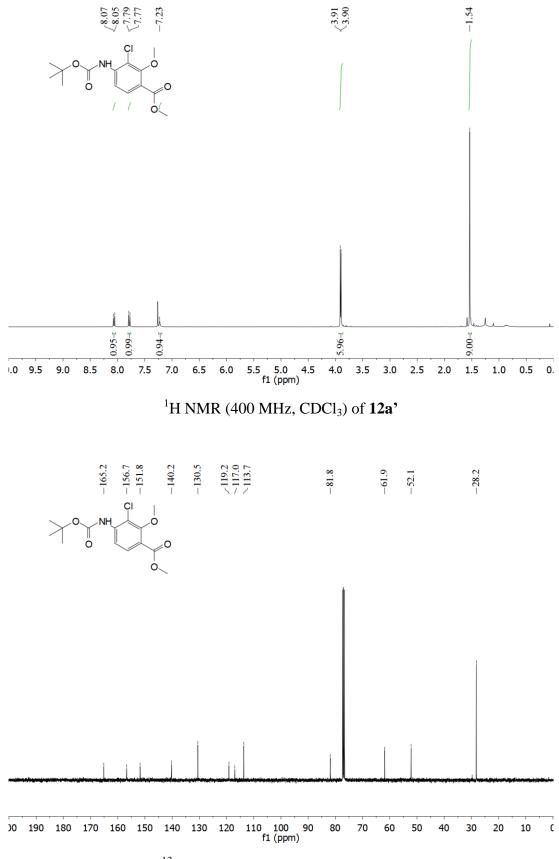



<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) of **8** 









 $^{13}\text{C}$  NMR (101 MHz, CDCl\_3) of  $10a^{\prime}$ 



<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) of **11** 



<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) of **12a** 



<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) of **12a'**