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A radio frequency (rf) quadrupole has been considered as a potential alternative device for Landau
damping in circular hadron colliders. The objective of this study is to benchmark and confirm its stabilizing
effect predicted by stability diagram theory by means of numerical tracking simulations. To that end, two
complementary models of the device are implemented in PyHEADTAIL, a 6D macroparticle tracking code
designed to study the formation and mitigation of collective instabilities. The rf quadrupole model is
applied to a slow head-tail instability observed experimentally in the Large Hadron Collider to show that
such a device can in principle provide beam stability similarly to magnetic octupoles. Thereafter, alternative
usage schemes of rf quadrupoles also in combination with magnetic octupoles are proposed, discussed, and
benchmarked with simulations.
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I. INTRODUCTION

To improve the luminosity of future machines like the
High Luminosity Large Hadron Collider (HL-LHC) or
the Future Circular Collider (FCC), the brightness of the
particle beams will be significantly increased [1,2]. This is
realised by operating the machine with a higher bunch
intensity and lower transverse emittances. These parame-
ters and therefore the maximum achievable luminosity will
be strongly limited by the presence of transverse collective
beam instabilities induced by the transverse beam coupling
impedance of the accelerator ring.
A powerful stabilizing mechanism against this type of

instabilities is the effect of Landau damping which is
present when there is an incoherent spread in the betatron
frequencies, or tunes, of the particles in the beam [3,4]. The
tune spread is a result of nonlinearities in the machine.
Partially, they are of parasitical nature, e.g., originating
from non-linear space-charge forces, nonlinearities in the
magnetic focusing systems, beam-beam interactions at
collision, etc. In addition, however, they are often intro-
duced by design through dedicated nonlinear elements for
better control and efficiency. Magnetic octupoles are
commonly used for the latter purpose. In the Large
Hadron Collider (LHC), families of 84 focusing and 84
defocusing, 0.32 m long superconducting magnetic octu-
poles are installed to produce an incoherent betatron tune
spread that depends on the transverse amplitudes, or
actions, ðJx; JyÞ of the particles in the beam [5]. These

so-called Landau octupoles are an integral part of the LHC
instability mitigation toolset and are extensively used for
beam stabilization during operation [6,7].
Future hadron colliders will operate with beams of

smaller transverse emittances making the Landau octupoles
significantly less effective due to the reduced spread in
ðJx; JyÞ. This effect is even more pronounced at higher
beam energies as a result of adiabatic damping and may
eventually lead to a loss of Landau damping of potentially
performance-limiting collective instabilities. Alternative
approaches, such as betatron detuning with longitudinal
action Jz are currently under study. Longitudinal action
provides a much larger handle for introducing a betatron
tune spread due to the orders of magnitude larger spread in
Jz compared to ðJx; JyÞ of the beams of high energy hadron
colliders [8]. The basic formalism for this particular
stabilizing mechanism has been developed by J. Scott
Berg and F. Ruggiero [9]. With their work they demonstrate
that the tune spread introduced as a function of Jz improves
the stability of particle beams. The underlying mechanism
is similar to the Landau damping effect from magnetic
octupoles.
A radio frequency (rf) quadrupole has been considered as

a potential device to realise betatron detuning with longi-
tudinal amplitude [8]. Analytical calculations predict that
the maximum RMS betatron tune spread generated by the
LHC Landau octupoles can theoretically be achieved with a
few metres long superconducting rf device operating in a
transverse magnetic quadrupolar mode. This is for LHC
nominal beam and machine parameters at top energy of
7 TeV. For comparison, the total active length of the LHC
Landau octupoles is about 56 m.
The main purpose of this study is to confirm the

stabilizing effect of an rf quadrupole predicted by stability
diagram theory with numerical simulations using the
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PyHEADTAIL 6D macroparticle tracking code [10].
Section II summarizes the working principle of an rf
quadrupole, describes possible designs and the main
characteristics of the device, potential benefits over conven-
tional stabilizing methods, as well as the existing theory of
the stabilizing mechanism. Section III briefly introduces the
basic principles of the PyHEADTAIL code and details on
the implemented rf quadrupole models. Section IV contains
the numerical proof for beam stabilization with an rf
quadrupole. The study is based on a slow head-tail
instability that is observed in the LHC and proven to be
Landau damped by means of the magnetic octupoles both
experimentally and in simulations [11]. Here, tracking
studies show that an rf quadrupole manages to stabilize
the beam in a similar manner. Section V discusses the beam
dynamics in presence of an rf quadrupole in more detail.
Furthermore, it introduces various schemes for the use of rf
quadrupoles, among them a two-family configuration as
well as the combination of an rf quadrupole with magnetic
octupoles. The schemes are partially motivated by stability
diagram theory and are benchmarked with tracking
simulations.

II. RADIO FREQUENCY QUADRUPOLE

This section gives a brief overview on the main aspects of
an rf quadrupole device. It discusses first two cavity designs
explaining the main differences between the two geometries
as well as the relevant parameters that have been optimized
[8,12]. The basic working principle of the device is then
explained by deriving an analytical formula for the incoher-
ent betatron detuning that it generates. Subsequently, the
features and potential advantages over conventional stabiliz-
ing methods are discussed in more detail in terms of the
mitigation of collective instabilities. Finally, an existing,
approximate, stability diagram theory is applied for a
qualitative characterization of the Landau damping [9].

A. Device description

The purpose of an rf quadrupole is to produce transverse
quadrupolar kicks on the particles in the bunch with a
strength that depends on the longitudinal coordinate. Every
particle feels a different focusing (defocusing) force as it
passes through the device, and hence experiences a change
in the betatron tunes depending on its longitudinal position
in the bunch. This results in an incoherent betatron tune
spread which can produce Landau damping. The frequency
of the rf quadrupole described in this study is chosen to be
800 MHz for two reasons. First, the bunches of the
HL-LHC and FCC-hh (hadron-hadron) are foreseen to
have a length of the order of σz ≈ 0.1 m [1,2]. An rf
quadrupole operating at 800 MHz has an rf wave length
that matches the bunch length and provides the best beam
stabilizing efficiency according to numerical simulations
[12]. Second, for practical reasons, the rf quadrupole

frequency is limited to harmonics of the main rf system
(400 MHz) of the aforementioned machines.
In [12], two different cavity designs for a superconduct-

ing rf quadrupole have been proposed and thoroughly
optimized primarily for quadrupolar field strength, but also
in terms of transverse and longitudinal beam coupling
impedance, and peak electric Epk and magnetic Bpk surface
fields. While the first type is an elliptical cavity operating in
a transverse magnetic (TM) quadrupolar mode, the second
one is a four-vane cavity operating in a transverse electric
(TE) quadrupolar mode. The geometry of the latter was
motivated by the rf quadrupole (RFQ) linac [13]. Its design
was chosen to reach higher quadrupolar field strengths at
smaller cavity size. A cross section of the quadrupolar
fields for the two cavity types is given in Fig. 1. The
transverse kicks Δp⊥ on a positively charged particle
passing the device off-axis at a specific moment in time
are indicated by the black arrows.
The goal of the cavity optimization procedure is mainly to

find a geometry that provides the largest quadrupolar field
strength at the lowest surface fields and impedance. For the
elliptical cavity, the TM210 mode is the best for that purpose.
An illustration of the normalized magnetic (left) and electric
(right) field distributions for this particular mode is given in
the upper part of Fig. 2 showing one octant of the elliptical
cavity. The geometry and field distributions of the four-vane
cavity are depicted in the lower part of Fig. 2. The main
advantages of the four-vane cavity compared to an elliptical
one are [12]: (i) the quadrupolar field strength per cavity is
up to two to five times larger than that of the elliptical one,
given that the aperture has a radius <50 mm, and (ii) the
four-vane cavity is more compact and requires hence smaller
cryomodules and less cooling power. As a result, the number
of cavities can be reduced and therewith the overall
impedance and cost of the system.

B. Working principle

In the thin-lens approximation, an ultrarelativistic par-
ticle of index i, electric charge q, and momentum p

FIG. 1. Qualitative description of the quadrupolar fields leading
to a transverse kick on a charged particle (cross-section). The
direction of the momentum change Δp⊥ is indicated for a
positively charged particle. Left: Elliptical cavity type operating
in a TM mode. Right: Four-vane cavity operating in a TE mode.
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traversing an rf quadrupole along the z-axis experiences
both transverse and longitudinal kicks

Δp⊥
i ¼ pk2ðyiey − xiexÞ · cos ðωti þ φ0Þ; ð1Þ

Δp∥
i ¼ −

ω

2βc
pk2ðx2i − y2i Þ · sin ðωti þ φ0Þ; ð2Þ

where ω denotes the rf quadrupole angular frequency, ex
and ey are the unit vectors along the x and y coordinate
respectively, φ0 is a constant phase offset, and ti is the time
when the particle traverses the rf quadrupole. The latter is
defined with respect to the particle which is at the zero-
crossing of the rf quadrupole voltage, and ti ¼ 0 coincides
with the bunch center. This assumption is made throughout.
The substitution ti ¼ zi=βc gives the longitudinal depend-
ence of the quadrupolar kick strength along the particle
bunch, where β is the relativistic beta and c the speed of
light. The parameter k2 refers to the amplitude of the
normalized integrated quadrupolar gradient, i.e., it accounts
for the transit time factor,

k2 ¼
q

πrpc

Z
2π

0

����
Z

L

0

ðEx − cByÞeiωz=cdz
���� cosφdφ; ð3Þ

where L is the length of the rf quadrupole cavity, and
½r;φ; z� are the cylindrical coordinates. Throughout this
article k2 is expressed in magnetic units [Tm/m] using
the conversion bð2Þ ¼ B0ρk2, where B0ρ is the magnetic
rigidity of the beam.

Depending on their longitudinal position, particles
traversing the rf quadrupole experience a different quad-
rupolar (de-)focusing force and hence a change in their
betatron tunes

ΔQi
x;y ¼ �βx;y

bð2Þ

4πB0ρ
cos

�
ωzi
βc

þ φ0

�
; ð4Þ

where βx;y are the transverse beta functions of the machine
lattice at the location of the quadrupole kicks in Eq. (1).
Equation (4) describes the detuning that a particle i
experiences from a single passage through the rf quadru-
pole according to its current longitudinal position zi in the
bunch. As the particle undergoes synchrotron motion, its
longitudinal position changes turn after turn. Hence, each
time it passes through the device, it experiences a different
kick and hence a different detuning. Given enough time, the
longitudinal turn-by-turn position of the particle will be
evenly distributed over the interval ½−ẑi; ẑi�, where ẑi is its
maximum synchrotron oscillation amplitude. This is true as
long as the synchrotron tune is not a rational number.
Figure 3 illustrates the situation for two different rfFIG. 2. Normalized electric (left) and magnetic (right) fields for

an octant of the elliptical (top) and for half of the four-vane
(bottom) cavity respectively.

FIG. 3. Illustration of the detuning that a particle (red) expe-
riences as it passes through an rf quadrupole (orange) turn after
turn. Given enough time, the longitudinal position of the particle
will be evenly distributed over the interval ½−ẑi; ẑi� due to the
synchrotron motion. It will hence experience a changing detuning
every time it passes through (black dashed curve). If the rf
quadrupole phase is φ0 ¼ 0 (top), the average detuning will not
vanish and there is a net incoherent tune spread. If φ0 ¼ −π=2
there will be no effective tune spread.
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quadrupole phase offsets φ0 ¼ 0 (top) and φ0 ¼ −π=2
(bottom). The grey background represents the particle
distribution (Gaussian) in the longitudinal plane. One
particle (red) is observed over time as it passes through
the rf quadrupole (orange) turn after turn. At every passage
it experiences a detuning according to its current longi-
tudinal position. The black dashed line corresponds to the
interval ½−ẑi; ẑi� that the particle eventually traces out as it
passes through the rf quadrupole for many turns, i.e.,
considering a long enough time (several synchrotron
periods). It is worth noting that the situation is analogous
for detuning with transverse action, such as from magnetic
octupoles [14]. The only difference is that the betatron
rather than the synchrotron motion is relevant. It is clear
from Fig. 3 that for φ0 ¼ 0, the average detuning of the
particles is nonzero which corresponds to a nonvanishing
incoherent tune spread. For φ0 ¼ −π=2, however, the
average detuning vanishes for all the particles and there
is no net tune spread. To maximize hence the achievable
incoherent betatron tune spread and to prevent it from
averaging out over time, the rf quadrupole is operated with
a phase of φ0 ¼ 0 or φ0 ¼ π. This is an essential require-
ment for the Landau damping mechanism to work against
the slow head-tail instabilities which develop over time
scales of many synchrotron periods [4]. Selecting φ0 ¼ 0
means that the device is focusing (defocusing) in the
horizontal (vertical) plane for particles in the bunch center
zi ¼ 0. The situation is inverse for φ0 ¼ π. Equivalently,
operating the cavity in one of these two modes means that
particles located in the bunch center enter the device (anti-)
on-crest of the rf wave. This is different from earlier studies
[15,16] where an rf quadrupole was proposed to increase
the threshold of the transverse mode coupling instability
(TMCI) [4]. In that case, the cavity would have to be
operated at the zero-crossing of the rf voltage, i.e. with
φ0 ¼ �π=2. This has an effect similar to the odd orders of
chromaticity.
In the following we set φ0 ¼ 0. Equation (4) can be

expanded into a Taylor series in zi

ΔQi
x;y ¼ �βx;y

bð2Þ

4πB0ρ

�
1 −

1

2

�
ωzi
βc

�
2

þOðz4i Þ
�
: ð5Þ

Given that the wavelength of the rf wave is much larger
than the bunch length σz, i.e. ωσz=βc ≪ 1, the higher order
termsOðz4i Þ can be neglected. Assuming linear synchrotron
motion and taking the average detuning over a long period
of time (several synchrotron periods), again in analogy to
the derivation of detuning with transverse action from
magnetic octupoles [14], it is easy to show that the rf
quadrupole indeed changes the betatron tunes as a function
of the longitudinal action Jiz of a particle

hΔQi
x;yi ≈ �βx;y

bð2Þ

4πB0ρ

�
1 −

1

2

�
ω

βc

�
2

βzJiz

�
: ð6Þ

βz has been defined as βz ≐ ηR=Qs, where η denotes the
slip factor, R is the accelerator ring radius, and Qs is the
synchrotron tune. The longitudinal action is defined as
Jiz ¼ ðz2i þ β2zδ

2
i Þ=2βz, where δi is the relative momentum

deviation. The constant quadrupolar detuning term in
Eq. (6) does not contribute to the effective tune spread
as it affects all the particles in the same manner. The pure
incoherent detuning of the particles with respect to each
other is hence approximatively given by

ΔQx;yðJzÞ ≈ ∓βx;y
bð2Þ

8πB0ρ

ω2

β2c2
βzJz

¼ ∓ax;yz Jz; ð7Þ

where all the constants are combined in the parameter ax;yz

called detuning coefficient. The approximation is valid as
long as ωσz=βc ≪ 1. Furthermore, it assumes that the rf
quadrupole is operating with a phase φ0 ¼ 0. By changing
the phase to φ ¼ π, the signs flip, meaning that the tune
spreads between the two transverse planes are swapped.
The longitudinal kick in Eq. (2), in a similar manner

leads to an incoherent synchrotron detuning. This effect,
however, can be neglected given the parameters of the
particle colliders under consideration [8].
For the following discussion and in comparison to

Eq. (7) it is useful to recall the transverse detuning with
amplitude introduced by magnetic octupoles

ΔQxðJx; JyÞ ¼ axxJx þ axyJy

ΔQyðJx; JyÞ ¼ ayyJy þ ayxJx; ð8Þ

where aij, i; j ∈ fx; yg, are the detuning coefficients. They
depend on the integrated octupolar field strength weighted
with the beta functions at the location of the magnets
around the accelerator ring and are inversely proportional to
the magnetic rigidity of the beam [17]. Note that the two
cross-detuning coefficients are identical, i.e. axy ¼ ayx.

C. Features, potential advantages, and applications

Figure 4 compares two different incoherent betatron
tune distributions in the transverse tune space Qx vs. Qy,
averaged over several synchrotron periods. First, from
magnetic octupoles which generate detuning with trans-
verse action (blue) as in Eq. (8), and second, from a single
rf quadrupole with φ0 ¼ 0 which generates detuning with
longitudinal action (red) given by Eq. (7). Here, the
magnetic octupoles are powered in a two-family scheme
with focusing and defocusing elements. This scheme is
applied for example in the LHC to optimize the beam
stabilizing efficiency in both transverse planes [17]. When
powered in such a way, magnetic octupoles produce a two-
dimensional tune footprint in ðQx;QyÞ-space as shown in
Fig. 4. The distribution is obtained assuming negative
(positive) polarity of the focusing (defocusing) family.
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The projection of the tune distribution onto the Qx- (Qy-)
axis is nearly symmetric with respect to the bare machine
tune Qx;0 (Qy;0) identified with the green lines.
For the rf quadrupole the tune changes in Qx and Qy are

fully correlated. This is explained by the fact that the
detuning is dependent on only one variable Jz. The tilt of
the distribution from the rf quadrupole is determined by the
ratio of βx vs. βy at the location of the device [see Eq. (7)].
Here, the transverse beta functions are assumed to be
identical. The tune projections for a single rf quadrupole are
strongly asymmetric. This has important consequences for
the stabilizing mechanism in the two transverse planes as
discussed in more detail in Sec. II D. In addition to the
incoherent tune spread, the rf quadrupole also introduces a
constant, quadrupolar tune shift which is the same for all
the particles. This is understood formally from the presence
of the zeroth-order term in Eq. (5). Such an effect can be
compensated with a dedicated quadrupole magnet if
needed.
Figure 5 compares the transverse RMS tune spreads

produced by an rf quadrupole (red) and the LHC Landau
octupoles (blue) as a function of the beam energy for LHC
design beam parameters [5,17]. The comparison is made
using an 800 MHz rf quadrupole installed at βx;y ¼ 200 m.
The strength is fixed at bð2Þ ¼ 0.22 Tm=m and is chosen in
such a way as to provide the same RMS tune spread as the
LHC Landau octupoles powered at their maximum current
of 550A at top beam energy of 7 TeV (green dashed line).

The strengths of both the rf quadrupole and the magnetic
octupoles are held constant as a function of the beam
energy. While the LHC Landau octupoles have a total
active length of 56 m, the equivalent rf quadrupole strength
can theoretically be achieved with just one four-vane cavity
with a total active length of 0.2 m to 0.3 m [12]. For this
particular case, the active length of the rf quadrupole
compared to magnetic octupoles is hence shorter by a
factor 180 to 280. The reason behind the much larger
efficiency of an rf quadrupole in terms of detuning is the
fact that the spread in Jz is several orders of magnitude
larger than that in ðJx; JyÞ. This is generally true for the
beams of high energy hadron colliders like LHC, HL-LHC,
or FCC-hh. Specifically, for LHC design beam parameters
at an energy of 7 TeV there is roughly a factor 104

difference in the transverse and the longitudinal action
spreads. The main reason why the difference in active
lengths between the rf quadrupole and magnetic octupoles
does not reach a factor 104, but rather is limited to 180 to
280 at the beam energy of 7 TeV, is that the transverse
deflecting kicks in an rf cavity are much smaller than those
in a superconducting magnetic octupole. This becomes
evident when comparing the detuning coefficients of an rf
quadrupole with those of magnetic octupoles. In this
particular case and for the given beam energy, the former
is ax;yz ≈ 16, while the latter are of the order of 105 for the
LHC Landau octupoles at maximum strength [18]. The
ratio between the two detuning coefficients amounts to a
factor ≈ 104 which, as expected, corresponds to the differ-
ence in the action spreads between the longitudinal and the
transverse planes.
The advantages of producing a tune spread with an rf

quadrupole rather than with magnetic octupoles become
more pronounced when the beam energy increases as
demonstrated by Fig. 5. Two effects play an important
role here. First, due to the increased beam rigidity
accounted for by the detuning coefficients, the effect of

FIG. 4. Comparison of incoherent betatron tune distributions in
the ðQx;QyÞ-space introduced by magnetic octupoles (blue)
powered in a two-family scheme with negative (positive) polarity
in the focusing (defocusing) family, and a single rf quadrupole
(red). The lines and the cross in green mark the bare machine
tunes ðQx;0; Qy;0Þ. Histograms on the top and on the side show the
projections of the tune distributions onto the Qx- and the Qy-axis
respectively.

FIG. 5. Dependence of the RMS tune spread on the beam
energy for both LHC magnetic octupoles at maximum strength
(blue) and for an rf quadrupole (red), designed in such a way as to
produce the same RMS tune spread at 7 TeV (green dashed line).
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the kicks from both magnetic octupoles and rf quadrupole
is reduced by 1=γ (Lorentz factor). This directly translates
into a reduction of the RMS tune spread by the same factor.
Second, the spreads in respectively the transverse and the
longitudinal actions exhibit a different dependence on the
beam energy. The longitudinal beam stability in a machine
like the LHC strongly relies on Landau damping in the
longitudinal plane [19]. To keep enough stability margin
during the energy ramp, the longitudinal emittance needs to
be blown up. As a result, the longitudinal action spread is
roughly held constant as the beam energy increases. On the
other hand, the transverse action spreads suffer from
adiabatic damping and decrease as 1=γ. To summarize,
the RMS tune spread produced by the rf quadrupole is only
reduced as 1=γ (beam rigidity) while the one introduced by
magnetic octupoles decreases as 1=γ2 (beam rigidity and
adiabatic damping). These considerations are based on the
assumption that the machine optics remain unchanged
during the energy ramp.
In addition to the improved detuning efficiency com-

pared to magnetic octupoles, the performance of the rf
quadrupole also remains unaffected by beam manipulations
in the transverse plane, such as beam halo cleaning through
collimation. During this process, the large transverse
amplitude particles are removed from the beam in a
controlled manner for reasons of machine protection [1,5].
The rf quadrupole finds a potential application predomi-

nantly in future high energy hadron colliders, such as
HL-LHC or FCC-hh, where the differences between the
transverse and longitudinal emittances are most pro-
nounced. Due to the small transverse emittance of the
beams expected in these machines, the number of magnetic
octupoles required to provide the tune spread for sufficient
Landau damping is large, and a solution relying only on
magnetic octupoles may be less cost-effective than an rf
quadrupole, or a combination of the two elements.
However, it is worth pointing out that the size of the
incoherent betatron tune spread alone does not make a
complete statement about the effectiveness of the Landau
damping itself. The stabilizing mechanisms from detuning
with transverse and longitudinal action respectively are
different as seen from stability diagram theory explained in
the following. Generally speaking, tracking simulations are
the most accurate way at present to study the effectiveness
of beam stabilization with an rf quadrupole.

D. Stability diagram theory

A practical approach to quantify the Landau damping
generated by an incoherent tune spread is to use stability
diagram theory. A stability diagram marks the area
in the complex coherent tune shift plane ReðΔQcohÞ vs.
−ImðΔQcohÞ for which Landau damping is effective. The
real part of the complex coherent tune shift is obtained from
a frequency analysis of the bunch centroid motion. The
imaginary part corresponds to the growth rate of the

instability at hand. For magnetic octupoles, the stability
diagram theory is well established (see, e.g., [9]). The goal
of this section is to summarize the stability diagram theory
that exists for detuning with longitudinal amplitude, as
introduced for instance by an rf quadrupole.
The top plot in Fig. 6 shows the incoherent tune

distributions in the two transverse planes obtained analyti-
cally for a Gaussian beam for a single rf quadrupole with
φ0 ¼ 0 assuming identical beta functions. In accordance
with Eq. (7), the particles experience negative (positive)
detuning in the horizontal (vertical) plane. The distributions
in the two planes are strictly asymmetric and are mirrored
with respect to each other. This is a direct consequence of
the quadrupolar nature of the kicks introduced by the
device. To obtain the distributions for φ0 ¼ π, the labels of
the two curves can simply be exchanged.
The stability diagram for a given tune distribution is

obtained by solving the corresponding dispersion relation.
An approximate dispersion relation for betatron detuning
with longitudinal amplitude has been derived by J. Scott
Berg and F. Ruggiero [9]

ΔQ−1
coh ¼

1

N

ZZZ
∞

0

Jjmj
z Ψ0ðJÞ

Q−QuðJzÞ−mQs
d3J; u ∈ fx; yg;

N ¼
ZZZ

∞

0

Jjmj
z Ψ0ðJÞd3J: ð9Þ

J ¼ ðJx; Jy; JzÞ is the vector of particle actions in all three
dimensions, QuðJzÞ ¼ Q0;u þ ΔQuðJzÞ describes the tune

FIG. 6. Top: Incoherent tune distributions obtained analytically
for a Gaussian beam with a single rf quadrupole with a phase of
φ0 ¼ 0 assuming βx ¼ βy. Bottom: Corresponding stability
diagrams determined by solving Eq. (9) numerically for an
azimuthal mode m ¼ 0 head-tail instability.
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dependence on Jz, m is the azimuthal mode number of the
instability under consideration, and Ψ0 represents the
unperturbed particle distribution. The stability diagram is
obtained by numerically computing the tune shifts ΔQcoh
for different values of Q. According to the Landau bypass
rule, a small complex part iϵ is added to the denominator of
Eq. (9) to perform the integration [3]. An example of
stability diagrams in the two transverse planes is shown in
the bottom plot of Fig. 6 for the corresponding tune
distributions displayed in the top plot. An azimuthal mode
m ¼ 0 head-tail instability is assumed here. The way to
read the plots is that all the coherent instabilities with an
unperturbed ΔQcoh (i.e., in the absence of any tune spread)
situated below the line traced out by the stability diagram
will be Landau damped. In absence of Landau damping
only the modes with −ImðΔQcohÞ ≤ 0 would be stable, i.e.
the stability diagram in that case would be represented by a
constant function with −ImðΔQcohÞ ¼ 0. It is clear that the
asymmetry of the tune spreads is reflected in the shape of
the stability diagrams. This has important consequences for
the stabilizing efficiency of the rf quadrupole in the two
transverse planes as further discussed in Sec. V.
The dispersion relation in Eq. (9) is based on two main

assumptions and does hence not describe all the beam
dynamics aspects in presence of an rf quadrupole. First, in
the general case it would depend on the specific impedance
of the machine under consideration. In the derivation made
by Scott Berg and Ruggiero, this dependency has been
neglected under the assumption that the frequency range of
the impedance is small compared to the frequency spectrum
of the beam [9]. This condition holds for instance for a
strongly peaked impedance, i.e., a narrow-band resonator
with a very high quality factor. However, for the impedance
model and the beam parameters of a hadron collider like the
LHC for example, it is no longer valid. One reason is that
several machine components have an impedance that
extends over a large range of frequencies [18]. Second,
an rf quadrupole acts on the betatron tunes as a function of
the longitudinal coordinate and thus introduces a correla-
tion between the betatron and the synchrotron motion. By
consequence, it directly affects the interaction between the
beam and the impedance with the result that the effective
impedance changes [4]. This effect is similar to a chro-
maticity which can be accounted for by the head-tail phase
parameter describing the frequency shift of the beam
spectrum with respect to the impedance. A change of
the effective impedance leads to a modification of the
complex coherent tune shift of the instability under con-
sideration. This manifests itself for example as a change of
the instability rise time which can become faster or slower
depending on the impedance of the machine and the
respective unstable head-tail mode. At large enough rf
quadrupole strengths it is even possible that a mode is
excited on a different synchrotron side band (change of the
azimuthal mode number) [20,21].

III. PYHEADTAIL

A. Basic concepts

PyHEADTAIL is a 6D macroparticle tracking code under
development at CERN [10]. It is the successor of the
well-established HEADTAIL code [22]. The purpose of the
software is to accurately and effectively model the for-
mation of collective instabilities in circular particle accel-
erators to make the study of the involved mechanisms
possible, and to develop and evaluate appropriate mitiga-
tion techniques.
The basic PyHEADTAIL model represents a particle bunch

as a collection of macroparticles, each of which is described
by a mass, an electric charge, and its generalised coor-
dinates and canonically conjugate momenta with two
longitudinal and four transverse dimensions. The particles
can be initialised in various distributions, amongst others
Gaussian, waterbag, or airbag, also including the possibility
for longitudinal matching to a multiharmonic rf bucket.
The accelerator ring is divided into a number of seg-

ments. At the beginning and at the end of every segment
there is an interaction point where the macroparticles
experience collective effects (wake fields/beam coupling
impedance, electron-cloud, space-charge, etc.) or kicks
from a specific accelerator component, such as a transverse
feedback or an rf quadrupole. The betatron motion between
two consecutive interaction points is modeled with linear
maps which take into account the Twiss parameters and the
dispersion at the start and at the end of the connecting
segment. Non-linear tracking features such as chromaticity,
i.e. the variation of the betatron tune with the relative
momentum deviation, are modeled as a change in the phase
advance of each individual macroparticle in the beam. The
betatron detuning with transverse amplitude introduced by
magnetic octupoles for example is parametrized by the
effective machine anharmonicities and is implemented in
the same manner. The synchrotron motion is either linear or
nonlinear, potentially including particle acceleration and
the effects of multiharmonic rf systems.

B. Rf quadrupole models and benchmarks

The rf quadrupole is implemented in PyHEADTAIL with
two different models: (i) as a detuning element, and (ii) as
localized kicks. The first model directly applies Eq. (4) and
is implemented equivalently to other effective nonlinear
tracking features, such as chromaticity and magnetic octu-
poles. Every macroparticle experiences a change in its
phase advance depending on its longitudinal position in the
bunch. In the second, more accurate localized kick model,
every macroparticle receives kicks to its transverse and
longitudinal momenta computed according to the thin-lens
approximation defined by Eqs. (1) and (2). Betatron
detuning then follows as a result after transverse tracking.
The use of the thin-lens approximation is justified as the
focal length of an rf quadrupole is much larger than the
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length of the device itself [23]. For example, the strength
bð2Þ required to stabilize the most unstable head-tail mode
in the HL-LHC at 7 TeV is of the order of 0.3 Tm=m (see
Sec. V C). This translates into a focal length f>7.7×104m
which is orders of magnitude larger than the length of the
device.
Both the detuning and the localized kick model of the rf

quadrupole account for the constant phase offset φ0

introduced in Sec. II. That way, different operational modes
of the device can be studied. In terms of collective effects
and Landau damping in particular, the two models are
expected to produce identical results. The main difference
is that the detuning model does not apply kicks to the
particle momenta, meaning that the transverse and longi-
tudinal action of each individual macroparticle remain
unchanged. By consequence, resonances potentially intro-
duced by an rf quadrupole cannot be excited and must
instead be analyzed with the localized kick model. The two
models are hence particularly useful when coherent and
incoherent effects from an rf quadrupole are to be studied
separately.
The results of a benchmark comparing the two rf

quadrupole models in PyHEADTAIL are displayed in
Fig. 7. The rf quadrupole phase is set to φ0 ¼ 0. The
two histograms show the incoherent vertical tune distribu-
tions established after tracking a 6D Gaussian bunch with
500000 macroparticles over five synchrotron periods
assuming linear synchrotron motion. The frequency analy-
sis is performed by means of the SUSSIX code [24]. The
two models yield consistent results within expectations
given the limited number of macroparticles. The bin
colored in green represents particles at 1σ, i.e. with a
longitudinal action of Jz¼σ2z=2βz. The blue dashed line
marks the corresponding detuning expected from analytical

calculations [Eq. (6)] and shows an excellent agreement
with both tracking models. The approximation of Eq. (6)
holds as the beam and rf quadrupole parameters are chosen
such that ωσz=βc ≪ 1. The blue solid line marks the
average betatron detuning determined analytically for
particles at Jz ¼ 0, i.e., particles residing in the center of
the longitudinal phase space. As expected, it coincides with
the lower bound of the distribution. Since for these particles
z remains zero over time, the (average) detuning is given
simply by the constant quadrupolar term −βybð2Þ=4πB0ρ.
This result is exact independent of whether or not the
condition ωσz=βc ≪ 1 holds.

IV. NUMERICAL PROOF OF CONCEPT

The numerical validation of the stabilizing effect of an rf
quadrupole is based on a horizontal single-bunch instability
originally observed experimentally in the LHC at 3.5 TeV
during machine commissioning in 2010 [11]. Dedicated
studies in the LHC demonstrated that this particular
instability is characterized as a slow head-tail mode with
an azimuthal mode number m ¼ −1. Furthermore, it was
clearly shown experimentally that it can be suppressed by
means of the Landau damping mechanism introduced by
powering the Landau octupoles installed in the machine.
The focusing and defocusing octupole families are
powered with the same current, but opposite signs, i.e.,
Ioct;f ¼ −Ioct;d, if not stated otherwise. The threshold
current in the Landau octupoles required to Landau damp
the head-tail mode was determined to be IExpoct;f ¼−15�5A.
The corresponding instability rise time was measured to be
τ ≈ 9.8 s at Ioct;f ¼ −10A. The corresponding rise time at
Ioct;f ¼ 0 A is expected to be significantly faster, but is not
accessible from experimental measurements.
To confirm the validity of the numerical modeling, the

observations made in the LHC are reproduced using two
different accelerator physics models. First, the 6D macro-
particle tracking code PyHEADTAIL, and second, a circulant
matrix model (CMM) [25] implemented in the BimBim code
[26]. The main input for both codes is an accurate
impedance model of the LHC as well as the beam and
machine parameters at the time of the measurement. They
are summarized in Table I.

FIG. 7. Comparison of the incoherent betatron tune distribu-
tions introduced by an rf quadrupole for the detuning (red) and
the localized kick (grey) model implemented in PyHEADTAIL.
Both models give consistent results. The detuning obtained from
PyHEADTAIL for particles with respectively Jz ¼ σ2z=2βz (green)
and Jz ¼ 0 is in good agreement with analytical calculations
(blue).

TABLE I. Main parameters used in PyHEADTAIL and BimBim to
reproduce the LHC experimental machine setup at 3.5 TeV [11].

Parameter Symbol Value

Bunch intensity Nb 1.0 × 1011 pþ=b
Beam energy E 3.5 TeV
Chromaticity Q0

x;y 6
Transverse normalized emittance ϵx;y 3.75 μm rad
Bunch length σz 0.06 m
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A. Stabilization from Landau octupoles

PyHEADTAIL simulations make a full characterization of
the observed unstable mode possible. The main results are
summarized in Fig. 8 where 106 macroparticles have been
tracked over 3 × 105 turns. The first plot (left) shows the
time evolution of the horizontal bunch centroid in absence
of incoherent tune spread. The amplitude growth is fitted
with an exponential function fðtÞ ¼ exp ðt=τÞ to obtain the
rise time τ ¼ 3.7 s of the unstable mode. For comparison
with the above-mentioned experimental measurements, the
rise times from simulations are also determined for two
different nonzero Landau octupole currents. At Ioct;f ¼
−10 A the rise time is τ10 ¼ 4.5 s and at Ioct;f ¼ −15 A it
is τ15 ¼ 12.8 s. The values are consistent with the experi-
ments. A spectral analysis of the bunch centroid oscillation
at different times during the evolution of the instability is
shown in the middle plot. The spectral curves correspond to
the vertical dashed lines in the first plot and are obtained
from a fast-Fourier-transform with a window size of
160384 turns. The spectra clearly show that the azimuthal
mode m ¼ −1 is the fastest growing mode, which is again
consistent with experimental observations. The correspond-
ing head-tail mode pattern is a standing wave with a single
node in the bunch center (right plot) indicating a radial
mode number 1. The characterization of the head-tail
instability at hand is completed by the complex coherent
tune shift ΔQcoh of the unperturbed mode, i.e., in absence
of Landau damping. The real part is obtained from spectral
analysis (SUSSIX), and the imaginary component is calcu-
lated from the instability rise time fit. The results are

ReðΔQPyHT
coh Þ ¼ −3.6 × 10−6;

ImðΔQPyHT
coh Þ ¼ −9.2 × 10−5:

To determine the amount of Landau damping required to
suppress this particular mode, the LHC Landau octupoles
are added to the PyHEADTAIL tracking model and a scan in
Ioct;f is performed with a stepsize of 5 A. A selection of the

results is presented in Fig. 9. The instability is suppressed
with a Landau octupole current of IPyHToct;f ¼ −17.5� 2.5 A
which is in excellent agreement with experimental
measurements.
Complementary to the studies carried out with

PyHEADTAIL, the second accelerator physics model used
here is the CMM implemented in the BimBim code. It
includes amongst others the effects of impedance and
chromaticity, but neglects for instance multiturn wake
fields and Landau damping from magnetic octupoles
[27]. The former is a valid approximation for the wake
fields present in the LHC as they decay on a time scale
faster than the revolution period [18]. The absence of
Landau damping in the CMM is a consequence of the
linearization of the system in the transverse planes. This
approximation excludes the possibility to account for the
nonlinear effects required to model detuning with trans-
verse amplitude. BimBim computes directly the unperturbed
ΔQcoh by numerically solving an eigenvalue equation. For
the LHC instability, the most unstable mode in BimBim is
again the azimuthal mode m ¼ −1 with a coherent tune
shift of

FIG. 8. Left: Horizontal bunch centroid evolution over time with an exponential fit of the rise time (red). Middle: Frequency spectra of
the bunch centroid at different times during the simulation (see dashed lines in the first plot). The most unstable mode is an azimuthal
mode m ¼ −1 in agreement with the experiments. Right: Horizontal slice centroid vs. longitudinal position for 80 consecutive turns.
The head-tail motion is characterized by one node in the center of the bunch.

FIG. 9. PyHEADTAIL results of the bunch centroid motion over
3 × 105 turns in the LHC for different values of the currents in the
Landau octupole magnets.
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ReðΔQBB
cohÞ ¼ −3.9 × 10−6;

ImðΔQBB
cohÞ ¼ −9.6 × 10−5:

The values are in good agreement with PyHEADTAIL

tracking simulations.
As the CMM does not model Landau damping from

magnetic octupoles, a different method must be chosen
instead to determine the current Ioct;f required for beam
stability. A popular one is to use stability diagram theory
for Landau octupoles [9]. The Python solver for stability
diagrams (PySSD) is used here for that purpose [26,28].
The stability diagrams from LHC Landau octupoles are
shown in Fig. 10 in the complex tune space ReðΔQcohÞ vs.
−ImðΔQcohÞ for two different Landau octupole currents,
Ioct;f ¼ −15� 5 A (green), and Ioct;f ¼ −17.5� 1 A
(orange). The colored areas are respectively the corre-
sponding uncertainties or the resolution of the scan in
Landau octupole current. The former corresponds to the
experimental measurements, while the latter is determined
from the unperturbed complex coherent tune shifts (BimBim
and PyHEADTAIL). The values of ΔQcoh of the unperturbed
mode as obtained from BimBim and PyHEADTAIL are given
by the red and blue markers respectively. For this particular
case, the theory predicts stability from the Landau octu-
poles at ISDToct;f ¼ −17.5� 1 A as illustrated in Fig. 10 by the
orange dashed line and area. This is again fully consistent
with tracking simulations and experiments (green line
and area).
The studies presented above clearly show that the

impedance model of the LHC used for numerical simu-
lations with PyHEADTAIL and BimBim is reliable. Both
accelerator physics models produce the same outcome
and manage to reproduce the observations made in the
machine to a high degree of accuracy. The observed

head-tail mode is Landau damped in experiments, tracking
simulations, and in theory with fully consistent results
on the required Landau octupole current. The fact that
stability diagram theory predicts the same Landau octupole
current as obtained from experiments and tracking under-
lines that the stabilization of this mode is indeed a result of
Landau damping. Furthermore, the Landau damping
mechanism is accurately modeled in PyHEADTAIL and this
forms the basis for the numerical proof of concept of the
stabilizing effect from an rf quadrupole discussed in the
following.

B. Stabilization from an rf quadrupole

The PyHEADTAIL study presented above is repeated with
now an rf quadrupole (localized kick model) instead of the
LHCLandauoctupoles.A scan is performed in the integrated
quadrupolar field strength bð2Þ with the Landau octupoles
switched off. The results of the scan are summarized in
Fig. 11. They show a picture that is very similar to Fig. 9.
With increasing quadrupolar strength, and hence increasing
tune spread, the growth rate of the unstable mode is reduced
and eventually suppressed entirely. The stability threshold is
bð2Þ ¼ 0.105� 0.005 Tm=m. Although not displayed here,
an identical result is obtained with the detuning model of
the rf quadrupole in PyHEADTAIL. The studies confirm the
effect expected from the theory discussed in Sec. II D, and
demonstrate that an rf quadrupole for beam stabilization can
work conceptually. According to preliminary cavity design
studies, the stabilizing quadrupolar strength required here
could be achieved with a single cavity with an equivalent
active length of about 0.1m [12]. For comparison, to stabilize
the samemodewith the LHCLandauoctupoles an equivalent
active length of about 1.5m is required. This is assuming that
they are powered at their maximum current of 550 A.
In analogy to the analysis performed above for the

Landau octupoles, the stabilizing strength of an rf quadru-
pole is analyzed also by means of stability diagram theory.
For that purpose, the approximate dispersion relation in

FIG. 10. The dashed lines are stability diagrams obtained
with the PySSD code for two different Landau octupole currents
Ioct;f ¼ −15� 5 A (green) and Ioct;f ¼ −17.5� 1 A (orange).
The colored areas are the corresponding uncertainties. The former
corresponds to the values obtained experimentally, while the
latter is determined from the unperturbed complex coherent tune
shifts (red circle: BimBim, blue cross: PyHEADTAIL).

FIG. 11. PyHEADTAIL results of the bunch centroid motion over
3 × 105 turns in the LHC for different values of the rf quadrupole
strength bð2Þ.

M. SCHENK, A. GRUDIEV, K. LI, and K. PAPKE PHYS. REV. ACCEL. BEAMS 20, 104402 (2017)

104402-10



Eq. (9) is solved numerically for the parameters of the
PyHEADTAIL simulation. The outcome is presented in
Fig. 12. The red and blue markers are again the complex
coherent tune shifts obtained with the BimBim code and
PyHEADTAIL respectively. The dashed line marks the
stability diagram for an rf quadrupole strength of
bð2Þ ¼ 0.0235� 0.0010 Tm=m. The colored area corre-
sponds to the resolution of the scan in bð2Þ. There is a clear
discrepancy of a factor four in the required stabilizing
strength between theory and PyHEADTAIL tracking simu-
lations. The main reason for this difference is that the
dispersion relation does not take into account the imped-
ance model of the LHC, as explained in Sec. II D. It
assumes instead that there is only a single peak in the
impedance spectrum that is responsible for driving the
given instability [9]. Clearly, this is not the case here as
(i) the LHC impedance has several broad-band compo-
nents, and (ii) the overlap between the bunch spectrum and
the impedance determines the coherent tune shift (and
growth rate) of the instability [4,18]. Furthermore, the
tracking simulation takes into account the full cosine
dependence of the detuning from the rf quadrupole, while
the analytical formula only considers the first order term in
Jz [see Eq. (7)]. For the given rf quadrupole frequency and
bunch length, the detuning of the particles at large
amplitudes Jz, and thus the overall tune spread and the
Landau damping, are overestimated compared to the
tracking simulations.
Comparing the amounts of RMS tune spread required

from magnetic octupoles and an rf quadrupole helps
to estimate the Landau damping efficiency of the two
mitigation techniques. The RMS tune spreads required
to suppress slow head-tail instabilities are typically
much smaller than the synchrotron tune Qs since
ReðΔQcohÞ ≪ Qs. For the unstable mode studied here,
they are (from PyHEADTAIL)

ΔQoct
rms ¼ ð2.4� 0.3Þ × 10−5 ≈ 0.012Qs;

ΔQrfq
rms ¼ ð3.4� 0.5Þ × 10−5 ≈ 0.017Qs;

with Qs ≈ 2 × 10−3. Although the two values are of a
similar order of magnitude, the discrepancy is significant
and emphasizes that the amount of incoherent tune spread
alone does not give the entire picture about whether an
unstable mode is Landau damped or not. The imaginary
part of ΔQcoh as well as the shape of the stability diagram
are both essential ingredients to address this question. This
becomes clear by comparing Figs. 10 and 12. The reason
for the difference of the required tune spreads is a
consequence mainly of the way the Landau damping
mechanism works for detuning with transverse and longi-
tudinal amplitude respectively. The dispersion integral
equations for the two approaches differ significantly from
each other [9]. As a result, the corresponding stability
diagrams can have a different shape and the tune spreads
required to suppress a particular instability will in general
be different as well.

V. ALTERNATIVE SCHEMES

Stability diagram theory for detuning with longitudinal
amplitude predicts amongst others a strong asymmetry in
the stabilizing efficiencies between the two transverse
planes. This is studied in the following by qualitatively
comparing theory against tracking simulations. To over-
come the asymmetry, a two-family scheme for rf quadru-
poles is proposed and the performance is validated with
tracking simulations. The idea is motivated by the two-
family scheme employed for beam stabilization with
magnetic octupoles [17]. Finally, the synergy between rf
quadrupoles and magnetic octupoles is studied in terms of
stabilizing efficiency for an HL-LHC machine setup.

A. Qualitative comparison with
PyHEADTAIL simulations

The comparisons between stability diagram theory and
tracking simulations shown here are only of qualitative
nature due to the simplifications made in the derivation of
the dispersion relation (see Sec. II D). Nevertheless, they
give insight into the mechanisms and are used to motivate a
more advanced scheme of rf quadrupoles to improve the
performance presented in Sec. V B.
The horizontal and the vertical complex coherent

tune shifts of the unstable head-tail modes are typically
very similar for a hadron collider like the LHC, i.e.,
ΔQx

coh ≈ ΔQy
coh. For LHC operational beam and machine

parameters for instance the most unstable impedance-driven
head-tail modes are characterized by ReðΔQx;y

cohÞ < 0. For a
single rf quadrupole, the stability diagrams in Fig. 6 illustrate
that the stable regions in the two transverse planes have
different shapes.Given thatReðΔQx;y

cohÞ < 0, one plane (here:
horizontal) is expected to exhibit a much better stabilizing

FIG. 12. The dashed line is the stability diagram obtained
by numerically solving the approximate dispersion relation in
Eq. (9) for an rf quadrupole with bð2Þ ¼0.0235�0.0010Tm=m.
The colored area is the corresponding resolution of the scan in
bð2Þ. The unperturbed complex coherent tune shifts from BimBim
(red circle) and from PyHEADTAIL (blue cross) are shown as well.
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efficiency than the other one for an rf quadrupolewith a phase
of φ0 ¼ 0. The situation is inverse for φ0 ¼ π. This asym-
metry has first been observed in PyHEADTAIL simulations for
the LHC instability at an energy of 3.5 TeV, introduced in
Sec. IV. For this particular case, by changing the phase φ0

from 0 to π, the stabilizing quadrupolar strength increases

roughly by a factor three from bð2Þ0 ¼ 0.105� 0.005 Tm=m

to bð2Þπ ¼ 0.35� 0.02 Tm=m.
The asymmetric nature of the rf quadrupole kicks is

impractical, and a systematic study is made with
PyHEADTAIL to further examine this particular observation
and to find possible solutions to circumvent it. To simplify
the simulation set-up, a pure dipolar analytical broad-band
resonator impedance (quality factor of Q ¼ 1) is used with
identical components in the horizontal and the vertical
planes. For further simplification of the setup, the chro-
maticity is set to Q0 < 0 to induce a weak azimuthal mode
m ¼ 0 head-tail instability (note that the study is done
above transition energy) [4]. This has no impact on the
underlying stabilizing mechanism described by stability
diagram theory. Both the real and the imaginary compo-
nents of the coherent tune shift ΔQx;y

coh are controlled by
varying the beam intensity. With increasing intensity, the
coherent tune shift becomes larger due to the stronger
interaction of the beam with the impedance. It is hence
expected from theory that more rf quadrupole strength will
be required for stabilization. The two transverse planes are
affected equivalently by the intensity increase. However,
stability diagram theory predicts that the stabilizing rf
quadrupole strength must be different in the two planes
due to the strong asymmetry of the stability diagrams (see
Fig. 6, bottom).
The results of the simulation studies are summarized in

Fig. 13. 800000 macroparticles have been tracked over
105turns and a scan in bð2Þ has been performed for each
beam intensity setting. The top plot corresponds to an rf
quadrupole with φ0 ¼ 0 and clearly represents the asym-
metry expected from the theory. The horizontal plane
becomes stable already at much lower quadrupolar strength
than the vertical one. By changing φ0 from 0 to π, the
behaviour in the two planes is swapped (bottom plot), again
in accordance with expectations given the quadrupolar
nature of the device. At the maximum beam intensity,
the difference between the threshold quadrupolar strengths
in the two planes reaches almost a factor five for this
particular case.
Figure 14 underlines the qualitative agreement between

tracking simulations and theory and is an explanation for
the observations made. The plot shows the complex
coherent tune space with the dependence of the unperturbed
ΔQx;y

coh on the beam intensity, represented by the colored
markers. They are normalized to the absolute value of the
maximum real coherent tune shift measured at the highest
intensity of the scan. The real and the imaginary parts

depend approximately linearly on the beam intensity.
Furthermore, ReðΔQx;y

cohÞ ≤ 0. Stability diagrams for two
different quadrupolar strengths of an rf quadrupole operat-
ing with φ0 ¼ 0 are overlaid for the horizontal (solid lines)
and the vertical plane (dashed lines). It is obvious that the
stabilizing behavior in the horizontal plane is expected to
be significantly better than in the vertical one. Additionally,
comparing the stability diagrams for the two quadrupolar
strengths, the stable area for the horizontal plane grows

FIG. 13. PyHEADTAIL tracking simulations illustrating the
stabilizing efficiency in the horizontal (red) and the vertical
(blue) planes with an rf quadrupole with φ0 ¼ 0 (top) and φ0 ¼ π
(bottom) respectively.

FIG. 14. Evolution of the unperturbed coherent tune shift in the
complex tune space as a function of intensity. Stability diagrams
for the horizontal (solid lines) and the vertical (dashed lines)
planes are overlaid for two different strengths for an rf quadrupole
operating with φ0 ¼ 0.
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much faster than that in the vertical plane. This explains the
increase in the difference between the stability thresholds as
a function of beam intensity shown in Fig. 13.

B. Two-family scheme

The asymmetric stabilizing behavior in the two trans-
verse planes can be overcome by installing two indepen-
dent rf quadrupole families that operate with opposite
phases and are placed at two different locations in the
machine lattice. One of them is placed at high βx, low βy to
improve beam stability mainly in the horizontal plane,
while the other one is installed at a location with low βx and
high βy for stability mainly in the vertical plane. Naturally,
the difference between the local beta functions must be as
large as possible to avoid (significant) compensation of the
detuning effect from the other rf quadrupole family.
Figure 15 illustrates the stabilizing efficiency in the two

transverse planes for the two-family rf quadrupole scheme
for the broad-band resonator driven instability introduced
in Sec. VA. For illustrative purposes, values of ten have
been assumed for respectively the ratio βx=βy and βy=βx at
the two rf quadrupole locations. The vertical axis represents
the total quadrupolar strength, i.e., the sum of the strengths
of the two families, to allow a better comparison with the
one-family schemes depicted in Fig. 13. The two families
are powered with the same strengths. There are two main
obvious advantages. First, the strong asymmetry between
the two planes is removed and the required stabilizing
strength is now equal for both planes. Second, the total
quadrupolar strength to achieve stability in both planes is
significantly lower overall. However, since the two families
counteract each other to a small amount, the stabilizing
strength in the two-family scheme cannot reach the values
of the respective favored plane in the one-family scheme.

C. Synergy with magnetic octupoles

To understand the practicality and usefulness of an rf
quadrupole in a future hadron collider, it is important to
assess its interplay with magnetic octupoles. The study

presented here is based on the HL-LHC. The stabilizing
performance of an ensemble of 800 MHz superconducting
rf quadrupole cavities is evaluated in presence of the LHC
Landau octupoles. The latter will remain an important part
of the instability mitigation toolset also for the HL-LHC. A
single-bunch instability driven by the dipolar accelerator
impedance for foreseen operational flat-top beam and
machine parameters serves as a study case. The main
values of the machine set-up are summarized in Table II.
An idealised bunch-by-bunch transverse feedback system
with a damping time of 50 turns is included in the
simulation model. At a chromaticity of Q0

x;y ¼ 10 the most
unstable mode is a slow head-tail instability with azimuthal
and radial mode numbers of 0 and 2 respectively [29]. This
is consistent with experimental observations made in the
LHC at 6.5 TeV [6].

PyHEADTAIL simulations with 8 × 105 macroparticles
tracked over 6 × 105 turns predict that beam stability
from LHC Landau octupoles alone is achieved for
Ioct;f ¼ 170� 10 A. This is about one third of their maxi-
mum current. By adding an rf quadrupole to the simulation
model, the stabilizing current in the Landau octupoles can be
significantly lowered as demonstrated in Fig. 16. The beta
functions at the potential location of the rf quadrupole in the
HL-LHC are set to βx;y ¼ 200 m (conservative). Although
there is a minor effect on the threshold current Ioct;f up to a
cavity strength of about bð2Þ ¼ 0.1 Tm=m, the simulations
predict that already for bð2Þ ≥ 0.27 Tm=m the Landau

FIG. 15. PyHEADTAIL tracking simulations illustrating the
stabilizing efficiency in the horizontal (red) and the vertical
(blue) planes with the two-family rf quadrupole scheme.

TABLE II. Main machine and simulation parameters used for
the HL-LHC studies with PyHEADTAIL.

Parameter Symbol Value

Bunch intensity Nb 2.2 × 1011 pþ=b
Beam energy E 7 TeV
Chromaticity Q0

x;y 10
Transverse normalized emittance ϵx;y 2.5 μm rad
Bunch length σz 0.082 m

FIG. 16. PyHEADTAIL tracking simulations showing the com-
bined stabilizing effect from LHC Landau octupoles and an rf
quadrupole in the HL-LHC.
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octupoles are no longer required to mitigate the instability.
Given the preliminary cavity design, the latter strength can be
provided with about one to two rf cavities [12].

VI. SUMMARY

The working principle of an rf quadrupole for Landau
damping has been recapped and potential advantages over
conventional stabilizing methods, in particular magnetic
octupoles, have been pointed out. The major one is that
the incoherent betatron tune spread is dependent on the
longitudinal action spread which is several orders of
magnitude larger than the transverse ones for the beams
of LHC, HL-LHC, and FCC-hh. This method provides
hence a much larger handle for producing the incoherent
tune spread needed for Landau damping. The required
active length of rf quadrupole compared to that of magnetic
octupoles is greatly reduced, even if the field strengths in an
rf quadrupole are much lower than those in magnetic
octupoles. The advantage is particularly pronounced at
higher beam energies as the RMS tune spread from an rf
quadrupole decays only with 1=γ compared to 1=γ2 for
magnetic octupoles.
Two models of an rf quadrupole have been implemented

in the PyHEADTAIL 6D macroparticle tracking code,
and were successfully benchmarked against each other
and against analytical calculations. The validation of the
PyHEADTAIL model, i.e., the formation of impedance-driven
instabilities as well as the Landau damping mechanism,
was based on a slow head-tail mode studied experimentally
at 3.5 TeV in the LHC. The comparison of the LHC Landau
octupole current required for beam stability revealed an
excellent agreement between experiment, numerical sim-
ulations from particle tracking and the circulant matrix
model, and stability diagram theory. The Landau octupoles
were replaced with an rf quadrupole in a second step to
show that such a device can provide stability in a similar
manner. The comparison with stability diagram theory for
rf quadrupoles shows, however, that more work is neces-
sary to improve the theoretical predictions.
Due to the quadrupolar nature of the device, the

stabilizing efficiency in the two transverse planes is
strongly asymmetric. This is predicted by stability diagram
theory and is confirmed by tracking simulations. Based on
these results, a two-family scheme for rf quadrupoles was
proposed and tested numerically. Not only could the
asymmetry be cleared away, but also the overall quad-
rupolar strength required for beam stability was reduced.
Finally, based on an HL-LHC operational scenario, the
combined stabilizing effect frommagnetic octupoles and an
rf quadrupole was studied and shown to be successful.

VII. OUTLOOK AND CLOSING REMARKS

While the results are promising in terms of the mitigation
of impedance-driven collective instabilities, further studies

are required to assess the usefulness and practicality of an rf
quadrupole. Among them are (i) incoherent effects includ-
ing resonances and dynamic aperture, (ii) the efficiency of
the device against other types of collective instabilities,
e.g., induced by the presence of an electron-cloud, and
(iii) the cavity alignment tolerances and the effects of a
beam entering the cavity with a transverse offset. In
parallel, methods are under study for an experimental
validation of the collective effects simulations presented
here. Although the construction and test of a prototype rf
quadrupole cavity in an existing accelerator would be the
most direct way to achieve this goal, it is associated with
large costs and a time-scale of the order of years. As an
alternative, stabilization from second order chromaticityQ00
is under study. Q00 provides betatron detuning with longi-
tudinal amplitude, equivalently to an rf quadrupole in a first
order approximation [21]. The main advantage of Q00 over
the rf quadrupole is that it can be introduced in an existing
machine like the LHC for instance by powering the
installed main sextupole magnets in a specific scheme.
Measurements have already been performed in the LHC
with single nominal bunches at an energy of 6.5 TeV [20].
The preliminary analysis of the experiments shows that (i)Q00
indeed contributes to beam stability and (ii) PyHEADTAIL

accuratelymodels the involvedmechanisms.Amore detailed
analysis will be reported at a later date.
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