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Abstract

Cavitation bubbles are a topic of long-standing interest owing to the powerful phenomena

associated with their collapse. Their unique ability to focus energy typically causes damage in

hydraulic machinery (turbines, pumps, propellers, . . . ) but, if managed correctly, can also be

beneficial in numerous applications such as cleaning practices and biomedical sciences. Here

the complex problem of cavitation, often multi-scale both in time and space, is reduced to a

simplified case study of the collapse of a single, initially spherical bubble. We study the bubble’s

energy distribution into its distinct collapse phenomena, namely the micro-jets, shock waves

and luminescence, and aim to quantify and predict how such a distribution is affected by the

bubble’s deformation. Combining experiments with statistical analysis, numerical simulations

and theoretical models, we seek to quantify and predict the key properties characterising each

of the collapse phenomena.

The deformation of bubbles is characterised by the liquid micro-jets formed during their

non-spherical collapse. A unified framework is proposed to describe the dynamics of such jets,

driven by different external sources, through an anisotropy parameter ζ, which represents a

dimensionless quantity of the liquid momentum at the bubble collapse (Kelvin impulse). The

bubbles are carefully deformed in variable gravity aboard European Space Agency parabolic

flights or by introducing surfaces nearby. Through high-speed visualisation, we measure

key quantities associated with the micro-jet dynamics (e.g. jet speed, impact timing), which,

upon normalisation, reduce to straightforward functions of ζ. This is verified by numerical

simulations based on potential flow theory. Below a certain threshold, all of these functions

can be approximated by useful power laws of ζ that are independent of the micro-jet driver.

For bubbles collapsing near a free surface, we identify and measure the shock waves generated

through distinct mechanisms, such as the jet impact onto the opposite bubble wall and the

individual collapses of the remaining bubble segments. The energy carried by each of these

shocks is found to vary with ζ. We find that for bubbles that produce jets, the shock wave peak

pressure may be approximated by the jet-induced water hammer pressure as a function of

ζ. Following such an approximation, we also develop a semi-empirical model to explain the

shock energy variation with ζ.

Finally, an innovative luminescence detection system is built to overcome the challenge of

measuring the spectra (300-900 nm) of the weak, small, rapid and migrating flash light from

individual bubble collapses. We find rapid quenching of the luminescence energy as a function
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Abstract

of ζ. Surprisingly, the blackbody temperature of luminescence does not vary with ζ. Multiple

peaks are measured within a time frame of approximately 200 ns, implying non-uniform gas

compression during the collapse.

Overall, these results help in predicting bubble collapse characteristics in known pressure

fields and can be useful for numerical benchmarking.

Key words: cavitation, bubble, collapse, micro-jet, shock wave, luminescence
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Résumé

Les bulles de cavitation suscitent depuis longtemps un grand intérêt en raison des phé-

nomènes énergétiques associés à leur implosion. Leur capacité extraordinaire à focaliser

l’énergie peut conduire à l’endommagement de composants hydrauliques (turbines, pompes,

hélices, . . .). Toutefois, pour autant que leur dynamique soit maîtrisée, ces mêmes bulles de

cavitation peuvent être bénéfiques dans de nombreuses applications telles que la médecine,

la chimie ou l’industrie alimentaire.

Dans la présente étude, nous nous limitons au cas simplifié d’une bulle isolée, évoluant dans

un liquide au repos en présence ou non d’un gradient de pression. Nous nous intéressons

alors aux trois évènements majeurs associés à l’implosion d’une bulle de cavitation que sont

les micro-jets, les ondes de choc et la luminescence. Notre but est de combiner l’observation

expérimentale avec la simulation numérique et des modèles théoriques pour quantifier et

prédire la fraction énergétique associée à chacun de ces phénomènes en fonction du degré

de déformation de la bulle. Nous déformons la bulle à l’aide de la proximité d’une paroi

solide ou d’une surface libre ainsi que la gravité variable, cette dernière étant réalisée aux vols

paraboliques offerts par l’Agence Spatiale Européenne.

Nous proposons une relation semi-empirique unifiée pour décrire la dynamique des micro-

jets en introduisant un paramètre d’anisotropie ζ qui représente la version adimensionnelle

de la quantité de mouvement du liquide pendant l’implosion de la bulle (Kelvin impulse). Il est

ainsi possible de prédire, entre autres, la vitesse du jet, l’instant de son impact avec l’interface

et le déplacement du centre de la bulle, indépendamment de la source de déformation de la

bulle.

L’émission des ondes de choc est examinée pour plusieurs degrés de déformation de la bulle à

l’aide d’imagerie à haute vitesse et d’un hydrophone à large bande. Le cas particulier d’une

bulle fortement déformée par une surface libre a révélé une succession complexe d’ondes

de choc qui résulte de l’impact du jet sur l’interface (coup de bélier) et des implosions indi-

viduelles des fragments de la bulle. L’énergie de chacune de ces ondes de choc varie avec ζ.

Nous trouvons que pour des bulles qui produisent des micro-jets, la pression maximale de

l’onde de choc peut être approximée par la pression du coup de bélier en fonction de ζ.

Le dernier aspect couvert par la présente étude est celui de la luminescence. Le principal défi

est de pouvoir détecter et mesurer le spectre (300-900 nm) de flashs lumineux émis par des
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Résumé

sources minuscules, furtives et de très faible intensité. Pour ce faire, nous avons développé

un système optique innovant qui utilise un miroir parabolique pour amplifier la lumière

collectée et permet d’estimer la température d’une bulle avec une précision inégalée. Les

résultats révèlent une décroissance rapide de l’énergie de la luminescence en fonction de ζ.

Étonnamment, la température, estimée à l’aide de l’approximation du corps noir, ne varie

pas avec ζ. En outre, l’analyse de la luminescence à l’aide d’une photodiode rapide révèle

l’existence de plusieurs flash lumineux dans un intervalle d’environ 200 ns, suggérant une

compression non-uniforme du gaz au stade final de l’implosion.

Dans l’ensemble, nos résultats permettent de mieux décrire et prédire les évènements caracté-

ristiques de l’implosion d’une bulle de cavitation en présence d’un gradient de pression. Ils

peuvent également servir de référence pour des études numériques.

Mots clefs : cavitation, bulle, implosion, micro-jet, onde de choc, luminescence
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1 Introduction

1.1 Cavitation: from hydraulic machinery to medicine

Cavitation is a fascinating phenomenon that appears in countless physical and engineering

flows involving pressure fluctuations. It literally means the formation of vapour cavities

caused by the rupturing of the liquid due to a local pressure decrease below its vapourisation

pressure [1, 2, 3]. Cavitation is analogous to boiling, where the liquid is vapourised due to

a temperature rise over the boiling temperature, which, in fact, results in an increase of the

vapourisation pressure. A key difference between cavitation and boiling is the way the vapour

bubble formation and collapse occur in practice. The bubble dynamics associated to boiling

is constrained by the difficulty to experience rapid and uniform temperature changes in the

liquid. Cavitation, on the other hand, is dominated by inertial effects in the surrounding

liquid where the pressure can change abruptly. These pressure changes can make the unstable

cavitation bubbles suddenly find themselves in crushingly high pressure environments and

experience a violent collapse, yielding powerful mechanical and chemical effects that will be

discussed hereafter.

The study of cavitation began from marine technology where liquid vapourisation was ob-

served around ship propellers running too fast. Many unwanted effects were detected, such as

thrust reduction, propeller blade erosion, and underwater noise [4]. These effects can cause

damage and a performance breakdown in numerous other types of hydraulic machinery,

including hydraulic turbines [5], pumps [6], and artificial heart valves [7]. The associated

flows typically cavitate within their low-pressure zones, such as regions of flow separation [8]

and vortex cores [9]. Cavitation is known to be a problem also in liquid-propelled rocket

engines [10], in lubricated bearings [11], and in trees [12]. Other victims of cavitation are the

preys of a snapping shrimp (alpheus heterochaelis) or that of a mantis shrimp (odontodactylus

scyllarus). These shrimps have understood the power of cavitation by defeating their prey

through the rapid closure or movement of their claws that vapourises the liquid and thereby

produces damaging cavitation phenomena [13, 14].

Despite having traditionally represented an adverse issue, more recent discoveries have found

beneficial uses of the intense phenomena and the unique energy focusing associated with

1



Chapter 1. Introduction

the collapse of cavitation bubbles. For instance, the biomedical field benefits from their

remarkable properties for destroying kidney stones during lithotripsy by shock waves or by

high-intensity focused ultrasound [15, 16, 17], for emulsifying the natural optical lens during

cataract surgery [18], and for delivering drugs and targeting cells in a highly controllable

way, which provides a new technique for cancer and gene therapy [19, 20, 21, 22, 23, 24, 25].

Laser-induced bubbles have a unique property for making small and precise incisions, which

is used, for instance, in intraocular surgery [26]. Cavitation also offers interesting properties

for cleaning surfaces [27, 28] or for micro-fluidic applications, such as for micro-fluidic pumps

using a single cavitation bubble in the proximity of a concave free surface meniscus [29, 30].

The resulting extremely thin and fast jets emerging from the surface open paths for new

methods in needle-free drug injection [31] or as an alternative to ink-jet printing [32]. Owing to

their intense interior heating and compression, which yield the rupturing of water molecules,

cavitation bubbles may serve as catalytic hosts for unique chemical reactions, offering a

potential for environmental remediation [33] or fabrication of nanomaterials [34]. Cavitation

may also be used to increase the efficiency of beer-brewing [35], and is known to be responsible

of the fun sound associated with knuckle joint cracking [36].

1.2 The collapse of a single bubble

As it has now become clear, cavitation occurs in many places and there is a plethora of

applications being harmed by it or benefiting from it. However, cavitation is a complex

phenomenon, often involving multiple scales both in time and space, generally presenting

itself as bubble clusters or clouds, and typically occurring in a liquid with strong pressure

gradients. Many factors are in play in its formation and dynamics, such as the liquid gas

content and the concentration and distribution of nucleation sites, and controlling its location

and amount is challenging. Therefore, it can useful to reduce the problem of cavitation

to a simplified case study, which is investigating the collapse of a single, initially spherical

cavitation bubble in a liquid at rest.

The typical dynamics taking place during the lifetime of a single cavitation bubble collapsing

spherically is illustrated in Figure 1.1. After nucleation (the birth of the bubble) under the

effect of, say, a transient tension (negative pressure) wave or from a laser-induced plasma, a

bubble expands. During the expansion, work is done against the ambient pressure p∞, due

to which the growth is decelerated and halts at a maximum bubble radius R0. In this state,

the liquid-bubble system has acquired a corresponding amount of potential energy (often

simply referred to as ‘bubble energy’, E0 = (4π/3)R3
0∆p, where ∆p = p∞−pv and pv is the

vapour pressure of the liquid) for it can perform positive work and gain kinetic energy by

starting to shrink. During most of the growth and the shrinking of the bubble, it is generally

assumed that the vaporisation-condensation processes maintain the vapour at its saturation

pressure. During the shrinking, or collapse phase, the bubble interface accelerates towards

its centre due to the driving ambient pressure. The time of the shrinking phase is denoted

by the collapse time Tc , which, for a laser-induced bubble such as in Figure 1.1, happens to

2



1.2. The collapse of a single bubble
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Figure 1.1: Shadowgraph visualisation of a spherical bubble growth and collapse (top), with
interframe time 112 µs. The measured radial evolution (middle) and hydrophone pressure
signal (bottom) are shown as a function of time. Rayleigh model in equation (1.1) (solid
red line) and Keller-Miksis (KM) model in equation (1.7) (dashed black line), with pg0 =
3.6 Pa determined by fitting with the observed rebound, are compared with the measured
radial evolution. Between T = 0–Tc , the models are mirrored across the axis at T = Tc . The
hydrophone signal has been shifted by 30 µs to account for the delay caused by the shock’s
propagation over a distance of 44.5 mm from the bubble.

be (quasi-)identical to the growth time. Eventually, the inward acceleration results in some

violent collapse effects, which represent the following peculiar phenomena taking place often

in an extremely short period of time:

Rebound - The bubble may contain non-condensible gases depending on its origin [37] and

the properties of the liquid (e.g., dissolved gas content). Furthermore, it could also be that

the vapour trapped inside the cavity may behave like a non-condensible gas, if the vapour

condensation rate is not sufficiently high to keep up with the reduction of bubble volume

during the last phase of its collapse [38]. Following the collapse, the bubble’s interface is

bounced off from these gaseous contents that act as a spring, leading to the expansion of a

rebound bubble that grows and collapses several times, until its motion is damped due to

viscous dissipation.

3



Chapter 1. Introduction

Micro-jet ↘

Rebound
↑

R0↑

Figure 1.2: An example visualisation of a bubble collapsing non-spherically due to the gravity-
induced pressure gradient, producing a micro-jet that emerges during the rebound phase.
The interframe time is 360 µs and the maximum bubble radius R0 is 5.6 mm.

Shock waves - Acoustic transients, or shock waves, are produced due to the compressibility of

the liquid and the high velocities associated with the rapid bubble collapse [39]. The associated

pressures, able to reach values on the order of GPa [40, 41], can be highly damaging to nearby

surfaces. Figure 1.1 shows an example of a hydrophone measurement capturing the shock

wave from a spherical bubble collapse. The collapse shock wave is often referred to as a single

event, yet a non-spherically collapsing bubble may develop several distinct shock waves from

multiple locations [42]. Note that a shock is also emitted at the generation of a laser-induced

bubble (first peak in the hydrophone signal of Fig. 1.1) owing to its explosive growth, which

first compresses the liquid in its immediate surroundings before radially accelerating it.

Luminescence - The gaseous contents of the bubble may be violently compressed during

the last stages of its collapse, (nearly) adiabatically heating them to temperatures of several

thousands of degrees, resulting in emission of light [43]. This light radiation carries the only

information about the thermal state of the bubble during these stages. The exact mecha-

nism or mechanisms behind the generation of the luminescent flash has not yet been fully

revealed [44].

Micro-jets - When the spherical shape of the bubble is broken by pressure field anisotropies

induced by nearby surfaces [45] or inertial forces such as gravity [45, 46], the bubble may be

pierced by a re-entrant liquid jet during its collapse. This is due to one part of the bubble’s

interface advancing faster towards the bubble centre than the rest during the collapse. After its

piercing, the micro-jet usually entrains a protrusion of the bubble’s gaseous contents during

its propagation away from the rebounding bubble [47]. An example of a non-spherically

collapsing bubble producing an upward micro-jet is shown in Figure 1.2.

It has been shown that most of the energy of a spherically collapsing bubble is either carried

away by a shock wave or used to form a rebound bubble [48, 49]. However, understanding
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1.3. Investigating bubble dynamics

how this energy distribution is affected by the bubble’s deformation by external sources or by

its initial sphericity remains poor.

1.3 Investigating bubble dynamics

1.3.1 Theoretical models

George Stokes and his students in 1847 [50], and later Lord Rayleigh precisely a century

ago [51], were the first ones to model the motion of an empty, spherically collapsing bubble in

an infinite volume of incompressible, inviscid and irrotational liquid with neglected surface

tension and thermal effects, the latter having established the widely used Rayleigh equation:

ρ

(
RR̈ + 3

2
Ṙ2

)
=−p∞, (1.1)

where R(T ) is the radius of the bubble as a function of time T , p∞ is the pressure of the

liquid and ρ the liquid density. The above equation can be derived from the Navier-Stokes

equations [2] or from energy conservation [52]. Equation (1.1) extends to the case of a vapour-

filled bubble with a constant inner pressure pv if the right-hand side of the equation is replaced

by pv − p∞ (= −∆p). The Rayleigh equation provides a useful relation between the initial

bubble radius R0 and the bubble’s collapse time Tc when integrated from time 0 to Tc and

from radius R0 to 0, which reads

Tc = ξR0

(
ρ

∆p

)1/2

, (1.2)

where ξ≈ 0.91468 is the constant Rayleigh factor (see section 2.8.1 for the derivation). Equa-

tion (1.2) implies that for a given radius and liquid density, a bubble collapsing with a higher

driving pressure ∆p has a shorter lifetime. Consequently, for a bubble collapsing in a pressure

gradient where one of the bubble sides is subject to a higher pressure than its opposing side,

one would, intuitively speaking, expect differences in the collapse speed for the different parts

of the interface, which would lead to the formation of a micro-jet [53].

An analytical solution to the Rayleigh equation, based on earlier approximations [54, 55, 56],

was proposed only very recently [57]. When expressed in normalised coordinates, where

r ≡ R/R0 and t ≡ T /Tc , the Rayleigh equation may be simplified into a dimensionless first

order differential equation:

ṙ 2 = 2

3
ξ2 (

r−3 −1
)

, (1.3)

which satisfies ṙ ∝ r−3/2 [55]. The asymptotic behaviour of equation (1.3), as r → 0 (and

t → 1), is [54, 55]

r (t ) ∼= (
1− t 2)2/5

, (1.4)
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Chapter 1. Introduction

which actually approximates the full evolution of r (t) within 1% error [55]. This interesting

approximation will be used throughout the present work.

The Rayleigh equation includes a singularity as T /Tc → 1, resulting in R → 0 and Ṙ →∞, a

behaviour that is not realistic. Equation (1.1) was later improved by Plesset to include non-

condensible gas inside the bubble, which prevents the bubble from becoming infinitely small,

and to take into account surface tension and liquid viscosity, yielding the model commonly

known as the Rayleigh-Plesset equation [58] that reads

ρ

(
RR̈ + 3

2
Ṙ2

)
= pB −p∞− 2σ

R
−4µ

Ṙ

R
, (1.5)

where σ and µ are, respectively, the surface tension and the dynamic viscosity of the liquid,

and pB is the time-dependent pressure inside the bubble, which is assumed to be uniform

and generally considered to comprise vapour (maintained at its constant saturation pressure)

and non-condensible gas, i.e., pB = pg (T )+ pv . Using the adiabatic hypothesis, the time-

dependent partial pressure of the gas may be expressed as pg = pg0 (R0/R)3γ, where pg0 is the

initial partial pressure and γ the adiabatic index of the non-condensible gas inside the bubble.

Numerous different compressible versions of the Rayleigh-Plesset model have been pro-

posed [59, 60, 61, 62], many of which can be derived from a class of first-order models [63, 64,

62]:

[
1− (λ+1)

Ṙ

c

]
RR̈+ 3

2

[
1− 1

3
(3λ+1)

Ṙ

c

]
Ṙ2 = 1

ρ

[
1− (λ−1)

Ṙ

c
+ R

c

d

dt

](
pB −p∞

)+O(c−2),

(1.6)

where λ is an arbitrary parameter, c is the sound speed in the liquid and O is the order of

error. One special case of this class is the Keller-Miksis model [60] where λ= 0, which, with

pB = pg +pv , reads(
1− Ṙ

c

)
ρRR̈ = (

pg +pv −p∞
)(

1+ Ṙ

c

)
+ Rṗg

c
−

(
3− Ṙ

c

)
Ṙ2ρ

2
. (1.7)

The above equation will be used throughout this work. An example of the Keller-Miksis model

compared with the observed radial evolution of a bubble is given in Figure 1.1.

Numerous further improvements have been proposed for these models, taking into account

evaporation, condensation and mass transfer, source of bubble generation, chemical reactions,

the evolution of the gas concentration within the bubble [41, 65, 66], and bubbles collapsing

in finite volumes [52]. However, all these analytical models monitor the evolution of bubbles

assumed to remain spherical, whilst often they deviate from the spherical shape due to the

presence of strong anisotropies in the pressure field of the surrounding liquid.

It is challenging to derive analytical models for non-spherically collapsing bubbles. However,

the concept of Kelvin impulse [45, 67, 68, 69] has been shown to quite conveniently quantify
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1.3. Investigating bubble dynamics

a non-spherical collapse. Kelvin impulse is the integrated linear momentum acquired by

the surrounding liquid during the growth and the collapse of the bubble. For a perfectly

spherically collapsing bubble that undergoes no translational motion during its lifetime, the

Kelvin impulse equals zero. Despite being an integral value, it gives information on the gross

motion of the bubble during its asymmetric collapse. It is a concept that will be largely used

throughout this work.

1.3.2 Numerical methods

More precise dynamics associated with non-spherically collapsing bubbles can be reproduced

though numerical simulations, as has been investigated in numerous studies in the past,

of which only a small fraction is mentioned here. Boundary integral method (BIM), which

discretises only the bubble surface with a piecewise-linear representation, has been widely

used for this purpose. The first studies used incompressible versions, calculating the bubble

shape evolution as long as the bubble is singly connected, i.e., up to the moment of the

micro-jet impact onto the opposite bubble wall [70, 71, 72]. These have also been improved to

model the evolution of the bubble even after the jet impact [73, 74] and to take into account

liquid compressibility [75, 76, 49]. Also many domain approaches have been used to simulate

non-spherical bubbles in compressible liquids, coupled with various interface-capturing

schemes [77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90]. These studies have investigated

the interaction of bubbles with different types of boundaries with various shapes, bubbles

collapsed under the effect of shock waves, among other scenarios. However, the sole use of

numerical computations is not always sufficient or cost-efficient to predict the bubble collapse

outcomes for a given application, and they need to be carefully validated by experimental

observations.

1.3.3 Experimental methods

Many different ways exist to produce on-demand single bubbles of various scales for ex-

perimental cavitation studies. The most commonly used methods are expanding existing

nuclei (e.g., air bubbles) by ultrasound [91, 92, 28] or a transient tension wave [93], fo-

cused lasers [94, 41, 71, 95, 96, 97], electric discharges [52, 98, 99], and underwater explo-

sions [100, 101, 102]. Applying ultrasound sets the liquid locally into tension and, if position-

ing the standing waves correctly, one may create a stably oscillating, usually sub-millimetric

single bubble which, thanks to its numerous successive life cycles, facilitates the study of,

e.g., luminescence or chemical reactions. Following the same principle, a transient tension

wave can be applied on an existing gas nucleus by, for example, reflecting a compression wave

from a free surface (which may induce secondary cavitation, such as in ref. [103]) or by the

‘tube arrest’-method [93]. Millimetric laser-induced vapour bubbles are produced as a focused

pulsed laser triggers an optical breakdown that ruptures the liquid. Here enough laser energy

is absorbed in the focal point that the liquid locally heats up to ionising temperatures and

thereby produces a plasma, from which the explosively growing vapour bubble emerges. Elec-

7



Chapter 1. Introduction

tric discharge is another energy-depositing method that creates a plasma between electrodes,

yielding the explosive growth of a vapour bubble that can typically reach centimetric sizes.

Underwater explosions generate very large, meter-scaled bubbles using explosives.

The bubbles in the experiments presented in this work are generated with a focused laser.

Producing bubbles this way has many advantages for studying the physics of cavitation

bubbles. Laser-induced bubbles can be generated to a precise location, and their dynamics

can be let evolve freely without the presence of an external sound field or neighbouring

objects or surfaces. They can be made relatively large (millimetre scale), thereby increasing the

spatio-temporal resolution of the measurements, and to collapse with controlled, adjustable

deformations. The (dis-)similarity between laser-induced bubbles or other energy deposition

methods with hydrodynamic cavitation bubbles (i.e., bubbles generated by low pressures) has,

however, caused some concern when used for understanding the physics underlying cavitation.

There exists evidence that lasers and sparks produce gases [37], and the resulting bubbles

are generated by ionising temperatures [104], which could yield important thermal effects.

However, the experimental observations from laser-induced bubbles (in our experiment) agree

with Rayleigh’s model to a very high accuracy (< 1 %), even when only vapour is accounted

for inside the bubble [97]. This implies that the produced gases remain small in quantity,

and after the initial plasma generation, the bubble contents quickly cool down to ambient

temperature and condensate. Indeed, considering the typical expansion ratio from the initial

plasma (R0/Rplasma ∼ 100), if an adiabatic expansion and ideal gas are assumed, an excess

temperature of, say, 16000 K [104] would cool down to a temperature in the order of 10 K

already as the bubble reaches 10% of its maximal expansion radius (i.e., a 1000-fold volume

expansion!), which happens in the first 1% of its lifetime.

Large laser-induced bubbles typically have an important growth in shape instabilities near

the end of the collapse, likely arising from anisotropy and perturbations in the initial plasma

(e.g., due to the focal region of the laser being cone-shaped [105]), which can yield bubble

splitting [106, 104]. The bubble surface during its growth phase, when Ṙ > 0, is generally

rather stable, allowing a bubble that is initially not spherical to assume a highly spherical

shape at its maximum expansion. During the collapse (Ṙ < 0), however, the surface modes

become amplified, their growth rates being sensitive on the initial perturbations (see stability

analysis by Plesset and Mitchell [107]). In fact, the effect of the initial shape of laser-induced

bubbles on their collapse dynamics has been studied previously for the purpose of engineering

micro-fluidic flows on-demand [108].

In order to maximise the control over the bubble’s level of deformation, one must i) minimise

the effect of the initial shape perturbations on the bubble’s deformation - for this we need a

highly point-like initial plasma with a high-convergence focusing device such as a parabolic

mirror [97], in contrast to the more conventional use of converging lenses; and ii) control the

external perturbations, with the introduction (or removal) of nearby boundaries and with

varying (or suppressing) the gravity-induced hydrostatic pressure gradient.
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Figure 1.3: Typical measured flight altitude, aircraft pitch angle and perceived vertical acceler-
ation (in units of g = 9.81 ms−2) during a parabolic manoeuvre. The different indicated phases
in the plots are normal gravity (1g ), hyper-gravity (hg ) and micro-gravity (µg ).

1.4 Variable gravity aboard parabolic flights

Parabolic flights provide a possibility to carry out measurements in variable gravity. Variable

gravity here denotes the gravity level perceived by the experiment and experimenters aboard

the plane. Figure 1.3 illustrates a typical parabolic manoeuvre performed by the plane. A

parabolic trajectory starts with a phase in which the objects inside the plane feel ‘hyper-gravity’

(≈ 1.8 g where g = 9.81 ms−2 is the Earth’s gravitational acceleration) lasting approximately 20

seconds, which is followed by 20 seconds of free-fall resulting in a perceived ‘micro-gravity’.

The parabolic trajectory ends with another phase of hyper-gravity. The vertical accelerational

fluctuations in the micro-gravity phase remain small, with the maximum standard deviation

being in the order of 0.02 g . The fluctuations of the horizontal accelerations also remain small

(< 0.03 g ) throughout the parabola. The typical frequencies in the accelerational fluctua-

tions range within 1–10 Hz, which are slow compared to the bubble oscillation period in our

experiment.

The gravity-induced hydrostatic pressure gradient presents the advantage of being uniform

in space and time, which is interesting because any practical instance of a pressure field
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in the liquid can be approximated to first order with such a uniform pressure gradient. Its

correct modulation yields a highly controlled way of probing between highly spherical bubbles

in micro-gravity to strongly deformed micro-jetting bubbles in hyper-gravity. Throughout

this work are presented experiments carried out in parabolic flight campaigns operated by

Novespace (Bordeaux, France) for the European Space Agency (ESA). One ESA campaign

typically comprises three flights, in each of which a total of 31 parabolas are performed.

Our experiment flew aboard an Airbus A300 ZERO-G in the 60th ESA campaign (2014), and

aboard an Airbus A310 ZERO-G in its inaugural ESA (62nd) campaign (2015). In addition, we

participated in the first Swiss parabolic flight in Zurich (2015). To fulfill the new requirements

imposed by the new A310 plane, the structures to host the experiment were re-built during

this work. Additional details of the experimental setup and the parabolic flights may be found

in refs. [97, 53].

1.5 Objective

The objective of this work is to develop predictive models for the most important quantities

characterising micro-jets, shock waves, and luminescence of cavitation bubbles collapsing

with varying levels of deformation. These models are strongly based on experimental observa-

tions searching for the full energy budget of a single bubble deformed by different sources,

and supported by theoretical derivations and numerical simulations.

1.6 Thesis outline

This thesis is a compilation of three individual journal articles, each of which tackles one of

the bubble’s collapse phenomena. More specifically, Scaling laws for jets of single cavitation

bubbles (chapter 2) is an analysis on micro-jets driven by different sources, and provides useful

scaling laws for their key characteristics. Shock waves from nonspherical cavitation bubbles

(chapter 3) presents experiments elucidating the complex shock wave emission associated with

non-spherically collapsing bubbles, compares them for different sources of deformation, and

proposes semi-empirical models for predicting their strengths. Luminescence from cavitation

bubbles deformed in uniform pressure gradients (chapter 4) explores various properties of

luminescence measured from the individual collapses of bubbles deformed by the hydrostatic

pressure gradient, which is modulated via variable gravity. Finally, chapter 5 synthesises the

main findings of the thesis, and discusses future prospectives.
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2 Micro-jets

Scaling laws for jets of single cavitation bubbles

Reproduced version of

Outi Supponen, Danail Obreschkow, Marc Tinguely, Philippe Kobel, Nicolas Dorsaz and Mo-

hamed Farhat. Scaling laws for jets of single cavitation bubbles. Journal of Fluid Mechanics

802, pp. 263-293 (2016). DOI: 10.1017/jfm.2016.463,

with the permission of Cambridge University Press.1

The author’s contribution:

The author performed the experiments and the analysis, and made a major contribution in

the development of the scaling laws. She identified the regimes and helped to improve the

numerical tool developed by Danail Obreschkow. She was the first author of this publication.

Abstract

Fast liquid jets, called micro-jets, are produced within cavitation bubbles experiencing an

aspherical collapse. Here we review micro-jets of different origins, scales and appearances,

and propose a unified framework to describe their dynamics by using an anisotropy parameter

ζ≥ 0, representing a dimensionless measure of the liquid momentum at the collapse point

(Kelvin impulse). This parameter is rigorously defined for various jet drivers, including gravity

and nearby boundaries. Combining theoretical considerations with hundreds of high-speed

visualisations of bubbles collapsing near a rigid surface, near a free surface or in variable

gravity, we classify the jets into three distinct regimes: weak, intermediate and strong. Weak

jets (ζ < 10−3) hardly pierce the bubble, but remain within it throughout the collapse and

rebound. Intermediate jets (10−3 < ζ< 0.1) pierce the opposite bubble wall close to the last

collapse phase and clearly emerge during the rebound. Strong jets (ζ> 0.1) pierce the bubble

early during the collapse. The dynamics of the jets is analysed through key observables,

such as the jet impact time, jet speed, bubble displacement, bubble volume at jet impact

and vapour-jet volume. We find that, upon normalising these observables to dimensionless

1Supplementary movies may be found at https://doi.org/10.1017/jfm.2016.463
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Chapter 2. Micro-jets

jet parameters, they all reduce to straightforward functions of ζ, which we can reproduce

numerically using potential flow theory. An interesting consequence of this result is that a

measurement of a single observable, such as the bubble displacement, suffices to estimate

any other parameter, such as the jet speed. Remarkably, the dimensionless parameters of

intermediate and weak jets (ζ < 0.1) depend only on ζ, not on the jet driver (i.e. gravity or

boundaries). In the same regime, the jet parameters are found to be well approximated by

power laws of ζ, which we explain through analytical arguments.

2.1 Introduction

Cavitation bubbles in liquids remain a central research topic due to their energetic properties,

which can be damaging to, for example, hydraulic turbomachinery or ship propellers [109], or

beneficial in applications such as microfluidics [29, 30] or medicine [110, 19]. In most cases,

the damaging or beneficial effect comes from the shock and/or the micro-jet produced during

the collapse of the cavitation bubbles, more specifically during the final collapse stage. In

this paper, micro-jet always refers to the jet forming on the bubble wall and moving across

the bubble interior, before piercing the wall on the opposite side. The dynamics of these

micro-jets and their diverse origins constitute the framework of this review.

Decades of detailed research revealed a remarkable diversity of behaviours and effects of

micro-jets, depending on the physical conditions (see reviews by Blake & Gibson [67] and

Lauterborn & Kurz [44]). For instance, micro-jets can have diverse origins, including rigid

or free surfaces near the bubble [67] or external force fields such as gravity [46] (section 2.2),

and their evolution strongly depends on the properties of the liquid (section 2.4). To harvest

the power of jets or suppress their damaging effects, we require an understanding of their

physics across all possible conditions. In particular, we aim for a general description of the

jet produced by a single cavitation bubble. Building such a general description requires

both a unified theoretical model and systematic experimental studies across a wide range of

parameters (e.g. bubble sizes, pressures, jet drivers).

Our objective is to describe the large variety of micro-jets and unify them in a single, theo-

retically supported framework. Contrary to previous works, we benefit from the luxury of

increased computational power and cheaper high-speed imaging, enabling systematic nu-

merical and experimental analyses of jetting bubbles in a large array of realistic conditions.

Our experimental data not only cover a wide range of parameter space, but also contain some

of the most spherical large cavitation bubbles and weakest jets studied to date. We combine

these data with selected results from the literature, covering a large diversity of jets and bubble

types. With the aim of comparing all these data, the results are suitably normalised to a set of

dimensionless parameters characterising the jet physics. The statistics of these parameters

are then compared against systematic theoretical predictions from customised numerical

simulations. Finally, physical interpretations of the results are sought analytically.

The paper is structured as follows. Section 2.2 summarises the most prominent drivers of
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2.2. The diverse origins of micro-jets

Figure 2.1: Micro-jets from different origins: a) Gravity, b) rigid surface, c) free surface, d) sta-
tionary flow (from [53]) and e) shock wave (see micro-bubbles). Images (a)-(d) correspond to
equations (2.6) (a)-(d).

micro-jets and quantifies their ‘strength’ using a single parameter. Our experimental set-up for

the systematic investigation of jets in various conditions is described in section 2.3. We then

systematically study the variation of the micro-jet dynamics as a function of the pressure field

anisotropy. First, we phenomenologically classify the jets into three visually distinct regimes

in section 2.4. Section 2.5 follows up with a quantitative analysis of five dimensionless jet

parameters, studied as a function of a suitable anisotropy parameter and compared against

numerical simulations. Section 2.6 synthesises all the experimental and numerical results

in a single figure, presents physical interpretations of the results and discusses potential

applications and limitations.

2.2 The diverse origins of micro-jets

Micro-jets are produced during the aspherical collapse of cavitation bubbles. The sphericity of

bubbles is broken by anisotropies in the surrounding pressure field. There are various possible

origins for such anisotropies (see figure 2.1), with the most common ones being discussed

hereafter.

Most micro-jet investigations have focused on bubbles collapsing near a rigid or a free surface
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(figures 2.1b and 2.1c). The level of bubble asphericity is generally quantified by a dimension-

less stand-off parameter γ= h/R0, where h is the distance from the initial bubble centre to the

surface and R0 is the maximum bubble radius. The usual findings are that γ governs much of

the micro-jet dynamics, such as its speed or erosive force [111, 112, 113]. Most experimental

studies are limited to γ < 5, as beyond this limit, the bubble undergoes a nearly spherical

collapse that often appears indistinguishable from a boundary-free collapse, given the limited

initial sphericity of the bubble. In highly symmetric experimental conditions (relying on

mirror-focused lasers and/or microgravity conditions), it is nonetheless possible to detect jets

beyond γ= 10, as we shall demonstrate in sections 2.4 and 2.5.

Another typical micro-jet driver, not accounted for by the stand-off parameter γ, is the gravity-

induced hydrostatic pressure gradient, i.e. buoyancy [46] (figure 2.1a). Gravity becomes

particularly apparent when dealing with larger bubbles and/or hypergravity environments,

such as in the studies in refs. [45], [114] and [68]. To quantify the effect of buoyancy, Gibson

introduced the dimensionless parameter σ = ρg R0/∆p, where ρ is the liquid density, g is

the gravitational acceleration and ∆p ≡ p0 −pv is the driving pressure (p0 is the pressure at

infinity at the vertical position of the bubble centre and pv is the vapour pressure). A similar

parameter, δ=σ1/2, has also been used in the past to account for the effect of gravity [68, 98].

Further origins of cavitation bubble micro-jets are, for example, flows with pressure gradi-

ents [53, 69] (figure 2.1d), shock waves [115, 116] (figure 2.1e), focused ultrasound [117] or

neighbouring bubbles [118]. Also, a combination of different jet drivers together can cause

the bubble asphericity, enhancing the jet formation, or even suppressing it. An example of

such a combination is seen in figure 2.1d where a bubble in a stationary flow collapses near

a rigid hydrofoil. Its micro-jet, however, is not shot towards the nearest surface but, instead,

directed more against the pressure gradient of the flow.

The plethora of micro-jet drivers and the fact that different drivers can act simultaneously

highlight the need for a unified framework, approximately describing the jet dynamics for

a multitude of jet drivers. To this end, we need to quantify the jet-driving pressure field

anisotropy with a parameter defined for various origins of this anisotropy and applicable to

bubbles of many sizes and external conditions. In general, any smooth pressure field can be

expanded in the space coordinates as

p(x, t0) = p(x0, t0)+ (x−x0)>∇p + 1

2
(x−x0)>D(p) (x−x0)+O(x3), (2.1)

where ∇p and D(p), respectively, denote the gradient and Hessian matrix of the pressure field

at x = x0 and t = t0, here considered to be the bubble centroid and time at the instant of the

bubble generation. To first order, the effects of pressure field anisotropies therefore depend

on the constant ∇p.

To define a dimensionless anisotropy parameter, we can exploit the fact that the inviscid

Navier-Stokes equations without surface tension are self-similar, such that they become

dimensionless by normalising length scales by R0, pressures by∆p and velocities by (∆p/ρ)1/2.
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The assumption for the minor role of surface tension and viscosity is widely accepted for the

first bubble oscillation in water for bubbles bigger than R0 ∼ 10−5 m (see e.g. [119]). Applying

this normalisation to ∇p leads to the dimensionless vector parameter [46]

ζ≡−∇p R0∆p−1, (2.2)

where the minus sign ensures that the jet driven by ∇p is directed along ζ. A straightforward

calculation (Appendix 2.8.1) shows that ζ is a dimensionless version of the so-called Kelvin

impulse [45, 68, 69] I, defined as the linear momentum acquired by the liquid during the

asymmetric growth and collapse of the bubble,

I = 4.789R3
0

√
∆pρ ζ. (2.3)

The value 4.789 is strictly an irrational number, the exact value of which is given in equa-

tion (2.21) in the Appendix. The term R3
0

√
∆pρ has the units of momentum, as expected.

In situations where the micro-jet cannot be attributed to an external ∇p, we can define ζ such

that equation (2.3) still returns the correct Kelvin impulse. For instance, if the jet is caused by a

rigid or free surface at a stand-off parameter γ, the Kelvin impulse is given by (Appendix 2.8.1)

Isurface = 0.934R3
0

√
∆pρ γ−2n ·

{
−1 flat rigid surface

+1 flat free surface
, (2.4)

where n is the normal unit vector on the surface pointing to the cavity centre. The exact value

of 0.934 is given in equation (2.25). Equating (2.3) and (2.4) yields

ζ= 0.195γ−2. (2.5)

with the exact expression of 0.195 given in equation (2.26). When expressing ζ as a function

of γ in this way, equation (2.3) yields the correct Kelvin impulse for a rigid/free surface. An

analogous approach can be used to derive ζ for other types of boundaries [120, 69] and

pressure gradients,

ζ=



−ρgR0∆p−1 gravitational field (a)

−0.195γ−2n flat rigid surface (b)

+0.195γ−2n flat free surface (c)

−ρ(u ·∇)uR0∆p−1 stationary potential flow (d)

0.195γ−2(ρ1 −ρ2)(ρ1 +ρ2)−1n liquid interface (e)

0.195γ−2(4α−1−8α2e2αE1(2α))n inertial boundary (f)

(2.6)

Here u is the velocity field, ρ1 and ρ2 are the different densities of the two liquids, α is defined

as α ≡ ρh/Σ (where ρ is the liquid density, h is the distance from the initial bubble centre

to the surface and Σ is the surface density) [121] and E1(x) ≡ ∫ ∞
x t−1e−t dt is an exponential

integral. In the linear expansion of the pressure field, the anisotropy parameter associated

with a combination of drivers (e.g. gravity and flat surface) is given by the vector sum of the
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respective ζ. Defining a corresponding anisotropy parameter for more complicated jet drivers,

such as neighbouring bubbles, shock waves or ultrasound that are strongly time-dependent,

or boundaries with complex geometries, is not as straightforward as for the above examples.

In the present work, we focus on unifying the jet drivers listed in equations (2.6), and restrict

experimental verification to gravity, flat rigid and free surfaces.

We expect, and will show in the following, that the jet becomes more pronounced (in a sense

specified in section 2.5) with increasing ζ ≡ |ζ|. Importantly ζ, unlike the Kelvin impulse,

has the special property that bubbles with equal values of ζ produce similar (i.e. identical

in normalised coordinates) jets irrespective of the jet driver (e.g. gravity, rigid/free surface).

This prediction naturally breaks down as the higher-order terms in equation (2.1) become

significant. As we shall see (section 2.5), this is the case, for example, for strongly deformed

bubbles (i.e. ζ> 0.1, corresponding to γ< 1.4 following (2.5)). Following the same argument,

other types of micro-jets, not treated in this work, are only well described by ζ if the time-

constant gradient in the expansion of the pressure field dominates the jet formation.

2.3 Experimental set-up

Our experimental set-up - details of which are given in [97] - generates highly spherical

bubbles by focusing a green pulsed laser (532 nm, 8 ns) inside a large cubic test chamber

(18 cm×18 cm×18 cm) filled with degassed water. The laser beam is first expanded to a

diameter of 5 cm using a lens system, and then focused onto a single point using a parabolic

mirror with a high convergence angle (53◦) to generate a point-like initial plasma. In this

way, we obtain a bubble of very high initial sphericity, which is impossible to achieve with a

pure lens system that is affected by refractive-index variations, spherical aberration and/or

the proximity of the lens to the bubble. As a result, we are able to cover a large range of

anisotropies ζ, including the delicate ‘weak jet’ regime previously unexplored, where the

jets are barely observable (see section 2.4.1). We observe the micro-jets through high-speed

visualisations with the Photron SA1.1 and Shimadzu HPV-X camera systems, reaching speeds

up to 10 million frames per second. The bubbles are illuminated using a flashlamp (bubble

interface and interior) or a parallel backlight light-emitting diode (shadowgraphy and shock

waves).

Three parameters can be independently varied in our experiment: (i) the driving pressure ∆p

(∼ 0.1-1 bar), (ii) the bubble energy Eb = (4π/3)R3
0∆p (1–12 mJ) and (iii) the gravity-induced

pressure gradient ∇p, modulated aboard ESA parabolic flights (56th, 60th and 62nd parabolic

flight campaigns). In addition, a free or a rigid surface may be introduced near the bubble at

a controlled distance. The maximum bubble radii R0 vary within the range 1.5–8.0 mm and

the Rayleigh collapse times (Tc = 0.915R0(ρ/∆p)1/2) within the range 0.1–3 ms. The parameter

space covered by the experiment is displayed in figure 2.2. A subsample of these data points is

used in the following analyses.
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Figure 2.2: Overview of the parameter space covered by the experiment. The data points
include bubbles subject to gravity and a nearby rigid/free surface. The four parameters Eb ,
∆p, R0 and Tc are related via the two relations Eb = (4π/3)R3

0∆p and Tc = 0.915R0(ρ/∆p)1/2

(spherical collapse) and can therefore be reduced to any combination of just two parameters,
representable in a two-dimensional plot.

2.4 Qualitative classification of jetting regimes

The micro-jet dynamics strongly varies with the anisotropy in the pressure field, that is with

the anisotropy parameter ζ defined in eq. (2.6). This section introduces a phenomenological

classification of the micro-jet dynamics into three separate regimes, ‘weak’, ‘intermediate’ and

‘strong’, identified with three distinct ranges of ζ. An example of a micro-jet in each regime

is given in figure 2.3: weak (figure 2.3a) and intermediate (figure 2.3b) jets form so close to

the collapse point that they are primarily visible during the rebound. Whereas intermediate

jets push through the wall of the rebound bubble and drag along a conical vapour pocket

(‘vapour-jet’), weak jets hardly pierce the rebound bubble and remain almost entirely inside it.

In turn, strong jets (figure 2.3c) pierce the bubble well before the first collapse, leaving behind

thick vortex rings.

The transition between weak and intermediate jets occurs around ζ = 10−3, whereas the

division between intermediate and strong jets lies around ζ = 0.1. These transitions are

not sharp, since the jet dynamics changes continuously with ζ. The separation between

weak, intermediate and strong jets nonetheless presents a useful thinking tool to establish a

unified perspective on these visually distinct types of micro-jets. Each regime is discussed and

visualised in detail in the following sections.
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Chapter 2. Micro-jets

Figure 2.3: Observations of three distinct micro-jet types driven by a nearby free surface:
(a) weak jet (ζ. 0.001) seen only inside the rebound bubble following the collapse, (b) inter-
mediate jet (ζ= 0.01) emerging during the rebound and (c) strong jet (ζ= 0.64, from [122])
seen early during the collapse. The arrow on the right shows the direction of the anisotropy
parameter ζ.

2.4.1 Weak jets (ζ≤ 10−3)

Weak jets are the most delicate type of micro-jets. They are only seen during the rebound

phase succeeding the first bubble collapse, and even then they remain entirely, or almost

entirely, contained inside the rebound bubble. Therefore, weak jets can only be revealed using

sophisticated visualisations of the bubble interior.

The reason why weak jets merit a regime of their own, despite their hidden existence, is the

sensitivity of the collapse physics on even tiny pressure field anisotropies. For instance, the

luminescence energy of bubbles near boundaries has been shown to vary with the stand-off

parameter γ up to γ≈ 20 [123] (ζ≈ 5 ·10−4). We find this to be the case for even lower values of

ζ (discussed in a forthcoming publication).

Experimentally, an extremely high initial bubble sphericity is required for a weak jet to form.

Based on numerical models used to design the experimental set-up (section 2.3), we estimate

that the amplitude of the deformation of the initial bubble relative to its maximal radius should

be less than 10−4. Bubbles generated by discharge sparks (e.g. [114]) and lens-focused laser

pulses (e.g. [112]) are generally not spherical enough to probe the regime ζ< 10−2 (see chapter

4 in [53]). Within the accuracy of such standard experiments, γ> 4 (or ζ< 0.012) appears to

produce a spherical collapse, where, in fact, the jet has been masked by perturbations that are

more important than the jet itself. The hidden weak jet is also challenging to visualise due to

its microscopic size, its unstable nature within the rebound and a non-transparency of the

bubble interface at the early rebound stages.

Our experiment (section 2.3) is suitable for studying weak jets by virtue of its mirror-focused

laser and the option to reduce gravity on parabolic flights. An example of a weak jet produced

by a distant free surface (γ≈ 14) is shown in figure 2.3a. An alternative example of a gravity-

driven weak jet is shown in figure 2.4. The bubble remains highly spherical throughout
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2.4. Qualitative classification of jetting regimes

Figure 2.4: Weak jet formation driven by gravity. The interframe time is 90 µs. The white bar
shows the 1 mm scale. The anisotropy parameter ζ equals 0.001. The arrow on the right shows
the direction of ζ. See Movie1.mp4.

Figure 2.5: Shock wave emission at the collapse of a bubble with a gravity-driven weak jet. The
interframe time is 300 ns. The exposure time is only 60 ns, leading to a sharp shock front. The
black bar shows the 1 mm scale. The anisotropy parameter ζ equals 0.001. The arrow on the
right shows the direction of ζ. See Movie2.mp4.

the collapse (frames 1–2) and rebound (frames 3–6). However, one can observe a jet inside

the rebound bubble (frames 3–4). During the growth of the rebound bubble, the micro-jet

becomes unstable and ‘pulverises’ into a chain of microscopic droplets. (The phenomenon is

more readily observable in the linked supplementary movie.)

Bubbles with weak jets emit a single shock at their collapse, as shown in figure 2.5. The only

way to tell that the bubble is subject to a deformation during its collapse is its translation,

which is an expression of the momentum (Kelvin impulse) accumulated during the growth

and collapse. The bubble has moved most significantly at its minimal radius between frames

3 and 4 in figure 2.5, as evidenced by the different centres of the bubble and the shock in

frame 4.

By systematically varying ζ while taking visualisations similar to figure 2.4, we found ζ≤ 10−3

(corresponding to γ& 14 for bubbles near a rigid or free surface) to be the anisotropy range

of weak jets. Larger values of ζ produce jets that visibly emerge from the rebound bubble

(see section 2.4.2). The limit is not a hard one, but nonetheless gives a fair indication on

the pressure field anisotropy where a significant reduction in the vapour-jet size outside the

rebound bubble is observed.

The observed instability of weak jets, as well as the fact that these jets live entirely inside

the bubble gas (a medium of rapidly changing temperature and pressure), hint at complex

physical mechanisms, beyond the scope of this work. A subtle question is whether a weak
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Chapter 2. Micro-jets

Figure 2.6: Selected images of bubbles with intermediate jets driven by gravity (upper) and
a nearby free surface (lower). Images have been taken at times t = 0.9, 2.15, 2.25, 2.35, 2.45,
2.85 and 3.35 ms (upper) and t = 2.05, 4.15, 4.2, 4.35, 4.6, 4.75 and 6.2 ms (lower) from bubble
generation. (The different evolution speeds are simply due to different liquid pressures chosen
for the two experiments.) The white bar shows the 1 mm scale. The anisotropy parameter ζ
equals 0.007, equivalent to a stand-off parameter γ of 5.3. The arrows on the right show the
direction of ζ. See Movie3.mp4 and Movie4.mp4.

jet slightly pierces the bubble at the collapse point. Potential flow theory of an empty bubble

predicts that the jet always pierces the bubble [67] no matter how small the Kelvin impulse

(> 0). However, our visualisations do not show clear evidence for such piercing – at least the

jet does not entrain a vapour-jet. Perhaps weak jets are so small and low in kinetic energy that

they are stopped by surface tension or heavily affected by the hot plasma at the last collapse

stage. Detailed modelling, ideally using molecular dynamics simulations, is needed to uncover

these details.

2.4.2 Intermediate jets (10−3 < ζ< 0.1)

In the intermediate jet regime (10−3 < ζ< 0.1), the jet pierces the bubble close to the moment

of collapse and entrains a conical vapour-jet during the rebound phase.

Figure 2.6 shows an intermediate jet produced by gravity (upper) and by a nearby free surface

(lower). The jet is visible inside the rebound bubble and as a conical protrusion of vapour

dragged along while the jet is penetrating the liquid. The rebound bubble has a transparent

interface and eventually regains a shape close to spherical. It is worth emphasising that,

despite the different jet drivers in figure 2.6, the two bubbles exhibit nearly identical shapes

apart from the opposite jet directions. This confirms our expectation (section 2.2) that identical

values of ζ lead to similar jets, independently of the jet driver.

One can note a similar pulverisation of the jet inside the rebound bubble as observed in the

case of the weak jets (more readily visible in the linked supplementary movie). Furthermore,

the issue of initial bubble sphericity discussed in section 2.4.1 plays an important role in the

intermediate regime as well. Micro-jet studies in the literature seldom observe jets at γ> 4,
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Figure 2.7: Shock wave emission at the collapse of a bubble with a gravity-driven intermediate
jet. The interframe time is 100 ns, the exposure time is 60 ns. The black bar shows the 1 mm
scale. The anisotropy parameter ζ equals 0.007. The arrow on the right shows the direction of
ζ. See Movie5.mp4.

while we observe both gravity- and boundary-induced jets all the way down to the weak jet

regime at ζ< 10−3, corresponding to γ> 14.

There is a peculiarity that we observe in the intermediate regime: the formation of a bump on

the rebound bubble, at the location where the micro-jet initially develops (i.e. opposite from

where the jet pierces the bubble). This bump can be seen in the last frames of figure 2.6. Vogel

et al.[111] explained this phenomenon as a wake of a vortex ring inside the bubble, induced by

the ring vortex in the liquid surrounding the rebounding bubble. However, our visualisations

suggest that it is the pinch-off and the break-up of the jet within the rebound bubble that

cause this deformation. Owing to surface tension, the remainder of the jet is pulled back

and seen as a bulge on the interface. This part of the interface struggles to follow the rest

of the bubble during the second collapse, making the deformation even more pronounced

(see linked supplementary movies in figure 2.6). Such a deformation is predominantly seen

in bubbles collapsing in the intermediate regime, although it is also marginally observed in

bubbles with weak jets.

In the intermediate regime, the piercing of the bubble occurs so late in its lifetime that extreme

temporal and spatial resolutions are needed to capture the jet before the collapse point.

Interestingly, shock-wave visualisations can be exploited to increase the time resolution much

beyond the frame rate by virtue of the high shock velocities. The multiple shock waves in

figure 2.7, in particular the different radii of these shocks, clearly reveal that the jet pierces the

bubble before the collapse of the torus, even though this is hard to see by looking at the bubble

itself. An interesting feature that many micro-jet studies have come across in the intermediate

jet regime (and partly in the strong jet regime) is a ‘counter-jet’ that appears immediately

after the bubble collapse and moves in the opposite direction to the original micro-jet. Such a

counter-jet has been reported to appear for bubbles collapsing near rigid surfaces at 1 < γ<
3 [47] and to consist of a cluster of tiny bubbles. The formation of the counter-jet is attributed

to the jet impact on the opposite bubble wall. However, the phenomenon has also been seen
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Figure 2.8: Selected images right after the collapse of bubbles near a free surface with (a)γ= 2.1,
(b) γ= 1.6, (c) γ= 1.3, (d) γ= 1.0 and (e) γ= 0.86. Counter-jet formation is visible in (b), (c)
and (d), indicated with arrows. The black bar shows the 1 mm scale. The arrow on the right
shows the direction of ζ.

in bubbles with gravity-driven jets at ζ ≈ 0.2 (see figure 2 in ref. [98]). Furthermore, in our

experiment we observe such counter-jets for bubbles collapsing near a free surface, as seen in

figure 2.8 – visible in figure 2.8(b,c), and also in figure 2.8(d), although here the counter-jet

does not appear above the torus but rather appears as a ‘column’ on the central axis of the

torus. The phenomenon is therefore linked not to the presence of rigid boundaries but to the

pressure field anisotropy of the aspherical collapse. The formation of the counter-jet has been

suggested to be a result of the self-penetration of the ‘jet torus shock waves’, i.e. the shock

waves emitted at the collapse of the main torus, which create a region of tension perpendicular

to the torus ring at their confluence [47].

2.4.3 Strong jets (ζ> 0.1)

The strong jet regime (ζ> 0.1) is characterised by the jet piercing the bubble well before (more

than 1%: cf. section 2.5.2) the collapse. Not only have strong jets mostly been observed near

a rigid or a free surface [112, 124], but also gravity has been shown to produce jets in this

regime [98].

The strong jet regime is peculiar in the sense that the complex collapse dynamics involved

is highly sensitive to the origin of the pressure field anisotropy. For instance, there is a large

variety in the shapes that the jet can take prior to piercing the bubble, from large and broad

(such as in figure 3 in [98]) to thin, mushroom-capped jets [122] typically linked to a nearby

free surface (such as in figure 2.9).

The collapse of a strongly jetting bubble follows a sequence of highly complex dynamics.

Figure 2.92 shows an example of such a bubble collapsing near a free surface (ζ = 0.62, i.e. γ

= 0.56), the micro-jet being particularly thin compared to the bubble size. The interface of

the bubble becomes opaque already prior to the collapse (frames 3-4) due to perturbations

caused by the jet impact on the opposite side of the bubble [122]. Following the jet impact,

the bubble breaks into two parts as a vapour pocket is entrained by the jet. Each part has its

2Reproduced from: O. Supponen, P. Kobel, D. Obreschkow and M. Farhat. The inner world of a collapsing bubble.
Physics of Fluids 27(9), 091113 (2015), with the permission of AIP Publishing.
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(a) (b) (c)

(d) (e) (f)

↓
ζ

Figure 2.9: Selected images of a bubble with a strong jet driven by a nearby free surface
(from [122]). The anisotropy parameter ζ equals 0.62, equivalent to a stand-off parameter
γ= 0.56. The different instants are (a) T = 0 ms, (b) T = 0.5 ms, (c) T = 0.9 ms, (d) T = 1.2 ms,
(e) T = 1.4 ms and (f) T = 2.2 ms. The white bar shows the 1 mm scale. The arrow on the right
shows the direction of ζ. Video: APS-DFD (dx.doi.org/10.1103/APS.DFD.2014.GFM.V0084)
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Figure 2.10: Shock wave emission at the collapse of a bubble with a free surface-driven strong
jet, with the jet impact (upper) and toroidal collapse (lower) (from [122]). The interframe time
is 300 ns, the exposure time is 60 ns. The black bar shows the 1 mm scale. The anisotropy
parameter ζ equals 0.22, equivalent to a stand-off parameter γ= 0.95. The arrow on the right
shows the direction of ζ. Video: APS-DFD (dx.doi.org/10.1103/APS.DFD.2014.GFM.V0084)

individual collapse. The rebounding bubble emerges as a chaotic bubble cloud (frame 6).

Figure 2.10 displays a shock-wave visualisation of another strongly jetting bubble collapsing

near a free surface (at lower ζ). A first shock wave is emitted at the jet impact on the bubble

wall (upper row), and a complex pattern of shock waves is generated as the bubble breaks

down into different tori that each collapse individually [125, 122].

Important variations for different jet drivers (gravity versus rigid/free surfaces) are expected at

these high pressure field anisotropies, as a direct consequence of the higher-order terms in

eq. (2.1). These higher-order terms and their time dependence ensure that a bubble next to

a rigid boundary (γ< 1) cannot cross that boundary and that a bubble next to a free surface

(γ< 0.5) will burst that surface, while bubbles with a comparable Kelvin impulse generated by

gravity simply travel large distances (> R0; see section 2.5).

2.5 Quantitative analysis of jet dynamics

We now present different quantitative parameters describing micro-jets across all three jetting

regimes of section 2.4. We complement our experimental results with selected data from the

literature for the following jet types: gravity-induced, free surface-induced and rigid surface-

induced micro-jets, as well as combinations thereof. These data also cover a large diversity

of bubble types, including bubbles generated by pulsed lasers (with lens and mirror focus),

sparks, underwater explosions and focused ultrasound.

The experimental data are compared against theoretical models based on potential flow

theory. We start the section by presenting these numerical models, and subsequently discuss

how the normalised jet impact timing, the jet speed, the bubble centroid displacement, the

bubble volume at jet impact and the vapour-jet volume vary with the pressure field anisotropy,

quantified by ζ.
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2.5. Quantitative analysis of jet dynamics

2.5.1 Numerical simulation

We calculate the evolution of the bubble and the formation of the micro-jet in the standard

model of an inviscid, incompressible fluid without surface tension. The bubble is assumed to

contain fully condensable gas of constant pressure pv . The pressure infinitely far away from

the bubble, at the vertical level of the bubble centroid, is p0. The evolution of this bubble is

governed by the simplified Navier-Stokes equations

Du

Dt
= −∇p/ρ+g, (2.7)

∇·u = 0, (2.8)

where Du/Dt ≡ ∂u/∂t + (u · ∇)u is the material derivative, i.e. the time derivative seen by

a particle moving with the flow. Equations (2.7) and (2.8) represent the conservations of

momentum and mass, respectively. These equations must be completed with suitable initial

and boundary conditions that depend on the jet driver – e.g. rigid surface [70], free surface or

gravity [71].

A straightforward, but numerically delicate, method for solving these equations is the ‘pressure

formulation’, where eq. (2.8) is rewritten as a condition on the time-dependent pressure field

p needed to evaluate ∇p in eq. (2.7). A more powerful and precise method, strongly advocated

by Blake and collaborators [70, 71, 67], is the boundary integral method. This method relies

on the flow being irrotational, ∇×u = 0, such that the velocity field u derives from a potential

φ, via u =∇φ. Green’s integral formula [67] applied to eq. (2.8) then leads to

φ(r) = 1

2π

[∫
r′∈S

dS
∂φ(r′)
∂n

1

|r− r′| −
∫

r′∈S
dSφ(r′)

∂

∂n

(
1

|r− r′|
)]

, (2.9)

where S denotes the surface of the bubble and, if present, the free surface of the liquid, and

∂/∂n denotes the normal derivative on that surface away from the liquid.

The time evolution of the potential is given by Bernoulli’s principle, which derives from

eq. (2.7) [71, 70],

Dφ

Dt
= |u|2

2
− g z +P (2.10)

where z denotes the direction against the gravity vector g, g is the norm of g, and the pressure

term is given by P =∆p/ρ = (pv −p0)/ρ on the bubble surface and P = 0 on the free surface.

We discretise and numerically solve (2.9) and (2.10) using the scheme presented in [70]. This

method discretises the boundary into linear elements in which case (2.9) can be rewritten as

a linear system of equations. It should be noted that the model only computes the bubble

evolution up to the moment of jet impact, i.e. when the bubble becomes toroidal.
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Figure 2.11: The numerical simulations superimposed with the experimental visualisations
for a bubble collapsing near a free surface γ = 0.56 (top) and near a rigid surface γ = 2.32
(bottom). The blue points are extracted from the observed bubble shapes and the lines
represent simulated data. In the case of the upper panel, the simulated bubble shape (dashed
purple line) was corrected for optical refraction (solid blue line) by the outer bubble boundary,
assuming a refraction by a sphere with equations analogous to those in [126] (with water and
vacuum inverted).

A crucial feature of the model specified by equations (2.9) and (2.10) is that, upon normalising

distances to the maximal bubble radius R0 and normalising the time to R0(ρ/∆p)1/2, the evo-

lution of the bubble exclusively depends on the anisotropy parameter ζ given in equation (2.6)

and on the origin of ζ (e.g. gravity or nearby surfaces) via the boundary conditions. Moreover,

since ζ is defined such that to first order the pressure field anisotropy does not depend on the

origin, we expect the micro-jet to depend on the origin only for large values of ζ.

The bubble shapes calculated through the numerical simulation are superimposed on the

corresponding experimental images in figure 2.11 with two distinct jet drivers. The simulated

and observed shapes are in good agreement, justifying the use of the boundary integral method

for the analysis of the individual micro-jet parameters. Interestingly, even the ‘mushroom

cap’-shaped jet tip is reproduced for the bubble collapsing near a free surface (note the optical

distortion of the jet tip in the final image).

The simulation neglects viscosity and surface tension, which could have an effect on the

detailed jet shape. Nevertheless, these should have a minor role in the total Kelvin impulse,

most of which is accumulated when the jet is in its early formation stage. We also note that the

boundary integral method does not fully satisfy the no-slip condition, potentially important
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Figure 2.12: Calculated examples of bubbles collapsing in a constant pressure gradient (upper),
near a rigid surface (middle) and near a free surface (lower) at corresponding pressure field
anisotropy ζ and stand-off γ. The bubble shapes are shown during its growth (grey), collapse
(black) and jet impact stage (blue). Surface particle trajectories are shown in red for the
bubbles at ζ= 0.3. The dashed lines represent the rigid/free surface.

when the bubble is very close to a rigid surface.

Figure 2.12 displays examples of calculated bubble shapes at different levels of ζ (and cor-

responding γ, related to ζ via (2.5)), across all regimes. (Here ζ= 0.001 is the limit between

weak and intermediate jet regimes, ζ = 0.01 is in the intermediate jet regime, ζ = 0.1 is the

limit between intermediate and strong jet regimes, and ζ= 0.3 is in the strong jet regime.) Fig-

ure 2.12 illustrates the differences of a bubble collapsing in a constant pressure gradient, near

a rigid surface and near a free surface. The differences in the bubble shapes are significantly

more pronounced in the strong jet regime compared to the weak and intermediate jet regimes.

We show this explicitly by zooming into the bubble shapes at the instant of the jet impact in

figure 2.13. One should therefore expect important differences in the quantitative properties

of micro-jets in the strong jet regime. In turn, in the intermediate and weak jet regimes the

micro-jets are well described by ζ, independently of the origin of the anisotropy. We will verify
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R0 ζ2/3

ζ = 0.001 ζ = 0.01 ζ = 0.1 ζ = 0.3

Figure 2.13: Zoomed bubble shapes at the jet impact from figure 2.12. The different jet drivers
are indicated by solid (constant ∇p,) dashed (rigid surface) and dotted (free surface) lines. The
scale bar shows the characteristic scale of the final bubble as explained in section 2.6.1.

this statement by looking at individual micro-jet parameters in the following sections.

The code used to solve equations (2.9) and (2.10) is available online at https://obreschkow.

shinyapps.io/bubbles.

2.5.2 Jet impact time

An interesting parameter characterising a micro-jet is the moment at which the jet pierces

the opposite bubble wall during the collapse. The normalised jet impact time is defined as

∆Tjet/Tcollapse, where ∆Tjet is the time interval from the jet impact to the collapse point (i.e.

the minimal radius of the toroidal bubble), and Tcollapse is the time interval from the maximal

bubble volume to the collapse point. The timing of the jet impact is measured through high-

speed visualisations either by observing the moment at which a shock wave is emitted due to

the impact, such as in figures 2.7 and 2.10, or by looking at the bubble interior for the more

obvious cases.

Figure 2.14 displays the normalised jet impact time as a function of ζ and γ. It is evident

that the jet pierces the bubble at an earlier stage in the collapse with increasing ζ, i.e. as the

bubble deformation becomes more pronounced. In the most deformed cases the jet can pierce

the bubble as early as at half of the collapse time. On a linear scale, this parameter varies

predominantly in the strong jet regime, but all jets that pierce the bubble (i.e. in strong and

intermediate regimes) do so before the collapse. In the intermediate regime, however, the jet

impact occurs very close to the collapse moment, i.e. ∆Tjet/Tcollapse < 1%. This is, in fact, how

we chose the dividing value ζ= 0.1 between intermediate and strong jets. The offset between

data and model around ζ= 0.01 is probably attributed to difficulties of measuring normalised

jet impact times below 10−4, skewing the existing data points towards higher values.

In the simulation, we calculate the evolution of the surface of the simply connected bubble up

to the moment of jet impact using the boundary integral method explained in section 2.5.1. Be-

yond this instant, the collapse time of the torus is calculated using the vortex ring model [127],

where the complex shape of the vortex ring is approximated by a circular torus of identical
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Figure 2.14: Normalised jet impact time as a function of the anisotropy parameter ζ and
the stand-off parameter γ. Our experimental data (filled) are compared with literature data
(empty): Spark-induced bubbles subject to buoyancy, R0 ∼ 50 mm [98], spark-induced bubbles
near a free surface and a rigid surface, R0 ∼ 10 mm [124], lens-based laser-induced bubbles
near a rigid surface, R0 = 1.45 mm [112]. The dotted, dashed and solid lines are the numer-
ical models with a constant pressure gradient, near a rigid surface and near a free surface
respectively. The thick line is the power-law fit in equation (2.12), discussed in section 2.6.1.
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volume, mean radius, circulation Γ and initial collapse speed. The collapse of this torus is

computed using equation (8) in [128]. 3 The numerical calculations agree with the experimen-

tal results within their uncertainties. These models are almost identical for the different jet

drivers up to approximately ζ= 0.03, with major differences arising in the strong jet regime,

in particular for the rigid surface. These discrepancies are probably attributed to the more

pronounced differences in the bubble geometries between the different jet drivers, as seen in

figure 2.13, for example, at ζ= 0.1. As a consequence, whether the jet impacts on a single point

(rigid surface) or on an annular ring (free surface) leads to a different volume of the remaining

toroidal bubble, which in turn leads to a longer collapse time.

2.5.3 Jet speed

An important parameter that describes the micro-jet dynamics is the jet speed. Here we define

it as the maximum jet speed before the impact on the opposite bubble wall, normalised by the

characteristic speed (∆p/ρ)1/2 [129]. The speed is measured from visualisations of the bubble

interior, where the jet is visible inside the bubble prior to the impact (such as in figure 2.9).

Figure 2.15 displays our measurements of the normalised jet speed as a function of ζ and

γ, together with selected data from the literature. They reveal a decrease of the normalised

jet speed with increasing ζ. This is explained by the jet piercing the bubble earlier at high ζ

(as seen in section 2.5.2), when the bubble interface speed is still relatively low. In fact, the

jet speed tends to infinity as ζ→ 0, i.e. as we approach the limit of spherical collapse in the

Rayleigh theory. It should be noted that we are unable to measure jet velocities for ζ< 3 ·10−3

with our temporal and spatial resolution.

The measurements for gravity- and free surface-driven jets are in good agreement with the

numerical simulations. However, the data points drawn from the literature [112, 130] for

jets induced by a rigid surface appear to deviate from the corresponding model at γ> 2 and

γ< 1. The reasons for this deviation are not entirely clear, but we note that the value of the jet

speed depends sensibly on when exactly the measurement is performed. Besides, extracting

jet speeds from high-speed images is a challenge, as it requires a highly transparent bubble

interface to see the bubble interior in addition to sufficient spatial and temporal resolutions.

Another potential caveat with these observations is the optical refraction on the bubble surface.

It should be noted that in reality jets are expected to stop accelerating once they approach

the speed of sound of the liquid and the potential flow theory starts to fail. This is typically at

ζ< 0.01 in standard water conditions (where (∆p/ρ)1/2 ≈ 10ms−1, hence Ujet & 900ms−1).

Interestingly, in the weak jet regime (where we only have model data) and in the intermediate

jet regime up to ζ= 0.1, the jet speed is entirely set by ζ with negligible dependence on the jet

driver. Only for asymmetries larger than ζ= 0.1 can we notice a significant deviation of jets

associated with a rigid surface relative to those associated with a free surface and/or gravity.

3Note that the torus collapse time given in eq. (12) of this reference is not sufficient for this purpose, since it
neglects the significant initial collapse speed and circularity of the torus.
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Figure 2.15: Normalised jet speed as a function of the anisotropy parameter ζ and the stand-
off parameter γ. Our experimental data (filled) are compared with literature data (empty):
Spark-induced bubbles subject to buoyancy, R0 ∼ 50 mm [98], spark-induced bubbles near
a free surface and a rigid surface, R0 ∼ 10 mm [124], lens-based laser-induced bubbles near
a rigid surface, R0 = 1.45 mm [112], lens-based laser-induced bubbles near a free surface,
R0 ∼ 1.3 mm [71], lens-based laser-induced bubbles near a rigid surface, R0 = 1.55 mm [130],
focused ultrasound-induced bubbles near a rigid surface, R0 = 200 µm [92]. The dotted,
dashed and solid lines are the numerical models with a constant pressure gradient, near
a rigid surface and near a free surface respectively. The thick line is the power-law fit in
equation (2.12), discussed in section 2.6.1.
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2.5.4 Bubble displacement

Another jet parameter worth discussing is the bubble centroid displacement. While not strictly

a micro-jet property, this displacement is the most straightforward way to detect a Kelvin

impulse. The bubble displacement ∆z is defined as the distance travelled by the bubble

centroid between bubble generation and collapse, in the rest frame of the liquid. Special care

is required when the bubble splits into multiple parts at higher pressure field anisotropies.

Here we define the centroid position at the collapse as the position of the jet tip at its impact

onto the opposite bubble wall. The experimental results for centroid displacement presented

here are normalised by the bubble maximum radius, ∆z/R0. Note that some authors choose

to normalise ∆z by the distance h from the flat surface, but this normalisation would not be

applicable to other causes of micro-jets such as gravity.

Our measurements of ∆z/R0 are shown in figure 2.16 as a function of ζ and γ, together with

selected data from the literature. In general, we find good agreement between the data points

from the different jet drivers, within the measurement uncertainties. Overall, we find an

increase of the normalised centroid motion with increasing ζ. A particularly important finding

is that, even in the weak jet regime, where the jet speed, impact time and volume (as we

will see in section 2.5.6) become cumbersome parameters to measure experimentally, the

displacement remains a significant and measurable quantity as evidenced in figure 2.16. The

larger scatter of the literature data (empty symbols) might be attributed to the fact that the

definition of ‘collapse position’ or ‘centre of minimum bubble volume’ is not always clear for a

strongly deformed bubble and therefore the data extraction may not have been done in the

same way in all experiments.

The numerical models agree well with the empirical data. In the weak and intermediate jet

regimes up to approximately ζ= 0.1, the simulated displacement shows little dependence on

the jet driver and is thus almost entirely dictated by the value of ζ. For asymmetries larger

than ζ = 0.1, the displacement starts to depend significantly on whether the anisotropy is

associated with a rigid surface, free surface or gravity.

2.5.5 Bubble volume at jet impact

The bubble volume Vimpact at the jet impact is yet another interesting parameter characterising

the jet formation. It is a more easily definable size parameter than the jet size itself. The

normalised bubble volume at jet impact is defined as Vimpact/Vmax, where Vmax = (4π/3)R3
0 .

Experimentally, Vimpact = 2πx A is obtained from the high-speed visualisations by measuring

the area A of the toroid cross-section (averaged between the two cross-sections seen on either

side of the jet axis) and the distance x between the geometric centreline of the toroid and the

jet axis.

Figure 2.17 shows the normalised bubble volume at jet impact as a function of ζ and γ. This

parameter increases with ζ, which is explained by the jet piercing the bubble at an earlier stage
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Figure 2.16: Normalised bubble centroid displacement from generation to collapse as a
function of the anisotropy parameter ζ and the stand-off parameter γ. Our experimental
data (filled) are compared with literature data (empty): Spark-induced bubbles subject to
buoyancy, R0 ∼ 50 mm [98], spark-induced bubbles near a free surface and a rigid surface,
R0 ∼ 10 mm [124], lens-based laser-induced bubbles near a rigid surface, R0 = 1.55 mm [131],
underwater explosion bubble subject to buoyancy R0 = 0.54 m [132], underwater explosion
bubble near a free surface R0 ∼ 0.17 m [101], lens-based laser-induced bubbles near a rigid
surface, R0 = 0.65 mm [72, 133], lens-based laser-induced bubbles near a rigid and a free
surface, R0 ∼ 1.5 mm [134]. The dotted, dashed and solid lines are the numerical models with
a constant pressure gradient, near a rigid surface and near a free surface respectively. The
thick line is the power-law fit in equation (2.12), discussed in section 2.6.1.
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Figure 2.17: Normalised bubble volume at jet impact as a function of the anisotropy parameter
ζ and the stand-off parameter γ. Our experimental data (filled) are compared with literature
data (empty): Spark-induced bubbles subject to buoyancy, R0 ∼ 45 mm [98], spark-induced
bubbles near a free surface and a rigid surface, R0 ∼ 10 mm [124], lens-based laser-induced
bubbles near a rigid surface, R0 = 1.45 mm [112]. The dotted, dashed and solid lines are the
numerical models with a constant pressure gradient, near a rigid surface and near a free
surface respectively. The thick solid line is the power-law fit in equation (2.12), discussed in
section 2.6.1.
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during the collapse at higher ζ, when the bubble is still large relative to its final collapse size.

The jets from different drivers follow a similar trend.

The numerical calculations agree well with the empirical data within the uncertainties. The

different jet drivers exhibit similar trends in the weak and intermediate jet regimes. The

differences, especially in the high-intermediate and strong jet regimes, are explained by the

different jet shapes (figure 2.12, at ζ= 0.1–0.3). In particular, bubbles collapsing near a free

surface produce broad jets that hit the opposite bubble wall on a ring rather than a single

point. In this case, the jet separates the bubble into a smaller bubble and a torus, resulting in

a more complex bubble shape than a simple torus, which therefore yields a different volume.

This explains the undulations of the free surface model in figure 2.17 and makes the bubble

volume at jet impact, together with the jet impact timing, the most sensitive parameter to jet

drivers.

2.5.6 Vapour-jet volume

The final jet parameter discussed in this paper is the post-collapse vapour-jet volume. The

scaling of the vapour-jet volume Vjet (figure 2.3b), normalised by the rebound volume Vrebound,

as a function of ζ has been investigated in the intermediate jet regime in [46]. The data points

from this reference are replotted in figure 2.18, along with new data for the free surface, as a

function of ζ and γ. The empirical result was a linear relation (thick line in figure 2.18),

Vjet

Vrebound
≈ 5.4ζ, (2.11)

valid across a large range of bubble sizes, liquid pressures and viscosities (varied by a factor 30

using glycerol additions). The authors justified the proportionality between Vjet/Vrebound and ζ

based on Kelvin impulse considerations. They also presented a critical value ζc ≈ 4 ·10−4, such

that in situations with ζ< ζc , the micro-jet does not pierce the bubble wall and no vapour-jet

emerges from the rebound bubble. This value is approximately consistent with our choice of

ζ= 10−3 as the dividing value between the intermediate and weak jet regimes (section 2.4.1).

For a more detailed discussion of the vapour-jet volume, we refer to the original work [46].

2.6 Discussion

2.6.1 Power-law approximations

The dimensionless jet parameters discussed in sections 2.5.2–2.5.6 mainly vary with the

anisotropy parameter ζ. We also identified a secondary dependence on the jet driver (gravity

versus surfaces). According to figures 2.14–2.18, this secondary dependence generally becomes

negligible in the weak and intermediate jet regimes (ζ< 0.1). Furthermore, in these regimes

the unique relations between ζ and the jet parameters appear to be closely matched by power

laws, in particular for the jet speed, the bubble displacement and the vapour-jet volume. A
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Figure 2.18: Scaling law for the post-collapse bubble vapour-jet volume. Light data points
indicate results from variable gravity (0g , 1.2g , 1.4g , 1.6g and 1.8g where g =9.81 ms−2) and
dark points are from normal gravity (1g ). Maximal bubble radius R0 is varied in the range 1-7
mm, liquid pressure p0 in the range 8-80 kPa and the dynamic viscosity η in the range 1-30
mPa s. The majority of the data points for the constant pressure gradient, and the theoretical
model (solid line) in equation (2.11) are from [46].

chi-square fit to the simulated models over the range ζ = 10−4–0.1 with uniform weight in

log(ζ) yields

∆Tjet/Tcollapse = 0.15ζ5/3 (normalised jet impact time),

Ujet/(∆p/ρ)1/2 = 0.9ζ−1 (normalised jet speed),

∆z/R0 = 2.5ζ3/5 (normalised bubble displacement),

Vimpact/Vmax = 0.11ζ2 (normalised bubble volume at jet impact),

Vjet/Vrebound = 5.4ζ (normalised volume of vapour-jet).


(2.12)

The last relation is not a fit to numerical models, but the empirical equation (2.11), repeated for

completeness. These power laws are represented by the thickest lines in figures 2.14–2.18 and

are synthesised in figure 2.19 together with the range of numerical results spanned by various
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Figure 2.19: Summary of the micro-jet parameters across all regimes. The power-laws for the
normalised jet impact time, jet speed, bubble centroid displacement, bubble volume at jet
impact and vapour-jet volume [46] are plotted as a function of the anisotropy parameter ζ and
the stand-off parameter γ. The shaded areas describe the range spanned by the different jet
drivers, which is calculated numerically (see figures 2.14-2.17).

jet drivers (shaded regions). The power laws provide a simple tool to predict the dynamics of

an aspherical bubble collapse in a large range of conditions, without the need for complex

computations.

To understand the reasons for this power-law behaviour and explain the power-law exponents,

we recall that power laws are generally an expression of scale-free behaviour. ‘Scale-free’

means that the physical system is geometrically similar, independently of its overall scale. Of

course, the whole evolution of a jetting bubble is not scale-free across a range of ζ, because the

maximum bubble radius is independent of ζ, while the jet parameters vary with ζ. Approximate

scale-freeness can, however, be found at the single instant when the jet impacts on the opposite

side of the bubble wall (blue lines in figure 2.12). For small values of ζ (ζ< 0.1), the bubble at

this instant has a universal bowl-like shape. Only the size varies with ζ, but the bubble shape is

independent of the value and the origin of ζ.

Scale-freeness at the jet impact stage means that all lengths scale proportionally to the charac-

teristic bubble radius r ≡ R(t )/R0 at this stage. Corresponding volumes and masses scale as r 3.

To find the characteristic scaling of velocities, we note that, for small ζ, the bubble deformation

occurs very late in the collapse phase (i.e. r ¿ 1). In this phase, the time evolution of the
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bubble radius satisfies ṙ = r−3/2, which is the asymptotic behaviour of the Rayleigh equation

as r → 0 [55]. Given that masses scale as r 3 and velocities as r−3/2, linear momentum (=

product of mass and velocity) scales as r 3ṙ = r 3/2 = ṙ−1. Since the momentum of the bubble is

proportional to ζ (see (2.3)), we find r ∼ ζ2/3 (see figure 2.13) and ṙ ∼ ζ−1. This explains the

numerical scalings Vimpact ∼ ζ2 and Ujet ∼ ζ−1.

The asymptotic equation of the spherical collapse ṙ = r−3/2 solves to give r ∼ t̃ 2/5, where

t̃ = 1− t is the time backwards from the collapse point, normalised to the collapse time [55].

Thus, for small ζ, we expect ∆Tjet ∼ r 5/2 ∼ (ζ2/3)5/2 = ζ5/3, as confirmed by the numerical

simulation.

Our interpretation of the vapour-jet scaling is more speculative, since we did not simulate

the formation of this jet. One might naively expect the volume of the vapour-jet Vjet to scale

as r 3 ∼ ζ2, just like Vimpact. However, the vapour-jet is not a feature at the instant of the jet

impact. Hence the arguments of scale-freeness of the previous paragraphs do not apply. The

correct reasoning is that the volume of the vapour-jet is the part of the micro-jet that actually

gets pushed through the bubble wall during the time interval of the rebound. The vapour-jet

volume therefore depends both on the characteristic micro-jet volume and on the jet speed.

Consequently, we expect Vjet ∼ r 3ṙ ∼ ζ2ζ−1 = ζ, in agreement with the experimental results.

This explanation should be tested against more detailed modelling of the vapour-jet formation

in future work.

Finally, the normalised displacement of the bubble centroid ∆z is expected to scale as ∆z ∼
r ∼ ζ2/3, if this displacement occurs uniquely at the final collapse stage, where the scale-

free picture applies. The power-law exponent of 2/3 = 0.666. . . is indeed the best fit to the

simulations for very small values of ζ (ζ< 10−3), where almost all the bubble motion occurs

just before and after the final collapse point. However, for larger values of ζ, a non-negligible

fraction of the bubble motion occurs at larger bubble radii, where |ṙ | < r−3/2 according to

equation (7) in [55]. Hence, the power-law index between ∆z and ζ must drop below 0.666.

This prediction is consistent with our numerical finding that ∆z scales approximately as

∆z ∼ ζ0.6 = ζ3/5 over the range ζ< 0.1.

2.6.2 Application of scaling relations

The power laws are a useful predictive tool of the micro-jet physics in known pressure field

anisotropies ζ< 0.1. In the strong jet regime (ζ> 0.1) (and in the high-intermediate regime

for the jet impact time and bubble volume at jet impact), more accurate, nonlinear scaling

relations can be obtained numerically for specific jet drivers, as shown in figures 2.14–2.18

and tabulated in Appendix 2.8.2.

An interesting consequence of the jet scalings with ζ is that one may reciprocally use a known

jet observable to estimate the pressure field anisotropy in which the bubble is collapsing.

Consequently, the measurement of a single jet observable suffices to estimate the rest of
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Figure 2.20: The pressure field anisotropy parameter ζ and the normalised jet impact time,
the normalised jet speed, the normalised bubble volume at jet impact and the normalised
jet volume [46] are plotted as a function of the normalised bubble centroid displacement for
jets driven by a constant pressure gradient. The simulated models and the power-law fits are
plotted with dark and light lines, respectively.

the parameters. The bubble centroid displacement, for instance, presents the advantage of

being the easiest measurable quantity of an aspherical bubble collapse across a large range

of pressure field anisotropies. It therefore serves as a simple and useful predictor of the full

micro-jet physics. As an example, the particular case of jets driven by a constant pressure

gradient ∇p is presented in figure 2.20, where the various jet parameters and the anisotropy

parameter ζ are plotted as a function of the bubble displacement ∆z/R0. For reference, we

also show the results corresponding to the simple power laws. Their similarity in the weak and

intermediate regime (ζ< 0.1) implies that figure 2.20 would look nearly the same for other jet

drivers in this regime.

2.6.3 Limitations

Let us conclude this discussion by addressing a few limitations of the unified perspective

offered by the single anisotropy parameter ζ. As mentioned before, the micro-jets in the strong

jet regime, where more complex jet morphologies are produced, cannot be fully described

by ζ independently of the jet drivers. At these high anisotropies, strong variations in the jet

parameters for different jet origins occur as a direct consequence of the higher-order terms
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in equation (2.1), as discussed in section 2.4.3. Predictions in this regime should be made

numerically for the specific jet drivers.

Combining the effect of multiple jet drivers generally produces jets that follow the same

scaling laws as jets from a single driver in the weak and intermediate jet regimes. However,

attention should be paid to situations where several strong jet drivers act simultaneously in

opposite directions (e.g. gravity and rigid boundary in [98]), as they may yield a low resultant ζ

although the higher-order terms in equation (2.1) remain significant. This can result in bubble

splitting, producing, for example, the ‘hourglass’ bubble [67], the dynamics of which cannot

be predicted by our approach.

So far, our investigations have mainly focused on flat rigid or free surfaces. Curved [72], flexible

[95] and composite [133] surfaces would require specific corrections to ζ in eq. (2.6), which

would serve as an interesting addition to the diverse family of micro-jets. Furthermore, as a

consequence of the assumption that viscosity and surface tension play a minor role in the

micro-jet dynamics, our approach is limited to bubbles of a certain scale in water and we do

not account for jets produced by capillary phenomena. Viscosity and surface tension, which

become important in, for example, biomedical applications that deal with micrometre-sized

bubbles in viscous liquids, break the scale-freeness and may change the trends with ζ. It would

be an interesting opening for future work.

Finally, it should be noted that the lifetime of bubbles investigated in the present study includes

the bubble growth, which strongly affects the subsequent motion (in particular for bubbles

near a flat surface at γ < 1). Our numerical tool (see section 2.5.1) provides the option to

exclude the growth phase and start with a perfectly spherical bubble at its maximal radius.

2.7 Conclusion

In this work, we conducted a qualitative and quantitative analysis of the micro-jet dynamics

of a single cavitation bubble in a large range of conditions. By introducing a dimensionless

anisotropy parameter ζ, we arrived at a unified framework describing micro-jets of virtually

any strength, caused by various jet drivers, in particular gravity, free surfaces, rigid surfaces

and combinations thereof. This successful unification of the micro-jet family through ζ, a

normalised version of the Kelvin impulse, fosters Blake’s view that the Kelvin impulse is a

‘fundamental . . . enormously valuable concept’ [69].

The main contribution of this work is the realisation that, in normalised coordinates, ζ fully de-

fines the jet physics, once the jet driver (e.g. gravity or nearby boundaries) has been identified.

Furthermore, for small Kelvin impulses (|I| < R3
0

√
∆pρ/2, that is for ζ < 0.1) the jet physics

becomes virtually independent of the jet driver. This powerful aspect of the Kelvin impulse

comes about despite – or rather because of – the concerns raised by [135] about this impulse

being an integral value.
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We have investigated, both experimentally and numerically, how different jet characteristics

vary with ζ. The normalised jet impact time, the jet speed, the bubble centroid displacement,

the bubble volume at jet impact and the vapour-jet volume can all be approximated by power

laws of ζ up to ζ≈ 0.1, independently of the jet drivers. A single observable may be used to

predict another jet parameter or estimate the pressure field anisotropy, as shown in figure 2.20.

The micro-jets have been phenomenologically classified into three distinct regimes: weak,

intermediate and strong jets. We showed that such a categorisation presents a useful thinking

tool to distinguish visually very different jets, which nonetheless all fit in the unified framework

of the ζ parameter. Weak jets (ζ< 10−3) hardly pierce the bubble, but remain within the bubble

throughout the collapse and rebound. Intermediate jets (10−3 < ζ< 0.1) pierce the opposite

bubble wall very late in the collapse phase and clearly emerge during the rebound. Strong jets

(ζ> 0.1) pierce the bubble significantly before the moment of collapse and their dynamics is

strongly dependent on the jet driver.

The presented results might serve as a step towards unifying the quickly diversifying research

field of cavitation and towards reaching a unified framework for the energy distribution

between all collapse-related phenomena. A precise control of the power of micro-jets would

allow, for instance, the attenuation of detrimental jet-induced erosion as well as the targeting

of cancerous cells or highly localised drug delivery. Such new research avenues may benefit

from the framework and predictive tools presented here.

2.8 Appendix

2.8.1 Mathematical derivations

The evolution of a spherical bubble of radius R in a liquid of density ρ and constant over-

pressure ∆p (relative to the bubble content) is governed by the Rayleigh equation [51]

3

2

(
dR

dT

)2

+ d2R

dT 2 R =−∆p

ρ
. (2.13)

We can define the time T such that the bubble is at the maximal radius R0 at T = 0. Equa-

tion (2.14) then implies that the radius vanishes at T =±Tc, where Tc = ξR0(ρ/∆p)1/2 and ξ is a

numerical constant, called the Rayleigh factor. Upon normalising the radius to r ≡ R/R0 ∈ [0,1]

and the time to t ≡ T /Tc ∈ [−1,1], the Rayleigh equation can be simplified to a dimensionless

first order differential equation [55],(
dr

dt

)2

= 2

3
ξ2 (

r−3 −1
)

. (2.14)
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Taking the square-root on both sides (with minus sign on the RHS), and integrating t = 0...1

and r = 1...0, this equation readily solves to

∫ 1

0
f dt =

√
3

2
ξ−1

∫ 1

0

f drp
r−3 −1

, (2.15)

for any time-dependent function f . Upon performing the substitution s ≡ r 3 (hence dr =
1
3 s−2/3ds), we get

∫ 1

0
f dt = 1p

6ξ

∫ 1

0

f ds

s1/6
p

1− s
. (2.16)

Equation (2.16) is the central equation, from which we can derive the collapse time and various

instances of the Kelvin impulse.

Collapse time

To get the Rayleigh factor ξ, it suffices to set f = 1 in Equation (2.16). The LHS then becomes∫ 1
0 dt = 1, and hence

ξ= 1p
6

∫ 1

0

ds

s1/6
p

1− s
= 1p

6
B

(
5

6
,

1

2

)
≈ 0.9146813565, (2.17)

where B(x, y) ≡ ∫ 1
0 t x−1(1− t )y−1dt is the beta-function.

Kelvin impulse of a bubble in an external pressure gradient

Let us start with Blake’s equation [69] for the momentum (Kelvin impulse) acquired by the

liquid during the growth and collapse of a spherical bubble in a constant pressure gradient,

I =∇p
∫ Tc

−Tc

V dT, (2.18)

where V is the volume of the bubble at time T . (Note that Blake presents this equation for the

particular case of a gravity-driven gradient |∇p| = ρg and he uses the different convention

that the bubble is generated at T = 0 and collapses at Tc.) Equation (2.18) can be rewritten as

I = 2∇p
∫ Tc

0
V dT = 8π

3
∇p

∫ Tc

0
R3dT = 8π

3
TcR3

0∇p
∫ 1

0
r 3dt = 8πξ

3
R3

0(∆pρ)1/2ζ

∫ 1

0
r 3dt . (2.19)

To evaluate the integral on the RHS we use equation (2.16) with f = r 3 ≡ s,∫ 1

0
r 3dt = 1p

6ξ

∫ 1

0

s ds

s1/6
p

1− s
= B(11/6,1/2)

B(5/6,1/2)
= 5

8
. (2.20)
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Hence,

I = 5π

3
p

6
B

(
5

6
,

1

2

)
R3

0

√
∆pρ ζ≈ 4.789R3

0

√
∆pρ ζ, (2.21)

which concludes the derivation of equation (2.3). Note that R3
0

√
∆pρ has the dimension of

momentum, as required.

Kelvin impulse of a bubble near a rigid/free surface

Blake [69] also derives the equation of the Kelvin impulse for a bubble near a rigid or free

surface,

|Isurface| =
ρ

16πh2

∫ Tc

−Tc

(4πR2Ṙ)2dT, (2.22)

where h is the distance to the rigid or free surface. This expression can be rewritten as

|Isurface| =
2πρ

h2

∫ Tc

0
R4Ṙ2dT = 2πρ

h2 T −1
c R6

0

∫ 1

0
r 4ṙ 2dt = 2π

ξ
(∆pρ)1/2R3

0γ
−2

∫ 1

0
r 4ṙ 2dt . (2.23)

To evaluate the integral we use equation (2.16) with f = r 4ṙ 2 = 2
3ξ

2s4/3(s−1−1) = 2
3ξ

2s1/3(1−s),

∫ 1

0
r 4ṙ 2dt = 2ξ

3
p

6

∫ 1

0
s1/6(1− s)1/2 ds = 1

9
B

(
7

6
,

3

2

)
B

(
5

6
,

1

2

)
. (2.24)

Hence,

|Isurface| =
2π

p
2

3
p

3
B

(
7

6
,

3

2

)
R3

0

√
∆pρ γ−2 ≈ 0.934R3

0

√
∆pρ γ−2 (2.25)

which concludes the derivation of equation (2.4). Equating equations (2.21) and (2.25) yields

ζ= 4B(7/6,3/2)

5B(5/6,1/2)
γ−2 ≈ 0.195γ−2, (2.26)

which is the exact expression of equation (2.5).

2.8.2 Numerical data

Data from the numerical calculations are listed in table 2.1.
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log10 ζ log10(∆Tjet/Tcollapse) log10(Ujet/(∆p/ρ)
1
2 ) log10(∆z/R0) log10(Vimpact/Vmax)

c.∇p rigid free c.∇p rigid free c.∇p rigid free c.∇p rigid free

-4.0 -7.48 -7.45 -7.47 3.96 3.96 3.96 -2.04 -2.04 -2.04 -8.97 -8.97 -8.99
-3.9 -7.30 -7.30 -7.30 3.86 3.87 3.86 -1.97 -1.98 -1.97 -8.77 -8.77 -8.79
-3.8 -7.14 -7.15 -7.15 3.76 3.77 3.76 -1.91 -1.91 -1.91 -8.57 -8.57 -8.60
-3.7 -6.98 -6.99 -6.98 3.66 3.67 3.66 -1.84 -1.84 -1.86 -8.37 -8.37 -8.40
-3.6 -6.82 -6.83 -6.81 3.56 3.56 3.56 -1.78 -1.78 -1.78 -8.17 -8.17 -8.20
-3.5 -6.65 -6.66 -6.64 3.45 3.46 3.46 -1.71 -1.71 -1.70 -7.96 -7.97 -8.00
-3.4 -6.49 -6.50 -6.46 3.35 3.36 3.36 -1.64 -1.65 -1.62 -7.76 -7.77 -7.79
-3.3 -6.32 -6.33 -6.29 3.25 3.26 3.26 -1.58 -1.58 -1.55 -7.56 -7.57 -7.59
-3.2 -6.15 -6.17 -6.11 3.15 3.16 3.16 -1.51 -1.52 -1.48 -7.36 -7.37 -7.38
-3.1 -5.99 -6.00 -5.96 3.05 3.06 3.06 -1.45 -1.46 -1.41 -7.16 -7.17 -7.17
-3.0 -5.82 -5.84 -5.80 2.95 2.96 2.95 -1.39 -1.39 -1.35 -6.96 -6.96 -6.97
-2.9 -5.65 -5.67 -5.64 2.85 2.86 2.85 -1.32 -1.33 -1.29 -6.76 -6.76 -6.65
-2.8 -5.48 -5.51 -5.48 2.75 2.76 2.75 -1.26 -1.27 -1.23 -6.56 -6.59 -6.42
-2.7 -5.32 -5.34 -5.32 2.65 2.66 2.65 -1.19 -1.20 -1.17 -6.36 -6.36 -6.19
-2.6 -5.15 -5.18 -5.15 2.54 2.55 2.55 -1.13 -1.14 -1.11 -6.15 -6.15 -5.96
-2.5 -4.98 -5.01 -4.98 2.44 2.45 2.43 -1.07 -1.08 -1.05 -5.95 -5.95 -5.73
-2.4 -4.81 -4.83 -4.80 2.34 2.34 2.34 -1.01 -1.01 -1.00 -5.75 -5.75 -5.49
-2.3 -4.65 -4.66 -4.63 2.24 2.23 2.25 -0.94 -0.95 -0.94 -5.55 -5.54 -5.27
-2.2 -4.48 -4.48 -4.46 2.14 2.13 2.16 -0.88 -0.89 -0.88 -5.35 -5.33 -5.04
-2.1 -4.31 -4.31 -4.29 2.04 2.02 2.07 -0.82 -0.83 -0.83 -5.15 -5.13 -4.83
-2.0 -4.16 -4.14 -4.13 1.93 1.91 1.98 -0.76 -0.77 -0.77 -4.94 -4.93 -4.64
-1.9 -4.00 -3.98 -3.98 1.83 1.80 1.89 -0.70 -0.71 -0.72 -4.75 -4.73 -4.47
-1.8 -3.85 -3.82 -3.82 1.73 1.69 1.80 -0.64 -0.64 -0.67 -4.56 -4.54 -4.34
-1.7 -3.67 -3.66 -3.66 1.63 1.58 1.72 -0.59 -0.58 -0.62 -4.36 -4.35 -4.31
-1.6 -3.50 -3.48 -3.50 1.52 1.48 1.62 -0.53 -0.52 -0.57 -4.16 -4.16 -4.11
-1.5 -3.32 -3.24 -3.32 1.41 1.38 1.53 -0.47 -0.46 -0.52 -3.93 -3.83 -3.77
-1.4 -3.13 -2.94 -3.14 1.31 1.28 1.43 -0.42 -0.39 -0.48 -3.72 -3.40 -3.47
-1.3 -2.97 -2.63 -2.96 1.20 1.20 1.29 -0.36 -0.33 -0.44 -3.52 -2.99 -3.17
-1.2 -2.81 -2.32 -2.79 1.10 1.12 1.15 -0.31 -0.26 -0.40 -3.31 -2.62 -2.89
-1.1 -2.59 -2.02 -2.62 1.00 1.06 1.01 -0.26 -0.19 -0.36 -2.96 -2.29 -2.67
-1.0 -2.31 -1.77 -2.46 0.90 1.02 0.88 -0.20 -0.12 -0.33 -2.60 -1.99 -2.45
-0.9 -2.01 -1.58 -2.32 0.81 0.99 0.77 -0.15 -0.06 -0.30 -2.23 -1.72 -2.32
-0.8 -1.70 -1.40 -2.11 0.73 0.96 0.68 -0.09 -0.03 -0.28 -1.88 -1.47 -2.28
-0.7 -1.41 -1.25 -1.88 0.65 0.94 0.59 -0.04 -0.04 -0.26 -1.55 -1.23 -2.38
-0.6 -1.14 -1.10 -1.55 0.58 0.92 0.49 0.02 -0.07 -0.22 -1.25 -1.06 -2.14
-0.5 -0.92 -1.00 -1.04 0.53 0.90 0.48 0.08 -0.11 -0.18 -0.97 -0.95 -1.44
-0.4 -0.72 -0.91 -0.75 0.49 0.88 0.50 0.13 -0.16 -0.14 -0.71 -0.88 -0.98
-0.3 -0.58 -0.85 -0.69 0.44 0.85 0.55 0.19 -0.21 -0.11 -0.48 -0.83 -0.76
-0.2 -0.47 -0.82 -0.53 0.39 0.83 0.59 0.25 -0.26 -0.09 -0.24 -0.81 -0.62
-0.1 -0.35 -0.80 -0.53 0.31 0.79 0.65 0.32 -0.31 -0.08 0.00 -0.81 -0.52
0.0 -0.25 -0.81 -0.58 0.23 0.77 0.71 0.40 -0.35 -0.07 0.23 -0.82 -0.46

Table 2.1: Data from the numerical calculations explained in section 2.5.1 and presented
in figures 2.14-2.17 for the normalised jet impact time, normalised jet speed, normalised
bubble centroid displacement and normalised bubble volume at jet impact as a function of
the anisotropy parameter ζ. The data are given for three different jet drivers: constant pressure
gradient (c.∇p), rigid surface and free surface.
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Abstract

We present detailed observations of the shock waves emitted at the collapse of single cavi-

tation bubbles using simultaneous time-resolved shadowgraphy and hydrophone pressure

measurements. The geometry of the bubbles is systematically varied from spherical to very

nonspherical by decreasing their distance to a free or rigid surface or by modulating the

gravity-induced pressure gradient aboard parabolic flights. The nonspherical collapse pro-

duces multiple shocks that are clearly associated with different processes, such as the jet

impact and the individual collapses of the distinct bubble segments. For bubbles collapsing

near a free surface, the energy and timing of each shock are measured separately as a function

of the anisotropy parameter ζ, which represents the dimensionless equivalent of the Kelvin

impulse. For a given source of bubble deformation (free surface, rigid surface, or gravity), the

normalized shock energy depends only on ζ, irrespective of the bubble radius R0 and driving

pressure ∆p. Based on this finding, we develop a predictive framework for the peak pressure

and energy of shock waves from nonspherical bubble collapses. Combining statistical analysis

1Supplementary movies may be found at https://doi.org/10.1103/PhysRevFluids.2.093601
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of the experimental data with theoretical derivations, we find that the shock peak pressures can

be estimated as jet impact-induced hammer pressures, expressed as ph = 0.45
(
ρc2∆p

)1/2
ζ−1

at ζ> 10−3. The same approach is found to explain the shock energy decreasing as a function

of ζ−2/3.

3.1 Introduction

Shock waves are one of the most destructive phenomena occurring during the collapse of

cavitation bubbles and therefore a topic of long-standing interest. The associated pressures,

reaching values on the order of GPa [40, 41], are able to wear metallic surfaces, which is a

classic concern for ship propellers and hydraulic turbines [109, 111, 5]. Further victims of

cavitation-induced damage are, for example, artificial heart valves [7], liquid-propelled rocket

engines [10] and the prey of a mantis shrimp [14]. The damaging power can also be exploited

for beneficial uses such as in medical [25] (e.g., shock wave lithotripsy [136, 15] and cancer

therapy [20, 25]) and cleaning [27] applications. However, predictive tools to characterize the

key properties of cavitation-driven shocks are limited. In the quest of mitigating the harm

they may cause or maximizing their benefit, we here make detailed observations of shocks of

single cavitation bubbles and propose a framework to predict their strengths.

Much progress has been made in the prediction of the damage potential of shock waves

emitted by spherically collapsing bubbles [137, 138, 41, 139, 140]. However, doing so for non-

spherically collapsing bubbles is still an open problem. Bubbles may deform under the effect

of, for example, nearby surfaces, inertial forces such as gravity, or passing shock waves. The

collapse shock wave strengths have been shown, both experimentally and numerically, to vary

with the bubble sphericity for bubbles collapsing near a rigid wall [94, 113, 82, 141]. Shocks

from bubbles collapsing under the effect of a passing shock wave have been shown to be

sensitive to the latter’s timing and strength [116]. The shocks emitted at the collapse of an

individual bubble are often referred to as a single event, yet it is known that deformed bubbles

that are pierced by high-speed microjets produce several shock waves from multiple locations

upon collapse [113, 47, 122]. However, understanding the contribution of each shock emission

mechanism to the final damage characteristics and a systematic study on the influence of

the bubble deformation on them are still lacking, as recently pointed out by Lauterborn and

Vogel [142]. Although numerical simulations offer an excellent means to reproduce complex

shock wave scenarios associated with nonspherical collapses [79, 83, 84, 85], observations for

their validation are limited. Furthermore, we still lack an understanding of how the shocks

from bubbles deformed by distinct sources differ.

In this work, shock wave energies and pressures are systematically measured as a function of

the various bubble parameters and asymmetries. The objective is to understand how the de-

formation of bubbles affects their detailed collapse shock wave emission. In particular, we aim

to estimate, through visualizations and pressure measurements, the strengths and the timings

of the distinct shock waves produced at the collapse of bubbles with geometries varying from

46



3.2. Experimental methods

highly spherical to strongly deformed by a nearby free surface. These data are then compared

to bubbles deformed by a nearby rigid surface and by the hydrostatic pressure gradient, which

is modulated in variable gravity aboard parabolic flights (60th and 62nd European Space

Agency parabolic flight campaigns and the first Swiss parabolic flight). The advantage of a

gravity-induced pressure gradient to deform bubbles is its uniformity in time and space that

leads to similar bubble collapse shapes across a wide range of bubble asymmetries [143].

Furthermore, any smooth pressure field can be approximated to first order by such a uniform

pressure gradient. We exploit the large number of data and a broad parameter space to reach

an empirical model for predicting the shock strengths for nonspherical bubbles, which is

backed up by theoretical arguments. This model applies the scaling laws for microjets, which

we have recently developed in detail [143], to the shock wave emission of deformed cavitation

bubbles.

The deformation of bubbles collapsing near surfaces is usually quantified by the standoff

parameter γ= h/R0, where h is the distance between the bubble center and the surface and

R0 is the maximum bubble radius. Deformations caused by near surfaces and gravity can be

compared by using the vector parameter ζ [143, 46]:

ζ=


−ρgR0∆p−1 (gravitational field)

+0.195γ−2n (flat free surface)

−0.195γ−2n (flat rigid surface)

(3.1)

where ρ is the liquid density, g is the gravitational acceleration, ∆p = p0 −pv is the driving

pressure (where p0 is the static pressure of the unperturbed liquid at the location of the bubble

and pv is the vapor pressure), and n is the unit vector normal to the surface, in the direction

from the surface to the bubble. Here ζ is essentially the dimensionless equivalent of the Kelvin

impulse, which is the linear momentum acquired by the liquid during the growth and the

collapse of the bubble [68]. A higher ζ≡ |ζ| causes a more pronounced bubble deformation

and delineates key parameters of the microjet, such as the jet speed or the jet impact timing,

almost irrespective of the source of deformation for ζ< 0.1 [143]. We henceforth primarily use

ζ to quantify bubble deformation, but also display the equivalent γ for convenience.

This paper is structured as follows. Section 3.2 presents the experimental methods, describing

the setup and the relevant calibrations. Section 3.3 shows detailed observations of single and

multiple shock waves emitted by bubbles near a free surface. A framework for predicting

shock peak pressures and energies is then proposed in Sec. 3.4, along with comparisons

between shocks from bubbles deformed by different sources (free and rigid surfaces and

gravity). Finally, the results are discussed in Sec. 3.5.

3.2 Experimental methods

The central components of our experimental setup are shown in Fig. 3.1. A pulsed laser

is expanded and focused in demineralized water by an immersed parabolic mirror, which
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Laser 

(523nm, 230mJ/pulse)

Beam expander 10x

Laser beam

High-speed camera

10 million fps
135mm objective Light Silver mirror

LED

Vacuum 

pump

Parabolic  

mirror

Transparent 

vacuum vessel

Needle hydrophone

Cavity

Oscilloscope

178

51 Parabolic  

mirror
30°

44.5

Needle 

hydrophone

Cavity

Side view of the test chamberTop view

Vacuum 

pump

Laser beam

h

Amplifier

Figure 3.1: Top and side view schematics of the experimental setup. The dimensions are given
in mm.

produces a pointlike plasma and thereby an initially highly spherical bubble [97] that grows

and subsequently collapses. The bubble and the associated shock waves are visualized using

shadowgraphy with an ultrahigh-speed camera (Shimadzu HPV-X2) reaching filming speeds

up to 10×106 frames/s (fps) with a 50-ns exposure time and a collimated backlight beam from

a light-emitting diode. The driving pressure ∆p can be adjusted by varying the static pressure

p0 in the test chamber between 0.08 and 1 bar with a vacuum pump. Tuning the laser power

generates bubbles of energies E0 = (4π/3)R3
0∆p ranging from 0.1 to 28 mJ. This parameter

space leads to a wide range of maximum bubble radii R0 = 1–10 mm, which are large enough

for viscosity and surface tension to have a negligible effect on the bubble dynamics [119].

To modulate the bubble deformation, we vary the bubble’s distance to a surface (h ∼ 3–30 mm)

and/or the perceived gravity (|g| ∼ 0–2 g , where g = 9.81 ms−2), in addition to varying R0 and

∆p. The maximum radii are obtained from the recorded collapse time Tc (i.e., half oscillation

time) of the bubble as R0 = 1.093Tc (∆p/ρ)1/2κ−1 [51], where κ is a factor depending on the

source and level of deformation. For bubbles collapsing near a free surface, κ is a lifetime-

shortening factor that can be approximated as κ≈ 1−0.102γ−1 [134]. The bubbles deformed

by gravity or a nearby rigid surface in this work are at ζ< 10−2 and therefore the deformations

are weak enough for them to justify the assumption κ≈ 1. All measurements are made at room

temperature. Additional details on our experimental setup and the parabolic flights may be

found in Ref. [97].

A needle hydrophone (75 µm sensor, manufactured by Precision Acoustics) is used to record

the pressure of the shock waves. The bandwidth of this hydrophone is guaranteed to extend

above 30 MHz and is thus capable of a detailed sampling of the shock waveform and of dis-

entangling multiple fronts. The rise time upper bound is found to be approximately 15 ns,

estimated from the time it takes for the pressure signal of the steep shock wave produced at

the explosive bubble generation (Fig. 3.2) to rise from 10% to 90% of its maximum amplitude.

The actual rise time of the shock wave is likely to be even shorter [144]. The pressure signal,

represented by an electrical voltage, is amplified and recorded at a 100-MHz sampling fre-

quency by an oscilloscope. The hydrophone sensor is located at a distance of d = 44.5 mm

from the bubble center at an angle of 30◦ below the horizontal plane with a planar incidence
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Figure 3.2: Typical hydrophone pressure signal of the shock wave emitted at the bubble
generation. Here t = 0 µs corresponds to the time instant of bubble generation.

of the shock wave onto the sensor. The shock waves take approximately 30 µs to reach the

hydrophone after being generated. Being thin (needle thickness is 0.3 mm) and located far rel-

ative to the bubble size, the presence of the hydrophone needle is assumed to have a negligible

effect on the bubble dynamics.

We assume spherical propagation of the shock waves and estimate their energies as

ES = aU b
max

∫
U (t )2dt (3.2)

where U (t ) (V) is the hydrophone voltage signal (containing the full shock wave scenario in

the case of multiple collapse shocks, but excluding any reflections from boundaries), Umax is

the maximum value of U (t), and a and b are calibration constants. If the shock propagated

with no energy dissipation, then a = 4πd 2
(
ρc

)−1 G−2 [94] (where c is the sound speed in the

liquid and G is the gain in units of V/Pa) and b = 0. An exponent b > 0 is used to approximately

compensate for nonlinear dissipation (e.g., due to inelastic heating, induced microcavitation,

etc.), whose relative effect increases with pressure. As the precise gain G is unknown in

our current setup and nonlinear dissipation is expected, we treat a and b as positive free

parameters. We fit these parameters to simultaneously satisfy two conditions: (i) the energy of

the laser-induced shock at the bubble generation ES,gen scales linearly with the bubble energy

E0 [94] and (ii) the total energy of the shock(s) emitted at the bubble collapse ES,coll is bounded

by the difference between the bubble energy E0 and the rebound energy Ereb. For bubbles

that collapse spherically (ζ < 10−3) and produce no jets, we assume ES,coll ≈ E0 −Ereb [48].

We find that a is such that ES,gen/E0 ≈ 0.75 (i.e., 43% of the absorbed laser energy goes into

the generation shock and 57% goes into the bubble) and b ≈ 0.45, indicating slight nonlinear

dissipation. Figure 3.3 displays the calibrated energies for both bubble generation and collapse

shock waves for various E0 and ζ, clearly showing the linear relationship between ES,gen and

E0 and that the collapse shock energies tend to be lower for increasing ζ. Pressures are then

computed from the calibrated energies as p(t ) =U (t )/G , where the gain G is determined for

each individual bubble separately as G2 = 4πd 2
(
ρc

)−1 ∫
U (t )2dt/ES . Using a variable G allows

for the comparison of the signals obtained in different conditions, for which the recorded

pressures are differently affected by the shock’s nonlinear dissipation.
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Figure 3.3: Energies of shock waves emitted at bubble generation (left) and collapse (right) for
various bubble energies E0. The colors indicate the level of ζ. The solid lines show ES = E0.

3.3 Detailed observations

3.3.1 Spherical collapse

A spherical bubble collapse emits a single shock front that is spherically symmetrical, as

visualized in Fig. 3.4a. This shock is well studied and arises from the compression of the

incondensable gases inside the bubble overcoming the high pressures in the liquid around

the bubble in the final collapse stage, which makes the liquid rapidly invert its motion as the

bubble rebounds [137]. The gases inside the bubble are compressed so violently that they

heat up to temperatures reaching levels of visible light emission, a phenomenon known as

luminescence, which is visible in frame 5 of Fig. 3.4a and implies that the bubble reaches its

minimum size during the 50-ns exposure time of this image. The rebound bubble then forms

a compression wave that propagates outward and quickly steepens to form a shock front, as

can be seen in frames 6–8. The corresponding hydrophone measurement of the shock wave

is shown in Fig. 3.4b. Assuming 1/r spreading of the spherical wave and the luminescence

spot in Fig. 3.4a as the minimum bubble size (Rmin ≈ 100 µm), the lower bound for the peak

pressure at the bubble wall at minimum bubble radius is estimated as 2 GPa, which is in

agreement with previously estimated values [142]. The actual value is likely much higher,

because we overestimate the minimum bubble radius that our apparatus is not able to capture

due to the luminescence and the dark region around the bubble hiding this information. When

using the Keller-Miksis model [61], where we adjust the initial gas pressure by numerically

fitting the model to the observed radial evolution of the bubble (first and second oscillations),

we would expect a minimum bubble radius of Rmin ≈ 15 µm and thereby a peak pressure of

12 GPa.

In agreement with previous research, we find that the most energetic shock waves are emitted

by highly spherical collapses, reaching up to about 90% of the initial bubble energy. The

bubbles here are found to emit a single shock front at anisotropies up to ζ≈ 10−3 (equivalent
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Figure 3.4: Cavity of R0 = 3.8 mm collapsing spherically at ζ < 10−3 and emitting a single
shock wave: (a) High-speed shadowgraph visualization. The interframe time is 100 ns and
the black bar shows the 1 mm scale. (See supplementary movie.) (b) Pressure recorded by the
hydrophone. The inset shows the whole bubble oscillation, where the orange and blue circles
refer to generation and collapse shock wave peaks pressures, respectively. The dashed line
shows p(t )−p0, where p(t ) is the Rayleigh pressure model computed from Eq. (3.3) up to the
shock peak, and the dotted line extends the curve to the time at which the bubble is estimated
to reach a radius of R = 100 µm.

to γ≈ 14), which is also the approximate limit for the appearance of a microjet piercing the

bubble in our setup [143].

In the last stages of the collapse, the pressure in the liquid near the bubble wall increases to

values so high that it deflects light, producing the shaded ring around the bubble in Fig. 3.4a

(frames 2–4). This pressure has previously been predicted to reach thousands of bars [51, 137]

and experimentally detected using Mach-Zehnder interferometry [145] or elevated ambient

pressures [146]. However, it is interesting that our setup is able to visualize it using simple

shadowgraphy at atmospheric pressure. This is due to the bubble’s high initial sphericity

allowing it to reach very small radii upon its exceptionally spherical collapse.

The incompressible model for the pressure distribution around the bubble, developed by

Rayleigh a century ago, is given as follows [51]:

p

p0
= 1+ R

3r

(
R3

0

R3 −4

)
− R4

3r 4

(
R3

0

R3 −1

)
(3.3)

where r is the radial distance from the bubble center. Considering the lower bound for

the compression ratio of the bubble in Fig. 3.4a (R0/Rmin > 40), we expect the maximum

peak pressure to be on the order of GPa in the incompressible framework. The pressure

buildup is visible in the hydrophone signal in Fig. 3.4b as a relatively slow rise preceding the

peak pressure of the shock. We may compute the pressure evolution in time from Eq. (3.3)

at the radial distance where the hydrophone is located (r = 44.5 mm), assuming the time
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γ = 0.6 γ = 0.8 γ = 1.0 γ = 1.2 γ = 1.4 γ = 1.6

Tip bubbleToroidal bubbleJet

Figure 3.5: Illustration of the bubble shapes at jet impact for different standoff distances γ
from the free surface. The corresponding values for ζ from left to right are ζ= 0.54, 0.30, 0.20,
0.14, 0.10, and 0.076. The shapes of the free surface are shown as a dotted line. The shapes
have been obtained numerically using potential flow theory.

evolution of the bubble radius to follow the analytical approximation R(t ) ≈ R0
(
1− t 2

)2/5
[55]

(where t is the time normalized to collapse time Tc ), down to Rmin ≈ 100 µm. The computed

pressures from Eq. (3.3) can be roughly compared with the hydrophone signal if the delay

in the far field caused by the finite sound speed is accounted for. Furthermore, the shock

pressure peak is assumed to represent a time approximately 100 ns preceding the final collapse

instant, for the shock wave is expected to propagate the first ∼ 300 µm with supersonic

speeds [144]. The average shock speed during the exposure of the first frame after the collapse

is estimated approximately as 3000 ms−1 from Fig. 3.4a and therefore the shock wave is indeed

estimated to reach the hydrophone ∆t ≈ 102 ns earlier than the pressure buildup, of which

the information is assumed to propagate at the sound speed. As can be seen in Fig. 3.4b,

the computed (dashed line) and measured (solid line) pressure evolutions almost up to the

signal peak are surprisingly similar. The good agreement is remarkable considering our

unconventional pressure calibration. The model is not able to reproduce the shock wave

because it is incompressible (dotted line), and when the bubble reaches a radius of R = 100µm,

the predicted pressure at the hydrophone location is p −p0 = 3.8 MPa, which is close to the

measured peak pressure very likely by coincidence. The pressure rise, in addition to the tensile

part of the shock wave tail, is the clearest difference between the measured waveform from a

spherical collapse and that of the bubble generation (Fig. 3.2).

3.3.2 Non-spherical collapse: Bubbles near a free surface

The dynamics of bubbles near free surfaces has been extensively studied in the past experi-

mentally, theoretically, and numerically [147, 148, 67, 149, 71, 150, 99, 84], yet no study to date

has focused specifically on their shock wave emission. The advantage of studying bubbles

near a free surface is the contact avoidance between the bubble and the surface, allowing thus

free collapse and rebound dynamics, as the bubble migration and the microjet are directed
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Figure 3.6: Cavity of R0 = 4.1 mm at ζ = 3.8×10−3 (γ = 7.2). (a) High-speed shadowgraph
visualization. The interframe time is 100 ns and the black bar shows the 1-mm scale. (See
supplementary movie.) (b) Pressure recorded by the hydrophone. The inset shows the whole
bubble oscillation, where the orange and blue circles refer to generation and collapse shock
wave peak pressures, respectively.

away from the surface (contrary to a rigid surface). While bubbles near a free surface form

microjets that have characteristics similar to bubbles deformed by a rigid surface [143], their

shapes at the final collapse stages have significant differences, which may give us some further

insight into the distinct shock wave emission mechanisms. In particular, for γ = 1–3, the

micro-jet formed during the collapse is broad and impacts the opposite bubble wall on a ring

rather than a single point, some examples being illustrated in Fig. 3.5. At lower values of γ, the

microjet becomes narrow and the spike formed on the free surface increases in height. The

shapes in Fig. 3.5 were obtained numerically using potential flow theory (boundary integral

method [143, 70, 67, 71]2) and have previously been validated by their good agreement with

experiments [143].

We now present observations of shock waves from bubbles collapsing near a free surface

at different levels of ζ. Nonspherically collapsing bubbles that produce microjets generate

multiple shock waves, which are clearly observed on the shadowgraph images at ζ > 10−3.

However, they only become clearly distinct events on the hydrophone signal beyond ζ ∼
8×10−3 (γ∼ 5).

Figure 3.6 shows selected shadowgraph images and the corresponding hydrophone pressures

for a bubble collapsing at ζ= 3.8×10−3. The first sign of asymmetry in the bubble collapse,

together with the bubble’s displacement, is the shaded region appearing near the upper

bubble wall where the downward microjet is forming [starting from frame 2 in Fig. 3.6a]. It

is similar to the gradual pressure buildup observed for the spherical collapse in Fig. 3.4a,

but not spherically symmetric. It is also in agreement with reported numerical simulations

2The code for the numerical simulations is available online at https://obreschkow.shinyapps.io/bubbles [143].
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of jetting bubbles, finding higher pressures at the root of the jet relative to the rest of the

pressure field [83, 84, 85, 89]. The shaded region eventually surrounds most of the bubble in

frame 5 and two clear shock fronts are visible in frame 6 following the collapse. We observe

luminescence at the tip of the bubble in frame 5, which also appears to be the center of the

most pronounced shock wave visible in the subsequent images. Although it is much weaker

compared to the light emitted in the spherical case, the observed flash suggests a high gas

compression between the jet and the opposite bubble wall. Interestingly, the first shock front

in Fig. 3.6a is produced on the side of the bubble where the initial pressure rise in the liquid

occurred. The hydrophone is unable to distinguish the first shock wave from the rest due to

its location and temporal resolution, but it records the gradual pressure rise occurring on the

sides of the bubble preceding the main shock wave [Fig. 3.6b].

Figures 3.7a–3.7h show images and the corresponding measured shock pressures for more

deformed bubbles, collapsing at different distances from the free surface at ζ= 2.9×10−2, 4.6×
10−2, 0.19, and 0.33. The recorded peak pressures are significantly lower compared to the more

spherical cases and many distinct shock wave events are observed. The first pressure peak in

all cases corresponds to the water hammer induced by the jet impact. Such a shock has been

observed in the past for nonspherically collapsing bubbles both experimentally [113, 47, 122]

and numerically [79, 84]. It produces a toruslike shock wave due its contact on the opposite

bubble wall not being a single point but a circular line (see Fig. 3.5), clearly visible on the

images as two shock source points on the sides of the bubble. If the jet is broad enough, the

hydrophone may detect two individual pressure peaks, such as in Fig. 3.7f, owing to such

toruslike shock having two fronts on the hydrophone axis that reach the sensor. Subsequently,

the jet separates a part of the vapor at the tip from the rest of the bubble, with this separation

being particularly clear in Figs. 3.7c and 3.7e as a horizontal line that cuts the bubble and

implies that the vapor in that zone has disappeared. It is difficult to tell with certainty that the

first shock wave results from a jet impact in Fig. 3.7a due to the short time intervals between

the distinct events. However, observing several bubbles between ζ= 2.9×10−2 and 4.6×10−2

(of which the results are summarized later in Sec. 3.3.3), a systematic variation of the shock

timings and strengths with ζ was noted. The identification of each peak in Fig. 3.7b was

therefore done accordingly. The peak pressure associated with the jet impact decreases with

an increasing ζ and is barely detected at ζ = 0.33. At ζ = 2.9×10−2 and 4.6×10−2 [Figures

3.7a–3.7d], the jet impact is followed by the collapse of the toroidal bubble. The associated

shocks are toruslike and meet in the jet axis in the middle of the bubble, which is known

to sometimes produce a counterjet, a vertical columnlike cluster of microcavities [47, 143].

The torus collapse shock may also yield two individual peaks in the pressure signal, such

as in Figs. 3.7d and 3.7f. The peak pressure of the torus collapse shock first decreases with

increasing ζ [Figs 3.7b and 3.7d], and then increases again slightly [Figs. 3.7f and 3.7h]. The

next pressure peak in Figs. 3.7b and 3.7d corresponds to the tip bubble collapse. It appears

to be the dominant shock in the collapse scenario at these ζ. The tip bubble collapse shock

triggers a second collapse of the rebounding toroidal bubble, which emits a further shock wave

manifested as the fourth pressure peak in the signal. The second torus collapse pressure peak
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Figure 3.7: Caption on next page
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Figure 3.7: (Continued) Selected images (left) and hydrophone signal (right) for cavities of (a)
and (b) R0 = 3.6 mm at ζ= 2.9×10−2 (γ= 2.6), (c) and (d) R0 = 3.6 mm at 4.6×10−2 (γ= 2.1), (e)
and (f) R0 = 3.2 mm at ζ= 0.19 (γ= 1), and (g) and (h) R0 = 3.0 mm at ζ= 0.33 (γ= 0.77) for an
interframe time of (a) 200 ns, (c) 300 ns, (e) 600 ns, and (g) 400 ns unless otherwise indicated.
The shock waves are denoted by 1, jet impac;, 2, torus collapse; 3, tip bubble collapse; 4,
second torus collapse; and 5, second tip bubble collapse shock waves. The black bars show the
1-mm scale. The insets show the whole bubble oscillation, where the orange and blue circles
refer to generation and collapse shock wave peak pressures, respectively. [See supplementary
movies. For the bubble at ζ= 0.33, the movie combines films made of two separate bubbles
due to the long duration of the events and the limited number of frames captured by the
camera. The events are highly repetitive.]

is considerable at ζ= 2.9×10−2 but barely detected by the hydrophone at ζ= 4.6×10−2. As

can be seen in Figs. 3.7e and 3.7g, at a higher ζ the tip bubble collapse and the torus collapse

change order. In Fig. 3.7g the tip bubble is very small and its collapse follows the jet impact so

closely that it is difficult to distinguish the shocks they emit. At ζ= 0.19 it is the torus collapse

that triggers a second collapse of the tip bubble, while at ζ = 0.33 the tip bubble is able to

collapse naturally a second time long before the torus collapse. In Fig. 3.7g the compression

of the toroidal bubble is highly nonuniform, yielding multiple peaks that generate a noisy

hydrophone signal [Fig. 3.7h].

The shock wave strengths are also visible as the darkness levels of the corresponding image

pixels owing to their ability to deflect light, which can be seen, for example, in Fig. 3.7c where

the tip bubble shock wave is clearly the most pronounced of all the events. The time intervals

between each event substantially increase with ζ. When the bubble collapses very close to the

free surface, the hydrophone also detects the reflected rarefaction waves following closely the

original shocks and contributing to the noise in the signal of Fig. 3.7h. These waves are visible

in all movies of Fig. 3.7 and, due to their negative pressure resulting from the reflection at the

free surface, they generate secondary cavitation in the bubble’s neighborhood, as shown in

Fig. 3.8. The secondary cavities are visible as clusters of microbubbles most prominently in the

path of the focused laser, where the liquid is preheated and thereby the nucleation of cavities is

facilitated, and between the bubble and the free surface [Fig. 3.8b]. Interestingly, some of these

56



3.3. Detailed observations

t = 0.46 ms

1 →
2 →

3
↓

(a)

t = 0.49 ms

3 →

2
↖

1
↑

4↖ ↗
(b)

Figure 3.8: Visualization of secondary cavitation resulting from the passage of rarefaction
waves for the same bubble as in Fig. 3.7g at two different instants: (a) secondary cavitation
(1) below the bubble, generated by the tip bubble collapse shock wave, (2) turned into a
rarefaction wave, and (3) after reflecting at the bubble’s interface, and (b) secondary cavitation
visible (1) in the pre-heated cone-shaped zone in the laser path, (2) as streamers along the
microjet flow and (3) as a vertical column, and (4) generated by the rarefaction waves caused
by the reflection of torus collapse shock waves at the free surface. (See supplementary movie.)

clusters, arranged in streamers towards the central axis of the toroidal bubble, delineate the

flow induced by the formation of the microjet. The vertical column of microbubbles between

the toroidal bubble and the free surface in Fig. 3.8b appears to result from the confluence

of the rarefaction waves that are the reflections of the shocks initially emitted by the torus

collapse. For the same bubble, secondary cavitation resulting from the shock emitted at the

first tip bubble collapse is also observed below the bubble, right after the jet impact, as can be

seen in Fig. 3.8a. Here the negative pressure results from the reflection at the bubble interface,

and the rarefaction wave follows closely the original shock wave, which explains the significant

tensile tail of the tip bubble collapse peak captured by the hydrophone in Fig. 3.7h.

3.3.3 Energy distribution and event timings

The observations of the distinct shock wave events and their corresponding pressures show

important variations with different bubble asymmetries. The energy of the observed shock

waves can be estimated from the hydrophone pressure signal via Eq. (3.2), where the inte-

gration range is selected by identifying the pressures associated with each individual event

from the high-speed visualizations. It should be noted that this method assumes spherically

symmetric propagation of the shock wave. Some shocks, especially the jet impact shock, might

have some directionality, biasing their energy measurement. Indeed, it has been shown nu-

merically that jet impact-induced shocks are dependent on the orientation with respect to the

jet close to the bubble [79, 82]. However, the symmetric shock shadings seen in the high-speed

visualizations far from the bubble center (not shown in figures) suggest that this directionality
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Figure 3.9: Normalized shock wave energy for each shock emission mechanism from bubbles
deformed by a near free surface, as a function of ζ (and corresponding γ, top axis). Numerically
calculated bubble shapes at jet impact are shown for ζ= 10−2, 6×10−2, and 0.3.

must be subdominant. The shock pressure dependence on orientation likely reduces as the

wave propagates and decreases in amplitude. We nonetheless caution that directionality is a

potential source of systematic error, which might be reduced in future experiments by using

multiple hydrophones in different directions.

The fraction of the bubble’s initial energy E0 distributed to the distinct shock waves for bubbles

collapsing near a free surface is shown in Fig. 3.9 as a function of the anisotropy parameter ζ

(and the equivalent γ). We only measured bubbles up to ζ∼ 0.3 (γ∼ 0.8), beyond which the

free surface resulted in severe perturbations in the hydrophone signal due to the reflected

rarefaction waves. The driving pressure was kept at∆p > 75 kPa in order to avoid simultaneous

deformations by the free surface and gravity, which could lead to more complex shapes at the

bubble collapse (e.g., bubble splitting or annular jets [102]). The energy of each of the three

main shock waves, i.e., jet impact, tip bubble collapse, and torus collapse, vary as functions of

ζ. Interestingly, each of them dominates a certain range of ζ, as can be seen in Fig. 3.9. For

bubbles that produce jets, the jet impact shock appears to dominate up to ζ∼ 2×10−2. The tip

bubble shock wave has a clear domination in the range 2×10−2 < ζ< 0.15. Beyond ζ∼ 0.15,

the torus collapse shock wave is the most energetic, yet weak in relative terms with less than

10% of the initial bubble energy. The torus collapse energy is particularly low in the range

2×10−2 < ζ< 0.1, coinciding with the domination of the tip bubble. The second torus collapse

and the second tip bubble collapse emit shock waves with a negligible energy compared to

the others, which is why they have been excluded from the figures.

The domination of the tip bubble in the range 2×10−2 < ζ< 0.15 is explained through its large

volume relative to the rest of the bubble at the moment of the jet impact, its spherical topology

that allows an effective gas compression during its collapse, and/or the further compression
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Figure 3.10: Normalized total collapse shock wave energy ES/E0 for bubbles deformed by a
near free surface, as a function of ζ (and γ, top axis).

provided by the pushing jet. The large volume of the tip bubble and the small volume of the

torus in this range result from the characteristic shape the jet assumes for bubbles collapsing

near a free surface (see Fig. 3.5). Beyond ζ∼ 0.1 however, the torus becomes relatively larger

again at the moment of jet impact, as the bubble shape at ζ= 0.3 in Fig. 3.9 suggests, and the

torus is able to compress the gases it contains more effectively. This explains the slight rise of

the torus collapse shock energy for ζ> 0.1.

When the energies of the different collapse shock waves are summed, an overall decrease

of the total shock energy is observed, as can be seen in Fig. 3.10. Here data for lower ζ have

been added, including energies from pressure measurements for which it was not possible to

distinguish the different shock wave events. Interestingly, the total shock energy varies as a

function of ζ independently of the bubble maximum radius and driving pressure within the

ranges covered here (R0 = 1–4 mm and ∆p = 0.75–1 bar). A major part of the collapse shock

energy decrease occurs within the range 10−3 < ζ< 2×10−2, where the jet impact hammer

shock is expected to dominate. As the bubble deforms, the liquid inflow towards the bubble

center becomes anisotropic and as a result, the level of compression of the bubble’s enclosed

gases reduces yielding weaker shock wave emission. As less energy is radiated away by the

shock waves for increasing ζ, more energy is distributed to the motion of the liquid forming

the micro-jet and to the rebound bubble, both of which are observed to grow with ζ.

The timing of the distinct events in the shock wave scenario also appears to vary with the

level of deformation of the bubble. Figure 3.11 displays the time difference ∆T between

the jet impact, which generally emits the first shock wave, and the other observed events,

normalized to the bubble collapse time Tc . The experiments are displayed together with our

previously established model estimating the normalized time between the jet impact and
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Figure 3.11: Time differences between the jet impact and the tip bubble collapse, torus
collapse and the second torus collapse as a function of ζ (and γ, top axis), normalized with
bubble collapse time Tc . The time between jet impact and torus collapse is modeled as
∆T /Tc = 0.15ζ5/3 [143].

torus collapse ∆T /Tc = 0.15ζ5/3 [143]. Only data for ζ> 10−2 are displayed as the temporal

resolution of our apparatus is not sufficient for identifying the exact shock timings of more

spherical bubbles. The jet impact occurs within the last 1% of the bubble’s collapse time up to

ζ≈ 0.2, followed very closely by the other events. The torus collapse precedes the tip bubble

collapse up to ζ≈ 0.14, beyond which they change order. The second torus collapse occurs

right after the tip bubble collapse up to this limit, as the rebounding torus compresses under

the effect of the shock wave produced by the latter, which is seen as an almost constant time

difference between the two events in Fig. 3.11. The normalized timings of each shock wave are

independent of the maximum bubble radii and driving pressures covered here.

3.4 Models for shock energy and pressure

We now investigate shock waves from nonspherically collapsing bubbles at a more general

level with the aim of developing a semiempirical model to predict their strengths. For this

purpose, we look at shock waves from bubbles deformed by different sources, in particular

by the gravity-induced uniform pressure gradient. Examples of measured shock waves from

bubbles deformed by gravity are shown in Fig. 3.12. A spherical collapse [Fig. 3.12(a)] produces

a single shock, as observed previously in Sec. 3.3.1. Nonspherical collapses [Figs. 3.12(b) and

3.12(c)] generate multiple shocks and the associated peak pressures clearly decrease with

increasing bubble deformation, similarly to bubbles deformed by a free surface. However, the

characteristic shape of bubbles collapsing in uniform pressure gradients is such that the radii

of curvature of the jet tip and the opposite bubble wall at their impact are very similar for a

wide range of ζ according to potential flow theory [143], as illustrated in Fig. 3.13 for ζ= 10−2.
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Figure 3.12: Examples of hydrophone pressure signals of shock waves measured at the collapse
of bubbles deformed by gravity at (a) ζ < 10−3, (b) ζ = 3.8× 10−3, and (c) ζ = 10−2. The
corresponding shadowgraph images with an exposure of 50 ns are shown on top. The black
bars show the 1-mm scale.

As a consequence, the volumes of the tip bubble and the toroidal bubble remain relatively

small and the associated shocks are barely distinguishable. We therefore analyze the collapse

shock as one event, expected to be dominated by the jet impact (as suggested by Fig. 3.9 for

bubbles near a free surface at ζ < 10−2), without resolving its substructure in the following

analyses.

We first consider the variation of the peak pressures pmax measured by the hydrophone as a

function of ζ. Figure 3.14 shows this function for bubbles deformed by the gravity-induced

pressure gradient (varied parameters R0 = 1.5–10 mm, ∆p = 6–98 kPa, at normal gravity).

Clearly, the relation between pmax and ζ depends on ∆p. We can build a model for the

relationship between pmax, ∆p, and ζ, based on the simplistic assumptions of scale-free

microjets and shocks resulting from a water hammer pressure caused by the jet impact [136,

79]:

ph = 1

2
ρcUjet = 0.45

(
ρc2∆p

)1/2
ζ−1 (3.4)

where Ujet is the microjet speed at its impact on the opposite bubble wall. The scaling model

for the microjet speed Ujet = 0.9
(
∆p/ρ

)1/2
ζ−1 has previously been established by combining

numerical simulations and analytical arguments with experimental observations and is a valid

approximation for jets driven by gravity and near surfaces at ζ< 0.1 [143]. We can therefore

expect also the resulting hammer pressures to be similar for these different sources of bubble

deformation and to decrease with ζ for a given ∆p (with constant ρ and c). The scaling factor

in Eq. (3.4) could be different if the jet impact is not the dominant shock mechanism, but this

is irrelevant in the following derivation because of the free parameter α discussed hereafter.
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Figure 3.13: Bubble shapes at jet impact for bubbles deformed by a uniform pressure gradient,
a near rigid surface, and a near free surface, predicted by potential flow theory [143] for
ζ= 10−2. Here ζ is directed downward.

The equivalent observational proxy for ph is expressed as

ph = pmax

(
d

rshock

)β
=αpmax

(
d

R0

)β
ζ−2β/3, (3.5)

where pmax is the peak pressure measured by the hydrophone, d is the distance between the

bubble center and the hydrophone sensor, rshock is the shock emitting radius, assumed to scale

as the radius of the jet tip (see schematic in Fig. 3.13) and thereby as the bubble’s characteristic

length at jet impact s ∝ ζ2/3R0 as predicted by potential flow theory for ζ¿ 1 [143], and α and

β are free parameters. Here α represents the unknown scaling of rshock ∝ ζ2/3R0. In addition,

βwould equal 1 for negligible shock dissipation and spreading of the shock width, yet in reality

nonlinearities are present and result in a higher exponent, typically about 2 in the near field

and ∼ 1.1 in the far field of the emission center [151, 152, 144, 40]. Equating Eqs. (3.4) and (3.5)

gives

pmax = 0.45

α

(
ρc2∆p

)1/2
(

R0

d

)β
ζ2β/3−1. (3.6)

We fit α and β simultaneously to a sample of 931 bubbles deformed by gravity to minimize

the χ2 deviation between the left- and right-hand sides of Eq. (3.6) 3. The resulting fitted

parameters are α= 0.277±0.006 and β= 1.249±0.003 and the corresponding determination

coefficient is R2 = 0.93. As expected, β lies between 1 and 2. In the case of bubbles deformed

by gravity, there is a unique relation between R0, ∆p, and ζ as shown by Eq. (3.1). Substituting

R0 from this relation into Eq. (3.6) makes pmax a function of only ∆p and ζ. These relations are

plotted as dashed lines in Fig. 3.14 and show excellent agreement with the measurements.

The lines in Fig. 3.14 can be collapsed to a single relationship by plotting the measured peak

pressures pmax directly against the model in Eq. (3.6), which is shown in Fig. 3.15. We now also

apply this simple model to predict the shock pressures of nonspherical bubbles with different

sources of deformation (free and rigid surfaces), where the unique relationship between R0,

∆p, and ζ no longer holds because of the additional dependence on the distance h to the

surface, as shown by Eq. (3.1). These data also coincide with the model, as can be seen in

3A fit with the exponent of ρc2∆p as a free parameter was also performed, which consistently gave 0.506±0.006.
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Figure 3.14: Measured shock peak pressures as a function of ζ (and γ, top axis) for bubbles
deformed by gravity. The dashed lines represent the model in Eq. (3.6). The colors indicate
different driving pressures ∆p. The symbol sizes portray the different maximum bubble radii.

Fig. 3.15, confirming that the hammer pressure model can be used to estimate shock pressures

produced by a nonsspherical bubble collapse. The pressures ph at the source, estimated using

Eqs. (3.4) and (3.5), range from 100 MPa to 10 GPa at ζ> 10−3.

Figure 3.16 displays the normalized collapse shock wave energy for bubbles deformed by

gravity, a nearby rigid surface, and a free surface as a function of ζ. All the measured shock en-

ergies generally decrease with increasing ζ independently of R0 and ∆p. For gravity-deformed

bubbles, most of the decrease happens in the range 10−3 < ζ< 10−2, reaching values down

to about 10% of initial bubble energy E0 at ζ ∼ 10−2. These values differ significantly from

bubbles deformed by a rigid and a free surface that respectively have shock energies as high

as 30% and 40% of the initial bubble energy E0 at ζ ∼ 10−2 (γ ∼ 4.4). Shocks from bubbles

deformed by a near rigid and a free surface experience a decrease in energy with ζ that is

similar to the gravity-deformed cases, but which occurs at a higher ζ.

It should be noted that the expression of ζ for gravity-induced bubble deformations [Eq. (3.1)]

includes ∆p, making ∆p correlate with ζ in our data obtained on ground (see the gray scale in

Fig. 3.16). However, the data in microgravity (0±0.02 g ), which were obtained aboard European

Space Agency parabolic flights, confirm that the bubble deformation is the main cause of

the observed shock energy variations, rather than ∆p. For example, bubbles collapsing at

∆p ≈ 20 kPa in our experiment on ground emit low-energy shocks (ES/E0 < 30%), yet in

microgravity at the same driving pressure ES/E0 > 75% 4. Some data for bubbles collapsing

at higher gravity levels (1.66± 0.093g ) are also displayed in Fig. 3.16, showing reasonable

agreement with the general shock energy trend with ζ.

4The presence of the closest surface to the bubble, i.e. the parabolic mirror, is accounted for when determining
ζ for bubbles collapsing in micro-gravity.
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Figure 3.15: Measured shock wave peak pressures as a function of the model given in Eq. (3.6)
for bubbles deformed by gravity, a rigid surface, and a free surface.

Since the measured peak pressures for deformed bubbles are well approximated with the

hammer pressure model, we aim at estimating their shock energies using the same approach.

We recall that the shock energy ES = (4πd 2ρ−1c−1)
∫

p2dt from Ref. [94], as for Eq. (3.2). If

the pressure profile in time is represented with a hammer pressure ph being applied for

a time ∆t = ∆dc−1, where ∆d denotes the thickness of the shock, the energy reads ES =
(4πd 2ρ−1c−1)p2

h∆t . The shock wave energy is therefore alternatively expressed as

ES = ∆V p2
h

ρc2 , (3.7)

where ∆V = 4πd 2∆d is the volume of the compressed liquid. As mentioned before, the

characteristic length of the bubble at the jet impact scales as s/R0 ∝ ζ2/3. As the surface area

of contact of the jet onto the opposite bubble wall is two dimensional and the compressed

liquid volume is assumed to be proportional to that area, we have ∆V /R3
0 ∝ s2/R2

0 ∝ ζ4/3.

With this model plugged into Eq. (3.7) and ph substituted for Eq. (3.4), we obtain

ES

E0
∝ ∆V

R3
0ζ

2
∝ ζ−2/3. (3.8)

The missing scaling factor for Eq. (3.8) comes from the unknown size of the compressed liquid

region. An analytical evaluation of this unknown is difficult and would have to account for

the nonuniform liquid compression by the curved jet tip. The scaling factor is expected to

vary for the distinct sources of deformations, since the jet shapes are different for each case

and leave gas or vapor pockets of dissimilar sizes between the jet and the opposite bubble

wall, as illustrated in Fig. 3.13 for ζ= 10−2. These vapor pockets are rather large for bubbles

collapsing near a rigid or a free surface, while gravity-induced jets hit the opposite bubble wall

in a highly uniform way, thereby resulting in the smallest scaling factor. When minimizing the

χ2 deviation between the measurements ES/E0 for bubbles deformed by gravity at ζ> 10−3
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Figure 3.16: Normalized total collapse shock wave energy for bubbles deformed by gravity, a
near rigid surface, and a near free surface as a function of ζ (and γ, top axis). Averaged shock
energies measured in microgravity (µg) (0±0.02g ) and hypergravity (hg) (1.66±0.093g ) at
three different ∆p are also displayed. The gray-scale indicates different driving pressures ∆p
for bubbles deformed by gravity. The models in solid lines show the fits 0.0073ζ−2/3, 0.011ζ−2/3,
and 0.016ζ−2/3 for bubbles deformed by gravity, a rigid surface, and a free surface, respectively.
The mean error of ES/E0 is 0.04.

and a model in the form f = aζb with free parameters a and b, we find a = 0.0078 and

b =−0.66. When imposing b =−2/3 to conform with Eq. (3.8), the best fit for a is 0.0073. The

corresponding fitted scaling factors for the rigid and free surfaces are a = 0.011 and 0.016,

respectively. Equation (3.8) with these fitted scaling factors is plotted as solid lines for bubbles

deformed by gravity, a free surface, and a rigid surface in Fig. 3.16 and agrees reasonably well

with the experimental data.

3.5 Discussion

There are several limitations in the presented shock models worth addressing. The microjet is

expected to reach the speed of sound for a bubble collapsing at ζ. 0.9(∆p/ρ)1/2c−1 (ζ. 0.006

at ∆p = 98 kPa), below which the model in Eq. (3.4) may no longer be able to estimate the jet

hammer pressures. Furthermore, our model neglects the gas inside the bubble. Compressed

and heated gases within highly spherically collapsing bubbles can potentially slow down and

destroy the jet and/or delay or prevent its formation. These effects naturally decrease with

increasing ζ, since at higher ζ the jet forms earlier in the bubble evolution, when the gases are

less compressed. We estimate the bubble gas to seriously hamper the jet for ζ< 10−3, where

no observable jets are formed in the bubble rebound in our current setup [143]. This is the

likely explanation for the sudden curvature change in the shock energy trend for bubbles

deformed by gravity at ζ∼ 10−3, as can be seen in Fig. 3.16. Below this approximate threshold
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(at which ph ∼ 7 GPa for bubbles collapsing here at atmospheric pressure), the shock pressures

predicted by the model are overestimated. This threshold value is consistent with previous

findings for a spherical collapse at atmospheric pressure, both in our setup (Sec. 3.3.1) and in

the literature [40, 41, 39].

The shock energies of bubbles collapsing near a rigid surface show important differences

when compared with the measurements performed by Vogel and Lauterborn [94]. Although

they observed, similarly to us with bubbles near a free surface, a clear minimum in shock

energies at γ= 1, they also measured shocks beyond γ∼ 3 to have the same energies as those

emitted in a spherical collapse, while at γ= 3 we measure barely 20% of a typical shock energy

from a spherical collapse. This suggests that the experimental conditions play an important

role in the collapse shock wave characteristics, including the initial bubble sphericity, which

highly differs for parabolic mirror- and lens-based laser focusing methods. Indeed, in Vogel

and Lauterborn’s study the standoff was varied only up to γ ∼ 3, beyond which a spherical

collapse was assumed, while we still find important shock energy variations between γ∼ 5

and 10.

3.6 Conclusion

We have presented detailed observations of shock wave emissions from the collapse of bubbles

with various levels of deformation, quantified by the anisotropy parameter ζ, using simul-

taneous time-resolved shadowgraphy and needle hydrophone pressure measurements. A

gradual pressure rise in the liquid near the bubble wall was observed in the last collapse stage

of nearly spherically collapsing bubbles, in agreement with the century-old predictions of

Lord Rayleigh. Nonspherical bubble collapses produced multiple shock waves associated with

different processes such as the jet impact and the individual collapses of the various separated

parts of the bubble. When quantifying these distinct shocks for bubbles collapsing near a

free surface, the jet impact shock was found to dominate up to ζ∼ 2×10−2, the bubble tip

collapse in the range 2×10−2 < ζ< 0.15, and the torus collapse at ζ> 0.15. The timings of the

individual events, normalized with the bubble collapse time, were also found to vary with ζ.

Models predicting the shock peak pressure and energy were proposed based on the assumption

that the shock wave is generated by a jet impact hammer pressure. The pressure model showed

excellent agreement with the observed data in the range 10−3 < ζ< 10−2 for all three sources of

bubble deformation used here (gravity, rigid surface, and free surface) and the energy model

captured the approximative trend of the measured energies. The total collapse shock wave

energy, normalized to the total bubble energy, generally decreased with increasing ζ. However,

we found differences between the shock energies from bubbles deformed by different sources,

which likely result from the small variations in the jet shapes at their impact onto the opposite

bubble wall. Interestingly, these differences do not seem to affect the shock peak pressures,

which could be due to the jet speed at the moment of impact (which the hammer pressure

is proportional to) being nearly identical for the three sources of bubble deformation at this

range of ζ.

66



4 Luminescence

Luminescence from cavitation bubbles deformed in uniform pres-

sure gradients

Reproduced version of

Outi Supponen, Danail Obreschkow, Philippe Kobel and Mohamed Farhat. Luminescence from

cavitation bubbles deformed in uniform pressure gradients. Physical Review E 96(3) 033114

(2017). DOI: 10.1103/PhysRevE.96.033114,

with the permission of American Physical Society.

The author’s contribution:

The author designed the luminescence detection system and re-built the experimental setup

to meet the requirements imposed by the parabolic flights. She coordinated the team for the

62nd ESA parabolic flight campaign and the 1st Swiss parabolic flight in 2015. She made the

experiments and the analysis with the help of the co-authors. She was the first author of this

publication.

Abstract

Presented here are observations that demonstrate how the deformation of millimetric cavi-

tation bubbles by a uniform pressure gradient quenches single-collapse luminescence. Our

innovative measurement system captures a broad luminescence spectrum (wavelength range,

300–900 nm) from the individual collapses of laser-induced bubbles in water. By varying the

bubble size, driving pressure, and perceived gravity level aboard parabolic flights, we probed

the limit from aspherical to highly spherical bubble collapses. Luminescence was detected

for bubbles of maximum radii within the previously uncovered range, R0 = 1.5–6 mm, for

laser-induced bubbles. The relative luminescence energy was found to rapidly decrease as

a function of the bubble asymmetry quantified by the anisotropy parameter ζ, which is the

dimensionless equivalent of the Kelvin impulse. As established previously, ζ also dictates the

characteristic parameters of bubble-driven microjets. The threshold of ζ beyond which no

luminescence is observed in our experiment closely coincides with the threshold where the
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microjets visibly pierce the bubble and drive a vapor jet during the rebound. The individual

fitted blackbody temperatures range between Tlum = 7000 and Tlum = 11500 K but do not

show any clear trend as a function of ζ. Time-resolved measurements using a high-speed

photodetector disclose multiple luminescence events at each bubble collapse. The averaged

full width at half-maximum of the pulse is found to scale with R0 and to range between 10 and

20 ns.

4.1 Introduction

As a cavitation bubble undergoes a spherical collapse, it compresses its enclosed gaseous

contents and - presumably - adiabatically heats them to temperatures of several thousands

of degrees, which results in light emission called luminescence [43]. The drive to investigate

luminescence comes from the intense energy focusing at a bubble collapse, which provides

a catalytic host for unique chemical reactions [153, 154], offering potential for cancer ther-

apy [21, 20], environmental remediation [33, 155], and fabrication of nanomaterials [34, 156].

While most past studies have researched sonoluminescence, that is, luminescence from acous-

tically driven bubbles, light emission has also been detected from hydrodynamic cavitation in

engineering flows [157, 158].

Due to the occurrence at the last instant of the collapse, the redistribution of the bubble’s

energy into luminescence, as well as shock waves, microjets, and elastic rebounds (see in-

troduction in Ref. [97]), must be highly sensitive to topological changes in the cavity volume

during the final collapse stage. This represents an important feature, considering that any

anisotropy in the pressure field of the surrounding liquid will result in the deformation of an

initially spherical bubble, inducing a microjet that pierces the bubble and therefore causes it to

undergo a toroidal collapse [122, 143]. The level of compression of the bubble gases is reduced

for even slight bubble deformations, manifested in the weakening of the collapse shock-wave

emissions [94, 159]. Indeed, luminescence has been shown to vary with the proximity of

near surfaces that break the spherical symmetry of the bubble [123, 160, 161]. It has also

been shown that the lack of buoyancy enhances the energy concentration at the final stage of

bubble collapse [91], even for bubbles that are highly spherical and generally assumed not to

be subject to deformation by gravity (maximum bubble radius, R0 ∼ 40 µm at atmospheric

pressure). Bubbles collapsing with pronounced microjets in multibubble fields have been

shown to emit less light (or none) compared to spherically collapsing bubbles [162].

Spectral analyses of luminescence have proposed a wide range of temperatures at a bubble

collapse in water, depending on whether the bubble is trapped in an oscillating acoustic field

(bubble temperatures T > 104 K) [43], induced by a laser pulse (T ∼ 7000–8000 K) [163, 104],

induced by a spark (T ∼ 6700 K) [164], or within a bubble cloud (T < 5000 K) [165, 153].

Recent studies reached 1.4×104 K for an energetic bubble collapse provoked by piezoelectric

tranducers [166] and over 2×104 K for a centimetric bubble expanded by a chemical reaction in

a free-fall tower [167]. Moreover, luminescence spectra from small bubbles (maximum radius
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R0 < 1 mm) show a smooth continuum similar to a blackbody, while spectra of luminescence

from large, laser-induced bubbles (R0 > 1 mm) and multibubble sonoluminescence have

shown emission lines of excited hydroxyl (OH−) bands at 310 nm [168, 161] that have been

associated with aspherical bubble collapses. It is unclear, however, to what extent the spectral

differences in these distinct scenarios are caused by physical or experimental factors, and

a systematic picture of the role of pressure-field anisotropies - and the resulting bubble

deformation - on luminescence is still lacking.

This work presents observations on the luminescence of initially highly spherical, millimetric

bubbles collapsing at different levels of deformation caused by the gravity-induced uniform

pressure gradient. We probe the transition from toroidal jetting bubbles in controlled pressure

gradients to highly spherical bubbles in microgravity and cover a broad parameter space.

Spectral and time-resolved measurements are made on single-cavitation-bubble lumines-

cence from individual collapses of transient, laser-induced vapor bubbles in water, contrasting

with the established single-bubble sonoluminecence, which is normally understood as the

time-averaged light emitted by an oscillating bubble trapped in an acoustic field. It also differs

from the averaged single-cavitation-bubble luminescence, from luminescence of gas bubbles,

and from luminescence of bubbles in liquids doped with noble gas.

4.2 Experimental setup

Figure 4.1 shows a schematic of our experiment. We generate highly spherical bubbles by using

an immersed parabolic mirror to focus a Q-switched Nd:YAG laser (532 nm, 8 ns) in the middle

of a cubic test chamber filled with demineralized water. The water is initially partially degassed

to remove large bubbles from the container boundaries, but we presume the water to be

mostly air saturated. The bubbles are so spherical that the dominant pressure-field anisotropy

deforming the bubble is the gravity-induced pressure gradient [97]. Furthermore, owing to

their high sphericity, these bubbles do not suffer a fission instability, i.e., bubble splitting [106,

104], during their collapse, allowing very large bubbles to compress their enclosed gases

efficiently and luminesce in the absence of external perturbations. We obtain the bubble’s

maximum radius R0 by measuring its collapse time Tc (i.e., half oscillation time) of the bubble

with a needle hydrophone, which detects the passage of the shock waves emitted at the

generation and the collapse of the bubble. The maximum bubble radius is then obtained via

R0 = 1.093Tc (∆p/ρ)1/2 [51], where ∆p = p0 −pv is the driving pressure (p0 being the static

pressure at the height of the bubble and pv the liquid vapor pressure) and ρ is the liquid

density. It is considered unnecessary to correct this relation for the bubble’s asphericity, as

the deformations in this work remain weak. The temperature of the water is recorded with a

thermistor and kept at room temperature (294.2±1 K), and pv is computed for each bubble

individually using the Antoine equation. Simultaneous visualizations of the luminescence,

radial evolution of the bubble, and shock-wave emission are made with an ultrahigh-speed

CMOS camera (Shimadzu HPV-X2) filming at 10×106 frames/s (fps) with an exposure time of

50±10 ns and a back-light LED.
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Figure 4.1: Schematic top view of the experimental setup. Dimensions are given in millimeters.

The time-averaged luminescence spectrum from a single bubble collapse is captured in the

dark by a spectrometer (Ocean Optics QEPro; exposure time, 8 ms). The light emitted during

the bubble collapse is collected using a second, aluminum-coated, immersed parabolic mirror

that reflects it through a fused silica window (for UV transparency) onto another parabolic

mirror outside the test chamber. We chose aluminum-coated mirrors for their good UV

reflection quality. The external mirror focuses the light through a laser-blocking filter onto

the entrance of the optical fiber that leads to the spectrometer. Without the filter the laser

would saturate the measured spectrum despite the spectrometer’s being triggered only after

the bubble generation.

The luminescence spectrum is simultaneously measured with a second high-speed camera

(Photron SA1.1) that has a CCD sensor (in place of the CMOS camera). It is equipped with an

astronomy-quality diffraction grating lens (RSpec, Star Analyzer SA-100) and films at 105 fps

with an exposure time of 10 µs. The reason for using the CCD instead of the CMOS camera

to measure the spectrum is that it guarantees the luminescence to be fully contained in its

exposure time, which the latter cannot. The grating lens, placed between the camera objective

and the CCD sensor, splits and deviates the light one or more diffraction orders located in a

plane perpendicular to the grating lines, thus providing a spectrum on the sensor. A schematic

of the CCD light detection system is shown in Fig. 4.2 along with a typical measured lumines-

cence signal. The reasons behind measuring the spectrum additionally with the camera are

that it fills in the spectral gap in the spectrometer (∼ 500–700 nm) caused by the laser-blocking

filter and, more importantly, corrects the intensity of the spectrum recorded by the spec-

trometer, which is affected by the bubble’s migration away from the parabolic mirror’s focal

point. The bubble’s displacement becomes important, in particular, at higher gravity levels for

large bubbles that experience a strong Kelvin impulse [143] (i.e., the integrated momentum

of the liquid during the growth and the collapse of the bubble [68]). This displacement can

weaken the signal measured with the spectrometer, and therefore it is corrected using the

spectrum recorded by the CCD. The CCD spectrum measurement is unaffected by the bubble’s

displacement, as the luminescence spot stays within the image plane.
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Figure 4.2: Top: Schematic of the CCD luminescence detection system coupled with a diffrac-
tion grating lens. Middle: Typical luminescence signal (zeroth- and first-order spectra) as
recorded by the CCD sensor. Bottom: Corresponding raw spectrum obtained from the pixel
intensities of the image.

The optical path from the luminescence to the spectrometer includes 194 mm water, 6 mm

fused silica, two aluminum-coated parabolic mirrors and the laser filter. To reach the camera’s

CCD sensor, the luminescent light travels through water, acrylic glass, a silver mirror, the

camera lens and the grating lens. The wavelength-dependent transmissions of the various

elements in the optical paths are shown in Fig. 4.3. The calibration of the spectrometer

detector and the absorption and transmission spectra of the various optical components were

provided by their respective manufacturers. Water’s absorption spectrum in the wavelength

range of interest is found in the literature [169]. The spectrum measured by the high-speed

camera with the grating filter was calibrated in-house combining the transfer functions of the

camera and the optical path using a thermal light source placed inside the test chamber at the

location where the bubble was generated. This innovative luminescence measurement system

allows for (i) the collection of a substantial amount of light from the rapid, small, and weak

luminescence of a single bubble collapse, (ii) the capture of a wide spectrum from a single

bubble collapse, including the UV, and (iii) staying far from the bubble so as not to disturb its

dynamics.

Time-resolved measurements of the luminescence pulse are made using the same optical

path as described above for the spectrometer, but by focusing the light onto a high-speed

photodetector (Thorlabs, DET10A/M Si detector) without a laser-blocking filter. The detector
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Figure 4.3: Transmission of light as a function of the wavelength λ for the various elements on
the optical path from the luminescence emission point to the detectors.

has a 1-ns rise time and is sensitive in the 200- to 1100-nm wavelength range. The photode-

tector signal is recorded by an oscilloscope (4-GHz bandwidth), which is triggered using the

hydrophone signal of the collapse shock wave and applying a 25-µs negative delay to account

for the shock-wave propagation over a distance of ∼37 mm to reach the hydrophone after the

bubble collapse.

Three parameters influencing the bubble luminescence can be independently varied in our

experiment: (i) the driving pressure, ∆p ≡ p0 −pv (0.06–1 bar), where p0 is adjusted using

a vacuum pump; (ii) the bubble energy, E0 = (4π/3)R3
0∆p (0.4–28 mJ), adjusted by the laser

pulse energy; and (iii) the constant, uniform pressure gradient, ∇p (=ρg, with the perceived

gravitational acceleration
∣∣g∣∣ varied between 0 and 2 g , where g = 9.81 ms−2), modulated

aboard European Space Agency parabolic flights (the 58th, 60th, and 62nd parabolic flight

campaigns) and on the first Swiss parabolic flight. The interest in using the hydrostatic

pressure gradient to deform bubbles is based on its uniformity in space and time, in contrast

to near boundaries. This is an advantage in particular as it probes the influence of pressure

gradients induced by any other inertial forces in addition to gravity. Moreover, any practical

instance of a smooth pressure field can be approximated to first order by such a uniform

pressure gradient, thus extending the scope of this study to any situation involving bubbles in

anisotropic pressure fields [46, 143]. These variables yield a wide range of maximum bubble

radii, R0 ∼ 1.5–10 mm. Such large bubbles present the advantage of easier resolution of

the time and space scales associated with their collapse, in contrast to, e.g., single-bubble

sonoluminescence experiments. Additional details on the experiment and the parabolic flights

may be found in Ref. [97].

We account for the effect of bubble asphericity due to the gravity-induced pressure gradient

through the anisotropy parameter ζ≡ ∣∣∇p
∣∣R0∆p−1, which is the dimensionless equivalent of

the Kelvin impulse [143, 46, 68]. Here ζ is varied by adjusting the maximum bubble radius R0,
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the driving pressure ∆p, and the pressure gradient
∣∣∇p

∣∣ (through variable gravity). Measuring

at variable gravity allows for the decoupling of the roles of the driving pressure (∆p) and

bubble deformation (ζ), which is important because the expression of ζ for gravity-induced

deformation includes ∆p. The pressure-field anisotropy caused by the nearest boundary in

our experiment is considered with ζ=−0.195γ−2 (which represents the dimensionless Kelvin

impulse for bubbles near boundaries [143]), where γ is the standoff parameter γ= s/R0 and

where s = 55 mm is the distance between the bubble center and the parabolic mirror. The

resultant ζ is given by the vector sum of the respective directional ζ. We expect luminescence

to vary with ζ, since an increasing ζ implies stronger bubble deformation, which, in turn,

affects the different events associated with the bubble collapse, such as microjets [143, 46]

and shock waves [94, 159].

4.3 Spectral analysis in variable gravity

Selected images of high-speed movies visualizing luminescing bubbles of the same energy

E0 collapsing at different levels of ζ at normal gravity are shown in Fig. 4.4. The bubble

interface, the luminescence, and the sharp shock waves are captured in the same movie, owing

to the short exposure time (50 ns). We observe a weakening of the luminescent flash with

increasing ζ. One may also see a pronounced deflection of light near the bubble wall in the

frames preceding the luminescence, which is due to the pressure rise in the surrounding liquid

predicted by Lord Rayleigh a century ago [51]. At ζ= 3.8×10−3 there is no visible luminescence

and the bubble’s deformation is clearly manifested by the emitted shock wave(s) no longer

being spherically symmetric.

The luminescence spectrum is well approximated by the blackbody model [104, 170], and

since the bubble temperature cannot be directly measured, a fitted blackbody provides a

reasonable estimation for it. The effective blackbody temperature and energy of luminescence

can be inferred by fitting the spectra with a Planckian function of the form

L(λ, I ,Tlum) = A
I

λ5

1

exp
(

hc
λkB Tlum

)
−1

[J/nm] (4.1)

where λ is the wavelength, h and kB are the Planck and Boltzmann constants, respectively,

c is the speed of light, A is a constant prefactor determined from calibration, Tlum is the

blackbody temperature, and I stands for the product of the luminescence pulse duration and

the projected emitting surface (which cannot be disentangled with the spatial and temporal

resolution of our apparatus). The best-fit values are obtained by fitting Eq. (4.1), after correct-

ing it for the absorption losses in Fig. 4.3, with the measured raw spectra through maximum

likelihood for the pair (Elum,Tlum), where Elum = I T 4
lum is the luminescence energy through the

Stefan-Boltzmann law. The estimated standard error of the maximum likelihood fit is obtained

from the covariance matrix (estimated via the inverse of the Hessian matrix) representing the

goodness of fit to the data. Figure 4.5 displays a typical measured luminescence spectrum
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Figure 4.4: Visualization of luminescence emitted at the final collapse stage of a single cavita-
tion bubble at various ζ. The luminescent flash is visible in the middle frame and followed by
the rebound. The interframe time is 100 ns, the exposure time is 50 ns, and the black line in
the top panel shows the 1-mm scale. The bubble energy is the same in all cases (E0 ≈ 27 mJ)
and ζ is varied by adjusting the driving pressure, from top to bottom, as ∆p = 98, 78, 58, 48, 28,
and 18 kPa, yielding maximum bubble radii of R0 = 4.1, 4.3, 4.8, 5.1, 6.1, and 7.1 mm. These
bubbles were imaged on-ground at normal gravity.

from a single bubble collapse.

We estimate the total luminescence energy Elum by assuming a uniform light emission in the

solid angle of 4π. In this way, 6.7% of all the photons are expected to reach the calibrated spec-

trometer detector. We use as a reference a highly spherical bubble collapsing in microgravity,

which is assumed to undergo no displacement from the focal point of the parabolic mirror.

Figure 4.6(a) shows the luminescence energy Elum, obtained through the best Planckian

fit, as a function of the maximum bubble radius R0 for three different ranges of driving

pressure ∆p. Only bubbles collapsing highly spherically (ζ< 7×10−4) have been selected in

order to exclude deformation-induced hindering of the luminescence, and the data include

bubbles collapsing in microgravity. The maximum radii are within the range R0 = 1.5–3.5 mm,

which, to our knowledge, extend to the largest reported laser-induced luminescing bubbles

collapsing freely and spherically in water. As expected, one may observe an increase in Elum

with increasing R0 for a fixed ∆p, the tendency being consistent with the literature [123,

106, 160]. In the literature, however, a decrease in luminescence energy for laser-induced

bubbles with increasing maximum radii beyond R0 ≈ 1.5 mm has also been reported [160].

This is likely attributed to the use of less pointlike focusing methods (e.g., converging lens)

that yield bubbles that are more disturbed in the collapse phase and cause, e.g., bubble

splitting [106, 163], such disturbances being enhanced for increasing bubble radius. Bubbles

with R0 > 3.5 mm in our experiment are affected by the nearest surface, i.e., the parabolic

mirror at a distance of 55 mm from the bubble center, which is accounted for in ζ.
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Figure 4.5: Typical luminescence spectrum from a single bubble collapse, measured with a
spectrometer with an exposure time of 8 ms and a high-speed CCD camera with an exposure
time of 10 µs. Both raw and calibrated spectra are shown, together with the fitted Planckians.
Window averages (WAs) of 20-nm windows are also displayed. The peak around 532 nm is
caused by the strong laser pulse despite the > 99% attenuation of the filter. Here R0 = 3.0 mm,
∆p = 78 kPa, and

∣∣g∣∣= 1 g .

For a given R0, a lower ∆p yields weaker luminescence, which is expected since Elum ∝ E0 =
(4π/3)R3

0∆p [171, 163]. Figure 4.6(b) verifies this relation but still suggests slightly weaker

luminescence energies for bubbles collapsing with a lower ∆p. This result is consistent with

the past observation of more energetic luminescence from bubbles collapsing at higher static

pressures for a fixed E0 [171]. Bubbles at a low ∆p have a longer collapse time and thereby

an increased surface area and interaction time, possibly yielding increased energy loss by

thermal conduction or mass flow by nonequilibrium evaporation or condensation at the

bubble wall [171].

The important scatter of our results is due to the limited reproducibility of the luminescence.

We find the spectral intensities between individual bubbles under the same conditions to

vary by approximately 45%, while the maximum bubble radii vary by less than 1%. These

brightness fluctuations are likely related to the microscopic size of the luminescent plasma,

which makes it highly sensitive to minor perturbations and easily obscured by nuclei and

impurities in the water.

Figure 4.7 displays three examples of typical spectra of single-cavitation-bubble luminescence,

with the only varying parameter being the perceived gravity level (0 g , 1 g , and 1.8 g ). It is

evident that the gravity-induced pressure gradient quenches the single-cavitation-bubble

luminescence energy. Surprisingly, on none of the raw spectra do we observe a prominent peak

corresponding to OH− or other emission lines at any wavelength, even for the most deformed

75



Chapter 4. Luminescence

0 1 2 3 4

R0 [mm]

0

20

40

60

80

100

E
lu
m
[µ
J
]

∆p = 70-90 kPa
∆p = 50-70 kPa
∆p = 30-50 kPa

(a)

0 2 4 6 8 10 12

E0 [mJ]

0

20

40

60

80

100

E
lu
m
[µ
J
]

∆p = 70-90 kPa
∆p = 50-70 kPa
∆p = 30-50 kPa

(b)

Figure 4.6: Luminescence energy Elum as a function of (a) the maximum bubble radius R0 and
(b) the bubble energy E0 for three ranges of driving pressures ∆p. Each point corresponds to a
measurement from a single, spherical collapse (ζ< 7×10−4).

luminescing bubbles. This could, however, be due to the limited wavelength-resolution of our

apparatus.

To quantify the fraction of the bubble energy dissipated into luminescence, we normalize the

luminescence energy Elum to the bubble energy E0. We only retain cases where luminescence

is detected by both the spectrometer and the CCD camera. Note that the CCD signal helps

correcting the spectrum of the spectrometer if the bubble moves out of the focal point of the

parabolic mirror during its collapse. The dependence of the relative luminescence energy

on the anisotropy parameter ζ is displayed in Fig. 4.8(a). Here ζ is altered by a wide range of

R0, g, and ∆p in order to disentangle their respective effects on luminescence from that of

the bubble deformation. The maximum ∆p was achieved when the test vessel reached the

aircraft cabin pressure, i.e., p0 ≈ 80 kPa. The results show a rapid quenching of the relative

luminescence energy with increasing ζ. Luminescence takes up to approximately 1% of the

bubble’s initial energy. The rest of the bubble’s energy is distributed predominantly into shock-

wave emission and the formation of a rebound bubble for spherically collapsing bubbles [48].

Owing to microgravity, we are able to create large bubbles, which in normal gravity would be

deformed, that collapse highly spherically at low ∆p and emit luminescence. Correspondingly,

higher gravity levels allow us to stretch the range of ζ to higher values for a given ∆p. Up to the

scatter, the data points exhibit a linear trend on a logarithmic scale as a function of ζ regardless

of the gravity level. Luminescence is not detected by the spectrometer for anisotropy levels

beyond ζ≈ 3.5×10−3, which corresponds to the same Kelvin impulse at γ≈ 7.5 for bubbles

deformed by neighboring surfaces [143]. Note that we only obtain reliable fitted blackbody

energies, which require the CCD signal, up to ζ≈ 1.8×10−3 [in Fig. 4.8(a)], due to the poor

signal-to-noise ratio of luminescence from more deformed bubbles.

Figure 4.8(b) displays our best-fit estimates of the bubble’s blackbody temperatures as a
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Figure 4.7: Single-cavitation-bubble luminescence spectra at three gravity levels for the same
laser pulse energy (R0 = 3±0.1 mm) and static pressure of the water (p0 = 81±1 kPa). Each
spectrum is measured at a single bubble collapse.

function of ζ. We obtain reliable fitted blackbody temperatures, which only require the

spectrometer signal, up to ζ ≈ 2.5×10−3. The temperatures fall in the range Tlum = 7000–

11500 K, which is in good agreement with previous laser-induced bubble luminescence studies,

in which the temperatures from averaged spectra varied between 7680 K (close to a solid

surface) and 9150 K (at elevated ambient pressure) [163, 161]. This range, however, is attributed

to the important scatter (which is expected owing to the experimental and fitting errors) rather

than a clear relationship with the governing parameters. The highly spherical bubbles with

the highest luminescence energies do not exhibit higher blackbody temperatures than the

luminescing deformed bubbles. This result is in disagreement with the observations of Brujan

and Williams [163], who found the temperatures (estimated from averaged spectra) to decrease

with decreasing distance between the bubble and a rigid boundary, that is, with increasing

bubble deformation.

4.4 Time-resolved measurements

The luminescence pulse duration for spherically collapsing laser-induced cavitation bubbles

has been shown to be on the nanosecond scale and to scale with the maximum bubble

radius R0. For example, for R0 = 0.3 mm, the full width at half-maximum (FWHM) has been

measured as τ ≈ 3 ns [106, 163]; for R0 = 1 mm, τ ≈ 6–8 ns [160, 163]; and for R0 = 1.8 mm,

τ≈ 10 ns [160]. Centimetric bubbles generated by a spark or expanded through a chemical

reaction may luminesce for tens of microseconds [164, 167]. Owing to the high sphericity of

the initial plasma generating the bubble, large bubbles in our experiment (R0 > 2 mm) are

able to collapse spherically without bubble splitting decreasing the efficiency of the final gas

compression. We therefore expect the luminescence pulse durations here to exceed those

reported in the literature for laser-induced bubbles.

77



Chapter 4. Luminescence

0 0.5 1 1.5 2 2.5 3

ζ ×10−3

10−4

10−3

10−2

E
lu
m
/E

0

10

20

30

40

50

60

70

0 g
1 g
1.8 g

0 0.5 1 1.5 2 2.5 3

ζ ×10−3

0

0.2

0.4

0.6

0.8

1

1.2

T
lu
m
[K

]

0 g
1 g
1.8 g

×104

∆p [kPa]

(a)

(b)

Figure 4.8: Single-cavitation-bubble luminescence (a) relative energy Elum/E0 and (b) black-
body temperature Tlum as a function of the anisotropy parameter ζ. Each data point represents
a single bubble measurement. Colors indicate driving pressures and symbols indicate different
levels of gravity. Error bars indicate the ±σ uncertainty of the best-fit estimate of the blackbody
temperature, while the error for the Elum/E0 estimate is small (σ∼ 10−5).

Figures 4.9(a)–4.9(f) show waterfall plots of 20 photodetector signals measured from single

bubble collapses with a fixed bubble energy E0 ≈ 22 mJ and at different driving pressures ∆p.

The signals are sorted so that the peak amplitudes are in descending order from bottom to

top. Here t = 0 µs corresponds to the instant at which the hydrophone detects the collapse

shock, which has propagated a distance of 37 mm from the bubble. It should be noted that the

amplitudes of the photodetector signals are not corrected for the bubble displacement. All

photodetector measurements are made on-ground at normal gravity. The standard deviation

of the maximum peak timing with respect to t = 0µs ranges from 8 to 12 ns. Consistent with the

spectral analysis in Sec. 4.3, the energy of the luminescence signals decreases with increasing

ζ. The number of peaks in the photodetector signals varies between one and four, suggesting

multiple events yielding light emission. Similar peaks have been observed in the past in

photomultiplier tube measurements for both single and multiple bubble collapses [160, 172].

Such multiple peaks are often randomly distributed in time with respect to the strongest peak,
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Figure 4.9: Waterfall plots of the luminescence signals measured by the photodetector for
different driving pressures: (a) ∆p = 98 kPa (R0 = 3.8 mm, ζ = 7.8×10−4), (b) ∆p = 78 kPa
(R0 = 4.0 mm, ζ= 9.0×10−4), (c) ∆p = 68 kPa (R0 = 4.2 mm, ζ= 9.9×10−4), (d) ∆p = 58 kPa
(R0 = 4.5 mm, ζ= 1.1×10−3), (e)∆p = 48 kPa (R0 = 4.7 mm, ζ= 1.3×10−3), and (f)∆p = 38 kPa
(R0 = 5.1 mm, ζ= 1.6×10−3). E0 ≈ 22 mJ. Each plot contains 20 signals. The scaling shown in
(a) is the same in all plots. Here t = 0 µs corresponds to the instant at which the hydrophone
detects the collapse shock. The standard deviations for R0 and ζ are σR0 ≈ 0.03 mm and
σζ ≈ 1.5×10−5, respectively. Measurements were made at normal gravity.
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which, for the majority of cases, is the last event. Figures 4.9(a)–4.9(c) show signals with up to

two peaks, and at lower driving pressures [Figs. 4.9(d) and 4.9(f)], where the amplitudes have

substantially decreased, even three or four peaks may be observed. The luminescence events

occur within a time frame of approximately 200 ns.

Figures 4.10(a)–4.10(l) show the averages of the photodetector signals at three driving pressures

(∆p = 98, 58, and 38 kPa) and at four bubble energies (E0 = 22, 15, 9, and 5 mJ). Each maximum

peak is set to t = 0 ns when the averaging is performed. The range covered by the individual

signals and the standard deviations are also displayed. The more energetic bubbles show

multiple peaks [Figs. 4.10(a)–4.10(f)], while at lower energies luminescence is measured as a

single peak [Figs. 4.10(g)–4.10(l)]. Figures 4.10(c) and 4.10(j) display signals with similar peak

amplitudes, yet the high-energy bubble collapsing at low pressure yields multiple peaks while

the low-energy bubble collapsing at atmospheric pressure yields a single peak. Figures 4.10(d)

and 4.10(h) display signals for bubbles with the same maximum radius but with different

energies, and, again, the higher-energy bubble yields more prominent additional peaks than

the low-energy one. However, we find no clear correlation between the number, amplitudes,

or timings of the peaks and the bubble’s asphericity.

Figures 4.11(a) and 4.11(b) show the measured luminescence durations as the FWHM and

the full width, which are extracted directly from the average of 20 individual photodetector

signals. The full width here is defined as the duration of the averaged signal above 1% of

its peak amplitude (the noise in the averaged signals has been smoothed out sufficiently

not to affect this low threshold). In order to complete the graph for previously measured

luminescence durations for smaller laser-induced bubbles, FWHM data from Baghdassarian

et al. (1999) [106] and from Ohl (2002) [160] are included for purposes of comparison. The

trend for the duration of these large bubbles remains similar to that for the previously reported

smaller bubbles, that is, approximately linear as a function of R0. While past research has

suggested that the pulse duration increases for bubbles collapsing at higher pressures [163]

and for bubbles deformed by a neighboring surface [160], the direct roles of ∆p and ζ on the

pulse duration in our results are unclear. In particular, luminescence durations at ∆p = 38 kPa

seem to be outliers from the general trend, with the FWHM remaining almost constant for

R0 = 3–5 mm.

Finally, a typical example of an ultra-high-speed CMOS camera recording of the luminescence

is shown in Fig. 4.12 where luminescence events are visible in the visualization with a backlight

illumination [Fig. 4.12(a)] and in the dark [Fig. 4.12(b)] for a relatively deformed bubble.

Figure 4.12(b) shows the luminescent flash in the dark in two frames and thereby implies that

the total luminescence event duration here exceeds the interframe time of 100 ns, consistent

with the photodetector measurements [see Fig. 4.11(b) for R0 ≈ 5 mm]. The images here likely

only capture the beginning and the end of the light emission, while the peak intensity occurs

between the images (the exposure time 50 ns covers only half of the interframe time). In

fact, the CMOS camera systematically captures the luminescent flash in two or even three

consecutive frames and occasionally gets saturated. We also observe an upward shift of
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Figure 4.10: Mean of 20 luminescence signals measured by the photodetector for different
bubble energies - (a)–(c) E0 = 22 mJ, (d)–(f) E0 = 15 mJ, (g)–(i) E0 = 9 mJ, and (j)–(l) E0 = 5 mJ
and three driving pressures: ∆p = 98, 58 and 38 kPa. The ranges covered by the individual
signals and the standard deviations are also displayed. Here t = 0 ns corresponds to the
maximum peak.
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Figure 4.11: (a) Full width at half-maximum (FWHM) and (b) full width (FW; with 1% of the
peak amplitude as threshold) of the luminescence as a function of R0. The durations were
extracted directly from the averaged photodetector signals of 20 bubbles. FWHM data at
atmospheric pressure from Baghdassarian et al. (1999) [106] and from Ohl (2002) [160] are
shown for reference.
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Figure 4.12: Images of the luminescence emission of a bubble collapsing at ∆p = 38 kPa and
normal gravity (R0 = 5.1 mm, ζ= 1.3×10−3) captured with an ultra-high-speed CMOS camera:
(a) with a backlight LED and (b) in the dark. The black barin the leftmost panel shows the
1-mm scale. The interframe time is 100 ns and the exposure time is 50 ns. The contrast and
brightness of the images have been adjusted to optimize the visual clarity of events.

the light spot in the images in Fig. 4.12(b). This might be expected, because according to

momentum conservation, most of the bubble’s translational motion upon its nonspherical

collapse occurs during its last collapse and early rebound stages, when the luminescence is

emitted. The bubble centroid’s upward displacement during the collapse is clearly visible in

Fig. 4.12(a).

4.5 Discussion

The results presented here provide insight into how the topological changes in the cavity vol-

ume from a spherical to a jetting bubble affect the degree of adiabatic heating. Luminescence

has an appreciable sensitivity to even the finest pressure-field anisotropies in the liquid caused

by the gravity-induced pressure gradient. The threshold beyond which luminescence is no
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Figure 4.13: Illustration of the possible effect of the bubble’s surface perturbations on its
gas compression. Sketches of shapes at the final collapse stage for a bubble (a) with surface
perturbations, (b) with a downward jet induced by a uniform pressure gradient, and (c) with a
downward jet induced by a neighboring free surface.

longer observed, ζ≈ 3.5×10−3, is close to the limit where we start observing jetting bubbles in

our experiment (ζ∼ 10−3), the latter, however, being a limit that is difficult to define with pre-

cision. Considering a bubble deformation by nearby boundaries yielding an identical Kelvin

impulse [γ= (
0.915ζ−1

)1/2
[143], where, equivalently, γ= s/R0, s being the distance between

the bubble and the boundary], the threshold at which we no longer detect luminescence here

would be equivalent to a bubble collapsing at a distance of 7.5 times its maximum radius from

the boundary. This limit disagrees with previous studies on luminescence from laser-induced

bubbles deformed by near boundaries, where the equivalent limit is much lower, e.g., γ∼ 3.5

in Refs. [123] and [163] (corresponding to ζ∼ 0.016). This discrepancy is possibly attributed

either to different sources of deformations yielding different levels of gas compression, or

to the sensitivity of luminescence to the initial bubble sphericity. The latter hypothesis is

supported by our previous observation that the level of deformation at which a microjet visibly

pierces the bubble and drives a vapor jet during the rebound for bubbles deformed by near

surfaces in our experiment (ζ ≈ 10−3 or γ ≈ 14) is also significantly lower compared to the

literature (typically γ≈ 5) [143]. Likewise, we have recently measured the shock-wave energy

to start being sensitive to ζ at longer distances away from surfaces (γ ≈ 8 [159]) compared

to the literature (γ ≈ 3 [94]). As mentioned earlier, lens-based bubble generation systems,

in contrast to the use of a high-convergence parabolic mirror, produce bubbles with higher

surface perturbations that are amplified during the last collapse stage [107]. Consequently, a

potential microjet, which can be regarded as the lowest-order deviation from a sphere and is

thus most effective at inhibiting the final gas compression, may be masked by more important,

higher-order perturbations. This could make the bubble experience a collapse that perhaps

more effectively compresses the gas and that is less susceptible to external factors, possibly

even appearing spherical. This hypothesis is illustrated in Fig. 4.13.

However, luminescence can also occur for jetting bubbles, as has previously been shown

for bubbles deformed by a neighboring surface [123], for acoustic cavitation bubbles in

multibubble fields in xenon-saturated phosphoric acid [162], and for xenon gas bubbles

collapsed by a passing shock wave [173]. A possible reason for our not observing light emission

for bubbles that produced clear gravity-driven “vapor jets” upon rebound could be linked to
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the characteristic shape that the bubble assumes at the moment of the jet piercing. We have

previously shown that, according to potential flow theory, the gravity-induced deformation

yields a broad jet whose shape is very similar to that of the bubble wall it pierces [143], and

thereby the gas compression after the jet impact becomes particularly weak [see Fig. 4.13(b)].

In contrast, when the bubble is deformed by a neighboring rigid or a free surface, at certain

ranges of ζ, potential flow theory predicts small vapor “pockets” remaining between the jet

and the opposite bubble wall upon the first contact of the jet with it [143], such as in the

illustration in Fig. 4.13(c). We have previously observed luminescence from the location at

which the jet pierces the bubble wall for bubbles collapsing near a free surface, as shown

in Fig. 4.14 (adapted from Ref. [159]). This is due to the contact between the jet and the

opposing wall being more irregular, which is characteristic of bubbles near free surfaces. The

jet thus divides the bubble into multiple separate segments, one of which is a vapor pocket

between the jet and the opposite wall that is individually able to collapse in an almost spherical

way, which, in turn, yields an effective compression. This hypothesis is supported by our

previous observations where such vapor pockets emitted strong shocks for bubbles near a

free surface [159]. However, we are unable to temporally distinguish the jet impact from the

individual collapses of the remaining bubble segments at a low enough ζ for luminescence to

still be visible. It would be interesting in the future to study more thoroughly the effect of the

bubble shape on luminescence by varying this shape with different sources of deformation

(e.g., comparing different surfaces and gravity) in a single setup.

A surprising finding is that the spectroscopically estimated blackbody temperatures of lumi-

nescence barely vary with the different levels of bubble deformation [Fig. 4.8(b)], while its

energy varies by two orders of magnitude [Fig. 4.8(a)]. We do not exclude the possibility that

the scatter of the data, partly caused by the fitting error, hides a possible weak variation of the

blackbody temperature with ζ. However, it could also be due to the fact that as the radiation

power scales as T 4
lum, any attempt to increase Tlum immediately results in an accelerated loss

of energy by radiation. Another potential physical reason could be the presence of water vapor

which increases the heat capacity ratio [174, 175, 43]. It has been shown numerically that for

sonoluminescent bubbles that have compression ratios beyond R0/Rmin ∼ 20, water vapor

starts affecting the power-law increase in the maximum temperature with the compression

ratio, finally asymptoting to Tlum ≈ 10000 K [174]. It is difficult to measure the minimum

bubble size in our experiment because the luminescence and the light deflection caused by

the pressure rise in the surrounding liquid “hide” the bubble in the last stage of the collapse

(see images in Fig. 4.4). However, when choosing the luminescent flash size as the minimum

radius, we get compression ratios R0/Rmin > 40, which is already in the regime where vapor

affects the heating.

The noncondensible gas trapped inside the bubble plays a key role in luminescence emission.

We believe that the bubble contains (i) vapor, of which the partial pressure is assumed to stay

at the liquid vapor pressure pv during most of the bubble’s lifetime; (ii) the laser-generated gas

(demonstrated in Ref. [37]), which we assume to depend on the energy deposited by the laser

to generate the bubble, that is, to be proportional to Elaser ∝ E0 ∝ R3
0∆p; and (iii) the diffused
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Figure 4.14: Luminescence emission at the location of jet impact for a bubble collapsing near
a free surface. R0 = 4.1 mm, γ= 7.2. The interframe time is 100 ns and the black bar in the
top-left panel shows the 1-mm scale. The microjet is directed downwards. Adapted from
Ref. [159].

gas from the water to the bubble, which depends both on the total bubble surface during its

lifetime, which is proportional to R3
0∆p1/2, and on the diffusion-driving pressure ∆p. Each of

these likely contributes to the noncondensible gas, which is difficult to measure directly. The

laser-generated and diffused gases are both proportional to the bubble’s maximum volume,

while they may depend on∆p to a different extent. A method has been proposed by Tinguely et

al. [48] to estimate the initial partial pressure of the noncondensible gas pg0 by fitting the

Keller-Miksis model [61] to the observed rebound. Applying this method to the observed

radial evolution of spherically collapsing bubbles at various ∆p values in microgravity, we can

estimate the variation of pg0 as a function of ∆p. Our preliminary results find that pg0 remains

almost constant (pg0 ≈ 4 Pa) for the range of ∆p covered here, differing less than the standard

deviation, as illustrated in Fig. 4.15. Furthermore, the luminescence energy data obtained in

this range of ∆p in Fig. 4.8 suggest that the bubble’s deformation (ζ) is the dominant source

of luminescence energy hindering rather than ∆p, even though a weak dependence on the

latter may exist. Figure 4.6, which shows luminescence energies as a function of the bubble

energy at different ∆p’s, however, suggests some additional dependence of the luminescence

energy on ∆p. A systematic study with a controlled gas content of the water, preferably in

microgravity to remove the effect of bubble deformation by gravity, would be useful to clarify

the effect of noncondensible gas on luminescence and on other bubble collapse phenomena.

Finally, it would be interesting to understand the physics behind the multiple luminescence

emission events that are measured by the photodetector (Figs. 4.9 and 4.10). These peaks show

considerable fluctuations in their numbers, amplitudes, shapes, and timings. The timing of

the strongest luminescence event with respect to the emission of the collapse shock wave is

remarkably reproducible, varying by only ∼ 10 ns (Fig. 4.9). The finding that larger bubbles

emit more peaks than smaller ones is consistent with the literature, although the bubble

sizes reported in the past were much smaller overall and multiple peaks were observed for

bubbles with R0 < 2 mm [160]. The discrepancy between our observations (single peak for

R0 < 3 mm) and the past literature is, again, likely due to the high initial sphericity of the bubble

in our experiment. The multiple peaks could be associated with different hot spots, which
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Figure 4.15: Averaged initial partial pressure of the noncondensible gas, estimated by fitting
the Keller-Miksis model to the observed rebound radial evolution, as a function of the driv-
ing pressure ∆p. The data contain bubbles of different radii (1–3.5 mm) collapsing highly
spherically (ζ< 0.0007), and error bars show the standard deviation.

could be the result of an inhomogeneous bubble interior or bubble splitting, as suggested by

Ohl [160]; this would indeed be strongly affected by the initial bubble sphericity. They could

also be linked to plasma instabilities, to minor impurities trapped within the bubble, or to the

potential formation of a “hidden” (nonpiercing) microjet, which is challenging to verify since

the levels of deformations here are so weak.

4.6 Conclusion

In this work, we have captured broad spectra of single-cavitation-bubble luminescence from

individual collapses using an innovative measurement technique. We have measured lumines-

cence from a previously uncovered range of maximum radii (R0 = 1.5–6 mm) of laser-induced

bubbles, thanks to their high initial sphericity. The bubbles were controllably deformed from

highly spherical to jetting bubbles under the effect of the gravity-induced hydrostatic pressure

gradient. The deformation was quantified with the dimensionless anisotropy parameter ζ,

which was adjusted via the maximum bubble radius, driving pressure, and variable gravity

aboard parabolic flights. We found a rapid decrease in the relative luminescence energy

Elum/E0 with ζ. No clear variation of the fitted blackbody temperature, which ranged between

Tlum = 7000 and Tlum =11500 K, as a function of ζ or the driving pressure was found. The

threshold of luminescence approximately coincides with the ζ at which we start observing

vapor-jets in our experiment. The light emission is found to be nonuniform in time for the

most energetic bubbles, as multiple events are detected in the time-resolved measurements

by a photodetector, while low-energy bubbles emit single luminescence peaks. The lumi-

nescence events were found to occur in a time frame of 200 ns. The FWHM of the averaged

luminescence signal scales with R0 and is generally of the order of 10–20 ns.
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5.1 Conclusion

In this thesis, the most powerful phenomena taking place during the collapse of cavitation

bubbles, namely micro-jets, shock waves, and luminescence, were investigated for various

levels of bubble deformation. An interesting feature of these results is that they have combined,

for the first time, orders of magnitude of parameter space in bubble energy, pressure, size and

asymmetry in a single perspective. The different collapse phenomena have been measured

simultaneously, thus allowing for the reconstruction of the full energy budget of a single

bubble, and a theoretical framework (both numerical and analytical) has been established to

understand and interpret the collapse properties measured from all these data.

Firstly, to define a rigorous way to quantify the level of a collapsing bubble’s deformation

caused by different sources of pressure field anisotropy, a detailed analysis on the formation

of micro-jets was carried out. Ultra-high-speed visualisations captured the micro-jets, driven

by a nearby rigid or a free surface or by the hydrostatic pressure gradient, propagating through

the bubble interior and, sometimes, disintegrating within the rebound. The micro-jets were

qualitatively divided into three visually distinct regimes: weak, intermediate and strong jets.

Such classification was complemented quantitatively through delicate measurements of some

of the key observables characterising these jets, such as the jet speed, jet impact timing,

bubble centroid displacement, bubble volume at jet impact, and the vapour jet volume.

The observations were supported by numerical simulations based on potential flow theory

(boundary integral method). Interestingly, upon normalisation, these observables reduced to

straightforward functions of the anisotropy parameter ζ, which represents a dimensionless

version of the Kelvin impulse. Outside the strong jet regime, all of these functions could be

approximated by useful power laws of ζ irrespective of the micro-jet diver. This behaviour was

explained through analytical arguments.

Secondly, we investigated the shock wave emission from bubbles collapsing with varying levels

of deformation. Detailed time-resolved observations of the multiple shock emission, which

was associated with the jet impact-induced water hammer upon piercing the bubble and with

the individual collapses of the different bubble segments, were performed using simultaneous
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high-speed imaging and hydrophone pressure measurements. Combining statistical analysis

on a large number of data with theoretical arguments, we developed semi-empirical models

approximating the peak pressures and energies of the shock waves as a function of ζ.

Finally, luminescence properties from bubbles deformed by the hydrostatic pressure gradient,

modulated in variable gravity aboard parabolic flights, were explored as a function of ζ. An

innovative luminescence measurement system was developed involving the simultaneous

uses of a spectrometer and a high-speed CCD camera equipped with a diffraction grating

lens. Such a system, combined with a bubble generation technique allowing for large bubbles

to collapse spherically, is able to capture the spectra (300-900 nm) of the light emitted at

individual bubble collapses. We found rapid quenching of luminescence energy as a function

of ζ regardless of the gravity level, yet the fitted blackbody temperatures did not vary in a clear

manner as a function of the governing parameters.

Overall, the Kelvin impulse has proven to be a valuable concept in describing the dynamics

of non-spherically collapsing bubbles. The use of its dimensionless equivalent ζ implies

approximating any pressure field by a uniform, stationary pressure field, which is justified

if the characteristic time-scales are on the order of - or larger than - the bubble’s Rayleigh

collapse time. These results contribute to the understanding of different cavitation effects in

known pressure fields and may serve as an exquisite benchmark for numerical simulations.

5.2 Perspectives

The final collapse phenomenon that was not discussed separately in this thesis is the rebound

bubble. Despite rebounds not directly demonstrating interesting damaging properties similar

to the other collapse events, knowing their dynamics as a function of the bubble deformation

is important. This is because a considerable amount of the bubble’s energy may go to the

rebound’s formation. Rebound bubbles may find themselves closer to surfaces than their

‘mother’ bubbles that have migrated towards the surface during their oscillation, and the

subsequent collapse of these rebounds may be more damaging to the surface compared to the

first collapse because of this proximity. Furthermore, our preliminary results suggest that, at a

certain range of ζ, the shocks emitted at the second collapse can be more energetic compared

to the first collapse (also previously observed in ref. [94]).

Further research should be done to quantify the amount of non-condensible gas inside the

bubble. The bubble interior is affected by diffusion, condensation and accelerations, and

require thorough modelling to obtain accurate predictions. With a controlled and monitored

gas content of the liquid, one could assess the role and contents of the non-condensible gases

within the bubble, and their effect on the different collapse phenomena.

It would be interesting to expand the predictive models presented in this work to other sources

of bubble deformation, such as travelling compression waves, neighbouring oscillating bub-

bles, or directed focused ultrasound. Defining an anisotropy parameter ζ for such highly
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time-dependent events is challenging, possibly requiring to determine a time-averaged ‘effec-

tive’ pressure gradient. Also, predicting the dynamic properties of bubbles collapsing near (or

confined within) complex geometries would be useful.

Since cavitation has recently been given increasing importance in medical applications, a

predictive framework, similar to the one presented in this work, for bubbles in medical

environments, such as in blood vessels or organic tissues, would be useful. This could be done

by experimenting with single bubbles in non-Newtonian liquids similar to body fluids, near

and within elastic structures (gels, sponges) and confinements (blood vessel-like structure),

with varied gas contents, and within bubble clouds.

Finally, using Background-Oriented Schlieren [176], which has already been applied to measur-

ing the shock waves generated by laser-induced bubbles [177, 178], one could experimentally

quantify the pressure build-up occurring in the liquid around a spherically collapsing bubble

during the latter’s last phases of collapse (discussed in section 3.3.1). It would be interesting to

determine how well Rayleigh’s incompressible model predicts the pressures, which, in this

model, are solely dependent on the compression ratio of the bubble, R0/R, and the driving

pressure ∆p. Also, a systematic study on how the deformation affects this pressure build-up

could be conducted to better understand the first shock waves emitted from weakly deformed

bubbles (see figure 3.6). This could clarify the possible connection between the pressure rise

and the shock waves, and their role on, for example, cavitation-induced crystallisation of

liquids [146].
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