Infoscience

Journal article

Heavy impurity confinement in hybrid operation scenario plasmas with a rotating 1/1 continuous mode

In future tokamaks like ITER with tungsten walls, it is imperative to control tungsten accumulation in the core of operational plasmas, especially since tungsten accumulation can lead to radiative collapse and disruption. We investigate the behavior of tungsten trace impurities in a JET-like hybrid scenario with both axisymmetric and saturated 1/1 ideal helical core in the presence of strong plasma rotation. For this purpose, we obtain the equilibria from VMEC and use VENUS-LEVIS, a guiding-center orbit-following code, to follow heavy impurity particles. In this work, VENUS-LEVIS has been modified to account for strong plasma flows with associated neoclassical effects arising from such flows. We find that the combination of helical core and plasma rotation augments the standard neoclassical inward pinch compared to axisymmetry, and leads to a strong inward pinch of impurities towards the magnetic axis despite the strong outward diffusion provided by the centrifugal force, as frequently observed in experiments.

Fulltext

Related material