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ABSTRACT

This paper considers the problem of reconstructing raw signals
from random projections in the context of time-of-flight imaging
with an array of sensors. It presents a new signal model, coined
as multi-channel pulse-stream model, which exploits pulse-stream
models and accounts for additional structure induced by inter-sensor
dependencies. We propose a sampling theorem and a reconstruc-
tion algorithm, based on ¢;-minimization, for signals belonging
to such a model. We demonstrate the benefits of the proposed
approach by means of numerical simulations and on a real non-
destructive-evaluation application where the peak-signal-to-noise-
ratio is increased by 3 dB compared to standard compressed-sensing
strategies.

Index Terms— Compressed sensing, sparsity, array imaging

1. INTRODUCTION
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Fig. 1. Considered time-of-flight imaging configuration.

The notion of pulse stream has been introduced by Hedge and
Baraniuk [1] and designates signals that can be expressed as a con-
volution between a K -sparse spike train and a F'-sparse impulse re-
sponse.
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Formally, let us consider a pulse stream z € R™, such that
z = h * s with s € RY the K-sparse spike train and h € R” the
F'-sparse impulse response. The following definition holds:

Definition 1 (Definition 2 of [1]). The pulse-stream model is defined
as follows:

Mk p ::{zGRN:z:s*h|s€MKandh€MF},
1
where Mg C RN and Mr C RY are restricted unions of Lx
K-dimensional and L F'-dimensional canonical subspaces, respec-
tively.

For signals belonging to the pulse-stream model M r, Hedge
and Baraniuk [1] have derived a sampling theorem where the number
of measurements necessary for perfect reconstruction scales linearly
with K + F'instead of K F' (standard CS). In this work, we propose
to extend this model to time-of-flight imaging with an array of sensor
elements, whose configuration is described on Fig. 1. The sensing
process is divided into a transmit phase where one or several emitters
are used to send a pulsed-wave in the medium, and a receive phase
where the sensors are used to acquire the response of the medium to
the previously transmitted pulsed wave. Such a configuration covers
a wide range of applications such as medical ultrasound imaging,
non-destructive evaluation, seismic imaging, sonar, lidar and syn-
thetic aperture radar imaging.

Formally, let us assume that the array is made of N.; sensors,

Nei
i=1"

that the medium is made of K targets positioned at (r’“)K The

positioned at (p‘) as described on Fig. 1. Let us also consider

k=1"
signal m; (t) received at the i-th sensor can be expressed as:
K
mi(t) = ach (t—tf), )
k=1

where ay, and t¥ are the amplitude and delay associated with the k-th
target and h (t) is the received pulse, supposed to be known in the
remainder of the paper. The delay associated with the k-th target
depends on its relative position with respect to the ¢-th sensor and
can be expressed as follows:

ki
th = (o) + 22 )
(&

where ¢ denotes the wave velocity in the medium, supposed to be
constant, and 74 (rk) is the transmit delay which depends on the
transmit settings. Such model have been extensively used in medical
ultrasound imaging [2, 3, 4], non-destructive testing [5] and radar
imaging [6, 7].



Starting from Equation (2), we consider inter-sensor dependen-
cies in order to derive an additional structure of the array signals.
This structure, expressed as restrictions on the possible support of
the array signals, leads us to define a new model, denoted as multi-
channel pulse stream model, from which we present a sampling the-
orem and a recovery algorithm.

The remainder of the paper is organized as follows. In Section 2,
the signal model is presented, with the corresponding sampling the-
orem and recovery algorithm. Section 3 presents results on synthetic
pulse streams as well as on real non-destructive evaluation signals.
Concluding remarks are given in Section 4.

2. PULSE STREAMS IN ARRAY IMAGING

2.1. Signal recovery from the pulse-stream model

From Equation (2), one may express the signal m; (¢) as m; (t) =
(si * h) (t), where h (t) is the pulse and

K
(1) = _ k)
s; (t) ; akd (t tl) )

Let us consider that the signal m; (¢) is sampled at a rate f, leading
to N samples m; (t7), with t/ = ¢+ j/fs forj € {1,...,N}.

The vector m; = [mi (t'),...,mi (tN)}T € R” belongs
to the pulse-stream model M  where F' denotes the size of the
support of b € R, supposed to be small compared to N, and K
the number of point scatterers.

Thus, one may be able to sample array signals at a rate dictated
by Hedge and Baraniuk [1] while ensuring a perfect recovery using
either model-based greedy approaches [8] or ¢;-minimization [9].
In the proposed work, we have decided to focus on the latter. Since
the pulse is supposed to be known, the following convex problem
can be solved to retrieve m; € R from noisy measurements y =
dm; + n, with & € RM*¥ a Gaussian i.i.d. matrix:

min ||5]|; subject to ||y — PHS||2 <, )
s
where H is a circulant matrix which contains time-shifted replicas of
the pulse, s is a K -sparse vector and € € R..
2.2. Multi-channel pulse-stream model

The model described in Section 2.1 is suited to single channel re-
constructions. However, such a model does not account for inter-
channel dependencies, which are self-evident in the proposed con-
figuration (see Fig. 1). By taking into account the dependencies, one
may be able to decrease the number of measurements required to re-
construct array signals. The following theorem precises the way the
dependencies between two channels may be expressed.

Theorem 1 (Two-channel scenario). The support o (s;) of the spike
train s; corresponding to the sensor located at a distance A;; from
the sensor j, whose spike train is s;, has the following property:

o (si) C Sij,
K ..
where S;; = U QLJ is a union of 2D;;-dimensional subspaces
sz defined by: =
QY = {{k - Dy, ..
where D;; = [ fsAsj/c].

.,k-‘y—Dij}, kGO'(Sj)},

In the above theorem, [.] designates the round value.

Proof. Let us suppose that s; (t) = > p_ axd (t —t%) and

si(t) = Sor_, ard (t—tF).
duce the following:

.
th = tp (o) 4 122

J

From Equation (3), one may de-
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Reversely, one can deduce that tf > tf — %, which leads to tf S
th — Ajj th+ %] Thus, by simple multiplication with fs, one

may deduce that:

Vico(s:),Ipeo(s;) [l €{p—Dij,....p+ Dij}, (6)
where D;; = [fsAsj/c]. Generalizing Equation (6) to the support
of o (s;), one may retrieve the result of Theorem 1. O

Theorem 1 states that the support of s; is a union of K 2D;;-
dimensional subspaces located around the support of the signal re-
ceived at sensor j. The dimension of each subspace depends on the
distance between the sensors.

We can go further than the two-channel scenario by considering
that we have prior knowledge on multiple channels. In this case, the
following theorem holds.

Theorem 2 (Multi-channel scenario). The support o (8;) of the
spike train s; corresponding to the sensor located at distances
(Aij)jvzl from a set of N sensors, whose spike trains are (sj);.V:l,
has the following property:

O'(Si) C S,

N

where S := () Sij is the intersection of the spaces S;; defined in
j=1

Theorem 1.

Proof. This is a simple generalization of Theorem 1. Let us denote
as (s; );.\’:1 the spike trains associated with the NV considered sensors.
Then, Theorem 1 states that:

N
\V/jE{l,...,N}, a(si)eSij <=>0'(Si)6 ﬂS”

j=1

O

In this case, the support o (s;) is included into a smaller sub-
space, taking into account the dependencies between the sensor @
and the IV other ones. We use the result of Theorem 2 to define the
multi-channel pulse-stream model as:

Ll;F::{zERN:z:s*h\seMK,U(S)CS}, @)

where the pulse h is supposed to be known.



2.3. Sampling theorem for multi-channel pulse-stream signals

The multi-channel pulse-stream model has an additional structure
compared to the single-channel pulse-stream model, i.e. Ui p C
M . This can be exploited in order to reduce the sampling rate
requirements for signals belonging to U/ r. The theorem hereafter
makes this precise and sets the sampling requirement.

Theorem 3. Suppose that U  is the multi-channel pulse-stream
model defined in Equation (7). Lett > 0 and § > 0. Choose a
M x N ii.d. Gaussian matrix ® with

MZO((K+F)IH<%> +K<1+log ('%)) +t).

Then ® satisfies the following property with probability 1 — e~
Vz1,22 € Uk,

t

(1=08) [lz1 = z2]|* < [|[Pz1 — Pzo||* < (1 46) |21 — 22|,
In the theorem above |\S| denotes the cardinality of the set S.

Proof. The proof is based on Theorem 1 of [1]. Suppose that z €
Uk F,then, z € M¥% r. From [1], one may set the bound M as:

M=>0 ((K +F)ln (%) +log (Lx LF) +t) ®)

where ¢ > 0. When h is known, Lr = 1. Moreover, if we consider
that o (s) C S, then the following inequality holds:

e (1) = (42)" o sty 1 (-0 (2)).

Introducing the above results in Equation (8) leads to the results of
Theorem 3. O

The main benefit of Theorem 3 is that the number of measure-
ments required for perfect reconstruction are O (K log (|S|/K)).
instead of O (K log (N/K)) in the case of the single-channel pulse
stream model. Interestingly, such a reduction can be interpreted in
light of the D-RIP property introduced by Candes et al. [9]. Indeed, a
signal z € U5 r is K-sparse in the convolutional (coherent) dictio-
nary H, and can be acquired with O (K log (N/K)) Gaussian i.i.d.
measurements [9]. In addition, z € Uf p implies that o (s) € S
which means that the recovery problem can be solved in R'®! rather
than R™ and, consequently, that the signal can be acquired with
O (K log (|S]/K)) Gaussian i.i.d. measurements.

2.4. Recovery of multi-channel pulse-stream signals

As described in Section 2.1, the signal m = s* h, m € Ui p
can be written as m = Hs. Let us consider that the signal y =
®m is measured, where ® € RM*¥ satisfies the requirements of
Theorem 3. As stated in Section 2.3, the recovery problem in RY
can be recast as the following recovery problem in R!® I

Find a € R/ such that ||y — (®H) g a2 < ¢, [leflo < K, (9)

where € € R accounts for the noise level and (®H) g € RM xS
corresponds to a submatrix of ®H formed by the columns indexed
by the support S. Depending on the ratio between the number of
measurements M, the size of the support S and the noise level, two
different recovery procedures may be considered.

2.4.1. Recovery by least-square minimization

When M > |S| and € = 0, Problem (9) involves an overcomplete
matrix (<1>H)| s € RM*I51 and can be solved by simple least-square
minimization. In this case, the solution o* of Problem (9) is ex-
pressed as:

o' = (PH)/5y, (10)

where (CDH)‘TS denotes the Moore pseudo-inverse of (®H) .

2.4.2. Recovery by ¢1-minimization on the signal support

In a more general case, a* can be recovered by solving the following
convex optimization problem [9]:

min ||| subject to [[y — (PH) g a2 <. (11)
acRIS|

In the remainder of the paper, Problem (11) is solved using the alter-
nating direction methods of multipliers (ADMM) [10].

3. EXPERIMENTS

We now present the results of experiments that validate the proposed
approach and show its benefits.

3.1. Synthetic pulse streams
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Fig. 2. Normalized MSE for (a) A = 0.31 mm (one wavelength)
and (b) A = 0.62mm (two wavelengths) vs. the compression ra-
tio (M /N) for the proposed method for 1-, 2-, 5- and 10-channel
scenarios. Signals parameters: N = 2000, F' = 31, K = 20.

We consider a synthetic configuration with K = 20 point-
scatterers with random amplitudes and positions are generated. 10
sensors are considered, with an inter-sensor spacing of A. Pulse-
streams of length N = 2000 are simulated mimicking ultrasound
plane-wave imaging with normal incidence [11]. The considered
pulse h (t) is a convolution between a 2-cycle square excitation sig-
nal and a Gaussian pulse (2.5 cycles, center frequency 5.208 MHz,
bandwidth 67 %) which mimics the impulse response of ultrasound
transducer elements. The sampling frequency f; is set to 20.8 MHz
which corresponds to four times the center frequency.

Fig. 2 displays the averaged results of a Monte-Carlo simu-
lation over 1000 trials of the ADMM algorithm. Each trial was
conducted by randomly generating the amplitudes and positions
of the K point-scatterers, the Gaussian i.i.d. matrix ¢ € RM*N
and by reconstructing the raw data m of one sensor from different
values of M/N. single-channel as well as multi-channel scenarios
are considered. For the multi-channel scenarios, prior knowledge
on the support of the spike trains of 1, 4 and 9 neighboring sen-
sors of the sensor of interest are considered. Figure 2(a) and 2(b)



"l
ol

]i .

-0.5

JEE———
——
o

0.5 0.5

o
o
——a
-
—
—

-0.5 -0.5

0 0.02 0.04 0.06 0 0.02 0.04 0.06
Time [ms] Time [ms]

(a) b)

0 0.02 0.04 0.06 0 0.02 0.04 0.06
Time [ms] Time [ms]

(©) (d)

Fig. 3. (a) Original signal (b) Noisy signal (SNR = 30dB) (c) Recovered estimate from M = 160 measurements in a 1-channel scenario (d)
Recovered estimate from M = 160 measurements in a 5-channel scenario.

show the normalized mean squared error (NMSE), calculated as
|lm — m*||2/||m||2, where m is the reference and ™™ the esti-
mate, for two different inter-sensor spacings, namely 0.31 mm (one
wavelength) and 0.62mm (two wavelengths). Regarding the op-
timization algorithm, the maximum number of iterations is set to
1000 and € = 0. This experiment also demonstrates that considering
a higher number of channels, which decreases the dimension of
the subspace S (Theorem 2), results in a better recovery. Indeed,
Fig. 2(a) show that the 10- and 5-channel scenarios outperform the
2-channel one.

Figure 3 shows that the proposed algorithm is robust to small
amount of noise (SNR =30 dB). For this experiment, a small amount
of Gaussian noise is added to the element raw-data of each sensor,
leading to the signal displayed on Figure 3(b). Figures 3(c) and 3(d)
show the recovered signals for the 1-channel and 5-channels scenar-
ios, respectively, for a number of measurements M = 160. It can be
seen that the signal recovered from the 5-channel scenario is closer
to the original signal than the one recovered from the 1-channel sce-
nario.

3.2. Experimental non-destructive-evaluation signals

An aluminum block containing side drilled holes located at different
depths have been insonified with 1 plane wave (normal incidence)
using an open phased-array platform (OEM-PA, Advanced OEM So-
lutions, Cincinnati, Ohio, USA), equipped with a linear probe (Ima-
sonic SAS, Voray-sur-1’Ognon, France) composed of 64 elements
with 0.93 mm pitch, working at 5 MHz with 100 % bandwidth. The
sampling frequency has been set to 50 MHz and the speed of sound
in aluminum is 6300 ms~'. After acquisition, the element raw-data
are imported on MATLAB and compressed using a Gaussian i.i.d.
matrix ® € RM*¥ with a compression ratio M /N = 0.03 (7.5 %
of the Nyquist frequency). The pulse is approximated as a convo-
lution between a 0.5-cycle excitation signal and a 1-cycle Gaussian-
modulated sinusoidal impulse response. In the 1-channel scenario,
all the channels are reconstructed in parallel. In the multi-channel
scenario, a sequential reconstruction is achieved where each chan-
nel is recovered with prior knowledge on the support of the spike
train corresponding to the neighbouring channel (obtained from the
previous reconstruction). The first channel is reconstructed from a
compression ratio M /N = 0.5 in order to have a relevant first es-
timation of the support of the spike train. Concerning the optimiza-
tion algorithm, the maximum number of iterations is set to 1000 and
€ = 0.3||y||2. Once the raw data are reconstructed from compressed
measurements, standard delay-and-sum beamforming [11] is applied
to generate the radio-frequency image. The envelope is extracted
through Hilbert transform and normalized to obtain the B-mode im-

age. Figure 4(a) displays the reference B-mode image obtained with
no compression and Fig. 4(b) shows the recovered B-mode image in
the multi-channel scenario. It shows that the multi-channel scenario
leads to a nearly perfect reconstrucion, with a peak-signal-to-noise-
ratio (PSNR), calculated against the reference image, of 28.3dB
while the 1-channel scenario leads to significantly lower image qual-
ity (PSNR = 25.5dB)".
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Fig. 4. (a) Original B-mode image; (b) Recovered B-mode image
from 3 % measurements in a 2-channels scenario (PSNR = 28.3 dB).

3.3. Limitations of the proposed method

The current method requires a perfect estimation of the support in
order to perform efficient reconstructions which is very difficult
to achieve in real scenarios. To address this problem, the non-
uniform sparse framework [12] will be explored in a future work.
Another limitation of the current approach is the perfect knowledge
of the pulse that can be tackled by exploring blind-deconvolution
approaches [1, 13, 14].

4. CONCLUSION

We have presented an extension of the pulse-stream model coined as
multi-channel pulse-stream model. It accounts for the inter-sensor
dependencies as an additional structure to the general pulse-stream
model and enables us to quantitatively estimate the number of ran-
dom projections necessary to sample such signals. We also suggest a
reconstruction method based on /1 -minimization on the reduced sig-
nal support and illustrates its benefits on synthetic and experimental
non-destructive-evaluation signals.

lhttps ://github.com/AdriBesson/ICASSP2018-pulse-streams
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