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Abstract 

Foraminifera are ubiquitous eukaryotic protists inhabiting all types of marine environments. 

The chemical and isotopic compositions of their carbonate tests are commonly used as proxies for 

paleo-environmental conditions. However, while foraminifera represent a large fraction of the 

meiofauna and could therefore play a significant role in biogeochemical cycles, little is known about 

their biology. For the last 30 years, studies have revealed a wide range of physiological functions and 

metabolic pathways, in both planktic and benthic foraminifera: symbiosis, denitrification, kleptoplasty, 

dormancy, etc. However, the detailed metabolic processes involved in this large variety of physiological 

functions remain poorly understood. 

NanoSIMS, the main analytical technique used in this work, is a powerful analytical technique 

to simultaneously visualize, with a high spatial resolution (  100 nm), and quantify the incorporation 

of isotopically labeled compounds in organisms. In this study, NanoSIMS analysis was combined with 

TEM to investigate the spatio-temporal dynamics of isotopically labeled compound assimilation at a 

sub-cellular scale. 

The first chapter presents an inventory of TEM pictures of the main organelles found in benthic 

foraminifera based on the literature, complemented by new TEM observations of nine benthic species. 

This work is essential to interpret the data of the chapters that follow. Using NanoSIMS combined with 

TEM, the second chapter investigates the heterotrophic metabolism, under oxic and anoxic conditions, 

of the intertidal benthic foraminifera, Ammonia cf. tepida. A sharp decrease of the metabolic activity 

observed in anoxia strongly suggests dormancy in response to the lack of oxygen. The third chapter is 

dedicated to kleptoplasty in benthic species. Incubation with labeled 13C-bicarbonate, 15N-ammonium, 

and 34S-sulfate were made, and the assimilation and fate of these molecules and their metabolites 

within the foraminiferal cell were traced with correlated TEM-NanoSIMS. A number of key 

observations were made: (1) assimilation of inorganic C was shown in the kleptoplastic Haynesina 

germanica under light conditions, but was not observed under dark conditions, indicating a 

photosynthetic uptake via the kleptoplasts. (2) In a different species, Elphidium williamsoni, 

photosynthetic assimilation of inorganic C was also observed, but the observed 13C-enrichments were 

much lower and not found in the same organelles as in H. germanica, indicating differences in the 

metabolic pathways among kleptoplastic species. (3) Assimilation of NH4
+ and SO4

2- was documented 

in both kleptoplastic and akleptoplastic species, strongly suggesting the existence of a cytoplasmic 

pathway for NH4
+ and SO42- assimilation. Thus, the role of kleptoplasts in N and S foraminiferal 

metabolism remains unclear and need further investigations. Finally the last chapter applied a similar 
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protocol to study the C assimilation dynamics in symbiotic dinoflagellates and subsequent transfer the 

planktonic foraminiferal host cell. Dinoflagellates are transferring large amounts of photosynthates to 

the foraminifera, mainly in the form of lipid droplets. 

In conclusion, correlated TEM and NanoSIMS imaging is an efficient tool to study foraminiferal 

metabolism. Through this study it has led to progress in the knowledge of their ultrastructure and 

metabolic pathways, and ultimately shed light on their potential role in the biogeochemical cycles of 

marine ecosystems. 

 

Key words: foraminiferal ultrastructure, dormancy, kleptoplasts, symbiosis, photosynthesis, 

metabolite exchange, NanoSIMS 
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Résumé 

Les foraminifères sont des organismes eucaryotes, protistes, peuplant tous types de milieux 

marins. La composition chimique et isotopique de leur test carbonaté est couramment utilisé comme 

proxy des conditions paléo-environnementales. Cependant, bien que les foraminifères représentent 

une fraction importante de la méiofaune et peuvent donc potentiellement jouer un rôle important 

dans les cycles biogéochimiques, on sait peu de choses sur leur biologie. Durant les trente dernières 

années, des études ont montré un large panel de fonctions physiologiques et de voies métaboliques, 

é la fois chez les foraminifères benthiques et planctoniques : symbiose, dénitrification, kleptoplasty, 

dormance, etc. Or les processus métaboliques impliqués dans ces fonctions physiologiques restent 

méconnus. 

Le NanoSIMS; le principal outil analytique utilisé dans ce travail, est une technique permettant 

de simultanément visualiser (avec une résolution spatiale de l’ordre de 100 nm) et quantifier 

l’incorporation de composés marqués isotopiquement dans un organisme. Dans cette thèse, le 

NanoSIMS sera utilisé en combinaison avec le TEM pour étudier la dynamique spatio-temporelle de 

l’assimilation de composés isotopiquement marqués, et ce à une échelle subcellulaire. 

Le premier chapitre présente un inventaire d’images TEM des principaux organites observés 

chez les cellules de foraminifères benthiques, complété par de nouvelles observations faites sur neuf 

autres espèces benthiques. Ce travail a été essentiel pour l’interprétation des données des chapitres 

suivants. Via l’utilisation du NanoSIMS combiné au TEM, le chapitre 2 étudie le métabolisme 

hétérotrophique, en conditions oxique et anoxique, de l’espèce benthique Ammonia cf. tepida. 

L’observation d’une nette diminution de l’activité métabolique en anoxie suggère fortement la 

dormance comme réponse au manque d’oxygène. Le troisième chapitre est dédié é l’étude des 

foraminifères benthiques kleptoplastes. Les foraminifères ont été incubés en présence de 13C-

bicarbonate, 15N-ammonium, and 34S-sulfate ; et l’assimilation et le devenir de ces composés et de leur 

métabolites dans la cellule du foraminifère a été suivie grâce au NanoSIMS combiné au TEM. Plusieurs 

observations clés ont été faites : (1) l’assimilation de C inorganique a été montré chez l’espèce 

kleptoplastique Haynesina germanica seulement en présence de lumière (pas d’assimilation à 

l’obscurité) ; ce qui indique une assimilation photosynthétique via les kleptoplastes. (2) Chez une 

espèce différente, Elphidium williamsoni, l’assimilation photosynthétique de C inorganique a aussi été 

démontré, mais le 13C assimilé n’a pas été retrouvé dans les mêmes structures que chez H. germanica ; 

ce qui montre des processus métaboliques différents selon les espèces kleptoplastiques. (3) 

L’assimilation de NH4
+ et SO4

2- a été noté chez à la fois chez des espèces kleptoplastiques et non 
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kleptoplastiques, ce qui suggère fortement une voie cytoplasmique pour leur assimilation. De ce fait, 

le rôle des kleptoplastes dans les métabolismes azoté et soufré des foraminifères reste incertain et 

requiert d’autres investigations. Finalement, le quatrième chapitre présente l’application d’un 

protocole similaire pour l’étude des dynamiques de l’assimilation du C par des dinoflagellés 

symbiotiques, et son transfert à la cellule hôte d’un foraminifère planctonique. Les dinoflagellés 

transfèrent une quantité importante de photosynthétas vers le foraminifère, principalement pour y 

être accumulé sous forme de lipides. 

Pour conclure, la corrélation entre l’imagerie TEM et NanoSIMS est un outil approprié pour 

l’étude du métabolisme des foraminifères. Cette étude a mené à de large progrès sur la connaissance 

de leur l’ultrastructure et de leur processus métaboliques, et a finalement mis en lumière leurs rôles 

potentiels dans les cycles biogéochimiques des écosystèmes marins.  

 

Mots-clés : ultrastructure, dormance, kleptoplastes, symbiose, photosynthèse, échange de 

métabolites, NanoSIMS 
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Introduction 

Foraminifera are unicellular eukaryote protists that can be differentiated into three groups 

according to their habitats and life strategies: (i) planktonic foraminifera living in the water column in 

the open sea, (ii) large benthic foraminifera thriving in warm shallow water and bearing photosynthetic 

symbionts, (iii) « small » benthic foraminifera inhabiting the sediment. In this thesis, we will mainly 

focus on « small » benthic foraminifera (lately referred as “benthic foraminifera”). But as the last 

chapter will consider the planktonic foraminifera, they will also be briefly discussed in this literature 

review. 

Foraminifera are ubiquitous in all marine environments, from tropical to polar latitudes and 

from estuaries to the deep-sea (Arnold and Parker, 1999; Murray, 2006). They possess two specific 

features: their granuloreticulopodia, which are anastomosed pseudopods with a granular texture 

when observed at the microscope; and their envelop (called “test”), protecting their cell (Goldstein, 

1999). Foraminifera are usually divided into three major groups according to their test composition: (i) 

organic, (ii) agglutinated, i.e. composed of mineral grains taken from the surrounding environment, 

and (iii) calcareous, i.e. a shell made of calcite secreted by the foraminifera. The latter group is the 

most intensively studied because they are widely used in paleoenvironmental reconstructions (Lea, 

1999; Rohling and Cooke, 1999). The calcite shells produced by foraminifera are found in marine 

sedimentary records since the Ordovician (  290 million years ago). Thanks to their abundance, 

variability and rapid evolution, they are powerful tools for biostatigraphic studies. The study of their 

assemblage composition, their relative taxonomic abundances (different species adapted to specific 

environmental conditions), as well as the elemental (e.g. Mg/Ca) and isotopic (e.g. δ18O) composition 

of their shells are frequently used to reconstruct global climate changes (Lea, 1999; Rohling and Cooke, 

1999).  

Despite the large number of publications about foraminifera as paleoceanographic and 

paleoclimate proxies, little is known about their biology. Only a few biological aspects were studied 

whereas recent discoveries show a huge diversity of life strategies and metabolisms (heterotrophy, 

bacterial and algal symbiosis, kleptoplasty, denitrification, dormancy, etc.). Benthic foraminifera may 

represent up to 50 % of sediment biomass and they constitute an important part of benthic meiofauna 

(Gooday et al., 1992; Moodley et al., 1997, 2000; Snider et al., 1984).  They may play a significant role 

in the biogeochemical cycles, especially carbon and nitrogen cycles (Cesbron et al., 2016; Gooday et 

al., 1990, 2008; Høgslund et al., 2008; Moodley et al., 2002, 2008; Piña-Ochoa et al., 2010a; Woulds et 

al., 2007). The broad conditions under which marine foraminifera live includes zones of O2-depletion 
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(Bernhard and Sen Gupta, 1999; Cesbron et al., 2016; Koho and Piña-Ochoa, 2012), deep-sea sulfidic 

habitats (Bernhard, 2003), hydrocarbon seeps (Sen Gupta et al., 1997; Sen Gupta and Aharon, 1994), 

or transitional environments (Debenay et al., 2000). Over their evolution foraminifera have developed 

many different metabolisms in order to adapt to all the various ecosystems in which they live, and to 

survive the stressful conditions they encounter.



3 
 

Literature review on foraminiferal physiology and metabolism 

 Trophic mechanisms 

Trophic mechanisms are diverse among foraminifera and have been shown to include 

heterotrophy and mixotrophy. The heterotrophy mechanisms discussed below comprise of grazing on 

algal and/or bacterial biofilm, deposit feeding, suspension feeding, carnivory, parasitism, and direct 

uptake of the DOC (dissolved organic carbon). Some foraminifera can possess different trophic 

mechanisms, and even present a complementary autotrophy metabolism if acquired through 

symbiosis: a strategy called mixotrophy. It is also noteworthy that although foraminifera are commonly 

thought to be unable to uptake inorganic nutrients directly; it seems that there is no evidence in the 

literature to support this notion.  

 

 Heterotrophy 

1.1.1 Grazing and deposit feeding 

Grazing, described in shallow-water foraminifera, involves the individual moving across a 

surface and collecting food particles, mainly algal cells, with their pseudopods (Goldstein, 1999). 

Deposit feeders are defined as omnivorous foraminifera that use their pseudopods to gather the 

sediment around them, collecting the food particles (bacteria, algal cells, organic detritus, etc.) in their 

environments (Pascal et al., 2008b). It is observed both in shallow water and deep sea species: the 

shallow water species feeding on fresh microalgae while the deep water species rely on phytodetritus 

sinking to depths they inhabit (Goldstein and Corliss, 1994; Nomaki et al., 2006). These two processes 

are similar and will be discussed in the same section. They both result in a cyst (mound) being formed 

by the foraminifera (Fig. 1.1): in the case of grazing this cyst is made of discarded algal envelops 

(Goldstein, 1999), so it is made after the feeding process. In the deposit feeders the cyst is gathered 

by the pseudopods to construct a feeding cyst made of sediment, then portions of this cyst are then 

ingested by phagotrophy in the terminal chamber of the foraminifera (Goldstein and Corliss, 1994; 

Nyholm, 1957). The ingestion of feeding cyst portion seems to be, at least in some species, a selective 

process where the foraminifera can discriminate food and non-food particles (Langezaal et al., 2005). 

Foraminifera can use both bacteria and algal cells as food sources (Goldstein and Corliss, 1994; Heinz 

et al., 2002; Mojtahid et al., 2011; Nomaki et al., 2005b, 2005a, 2006, 2008). Some species are 

omnivorous and ingest both, this is for example the case of Ammonia sp. (Pascal et al., 2008a, 2009) 

or deep-sea species (Heinz et al., 2002) while other species are selective for specific bacterial strains 



Literature review on foraminiferal physiology and metabolism 

4 
 

or microalgal types (Lee et al., 1966; Lee and Muller, 1973; Muller, 1975; Nomaki et al., 2005a; Suhr et 

al., 2003a). It is interesting to note that in the deposit feeding strategy, some organic detritus are made 

available for foraminifera thanks to bacterial recycling (Levinton, 1979), so bacteria are not only a 

common prey in foraminifera but they are also an important trophic link. Based on an experiment 

showing different ingestion patterns of 13C-labeled bacteria and algae by eight different deep-sea 

species, (Nomaki et al., 2006) defined three main feeding strategies: (i) the phytophagy, i.e. selective 

ingestion of phytodetritus (or fresh algae) by grazing, (ii) the seasonal phytophagy, i.e. ingestion of 

organic matter when no phytodetritus are available (in deep-environments the flux of phytodetritus 

sinking to the bottom is not regular), and (iii) deposit feeding, this category feeds at random on 

sedimentary organic matter.  

 

 

Figure 0.1: Heterotrophic mechanisms in benthic and planktonic foraminifera. A: Grazing by the benthic 
Ammonia cf. tepida (courtesy of E. Geslin). Bottom right: a specimen without surrounding particles, cleaned with 
a fine brush. Top left: a specimen within a cyst made of discarded products. B: Carnivory in the planktonic 
Orbulina universa (courtesy of H. Spero). The foraminifer (black arrow) caught an Artemia salina (brine shrimp, 
white arrowhead) in its pseudopods on the spines, and is digesting it extracellularly. The bright yellow dots on 
the spines are symbiotic dinoflagellates (see section 1.2.1). Scale bar: 500 nm. 

 

 

1.1.2 Carnivory 

Carnivory has already been documented in a few benthic species (Boltovskoy and Wright, 1976; 

Buchanan and Hedley, 1960; Dupuy et al., 2010; Hallock and Talge, 1994), and is more widely 

encountered in planktonic species (Anderson et al., 1979; Anderson and Bé, 1976a; Bé et al., 1977; Bé 

and Hutson, 1977). The range of prey include copepods and shrimp nauplii, small crustaceans 
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(cumaceans, caprellids), echinoid larvae and even large foraminifera (Fig. 1.1). Carnivorous 

foraminifera seem to have developed specific pseudopodia to capture prey that are stronger than non-

carnivorous and have a special extracellular matrix (Bowser et al., 1992). Carnivory might be an 

alternative strategy to grazing in some species; for example, the benthic Ammonia sp. is known to 

actively graze on algal and bacterial biofilm (Pascal et al., 2008a, 2008b, 2009), but was also seen in 

laboratory to feed on nematodes, copepods larval gastropods (Dupuy et al., 2010). 

 

1.1.3 Suspension feeding, parasitism and direct uptake of DOC 

Other trophic mechanisms, which won’t be discussed in this thesis work, include suspension 

feeding, parasitism and direct uptake of DOC. Briefly, suspension feeding occurs in epiphytic 

foraminifera and benthic foraminifera that inhabit the upper layer of soft sediments (by the extension 

of their pseudopods in the water column) (Goldstein, 1999; Lipps, 1983). Lipps (1983) suggested a 

passive mechanism of uptake as foraminifera lack structures to create water currents. Parasitism has 

only been recorded in a few species. The parasitic species were reported infesting various organisms, 

and usually one species can only infect only one type of organism: other foraminifera, scallops, bivalves 

or macrophytic algae (Alexander and Delaca, 1987; Collen, 1998; Le Calvez, 1947; Pawlowski, 1989; 

Pawlowski and Lee, 1992; Todd, 1965); except one species, Hyrrokkin sacrophaga, which is able to 

infest multiple host (bivalves, sponges and corals) by penetrating their wall to feed on soft tissues 

(Cedhagen, 1994; Freiwald and Schönfeld, 1996). To date only one foraminifera, the agglutinated 

species Notodendrodes antarctikos, has been reported to uptake dissolved organic matter (DOC) 

directly as a carbon source from its environment (DeLaca et al., 1981; DeLaca, 1982). In these studies, 

labeled glucose and amino acids were rapidly taken up and metabolized by the foraminifera. As 

(Goldstein, 1999) specified in her review on trophic mechanisms in foraminifera, the direct uptake of 

DOC might be more widespread, and is thought to be scarce only because of the little attention it 

received. Indeed, among meiofauna the direct uptake of dissolved organic matter is not rare 

(Montagna, 1995). 
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 Mixotrophy 

1.2.1 Symbiosis between photosynthetic microalgae and planktonic foraminifera 

Symbiosis with algae is encountered in many planktonic (Fig. 1.2) and large benthic 

foraminifera, but was never described to our knowledge in “small” benthic foraminifera. Only the 

planktonic foraminifera will be discussed here. Symbionts associated with planktonic foraminifera are 

mainly dominated by dinoflagellates, but chrysophytes have been found in symbiosis with a few 

species (Anderson and Lee, 1991; Faber et al., 1988; Gastrich, 1987; Hemleben et al., 1989) (Fig. 1.2). 

The density of the algal symbionts in foraminiferal cells is high: it may reach 2x104 dinoflagellate cells 

per individual in Orbulina universa (Spero and Parker, 1985), and symbionts occupy 75 – 85 % of the 

host cytoplasmic volume in Globigerinoides ruber (Lee et al., 1965).  

 

 

Figure 0.2: Symbiosis between photosynthetic microalgae and planktonic foraminifera. A, B: Light microscopy 
images. A: Orbulina universa (courtesy of H. Spero); scale bar: 500 μm; and B: Globigerinoides ruber (from Bé et 
al., 1977); magnification x 90. Symbiotic dinoflagellates are dispersed along the spines of both specimens. Scale 
bar: 500 μm. C: TEM micrograph of the fine structure of a dinoflagellate in the cytoplasm of O. universa (modified 
from Spero, 1987). Arrows: ends of host cytoplasm, C: chloroplast, N: nucleus, P: pyrenoid, S: starch grain. Scale 
bar: 1 μm. D: TEM micrograph of chrysophyte symbionts (type I) in the cytoplasm of Globigerinoides siphonofera 
(aequilateralis) (modified from Faber et al., 1988). Asterisks: chrysophyte mitochondria, C: chloroplast, ER: 
endoplasmic reticulum, G: Golgi apparatus, LV: lucent vacuole (potential artefact fixation), N: nucleus, P: 
pyrenoid, V: vacuole. Scale bar: 2 μm. 
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1.2.1.1 Symbiotic microalgae impact on planktonic foraminiferal physiology 

 The symbiosis between microalgae and planktonic foraminifera was first formally described 

at the beginning of the last century (Rhumbler, 1911), but the experimental evidence of the microalgae 

symbiotic function date from the 1980s (Bé et al., 1982; Caron et al., 1981). The elimination of the 

symbionts in Globigerinoides sacculifer resulted in shorter foraminiferal life time and showed that 

symbionts are essential for the growth of the foraminifera (Bé et al., 1982). The light intensity, by 

regulating the symbionts photosynthesis, was shown to impact the growth rate and life time of G. 

sacculifer (Caron et al., 1981) and Heterostegina depressa (Röttger and Berger, 1972). Moreover, the 

symbionts have an effect on the host cytoplasmic organization: depending on its symbiotic 

chrysophyte type (I or II), the foraminifera Globigerinoides siphonofera (aequilateralis) exhibited 

different pseudopodial network arrangement and distribution of the symbionts within this network, 

besides effects on its growth rate and life time (Faber et al., 1988, 1989).  

 

1.2.1.2 Photosynthesis, oxygen and carbon production 

While only a few papers examine the primary production of symbiotic planktonic foraminifera, 

it was shown that together with Acantharia (protists inhabiting sea surface) they may contribute to a 

significant part (  5%) of the total annual production in surface waters (Caron et al., 1995). For 

example, the symbiotic planktonic species Orbulina universa alone would contribute to 1% of the total 

inorganic carbon fixation by all primary producers for a density of only 5 individuals per m3 (Spero and 

Parker, 1985).  

Many studies have confirmed the essential role of symbionts in planktonic foraminiferal 

physiology, especially during vegetative growth (Bé et al., 1983; Hemleben and Spindler, 1983; 

Jørgensen et al., 1985; Spero and Parker, 1985). The efficiency of the dinoflagellate photosynthesis 

was assessed by microsensors measurements in two species: G. sacculifer and O. universa (Fig. 1.3) 

(Jørgensen et al., 1985; Köhler-Rink and Kühl, 2005; Rink et al., 1998). Gross photosynthesis was 

calculated as being 18.1 and 5.3 ±2.7 nmol O2 h-1 individual-1 in G. sacculifer (Jørgensen et al., 1985) 

and O. universa (Rink et al., 1998), respectively. (Jørgensen et al., 1985) estimated that photosynthetic 

symbionts could provide enough organic carbon to G. sacculifer to sustain its metabolism (energy 

requirements) and growth. Furthermore, by comparing the symbiotic dinoflagellate photosynthesis 

rate with Orbulina universa respiration rate, it was shown that carbon is assimilated in excess of what 

this species needs for its growth; suggesting that some carbon might be exported to the environment, 

potentially to attract prey (Lombard et al., 2009). However other studies showed that to maintain 
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growth; feeding the foraminifera with prey was necessary (Bé et al., 1982; Caron et al., 1981). 

Photosynthate translocation from the symbionts would be enough to provide the foraminiferal host 

cell with carbon, and feeding would rather be a way to obtain major nutrients as nitrogen and 

phosphorus (see below). Finally, although carbon translocation from the symbiotic dinoflagellates to 

planktonic foraminiferal cell was shown, there is no detailed understanding of the metabolic 

processes. The molecules involved, the translocation pathways and the time scale that these changes 

are happening over are still unknown. 

 

 

Figure 0.3: Concentrations of O2 and CO2 at the shell surface of the planktonic symbiotic species Orbulina 
universa. Variations of the O2 and CO2 concentrations measured with microsensors during an experimental light 
– dark cycle. The horizontal dotted line represents ambient seawater conditions during the experiment (modified 
from (Köhler-Rink and Kühl, 2005). 

 

1.2.1.3 Symbiosis benefits for the dinoflagellates 

 In the symbiotic planktonic foraminifera inhabiting oligotrophic environments (Bé and Hutson, 

1977; Giraudeau, 1993; Tolderlund and others, 1971), carnivory can be a great advantage for the 

symbiont-host system. Indeed, in low nutrient environments, capturing prey might provide the host 

with nitrogen and phosphorus compounds, that it could transfer to its symbionts in exchange of 

photosynthates (Jørgensen et al., 1985; Uhle et al., 1999). In addition, the foraminiferal cell could also 

provide the host with CO2 through its respiration. In the case of O. universa, foraminiferal respiration 

(production of CO2) corresponds to  50 % of the gross photosynthesis (uptake of CO2 by the 

dinoflagellates), which makes it a valuable source of inorganic carbon for dinoflagellate photosynthesis 

(Rink et al., 1998). A time lag in the CO2 concentration exists after switching from light to dark 
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conditions and vice-versa, which was interpreted as the consequence of an internal CO2 supply 

mechanism (i.e. the foraminifera provides CO2 to the symbionts by releasing CO2 in the 

microenvironment; (Köhler-Rink and Kühl, 2005).  

1.2.2 Kleptoplasty: sequestration of chloroplasts within the foraminiferal cytoplasm 

Kleptoplasty, i.e. the ability of an organism to sequester algal chloroplasts inside its “host” cell 

while the other algal components are either discarded or digested, is encountered in a few organisms: 

sea slugs (sacoglossans, e.g., (Pelletreau et al., 2011; Rumpho et al., 2001; Serôdio et al., 2014), 

dinoflagellates (Kim et al., 2012; Nagai et al., 2008; Nishitani et al., 2012), ciliates (Dolan, 1992), and 

« small » benthic foraminifera (Bernhard and Bowser, 1999). In benthic foraminifera kleptoplastic 

species are encountered in coastal environments, both in photic and aphotic zones (Bernhard and 

Bowser, 1999). Until now, most of the studies concerning kleptoplasty in benthic foraminifera have 

focused on TEM observations (Fig 1.4) and the genetic analysis of sequestered chloroplasts (also called 

kleptoplasts), which revealed that most are of diatom origin (Cevasco et al., 2015; Correia and Lee, 

2000, 2002a; Lechliter, 2014; Pillet et al., 2011; Pillet and Pawlowski, 2013; Tsuchiya et al., 2015), 

although a dinoflagellate origin of chloroplasts has also been proposed (Cedhagen, 1991).  

 

 

Figure 0.4: TEM micrographs of kleptoplasts in two benthic species. A: Kleptoplast distribution in Elphidium 
williamsoni (modified from Lopez, 1979); c: chloroplast, v: vacuole. Scale bar: μm. B: Fine structure of a 
kleptoplast in Elphidium sp. (modified from Bernhard and Bowser, 1999); gl: girdle lamella, la: lamella, m: 
mitochondria, py: pyrenoid, th: thylakoids. Scale bar: 500 nm. 
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1.2.2.1 Life-time of the kleptoplasts within the foraminifera cell 

The life time of kleptoplasts within foraminiferal cells varies depending on the species: ranging 

from days in H. germanica (Jauffrais et al., 2016) to weeks in E. excavatum (Correia and Lee, 2002b). 

The kleptoplast retention time is longer under dark conditions (Correia and Lee, 2002a, 2002b; Jauffrais 

et al., 2016), for example in H. germanica kleptoplasts were maintained for a maximum of 12 days 

under light but were kept for 21 days in the dark (Jauffrais et al., 2016) The longer preservation of the 

kleptoplasts in the dark can be explained by the fact that a large part of the genes coding for chloroplast 

protein renewal are present in the algal nucleus which is not kept by the foraminiferal cell; besides 

there is no horizontal gene transfer from the algae to the foraminiferal cell (Pillet and Pawlowski, 

2013). Under light, the chloroplast proteins are used and then degraded, especially the light harvesting 

and photosynthetic apparatus proteins, and cannot be replaced; while in the dark the enzymatic 

machinery is preserved longer (Jauffrais et al., 2016). For example the protein D1, a major component 

in the chloroplast photosystem II, is encoded in the chloroplast (Tyystjärvi and Aro, 1996). But its 

synthesis requires other proteins encoded in the algae nucleus (Yamaguchi et al., 2005), which is not 

preserved within the foraminiferal cell but digested or discarded. Thus to perform photosynthesis the 

foraminifera can only use the pre-existing pool of proteins contained in the kleptoplasts at the time of 

their incorporation in the cell. 

 

1.2.2.2 Benefit for the foraminiferal “host” cell 

Inorganic carbon assimilation 

One of the main advantages of sequestering chloroplasts is the photosynthesis, both for the 

mixotrophy strategy it provides to the host, i.e. the production of photoassimilates from inorganic 

carbon (via the Calvin-Benson cycle) that are transferred to the host (Fig. 1.5); and for oxygen 

production by the kleptoplast within the host cell. The latter will be discussed in the section 2.2.2.1.  

The assimilation of inorganic carbon via sequestered chloroplasts was already demonstrated in the 

kleptoplastic sea slugs (reviewed in Rumpho et al., 2001). Based on natural isotopic values of the sea 

slugs and the algae they feed on, it was estimated that up to 60 % of the host carbon input come from 

the kleptoplast photosynthesis (Raven et al., 2001). In addition, in the sea slug cells, the lipid droplets 

accumulating around the kleptoplasts have an high abundance of the fatty acid 20:5, which is known 

to be algal-derived (Pelletreau et al., 2014). The incubation of sea slugs in seawater spiked with H14CO3
- 

clearly indicated assimilation of carbon within the sea slug cells, at a rate that was higher even, than 

in the algal cells (Rumpho et al., 2001). To our knowledge, there is only one study that has examined 



Literature review on foraminiferal physiology and metabolism 

11 
 

carbon assimilation via kleptoplast photosynthesis in benthic foraminifera (Lopez, 1979): by following 

the incorporation of H14CO3
- in the foraminiferal cell, a maximum assimilation rate of 2.3 μg C mg-1 h-1 

was recorded for the coastal species E. williamsoni (Lopez, 1979). This study also showed that 

substantial variability exists between kleptoplastic species as H. germanica was shown to have a much 

lower rate of carbon assimilation (five times lower); and a third species, E. excavatum, did not 

incorporate any carbon despite harboring sequestered chloroplasts in its cytoplasm. However, the 

time and cellular dynamics of the process are still unknown and many questions (such as which is the 

form of carbon during the transfer) are not answered for this inorganic carbon assimilation and 

subsequent transfer to the host cell. 

 

 

 

Figure 0.5: Schematic representation of the roles (potentially) played by kleptoplasts in the foraminiferal cell. 
In black the incorporation of inorganic carbon in the foraminiferal cell, its transfer to the kleptoplast, its 
assimilation via the Calvin-Benson cycle (driven by energy acquired through the photosynthesis light reactions) 
into carbonated organic molecules (sugars) and finally its transfer to the foraminiferal cell. In blue the potential 
role of kleptoplast in the foraminiferal nitrogen metabolism through inorganic nitrogen incorporation and 
assimilation thanks to the GS/GOGAT enzymatic machinery in the kleptoplast. The amino acids formed would 
then be transferred to the foraminiferal cell to be further transformed and/or used. In red the potential role of 
kleptoplast in the foraminiferal sulfate assimilation. Sulfate (SO42-) is first incorporated within the kleptoplast, 
and converted into adenosine 5-phosphosulphate (APS) via the ATP sulfurylase enzyme. Then the APS can either 
be used to form sulfolipids or further processes to be assimilated on amino-acids to form cysteine. Cysteine is 
the primer amino acids to form others sulfated amino-acids such as methionine; however according to literature 
it remains unclear whether these processes (represented with dotted arrows) happen in the chloroplasts or in 
the cytoplasm in algal cells. Modified from (Giordano and Raven, 2014; Pyke, 2009; Takahashi et al., 2011). 
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Other functions: putative role in the nitrogen and sulfur metabolism? 

Interestingly, sequestered chloroplasts are also observed in deep species inhabiting aphotic 

environments (Bernhard and Bowser, 1999). One of this species, Nonionella stella collected in the 

Santa Barbara basin (USA) was shown to harbor structurally intact chloroplasts within its cytoplasm 

and up to one year after sample collection, still contained functional proteins encoded both in the 

chloroplast and in the algal nucleus (Grzymski et al., 2002). As these species are unlikely to perform 

photosynthesis, there might be another explanation for their sequestration than the advantage 

provided by photosynthate or O2 production. Note that most of the deep kleptoplastic species are 

encountered in hypoxic to anoxic regions (Bernhard and Bowser, 1999). In plant cells, the chloroplasts 

have many other roles than photosynthesis, which provide many paths to be explored in the case of 

kleptoplasty. In diatoms, the microalgae from which foraminifera are stealing their kleptoplasts, the 

chloroplasts also play a role in the nitrogen metabolism of the cell. They are able to incorporate 

ammonium to form amino acids through the GS/GOGAT (glutamate synthase and glutamine 

oxoglutarate aminotransferase) enzymatic machinery (Syrett, 1981; Zehr et al., 1988; Zehr and 

Falkowski, 1988). It is therefore possible that the kleptoplasts in foraminifera play a similar role, they 

could be able to assimilate inorganic nitrogen through the GS/GOGAT machinery to produce amino 

acids subsequently transferred to the foraminifera cell (Fig. 1.5) (Grzymski et al., 2002). This alternative 

pathway of nitrogen assimilation would provide a net advantage to kleptoplastic foraminifera over 

other meiofaunal species relying solely on food to meet their nitrogen requirements. In the study by 

Grzymski et al. (2002), the deep species N. stella, was sampled in the Santa Barbara basin, an 

environment often subjected to periods dominated by low O2 concentrations and which are associated 

with high sulfide concentration. Sulfide is extremely toxic for the cell as it poisons the cytochrome c 

complex and thus disrupts mitochondrial respiration (Beauchamp et al., 1984; Reiffenstein et al., 

1992). Thus a role of the kleptoplast in the tolerance to high sulfide concentration was proposed. The 

authors suggested a substitution of the mitochondrial respiration by chlororespiration, before 

concluding this would be unlikely as in the environment a high concentration of sulfide is spatially and 

temporarily separated from the presence of oxygen required for chlororespiration (as for 

mitochondrial respiration). However, the kleptoplasts could play another role in the sulfur metabolism 

in the foraminiferal cell, like they do in plant and algal cells for the production of sulfated amino acids 

(cysteine, methionine) and sulfolipids (Fig. 1.5) (Giordano and Raven, 2014; Takahashi et al., 2011). 

This would provide the foraminifera with a great advantage in their environment if they could rely on 

another source than feeding to obtain these cell functioning essential molecules. The sulfolipids 

formation is an interesting pathway to study in foraminifera because it is known that diatoms exhibit 

higher sulfolipids concentrations than other algae or plants (Goss and Wilhelm, 2009; Vieler et al., 
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2007). These particular lipids are essential components of the thylakoids and chloroplast membranes 

in nearly all photosynthetic organisms (Benning and Garavito, 2008).  

These putative roles in nitrogen and sulfur cell metabolisms are only hypothetical in benthic 

foraminifera at the current time and require investigation. Can foraminifera take up inorganic nitrogen 

in their cell and transfer it to the kleptoplasts where it could be assimilate into amino acids? If so, we 

can suggest that kleptoplasts might in return transfer these amino acids in the foraminiferal cell to be 

used in the metabolism. And, is there a kleptoplastic pathway for sulfate assimilation which could lead 

to the production of sulfated molecules, such as sulfated amino acids of sulfolipids, by kleptoplasts? 

 

1.2.3 Symbiosis with prokaryotes 

To our knowledge, most of the studies revealing the presence of bacterial symbionts 

associated to foraminiferal cell were carried out on foraminifera inhabiting extreme environments (see 

section 2.2.2.1); where the authors looked specifically for an explanation of the survival to these 

conditions, and thus looked for potential symbiotic prokaryotes. It is possible that symbiosis with 

prokaryotes may be more widespread than the scarcity of the observations suggests and this field 

would be worth further investigation. 

It is noteworthy that in addition to the putative denitrifying, sulfate reducers, sulfide oxidizers 

or sulfur oxidizers prokaryotic symbionts that have been described in some foraminifera (see section 

2.2.2.1); a benthic species, Furkensonia rotundata, and a planktonic species Globigerina bulloides were 

shown to harbor the photosynthetic cyanobacteria Synechococcus (Bird et al., 2017; Buck and 

Bernhard, 2004). In G. bulloides, inhabiting the photic zone, these cyanobacteria might bring a valuable 

advantage for the planktonic species through their phototrophic metabolism and capacity to store 

polyphosphate and proteins (Bird et al., 2017). The benthic F. rotundata inhabits the Santa Barbara 

basin (USA) and is unlikely to receive any light; so the cyanobacterial role remains unknown (Buck and 

Bernhard, 2004). 
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 Aerobic and anaerobic metabolisms 

One of the most studied topic in benthic foraminiferal physiology is their ability to tolerate 

periods of hypoxia or anoxia. Benthic ecosystems, especially coastal environments, are increasingly 

affected by hypoxic/anoxic events (Diaz and Rosenberg, 2008; Helly and Levin, 2004; Rabalais et al., 

2010). During these events, while large fractions of the benthic meio- and macrofauna (size range >1 

mm) die off (Bianchi et al., 2000; Josefson and Widbom, 1988; Stachowitsch, 1991; Wetzel et al., 2001); 

foraminifera are consistently among the most resistant species (Gooday et al., 2000; Levin et al., 2009; 

Moodley et al., 1997).  

Various terms are used to qualify the oxygenation state of an environment, they are all 

reviewed in (Bernhard and Sen Gupta, 1999). In this thesis only the term “anoxic” and “hypoxic” will 

be used. Hypoxic conditions are reached for dissolved oxygen concentrations of less than 62.5 μM /(or 

1.42 mL O2 L-1 and anoxia refers to the total absence of detectable oxygen, with or without hydrogen 

sulfides (Koho and Piña-Ochoa, 2012). It has to be noted that for in situ observations the precise O2 

concentrations are not always precisely known and can vary over time. For example (Tsuchiya et al., 

2015) found the species Virgulinella fragilis in environment with dissolved oxygen concentrations 

ranging from “dysoxic” (i.e. 5 – 45 μmol O2 L-1) to “microxic” (i.e. 0 – 5 μmol O2 L-1) conditions. Thus for 

the in situ observations, the depleted oxygen conditions will be referred as “low O2 environments” (or 

with “low O2 conditions”); except when the precise O2 concentrations are specified and did not vary. 

Laboratory experiments showed that under anoxic conditions some benthic foraminiferal 

species migrate towards the oxygenated surface of the sediment column to find suitable redox 

conditions while other species do not (Geslin et al., 2004; Pucci et al., 2009). This suggests that at least 

some species possess an alternative metabolism that allows them to survive in environments with low 

O2 concentrations. Tolerance to low-O2 conditions is not rare among foraminifera and was 

encountered in many different species, both in laboratory experiment (Heinz and Geslin, 2012) and in 

in situ experiments and observations (Bernhard and Reimers, 1991; Bernhard and Sen Gupta, 1999; 

Glud et al., 2009; Kitazato and Ohga, 1995; Langlet et al., 2013). Besides, benthic foraminifera can be 

moved deep into the sediment by bioturbation, which can expose them to low O2 levels (Bouchet et 

al., 2009; Maire et al., 2016; Thibault de Chanvalon et al., 2015). Several metabolisms were suggested 

until now to explain the survival of some benthic foraminiferal species to extended periods of hypoxia 

or anoxia. 
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 Aerobic metabolism: low respiration rate 

Benthic foraminifera were shown to have a relatively low rate of aerobic respiration (from 0.09 

to 5.27 nl O2 cell−1 h−1) compared to other meiofaunal species such as nematodes, copepods, ostracods, 

ciliates and flagellates (Geslin et al., 2011). Thus in the case of hypoxia, even low O2 concentrations 

could be enough to maintain an aerobic respiration and normal activity level in foraminiferal cells. 

 

 Anaerobic metabolism 

Both laboratory and in situ observations have showed that foraminiferal are capable of 

surviving anoxia (Bernhard and Alve, 1996; Bernhard and Reimers, 1991; Heinz and Geslin, 2012; 

Langlet et al., 2013; Moodley et al., 1997), but foraminifera appear to exhibit different responses to 

anoxia. A laboratory experiment showed three different responses: (1) species that are tolerant of the 

lack of oxygen i.e. there was no impact on their survival or their intracellular ATP content (a proxy for 

metabolic activity), (2) species capable of surviving extended anoxic incubations but that experience a 

decrease in intracellular ATP concentrations and (3) species impacted by anoxia that exhibit changes 

in both survival rate and ATP concentrations (Bernhard and Alve, 1996). Different responses were also 

observed in an in situ experiment under anoxic conditions. Over a ten month incubation some 

foraminiferal species saw their abundances decreasing while other species exhibited stable 

abundances (Langlet et al., 2014). One species exhibited a particularly unique response to long-term 

exposure to anoxia: its abundance first increased until 30 days and decreased until the end of the 

experiment (i.e. 10 months). This was interpreted as an opportunistic strategy: where the increased 

organic matter availability in the first two weeks of the incubation led to either increased juvenile 

growth or to a reproduction event. The first hypothesis seems more likely. Indeed one intertidal and 

two fjord species were shown to calcify in anoxia, adding chambers during laboratory incubations 

(Nardelli et al., 2014). This latter finding is important as it suggests efficient alternative anaerobic 

metabolisms exist which provide enough energy not only to keep the foraminifera alive, but also to 

sustain its growth. However, in situ observations revealed that the benthic species N. stella is unable 

to survive extended anoxia (Bernhard and Reimers, 1991). And during a long-term in situ experiment 

under anoxic conditions, the standing stocks of foraminifera globally decreased throughout the 

experiment, which lasted ten months (Langlet et al., 2013). Together, these observations may indicate 

that foraminifera cannot complete their life cycle, i.e. some species may survive, even calcify, but not 

perform reproduction; thereby suggesting that the alternative anaerobic metabolisms implemented 

during anoxia events are not as efficient in terms of energy yield compared to normal aerobic 

respiration.  
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2.2.1 Known alternative anaerobic metabolism: Denitrification 

In 2006, it was demonstrated for the first time that one species, Globobulimina 

pseudospinescens, is able to carry out complete denitrification under anoxic conditions, i.e. full 

reduction of nitrates (NO3
-) to gaseous nitrogen (N2) in the absence of oxygen as shown in the following 

equation (Risgaard-Petersen et al., 2006). 

(1) NO3
-  NO2

-  NO  N2O  N2 

(2) 4 NO3
- + 5 CH2O + 4 H+  2 N2 + 5 CO2 + 7 H2O 

(1) Equation of denitrification, i.e. full reduction of nitrate into gaseous nitrogen (from (Kamp et al., 2015). 
Foraminifera have been shown to be able to carry a complete denitrification (from NO3- to N2), however some 
species seem to lack the nitrous oxide reductase and reduce NO3- only to N2O (Piña-Ochoa et al., 2010a; Risgaard-
Petersen et al., 2006). NO3-: nitrate, NO2-: nitrite, NO: nitric oxide, N2O: nitrous oxide, N2: gaseous nitrogen. 

(2) Stoichiometric equation of denitrification from nitrate to N2 

This capacity was shown to be widespread among foraminiferal species (Piña-Ochoa et al., 

2010a). Many of which can store nitrates in their cell and then use them after the establishment of 

anoxic conditions (Bernhard et al., 2012a; Glud et al., 2009; Koho et al., 2011; Piña-Ochoa et al., 2010b, 

2010a; Risgaard-Petersen et al., 2006). Before the study by Risgaard-Petersen et al. (2006), only 

bacteria and fungi were thought to denitrify. These findings therefore have great importance in 

understanding the ecosystems that these foraminiferal species live in. Indeed, foraminifera are now 

known to be major contributors of nitrate removal from the sediment (Høgslund et al., 2008), and can 

contribute, depending on the environment, up to 80 % of the total denitrification occurring in the 

sediment (Piña-Ochoa et al., 2010a). In foraminifera the denitrification can be performed either by the 

foraminifera itself, or by bacterial endobionts (Fig. 1.6A). Indeed denitrification was demonstrated in 

foraminifera lacking any type of prokaryotic symbiont, meaning the foraminifera is able to perform 

denitrification by itself (Bernhard et al., 2012a; Risgaard-Petersen et al., 2006). And in allogromiid 

species, genetic analysis of the foraminifera and their endobionts revealed that the denitrification 

potential comes from the endobionts, which are likely denitrifying Pseudomonas (Bernhard et al., 

2012b, 2012a).  
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2.2.2 Hypothetic alternative anaerobic metabolisms 

2.2.2.1 Symbiosis to obtain an alternate anaerobic metabolism 

Symbiosis with bacteria possessing an alternative anaerobic metabolism, either ectobionts 

(Bernhard et al., 2010a) or endobionts (Bernhard et al., 2000; Bernhard, 2003; Nomaki et al., 2014; 

Tsuchiya et al., 2015), or chloroplast sequestration (Bernhard and Bowser, 1999; Grzymski et al., 2002) 

were also suggested to explain foraminifera tolerance to low O2 conditions.  

 

Symbiosis with prokaryotes 

To our knowledge prokaryotic symbiosis (Fig 1.6) were described mainly in the cytoplasm of 

foraminifera inhibiting extreme environments such as basins with low O2 environments or 

hydrocarbon seeps (Bernhard et al., 2000, 2001; Bernhard, 2003; Bernhard et al., 2006, 2010a, 2010b, 

2012b, 2012a; Buck and Bernhard, 2004; Nomaki et al., 2014; Tsuchiya et al., 2015). In all these studies, 

the symbiosis with prokaryotes was explained as a way for foraminifera to survive extreme conditions 

(hypoxia, anoxia, presence of sulfides, etc.) thanks to an alternative metabolism (like denitrification or 

sulfate reduction) performed by the prokaryotes; although most of the time the identity of these 

prokaryotes is unknown. Their ultrastructure observations with TEM are not enough to determine their 

nature, the use of genetic analysis is needed to clarify the origin of the symbionts in a benthic species 

(but is rare due to expensive and time consuming methods). For example, the DNA sequencing of 

Virgulinella fragilis endosymbionts revealed their δ-proteobacteria origin (Tsuchiya et al., 2015). These 

symbionts are thought to be sulfate-reducing bacteria (Bernhard et al., 2010a; Tsuchiya et al., 2015), 

with the ability to produce energy by reducing sulfate to sulfide in anoxic conditions. Moreover in this 

species, the bacteria were observed to be contained in vacuoles, surrounded by mitochondria 

(Bernhard et al., 2010a; Tsuchiya et al., 2015). The close association observed between these 

endosymbionts and mitochondria was ascribed either to mitochondria detoxifying sulfide ability 

(Bernhard et al., 2010a) or mitochondrial oxygen consumption to maintain the anaerobic bacteria 

within the cell (Tsuchiya et al., 2015). Specimens of another species, Bolivina pacifica, collected in an 

O2 depleted basin, were shown to harbor ectobionts on the calcite shell pores (Bernhard et al., 2010a). 

Bernhard et al. (2010a) hypothesized that these putative symbiotic bacteria were sulfide oxidizers or 

sulfur oxidizers, thus playing a role in the foraminiferal resistance to sulfidic conditions, which are 

linked to anoxia. In this species specific ultrastructural adaptations were observed and also described 

as features that enable B. pacifica to thrive in strongly hypoxic environments. These ultrastructural 

adaptations, already observed by Leutenegger and Hansen (1979), are the occurrence of numerous 
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mitochondria and the presence of plasma membrane invaginations under the pores (Fig. 1.6B). The 

pores are thought to be gas exchange pathways that exist between the foraminiferal cytoplasm and 

the surrounding environment (Berthold, 1976) and the plasma membrane invaginations extend the 

surface area with the surrounding environment. Thus the presence of mitochondria under the pores 

associated with the plasma membrane invaginations was interpreted as a way to facilitate oxygen 

diffusion from the surrounding environment, and to bring oxygen directly to the mitochondria to 

maintain aerobic respiration under hypoxic conditions.  

 

 

Figure 0.6: TEM micrographs of the cytoplasm of two species inhabiting low O2 environments. A: Presence of 
endobionts in the cytoplasm in Buliminella tenuata, a denitrifying species (from Bernhard et al. 2012a). Arrows: 
bacteria (endobionts), arrowheads: peroxisomes, m: mitochondria, v: vacuoles. Scale bar: 1 μm. B: Pore structure 
in Bolivina pacifica (from Bernhard et al. 2010). Arrowhead: plasma membrane invagination b: bacteria 
(ectobionts), bp: basal plate, f: fibrils, m: mitochondria, mp: microporous plate. Scale bar: 500 nm. 

 

Chloroplast sequestration 

The sequestration of chloroplasts (see section 1.3.2), was also described as a potential 

alternative metabolism to survive anoxia. Several foraminiferal species that frequently encounter low-

O2 environments actively sequester chloroplasts (Bernhard and Bowser, 1999). In such environments, 

provided they are photic, the kleptoplasts could provide the foraminiferal cell with oxygen from 

photosynthesis (Bernhard, 2003; Cesbron et al., 2017; Tsuchiya et al., 2015) as has been observed in 

ciliate species (Esteban et al., 2009). This advantage would be especially valuable for coastal species as 

their environments are the most likely affected by periods of low O2 concentration (Diaz and 

Rosenberg, 2008; Middelburg and Levin, 2009; Zhang et al., 2010). 
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While the production of oxygen by the sea slug kleptoplast is well known  for many different 

species (Gibson et al., 1986; Green et al., 2000; Rumpho et al., 2000; Taylor, 1971), only two studies 

have examined the oxygen production of the kleptoplasts in benthic foraminifera (Cesbron et al., 2017; 

Jauffrais et al., 2016). Using microsensors, the O2 production in the intertidal species Haynesina 

germanica was estimated to range from 200 to 1000 pmol O2 cell-1 d-1 (Cesbron et al., 2017; Jauffrais 

et al., 2016). Besides the functionality of the photosystems in the photosynthetic reactions, the 

xanthophyll pigment cycle was also shown to be effective, meaning the kleptoplasts must possess a 

photoprotection mechanism (Jauffrais et al., 2017). The kleptoplast oxygen production might bring a 

valuable advantage to their host by providing them with a source of oxygen for species inhabiting 

photic zones; especially in coastal areas submitted to hypoxic/anoxic events, or for species inhabiting 

areas subjected to high bioturbation. 

 

2.2.2.2 Dormancy 

Finally, an alternative metabolism that has also been proposed to explain the tolerance to 

anoxia is dormancy. Dormancy is defined as “suspension of active life, arrested development, and 

reduced or suspended metabolic activity, mediated either by internal physiological factors (known as 

diapause) or exogenous factors (known as quiescence)” (Ross and Hallock, 2016). (Bernhard and Alve, 

1996) observed a decrease of the molecule adenosine 5ʹ-triphosphate (ATP, energy of the cell) pool in 

different foraminiferal species (Bulimina marginata, Stainforthia fusiformis and Adercotryma 

glomeratum) exposed to anoxia. This, as they suggested, might indicate a state of dormancy: because 

whencell metabolism is shut down, less ATP is required to maintain cellular functions. Based on the 

existing literature it was suggested that the dormancy might be a basic and widespread adaptation in 

foraminifera that would allow them (i) to survive environmental stressors and (ii) rapidly recover after 

the return of favorable conditions (Ross and Hallock, 2016). However this hypothesis was never proven 

and several questions remain: to which point do foraminifera lower their metabolic activity under 

anoxic conditions? And what are the implications of dormancy for physiological functions such as 

feeding, growth or reproduction? 
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 Concluding remarks about foraminiferal physiological and metabolic 

mechanisms 

This literature review about foraminiferal metabolism highlights the important variability of the 

metabolic pathways among the foraminiferal species. Many species possess different trophic 

metabolisms, allowing them to pass from heterotrophic to mixotrophic strategies. They can therefore 

use different nutrient sources and switch from one source to another one when the main food source 

is no longer available. For example, most of the carnivorous species possess another trophic 

mechanism: Astrorhiza limicola described earlier is also a suspension feeder (Buchanan and Hedley, 

1960); the omnivorous Ammonia sp. feeds on bacteria and microalgae biofilm as well as copepods, 

nematodes or gastropod larvae (Dupuy et al., 2010; Pascal et al., 2008b); and many carnivorous 

planktonic species also perform symbiosis with microalgae (Anderson and Bé, 1976a; Bé et al., 1977; 

Hemleben et al., 1989). Possessing different trophic energetic mechanisms provides foraminifera with 

a great advantage in an environment with high competition for resources with other foraminifera or 

other meiofaunal species. This variability certainly explains their ubiquitous distribution in all the 

marine environments. However for most of the trophic mechanisms as well as their tolerance to low 

O2 conditions, little is known about the intracellular metabolic pathways. Chapters 2, 3 and 4 of this 

thesis will investigate the intracellular processes of different foraminiferal species inhabiting different 

environments and/or exhibiting different metabolisms. To do so, the main technique chosen is 

Transmission Electron Microscopy (TEM) - NanoSIMS correlation which allows to describe the cellular 

organization, and subsequently link it to exchange of isotopically labeled metabolites. 
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 TEM studies on foraminiferal cell  

The cellular ultrastructure of foraminifera is one of the most documented topics in 

foraminiferal biology. However compared to other organisms,  (in particular the protists), little is 

known about the identity and function of many of the observed organelles; especially in benthic 

foraminifera. The first studies that used Transmission Electron Microscopy (TEM) to study the 

foraminiferal cell and observe their ultrastructure date from the 1950 to the 1970’s. However, during 

this period and until the end of the 80s, almost all focused on planktonic foraminifera (e.g., (Anderson 

and Bé, 1976a; Bé and Anderson, 1976; Bé et al., 1977, 1980, 1983; Dahlgren, 1967; Faber et al., 1988, 

1989; Febvre-Chevalier, 1971; Hemleben et al., 1985; Lee et al., 1965; Spero, 1987, 1988; Spindler et 

al., 1978; Spindler and Hemleben, 1982), larger foraminifera, especially because of their relationship 

with symbiotic microalgae, (Hottinger, 1982; Hottinger and Dreher, 1974; Lee et al., 1979, 1983, 1988, 

Leutenegger, 1977a, 1977b, 1977c, 1977d, 1983; McEnery and Lee, 1981; Müller-Merz and Lee, 1976) 

and monothalamous foraminifera (Arnold, 1982, 1984, Dahlgren, 1964, 1967; Nyholm and Nyholm, 

1975; Schwab, 1976, 1977; Schwab and Schwab-Stey, 1979); while only a few TEM images were 

published for “small” benthic foraminifera (Alexander and Banner, 1984; Angell, 1967; Heeger, 1988; 

Leutenegger and Hansen, 1979; Lopez, 1979). 

The ultrastructure of benthic foraminifera had been studied, but ultrastructural observations 

were performed to look at specific organelles, in order to understand a specific physiological function 

(Fig. 1.7, data from Bernhard and Geslin (in press)). The physiological functions that have been studied 

include reproduction (Goldstein, 1997; Goldstein and Moodley, 1993; Pawlowski et al., 1995), nutrition 

(Goldstein and Corliss, 1994), symbiosis with endobionts or kleptoplasts (Bernhard, 2003; Bernhard 

and Bowser, 1999; Cesbron et al., 2017; Tsuchiya et al., 2015) and motility (Bowser and Travis, 2000). 

Since the 1990s, TEM studies have tended to examine the ultrastructural modifications observed in 

foraminifera that inhabit or were incubated under particular environmental conditions; mainly to 

understand how foraminifera are able to survive low-oxygen conditions (Bernhard, 2003; Bernhard et 

al., 2010a, 2012a; Bernhard and Alve, 1996; Bernhard and Reimers, 1991; Nomaki et al., 2014; Sen 

Gupta et al., 1997), but also more recently to look at the impacts of pollutants (Frontalini et al., 2015, 

2016; Le Cadre and Debenay, 2006). Since 2004, a few publications have described methodologic 

developments (Fig 1.7) such as the cryo-fixation procedure (Goldstein et al., 2004), the fluorescently 

labeled embedded core (FLEC)  combined with TEM to correlate the ultrastructure with the 

foraminiferal microenvironment (Bernhard and Richardson, 2014), or TEM combined with 

complementary approaches such as carbonate carbon isotopic analysis (Bernhard et al., 2010b; Martin 

et al., 2010) or NanoSIMS (Nomaki et al., submitted). 
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Figure 0.7: Number of publications dealing with benthic foraminiferal ultrastructure from the 1950s to present, 
sorted by topics. Modified from Bernhard and Geslin (in press). 

 

Despite the high number of publications examining the ultrastructure of foraminifera, 

including benthic foraminifera, only a little fraction of the organelles observed have been yet identified 

(Bernhard and Geslin, in press). In their review, Bernhard and Geslin (in press), emphasize the need for 

further research into cellular structures in order to better understand the foraminiferal cell 

ultrastructure and learn more about foraminiferal metabolism. To do so, there is a need to gather all 

information already known about the foraminiferal ultrastructure to better orientate future research. 

Such reviews already exist for planktonic (Anderson and Bé, 1978; Anderson and Lee, 1991; Hemleben 

et al., 1989) but not for benthic foraminifera. The chapter 1 of the thesis, which will be the first article 

of a special issue dedicated to benthic foraminiferal ultrastructure, is intended to fill this gap. 
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 NanoSIMS: a tool to study foraminiferal metabolism 

Although they allow the discovery of specific cellular features, ultrastructural observations 

alone are not sufficient to understand foraminiferal metabolism and unravel cellular pathways. There 

is a need for complementary techniques such as imaging to link cytoplasm organization and structure 

to specific physiological process. The main analytical tool used in the present work is the NanoSIMS, 

an ion microprobe for isotopic analysis at high spatial resolution.  

 

 Fundamentals of NanoSIMS 

The NanoSIMS (nanoscale Secondary Ion Mass Spectrometry) instrument provides the 

remarkable capability to quantify isotopic ratios on a length scale of about 100 nm, which is enough to 

resolve all sub-compartments and structures in normal cells. The basic principles of the NanoSIMS can 

be found in the literature (Hoppe et al., 2013). Briefly, the NanoSIMS has the ability to perform mass-

spectrometry on secondary ions sputtered from a solid sample by the impact of a primary beam of 

charged particles. Secondary ions are sputtered from the top few atomic monolayers of the sample. 

Therefore, although NanoSIMS is strictly speaking a destructive analytical technique, the level of 

damage to the sample is usually considered negligible. The NanoSIMS instrument delivers a primary 

beam of Cs+ or O- to the sample surface, focused to a spot size of  50-100 nanometers. Secondary 

ions extracted from the sample surface and charged opposite to the primary beam are transferred to 

the high mass-resolution, multi-collection mass-spectrometer (Fig. 1.8). Ion images of the sample 

surface are created by rastering the primary beam across the sample surface. This technology enables 

high-spatial resolution imaging of variations in element distributions, as well as isotopic composition, 

in biological materials, and on length scales of about 100 nm. The NanoSIMS N50L used in this work is 

equipped with a multi-collector system that allows simultaneous collection of up to 7 different 

isotopes, i.e. seven different images can be simultaneously recorded from the same analyzed area. 

This capability can be used to create images or maps of elemental and isotopic variation within a 

sample. Such images can be generated from the lightest elements, such as C (13C/12C ratios), N (15N/14N 

ratios), and S (e.g. 34S/32S ratios) to the heaviest elements in the periodic table, including uranium. This 

instrument is therefore the perfect analytical instrument in combination with biological labelling 

experiments where high spatial resolution is required. 
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Figure 0.8: Schematic representation of the NanoSIMS (Boxer et al., 2009). The primary ion beam (Cs+ or O-) 
generated in the primary column is directed to the sample surface. The sputtered secondary ions are directed to 
the magnetic sector to be separated according to their mass over charge (m/z) ratio and are collected by 
detectors. 

 

 Metabolic dynamics within biological material and symbiotic system explored with 

NanoSIMS 

The use of NanoSIMS combined with stable isotope labelling has started to be successfully 

applied to biological samples over the last decade (Hoppe et al., 2013). These studies involve various 

organisms, from prokaryotes and single cells to mammal or plant cells, and use many different stable 

isotopes (Boxer et al., 2009; Herrmann et al., 2007; Kilburn et al., 2010; Lechene et al., 2006; McMahon 

et al., 2006; Moore et al., 2012). However, to date, only one study has applied this analytical method 

to the foraminiferal cell: (Nomaki et al., 2016) used NanoSIMS combined with TEM observations to 

follow the assimilation and fate of 15NO3
- and 34SO4

2- within foraminiferal cells incubated in either 

hypoxic or anoxic conditions. 

The NanoSIMS technique has already been used on other organisms to follow stable isotopes 

assimilation and their subsequent transfer within symbiotic systems. One of the main model organisms 

that has been studied in this regard is coral, which is associated with symbiotic photosynthetic 

dinoflagellates. The assimilation of inorganic compounds (nitrogen, ammonium, bicarbonate and 

sulfate) could be measured, as well as their transfer within the different compartments of the 
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dinoflagellates and coral host tissues (Kopp et al., 2013, 2015a; Pernice et al., 2012; Raina et al., 2017). 

In the present work, similar methods will be applied to symbiotic foraminiferal species. 

 

 TEM-NanoSIMS correlation: an adapted tool to visualize the fate of labeled 

compounds within the foraminiferal cell 

One of the most remarkable advantage of NanoSIMS, and that will of great importance in this 

work, is that the isotopic mapping can be carried out on tissue sections previously imaged with TEM. 

This allows us to precisely assign quantified isotopic ratios to specific sub-cellular structures. An 

example is shown in Fig. 1.9, which show data from within a foraminiferal cell. The NanoSIMS 

technique allowed us to follow the fate of the 13C-enriched diatom material after digestion by the 

foraminiferal cell (see chapter 2). The 13C-signal could be traced within the different compartments of 

the foraminiferal cytoplasm. This figure illustrates the capability to obtain high quality isotopic images 

on thin sections on which high quality TEM imaging has been carried out prior to NanoSIMS analyses. 

This capability is essential for the project presented here, because TEM imaging will allow us to target 

precisely the sub-cellular structures that contain either the isotopically enriched compounds given to 

the foraminifera, or the metabolized compounds produced after their assimilation. 

 

 

Figure 0.9: TEM-NanoSIMS imaging technique example with the foraminiferal species Ammonia sp. The 
observed specimen was fed with 13C-enriched microalgae (diatoms) and then incubated in anoxic artificial 
seawater for 28 days. On the TEM micrograph (left) some diatoms (d) can be seen in the foraminiferal cytoplasm, 
along with lipid droplets (li). On the right the NanoSIMS image represent the δ13C (expressed in ‰) repartition 
in the imaged cytoplasm area. As it can be seen on the central image, the NanoSIMS image can be perfectly 
overlapped with the TEM image, allowing a direct visualization of the 13C-enriched sub-cellular compartments 
(here the diatoms and the lipid droplets). Scale bars: 5 μm.
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Thesis objectives and content 

The main objective of this thesis is to bring new knowledge about the intracellular metabolic 

pathways involved for different metabolisms encountered in foraminifera. Emphasis will be placed on 

feeding strategy under anoxia and the role of symbionts (sequestered chloroplasts and dinoflagellates) 

in different species, inhabiting different environments.  

Chapter 1 (LeKieffre et al., submitted) gives an overview of the cellular ultrastructure of 

benthic foraminifera. This work combines a review of the existing literature with novel TEM 

observations from nine benthic species sampled from three distinct environments: an intertidal 

mudflat, a fjord and a basin. A description of commonly encountered organelles is given, followed by 

a discussion of their role(s) and function(s) within the cell. This chapter will aid subsequent 

interpretation of the TEM observations made in the following chapters. 

Chapter 2 (LeKieffre et al., 2017) presents a study on the feeding behavior and the metabolic 

response of an intertidal species (Ammonia sp.) incubated under anoxic conditions with 13C-labeled 

diatoms. This species is widely distributed and abundant in coastal areas, and is, as many other benthic 

foraminiferal species, known to survive weeks to months without oxygen. However, the metabolic 

adaptations that enable foraminifera to achieve this are still unknown. This experiment has two 

objectives: (1) to follow food uptake and processing within a foraminiferal cell and (2) to compare this 

feeding metabolism between foraminifera incubated under oxic vs. anoxic conditions in order to 

unravel the mechanisms by which Ammonia sp. survive extended periods of anoxia. 

Chapter 3 is dedicated to the study of the nutrients exchanges in kleptoplastic foraminifera. 

The objective was to observe the intracellular exchanges of metabolites between the sequestered 

chloroplasts and the foraminiferal host cell. In the literature the kleptoplasty has been shown to be 

functional in some species, but many questions remain unanswered. In the foraminifera inhabiting 

photic areas, what are the intracellular structures involved in the carbon translocation from the 

kleptoplasts to the foraminiferal cell? Do the kleptoplasts play any role in the nitrogen and sulfur 

metabolisms of foraminiferal cells? And, are the metabolic pathways involved similar among all the 

kleptoplastic species, especially in species inhabiting aphotic environments? The first sub-chapter 3.1 

(Jauffrais, LeKieffre et al., submitted) presents the fine structure of kleptoplasts sequestered by 

different species and shows the ultrastructural variability among the species. Then in chapters 3.2, 3.3 

and 3.4. foraminiferal labeling experiments with 13C-bicarbonate, 15N-ammonium and 34S-sulfate were 

performed to better understand the role of sequestered chloroplasts in the foraminiferal cell. Carbon 

uptake through photosynthesis and putative roles in the nitrogen and sulfur metabolism are 
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investigated and compared among species as well as with non-kleptoplastic species. The species 

examined are Haynesina germanica and Elphidium williamsoni, common kleptoplastic species in 

intertidal photic ecosystems; and Nonionellina labradorica, a species inhabiting aphotic areas in the 

Gullmar fjord (Sweden).  

Chapter 4 (LeKieffre et al., in prep) presents inorganic carbon assimilation in the case of a “full” 

symbiosis between a photosynthetic dinoflagellate and the planktonic species Orbulina universa. This 

pulse-chase experiment using 13C-bicarbonate allows the visualization of the carbon uptake through 

dinoflagellate photosynthesis and transfer dynamics to the foraminiferal host cell. It also gives insights 

of the benefits that dinoflagellates gain from the symbiosis, and their mitosis mechanism.  

Finally the last part gives a general discussion on all the results gathered in this thesis in an 

attempt to place them in a larger perspective. 
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Note about the nomenclature of the species Ammonia cf. tepida 

The specimens of Ammonia used in this thesis work in chapters 1, 2 and 3 came from two sampling 

locations: the mudflat of Bourgneuf bay (France) and a small mudflat near the Gullmar fjord (Sweden), 

both populations were genetically characterized and belong to the same phylotype, T6 (Magali 

Schweizer, pers. com.) following the classification that Hayward et al. (2004) established for the genus 

Ammonia. This phylogenetic analysis indicated that there are a number of well-defined subclades 

nested within the genus or clade Ammonia, each of which could be given a distinct species name, 

hence the use of the term “phylotype” (Moreira and López-García (2011). Since our specimens are 

morphologically similar to the morphospecies Ammonia tepida, we will use the name Ammonia cf. 

tepida (Cushman, 1926) to refer to this phylotype. However, different names have been used for this 

phylotype through this PhD thesis: chapters 1 and 3.1. have been submitted and the chapter 2 

accepted before we could homogenize the nomenclature; in these chapters Ammonia cf. tepida is 

referred to as Ammonia sp., Ammonia aomoriensis and Ammonia tepida, respectively. 
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Chapter 1: An overview of cellular ultrastructure in benthic 

foraminifera: New observations in the context of existing literature 

 

Chapter 1 presents a manuscript submitted to the special issue “Foraminiferal ultrastructure” 

of the Marine Micropaleontology journal. In this chapter the cellular ultrastructure of nine benthic 

foraminiferal species is investigated and the role of observed organelles is discussed. 

 

PhD student’s contribution: the PhD student designed the experiment with EG and JMB; CL collected 

the samples with HLF and EG and analyzed the samples (except the samples of the species Bulimina 

tenuata which were analyzed by JMB); interpreted the TEM micrographs with GM and JMB; discussed 

the results with JMB and EG and wrote the manuscript with comments and edits from all the authors.  

 

Note about the life cycle of foraminifera 

Foraminifera have a complex life cycle with an alternation of sexual and asexual generations 

(see Goldstein, 1999 for a review). The adult gamont has a single nucleus and produces gametes (in 

foraminifera the gametogenesis only involves mitosis, and not meiosis). The gametes then fuse and 

form a diploid zygote, which will result in an adult agamont. This adult agamont is multinucleate and 

produces by multiple fission (meiosis occurs at this stage) haploid young individuals that either mature 

into uni-nucleate gamonts, or into a second asexual generation, the schizonts (see Figure 1.0 below). 

This life cycle may vary from one species to another. The discussion about the nucleus ultrastructure 

in the following chapter is concerned with the “gamont” stage. 

 
Figure 1.0: Foraminiferal life cycle (modified from Goldstein, 1998). 
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Abstract 

We report systematic transmission electron microscope (TEM) observations of the cellular 

ultrastructure of selected, small rotalid benthic foraminifera. Nine species from different environments 

(intertidal mudflat, fjord, and basin) were investigated: Ammonia sp., Elphidium oceanense, Haynesina 

germanica, Bulimina marginata, Globobulimina sp., Nonionellina labradorica, Nonionella sp., 

Stainforthia fusiformis and Buliminella tenuata. All the observed specimens were fixed just after 

collection from their natural habitats allowing description of intact and healthy cells. Foraminiferal 

organelles can be divided into two broad categories: (1) organelles that are present in all eukaryotes, 

such as the nuclei, mitochondria, endoplasmic reticulum, Golgi apparatus, and peroxisomes; and (2) 

organelles specific to foraminifera, generally with unknown function, such as fibrillar vesicles or 

electron-opaque bodies. Although the organelles of the first category were observed in all the 

observed species, their appearance varied. For example, subcellular compartments linked to feeding 

and metabolism exhibited different sizes and shapes between species, likely due to differences in their 

diet and/or trophic mechanisms. The organelles of the second category were common in all 

foraminiferal species investigated and, according to the literature, are frequently present in the 

cytoplasm of many different species, both benthic and planktonic. This study, thus, provides a detailed 

overview of the major ultrastructural components in benthic foraminiferal cells from a variety of 

marine environments, and also highlights the need for further research to better understand the 

function and role of the various organelles in these fascinating organisms. 

Key-words: Protist, organelles, TEM, cytology, mudflat, Gullmar Fjord. 
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1. Introduction 

Despite a number of studies regarding the ultrastructure of benthic foraminifera revealed by 

transmission electron microscope (TEM) observations, only a small fraction of the organelles in these 

single-celled organisms have been identified and their function understood (see compiled review of 

prior publications in Bernhard and Geslin (submitted). Recent studies have attempted to correlate 

ultrastructural imaging of the cytoplasmic structures to physiological processes using correlative 

imaging approaches (Bernhard and Bowser, 2008; LeKieffre et al., 2017; Nomaki et al., 2016). The 

inability to confidently link form and structure with function warrants an improved understanding of 

the foraminiferal cell at the ultrastructural level. 

Based on the literature, we present here an inventory of the common organelles found in 

benthic foraminifera, to which we add new TEM observations on the cytoplasm of nine benthic rotalid 

foraminiferal species. These foraminifera were sampled in three different locations and environments 

(Fig. 1.1 and Table 1.1): Ammonia sp. (phylotype T6, Hayward et al., 2004; Holzmann, 2000), Elphidium 

oceanense (excavatum species complex, Darling et al., 2016), and Haynesina germanica (Ehrenberg, 

1980) from an intertidal mudflat in Bourgneuf Bay on the Atlantic coast of France; Bulimina marginata 

(d’Orbigny, 1826), Globobulimina sp., Nonionellina labradorica (Dawson, 1860), Nonionella sp., and 

Stainforthia fusiformis (Williamson, 1848) from the Gullmar Fjord in Sweden, which is a silled basin 

with restricted circulation, and Buliminella tenuata from the silled, typically stagnant, Santa Barbara 

Basin (USA, samples from Bernhard and Bowser, 2008). These species are all small (< 500 μm) rotalid 

benthic foraminifera for which a description of each typical organelle is presented along with 

discussion of their known or inferred function(s). 

Table 1.1: Species, sampling location, and number of specimens observed or reported in this study. 

Species Site Numbers of specimens analyzed 
Ammonia sp. genetic type T6 

(tepida morphocomplex) 
Bourgneuf Bay, Atlantic coast, 

intertidal mudflat, France 

3 

Elphidium oceanense (excavatum 
species complex) 3 

Haynesina germanica 4 
Bulimina marginata 

Gullmar Fjord, Sweden 
(70 m / 117 m depth) 

1 
Globobulimina sp. 3 

Nonionellina labradorica 6 
Nonionella sp. 4 

Stainforthia fusiformis 3 

Buliminella tenuata 
Santa Barbara Basin, California, 

USA (  580 - 598 m) 
((Bernhard and Bowser, 2008) 

2 
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Figure 1.1: Light micrographs of the foraminifera from the Atlantic French coast intertidal mudflat and the 
Gullmar fjord. A: Ammonia sp. (tepida morphocomplex); B: Haynesina germanica; C: Elphidium oceanense 
(excavatum species complex), D: Bulimina marginata; E: Globobulimina sp.; F: Nonionella sp.; G: Nonionellina 
labradorica; H: Stainforthia fusiformis. Scales: A-D, F = 100 μm; E, G, H = 200μm. 

 

2. Material and methods 

2.1. Collection sites 

Foraminifera from intertidal environments (Ammonia sp., E. oceanense and H. germanica) 

were sampled on March 7, 2016, on the intertidal mudflat in the bay of Bourgneuf at la Couplasse 

station (Loire-Atlantique, France; 47°0’47”N, 2°1’17”W). The top 2 cm of sediment was collected at 

low tide, transferred to plastic jars, and immediately chemically fixed (1:1 volume sediment : fixative 

solution; see below). Living foraminifera from the Gullmar fjord, Sweden (B. marginata, Globobulimina 

sp., N. labradorica, Nonionella sp. and S. fusiformis) were collected on October 22, 2014, at two 

locations using the R/V Skagerak of the Sven Lovén Centre for Marine Science (University of 

Gothenburg): site DF3 (117-m depth; 58°19.096’N, 11°32.398’E) and site DF70-2 (70-m depth, 

58°17.071’N, 11°30.636’E). At the time of collection, both locations were characterized by a 

temperature of approximately 8 °C and salinity of 34.6. Sediment samples were collected with a box 
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corer. Immediately after the cores were brought on board, the top 2 cm (approximately) of the 

sediment was collected in plastic jars and chemically fixed (1:1 volume sediment : fixative solution; see 

below). Buliminella tenuata specimens were collected as described in Bernhard and Bowser (2008) 

from sediments in the Santa Barbara Basin (centered on 34°16’N, 120°02’W). 

2.2. Chemical fixation and TEM observations 

The fixative solution contained 4 % glutaraldehyde and 2 % paraformaldehyde diluted in 

cacodylate buffer solution (NaCaco 0.1 M, Sucrose 0.4M, NaCl 0.1M). Following fixation and rinsing 

with the cacodylate buffer, cytoplasm-bearing foraminifera were, based on the color of their 

cytoplasm, picked using a binocular microscope (Leica, M165C) and transferred individually into 

microtubes for decalcification in 0.1 M Ethylenediaminetetraacetic Acid (EDTA) diluted in 0.1 M 

cacodylate buffer solution. They were then post-fixed with 2 % osmium tetroxide (OsO4) for 1 h at 

room temperature, dehydrated in successive ethanol baths (50, 70, 95 and 100 %) and finally 

embedded in LR White acrylic resin. Embedded individuals were cut into 70-nm sections with an 

ultramicrotome (Reichert ultracut S) equipped with a diamond knife (Diatome, Ultra 45°) and placed 

on formvar-carbon coated copper TEM slot grids. The sections were post-stained for 10 mins with 2 % 

uranyl acetate and observed with a transmission electron microscope (TEM), either a Philips 301 

CM100 at the Electron Microscopy Facility of the University of Lausanne (Switzerland) or a JEOL JEM 

1400 at the SCIAM (Service Commun d’Imagerie et d’Analyses Microscopiques) platform at the 

University of Angers (France). Semi-thin sections (500 nm) for light microscopy observation were also 

cut and stained with toluidine blue and basic fuchsin. Both thin and semi-thin sections were taken in 

the middle of the foraminiferal cell in order to obtain sections bisecting the maximum number of 

chambers. Buliminella tenuata specimens were processed, and imaged as described in Bernhard and 

Bowser (2008).  
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3. TEM observations of benthic foraminiferal cells 

The TEM micrographs presented in this study depict foraminifera that were alive when 

collected and preserved. The vitality of each specimen was checked by observing the appearance of 

mitochondria and membranes as described by Nomaki et al. (2016). Only specimens with well-

preserved mitochondria and membranes are reported here. 

Two regions of cytoplasm in foraminifera are usually distinguished in thin sections: the cell 

body (located inside the test (shell); also called “endoplasm”) and the reticulopodial net (reticulated 

pseudopods)  typically, but not always, located outside the test (the reticulopodial net can also be 

gathered within the younger chambers of the foraminifer) (Alexander and Banner, 1984; Anderson and 

Lee, 1991). The cell body is usually denser (i.e., contains more electron-opaque organelles and thus 

appears darker in TEM images) than reticulopodial net, which has a granular appearance (Alexander 

and Banner, 1984). The cell body is the focus of the present study. 

 

3.1. Cell body and “empty” vacuoles 

The appearance of the cell body was highly variable among foraminiferal species, both 

between conspecifics and between chambers within a single individual. A main difference between 

intertidal and fjord/basin species was the numerous, large (between 10 to 200 μm in diameter) empty 

vacuoles, which were typical in the cell body of most of the fjord species, except B. marginata (Fig. 

1.2). These vacuoles certainly had lost their soluble compounds during sample preparation. Similar, 

albeit smaller (i.e., 5 - 20 μm diameter) vacuoles were sometimes observed in the youngest chambers 

of species from intertidal mudflats (for instance in H. germanica and E. oceanense, Figs. 1.2B and C). 

Portions of the cell body in the two or three youngest chambers of a foraminifera had a particular 

appearance: they contained very few lipid droplets but more “empty” and degradation vacuoles (and 

thus appeared less dense) than the cell body portions of older chambers. Besides these cell body 

portions of the youngest chambers often had a patchy aspect: that is, more electron-opaque organelles 

were grouped in certain areas within the cell body, thus appearing darker in TEM images than the 

surrounding cytosol (e.g. Fig. 1.2C).  

Because Globobulimina sp. from Gullmar Fjord and several other species inhabiting the same 

type of environment, such as Stainforthia fusiformis or Nonionella sp., are known to store nitrate in 

their cell (Piña-Ochoa et al., 2010), it is possible that the large “empty” vacuoles play a role as internal 

reservoirs of nitrate, as suggested by Bernhard et al. (2012). The intertidal species Ammonia tepida 
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(same type T6 as our specimens) and Haynesina germanica are not known to contain any intracellular 

nitrate (Piña-Ochoa et al., 2010). Thus the vacuoles observed in the cell body of intertidal species may 

have a different origin and/or function than the common, large “empty” vacuoles observed in fjord 

specimens. As hypothesized in some studies (e.g. Erez, 2003; Bentov et al., 2009)), the vacuoles in 

intertidal species could serve as storage for ions intended for test formation inside the foraminiferal 

cell body (pool of HCO3
- ions in Amphistegina lobifera). The brighter appearance of the cell body 

portions  of the youngest chambers is likely due to its location near the aperture from where the 

reticulopods extend, as this requires the presence of numerous microtubules which are not electron-

dense organelles (Alexander and Banner, 1984). The numerous degradation vacuoles sometimes 

observed can also be explained by the proximity to the aperture, where food is internalized by 

phagocytosis. 

 

 

Figure 1.2: Light micrographs of semi-thin sections of the foraminifera from the Atlantic French coast intertidal 
mudflat and the Gullmar fjord. A: Ammonia sp. (tepida morphocomplex); B: Haynesina germanica; C: Elphidium 
oceanense (excavatum species complex), D: Bulimina marginata; E: Globobulimina sp.; F: Nonionella sp.; G: 
Nonionellina labradorica; F: Stainforthia fusiformis. Arrows: nuclei. Scales: A, B, C, E, F, H = 100 μm; D, G = 200μm. 
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3.2. Organelles with known function 

3.2.1. Nucleus 

The nucleus can be located at different locations within the foraminiferal cell, from older to 

younger chambers in multi-chambered species (reviewed in Anderson and Lee, 1991). In our spiral-

shaped foraminifera, the nucleus in one Ammonia sp. (phylotype T6) and two E. oceanense occurred 

in chambers of the penultimate whorl. In all specimens where a nucleus was observed, it seemed that 

these individuals were uninucleate, except for one E. oceanense where two nuclei were noted (Fig. 

1.2C). The uninucleate feature seemed to be typical for foraminiferal gamonts (e.g. Enery and Lee, 

1976; Goldstein, 1997, 1988; Goldstein et al. 2010; Raikov et al., 1998). The observed nuclei exhibited 

various shapes, from nearly spherical to partially lobate. Published accounts also document nuclei with 

various shapes, from spherical to multilobate (reviewed in Raikov et al., 1998). The lobate forms may 

derive from the spherical form in response to an increased need of membrane before gametogenesis 

(Raikov et al., 1998).  

In the rotalid species investigated in this study, the  nucleus had a size typically ranging from 

about 20 to 50 μm in diameter with numerous nucleoli and a lamina (Figs. 1.3 and 4A), which is in the 

same range than previously observed nuclei in different monothalamous or rotalid species (e.g. Altin 

et al., 2009; Altin-Ballero et al., 2013; Anderson and Lee, 1991; Dahlgren, 1967a, b; Goldstein and 

Richardson, 2002; Goldstein et al., 2010; Raikov et al., 1998; Schwab, 1972; Schwab and Schwab-Stey, 

1979). The lamina is a layer of nucleoplasm (i.e., matrix of the nucleus) in contact with the inner 

membrane of the nuclear envelope (Fig. 1.3). Although the lamina appears very similar to the 

nucleoplasm, the former is easily visualized because of the space it creates between the nuclear 

envelope and the nucleoli (Fig. 1.4B). The lamina between the nucleoli and the inner membrane has 

been described in other species (e.g. Dahlgren, 1967a and b). In the allogromiid foraminifer Myxotheca 

sp. a “prominent non-chromatin containing” space was also observed between the nucleoli and the 

nuclear envelope but was not interpreted as a lamina (Goldstein and Richardson, 2002). However it 

might not exist in all species because it was not observed it in Heterostegina depressa and 

Globobulimina turgida (Hottinger and Dreher, 1974). At higher magnification (Fig. 1.4B), the double-

membrane nuclear envelope was observable. The distribution of the nucleoli in the nucleus varied 

among species: all the nucleoli we observed were distributed at the periphery of the nucleus, flattened 

against the lamina or nuclear envelope as illustrated for S. fusiformis (Fig. 1.4C). Sometimes, however, 

additional small nucleoli were seen in the central part of the nucleus as in N. labradorica (Fig. 1.4D). 

The literature also notes that different distributions of nucleoli occur in different species (see Raikov 
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et al. 1998). For example, Spindler et al. (1978) described a central dispersion of the nucleoli in the 

planktonic species Hastigerina pelagica, without nucleoli adjacent to the nuclear envelope, while 

Anderson and Lee (1991) reported nucleoli distribution either centrally or at the periphery of the 

nucleus. A peripheral repartition of nucleoli was also observed in the monothalamous Hippocrepinella 

alba, the rotalid Globobulimina turgida (Dahlgren 1967b) and the allogromiid Hyperammina sp. 

(Goldstein and Richardson, 2002). 

 

 

 

Figure 1.3: Schematic ultrastructure of a foraminiferal nucleus. The double nuclear envelop is surrounded by a 
thin cytoplasmic layer against which perinuclear endoplasmic reticulum stand in a continuous or intermittent 
layer. On the inner part of the nuclear envelop a lamina can be seen, separating the peripheral nucleoli from the 
envelop. Smaller nucleoli can also occupy a central position. The nucleus is represented in a circular shape for 
convenience as it can also be in a lobate form (see details in the text).  

 

 

Perinuclear endoplasmic reticulum was often noted on the outside of the nuclear envelope 

(see section 3.2.3). A thin layer (approximately 200 nm) of cytoplasmic material with a particular 

fibrous aspect surrounded the nuclei in some species, such as Nonionella sp. or Nonionellina 

labradorica (Figs. 1.4A, B and D). This layer was absent from the nucleus of S. fusiformis (Fig. 1.4C). The 
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thin layer of fibrous cytoplasm around the nuclei has been described in larger benthic foraminifera 

(Soritidae) and planktonic species (Leutenegger, 1977) where it was separated from the cytosol by 

small vesicles or lacunas (electron-light cytoplasmic layer). Small vesicles surrounding the nucleolar 

membrane were also observed in different monothalamous species: Psammophaga sapela, 

Xiphophaga minuta, Niveus flexilix, Myxotheca sp., Cribrothalammina alba and Hyperammina sp. (Altin 

et al., 2009; Altin-Ballero et al., 2013; Goldstein and Richardson, 2002; Goldstein et al., 2010). However 

in the present study, the thin layer of cytoplasm with a fibrous aspect surrounding the nuclei in some 

rotalid species was not clearly separated from the rest of the cytosol and no accumulation of small 

vesicles was detected. This feature could correspond to the “nuclear villi” observed by Dahlgren 

(1967a) in the monothalamous species Ovammina opaca and described as protrusions projected in the 

cytoplasm from the nuclear envelope. The double nucleated E. oceanense exhibited atypical nuclei 

with outgrowths (Fig. 1.4E). At higher magnification (Fig. 1.4F), the circular nuclear envelope was 

distinguished between the nucleus and the “outgrowths”. These “outgrowths” were formed of an 

electron-dense matrix and included various organelles like lipid droplets or electron-opaque bodies. 

This matrix was probably linked to the thin layer of cytoplasm, although its role remains unknown. It 

could also be a fixation artefact. 

The TEM micrographs of our study did not allow us to observe the pores of the nuclear 

envelope, but other studies have noted their presence in both planktonic and benthic species (e.g. 

Altin et al. 2009; Anderson and Lee, 1991; Dahlgren, 1967b; Goldstein, 1997; Hemleben et al., 1989; 

Leutenegger, 1977). These pores may allow communication with the cell body, in particular the 

migration of RNA (Anderson and Lee, 1991). 
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Figure 1.4: Transmission electron micrographs of benthic foraminiferal nuclei. A: Nonionella sp. nucleus with 
numerous nucleoli. B: Higher magnification of Nonionella sp. nucleus showing a nucleolus at the nucleus 
periphery and the nuclear membrane (arrows) with a thin cytoplasmic layer (dotted arrows). C: S. fusiformis 
nucleus with numerous small peripheral nucleoli (black arrowheads). D: Nonionellina labradorica nucleus with a 
few small central nucleoli (white arrowheads). E: Elphidium oceanense nucleus with “cytoplasmic outgrowths”. 
F: Higher magnification of the nucleus of Elphidium oceanense (arrows: nucleoplasm). Arrows: nuclear 
membranes, dotted arrows: thin cytoplasmic layer, white asterisks: electron opaque bodies, c: chloroplasts, fv: 
fibrillar vesicles, li: lipid droplets, m: mitochondria, n: nucleus, nu: nucleolus, ol: organic lining, p: peroxisomes, 
po: pore, rb: residual bodies, v: vacuoles. Scales: A = 2 μm; B, F = 1 μm; C, E = 5 μm; D = 10 μm. 
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3.2.2. Mitochondria 

Mitochondria were studied in all the observed specimens. As they are the site of Adenosine 

TriPhosphate (ATP) production (Sherratt, 1991), their presence and integrity are one of the main tools 

to attest to the vitality of the specimen at the time of fixation (Nomaki et al., 2016). Main features of 

mitochondria, which are also observed in our study (Fig. 1.5A), is the double membrane and the 

presence of cristae in their matrix (Sherratt, 1991). Mitochondria usually appeared oval or kidney 

shaped in cross section with a length in the range of 0.5 to 1 μm (Figs. 1.5A-C), although they can be 

bigger and take various shapes (Figs. 1.5B and C). In some foraminiferal species mitochondria with 

atypical morphologies could be observed. In two of the observed N. labradorica, the mitochondria 

exhibited tubular inclusions (Fig. 1.5D). Also, in other specimens of N. labradorica, as well as in H. 

germanica and Nonionella sp., a less electron opaque central area was seen in the mitochondria (Fig. 

1.5E). At higher magnification, filaments could be identified in this less electron-dense central part (Fig. 

1.5E inset).  

In all analyzed specimens except those of Stainforthia fusiformis, the mitochondria seemed to 

be homogeneously distributed throughout the cell body. However in the three analyzed individuals of 

S. fusiformis, although a few mitochondria were seen dispersed through the entire cell body, most of 

them were clearly concentrated close to the plasma membrane of the external parts of the chambers, 

i.e., parts of the chambers that are in contact with the environment (or were in contact before the 

addition of a new chamber (Figs. 1.5F and G). 

To our knowledge, the tubular inclusions observed in some mitochondria have not been 

described in any other type of organism. We suggest here that they could be elongated cristae. The 

less electron-opaque central part of mitochondria observed in some species of this study can also be 

seen in the mitochondria of the planktonic species Hastigerina pelagica and Globigerinoides ruber 

(Hemleben et al., 1989). Seen at higher magnification, the filaments resembled fibrils of mitochondrial 

DNA (Nass and Nass, 1963). The accumulation of mitochondria under the pores is known in some 

benthic foraminiferal species such as Nonionella stella and Bolivina pacifica (Bernhard et al., 2010a; 

Leutenegger and Hansen, 1979). This specific distribution was interpreted as an adaptation to low-

oxygen environments. In the S. fusiformis specimens studied here, the mitochondria were not only 

distributed under the pores but all along the plasma membrane of the external part of the chambers. 

Thus we cannot conclude that a similar role occurs in this species. 
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Figure 1.5: Transmission electron micrographs of benthic foraminiferal mitochondria. A: Classic structure of a 
mitochondrion observed in Stainforthia fusiformis (arrowheads: cristae, arrows: double membrane). B: 
Elongated mitochondria (asterisks) in Nonionella sp. C: Circular mitochondrion (asterisk) aside two classic 
mitochondria in Nonionella sp. D: Tubular inclusions (white arrowheads) in two mitochondria of a specimen of 
Nonionellina labradorica. E: Mitochondria with a less electron opaque central part (white asterisks) in Nonionella 
sp. Inset: High-magnification micrograph of the fibrils in this central part. F and G: Numerous mitochondria at 
the periphery of the chambers (areas surrounded by a dashed black line in F) in Stainforthia fusiformis. c: 
chloroplasts, m: mitochondria, li: lipid droplets, n: nucleus, rb: residual bodies, v: vacuoles. Scales: A, D = 200 nm; 
B, C = 500 nm; E = 100 nm; F = 5 μm; G = 2 μm. 
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3.2.3. Endoplasmic reticulum 

Generally in eukaryotic cells, two types of endoplasmic reticulum occur: rough endoplasmic 

reticulum (RER) that has ribosomes on its membrane, and smooth endoplasmic reticulum (SER) that 

lacks ribosomes (Vertel et al., 1992). The former type is a site of protein synthesis, while the latter is 

involved in lipid synthesis and other synthesis activities (Vertel et al., 1992). Because the visualization 

of ribosomes at the resolution of the TEM is not assured, in this contribution both types will be grouped 

under the name of “endoplasmic reticulum”. 

 Endoplasmic reticulum (ER) was observed in all foraminiferal species studied here (e.g., Fig. 

1.6A and B), and has been documented in many other foraminiferal species (reviewed in Anderson and 

Bé, 1978). The ER is very often observed associated with Golgi apparatus (Figs. 1.6D and E) and 

peroxisomes (Figs. 1.6E and F - see sections 3.2.4. and 3.2.5.). It was also present around each nucleus 

observed in this study, as shown in Figs. 1.6C and D. In Figures 1.6E-G, structures apparently made of 

ER can be observed. These structures, all observed in S. fusiformis specimens, were formed of 

numerous ER cisternae stacked in parallel. 

The particular association of ER with the nucleus was established in different foraminiferal 

species, rotalid or monothalamous (e.g. Altin et al., 2009; Altin-Ballero et al., 2013; Anderson and Bé, 

1978; Dahlgren, 1967a, b; Hottinger and Dreher, 1974) and described as “perinuclear reticulum”, 

however it seems to be absent in some monothalamous species such as Myxotheca sp., 

Cribrothalammina alba and Hyperammina sp. (Goldstein and Richardson, 2002). In certain specimens 

of S. fusiformis, this perinuclear ER was intermittent (Fig. 1.6C), while in specimens of N. labradorica it 

formed a continuous layer around the nucleus (Fig. 1.6D). Finally, the ER organized in parallel stacks 

(Figs. 1.6E-G) were similar to the annulate lamellae of the planktonic foraminifer Hastigerina pelagica 

(d'Orbigny) (Anderson and Lee, 1991; Hemleben et al., 1989; Spindler and Hemleben, 1982). These 

annulate lamellae made of ER are formed before the gametogenesis of a foraminifera and may provide 

membranous material for the formation of nuclear envelop of the new nuclei (Anderson and Lee, 1991; 

Hemleben et al., 1989; Spindler and Hemleben, 1982). Goldstein (1997) also described a pregametic 

nucleus surrounded by several layers of endoplasmic reticulum in the rotalid Ammonia sp. She also 

hypothesized that those structures are involved in foraminiferal gametogenesis.  
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Figure 1.6: Transmission electron micrographs of benthic foraminiferal endoplasmic reticulum. A: Area of the 
cytoplasm rich in endoplasmic reticulum in Nonionella sp. B: Higher magnification of endoplasmic reticulum in 
Nonionellina labradorica. C, D: Endoplasmic reticulum at the periphery of a nucleus in C: Nonionellina labradorica 
and D: Stainforthia fusiformis. E: Particular structure made of endoplasmic reticulum in one specimen of 
Stainforthia fusiformis. F, G: Endoplasmic reticulum stacked in a parallel pattern in another specimen of 
Stainforthia fusiformis. Black arrowheads: endoplasmic reticulum, arrows: nucleoplasm, g: Golgi apparatus, m: 
mitochondria, mvb: multivesicular bodies, n: nucleus, nu: nucleolus, li: lipid droplets, p: peroxisomes. Scales: A, 
B, D = 200 nm; C = 2 μm; E, F = 500 nm; G = 1 μm. 
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3.2.4. Peroxisomes 

Peroxisomes, which were observed in all the specimens from the three sites, are spherical 

vesicles, approximately 500 nm in diameter and containing a crystalline structure (Fig. 1.7A). At high 

magnification, the regular organization of the crystalline structure was observed (Fig. 1.7B inset). 

Peroxisomes were always observed associated with ER (Figs. 1.7A, C and D) and, in the cell body of S. 

fusiformis and Globobulimina sp., they were organized in a particular structure: numerous 

peroxisomes were associated with a high density of ER (Fig. 1.7E). 

The existence of peroxisomes in the cytoplasm of foraminifera was first demonstrated in 

planktonic foraminifera by Anderson and Tuntivate-Choy (1984), who used cytochemical analysis to 

document the presence of peroxidases, which are enzymes typical of peroxisomes. Peroxidase activity 

was also demonstrated in benthic foraminiferal peroxisomes (Bernhard and Bowser 2008). 

Furthermore, Bernhard and Bowser (2008) measured the spacing of the benthic foraminiferal 

peroxisomal internal crystals, documenting its identity as catalase, which is present in all peroxisomes 

(De Duve and Beaudhuin, 1966). Catalase is an enzyme that converts hydrogen peroxide (H2O2) into 

water and oxygen, a reaction which produces metabolically useful molecules. Another role that 

peroxisomes play in eukaryotic cells, including foraminifera, is gluconeogenesis, i.e., the production of 

carbohydrates (Hemleben et al., 1989). 

The association of peroxisomes with ER has been established previously for other benthic 

foraminiferal species (Bernhard et al., 2001; Bernhard and Alve, 1996; Bernhard and Reimers, 1991; 

Nyholm and Nyholm, 1975). Also, the specific organization of stacks of peroxisomes associated with 

copious endoplasmic reticulum (so-called peroxisome-endoplasmic reticulum complexes; P-ER; Fig. 

1.7E) has been observed in benthic foraminifera inhabiting chemocline environments, such as low-

oxygen areas or seeps (reviewed in Bernhard and Bowser, 2008) (Figs. 1.7F and G). Our observations 

are consistent with these prior studies because we noted P-ER complexes in both S. fusiformis and N. 

labradorica from the Gullmar Fjord, which often exhibits episodes of hypoxia (Filipsson and Nordberg, 

2004; Nordberg et al., 2000). 

Peroxisomes can also be closely associated with mitochondria (Bernhard and Bowser 2008; 

Fig. 1.7F) and large vacuoles (Bernhard and Bowser 2008; Fig. 1.7G). Bernhard and Bowser (2008) 

hypothesized the conversion of peroxide to oxygen and water allowed mitochondrial use of oxygen; 

the association of peroxisomes with vacuoles suggests a potential source of reactive oxygen species in 

the vacuoles.   
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Figure 1.7: Transmission electron micrographs of benthic foraminiferal peroxisomes. A: Classic structure of a 
peroxisome surrounded by endoplasmic reticulum (ER) in Nonionellina labradorica. B: High-magnification image 
of the crystalline structure of the peroxisome seen in A; inset: triangular core in Bulimina tenuata peroxisome 
(specimen from Bernhard and Bowser, 2008). C and D: Peroxisomes in the cytoplasm of C: Nonionella sp. and D: 
Nonionellina labradorica. E: Peroxisome-endoplasmic reticulum (P-ER) complex in Stainforthia fusiformis. F: 
Circular P-ER ring encircling mitochondria in Bulimina tenuata (specimen from Bernhard and Bowser, 2008). G: 
“Railroad track” of P-ER along the edge of a large vacuole in Bulimina tenuata (specimen from Bernhard and 
Bowser, 2008). Inset: higher magnification showing two of the peroxisomes forming the track and the fibrils of 
ER linking them. Arrowheads: ER, arrow: crystalline inclusion, fv: fibrillar vesicles, li: lipid droplets, li*: lipid 
droplets in lysis, m: mitochondria, mvb: multivesicular bodies, p: peroxisomes, rb: residual bodies, v: vacuoles. 
Scales: A = 200 nm; B = 100 nm; C, D = 500 nm; F, G = 1 μm. 
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3.2.5. Golgi apparatus 

Generally, the Golgi apparatus plays a role in the maturation of proteins, as well as in the 

formation of some lipids (and polysaccharides in plant cells) (Farquhar and Palade, 1998; Staehelin and 

Moore, 1995). The Golgi processes proteins received from the endoplasmic reticulum through 

incoming transport vesicles on the cis face. These proteins are then sent to their next destination from 

the trans face in secretory vesicles (Farquhar and Palade, 1998; Staehelin and Moore, 1995; Fig. 1.8). 

The Golgi apparatus is made of membrane stacks surrounded by different types of vesicles, these 

membranes form tubular vesicles called cisternae; the space within the cisternae is called the lumen 

(Farquhar and Palade, 1998; Staehelin and Moore, 1995; see Fig. 1.8). In our study, Golgi apparatus 

observed in the rotalid species’ cell bodies also presented this specific organization (Fig. 1.9).   

 

 

Figure 1.8:  Schematic ultrastructure and relations between the reticulum endoplasmic, Golgi apparatus and 
fibrillar vesicles in the foraminiferal cell. The endoplasmic reticulum (ER) is secreting the transport vesicles 
containing the ER secretory products (proteins or lipids) which arrive on the cis face of the Golgi apparatus. After 
maturation through the Golgi saccules the proteins (or lipids) are excreted on the trans face in secretory vesicles. 
The grey part is speculative: the secretory vesicles would further be transformed into fibrillar vesicles (see details 
in the text). The arrow represents the direction of the metabolic process, from the secretion by the endoplasmic 
reticulum to the excretion in secretory vesicles and putative transformation in fibrillar vesicles. Modified from 
(Anderson and Lee, 1991). 
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The Golgi apparatus observed in our foraminiferal cells had a typical structure where the 

different elements described above can be clearly identified (Fig. 1.9A). The membrane stacks were 

made of about ten cisternae and were often surrounded by ER on the cis face, with spherical transport 

vesicles about 70 nm in diameter existed between the ER and the cisternae (Figs. 1.9A, B and C). The 

secretory vesicles on the trans face were elongated and slightly longer (150 – 200 nm) (Fig. 1.9A). 

Frequently, a single stack of membrane was observed (Fig. 1.9B) but groups of two and sometimes 

more were also noted (Fig. 1.9C). 

The Golgi apparatus is a common organelle that has been described in planktonic (e.g., 

Anderson and Bé, 1976a; Anderson and Lee, 1991), benthic (e.g., Bernhard et al., 2010a, 2010b; 

Frontalini et al., 2015), and large benthic foraminifera (LBF) (e.g., Hottinger and Dreher, 1974; 

Leutenegger, 1977). In planktonic foraminiferal cells they may be involved in the formation of fibrillar 

vesicles (see section 3.3.1.). 
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Figure 1.9: Transmission electron micrographs of benthic foraminiferal Golgi apparatus. A: Golgi apparatus 
made of three membrane stacks in Stainforthia fusiformis. B and C: Membrane stacks of Golgi apparatus alone 
(B) or organized in pair (C) surrounded by endoplasmic reticulum in Nonionellina labradorica. Black stars: cis face, 
white stars: trans face, arrowheads: endoplasmic reticulum, dotted arrows: cisternae, black arrows: incoming 
transport vesicles, white arrows: secretory vesicles, fv: fibrillar vesicles, m: mitochondria, li: lipid droplets, v: 
vacuoles. Scales: A, C = 500 nm; B = 200 nm. 
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3.2.6. Organelles involved in feeding metabolism 

3.2.6.1. Degradation vacuoles 

Often in the literature the degradation vacuoles containing food are described and referred to 

as either food vacuoles or digestive vacuoles. Anderson and Bé (1976b) and Hemleben et al. (1989) 

differentiated between food vacuoles and digestive vacuoles: the former are vacuoles containing food 

that has recently been ingested, but not yet degraded; and the latter are vacuoles in the next stage, 

i.e., after a food vacuole has fused with a primary lysosome carrying digestive enzymes that have 

triggered onset of degradation. In our study no food vacuoles with clearly identifiable food particles 

were observed. Concerning the digestive vacuoles, it is challenging to determine from TEM images if 

the source of the degraded material is an external source (food) or autophagocytosis of foraminiferal 

organelles (i.e., self-digestion of damaged or non-functional organelles). Thus, we do not distinguish 

between digestive vacuoles, and autophagocytosis and consequently lump them together under the 

label of “degradation vacuoles”. 

Degradation vacuoles had highly variable dimensions (Figs. 1.10A, B, C and D), with diameters 

ranging between 2-10 μm. They were mainly localized in the younger chambers of the foraminiferal 

cell, close to the aperture where food is phagocytosed. They were observed in all specimens examined 

in this study, in varied abundances. In Ammonia sp. (phylotype T6), diatoms at different stages of 

digestion could be seen in the youngest chambers (n to n – 5, i.e., the last six chambers from the 

aperture). 

The different sizes and abundances of degradation vacuoles might depend on the foraminiferal 

metabolism and feeding strategies. Indeed, a starved foraminifer or a foraminifer with an alternative 

metabolism, such as denitrification, mixotrophy, or symbiosis with algae (or bacteria) might contain 

fewer endoplasmic degradation vacuoles. Furthermore, the morphological appearance of these 

vacuoles might depend on the nature of the ingested food and/or feeding strategy (reviewed by 

Goldstein and Corliss, 1994). In our study, one example is illustrated by the particular appearance of 

degradation vacuoles in Ammonia sp. (phylotype T6). As Ammonia sp. feeds on diatoms, including the 

diatom frustules, the cell body portions of the youngest chambers in this species exhibited diatoms at 

different stages of digestion: from the nearly intact diatoms with identified organelles to empty 

frustules (Fig. 1.10E). Engulfed frustules have been observed in other studies of Ammonia spp. 

(Goldstein and Corliss, 1994, LeKieffre et al., 2017, second chapter) as well as in the large benthic 

foraminifera Amphisorus hemprichii and Amphistegina lessonii (McEnery and Lee, 1981). 
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Figure 1.10: Transmission electron micrographs of different types of degradation vacuoles. Degradation 
vacuoles in the cytoplasm of A: Nonionella sp. B: Nonionellina labradorica, C and D: Ammonia sp. E: Cytoplasm 
of the antepenultimate chamber in Ammonia sp. exhibiting numerous diatom frustules (arrowheads), in which 
the diatom cytoplasm is being digested (d*) and diatom chloroplasts are in degradation (c*). c: chloroplasts, c*: 
chloroplasts in degradation, d*: diatom in degradation, dv: degradation vacuoles, fv: fibrillar vesicles, li: lipid 
droplets, m: mitochondria,  ol: organic lining, po: pore, rb: residual bodies, v: vacuoles. Scales: A, C, D = 1 μm; B 
= 500 nm; E = 5 μm. 
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3.2.6.2. Residual bodies  

Residual bodies are vacuoles with heterogeneous content, often with electron-dense circular 

particles (Hemleben et al., 1989; Leutenegger, 1977). In this study, residual bodies were circular with 

diameters from 1 to 5 μm (Fig. 1.11A, B), except in the species B. marginata where they were slightly 

bigger (4 to 8 μm) with irregular shapes (Fig. 1.11C). These residual bodies were observed in all species 

studied here, although in different abundances, and appear equivalent to the residual bodies observed 

in the cell body of LBF Amphisteginidae and Nummulitidae (Leutenegger 1977), and to inclusions in 

Heterostegina depressa with “strikingly inhomogeneous content” (Hottinger and Dreher (1974). 

Leutenegger (1977) described the residual bodies as autophagocytosis vacuoles, i.e., autolysis vacuoles 

containing foraminiferal organelles in degradation. Note that there was no clear evidence for 

degrading organelles in any of the residual bodies observed in this study. In general, it is difficult to 

establish if the electron-dense particles inside these residual bodies result from the degradation of 

external material (food) or from foraminiferal organelle autophagocytosis. Hemleben et al. (1989) 

described residual bodies as vacuoles containing non-digestible debris, which is consistent with the 

observed accumulation of isotopic labeled compounds derived from diatoms in residual bodies of 

Ammonia sp. (LeKieffre et al., 2017, second chapter). Le Cadre and Debenay (2006) and Morvan et al. 

(2004) noted that residual bodies proliferated when Ammonia tepida specimens were under stress 

from different forms of pollution or contamination of their environment.  

 

 

Figure 1.11: Transmission electron micrographs of benthic foraminiferal residual bodies. A: Round shaped 
residual body in Nonionella sp. B: High abundance of residual bodies in the cytoplasm of Nonionellina labradorica. 
C: Irregular shaped residual body in Bulimina marginata. fv: fibrillar vesicles, m: mitochondria, ol: organic lining, 
p: peroxisomes, rb: residual bodies. Scales: A = 500 nm; B, C = 1 μm. 
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3.2.6.3. Lipid droplets 

Lipid droplets were often spheroidal (Fig. 1.12A), but can take a variety of shapes in the 

cytoplasm (Fig 1.12B, C). A particular feature of lipid droplets was the absence of apparent enclosing 

membrane(s). Sizes vary from about 500 nm to 10 μm in diameter, with an average diameter 

approximately 2 μm. In nearly all specimens studied by us, a few lipid droplets were observed in 

degradation (i.e., part of the lipid droplet was missing, ‘replaced’ by apparently empty space in the 

TEM micrographs; Fig. 1.12B). Sometimes the opacity of the lipid droplets was not uniform; it could be 

brighter on the periphery than in the center, as observed, e.g., in N. labradorica and B. marginata (Figs. 

1.12C and D). 

Described as the primary carbon storage in foraminiferal cells (Hottinger, 1982; Hottinger and 

Dreher, 1974; Leutenegger, 1977; Pawlowski et al., 1995), lipid droplets are osmiophilic vesicles and 

thus they appear electron dense in TEM micrographs. The level of opacity depends on the osmium 

tetroxide (OsO4) concentration of incubation media, as well as on the degree of fatty acid saturation, 

which might explain observed variations among different species, assuming identical sample 

preparation procedures, including OsO4 staining (which is the case in our study). Metabolic state and 

diet can contribute to this variability. LeKieffre et al. (2017, second chapter) have demonstrated a clear 

link between lipid droplets and food in digestive vacuoles by tracing 13C-enrichment from ingested 

food, via degradation vacuoles, to lipid droplets. 

Lipid droplet distribution in the cell body in the present study was in agreement with previous 

studies. Anderson and Lee (1991) also observed such droplets in all chambers, except in the last 

(youngest) and penultimate chambers, from where benthic foraminifera extend their reticulopods. 

The proportion of lipid droplets in a state of degradation is highly variable, likely depending on 

metabolic state of the individual. In a 28-day incubation in which foraminifera were fed only once, at 

the beginning of the experiment, LeKieffre et al. (2017, second chapter) observed how lipid droplets 

were initially formed and then were gradually consumed nearly to the point of disappearance. 

A relatively high abundance of lipids has been observed under stressful conditions in different 

experimental studies testing the response of foraminifera to heavy-metal contamination (Frontalini et 

al., 2015; Le Cadre and Debenay, 2006) and anoxia (Koho et al. this special issue). Finally, lipid droplets 

with a brighter periphery were also observed in the case of contamination with lead and described as 

“electron-dense core lipid vacuoles” (Frontalini et al., 2015). In our study we suggest that the lipid 

brighter at the periphery observed in in N. labradorica and B. marginata could be a fixation artifact, 

although we are not able to explain it. 
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Figure 1.12: Transmission electron micrographs of benthic foraminiferal lipid droplets. A: Lipid droplets in the 
cytoplasm of Nonionella sp. B: Lipid droplets in degradation in Nonionellina labradorica. C, D: Less electron-
opaque lipid droplets at the periphery of Nonionellina labradorica (C) and Bulimina marginata (D). c: chloroplasts, 
eo: electron-opaque bodies, fv: fibrillar vesicles, li: lipid droplets, li*: degraded lipid droplets, m: mitochondria, 
p: peroxisomes, po: pore, rb: residual bodies, v: vacuoles. Scales: A, C, D = 1 μm; B = 500 nm. 
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3.2.7. Paracrystals of tubulin  

Paracrystals of tubulin provide the cell with molecular building blocks for their microtubular 

network supporting, e.g., the foraminiferal reticulopods (reviewed in Travis and Bowser, 1991), which 

are the primary mean of foraminiferal food acquisition. They are elongated structures from 2 to 50 μm 

in length (Fig. 1.13A) and recognizable due to their regular organization at high magnification (Fig. 

1.13B), sometimes exhibiting regular crystalline pattern akin to a honeycomb structure (Figs. 1.13C 

and D) depending on the plane of section. We observed these structures in the cell body of Gullmar 

Fjord species N. labradorica, Nonionella sp. and Globobulimina sp. (Fig. 1.13A), but not in intertidal 

foraminiferal species. Note that the higher density of the cell body in the latter might have partially 

obstructed their observation. Our observations are similar to the paracrystals in the cell body and 

reticulopodial net of other benthic foraminiferal species (reviewed in Travis and Bowser, 1991).  

 

 

Figure 1.13: Transmission electron micrographs of paracrystals of tubulin in the cytoplasm of Nonionellina 
labradorica. A: Longitudinal section of a tubulin paracrystal. B: High-magnification image revealing the regular 
pattern of the crystalline structure observed in A. C: Cross section of the crystalline structure. D: High-
magnification image revealing the regular pattern of the crystalline structure observed in C. Asterisks: 
paracrystals of tubulin, c: chloroplasts, fv: fibrillar vesicles, li: lipid droplets, m: mitochondria. Scales: A = 1 μm; 
B, D = 200 nm, C = 500 nm. 
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3.3. Organelles with unknown function  

3.3.1. Prokaryotes and sequestered chloroplasts 

Many benthic foraminiferal species are known to have prokaryotic associates and/or sequester 

chloroplasts in their cytoplasm (see Bernhard et al., submitted, Jauffrais et al., (chapter 3.1) for 

reviews).  The prokaryotes seemingly can be symbionts beneficial to the host foraminifer or can be 

parasites, which are detrimental to the foraminiferal host. Kleptoplasts are believed to confer 

considerable advantage to the foraminiferal host.  While the role of these subcellular entities clearly 

impacts the foraminifer, details on the functions of these structures are not well understood.  We 

refrain from further discussion of these entities and direct the reader to the noted publications. 

3.3.2. Fibrillar vesicles 

Fibrillar vesicles were abundant in all foraminiferal species observed in this study (Fig. 1.14A). 

These structures are small oval vesicles approximately 500 nm in length. They contained fibrils that, 

depending on the cutting plane, appeared as thin threads or as nanometer-scale spots (Fig. 1.14B). In 

some TEM micrographs, we observed a space between the fibrils and the membrane enclosing them 

(Fig 1.14C), which may be a fixation artifact. Fibrillar vesicles were sometimes observed to exocytose 

into white “empty” vacuoles or to be fused with residual bodies (Figs. 1.14D, E, F and G).   

First described by Angell (1967), small fibrillar vesicles have been observed both in planktonic 

and benthic foraminifera throughout the cell body as well as in the reticulopods (Anderson and Bé, 

1976a; Goldstein and Barker, 1988; Hemleben et al., 1989; Leutenegger, 1977). Different authors have 

hypothesized that the fibrillar vesicles are formed by the stacks of membranes of the Golgi apparatus 

(Anderson and Bé, 1976b, 1976a; Anderson and Lee, 1991; Leutenegger, 1977) (Fig. 8). Similar fibrillar 

vesicles were also observed in dinoflagellate cells (Dodge, 1974; Leadbeater and Dodge, 1966) where 

they were identified as Golgi vesicles. Langer (1992) hypothesized that the fibrillar vesicles are involved 

in the transport of glycosaminoglycans (GAGs; sulfated polysaccharides) from their production site in 

the Golgi apparatus, to the place they would be used. Some studies have argued that the fibrillar 

vesicles could play a role in the secretion of mucilaginous substances for the reticulopods (Anderson 

and Bé, 1976b, 1976a). Because of the small size of fibrillar vesicles and their abundance in the 

peripheral cytoplasm of the species studied, Leutenegger (1977) suggested a role in the formation of 

organic matrix, such as organic linings, which seems consistent with observations of high densities of 

fibrillar vesicles in the last chamber of foraminifera, prior the formation of a new chamber in planktonic 

foraminifera (Angell, 1967; Leutenegger, 1977; Spero, 1988).  
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Figure 1.14: Transmission electron micrographs of benthic foraminiferal fibrillar vesicles. A: Fibrillar vesicles in 
the cytoplasm of Nonionellina labradorica. B: High-magnification image of a group of fibrillar vesicles in 
Nonionella sp.; sections parallel (black asterisks) or perpendicular (white asterisk) to the fibrils. C: Fibrillar vesicle 
surrounded by a space between the fibrils and the vesicle membrane in Haynesina germanica. D and E: Fibrillar 
vesicles merging with vacuoles (arrowheads) in D: Nonionellina labradorica and E: Nonionella sp. F and G: Fibrillar 
vesicles merging with residual bodies (arrowheads) in F: Stainforthia fusiformis and G: Nonionellina labradorica. 
c: chloroplast, eo: electron-opaque bodies, li: lipid droplet, m: mitochondria, mvb: multivesicular bodies, p: 
peroxisomes, rb: residual body, fv: fibrillar vesicles. Scales: A, E, F, G = 500 nm; B, C, D = 200 nm.  
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Note that the fibrillar vesicles observed here differ from the fibrillar system (also called fibrillar 

bodies or microvillus system) observed in planktonic foraminifera (Anderson and Bé, 1976a; Anderson 

and Lee, 1991; Hemleben et al., 1989; Leutenegger, 1977; Spero, 1988). The fibrillar system in 

planktonic foraminifera is made of larger fibrillar bodies, which are vacuoles containing larger fibrils 

with a tubular aspect; possibly serving as flotation devices (Anderson and Bé, 1976a; Hemleben et al., 

1989; Leutenegger, 1977), or playing a role as Ca storage vacuoles (Spero, 1988). 

 

3.3.3. Electron-opaque bodies 

Electron-opaque bodies are small (200 to 500-nm in diameter) spherical (Fig. 1.15A) to oval-

shaped (Fig. 1.15B) dense bodies. Some of these bodies were surrounded by a seemingly empty space 

and a membrane (Figs. 1.15A-C, G-H); the space below the membrane could be due to shrinkage during 

chemical fixation. Others did not seem to possess a space below the membrane (Figs. 1.15C-H), and 

they are so electron-opaque that the presence of a membrane is difficult to establish. Such electron-

opaque bodies, i.e., with or seemingly without membrane, were observed in the cell body of all species 

studied here, sometimes equally distributed but occasionally clustered at the cell periphery, as in 

Ammonia sp. cell body (Fig. 1.15C). The visualization of the membrane might also depend on the plane 

section view and could explain that it was clearly visible in some cases, and sometimes not. 

We assume that whether or not they possess a seemingly empty space and a membrane, all 

the electron-opaque bodies are in fact the same structure, but further studies are required. 

Leutenegger (1977) did not differentiate the osmiophilic granules observed in the cell body of larger 

foraminifera, whether  a membrane could be distinguished or not (e.g., Plate 17, Fig. c; Plate 29, Fig. d 

and Plate 43, Figs. b and c in Leutenegger 1977). The Leutenegger osmiophilic granules were 

approximately the same size as the electron-opaque bodies observed in our study. It is noted that 

these structures occur in the TEM micrographs of several publications, both on planktonic and benthic 

foraminiferal cells, although they have not always been described (e.g., Anderson and Bé, 1976a; 

Bernhard et al., 2010; Hemleben et al., 1989; Le Cadre and Debenay, 2006). They may correspond to 

the “electron-dense bodies” surrounded by membranes observed by Nomaki et al. (2016), who 

observed these structures clustered close to the cell periphery, but only in specimens incubated in 

anoxia. Although their role is not understood, it has been shown that these structures had a relatively 

high sulfur content when compared to other types of organelles (Nomaki et al., 2016). 
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Figure 1.15: Transmission electron micrographs of benthic foraminiferal electron-opaque bodies. A and B: 
Electron-opaque bodies with membranes (black arrowheads) in the cytoplasm of A: Nonionella sp. and B: 
Nonionellina labradorica. C: Clusters of electron-opaque bodies in the cytoplasm of Ammonia sp. C, D and E: 
Electron-opaque bodies without distinguishable membranes (white arrowheads) in the cytoplasm of C, D: 
Nonionellina labradorica and E: Haynesina germanica. G, H: Both shapes of electron-opauqe bodies in the 
cytoplasm of G: Nonionella sp. and H: Nonionellina labradorica. Black arrowheads: electron-opaque bodies with 
membranes, white arrowheads: indistinguishable membrane electron-opaque bodies, fv: fibrillar vesicles, g: 
Golgi apparatus, li*: lipid droplets in lysis, m: mitochondria, mvb: multivesicular bodies, p: peroxisomes, rb: 
residual bodies, v: vacuoles. Scales: B, D-F = 500 nm; A, G = 200 nm; C, H: 1 μm. 
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3.3.4. Multivesicular bodies 

Multivesicular bodies are tiny spheroidal vacuoles with a diameter of 200 – 500 nm (Figs. 1.16A 

and B). They contain vesicles of 10 to 50 nm; the number of these vesicles can vary from one or two to 

more than a dozen per multivesicular body. They were observed in the cell body of all the species 

studied here and were more abundant in the younger chambers (arrowheads in Fig. 1.16B). 

The role and function of these multivesicular bodies are unknown. These structures could 

correspond to the multivesicular bodies in the microtubule-transport model of Langer (1992 [Fig. 3]).  

Vesicles attached to microtubules were also observed by Anderson and Lee (1991, [Fig 27]), although 

they were simply referred to as “vesicles”. They could also correspond to the “fuzzy coated vesicles” 

associated with microtubules in the reticulopods (Bowser and Travis, 2000 [Fig. 2b]; Travis and Allen, 

1981 [Fig. 3]; Travis and Bowser, 1991 [Fig. 9]): these fuzzy coated vesicles are more elongated than 

spheroids but their size is similar to the structures observed here. Similar vesicles were also observed 

in the canal plasma of Operculina ammonoides. However, in that case, the vesicles were associated 

with microtubules (Hottinger and Dreher, 1974 [Fig. 11]). Finally, the same kind of vesicles was also 

seen in the reticulopodial net of Peneroplis planatus and near a pore in Amphistegina lobifera 

(Leutenegger, 1977 [Plate 45, Fig. a; Plate 52, Fig. a]). All these observations are consistent with the 

higher abundances of multivesicular bodies in younger chambers. Whatever their function, it seems 

that multivesicular bodies are ubiquitous among benthic foraminiferal species. 

 

 

Figure 1.16: Transmission electron micrographs of benthic foraminiferal multivesicular bodies. Multivesicular 
bodies in the cytoplasm of A: the penultimate chamber of one Ammonia sp. specimen and B: Nonionella sp. Black 
arrowheads: multivesicular bodies, eo: electron opaque bodies, fv: fibrillar vesicles, m: mitochondria, p: 
peroxisomes. Scales: A, B = 500 nm. 
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4. Conclusion 

The ultrastructure of foraminifera is highly variable among species. First, the overall aspect of 

the cell body is variable, mainly because of the absence/presence and abundance of large vacuoles. 

Second, although organelles involved in basic functioning of the cell (e.g., nucleus, mitochondria, ER, 

Golgi apparatus, peroxisomes) are present in all the species, their appearance, size, abundance, or 

location vary. Third, the degradation vacuoles are found in all the species studied here but because 

there are many different types of feeding metabolism, there are also many different types of 

degradation vacuoles. Moreover, the physiological state (environmental stress, starvation state, stage 

in the reproduction cycle, etc.) of a specimen can have an impact on its cellular ultrastructure, resulting 

in ultrastructural variations within conspecifics (Koho et al., in press; Frontalini et al., in press). 

Finally, this work emphasizes the need for further ultrastructural investigations to determine 

the role of recurrent but poorly understood organelles, such as fibrillar vesicles, electron-opaque 

bodies, or multivesicular bodies, as well as the metabolic interactions between all types of organelles. 
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Chapter 2: Surviving anoxia in marine sediments: The metabolic 

response of ubiquitous benthic foraminifera (Ammonia tepida) 

 

Chapter 2 presents an article published in the journal PLoS ONE (LeKieffre et al., 2017). The 

feeding metabolism of a benthic foraminiferal species is investigated and compared between oxic and 

anoxic conditions. This article can be access online: https://doi.org/10.1371/journal.pone.0177604  
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Abstract 

High input of organic carbon and/or slowly renewing bottom waters frequently create periods 

with low dissolved oxygen concentrations on continental shelves and in coastal areas; such events can 

have strong impacts on benthic ecosystems. Among the meiofauna living in these environments, 

benthic foraminifera are often the most tolerant to low oxygen levels. Indeed, some species are able to 

survive complete anoxia for weeks to months. One known mechanism for this, observed in several 

species, is denitrification. For other species, a state of highly reduced metabolism, essentially a state 

of dormancy, has been proposed but never demonstrated. Here, we combined a 4 weeks feeding 

experiment, using 13C-enriched diatom biofilm, with correlated TEM and NanoSIMS imaging, plus bulk 

analysis of concentration and stable carbon isotopic composition of total organic matter and individual 

fatty acids, to study metabolic differences in the intertidal species Ammonia tepida exposed to oxic 

and anoxic conditions. Strongly contrasting cellular-level dynamics of ingestion and transfer of the 

ingested biofilm components were observed between the two conditions. Under oxic conditions, 

within a few days, intact diatoms were ingested, degraded, and their components assimilated, in part 

for biosynthesis of different cellular components: 13C-labeled lipid droplets formed after a few days 

and were subsequently lost (partially) through respiration. In contrast, in anoxia, fewer diatoms were 

initially ingested and these were not assimilated or metabolized further, but remained visible within 

the foraminiferal cytoplasm even after 4 weeks. Under oxic conditions, compound specific 13C analyses 

showed substantial de novo synthesis by the foraminifera of specific polyunsaturated fatty acids 
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(PUFAs), such as 20:4(n-6). Very limited PUFA synthesis was observed under anoxia. Together, our 

results show that anoxia induced a greatly reduced rate of heterotrophic metabolism in Ammonia 

tepida on a time scale of less than 24 hours, these observations are consistent with a state of 

dormancy. 

Keywords: Benthic foraminifera, Anoxia, Dormancy, NanoSIMS, Mass spectrometry, Fatty acids, Cell 

ultrastructure 
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 Introduction 

Benthic foraminifera are eukaryote unicellular protists and ubiquitous in marine sediments 

from shallow water estuaries to the deep ocean (Murray, 2006). Representing up to 50 % of top 

sediment biomass, they constitute an important part of benthic meiofauna (Gooday et al., 1992; Snider 

et al., 1984) and may play a significant role in the carbon and nitrogen cycles, depending on the habitat, 

species assemblage, and feeding patterns (Gooday et al., 1990, 2008; Moodley et al., 2008; Woulds et 

al., 2007). The broad spectrum of conditions under which marine foraminifera live includes zones of 

O2-depletion (Caulle et al., 2014; Gooday et al., 2000; Høgslund et al., 2008; Mallon et al., 2012), deep-

sea sulphidic habitats (Bernhard, 2003), hydrocarbon seeps (Sen Gupta et al., 1997; Sen Gupta and 

Aharon, 1994), and intertidal environments (Debenay et al., 2000). Of particular interest here is the 

striking capability of some benthic foraminifera to adapt to a sudden decrease in the availability of O2. 

Hypoxic and anoxic events strongly and more frequently affect benthic ecosystems, in particular on 

continental shelves and in coastal areas where renewal of bottom water is slow and/or organic input 

is high (Diaz and Rosenberg, 2008; Helly and Levin, 2004; Rabalais et al., 2010). During such events, 

large fractions of the benthic meio- and macrofauna (size range >1 mm) can die off (Bianchi et al., 

2000; Josefson and Widbom, 1988; Stachowitsch, 1991; Wetzel et al., 2001). However, foraminifera 

are consistently among the most resistant species (Gooday et al., 2000; Levin et al., 2009; Moodley et 

al., 1997). High survival rates of foraminifera under low O2 conditions have been documented both in-

situ (Bernhard and Gupta, 2003; Bernhard and Reimers, 1991; Glud et al., 2009; Kitazato and Ohga, 

1995; Langlet et al., 2013) and in laboratory experiments (Heinz and Geslin, 2012; Nardelli et al., 2014) 

and ascribed, in part, to relatively low rates of O2-respiration compared to other meiofauna species 

(Geslin et al., 2011). Experimental studies of Ammonia sp. combining TEM and NanoSIMS observations 

suggest higher global metabolic activity in hypoxia than in anoxia (Nomaki et al., 2016). Various 

anaerobic pathways have been suggested as alternative metabolic strategies to achieve resistance to 

low-O2 conditions, including symbiosis with ectobionts (Bernhard, 2003; Bernhard et al., 2010a) or 

endobionts (Nomaki et al., 2014), and sequestered chloroplasts (Bernhard and Bowser, 1999; Grzymski 

et al., 2002). It has been demonstrated that some species are capable of nitrate respiration 

(denitrification) under anoxia (Kamp et al., 2015; Piña-Ochoa et al., 2010a; Risgaard-Petersen et al., 

2006). Bernard et al. (Bernhard and Alve, 1996) observed a decrease of the adenosine 5ʹ-triphosphate 

(ATP) pool in foraminifera Bulimina marginata, Stainforthia fusiformis and Adercotryma glomeratum 

from Drammensfjord (Norway) exposed to anoxia, and suggested that this might indicate a state of 

dormancy. Indeed, dormancy or quiescence, defined as reduced or suspended metabolic activity in 

response to exogenous factors, might be a more widespread adaptation strategy of benthic 

foraminifera to environmental stress than previously acknowledged (Ross and Hallock, 2016). Even 
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during periods with normal oxic conditions in bottom waters, foraminifera and other benthic 

meiofauna species can be (and frequently are) exposed to low O2 levels simply because bioturbation 

mechanically moves them deeper into the sediments (Bouchet et al., 2009; Jorissen, 1999). Ammonia 

tepida, for example, which is among the most abundant species in intertidal sediments (Debenay et 

al., 2000) is normally residing in the top few centimeters of the sediments, where O2 concentration is 

high. Here, it grazes on algal biofilm (Pascal et al., 2008a). However, A. tepida is also regularly found 

alive at depths of 4 to 26 cm, i.e. below the O2 penetration depth, as a result of bioturbation (Alve and 

Murray, 2001; Thibault de Chanvalon et al., 2015). These observations raise questions about the 

mechanism(s) that enable foraminifera to survive sudden changes to anoxia, often for extended 

periods of time. 

In this study, we present results of two experiments: Experiment I aimed to determine the 

survival and growth rates of algae-fed A. tepida under anoxia, compared with oxic conditions. 

Experiment II aimed to investigate the metabolism of A. tepida following a sudden shift to anoxic 

conditions. In the latter experiment, using 13C-enriched diatom-containing biofilm and a combination 

of transmission electron microscopy (TEM) and NanoSIMS isotopic imaging, we have visualized and 

quantified with subcellular resolution (in situ, ex vivo) the incorporation and transfer of isotopically 

labeled heterotrophic compounds, under both oxic and anoxic conditions. These subcellular-level 

observations were combined with concentrations and stable carbon isotopic analysis by isotope ratio 

mass spectrometry of total organic carbon (TOC) and individual fatty acids. Our results are discussed 

in context of previous experiments using 13C-labeled food, which have already yielded important 

insights into the metabolism of foraminifera under a variety of environmental conditions (Enge et al., 

2014; Larkin et al., 2014; Linshy et al., 2014; Moodley et al., 2000; Nomaki et al., 2005b, 2006, 2009; 

Pascal et al., 2008b). 
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 Results 

 Experiment I: Survival and growth rate of A. tepida under oxic and anoxic 

conditions 

After 13 days of incubation, the survival rates of fed adult or juvenile specimens of A. tepida 

were indistinguishable (p>0.05) between oxic and anoxic conditions (2.S1 Fig): 95±11 % and 87±12 % 

for adults and 84±2 % and 83±8 % for juveniles, respectively. The average growth rate of juvenile 

specimens was significantly (p<0.05) higher under oxic (1.3±0.7 % per day) compared with anoxic 

(0.2±0.1 % per day) conditions (2.S2 Fig). The growth rate under anoxic conditions was not significantly 

different from zero (t-test, p>0.05). 

 Experiment II: Feeding behavior of A. tepida under oxic and anoxic conditions 

Under anoxic conditions the foraminifera rapidly (within around 24 hours) ceased to move. At 

the end of the incubation there was still diatom biofilm left in the vials in the anoxic aquarium, while 

the biofilm had been completely consumed by the foraminifera in the oxic aquarium. 

Under oxic conditions, the average total organic carbon (TOC) content per cell of the A. tepida 

specimens increased during the first 7 days from 0.65±0.06 to 1.29±0.14 μg C×ind-1 (Fig 2.1A). At this 

point it was observed that all the biofilm had been ingested. After 14 days, the TOC content had 

decreased to 1.10±0.18 μg C×ind-1 and continued to decrease to reach a value of 0.94±0.05 μg C×ind-1 

at the end of the experiment (i.e. Day 28). Under anoxia the TOC content showed a modest increase 

during the first 3 days of the incubation, reaching maxima of 1.0±0.1 μg C×ind-1. At Day 7, the TOC had 

dropped to 0.8 ±0.1 μg C×ind-1 and this level was maintained for the rest of the experiment (p>0.05) 

(Fig 2.1A). 

Average 13C atomic fractions in TOC (x(13C)TOC in %) as a function of time are shown in Fig 2.1. 

Under both oxic and anoxic conditions, a sharp 13C-enrichment indicating an uptake of 13C-enriched 

diatoms occurred at the beginning of the experiment, reaching plateaus on different time scales. Under 

oxic conditions, a sharp increase in x(13C)TOC up to 1.86±1.16 % occurred during the Day 1, followed by 

a slower increase to 2.24±1.22 % on Day 7, after which x(13C)TOC stabilized (p>0.05). Under anoxia, 

x(13C)TOC increased to 1.41±1.18 % during the Day 1, after which no statistically significant changes were 

observed (p >0.05). The final 13CTOC-enrichment was about 4 times higher under oxic than anoxic 

conditions. 
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Figure 2.1: TOC concentration and 13C atomic fraction of A. tepida under oxic and anoxic conditions. (A) Average 
total organic carbon (TOC in μg C×ind-1) concentration and (B) 13C atomic fraction of the TOC (x(13C)TOC in %), both 
as a function of time. Continuous lines: oxic conditions, dotted lines: anoxic conditions. Error bars are 1 SD 
(n=3). 

 

Average carbonate uptake (calculated as the difference in C content of the shells in individuals 

from Day 28 and control specimens) and the enrichment in 13C of the shells from Day 28 over that of 

control samples are given in 2.S1 Table. Under oxic conditions, an average of 4.9±1.8 μg C×ind-1 was 

added to the shells over 28 days and their average x(13C)car was 0.05 % higher than the unlabeled 

control samples. Under anoxia, the specimens did not add new carbonate to their shells and therefore 

no significant 13Ccar-enrichment was observed (p>0.05), consistent with a growth rate statistically 

indistinguishable from zero (Fig 2.1B). 

 

Results of TEM and NanoSIMS analyses are presented in Figs 2.2 and 2.3. The figure 2.S3 

exhibits typical cellular structures in the antepenultimate chamber of an A. tepida specimen collected 

directly from the mudflat that provided samples for Experiment II. Recognizable structures include lipid 

droplets, residual bodies, and diatomic frustules. The presence of mitochondria and the integrity of 

intact double membranes and crests indicated vitality at the time of the chemical fixation; all observed 

specimens exhibited these ultrastructures. Time sequences of TEM and NanoSIMS isotopic images 

permit to follow the ingestion and metabolism of isotopically enriched diatom biofilm components 

under oxic and anoxic conditions (Figs 2.2 and 2.3). Fig 2.4 shows the relative surface areas occupied 

by diatoms, lipid droplets, and residual bodies in a representative cytoplasm area, with the 

corresponding average 13C atomic fractions for each structural component. 
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Under oxic conditions, abundant diatoms with frustules were visible after Day 1 as free-floating 

objects (i.e. not surrounded by vesicles/vacuoles) that occupied about 30 % of the cytoplasm area (Figs 

2.2A and 2.4A). About 75 % of these ingested diatoms still held their original cellular matrix, which was 

clearly distinguishable by strong 13C enrichment; the remaining 25 % had lost their content to the 

foraminiferal cytoplasm (Figs 2.2A-C, Table 2.1). After Day 3, diatom frustules were still clearly 

observable (Fig 2.2D), but ca. 83 % of them had lost their original content of cellular matrix (Figs 2.2D-

F, Table 2.1). After Day 7, frustules were no longer observed (Figs 2.2G, J, and M). However 13C-

enriched lipid droplets (not observed before Day 7) were numerous (Fig 2.4C). Between Day 7 and 14, 

lipid droplets were present in roughly constant abundance (ca. 10 %; Fig 2.4C) with x(13C) of 

approximately 1.65 % (Fig 2.4D). After Day 28 only a few lipid droplets were observed in the cytoplasm 

of the foraminifera (Figs 2.2M and 2.4C). In contrast, 13C-enriched residual bodies appeared after Day 

14 (Figs 2.2J and 2.4F) occupying about 5 % of the cytoplasm area with an average 13C atomic fraction 

around 1.70 % (Figs 2.4E-F); this did not significantly change before the end of the experiment (p>0.05). 

In 5 out of 15 observed foraminifera cells, the organic lining (i.e. the thick membrane between the 

plasma membrane and the calcite shell) was enriched in 13C (Figs 2.2E, F, K and L); two of these had 

the 13C-enrichment of their organic lining concentrated in the vicinity of pores in the shell. 

 

Table 2.1: Percentage of intact diatoms (frustule containing cytoplasm) in the foraminiferal cytoplasm. 
Percentage of the diatoms present in the cytoplasm of A. tepida still holding their original cellular contents, as a 
function of time for both experimental conditions (n=3). 

Days 
Diatoms filled with diatomic material 

(%) 
Oxic Anoxic 

1 75 ±11 91 ±8 

3 17 ±10 73 ±22 

7 0 28 ±22 

14 0 17a 

28 0 47 ±46 
a : diatoms were present only in 1 of the 3 specimens analyzed, SD could not be calculated. 

 

 

Figure 2.2 (p. 74): Time-evolution of 13C uptake and transfer within the cytoplasm of A. tepida under oxic 
conditions. A, D, G, J and M: TEM images; C, F, I, L and O: NanoSIMS images of corresponding 13C/12C distributions. 
B, E, H, K, and N: Direct correlation of TEM and NanoSIMS images. d*: Intact diatoms; d: frustules without their 
original contents; *: diatomic material free in the foraminiferal cytoplasm; li: lipid droplets; ol: organic lining; p: 
pores; r: residual bodies. Arrowheads show aperture of opened diatom frustules. Circles are drawn around a few 
organelles to facilitate their visualization on the different images: white circles: lipid droplets, dotted circles: 
residual bodies. Scale bars: 2 μm. 
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Under anoxic conditions, the content of the foraminiferal cytoplasm after Day 1 was essentially 

identical to that observed at the same time under oxic conditions (Fig 2.3A). No lipid droplets or 

residual bodies were visible, and the cytoplasm was occupied by 13C-labeled intact diatoms (i.e. 

diatomic material surrounded by the silica frustule; roughly 30 % of the imaged area) (Figs 2.3A-C and 

2.4A-B). However, the fraction of ingested diatoms still containing their original 13C-labeled material 

was higher under anoxic conditions (roughly 91 % vs. 75 %; Table 2.1). After Day 3 diatoms were still 

observed in the cytoplasm (Fig 2.3D) with about 75 % of them containing original cellular materials; 

i.e., 4 times more than under oxic conditions at the same time point (Table 2.1). The proportion of 

diatoms in the foraminifera cytoplasm remained roughly constant between Days 3 and 28, in the range 

from 3 to 12 % (Fig 2.4A). Among these, the proportion containing original 13C-labeled material 

decreased to ca. 30 % between Days 3 and 7, and then did not significantly change until the end of the 

experiment (p>0.05; Table 2.1). Lipid droplets appeared after Day 3 under anoxic conditions, in 

contrast to Day 7 under oxic conditions (Figs 2.3D and 2.4C). Their proportion in the cytoplasm varied 

between 4 % and 19 % with corresponding average 13C atomic fractions between 1.27 % and 1.38 %; 

i.e. 2 to 3 times less 13C-enrichment than under oxic conditions (Figs 2.4C D). Residual bodies, which 

were observed only in specimens sampled on Day 28, and only in 2 out of 3 imaged foraminifera, were 

much less abundant (4±4 %) than under oxic conditions (Figs 2.3M and 2.4E). Most of these residual 

bodies were only slightly enriched, with an average x(13C) of 1.20±0.03 % compared to 1.69±0.14 % 

under oxic conditions (Fig 2.4F). 

 

 

 

 

 

 

Figure 2.3 (p. 76): Time-evolution of 13C uptake and transfer within the cytoplasm of A. tepida under anoxic 
conditions. A, D, G, J and M: TEM images; C, F, I, L and O: NanoSIMS images of corresponding 13C/12C distributions. 
B, E, H, K, and N: Direct correlation of TEM and NanoSIMS images d*: Intact diatoms; d: frustules without their 
original contents; *: diatomic material free in the foraminiferal cytoplasm; li: lipid droplets; ol: organic lining; p: 
pores; r: residual bodies. Arrowheads show aperture of opened diatom frustules. Circles are drawn around a few 
organelles to facilitate their visualization on the different images: white circles: lipid droplets, dotted circles: 
residual bodies. Scale bars: 2 μm. 
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Figure 2.4: Percentages of cytoplasmic occupation and 13C atomic fraction of key cell ultrastructures. 
Percentage of occupation of cytoplasm area (A, C and E) and 13C atomic fraction (x(13C) in %; B, D and F) over time 
for key components in A. tepida: A, B: diatoms; C, D: lipid droplets; E, F: residual bodies. Errors bars are 1 SD 
(n=3). 
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Fatty acids (FAs) studied here included triglycerides, phospholipid and free acids, as well as 

other acid lipids extracted from diatom and foraminifera samples. In the following, FAs are abbreviated 

as x:y(z) where ‘x’ is the number of carbon atoms, ‘y’ the number of double bonds and ‘z’ the position 

of the double bond relative to the terminal methyl group. The main saturated FAs in the labeled diatom 

biofilm were 14:0 and 16:0, with relative abundances of 7.4 % and 28.2 %, respectively (Fig 2.5A). The 

mono-unsaturated FAs 16:1 and 18:1 (isomers) were observed in relative abundances of 42.0 and 3.8 

%, respectively (Fig 2.5A). The sums of all the positional (mainly n-9, n-7and n-5) and geometric (cis 

and trans) isomers of hexadecenoic and octadecenoic acid were included in the designations 16:1 and 

18:1. The main polyunsaturated FAs (PUFA) were 20:5(n-3) (9.6 %) with trace amount of 20:4(n-6) and 

22:5(n-3) and 22:6(n-3), which accounted for less than 0.2 % of the total FAs. 

 

 

 

Table 2.2: Concentrations of fatty acids in A. tepida. Concentrations in ng×ind-1 of the fatty acids found in A. 
tepida cell before the experiment (control), after Day 7 and Day 28; under oxic and anoxic conditions. 

Fatty acid Control 
Oxic Anoxic 

7 days 28 days 7 days 28 days 

Total 322.6±22.4 408.3±33.5 344.24±31.8 360.1±22.1 380.8±13.1 

14:0 27.0±1.8 25.7±1.5 22.3±2.4 27.2±0.9 28.4±0.8 

15:0 4.8±0.2 4.1±0.3 3.4±0.2 4.9±0.2 5.2±0.4 

15:1  1.5±0.2 2.2±0.4   

16:0 66.7±4.3 97.3±7.4 81.1±8.2 74.1±5.7 77.0±3.4 

16:1 49.1±3.8 51.1±6.4 21.2±3.5 64.0±5.1 64.9±2.7 

16:2 11.4±0.8 9.3±3.3 3.2±2.7 14.0±0.4 14.7±0.4 

16:3 3.1±0.2 2.9±0.5  2.9±0.3 3.3±0.5 

17:0 3.3±0.4 1.1±0.3  3.4±0.2 3.6±0.1 

17:1 3.2±0.4 3.7±0.3 2.8±0.2 2.1±1.3 2.3±1.5 

18:0 8.6±0.4 14.6±1.5 11.3±0.5 8.3±1.5 8.7±0.4 

18:1 27.9±2.2 48.1±4.95 37.6±5.5 28.7±2.5 22.9±1.3 

18:2(n-6) 5.2±0.6 6.4±0.6 3.4±0.4 5.3±0.4 5.6±0.4 

18:4(n-3) 3.4±0.3 3.1±0.2 2.2 4.3±0.3 4.7±0.1 

20:1(n-9) 4.1±0.2 6.2±0.6 4.6±0.2 3.9±0.7 4.3±0.1 

20:4(n-3) 2.6±0.2 2.6±0.2 3.0±0.1 2.9±0.2 2.9±0.2 

20:4(n-6) 26.2±1.8 40.4±2.5 58.7±5.0 33.2±2.5 39.0±2.0 

20:5(n-3)  62.3±4.3 75.6±6.3 72.5±7.5 66.6±4.3 71.7±3.1 

22:6(n-3)   8.7±0.7 9.6±0.7 8.7±0,7 9.7±0.4 10.8±0.2 

22:5(n-3) 4.8±0.4 6.9±0.3 9.3±0.6 5.3±0.3 5.9±0.3 
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All analyzed foraminifera samples showed roughly similar FAs distributions in the C14 to C22 

range. The observed small quantities of odd-chain and traces or complete absence of branched-chain 

FAs indicate minimal bacterial contamination. In the control foraminifera, the most abundant 

saturated FAs were 14:0, 16:0 and 18:0, with a preference for 16:0 (Table 2.2 and Figs 2.5B and C). The 

most abundant monounsaturated FA was 16:1 and the most abundant PUFAs were 20:4(n-6) and 

20:5(n-3) (Table 2.2 and Fig 2.5). 

Under oxic conditions, the FA content in foraminifera increased during the first 7 days from 

322±22 to 408±33 ng×ind-1 (p<0.05), and then decreased to 344±32 ng×ind-1 after Day 28 (p<0.1 

between 7 and 28 days) (Table 2.2). Under anoxia, the total foraminifera FA content continuously 

increased during the experiment from 322±22 up to 380±13 ng×ind-1 (p<0.05) (Table 2.2). Under oxic 

conditions, the relative abundances of 16:0 and 18:1 isomers increased between 0 and 7 days (p<0.05), 

and remained stable between Day 7 and 28 (Fig 2.5B). The relative abundances of 14:0 and 16:1(n-7) 

decreased between Days 0 (control) and 7 (p<0.05). Between Days 7 and 28, the relative abundance 

of 14:0 remained constant, while that of 16:1(n-7) continued to decrease. The abundance of 20:5(n-3) 

first decreased between Days 0 (control) and 7, and then increased to its highest level at Day 28 

(p<0.05) (Fig 2.5B). Despite being present in small amounts in the diatom biofilm, the PUFAs 20:4(n-6) 

and 22:5(n-3) significantly increased in relative abundance along the experiment (p<0.05); most 

pronounced for 20:4(n-6) from 8.1 % in the control to 17.1 % (Fig 2.5A-B). Significant variation in the 

abundance of 22:6(n-3) was not observed during the experiment (p>0.05). 

 

 

Figure 2.5: Relative abundances (%) of the dominant fatty acids extracted from the biofilm of diatoms and in 
A. tepida endoplasm. Relative abundances (expressed in %) of the eight dominant FAs extracted from the biofilm 
of diatoms and in A. tepida individuals incubated under oxic (B) and anoxic (C) conditions, respectively. White: 
control specimens; grey: after Day 7 and black: after Day 28. Error bars are 1 SD (n=3). 
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Under anoxia, the relative variations in the abundance of individual FAs with time were 

significantly smaller than those observed under oxic conditions (Fig 2.5C). Only the abundance of 14:0 

decreased slightly during the experiment, with a trend similar to that observed under oxic conditions. 

No significant changes (p>0.05) were observed in the contents of 16:0, 22:5(n-3), and 22:6(n-3) during 

the experiment. 16:1(n-7) first increased slightly, then decreased from Day 7 to Day 28 (p<0.05). 18:1 

abundance first decreased at Day 7 (p<0.05), and stabilized (p>0.05). 20:4(n-6) was the only FA that 

showed a significant, albeit minor increase (from 8.1±0.1 to 10.2±0.4 %; p<0.05) along the experiment.  

The 13C atomic fraction of FAs (x(13C)FA in %) are shown in Table 2.3. These 13C-enrichments 

were significantly higher after Day 7 of incubation (p<0.05) under both conditions and in general FAs 
13C-enrichments were higher under oxic than anoxic conditions. 

 

Table 2.3: 13C atomic fraction of dominant fatty acids in the cytoplasm of A. tepida. 13C atomic fraction (x(13C) 
in %) of dominant fatty acids in the cytoplasm of A. tepida (n=2) for oxic and anoxic conditions at Days 7 and 28. 

Fatty acid Control 
Oxic Anoxic 

Day 7 Day 28 Day 7 Day 28 

14:0 1.08±0.01 1.81±0.04 1.89±0.02 1.32±0.07 1.37±0.02 

16:0 1.08±0.01 2.07±0.07 2.01±0.11 1.85±0.06 1.92±0.04 

16:1 1.08±0.01 2.25±0.04 2.23±0.04 1.40±0.06 1.41±0.02 

18:1 1.08±0.01 2.31±0.01 2.39±0.05 1.47±0.10 1.23±0.01 

20:4(n-6) 1.08±0.01 1.77±0.04 1.93±0.04 1.28±0.05 1.33±0.02 

20:5(n-3) 1.08±0.01 2.01±0.04 2.03±0.05 1.33±0.01 1.39±0.02 

22:6(n-3) 1.08±0.01 1.69±0.03 1.72±0.01 1.22±0.01 1.31±0.02 

22:5(n-3) 1.08±0.01 1.74±0.03 1.85±0.01 1.15±0.01 1.18±0.01 
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 Discussion 

 Survival and growth 

No significant difference was observed between the survival rate of fed A. tepida specimens 

incubated for 13 days under oxic and anoxic conditions (2.S1 Fig). This is in line with results of previous 

laboratory experiments showing that A. tepida is capable of surviving under strong hypoxia and anoxia 

for extended time periods, up to 60 days (Geslin et al., 2014; Nardelli et al., 2014). Growth of A. tepida 

under anoxia was assessed by three different methods: (i) measurement of juvenile shell size before 

and after incubation (2.S2 Fig), (ii) quantification of the carbonate content in shells of adult specimens, 

and (iii) shell 13C-enrichment (2.S1 Table). The results consistently showed that on average A. tepida 

grew and added at least one chamber under oxic conditions, whereas only minimal, if any growth took 

place under anoxia. A previous study using incubation with calcein labeled foraminifera to detect 

chamber formation showed that among adult A. tepida living under anoxic conditions for 60 days, only 

5 % were able to add one chamber (Nardelli et al., 2014). These observations clearly indicate that a 

strong perturbation of normal physiological processes results from a shift to anoxia. 

 Feeding and metabolism: bulk data 

Under oxic conditions, the TOC and its 13C-fraction increased by almost 100 %, within the first 

7 days in fed, adult A. tepida (Fig 2.1). Similar TOC values are reported in the literature quantifying the 

rate of ingestion of diatoms (Linshy et al., 2014), indicating an important role for benthic foraminifera 

in the organic carbon cycle in shallow, O2-rich marine sediments. After Day 7 under oxic conditions, 

the TOC began to decrease steadily while its 13C-enrichment remained constant (Fig 2.1), consistent 

with the visual observation that the food source had been exhausted. From this point onward, the TOC 

values decreased (i.e. cells lost weight), as their reserves of organic C (mainly in the form of lipid 

droplets) were metabolized and respired. This metabolic consumption of organic matter did not 

change the 13C content of the residual TOC, indicating that no preferential respiration or preservation 

of organic compounds with different isotopic composition took place.  

Under anoxia A. tepida ingested 13C-enriched diatom biofilm only during Day 1. During this 

time, the 13C-enrichment of the TOC increased by about 30 % and the average of TOC content per cell 

increased from the control value of 0.65 μg C×ind-1 to about 0.9 μg C×ind-1 (Fig 2.1). In contrast to the 

results from the corresponding oxic experiment, neither the TOC nor its 13C-enrichment changed 

substantially after Day 1, consistent with the visual observation that feeding stopped, i.e. left over 

biofilm was not further consumed. Furthermore, the TOC per cell did not decrease (Fig 2.1), providing 

strong indication that metabolic loss of carbon was minimal after Day 1. 
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Recent studies with ingestion of phytodetritus under strong hypoxia (O2 levels around 0.02 

mL/L) have documented both ingestion and metabolism in species from the Arabian Sea oxygen 

minimum zones (OMZ) (Enge et al., 2014; Larkin et al., 2014). The fact that foraminifera metabolism 

seems relative insensitive to hypoxic conditions might be due to their low rate of oxic respiration 

compared to other benthic meiofauna (Geslin et al., 2011). A picture emerges of benthic foraminifera 

capable of maintaining an efficient metabolism even under strong hypoxia, while complete anoxia 

leads to a shutdown of aerobic metabolic processes on a timescale of less than 24 hours. 

 Feeding and metabolism: subcellular observations 

Key sub-cellular structures of A. tepida involved in ingestion and metabolism include the 

ingested diatoms, residual bodies, and lipid droplets (2.S3 Fig), the latter representing the principal 

form of carbon storage (Hottinger, 1982; Hottinger and Dreher, 1974; Pawlowski et al., 1995). Fully 

intact diatoms (i.e. with the diatom cell-material still contained in its silica frustule) were directly 

integrated into the cytoplasm by the foraminifera during the first day under both conditions (Figs 2.2A-

C and 2.3A-C), consistent with previous observations of feeding A. tepida (Goldstein and Corliss, 1994) 

and a number of other species (Bé et al., 1977; Goldstein and Corliss, 1994; McEnery and Lee, 1981). 

Nevertheless, the density in the cytoplasm of ingested diatoms observed in our study was substantially 

higher than previously reported in the literature, with ca. 30 % of the cytoplasm area occupied by intact 

diatoms after Day 1 under both conditions. This might be ascribed to the fact that the foraminifera had 

been fasting during the 6 days between the initial collection on the mudflat and the start of the feeding 

experiment, thus they grazed quickly on the available biofilm at the beginning of the incubation. 

Following the efficient ingestion of intact diatoms during Day 1, the sub-cellular TEM and 

NanoSIMS observations for oxic and anoxic conditions diverged dramatically (Figs 2.2 and 2.3). Under 

oxic conditions, the intact diatom frustules were all emptied and their 13C-enriched contents 

incorporated into other subcellular components before Day 7. On Day 7, the silica frustules had almost 

entirely disappeared (Figs 2.2G and 2.4A). The process by which the foraminifera break down the 

frustules remains unknown. Exocytosis of the empty frustules was not observed, nor frustules being 

degraded. 

Part of the organic diatomic material was converted into fatty acids stored in clearly 13C-labeled 

lipid droplets (Figs 2.2G-I, 2.4C and D). After Day 7, the 13C-labeled diatomic material had become part 

of the metabolic pathways and 13C-enrichment had spread into most components of the cytoplasm 

(Figs 2.2I, L, O). Consistent with the observed decrease in TOC after Day 7 (Fig 2.1A), once the entire 

diatom biofilm had been ingested, the foraminifera began to metabolize their lipid reserves. As a 

result, lipid droplets had disappeared at Day 28 (Fig 2.4C). In contrast, residual bodies with clear 13C-
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enrichment appeared in the cytoplasm at Day 14 (Figs 2.2J, 2.4E and 2.4F). These heterogeneous 

vacuoles are believed to hold metabolic waste and recycled organelles (Hottinger and Dreher, 1974; 

Leutenegger, 1977c). The rapid ingestion, catabolism, and anabolism of the 13C-enriched diatom 

biofilm in A. tepida under oxic conditions (Fig 2.2) is consistent with the bulk observations discussed 

above and the evolution of the fatty acid composition discussed below. The observation of labeled 

organic lining in 5 of the foraminifera incubated in oxic conditions is likely to be linked with chamber 

formation, because the organic lining is thought to play a key role in initiating calcite formation (Angell, 

1967; Hottinger and Dreher, 1974). Consistent with this, no 13C-labeled organic lining was observed in 

the specimens from anoxic conditions, which did not grow new chambers. 

Under anoxic conditions, the metabolism was very different (Fig 2.3). Following the initial 

ingestion of diatoms during Day 1, there was substantially less redistribution of 13C-enriched material 

in the foraminifera cells until the experiment ended. On Day 28, diatoms with their frustules were still 

present in the cytoplasm with their original content of strongly 13C-labeled material (Figs 2.3M-O). 

Nevertheless, some early metabolism/redistribution did occur, resulting e.g. in the appearance of 13C-

enriched lipid droplets from Day 3 (Fig 2.4C). The density of lipid droplets remained constant after Day 

3, consistent with the observation of constant average TOC levels (Fig 2.1A). The formation of lipid 

droplets earlier in anoxic (Day 3) than in oxic conditions (Day 7) might be attributed to the stressful 

conditions: faced with a lack of oxygen the foraminifera were first storing carbon in lipid droplets 

instead of using it for the cell metabolism. A qualitatively similar increase of lipid droplet abundance 

was observed in Ammonia beccarii specimens submitted to stress from Cu contamination (Le Cadre 

and Debenay, 2006). Such a response does not seem to be specific to foraminifera; it has also been 

observed in marine dinoflagellates (Prevot and Soyer, 1978). Mildly 13C-enriched residual bodies did 

not appear until between Day 21 and 28 (Figs 2.3M-O and 2.4E-F). 

 Fatty acid composition and synthesis 

Fatty acids 14:0, 16:0, 16-1(n-7), and specifically the 20:5(n-3) (Fig 2.5A, Table 2.2) are 

biomarkers of marine diatoms (Dunstan et al., 1993; Graeve et al., 1994; Zhukova and Aizdaicher, 

1995). These FAs had already been observed in algae feeding experiments with foraminifera under 

both oxic (Ward et al., 2003) and hypoxic conditions (Larkin et al., 2014; Nomaki et al., 2009). In our 

study, the observed increase during the first 7 days of 16:0 under oxic conditions and of 16:1(n-7) 

under anoxic conditions is ascribed to the ingestion of diatoms. The decreases of 14:0 under both 

conditions and of 16:1(n-7) under oxic conditions at Day 7 suggest lipolysis and fatty acid catabolism 

(their β-oxidation to C2 units). Part of the degradation products were probably used for de novo 

synthesis of long chain fatty acid intermediates for the production of PUFAs, i.e. 20:4(n-6), 20:5(n-3), 
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and 22:5(n-3) under oxic conditions (Fig 2.5B). Under oxic conditions, the relative abundance of 20:5(n-

3) first decreased and then increased. This suggests that this PUFA was first consumed (by metabolic 

breakdown or used for the synthesis of 22:5) and then formed by desaturation and C2 elongation of 

short-chain precursors. The relative increase in 20:5(n-3) cannot be explained by an ingestion of 

diatoms, because there were completely ingested after Day 7 under oxic conditions. This supports de 

novo synthesis of eicosapentaenoic acid 20:5(n-3) by the foraminifera.  

20:4(n-6) and 22:5(n-3) were present only in small abundances in the diatom biofilm (Fig 2.5A), 

but in higher concentrations in A. tepida cytoplasm under both oxic and anoxic conditions (Figs 2.5B 

and C and Table 2.2). This can be explained by either a selective uptake of these PUFAs (Ward et al., 

2003), or by de novo biosynthesis following a pathway similar to that for 20:5(n-3). A similar high 

increase in 20:4(n-6) content was observed in other foraminiferal feeding experiment with microalgae 

(Larkin et al., 2014; Suhr et al., 2008, 2003b; Würzberg et al., 2011). The observed concentration 

increase, combined with significant 13C-enrichment (Figs 2.5B and C and Table 2.2), strongly suggest de 

novo synthesis of this arachidonic acid, as hypothesized in other publications (Larkin et al., 2014; 

Würzberg et al., 2011). 

A. tepida is also able to graze on bacteria (Pascal et al., 2008b). The increase in the relative 

abundance of 18:1, which is a bacterial biomarker in marine environments (Sargent et al., 1987), during 

the first 7 days under oxic conditions (Fig 2.5B) suggests that bacteria developed during the beginning 

of the experiment, assimilating 13C by degrading the de-frozen diatom biofilm (Figs 2.5B and Table 2.3). 

Further support for ingestion of bacteria is provided by the presence of small amounts of other 

bacterial FAs (15:0, 15:1, 17:0, and 17:1) in the foraminiferal cells (Table 2.2). 

Finally, under anoxic conditions, the foraminifera assimilated clearly less 13C labeled fatty acids 

from the diatom biofilm than under oxic conditions (Table 2.3, Figs 2.5B and C), and they produced less 

new fatty acids. Between Days 7 and 28, only the relative abundances of the FAs 16:1(n-7) and 20:4(n-

6) varied, indicating some, albeit strongly reduced metabolism compared to oxic conditions. 

 

Together, our observations under anoxia indicate that food digestion and metabolic 

redistribution took place at a much-reduced rate compared to oxic conditions. Nevertheless, anabolic 

processes did initially take place, conceivably driven by the ‘oxic metabolic machinery’ still available to 

the cell during the first hours after establishment of anoxic conditions. The reduced state of 

metabolism seems consistent with a state of dormancy or quiescence, defined as a suspension of 

active life, arrested development, and reduced or suspended metabolic activity (Ross and Hallock, 
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2016), in our case due to the sudden onset of anoxic conditions. Consistent with a state of 

dormancy/quiescence is the fact that no obvious ultrastructural damage to the cells was observed, 

indicating that capability to return to a state of normal vitality once oxic conditions are reestablished. 

 

 Conclusion 

Benthic foraminifera Ammonia tepida are ubiquitous in coastal marine sediments, where they 

are often exposed to hypoxia or completely anoxic conditions. In order to survive such anoxic 

conditions for longer time periods they must either rely on alternative, anaerobic metabolism, which 

would allow them to produce energy and thus maintain a certain level of activity, or enter a state of 

dormancy that minimizes energy consumption. With a broad suite of observations we show here that 

these single cell organisms respond to anoxic conditions by a radical reduction in their heterotrophic 

metabolism. This, combined with the observation of arrested calcification and the complete absence 

of physical movements upon exposure to anoxia (movement is restored when oxygen is returned to 

the environment (Maire et al., 2016)), indicates that these species do not have access to an alternative 

metabolic mechanism allowing them to maintain, even  approximately, their level of physical activity 

under oxic conditions. Therefore, we propose that, upon exposure to anoxia, the A. tepida organism 

enters into a state of dormancy/quiescence, with strongly reduced metabolic requirements that make 

them capable of withstanding anoxic conditions for unusually long time intervals (here up to 28 days), 

compared with other benthic meiofauna. 
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 Material and methods 

 Experiment I: Survival and growth rate of A. tepida 

Superficial (top 2 cm) sediment was collected at low tide on January 15, 2013, from the 

intertidal mudflat of l’Aiguillon Bay (France). Living foraminifera were picked out of sieved sediment of 

two size fractions: >150 μm (adults) and 100–150 μm (juveniles). 

Experiment I took place at the LPG-BIAF laboratory (Angers, France). For determination of the 

survival rate 300 adult foraminifera were checked for their vitality using 2 criteria: presence of yellow 

brownish cytoplasm in the shell and detection of movement of the foraminifera (Geslin et al., 2014). 

For determination of growth rate, 150 juveniles at a growth stage with 8 ±1 chambers were selected 

using the same criteria as for adults. 

Incubation was carried out in two glass aquaria (33×21×19 cm3) containing 10 liters ASW 

(RedSea Salt, salinity of 35 psu), under oxic and anoxic conditions, respectively. Each aquarium 

contained eighteen 10 mL glass vials (h=45 mm, ø=22 mm), 15 vials holding 10 adult individuals and 3 

vials holding 25 juvenile individuals, with each vial representing a replicate in subsequent calculations. 

Before the start of the experiment, a thin layer of freeze-dried Chlorella algae was added, forming a 

biofilm on the vial bottom (14.3 μg chlorophyll×cm-2). Each vial was then covered with a 100 μm mesh 

net, the aquaria were covered with Plexiglas lids to minimize evaporation and avoid changes in salinity 

and the lid of the anoxic aquarium was sealed with plastic tape to prevent gas leakage/exchange. Each 

aquarium was bubbled continuously with air using a standard aquarium pump to maintain oxic 

conditions, or with a mixture of N2 and 0.04 % CO2 (Air liquide, France, 99.999 % N2, 99.99 % CO2) to 

produce anoxic conditions. Bubbling began immediately after the foraminifera were placed inside. The 

incubation started on the 12th of February 2013 and lasted 13 days. Oxygen concentrations, 

temperature, salinity and pH were measured continuously (oxygen and temperature) or at the 

beginning and end of the experiment (salinity and pH) using dedicated sensors (details in 2.S2 Table). 

O2 contents were between 4.0 to 4.5 mL×L-1, and below 0.007 mL×L-1 (detection limit) in the oxic and 

anoxic aquaria, respectively. Temperature was between 17.5 and 19.5 °C, salinity 35.2±0.2 psu and pH 

8.1±0.1. After 13 days, the incubation was stopped and the vials with the foraminifera taken out of the 

aquaria. 

To determine survival rates, individuals were immediately incubated with 10 μM FDA 

(fluorescein diacetate) solution (Bernhard et al., 1995). After rinsing, fluorescence of the foraminifera 

was immediately observed with an epifluorescence stereomicroscope (Olympus SZX16, LPG-BIAF 

laboratory) equipped with a fluorescent light source (Olympus U-RFL-T). Foraminifera with less than 3 
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chambers not fluorescing (terminal chambers) were considered to be alive. The average size of all 

juveniles was measured before (t0) and after (t1) the incubation using an automatic particle analyzer 

(LPG-BIAF laboratory) equipped with an automated incident light microscope system; a Leica CLS100X 

ring light source mounted on a monocular Leica Z16PO microscope. A camera (SIS CC12) recorded 

images and the size of individuals was determined with the software analySIS FIVE (SIS/Olympus) 

(Bollmann et al., 2004). The growth rate (in % size change) was calculated as: . 

 

 Experiment II: Feeding behavior of A. tepida under oxic and anoxic conditions 

Superficial (top 2 cm) sediment was collected at low tide on March 27, 2014, on the intertidal 

mudflat of the Bay of Bourgneuf (France). Living foraminifera were picked out from sieved sediment 

and transported to LGB laboratory (EPFL, Switzerland). 

The diatom Navicula salinicola (CCAP, strain 1050/10) was grown for one week in F2 medium 

enriched with 2 mM of 13C-enriched sodium bicarbonate (13C fraction of 99 %, Sigma-Aldrich, 

Switzerland). The F2 medium was made with non-decarbonated water with an original concentration 

of ~2 mM sodium bicarbonate. Thus the addition of 2 mM of 13C-enriched sodium bicarbonate resulted 

in a labeling of roughly 50 % of the dissolved inorganic carbon (DIC). The microalgae were harvested 

by centrifugation (1500 g, 10 min), washed 3 times with artificial seawater (RedSea Salt, salinity of 35 

psu) to remove the excess NaH13CO3, and frozen at –20 °C until use in the experiment. 

Starting on April 2nd, 2014 (six days after collection on the mudflat and one day before the 

feeding experiment began), living A. tepida specimens were selected under a binocular microscope, 

with the same criteria as in Experiment I. A total of about 6000 individuals were distributed in 93 10 

mL glass vials (h=45 mm, ø=22 mm), so that each vial contained ca. 65 specimens. 39 vials with 

foraminifera were placed in each aquarium. Fifteen vials containing foraminifera were used as control 

material for the subsequent analyses: 3 for TEM-NanoSIMS and total organic carbon (TOC) 

quantification and stable isotope analysis; 12 for fatty acid analysis. These were placed overnight in 

ASW (RedSea Salt, salinity of 35 psu) under oxic conditions without feeding and were sampled on Day 

1, i.e. during the first sampling of foraminifera. 

Incubation was performed as in Experiment I in oxic and anoxic aquarium. After 4 hours of 

bubbling with the mixture of N2 and 0.04 % CO2 (Carbagas AG, Switzerland), enough to allow the 

complete depletion of O2 in the anoxic aquarium, the experiment started. All the foraminifera were 

fed by adding 13C-enriched diatoms (ca. 578 mg C×m-2) to all vials (i.e. in both oxic and anoxic aquaria) 
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over a timespan of a few minutes. Anoxic and oxic conditions, were maintained from this point 

onwards. Oxygen concentrations were in the range of 4.1-4.8 mL×L-1 and below 0.007 mL×L-1 in the 

oxic and anoxic aquaria, respectively. Throughout the experiment, temperature was between 23 and 

24 °C, salinity 32 psu and pH 8.3.    

For TEM-NanoSIMS and TOC quantification and stable isotope analysis, 3 vials were harvested 

at 1, 3, 7, 14, and 28 days from each aquarium. In addition, 12 vials were harvested from each aquarium 

for fatty acid analyses at Day 7 and Day 28, respectively. Immediately upon removal from the aquaria, 

the foraminifera were incubated for 3 h at room temperature in the dark with FDA to a concentration 

of 100 μM (Bernhard et al., 1995). Vitality was assessed under an epifluorescent stereomicroscope 

(Leica M165C equipped with SFL100 LED fluorescence module; GFP green). Only living specimens were 

selected for further analysis. After rinsing with ASW, individuals for TEM-NanoSIMS analysis were 

immediately processed, those for TOC and fatty acid analysis were stored in cleaned and pre-heated 5 

mL glass vials at –20 °C until required. 

5.2.1 TEM and NanoSIMS analysis 

After incubation with FDA, specimens were immediately fixed and prepared for TEM imaging 

using standard procedures (details can be found in S1 Text) and observed with a transmission electron 

microscope (TEM, Philips 301 CM100, 80 kV) at the Electron Microscopy Platform of the University of 

Lausanne. Ultra-thin sections observed with TEM were subsequently imaged with a NanoSIMS ion 

microprobe (Hoppe et al., 2013). Areas of interest for NanoSIMS imaging were selected based on TEM 

observations permitting direct correlation of ultrastructural (TEM) and isotopic images. Our 

observations systematically focused on the antepenultimate chamber of the foraminifera, i.e. the third 

chamber counting from the aperture. NanoSIMS imaging followed established procedures (Kopp et al., 

2013, 2015a; Pernice et al., 2012), as detailed in 2.S1 Text. Regions of interest (ROIs) were drawn with 

the software Look@NanoSIMS (Polerecky et al., 2012) to estimate the percentage of cytoplasmic 

occupation and to quantify mean 13C enrichments of different sub-cellular structures of a given 

foraminifera. 13C enrichments were reported as 13C atom fraction in %: x(13C) = 13C/(13C+12C) 100. 

5.2.2 Fatty acids 

Foraminifera from oxic and anoxic conditions sampled at Days 7 and 28, respectively, plus a 

sample of the 13C-labeled diatomic biofilm were analyzed for their fatty acids (FAs) composition using 

procedures adapted from (Spangenberg et al., 2014). Each sample was analyzed in triplicate, and the 

mean value was used for further calculations. For each analysis, lipids were extracted from 200 water-

washed and dried specimens by sonication with mixture of methanol and dichloromethane of 
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decreasing polarity. An aliquot of internal standard solution of deuterated carboxylic acids was added 

to permit quantification. The carboxylic acids were obtained by alkaline hydrolysis of the organic 

extract and were methylated with BF3/MeOH to obtain fatty acid methyl esters (FAMEs). Chemical 

characterization of the fatty acids (as FAMEs) was performed by gas chromatography/mass 

spectrometry and quantification by gas chromatography/flame ionization detection (details in 2.S2 

Text).  

5.2.3 Stable isotope analyses by isotope ratio mass spectrometry (IRMS) 

Compound specific stable C isotopic composition of fatty acids was measured by gas 

chromatography/combustion/isotope ratio mass spectrometry. The standard deviation for 

repeatability of the 13C atomic fraction, x(13C)FA in %, ranged between 0.01 % and 0.06 %. The lipid-

free foraminifera carbonate shell were analyzed for their 13C atomic fraction, x(13C)car, using a 

carbonate preparation device (GasBench II, Thermo Fisher Scientific, Bremen, Germany) and isotope 

ratio mass spectrometry. The measured shell 13C atom fractions, x(13C)car, had a precision of 0.01 % (2 

SD). The average carbonate content (in μg C×ind-1) of the shells was determined from the peak area 

of the major ions, 0.02 μg C×ind-1 for TOC content. The 13C atom fraction of the total organic matter, 

x(13C)TOC, of decalcified foraminifera were determined by continuous flow elemental analysis/isotope 

ratio mass spectrometry. For each analysis, 30 previously decalcified specimens were used. The total 

organic carbon (TOC) content was determined from the peak area of the major isotopes and expressed 

in microgram per individual cell (μg C×ind-1). Reproducibility and accuracy were better than 0.01 % 

for x(13C)TOC (2 SD) and 0.02 μg C×ind-1 for TOC content. For each analysis, 30 specimens were used 

(details in 2.S3 Text). 

5.2.4 Statistical analysis 

Data were analyzed using the R software. Univariate ANOVA tests were performed to compare 

the effects of the time and experimental conditions (i.e. oxic vs. anoxic). To determine the significance 

between two time points or two conditions at the same time point, the Tukey post-hoc test was carried 

out following the ANOVA. For the fatty acid abundance data, two-sample t-tests were performed to 

investigate significance of variations between time points for a given condition. Variances of the data 

were checked with a F-test prior the t-tests. The used significance level for all the tests was α = 0.05. 

 

Access to both sampling sites did not required any specific permissions, and the work did not 

involve endangered or protected species 
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Supporting information 

 

Figure 2.S1: Survival rate Experiment I: Survival rate (%) of adults (striped bars) and juveniles (solid bars) of A. 
tepida incubated for 13 days in oxic and anoxic conditions (n=10). Error bars are 1 SD. 

 

 

 

Figure 2.S2: Growth rate Experiment I: Growth rate (%) of juveniles incubated 13 days in oxic and anoxic 
condition (n=3). Error bars are 1 SD. 
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Table 2.S1: Carbonate uptake and shell 13C-enrichment: Carbonate uptake (calculated as the difference of the 
Ccar content of the foraminiferal shells of the individuals collected after 28 days and the foraminiferal shells of 
the control individuals, in μg Ccar×ind-1) and 13C enrichment (calculated as the difference of the x(13C)car values of 
the foraminiferal shells of the individuals collected after 28 days and the foraminiferal shells of the control 
individuals, in %) of A. tepida carbonate shells after 28 days under oxic and anoxic conditions with feeding (n=3). 

 

 Oxic Anoxic 

Carbonate uptake (μg Ccar×ind-1) 4.9±1.8 0.2±0.4 

Δ13C=(x(13Ccar)sample – x(13C)car) control (%) 0.05±0.01 0.00±0.01 

 

 

 

 

 

Figure 2.S3: Typical cellular structures of Ammonia tepida cytoplasm TEM image of the cytoplasm structures in 
the antepenultimate chamber of an A. tepida specimen collected in situ. Lipid droplets (li) are dark, homogenous 
vesicles with diameters between 1 to 5μm, no visible membrane surround them. Residual bodies (r) are circular 
heterogeneous vacuoles with diameters of about 1 to 5 μm and heterogeneous content. Empty diatomic 
frustules (d) and a chloroplast in degradation (c*) are visible. Scale bar: 2 μm. 
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Table 2.S2: Sensors used in Experiment I and II 

Parameter Experiment I Experiment II 

Oxygen 
concentration 

Continuously recorded: 

OX-100, Unisense, Denmark 

Continuously recorded: 

OXROB3 for oxic aquarium and TROXROB3 
(PyroScience) for anoxic aquarium 

Temperature 
Continuously recorded: 

testo 175 T1 

Continuously recorded: 

TSUB36, PyroScience 

pH 
Measured at the beginning and the end 
of the experiment: 

pH-500C, Unisense, Denmark 

Measured at each sampling time point: 

Portable pH meter pH 3310, WTW 

Salinity 
Measured at the beginning and the end 
of the experiment: 

Handheld meter Cond 330i, WTW 

Measured at each sampling time point: 

Handheld meter Cond 330i, WTW 
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Text 2.S1: TEM and NanoSIMS imaging 

After incubation with FDA, specimens were rinsed 3 times in ASW (RedSea Salt, salinity: 35 

psu), then chemically fixed as follows: fixation for 24 h with a mix of 4 % glutaraldehyde and 2 % 

paraformaldehyde 0.2 M cacodylate buffer, 0.4 M sucrose and 0.1 M NaCl (pH 7.4, room temperature, 

then storage at 4 °C). After rinsing, specimens were first decalcified with a solution EDTA 0.1 M, then 

post-fixed in 2 % osmium tetroxide. After a series of dehydration steps in ethanol (50, 70, 95, and 100 

%), samples were embedded into an acrylic resin (LR White Resin Hard Grade). Specimens were cut 

into 70 nm sections with an ultramicrotome (Reichert Ultracut S) using a diamond knife (Diatome, 

Ultra, 45°). Sections were placed on electron microscopy copper grids with a formvar-carbon film, then 

stained for 10 min with 2 % uranyl acetate, rinsed, and observed with a transmission electron 

microscope (TEM, Philips 301 CM100, 80 kV) at the Electron Microscopy Platform of the University of 

Lausanne. Ultra-thin sections observed with TEM were subsequently imaged with a NanoSIMS ion 

microprobe (Hoppe et al., 2013). Areas of interest for NanoSIMS imaging were selected based on TEM 

observations permitting direct correlation of ultrastructural (TEM) and isotopic images. Our 

observations systematically focused on the antepenultimate chamber of the foraminifera, i.e. the third 

chamber counting from the aperture. 

Prior to NanoSIMS imaging, the TEM grids were coated with 10 nm of gold to prevent charging 

effects. Images of typically 30×30 μm2 with 256×256 pixels were obtained by rastering a 16 keV primary 

Cs+ beam (about 2 pA) focused to a size of 120-150 nm across the sample surface with a dwell-time of 

5 milliseconds. Secondary cyanide ions (12C14N- and 13C14N-) were simultaneously collected in electron 

multipliers at a mass resolution (M/ΔM) of about 9000 (Cameca definition), enough to resolve 13C14N- 

from its 12C15N- interference. Each NanoSIMS image consist of 6 sequential images, drift corrected, and 

accumulated using the software L’IMAGE (developed by Dr. Larry Nittler, Carnegie Institution of 

Washington, USA). Carbon isotope ratio images were obtained by taking the ratio between the 

cumulated 13C14N- and 12C14N- images. 

Regions of interest (ROIs) were drawn with the software Look@NanoSIMS (Polerecky et al., 

2012) to quantify mean 13C enrichments of different sub-cellular structures of a given foraminifera. 

The average 13C enrichment (and its standard deviation) for a given class of ROIs was obtained from 

images of 3 different foraminifera for each time point. The ROIs were also used to determine the 

percentage area occupied by a given type of structure in the cytoplasm (the sum of the pixels for a 

given type of ROI divided by the total number of pixels in the corresponding total images), providing 

an estimate of the abundance of a structure as a function of time. 
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Text 2.S2: Detailed protocol of fatty acid analysis 

Foraminifera from oxic and anoxic conditions sampled at Days 7 and 28, respectively, plus a 

sample of the 13C-labeled diatomic biofilm were analyzed for their fatty acids (FAs) composition in the 

IDYST laboratory at the University of Lausanne using procedures adapted from Spangenberg et al. 

(2014). Extraction and separation of acid lipids was carried out on three replicates for each time point 

and on one sample for the biofilm. For each lipid analysis of foraminifera cells, 200 specimens were 

rinsed with water purified using a Millipore® Direct-Q 3 System (Millipore Corporation, Bedford, MA, 

USA) to remove attached material from the shell. This material was frozen at –20 °C for 2 days, freeze-

dried for 1 day in a Lyovac GT2 freeze-dryer (SRK System Technik GmbH, Goddelau, Germany) and 

stored at –20 °C for lipid extraction. An aliquot of internal standard solution containing a defined 

amount of deuterated carboxylic acids (D23n-C12:0, lauric acid, D39n-C20:0, arachidic acid) was added to 

each sample, permitting identification and quantification. Lipids were then extracted using sonication 

in solvents of decreasing polarity (10 min in 2 mL methanol, 10 min in 2 mL 

methanol/dichloromethane, 1:1, v/v; 2×10 mins in 2 mL dichloromethane). The extracts were 

combined and the solvent removed via gentle evaporation under a clean nitrogen flow. The carboxylic 

acids were obtained by hydrolysis with 10 % KOH/MeOH at room temperature for 16 h. The non-

saponifiables were separated with hexane. The fraction containing the acid lipids was acidified with 1 

N HCl to pH<1, and the acid lipids extracted with hexane and methylated (boron trifluoride/methanol 

solution) to provide fatty acid methyl esters (FAMEs). The FAMEs were stored at 4 °C until analysis. 

Chemical characterization of FAMEs was performed by gas chromatography/mass spectrometry 

(GC/MS) using an Agilent (Palo Alto, USA) 6890 gas chromatograph connected to an Agilent 5973 mass 

selective detector operating at 70 eV (source 230 °C and quadrupole 150 °C) in the electron ionization 

mode with emission current 1 mA and multiple ion detection over m/z 45 to 750. Helium was used as 

carrier gas. The FAMEs were analyzed with two different fused silica columns and GC temperature 

programmed to permit the detection of long chain FAs and good separation of unsaturated FAs: (i) HP-

ULTRA 2 (50 m × 0.32 mm; length × inner diameter) coated with 0.17 μm 5 % phenylmethylsilicone 

stationary phase. Samples were injected splitless at 320 °C. After an initial period of 2 min at 100 °C, 

the column was heated to 310 °C (held 20 min) at 4 °C/min. (ii) HP-FFAP (50 m × 0.20 mm; length × 

inner diameter) coated with 0.33 μm nitroterephthalic acid modified polyethylene glycol stationary 

phase. Samples were injected splitless at 200 °C. After an initial period of 2 min at 100 °C, the column 

was heated to 240 °C (held 30 min) at 5 °C/min. Compound assignment was based on comparison with 

standards, GC retention time, and MS fragmentation patterns. FAMEs were quantified by gas 

chromatography with flame ionization detection (GC/FID). An Agilent Technologies (Wilmington, USA) 

7890B GC system equipped with a 7693A automated injection system and a flame ionization detector 
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was used. Gas chromatography/flame ionization detection (GC/FID) analyses were performed using 

the HP-ULTRA 2 column and same chromatographic conditions as for GC/MS. The concentrations of 

the FAs were obtained from the GC/FID peak areas and expressed in nanogram per individual cell 

(ng×ind-1). One blank sample was run for every six samples throughout the analytical procedure. The 

absence of any measurable recovered extract from the blanks indicates that no detectable laboratory 

contamination was introduced to the foraminifera and biofilm samples during the analytical 

procedure. 

 

Text 2.S3: Detailed protocol of stable isotope analyses by isotope ratio mass spectrometry (IRMS) 

The stable carbon isotope analyses using IRMS were also performed in the Stable isotope 

laboratory at IDYST. For each time point, 3 replicates were analyzed, except in the case of stable C 

isotope analysis of individual fatty acids, for which 2 replicates were analyzed. 

C-isotope analysis of total organic carbon (TOC).  

The 13C atom fraction, x(13C), of the total organic matter of decarbonated living foraminifera 

were determined by continuous flow elemental analysis/isotope ratio mass spectrometry (EA/IRMS) 

using flash combustion on a Carlo Erba 1108 elemental analyzer (Fisons Instruments, Milan, Italy) 

connected via a ConFlow III open split interface to a Delta V Plus isotope ratio mass spectrometer 

(Thermo Fisher Scientific, Bremen, Germany). For each analysis, 30 specimens were placed into a silver 

capsule, acidified with 1 drop of 10 vol. % HCl, let to react and dry for 16 h before EA/IRMS analysis. 

The total organic carbon (TOC) content was determined from the peak area of the major isotopes and 

expressed in microgram per individual cell (μg C×ind-1). Reproducibility and accuracy were better than 

0.01 % for x(13C)TOC (2 SD) and 0.02 μg C×ind-1 for TOC content.  

C-isotope analysis of the foraminiferal carbonate shells.  

The foraminifera carbonate shell C-isotopic ratio, x(13C)car, was determined using a Thermo 

Fisher Scientific (Bremen, Germany) carbonate preparation device and GasBench II equipped with a 

Combi-Pal autosampler (CTC Analytics AG, Zwingen, Switzerland) and coupled to a Delta Plus XL 

isotope ratio mass spectrometer (both Thermo Fisher Scientific). We analyzed shells recovered after 

lipid-extraction for fatty acid analysis (see below). In each analysis, 10 lipid-free specimens were placed 

in a 12 mL vials (LABCO Ltd., Lampeter, UK) and immersed in 5 % sodium hypochlorite (NaOCl) solution 

for 12 h to remove potentially remaining labile organic compounds, washed with Millipore water, and 

dried at 40 °C. The vials were sealed with septum caps (from LABCO) and placed in an aluminum 
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heating block at 70 °C for CO2 extraction by reaction with anhydrous phosphoric acid. The measured 

shell 13C atom fractions, x(13C)car, had a precision of 0.01 % (2 SD). The average carbonate content (in 

μg C×ind-1) of the shells was determined from the peak area of the major ions, 0.02 μg C×ind-1 for 

TOC content. 

Carbon isotope analysis of individual fatty acids.  

Compound specific stable C isotopic composition of fatty acids in living foraminifera incubated 

under oxic and anoxic conditions, respectively, was measured by gas 

chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) using an Agilent 6890 GC 

instrument coupled to a Thermo Fisher Scientific (Bremen, Germany) Delta V Plus isotope ratio mass 

spectrometer via a combustion interface III under a continuous He flow. GC separation was performed 

with the same column and chromatographic condition as for GC/FID. Background subtracted stable 

isotope compositions were first calculated using the Thermo Fisher Scientific ISODAT 2.5 software. For 

calibration were used the previously determined C isotopic compositions (by EA/IRMS) of the 

deuterated carboxylic acids added as internal standards. For quality control, the repeatability and 

intermediate precision of the GC/C/IRMS analysis and the performance of the GC and combustion 

interface were evaluated every 5 runs by injection of a carefully prepared mixture of FAMEs reference 

materials and duplicate analyses of the foraminifera samples FAME fractions. The standard deviation 

for repeatability of the 13C atomic fraction, x(13C)FA in %, ranged between 0.01 % and 0.06 %. 
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Chapter 3: Kleptoplasty in benthic foraminifera from photic 

environments
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Chapter 3.1: Ultrastructure and distribution of sequestered 

chloroplasts in benthic foraminifera from shallow-water (photic) 

habitats 

Chapter 3.1 presents a manuscript submitted to the special issue “Foraminiferal 

ultrastructures” of the journal Marine Micropaleontology, investigating the fine structure of 

sequestered chloroplasts in different benthic foraminiferal species. 

 

PhD student’s contribution: the PhD student collected the samples from the field with TJ only for the 

species Haynesina germanica, Elphidium williamsoni, E. oceanense, and Ammonia aomoriensis; 

performed TEM analysis of the species mentioned above; interpreted their TEM micrographs with EG, 

TJ and JMB; discuss the results with all the authors and comment and edit the manuscript written by 

TJ.  
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Abstract 

Maintaining foreign chloroplasts (i.e., those not grown by the host) inside an organism is 

termed “chloroplast sequestration”, and is known for certain benthic foraminifera. Existing data 

indicates that sequestered chloroplasts can be intact and functional, but with different retention times 

depending on foraminiferal species. In the present study, seven species of benthic foraminifera 

(Haynesina germanica, Elphidium williamsoni, E. selseyense, E. oceanense, E. aff. E. crispum, 

Planoglabratella opercularis and Ammonia aomoriensis) were collected from shallow-water benthic 

habitats and examined with Transmission Electron Microscopy (TEM) for cellular ultrastructure to 

ascertain attributes of sequestered chloroplasts. Results indicate that all these foraminiferal taxa 

actively sequestered chloroplasts but organized them differently within their endoplasm. In some 

species, the sequestered chloroplasts were evenly distributed throughout the endoplasm (e.g., H. 

germanica, E. oceanense, A. aomoriensis), whereas other species consistently had plastids distributed 

close to the external cell membrane (e.g., Elphidium williamsoni, E. selseyense, P. opercularis). 

Chloroplast degradation also seemed to differ between species, as many degraded plastids were found 

in A. aomoriensis and E. oceanense compared to other investigated species. Digestion ability, along 

with different feeding and sequestration strategies (e.g., diatom frustules only found in A. aomoriensis; 

single to multiple sequestered plastids surrounded per host membrane), may explain the differences 

in retention time between taxa. Additionally, the organization of the sequestered plastids within the 
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endoplasm may also suggests behavioral strategies to expose and/or protect the sequestered plastids 

to/from light and/or to favor gas and/or nutrient exchange with their surrounding habitats.  

 

Key words: Kleptoplasty; foraminifera; chloroplast; TEM; transmission electron microscopy 

 

  



Chapter 3.1: Ultrastructure and distribution of sequestered chloroplasts in benthic foraminifera from shallow-water (photic) 
habitats 

107 
 

 Introduction 

Some benthic foraminiferal species have the ability to steal and sequester chloroplasts from 

their microalgal food sources. These foraminiferal species mainly ingest diatoms (Goldstein et al., 

2004; Jauffrais et al., 2017; Knight and Mantoura, 1985; Pillet et al., 2011; Tsuchiya et al., 2015) but 

have different strategies for sequestering and feeding (Austin et al., 2005; Grzymski et al., 2002; 

Jauffrais et al., 2016; Lopez, 1979). In some species, the sequestered chloroplasts are degraded within 

hours, possibly as a result of a digestive process, while in other foraminiferal species the ingested 

plastids are kept and/or remain functional for weeks to months (Cedhagen, 1991; Correia and Lee, 

2000, 2002b, 2002a; Grzymski et al., 2002; Jauffrais et al., 2016; Lee and Lanners, 1988; Lopez, 1979; 

Tsuchiya et al., 2015). This process, termed “kleptoplasty” (Clark et al., 1990), is observed in benthic 

foraminifera from different environments: shallow to deep-sea, oxic to anoxic and photic to aphotic 

habitats (Alexander and Banner, 1984; Bernhard et al., 2000; Bernhard and Alve, 1996; Bernhard and 

Bowser, 1999; Correia and Lee, 2000; Lee and Lanners, 1988; Lopez, 1979). The photosynthetic 

function of plastids has been demonstrated in some shallow-water benthic foraminifera (e.g., 

Elphidium williamsoni and Haynesina germanica in Cesbron et al., 2017; Jauffrais et al., 2016; Lopez, 

1979). Nevertheless, it remains unknown why deep-sea foraminifera sequester chloroplasts as light is 

absent in their habitat (Bernhard and Bowser, 1999; Grzymski et al., 2002). 

In photic shallow-water habitats (e.g., estuaries, bays, lagoons and other intertidal or shallow-

water subtidal areas), kleptoplastic benthic foraminiferal species, such as Haynesina germanica, 

Elphidium williamsoni, the “excavatum” species complex (e.g., E. oceanense, E. selseyense, see Darling 

et al. (2016)), or Ammonia spp., are often the dominant mudflat foraminiferal taxa (Bouchet et al., 

2009; Cesbron et al., 2016; Debenay et al., 2000, 2006; Morvan et al., 2006; Pascal et al., 2009; Thibault 

de Chanvalon et al., 2015). Their vertical distribution is characterized by a clear maximum density in 

the surface oxygenated millimeters of the sediment (Alve and Murray, 2001; Bouchet et al., 2009; 

Cesbron et al., 2016; Thibault de Chanvalon et al., 2015), where light can penetrate (Cartaxana et al., 

2011; Kuhl et al., 1994). However, in some kleptoplastic species (e.g., the morphospecies A. tepida and 

E. excavatum) sequestered chloroplasts lack photosynthetic activity (Lopez, 1979; Jauffrais et al., 

2016), and in many other kleptoplastic species, the photosynthetic activity has not yet been assessed 

and/or quantified. 

Host-kleptoplast interactions (oxygen production, carbon assimilation) play an important role 

in the physiology and the biogeochemical capabilities of at least some extant kleptoplastic benthic 

foraminifera. The observed differences in the maintenance of the sequestered chloroplasts suggest 

there must be substantial differences between kleptoplastic shallow-water foraminiferal species. It is, 
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therefore, necessary to understand the sequestration mechanism in kleptoplastic foraminifera that 

have similar food sources and environments, but may have different chloroplast-retention times. In 

this study, we used Transmission Electron Microscopy (TEM) to document the ultrastructure and 

cellular organization of different kleptoplastic foraminifera from shallow-water photic habitats to 

assess chloroplast organization and degradation processes. Furthermore, individuals from the same 

populations as the ultrastructurally examined specimens have been genetically characterized with 

DNA barcoding to ascertain their taxonomic identity to ease future comparisons. 

 

 Material and methods 

 Specimen collection and field sample fixations 

We examined seven species of shallow-water benthic foraminifera: Haynesina germanica (Fig. 

3.1.1 and 3.1.2), Elphidium williamsoni (Fig. 3.1.3), Elphidium oceanense (Fig. 3.1.4), Elphidium 

selseyense (Fig. 3.1.5), Elphidium aff. E. crispum (Fig. 3.1.6), Planoglabratella opercularis (Fig. 3.1.7 and 

3.1.8) and Ammonia aomoriensis (Fig. 3.1.9 and 3.1.10). 

Haynesina germanica (4 specimens observed for ultrastructure), E. oceanense (3 specimens 

observed) and A. aomoriensis (3 specimens observed) were collected from the Bourgneuf Bay tidal 

mudflat (Bay of Biscay, south of the Loire estuary, France), from surface sediments (  0-0.5 cm depth) 

in March 2016. The foraminifera-bearing sediments were fixed in the field immediately after sampling, 

with a fixative solution containing 4% glutaraldehyde and 2% paraformaldehyde in artificial seawater 

(Red Sea® salt in MilliQ® water at salinity 35). The samples were then kept at room temperature (18-

20°C) for 24 h and subsequently placed at 4°C until further processing.  

Haynesina germanica (3 specimens observed) and E. selseyense (1 specimen observed) were 

isolated in February 2016 from two Wadden Sea tidal mudflats: Mokbaai and Cocksdorp (Texel Island, 

the Netherlands), respectively. Sediment cores were sliced at 1-cm intervals down to 10-cm depth. The 

top 1-cm of each sediment core was sieved over a 125-μm screen and foraminifera containing healthy 

looking protoplasm were picked within 30 h of sampling from the >125-μm fraction. The vitality of all 

isolated foraminifera was further assessed based on movements as outlined in Koho et al. (2011). 

Immediately after vitality checks, living specimens were transferred to a fixative solution containing 

2% glutaraldehyde and 4% paraformaldehyde in filtered seawater and stored at 4°C. After 24 h, the 

specimens were transferred into a solution containing 4% paraformaldehyde in filtered seawater and 

stored at 4°C, where they remained until further processing. 



Chapter 3.1: Ultrastructure and distribution of sequestered chloroplasts in benthic foraminifera from shallow-water (photic) 
habitats 

109 
 

Elphidium williamsoni (5 specimens observed) were collected from surface sediments (0-0.5 

cm depth) in May 2016 from a small tidal mudflat in Fiskebäckskil near Kristineberg Marine Research 

Station (Gullmar Fjord, Sweden). The sediments with foraminifera were fixed and preserved as noted 

for H. germanica from the Bourgneuf Bay tidal mudflat. 

Living individuals of E. aff. E. crispum (12 specimens observed) and P. opercularis (12 specimens 

observed) were isolated from coralline algae (Corallina pilulifera, Rhodophyta) collected from rocky 

shores of Yugawara (Kanagawa prefecture, Japan). The vitality of all isolated foraminifera was assessed 

based on pseudopodial extension using an inverted microscope with a phase-contrast apparatus. 

Living specimens were picked with a fine (soft) needle, fixed for 2 h in 2.5% seawater-buffered 

glutaraldehyde and then transferred in filtered (0.2 μm) seawater and kept at 4°C until processing. 

 Species identifications 

Specimens were taxonomically identified based solely on the morphology of the test as 

revealed with Scanning Electron Microscopy (SEM) or based on both morphology (SEM micrographs) 

and molecular (DNA barcoding; DNA sequences) tools. 

For the Bay of Bourgneuf and the Gullmar Fjord, foraminifera from the same samples as 

specimens used for the TEM studies were selected for DNA barcoding (Table 3.1.1). Live foraminifera 

were picked from the sediment, dried on micropalaeontological slides, imaged with an environmental 

SEM (EVO LS10, ZEISS) and individually extracted for DNA in Deoxycholate (DOC) buffer (e.g., 

Pawlowski, 2000; Schweizer et al., 2011). For the DNA amplification, a fragment situated at the 3’ end 

of the SSU rDNA was selected because this region is the barcode for foraminifera (Pawlowski and 

Holzmann, 2014). The primer pairs were s14F3 and J2 for the primary PCR and s14F1 and N6 for the 

secondary (nested) PCR (Darling et al., 2016; Pawlowski, 2000). Positive PCR reactions gave a fragment 

of about 500 nucleotides (nt) that was purified and sequenced directly as described in Schweizer et al. 

(2011). New DNA sequences were deposited in GenBank (accession numbers KY347797-KY347800).  

For the Dutch and Japanese specimens, available DNA sequences (Schweizer et al., 2008, 2011; 

Tsuchiya et al., 2000); Pawlowski and Holzmann, unpublished data) were gathered from GenBank 

(Table 3..11). 

The sequences retrieved for the studied specimens (Table 3.1.1) were then compared to 

published sequences (Darling et al., 2016; Hayward et al., 2004) within an alignment obtained with 

SeaView (Gouy et al., 2009) to identify them molecularly.  
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Table 3.1.1: Available DNA sequences for specimens from the same population or the same location as TEM 
studied specimens. The phylotype names refer to the systems described by Hayward et al. (2004) for Ammonia 
and Darling et al. (2016) for Elphidium and Haynesina. 

Morphospecies Gene Phylotype DNA 
isolate Location  

Accession 
number 

(GenBank) 
Reference 

Haynesina 
germanica SSU S16 H17-16 Bourgneuf 

(FR) KY347799 present study 

Haynesina 
germanica SSU S16 6008 Den Oever 

(NL) EF534074 Schweizer et al., 
2008 

Haynesina 
germanica SSU S16 F323 Den Oever 

(NL) GQ853557 Schweizer et al., 
2011 

Elphidium 
williamsoni SSU S1 GF191 Gullmar Fjord 

(SE) KY347798 present study 

Elphidium 
oceanense SSU S3 Bn130 Bourgneuf 

(FR) KY347797 present study 

Elphidium 
selseyense SSU S5 1244 Mokbaai (NL) GQ853558-

59 
Schweizer et al., 
2011 

Planoglabratella 
opercularis SSU N/A N/A Omaezaki (JP) Z69614 Pawlowski et al., 

1997 

Planoglabratella 
opercularis ITS A1 GO17 Ooura Cove, 

Shimoda (JP) AF498333 Tsuchiya et al., 
2003, 2014 

Planoglabratella 
opercularis LSU N/A GO17 Ooura Cove, 

Shimoda (JP) AF194044 Tsuchiya et al., 
2000 

Ammonia 
aomoriensis SSU T6 H17-34 Bourgneuf 

(FR) KY347800 present study 

 

 

 Ultrastructural observations by TEM 

In the laboratory chemically preserved specimens were rinsed in filtered seawater. They were 

then either decalcified in 0.1 or 0.5 M ethylenediamine tetraacetic acid (EDTA) prepared in distilled 

water (pH 7.4) and post-fixed with 2% osmium tetroxide (OsO4) solution prepared in filtered seawater 

for about 1-2 h, or the reverse (both processes work). Foraminifera were then dehydrated with 

successive ethanol baths and embedded in resin, either Epon (Epon 812 resin, TAAB) or LR White® 

(Sigma-Aldrich). Ultra-thin sections (60-70 nm) were then prepared with an ultra-microtome (Reichert 

Ultracut S, Leica) after staining with uranyl acetate, or with 1% aqueous uranyl acetate and 0.5% lead 

citrate, and then coated with carbon using a JEE-400 high vacuum evaporator (JEOL Ltd). The ultrathin 

sections were finally examined with either a JEM-1400 (JEOL Ltd), JEM-1210 (JEOL Ltd) or TECNAI G2 

20 (FEI Company) TEM at an acceleration voltage of 80-100kV. 
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 Results and discussion 

This contribution presents the ultrastructure and cellular distribution of sequestered 

chloroplasts to highlight differences in chloroplast organization and degradation processes in 

foraminifera from shallow-water habitats (synopsis in Table 3.1.2). The description and organization 

of sequestered chloroplasts in foraminifera from deep-sea habitats and of other organelles in benthic 

foraminifera are described in detail elsewhere in the present special issue (see, Bernhard et Geslin, 

submitted; and Chapter 1). 

 Haynesina germanica 

Haynesina germanica is relatively easy to recognize morphologically and there is good 

congruence between morphological and molecular identification (Darling et al., 2016, phylotype S16). 

Similarly, good agreement existed between the molecular and morphological identification of the 

specimens collected from the Bourgneuf Bay tidal mudflat (France). Direct molecular identification was 

not performed on specimens collected from Texel (Mokbaai, NL). However, specimens from a nearby 

site (Wadden Sea, Den Oever, NL) that were sequenced and identified as phylotype S16 (Schweizer et 

al., 2011, Table 3.1) bore similar morphology to Mokbaai specimens.  

In all four specimens studied with TEM, the sequestered chloroplasts were evenly distributed 

in each chamber and large vacuoles were also densely and evenly distributed (Fig. 3.1.1B and C and 

Fig. 3.1.2B). The chloroplasts showed fine structural details and were relatively well preserved in the 

foraminiferal endoplasm with thylakoids, girdle lamella surrounding each kleptoplast and pyrenoids 

(Fig. 3.1.1E and F, 3.1.2C and E). The pyrenoids were also well preserved, often transected by a lamella 

and surrounded by another lamella (Fig. 3.1.1E, F and Fig. 3.1.2C, E). Ideally in H. germanica, five 

membranes are visible around the chloroplast; the four inner membranes are most likely those of the 

diatom and the fifth and outermost membrane is that of the foraminifer (Goldstein et al., 2004). In the 

present study, an electron-lucent space was often observed between the chloroplast membranes and 

the host membrane (Fig. 3.1.1D, E and F, and Fig. 3.1.2E). This electron-lucent space may be an artefact 

caused by the chemical fixation and embedding procedures. 
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Figure 3.1.1: Haynesina germanica (elphidiid phylotype S16) isolated from Bourgneuf Bay (France). A. Scanning 
electron micrograph. B. Light micrograph of semi-thin section. C-F. TEM micrographs. C. Overview of a chamber 
showing sequestered chloroplasts (c) and digestive vacuoles (dv) evenly and densely distributed in the 
endoplasm. D and E. Sequestered chloroplast with thylakoid (th), girdle lamella (gl); pyrenoids (py). F. Higher 
magnification view of a sequestered chloroplast with the girdle lamella (gl) surrounding the kleptoplast, 
thylakoids (th), a pyrenoid (py) with a lamella (la) inside and a lamella surrounding the pyrenoid (lp). Scale bars: 
A, B = 50 μm, C = 20 μm, D = 2 μm, E = 1μm and F = 0.5 μm. 
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Figure 3.1.2: Haynesina germanica (elphidiid phylotype S16) isolated from Wadden Sea (Texel, Netherlands). 
A. Scanning electron micrograph. B-E. TEM micrographs. B. Overview of a chamber showing sequestered 
chloroplasts (c) and vacuoles (v) evenly and densely distributed in the endoplasm. C - E. Sequestered chloroplasts 
with pyrenoid (py), thylakoids (th) and osmiophilic globule (possibly plastoglobules). Scale bars: A= 100 μm, B = 
5μm, C and D = 0.5 μm and E = 1μm. 
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 Elphidium williamsoni 

The morphospecies Elphidium williamsoni has been formally linked to phylotype S1 (Darling et 

al., 2016) with DNA sequencing of topotypic specimens (Roberts et al., 2016). A specimen from the 

Gullmar Fjord sample was also sequenced and found to belong to phylotype S1 (Table 3.1), confirming 

the morphological determination.  

Sequestered chloroplasts were abundant and situated just below the cell periphery (Fig. 3.1.3B 

and C) or close to it (Fig. 3.1.3D). Sequestered chloroplasts were also well preserved with pyrenoid, 

lamella and thylakoids (Fig. 3.1.3E and F). A degraded sequestered chloroplast at the foraminiferal cell 

periphery had inter-thylakoid spaces (Fig. 3.1.3C (c*)). As observed in H. germanica, the sequestered 

chloroplasts were surrounded by the host membrane, with electron-lucent spaces between the 

chloroplasts and the endoplasm of the host (Fig. 3.1.3B to F) that may be an artefact caused by the 

chemical embedding procedure. 
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Figure 3.1.3: Elphidium williamsoni (elphidiid phylotype S1) isolated from Gullmar fjord (Sweden). A. Scanning 
electron micrograph. B-F. TEM micrographs. B, C and D. Overviews of different chambers showing intact (c) and 
degraded (c*) sequestered chloroplasts situated immediately below the host periphery (B and C) or close to it 
(D). E and F. Sequestered chloroplasts with pyrenoid (py), lamella (la) and thylakoids (th). In F, note the fibrillar 
vacuole (fv), the multivesicular bobies (mvb) and the degraded lipid droplet (li*) near the sequestered 
chloroplast. Scale bars: A = 100 μm, B- D = 5 μm, and E, F = 1μm. 
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 Elphidium “excavatum” species complex 

Elphidium oceanense and E. selseyense belong to the “excavatum“ species complex as defined 

by Darling et al. (2016). The morphospecies Elphidium excavatum was thought to include a large 

number of ecophenotypes due to its high morphological diversity. However, recent molecular 

phylogenetics studies have shown that this morphospecies is actually a species complex, consisting of 

a group of closely related species (Darling et al., 2016; Pillet et al., 2013; Schweizer et al., 2011). These 

species are pseudocryptic, meaning that a careful morphological examination of specimens 

traditionally determined as E. excavatum allows classification to one species of the complex (Darling 

et al., 2016). Presently, four different phylotypes have been identified and linked to previously 

described morphological forms that were then given species status: S3=E. oceanense, S4=E. clavatum, 

S5=E. selseyense, S13=E. lidoense (Darling et al., 2016).  

 

3.3.1 Elphidium oceanense 

Specimens collected from the Bourgneuf Bay tidal mudflat, France, were morphologically and 

molecularly identified as phylotype S3 in Darling et al. (2016). This phylotype is the most common 

member of the "excavatum" species complex in the Bourgneuf Bay tidal mudflat (Schweizer et al., 

unpublished results and Table 3.1.1).  

In E. oceanense, sequestered chloroplasts and vacuoles were evenly and densely distributed 

in the endoplasm (Fig. 3.1.4C, D). The sequestered chloroplasts were in large vacuoles containing 

numerous plastids and fine materials (Fig. 3.1.4D - F). The plastids often appeared in a degraded state 

with small circular electron-lucent disruptions of thylakoids and pyrenoids (Fig. 3.1.4E and F). 

Kleptoplast pyrenoids, lamella and thylakoids remained clearly distinguishable (Fig. 3.1.4E and F). 
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Figure 3.1.4: Elphidium oceanense (elphidiid phylotype S3) isolated from Bourgneuf Bay (France). A. Scanning 
electron micrograph. B. Light micrograph of semi-thin section. C-F. TEM micrographs. C. Overview of a chamber 
showing sequestered chloroplasts (c) and vacuoles (v) evenly and densely distributed in the endoplasm.  Also 
noted are the nucleus (n), pore plates (pp) and organic lining (ol). D. Chloroplasts (c) often in degradation or 
perforated in large vacuoles. E and F. Higher magnification views showing chloroplasts, often in degraded state, 
with pyrenoid (py), lamella (la) and thylakoids (th). Scale bars: A, B = 50 μm, C = 10 μm, D = 2 μm, E = 1 μm and F 
= 0.5 μm. 
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3.3.2 Elphidium selseyense 

The specimens from Cocksdorp (Wadden Sea) were identified morphologically as E. selseyense. 

This species, which is linked to the phylotype S5 (Darling et al., 2016), was sequenced in 1999 from the 

same location (Schweizer et al., 2011; Table 3.1.1). Elphidium selseyense is known as a widespread and 

opportunistic species with ecology similar to the other species described above (Darling et al., 2016; 

Horton and Edwards, 2006; Murray, 1991).  

Specimens of E. selseyense had many sequestered chloroplasts situated immediately below 

the host-cell periphery (Fig. 3.1.5B, C and D) and relatively fewer chloroplasts internally in the 

endoplasm (Fig. 3.1.5B). Sequestered chloroplasts exhibited a girdle lamella, a simple pyrenoid, 

thylakoids and also osmiophilic globules (Bedoshvili et al., 2009), which could be lipoprotein particles 

such as plastoglobules as suggested previously by Leutenegger (1977) and Schmaljohann and Röttger 

(1978).  

Despite being phylogenetically closely related (Darling et al. 2016), E. oceanense and E. 

selseyense clearly have different chloroplast sequestration strategies. First, the plastids were 

distributed throughout cytoplasm in E. oceanense compared to E. selseyense, where the plastids 

occurred peripherally. Second, the kleptoplasts were relatively degraded in E. oceanense and relatively 

intact in E. selseyense. Third, multiple plastids occurred in one vacuole of E. oceanense whereas, 

typically, a single plastid was seen in one vacuole of E. selseyense. These differences suggest that, in E. 

oceanense, the kleptoplasts were not functional, whereas, in E. selseyense they may still be functional, 

possibly producing oxygen and assimilating inorganic carbon and nitrogen. Although these two 

Elphidium taxa are within the same species complex as defined by Darling et al. (2016), differences in 

chloroplast maintenance and distribution reveal that the species differ not only genetically and 

morphologically, but also physiologically. Such observations emphasize the need to clearly identify 

individuals within this species complex. These differences within the same species complex also 

hamper direct comparison with previous studies on E. excavatum structures (Correia and Lee, 2000, 

2002a, b; Lopez, 1979) where no morphological (SEM images) and/or molecular (sequence) data are 

available. 
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Figure 3.1.5: Elphidium selseyense (elphidiid phylotype S5) isolated from Wadden Sea (Texel, Netherlands). A. 
Scanning electron micrograph. B-F. TEM micrographs. B, C and D. Overview of different chambers showing 
sequestered chloroplasts (c) situated immediately below the host periphery (B-D) with some internally (B). E and 
F. Sequestered chloroplasts with a girdle lamella (gl), a simple pyrenoid (py), thylakoids (th) and osmiophilic 
globules (possibly plastoglobules). In E, note the Golgi apparatus (g) and electron opaque bodies (eo) near the 
sequestered chloroplast. Scale bars: A = 100 μm, B, C = 5 μm, D = 2 μm, and E, F = 1 μm. 
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 Elphidium aff. E. crispum 

Specimens of E. aff. E. crispum were isolated from intertidal rocky shores of Yugawara 

(Kanagawa prefecture, Japan) where they are commonly encountered living on coralline algae 

(Kitazato, 1994). No published sequence data is yet available for this species, but the preliminary 

sequence differs from the European E. crispum (phylotype S11, Darling et al., 2016 and Tsuchiya, 

unpubl. data), therefore explaining the use of open nomenclature here.  

Sequestered chloroplasts were evenly and densely distributed in the endoplasm (Fig. 3.1.6B, 

C, F). Some organelles such as mitochondria, Golgi apparatus, and peroxisomes were found near the 

sequestered chloroplasts (Fig. 3.1.6D). The kleptoplasts appear singly in vacuoles and have a girdle 

lamella, thylakoids, and pyrenoid divided in two by a lamella and the presence of osmiophilic globules 

(Fig. 3.1.6E and G). Sequestered chloroplasts were noted in different states of degradation (Fig. 

3.1.6H). 
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Figure 3.1.6: Elphidium aff. E. crispum isolated from Yugawara (Kanagawa prefecture, Japan). A. Scanning 
electron micrograph. B-H. TEM micrographs. B. Overviews showing four different chambers. C and D. 
Sequestered chloroplasts (c) evenly and densely distributed in the endoplasm of the cell and organization of 
surrounding organelles (D): mitochondria (m), digestive vacuole (dv), Golgi apparatus (g), peroxisome (p). E. 
Sequestered chloroplast with a girdle lamella (gl), thylakoids (th), pyrenoid (py) divided in two by a lamella (la) 
and osmiophilic globules (possibly plastoglobules). F. Sequestered chloroplasts (c) in the endoplasm. G and H. 
Intact and degraded (c*) sequestered chloroplasts. Scale bars: A = 100μm, B = 50 μm, C = 4 μm, D, E, G = 1 μm, F 
= 5 μm, and H = 2 μm. 
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 Planoglabratella opercularis 

Planoglabratella opercularis is also commonly encountered in the intertidal zone of rocky 

shores around the Japanese Islands where it lives on thalli of coralline algae (Kitazato, 1988; Tsuchiya 

et al., 2014). Specimens collected near the TEM-sample collection site have been sequenced previously 

for the LSU and SSU rDNA (Tsuchiya et al., 2000 see Table 3.1.1) and ITS rDNA sequences (Tsuchiya et 

al., 2003; Tsuchiya et al., 2014, see Table 3.1.1). Moreover, SSU rDNA sequences of P. opercularis from 

China have now been deposited in GenBank (LN714815-LN714825; Pawlowski and Holzmann, 

unpublished). The LSU rDNA sequence of a deposited Chinese specimen is identical to LSU sequences 

of the Japanese P. opercularis (Table 3.1.1).  

Because P. opercularis is trochospiral with an attached mobile mode of life and directly 

exposed to sunlight, chloroplast distribution and sequestration are discussed in the context of spiral, 

umbilical and lateral perspectives, respectively (Fig. 3.1.7A-C). Sequestered chloroplasts were situated 

at the proximity of the foraminifer’s spiral surface, close to the pores and pores plates, where they 

formed a continuous layer of chloroplasts (Fig. 3.1.7B and Fig. 3.1.8A and B). Also, some of the plastids 

were distributed in the endoplasm but at a lower density (Fig. 3.1.7B, 8E). Surrounding organelles such 

as mitochondria and Golgi apparatus were also found close to the sequestered chloroplasts (Fig. 

3.1.7F). The kleptoplasts were well preserved with thylakoids and a pyrenoid (Fig. 3.1.7C, D and F). 

Such peripheral distributions suggest active strategies of P. opercularis to maximise light acquisition 

by the kleptoplast, to favor gas (e.g., O2, CO2) and/or dissolved nutrient (e.g., nitrogen) exchanges with 

their surrounding habitats. 
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Figure 3.1.7: Planoglabratella opercularis isolated from Yugawara (Kanagawa prefecture, Japan). A. Scanning 
electron micrographs of dorsal (upper), lateral (middle) and ventral (lower) views. B. Transmission electron 
micrograph montage showing chambers and organization plastids at the cell periphery. Scale bars: A = 100 μm 
and B = 25 μm. 
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Figure 3.1.8: Transmission electron micrographs of P. opercularis. A-B.  Organization of the sequestered 
chloroplasts (c) situated immediately below the host periphery close to the pore plates (pp) as well as in the 
endoplasm but at a lower density. Note the surrounding organelles: mitochondria (m), Golgi apparatus (g), 
nucleus (n) and nucleolus (nu), and also the pores (po), pore plates (pp) and the organic lining (ol). C and D. 
Details of peripheral sequestered chloroplasts showing thylakoids (th) and pyrenoids (py). E and F. Sequestered 
chloroplasts (E) in the endoplasm with surrounding organelles (F): mitochondria (m), digestive vacuole (dv), Golgi 
apparatus (g), peroxisome (p). Scale bars: A, D = 2 μm, B = 5 μm, C, E, F = 1 μm. 
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 Ammonia aomoriensis 

Ammonia isolated in Bourgneuf Bay tidal mudflat (France) were first identified as the 

morphospecies A. tepida (Jauffrais et al., 2016). This morphospecies, however, is polyphyletic, with 

morphologically identical specimens belonging to distantly related species genetically (Hayward et al., 

2004). Specimens from the same sample as the TEM-studied ones were sequenced (Schweizer et al., 

unpublished results and Table 3.1.1) and identified as Ammonia aomoriensis (phylotype T6, Hayward 

et al., 2004).  

Sequestered chloroplasts were evenly distributed through chambers, along with diatom 

frustules and large vacuoles (Fig. 3.1.9B). An entire section of a diatom was noted in the endoplasm of 

one host (Fig. 3.1.9D). In this case, the degradation of the diatom had begun because the diatom cell 

had shrunken within the frustule, however, the details and the intracellular organization of the diatom 

remained clearly visible. Two chloroplasts with a simple pyrenoid were observable; they were linked 

by a bridge of cytoplasm where a nucleus and small vacuoles were also visible. A thin layer of cytoplasm 

then extended to the ends of the cell surrounding two large vacuoles and mitochondria.  

Sequestered chloroplasts of A. aomoriensis appeared in different states of degradation (Fig. 

3.1.10). In well-preserved sequestered chloroplasts, the pyrenoid was separated by a lamella 

composed of a thylakoid and surrounded by an electron-lucent lamella (Fig. 3.1.10A). The thylakoids 

and girdle lamella were also visible (Fig. 3.1.10A and B). In degraded sequestered chloroplasts, the 

structure of the thylakoids and pyrenoid was disrupted and the lamellae were degraded. These 

degraded sequestered chloroplasts had inter-thylakoid spaces (Fig. 3.1.10C and D). Their degradation 

state and the fact that A. aomoriensis kleptoplasts are known to quickly become non- functional 

(Jauffrais et al., 2016) suggest that this species merely feeds on diatoms and does not sequester 

chloroplasts to perform photosynthesis.  
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Figure 3.1.9: Ammonia aomoriensis (Ammonia phylotype T6) from Bourgneuf Bay (France). A. Scanning 
electron micrograph. B. Transmission electron micrograph overview of a chamber of Ammonia aomoriensis 
showing sequestered chloroplasts (c), empty diatom frustules (d), vacuoles (v), pores (po), pore plates (pp), 
organic lining (ol) and former location of the test (t). C. Light micrograph of semi-thin section. D. Transmission 
electron micrograph of a diatom in the endoplasm of the foraminifer, showing diatom organelles: chloroplast (c), 
nucleus (n), vacuoles (v), mitochondria (m) and frustules (f). Scale bars: A, C = 100 μm, B = 50 μm, and D = 5 μm. 
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Figure 3.1.10: Transmission electron micrographs of A. aomoriensis. A and B. Organization of sequestered 
chloroplasts showing pyrenoids (py), lamella (la) and lamella surrounding the pyrenoid (lp), thylakoids (th) and 
girdle lamella (gl). C and D. Sequestered chloroplasts in degradation. Note the lipids (li) in the foraminifer. Scale 
bars: A, C, D = 2 μm, B = 1 μm. 
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 General discussion 

Our findings indicate that all seven foraminiferal taxa studied actively sequester chloroplasts 

but sequestration strategies differed between species.  

First, the structure of the pyrenoid (simple with one transecting lamella surrounded by one 

membrane), the presence of a girdle lamella, the thylakoids and the absence of starch accumulation, 

together with published data (ultrastructural, pigment and molecular analyses of the sequestered 

plastids, Goldstein et al., 2004; Knight and Mantoura, 1985; Pillet et al., 2011, Jauffrais et al. 2016), 

suggest that the sequestered chloroplasts in all seven species belonged to diatoms. 

Second, kleptoplast distributions within the endoplasm differed. In some species, the 

sequestered chloroplasts were evenly distributed (e.g., H. germanica, E. oceanense and A. 

aomoriensis), whereas in other species the plastids were located close to the cell periphery (e.g., E. 

williamsoni, E. selseyense, P. opercularis) and pore-plate complexes (e.g., P. opercularis). The 

differences in the organization of plastids within the endoplasm suggest different behavioral 

strategies, which expose and/or protect the sequestered plastids to/from light, and can favor gas (e.g., 

O2, CO2) and dissolved nutrient (e.g., ammonium, nitrate) exchange with their surrounding habitats. 

Peripheral chloroplast distributions might be considered as an active strategy of the foraminifer (e.g., 

E. williamsoni, E. selseyense, P. opercularis) to maximize light acquisition by kleptoplasts. Whereas, an 

internal distribution (e.g., H. germanica, E. oceanense and A. aomoriensis) could be considered either 

as an absence of strategy, as a strategy to protect the sequestered plastids from an excess of light 

and/or as an alternative strategy to maximize light exposure by continuously moving kleptoplasts in 

the endoplasm of the cell to modulate light exposure. In any case, the clear difference in the 

chloroplast organization between two phylogenetically closely related species, E. oceanense and E. 

selseyense (Darling et al., 2016), lends a novel (physiological) attribute distinguishing the two species 

beyond genetics and morphology.  

Third, chloroplast degradation time and processes seem to be species specific as many 

degraded plastids were found in E. oceanense and A. aomoriensis compared to other species. 

Furthermore, the presence of numerous degraded chloroplasts in the endoplasm of A. aomoriensis 

and E. oceanense is consistent with the absence of photosynthetic activity in both of these species 

(Jauffrais et al., 2016; Lopez, 1979).  

Fourth, ingestion and sequestration strategies also differed among taxa. Diatom frustules were 

only found in A. aomoriensis while other species had isolated plastids lacking frustules. Another 

distinguishing characteristic could be the number of sequestered plastids (single to multiple) 
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surrounded by a single host membrane. Such variations may be related to differences in chloroplast 

maintenance between foraminiferal species. 
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Chapter 3.2: Inorganic carbon and nitrogen assimilation by a benthic 

kleptoplastic foraminifera 

 
Chapter 3.2 presents a manuscript in preparation, assessing the role of kleptoplasts in the 

carbon and nitrogen metabolism of a shallow water benthic species. 

 

PhD student’s contribution: the PhD student collected the samples from the field with MEG and EG, 

designed the experiment with EG and AM; analyzed the samples with MEG; interpreted the data with 

MEG, EG, TJ, and AM; performed the statistical analysis; discuss the results with EG, TJ, JMB, BJ and 

AM and wrote the manuscript with comments and edits from all the authors. 
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foraminifera 

Charlotte LeKieffre1, Thierry Jauffrais2, Emmanuelle Geslin2, Bruno Jesus3,4, Joan M. Bernhard5, Maria-

Evangelia Giovanni1, Anders Meibom1,6 

 
1 Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering (ENAC), Ecole 
Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland 
2 UMR CNRS 6112 LPG-BIAF, Bio-Indicateurs Actuels et Fossiles, Université d’Angers, 2 Boulevard Lavoisier, 49045 Angers 
CEDEX 1, France 
3 EA2160, Laboratoire Mer Molécules Santé, Université de Nantes, Nantes, France 
4 BioISI – Biosystems & Integrative Sciences Institute, Campo Grande University of Lisboa, Faculty of Sciences, Lisboa, Portugal. 
5 Woods Hole Oceanographic Institution, Department of Geology & Geophysics, Woods Hole, MA, USA 
6 Center for Advanced Surface Analysis, Institute of Earth Sciences, University of Lausanne, Switzerland 
 

Abstract  

Haynesina germanica, a ubiquitous benthic foraminifera in intertidal mudflats, has the 

remarkable ability to isolate, sequester, and use chloroplasts from microalgae. The functionality of 

these kleptoplasts has already been demonstrated in terms of photosynthetic efficiency (photosystem 

II quantum efficiency and oxygen production rates). The objective of this study was to investigate, 

using correlated TEM and NanoSIMS imaging, the assimilation of inorganic C and N (here ammonium; 

NH4
+) in kleptoplastic benthic foraminiferal cells. H. germanica specimens were incubated for 20 h in 

artificial seawater spiked with H13CO3
- and 15NH4

+ during a light/dark cycle. All specimens incorporated 
13C into their endoplasm (stored primarily in the form of lipid droplets), fibrillar vesicles, and electron-

opaque bodies. A control incubation in darkness resulted in no 13C-uptake. Ammonium assimilation 

was observed both with and without light. The resulting 15N-enrichments were diffusely distributed 

throughout the cytoplasm, with higher than average concentrations in fibrillar vesicles, electron-

opaque bodies, tubulin paracrystals, bacterial associates, and some kleptoplasts. The latter 

observation might indicate that the chloroplasts are involved in N assimilation. 

Key words: NanoSIMS, ultrastructure, kleptoplast, photosynthesis, ammonium uptake 
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 Introduction 

Kleptoplasty is defined as the process in which a cell sequesters algal chloroplasts while 

discarding or digesting other algal components (Clark et al., 1990). This phenomenon is encountered 

in different organisms, such as sacoglossans (sea slug; e.g., Pelletreau et al., 2011; Rumpho et al., 2001; 

Serôdio et al., 2014), ciliates (reviewed in Dolan, 1992), dinoflagellates (e.g. Kim et al., 2012; Nagai et 

al., 2008; Nishitani et al., 2012), and benthic foraminifera (Bernhard and Bowser, 1999). With regard 

to benthic foraminiferal kleptoplasty, studies have focused on shallow-water species inhabiting photic 

zones, especially Haynesina germanica and Elphidium spp. These studies relied on ultrastructural 

observations and/or genetic analyses, which established the diatom origin of the kleptoplasts, or 

incubation/starvation experiments to define kleptoplast lifetimes inside foraminiferal cells (Bernhard 

and Alve, 1996; Cedhagen, 1991; Cevasco et al., 2015; Correia and Lee, 2000, 2002a, 2002b; Lechliter, 

2014; Leutenegger, 1984; Pillet et al., 2011; Pillet and Pawlowski, 2013; Tsuchiya et al., 2015).  

Lopez (1979) showed that H. germanica and Elphidium williamsoni had a net uptake of 

inorganic carbon (H14CO3) in light, and experiments with oxygen microelectrodes demonstrated that 

maximal O2 production by H. germanica depended on light intensity and light history (Cesbron et al., 

2017; Jauffrais et al., 2016). A kleptoplastic strategy thus provides these organisms with both carbon 

and a source of oxygen. Such photosynthetic activity might furthermore contribute to the creation of 

oxygenated micro-niches in the sediment, which would provide species living in coastal environments 

that are often subject to hypoxic periods (e.g., H. germanica) with a certain ecological advantage 

(Cesbron et al., 2017; Diaz and Rosenberg, 2008; Middelburg and Levin, 2009; Zhang et al., 2010). 

Foraminiferal kleptoplasts might also be involved in uptake of inorganic N. Indeed, diatoms, 

from which foraminifera sequester their kleptoplasts (e.g. Pillet et al., 2011; Tsuchiya et al., 2015), are 

able to assimilate ammonium through the chloroplast GS/GOGAT (glutamate synthase and glutamine 

oxoglutarate aminotransferase) enzymatic pathway (Syrett, 1981; Zehr et al., 1988; Zehr and 

Falkowski, 1988). Among deep-sea benthic species living in complete darkness and thus unable to 

perform photosynthesis (Bernhard and Bowser, 1999; Grzymski et al., 2002), Nonionella stella 

maintains kleptoplasts and associated functional enzymatic machinery (including ribulose bis-

phosphate carboxylase oxygenase (RuBisCO) and phosphoenol pyruvate carboxylase (PEP 

carboxylase)) intact for months in the dark after sampling (Grzymski et al., 2002). It was suggested that 

kleptoplasts in these species are involved in assimilation of inorganic N (Grzymski et al., 2002). 

NanoSIMS ultra high-resolution isotopic mapping correlated with TEM imaging and combined 

with stable isotope labeling experiments is a relatively recent technique (Hoppe et al., 2013) that has 

already been successfully applied to study assimilation, storage, and transfer of C and N in several 



Chapter 3.2: Inorganic carbon and nitrogen assimilation by a benthic kleptoplastic foraminifera 

137 
 

different marine organisms, including foraminifera (Ceh et al., 2013; Clode et al., 2007; Kopp et al., 

2013, 2015a; Krupke et al., 2015; LeKieffre et al., 2017; Nomaki et al., 2016; Pernice et al., 2012; Raina 

et al., 2017). Using this integrative approach, the present study had three objectives: (1) to investigate 

the role of kleptoplasts in light induced C fixation, (2) to investigate the transfer and distribution of 

photosynthetically produced organic C into the host; and (3) to investigate the potential role of 

kleptoplasts in the foraminiferal N metabolism. 
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 Material and methods 

 Experiment 1: light/dark cycle incubation with H13CO3
- and 15NH4

+ 

Living foraminifera were collected on April 9, 2015, at low tide on the intertidal mudflat of the 

Bourgneuf Bay (France, 47°00'59.4"N 2°01'29.8"W). The top centimeter of the sediment was sampled, 

sieved over a mesh of 150 μm with in situ seawater and immediately transported in the dark over  3 

hours to the laboratory. 

In the laboratory, healthy living individuals of H. germanica were selected under a binocular 

microscope based on their cytoplasm color (i.e. yellow-brownish material spread through all the 

chambers of the specimen, except the last chamber). The selected specimens were placed into 5 Petri 

dishes (5 specimens per Petri dish) filled with artificial seawater (ASW, Red Sea Salt, salinity = 35, pH = 

8.0). Four of the Petri dishes contained ASW spiked with 2mM NaH13CO3 and 10μM 15NH4Cl. The fifth 

Petri dish was filled with unlabeled artificial seawater; these specimens served as controls for 

NanoSIMS analysis (see below) and were fixed already at the beginning of the experiment. All other 

Petri dishes were placed in an incubator (Fytoscope FS130, temperature: 18°C, light intensity: 90 μmol 

m-2 s-1). After 8 h of light incubation they were transferred to dark conditions for another 12 h. The 

foraminifera remained in the spiked ASW all along the experiment (except the control specimens). 

Specimens were collected after 4, 8, 12 and 20 hours of incubation (Fig. 3.2.1). Immediately after 

collection, the foraminifera were chemically fixed. 

 

 

Figure 3.2.1: Schematic of Experiments 1 and 2, exposing H. germanica to different light conditions. Three 
specimens were sampled at each indicated time point. See text for details. 
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 Experiment 2: Incubation in continuous darkness with H13CO3
- and 15NH4

+ 

H. germanica specimens were collected on May 16, 2015, at low tide on the intertidal mudflat 

of the Bourgneuf Bay (France) following the same procedure described above. Five living specimens 

were selected and placed in a Petri dish with artificial seawater (Red Sea Salt, salinity= 35; pH=8.0) 

enriched with 2mM NaH13CO3 and 10μM of 14NH4Cl. They were incubated in continuous darkness for 

8 h (Fig. 3.2.1A) and immediately chemically fixed at the end of this incubation. Control samples, which 

were incubated in normal seawater, where fixed at the beginning of the experiment (Fig. 3.2.1B). 

 Preparation for TEM-NanoSIMS studies 

Chemical fixation and transmission electron microscopy (TEM) of the foraminifera were 

performed at the Electron Microscopy Facility of the University of Lausanne (Switzerland). The 

specimens were chemically fixed following the protocol described in Chapter 1. Briefly, fixation took 

place at room temperature during 24 h with a mix of 4% glutaraldehyde and 2% paraformaldehyde 

diluted in 0.1 M cacodylate buffer, 0.4 M sucrose, and 0.1 M NaCl (pH=7.4). After rinsing, specimens 

were decalcified in two successive baths (1 and 48 h, respectively) with a solution of 0.1 M of EDTA 

diluted in 0.1 M cacodylate buffer, then post-fixed for 1 h in 2% osmium tetroxide diluted in distilled 

water. After serial dehydration in ethanol, the samples were embedded into an acrylic resin (LR White). 

Specimens were cut into 70 nm ultra-thin sections with an ultramicrotome (Reichert ultracut S), placed 

on carbon-formvar coated copper grids, and post-stained for 10 min with 2% uranyl acetate before 

observing with the TEM (Philips 301 CM100, 80kV). Only chambers from n ‒ 3 to n ‒ 8 (n being the 

youngest chamber next to the aperture) were examined. The integrity of the mitochondria and 

membranes of all the specimens were checked as recommended by (Nomaki et al., 2016) to ensure 

the  vitality of each studied specimens. 

 Stable isotope mapping with NanoSIMS 

NanoSIMS analyses were carried out on areas defined on the basis of prior TEM observations. 

Grids with TEM sections were mounted on 10 mm disks with double sticking Cu-tape and coated with 

a ca. 10 nm thick gold layer before being imaged with the NanoSIMS (Secondary Ion Mass 

Spectrometry) 50L ion microprobe to image and quantify the distribution of 13C and 15N enrichment. 

Foraminiferal sections were imaged with the NanoSIMS ion microprobe with a 16-keV primary 

ion beam of Cs+ focused to a beam spot of around 100-150 nm. The secondary molecular ions 12C2
-, 

13C12C-, 12C14N- and 12C15N- were collected in electron multipliers detectors at a mass-resolution of about 

10000, enough to resolve potential interferences in the mass spectrum (Kopp et al., 2013, 2015a). 

Isotopic images ranged in size from 15x15 μm to 30x30 μm with 256x256 pixel resolution. For each 
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image, 6 layers were acquired, drift corrected, and superimposed using the software L’IMAGE 

(developed by Dr. Larry Nittler, Carnegie Institution of Washington DC, USA). The quantified 13C/12C 

and 15N/14N ratios were obtained as follows: 

 

 

Where  is the measured 12C13C-/12C2
- ratio of the sample and is the average 12C13C-

/12C2
- ratio measured in unlabeled samples (control).  Similarly,  is the measured 12C15N-/12C14N- 

ratio of the sample and  is the average 12C15N-/12C14N- ratio measured in non-labelled samples. The 

software L’IMAGE was used to determine the isotopic enrichment of specific organelles by drawing 

profiles on the ratio images, which provided δ13C and δ15N values along the profile (lines were 3 pixels 

wide). Regions of interest (ROIs) toquantifying the average isotopic enrichment of the cytoplasm were 

defined from the 15N/14N and 12C14N images by drawing 3 circles of about 2 m in diameter per image 

avoiding highly 15N-enriched organelles. For each specimen, between one and three NanoSIMS images 

were analyzed. 

 Statistical analysis 

For each time point, three specimens were analyzed. Cytoplasm δ13C and δ15N values were 

obtained as the average of all corresponding ROIs for each specimen for each time point. The errors 

bars provided are thus standard deviations representing inter-specimen variability. However, for the 

statistical analysis, a linear mixed-effects model was made on all the ROIs of the three specimens for 

each time point (taking into account pseudo-replication effects, i.e. regrouping ROIs from three 

different specimens into one category), followed by a Tukey multiple comparison test. The statistical 

analyses were performed with Rstudio software using a significance level set at α = 0.05. 
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 Results 

 TEM observations of the foraminiferal cytoplasm  

The cytoplasm of all specimens had well-preserved ultrastructure (Fig. 3.2.2A), as well as intact 

mitochondria with visible double-membranes and cristae (Fig. 3.2.2B). Numerous small lipids with a 

waxy appearance, diameter of about 500 nm, and no distinguishable membranes (Fig. 3.2.2C) were 

observed in the cytoplasm, along with some larger lipid droplets with a size ranging from 1 to 3 μm in 

diameter. Numerous small oval fibrillar vesicles (ca. 500 nm in length), with the fibrils arranged in 

parallel, and spherical to oval-shaped electron-opaque bodies (200 – 500 nm) were observed in the 

cytoplasm (Fig. 3.2.2D, E), along with occasional tubulin paracrystals identifiable due to the regular 

pattern of their ultrastructure revealed by high-magnification TEM imaging (Fig. 3.2.2F). In all 

specimens, we observed many small structures (2 to 3 μm in length) variable in shape but mainly ovoid 

(Fig. 3.2.2A) with the presence of numerous vacuoles within their matrix (Fig. 3.2.2G, H). Henceforth, 

we refer to these as “multi-vacuolar structures”. 

In all observed specimens, TEM images of the endoplasm revealed well-preserved kleptoplasts 

with visible pyrenoids and thylakoids (Figs. 3.2.2A, 3.2.3, 3.2.4). These kleptoplasts ranged in size from 

2 to 10 μm in diameter. Generally, their outlines were circular to oval. They were distributed in the 

endoplasm with no clear pattern and often surrounded by an electron-lucent space between the 

kleptoplast membranes and the endoplasm. Some small lipid droplets were adjacent to the kleptoplast 

periphery. In some cases, lipid droplets were closely associated with kleptoplast membranes (Fig. 

3.2.3B). 
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Figure 3.2.2: TEM micrographs of the cytoplasm and organelles of Haynesina germanica. A: Aspect of the 
cytoplasm in a chamber of the penultimate whorl. B: Intact mitochondria with well-defined cristae and intact 
double-membranes. C: Small lipid droplets. D: Fibrillar vesicles. E: Electron-opaque bodies, F: Tubulin 
paracrystals; Inset: higher magnification revealing regular pattern of the paracrystal ultrastructural organization. 
G and H: multi-vacuolar structures. Arrowheads: multi-vacuolar structures; c: chloroplast; eo: electron-opaque 
bodies, fv: fibrillar vesicles, li: lipid droplets; m: mitochondria, tp: tubulin paracrystals, v: vacuole. Scale bars: A: 
2 μm; B, inset F: 200 nm; C, D, E, F, G, H: 500 nm. 
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Figure 3.2.3: TEM micrographs of one chloroplast in Haynesina germanica cytoplasm. A: Intact pyrenoid and 
thylakoids. B: Higher magnification image showing two small lipid droplets in contact with the chloroplast 
membranes. The chloroplast membranes adjacent to the lipid vesicle on the left are disrupted. li: lipid droplets, 
py: pyrenoid, th: thylakoid. Scale bars: A: 2 μm; B: 500 nm.  

 

 

 Uptake of H13CO3
- within the foraminiferal cell. 

In Experiment 1, starting with the second time point (t = 8 h), 13C-enrichments were detected 

in all specimens. In contrast, only one specimen from the first time point (i.e. at 4 h) exhibited 13C-

enriched structures, concentrated in fibrillar vesicles and electron opaque bodies (Figs. 3.2.4). 

Although some lipid droplets were present, they were not enriched at 4 h (Fig. 3.2.4). All specimens 

collected between 8 and 20 h of incubation exhibited 13C-enrichments in the endoplasm. The signal 

was concentrated in fibrillar vesicles, electron opaque bodies, and lipids (Figs. 3.2.4, 3.2.5A - C). The 

cytoplasm itself was significantly more enriched after 8 h of incubation than after 4 h, with averages 

of 101±32‰ and 39±23 ‰, respectively (p< 0.05; Fig. 3.2.6). However, the cytoplasmic enrichment did 

not change statistically between 8 h and 20 h (p> 0.05; Fig. 3.2.6). No detectable 13C-enrichments were 

detected in foraminifera incubated with H13CO3
- in darkness (Experiment 2; Fig. 3.2.7). 
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Figure 3.2.4: Time-evolution of 13C and 15N uptake and fate within the cytoplasm of H. germanica during 
Experiment 1 (light/dark incubation with H13CO3- and 15NH4+). Left column: TEM micrographs. Middle and right 
columns: corresponding NanoSIMS δ13C and δ15N images, respectively, expressed in ‰. Arrows: fibrillar vesicles; 
arrowheads: electron opaque bodies; circles and li: lipid droplets, white triangles: multi-vacuolar structures; c: 
chloroplast; re: residual bodies, tp: tubulin paracrystals. Scale bars: 2 μm. 
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 Uptake of 15NH4
+ in the foraminiferal cell. 

All specimens of Experiment 1 exhibited detectable 15N-enrichments. In the cytoplasm of H. 

germanica, 15N-enrichments significantly increased between 4 and 8 h (during the light phase), from 

254±88 to 545±140 ‰ (p< 0.05), and stabilized between 8 and 20 h (p> 0.05), i.e., during the dark 

phase (Fig. 3.2.6). Similar to the observed 13C-enrichments, the 15N-signal was concentrated in 

electron-opaque bodies and fibrillar vesicles (Figs. 3.2.4, 3.2.5D and E). However some of organelles 

were occasionally enriched in 15N but not in 13C. The tubulin paracrystals and the multi-vacuolar 

structures were also strongly enriched in 15N after 8 h (Figs. 3.2.5F and G, 3.2.6). Kleptoplasts rarely 

exhibited 15N-enrichments, which were then always moderate to low (Fig. 3.2.5H). 

In Experiment 2, after 8h in darkness, the foraminifera had incorporated a much higher 

concentration of 15NH4
+ (Fig. 3.2.6) compared with Experiment 1 at any given time (p < 0.05); the 

cytoplasmic average 15N-enrichment reached a value of 1096±115 ‰ after 8 h. As in Experiment 1, the 
15N isotopic signal was observed most concentrated in electron-opaque bodies, fibrillary vesicles, 

tubulin paracrystals, in the multi-vacuolar structures as well as in a few kleptoplasts (Fig. 3.2.7). 

 

 

 

 

 

 

 

 

 

Figure 3.2.5 (p. 140):  Foraminiferal organelles enriched in 13C- and/or 15N-enriched in Experiment 1 at different 
time points. Left column: TEM micrographs. Right column: corresponding NanoSIMS δ13C (for A, B; C) and δ15N 
images (for D, E, F, G, H) expressed in ‰. A, B and C: Organelles enriched in δ13C; A: electron-opaque bodies 
(after 8 h of incubation), B: fibrillar vesicles (after 20 h) and C: lipid droplets (after 8 h of incubation). D, E, F, G 
and H: organelles enriched in δ15N; D: electron-opaque bodies (after 12 h), E: fibrillar vesicles (after 20 h of 
incubation), F: tubulin paracrystals (after 18 h of incubation), G: multi-vacuolar structures (after 12 h of 
incubation) and H: chloroplasts (after 8 h of incubation). Arrowheads: electron-opaque bodies; arrows: fibrillar 
vesicles; circles and li: lipid droplets; c: chloroplast; white triangles: multi-vacuolar structures; c: chloroplast; tp: 
tubulin paracrystals. Scale bars: 2 μm.  
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Figure 3.2.6: Average 13C and 15N enrichment of the cytoplasm of H. germanica (n=3) as a function of time. 
Error bars represent one standard deviation. Significant differences between time points and Experiment 1 and 
2 are indicated in black for 13C-enrichment, and in grey for 15N-enrichment. 

 

 

Figure 3.2.7: 13C and 15N uptake and fate within the cytoplasm of H. germanica during Experiment 2 (continuous 
dark incubation with H13CO3- and 15NH4+). Left column: TEM micrographs. Middle and right columns: 
corresponding NanoSIMS δ13C and δ15N images, respectively, expressed in ‰. Arrows: fibrillar vesicles; 
arrowheads: electron opaque dense bodies; circles: lipid droplets, white triangles: multi-vacuolar structures; c: 
chloroplast, tp: tubulin paracrystals. Scale bars: 2 μm. 
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 Discussion 

 Ultrastructural observations 

All specimens exhibited mitochondria with intact cristae and double-membranes indicating 

that they were alive at the time of fixation (Nomaki et al., 2016). The kleptoplasts observed in our study 

correspond to the morphological description made in chapter 3.1. for H. germanica collected from the 

Bourgneuf Bay (as in this study) and from the Wadden Sea (Mokbaai, NL). Specimens were well 

preserved with undamaged thylakoids and pyrenoids. The electron-lucent space that sometimes 

surrounded the kleptoplasts was also previously described in the chapter 3.1.) and ascribed to a 

possible fixation artefact. Indeed, an ultrastructural study of algal symbionts within the green ciliate 

Paramecium bursaria showed the same artefact in chemically fixed samples, whereas this artefact was 

absent in cryo-fixed samples (Song et al., 2017). 

 Assimilation of C 

The correlated TEM-NanoSIMS observations allowed the visualization of inorganic C uptake 

(H13CO3
-) within foraminiferal cells incubated under a light/dark cycle (Figs. 3.2.4 and 3.2.6). The 

absence of 13C assimilation in continuous darkness (Experiment 2, Figs 3.2.6 and 3.2.7) and the 

observed production of O2 recorded in H. germanica in other studies (Cesbron et al., 2017; Jauffrais et 

al., 2016) strongly suggest that kleptoplasts have a functional Calvin-Benson cycle, resulting in the 

production and transfer of 13C-photosynthates to the foraminiferal cell. Foraminifera can acquire C by 

different trophic mechanisms (Goldstein, 1999) but they are not known to actively uptake inorganic C 

in the absence of either bacterial symbionts or the presence of kleptoplasts. We found no indications 

of the presence of symbiotic cyanobacteria and, therefore, suggest that the observed incorporation of 
13C-bicarbonate is the result of photosynthesis occurring at the kleptoplasts. The absence of 13C-

enrichments inside the kleptoplasts (Figs. 3.2.4 and 3.2.5) can be attributed either to the fact that the 
13C-photosynthates are 1) transported away from the kleptoplasts immediately, 2) lost during sample 

fixation/dehydration/embedding, and/or 3) that the resin infiltration during the sample preparation 

has a diluting effect and bring the kleptoplast 13C-enrichment below the detection limit of the 

NanoSIMS. In previous NanoSIMS studies of autotrophic 13C-exchanges in the symbiotic association 

between dinoflagellates and corals, 13C-enrichments in dinoflagellate chloroplasts were much lower 

than in other sub-cellular organelles, such as algal starch grains (Kopp et al., 2015a). In our study we 

have not yet seen any evidence of dividing kleptoplasts; this could explain the absence of 13C-labeling 

in kleptoplasts as no 13C would be incorporated in their structure during the experiment. 
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The numerous multi-vacuolar structures observed in H. germanica (Fig 3.2.2A, G, H) are similar 

to the bacteria observed in another benthic species, Globocassidulina cf. G. biora (Bernhard, 1993). 

The presence of numerous such vacuoles within prokaryotic cells has already been described and 

linked to different biological functions like buoyancy (gas vacuoles) in planktonic bacteria or nitrate 

vacuoles in filamentous sulfur bacteria (e.g., Jørgensen and Gallardo, 1999; Walsby, 1972). Thus theses 

structures could potentially be interpreted as endosymbionts, eventually photosynthetic. However 

they were not labeled in 13C (Fig. 3.2.5G). Different NanoSIMS studies looking at 13C-bicarbonate 

assimilation in cyanobacteria or anaerobic photosynthetic bacteria showed a strong bacterial 13C-

enrichment  (e.g. Behrens et al., 2008; Finzi-Hart et al., 2009; Musat et al., 2008). Therefore we can 

conclude that even if the multi-vacuolar structures observed in our study are bacteria, the absence of 
13C in their cells is a solid argument to prove that they are not photosynthetic, and that thus they could 

not play any role in the inorganic 13C assimilation. 

Carbon was assimilated during the light phase, transferred to the foraminiferal cell, and 

accumulated in specific organelles: electron-opaque bodies, fibrillar vesicles, and lipid droplets. Lipid 

droplets are indeed the main C storage form in foraminifera. A similar accumulation process/sequence 

has been observed in symbiotic planktonic foraminifera Orbulina universa, where photosynthesis led 

to an assimilation of inorganic C (H13CO3
-) stored in the form of lipid droplets (Chapter 4). 

In kleptoplastic sea slugs (e.g., Elysia chlorotica), lipid droplets observed in the animal tissue 

where argued to result from the exudation of lipids from the plastids because their fatty acids had a 

large proportion of algal-derived eicosapentaenoic acid (20:5) (Pelletreau et al., 2014). However, the 

authors could not conclude whether the plastids transferred directly via triacylglycerols (TAGs) or free 

fatty acids which will be further transformed by the host to enter lipid droplets. The de novo production 

triacylglycerol by chloroplasts in marine algae has been demonstrated (Fan et al., 2011; Merchant et 

al., 2012). Furthermore, de novo fatty acid synthesis is known to occur in plant cell chloroplasts 

(Ohlrogge et al., 1979), followed by a transfer in the form of free fatty acids to the cytosol (Koo et al., 

2004). Additional transfer of soluble molecules such as maltose or glucose across the chloroplast 

membranes through transporters also take place in plant cells (e.g. Weber, 2004). In the present study 

the close association observed between kleptoplast membranes and small lipid droplets (Fig. 3.2.3) 

could indicate a potential transfer of C via the exudation of small lipid droplets from the kleptoplast to 

H. germanica cell, although the detailed mechanisms by which the fatty acids would cross the 

kleptoplast membranes remain unknown. Unfortunately the distribution of soluble molecules cannot 

be investigated with the NanoSIMS because the sample preparation protocol causes near complete 

loss of such components.  
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 Assimilation of N 

Teugels et al. (2008) reported that ammonium assimilation by the kleptoplastic sacoglossan 

Elysia viridis was significantly higher under the light condition than in darkness, consistent with the 

glutamine oxoglutarate aminotransferase (GOGAT) enzyme requiring electron donors (e.g., reduced 

ferredoxin formed in the photosynthetic electron transport) (Grossman and Takahashi, 2001). 

Furthermore, the glutamate synthase (GS) metabolic reaction is ATP-dependent, and gene expression 

of some key enzymes (GS and GOGAT) is light regulated (Grossman and Takahashi, 2001). In corals, 

symbiotic dinoflagellate GS/GOGAT enzymes is thought to be the main ammonium assimilation 

pathway (Anderson and Burris, 1987; Kopp et al., 2013; Pernice et al., 2012; Rahav et al., 1989). 

Furthermore, cnidarian cells are also known to produce cytosol glutamate dehydrogenase (GDH) 

(Rahav et al., 1989; Wang and Douglas, 1998; Yellowlees et al., 1994). This enzyme has a dual function: 

1) it converts glutamate to α-ketoglutarate and ammonium, which is subsequently assimilated in the 

chloroplasts via the GOGAT pathway (Teugels et al. 2008), 2) it also catalyzes the opposite reaction, 

i.e. the amination of the α-ketoglutarate to produce the amino acid glutamate (Srivastava and Singh, 

1987).  

In our study, the observation of 15N-labeled kleptoplasts in H. germanica seems consistent with 

a GS/GOGAT kleptoplastic pathway for ammonium assimilation (Fig. 3.2.5H). However, the uptake of 
15N-ammonium was higher after 8 h of incubation in total darkness (Experiment 2) than in Experiment 

1 (light-dark cycle) (Fig. 3.2.6). And the same organelles (fibrillar vesicles, electron-opaque bodies and 

multi-vacuolar structures) were found to be 15N-enriched. This higher uptake in darkness than under 

light is not coherent with the light regulation of the GS/GOGAT enzymatic machinery (Grossman and 

Takahashi, 2001). Ammonium incorporation might thus also take place by another N-assimilation 

pathway in foraminifera, for example through the glutamine dehydrogenase (GDH) pathway in 

mitochondria. 

Ammonium is known to be a suitable N source for many marine prokaryotes (e.g. Tupas and 

Koike, 1991; Wheeler and Kirchman, 1986; Zehr and Ward, 2002). Thus if the multi-vacuolar structures, 

abundant in all H. germanica specimens (Fig 3.2.2A, G, H) are endosymbionts (see above) they would 

be expected to incorporate 15NH4
+, as it is indeed observed (Fig. 3.2.5G). They could thus constitute 

another putative nitrogen assimilation pathway for the benthic foraminifera H. germanica. However 

we cannot conclude in our study about the symbiotic nature of these putative prokaryotes in H. 

germanica, nor about their role in foraminiferal N metabolism. 
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 Advantages of a mixotrophic strategy 

A comparative study of organic C (algae) uptake through feeding between the two dominant 

foraminiferal species inhabiting mudflats, the akleptoplastic Ammonia sp. and kleptoplastic H. 

germanica, showed a higher uptake rate for the former (Wukovits et al., 2016). Our results highlight 

that H. germanica can fix inorganic carbon. Therefore, unlike Ammonia sp., H. germanica does not rely 

solely on food to meet its C requirements. The mixotrophic feeding strategy of H. germanica might 

give an competitive advantage and allow it to become dominant in the foraminiferal assemblage in 

these environment (e.g. Cesbron et al., 2016; Debenay et al., 2006; Mojtahid et al., 2016). Also, 

whether H. germanica assimilates nitrogen through the kleptoplasts, potential endosymbionts or by 

another pathway specific to foraminifera, our observations demonstrate that it is capable of using 

inorganic N as a nutrient source. Further investigation is required to quantify this uptake and elucidate 

the role of this benthic foraminifera in the N cycle; especially since H. germanica thrives in coastal 

ecosystems that are subject to increasing eutrophication (Diaz and Rosenberg, 2008; Zhang et al., 

2010). 

 

 Conclusion 

Our study shows inorganic C is assimilated, most likely via the kleptoplasts in Haynesina 

germanica. The absence of 13C assimilation in darkness combined with previous studies documenting 

O2 production in light strongly suggest photosynthesis as the process dominating inorganic C-

assimilation. Subsequently, photosynthates are transferred to the foraminiferal cell and utilized in the 

general metabolism. The observation of small lipid droplets attached to the kleptoplast membranes 

might suggest a transfer of C from the kleptoplasts to the foraminiferal cell in the form of lipids. 

However, the detailed mechanism(s) involved in this transfer remains unknown. The kleptoplasts 

might also provide the added value of furnishing additional N sources to foraminiferal metabolic 

pathways via their GS-GOGAT enzymes. However, ammonium assimilation was even more efficient in 

darkness, requiring the existence of other N-assimilation pathways (e.g., in mitochondria). 
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Supporting information 

 

Figure 3.2.S1: Time-evolution of 13C uptake and fate within the cytoplasm of H. germanica during Experiment 
1 (light/dark incubation with H13CO3- and 15NH4+). Left column: TEM micrographs. Right columns: corresponding 
NanoSIMS δ13C images expressed in ‰. Central column: overlay between TEM and NanoSIMS images. Arrows: 
fibrillar vesicles; arrowheads: electron opaque bodies; circles: small lipid droplets, white triangles: multi-vacuolar 
structures; c: chloroplast; li: large lipid droplets; re: residual bodies, tp: tubulin paracrystals. Scale bars: 2 μm. 
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Figure 3.2.S2: Time-evolution of 15N uptake and transfer within the cytoplasm of H. germanica during 
Experiment 1 (light/dark incubation with H13CO3- and 15NH4+). Left column: TEM micrographs. Right columns: 
corresponding NanoSIMS δ15N images expressed in ‰. Central column: overlay between TEM and NanoSIMS 
images. Arrows: fibrillar vesicles; arrowheads: electron opaque bodies; circles: small lipid droplets, white 
triangles: multi-vacuolar structures; c: chloroplast; li: large lipid droplets; re: residual bodies, tp: tubulin 
paracrystals. Scale bars: 2 μm. 
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Chapter 3.3: Carbon, ammonium and sulfate uptake by benthic 

foraminifera: A comparison between kleptoplastic and non-

kleptoplastic species from a photic environment  

 

This chapter presents the result of a preliminary experiment investigating the inorganic 

carbon, ammonium and sulfate assimilation by a kleptoplastic foraminiferal species. The species 

chosen is Elphidium williamsoni, a benthic species inhabiting coastal ecosystems and thus inhabiting 

photic environments. In order to better understand the role of the kleptoplasts in the metabolic 

pathways, the results obtained for Elphidium williamsoni were compared to another species: the non 

kleptoplastic Ammonia cf. tepida. As it is emphasized in the discussion, this study will be completed by 

a second series of experiments to clarify the foraminiferal metabolic pathways unravel by this first 

TEM-NanoSIMS study. 

 

PhD student’s contribution: the PhD student collected the samples from the field with TJ and OM; 

designed the experiment with EG, TJ and AM; analyzed the samples for TEM and NanoSIMS imaging; 

interpreted the data with TJ and EG, and wrote this manuscript with edit and comments from EG, TJ 

and AM. TJ performed the O2 (respiration rate) measurements. This experiment will later be completed 

with complementary analysis, thus the manuscript was not edited and commented yet by all co-

authors. 
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 Introduction 

As kleptoplasty in benthic foraminifera was already described in the two previous chapters, 

this introduction will focus on carbon, nitrogen and sulfur metabolism in kleptoplastic and non 

kleptoplastic foraminifera. 

To our knowledge, only four studies have investigated the chloroplast functionality in 

foraminifera inhabiting photic areas. One study examined the functionality of the xanthophyll cycle in 

H. germanica (Jauffrais et al., 2017), two studies measured the O2 production by sequestered 

chloroplasts in H. germanica: using oxygen microelectrodes they recorded values from about 200 to 

1000 pmol O2 cell-1 d-1 (Cesbron et al., 2017; Jauffrais et al., 2016). A fourth study estimated the 

production of photosynthates by incubating foraminifera with H14CO3 (Lopez, 1979). With this method 

kleptoplastic foraminifera were shown to assimilate inorganic carbon only under light incubation (i.e. 

no assimilation was observed under darkness). In addition, this uptake was proportional to the 

foraminiferal chlorophyll content.  

In Chapter 3.2 it was shown that kleptoplastic H. germanica assimilate inorganic 13C-

bicarbonate, most likely through photosynthesis. The resulting photosynthates are transferred to the 

foraminiferal cell to be stored, primarily in lipid droplets, or used in the cell metabolism. H. germanica 

is therefore mixotroph (Cesbron et al., 2017). It can obtain nutrients through both heterotrophy (i.e. 
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feeding) and autotrophy (photosynthesis). This gives a major advantage to this species over non-

kleptoplastic and other meiofaunal species in its environment. The first objective of this new 

experiment is to investigate whether or not similar C assimilation and transfer happens in another 

kleptoplastic species, E. williamsoni, and if intracellular pathways appear similar. 

Non-symbiotic algal cells, including diatoms from which the foraminifera are obtaining the 

chloroplasts (Correia and Lee, 2002a; Grzymski et al., 2002; Lechliter, 2014; Pillet et al., 2011; Tsuchiya 

et al., 2015), uptake inorganic N (i.e., ammonium, nitrite, or nitrate) from their surrounding 

environment and assimilate it via the GS/GOGAT (glutamate synthase and glutamine oxoglutarate 

aminotransferase) enzymatic machinery of the chloroplast to form amino acids (Syrett, 1981; Zehr et 

al., 1988; Zehr and Falkowski, 1988). A role for the kleptoplasts in foraminiferal N metabolism was first 

suggested in the case of foraminifera inhabiting aphotic environments, in order to explain the presence 

of kleptoplasts despite the absence of light and thus photosynthesis (Bernhard and Bowser, 1999; 

Grzymski et al., 2002). In Chapter 3.2 it was shown that, in addition to inorganic C assimilation, H. 

germanica is capable of assimilating 15N-ammonium. However, it was not possible to determine the 

role of the kleptoplasts in this assimilation. The second objective of this new experiment will be to 

clarify the role of kleptoplasts in foraminiferal N metabolism by comparing 15N-assimilation and 

intracellular dynamics between a kleptoplastic and a non-kleptoplastic species. 

Finally, this study investigates potential differences in sulfate assimilation between and 

kleptoplastic and a non-kleptoplastic species. Chloroplasts play many roles in algal cells, besides C and 

potential N assimilation they can also assimilate sulfate and use it to form sulfated amino acids (like 

cysteine) and sulfolipids, which are essential components of thylakoids and chloroplast membranes 

(Benning and Garavito, 2008; Giordano et al., 2008; Giordano and Raven, 2014; Takahashi et al., 2011). 

Diatoms in particular are known to exhibit sulfo-lipid concentrations higher than in other algae or 

plants (Goss and Wilhelm, 2009; Vieler et al., 2007). The third objective of this work is therefore to 

investigate potential difference in the sulfate metabolism between kleptoplast and non-kleptoplast 

foraminiferal species. 

If kleptoplasts play a role in foraminiferal inorganic nitrogen and sulfur assimilation, it would 

provide the foraminifera with a great advantage. As for C, they could rely on nutrient source other 

than heterotrophic feeding, by meeting their nutrient requirements in N and S through an additional 

autotrophic mechanism. 

In this chapter, using the approach of stable isotopic labeling experiments together with 

correlated TEM-NanoSIMS imaging and respiration rate measurements, we will investigate and 

compare the C, N and S metabolisms of two species: the kleptoplastic E. williamsoni, and the non-
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kleptoplastic Ammonia cf. tepida. We have three main objectives: (1) to compare the fate of inorganic 

C assimilated by E. williamsoni and another kleptoplastic species H. germanica (Chapter 3.2); (2) to 

assess whether or not the kleptoplasts are playing any role in the foraminiferal N metabolism by 

comparing a kleptoplastic and a non-kleptoplastic species; and (3) to investigate their potential role in 

foraminiferal S metabolism. 
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 Material and methods 

 Sampling and incubation in light condition with H13CO3
-, 15NH4

+ and 34SO4
2- 

Living foraminifera were collected on the May 9, 2016, at low tide on an intertidal mudflat 

located next to Fiskebäckskil harbor in the Gullmar fjord (Sweden; 58.240768 N, 11.460901 E). The top 

5 millimeters of the sediment were sampled and immediately transported in the dark to the laboratory.  

The incubation was carried out at the Kristineberg Sven Lovén Center for Marine Infrastructure 

(Sweden) the day after collection. In the laboratory, the sediment was sieved on a 300 μm mesh with 

natural surface sea water directly pumped from the fjord. Only the fraction >300 μm was used. Living 

individuals of the foraminiferal species Elphidium williamsoni and Ammonia cf. tepida were selected 

under a binocular based on the color of their cytoplasm (yellow-brownish material spread through all 

the chambers of the specimen (except the last chamber) the day before the experiment and let 

overnight in Petri-dish filled with seawater to check their vitality. Ten specimens per species were 

selected and placed into new plastic Petri dishes (1 species per Petri dish and 5 specimens per species). 

Two Petri dishes were filled with artificial seawater (Red Sea Salt, salinity = 34) spiked with 2 mM 

NaH13CO3, 10 μM 15NH4Cl, and 25mM Na34SO4 (Cambridge isotope Inc.); the other two were filled with 

natural seawater. The specimens incubated with natural seawater were used as control for NanoSIMS 

analysis; see below. The incubation was carried in a cold room at 10°C with a light source set at 90  

μmol photon m-2 s-1. After 20 h of incubation with light the foraminifera were immediately chemically 

fixed by transferring them individually to microtubes filled with fixative solution. 

 Preparation for TEM-NanoSIMS studies 

Chemical fixation and transmission electron microscopy (TEM) of the foraminifera were 

performed at the Electron Microscopy Facility of the University of Lausanne (Switzerland). 

The specimens were chemically fixed following the protocol described in previous chapters. 

Briefly, they were fixed at room temperature for 24 h with a mix of glutaraldehyde 4 % and 

paraformaldehyde 2 % diluted in cacodylate buffer 0.2 M, sucrose 0.4 M and NaCl 0.1 M (pH = 7.4). 

After rinsing, specimens were decalcified in two successive baths (1 and 48 h) with a solution of 0.1 M 

of EDTA diluted in cacodylate buffer 0.1M, then post-fixed for 1 h in osmium tetraoxyde 2 % diluted in 

distilled water. After a series of dehydration in ethanol, the samples were embedded into an acrylic 

resin (LR White). Specimens were cut into 70 nm ultra-thin sections with an ultramicrotome (Reichert 

ultracut S). Sections were placed on carbon-formvar coated copper grids and post-stained 10 min with 

uranyl acetate 2 % before TEM observations (Philips 301 CM100, 80kV). The study focused on 
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chambers located between n ‒ 3 to n ‒ 8 (n being the youngest chamber next to the aperture). The 

integrity of the mitochondria and the membranes of all the specimens were checked by TEM 

observations as described by (Nomaki et al., 2016) to ensure the vitality of the studied specimens. 

 Stable isotope mapping with NanoSIMS 

Sample sections were mounted on 10 mm aluminum disks with double sticking Cu-tape and 

coated with a ca. 10 nm thick gold layer before being imaged with a NanoSIMS (Secondary Ion Mass 

Spectrometry) 50L ion microprobe to image and quantify the distribution of 13C ,15N and 34S enrichment 

(Hoppe et al., 2013). NanoSIMS analyses were carried out on the areas of interest chosen from TEM 

images. 

Foraminifera sections were imaged with the NanoSIMS ion microprobe with a 16-keV primary 

ion beams of Cs+, focused to a spotsize of about 150 nm. Secondary molecular ions 12C2
-, 13C12C-, 12C14N- 

and 12C15N-, 32S- and 34S- were collected in electron multipliers detectors. Isotopic images ranging in size 

from 15 x 15 μm to 30 x 30 μm with 256 x 256 pixels resolution were obtained. For each image 6 layers 

were acquired, drift corrected, and accumulated using the software L’IMAGE (developed by Dr. Larry 

Nittler, Carnegie Institution of Washington, USA). The quantified 13C/12C ratio distribution was obtained 

by the ratio of 12C13C- with the 12C2
-, the 15N/14N ratio distribution was obtained by the ratio of 12C15N- 

with the 12C14N- and the 34S/32S by the ratio of 34S- with 32S- as follows: 

 

 

 

Where  is the measured 12C13C-/12C2 ratio and is the average natural 12C13C-/12C2 ratio 

measured in unlabeled samples (control).  Similarly, and  are the 12C15N- /12C14N- and 34S-/32S- 

ratios measured and  and  are the corresponding natural ratios measured in non-labelled 

samples.  

 Respiration rates 

An oxygen microelectrode 50 μm Clark (OXI50 - Unisense, Denmark) was used to measure the 

oxygen flux (Revsbech 1989) around E. williamsoni. The microelectrode was calibrated using ASW 
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saturated in oxygen (100%) and a solution of sodium ascorbate for anoxic conditions (0.1 M). The 

oxygen respiration rates were measured as described in Høgslund et al. (2008) and Geslin et al. (2011). 

Measurements were done in glass micro-tube with an inner diameter of 1 mm. The tube was pasted 

to a small vial, filled with artificial seawater (salinity = 34). The vial was then placed in a thermo-

regulated aquarium at 10°C. Each measure was carried out on seven specimens placed at the bottom 

of the glass micro-tube. The experiment was repeated three times with different specimens each time. 

Measurements registered oxygen micro-profiles on total period of 4 hours: 90 min of light, followed 

by 120 min of night and 30 min of light again with a light intensity set at 300 μmol m-2 s-1 for the light 

phases. Oxygen micro-profiles were made at a distance of 200 μm to 1100 μm away from the 

specimens to avoid oxygen turbulences around foraminifera, in steps of 50 μm (Geslin et al 2011). The 

first law of Fick was applied to calculate the oxygen flux (J):  

 

Where D is the O2 diffusion coefficient (cm² s-1) at 10°C and salinity of 34 (Li and Gregory 1974), and 

dC/dx the O2 concentration gradient (pmol O2 cm-1). The O2 concentration gradients were calculated 

using the O2 profiles and the R² of the regression line to determine the best gradient. Oxygen 

consumption was calculated as the product of O2 fluxes by the surface area of the micro-tube and 

subsequently divided by the number of specimens in order obtain the cell specific rate (pmol O2 cell-1 

d-1) (Geslin et al 2011).  
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 Results 

 Ultrastructural observations 

The TEM observations of Ammonia cf. tepida and E. williamsoni cytoplasm revealed 

ultrastructural differences. E. williamsoni cytoplasm was shown to harbor many kleptoplasts mainly 

present at the cell periphery, although some could be found within the cytoplasm (Fig. 3.3.1 A, B). All 

kleptoplasts were surrounded by a host membrane, with an electron-lucent space between the plast 

and the foraminiferal cytoplasm (Fig. 3.3.1 B, C). Most of the kleptoplasts were intact with fine-

structural features discernable: the thylakoids, the pyrenoids and their transecting lamella (Fig. 3.3.1 

C). In some of the kleptoplasts lipid inclusions, interpreted as plastoglobuli, were observed (Fig. 3.3.1 

C). E. williamsoni cytoplasm also contained numerous unknown vesicles that were called “thick 

membrane vesicles”, these vesicles have the same size and shape than the fibrillar vesicles but they 

lack the fibrils and possess a thick membrane (Fig. 3.3.1 D, E). They were abundant in E. williamsoni 

but absent from Ammonia cf. tepida cytoplasm. 

Ammonia cf. tepida cytoplasm did not exhibit any intact kleptoplasts (Fig. 3.3.2 A). Lipid 

droplets were observed in both species but were bigger in Ammonia cf. tepida with a diameter of 2 – 

5 μm (Fig 3.3.2 B) versus ca. 1 μm in E. williamsoni (Fig. 3.3.1 D). Unlike E. williamsoni, Ammonia cf. 

tepida exhibited some residual bodies throughout its cytoplasm (Fig. 3.3.2 A). The residual bodies are 

circular vacuoles with a diameter of about 2 to 5 μm, containing heterogeneous material. 

Fibrillar vesicles (small oval vesicles of about 500 nm in length containing fibrils) and electron-

opaque bodies (200 to 500 nm inclusions) were abundant in both species (Figs. 3.3.1 D, E and 3.3.2 B, 

C). Finally intact mitochondria with clearly distinguishable double membrane and crests were observed 

in all the specimens of both species, indicating their vitality at the time of fixation (i.e. after the 

incubation). 
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Figure 3.3.1: TEM micrographs of the cytoplasm of Elphidium williamsoni. A: Global view of the cytoplasm with 
numerous vacuoles and kleptoplasts. The kleptoplasts are distributed throughout the whole chamber but are 
mainly concentrated along the external wall. B: Kleptoplasts distributed along the external wall. C: Detailed 
structure of a kleptoplast. D: Higher magnification image of the cytoplasm with lipid droplets, mitochondria, 
electron-opaque bodies, fibrillar vesicles and thick-membrane vesicles. E: Structure of the fibrillar and the thick-
membrane vesicles. F: Mitochondria with visible intact cristae and double membrane. Arrowheads: electron-
opaque bodies, c: chloroplasts, fv: fibrillar vesicles, la: chloroplast lamella, li: lipid droplets, m: mitochondria, pg: 
plastoglobuli, py, chloroplast pyrenoid, th: chloroplast thylakoids, tv: thick-membrane vesicles, v: vacuoles. A = 5 
μm; B = 2 μm; C, E and F = 500 nm; D = 1 μm. 
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Figure 3.3.2: TEM micrographs of the cytoplasm of Ammonia cf. tepida. A: Global view of the cytoplasm with 
numerous lipid droplets, vacuoles and a few residual bodies. B: Higher magnification image of mitochondria, 
electron-opaque bodies and fibrillar vesicles. C: Detail structure of a fibrillar vesicle, fibrils are organized in 
parallel. D: Mitochondria with visible intact cristae and double membrane. eo: electron-opaque bodies, fv: 
fibrillar vesicles, li: lipid droplets, m: mitochondria, ol: organic lining, po: pore, re: residual bodies, v: vacuoles. 
A = 5 μm; B, D = 500nm; C = 200 nm. 
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 Inorganic carbon, ammonium and sulfate uptake and transfer within the 

foraminiferal cell 

All the specimens of E. williamsoni showed 13C-enrichment structures in their cytoplasm after 

20 h incubation under light with H13CO3
-. Some fibrillar vesicles, electron-opaque bodies, along with a 

few thick-membrane vesicles and other small structures with unknown functions (< 500 nm of 

diameter) were found to be slightly enriched in 13C (  300 ‰; Fig. 3.3.3 A). No lipid droplets nor 

kleptoplasts were enriched. No 13C-enrichment was found in Ammonia cf. tepida cytoplasm.  

After 20 h of incubation the cytoplasmic background of all the analyzed specimens of both E. 

williamsoni and A. tepida was slightly enriched in 15N by  1500 to 3000 ‰ (Figs. 3.3.3 and 3.3.4). Most 

of the electron opaque bodies and a few fibrillar vesicles were 15N-enriched in both species, with the 

addition of a few thick membrane vesicles in E. williamsoni cytoplasm. 

Finally both E. williamsoni and A. tepida exhibited structures enriched in 34S, including some 

fibrillar vesicles plus a number of undescribed structures (Figs. 3.3.3 and 3.3.4). In addition, a few 34S-

enriched thick-membrane vesicles were observed in E. williamsoni cytoplasm. The electron opaque 

bodies were not 34S enriched in none of the species. 
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Figure 3.3.3: 13C, 15N and 34S cellular localization in the cytoplasm of Elphidium williamsoni after 20 h of 
incubation in light with H13CO3- (A, B, C), 15NH4+ (D, E, F) and 34SO42- (G, H, I). Left column: TEM micrographs; 
central column: overlap of the TEM and NanoSIMS images; right column: corresponding NanoSIMS δ13C, δ15N 
and δ34S images (with scales expressed in ‰). Arrows: electron-opaque bodies; arrowheads: fibrillar vesicles; 
circles: unidentified isotopically enriched structures; stars: thick-membrane vesicles; c: chloroplasts, li: lipid 
droplets, v: vacuoles. Scale bars: 2 μm. 
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Figure 3.3.4: 13C, 15N and 34S cellular localization in the cytoplasm of Ammonia cf. tepida after 20 h of incubation 
in light with H13CO3- (A, B, C), 15NH4+ (D, E, F) and 34SO42- (G, H, I). Left column: TEM micrographs; central column: 
overlap of the TEM and NanoSIMS images; right column: corresponding NanoSIMS δ13C, δ15N and δ34S images 
(with scales expressed in ‰). Arrows: electron-opaque bodies; arrowheads: fibrillar vesicles; circles: unidentified 
isotopically enriched structures; li: lipid droplets, vd: degradation vacuole. Scale bars: 2 μm. 
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 Respiration rates 

The O2 production/consumption rates represent the respiration/photosynthesis dynamics of 

the kleptoplast foraminifera (Fig. 3.3.5). Positive value signify that the O2 production by photosynthesis 

exceed the O2 consumption by respiration (i.e. a positive value shows net photosynthesis). Negative 

values signify that respiration exceeds photosynthetic O2 production. 

The three repetitions of E. williamsoni respiration rates showed similar profiles: oxygen 

production during the light and oxygen consumption during dark phase (Fig. 3.3.5). During the first 

light phase the foraminifera produced up to  7600 pmol O2 day-1 cell-1. Rapidly after the switch to dark 

conditions the oxygen dynamics passed from a net O2 production to respiration. The consumption 

rates reaching values of –4000 to –6000 pmol O2 day-1 cell-1 after 30 to 60 minutes in darkness. After 

the switch to the second light phase, the oxygen dynamics rapidly changed to oxygen production again, 

reaching values of 2000 to 6000 pmol O2 day-1 cell-1 after about 30 minutes of light. 

 

 

  

Figure 3.3.5: Oxygen production/consumption profiles for E. williamsoni over time, under dark and light 
conditions. Measures were realized on seven specimens, and normalized to one specimen to obtain cell specific 
rate expressed in pmol O2 cell-1 d-1. 
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 Discussion 

 Ammonium and sulfate assimilation 

A key result of this experiment is the observed assimilation by Ammonia cf. tepida of 

ammonium and sulfate. This is to our knowledge the first record of the ability of a non-symbiotic 

foraminifer to directly assimilate ammonium from its environment. Ammonia cf. tepida is not 

considered as a true kleptoplastic species (Jauffrais et al., 2016), and although one study mention the 

presence of bacterial endosymbionts in Ammonia cf. tepida from Nojima bay (Japan) (Nomaki et al., 

2014), we did not find any evidence of such symbionts in our study of specimens from the Gullmar 

fjord or from the Bourgneuf bay (France) (chapter 2).  

One study already observed an assimilation of 34S within the cell of a non kleptoplastic species, 

Ammonia sp. sampled in the Nojima bay (Japan) (Nomaki et al., 2016). However in their experiment 

they incubated foraminifera into sediment, and placed the sediment into seawater spiked with 34SO4
2-

. TEM observations revealed the presence of potential endosymbionts within the foraminiferal cells. It 

is therefore conceivable that the 34S-sulfate were first assimilated by prokaryotes (in the sediment or 

endosymbionts) before being incorporated in another organic or inorganic S-form by foraminifera. 

Other example of inorganic N assimilation can be found in the literature in non-photosynthetic 

protists (e.g. Kamp et al., 2015). For example there are evidence of nitrate respiration in the freshwater 

ciliate Loxodes via dissimilatory nitrate reductase in the absence of oxygen (Finlay et al., 1983; Finlay, 

1985). Some foraminifera are also able to store intracellular nitrate pool, used for complete 

denitrification in the absence of oxygen (Kamp et al., 2015; Risgaard-Petersen et al., 2006). The study 

of Nomaki et al. (2016) also showed 15N-nitrate assimilation. But again, foraminifera were incubated 

into sediment in seawater spiked with 15NO3
-, thus 15N-nitrate might have been processed by 

prokaryotes prior assimilation by foraminifera. 

Assimilation of sulfate in non-photosynthetic organisms was already observed in yeasts, fungi 

and some protists: these organisms possess functional metabolic pathways to uptake and activate 

sulfate, reduce the sulfate (SO4
2-) into sulfite (SO2

-) and produce the amino acid cysteine and others 

sulfated compounds (such as glutathione and phytochelatins) (review in Mendoza-Cózatl et al., 2005). 

In the photosynthetic protist Euglena gracilis and in algal and plant cells, some of the enzymes involved 

in these processes have different isoforms and can be found both into chloroplasts, mitochondria, and 

cytosol, respectively (review in Mendoza-Cózatl et al., 2005 and Shibagaki and Grossman, 2008; see 

also Li et al., 1991). It seems possible that foraminifera also possess these enzymes in their cytosol. 
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Assimilation of 15NH4
+ and 34SO4

2- was also observed in the kleptoplastic species E. williamsoni. 

However, the capacity of non-kleptoplastic foraminifera to assimilate inorganic compounds directly 

makes the assimilation pathway in kleptoplastic foraminifera less straight forward to study. In our 

study we cannot conclude if the kleptoplasts play any role in ammonium or sulfate assimilation in E. 

williamsoni, although since the sequestered chloroplasts have been shown to have functional 

photosynthetic machinery, they are likely to have retained enzymes associated with nitrogen and 

sulfur metabolisms. It is also possible that the kleptoplastic foraminifera use both kleptoplastic and 

cytoplasmic pathways to meet their nutrient requirements, which would allow them to use a wider 

range of nutrient sources, thereby making them more competitive in their environment. At this point 

an analysis of the metabolites labeled in 15N or 34S produced by the foraminifera (amino acids and 

sulfolipids especially) seems essential to gain insights in the metabolic pathways involved. 

 

 Photosynthesis and inorganic carbon uptake 

The O2 measurements in microenvironment around E. williamsoni revealed functional 

photosynthetic O2 production by the kleptoplasts (Fig. 3.3.5). The recorded values for net 

photosynthesis (i.e. total photosynthesis – foraminiferal respiration) are higher than previously 

measured values for the kleptoplastic species Haynesina germanica: up to  7600 O2 day-1 cell-1 versus 

200–1000 pmol O2 day-1 cell-1 for E. williamsoni and H. germanica in the work of (Cesbron et al., 2017; 

Jauffrais et al., 2016), respectively. Lopez (1979) demonstrated the correlation between C uptake and 

chlorophyll content in H. germanica and E. williamsoni, and showed a chlorophyll content four times 

superior in the latter. Similarly the O2 production might be correlated to chlorophyll content, explaining 

the higher O2 production rate in E. williamsoni compared to H. germanica. 

In another study, bulk analysis on E. williamsoni revealed active 14C assimilation within their 

cell when incubated under light with H14CO3
-: up to 2.3 x 10-3 mg C mg–1 h-1, five times more than in H. 

germanica (Lopez, 1979). In the same study the absence of 14C-uptake in darkness and the correlation 

between net 14C-uptake and the foraminiferal chlorophyll content strongly suggest am inorganic C 

assimilation via photosynthetic kleptoplastic pathway. But in our study, the NanoSIMS observations 

showed only a weak inorganic 13C assimilation within cells of E. williamsoni: after the 20 h incubation 

with H13CO3
- only a few foraminiferal organelles were found to be slightly 13C-enriched, in addition no 

13C-accumulation in lipid droplets was observed. This last finding is discrepant with the observations 
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made in the previous chapter with the species H. germanica, in which most of the 13C-signal was found 

to be stored in foraminiferal lipid droplets. The main hypothesis to explain the weak 13C-enrichment 

within E. williamsoni is that C might be primarily as a soluble compound, which was washed out during 

the sample preparation procedures. This could explain why we found so little 13C enrichment in the 

cytoplasm compared to H. germanica even though both oxygen production and carbon assimilation in 

E. williamsoni were higher than in H. germanica (Cesbron et al., 2017; Jauffrais et al., 2016; Lopez, 

1979). A bulk analysis carried out after a similar incubation would allow us to confirm this hypothesis. 

It might also be interesting to look more closely at the lipid inclusions in the kleptoplasts (i.e. the 

potential plastoglobuli) to investigate potential 13C-enrichments. Unfortunately during this first 

experiment no kleptoplasts with such structures was analyzed with NanoSIMS. 

 

Ammonia cf. tepida sampled from another location, but belonging to the same phylotype 

(Magali Schweizer, pers. com.) was shown to have strongly reduced photosynthetic capacity compared 

to the kleptoplastic species H. germanica (Jauffrais et al., 2016). In their O2 measurement in Ammonia 

cf. tepida microenvironment, Jauffrais et al. (2016) measured lower respiration rate under light than 

under dark at the beginning of their incubation and attributed it to a low O2 production under light. 

Ammonia cf. tepida performed photosynthesis for a short time (less than 24 h) presumably with the 

chloroplasts of the diatoms ingested within its cytoplasm, but it is not able to maintain these 

chloroplasts within their cell for longer time periods. Indeed, Ammonia cf. tepida ingests full diatoms 

in its cytoplasm (see chapter 2) with intact chloroplasts that perform photosynthesis during a few 

hours after ingestion. The observation of some chloroplasts and diatoms in degradation in its 

cytoplasm support this hypothesis (chapter 3.1). This might explains the low O2 production recorded 

in Jauffrais et al. (2016) experiment at the beginning of their incubation. However, our NanoSIMS data 

show that this weak activity of chloroplasts from freshly digested diatoms is not enough to fix inorganic 

carbon, as no 13C enrichment was found in Ammonia cf tepida cell. 

 

 Kleptoplast ultrastructure and cellular distribution 

The particular kleptoplast distribution at the cell periphery (Fig. 3.1.1A, B) was already 

observed in E. williamsoni as well as E. selseyense (excavatum) and Planoglabratella opercularis. 

However, in other kleptoplastic species, such as e.g. H. germanica, kleptoplasts are distributed 

throughout the entire cytoplasm (Lopez, 1979; chapters 3.1 and 3.2). These differences in the 

kleptoplast organization suggest different strategies among kleptoplastic foraminifera (Jauffrais et al., 
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2016). It could explain the difference in photosynthesis efficiency between H. germanica and E. 

williamsoni: the peripheral distribution observed in the latter might be interpreted as a strategy to 

maximize light acquisition by kleptoplasts, or to favor gas exchanges with the foraminiferal 

environment through pores (see chapter 3.1).  

The description of sequestered kleptoplasts in E. williamsoni in this study corresponds to the 

description found in the literature: well preserved with distinguishable central pyrenoids crossed by a 

lamella, intact thylakoids; and a girdle lamella surrounding the entire chloroplast (Lopez, 1979; chapter 

3.1). Although these authors did not mention the presence of lipid inclusion in the kleptoplasts, small 

lipid inclusions, interpreted here as potential plastoglobuli, could be seen on their micrographs, as well 

as in our observations. The electron-lucent space surrounding the kleptoplasts was also noted in both 

studies and similarly interpreted as an artifact due to fixation. This seems likely as the kleptoplasts 

observed in H. germanica after cryo-fixation did not present any electro-lucent space around them 

(Goldstein et al., 2004). The same was noted in a comparative study between standard fixation and 

cryo-fixation: this electron-lucent space was present only around the algal symbionts of a Paramecium 

fixed following traditional protocol, while in cryo-fixed samples there was no space between the 

symbionts and the host cytoplasm (Song et al., 2017). 

 

 Specific organelles isotopically enriched 

Fibrillar bodies and electron opaque bodies are common organelles in benthic foraminifera 

(chapter 1). Fibrillar bodies were found labeled in Ammonia cf. tepida (15N and 34S) and in the 

kleptoplastic E. williamsoni (13C, 15N, and 34S). This is consistent with the previous experiment with the 

kleptoplastic H. germanica where a similar incubation with 15NH4
+ and H13CO3

- also lead to their 

enrichment (chapter 3.2). The absence of 13C-erichment in Ammonia cf. tepida can be explained by the 

absence of inorganic C uptake within its cytoplasm. Fibrillar bodies are thought to be involved in the 

transport of GAGs (glycosaminoglycans, sulfated amino-polysaccharides) (Langer, 1992). Thus an 

enrichment in 13C, 15N and 34S is expected, given that the foraminifera is able to assimilate the isotopic 

sources provided. 

The electron opaque bodies were only enriched in 15N in both species. In another experiment 

with the species Ammonia sp. incubated in sediment placed under dysoxic conditions with 15NO3
- and 

34SO4
2-, these organelles (referred as “dense bodies”) were also 15N and 34S enriched. The absence of 

34S in electron opaque bodies in our study is therefore surprising.   
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 Trophic mechanism impacts on cellular ultrastructure 

A difference in the lipid size was noted between the two studied species, with lipid droplets 

two to five times bigger in Ammonia cf. tepida than in E. williamsoni. In addition, unlike E. williamsoni, 

Ammonia cf. tepida possess numerous residual bodies, a feature that was already observed in another 

ultrastructural study (chapter 2). These differences might be attributed to different feeding strategies. 

The residual bodies are thought to be vacuoles containing all the non-digestible detritus of the cell 

(review in chapter 1). As Ammonia cf. tepida does not possess assimilate nutrients through kleptoplasts 

or any other symbionts (at least in the specimens collected in our study), it relies only on feeding 

(heterotrophy) to obtain its carbon compounds. This species is known to actively graze on 

microphytobenthos (Pascal et al., 2008b, 2008a). In chapter 2 we saw that the microalgae material is 

digested within the cell, and that the C is either stored in lipid droplets or directly used in the 

foraminiferal metabolism. The carbon extracted from the microalgae is then ultimately found in the 

residual bodies, where it could have arrived either as a non-digestible component of the microalgae or 

after autophagocytosis of a foraminiferal organelle constructed with microalgal carbon. In E. 

williamsoni the absence of residual bodies and the smaller lipid droplets suggest another type of 

trophic mechanism: its mixotrophy strategy provided by its photosynthetic kleptoplasts allows it to 

rely on another carbon source than feeding. The assimilation of inorganic carbon via the kleptoplasts 

might be sufficient to maintain its metabolic activity. Thus E. williamsoni might not need to graze on 

biofilm, and therefore form less or no residual bodies. This alternative pathway could as well result in 

the formation of smaller lipid droplets. Similarly, in a feeding experiment with algae, the kleptoplastic 

species H. germanica was shown to have an organic C uptake ten times inferior to Ammonia cf. tepida 

(Wukovits et al., 2016). The author explained it as the preference for H. germanica for another type of 

food, but we suggest that, as in our study, this would rather be explained by the mixotrophy strategy 

of this kleptoplastic species. 

 Conclusion 

We show here the first evidence of direct inorganic nitrogen and sulfate assimilation by a non 

kleptoplastic (and non-symbiotic) foraminiferal species. This new process should be quantified to 

assess more precisely the foraminiferal contributions to the nitrogen and sulfate geochemical cycles. 

It also emphasizes the need for more research to unravel the role played by the sequestered 

chloroplasts in kleptoplastic species. Which pathways do the foraminifera species use to meet their 

nutrient and sulfate requirements: assimilation of inorganic compounds via (1) the kleptoplasts, (2) 
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the foraminifera’s own metabolism (3) through feeding, or (4) through all of these pathways? Analyses 

of specific metabolite (amino acids, sulfolipids and intermediate molecules in the nitrogen and sulfate 

metabolic pathways) are underway to better understand the metabolic pathways taking place in the 

foraminiferal cell. 

These first results also highlight the diversity of metabolism within kleptoplastic species. E. 

williamsoni showed a photosynthetic rate higher than other kleptoplastic species, which is in 

agreement with the data from literature. But while another species, H. germanica, was shown to store 

a large part of the photosynthetically acquired carbon in lipid droplets, no carbon translocation to the 

lipid fraction was seen in E. williamsoni, and only a slight 13C-enrichment could be detected. To 

understand these differences in the metabolism more experiments are needed. We plan to perform 

experiments in which a similar incubation scheme followed by TEM-NanoSIMS analysis will be carried 

out, coupled with a bulk analysis of the cell to investigate the soluble carbon 13C enrichment. Mass 

spectrometry analysis of targeted metabolites, such as carbon compounds (fatty acids, sugars), amino 

acids, or sulfated compounds should also be performed. 
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Chapter 4: Assimilation and translocation of carbon between 

photosynthetic symbiotic dinoflagellates and their planktonic 

foraminifera host 

 

The Chapter 4 presents a manuscript in preparation investigating carbon assimilation by 

symbiotic dinoflagellates, and carbon translocation between the symbionts and the foraminiferal host 

cell. 

 

PhD student’s contribution: the PhD student designed the Experiment with HJ and AM; analyzed the 

samples; interpreted the data with HJ and AM; performed the statistical analysis; discuss the results 

with HS, EG, AR, JF, and AM and wrote the manuscript with comments and edits from all the authors. 
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Abstract 

Some planktonic species inhabiting the surface waters of oligotrophic environments are in 

symbiosis with dinoflagellate microalgae, which can assimilate C through photosynthesis. However, 

the nature and dynamics of C photosynthate translocation to the foraminiferal host cell, and related 

benefits for the dinoflagellates in this symbiotic association, are poorly documented and understood. 

We performed pulse-chase experiments with 13C-enriched dissolved inorganic carbon, combined with 

TEM and quantitative NanoSIMS isotopic imaging to visualize photosynthetic C assimilation by 

individual symbiotic dinoflagellates and subsequent translocation to their Orbulina universa host in 

waters north of Santa Catalina Island (California, USA). Although the dinoflagellate population is known 

to migrate out into the ectoplasm around the spines during the day, our observations show that a small 

fraction remains inside the host cell at all times. At night all dinoflagellates from the spine-ectoplasm 

region migrate back into the foraminiferal cell, probably controlled by a need to replenish P- and N- 

nutrients to support mitosis. All symbionts, whether outside or inside the foraminifera cell, effectively 

assimilate C into starch nodules through photosynthesis during the day, and transfer it to the 

foraminiferal cell, where it is stored primarily in the form of lipid droplets. The mechanism of 

translocation is not clear, but transfer of individual free fatty acids through the symbiosome membrane 

and/or exocytosis of lipid droplets from the symbiosome might be involved. During the nighttime, 

respiration strongly reduces the abundance of starch in dinoflagellates, but translocation of lipids to 

the host continues.  

Key-words: Dinoflagellate symbiosis, photosynthesis, carbon translocation, NanoSIMS, TEM, Orbulina 

universa, planktonic foraminifera 
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 Introduction 

The intracellular association between photosynthetic algae and foraminifera has been 

recorded in numerous studies of large benthic (e.g. Lee, 1983 and Leutenegger, 1984) and planktonic 

species (Anderson and Bé, 1976b; Bé et al., 1977; Lee et al., 1965; Rhumbler, 1911; Spero, 1987; Spero 

and Parker, 1985), and the symbiotic nature of this relationship confirmed by the effects of the 

symbionts on host metabolism and growth. For example, in large benthic foraminifera, such as 

Heterostegina depressa, Amphistegina lessonii, and Archaias angulatus, the symbionts were shown to 

enhance growth rate (Duguay and Taylor, 1978; Lee and Zucker, 1969; Röttger and Berger, 1972). In a 

planktonic species, Globigerinoides sacculifer, dinoflagellate symbiont photosynthetic rates have been 

demonstrated to strongly effect final shell size; furthermore, elimination of symbionts resulted in 

earlier gametogenesis and reduced lifespan (Bé et al., 1982). Studies with micro-sensors have shown 

significant changes in oxygen production in planktonic O. universa correlated with variations in light 

level, demonstrating the effect of symbiotic dinoflagellate photosynthesis on the host cell 

microenvironment (Köhler-Rink and Kühl, 2005; Rink et al., 1998). In the symbiotic planktonic species 

G. sacculifer, longer survival rates have been recorded in unfed specimens exposed to high light levels 

(= elevated photosynthetic rates) in comparison with unfed specimens kept under low light conditions 

(Caron et al., 1981), suggesting that the dinoflagellates are needed to provide photosynthates to the 

foraminiferal host cell. To date, however, no studies have documented the timing, extent and 

distribution of translocated organic C photosynthates between symbiotic dinoflagellates and their 

foraminiferal host cell. 

The NanoSIMS ion microprobe technique permits subcellular, quantitative isotopic imaging of 

biological tissue, directly correlated with TEM ultrastructural imaging. Combined with isotopic pulse-

chase labeling experiments, this has allowed metabolic pathways to be studied at the sub-cellular level 

in other symbiotic marine organisms, such as corals or phytoplankton (Ceh et al., 2013; Clode et al., 

2007; Kopp et al., 2013, 2015b, 2015a; Krupke et al., 2015; Pernice et al., 2012). Two recent studies 

have applied NanoSIMS in studies of foraminifera metabolism (LeKieffre et al., 2017; Nomaki et al., 

2016). Here, we present data from a suite of stable isotope pulse-chase labeling experiment on 

planktonic foraminifera Orbulina universa specimens using 13C-enriched dissolved inorganic carbon 

(DIC; H13CO3
-) in combination with correlated TEM and NanoSIMS imaging. The main objective was to 

visualize and quantify incorporation and turnover of inorganic C by the dinoflagellates, as well as 

translocation of photosynthates to their host, with high temporal resolution (hours to days) across a 

full diurnal cycle. 
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 Material and Methods 

 Collection of the foraminifera 

Specimens of Orbulina universa were hand-collected by SCUBA divers from surface waters, 1 

to 2 km north of Santa Catalina Island (California, USA) on August 4, 2014. The specimens were 

collected individually in glass jars and transported within 1 h to the laboratory at the University of 

Southern California Wrigley Marine Science Center. Each individual was then transferred with a glass 

pipette to a clean glass jar containing 0.8 μm filtrated sea water and maintained at 22°C. Light 

micrographs were taken of living specimens, both in light and after acclimation of the specimens to 

dark, using a Nikon TMS inverted microscope. 

 Experiment: incubation with NaH13CO3 during a light-dark cycle 

Approximately one day after collection, 24 pre-sphere (trochospiral test) O. universa were 

selected and fed a one-day-old Artemia salina brine shrimp nauplius; this feeding took place 4 h prior 

to the 13C-incubation experiment. On August 5, at 13:00 local time (i.e. corresponding to maximum 

symbiont photosynthetic rate (Spero and Parker, 1985), 21 fed specimens were transferred into 22 ml 

scintillation vials (one specimen per vial), filled with 0.8 μm filtered seawater (pH: 8.2), which had been 

spiked by the addition of 2 mM NaH13CO3 (13C fraction of 99 %, Cambridge Isotopes Laboratory Inc.). 

The addition of 2 mM of 13C-enriched sodium bicarbonate resulted in a final dissolved inorganic carbon 

concentration of  4mM and a DIC 13C/12C ratio  0.45; i.e. extremely 13C-enriched compared to natural 

DIC (13C/12C  0.01). The capped vials were then immersed into seawater at 22°C under artificial light 

(Sylvania F24T12 'Cool White' fluorescent lights), with a minimum intensity of 350 μEinsteins m-2 sec-1 

which is the Pmax light saturation threshold for symbiont photosynthesis in this species (Rink et al., 

1998; Spero and Parker, 1985). Three individuals were maintained in non-spiked, filtrated seawater 

under identical conditions to serve as control specimens. After 6 h, the isotopic incubation was 

terminated and a chase phase began by transferring foraminifera to new vials filled with ambient 0.8 

μm filtrated seawater with normal seawater 13CDIC and a DIC concentration of ca. 2mM. Specimens 

were transferred through an intermediate wash vial in order to avoid increasing the 13CDIC of the chase 

solution. These vials were then placed in the dark for 12 h at 22°C. Finally the vials were moved back 

into the light for an additional 12 h period. During this 30 h experiment, three specimens were removed 

for TEM fixation at the following time points: 45 min, 2, 6, 7, 12, 18 and 30 h, as indicated in Fig. 4.1. 
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Figure 4.1: The O. universa incubation experiment time line. Three specimens were sampled at each time point 
indicated with arrows. Details in the text. 

 

 TEM – NanoSIMS sample preparation 

At each sampling time point, the culled O. universa were individually transferred into 0.5 mL 

micro-centrifuge tubes containing filtered seawater with 4% glutaraldehyde and 2% 

paraformaldehyde, (pH = 8.1) and fixed for 24 h at room temperature. The fixative solution was then 

replaced by a solution of 2% glutaraldehyde in filtrated seawater for transport to the Electron 

Microscopy Facility, University of Lausanne, Switzerland. During this transport phase, the majority of 

spines were broken and most of the reticulopods and symbiotic microalgae attached to the spines 

were lost, preserving only a thin layer of ectoplasmic matrix outside the test (see below). These 

specimens were rinsed in artificial sea water (RedSea Salt, 34 psu), then post-fixed with a solution of 

2% OsO4 diluted in distilled water for 1 h. After thorough rinsing with distilled water, all specimens 

were embedded in 3% Agar (Sigma-Aldrich, type VII-A, low gelling temperature), following the 

procedure described by (Spero, 1988). This step protected the fixed foraminifera during the 

decalcification and dehydration steps, and preserved the natural positioning of the symbiotic 

dinoflagellates that were present at the base of the broken spines on the outer shell surface. The agar-

embedded foraminifera were then decalcified in two successive baths (1 h and 48 h, respectively) of 

EDTA 0.1 M diluted in distilled water, followed by a dehydration series of increasing ethanol 

concentrations (50, 70, 95, and 100 %). Samples were prepared for TEM at room temperature using a 

sequential LR White resin impregnation of a 1:1 resin / ethanol 100 % mixture for 1 h, followed by pure 

resin for 8 h. Finally, all specimens were placed in a third bath of pure resin for 3 h and then allowed 

to cure in solid resin at 70°C for 8 h. Specimens were sliced with an ultramicrotome (Reichert Ultracut 

S) equipped with a diamond knife (Diatome Ultra, 45°) into semi-thin (500 nm) and ultra-thin (70 nm) 

sections. Semi-thin sections were stained with a mix of toluidine blue and basic fuchsine prior to 

observation under a light microscope. The ultra-thin sections were placed on formvar-carbon coated 

copper grids, stained with 2% uranyl acetate for 10 min and observed with a transmission electron 

microscope (TEM, Philips 301 CM100, 80 kV). Areas of interest for NanoSIMS imaging were selected 

from TEM images and analyzed based on the procedure described in (LeKieffre et al., 2017). 
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Following TEM imaging, the same ultrathin sections were coated with gold prior to imaging 

with a Cameca NanoSIMS 50L ion microprobe (Hoppe et al., 2013). NanoSIMS images were obtained 

by bombarding thin sections with a beam of Cs+ focused to a spot size of  150 nm (beam current  2 

pA) and counting 12C12C-, 13C12C-- and 12C14N- ions in electron multipliers at a mass resolution of about 

8.000, enough to resolve potential interferences in the mass spectrum. NanoSIMS images were drift-

corrected and 13C enrichments obtained by forming the ratio 12C13C-/12C2
-, reported in the delta-

notation, i.e. in per mil (‰) deviation from a standard 13C/12C ratio: 

 

where Cmeas is the 13C/12C ratio measured in the samples, and Cnat is the 13C/12C ratio measured in an 

isotopically normal control sample, prepared and handled in an identical manner. 

Analysis of the NanoSIMS images was carried out as described in (LeKieffre et al., 2017). Briefly, 

TEM images were aligned with NanoSIMS 12C14N- images using the software Look@NanoSIMS 

(Polerecky et al., 2012), which permitted an accurate drawing of the regions of interest (ROIs) 

corresponding to different organelles (dinoflagellate starch grains, foraminiferal lipid droplets, and 

fibrillar bodies). For each type of organelle and each time point, the average 13C-enrichment (and its 

standard deviation) was calculated based on 3 replicate foraminifera (except for the 6 h and 30 h time 

points, where only 2 replicates were available). The ROIs drawn on TEM images were also used to 

assess the relative abundance (in %) of starch grains in the dinoflagellate cytoplasm, determined simply 

as the number of pixels of occupied by starch grains divided by the total number of pixels covering 

cytoplasm, providing an estimate of the relative abundance of the starch grains in a cross-section as a 

function of time. 

 Statistical analysis 

Starch abundances in dinoflagellates, as well as starch and lipid δ13C, were obtained by 

calculating the average of ROIs within each specimen and then calculating the average of the three 

specimens for each time point. Thus, the errors bars shown are standard deviations representing the 

inter-specimen variability (i.e. n = 3 specimens). However, statistical analysis was also carried out on 

the total set of ROIs for each time point using a linear mixed-effects model (taking into account pseudo-

replication effects), followed by a Tukey multiple comparison test. Comparisons of relative starch 

abundance and δ13C in dinoflagellate endoplasm or matrix were performed with a t-test for each time 

point. All statistical analysis were performed with the Rstudio software (RStudio Team, 2016) with the 

significance level set to α = 0.05.  
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 Results 

Specimens in Fig. 4.2 are O. universa with a spherical test surrounding the inner multi-

chambered trochospiral test. The partitioned distribution of the cytoplasm (endoplasm vs. ectoplasm) 

can be seen in the semi-thin section images (Fig. 4.2C-D). The trochospiral test chambers are filled with 

foraminifera endoplasm, while the space between these chambers and the O. universa sphere appears 

void of material because this region was filled with seawater (washed away and replaced by resin 

during fixation process) and strands of rhizopodia. We refer to the space between the trochospiral and 

spherical chambers as the ‘internal matrix’, in order to distinguish it from the ‘external matrix’, defined 

here as the ectoplasm outside the spherical chamber (Fig. 4.2C- D). For specimens that did not produce 

a spherical test prior to fixation, this distinction is simply made between endoplasm and ectoplasmic 

matrix outside the trochospiral test. 

 Dinoflagellate migration in and out of the foraminiferal endoplasm 

As reported previously (Hemleben et al., 1985), we observe a strong day-night migration 

pattern in the symbiotic dinoflagellates. In light, the majority of symbiotic algae are found on the spine 

surfaces surrounding the foraminifera test, i.e. in the external matrix (Fig. 4.2A, C). However, a small 

subset of the dinoflagellate population is systematically observed in the internal matrix and endoplasm 

(Fig. 4.2C, E). In contrast, symbionts are rarely observed outside the endoplasm during the night (Fig. 

4.2B, D). TEM and light micrographs of individuals fixed during day and night, respectively, 

demonstrate a permanent, albeit strongly fluctuating population of dinoflagellates in the endoplasm 

(Fig. 4.2E, F).  
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Figure 4.2: Orbulina universa during day (left column) and night (right column). Light microscopy pictures of 
living specimens of (A, B) and semi-thin sections (500 nm) (C, D), and TEM micrographs of the cytoplasm 
displaying representative dinoflagellate densities within O. universa endoplasm (E, F). During the day, the 
majority of the symbionts are outside the spherical test on the spines (yellow dots in A), with a few symbionts 
still residing in the internal matrix (im)  (C), and even fewer residing in the endoplasm (ep) (D). During the night, 
all symbionts migrate into the endoplasm (ep). Dotted arrows point to the position of the decalcified spherical 
test. Dinoflagellates are indicated with solid arrows or labeled ‘d’. Scale bars: A = 500 μm; B, C and D = 200 μm; 
E and F = 10 μm. 
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 Carbon uptake and storage by the symbiotic dinoflagellates 

Starch 13C-enrichment appears initially on the pyrenoid surfaces, and then in starch grains 

accumulating in the dinoflagellate cytosol (Fig. 4.3). The relative starch abundance inside 

dinoflagellates (in % of total cytoplasm area) varied strongly throughout a diurnal cycle (Figs. 4.3, 4.4A 

– C). TEM micrographs of dinoflagellates fixed at the end of the first light phase (i.e. after 6 h) showed 

numerous starch grains (Fig. 4.4A) while at the end of the first night cycle, TEM micrographs revealed 

nearly starch free dinoflagellates (Fig. 4.4B). The relative abundance of starch grains in dinoflagellates 

(expressed in percentage of the area occupied by starch grains within dinoflagellates) significantly 

increased from  11 % after 45 min to  43 % after 6 h of incubation in the light (p < 0.05; Fig. 4.4C). 

During the subsequent 12 h dark phase, the abundance of starch steadily decreases to  7 % (p < 0.05) 

of the area within the symbionts. During the second light phase (from 18 h to 30 h), the starch 

abundance again increased to an average of  41 % (p < 0.05; Fig. 4.4C) of the symbiont cytosol area. 

Starch 13C-enrichment is observed after only 45 min of incubation with 13C-labeled bicarbonate 

(Fig. 4.3; 45 min). Rapidly thereafter, i.e. already at 2 h, 13C-enrichment is observed in starch grains 

throughout the dinoflagellate cells. Mean starch δ13C values significantly increased from 3400 ‰ to 

13200 ‰ during the light phase (p < 0.05; Fig. 4.4D). In the following dark chase phase, dinoflagellate 

starch 13C-enrichment remained essentially constant (p > 0.05), although displaying a tendency to 

decrease towards the end of the night. During the subsequent light chase phase (t = 18 h to 30 h), 

unlabeled starch accumulated (Fig. 4.4C) and the average dinoflagellate starch 13C-enrichment 

decreased to 1200 ‰ (p < 0.05; Fig. 4.4D). 

A comparison of the relative abundances and isotopic composition of starch in dinoflagellate 

cells occupying the host endoplasm vs. the internal/external matrix (or ectoplasm in pre-sphere 

specimens) can only be made during periods of illumination (e.g. T= 45 min, 2 h, 6 h, and 30 h), (Fig. 

4.4C, D) because dinoflagellates were not found outside the endoplasm during the night. At these time 

points, the relative abundance and 13C-enrichment of starch within dinoflagellates did not vary 

significantly (p > 0.05) between these two host cell environments (Fig. 4.4C, D). 

 

Figure 4.3 (p. 183): Time-evolution of starch production and 13C incorporation by the symbiotic dinoflagellates 
in Orbulina universa endoplasm during the pulse phase of the experiment (45 mins, 2 h, 6 h), followed by a chase 
including night conditions (7 h, 12 h, 18 h), and a second light cycle (until 30 h). Left column: TEM micrographs 
of O. universa endoplasm with symbiotic dinoflagellates Right column: corresponding NanoSIMS images of 
13C/12C distributions (expressed as δ13C in ‰). Central column: overlay of the TEM and NanoSIMS images. Black 
arrowheads: foraminiferal endoplasmic lipid droplets; white triangles symbiotic dinoflagellates; black stars: 
fibrillar bodies. White objects in NanoSIMS images are accumulated starch in the symbionts, with 13C-
enrichments above the imposed 10.000 ‰ upper color scale limit. Scale bars: 5 μm. 
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Figure 4.4: Dinoflagellate starch grain abundance and their 13C-enrichments. A and B: TEM micrographs of 
dinoflagellates in the endoplasm of O. universa illustrating the difference in their starch grain content between 
the end of the day (A) and after 12 h in darkness (B). Asterisks: dinoflagellate starch grains, c: dinoflagellate 
chloroplasts, n: dinoflagellate nucleus, p: pyrenoids. Scale bars: 2 μm. C: The relative abundance of starch grains 
in dinoflagellates (in % of total cytoplasm area). D: Average starch 13C-enrichments. A distinction is made 
between starch from dinoflagellates present in the endoplasm (black circles) or in the internal/ectoplasmic 
matrix (white circles) of O. universa. Error bars: 1 SD (n = 3 specimens).  
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 Transfer of carbon to the foraminiferal host cell  

The first evidence of translocation of 13C-enriched photosynthates from symbiont to 

foraminifera host appears as 13C-labeled lipid droplets, already after 45 minutes (Figs. 4.3 and 4.5). 

Osmiophilic lipid droplets in the foraminifera host display a steady increase in δ13C during the pulse 

phase, from 100 ‰ after 45 min to 1300 ‰ at 6 h (p < 0.05; Fig. 4.5). Lipid δ13C values then remained 

essentially constant during the dark chase phase, before decreasing to  450 ‰ at the end of the 

second light phase (p < 0.05; Fig. 4.5). 

 

 

Figure 4.5: Average 13C-enrichment in O. universa lipid droplets in the endoplasm as a function of time. Error 
bars: 1 SD (n = 3 specimens). 

 

 

During the initial 18 h of the experiment, the foraminiferal endoplasm ‘background’ displayed 

a slow heterogeneous increase in 13C that was particularly evident at the end of the night chase (i.e. at 

18 h; Fig. 4.3). Higher magnification TEM and NanoSIMS images of specimens fixed during the dark 

phase reveal small (0.2 to 1 μm) 13C-enriched lipid droplets within the cytoplasm of the dinoflagellate 

and foraminiferal host cells (Fig. 4.6A). These lipids are often observed in direct contact with the 

symbiosome membrane surrounding the dinoflagellate and are either inside (Fig. 4.6A, C, D, E) or 

external (Fig. 4.6B, D) to the symbiont cell. Higher magnification TEM and NanoSIMS images also reveal 

small (200 to 500 nm diameter), spherical to irregularly shaped electron-opaque structures enriched 

in 13C and distributed evenly throughout the foraminiferal endoplasm (Fig. 4.7A, B). The nature and 

function of these structures are unknown. Some fibrillar bodies (Lee et al., 1965) exhibit high δ13C 

values, whereas adjacent fibrillar bodies are not significantly enriched in 13C (Fig. 4.7C, D). 
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Figure 4.6: Translocation of 13C-enriched lipids from the symbiotic dinoflagellates to Orbulina universa 
endoplasm. A: TEM micrograph and corresponding NanoSIMS image showing the 13C-enrichment of the lipid 
droplets observed within a dinoflagellate and within the foraminiferal endoplasm. B, C, D and E: TEM micrographs 
of dinoflagellates in O. universa endoplasm during the night phase (t = 12 or 18 h). Circles are drawn around 
potential lipid transfer areas from the dinoflagellate to the foraminiferal endoplasm, i.e. lipid droplets in very 
close proximity/in direct contact with the symbiosome. In some specimens lipid droplets have a void around the 
lipid core, which is likely an artifact of the fixation process. Arrowheads: lipid droplets, asterisks: dinoflagellate 
starch grains, c: dinoflagellate chloroplasts, n: dinoflagellate nucleus. Scale bars: A, C, D, E = 2 μm; B, inset D = 1 
μm; inset B = 500 nm. 
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Figure 4.7: 13C-enriched small electron-opaque and fibrillar bodies. Left: TEM micrograph. Right: corresponding 
NanoSIMS image. A and B: 13C-enriched electron opaque bodies surrounding a symbiotic dinoflagellate. Adjacent 
fibrillar bodies in the endoplasm of O. universa endoplasm at 12 h of incubation (i.e. after 6 h in light with 13C-
enriched bicarbonate and 6 h in dark with normal seawater). One is 13C-enriched (solid arrow) while the other is 
not (dotted arrow). Arrowheads: electron-opaque bodies; arrows: fibrillar bodies; asterisks: dinoflagellate starch 
grains, c: dinoflagellate chloroplasts, n: dinoflagellate nucleus. Scale bars: A, B = 2 μm; C, D = 5 μm. 

 

 Dinoflagellate cell division within the foraminiferal host cell 

Dinoflagellates undergoing mitosis, identified by the appearance of two nuclei containing 

condensed chromosomes, are observed in the endoplasm of all specimens fixed in the middle of the 

night phase (Fig. 4.8A). A few dividing symbiont are also seen in foraminifera fixed at T=18h at the end 

of the night phase. Symbiont cell division was not observed at other times in the diurnal cycle. Before 

division initiated, 13C-enrichment was concentrated in starch grains (Fig. 4.8B, C). At the end of the 

night phase, after a fraction of the dinoflagellates had divided, the 13C-signal was distributed more 

evenly throughout the dinoflagellate cytoplasm including 13C-enrichment of the nucleus and 

chloroplasts (Fig. 4.8D, E), indicating the utilization of C fixed the previous day for cell division and cell 

growth. 
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Figure 4.8: Dinoflagellate mitosis. A: TEM micrograph of three dinoflagellate symbionts undergoing mitosis in 
the O. universa endoplasm at 12 h (i.e. middle of the night phase; cf. Fig. 1). TEM micrographs (B and D) and 
corresponding NanoSIMS 13C-enrichment images of dinoflagellates in O. universa endoplasm at the beginning of 
the night (C) and at end of the night (E), respectively. c: dinoflagellate chloroplasts, n: dinoflagellate nucleus, p: 
dinoflagellate pyrenoids, asterisks: dinoflagellate starch grains. Scale bars: A = 5 μm; B, C, D and E = 2 μm. 
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 Discussion 

 Diurnal patterns of symbiont distribution  

As previously documented in other symbiotic planktonic species (Anderson and Bé, 1976b; Bé 

and Hutson, 1977) and in O. universa (Bé et al., 1977; Spero, 1987), the dinoflagellate symbionts 

migrate up and down the foraminiferal spines, synchronized with the day-night cycle (Fig. 4.2). At the 

onset of night conditions, the symbiotic dinoflagellates migrated down the spines and passed through 

the juvenile chamber apertures where each dinoflagellate became encapsulated inside a vacuole in 

the endoplasm, as also shown by (Spero, 1987). However, this process was not completely reversed 

during the day. Rather, we observe a small subpopulation of symbionts within the endoplasm of O. 

universa during the day. (Anderson and Bé, 1976b) suggested that such sequestration within the 

endoplasm could enhance transfer of photosynthates. However, the transfer rate of 13C from the 

dinoflagellates to O. universa lipid droplets was not observed to be faster during the night (Fig. 4.5). 

These observations, combined with the measurement of 13C-signal in foraminiferal organelles already 

after 45 min of incubation in light (Fig. 4.3). The majority of the dinoflagellates were on the spines 

during the day to benefit from light and performing photosynthesis. But the transfer of photosynthates 

to the foraminiferal cell occurred throughout the diurnal cycle, suggesting that a fraction of the 

dinoflagellates is continuously residing inside the endoplasm.  

 Dinoflagellate mitosis and photosynthesis: role of the foraminifera? 

In the middle of the night (i.e. after 12 h of incubation) dinoflagellates were commonly 

observed in the process of undergoing mitosis (Fig. 4.8). The division of chrysophyte symbionts within 

the endoplasm of the planktonic species Globigerinella siphonifera was previously documented and 

the foraminiferal endoplasm suggested to be the most favorable environment for survival and growth 

of the microalgae (Faber et al., 1988). The foraminifera provides a protective environment and could 

potentially also provide extra nutrients needed by the microalgae, such as N and P that they obtain 

through prey capture (Jørgensen et al., 1985). The symbiotic dinoflagellates of the pelagic cnidarian 

Mastigias sp. also undergo mitosis at night when the host is visiting a nutrient-rich chemocline lower 

in the water column (Wilkerson et al., 1983). A study made on diatoms and dinoflagellates in culture 

showed that a pulse of nutrients can induce cell division of the microalgae (Doyle and Poore, 1974). In 

addition, Yoder et al. (1982) demonstrated that in the diatom Thalssiosira weissflogii, mitosis was 

stimulated by a pulse of nitrate, and became asynchronous when the nitrate was supplied 

continuously. In large benthic foraminifera the feeding of foraminifera was shown to increase symbiont 

productivity (Lee and Bock, 1976; Lee and Zucker, 1969), which might be driven by host nutrient 
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acquisition through prey ingestion. Because O. universa typically inhabits low nutrient environments 

(Spero and Parker, 1985) it might be necessary for the symbiotic dinoflagellates to be supplied with an 

environment rich in N and P nutrients to stimulate mitosis (Uhle et al., 1999). This role could be 

investigated with prey capture experiments. Indeed, O. universa would be well suited for such 

experiments because it is mixotrophic (Bé et al., 1977). 

Another advantageous role for the foraminifera to enhance symbiont success is providing the 

dinoflagellates with a concentrated source of CO2 in the photosynthesizing microenvironment. In our 

study, starch accumulating in the dinoflagellates during the second light phase (i.e. during the chase 

phase without 13C-labeled added inorganic carbon) was still slightly enriched in 13C (Figs. 4.3 and 4.4). 

There can be several reasons for this enrichment. First, the original label was not completely rinsed 

from the foraminifera during the chase phase. While we cannot eliminate this possibility, we find it 

unlikely given the multiple rinses used to eliminate this contamination. Second, we observed a large 

amount of variability among specimens where some O. universa individuals analyzed after 18 h at the 

end of the night phase still contained 13C-enriched starch grains within the dinoflagellates (Figs. 4.3 

and 4.4) which would represent a form of carbohydrate contamination at T=30h., Finally, 13C-labeled 

C that was fixed during the first light phase and translocated to the foraminifera host from T=6h to 

T=18h is being metabolized and 13C-enriched CO2 is being released from the cell. Or the slight 

enrichment observed at the end of the second light phase could result from the respiration of the 

foraminifera of its 13C-enriched lipid stocks, thereby providing recycled inorganic 13C to the 

dinoflagellate photosynthetic system which would be then be available for incorporation into starch 

grains. Although in our study it was not possible to measure the 13CDIC in the foraminiferal 

microenvironment during the chase period, it seems inevitable that the foraminifera respire and 

release remineralized 13C-enriched CO2 to the surrounding aqueous environment. Microsensor 

measurements of oxygen in the O. universa microenvironment highlighted this possibility as O. 

universa respiration corresponds to ca. 48 % of the dinoflagellate gross photosynthesis (Rink et al., 

1998). For the same species a time-lag in CO2 concentration changes was recorded in the foraminiferal 

microenvironment after a switch from light to dark conditions and vice-versa, while the O2 

concentrations immediately changed due to photosynthesis (Köhler-Rink and Kühl, 2005). Besides 

rates of O2 release by the symbionts were much higher than their CO2 uptake. This was interpreted as 

the consequence of an internal CO2 supply mechanism, the foraminifera provide CO2 to the symbionts 

via their respiration, thus symbionts take less CO2 from their environment.  
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 Photosynthate assimilation and turnover in the symbiotic dinoflagellates 

Consistent with previous work (Spero 1987), the incorporation of 13C into starch on the 

dinoflagellate pyrenoid surfaces was evident after only 45 min into the 13C pulse (Fig. 4.3) and likely 

starts as soon as the symbiont is exposed to light, judging from the observed enrichment levels (Fig. 

4.4D). Initially, we observe 13C-enrichments in starch on the pyrenoid surfaces and in starch grains 

accumulating in the dinoflagellate cytosol. These observations indicate that the dinoflagellates rapidly 

transfer starch from the pyrenoid surface to the cytosol during the initial 6 h pulse/light period (Fig. 

4.3). A similar carbon storage pathway was reported for the symbiotic dinoflagellate Symbiodinium 

spp. in corals during a comparable pulse-chase experiment (Kopp et al., 2015a).  

The abundance of starch grains in the cytosol increased throughout the light pulse phase, 

followed by a steady decrease during the night (Fig. 4.4C), due to dinoflagellate respiration, cell division 

(as indicated by 13C redistribution to other dinoflagellate organelles following mitosis; Fig. 4.8E), as well 

as photosynthate translocation to the host (Figs. 4.3, 4.5 and 4.6). These carbon pathways for the 

photosynthetically assimilated carbon seem similar to those reported for symbiotic corals (Kopp et al., 

2015a). Starch, the most abundant C storage form in plant cells, consist of amylopectin and amylose 

synthesized from the simple hexose glucose (supplied by photosynthetic C fixation), and its 

degradation results mainly in the formation of glucose and maltose which can be further processed in 

other C compounds (e.g. Preiss, 1982; Smith et al., 1997; Zeeman et al., 2010). In symbiotic 

dinoflagellates, starch is also the main form of C storage (although lipid droplets can also be seen 

(Dodge and Crawford, 1971; Taylor, 1968). Its degradation into simple hexoses and their reprocessing 

might provide C for both the algae and foraminiferal cell metabolism as was suggested in the coral-

dinoflagellate symbiosis (Kopp et al., 2015a). 

The efficiency of the O. universa dinoflagellate photosynthetic system to fix C was previously 

demonstrated by oxygen flux measurements using microsensors (Jørgensen et al., 1985; Köhler-Rink 

and Kühl, 2005; Rink et al., 1998). Based on a 14C pulse chase experiment and an estimate of 

foraminiferal C content, Caron et al. (1995) calculated a daily symbiont carbon production rate 

equivalent to 39 % of the total organic carbon weight of the foraminifera (host + symbiont complex). 

By comparing the respiration rate of dinoflagellates with the respiration rate of O. universa, Lombard 

et al. (2009) suggested that C is assimilated in excess by the foraminifera (i.e. the amount of organic 

matter produced and translocated by photosynthetic symbionts exceeds what is needed for host and 

symbiont growth) and that excess C could be released into the environment, potentially under the 

form of amino acids to attract prey.  
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 Photosynthate translocation and fate inside the host cell 

After 45 minutes of incubation, we observed 13C-enriched lipid droplets within the 

foraminiferal endoplasm (Fig. 4.3), which indicates rapid translocation of 13C-photosynthates from the 

dinoflagellate to the foraminiferal host cell. Fast C transfer was also observed in a coral symbiotic 

system where 13C-enriched host lipids were observed after only 15 minutes (Kopp et al., 2015a). The 

continuous increase of lipid 13C-enrichment during the first 18 hours of these experiments (Fig. 4.5) 

indicates photosynthate C is moving between the dinoflagellates and foraminiferal host continuously. 

In addition to the presence of lipid in the endoplasm we also see a gradual increase in 13C-label in all 

foraminiferal endoplasm compartments indicating the foraminifera is utilizing the assimilated 

photosynthate carbon for its metabolic needs. 

Small lipid droplets similar in appearance were observed both in the dinoflagellates and the 

foraminiferal endoplasm (Fig. 4.6). The presence of lipid droplets in the dinoflagellates was previously 

documented in both O. universa symbionts (Siano et al., 2010) and in free swimming dinoflagellates 

(Dodge and Crawford, 1971). In our study it is noteworthy that these lipid droplets were often seen in 

close proximity to the dinoflagellate vacuolar membrane (Fig. 4.6). These images could suggest a 

translocation of photosynthate carbon from the symbiotic dinoflagellate to the host foraminiferal cell 

either as a direct cross membrane transfer by lipid exudation or solubilization of the lipids into free 

fatty acids in the dinoflagellate to pass the membrane, and an immediate recombination on the other 

side in the foraminiferal cell. 

Several studies have reported that fatty acid production of triacyglycerols (TAGs) in marine 

algae chloroplasts initiates in the chloroplasts prior to export from the algal cell (Fan et al., 2011; 

Merchant et al., 2012). Incubation of the coral Pocillopora capitata with 14C-acetate suggests the coral 

first assimilates acetate and subsequently transfers carbon to the dinoflagellates where it is then 

converted into fatty acids prior to transferring the synthesized lipids back to the host cell (Patton et 

al., 1977). Although the C-integration pathway is different than in our experiment where inorganic 

carbon assimilation occurs in the symbionts, it attests to the direct transfer of fatty acids between the 

symbionts and the host cell. The same incubation protocol applied to the sea anemone Condylactis 

gigantea led to similar 14C incorporation in host lipid droplets (Kellogg and Patton, 1983). The same 

exudation process was observed in isolated dinoflagellates from the corals Stylophora pistillata and 

Seriatopora hystrix, where the coral lipid droplets were also observed adjacent to the algal membrane 

(Patton and Burris, 1983). However no lipid exudation was observed in the dinoflagellates from the 

coral Millepora exesa and the giant clam Tridacna sp., which suggests that this phenomenon may not 

be universal or might be seasonal. Besides the exudation of lipid droplets, carbon transfer could occur 
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as free fatty acid transfer as it was suggested between symbiotic dinoflagellates and clams (Johnston 

et al., 1995). In Johnston et al. (1985), a δ13C comparison of the fatty acids found in the clam tissue 

versus the dinoflagellates suggests a direct translocation of palmitic and 16:1ω7 acids.  

Transfer of other carbon compounds between symbiotic dinoflagellates and host cells has 

been proposed such as glycerol and soluble molecules such as glucose, malate, citrate, glycolate, 

succinate or amino acids (Hofmann and Kremer, 1981; Trench, 1971, 1979). In corals, ciliates and 

sponges, symbiotic green algae chlorellae are known to release maltose, as well as other soluble 

compounds like glucose (Cernichiari et al., 1969; Muscatine et al., 1967). However, the studies 

discussed above quantified compounds released in culture medium by isolated symbiotic microalgae. 

A more recent study performed on different dinoflagellate-bearing symbiotic cnidarians suggests that 

glycerol translocation, which was thought to be one of the main carbon transport forms, is a stress 

response of the symbiotic algae after being separated from their natural  host cell environment 

(Burriesci et al., 2012). These authors separated the symbiotic algae from their host after exposure to 
13C-bicarbonate and found that glucose might be the main metabolite that is transferred between 

symbionts and host cells.  

In the symbiotic radiolarian Collosphera huxleyi, as well as in the coral Heteroxenia fuscescens, 

a large proportion of the transferred carbon found in the host cell is thought to involve a glycerol 

transfer step prior to the production of lipids (e.g., wax, fatty acids and triglycerides) (Anderson et al., 

1983; Schlichter et al., 1983). In H. fuscescens, Schlichter et al. (1983) reported a rapid conversion of 

soluble compounds into lipids in both symbiont and host cells, and attributed this to the better energy 

storage yield conferred by the lipogenesis over a carbohydrate storage. The reprocessing of C-soluble 

compounds was also shown in the coral Acropora cf. scandens where labeled 14C-glycerol and 14C-

glucose were rapidly converted to lipid. After 60 min of incubation, ~30 % of the 14C fraction was found 

in the lipophilic fraction (Schmitz and Kremer, 1977). However the authors could not conclude whether 

the reprocessing of the photosynthates occurs in the symbionts or the host.  

Whatever the metabolite transferred, it is likely that these transfers of soluble compounds also 

happen in the symbiosis between dinoflagellates and O. universa. Unfortunately the method used here 

does not allow the detection of soluble compounds. If glycerol, hexoses or amino acids were present 

in the O. universa symbiotic system, then we would have lost evidence of this step during the rinse 

phase of sample preparation. Only 13C stored in lipid or fixed carbohydrates could be detected in our 

study. Transfer lipid or soluble forms are not mutually exclusive and might be concomitant in the 

symbiosis between dinoflagellate and foraminiferal cells. In cnidarians these processes are controlled 

by the host through the expression of specific molecules to stimulate or inhibit the release of 
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photosynthates from the algae (review in Yellowlees et al., 2008). Thus depending on the 

environmental conditions and the host metabolic state, the host could modulate this transfer and 

preferentially trigger the translocation of lipids or soluble compounds. The different transfer pathways 

may lead to different carbon uses in the host cell such as storage in lipid droplets or direct use in 

various metabolic pathways.  

The small 13C-enriched opaque structures observed in the foraminiferal endoplasm (Fig. 4.7) 

could correspond to the electron opaque bodies described in benthic foraminifera (see chapter 1) and 

seen on the TEM micrographs of planktonic species in several previous publications (Anderson and Bé, 

1976b; Hemleben et al., 1989). These structures, also called “electron dense bodies”, were found to 

contain nitrogen and significantly more sulfur than other organelles (Nomaki et al., 2016).  

The fibrillar bodies (Fig. 4.7) observed in the O. universa endoplasm and internal matrix are 

organelles specific to the planktonic foraminifera. They were previously described in many TEM studies 

from different planktonic species (Anderson and Bé, 1976b, 1976c; Hansen, 1975; Lee et al., 1965; 

Spero, 1988). Variation in the 13C-enrichment of the fibrillar bodies reflects their time of formation 

before or during the pulse and/or chase phases of our experiment. Based on cytological staining, (Lee 

et al., 1965) identified the protein nature of the fibrillar bodies (called vesicular system). The role of 

these organelles remains unknown although Hansen (1975) speculated that they could serve an ion 

exchange function and were important for buoyancy. Later Spero (1988) suggested the fibrillar bodies 

are integrally involved in biomineralization, chamber formation and Ca storage. 

Despite speculation by Hansen that the fibrillar bodies are related to buoyancy, the production 

of 13C-lipid in O. universa raises the intriguing possibility that lipid production is integrally related to 

the buoyancy mechanism in this and perhaps other species of planktonic foraminifera. (Spero, 1988) 

noted that the majority of O. universa specimens produce a spherical chamber at night when the 

symbionts are sequestered within the endoplasm. The production of such a large test, coupled with 

chamber thickening during calcification, means the foraminifera must have evolved a mechanism to 

rapidly generate positive buoyancy in order to counter the density increase of the organism that is 

associated with calcification. We hypothesize that lipid production associated with carbon 

translocation plays a significant role in buoyancy. Furbish and Arnold (1997) and Kucera (2007) also 

point to low density lipids or gasses as a source of negative buoyancy to offset the negative buoyancy 

of the shell calcite. Such a function for lipids could provide a rationale for the foraminifera system to 

vary the type of carbon translocated between symbiont and host cell to lipid vs soluble carbon as 

discussed earlier. 
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 Conclusion 

The symbiotic dinoflagellates transfer their photosynthates to the foraminiferal cell 

continuously, throughout the day-night cycle. Thus their massive migration along the spines to enter 

the foraminiferal endoplasm at night might have another reason than to enhance this transfer. The 

NanoSIMS data bring the evidence of an efficient dinoflagellate photosynthesis and a rapid 

translocation of the carbon to the foraminiferal cell as it has been documented in the coral system. 

We cannot conclude here about the detailed metabolic mechanism concerning the photosynthates 

transfer from the dinoflagellate to the host cell. From our data and literature it seems that this transfer 

could happen either whether under the form of small lipid droplets transferred directly exudate the 

algal and symbiosome membranes; or under the form of free lipophilic fatty acids soluble crossing the 

membranes; or under hydrophilic forms such as glycerol or other hexoses which would be later 

reprocessed into lipids; all pathways might be concomitant. The carbon translocated to the 

foraminiferal cell is then either stored by the foraminifera in lipid droplets or directly used for its 

metabolism. Finally our data do not allow us to conclude about the possibility of the dinoflagellate to 

use the CO2 respired by the foraminifera, also this seems really likely as it would provide them a 

substantial source of inorganic carbon to maintain their high photosynthetic rate. 

 

 

Acknowledgements: 

The electron microscopy platform at the University of Lausanne (Switzerland) is thanked for 

help and access to the equipment. The technical assistant from the Wrigley marine Institute and the 

divers are thanked. 

Funding sources: 

This work was supported by the Swiss National Science Foundation (grant no. 

200021_149333). 

 





203 
 

General discussion and perspectives 

In this thesis work NanoSIMS analysis correlated with TEM observations was used to 

investigate foraminiferal metabolism and physiological processes. Incubation with stable isotopes 

were done to follow the assimilation and fate within the cell of different organic and inorganic 

compounds. First, detailed ultrastructural description of the organelles encountered in foraminiferal 

cell were made to facilitate the interpretation of NanoSIMS-TEM results. This thesis work then focused 

on three different physiological functions in benthic and planktonic foraminifera: (1) dormancy in 

response to anoxia, (2) kleptoplasty (chloroplasts sequestration) in benthic foraminifera from both 

photic environments, and (3) symbiosis of photosynthetic microalgae with planktonic foraminifera. 

The main results are discussed below, after a short discussion of the main analytical method used in 

this work. 

 

 NanoSIMS advantages and limitations 

NanoSIMS has proven to be a powerful analytical tool to study foraminiferal metabolism. Its 

high spatial resolution enabled us to follow precisely the assimilation of isotopically labeled 

compounds within the cell and even within sub-cellular compartments; albeit the specific chemical 

nature of these compounds cannot be determined from NanoSIMS analysis. In correlation with 

transmission electron microscopy (TEM) the NanoSIMS is ideal to identify the labeled structures and 

characterize more precisely the transfers and exchanges that take place between organelles and/or 

between symbionts/kleptoplasts and the foraminiferal cell. In addition to the high spatial resolution 

provided by TEM-NanoSIMS correlation, the use of time-series experiments enables the visualization 

of the dynamics of these exchanges and the time scale of the metabolic processes could thus be 

determined and compared for different conditions or experiments. And finally, although it cannot be 

used to precisely quantify the uptake of a compound, NanoSIMS imaging yields quantitative 

information that can be used as relative concentrations to compare assimilation from one cell 

type/compartment to another.  

However, it is important to keep in mind that bias due to the sample preparation preclude 

estimates of net uptake of any labeled compounds (Musat et al., 2014, Nomaki et al., submitted), or 

precisely compare isotopic enrichment values with values obtained with different methods. To obtain 

this kind of data complementary analysis are needed, such as bulk isotopic measurement (as it was 

done in chapter 2 to calculate the net uptake of an inorganic compounds). 
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One of the major problems encountered in the NanoSIMS work presented in this thesis is the 

loss of soluble components during the sample preparation. Indeed, if isotopically labeled soluble 

compounds are produced by the studied organisms, they could not be detected by NanoSIMS analysis. 

This could be avoided with the use of cryofixation processes. Cryofixation of foraminifera was already 

done (Goldstein et al., 2004; Goldstein and Richardson, 2002), but never in combination with any other 

analytical technique. The soluble compounds could also be analyzed by different techniques, such as 

those employed to study metabolomics. For example in the chapter 2, the use of GC-MS for fatty acids 

analysis brought valuable additional information about the feeding metabolic processes under oxic or 

anoxic conditions, respectively. Some of the studies presented in this thesis work will be completed by 

new experiments with NanoSIMS combined with metabolomics approaches to further understand the 

foraminiferal metabolic functions (see below). Many different combination of NanoSIMS with other 

analytical methods (energy- dispersive X-rays (EDS), time-of-flight secondary ion mass spectrometry 

(ToF-SIMS), nuclear magnetic resonance (NMR), liquid chromatography-mass spectrometry (LC-MS), 

epifluorescence, fluorescent hybridization in-situ (FISH) or diverse biochemical analysis) can be found 

in literature (Jiang et al., 2016; Krueger et al., 2017; Nomaki et al., 2016; Perfumo et al., 2014; Raina et 

al., 2017), and could be applied to foraminiferal cell analysis. 

 

 Ultrastructure of benthic foraminiferal cells 

As it was emphasized in the introduction, there was a need to systematically gather 

information about “small” benthic foraminiferal ultrastructure, which was missing from the literature. 

Especially because the main analytical tool in this study is the NanoSIMS use in combination with TEM, 

a strong background knowledge of the foraminiferal cell ultrastructure was required. The first chapter 

of this thesis thus presented an inventory of the organelles observed in benthic foraminiferal cell based 

both on the review of the literature and novel TEM observations on nine different species inhabiting 

different environments. 

Organelles can be classified into three categories: (1) common organelles with known 

functions observed in all foraminiferal species, also observed in most eukaryotic cells; (2) organelles 

recurrent in all foraminiferal species, with no similarities to any structures observed in other taxa; and 

(3) organelles observed only in some specific species, likely linked to a special metabolism. This work 

particularly highlighted the variability among species. For example, in the first category, although these 

common organelles (i.e. nucleus, mitochondria, endoplasmic reticulum, Golgi apparatus or 

peroxisomes) were observed in all foraminiferal cells, their aspect can differ between species. In 
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addition, the endoplasm aspect can differ greatly between species, probably due to different 

metabolism. For example, the large vacuoles mainly observed in denitrifying species are thought to 

harbor nitrate intracellular pool. Structures linked to feeding metabolism will vary depending on the 

diet or trophic mechanism. A systematic study of foraminiferal ultrastructure thus permits to gain 

insights into the metabolic mechanisms exhibited by the different species. The review of functions and 

roles of the organelles involved in trophic mechanisms was of fundamental for the rest of this thesis 

work. Indeed, the following chapters all discussed feeding strategies in foraminifera, whether for 

grazing on algal biofilm or mixotrophy strategies brought by symbionts. 

Finally this work also emphasized the need for further research. As it could be seen, TEM 

observations alone are not sufficient to unravel the role and function of most of the organelles 

observed in foraminiferal cytoplasm. Complementary techniques, such as the NanoSIMS, are 

necessary to link ultrastructure to metabolic pathways and physiological functions. 

 

 Dormancy in response to anoxia 

Among the different adaptations proposed for foraminiferal survival to anoxia (including 

symbiosis with prokaryotes, kleptoplasts, ultrastructural adaptations) only denitrification was proven, 

by the foraminifera itself or through symbiosis with denitrifying prokaryotes (Bernhard et al., 2012a, 

2012b; Risgaard-Petersen et al., 2006). Denitrification performed by foraminifera may play an 

important role in nitrogen geochemical cycle depending on the environment (Høgslund et al., 2008; 

Piña-Ochoa et al., 2010a). But although this alternative anaerobic metabolism is widespread, not all 

foraminifera possess it (Piña-Ochoa et al., 2010a). The case of Ammonia cf tepida is interesting: this 

shallow benthic species in one of the most abundant species in intertidal environments. It is able to 

survive long laboratory incubation under anoxia (Nardelli et al., 2014) and is found in situ deep in the 

sediment column where no oxygen can be found (Thibault de Chanvalon et al., 2015) where they are 

brought by macrofaunal bioturbation (Maire et al., 2016). The feeding experiment carried out under 

both oxic and anoxic conditions presented in chapter 2 shows that the Ammonia cf tepida trophic 

mechanism in strongly affected by the lack of oxygen. Although they survived 28 days under anoxia, 

we observed a drastic reduction of their physiological functions: they stopped their heterotrophic 

metabolism after 24 h and they could not grow (i.e. they did not calcify during the experiment). All 

these observations indicate that Ammonia cf tepida lacks any alternative anaerobic metabolism which 

could provide them energy to maintain the level of activity they have under oxic conditions. Thus we 

suggested that it enters dormancy to withstand long anoxic conditions, with strongly reduced 
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metabolic activity. This strategy is in agreement with previous findings of species exhibiting lower 

intracellular ATP concentrations when incubated in anoxia (Bernhard and Alve, 1996). This dormancy 

strategy might thus be found in other foraminiferal species, and be more widespread than previously 

acknowledged (Ross and Hallock, 2016). 

In oxic conditions, benthic foraminifera are thought to play a significant role in the carbon 

processing in the sediment, due to their rapid uptake of phytodetritus (Gooday et al., 1990, 1992, 

Moodley et al., 2000, 2002; Nomaki et al., 2006; Woulds et al., 2007). This is particularly true in 

intertidal mudflats, where foraminifera have been shown to account for up to 7% of the organic matter 

that is remineralized into the sediment (Cesbron et al., 2016). However, we showed here that under 

anoxic conditions, some species are able to remain dormant; suggesting their role might be negligible 

compared to that of other benthic components such as bacteria. However, to validate this hypothesis, 

the occurrence of dormancy in foraminifera need to be more thoroughly investigated, to determine 

how widespread this metabolic response is to anoxic conditions. This will be a particularly important 

consideration for species inhabiting coastal ecosystems, as these are more frequently subjected to low 

O2 events (Diaz and Rosenberg, 2008; Helly and Levin, 2004; Rabalais et al., 2010). Foraminifera have 

been shown to be among the most resistant species to anoxia compared to the rest of the meiofauna 

and the macrofauna (Gooday et al., 2000; Levin et al., 2009; Moodley et al., 1997). Denitrification and 

dormancy are two metabolisms that can explain this tolerance. But the metabolism of many species 

have not been assessed yet and there may be other anaerobic metabolisms in foraminifera that remain 

to be discovered. 

 

 Kleptoplasty in coastal benthic foraminifera 

Sequestration of chloroplasts in foraminifera inhabiting photic environments present two main 

advantages due to photosynthesis: (1) the production of oxygen within the cell (Cesbron et al., 2017; 

Jauffrais et al., 2016), and (2) the uptake of inorganic carbon via the Benson-Calvin cycle, its 

assimilation into organic compounds, and transfer to the foraminiferal cell (Lopez, 1979, chapter 3.2). 

The latter might represent an advantage by avoiding competition for resources with other 

heterotrophic organisms. 

Chapter 3.1 first showed that among the different species harboring kleptoplasts, different 

sequestration pattern are represented. Some species, like Ammonia cf. tepida, are not true 

kleptoplastic, the few kleptoplasts they possess are mostly in a degradation state. In addition, their 
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kleptoplasts are known to be non-functional (Jauffrais et al., 2016; chapter 3.3). We here confirm the 

hypothesis first speculated by Jauffrais et al. (2016), that the presence of sequestered chloroplasts in 

these species might likely result from a transitionary state of algae digestion, i.e. foraminifera feed on 

diatoms that they digest within the cell, and the chloroplasts are among the last organelles to be 

degraded (chapter 1, data not shown), thus remaining temporary in the foraminiferal cytoplasm. Other 

species, such as Elphidium williamsoni and Haynesina germanica are known to be true kleptoplastic 

species, harboring functional kleptoplasts (Cesbron et al., 2017; Jauffrais et al., 2016, 2017; Lopez, 

1979). This was confirmed in this thesis with the measurement of photosynthetic oxygen production 

in E. williamsoni and inorganic carbon assimilation and transfer to the foraminiferal cell in both species 

(chapters 3.2. and 3.3). However, the kleptoplastic strategies differ between species. On one hand, H. 

germanica have kleptoplasts distributed within its entire endoplasm, and the carbon coming from 

photosynthetic carbon assimilation was mainly found stored in lipid droplets (chapters 3.1 and 3.2). In 

this species, the carbon is thought to be transfer, at least partially, in the form of lipid droplets directly 

exudated into the foraminiferal host cell. On the other hand, E. williamsoni seems to display a 

particular kleptoplast distribution along the cell periphery, suggesting a strategy to either expose or 

protect sequestered chloroplasts from light, or favor gas exchanges with the surrounding environment 

(chapter 3.1). In addition this species exhibited a different carbon metabolism than H. germanica: the 

carbon assimilated by the kleptoplasts was not found in foraminiferal lipid droplets (chapter 3.3). Only 

a light 13C-enrichment was detected in the cytoplasm. One of the most probable explanation is that 

the inorganic carbon is assimilated into soluble compounds instead of fatty acids (Fig. 5.1). These 

compounds would be lost during the sample preparation, and thus not detected by NanoSIMS analysis. 

To answer this question, new experiments with bulk 13C enrichment measures as well as metabolomics 

to determine the 13C-labeled compounds (similar analysis then the fatty acid analysis done in chapter 

2) are necessary. 

The studies presented in the chapters 3.2 and 3.3 show an unclear scheme for inorganic 

nitrogen and sulfur assimilation in kleptoplast benthic foraminifera (Fig. 5.1). Both the kleptoplastic 

species E. williamsoni and H. germanica were shown to assimilate 15N-ammonium and 34S-sulfate. But 

we showed for the first time that a non-kleptoplastic species, Ammonia cf. tepida, is also able to 

actively assimilating labeled 15N-ammonium and 34S sulfate. This result emphasizes the need for more 

research to determine the role (if any) played by kleptoplasts in these metabolic processes. In algae, 

chloroplasts are known to play a role in sulfur and nitrogen metabolism: assimilation of inorganic S and 

N was shown and resulted in the incorporation of these elements into various organic compounds such 

as amino acids or phospholipids (Benning and Garavito, 2008; Giordano et al., 2008; Giordano and 
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Raven, 2014; Syrett, 1981; Takahashi et al., 2011; Zehr et al., 1988; Zehr and Falkowski, 1988). This 

might also be the case in kleptoplastic foraminifera. 

 

 

Fig. 5.1: Schematic representation of the C, N and S assimilation pathways in kleptoplastic foraminiferal cell. 
C, N and S pathways are represented in black, blue and red, respectively. The thick arrows represent pathways 
demonstrated in this thesis work in the chapters 3.2 and 3.3. The thick dotted arrows represent pathways 
identified in this thesis but for which the nature of the compounds remain unknown. The thin arrows represent 
pathways hypothesized at the beginning of the work (see figure 1.5 in the literature review), that have not been 
proved yet, but are still suspected to happen. And the dotted thin arrows represent new hypotheses made thanks 
to the result obtained in this thesis. APS: adenosine 5-phosphosulphate, GDH: glutamate dehydrogenase, 
GOGAT: glutamine oxoglutarate aminotransferase, GS: glutamate synthase. Modified from Giordano and Raven 
(2014), Pyke (2009) and Takahashi et al (2011). 

 

So there are still a lot of questions unanswered (Fig. 5.1). For example, what is the main form 

of carbon transfer between kleptoplasts and foraminifera cytoplasm? We suggested in H. germanica 

that this happened by lipid droplets exudation; but due to the sample preparation for TEM-NanoSIMS 

analysis, soluble compounds were lost and their transfer could not be assessed (see section 1). Also, 
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in E. williamsoni, where does the photosynthetically assimilated carbon go in the foraminiferal cell? 

And what are the preferential pathways used by kleptoplastic species to meet their nitrogen and sulfur 

requirements: assimilation of inorganic compounds via the kleptoplasts and/or via the foraminifera’s 

own metabolism? And does it vary according to environmental conditions (e.g. light, oxygen 

concentration)? In an attempt to answer these questions, additional experiments will be done. New 

incubations with labeled isotopes will be conducted, and NanoSIMS analysis will be combined with 

other analytical techniques. The analysis of specific metabolite (sugars, fatty acids, amino acids, 

sulfolipids, etc.) concentration and isotopic enrichment should be done to better under the metabolic 

pathways happening in the foraminiferal cell, kleptoplastic or not. 

Finally, the probably most interesting study to be made is the quantification of inorganic 

ammonium and sulfate uptake. These results would be very interesting as they could help to assess 

the role played by foraminifera in the geochemical cycles of their environments. In particular, 

foraminifera were not known until now to actively assimilate ammonium and sulfate, and even if it 

was suspected in kleptoplastic foraminifera (Grzymski et al., 2002), they role in nitrogen and sulfur 

cycles might have been totally underestimated. 

 

 Carbon metabolism in symbiotic planktonic foraminifera  

Symbionts associated to planktonic foraminifera include mainly dinoflagellates (Anderson and 

Lee, 1991; Hemleben et al., 1989). One of the most studied species is Orbulina universa, in symbiosis 

with the photosynthetic dinoflagellate Pelagodinium béii (previously known as Gymnodinium béii, 

Siano et al., 2010). In the chapter 4 we investigated the carbon metabolism in this foraminiferal 

species, i.e. the inorganic carbon assimilation by the symbionts and its subsequent transfer to the 

foraminiferal host cell. 

One of the remarkable features of O. universa is the migration of the symbionts along its 

spines. Previously this was thought to follow a strict diurnal cycle: all the symbionts on the spines 

during day, and within the foraminiferal endoplasm at night (Bé et al., 1977; Spero, 1987). However 

we showed that there is a permanent pool of dinoflagellates inside the foraminiferal endoplasm, even 

during the day. This allows the transfer of carbon between the symbionts and the host cell to happen 

at any time. At night all the dinoflagellates were migrating inside the foraminiferal endoplasm, where 

they underwent division. It is possible that the foraminifer triggers the dinoflagellate mitosis by 
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providing it with nutrients (potentially nitrogen or phosphorus) (Jørgensen et al., 1985; Uhle et al., 

1999), but the experiment done did not allow us to confirm this assumption. 

The NanoSIMS analysis of assimilation of 13C-bicarbonate and 13C fate within the cells 

demonstrated an efficient dinoflagellate assimilation of carbon, which is then either stored into starch 

grains, respired, or translocated to the foraminiferal cell. The carbon translocated to the foraminiferal 

cell is then either stored by the foraminifera in lipid droplets or directly used for its metabolism. The 

nature of this transfer to the foraminiferal host cell remains unknown, although our observations gave 

insights of the existence of a transfer under a lipid form; either lipid droplet exudation, or direct 

transfer of free fatty acids across the dinoflagellate and symbiosome membranes. As for the benthic 

kleptoplast foraminifera we cannot exclude a concomitant transfer under a soluble form. This would 

be likely as it was shown to take place in other symbiosis, including symbiosis between dinoflagellates 

and marine organisms (cnidarians mostly), with transfer of glycerol, glucose and other hexoses, or 

amino acids (Burriesci et al., 2012; Trench, 1979; Yellowlees et al., 2008).  

Again here the analysis of the isotopically enriched metabolites would be necessary to fully 

understand the carbon exchanges between symbionts and foraminiferal cell. In addition the nitrogen 

and phosphorus metabolisms would be very interesting to look at, especially to test the assumption of 

the foraminifera providing nutrients to trigger dinoflagellate division at night.  

 

 Conclusion 

In this work we showed that NanoSIMS is a well-adapted analytical technique to look at 

foraminiferal metabolism. It allowed to visualize the extreme variability of metabolic pathways in the 

frame of different physiological functions among different species, or even within a single species 

exposed to different environmental conditions. But while certain questions were answered, many 

others were raised by the obtained results. Indeed, TEM-NanoSIMS technique apply to foraminifera 

enabled the discovery of several metabolic mechanisms ignored in foraminifera (in particular 

ammonium assimilation by foraminifera), and these results pose a many new questions that need to 

be addressed to better understand the foraminiferal metabolic processes, and their role in their 

ecosystems. 
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