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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract 

Climate changes induce warmer climate with stronger and more frequent extreme events. Due to the uncertain nature of climate, 
accurate simulation of future conditions is impossible and a major challenge is the selection of climate data in the impact 
assessment. This work compares application of three climate data sets in an energy simulation of the EPFL campus: i) Regional 
Climate Models (RCM data), ii) statically representative RCM data, and iii) morphed data. The energy behavior of the campus is 
analyzed, including its future thermal behavior, as well as its dynamic hourly variation due to the climatic data. The objective of 
this paper is to understand and quantify the energy transition, from 2010 to 2100, by focusing on the thermal behavior of 
buildings, as well as their energy demand for heating and cooling. Results explain the difference between three cases, underling 
the important impact related to a sound selection of the weather data. 
© 2017 The Authors. Published by Elsevier Ltd. 
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1. Introduction 

Climate change can affect the performance of buildings and energy systems, dictating new conditions which most 
probably will not be in line with those we are used to. One of the major features of future climate is the more 
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frequent and stronger occurrence of extreme events. Studying impacts of climate change on buildings, as the key 
components of cities, has been subject of interest for the last few years and several research works are available, 
mostly focused on energy issues e.g. [1, 2]. The source and type of the future weather data are important and can 
induce considerable variations in the impact assessment [2, 3]. The simplest approach is defining future weather data 
only by changing the average of the available weather data. Although this works for simple tasks, future climate 
variations and extremes will be neglected. A more scientifically valid approach is to use what climate scientists have 
produced by simulating the future climate conditions and extract data from global climate models (GCMs). The 
outcome of GCMs cannot be directly applied in energy simulations and should be downscaled using statistical or 
dynamical methods. One widely used statistical downscaling technique is the morphing technique [4] which 
combines present-day observed weather data with the GCM results. The morphing technique reflects only changes 
in the average weather conditions and not the variations in weather sequences [5]. Dynamic downscaling of GCMs 
by means of regional climate models (RCMs) generates physically consistent data sets [6] with suitable temporal 
and spatial resolutions for energy simulations. A valid impact assessment needs considering long time periods and 
several climate scenarios which results in large data sets and uncertainties (e.g. [7, 8]). 

This work investigates the energy performance of the campus of Ecole Polytechnique Fédérale de Lausanne 
(EPFL) in Switzerland for the future, considering several climate scenarios and three different types of weather data 
sets, generated by RCMs, synthesizing the RCM data and morphing GCM data. The energy performance of the 
campus is simulated for the period of 2010-2100, considering three 30-year periods in CitySim. The aim of this 
research is assessing the probable future energy conditions of the campus, investigating the differences induced by 
weather data, and the energy transition between 2010 and 2100.  

2. Methodology 

2.1. Future climate scenarios 

Three types of climate data are used in this work which are briefly described in the following. The first two data 
sets are for Geneva, while the third data set is for Lausanne. Although weather conditions in Lausanne and Geneva 
are very similar, it should be noted that using data for different cities can introduce some divergence in the results.  

2.1.1. RCM weather data 
Several climate scenarios for the city of Geneva (until 2100) were synthesized out of the RCA4 model. The 

weather data have the temporal and spatial resolutions of one hour and 12.5 km respectively. Five future climate 
scenarios, having four different GCMs and two different RCPs, are considered in this work. GCMs are: 1) CNRM-
CM5, 2) ICHEC-EC-EARTH, 3) IPSL-CM5A-MR, 4) MPI-ESM-LR (for details, see [9]). GCMs are forced by two 
Representative Concentration Pathways (RCPs), RCP4.5 and RCP8.5.  

2.1.2. Synthesized RCM data (typical and extremes) 
The second type of weather data are synthesized based on the distribution of all the RCM data sets. The 

synthesized data contain 3 sets of one-year weather data, representing typical, extreme cold and extreme warm 
conditions. these data sets are called typical downscaled year (TDY), extreme cold year (ECY) and extreme warm 
year (EWY). For each 30-year period, there will be one TDY, ECY and EWY, representing the whole period and all 
the considered climate scenarios (for details, see [9]). 

2.1.3. Morphed data 
 
The third type of weather data are generated by Meteonorm. The future climate data sets generated by 

Meteonorm are based on the 4th IPCC Special Report on Emission Scenarios (SRES - AR4), considering three 
emission scenarios of A2, A1B and B1 with the approximate carbon dioxide equivalent concentrations of 1250, 850 
and 600 ppm in 2100, respectively. Future weather data generated by Meteonorm are based on using a simple 
autoregressive model which is used to generate realistic monthly time series, quite similar to what happens in the 
morphing technique [4].  

http://crossmark.crossref.org/dialog/?doi=10.1016/j.egypro.2017.07.434&domain=pdf
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frequent and stronger occurrence of extreme events. Studying impacts of climate change on buildings, as the key 
components of cities, has been subject of interest for the last few years and several research works are available, 
mostly focused on energy issues e.g. [1, 2]. The source and type of the future weather data are important and can 
induce considerable variations in the impact assessment [2, 3]. The simplest approach is defining future weather data 
only by changing the average of the available weather data. Although this works for simple tasks, future climate 
variations and extremes will be neglected. A more scientifically valid approach is to use what climate scientists have 
produced by simulating the future climate conditions and extract data from global climate models (GCMs). The 
outcome of GCMs cannot be directly applied in energy simulations and should be downscaled using statistical or 
dynamical methods. One widely used statistical downscaling technique is the morphing technique [4] which 
combines present-day observed weather data with the GCM results. The morphing technique reflects only changes 
in the average weather conditions and not the variations in weather sequences [5]. Dynamic downscaling of GCMs 
by means of regional climate models (RCMs) generates physically consistent data sets [6] with suitable temporal 
and spatial resolutions for energy simulations. A valid impact assessment needs considering long time periods and 
several climate scenarios which results in large data sets and uncertainties (e.g. [7, 8]). 

This work investigates the energy performance of the campus of Ecole Polytechnique Fédérale de Lausanne 
(EPFL) in Switzerland for the future, considering several climate scenarios and three different types of weather data 
sets, generated by RCMs, synthesizing the RCM data and morphing GCM data. The energy performance of the 
campus is simulated for the period of 2010-2100, considering three 30-year periods in CitySim. The aim of this 
research is assessing the probable future energy conditions of the campus, investigating the differences induced by 
weather data, and the energy transition between 2010 and 2100.  

2. Methodology 

2.1. Future climate scenarios 

Three types of climate data are used in this work which are briefly described in the following. The first two data 
sets are for Geneva, while the third data set is for Lausanne. Although weather conditions in Lausanne and Geneva 
are very similar, it should be noted that using data for different cities can introduce some divergence in the results.  

2.1.1. RCM weather data 
Several climate scenarios for the city of Geneva (until 2100) were synthesized out of the RCA4 model. The 

weather data have the temporal and spatial resolutions of one hour and 12.5 km respectively. Five future climate 
scenarios, having four different GCMs and two different RCPs, are considered in this work. GCMs are: 1) CNRM-
CM5, 2) ICHEC-EC-EARTH, 3) IPSL-CM5A-MR, 4) MPI-ESM-LR (for details, see [9]). GCMs are forced by two 
Representative Concentration Pathways (RCPs), RCP4.5 and RCP8.5.  

2.1.2. Synthesized RCM data (typical and extremes) 
The second type of weather data are synthesized based on the distribution of all the RCM data sets. The 

synthesized data contain 3 sets of one-year weather data, representing typical, extreme cold and extreme warm 
conditions. these data sets are called typical downscaled year (TDY), extreme cold year (ECY) and extreme warm 
year (EWY). For each 30-year period, there will be one TDY, ECY and EWY, representing the whole period and all 
the considered climate scenarios (for details, see [9]). 

2.1.3. Morphed data 
 
The third type of weather data are generated by Meteonorm. The future climate data sets generated by 

Meteonorm are based on the 4th IPCC Special Report on Emission Scenarios (SRES - AR4), considering three 
emission scenarios of A2, A1B and B1 with the approximate carbon dioxide equivalent concentrations of 1250, 850 
and 600 ppm in 2100, respectively. Future weather data generated by Meteonorm are based on using a simple 
autoregressive model which is used to generate realistic monthly time series, quite similar to what happens in the 
morphing technique [4].  
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2.2. The energy model of the EPFL campus 

The EPFL campus is located near the city of Lausanne (46° 31' N, 06°38’ E, 495 m a.s.l.) and Lake Geneva. The 
campus is composed of more than 50 buildings, interconnected by a pedestrian circuit. The university campus was 
constructed in three main stages: first stage from 1972 to 1984, second stage from 1980 to 1992 and third stage from 
1992 to 2002 [10, 11]. The envelopes of each period of construction are calculated by Lesosai [12]. The physical 
properties of the envelope according to the period of construction are summarized in Table 1: all new buildings 
present a common envelope; they have been built after 2001 and consequently comply with the energy requirements 
defined by the Swiss Norm SIA 380/1.  

Table 1. Envelope of the buildings, defined according to their period of construction. 

Construction stage 
U-value Roof 
(W∙m⁻²K⁻¹) 

U-value Wall 
(W∙m⁻²K⁻¹) 

U-value Floor  
(W∙m⁻²K⁻¹) 

First Stage (1972-1984) 0.33 0.33 0.56 
Second Stage (1980-1992) 0.31 0.38 0.56 
Third Stage (1992-2002) 0.31 0.38 0.56 
New buildings (since 2002) 0.16 0.16 0.16 
 

The heating set point temperature during the wintertime (21.5°C) and occupancy profile are defined according to 
the Swiss Norm SIA 2024 [13]. The geometry of the campus is based on an existing 3D model [14]. The proposed 
energy model of the campus was validated with on-site monitoring, performed by the enterprise ENERGO during 
the years 2011, 2012 and 2013 [15]. The coefficient of determination between the computational model and the 
monitoring is equal to 0.89, and the average relative difference corresponds to 10%. This difference is related to the 
uncertainties of the model (internal gains, occupant behavior as well as deterioration of the physical properties of the 
envelope) as well as the weather data used for the simulations. In order to perform the energy simulations for the 
future climatic scenarios, we modified the CitySim code, being able to run the simulations continuously for the next 
one hundred years. By this new method, we could quantify dynamically the future thermal behavior of the campus, 
continuously throughout time. 

3. Results 

Weather data sets and their consequent energy simulation results are assessed in the following, focusing on the 
outdoor temperature, heating and cooling demand of the campus. In assessing the energy simulation, results of 
CNRM-rcp45 are not considered.  

3.1. Outdoor temperature 

The average values of the outdoor temperature and its variations (standard deviation) for the last 30-year period 
of the 21st century are shown in Fig. 1. The third grey bar represents the absolute average of the one-hour variations 
during the whole period (to be called relative variations), i.e. the relative difference (in percentage) of the outdoor 
tempter at time t+1 compared to time t. There are considerable differences between different climate scenarios and 
data sets. For example, the maximum difference in the periodical average between RCM scenarios is 3.6oC, between 
IPSL and CNRM. Interestingly, the relative variations have negative correlation with the average temperature; the 
smaller the average temperature, the larger the relative variation. Representative weather data sets (TDY, ECY and 
EWY9 and their combination (Triple) represent all the RCM scenarios for their average, standard deviation and 
relative variations. Differences between Meteonorm data sets are small, since they represent only three difference 
emission scenarios and not different GCMs, while GCMs induce larger differences. The relative variations are much 
smaller among Metenorm data sets, which tells about smaller variations in the future weather data sets which are 
generated by the morphing technique.  
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Fig. 1. Average and standard deviation of the hourly outdoor temperature [oC] together with the absolute average of the relative variations of the 
hourly temperature [%] for five different RCMs and all of them together, representative data sets (TDY, ECY and EWY) and their combination 
(Triple) as well as morphed weather data by Meteonorm (Met-A2, -A1B and –B1) and their combination (Met-All). All weather data sets are for 

the last 30 years of the 21st century. 

3.2. Energy performance 

The average and standard deviation of the hourly heating and cooling demand of the whole campus are plotted in 
Fig. 2, while the annual averages are shown in Table 2, for three 30-year periods and four different climate 
scenarios. Apparently in all the scenarios the need for heating decreases and for cooling increases. Having relatively 
large values for the standard deviations, especially for the cooling demand, points to the importance of hourly 
variations, which can induce more frequent and stronger extreme conditions, resulting in more peak hours with 
heavy loads on the energy system.  

 
Fig. 2. Average and standard deviation of the hourly energy demand of the EPFL campus [MWh] during three time periods for four climate 

scenarios.  

Table 2. Annual energy demand for the EPFL campus [MWh] during three time periods for four climate scenarios.   

 2010-2039 2040-2069 2070-2099 

 CNRM ICHEC IPSL MPI CNRM ICHEC IPSL MPI CNRM ICHEC IPSL MPI 

Heating 36269 36057 32759 32758 32911 32140 28871 29403 28732 27819 25035 25458 

Cooling 1873 1635 2923 2148 2190 3049 5300 3526 3714 5528 9238 6573 

 
Energy simulation results are compared among all the weather data sets. In Fig. 3, boxplots of the hourly heating 

demand during 2070-2099 are shown. Obviously using only typical weather sets, i.e. TDY and Meteonorm data sets, 
results in underestimating the extreme conditions. The lower median for the cases with Meteonorm data deals with 
the fact that the RCM scenarios predict warmer conditions than the GCMs which are considered in Meteonorm. This 
means that even considering several emission scenarios, the uncertainties induced by climate data are large.   

The hourly average of the heating and cooling demand as well as their standard deviations are compared among 
all the weather data sets in Fig. 4. Naturally the ECY and EWY data sets result in extreme cases, while TDY and 
Triple produce results representing all the RCM scenarios; the hourly variations are slightly more overestimated for 
Triple case. The average hourly values are in better agreement with RCM scenario in Fig. 4. The hourly average 
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The heating set point temperature during the wintertime (21.5°C) and occupancy profile are defined according to 
the Swiss Norm SIA 2024 [13]. The geometry of the campus is based on an existing 3D model [14]. The proposed 
energy model of the campus was validated with on-site monitoring, performed by the enterprise ENERGO during 
the years 2011, 2012 and 2013 [15]. The coefficient of determination between the computational model and the 
monitoring is equal to 0.89, and the average relative difference corresponds to 10%. This difference is related to the 
uncertainties of the model (internal gains, occupant behavior as well as deterioration of the physical properties of the 
envelope) as well as the weather data used for the simulations. In order to perform the energy simulations for the 
future climatic scenarios, we modified the CitySim code, being able to run the simulations continuously for the next 
one hundred years. By this new method, we could quantify dynamically the future thermal behavior of the campus, 
continuously throughout time. 

3. Results 

Weather data sets and their consequent energy simulation results are assessed in the following, focusing on the 
outdoor temperature, heating and cooling demand of the campus. In assessing the energy simulation, results of 
CNRM-rcp45 are not considered.  

3.1. Outdoor temperature 

The average values of the outdoor temperature and its variations (standard deviation) for the last 30-year period 
of the 21st century are shown in Fig. 1. The third grey bar represents the absolute average of the one-hour variations 
during the whole period (to be called relative variations), i.e. the relative difference (in percentage) of the outdoor 
tempter at time t+1 compared to time t. There are considerable differences between different climate scenarios and 
data sets. For example, the maximum difference in the periodical average between RCM scenarios is 3.6oC, between 
IPSL and CNRM. Interestingly, the relative variations have negative correlation with the average temperature; the 
smaller the average temperature, the larger the relative variation. Representative weather data sets (TDY, ECY and 
EWY9 and their combination (Triple) represent all the RCM scenarios for their average, standard deviation and 
relative variations. Differences between Meteonorm data sets are small, since they represent only three difference 
emission scenarios and not different GCMs, while GCMs induce larger differences. The relative variations are much 
smaller among Metenorm data sets, which tells about smaller variations in the future weather data sets which are 
generated by the morphing technique.  
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Fig. 1. Average and standard deviation of the hourly outdoor temperature [oC] together with the absolute average of the relative variations of the 
hourly temperature [%] for five different RCMs and all of them together, representative data sets (TDY, ECY and EWY) and their combination 
(Triple) as well as morphed weather data by Meteonorm (Met-A2, -A1B and –B1) and their combination (Met-All). All weather data sets are for 

the last 30 years of the 21st century. 

3.2. Energy performance 

The average and standard deviation of the hourly heating and cooling demand of the whole campus are plotted in 
Fig. 2, while the annual averages are shown in Table 2, for three 30-year periods and four different climate 
scenarios. Apparently in all the scenarios the need for heating decreases and for cooling increases. Having relatively 
large values for the standard deviations, especially for the cooling demand, points to the importance of hourly 
variations, which can induce more frequent and stronger extreme conditions, resulting in more peak hours with 
heavy loads on the energy system.  

 
Fig. 2. Average and standard deviation of the hourly energy demand of the EPFL campus [MWh] during three time periods for four climate 

scenarios.  

Table 2. Annual energy demand for the EPFL campus [MWh] during three time periods for four climate scenarios.   

 2010-2039 2040-2069 2070-2099 

 CNRM ICHEC IPSL MPI CNRM ICHEC IPSL MPI CNRM ICHEC IPSL MPI 

Heating 36269 36057 32759 32758 32911 32140 28871 29403 28732 27819 25035 25458 

Cooling 1873 1635 2923 2148 2190 3049 5300 3526 3714 5528 9238 6573 

 
Energy simulation results are compared among all the weather data sets. In Fig. 3, boxplots of the hourly heating 

demand during 2070-2099 are shown. Obviously using only typical weather sets, i.e. TDY and Meteonorm data sets, 
results in underestimating the extreme conditions. The lower median for the cases with Meteonorm data deals with 
the fact that the RCM scenarios predict warmer conditions than the GCMs which are considered in Meteonorm. This 
means that even considering several emission scenarios, the uncertainties induced by climate data are large.   

The hourly average of the heating and cooling demand as well as their standard deviations are compared among 
all the weather data sets in Fig. 4. Naturally the ECY and EWY data sets result in extreme cases, while TDY and 
Triple produce results representing all the RCM scenarios; the hourly variations are slightly more overestimated for 
Triple case. The average hourly values are in better agreement with RCM scenario in Fig. 4. The hourly average 
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cooling demand and its variations are larger for cases with Meteonorm weather data. However, the relative 
variations in Fig. 5 point to the fact that time to time differences are much larger for the RCM scenarios (consider 
that the values in Fig. 5 are relative differences, but not in percentage), especially for the cooling demand. This 
means that using the dynamically downscaled weather data out of GCMs potentially introduces larger variations in 
the hourly time scale, which can be important in designing energy system for urban areas. These relative variations 
are underestimated even for the representative weather data sets out of RCM scenarios (TDY, ECY, EWY and 
Triple). This make sense since by representing 30 years in one year, the average hourly variations will be dampened 
a bit.  

 
 Fig. 3. Distribution of the hourly heating demand of the whole campus during 2070-2099 for four RCMs and their combination, TDY and its 

combination with extreme weather conditions (Triple), morphed data with three different emissions scenarios (Met-A2, A1B and B1) and their 
combination (Met-All).  

 
Fig. 4. Average and standard deviation of the hourly heating and cooling demand for energy simulations using four different RCM scenarios and 
their combination (All RCMs), representative data sets (TDY, ECY and EWY) and their combination (Triple) as well as the Meteonorm data 
(Met-A2, -A1B and –B1) and their combination (Met-All). All weather data sets are for the last 30 years of the 21st century. 

 
Fig. 5. Absolute average of the relative variations of the hourly energy demand for energy simulations using four different RCM scenarios and 
their combination (All RCMs), representative data sets (TDY, ECY and EWY) and their combination (Triple) as well as the Meteonorm data 
(Met-A2, -A1B and –B1) and their combination (Met-All). All weather data sets are for the last 30 years of the 21st century. absolute average of 
the relative variations of the hourly temperature 
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4. Conclusions 

According to the results, there are considerable differences due to the source of weather data, both on average 
conditions and their variations. Differences between the dynamically and statistically downscaled data sets are very 
large for the relative variations in hourly time scale, especially for the cooling demand. This means that using the 
dynamically downscaled weather data out of GCMs potentially intorduces larger variations in the hourly time scale, 
which can be important in designing energy systems for urban areas. The relative variations have negative 
correlation with the average temperature; the lower the average temperature, the larger the relative variation. Having 
relatively large values for the standard deviations, especially for the cooling demand, points to the importance of 
hourly variations, which can induce more frequent and stronger extreme conditions, resulting in more peak hours 
with heavy loads on the energy system. 
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variations in Fig. 5 point to the fact that time to time differences are much larger for the RCM scenarios (consider 
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are underestimated even for the representative weather data sets out of RCM scenarios (TDY, ECY, EWY and 
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4. Conclusions 

According to the results, there are considerable differences due to the source of weather data, both on average 
conditions and their variations. Differences between the dynamically and statistically downscaled data sets are very 
large for the relative variations in hourly time scale, especially for the cooling demand. This means that using the 
dynamically downscaled weather data out of GCMs potentially intorduces larger variations in the hourly time scale, 
which can be important in designing energy systems for urban areas. The relative variations have negative 
correlation with the average temperature; the lower the average temperature, the larger the relative variation. Having 
relatively large values for the standard deviations, especially for the cooling demand, points to the importance of 
hourly variations, which can induce more frequent and stronger extreme conditions, resulting in more peak hours 
with heavy loads on the energy system. 
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