
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. W. Zwaenepoel, président du jury
Prof. C. Koch, directeur de thèse

Prof. V. Tannen, rapporteur
Prof. M. Zaharia, rapporteur
Prof. V. Kuncak , rapporteur

Compilation Techniques for
Incremental Collection Processing

THÈSE NO 8019 (2017)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 27 OCTOBRE 2017
À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS

LABORATOIRE DE THÉORIE ET APPLICATIONS D'ANALYSE DE DONNÉES
PROGRAMME DOCTORAL EN INFORMATIQUE ET COMMUNICATIONS

Suisse
2017

PAR

Daniel LUPEI

All things belong to the same order of things, for such is the oneness

of human perception, the oneness of individuality, the oneness of

matter, whatever matter may be.

The only real number is one, the rest are mere repetition.

— Vladimir Nabokov

To my extended family comprising of mum, dad, my sister,

Marina, Delia and Adrian

Acknowledgements
First, I would like to thank my advisor Christoph Koch for all the support he has given me

throughout my PhD journey. He has encouraged me in pursuing my curiosity and developing

extensive expertise in topics that were very satisfying for me intellectually and allowed me

to develop both a broad as well as deep understanding of my research field. Without his

strong and sustained guidance and encouragements none of my phd work would have been

possible. Moreover, he has done all in his power for me to get as much exposure as possible

to both academic and industrial research, by facilitating visits with professors from other

universities or having me do internships in research labs. I also consider myself privileged to

have benefited from his unique point of view towards challenges in the field of databases as

well as his advice wrt. approaching research problems.

I would like to thank the members of my thesis committee who kindly accepted to offer their

time and energy to assess my dissertation and to suggest improvements. In particular, I would

like to thank Val Tannen who has generously guided my first steps in crafting and presenting a

research contribution. His advice has stuck with me for the duration of my PhD, and he has

continuously been someone I could turn to for advice and support. Furthermore, much of my

work would not have been possible but for the work he has done before in advancing the state-

of-the-art in query languages for the nested data model. I would like to thank Todd Mytkowicz

and Madan Musuvathi for mentoring me during my internship at Microsoft Research, and to

all the other members of the group with whom I was fortunate enough to collaborate.

I would like to thank to all the members of the DATA lab for making my PhD journey an

enjoyable one. I thank Milos Nikolic for his help each time I was seeking an opinion on my

work, and his friendship as we were both doing an internship in Microsoft. I thank Andrej

Spielmann, Thierry Coppey, Immanuel Trummer and Sachin Basil John, my office mates, for

tolerating me over the years and for their patience in listening to my research conundrums. I

thank Yannis Klonatos, Aleksandar Vitorovic, Mohammed ElSeidy, Mohammad Dashti, Amir

Shaikhha and Lionel Parreaux for the invaluable discussions, insightful comments, and the

constructive feedback on my ongoing research and on my presentations. I would like to thank

Simone Muller for helping me in all the administrative problems I faced, and for making sure

that everything ran smoothly within our lab.

Thank you to Adrian Popescu, Marina Boia and Delia Stancu for the unforgettable time spent

i

Acknowledgements

together in the past six years, and for making sure I would never feel alone or uncared for. My

experience as a PhD student would be just a mere sketch but for the color they brought to

every outing, coffee break or trip we made. Each of you have changed me in countless ways,

taught me how to persevere, to find laughter and beauty, and to trust in my abilities. Your

example continues to inspire me every day. I have greatly enjoyed the friendship of Valentina

Sintsova, Irina and Eugen Paraschiv, Corina and Catalin Trif, Cristina Radu, Alina Dudeanu,

Ina Bialova, Yannis Klonatos, Mohammed ElSeidy, Irina Prostakova, Andrew Becker, Sergii

Vozniuk, Eleni Tzirita Zacharatou, Mirjana Pavlovic, Cristina Ghiurcuta, Danica Porobic, Mihai

Martalogu, Florin Dinu, Gregoire Devauchelle, Onur Yürüten. Having someone to share my

worries with and having them support and comfort me through the tough times has made all

the difference. I will always remember fondly our time cooking pancakes or delicious cakes,

hiking or skiing over the Alps, or the late hours picnics by the lake.

I would like to thank my family for their unconditional moral support and love.

Lausanne, September 2017 D. L.

ii

Abstract
Many map-reduce frameworks as well as NoSQL systems rely on collection programming as

their interface of choice due to its rich semantics along with an easily parallelizable set of

primitives. Unfortunately, the potential of collection programming is not entirely fulfilled

by current systems as they lack efficient incremental view maintenance (IVM) techniques

for queries producing large nested results. This comes as a consequence of the fact that

the nesting of collections does not enjoy the same algebraic properties underscoring the

optimization potential of typical collection processing constructs.

We propose the first solution for the efficient incrementalization of collection programming

in terms of its core constructs as captured by the positive nested relational calculus (NRC+)

on bags (with integer multiplicities). We take an approach based on delta query derivation,

whose goal is to generate delta queries which, given a small change in the input, can update

the materialized view more efficiently than via recomputation. More precisely, we model the

cost of NRC+ operators and classify queries as efficiently incrementalizable if their delta has

a strictly lower cost than full re-evaluation. Then, we identify IncNRC+, a large fragment of

NRC+ that is efficiently incrementalizable and we provide a semantics-preserving translation

that takes any NRC+ query to a collection of IncNRC+ queries. Furthermore, we prove that

incremental maintenance for NRC+ is within the complexity class NC0 and we showcase how

Recursive IVM, a technique that has provided significant speedups over traditional IVM in the

case of flat queries, can also be applied to IncNRC+ .

Existing systems are also limited wrt. the size of inner collections that they can effectively

handle before running into severe performance bottlenecks. In particular, in the face of nested

collections with skewed cardinalities developers typically have to undergo a painful process of

manual query re-writes in order to ensure that the largest inner collections in their workloads

are not impacted by these limitations.

To address these issues we developed SLeNDer, a compilation framework that given a nested

query generates a set of semantically equivalent (partially) shredded queries that can be

efficiently evaluated and incrementalized using state of the art techniques for handling skew

and applying delta changes, respectively. The derived queries expose nested collections to

the same opportunities for distributing their processing and incrementally updating their

contents as those enjoyed by top-level collections, leading on our benchmark to up to 16.8x

and 21.9x speedups in terms of offline and online processing, respectively.

iii

Abstract

In order to enable efficient IVM for the increasingly common case of collection programming

with functional values as in Links, we also discuss the efficient incrementalization of simply-

typed lambda calculi, under the constraint that their primitives are themselves efficiently

incrementalizable.

Key words: collection programming, incremental computation, incremental view mainte-

nance, delta processing, higher-order incrementalization, nested relational calculus, shred-

ding, simply-typed lambda calculus

iv

Abstract
De nombreux map-reduce frameworks ainsi que des systèmes NoSQL s’appuient sur la pro-

grammation de collecte comme leur interface de choix en raison de sa sémantique enrichie

ainsi que d’un ensemble de primitives facilement parallélisable. Malheureusement, le poten-

tiel de la programmation de collecte n’est pas entièrement rempli par les systèmes actuels

car ils manquent de techniques efficaces de maintenance incrémentielle de vue (MIV) pour

les requêtes produisant de gros résultats imbriqués. Cela vient en conséquence du fait que

l’imbrication des collections ne bénéficie pas des mêmes propriétés algébriques soulignant le

potentiel d’optimisation des primitives de traitement typiques de collecte.

Nous proposons la première solution pour le incrementalization efficace du calcul relationnel

imbriqué positif (CRI+) sur les sacs (avec multiplicités entier), car ses opérateurs représentent

le cœur de la programmation de la collecte. Nous prenons une approche basée sur la dérivation

de requête delta, dont l’objectif est de générer des requêtes delta qui, compte tenu d’un petit

changement dans l’entrée, peuvent mettre à jour la vue matérialisée plus efficacement que

par recomputation. Plus précisément, nous modélisons le coût des opérateurs du CRI+

et classifions les requêtes comme efficacement incrémentalisable, si leur delta a un coût

strictement inférieur à celui de la réévaluation complète. Ensuite, nous identifions IncCRI+,

un grand fragment de CRI+ qui est efficacement incrémentalisable et nous fournissons une

transformation qui préserve la sémantique alors qu’elle convertit toute requête CRI+ en une

collection de requêtes IncCRI+. En outre, nous prouvons que la maintenance incrémentielle

de CRI+ se situe dans la classe de complexité NC0 et nous montrons comment l’MIV récursif,

une technique qui a fourni des accélérations significatives par rapport à l’MIV traditionnel

dans le cas de requêtes plates, peut également être appliquée à IncCRI+.

Les systèmes existants sont également limités par rapport à la taille des collections in-

ternes qu’ils peuvent gérer efficacement avant de rencontrer des goulots d’étranglement

sérieux. En particulier, face à des collections imbriquées avec de cardinalités asymétriques

les développeurs ont généralement subir un processus douloureux de réécritures de requête

manuelle afin d’assurer que les plus grandes collections intérieures de leur charge de travail

ne sont pas affectées par ces restrictions.

Pour résoudre ces problèmes, nous avons développé SLeNDer, un framework de compilation

qui a partir d’une requête imbriquée génère un ensemble de requêtes sémantiquement équiv-

alentes (partiellement) déchiquetées qui peuvent être évaluées et incrémentées de manière

efficace en utilisant des techniques d’art pour le traitement des biais et l’application des modi-

fications delta, respectivement. Les requêtes dérivées exposent les collections imbriquées aux

v

Abstract

mêmes opportunités pour distribuer leur traitement et mettent à jour de façon incrémentielle

leurs contenus que ceux dont bénéficient les collections de premier niveau, ce qui conduit

pour notre benchmark à des accélérations allant jusqu’à 16.8x et 21.9x en termes de traitement

hors ligne et en ligne respectivement.

Afin de permettre une MIV efficace pour le cas de plus en plus fréquent de la programmation

de collecte avec des valeurs fonctionnelles comme dans Links, nous discutons également de

l’incrémentalisation efficace des lambda-calculs simplement typés, sous la contrainte que

leurs primitives sont efficacement incrémentables.

Mots clefs: Programmation de collecte, calcul incrémentiel, maintenance incrémentielle,

traitement delta, l’incrémentation d’ordre supérieur, le calcul relationnel imbriqué, le déchi-

quetage, lambda-calcul simplement typé

vi

Contents

Acknowledgements i

Abstract (English/Français) iii

1 Introduction 1

1.1 Why collection programming? . 2

1.2 Incremental evaluation . 3

1.3 Challenges to incrementalizing nested queries . 4

1.4 Summary of contributions . 5

2 Background 9

2.1 Nested Relational Calculus . 9

2.2 Delta processing for the flat relational case . 12

2.3 Efficient delta processing . 13

2.4 Parallel complexity classes . 15

2.4.1 Circuit complexity of Relational Algebra . 16

3 Deep Incrementalization of Nested Collections 21

3.1 Motivating example . 22

3.1.1 Incrementalizing ������� . 24

3.1.2 Maintaining inner bags . 25

3.1.3 Cost analysis . 27

3.2 Incrementalizing IncNRC+ . 28

3.2.1 Higher-order delta derivation . 30

3.2.2 Cost transformation . 34

3.3 Incrementalizing NRC+ . 38

3.3.1 The shredding transformation . 38

3.3.2 Working with labels . 42

3.3.3 Correctness . 44

3.3.4 Complexity of shredding . 46

3.4 Complexity class separation . 50

vii

Contents

4 Delta-processing for simply-typed lambda calculi 53

4.1 Deriving δ functions . 55

4.2 Deriving cost functions . 57

4.3 Higher-order deltas . 59

5 Deep Scaling for Nested Queries 61

5.1 Motivating use case . 64

5.1.1 Advantages . 66

5.1.2 Building efficient shredded programs . 68

5.2 Nested Ring Calculus . 69

5.2.1 Key vs. Value Nesting . 73

5.2.2 Delta Derivation . 74

5.3 The Shredding Transformation . 75

5.3.1 Shredding Context . 77

5.4 System architecture . 79

5.4.1 Recursive ANF . 80

5.5 Experiments . 82

5.5.1 Deep scaling . 83

5.5.2 Incremental Evaluation . 88

6 Related Work 91

6.1 Incremental processing for nested queries . 91

6.2 Shredding nested queries . 93

7 Conclusions 95

A Appendix 97

A.1 Incrementalizing IncNRC+ . 97

A.1.1 The delta transformation . 97

A.1.2 The cost transformation . 99

A.2 Consistency of shredded values . 103

A.3 Delta transformation for IncNRC+l . 105

A.4 Delta-processing for simply-typed lambda calculi 107

A.4.1 Group structures over product and functional types 107

A.4.2 Deriving δ and cost functions . 111

A.5 SLeNDer Benchmark . 116

List of figures 121

List of tables 123

Bibliography 130

Curriculum Vitae 131

viii

1 Introduction

Large scale data processing has become indispensable in many areas of computer science.

For example, in infrastructure management having the capability to analyze massive amounts

of data can provide valuable insights into complex systems and help reduce their operating

costs. Similarly, since the results of learning algorithms, such as those powering recommender

systems, can only be as good as the data they are being fed, the larger and richer the input

dataset, the better their outcome. In fact, the significant improvements in the accuracy of such

algorithms due to the analysis of ”big data“ have fueled a renaissance in machine learning

and artificial intelligence.

The need to process ever larger amounts of data has come at odds with the ending of Moore’s

Law, which for the past decades saw the number of transistors per chip double every year,

with a corresponding gain in processing power. Currently, one can no longer simply rely on

processor upgrades in order to handle the expanding workloads. This has made parallelization

a core concern in the design of algorithms and has prompted the development of map-reduce

frameworks (e.g. Apache Spark [72], Apache Pig [55], Scope/Cosmos [14]) which provide

programmers with familiar abstractions over cluster resources, while relieving them from the

many headaches of distributed computing, like resource allocation, scheduling, or faults in

the underlying infrastructure.

Since a parallel application can only be as fast as its slowest component, map-reduce frame-

works must make sure to distribute workloads as evenly as possible across processing nodes.

To do so they rely on collection programming as it provides a compelling tradeoff between

ease of parallelization and expressive power, i.e. its primitives are embarrassingly parallel

(eg. map, filter), while being expressive enough to support a variety of analytical tasks, like

machine learning or graph processing. Moreover, its close connection to classic relational

querying languages makes it possible to benefit from decades of database research on query

optimizations.

1

Chapter 1. Introduction

1.1 Why collection programming?

Collection programming has been widely adopted as the interface of choice by many map-

reduce frameworks and NoSQL systems due to its desirable combination of object-oriented

and functional (higher-order) features of modern programming languages within a rich alge-

braic framework common to standard querying languages like SQL. Its roots can be traced

back to calculi for complex/nested values and object-oriented querying languages, whose

relaxed data models allow for collections to be nested within records. Throughout the thesis

we rely on particular variants of nested relational calculi as formalizations for the core of

collection programming.

The shared algebraic framework with classic relational calculi results in collection program-

ming being similarly embarrassingly parallelizable. Indeed, certain versions of nested rela-

tional calculi have been shown to reside in a similarly low parallel complexity class [66] (NC vs.

AC0 for the flat relational calculus). This is especially relevant in the context of map-reduce

frameworks, as it indicates that queries written in such languages can indeed be uniformly

scaled out. Unfortunately, current systems do not fully realize this potential for parallelization

as they only distribute processing at the granularity of top-level records, while the computa-

tion of inner collections is performed sequentially. They are thus vulnerable to load imbalance,

whenever the sizes of inner collections differ significantly from one top-level record to the

next, or when top-level collections have low-cardinality (which can happen is they are the

result of grouping wrt. columns whose domain is small).

The embedding of collection programming withing general-purpose functional programming

languages offers a host of advantages from an expressiveness and a software development per-

spective. Being able to work with a wide range of datatypes combined with the ability to easily

integrate third-party libraries, considerably simplifies the development of complex analytical

pipelines across a variety of domains. Just having records that can hold nested collections

already opens up the possibility of representing hierarchical relationships in a natural way,

and eliminates the need for normalization when ingesting data or joining foreign keys when

processing it. Besides simpler and more maintainable code, the removal of these steps offers a

considerable boost in performance as they both require expensive data reshuffling operations.

These advantages have also underlined the proposal of language integrated querying frame-

works based on collection programming (eg. LINQ, Ferry, Links) that aim at providing a

single programming environment for all the layers of a system (from the database level to the

frontend) 1.

1 It is in fact not uncommon in industry to have the data management components of a system being developed
in JavaScript, which underscores the need for a unified programming environment for multi-tiered system
development.

2

1.2. Incremental evaluation

1.2 Incremental evaluation

Considering the large scale of data being processed it is rarely feasible to re-execute an entire

workload every time new data becomes available. Therefore, large-scale collection processing

in frameworks such as Spark [72] can greatly benefit from incremental maintenance in order

to minimize query latency in the face of updates. In addition, the monetization of processing

resources within cloud platforms makes it harder to ignore the waste associated with re-

evaluation, while manually creating and maintaining views in order to avoid recomputing

them is hard to scale to workloads consisting of complex, rapidly evolving query sets.

Streaming engines partially address this issue as they continuously update the output of

queries on incoming data. However, since they only provide limited semantics to their opera-

tors (eg. window semantics), developing applications on top of them becomes challenging as

soon as the underlying logic requires joining data from multiple sources.

By contrast, incrementalization techniques that speed up the propagation of input changes

to the output based on materializing intermediate results do so while preserving semantics.

Among such techniques, the use of delta queries to perform incremental view maintenance

(IVM) has proven to be a highly useful and, for instance in the context of data warehouse

loading, an indispensable feature of many commercial data management systems. With delta

processing, the results of a query are incrementally maintained by a delta query that, given

the original input and an incremental update, computes the corresponding change of the

output. Query execution can thus be staged into an offline phase for running the query over

an initial database and materializing the result, followed by an online phase in which the

delta query is evaluated and its result applied to the materialized view upon receiving updates.

This execution model means that one can do as much as possible once and for all before any

updates are first seen, rather than process the entire input every time data changes. Its success

is based on the fact that applying updates by delta queries requires little support at the query

engine level. In addition, the derived delta queries can be further optimized within the same

optimization framework as the original queries.

Delta derivation leverages the algebraic properties of operators to split the definition of a view

into two parts, one that only depends on the original input and thus can be materialized and

reused, and another, i.e. the delta query, that also depends on the update, but is potentially

cheaper to evaluate. For example, consider a query that computes a sum aggregate over a

column of an input relation. Then, if some new tuples are added to the input in the form

of a delta relation, the updated view definition can be expressed as the addition between a

query that aggregates over the original input and a second query that aggregates over the

delta relation. Since we already have the result of the first query, updating the view then

requires evaluating only the latter, which is considerably cheaper in the case of incremental

updates. In many cases deltas are actually asymptotically faster – for instance, the original

query in the previous example takes linear time, whereas the corresponding delta query does

not need to access the database but only considers the incremental update, and thus runs in

3

Chapter 1. Introduction

time proportional to the size of the update (in practice, usually constant time). We expand on

delta-based incrementalization techniques with a more detailed example in Section 2.2.

The benefits of incremental maintenance can be amplified if one applies it recursively [35]

– one can also speed up the evaluation of delta queries by materializing and incrementally

maintaining their results using second-order delta-queries (deltas of the delta queries). One

can build a hierarchy of delta queries, where the deltas at each level are used to maintain the

materialization of deltas above them, all the way up to the original query. This approach of

higher-order delta derivation (a.k.a. recursive IVM) admits a complexity-theoretic separation

between re-evaluation and incremental maintenance of positive relational queries with aggre-

gates (RA+Σ) [35], and outperforms classical IVM by many orders of magnitude [36]. However,

the techniques described above target only flat relational queries and as such cannot be used

to enable incremental maintenance for collection processing engines.

Unfortunately, delta processing is strongly dependent on the semantics of the target query

language as well as on the type of changes it can apply. In particular, the incrementalized

primitives must enjoy a rich set of algebraic re-writings wrt. to the update operations. While

these conditions are largely met by classic querying languages over flat relations, satisfying

them in the context of more expressive languages has proven problematic.

1.3 Challenges to incrementalizing nested queries

In the context of the incremental maintenance of views (IVM), a nested data model has

negative performance implications as one has to choose between deep or shallow incremen-

talization techniques, i.e. those that support small changes to inner collections, from those

that can only handle insertions/deletions of top-level records. However, both face significant

drawbacks as we detail in the following, which have prevented them from gaining the same

wide adoption enjoyed by online processing techniques targeting flat relational workloads.

Deep incrementalization proposals rely primarily on runtime change propagation algo-

rithms [22, 49, 52], which apply input updates through materialized intermediate results

all the way up to the maintained view. These techniques have to perform expensive book-

keeping in order to track the lineage of output values back to the input relations, and thus

be able to adjust them according to the input changes. Moreover, by doing so at runtime the

optimizations they can employ are restricted only to the physical level.

By contrast, compile-time approaches like the derivation of delta queries open up many more

opportunities for optimizations (e.g. query factorization, code specialization, etc.). Given a

query and an input update primitive, delta processing derives a delta query that computes the

corresponding update of the result. While it has proven to be an extremely effective technique

for the incremental maintenance of flat queries, current proposals targeting nested workloads

provide only shallow incrementalization [25].

4

1.4. Summary of contributions

To understand why, we recall that the delta derivation process relies on per query operator

re-write rules that translate the effects of an input update primitive into an output update

operation. This translation is predicated on the semantics of the operators involved, which

presents delta processing with a tradeoff between the expressiveness of the update primitives

supported vs. the class of query operators whose deltas are cheaper than re-evaluation. On

one hand, one could use only full tuple insertions/deletions as update primitives and be able

to derive efficient deltas for a large class of queries (as in [31]), considering that the interaction

of these updates wrt. the other querying constructs is extremely well behaved. On the other

hand, an expressive update language could be allowed, but then have a greatly reduced class

of views that can be efficiently maintained. For example, Ceri et al. [12] support all of SQL’s

update primitives but can incrementally update only views that do not use union and whose

attributes functionally determine keys of the base relations.

Unfortunately, in the context of nested queries both of the alternatives above, that is the use

of full tuple insertions/deletions as update primitives or the use of a more expressive update

language, are highly undesirable. The former one forces us to model even small changes to

inner collections by a deletion followed by the insertion of an entire top tuple (with its full

inner collection updated). Considering that nested collections can be arbitrarily large, such an

approach would greatly diminish the benefits of incrementalization. While more expressive

update languages that are capable of defining small updates to inner collections have been

proposed in the literature [43], they do so in a manner similar to SQL’s update primitives (i.e.

via selection predicates) which makes them vulnerable to similar shortcomings (as in [12]) wrt.

delta derivation.

1.4 Summary of contributions

In this thesis we advance the state of the art wrt. to the incrementalization and scaling of

collection programs as follows:

• We propose a delta-based solution for the deep incrementalization of collection pro-

grams. In order to assess its efficiency we define a cost semantics for collection operators

and establish that indeed the incrementalized version of a query is cheaper than re-

evaluating it on every update. Furthermore, we prove that the delta queries we derive are

in a lower parallel complexity class than the original queries (NC0 vs TC0). (Chapter 3)

In addition, we show that the embedding of collection programming within functional

languages is efficiently incrementalizable as well. We do so by proving that, given a set of

efficiently incrementalizable primitives, the simply-typed lambda calculus built on top

of them is also efficiently incrementalizable. This represents an essential step towards

a static (i.e. re-writing based) solution for the incrementalization of general-purpose

programming languages. (Chapter 4)

• We propose a compilation framework that given a collection program can produce

5

Chapter 1. Introduction

an optimized (Spark) trigger program for incrementalizing its results, as well as gen-

erate a semantically equivalent variant that exposes the full parallelization potential

of nested queries. It does so by decoupling the processing of inner collections from

the top-level collection, such that their computation can be evenly distributed across

cluster resources, as opposed to being performed sequentially by the node evaluating its

corresponding top-level record. This allows us to avoid the unfortunate scenario where

a few skewed inner bags significantly delay the completion of an entire map-reduce job.

(Chapter 5)

We incrementalize collection programs over nested data starting from a variant of nested

relational calculus (NRC) that clearly separates the flat features of the language from those

that can introduce nesting. This allows us to focus our efforts on efficiently incrementalizing

the latter ones, while for the former we rely on existing approaches for their delta processing.

As this calculus captures the core of collection programming, the solution we propose is

immediately applicable to all systems that use collection programming as their main querying

interface.

To prove the effectiveness of our approach we formally define the notions of incremental

nested update and efficient incrementalization of nested queries, based on cost domains and

a cost interpretation over NRC’s constructs. In addition, we show how the delta processing of

nested queries can be further optimized using Recursive IVM [35], a technique that in the case

of flat queries has achieved significant speedups over classic IVM [36].

Proving that the incrementalization of collection programs is in a lower parallel complexity

class than their evaluation (NC0 vs. TC0) is especially relevant in the context of map-reduce

frameworks, as it indicates that incrementally updating the results of nested queries can be

done with less communication overhead as was required when computing the initial result,

considering that an important distinction between NC0 and TC0 lies in NC0’s restriction to

only use circuits whose gates have bounded fan-in.

We implemented our approaches within SLeNDer 2, a compilation framework providing an

abstraction layer for scalable and incrementable nested collection processing. It achieves

that by turning nested queries into a semantically equivalent series of shredded queries cor-

responding to the (inner) collections we are interested in parallelizing / incrementalizing. It

does so by replacing inner collections with labels, and separately maintaining dictionaries

mapping labels to their defining bags. By making inner collections independently addressable,

labels serve an essential role in being able to update them as well as distribute their processing

across nodes.

Our experimental evaluation shows that recursive incrementalization on top of shredding

results in significant speedups in the refresh rate of views when compared to standard incre-

mentalization techniques as well as full re-evaluation. Moreover, the derived shredded queries

2Skew-Less Nested Data

6

1.4. Summary of contributions

achieve better load balancing when operating on nested collections with skewed cardinalities

or on top level collections with low cardinality. We also highlight the effectiveness of partial

shredding in reducing the overheads of shredding while retaining most of its benefits.

This work includes material from several publications for which the author of this thesis is the

lead author or a co-author.

• Christoph Koch, Daniel Lupei, Val Tannen

Incremental View Maintenance for Collection Programming

PODS 2016.

• Daniel Lupei, Milos Nikolic, Christoph Koch

SLeNDer: Query Compilation for Agile Collection Processing

Under submission.

7

2 Background

In this chapter we introduce the version of Nested Relational Calculus that we use for modeling

the core constructs of collection programming. Then we recall how delta processing functions

in the case of flat relational queries and discuss the challenges for efficient delta-based in-

crementalization techniques (Sections 2.2 and 2.3). Finally, in Section 2.4 we introduce the

standard parallel complexity classes and detail how the operators of relational algebra (which

is equivalent to a large fragment of our calculus) fit within them.

2.1 Nested Relational Calculus

In the following we describe our main formalism for collection programming as a variant of

Nested Relational Calculus (NRC+) [10, 39, 69, 70] with bag semantics. Its types are:

A,B ,C ∶= 1 ∣ B ase ∣ A×B ∣ Bag(C),

where B ase is the type of the database domain and 1 denotes the “unit” type (a.k.a. the type

of the 0-ary tuple ⟨⟩). We also use T B ase to denote nested tuple types with components of

only B ase type.

In order to capture all updates, i.e., both insertions and deletions, we use a generalized notion

of bag where elements have (possibly negative) integer multiplicities and bag addition ⊎
sums multiplicities as integers [35, 42]. In addition, for every bag type we have an empty bag

constructor ∅, as well as construct ⊖(e) that negates the multiplicities of all the elements

produced by e. We remark that, semantically, bag types along with empty bag ∅, bag addition

⊎ and bag minus ⊖ exhibit the structure of a commutative group. This implies that given any

two query results Qol d and Qnew , there will always exist a value ΔQ s.t. Qnew =Qol d ⊎ΔQ. This

rich algebraic structure that bags exhibit is also the reason why we use a calculus with bag, as

opposed to set semantics.

Typed calculus expressions Γ;Π ⊢ e ∶Bag(B) have two sets of type assignments to variables

Γ = X1 ∶Bag(C1),⋯, Xm ∶Bag(Cm) and Π = x1 ∶ A1,⋯, xn ∶ An , in order to distinguish between

9

Chapter 2. Background

Sch(R)=B

R ∶Bag(B)
Γ;Π⊢ e1∶Bag(C) Γ, X ∶Bag(C);Π⊢ e2∶Bag(B)

Γ;Π⊢ let X ∶= e1 in e2 ∶Bag(B)

Γ, X ∶Bag(C);Π⊢ X ∶Bag(C) Γ;Π, x ∶T B ase ⊢ p(x) ∶Bag(1)

Γ;Π, x∶A ⊢ sng(x) ∶Bag(A) sng(⟨⟩) ∶Bag(1) ∅ ∶Bag(B)

i = 1,2

Γ;Π, x∶A1×A2 ⊢ sng(πi(x)) ∶Bag(Ai)
e ∶Bag(B)

sng(e) ∶Bag(Bag(B))

Γ;Π⊢ e1 ∶Bag(A) Γ;Π, x∶A ⊢ e2 ∶Bag(B)
Γ;Π⊢ for x in e1 union e2 ∶Bag(B)

e1,2 ∶Bag(B)
e1⊎e2 ∶Bag(B)

ei ∶Bag(Bi), i = 1,2

e1×e2 ∶Bag(B1×B2)
e ∶Bag(Bag(B))

flatten(e) ∶Bag(B)
e ∶Bag(B)

⊖(e) ∶Bag(B)

Figure 2.1 – Typing rules for the nested relational calculus (NRC+).

variables Xi defined via let bindings and which reference top level bags, and variables xi which

are introduced within for comprehensions and bind the inner elements of a bag. The value

assignments of variables are represented by γ and ε, and we denote their extension with a new

assignment by γ[X ∶= v] and ε[x ∶= v], respectively. Throughout the presentation, we will omit

such value assignments whenever they are not explicitly needed for resolving variable names.

The typing rules of NRC+ are given in Figure 2.1, where R ranges over the relations in the

database, X and x range over the variables in the contexts Γ and Π, respectively, let binds the

result of e1 to R and uses it in the evaluation of e2, × performs Cartesian product of bags, for

iteratively evaluates e2 with x bound to every element of e1 and then unions together all the

resulting bags, flatten turns a bag of bags into just one bag by unioning the inner bags, sng

places its input into a singleton bag and p stands for any predicate over tuples of primitive

values. Figure 2.2 presents the semantics of NRC+, where γ(X) and ε(x) return the valuation

of variables X and x from their respective contexts, we use {⋯} to denote bag values, and

⊎v∈[[e]] to denote the iterated union over all the bag values in the result of e.

Booleans are simulated by Bag(1), with the singleton bag sng(⟨⟩) denoting true and the

empty bag ∅ denoting false. Consequently, the return type of predicates p(x) is also Bag(1).

The “positivity” of the calculus is captured by the restriction put on (comparison) predicates

p(x) to only act on tuples of basic values since comparisons involving bags can be used

to simulate negation [10]. We discuss in Section 2.3 the challenges posed by negation wrt.

efficient maintenance within our framework.

10

2.1. Nested Relational Calculus

[[R]] =R [[let X ∶= e1 in e2]]γ;ε = [[e2]]γ[X ∶=[[e1]]γ;ε];ε

[[X]]γ;ε = γ(X) [[p(x)]]γ;ε = if p(ε(x)) then {⟨⟩} else {}

[[sng(x)]]γ;ε = {ε(x)} [[sng(πi(x))]]γ;ε = {πi(ε(x))}

[[sng(e)]] = {[[e]]} [[flatten(e)]] =⊎v∈[[e]]v

[[for x in e1 union e2]]γ;ε =⊎v∈[[e1]]γ;ε
[[e2]]γ;ε[x∶=v]

[[e1×e2]] =⊎v1∈[[e1]]⊎v2∈[[e2]]
{⟨v1, v2⟩} [[sng(⟨⟩)]] = {⟨⟩}

[[∅]] = {} [[e1⊎e2]] = [[e1]] ⊎[[e2]] [[⊖(e)]] =⊖([[e]])

Figure 2.2 – Semantics of the nested relational calculus (NRC+).

Example 1. Filtering an input bag R according to some predicate p can be defined in NRC+ as:

filterp[R] = for x in R where p(x) union sng(x)

considering that the for construct with where clause can be expressed as follows:

for x in e1 where p(x) union e2 =

for x in e1 union for _ in p(x) union e2,

where we ignore the variable binding the contents of the bag returned by predicate p since its

only possible value is ⟨⟩.

Compared to the standard formulation given in [10] we use a calculus version that is “delta-

friendly” in that all expressions have bag type and more importantly most of its constructs are

either linear or distributive wrt. to bag union, with the notable exception of sng(e). Therefore

we control carefully how singletons are constructed (note that we have four rules for singletons

but they do not “overlap”), and we have a separate flattening construct. In addition, we

have a bag (Cartesian) product construct instead of a pairing construct, as this simplifies the

shredding transformation we propose in the next chapter. These particularities of our version

are just cosmetic as we can still express the same class of queries of bag output type as in [10].

Finally, we remark that the sng(e) and flatten constructs are the only ones that can alter the

nesting structure of a given input value, i.e. add or remove nesting levels. Consequently, by

discarding them we end up with a language which is equivalent to flat relational calculus, for

which standard techniques of delta processing, like those discussed in the following section,

are immediately applicable. Therefore, in incrementalizing NRC+ we mainly need to focus

11

Chapter 2. Background

our efforts on the delta processing of these two additional constructs, a job made easier by

the fact that flatten is linear wrt. bag union. It is thus by careful language design that we

were able to reduce our problem of incrementalizing NRC+ to the well studied problem of

incrementalizing flat relational calculus as well as isolate the difficulties introduced by nesting

to a single construct of the language, sng(e).

2.2 Delta processing for the flat relational case

We recall how delta processing works for queries expressed in the positive relational algebra.

Delta rules were originally defined for datalog programs [30,31] but they are even more natural

for algebraic query languages such as the relational algebra on bags [27, 35], simply because

the algebraic structure of a group is the necessary and sufficient environment in which deltas

live.

Consider relational algebra expressions built from table names R1, . . . ,Rn from some schema

and the operators for selection σp , projection Πī , Cartesian product ×, and union, where we

denote the last one by ⊎ to remind us that we assume bag semantics in this work.

The delta rules constitute an inductive definition of a transformation that maps every algebra

expression e over table names Ri into another algebra expression δ(e) over table names Ri

and ΔRi , i = 1..n. The names of the form ΔRi designate an update: tables that contain tuples

to be added to those in Ri (for the moment we focus only on insertions). We use δ for the

name of the transformation itself. The rules are:

δ(Ri) =ΔRi i = 1..n δ(σp e) =σpδ(e)

δ(e1⊎e2) = δ(e1)⊎δ(e2) δ(Πī e) =Πīδ(e)

δ(e1×e2) = δ(e1)×e2 ⊎ e1×δ(e2) ⊎ δ(e1)×δ(e2)

δ(e) =∅ (when no Ri occurs in e).

We remark that the rule for join is the same as the one for Cartesian product.

The delta rules satisfy the following property, which also suggests how the incremental com-

putation proceeds:

e[R1⊎ΔR1,⋯,Rn ⊎ΔRn] = e[R1,⋯,Rn] ⊎ δ(e)[R1,⋯,Rn ,ΔR1,⋯,ΔRn] (2.1)

This is due to the commutativity and associativity of bag union as well as the distributivity of

selection, projection and Cartesian product, over bag union.

In the statement above we abuse, as usual, the notation by using the Ri ’s for both table names

and corresponding table instances and we denote by e[R] the table that results from evaluating

the algebra expression e on a database R , where R stands for R1, . . . ,Rn . Equation (2.1) captures

the incremental maintenance of the query result. Given updates ΔR to the database, we just

compute δ(e)[R,ΔR] and use it to update the previously materialized answer e[R].

12

2.3. Efficient delta processing

Example 2. For a concrete example of incrementalizing a relational algebra query, we consider a

bag of movies M(movi e, g enr e), a bag containing their showtimes Sh(movi e, l ocati on, t i me)
and the query DOz returning all the dramas playing in Oz:

DOz ≡ Πmovie(σlocation=OzSh�σgenre=DramaM).

Now suppose that the updates ΔSh and ΔM are applied to Sh and M , respectively. By Equa-

tion 2.1 and the delta rules, the updated DOz can be computed by ⊎-ing

Πmovie(σlocation=OzΔSh�σgenre=DramaM

⊎ σlocation=OzSh�σgenre=DramaΔM

⊎ σlocation=OzΔSh�σgenre=DramaΔM)

to the previously materialized answer to DOz. If ΔSh and ΔM are much smaller than Sh,

respectively M, this is typically computationally much cheaper than recomputing the query

after updating the base tables: this is what makes incremental view maintenance worthwhile.

Under reasonable assumptions about the cost of query evaluation algorithms and considering

small updates compared to the size of the database, this is better than recomputing the query

on the updated database e[R ⊎ΔR]. For instance, a query R �S can have size (and evaluation

cost) quadratic in the input database. Assuming ΔR and ΔS consist of a constant number of

tuples, incrementally maintaining the query via δ(R�S) = (ΔR)�S ⊎ R�(ΔS) ⊎ (ΔR)�(ΔS)
has linear size and cost, while recomputing it (as (R ⊎ΔR)�(S ⊎ΔS)) has quadratic cost.

As shown by Gupta et al. [30], the same delta rules can also be used to propagate deletions

if we extend the bag semantics to allow for negative multiplicities: the table ΔRi associates

negative multiplicities to the tuples to be deleted from Ri .

2.3 Efficient delta processing

In the following we discuss the difficulties in deriving a delta query which is cheaper than full

re-evaluation for any expression in a language.

Informally, we say that the delta δ(e)[R,ΔR] of a query e[R] is more efficient than full re-

computation (or simply efficient), if for any update ΔR s.t. size(ΔR) ≪ size(R), evaluating

δ(e)[R,ΔR] and applying it to the output of e is less expensive than re-evaluating e from

scratch, i.e.:

cost(δ(e)[R,ΔR])≪ cost(e[R ⊎ΔR]) and

size(δ(e)[R,ΔR])≪ size(e[R ⊎ΔR]),

where the second equation ensures that applying the update is also cheaper than re-computation,

considering that the cost of applying an update is proportional to its size and that the cost

13

Chapter 2. Background

of evaluating an expression is lowerbounded by the size of its output (size(e[R ⊎ΔR]) ≤
cost(e[R ⊎ΔR])).

One can guarantee that the delta of any expression in a language is efficient by requiring that

every construct p(e)[R] of the language satisfies the property above, i.e. size(δ(e)[R,ΔR])≪
size(e[R]) implies:

cost(δ(p(e))[R,ΔR])≪ cost(p(e)[R ⊎ΔR]) and

size(δ(p(e))[R,ΔR])≪ size(p(e)[R ⊎ΔR]) (2.2)

Unfortunately, this property does not hold for constructs p(e)[R] which take linear time in

their inputs e[R] (i.e. cost(p(e)[R]) = size(e[R])) and whose delta δ(p(e))[R,ΔR] depends

on the original input e[R] (therefore cost(δ(p(e))[R,ΔR]) > cost(e[R])), as it leads to the

following contradiction:

size(e[R]) ≤ cost(e[R]) < cost(δ(p(e))[R,ΔR])≪ cost(p(e)[R ⊎ΔR]) =

= size(e[R ⊎ΔR]) ≈ size(e[R]),

where the last approximation follows from the fact that:

e[R ⊎ΔR] = e[R] ⊎ δ(e)[R,ΔR] and size(δ(e)[R,ΔR])≪ size(e[R]).

An example of such a construct is bag subtraction (e1∖e2)[R], that associates to every element

vi in e1[R] the multiplicity max(0,m1−m2), where m1,m2 are vi ’s multiplicities in e1[R] and

e2[R], respectively. Indeed, the cost of evaluating bag subtraction is proportional to its input

(i.e. cost(e1 ∖ e2)[R] = size(e1[R]), assuming e1[R] and e2[R] have similar sizes) and the

result of (e1∖e2)[R] can be maintained when e2[R] changes, only if the initial value of e1[R]
is known at the time of the update. The singleton constructor or the emptiness test over bags

also exhibit similar characteristics. By contrast, constructs that take time linear in their input,

but whose delta rule depends only on the update do not present this issue (eg. selection σp).

This problem can be addressed by materializing the result of the subquery e[R], such that one

does not need to pay its cost again when evaluating δ(p(e))[R,ΔR]. However, this only solves

half of the problem, as we also need to make sure that the outcome of δ(p(e))[R,ΔR] can

be efficiently propagated through outer queries e′ that may use p(e)[R ⊎ΔR] as a subquery.

Solving this issue requires handcrafted solutions that take into consideration the particularities

of p and the ways it can be used. For example, in our solution from Chapter 3 for efficiently

incrementalizing the singleton constructor sng(⋅), we take advantage of the fact that the only

way of accessing the contents of a inner bag is via the flattening operator flatten(⋅).

Finally, for constructs p with boolean as output domain (eg. testing whether a bag is empty),

it no longer makes sense to distinguish between small and large values, and therefore, the

14

2.4. Parallel complexity classes

condition (2.2) can never be satisfied. This problem extends to a class of primitives that

includes bag equality, negation, and membership testing, and restricts our approach for

efficient incrementalization to only the positive fragment of collection programming.

2.4 Parallel complexity classes

As opposed to standard complexity classes which characterize the time/space needed by a

given algorithm when executing on a Turing machine, parallel or circuit complexity classes

look at the requirements of problems when implemented as dedicated circuits and the amount

of hardware available is essentially unconstrained. It aims at evaluating the difficulty of a

problem under the assumption that the number of processing units can be made proportional

to the size of the input, thus highlighting its behavior on an idealized model of a parallel

machine. This helps provide a theoretical limit for the improvements that can be achieved

by “throwing” more hardware at a problem, capturing its intrinsic scalability. In particular,

problems that are embarrassingly parallel are expected to fit within low parallel complexity

classes.

Since in cluster computing the emphasis shifts more from designing fast algorithms to coming

up with highly scalable approaches, understanding the parallel complexity of a problem is

essential as it provides strong bounds on the maximum parallelism that can be achieved

by any particular solution of that problem, given enough hardware resources. Moreover by

understanding the circuit architecture required for solving the problems in a specific parallel

complexity class one can then reverse engineer it in order to map it to more common hardware

or runtime environments, and thus come up with solutions that fully exploit their intrinsic

parallelization potential.

From the perspective of incrementalization we deem it essential that any proposed approach

fits within either the same or a lower parallel complexity class when compared to the target

language.

The standard way of representing flat relations when processing them via circuits is the unary

representation, i.e. as a collection of bits, one for each possible tuple that can be constructed

from the active domain and the schema, in some canonical ordering, where a bit being

turned on or off signals whether the corresponding tuple is in the relation or not. In such a

representation (denoted by F Set), if the active domain has size m, then the number of bits

required for encoding a relation whose schema has n f fields is mn f . For instance, for a relation

with two fields, we need m2 bits to encode which tuples are present or not (a concrete example

is presented in Figure 2.3). We also assume a total order among the elements of the active

domain, and that the bits of F Set are in lexicographical order of the tuples they represent.

In the case of bags, whose elements have an associated multiplicity, we work with circuits that

compute the multiplicity of tuples modulo 2k , for some fixed k. Thus, for every possible tuple

in a bag we use k bits instead of a single one, in order to encode the multiplicity of that tuple

15

Chapter 2. Background

G(a,a) R G(a,b) R G(b,a) R G(b,b) R

Figure 2.3 – The gates representing a binary relation R(x, y) when the active domain consists
of only two values, a and b.

as a binary number. We argue that having a binary representation where k is fixed for example

to 128 satisfies most common practical scenarios. In the following we use F B ag to refer to this

representation of bags.

By NC0 we refer to the class of languages recognizable by LOGSPACE-uniform families of

circuits of polynomial size and constant depth using and- and or-gates of bounded fan-in. That

is, NC0 represents the class of problems that given enough hardware can be solved in constant

time. More generally, NCk extends the depth constraint to O(logk(⋅)) while NC ∶= ⋃k NCk,

a.k.a. Nick’s class 1, is considered the class of “highly” parallelizable problems. Furthermore,

Stockmeyer and Vishkin [62] have related the NC class to the class of functions computable by

a Concurrent Read Concurrent Write Parallel Random Access Machine in polylogarithmic time

using polynomially many processors.

The related complexity class ACk differs from NCk by allowing gates to have unbounded fan-in,

while TCk extends ACk by further permitting so-called majority-gates, that compute “true”

iff more than half of their inputs are true. The distinction between NCk on one hand, and

ACk/TCk on the other, in terms of allowing gates with unbounded fan-in is especially relevant

when it comes to real hardware, since unbounded fan-in typically implies an expensive

communication step.

Moreover, these parallel complexity classes can be placed in the following hierarchy:

AC0 ⊆TC0 ⊆NC1 ⊆ LOGSPACE ⊆AC1 ⊆⋯⊆ACi ⊆TCi ⊆NCi+1 ⊆⋯

⊆NC =⋃
k

NCk =⋃
k

ACk =⋃
k

TCk ⊆ P,

where the relation TCi ⊆NCi+1 follows from the fact that one can simply replace the unbounded

fan-in gates by binary trees of binary gates, in which case the depth growth only by a log factor.

For more details on circuit complexity and the notion of uniformity we refer to [26, 32].

2.4.1 Circuit complexity of Relational Algebra

Since we are interested in proving that the incrementalization of NRC+ is in a lower complexity

class than NRC+ itself (Section 3.4), we begin by highlighting the sources of “complexity” in

NRC+. To do so, we first discuss the parallel complexity of relational algebra operators as it

1Named after Nicholas (Nick) John Pippenger.

16

2.4. Parallel complexity classes

G(a,a) R G(a,b) R G(b,a) R G(b,b) R

V V V VG(a,a) σx≠y(R) G(a,b) σx≠y(R) G(b,a) σx≠y(R) G(b,b) σx≠y(R)

(a) A circuit selecting tuples from relation R(x, y) with distinct components, i.e. σx≠y(R).

G(a,a) R G(a,b) R G(b,a) R G(b,b) R

V VGa ∏x(R) Gb ∏x(R)

(b) A circuit projecting away the second column of relation R(x, y), i.e. Πx(R).

Ga S Gb S Ga T Gb T

V VGa S T Gb S T

(c) A circuit unioning relations S(x) and T (y), i.e. S ∪T .

Ga S Gb S Ga T Gb T

¬

Ga S T Gb S T

¬

(d) A circuit computing the difference between relations S(x) and T (y), i.e. S∖T .

Ga S Gb S Ga T Gb T

G(a,a) S×T G(a,b) S×T G(b,a) S×T G(b,b) S×T

(e) A circuit producing the cartesian product between relations S(x) and T (y), i.e. S×T .

Figure 2.4 – Circuit implementations of Relational Algebra operators over relations
R(x, y),S(x) and T (y), when the active domain consists of two values, a and b.

17

Chapter 2. Background

informs the characterization of the nested relational calculus that we use, considering the

close relation between the two. To simplify the presentation we initially assume set semantics,

but we explore the implications of bag semantics later on. Throughout the thesis we only

discuss data-complexity where the query is considered fixed while only the database is seen

as part of the input.

For the selection operator σp we have as many output gates as input ones, and each output

gate is connected to the corresponding input gate only if the tuple it encodes satisfies the

selection predicate. Figure 2.4a presents an example of a circuit which selects the tuples from a

binary relation that have distinct components, when the active domain consists of two values,

a and b. In its description we leverage the fact that an or-gate with no inputs produces false.

For a particular gate (value) in its output, the circuit implementing the projection operator

or-s together all the input gates corresponding to tuples that have that value as their projected

column, i.e. Ga∈Πx(R) =⋁y∈DG(a,y)∈R , where R is a binary relation and D represents the active

domain (see example in Figure 2.4b).

The circuits corresponding to the union and difference operators both match the two gates

of their input relations encoding a particular tuple, with the former or-ing them, while the

latter and-s them after negating the one belonging to the second argument (this fits the

expected semantics as a tuple belongs to S ∖T if it appears in S but not in T). We illustrate

their implementations in Figures 2.4c and 2.4d.

Finally, the circuit implementing the Cartesian product operator and-s together for every pair

in its output the two gates from the input relations corresponding to each component (as in

Figure 2.4e).

From the description above we can see that most of the relational operators require only the

power of NC0, with the notable exception of the projection operator whose circuit relies on

or-gates with unbounded fan-in. This puts relational algebra with set semantics in AC0.

To see why, lets consider a query that projects away all the columns of an input relation R,

producing a boolean result. It is easy to see that the corresponding circuit will have to or-

together all the gates of R , and as discussed earlier there are mn f of them, where n f is the arity

of relation R while m is the size of the active domain. Although n f is fixed as we assumed the

query itself to be fixed, the active domain can be arbitrarily large. By contrast, the fan-in of the

other operators of relational algebra is limited by the number of their arguments, which for a

fixed query is again fixed.

When bag semantics are considered, the complexity of relational algebra goes to TC0, since

majority gates are needed in order to implement the summing up of multiplicities performed

by the projection operator.

If we temporarily set aside the challenges of providing a suitable binary encoding for nested

values, which we discuss in Section 3.3.4, one can already asses that our version of nested

18

2.4. Parallel complexity classes

relational calculus with bag semantics is also in TC0 as the singleton constructor is a constant-

time operation while the semantics of the flatten operator is similar to that of the projection

operator from relational algebra. In particular, the multiplicity of a tuple in the output of

flatten is the sum of the multiplicities of that tuple in all the inner bags of the relation being

flattened, i.e. given relation R(X), X ∶Bag(A):

flatten(R)(a) = ∑
X ∶Bag(A)

X (a) ⋅R(X),

where R(X) represents the multiplicity in R of inner bag X , while X (a) denotes tuple a’s

multiplicity in inner bag X . This summing operation already requires majority-gates of

unbounded fan-in, thus placing the nested relational calculus with bag semantics in TC0, as a

lower bound. For a complete proof of the upper bound as well we refer the reader to [34].

19

3 Deep Incrementalization of Nested
Collections

In this chapter we address the problem of delta processing for positive nested-relational

calculus on bags (NRC+). Specifically, we consider deltas for updates that are applied to the

input relations via a generalized bag union ⊎ (which sums up multiplicities), where tuples

have integer multiplicities in order to support both insertions and deletions. We formally

define what it means for a nested update to be incremental and a NRC+ query to be efficiently

incrementalizable, and we propose the first solution for the efficient incremental maintenance

of NRC+ queries.

We say that a query is efficiently incrementalizable if its delta has a lower cost than recompu-

tation. We define cost domains equipped with partial orders for every nested type in NRC+

and determine cost functions for the constructs of NRC+ based on their semantics and a lazy

evaluation strategy. The cost domains that we use attach a cardinality estimate to each nesting

level of a bag, where the cardinality of a nesting level is defined as the maximum cardinality

of all the bags with the same nesting level. For example, to the nested bag {{a},{b},{c,d}}
we associate a cost value of 3{2}, since the top bag has 3 elements and the inner bags have a

maximum cardinality of 2. This choice of cost domains was motivated by the fact that data may

be distributed unevenly across the nesting levels of a bag, while one can write queries that op-

erate just on a particular nested level of the input. Even though our cost model makes several

conservative approximations, it is still precise enough to separate incremental maintenance

from re-evaluation for a large fragment of NRC+.

We efficiently incrementalize NRC+ in two steps. We first establish IncNRC+, the largest

fragment for which we can derive efficient deltas. Then, for queries in NRC+∖ IncNRC+, we

provide a semantics preserving translation into a collection of IncNRC+ queries on a differently

represented database.

For IncNRC+ we leverage the fact that our delta transformation is closed (i.e. maps to the

same query language) and illustrate how to further optimize delta processing using recursive

IVM: if the delta of an IncNRC+ query still depends on the database, it follows that it can be

partially evaluated and efficiently maintained using a higher-order delta. We show that for

21

Chapter 3. Deep Incrementalization of Nested Collections

any IncNRC+ query there are only a finite number of higher-order delta derivations possible

before the resulting expressions no longer depend on the database (but are purely functions

of the update), and thus no longer require maintenance.

The only queries that fall outside IncNRC+ are those that use the singleton bag constructor

sng(e), where e depends on the database. This is supported by the intuition that in NRC+ we

do not have an efficient way to modify sng(e) into sng(e ⊎Δe), without first removing sng(e)
from the view and then adding sng(e ⊎Δe), which amounts to recomputation. The challenge

of efficiently applying updates to inner bags, a.k.a. deep updates, does not lie in designing an

operator that navigates the structure of a nested object and applies the update to the right inner

bag, but doing so while providing useful re-writing rules wrt. the other language constructs,

which can be used to derive efficient delta queries. Previous approaches to incremental

maintenance of nested views have either ignored the issue of deep updates [25], handled it by

triggering recomputation of nested bags [45] or defaulted to change propagation [33, 53].

We address the problem of efficiently incrementalizing sng(e) with shredding, a semantics-

preserving transformation that replaces the inner bag introduced by sng(e) with a label l

and separately maintains the mapping between l and its defining query e. Therefore, deep

updates can be applied by simply modifying the label definition corresponding to the inner

bag being updated. As such, the problem of incrementalizing NRC+ queries is reduced to

that of incrementalizing the collection of IncNRC+ queries resulting from the shredding

transformation. Furthermore, based on this reduction we also show that, analogous to the flat

relational case [35], incremental processing of NRC+ queries is in a strictly lower complexity

class than re-evaluation (NC0 vs. TC0).

The rest of this chapter is organized as follows. We first introduce our approach for the

incrementalization of NRC+ queries on a motivating example. The efficient delta processing

of a large fragment of NRC+ is discussed in Section 3.2 and in Section 3.3 we show how the full

NRC+ can be efficiently maintained.

3.1 Motivating example

We follow the classical approach to incremental query evaluation, which is based on applying

certain syntactic transformations called “delta rules” to the query expressions of interest (in

Section 2.2 we revisit how delta processing works for the flat relational case). In the following,

we give some intuition for the difficulties that arise in finding a delta rules approach to the

problem of incremental computation on nested bag relations.

Notation. For a query Q and relation R, we denote by Q[R] the fact that Q is defined in terms

of relation R. We will sometimes simply write Q, if R is obvious from the context.

Example 3. We consider the query ������� that computes for every movie in relation

M(name, g en,di r) a set of related movies which are either in the same genre g en or share the

22

3.1. Motivating example

same artistic director di r . We define ������� in Spark1:

���� ����� ���	�
����
 ���	��� ���
 ���	��� �	�
 ���	���

��� �
 �������	�� � ���

��� ������� � ���
� �� �� �	���
������� ����
���

��� ����
�
 ���	�� �

���
� �� � 	� 	��������
��� �� �	��� � �����

��� 	��������
�
 ���	�� �
 ���	�� �

������ !� � ����� ""
�������� ���� ## ���	���� ��	��

where ��� is Spark’s collection type for distributed datasets, ���	(m) computes the names of

all the movies related to m and
�������� tests if two different movies are related by genre or

director. We evaluate ������� on an example instance.

M �������[M]
name g en di r

Drive Drama Refn

Skyfall Action Mendes

Rush Action Howard

name {name}
Drive {}
Skyfall {Rush}
Rush {Skyfall}

Now consider the outcome of updating M with ΔM via bag union ⊎, where ΔM is a relation

with the same schema as M and contains a single tuple ⟨Jarhead,Drama,Mendes⟩.

M ⊎ΔM �������[M ⊎ΔM]
name g en di r

Drive Drama Refn

Skyfall Action Mendes

Rush Action Howard

Jarhead Drama Mendes

name {name}
Drive {Jarhead}
Skyfall {Rush, Jarhead}
Rush {Skyfall }
Jarhead {Drive, Skyfall}

To incrementally update the result of ������� we design a set of delta rules that, when applied

to the definition of �������[M], give us an expression δ(�������)[M ,ΔM] s.t.:

�������[M ⊎ΔM] = �������[M]⊎δ(�������)[M ,ΔM].

For our example, in order to modify �������[M] into �������[M ⊎ΔM], without completely

replacing the existing tuples, one would have to add the movie Jarhead to the inner bag of

related movies for Drive (same genre) and Skyfall (same director). Maintaining the result of

������� by completely replacing the affected tuples defeats the goal of making incremental

computation more efficient than full re-evaluation, as these tuples could be arbitrarily large.

We remark that this situation emerged even though the input was updated via simple bag

union.
1To improve the presentation we omitted Spark’s boilerplate code.

23

Chapter 3. Deep Incrementalization of Nested Collections

However, our target language of Nested Relational Calculus (NRC+) is not equipped with the

necessary constructs for expressing this kind of changes, and efficiently processing such ‘deep’

updates represents the main challenge in incrementally maintaining nested queries. Although

update operations able to perform deep changes have been proposed in the literature [43],

they lack the necessary re-write rules needed for a closed delta transformation, which is a

prerequisite for recursive IVM.

In order to make inner bags accessible by ‘deep’ updates, we must first devise a naming scheme

to address them. We have two options: i) we can either associate a label to each tuple in a bag

and then identify an inner bag based on this label and the index of the tuple component that

contains the bag, or ii) we can associate a label to each inner bag, and separately maintain

a mapping between the label and the corresponding inner bag. In other words, labels can

either identify the position of an inner bag within the nested value or serve as an alias for

the contents of the inner bag. For example, given a value X = {⟨a,{x1, x2}⟩,⟨b,{x3}⟩}, the

first alternative decorates it with labels as follows: {l1 ↦⟨a,{x1, x2}⟩, l2 ↦⟨b,{x3}⟩}, and

then addresses the inner bags by l1.2 and l2.2. By contrast, the second approach creates the

mappings l1 ↦{x1, x2} and l2 ↦{x3}, and then represents the original value as the flat bag

X F = {⟨a, l1⟩,⟨b, l2⟩}.

Even though both schemes faithfully represent the original nested value, we prefer the second

one, a.k.a. shredding [17, 29], as it offers a couple of advantages. Firstly, it makes the contents

of the inner bags conveniently accessible to updates via regular bag addition, without the

need to introduce a custom update operation (although we investigated this alternative, we

found it particularly challenging due to the complex ways in which this custom operation

would interact with the existing constructs of the language). Secondly, since inner bags are

represented by labels it also avoids duplicating their contents. For example, when computing

the Cartesian product of X with some bag Y , one would normally create a copy of the tuples

in X , along with their inner bags, for each element of Y . Moreover, any update of an inner bag

from X would also have to be applied to every instance of that bag appearing in the output of

X ×Y . By contrast, the second scheme computes the Cartesian product only between X F and

Y , while the mappings between labels and the contents of the inner bags remain untouched.

Therefore, any update to an inner bag of X can be efficiently applied just by updating its

corresponding mapping.

For operating over nested values represented in shredded form, we propose a semantics-

preserving transformation that rewrites a query with nested output Q[R] into a query QF

returning the flat representation of the result, along with a series of queries QΓ, computing the

contents of its inner bags.

3.1.1 Incrementalizing �������

We showcase our approach on the motivating example by first expressing it in NRC. The main

constructs that we use are: i) the for-comprehension for x in Q1 where p(x) union Q2(x),

24

3.1. Motivating example

which iterates over all the elements x from the output of query Q1 that satisfy predicate p(x)
and unions together the results of each Q2(x), and ii) the singleton constructor sng(e), which

creates a bag with the result of e as its only element.

������� ≡ for m in M union sng(⟨m.name,����(m)⟩)

����(m) ≡ for m2 in M where �	
������(m,m2)

union sng(m2.name).

The translation between Spark and NRC+ is made relatively straightforward by the fact that

Spark admits a for-comprehension based syntax, while many of NRC+’s constructs have a

direct correspondent in Spark (for e.g. bag union, Cartesian product, flatten).

Next, we investigate the incrementalization of the constructs used by the ������� query in

order to identify which one of them can lead to the problem of deep updates. The delta rule

of the for construct is a natural generalization of the rule for Cartesian product in relational

algebra2:

δ(for x in Q1union Q2) = for x in δ(Q1)union Q2 (3.1)

⊎ for x in Q1 union δ(Q2)

⊎ for x in δ(Q1)union δ(Q2)

assuming we can derive corresponding deltas for Q1 and Q2.

If the where clause is also present, the same rule applies because we only consider the positive

fragment of nested bag languages, for which predicates are not allowed to test expressions

of bag type (the reasoning behind this decision is detailed in Section 2.3). Therefore the

predicates in the where clause can only be boolean combinations of comparisons involving

base type expressions and these are not affected by updates of the database.

The difficulty arises when we try to design a delta rule for singleton, specifically, how to deal

with sng(e)when e depends on some database relation. There is plainly no way in our calculus

to express the change from sng(M) to sng(M ⊎ΔM) in an efficient manner, i.e., one that is

proportional to the size of ΔM and not the size of the output. This is the same problem that

we saw with the ������� example above. In Section 3.2 we will show that sng(e) is the only

construct in our calculus whose efficient incrementalization relies on ‘deep’ updates.

3.1.2 Maintaining inner bags

In order to facilitate the maintenance of the bags produced by ����(m), we associate to each

one of them a label, and we store separately a mapping between the label and its bag. Then, for

implementing updates to a nested bag, we can simply modify the definition of its associated

2δ(e1×e2) = δ(e1)×e2 ⊎ e1×δ(e2) ⊎ δ(e1)×δ(e2)

25

Chapter 3. Deep Incrementalization of Nested Collections

label via bag union. We note that this strategy can be applied for enacting ‘deep’ changes to

both nested materialized views as well as nested relations in the database.

Since the bags created by ����(m) clearly depend on the variable m bound by the for con-

struct, we also incorporate the values that m takes in the labels that replace them. The simplest

way of doing so is to use labels that are pairs of indices and values, where the index uniquely

identifies the inner query being replaced. In our running example, as we have just a single

inner query, we only need one index ι.

The shredding of ������� yields two queries, �������F producing a flat version of �������

with its inner bags replaced by labels, and �������
Γ that computes the value of a nested bag

given a label parameter � of the form ⟨ι,m⟩

�������
F ≡ for m in M union sng(⟨m.name,⟨ι,m⟩⟩)

�������
Γ(�) ≡ for m2 in M where �	
������(�.2,m2)

union sng(m2.name)

The output of these queries on our running example is:

�������
F [M] �������

Γ[M]

name �

Drive ⟨ι,⟨Drive,..⟩⟩
Skyfall ⟨ι,⟨Skyfall,..⟩⟩
Rush ⟨ι,⟨Rush,..⟩⟩

� ↦ {name}
⟨ι,⟨Drive,..⟩⟩ ↦ {}
⟨ι,⟨Skyfall,..⟩⟩ ↦ {Rush}
⟨ι,⟨Rush,..⟩⟩ ↦ {Skyfall}

Although in our example the generated queries are completely flat, this need not always be

the case. In particular, in order to avoid expensive pre-/post-processing steps, one should

perform shredding only down to the nesting level that is affected by the changes in the input.

Upon shredding, the strategy for incrementally maintaining ������� is to materialize and

incrementally maintain �������
F and �������

Γ, and then recover ������� from the results

based on the following equivalence:

������� = for r in �������
F union

sng(⟨r.1, �������Γ(r.2)⟩),

which holds since the values that m takes are incorporated in the labels �, and �������
Γ(�)

is essentially a rewriting of the subquery ����(m).

We remark that, while being able to reconstruct ������� from �������
F and �������

Γ is im-

portant for proving the correctness of our transformation (see Section 3.3.3), it is not essential

for representing the final result since the labels that appear in �������
F can simply be seen

as references to the inner bags. We also note that even though �������
Γ is parameterized by

26

3.1. Motivating example

�, one can use standard domain maintenance techniques to materialize it since the relevant

values of � are ultimately those found in the tuples of �������F . Finally, in this example the

labels are in bijection with the values over which m ranges, and hence, one could use those

values themselves as labels. In general however we may have several nested subqueries that

depend on the same variable m.

In the process of shredding queries we replace every subquery of a singleton construct that

depends on the database with a label that does not. This is the case with the subquery

����(m) in �������, and we have a very simple delta rule for expressions that do not depend

on the input bags: δ(sng(⟨m.name, ⟨ι,m⟩⟩)) = δ(sng(m2.name)) =∅. Therefore, applying

delta rules such as (3.1) gives us:

δ(�������F) = for m in ΔM union sng(⟨m.name,⟨ι,m⟩⟩)

δ(�������Γ)(�) = for m2 in ΔM where�	
������(�.2,m2)

union sng(m2.name)

We shall prove in Section 3.2 that, for the class of queries to which �������
F and �������

Γ

belong, the delta rules do indeed produce a proper update. We remark that since the domain

of �������Γ is determined by the labels in �������
F , it may be extended by the δ(�������F)

update. Thus, when updating the materialization of �������Γ with the change produced

by δ(�������Γ), one must also check whether each label in its domain has an associated

definition, and if not initialize it accordingly.

3.1.3 Cost analysis

In the following we show that maintaining ������� incrementally is more efficient than its

re-evaluation (for the general case see Section 3.2.2). Let us assume that M and ΔM have n

and d tuples, respectively, including repetitions. From the expressions above it follows that

the costs of computing the original queries (�������F and �������
Γ(�)) is proportional to

the input, while their deltas cost O(d).

As previously noted, �������[M ⊎ΔM] can be recovered from:

for r in �������
F [M ⊎ΔM]union

sng(⟨r.1, �������Γ[M ⊎ΔM](r.2)⟩),

and by the properties of delta queries and one of the general equivalence laws of the NRC [10],

27

Chapter 3. Deep Incrementalization of Nested Collections

this becomes V ⊎W where

V = for r in �������
F [M]union (3.2)

sng(⟨r.1, �������Γ[M](r.2)⊎δ(�������Γ)(r.2)⟩)

W = for r in δ(�������F)union (3.3)

sng(⟨r.1, �������Γ[M ⊎ΔM](r.2)⟩)

Even counting repetitions, we have O(n) tuples in the materialization of �������F [M] while

the result of computing δ(�������F) has O(d) tuples. From (3.2) the cost of computing V is

O(nd) and from (3.3) the cost of computing W is O(d(n+d)), where we assumed that union-

ing two already materialized bags takes time proportional to the smaller one, and looking

up the definition of a label takes constant (amortized) time. Thus, the incremental computa-

tion of ������� costs O(nd +d 2). For the costs of maintaining �������F and �������
Γ we

have O(d) and O(d(n+d)), respectively, considering that initializing the new labels intro-

duced by δ(�������F) takes O(dn) and then updating all the definitions in �������
Γ takes

O((n+d)d) (which includes the cost of rehashing the labels in �������
Γ as may be required

due to its increase in size). It follows that the overall cost of IVM is O(nd +d 2) and when

n ≫ d , performing IVM is clearly much better than recomputing �������[M ⊎ΔM] which

costs Ω((n+d)2) (in the step-counting model we have been using).

In the next sections we develop this approach in detail.

3.2 Incrementalizing IncNRC+

Definition 1. For a variable X we say that an expression e is X -dependent if X appears as

a free variable in e, and X -independent otherwise. In addition, we define an expression as

input-independent if it is R-independent for all relations R in the database. Similarly, an

expression is said to be input-dependent if it is R-dependent wrt. at least one relation R.

We define IncNRC+ as the fragment of NRC+ that uses a syntactically restricted singleton

construct sng∗(e), where e must be input-independent (this restriction impacts only the

singleton construct sng(e) that accepts arbitrary expressions e of bag type, whereas the other

three singleton constructs in the language sng(x),sng(πi(x)) and sng(⟨⟩) are unaffected,

as they are by definition input-independent). While this prevents IncNRC+ queries from

adding nesting levels to their inputs3, it does provide the useful guarantee that their deltas

do not require deep updates. We take advantage of this fact in this section, as we discuss

the efficient delta-processing of IncNRC+. For the incrementalization of the full NRC+, we

provide a shredding transformation taking any NRC+ query into a series of IncNRC+ queries

(see Section 3.3).

3 We note that the query from Section 3.1 does not belong to IncNRC+ .

28

3.2. Incrementalizing IncNRC+

δR(R) =ΔR δR(X) =∅ δR(p(x)) =∅ δR(∅) =∅

δR(let X ∶= e1 in e2) = let X ∶= e1, ΔX ∶= δR(e1) in

δR(e2) ⊎ δX (e2) ⊎ δR(δX (e2))

δR(sng(x)) =∅ δR(sng(πi(x))) =∅ δR(sng(⟨⟩)) =∅

δR(sng∗(e)) =∅ δR(flatten(e)) =flatten(δR(e))

δR(for x in e1 union e2) = for x in δR(e1)union e2

⊎ for x in e1 union δR(e2)

⊎ for x in δR(e1)union δR(e2)

δR(e1×e2) = δR(e1)×e2 ⊎ e1×δR(e2) ⊎ δR(e1)×δR(e2)

δR(e1⊎e2) = δR(e1)⊎δR(e2) δR(⊖(e)) =⊖(δR(e))

Figure 3.1 – Delta rules for the constructs of IncNRC+

In the following we show that any query in IncNRC+ admits a delta expression with a lower cost

estimate than re-evaluation. Since the derived deltas are also IncNRC+ queries, their evalua-

tion can be optimized in the same way as the original query, i.e. materialize and maintain them

via delta-processing. We call the resulting expressions higher-order deltas. As each derivation

produces ‘simpler’ queries, we show that the entire process has a finite number of steps and

the final one is reached when the generated delta no longer depends on the database. Thus

the maintenance of nested queries can be further optimized using the technique of recursive

IVM, which has delivered important speedups for the flat relational case [36].

To simplify the presentation, we consider a database where a single relation R is being updated.

Nonetheless, the discussion and the results carry over in a straightforward manner when

updates are applied to several relations.

The delta rules for the constructs of IncNRC+ wrt. the update of bag R are given in Figure 3.1,

where ΔR is a bag containing the elements to be added/removed from R (with positive/nega-

tive multiplicity for insertions/deletions) and we use let X ∶= e1, Y ∶= e2 in e as a shorthand for

let X ∶= e1 in (let Y ∶= e2 in e). The delta of constructs that do not depend on R is the empty

bag, while the rules for the other constructs are a direct consequence of their linear or distribu-

tive behavior wrt. bag union. We show that indeed, the derived delta queries δR(h)[R,ΔR]
produce a correct update for the return value of h ∶

Proposition 3.2.1. Given an IncNRC+ expression h[R] ∶ Bag(B) with input R ∶ Bag(A) and

29

Chapter 3. Deep Incrementalization of Nested Collections

update ΔR ∶Bag(A), then:

h[R ⊎ΔR] = h[R] ⊎ δR(h)[R,ΔR].

Proof. (sketch) The proof follows via structural induction on h and from the semantics of

IncNRC+ constructs (extended proof in Appendix A.1.1).

Lemma 1. The delta of an input-independent IncNRC+ expression h is the empty bag, δR(h) =
∅.

Proof. (sketch) The result follows via structural induction on h and from the definition of δ(⋅)
(full proof in Appendix A.1.1).

The lemma above is useful for deriving in a single step the delta of input-independent subex-

pressions (as in Example 4), but it also plays an important role in showing that deltas are

cheaper than the original queries (Theorem 4) and in the discussion of higher-order incre-

mentalization (Section 3.2.1).

Notation. We sometimes write δ(h) instead of δR(h) if the updated bag R can be easily

inferred from the context.

Example 4. Taking the delta of the IncNRC+ query presented in Example 1 results in:

δR(filterp) = for x in ΔR where p(x)union sng(x),

since δR(for _ in p(x) union sng(x)) = ∅ (from Lemma 1) and for x in e union ∅ = ∅. As

expected the delta query of filterp amounts to filtering the update: filterp[ΔR].

3.2.1 Higher-order delta derivation

The technique of higher-order delta derivation stems from the intuition that if the evaluation

of a query can be sped up by re-using a previous result and evaluating a cheaper delta, then

the same must be true for the delta query itself. This has brought about an important leap

forward in the incremental maintenance of flat queries [36], and in the following we show that

our approach to delta-processing enables recursive IVM for NRC+ as well (since we derive

‘simpler’ deltas expressed in the same language as the original query).

The delta queries δ(h)[R,ΔR] we generate may depend on both the update ΔR as well as

the initial bag R. Considering that typically the updates are much smaller than the original

bags and thus the cost of evaluating δ(h) is most likely dominated by the subexpressions that

depend on R , it is beneficial to partially evaluate δ(h)[R,ΔR] offline wrt. those subexpressions

that depend only on R. Once ΔR becomes available, one can use the partially evaluated

expression of δ(h) to quickly compute the final update for h[R].

30

3.2. Incrementalizing IncNRC+

However, since the underlying bag R is continuously being updated, in order to keep using

this strategy we must be able to efficiently maintain the partial evaluation of δ(h). Fortunately,

δ(h)[R,ΔR] is an IncNRC+ expression just like h, and thus we can incrementally maintain its

partial evaluation wrt. R based on its second-order delta δ2(h)[R,ΔR,Δ′R], as in

δ(h)[R ⊎Δ′R,ΔR] = δ(h)[R,ΔR]⊎δ2(h)[R,ΔR,Δ′R],

where Δ′R binds the update applied to R in δ(h)[R,ΔR].

The same strategy can be applied to δ2(h), leading to a series δk(h)[R,ΔR,⋯,Δ(k−1)R] of

partially evaluated higher-order deltas. Each is used to incrementally maintain the preceding

delta δk−1(h), all the way up to the original query h.

Example 5. Given bag R ∶Bag(Bag(A)) let us consider the first and second order deltas of query

h:

h[R] =flatten(R)×flatten(R)

δ(h)[R,ΔR] =flatten(R)×flatten(ΔR) ⊎ flatten(ΔR)×(flatten(R)⊎flatten(ΔR))

δ2(h)[ΔR,Δ′R] =flatten(Δ′R)×flatten(ΔR) ⊎ flatten(ΔR)×flatten(Δ′R).

In the initial stage of delta-processing, besides materializing h[R] as H0, we also partially

evaluate δ(h) wrt. R as H1[ΔR]. Then, for each update U , we maintain H0 and H1[ΔR] using:

H0 = H0⊎H1[U]

H1[ΔR] = H1[ΔR]⊎δ2(h)[ΔR,U].

We note that one can apply updates over partially evaluated expressions like H1[ΔR] due to

the rich algebraic structure of the calculus (bags with addition and Cartesian product form a

semiring) which makes it possible to factorize H1[ΔR]⊎δ2(h)[ΔR,U] into subexpressions that

depend on ΔR, and subexpressions that do not.

Finally, we remark that in the traditional IVM approach, the value of flatten(R) which depends

on the entire input R is recomputed for each evaluation of δ(h)[R,U], whereas with recursive

IVM we evaluate it only once during the initialization phase.

Since we can always derive an extra delta query, this process could in principle generate

an infinite series of deltas and thus render the approach of recursive IVM inapplicable. By

contrast, we say that a query is recursively incrementalizable if there exists a k such that δk(h)
no longer depends on the input (and therefore there is no reason to continue the recursion

and to derive a delta for it). In our previous example, this happened for k = 2. In the following

we will show that any IncNRC+ query is recursively incrementalizable.

In order to determine the minimum k for which δk(h) is input-independent we associate

to every IncNRC+ expression a degree degφ(h) ∶N as follows: degφ(R) = 1, degφ(X) =φ(X),

31

Chapter 3. Deep Incrementalization of Nested Collections

degφ(h) = 0 for h ∈ {ΔR,sng(x),sng(πi(x)),sng∗(e),∅, p, sng(⟨⟩)} and:

degφ(e1⊎e2) =max(degφ(e1),degφ(e2))

degφ(for x in e1 union e2) = degφ(e1)+degφ(e2)

degφ(e1×e2) = degφ(e1)+degφ(e2)

degφ(flatten(e)) = degφ(⊖(e)) = degφ(e)

degφ(let X ∶= e1 in e2) = degφ[X ∶=degφ(e1)](e2),

where φ associates a degree to each free variable X , corresponding to the degree of its defining

expression.

We remark that the expressions h that have degree 0 are exactly those which are input-

independent. Therefore, determining the minimum k s.t. δk(h) is input-independent means

finding the minimum k s.t. deg(δk(h)) = 0, where δ0(h) = h. In order to show that this k is in

fact the degree of h, we give the following theorem, relating the degree of an expression to the

degree of its delta.

Theorem 2. Given an input-dependent IncNRC+ expression h[R] then deg(δ(h)) = deg(h)−1.

Proof. The proof follows via structural induction on h and from the definition of δ(⋅) and

deg(⋅). For subexpressions of h which are input-independent we use the fact that δ(e) = ∅
and deg(e) = deg(δ(e)) = 0.

• For h =R we have: deg(δ(R)) = deg(ΔR) = 0 = 1−1 = deg(R)−1

• For h = for x in e1 union e2 we have the following cases:

Case 1: deg(δ(e1)) = deg(e1)−1 and g is input-independent:

deg(δ(for x in e1 union e2)) = deg(for x in δ(e1)union e2) =

= deg(e2)+deg(δ(e1)) = deg(e2)+deg(e1)−1 = deg(for x in e1 union e2)−1.

Case 2: deg(δ(e2)) = deg(e2)−1 and f is input-independent: Analogous to Case 1.

Case 3: deg(δ(e2)) = deg(e2)−1 and deg(δ(e1)) = deg(e1)−1:

deg(δ(for x in e1 union e2)) =

= deg((for x in δ(e1)union e2)⊎(for x in e1 union δ(e2))⊎

(for x in δ(e1)union δ(e2)))

=max(deg(for x in δ(e1)union e2),deg(for x in e1 union δ(e2)),

deg(for x in δ(e1)union δ(e2)))

=max(deg(e2)+deg(δ(e1)),deg(δ(e2))+deg(e1),deg(δ(e2))+deg(δ(e1)))

32

3.2. Incrementalizing IncNRC+

=max(deg(e2)+deg(e1)−1,deg(e2)−1+deg(e1),deg(e2)−1+deg(e1)−1)

= deg(e2)+deg(e1)−1 = deg(for x in e1 union e2)−1.

• For h = e1×e2 the proof is similar to the one for for x in e1 union e2 as the definitions of

δ(h) and deg(h) are similar.

• For h = e1⊎e2 we have the following cases:

Case 1: deg(δ(e1)) = deg(e1)−1 and e2 is input-independent:

deg(δ(e1⊎e2)) =max(deg(δ(e1)),0) = deg(δ(e1)) = deg(e1)−1 =

=max(deg(e1),0)−1 = deg(e1⊎e2)−1.

Case 2: deg(δ(e2)) = deg(e2)−1 and e1 is input-independent: Analogous to Case 1.

Case 3: deg(δ(e1)) = deg(e1)−1 and deg(δ(e2)) = deg(e2)−1:

deg(δ(e1⊎e2)) = deg(δ(e1)⊎δ(e2)) =max(deg(δ(e1)),deg(δ(e2)))

=max(deg(e1)−1,deg(e2)−1) =max(deg(e1),deg(e2))−1 = deg(e1⊎e2)−1.

• For h =⊖(e) we have that deg(δ(e)) = deg(e)−1, therefore:

deg(δ(⊖(e))) = deg(⊖(δ(e))) = deg(δ(e)) = deg(e)−1 = deg(⊖(e))−1.

• For h =flatten(e) the proof is similar to the one for ⊖(e) as the definitions of δ(h) and

deg(h) are similar.

Corollary 3.2.2. Given an IncNRC+ expression h then deg(h) is the minimum natural number

k s.t. δk(h) is input-independent.

Proof. Theorem 2 captures the fact that the delta of a IncNRC+ query is ‘simpler’ than the orig-

inal query and we can infer from it that deg(δk(h)) = deg(h)−k. It then follows that deg(h)
is the minimum k s.t. deg(δk(h))=0, i.e. the minimum k s.t. δk(h) is input-independent.

We conclude that with recursive IVM one can avoid computing over the entire database during

delta-processing by initially materializing the given query and its deltas up toδmax(0,deg(h)−1)(h),

since those are the only ones that are input-dependent. Then, maintaining each such ma-

terialized Hi ∶= δi(h) is simply a matter of partially evaluating δi+1(h) wrt. the update and

applying it to Hi . Moreover, the ability to derive higher order deltas and materialize them wrt.

the database is the key result that enables the AC0 vs. NC0 complexity separation between

nonincremental and incremental evaluation (Theorem 11).

33

Chapter 3. Deep Incrementalization of Nested Collections

3.2.2 Cost transformation

Considering that delta processing is worthwhile only if the size of the change is smaller than

the original input, in this section we discuss what does it mean in the nested data model for an

update to be incremental. Then, we provide a cost interpretation to every IncNRC+ expression

that given the size of its input estimates the cost of generating the output. Finally, we prove

that for incremental updates the derived delta query is indeed cost-effective wrt. the original

query.

Our cost model is conservative and does not provide tight upper bounds over the execution

time of a query. Nonetheless, this notion is sufficient for capturing the fact that taking the

delta of a query results in a cheaper query.

While for the flat relational case incrementality can be simply defined in terms of the cardinality

of the input bag wrt. the cardinality of the update, this is clearly not an appropriate measure

when working with nested values, since an update of small cardinality could have arbitrarily

large inner bags. In order to adequately capture and compare the size of nested values we

associate to every type A of our calculus a cost domain A○ equipped with a partial order and

minimum values. The definition of A○ is designed to preserve the distribution of cost across

the nested structure of A in order to accurately reflect the size of nested values and how they

impact the processing of queries operating at different nesting levels.

The cost transformation we propose interprets the constructs of IncNRC+ over cost domains

A○, inductively defined for every type A as:

B ase○ = 1○ (A1×A2)○ = A○1 × A○2 Bag(A)○ =N+{A○},

where 1○ has only the constant cost 1, we individually track the cost of each component in

a tuple, and N+{A○} represents the cost of bags as the pairing between their cardinality and

the least upper-bound cost of their elements4. Additionally, we define a family of functions

sizeA ∶ A → A○, that associate to any value a ∶ A a cost proportional to its size:

sizeB ase(x) = 1

sizeA1×A2(⟨x1, x2⟩) = ⟨sizeA1(x1), sizeA2(x2)⟩

sizeBag(C)(X) = ∣X ∣{sup
xi ∈X

sizeC(xi)},

where the supremum function is defined based on the following type-indexed partial ordering

relation ≺A :

x ≺B ase y = false

⟨x1, x2⟩ ≺A1×A2 ⟨y1, y2⟩ = x1 ≺A1 y1 and x2 ≺A2 y2

n{x} ≺Bag(C)m{y} = n <m and x ⪯C y.

4We use N
+{A○} instead of N+× A○ to distinguish it from the cost domain of tuples.

34

3.2. Incrementalizing IncNRC+

Finally, the x ⪯A y ordering is defined analogously to ≺A by making all the comparisons above

non-strict, with the exception of B ase values for which we have x ⪯B ase y = true. We denote

by 1A the bottom element of (A○,≺A).

We can now define an update ΔR for a nested bag R as incremental if size(ΔR) ≺ size(R).

Example 6. ThesizeofbagR ∶Bag(String×Bag(String)),

R = {⟨Comedy,{Carnage}⟩,⟨Animation,{Up,Shrek,Cars}⟩}

is estimated as size(R) ∶N+{1○×N+{1○}} = 2{⟨1,3{1}⟩}.

Notation. Whenever the cardinality estimation of a bag is 1, we simply write {c} as opposed

to 1{c}, where c is the cost estimation for its elements.

Given an IncNRC+ expression e ∶ Bag(B), we derive its cost C[[e]] ∶ N+{B○} based on the

transformation in Figure 3.2, where γ○ and ε○ are cost assignments to variables. The generated

costs have two components: one that computes an upper bound for the cardinality of the

output bag, denoted by Co[[e]] ∶N+, and another returning the upper bound for the size of its

elements Ci [[e]] ∶B○. If B is itself a bag type Bag(C), we also denote the two components of

Ci [[e]] by Coi [[e]] ∶N+ and Ci i [[e]] ∶C○.

The cost transformation follows the natural semantics of the constructs in IncNRC+. For

example, in the case of for x in e1 union e2, the cardinality of the output is estimated as the

product of the cardinalities of the bags returned by e1 and e2, while the elements in the output

have the same cost as the elements returned by e2. We note that in computing the cost of e2

we assigned to x the estimated cost for the elements of e1.

Similarly, the cardinality of the bag produced by e1×e2 can be determined by multiplying the

cardinalities of the bags produced by e1 and e2, whereas the size of its elements is obtained by

pairing the size of the elements in e1 and e2.

Our cost model is designed to produce estimates within constant factors. For example, for the

cardinality of the result of bag union we take the maximum cardinality of its inputs, as opposed

to their sum. Furthermore, we consider a “call-by-name" evaluation strategy, where values are

computed only when needed. Therefore, if part of an intermediate result is projected away,

we disregard its cost while if the same bag is computed in several places, we consider its cost

every time5.

Finally, we leverage the estimated cost of an expression to obtain an upper bound on its

running time:

Lemma 3. An IncNRC+ expression h ∶Bag(B) can be evaluated in Ω(tcostBag(B)(C[[h]])),

5This does not influence the cost in asymptotic terms.

35

Chapter 3. Deep Incrementalization of Nested Collections

C[[R]] = size(R) C[[sng(x)]]γ○;ε○ = {ε○(x)}

C[[X]]γ○;ε○ = γ○(X) C[[sng(πi(x))]]γ○;ε○ = {πi(ε○(x))}

C[[p(x)]] = 1Bag(1) C[[sng(⟨⟩)]] = 1Bag(1)

C[[∅]] = 1Bag(B) C[[sng∗(e)]] = {C[[e]]}

C[[⊖(e)]] = C[[e]] C[[e1⊎e2]] = sup(C[[e1]],C[[e2]])

C[[let X ∶= e1 in e2]]γ○;ε○ = C[[e2]]γ○[X ∶=C[[e1]]γ○ ;ε○];ε○

C[[e1×e2]] = Co[[e1]] ⋅Co[[e2]]{⟨Ci [[e1]],Ci [[e2]]⟩}

C[[flatten(e)]] = Co[[e]] ⋅Coi [[e]]{Ci i [[e]]}

C[[for x in e1 union e2]] = Co[[e1]]γ○;ε○ ⋅Co[[e2]]γ○;ε○[x∶=Ci [[e1]]]{Ci [[e2]]γ○;ε○[x∶=Ci [[e1]]]}

Figure 3.2 – The cost transformation C[[f]]=Co[[f]]{Ci [[f]]} ∶N+{B○} over the constructs of
IncNRC+ .

where tcostA ∶A○→N is defined as:

tcostB ase(c) = 1

tcostA1×A2(⟨c1,c2⟩) = tcostA1(c1)+ tcostA2(c2)

tcostBag(C)(n{c}) = n ⋅ tcostC(c).

Proof. (Sketch) In order to show that h can be computed within Ω(tcostBag(B)(C[[h]])) =
Ω(Co[[h]] ⋅ tcostB(Ci [[h]])) we assume that all let-bound variables have been replaced by

their definition and we proceed in two steps.

At first we compute a lazy version of the result hL = [[h]]L , which instead of inner bags produces

lazy bags βe,ε, i.e. closures containing the expression e that would have generated the inner

bag, along with ε, the value assignment for e’s free variables at the time of the evaluation. The

lazy evaluation strategy [[⋅]]L operates similar to the standard interpretation [[⋅]], except for

the singleton construct [[sng(e)]]L
ε =βe,ε and for interpreting lazy values [[βe,ε]]L

ε′ = [[e]]
L
ε , for

which we replace the current value assignment ε′ with the one stored in the closure.

Considering that producing each element of hL takes constant time (since building tuples and

closures takes constant time), it follows that this step can be done in time proportional to the

cardinality of the output O(Co[[h]]).

In the second step we expand the lazy values appearing in each element of hL in order to

36

3.2. Incrementalizing IncNRC+

obtain the final value of h. To do so we use the following expansion function:

expB ase(x) = x

expA1×A2
(⟨x1, x2⟩) = ⟨expA1

(x1),expA2
(x2)⟩

expBag(C)(βe,ε) = for y in [[e]]L
ε union sng(expC(y)).

We remark that, by postponing the materialization of inner bags until after the entire top

level bag has been evaluated, we avoid computing the contents of nested bags that might get

projected away in a later stage of the computation (as might be the case for an eager evaluation

strategy).

Our result then follows from the fact that expanding each element x ∶B from hL takes at most

tcostB(Ci [[h]]), which can be easily shown through induction over the structure of B and

considering that Ci [[h]] represents on upper bound for the size of the elements in the output

bag.

Example 7. If we apply the cost transformation to the filter query in Example 1 we get:

C[[filterp[R]]] = Co[[R]] ⋅ (1 ⋅1){Ci [[R]]} = C[[R]]

which corresponds to our expectation that the cost of filtering should be proportional to the cost

of the input bag R.

Example 8. If we apply the cost transformation to the �������[M] query in section 3.1.1 we

get cost estimate:

C[[�������[M]]] = ∣M ∣{⟨1, ∣M ∣{1}⟩},

and an upper bound for its running time as Ω(∣M ∣(1+ ∣M ∣)), which fits within the expected

execution time for this query.

We can now give the main result of this section showing that for incremental updates delta-

processing is more cost-effective than recomputation.

Theorem 4. IncNRC+ is efficiently incrementalizable, i.e. for any input-dependent IncNRC+

query h[R] and incremental update ΔR, then:

tcost(C[[δ(h)]]) < tcost(C[[h]]).

Proof. (sketch) We first show by induction on the structure of h and using the cost semantics

of IncNRC+ constructs that C[[δ(h)]] ≺ C[[h]]. Then the result follows immediately from the

definition of tcostA(⋅) and ≺A (for the extended proof see Appendix A.1.2).

37

Chapter 3. Deep Incrementalization of Nested Collections

It can be easily seen that filterp[R] is efficiently incrementalizable since its delta is filterp[ΔR]
andC[[filterp[R]]] = C[[R]], thereforeC[[ΔR]] ≺ C[[R]] impliesC[[filterp[ΔR]]] ≺ C[[filterp[R]]].

3.3 Incrementalizing NRC+

We now turn to the problem of efficiently incrementalizing NRC+ queries that make use of the

unrestricted singleton construct. As showcased in Section 3.1, an efficient delta rule for sng(e)
requires deep updates which are not readily expressible in NRC+. Moreover, deep updates are

necessary not only for maintaining the output of a NRC+ query, but also for applying local

changes to the inner bags of the input.

To address both problems we propose a shredding transformation that translates any NRC+

query into a collection of efficiently incrementalizable expressions whose deltas can be ap-

plied via regular bag union. Furthermore, we show that our translation generates queries

semantically equivalent to the original query, thus providing the first solution for the efficient

delta-processing of NRC+. More precisely, we recursively replace nested bags by labels, and

separately maintain a set of label dictionaries, where we keep track of the bags that each label

represents in the original query.

3.3.1 The shredding transformation

The essence of the shredding transformation is the replacement of inner bags by labels while

separately storing their definitions in label dictionaries. Accordingly, we inductively map every

type A of NRC+ to a label-based/flat representation AF along with a context component AΓ

for the corresponding label dictionaries:

B aseF =B ase B aseΓ = 1

(A1×A2)F = AF
1×AF

2 (A1×A2)Γ = AΓ
1×AΓ

2

Bag(C)F = L Bag(C)Γ = (L↦Bag(C F))×CΓ

For instance, the flat representation of a bag of type Bag(C) is a label l ∶ L, whereas its context

includes a label dictionary L↦Bag(C F), mapping l to the flattened contents of the bag. For the

moment we focus on the shredding transformation and defer the in-depth discussion of labels,

label dictionaries and the operations one can perform on top of them until Section 3.3.2.

We remark that for tuples of base types: AF = A and AΓ is a product of unit types, which

we denote by 1∗. We will often ignore void contexts, i.e. those of unit type, as they do not

contribute to the final result.

The shredding transformation takes any NRC+ expression h[R] ∶Bag(B) to:

shF (h)[RF ,RΓ] ∶Bag(B F) and shΓ(h)[RF ,RΓ] ∶BΓ,

38

3.3. Incrementalizing NRC+

where shF (h) computes the flat representation of the output bag, while the set of queries

in shΓ(h) define the context, i.e. the dictionaries corresponding to the labels introduced by

shF (h). We note that the shredded expressions depend on the shredded input bag RF =
shF (R), RΓ = shΓ(R)6, and that they make use of several new constructs for working with

labels: the label constructor inL, the dictionary constructor [l ↦ e], and the label union of

dictionaries∪. We denote by NRC+l and IncNRC+l , the extension with these constructs of NRC+

and IncNRC+, respectively, but we postpone their formal definition until the following section.

Next, we discuss some of the more interesting cases of the shredding transformation, for the

full definition see Figure 3.3. We remark that it produces expressions that no longer make use

of the singleton combinator sng(e), thus their deltas do not generate any deep updates.

In addition, we note that only the shreddings of sng(e) and flatten(e) fundamentally change

the contexts, whereas the shreddings of most of the other operators modify only the flat

component of the output (see sh(e1×e2), sh(⊖(e))). In fact, if we interpret the output context

BΓ as a tree, having the same structure as the nested type B , we can see that shΓ(sng(e)) /

shΓ(flatten(e)) are the only ones able to add / remove a level from the tree.

Notation. We often shorthand shF (h) and shΓ(h) as hF and hΓ, respectively. We will also

abuse the notation Π/ε representing the type/value assignment for the free variables of an

expression introduced by for constructs, to also denote a tuple type/value with one component

for each such free variable.

For the unrestricted singleton construct sng(e) we tag each of its occurrences in an expression

with a unique static index ι. Given the shredding of e, eF ∶ Bag(B F), eΓ ∶ BΓ, we transform

sngι(e) as follows: we first replace the inner bag eF in its output with a label ⟨ι,ε⟩ using the

label constructor inLι,Π, where ε ∶Π represents the value assignment for all the free variables

in eF . Since eF operates only over shredded bags, it follows that ε is a tuple of either primitive

values or labels. Then we extend the context eΓ with a dictionary [(ι,Π)↦ eF] mapping labels

⟨ι,ε⟩ to their definition eF :

shF (sngι(e)) ∶Bag(L) = inLι,Π(ε)

shΓ(sngι(e)) ∶ L↦Bag(B F)×BΓ = ⟨[(ι,Π)↦ eF],eΓ⟩.

We incorporate the value assignment ε within labels as it allows us to discuss the creation of la-

bels independently from their defining dictionary. Also, since the value assignment ε uniquely

determines the definition of a label ⟨ι,ε⟩, this also ensures that we do not generate redundant

label definitions. Since our results hold independently from a particular indexing scheme, we

do not explore possible alternatives, although they can be found in the literature [17].

For the shredding of flatten(e),e ∶ Bag(Bag(B)), we simply expand the labels returned by

eF ∶ Bag(L), based on the corresponding definitions stored in the first component of the

6We consider a full shredding of the input/output down to flat relations, although the transformation can be
easily fine-tuned in order to expose only those inner bags that require updates.

39

Chapter 3. Deep Incrementalization of Nested Collections

shF (R) ∶Bag(AF)
shF (R) = for r in R union sF

A(r)
shΓ(R) ∶ AΓ

shΓ(R) = sΓA

shF (for x in e1 union e2) ∶Bag(B F)
shF (for x in e1 union e2) = let xΓ ∶= eΓ1 in for xF in eF

1 union eF
2

shΓ(for x in e1 union e2) ∶BΓ

shΓ(for x in e1 union e2) = let xΓ ∶= eΓ1 in eΓ2

shF (sng(πi (x))) ∶Bag(AF
i)

shF (sng(πi (x))) = sng(πi (xF))
shΓ(sng(πi (x))) ∶ AΓ

i

shΓ(sng(πi (x))) = xΓi

shF (sngι(e)) ∶Bag(L)
shF (sngι(e)) = inLι,Π(ε)
shΓ(sngι(e)) ∶ (L→Bag(B F))×BΓ

shΓ(sngι(e)) = ⟨[(ι,Π)↦ eF],eΓ⟩

shF (sng(⟨⟩)) ∶Bag(1)
shF (sng(⟨⟩)) = sng(⟨⟩)
shΓ(sng(⟨⟩)) ∶ 1
shΓ(sng(⟨⟩)) = ⟨⟩

shF (sng(x)) ∶Bag(AF)
shF (sng(x)) = sng(xF)
shΓ(sng(x)) ∶ AΓ

shΓ(sng(x)) = xΓ

shF (flatten(e)) ∶Bag(B F)
shF (flatten(e)) = for l in eF union eΓ1(l)
shΓ(flatten(e)) ∶BΓ

shΓ(flatten(e)) = eΓ2

shF (e1×e2) ∶Bag(AF
1 × AF

2)
shF (e1×e2) = eF

1 ×eF
2

shΓ(e1×e2) ∶ AΓ
1 × AΓ

2

shΓ(e1×e2) = ⟨eΓ1 ,eΓ2 ⟩

shF (e1⊎e2) ∶Bag(B F)
shF (e1⊎e2) = eF

1 ⊎eF
2

shΓ(e1⊎e2) ∶BΓ

shΓ(e1⊎e2) = eΓ1 ∪eΓ2

shF (⊖(e)) ∶Bag(B F)
shF (⊖(e)) =⊖(eF)
shΓ(⊖(e)) ∶BΓ

shΓ(⊖(e)) = eΓ

shF (∅) ∶Bag(B F)
shF (∅) =∅
shΓ(∅) ∶BΓ

shΓ(∅) =∅BΓ

shF (p(x)) ∶Bag(1)
shF (p(x)) = p(x)
shΓ(p(x)) ∶ 1
shΓ(p(x)) = ⟨⟩

shF (let X ∶= e1 ine2) ∶Bag(B F)
shΓ(let X ∶= e1 ine2) ∶BΓ

shF (let X ∶= e1 in e2) = let X F ∶= eF
1 , X Γ ∶= eΓ2 in eF

2

shΓ(let X ∶= e1 in e2) = let X F ∶= eF
1 , X Γ ∶= eΓ2 in eΓ2

Figure 3.3 – The shredding transformation, where sF
A and sΓA are described in Figure 3.4.

sF
B ase ∶B ase →Bag(B ase) sF

B ase(a) = sng(a)

sΓB ase ∶ 1 sΓB ase = ⟨⟩

sF
A1×A2

∶ (A1× A2)→Bag(AF
1 × AF

2) sF
A1×A2

(a) = for ⟨a1, a2⟩ in sng(a)union

sF
A1
(a1)× sF

A2
(a2)

sΓA1×A2
∶ AΓ

1 × AΓ
2 sΓA1×A2

= ⟨sΓA1
, sΓA2

⟩

sF
Bag(C) ∶Bag(C)→Bag(L) sF

Bag(C)(v) =DC(v)

sΓBag(C) ∶ (L↦Bag(C F))×CΓ sΓBag(C) = ⟨for l in supp(D−1
C)union

[l ↦ for c in D−1
C (l)union sF

C(c)], sΓC ⟩

Figure 3.4 – Shredding nested values: sF
A ∶ A →Bag(AF), sΓA ∶ AΓ

context eΓ ∶ L↦Bag(B F)×BΓ:

shF (flatten(e)) ∶Bag(B F) = for l in eF union eΓ1(l),

40

3.3. Incrementalizing NRC+

uB ase[⟨⟩] ∶B ase →Bag(B ase) uB ase[⟨⟩](aF) = sng(aF)

uA1×A2[aΓ] ∶ AF
1×AF

2 →Bag(A1×A2) uA1×A2[aΓ](aF) = for ⟨aF
1 , aF

2 ⟩ in sng(aF)union

uA1[aΓ1](aF
1)×uA2[aΓ2](aF

2)

uBag(C)[aΓ] ∶ L→Bag(Bag(C)) uBag(C)[aΓ](l) = sng(for cF in aΓ1(l)union

uC [aΓ2](cF))

Figure 3.5 – Nesting shredded values: uA[aΓ] ∶ AF →Bag(A)

where we denote by eΓ1/eΓ2 the first/second component of eΓ.

Finally, for adding two queries in shredded form via ⊎, we add their flat components, but we

label union their contexts, i.e. their label dictionaries:

shF (e1⊎e2) = eF
1 ⊎eF

2 shΓ(e1⊎e2) = eΓ1 ∪eΓ2 .

To complete the shredding transformation we also inductively define sF
A ∶ A →Bag(AF) and sΓA ∶

AΓ, for shredding input bags R ∶Bag(A), as well as uA[aΓ] ∶ AF →Bag(A) for converting them

back to nested form, as in:

RF = for r in R union sF
A(r) RΓ = sΓA

R = for r F in RF union uA[RΓ](r F),

where sF
A , sΓA and uA are presented in Figures 3.4 and 3.5.

Shredding primitive values leaves them unchanged and produces no dictionary (B aseΓ = 1),

while tuples get shredded and nested back component-wise. When shredding a bag value

R ∶ Bag(A), the flat component RF ∶ Bag(AF) is generated by replacing every nested bag

v ∶ Bag(C) from R, with a label l = ⟨ιv ,⟨⟩⟩. The association between every bag v ∶ Bag(C),

occurring nested somewhere inside R, and the label l is given via mappings DC and D−1
C :

DC ∶Bag(C)→Bag(L) DC(v) = {l}

D−1
C ∶ L↦Bag(C) D−1

C (l) = v.

where DC should be seen as a function with side effects, that generates different labels for

different instances of the same bag v . The shredding context for these labels is then obtained

by mapping each label l from the dictionary D−1
C to a shredded version of its original value v .

This is done by first using the dictionary D−1
C , to obtain v and applying sF

C to shred its contents.

Converting a shredded bag RF ∶ Bag(AF),RΓ ∶ AΓ, back to nested form can be done via

for x in RF union uA[RΓ](x), which replaces the labels in RF by their definitions from the

41

Chapter 3. Deep Incrementalization of Nested Collections

context RΓ, as computed by uA[aΓ] (Figure 3.5). We note that the definitions themselves also

have to be recursively turned to nested form, which is done in uBag(C).

3.3.2 Working with labels

In the following we detail the semantics of IncNRC+l ’s constructs for operating on dictionaries

and we show that IncNRC+l is indeed efficiently incrementalizable.

We define a label l ∶ L,L ∶= Integ er ×Any, to be the pairing between a static index ι ∶ Integ er

and a dynamic context ε ∶Any, where Any stands for all the possible types of NRC+l . The static

index is used to distinguish between nested bags created by different instances of the singleton

constructor sng(e), while the dynamic context / value assignment for e’s free variables ε

identifies a particular bag, from all the possible bags computed by e. Allowing the dynamic

context to have any type makes it possible to collect in the same bag labels created in different

contexts.

Given an expression e ∶Bag(B) with a value assignment for its free variables ε ∶Π, we define

a label dictionary [(ι,Π) ↦ e] ∶ L↦ Bag(B), i.e. a mapping between labels l = ⟨ι,ε⟩ and bag

values e ∶Bag(B), as:

[(ι,Π)↦ e](⟨ι′,ε⟩) = if (ι == ι′) ρε(e) else {}

where ρε(e) replaces each free variable from e with its corresponding projection from ε. A

priori, such dictionaries have infinite domain, i.e. they produce a bag for each possible value

assignment ε. However, when materializing them as part of a shredding context we need only

compute the definitions of the labels produced by the flat version of the query.

Example 9. Given ����(m) ∶ Bag(Str i ng), the query from the motivating example in sec-

tion 3.1, dictionary d = [(ι, Movi e)↦ ����(m)] of type L↦Bag(Str i ng) builds a mapping

between labels l = ⟨ι,m⟩ and the bag of related movies computed by ����(m), where l need

only range over the labels produced by �������F .

Since inLι,Movi e(m) = {⟨ι,m⟩}, we can indeed recover ����(m) by evaluating:

for l ′ in inLι,Movi e(m)union d(l ′).

Notation. We will often abuse notation and use l to refer to both the kind of a label (ι,Π), as

well as an instance of a label ⟨ι,ε⟩.

In order to distinguish between an empty definition, [] =∅, and a definition that maps its label

to the empty bag, [l ↦∅], we attach support sets to label definitions such that supp([]) =∅
and supp([l ↦ e]) = {l}.

For combining dictionaries of labels, i.e. d = [l1↦e1,⋯, ln↦en] ∶ L↦Bag(B), with supp(d) =

42

3.3. Incrementalizing NRC+

{l1,⋯, ln}, we define the addition of dictionaries (d1⊎d2)(l) = d1(l)⊎d2(l) as well as the label

union of dictionaries d1∪d2, where d1,d2 ∶ L↦Bag(B), supp(d1∪d2) = supp(d1)∪ supp(d2)
and:

(d1∪d2)(l) = d1(l), if l ∈ supp(d1)∖supp(d2)

(d1∪d2)(l) = d2(l), if l ∈ supp(d2)∖supp(d1)

(d1∪d2)(l) = d1(l), if l ∈ supp(d1)∩supp(d2)& d1(l)=d2(l)

(d1∪d2)(l) = error, if l ∈ supp(d1)∩supp(d2)& d1(l)≠d2(l)

We ensure the well definedness of the label union operation by requiring that the definitions

of labels found in both input dictionaries must agree, i.e. for any l ∈ supp(d1)∩ supp(d2) we

must have d1(l) = d2(l). If this condition is not met the evaluation of ∪ will result in an error.

We remark that ∪ cannot modify a label definition, only ⊎ can as highlighted by the following

example.

Example 10. We give a couple of examples where we contrast the outcome of label unioning

dictionaries with that of applying bag addition on them (we use xn to denote n copies of x).

[l1 ↦{b1}, l2 ↦{b2,b3}]∪[l2 ↦{b2,b3}, l3 ↦{b4}] = [l1 ↦{b1}, l2 ↦{b2,b3}, l3 ↦{b4}]

[l1 ↦{b1}, l2 ↦{b2,b3}]⊎[l2 ↦{b2,b3}, l3 ↦{b4}] = [l1 ↦{b1}, l2 ↦{b2
2,b2

3}, l3 ↦{b4}]

[l1 ↦{b1}, l2 ↦{b2,b3}]∪[l2 ↦{b5}, l3 ↦{b4}] = error

[l1 ↦{b1}, l2 ↦{b2,b3}]⊎[l2 ↦{b5}, l3 ↦{b4}] = [l1 ↦{b1}, l2 ↦{b2,b3,b5}, l3 ↦{b4}]

As we can see from these examples, bag addition allows us to modify the label definitions stored

inside the dictionaries, which is otherwise not possible via label unioning.

We also formalize the notion of consistent shredded values, i.e. values that do not contain

undefined labels or definitions that conflict and we show that shredding produces consistent

values and that given consistent inputs, shredded NRC+ expressions also produce consistent

outputs (Appendix A.2). This is especially important for guaranteeing that the union of

dictionaries performed by the shredded version of bag addition cannot change the expansion

of any label.

Finally, we introduce the delta rules and the degree and cost interpretations for the new

label-related constructs:

δ(inLl) =∅ δ([l ↦ e]) = [l ↦ δ(e)] δ(e1∪e2)=δ(e1)∪δ(e2)

deg(inLl) = 0 deg([l ↦ e]) = deg(e) deg(e1∪e2) =max(deg(e1),deg(e2))

C[[inLl(a)]] = {1} C[[[l ↦ e](l ′)]] = C[[e]] C[[(e1∪e2)(l)]] = sup(C[[e1(l)]],C[[e2(l)]]),

where the cost domains for labels is 1○. Based on these definitions we prove the following

43

Chapter 3. Deep Incrementalization of Nested Collections

result:

Theorem 5. IncNRC+l is recursively and efficiently incrementalizable, i.e. given any input-

dependent IncNRC+l query h[R], and incremental update ΔR then:

h[R ⊎ΔR] = h[R]⊎δ(h)[R,ΔR],

deg(δ(h)) = deg(h)−1 and

tcost(C[[δ(h)]]) < tcost(C[[h]]).

Proof. (sketch) The proof follows immediately via structural induction on h and from the

semantics of IncNRC+l constructs (for the extended proof see Appendix A.3).

Theorem 5 implies that we can efficiently incrementalize any NRC+ query by incrementalizing

the IncNRC+l queries resulting from its shredding. The output of these queries faithfully

represents the expected nested value as we demonstrate in section 3.3.3.

3.3.3 Correctness

In order to prove the correctness of the shredding transformation, we show that for any NRC+

query h[R] ∶Bag(B), shredding the input bag R ∶Bag(A), evaluating:

hF [RF ,RΓ] ∶Bag(B F) and hΓ[RΓ] ∶BΓ,

and converting the output back to nested form produces the same result as h[R], that is:

h[R] = let RF ∶= for r in R union sF (r),

RΓ ∶= sΓ in

for xF in hF union u[hΓ](xF), (3.4)

where sF (r) shreds each tuple in R to its flat representation, sΓ returns the dictionaries

corresponding to the labels generated by sF (r), and u[hΓ](xF) places each tuple from hF

back in nested form using the dictionaries in hΓ.

We proceed with the proof in two steps. We first show that shredding a value and then nesting

the result returns back the original value (Lemma 6). Then, we show that applying the shredded

version of a function over a shredded value and then nesting the result is equivalent to first

nesting the input and then applying the original function (Lemma 7). The main result then

follows immediately (Theorem 8).

Lemma 6. The nesting function u is left inverse wrt. the shredding functions sF , sΓ, i.e. for nested

value a ∶ A we have for aF in sF
A(a)union uA[sΓA](aF) = sng(a).

Proof. We do a case by case analysis on the type being shredded:

44

3.3. Incrementalizing NRC+

• A = B ase: for aF in sF
B ase(a) union uB ase[⟨⟩](aF) = for aF in sng(a) union sng(aF) =

sng(a)

• A = A1× A2

for aF in sF
A1×A2

(a)union uA1×A2[s
Γ
A1×A2

](aF) =

= for aF in (for ⟨a1, a2⟩ in sng(a)union sF
A1
(a1)× sF

A2
(a2))union

(for ⟨aF
1 , aF

2 ⟩ in sng(aF)union uA1[aΓ
1](aF

1)×uA2[aΓ
2](aF

2))

= for ⟨a1, a2⟩ in sng(a)union for ⟨aF
1 , aF

2 ⟩ in sF
A1
(a1)× sF

A2
(a2)union

uA1[aΓ
1](aF

1)×uA2[aΓ
2](aF

2)

= for ⟨a1, a2⟩ in sng(a)union

(for aF
1 in sF

A1
(a1)union uA1[aΓ

1](aF
1))×(for aF

2 in sF
A2
(a2)union uA2[aΓ

2](aF
2))

= for ⟨a1, a2⟩ in sng(a)union (sng(a1)×sng(a2)) = sng(a)

• A =Bag(C)

for l in sF
Bag(C)(a)union uBag(C)[s

Γ1

Bag(C)
, sΓ2

Bag(C)
](l) =

= for l in DC(a)union sng(for cF in sΓ1

Bag(C)
(l)union uC [sΓ2

Bag(C)
](cF))

= for l in DC(a)union

sng(for cF in (for c in D−1
C (l)union sF

C(c))union uC [sΓC](cF))

= for l in DC(a)union

sng(for c in D−1
C (l)union for cF in sF

C(c)union uC [sΓC](cF))

= for l in DC(a)union sng(for c in D−1
C (l)union sng(c))

= for l in DC(a)union sng(D−1
C (l)) = sng(a)

Lemma 7. For any NRC+ query h[R] ∶Bag(B) and consistent shredded bag RF ,RΓ:

let R ∶= for r F in RF union u[RΓ](r F) in h[R]

= for xF in hF union u[hΓ](xF).

Proof. The proof consists of a case by case analysis on the structure of h. We detail for

h ∈ {sng(e),flatten(e)}, as the rest of the cases follow in a similar fashion.

45

Chapter 3. Deep Incrementalization of Nested Collections

• h = sng(e)

let R ∶= for r F in RF union u[RΓ](r F) in sng(e)

= sng(let R ∶= for r F in RF union u[RΓ](r F) in e)

= sng(for xF in eF union uB[eΓ](xF))

= sng(for xF in (for l in inLι,AF (aF)union [(ι, AF)↦ eF](l))union uB[eΓ](xF))

= for l in inLι,AF (aF)union sng(for xF in [(ι, AF)↦ eF](l)union uB[eΓ](xF))

= for l in inLι,AF (aF)union uBag(B)[[(ι, AF)↦ eF],eΓ](l)

= for l in shF (sng(e))union uBag(B)[shΓ(sng(e))](l)

• h =flatten(e)

let R ∶= for r F in RF union u[RΓ](r F) in flatten(e)

=flatten(let R ∶= for r F in RF union u[RΓ](r F) in e)

=flatten(for l in eF union uBag(B)[e
Γ](l))

=flatten(for l in eF union sng(for xF in eΓ1(l)union uB[eΓ2](xF)))

= for l in eF union (for xF in eΓ1(l)union uB[eΓ2](xF))

= for xF in (for l in eF union eΓ1(l))union uB[eΓ2](xF)

= for xF in shF (flatten(e))union uB[shΓ(flatten(e))](xF)

Theorem 8. For any NRC+ query expression h[R] ∶Bag(B) property (3.4) holds.

Proof. The result follows from Lemma 7, if we consider the shredding of R as input, and then

apply Lemma 6.

3.3.4 Complexity of shredding

In this section we show that shredding nested bags can be done in the TC0 parallel complexity

class. For additional details on parallel complexity classes and the representations of flat

relations when processing them via circuits (under set and bag semantics), we refer the reader

back to section 2.4.

When it comes to nested values, the F Set representation discussed earlier is no longer feasible

since it suffers from an exponential blowup with every nesting level. This becomes apparent

when we consider that representing in unary an inner bag with nt possible tuples requires 2nt

bits. Consequently, for a nested value we use an alternate representation N Str , as a relation

S(p, s)which encodes the string representation of the value by mapping each position p in the

46

3.3. Incrementalizing NRC+

string to its corresponding symbol s. To do so we assume a non-fixed alphabet that includes

the active domain, i.e. all the possible atomic field values.

Example 11. The string representation {⟨a,{b,c}⟩,⟨d ,{e, f }⟩}, of a nested value of type Bag(B ase×
Bag(B ase)), is encoded by relation S(p, s) as follows (we show tuples as columns to save space):

S(p, s) ∶=
p 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

s { ⟨ a , { b , c } ⟩ , ⟨ d , { e , f } ⟩ }

For a particular input size n, the active domain of S consists of σext symbols including the

active domain of the database, delimiting symbols “⟨",“⟩",“,",“{",“}", as well as an additional

symbol for each possible position in the string (i.e. σext =σ+5+n). We remark that the F Set

representation of S requires σ2
ext bits and thus remains polynomial in the size of the input.

This representation may seem to require justification, since strings over an unbounded al-

phabet may seem undesirable. We note that the representation is fair in the sense that it

does not require a costly (exponential) blow-up from the practical string representation that

could be used to store the data on a real storage device such as a disk; we use a relational

representation of the string and the canonical representation of relations as bit-sequences

that is standard in circuit complexity. The one way we could have been even more faithful

would have been to start with exactly the bit-string representation by which an (XML, JSON, or

other) nested dataset would be stored on a disk. This – breaking up the active domain values

into bit sequences – is however avoided for the same reason it is avoided in the case of the

study of the circuit complexity of queries on flat relations – reconstructing the active domain

from the bit string dominates the cost of query evaluation.

We can now give our main results of this section.

Theorem 9. Shredding a nested bag from N Str representation to a flat bag (F B ag) representation

is in TC0.

Proof. To obtain our result we take advantage of the fact that first-order logic with majority-

quantifiers (FOM) is in TC0 [6], and express the shredding of a nested value as a set of FOM

queries over the S(p, s) relation.

We start by defining a family of queries ValA(i , j) for testing whether a closed interval (i , j)

47

Chapter 3. Deep Incrementalization of Nested Collections

from the input contains a value of a particular type A:

ValB ase(i , j) ∶= SB ase(i)∧ i = j

ValA1×A2(i , j) ∶= S⟨(i)∧S⟩(j)∧∃k.PairA1,A2(i +1,k, j −1)

PairA1,A2(i ,k, j) ∶= S,(k)∧ValA1(i ,k −1)∧ValA2(k +1, j)

ValBag(C)(i , j) ∶= S{(i)∧S}(j)∧(j = i +1∨SeqC(i +1, j −1))

SeqC(i , j) ∶= ∃k, l .ElemC(i ,k, l , j)∧

∀k, l .ElemC(i ,k, l , j)→ (EndsWithC(i ,k)∧StartsWithC(l , j))

ElemC(i ,k, l , j) ∶= (i ≤ k ∧ l ≤ j ∧ValC(k, l))

EndsWithC(i ,k) ∶= i = k ∨(S,(k −1)∧∃k′.i ≤ k′∧ValC(k′,k −2))

StartsWithC(l , j) ∶= l = j ∨(S,(l +1)∧∃l ′.l ′ ≤ j ∧ValC(l +2, l ′))

where SB ase(i) is true iff we have a B ase symbol at position i in the input string (and analo-

gously for S{(i),S}(i),S⟨(i),S⟩(i) and S,(i)). When determining if an interval (i , j) contains

a bag value of type Bag(C) we test if it is either empty, i.e. j = i +1 or if it encloses a sequence

of C elements (using SeqC), i.e. it has at least one C element and each element is preceded

by another C element or is the first in the sequence, and succeeded by another C element or

is the last in the sequence. We use auxiliary queries: ElemC(i ,k, l , j), which returns true iff

the interval (i , j) contains a value of type C between indices k and l , and StartsWithC(l , j)
/ EndsWithC(i ,k) which returns true iff the intervals (l , j) / (i ,k) are either empty or they

begin, respectively end, with a value of type C .

For shredding the value contained in an interval (i , j) of the input we define the following

family of queries ShF
A(i , j , p, s):

ShF
B ase(i , j , p, s) ∶= i ≤ p ∧p ≤ j ∧S(p, s)

ShF
A1×A2

(i , j , p, s) ∶= ∃k.PairA1,A2(i +1,k, j −1)∧

(ShF
A1
(i +1,k −1, p, s) ∨ ShF

A2
(k +1, j −1, p, s))

ShF
Bag(C)(i , j , p, s) ∶= p = i ∧ s = i ,

where the shredding of bag values results in their replacement with a unique identifier, i.e. the

index of their first symbol, that acts as a label. Additionally, the definitions of these labels, i.e.

the shredded versions of the bags they replace are computed via:

DictC(p, s) ∶= ∃i , j ,k, l .ValBag(C)(i , j)∧ElemC(i +1,k, l , j −1)∧

((p = k −1∧ s = i)∨ShF
C(k, l , p, s)),

where we prepend to each shredded element in the output the label of the bag to which it

belongs (we can do that by reusing the index of the preceding { or comma present in the

original input). We build a corresponding relation DictC for every bag type Bag(C) occurring

in the input. These relations encode a flat representation of the input, as bags of type Bag(L×

48

3.3. Incrementalizing NRC+

C F), where each tuple uses a fixed number of symbols, therefore we no longer make use of

delimiting symbols.

For our example input, we only have two bag types, Bag(B ase ×Bag(B ase)) and Bag(B ase),

and their corresponding relations are:

DictB ase×Bag(B ase)(p, s) ∶= DictB ase(p, s) ∶=
p 1 3 5 11 13 15

s 1 a 5 1 d 15

p 5 6 7 8 15 16 17 18

s 5 b 5 c 15 e 15 f

.

The flat values that they encode are {⟨1, a,5⟩,⟨1,d ,15⟩} ∶Bag(L×B ase ×L) and {⟨5,b⟩,⟨5,c⟩,
⟨15,e⟩,⟨15, f ⟩} ∶Bag(L×B ase).

However, the DictC relations cannot be immediately used to produce the sequence of tuples

that they encode since the indices p associated with their symbols are non-consecutive. To

address this issue we define:

ToSeq[X](p′, s) ∶= ∃p.X (p, s)∧p′ = #u(∃w.X (u, w)∧u ≤ p),

which maps each index p in relation X (p, s) to an index p′ corresponding to its position

relative to the other indices in X . To do so we used predicate p′ = #uΦ(u) to count the number

of positions u for which Φ(u) holds, since it is expressible in FOM [6].

Finally, we determine the shredded version of an input value x ∶ Bag(B), based on its N Str

representation S(p, s), as SF (p, s) ∶= ToSeq[DictB(p, s) ∧ s ≠ 1] where we filter out from

DictB(p, s) those symbols denoting that a tuple belongs to the top level bag, identified by label

1. The shredding context is defined by a collection of relations SΓ ∶= ShΓ
B , where:

ShΓ
B ase ∶= ∅ ShΓ

A1×A2
∶= ⟨ShΓ

A1
,ShΓ

A2
⟩ ShΓ

Bag(C) ∶= ⟨ToSeq[DictC],ShΓ
C ⟩

The last step that remains is to convert the resulting flat bags from the current representation

(as X (p, s) relations in F Set form) to the F B ag representation. We recall that each such relation

encodes a sequence of tuples such that each consecutive group of n f symbols (according to

their positions p) stands for a particular tuple in the bag, where n f is the number of fields in

the tuple. Additionally, since the bits in the F Set representation are lexicographically ordered

it follows that each consecutive group of σext bits contains the unary representation of the

symbol located at that position. Therefore, we can find out how many copies of a particular

tuple t are in the bag by counting (modulo 2k) for how many groups of n f ⋅σext bits we have

unary representations of symbols that match the symbols in t . By performing this counting

for all possible tuples t in the output bag we obtain the F B ag representation of X (p, s). We

note that both testing whether particular bits are set and counting modulo k are in TC0.

Since SF (p, s) and SΓ can be defined via FOM queries, and since their conversion from X (p, s)
relations in F Set form to the F B ag representation uses a TC0 circuit, this concludes our proof

that shredding nested values from N Str to F B ag representation can be done in TC0.

49

Chapter 3. Deep Incrementalization of Nested Collections

Theorem 10. Shredding a nested bag of constant size from N Str representation to a series of

flat bags in F B ag representation is in NC0.

Proof. By examining the proof of Theorem 9 we notice that in the process of shredding a

nested bag the extra power of TC0 wrt. NC0 is required only in two situations: a) for the

existential/universal quantifiers in the queries producing SF (p, s) and SΓ and b) for counting

when reestablishing consecutive positions for the symbols in the shredded bags as well as in

the conversion of the SF (p, s) and SΓ flat bags from F Set to F B ag representation.

However, when working with a constant size input, the existential/universal quantifiers can be

replaced by a constant number of disjunctions/conjunctions, and therefore their correspond-

ing circuits no longer need gates with unbounded fan-in. Additionally, one can clearly design

a NC0 circuit for counting over a constant number of bits. We can thus conclude that NC0 is

sufficient for shredding a nested bag of constant size from N Str representation to a collection

of flat bags in F B ag representation.

3.4 Complexity class separation

In terms of data complexity, NRC belongs to TC0 [34, 64], the class of languages recognizable

by LOGSPACE-uniform families of circuits of polynomial size and constant depth using and-,

or- and majority-gates of unbounded fan-in. The positive fragment of NRC is in the same

complexity class since just the flatten operation with bag semantics requires the power to

compute the sum of integers, which is in TC0. In the following, we show that incrementalizing

NRC+ queries in shredded form fits within the strictly lower complexity class of NC0, which

is a better model for real hardware since, in contrast to TC0, it uses only gates with bounded

fan-in. To obtain this result we require that multiplicities are represented by fixed size integers

of k bits, and thus their value is computed modulo 2k .

Assume that, for the following circuit complexity proof, shredded values are available as a

bit sequence, with k bits (representing a multiplicity modulo 2k) for each possible tuple con-

structible from the active domain of the shredded views and their schema, in some canonical

ordering. For k = 1, this is the standard representation for circuit complexity proofs for rela-

tional queries with set semantics. Note that the active domain of a shredded view consists of

the active domain of the nested value it is constructed from, the delimiters “⟨",“⟩",“,",“{",“}",

as well as an additional linearly-sized label set. We consider this the natural bit sequence

representation of shredded values.

It may be worth pointing out that shredding only creates polynomial blow-up compared

to a string representation of a complex value (e.g. in XML or JSON). This further justifies

our representation. By contrast, generalizing the classical bit representation of relational

databases (which has polynomial blow-up) to non-first normal form relations (with, for the

simplest possible type {⟨{B ase}⟩}, one bit for every possible subset of the active domain) has

50

3.4. Complexity class separation

exponential blow-up.

Theorem 11. Materialized views of NRC+ queries with multiplicities modulo 2k in shredded

form are incrementally maintainable in NC0 wrt. constant size updates.

Proof. We will refer to the database and the update by d and Δd , respectively. By Theorem 8,

every NRC+ query can be simulated by a fixed number of IncNRC+ queries on the shredding

of the input. By Proposition 3.2.1, for every IncNRC+ query h, there is an IncNRC+ query

δd(h) such that h(d ⊎Δd) = h(d)⊎δd(h)(d)(Δd). We partially evaluate and materialize

such delta queries as views h′ ∶= δd(h)(d) which then allow lookup of h′(Δd). By Theorem 2,

given an IncNRC+ query h, there is a a finite stack of higher-order delta queries h0,⋯,hk

(with hi = δ
(i)
d (h)(d), 0 ≤ i ≤ k, and δ

(0)
d (h)(d) = h(d)) such that hk is input-independent

(only depends on Δd). Thus, hi can be refreshed as hi ∶= hi ⊎hi+1(Δd) for i < k. We can

incrementally maintain overall query h on a group of views in shredded representation using

just the ⊎ operations and the operations of IncNRC+ on a constant-size input (executing

queries hi on the update). This is all the work that needs to be done, for an update, to refresh

all the views.

It is easy to verify that in natural bit sequence representation of the shredded views, both ⊎ (on

the full input representations) and IncNRC+ on constantly many input bits can be modeled

using NC0 circuit families, one for each meaningful size of input bit sequence. For IncNRC+

on constant-size inputs, this is obvious, since all Boolean functions over constantly many

input bits can the captured by constant-size bounded fan-in circuits, and since there is really

only one circuit, it can also be output in LOGSPACE. For ⊎, remember that we represent

multiplicities modulo 2k , i.e. by a fixed k bits. Since addition modulo 2k is in NC0, so is

⊎: The view contains aggregate multiplicities, each of which only needs to be combined

with one multiplicity from the respective delta view. The overall circuit for an input size is a

straightforward composition of these building blocks.

In contrast, even when multiplicities are modeled modulo 2k and the input is presented in

flattened form, NRC+ is not in NC0 since multiplicities of projections (or flatten) depend on

an unbounded number of input bits.

Finally, in Section 3.3.4 we showed that shredding for the initial materialization of the views

itself is in TC0, while the shredding of constant-size updates – the only shredding necessary

during IVM – is in NC0.

51

4 Delta-processing for simply-typed
lambda calculi

As querying operators are commonly embedded in functional languages, delta processing

must also be compatible with the higher-order features of these languages, i.e. their ability

to treat functions as values. Moreover, with the advent of cloud platforms where users can

interactively submit and modify queries, and then get charged by the amount of data their

queries touch, it becomes highly important that one minimizes the additional amount of data

processed for every change performed over the original query. For such cases, one can again

employ delta derivation techniques over the query itself, where the change to the query is

represented in terms of a functional delta over functional values. This way one can isolate and

reuse the part of the query that remains unmodified and only execute what is necessary for

updating the existing result.

We address these concerns by proposing a delta transformation for a family of simply typed

lambda calculi parameterized by a set of primitive types and operators, where each primitive

type has a commutative group structure. Moreover, if the primitive operators have cost-

efficient delta rules then we show that every expression in the language is also efficiently

incrementalizable, and that Recursive IVM is also applicable for this language. As an example,

we can embed NRC in such a calculus with all the possible parametric bag types as primitive

types and the constructs of NRC as primitive operators. This constitutes an important step in

extending the reach of state-of-the-art static techniques, originally developed for relational

query languages, to more powerful programming languages.

Key Insight. The most challenging delta rule for the simply-typed lambda calculus is the

one for function application f @a when both the functional value f and its argument a are

dynamic: (f +d f)@(a+d a) = f @(a+d a)+d f @(a+d a). Since we need to break the first term

into f @a+δ(f)@(a,d a), it follows that we have to be able to derive deltas for any functional

value. Therefore, we internalize the delta transformation as another primitive of the language

and have lambda abstraction λx.e build a functional value by placing the given term e into a

closure. Then, to evaluate the delta primitive on a functional value we simply apply the delta

transformation on its internal term and produce: λx.λd x.δx(e). This delta primitive also has

its own delta rule, which applies the delta on the update d f , as in: δ(f +d f) = δ(f)+δ(d f).

53

Chapter 4. Delta-processing for simply-typed lambda calculi

idA ∶ A → A πi ∶ A1×A2 → Ai !A ∶ A → 1 udef ∶ A →B

f ∶ A →B , g ∶B →C

g ○ f ∶ A →C

fi ∶C → Ai , i = 1,2

⟨ f1, f2⟩ ∶C → A1×A2

f ∶C × A →B

curry(f) ∶C →B A

0D ∶ 1→D ⊕D ∶D×D→D ⊖D ∶D→D app ∶B A × A →B

Figure 4.1 – The constructs of L.

We work with a variant of the simply-typed lambda calculus L(D,udef), corresponding to the

language of cartesian closed categories, extended with a set of primitive types D and functions

udef. It has the type system:

A,B ∶= 1 ∣ D ∣ A×B ∣ B A ,

and the operators and combinators presented in Figure 4.1, where B A represents the set of

all functions from A to B ; idA ,πi are the identity and projection operators; ⋅ ○ ⋅,⟨⋅, ⋅⟩, curry(⋅)
are the composition, tupling and currying (lambda abstraction) combinators; app stands for

function application, and !A is the bang operator that returns the unique value of the unit type

irrespective of its input.

We chose the categorical formulation of simply typed lambda calculus, as opposed to the

classical one using name-binders like lambda abstraction, as it simplifies proofs via equa-

tional reasoning. Nonetheless, the two formulations are equivalent and we sketch below the

translation between them.

Each term h ∶ C1 ×⋯×Cn → A in L has a corresponding term c1 ∶ C ,⋯,cn ∶ C ⊢ h̄ ∶ A in the

classical formulation, i.e. using name binders, where ci , i = 1..n, are the variables that appear

free in h̄. For example, g ○ f ∶ A →C translates to a ∶ A ⊢ let b = f̄ in ḡ ∶C , ⟨ f1, f2⟩ ∶C → A1× A2

corresponds to c ∶C ⊢ ⟨ f̄1, f̄2⟩ ∶ A1× A2, while the curry combinator curry(f) ∶C →B A stands

for the lambda abstraction c ∶C ⊢ (λa ∶ A. f̄) ∶B A of the term c ∶C , a ∶ A ⊢ f̄ ∶B.

The semantics of the constructs of L are given in Figure 4.2 in terms of the equational axioms

that they satisfy.

Notation: We use the following shorthands:

bin⟨ f1, f2⟩ = bin○⟨ f1, f2⟩ bin⟨ f1, f2, f3⟩ = bin○⟨ f1,bin○⟨ f2, f3⟩⟩ f !A = f ○!A ,

f1× f2 = ⟨ f1 ○π1, f2 ○π2⟩ bin(f1× f2) = bin○(f1× f2)

where bin is an associative binary operator, and we define a set of auxiliary operators that we

54

4.1. Deriving δ functions

f ○ idA = idB ○ f = f (h ○ g)○ f = h ○(g ○ f)
fi =πi ○⟨ f1, f2⟩ ⟨g1, g2⟩○ f = ⟨g1 ○ f , g2 ○ f ⟩

!B ○ f =!A f = app○(curry(f)× idA)
⊕D ○(⊕D× idD) =⊕D ○(idD×⊕D)○ rassoc× ⊕D ○⟨idD,0D○!D⟩ =⊕D ○⟨0D○!D, idD⟩ = idD

⊕D ○⟨idD,⊖D⟩ =⊕D ○⟨⊖D, idD⟩ = 0D○!D ⊕D =⊕D ○ sw×

where:

rassoc ∶ (A×B)×C → A×(B ×C) sw× ∶ A×B →B × A

rassoc = ⟨π11,⟨π21,π2⟩⟩ sw× = ⟨π2,π1⟩

Figure 4.2 – The equational theory of L.

will use in the rest of the presentation:

πi j ∶ (B11×B21)×(B12×B22)→Bi j repair ∶ (A×B)×(C ×D)→ (A×C)×(B ×D)

πi j =πi ○π j repair = ⟨⟨π11,π12⟩,⟨π21,π22⟩⟩

The repair operator reshuffles the elements from two input tuples, by grouping the first

components of the inputs into the first output tuple, while placing the second elements into

the second output.

With the goal of delta-processing in mind we require that each primitive type D has a commu-

tative group (D,0D,⊕D,⊖D). We also extend addition over product values in a straightforward

way by placing in each component of the output tuple the sum of the corresponding com-

ponents from the input tuples. Similarly, the sum of two functional values f1, f2, produces

a function that returns for every possible input v the sum of f1(v) and f2(v). We show in

Appendix A.4.1 that these definitions do indeed exhibit commutative group structures.

4.1 Deriving δ functions

We propose a transformation taking a L term h ∶ A →B to its delta expression δ(h) ∶ A× A →B ,

such that given an input a and its change d a, δ(h) computes the corresponding update for

the output of h. The details of the delta transformation are presented in Figure 4.3, where

given a term h ∶C × A →B , its partial deltas δC ,−(h)/δ−,A(h) wrt. the first/second argument

are defined as:

δC ,−(h) ∶ (C ×C)× A →B = δ(f)○⟨⟨π11,π2⟩,⟨π21,0A !⟩⟩

δ−,A(h) ∶C ×(A× A)→B = δ(f)○⟨⟨π1,π12⟩,⟨0C !,π22⟩⟩

where πi j =πi ○π j and 0! = 0○!.

55

Chapter 4. Delta-processing for simply-typed lambda calculi

δ(idA) ∶ A× A → A δ(g ○ f) ∶ A× A →C δ(!A) ∶ A× A → 1

δ(idA) =π2 δ(g ○ f) = δ(g)○⟨ f ○π1,δ(f)⟩ δ(!A) = !A ○π2

δ(πi) ∶ (A1× A2)2 → Ai δ(⟨ f1, f2⟩) ∶C ×C → A1× A2 δ(udef) ∶ A× A →B

δ(πi) =πi ○π2 δ(⟨ f1, f2⟩) = ⟨δ(f1),δ(f2)⟩ δ(udef) = udefΔ

δ(0D) ∶ 1×1→D δ(⊕D) ∶ (D×D)2 →D δ(⊖D) ∶D2 →D

δ(0D) = 0D ○π2 δ(⊕D) =⊕D ○π2 δ(⊖D) =⊖D ○π2

δ(curry(f)) ∶C ×C →B A δ(app) ∶ (B A × A)2 →B δ(deltao) ∶ (B A)2 →B A×A

δ(curry(f)) = curry(δC ,−(h)) δ(app) =⊕B ⟨app○((deltao ○π1)× idA2), δ(deltao) = deltao ○π2

app○(π2×⊕A)⟩○ repair

Figure 4.3 – Derivation of deltas for the constructs of L.

While the δ(h) functions derived consider changes with respect to all inputs of h, in practice,

only one of h’s arguments may change at a time, and deriving partial deltas is preferable as

they have more optimization potential.

For most of the constructs in the language the delta derivations follow immediately from their

semantics (or in our case equational axioms). We also assume that the delta expressions udefΔ
for the primitives of the language are provided. However, the delta derivation for functional

application is more challenging because, although app distributes wrt. its first argument:

app(f ⊕d f , a⊕d a) = app(f , a⊕d a)⊕app(d f , a⊕d a),

we still have to express app(f , a⊕d a) in terms of app(f , a). This essentially requires deriving

the delta for a functional value. Therefore, we internalize the δ transformation as an operator

on functional values deltao ∶B A →B A×A . Informally, given a functional value f ∶B A , deltao(h)
recovers its corresponding term, determines its partial delta wrt. A, and then curries the

result back into a functional value δ f ∶ B A×A . Such an operator can be easily implemented

if functional values are represented as closures, pairing a term with the set of inputs that

have been assigned a value thus far. For example, given term h ∶C × A → B and value c ∶C ,

curry(h)(c) will produce a closure containing the term h along with the assignment of c to its

first argument.

As with the rest of the operators in L, we give the formal semantics of deltao in terms of the

axiom it satisfies:

deltao ○curry(f) = curry(δ−,A(f)).

In other words, deltao applied to the lambda produced by curry(f) results in a functional value

of type B A×A , as obtained by currying the partial derivation of f wrt. its second argument.

56

4.2. Deriving cost functions

Having deltao we can describe δ(app), as combining the result of the delta of the initial

functional value, deltao(f)(a,d a), with the result of evaluating the functional update d f , on

the updated argument, i.e. d f (a⊕d a).

For the curry combinator curry(f) we note that only the first argument of f ∶ C × A → B is

exposed to incrementalization. Consequently, for its delta rule we use the currying of the

partial derivation of δ(f) wrt. its first argument. In fact, we can see that while the delta of

curry(f) only derives f wrt. the first argument, the derivation wrt. to the second argument is

delayed until function application takes place, and is done by deltao as part of δ(app).

We now show that the expressions derived via δ(⋅) do indeed produce an output update

corresponding to the change applied to the input.

Theorem 12. (Incrementality) For every L term h ∶ A→B

h ○⊕A =⊕B⟨h ○π1,δ(h)⟩,

given that this holds for every primitive in the language.

Proof. (sketch) All the cases, except h = curry(f) and h = app, follow immediately from the

definition of δ. For h = curry(f)we apply curry−1 on both sides and make use of the induction

hypothesis on f . For h = app, we prove that:

app○⊕B A×A ((curry(f)× idA)× idB A×A) =

=⊕B⟨app○π1,δ(app)⟩○((curry(f)× idA)× idB A×A)

holds for any f ∶C × A → B for which the induction hypothesis holds. The full proof can be

found in appendix A.4.2.

4.2 Deriving cost functions

In order to establish whether the derived delta functions provide an advantage over full re-

evaluation we abstractly interpret the values and expressions in L over a cost domain, i.e. we

introduce a way of assigning costs and cost terms to the values and expressions in L.

We associate to each primitive value in the input a cost proportional to its size and for every

udef we introduce udef○, which estimates the cost of computing udef’s output based on the

cost of its input; in particular if udef is a function between primitive types then cost(udef)(n) =
O(udef○(n)). The cost of producing primitive values can be extended to product types by

defining the cost of a product value to be the tuple of the costs of its components. Similarly,

the cost of a functional value is going to be a mapping between input and output costs.

Given languageL(D,udef), Figure 4.4 defines the transformation cost ∶ L(D,udef)→L(N+,udef○),

N+ =N∖{0}, where A○ = cost(A) represents the cost domain for values of type A. The cost

57

Chapter 4. Delta-processing for simply-typed lambda calculi

1○ = {1} D○ =N+ (A×B)○ = A○×B○ (B A)○ = (B○)A○

cost(idA) ∶ A○→ A○ cost(g ○ f) ∶ A○→C○ cost(!A) ∶ A○→ 1○

cost(idA) = idA○ cost(g ○ f) = cost(g)○cost(f) cost(!A) =!A○

cost(πi) ∶ A○1 × A○2 → A○i cost(⟨ f1, f2⟩) ∶C○→ A○1 × A○2 cost(udef) ∶ A○→B○

cost(πi) =πi cost(⟨ f1, f2⟩) = ⟨cost(f1),cost(f2)⟩ cost(udef) = udef○

cost(0D) ∶ 1
○→N+ cost(⊕D) ∶ (N+)2 →N+ cost(⊖D) ∶N+→N+

cost(0D) = 1N+ cost(⊕D) =maxN+ cost(⊖D) = idN+

cost(app) ∶ (B○)A○ × A○→B○ cost(curry(f)) ∶C○→(B○)A○

cost(app) = app cost(curry(f)) = curry(cost(f)).

Figure 4.4 – Derivation of cost functions for the constructs of L.

transformation can be used to derive cost functions cost(h) ∶ A○→B○ that compute the cost

of producing the output for any term h ∶ A →B in L(D,udef), where A○ and B○ are the cost do-

mains of its input and output, respectively. The cost(h) function will compute an evaluation

cost for h as if all functions in h are inlined, i.e. the cost of producing an intermediate value

will be accounted for every time that value is used. Nonetheless, this estimate is sufficient for

our goal of comparing the evaluation cost of δ(h) wrt. that of h in asymptotic terms. To that

end we also introduce an ordering relation over the values of the cost domain.

Definition 2. For every type A○ of L(N+,udef○) we define the partial ordering relation ≺A as

follows:

1 ⪯1 1 = true ⟨ε1A ,ε1B⟩ ≺A×B ⟨ε2A ,ε2B⟩ = (ε1A ≺A ε2A) and (ε1B ≺B ε2B)

ε1 ≺D ε2 = ε1 < ε2 ε1 ≺B A ε2 =∀a ∈ A○.ε1(a) ≺B ε2(a).

Definition 3. For every type A○ ofL(N+,udef○)we define 1○A ∶ 1○→ A○ and max○A ∶ A○×A○→ A○

as follows:

1○1 = id1○

1○D = 1N+

1○A×B = ⟨1○A ,1○B⟩

1○B A = curry(1○B !1○×A○)

max○1 =!1○×1○

max○D =maxN+

max○A×B = (max○A ×max○B)○ repair

max○B A = curry(max○B ○⟨app○(π1× id),app○(π2× id)⟩).

It is easy to show that for every ε1,ε2 ∈ A○ if ε1 ⪯A ε2, then max○A(ε1,ε2) = ε2.

58

4.3. Higher-order deltas

We can now extend the cost transformation to the group operations for all the types in

L(D,udef):

cost(0A) = 1○A cost(⊕A) =max○A cost(⊖A) = idA○ .

Finally, we give our result regarding the efficient incrementalization of any expression in L.

Theorem 13. If every primitive udef is efficiently incrementalizable, then the same property

holds for the entire language L(D,udef), where a input-dependent term h ∶ A →B is efficiently

incrementalizable if ∀ε,εΔ ∈ A○ s.t. εΔ ≺ ε, then

cost(δ(h))(ε,εΔ) ≺ cost(h)(ε).

Proof. The result follows by induction on the structure of h but we only sketch the proof for the

cases of curry(f) and app, as the rest of the cases follow immediately from the definition. For

h = curry(f) we apply curry−1 on each side of the inequality, while for h = app, we consider

εB A to be of the form cost(curry(f))(εC), and make use of the induction hypothesis on f ,

where f ∶C × A →B . For the full proof see Appendix A.4.2.

Therefore, given efficiently incrementalizable primitives, any L term has a delta of lower cost

wrt. re-computation.

4.3 Higher-order deltas

Having established a way to derive delta functions for any expression in L(D,udef) (Sec-

tion 4.1), we now also extend the notion of higher-order deltas to this language. In this context,

higher-order refers to taking deltas of deltas in the spirit of higher-order derivatives.

We remark that the derived delta functions, δ(h) ∶ A× A →B , depend on both the input a, and

the update d a. As the input is usually much larger than the update, one may expect δ(h)’s

evaluation cost to be dominated by it. Therefore, it should be beneficial to partially evaluate

δ(h) wrt. the initial input, even before the update d a is available, i.e. compute Δh(a), where

Δh ∶ A →B A , Δh = curry(δ(h)). Thus, when d a finally arrives, we can determine the update

to h(a) by evaluating Δh(a)(d a).

In order to continue benefiting from this partial evaluation for future updates as well, we

must maintain Δh(a) as the input changes. This can also be done incrementally by deriving a

second order delta, δ(Δh), such that we have:

Δh(a⊕d a) =Δh(a)⊕δ(Δh)(a,d a).

At this point it should not come as a surprise that we can again partially evaluate and in-

crementally maintain δ(Δh) wrt. the input, i.e. compute Δ2h(a), where Δ2h ∶ A → B A A
,

59

Chapter 4. Delta-processing for simply-typed lambda calculi

Δ2h = curry(δ(Δh)). In fact, we could continue incrementally maintaining Δi h(a) based on

Δi+1h(a) ad infinitum.

However, as a consequence of Theorem 13 we prove that, for constant updates (i.e. εΔ = 1○A)

and a big enough n, the cost of the higher order delta Δnh also becomes constant. At that

point it is no longer beneficial to incrementally maintain it, as we could just as easily compute

it when needed. This generalizes a similar result proven for higher order deltas of relational

queries [35].

Corollary 4.3.1. For any term h ∶ A →B in an efficiently incrementalizable languageL(D,udef)
and an input value with cost ε ∈ A○, there exists n ≥ 1 such that:

cost(Δnh)(ε)(1○A⋯1○A) = 1○B ,

where Δi h = curry(δ(Δi−1h)),Δ0h = h, for i = 1..n.

Proof. Considering that

cost(Δi h)(ε)(εΔ) = cost(δ(Δi−1h))(ε,εΔ),

we can repeatedly apply Theorem 13 for Δi h, i=1..n, and εΔ = 1○A :

cost(Δi h)(ε)(1○A⋯1○A)(1○A) ⪯B cost(Δi−1h)(ε)(1○A⋯1○A).

As the partial order ⪯B is strict, except for the bottom element 1○B , we are guaranteed to reach

it after a large enough number of steps.

From corollary 4.3.1 we conclude that when recursively incrementalizing h we can stop

deriving and maintaining higher-order deltas once their cost becomes constant.

60

5 Deep Scaling for Nested Queries

The vision of map-reduce frameworks like Spark, Hadoop or Scope, has been to provide a

programming environment for building highly scalable applications where the programmer

is shielded from many of the challenges of distributed computing. Despite considerable

progress, it still takes advanced expertise when building such systems, and developers must be

cautious of a long list of things to avoid if their applications are to perform well. In particular,

current systems offer only limited support when operating on nested data in terms of scaling

in the presence of large or skewed inner collections. Although we use Spark to exemplify the

issue, implement our approach and conduct experiments, the discussion and contributions

are relevant to any large scale data processing system whose query language is an extension of

nested relational calculus (eg. Pig Latin [55], Scope [14]).

Current frameworks natively provide only shallow scaling, wherein the workload is parallelized

only at the granularity of top level records, while the sub-computation responsible for pro-

cessing an inner collection (no matter how large) will always be performed on a single node.

This can easily lead to load imbalance and poor resource utilization in the presence of inner

collections with skewed sizes or top-level collections with small cardinalities. Moreover, it is

up to the programmer to ensure that inner collections do not grow too large, otherwise their

application in the best case ends up spilling to disk and in the worst case crashes completely

with an out-of-memory exception. By contrast, we say that a framework supports deep scal-

ing if it transparently and evenly distributes the processing of nested collections within its

workload.

To illustrate the problems, let us consider the following Spark query, which takes a collection
of per machine logs for servers running in a data center and determines their corresponding
sets of invalid requests that lead to SLA violations (we recall that ��� is Spark’s representation
of a distributed dataset).

���� ����� ������	
���
�� ����� �
��� ����� �������� ��

���

���� ����� ��
��
	
�� ����
����
��� ������������ �����
��� ������������

��
 ��
��
�� � � ���
��
� ! """

61

Chapter 5. Deep Scaling for Nested Queries

��� �� ����	
��
 ������������� �

��� 	� �� �����������

����� 	����

��� 	���� � �� ����!�"���#

�$��� � �� ���$������

�� ���� ����%��� �� �$��� ����%��� &&

�$��� ����"� � ���� ����"� ' �() &&

�$��� ����������������*��+	,
-.)(
�,��

����� ���� ����������

Even though the computation required to answer this query is embarrassingly parallel at the

granularity of Server_RDD records (and requires no reshuffling), it is nonetheless possible

that some workers do considerable more computation than others, if some servers have

historically seen significantly more packets than the rest (i.e. more than the total amount of

packets divided by the number of workers). Alternatively, if the incoming/outgoing collections

associated with each server are large but Server_RDD has low cardinality (i.e. lower than the

number of workers), we will end up under-utilizing the available processing nodes. In both

cases, the core problem is that the sub-query computing the inner collections of the output is

partitioned across nodes only at the granularity of top-level records.

The same issues can be observed also in NoSQL systems, where the inner query would be

expressed as an UDF, and thus not be subject to query optimizations. For instance, the join

between the incoming and outgoing collections in our example would be executed in Apache

Pig as a Nested Loop Join, whereas a different join algorithm (eg. hash-join) would likely

perform better.

Currently, the only way to overcome these challenges is to manually re-write the query, to first

flatten the inner collections, then perform the join, and finally regroup the result. However,

applying this transformation manually without altering the semantics of the initial query is

non-trivial and error-prone, and thus feasible only for relatively small nested queries. More-

over, such transformations should ultimately be the subject of a cost-benefit analysis within

the query optimization stage based on additional workload statistics.

Even though for our running example coming up with the required re-writes is relatively easy,

developing a flattening / shredding transformation that can operate at the level of an entire

query language raises considerable challenges. In our work, we take a type-directed approach

which enables us to pinpoint the places where nesting occurs within a query, and thus apply

re-writings in a localized, compositional and economical way, with many of the language

constructs being minimally impacted by the translation.

The limitations of nested collections processing in terms of deep scaling have their root

cause in the fact that the construction of nested collections does not distribute wrt. union,

as is the case for the majority of collection operators. For example, �� ����� ��	
���
� ==

�	
���
� ����� �	
���
�, while �� ����� ��	������������ <> �	������������ �����

62

���������	
���.

Therefore we address this challenge by proposing SLeNDer1, a compilation framework that

given a query operating on nested collections, decouples (shreds) the sub-computations

responsible for producing the inner collections from the top-level query and turns them

into standalone queries that do indeed distribute wrt. union. Our framework builds on the

shredding transformation introduced in Section 3.3.1, and while several other proposals for

shredding exist in the literature [17, 29, 68], we favored this one as it is minimally intrusive

wrt. the collection API, such that the resulting programs enjoy the same parallelization and

optimization opportunities as the top-level queries, it can handle nested-to-nested queries

with generalized multiset semantics (which is also essential for efficient incrementalization),

and it limits redundancy by producing unique labels per inner collection as opposed to per

tuple.

However, we propose a different formalism which draws a clear distinction between types

that have an associated ring structure and those that do not. In particular, we leverage the

algebraic properties of rings in the way we model collections, i.e. as generalized multisets with

multiplicities of ring type, as well as in the way we optimize, parallelize and incrementalize

their operators. In addition, this separation allows us to cleanly differentiate between two

fundamentally different ways of nesting: regular (or key) vs value (or ring) nesting, where the

former has a richer semantics while only the latter enjoys the (performance and optimization)

benefits of a ring structure (sec. 5.2.1 discusses them in detail) 2. The shredding transformation

employed by SLeNDer is thus designed to convert between these two kinds of nesting, with the

goal of simulating the semantics of key nesting, based on queries that perform value nesting

instead.

Evaluating queries in shredded form makes it possible to evenly distribute the processing

of inner collections since their corresponding label definitions can be easily partitioned

between workers. Moreover, within our transformation the level of shredding can be fine-

tuned, meaning that we can dynamically apply it only for those inner bags that are a load

balancing liability, i.e. whose size exceeds a threshold. This way we can avoid paying the

(indirection) costs associated with shredding for the nested collections that are relatively

small.

Besides translating a given nested collection program into a semantically equivalent top-level

flat query and a corresponding set of dictionary definitions, SLeNDer employs additional

transforms to produce efficient plans for evaluating these queries in a distributed environment

and finally generate Spark code. For example, while shredding itself produces dictionaries with

infinite domains, SLeNDer establishes their finite domain, i.e. the finite domain of the free

variables that appear in their definition. It does so based on the domain of the original queries

that generated the dictionaries as well as by leveraging equality predicates and primary-key

1Skew-Less Nested Data
2We remark that the formalism introduced in 2.1 only supports key nesting.

63

Chapter 5. Deep Scaling for Nested Queries

constraints to unify their free variables against the domain of other relations appearing in

their defining query.

As discussed in Chapter 3, shredding also enables the efficient incremental maintenance of

nested queries and as before, since the label definitions corresponding to inner collections

can be simply updated using bag union, we do not have to design special update primitives

for applying deep updates, and then have to wrestle with the limited circumstances in which

these primitives admit efficient delta rules wrt. the other querying constructs of the language.

Moreover, since shredding introduces a single label definition whenever the same inner

collection is computed for several top-level records, we only have to incrementally maintain

this one label definition, as opposed to the every copy produced by the original query.

For incrementally processing a nested query wrt. small changes of its inputs, SLeNDer gener-

ates a trigger program which performs Recursive IVM [36] over its result (in shredded form),

i.e. it materializes and incrementally maintains not only the given query, but also the subex-

pressions of its deltas that do not depend on the update. By doing so, it avoids re-evaluating

those sub-expressions over and over again every time those deltas are applied.

Thus far, we have only discussed the benefits shredding provides in terms of load balancing

and incrementalizing the computation of nested collections. Nonetheless, its advantages go

well beyond that since shredding opens additional optimization opportunities across nesting

levels as the one outlined in sec. 5.1.2 and as exploited by query unnesting techniques [23].

Furthermore, if the queries are maintained in shredded form (as many column-oriented

storage layers do anyway [50]), a number of joins are no longer necessary for their evaluation,

i.e. those responsible for assembling the final nested result. Even if queries down the pipeline

do need to perform these joins, one still gets the opportunity to first push their filters and

aggregations down to the shredded collections before the join.

The rest of this chaper is structured as follows: In the next section we outline our techniques

on a running example. Section 5.2 presents the formalization of the variant of nested relational

calculus at the core of the transformations we propose, while Section 5.3 details our approach

to shredding it. We then describe in Section 5.4 the architecture of our our compilation frame-

work and the intermediate representation employed by it, highlighting its wider applicability

for DSL compilers. Finally, we present our experimental results across a range of queries in

section 5.5.

5.1 Motivating use case

We first illustrate our approach on the example query � presented earlier in the chapter. We

show how shredding enables its deep scaling, i.e. the parallelization of its processing wrt. to

the inner collections of the input, as well as the incremental maintenance of its result. We then

discuss the challenges in generating efficient shredded collection programs. In the following

some details of shredding have been omitted in order to improve the presentation.

64

5.1. Motivating use case

Shredding turns the input relation ���������� into a flat top level relation �����������,

where inner collections have been replaced by labels, and a couple of dictionaries ������	�
�

and ������	��
�, containing the definitions of these labels.

���� ����� ������	
��
 ���� ���
 ������ ����
 ������

��� ������	����
 ����������	� � ���

��� ����������
 ��������� ������� ����!��"���� � ���

��� �����������
 ��������� ������� ����!��"���� � ���

Similarly, for the output we have a top level flat query �� that only associates to every server ip

a label, whereas �	 determines their corresponding bags of request payloads that exceeded

the ���.

��� #	 � $��
�	 %& ������	�����

 ���'
�	���� �����
�	����� �	�������

��� #�
 ��������� ������� ���������(�� � � �)

$��
�����
��������� %& �*

����"� %& ����������
����*

�����"� %& �����������
�����

�$ ����"����+��' �� �����"����+��' ,,

�����"����-� & ����"����-�) ��. ,,

�����"���� ���'�������/��0
1�23.���1��

 ���' ����"���� ���'

��� #��'�- �
$��
� %& ������	�����

 ���' �����
������ ���������'�������

The labels produced by �� encapsulate the identifying parameters that uniquely determine the

contents of the collections they replace, in our case the two labels of the input inner collections

being joined.

The definition of �	 does not capture the domain of label parameter �, which is instead

specified by �	����. This separation allows us to further optimize the domain inference of �

based on additional join predicates between the components of � and the fields of relations

referenced by �	. In addition, depending on the execution runtime (shared vs distributed

memory), different materialization strategies can be employed when computing �	 (ranging

from lazy evaluation and memoization to full materialization).

Finally, if the nested version of � is needed at any point, it can be easily recovered from its

shredding via:

$��

��� �� %& #	� ���'
��� #�
���

65

Chapter 5. Deep Scaling for Nested Queries

5.1.1 Advantages

The main advantage of shredding in terms of exposing the full parallelization potential of col-

lection programs and thus providing deep scaling, lies in the fact that the collection associated

with a label can be partitioned across multiple nodes, which would otherwise not be possible

for an inner bag. This way the computation of inner collections can also be load balanced

across cluster resources. In our example, without shredding, the join between the ��������

and �������� sets of packets for a particular server would take place on a single node. By

contrast, upon shredding the join computation of all the bags of payloads in the output can be

evenly distributed across all worker nodes.

Deep incrementalization is also enabled by shredding since in order to modify an inner collec-

tion one can simply update via bag union its corresponding label definition. In our example,

ingesting a new batch of incoming requests for a particular server can be done by simply

adding them to its corresponding label definition in 	
��
�
���. Then, this change can be

easily propagated through the definition of �
 in order to determine the delta update for the

output (see the definition of ���
 below, where ��	
��
�
��� represents the input update).

For this kind of changes only the result of �
 needs updating, whereas �� remains unmodified,

which corresponds to a deep update of �’s result. This is in line with our expectation that

adding new incoming requests for a particular server should result in only that server’s bag of

outputs being affected by this update.

��� ���������	
�	����
 ��������	�������� ������������� �

� �� ��	 ������������ !�� "# �$

���%�� "# ����	
�	���������$

�!��%�� "# ��	
�	�� !��� !��

�� ���%��&	�'��� �� �!��%��&	�'��� ((

�!��%��&��)� # ���%��&��)� � ��* ((

�!��%��&%������&+��	�+,��-�.�/0*���.��

����� ���%��&%������

�� 1� ���������	
�	�����

��	
�	���� 1� ����	
�	����

In contrast to nested queries, their shredded versions are also amenable to incremental view

maintenance (IVM) by rewriting, where regular query engines can be used for delta processing,

as opposed to dedicated systems that perform runtime change propagation. In particular, we

are able to leverage Recursive IVM [35], a state-of-the-art algebraic rewriting based approach

for the delta processing of flat queries that has been shown to provide massive improvements

over the view refresh rates obtained using classical IVM.

Recursive IVM materializes and incrementally maintains not only the given query, but its

delta queries as well, in particular their sub-expressions that depend only on the input but

not on the update. The same principle is applied recursively for higher-order deltas as long as

66

5.1. Motivating use case

they still depend on the input relations. This approach is grounded in the fact that for a large

class of nested queries, their deltas are guaranteed to be simpler than the original query as

measured in terms of their dependency on their inputs. Therefore, after a finite number of

steps, we will end up with deltas that no longer depend on the original input, but only on the

update, and thus there is nothing left to be gained from materializing them further.

Since Recursive IVM places significant constraints on the kinds of queries it can be applied to,

it represents a challenging test for the shredding transformation. In particular, shredding must

be compositional and not introduce operators outside Recursive IVM’s assumed algebraic

framework.

In our example, we can extract the subexpression in ���� that does not depend on the input

update ����������	
 and materialize it as �����
:

��� �����	
 ��
	������������� ��	���
��	�� � � ��

��� ��������������	 !" �#

��	�$�	 !" ����������	����	

�� ��	�$�	%$�����&%'	��	'(�)�*�+,-���*

����& ��	�$�	

and then re-write the delta query as:

&�� &����&�����������
 ��
	������������� ��	���
��	�� �

� �� ��� ��������������	 !" �#

���$�	 !" &��������������� #

��	�$�	 !" �����	��

�� ���$�	%��.��& �� ��	�$�	%��.��& //

��	�$�	%	�0� " ���$�	%	�0� � ��-

����& ���$�	%$�����&

This way �����
 is no longer recomputed by ���� for every change applied to ��������	
,

but only when its value gets modified due to an evolving ����������
. The maintenance of

�����
 is handled analogously via its corresponding delta query:

&�� &������	�&�����������	
 ��
	������������� ��	���
��	�� �

� �� ��� ��������������	 !" �#

��	�$�	 !" &�����������	����	

�� ��	�$�	%$�����&%'	��	'(�)�*�+,-���*

����& ��	�$�	

The process of recursive incrementalization stops with the delta of �����
 since it does not

depend on the input anymore, and thus there is no sub-result to be materialized and reused

across its subsequent applications.

67

Chapter 5. Deep Scaling for Nested Queries

5.1.2 Building efficient shredded programs

Thus far we have highlighted the benefits of shredding in its ability to enable deep scaling

and recursive incrementalization, while ignoring the issues related to the materialization and

partitioning / replication of label definitions. We address these issues next in the context of

map-reduce frameworks and we showcase the final query plan that can be achieved this way.

We start by turning the dictionaries into finite domain relations based on the ������ domain

definition, where the ����	
��
��� operator performs only a local grouping of the elements

of a label definition. Thus, the bag corresponding to a single label ends up partitioned across

several nodes.

��� ��� ��	
�����
������� ��
��
������ � �

��� ��� �� �����������

���!"
 �� ��������#����$�#�%

�&
�!"
 �� ��������'&
���$�'&
%

�� ���!"
$��(��) �� �&
�!"
$��(��) **

�&
�!"
$
�+� � ���!"
$
�+� , ��- **

�&
�!"
$!�
���)$�
��
�.�
/�0#12-�#�0%%

���) ���������$�#����$�'&
%� ���!"
$!�
���)% %

$���&!3
������%

We then push filtering to the base relations and introduce a join operator with an extended

join key, i.e. dictionary label + ������, which has the potential to alleviate any existing skew

in the cardinality of ������ / ������� label definitions. Thus shredding not only distributes

the processing of an inner collection on multiple workers, but it also opens up the opportunity

to diminish skewness by leveraging join predicates across nesting levels.

��� ���#� �

��� ��� �� �����������

���!"
 �� ��������#����$�#�%%

���) ����������$�#����$�'&
%� ���!"
$��(��)%� ���!"
%

��� ���'&
 �

��� ��� �� �����������

�&
�!"
 �� ��������'&
���$�'&
%

�� �&
�!"
$!�
���)$�
��
�.�
/�0#12-�#�0%%

���) ����������$�#����$�'&
%� �&
�!"
$��(��)%� �&
�!"
%

��� ��� ��	
�����
������� ��
��
������ � �

��� ������%�����!"
��&
�!"
%% �� ���#� $4�������'&
%

�� �&
�!"
$
�+� � ���!"
$
�+� , ��-%

���) ��� ���!"
$!�
���)% %

$���&!3
������%

If ����������� is known to be relatively small it gets replicated across the cluster such that

68

5.2. Nested Ring Calculus

label lookups into ���������� and ��������	
� can be performed locally, i.e. a record of

��������
�� containing label � is collocated with every partition of �’s definition. Moreover,

these lookups return only the local partition of the definition such that both ����� and ���	
�

do not require any data shuffling.

In the absence of any statistics the result of the join between ����� and ���	
� is randomly

spread across workers, resulting in the random partitioning of the label definitions computed

by �� as well.

Alternatively, if information about the sizes of label definitions is available, we split the labels

into heavy vs light “hitters”, i.e. those with large vs small definitions. Then, when computing

�� we make sure that all tuples corresponding to a light hitter end up on the same node and

we only partition the processing of heavy hitters. This way the label definitions produced

by �� will no longer be fragmented all over the cluster if their cardinality is low, leading to a

significantly lower cost for constructing the nested version of the result.

Since the shredding transformation we employ supports partial shredding, we can go even

further and only shred those inner collections that are big enough that they would cause

load imbalance, while keeping the rest in nested form. This optimization trades off more

computation when producing the shredded result for less lookup overheads when consuming

it, either by further processing or by the final conversion to nested form.

5.2 Nested Ring Calculus

In order to apply the optimizations described in the previous section, SLeNDer works with

queries expressed in a version of Nested Relational Calculus (NRC) with generalized multiset

semantics, where collections are modeled by mappings from keys to multiplicities K→R,

and any value with an associated ring structure can be used as multiplicity. In this formalism

bags are represented as maps between tuples and integers K→ Int, which we typically denote

by Bag(K) (we use integers as opposed to only natural numbers in order to also model

deletions). This way of representing collections underlines the potential for parallelization

and incrementalization for many of NRC’s operators whose semantics are defined in terms of

ring operations, and allows for a clear separation between the constructs that are amenable

to such optimizations (eg. map, flatten) from those that require special consideration (eg.

nesting). Moreover, since bags themselves have a ring structure as well, they can also be used

as multiplicities in what we call value or ring nesting. For instance, dictionaries make use of

value nesting as they associate labels to their defining bags Label→Bag(K). By contrast, key

nesting takes a ring value and places it as part of the key of a mapping.

More concretely, given a bag of strings X ∶ Bag(Str i ng), key nesting associates to it a ring

value r ∶ R to produce a mapping {X ↦ r} ∶ Bag(Str i ng) →R from X to r , whereas, value

nesting associates it to a key value k ∶K resulting in {k ↦ X} ∶K→Bag(Str i ng).

69

Chapter 5. Deep Scaling for Nested Queries

In the context of incrementalization, the ring structure of K → Bag(Str i ng) allows us to

apply update d X to the contents of X by unioning {k ↦ X} with {k ↦ d X}. However, the

same is not possible for the result of key nesting, considering that the ring structure of X

becomes inaccessible after being incorporated in {X ↦ r}, and thus it no longer has any

contribution to outer ring structure of Bag(Str i ng) → R. By applying shredding to key

nesting, we essentially decouple the identity aspect of values from their ring structure, i.e.

we preserve the ring structure of X as part of a label definition that employs value nesting

{�↦ X} ∶ Label→Bag(Str i ng), while key nesting itself is applied only to the identifying label,

producing mapping {�↦ r} ∶ Label→R.

In order to manage the distinction between key and value nesting, NRC’s type system has a

bimodal organization that considers R types that have an associated ring structure, and thus

can play the role of multiplicities, separately from K types which can only appear as keys:

R ∶= Int ∣ Double ∣ R×R ∣ K→R

K ∶= ���� ∣ ��� ∣ K×K ∣ Label ∣ [R]

RKey(R) ≡ Label ∣ [R],

where tuples are obtained via product types ⋅× ⋅, ���� is the type of the empty tuple, and ���

represents the active domain of the database.

The boxed type [R] offers a view of ring types as keys, while recalling their underlying ring

structure (that could be exploited either in terms of parallelization or incrementalization). It

marks the places where shredding can be applied in order to convert the existing key nesting

into value nesting using labels and corresponding label dictionaries. While full shredding

replaces [R] types with Label types, partial shredding uses the union type RKey(R) allowing

for both nested and shredded values. In particular, RKey(R) acts as a function on ring types,

forgetting their ring structure and returning a polymorphic representative key type: either the

boxed version of the ring type itself, or a reference Label.

Example 12. In our formalism the packets from the motivating example have type ������ ≡
��	
×��	
×���
	
, while the input ���������� has type:

Bag(�	�×[Bag(������)]×[Bag(������)]),

where the types of the incoming and outgoing collections of packets have been boxed so they can

be used as part of a key type.

Upon full shredding the ����������� gets type Bag(�	�×Label×Label), while allowing for

partial shredding is reflected in its type as

Bag(�	�×RKey(Bag(������))×RKey(Bag(������))).

The two additional dictionaries ���������	 and ����������� both have type Label →
Bag(������).

70

5.2. Nested Ring Calculus

The RKey(⋅) type constructor comes with casting operators toK(⋅) ∶RKey(R) and fromK(⋅) ∶
R, which turn a ring value r ∶ R into a RKey(R) and vice-versa such that fromK(toK(r)) = r .

It is through the semantics of these operators that we control whether shredding is performed

and to which degree. In their standard form they simply box and unbox R values into [R]
values. By contrast, upon shredding toK() returns the label associated with the nested ring

value in a corresponding dictionary, whereas fromK() accepts a dictionary as an additional

argument and looks up the definition of a given label. Finally, in the case of partial shredding,

toK() decides at runtime whether to perform boxing or to produce a label, whereas fromK()

does unboxing or label lookup depending on its input.

We present the constructs of our core calculus and then we discuss the semantics of the

operators derived from the ring structures in its type system, along with those operating on

booleans or performing nesting:

r ∶= c ∣ X ∣ ⟨r1,r2⟩ ∣ r._i ∣ {x => r} ∣ let X ∶= r1 in r2

∣ r1+ r2 ∣ −r ∣ r1 ∗ r2 ∣ r1 ⋅ r2 ∣ sum(r)

∣ p(x) ∣ ¬(r) ∣ sng(e,r) ∣ fromK(e,r)

e ∶= c ∣ x ∣ ⟨e1,e2⟩ ∣ e._i ∣ toK(r),

where expressions of ring and key type are denoted by r and e, respectively, with corresponding

constants (c and c), as well as tupling ⟨⋅, ⋅⟩ and projection (._i) operators. Infinite mappings

are defined via {x => r}, where r is a ring expression with a free variable x of key type.

We remark that in contrast to the formalism introduced in 2.1, we only have one singleton

construct as opposed to four different ones. This was indeed made possible by the distinc-

tion between key and ring types, and their corresponding casting pair toK(r)/ fromK(e,r).

Moreover, we no longer introduce high-level constructs like for-comprehensions, but we work

with their underlying ring-based operators as this fully exposes the potential for optimizations

via re-writings. More importantly, the formalism we introduce in this chapter is strictly more

expressive than the one presented in Section 2.1, due to the generic way of representing

collections as key-value mappings. This representation allows us to uniformly capture a host

of collection types, including bags and dictionaries, as opposed to using distinct types for

each of them. Furthermore, it enables us to natively capture both key and value nesting, as

opposed to only key nesting with the formalism in 2.1, thus providing programmers with the

flexibility to choose between the two, depending on their requirements. Finally, we mention

that the results presented in Chapter 3 wrt. the efficiency of incrementalization or the ability

to perform recursive delta derivation over the positive fragment of the language carry over to

the nested ring calculus we introduce in the current chapter as well.

Ring Calculus. Given ring structure (R,0R,+R,−R,1R,∗R), we obtain an analogous ring

structure for mapping type K→R by extending element-wise R’s operations over key space

K. For example, the union of mappings X +K→R Y associates to every key k ∶K in its result:

X (k)+R Y (k). If X and Y are bags, then X +Bag(K) Y produces their bag union.

71

Chapter 5. Deep Scaling for Nested Queries

Moreover, we introduce a product operation that can multiply arguments of different ring

types, defined inductively as:

if X ∶ Int,Y ∶ Int, then X ⋅Y ∶ Int and X ⋅Y = X ∗Y ,

if X ∶K→R,Y ∶ Int, then X ⋅Y ∶K→(R⋅ Int), and (X ⋅Y)(k) = X (k) ⋅Y , for all k ∶K,

if X ∶K1 →R1, Y ∶K2 →R2, then X ⋅Y ∶ (K1×K2)→ (R1 ⋅R2), and

(X ⋅Y)(⟨k1,k2⟩) = X (k1) ⋅Y (k2), for all ki ∶Ki , i = 1,2,

whereR1 ⋅R2 represents the output type of the product between arguments of typeR1 andR2.

Given bags X ∶Bag(K1) and Y ∶Bag(K2), then X ⋅Y ∶Bag(K1×K2) produces their Cartesian

product.

Based on the product defined above we also extend the multiplication operation to accept

mappings with different ring types, i.e. given mappings X ∶ K→R1 and Y ∶ K→R2, then

X ∗Y ∶K→(R1 ⋅R2) and (X ∗Y)(k) = X (k) ⋅Y (k) for all k ∶K.

Finally, we leverage the addition operation of rings to introduce a summation construct over

mappings X ∶K→R:

sum(X) ∶R sum(X) =∑
k∶K

X (k).

This operator is well-defined only for mappings with a finite number of non-zero valued

elements, and when applied to bags it returns their count aggregate. Moreover, we can use it

to define the for-comprehension construct for mappings as:

for(x ← r1) collect r2 ≡ sum(r1 ∗{x => r2}),

where r1 is a finite domain mapping K→R1, r2 ∶ R2 is an expression with a free variable x ∶K.

For every mapping of r1, it binds its key k ∶ K to x and multiplies its associated ring value

r1(k) ∶R1 with the result of r2, and finally aggregates every such result to obtain a single ring

value of type R1 ⋅R2. More precisely we have:

sum(r1 ∗{x => r2}) = ∑
k∶K1

r1(k) ⋅ r2[k/x]

Example 13. Using the constructs of the ring calculus defined thus far, we can already express

the flattening of a nested collection X ∶Bag(RKey(Bag(K))) as

flt(X) = for(x ← X) collect fromK(x),

where fromK(x) ∶ Bag(K), with x ∶ RKey(Bag(K)), unpacks the boxed inner bag bound by

x. Considering that the type of X can be expanded to RKey(Bag(K)) → Int, it can be seen

that flt(X) produces a result of the desired type Bag(K). It multiplies each inner bag with its

corresponding top level multiplicity, and then unions all the resulting bags via the summation

72

5.2. Nested Ring Calculus

construct to obtain a single output bag containing the flattened input.

Booleans. Our type system does not have a dedicated boolean type, but instead we model

boolean values via integers, with false represented by 0, and true by any strictly positive integer.

This way, logical “or” and “and” can be performed using integer addition and multiplication,

respectively, while negation is introduced via ¬(⋅), which returns false on non-zero arguments

and true (i.e. 1) otherwise. Finally, predicates take as input key values and produce booleans.

Example 14. Given a bag X ∶ Bag(K) and predicate p(⋅) ∶ Int, we can express existsp(X) and

forallp(X) as:

existsp(X) = for(x ← X) collect p(x)

forallp(X) = ¬(for(x ← X) collect ¬p(x)).

5.2.1 Key vs. Value Nesting

In order to capture nesting we use the singleton constructor sng(k,r) that places a given key

k ∶K and ring value m ∶ R,m ≠ 0R, as the single non-zero valued element k ↦m of a mapping

K→R. To improve the presentation we will use the following notation:

for(x ← r1 if p(x)) yield e ↦ r2 ≡

≡ for(x ← r1) collect sng(e, p(x) ⋅ r2),

where both the predicate p and the ring expression r2 are optional, and can default to true

and 1, respectively. Moreover we will simply write sng(e) if the value associated to e is 1.

We showcase the difference between key and value (or ring) nesting on a query that takes

X ∶Bag(K1×K2) as input, and produces for every key k1 ∶K1 in X , its corresponding group of

keys k2 ∶K2 satisfying predicate p.

Answering this query using value nesting returns a mapping K1 →Bag(K2) as defined by:

nestR = for(⟨k1,k2⟩ ← X if p(k2)) yield k1 ↦ sng(k2)

By contrast, key nesting is achieved by passing a boxed collection as part of the key argument

of yield and produces a bag of type Bag(K1×RKey(Bag(K2))):

nestK = for(⟨k1,k2⟩ ← X) yield ⟨k1, toK(group(k1))⟩

group(k) = for(⟨k1,k2⟩ ← X if k == k1 && p(k2)) yield k2

where k == k1 is a predicate testing for equality between k and k1.

Even though key and value nesting on the surface achieve similar results, their semantics

make them quite different and from a performance perspective, we remark that value nesting

73

Chapter 5. Deep Scaling for Nested Queries

takes linear-time in the size of its input, whereas key nesting is quadratic. We further illustrate

the distinction on the following example.

Example 15. Given input bag

X = {⟨a,1⟩↦ 4,⟨b,2⟩↦ 3,⟨b,3⟩↦ 2,⟨b,4⟩↦ 1},

and considering predicate p(k2) = k2 > 2, then value nesting produces bag YR = {b ↦ {3 ↦
2,4↦ 1}}, while key nesting results in: YK = {⟨a,{}⟩↦ 4,⟨b,{3↦ 2,4↦ 1}⟩↦ 6}.

From the above we can see that only key nesting preserves the top level multiplicities of tuples

and thus can properly keep track of keys whose corresponding groups are empty (as is the

case for k1 = a). Moreover, while one can leverage the ring structure of YR to partition it into

{b ↦{3↦ 2}} and {b ↦{4↦ 1}}, the result of YK cannot be distributed in a similar way since

one cannot simply partition the keys of a mapping without completely altering its semantics.

5.2.2 Delta Derivation

When updating the results of queries wrt. input changes, we leverage the ring structures and

rich algebraic framework associated to the types in our calculus in order to apply the changes

as well as to derive delta expressions δX (r) that compute their value.

Updates are applied via the addition operation of the input’s ring type (for eg. bag union in the

case of bags), while the removal of a mapping k ↦m from a collection is modeled by adding a

new mapping associating k to the inverse of its current multiplicity −m (this results in a final

multiplicity of 0, meaning k is no longer part of the collection).

We leverage the distinction between key and ring types at the level of our type system to quickly

identify those constructs in our language that are amenable to (efficient) delta processing and

we present their delta rules in figure 5.1.

While for most operators we can exploit their linearity or distributivity wrt. addition in or-

der to limit the work performed by their delta expression, this is not the case for negation,

constructing singletons or extracting ring values from key types, where we have to default to

recomputation.

Nonetheless, in the case of sng(e,r) and fromK(e,r) we notice that if their key typed argu-

ments e are unaffected by the update, i.e. enew = eol d = e, they can also avoid recomputation as

their delta expressions simplify to sng(e,δX (r)) and fromK(e,δX (r)), respectively. It is this

observation that motivates the use of shredding for enabling incrementalization, as it replaces

key-nested collections with labels which remain static throughout the execution while only

their definitions are subject to updates.

Example 16. In the following we present the result of delta derivation for the two kinds of

74

5.3. The Shredding Transformation

δX (X) =ΔX δX (Y) = 0 δX (c) = 0

δX (⟨r1,r2⟩) = ⟨δX (r1),δX (r2)⟩ δX (r._i) = δX (r)._i

δX (let Y ∶= r1 in r2) = let Y ∶= r1 in let ΔY ∶= δX (r1) in

(δX (r2)+δY (r2)+δX (δY (r2)))

δX (r1+ r2) = δX (r1)+δX (r2) δX (−r) = −δX (r)

δX (r1 ∗ r2) = r1 ∗δX (r2)+δX (r1)∗ r2+δX (r1)∗δX (r2)

δX (r1 ⋅ r2) = r1 ⋅δX (r2)+δX (r1) ⋅ r2+δX (r1) ⋅δX (r2)

δX (sum(r)) = sum(δX (r)) δX ({x => r}) = {x => δX (r)}

δX (¬(r)) = ¬(r +δX (r))−¬(r) δX (p(x)) = 0

δX (sng(e,r)) = sng(enew ,δX (r))+ sng(enew ,r)− sng(eol d ,r)

δX (fromK(e,r)) = fromK(enew ,δX (r))+ fromK(enew ,r)− fromK(eol d ,r)

Figure 5.1 – Delta derivation rules for the constructs of our core calculus

nesting introduced in the previous section.

δX (nestR) = for(⟨k1,k2⟩ ← ΔX if p(k2)) yield k1 ↦ sng(k2)

δX (nestK) = for(⟨k1,k2⟩ ← ΔX) yield ⟨k1, toK(groupnew(k1))⟩

+ for(⟨k1,k2⟩ ← X)

collect sng(⟨k1, toK(groupnew(k1))⟩)

− sng(⟨k1, toK(group(k1))⟩),

where groupnew(k1) operates on X new = X +ΔX , as opposed to X . While nestR (ring nesting)

admits a delta query that only has to process the input update ΔX , in the case of nestK (key

nesting) a change in X triggers the full replacement of nested collections whose content gets

modified. We will show in the next section that upon shredding, one can avoid reevaluating

inner collections when performing delta processing for key nesting as well.

5.3 The Shredding Transformation

Shredding replaces by labels the ring types appearing within the key type of a mapping K→R,

and it associates a shredding context consisting of the corresponding label dictionaries. In

particular, for every occurrence of a RKey(R′) type we will have a dictionary Label→R′ in its

shredding context, and this is done recursively for all the RKey(⋅) types inside R′ as well. We

75

Chapter 5. Deep Scaling for Nested Queries

define below the shredding contexts of types:

(R1×R2)Γ =RΓ
1 ×R

Γ
2 (K→R)Γ =KΓ×RΓ

(K1×K2)Γ =KΓ
1 ×KΓ

2 (RKey(R))Γ = (Label→R)×RΓ

while primitive types get shredded to an empty context ∅ ∶ ����. To improve the presentation

we often omit the empty contexts.

We introduce a transformation over expressions r ∶ R in our calculus, that generates an

expression r F ∶ R producing the result in shredded form, as well as an additional expression

computing its shredding context r Γ ∶ RΓ. Due to the way we designed our language, most of

its constructs are unchanged by the (⋅)F transform, with the only exceptions being toK(r) and

fromK(e).

When shredding is performed, instead of boxing ring values, toK(r) produces a label � based

on the values of the free variables of expression r , while the companion shredding context

(toK(r))Γ consists of a label definition �↦ r F ∶ Label→R, along with the shredding context

of r itself r Γ.

For example, upon shredding query nestK in section 5.2.1, the subexpression toK(group(k1))
constructs a label � based on the value of k1, as opposed to evaluating group(k1) and boxing

the resulting collection. Moreover, as we will discuss in section 5.3.1, its shredding context will

contain the label definition {� => group(�.k1)}, where �.k1 denotes the extraction of the free

variable k1 from the label. Since group(k1) no longer contains any key-nested ring values, we

typically omit its corresponding empty shredding context.

Whenever toK(⋅) is applied to different expressions that have the same set of free variables

we provide an additional static index ι, as in toKι(r), which gets factored into the constructed

label along with r ’s free variables. This way we avoid the possibility of assigning the same label

to different shredded ring values.

On the other hand, the (⋅)F transform turns the construct for unboxing ring values fromK(e),

where e ∶ RKey(R), into fromK(eF ,eΓ1). It essentially provides it with the corresponding

dictionary from the shredding context eΓ to be used for resolving the labels found in eF , where

eΓ1 denotes the first component of eΓ.

Example 17. Let us consider the flattening query flt(⋅) in Example 13 which takes as input

nested collection X ∶Bag(RKey(Bag(K))). Upon shredding the inner collections in X become

labels, and their definitions are stored in dictionary X Γ ∶ Label→Bag(K), whereas the fromK

occurrence in flt(⋅) expression gets adjusted correspondingly to also reference X Γ:

flt(X) = for(x ← X) collect fromK(x, X Γ).

While initially x would bind to the boxed inner collections in X and fromK would perform their

unpacking, in the shredded variant x binds to the labels in the input, whereas fromK looks up

76

5.3. The Shredding Transformation

their bag definition in X Γ.

The main benefit of shredding wrt. incrementalization comes in the form of removing the

dependency on the input from the first argument of the sng and fromK constructs, thus

opening their delta rules to the simplifications that render them free from having to perform

re-evaluation. This comes as a result of turning those input-dependent key-nested ring

expressions into labels, and separately managing their definition and corresponding input

dependence as part of dictionaries within the shredding context.

5.3.1 Shredding Context

While the shredding transformation (⋅)F we propose has minimal impact on the original

expressions r ∶ R, i.e. it only requires changes wrt. the toK()/fromK() constructs, it does

rely on an additional shredding context r Γ ∶ RΓ. Nonetheless, we remark that many of the

constructs of our calculus operate only on the top level of collections, and in those cases the

shredding context of their inputs is either preserved (eg. −r) or slightly restructured. The

transformation rules for deriving shredding contexts are presented in Figure 5.2.

The shredding contexts we build closely follow the semantics of the constructs to which they

correspond. In the case of tupling or projection, we also tuple or project the shredding contexts

of their inputs.

Considering that the shredding context of mappings has two components, one for the keys and

another for the ring values, the shredding context for constructing mappings (either singletons

sng(e,r) or infinite {x => r}) is likewise assembled out of those of its two inputs, where xΓ is

a shredding context variable to be bound to the context of the value bound by x. Moreover,

when summing over the keys of a mapping via sum(r), the component corresponding to its

keys is also removed from the resulting shredding context, as those keys are no longer part of

the output anymore.

Finally, the shredding context of key nested expressions e ∶RKey(R) also has two components:

a dictionary mapping the labels in their shredding to their definition, along with the context

resulting from shredding the definition itself. This is reflected in the shredding context of

toK(r) which pairs the label dictionary {� => r F} with r Γ. Analogously, when unpacking a key

nested value using fromK(e) we discard the dictionary eΓ1 in its context since it has already

been used earlier during its shredding transform ((fromK(e))F = fromK(eF ,eΓ1)) to resolve

the labels in eF .

Given mapppings r1 ∶K1 →R1,r2 ∶K2 →R2, we recursively define the shredding context of

their product (r1 ⋅ r2) ∶ (K1×K2)→ (R1 ⋅R2) based on the recursive definition of the product

operator itself as:

r Γ
1 ⊙ r Γ

2 =⟨⟨r1
Γ1 ,r2

Γ1⟩,r1
Γ2 ⊙ r2

Γ2⟩,

77

Chapter 5. Deep Scaling for Nested Queries

(⟨r1,r2⟩)Γ = ⟨r Γ
1 ,r Γ

2 ⟩ (r._i)Γ = r Γ._i (−r)Γ = r Γ (p(x))Γ =∅

(let Y ∶= r1 in r2)Γ = let Y F ∶= e1 in let Y Γ ∶= eΓ2 in eΓ2

(sng(e,r))Γ = ⟨eΓ,r Γ⟩ (sum(r))Γ = r Γ2 {x => r}Γ = ⟨xΓ,r Γ⟩

(r1+ r2)Γ = r Γ
1 ∪ r Γ

2 (r1 ⋅ r2)Γ = r Γ
1 ⊙ r Γ

2 (r1 ∗ r2)Γ = ⟨ri
Γ1 ,r1

Γ2 ⊙ r2
Γ2⟩

(fromK(e))Γ = eΓ2 (toK(r))Γ = ⟨{� => r F},r Γ⟩

Figure 5.2 – Transformation rules for deriving shredding contexts

where the empty shredding context acts as a neutral element. In particular, the first con-

text component, which corresponds to keys ⟨k1,k2⟩ ∶ (K1×K2) in the resulting mapping, is

obtained by pairing the key components of the input shreddings r1
Γ1 ,r2

Γ1 .

The closely related multiplication operator r1∗r2 relies on the same procedure for deriving the

second component of its shredding context (r1
Γ2 ⊙ r2

Γ2). With respect to the first component,

in order to preserve correctness it requires that the shredding contexts of its operands either

have the same first components (i.e. r1
Γ1 = r2

Γ1) or one of them is a variable (as xΓ from the

shredding of {x => r}). In the latter case the variable xΓ gets bound to the concrete value

provided by the other operand’s shredding context.

For deriving the shredding context of the addition operator we introduce the union operation

r Γ
1 ∪ r Γ

2 over shredding contexts, which performs union between corresponding dictionaries in

r Γ
1 , r Γ

2 (as they have the same type). The goal of this operation is twofold: (i) to collect the label

definitions for all the labels that may appear in the result of r1+ r2, and (ii) to enforce that a

label appearing in both r1,r2 has the same definition in both r Γ
1 , r Γ

2 (and flag the opposite case

as an error). While the shredding contexts obtained as a result of our derivation are guaranteed

not to introduce any inconsistent label definitions, they may still occur as part of arbitrary

input contexts.

Example 18. Shredding bag X ∶ Bag(K1 ×K2) associates a shredding context X Γ = ⟨d1,d2⟩ ∶
KΓ

1 ×K
Γ
2 , where we omitted X Γ’s empty value component corresponding to integer multiplicities.

By expanding the definition of the nestK query in Section 5.2.1 and applying the rules for

deriving shredding contexts we obtain: nestKΓ = ⟨d1,⟨{� => group(�.k1)},d2⟩⟩, where we used

the fact that (group(�.k1))Γ = d2.

Correctness. From shredded results one can still recover the original nested value by re-

cursively replacing each label with a boxed ring value containing the label’s definition from

the corresponding shredding context. For instance, the nested result in our example can be

78

5.4. System architecture

recovered via:

nestK = for(⟨k1,k2⟩ ← nestKF)

collect ⟨k1, toK(fromK(k2,nestKΓ2))⟩,

where nestKF represents the flat output of the shredded version of the query.

If we denote by μR(X F , X Γ) the type-indexed operator that applies this label substitution for

values X ∶ R, one can easily show via structural induction on the constructs of our calculus

that:

Theorem 14. Given any expression e ∶ R, nesting back the result of its shredded version produces

the same value as the original expression, i.e.: e =μR(eF ,eΓ).

5.4 System architecture

The architecture of SLeNDer is split into front-end and back-end components (see Figure 5.3),

both implemented in Scala. It takes as input nested queries and produces either Spark batch-

processing code for their equivalent shredded representation, or Spark trigger programs for

incrementalizing their results wrt. mini-batch updates for their inputs. In addition, it provides

an interpreted evaluation mode as well as a runtime library for single-node execution.

The frontend operates on a typed deep embedding of the nested ring calculus presented in

Section 5.2. In order to provide more convenience when defining queries, this language is

extended with several constructs, like for-comprehensions, which are nonetheless de-sugared

to the core constructs of the calculus. The embedding uses native Scala types for modeling

primitive types and tuples, i.e. key types, while for ring types we define appropriate ring

structures by leveraging Scala’s implicit classes functionality. As a result, we can easily extend

the type system as needed with additional types that exhibit a ring structure, and we can also

reuse the host compiler for type-checking the given queries.

The frontend is designed around two main tasks: i) simplifying queries by applying constant

folding or the ring simplification rules (i.e. neutral element, absorbing element, etc.) and ii)

deriving shredded programs based on the shredding transformation described in the previous

section.

The backend performs recursive incrementalization and materialization over normalized

queries. These transformations are enabled by a specialized intermediate representation

which we refer to as Recursive A-normal form (detailed in Section 5.4.1), as well as an untyped

lower-level DSL, whose type annotations are maintained as data in the IR nodes. This facili-

tates the definition and application of optimization rules without the obligation of providing

proofs of type-preservation, which is a non-trivial task for many common optimization rules.

Moreover, it streamlines syntax trees as well as their optimization by working with n-ary oper-

ators (as opposed to just binary) for product or addition constructs, considering that they are

79

Chapter 5. Deep Scaling for Nested Queries

Front-end compiler (typed)

- Algebraic optimizations
- Shredding Transform

Back-end compiler (untyped)
- Normalization
- Recursive Delta Derivation
- Relational optimizations
- Materialization & Domain inference
- Spark code generation

Q

Nested
Query

Shredded
Representation

Trigger
program

Batch code

Spark

Figure 5.3 – The architecture of SLeNDer.

both associative and commutative. Finally, it flattens the structure of tuples by associating

names to fields, in contrast to addressing tuple members via their position, which is the case

in the frontend. These design choices greatly simplify transformations that reorder products

of operands, as needed when separating the parts of a query that depend on the delta from

those that only depend on the input relations.

As a final step, it applies standard relational optimizations (e.g. pushing aggregates, selections)

before generating Spark code, which leverages common collection primitives like ��������⋅	
or ���
���
�����⋅	. At this point we do not apply classical compiler optimizations like

common subexpression elimination or inlining, as we expect their impact to be limited

considering the high level nature of the code we generate.

5.4.1 Recursive ANF

The back-end compiler of SLeNDer uses an intermediate representation which we refer to

as Recursive A-normal form (ANF). It is designed to enable the modular specification and

application of classic relational optimization rules, as well as of recursive incrementalization

and materialization. While regular ANF breaks down a given expression into basic subexpres-

sions consisting of a functional (operator) application over constants or variables, Recursive

ANF leverages the algebraic properties of operators to lazily generate a tree of subexpressions

exploring alternative execution plans of interest for the given expression. This aspect of code

generation is essential for domain specific languages (like relational calculus or linear algebra)

whose operators are part of rich algebraic structures, and where the choice between equivalent

re-writings of an expression has substantial consequences on its execution time.

Example 19. Let us consider the following query performing a three-way join over binary

relations R,S, and T :

Q = for(⟨x, y⟩ ← R) collect

for(⟨z, w⟩ ← S) collect

for(⟨v, t⟩ ← T if x > 5 && y == z && w == v && t < 12) yield ⟨x, t⟩

80

5.4. System architecture

One possible ANF representation of this query is then:

Q = let Q1 ∶= for(⟨z, w⟩ ← S) collect for(⟨v, t⟩ ← T) yield ⟨z, w, v, t⟩ in

let Q2 ∶= for(⟨x, y⟩ ← R) collect for(⟨z, w, v, t⟩ ← Q1) yield ⟨x, y, z, w, v, t⟩ in

for(⟨x, y, z, w, v, t⟩ ← Q2 if x > 5 && y == z && w == v && t < 12) yield ⟨x, t⟩

We classify the equivalence rules that we use in generating the expressions tree of Recursive

ANF into unidirectional vs bidirectional rules. The former include rules like pushing of fil-

tering or aggregates, which are deemed beneficial irrespective of the workload, while the

latter include rules like join or matrix multiplication re-ordering where the desired version

depends on workload characteristics. While the unidirectional rules are always applied, it is

the bidirectional ones which are responsible for the branching structure of the Recursive ANF

representation of an expression.

Example 20. Upon applying the unidirectional rules on the ANF representation of our three-

way join example above we get:

Q = let QT ∶= for(⟨v, t⟩ ← T if t < 12) yield ⟨v, t⟩ in

let QST ∶= for(⟨z, w⟩ ← S) collect for(⟨v, t⟩ ← QT if w == v) yield ⟨z, t⟩ in

let QR ∶= for(⟨x, y⟩ ← R if x > 5) yield ⟨x, y⟩ in

for(⟨x, y⟩ ← QR) collect for(⟨z, t⟩ ← QST if y == z) yield ⟨x, t⟩,

as a result of pushing selections to the base relations and projecting away the unnecessary fields

from the intermediate results.

After also applying the bidirectional rules we end up with the following Recursive ANF represen-

tation:

Q = let QT ∶= for(⟨v, t⟩ ← T if t < 12) yield ⟨v, t⟩ in

let QST ∶= for(⟨z, w⟩ ← S) collect for(⟨v, t⟩ ← QT if w == v) yield ⟨z, t⟩

∶= for(⟨v, t⟩ ← QT) collect for(⟨z, w⟩ ← S if w == v) yield ⟨z, t⟩ in

let QR ∶= for(⟨x, y⟩ ← R if x > 5) yield ⟨x, y⟩ in

for(⟨x, y⟩ ← QR) collect for(⟨z, t⟩ ← QST if y == z) yield ⟨x, t⟩

= let QRT ∶= for(⟨x, y⟩ ← QR) collect for(⟨v, t⟩ ← QT) yield ⟨x, y, v, t⟩

∶= for(⟨v, t⟩ ← QT) collect for(⟨x, y⟩ ← QR) yield ⟨x, y, v, t⟩ in

for(⟨z, w⟩ ← S) collect for(⟨x, y, v, t⟩ ← QRT if y == z && w == v) yield ⟨x, t⟩

= let QRS ∶= for(⟨x, y⟩ ← QR) collect for(⟨z, w⟩ ← S if y == z) yield ⟨x, w⟩

∶= for(⟨z, w⟩ ← S) collect for(⟨x, y⟩ ← QR if y == z) yield ⟨x, w⟩ in

for(⟨v, t⟩ ← QT) collect for(⟨x, w⟩ ← QRS if w == v) yield ⟨x, t⟩.

81

Chapter 5. Deep Scaling for Nested Queries

We remark, that even though certain sub-expressions appear multiple times within the Recursive

ANF representation (eg. QR ,QT), they only get expanded once. In fact the Recursive ANF can be

seen as a DAG of possible evaluation plans for a given expression, built from two kind of nodes:

(i) operator nodes corresponding to the typical ANF nodes applying an operator over one or two

intermediate results, and (ii) alternation nodes enumerating the equivalent ways of re-writing

the current subexpression (in terms of the corresponding operator nodes).

Finally, we note that the explosion in the size of the Recursive ANF can be controlled via expan-

sion strategies that can choose to explore only left- (right-) deep evaluation plans, or that simply

ignore certain alternatives, such as those producing equivalent Cartesian products.

In SLeNDer we use Recursive ANF both during the query code generation phase as well as

when generating trigger code for incrementalizing views, more precisely when deciding which

subexpressions of a delta query to materialize and thus reuse across delta applications.

The expansion into a set of equivalent expressions that the Recursive ANF representation

captures is not unlike the exploration that a cost-based query optimizer performs in its search

for an optimal query plan. In our work we recognize the fact that the search space inspected

in the process has applications beyond just cost-based optimizations, and thus Recursive ANF

formalizes it and makes it available in a manner that is independent from its ultimate use. For

example, our particular instance of the materialization problem fits within the larger area of

partial evaluation of programs in the case when different inputs become available at different

times, and thus the Recursive ANF representation has wider applicability in DSL compilers

beyond the concerns of SLeNDer. Moreover, considering that the search space is the result of

often complex re-write rules, from a development point of view it is desirable to describe these

rules and more importantly make sure that their application is sound only once, and then

make the resulting exploration available to the different compiler passes that might need it.

5.5 Experiments

We evaluate the performance of shredded queries compared to the original ones both in

an offline and online (incremental) setting. In offline scenarios we show that shredding is

effective in removing skew from inner collections and thus load balance their processing

across all the nodes available, whereas for online scenarios we show that keeping the result of

nested queries fresh by incrementally maintaining their shredded counterparts via Recursive

IVM is at least an order of magnitude faster than re-evaluation.

Experimental Setup We run our experiments on a cluster consisting of 90 servers, each with 2

Intel Xeon E5-2630L @ 2.40GHz CPUs (each CPU has 6 cores, and each core has 2 hardware

threads), 15MB of cache, 256GB of DDR3 RAM, connected via a full-duplex 10GbE network

and running Ubuntu 14.04.2 LTS, Spark 1.5.0 and YARN 2.7.1. We generate Scala programs for

running on Spark and compile them using Scala 2.10.6.

82

5.5. Experiments

Flat-to-nested Q1 Build the hierarchical relation Customer - Order - Lineitem,
where for each order we record the date, and for each lineitem
we record the part name and the quantity.

3

Q2 Compute the list of Customers of each Supplier according to
their orders.

3

Q3 For every part compute the list of suppliers and the list of
customers.

4

Nested-to-flat Q4 Given the hierarchical relation Customer - Order - Lineitem
(Q1), compute for each customer and each part she bought
the total quantity per year.

0

Q5 Given the result of Q3, compute for every part the number of
customers without a national supplier.

0

Nested-to-nested Q6 Given the list of Customers of each Supplier (Q2), compute a
list of suppliers per customer.

1

Q7 Given the result of Q3, compute for every country the list of
exported parts.

1

Table 5.1 – Description of the queries included in our workload, along with the number of
joins they require.

Queries: The queries (Q1-Q7) in our workload are described at a high level in Table 5.1 (for full

definition see appendix A.5). They were designed based on common tasks involving nested

data like establishing hierarchical relations (Q1), computing aggregates across nesting levels

(Q4) or inverting the index of grouped data (Q6), and although they make use of the TPC-H

schema they have no relation to the queries in the TPC-H benchmark.

We include three kinds of queries depending on the type of data they consume/produce:

flat-to-nested (Q1-Q3), nested-to-flat (Q4-Q5), and nested-to-nested (Q6-Q7). We run the

flat-to-nested queries over TPC-H data (with scaling factor of 500), while the rest use their

results as nested input. For generating skewed data we use the TPC-H generator proposed

by [16] (with a Zipf skew parameter of 2), which we modified in order to fix the proportion of

values in a specific column that are drawn from the skewed distribution, while the remaining

values are taken from a uniform distribution.

5.5.1 Deep scaling

We measure the ratio between processing times with and without shredding for the queries in

our workload and in Figures 5.4 and 5.5 we breakdown the cost in terms of the time required

to load the data (LOAD), evaluate the query (COMPUTE) and finally save the result (SAVE). We

vary the percentage of skewed data between 20% and 0% (no skew) in order to capture the

83

Chapter 5. Deep Scaling for Nested Queries

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Original
Shredded

Partially Sh

Original
Shredded

Partially Sh

Original
Shredded

Partially Sh

Original
Shredded

Partially Sh

Original
Shredded

Partially Sh

Original
Shredded

Partially Sh

Original
Shredded

Partially Sh

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Load Compute Save

(a) 20%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Original
Shredded

Partially Sh

Original
Shredded

Partially Sh

Original
Shredded

Partially Sh

Original
Shredded

Partially Sh

Original
Shredded

Partially Sh

Original
Shredded

Partially Sh

Original
Shredded

Partially Sh

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

(b) 10%

Figure 5.4 – Running times ratio of Shredded and Partially Shredded queries vs the original
queries for high percentages of skewed data (20% and 10%).

84

5.5. Experiments

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Original
Shredded

Partially Sh

Original
Shredded

Partially Sh

Original
Shredded

Partially Sh

Original
Shredded

Partially Sh

Original
Shredded

Partially Sh

Original
Shredded

Partially Sh

Original
Shredded

Partially Sh

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

(a) 5%

0 0.5 1 1.5 2 2.5 3 3.5 4

Original
Shredded

Partially Sh

Original
Shredded

Partially Sh

Original
Shredded

Partially Sh

Original
Shredded

Partially Sh

Original
Shredded

Partially Sh

Original
Shredded

Partially Sh

Original
Shredded

Partially Sh

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

(b) 0%

Figure 5.5 – Running times ratio of Shredded and Partially Shredded queries vs the original
queries for low percentages of skewed data (5% and 0%).

85

Chapter 5. Deep Scaling for Nested Queries

0 20 40 60 80 100 120 140

Original
Shredded

Partially Sh

Original
Shredded

Partially Sh

Original
Shredded

Partially Sh

Original
Shredded

Partially Sh

Original
Shredded

Partially Sh

Original
Shredded

Partially Sh

Original
Shredded

Partially Sh

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Load Compute Save

Figure 5.6 – Ratio between the running time of the longest and the median tasks aggregated
per stage (when 20% of the data is skewed).

performance of the queries under different levels of load imbalance, as well as to isolate the

overheads of shredding when skew is relatively small or absent. Moreover, in order to illustrate

the effectiveness of shredding in reducing skew we present in Figure 5.6 the ratio between the

running times of the longest and the median tasks within Spark stages, aggregated over the

three phases of the query evaluation we consider.

We divide our discussion based on the type of the query. For flat-to-nested queries (Q1-Q3),

we see a benefit across the board from full-shredding, both in evaluation and output times (as

expected, loading times are unaffected). The advantage is maintained also when no skew is

present (Figure 5.5b), since producing results in shredded form requires at least one less join

compared to the nested version.

The shredded variants of nested-to-flat queries (Q4-Q5) also enjoy considerably smaller

loading and processing times in the presence of high skew (Figure 5.4). Since they are able to

push aggregations down to the shredded collections, the processing of large nested collection

ends up distributed across multiple nodes, all the while significantly reducing the amount of

data that needs to be joined back together in order to produce the final result. By contrast, the

original queries must first pay the high price of loading the large inner collections, and then

have to process each on a single node.

However, in the absence of skew, shredded nested-to-flat queries are at a disadvantage (Fig-

ure 5.5b), since they have to read more data, i.e. for each nested collection in the original input

86

5.5. Experiments

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Original
Shredded

Original
Shredded

Original
Shredded

Original
Shredded

Original
Shredded

Original
Shredded

Original
Shredded

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Load Compute Save

Figure 5.7 – Running times ratio of shredded vs original queries for low cardinality top-level
collections (10 top-level records).

they have to read several label definitions containing just a few tuples as they are partitioned

across the cluster, each with its own space overhead. Moreover, they also need to perform

an extra join as they match the shredded tuples of their inputs with the intermediate results

obtained by processing the corresponding shredding context.

Finally, shredded nested-to-nested queries (Q6-Q7) benefit from both the ability to balance

the workload by pushing processing down to shredded collections as well as avoid the final

join or grouping of the result, since their output is kept in shredded form as well. In fact the

shredded version of Q6 manages to avoid any kind of reshuffling in its evaluation and as a

result outperforms the original query even in the absence of skew (Figure 5.5b).

As exemplified by Q3 and Q5, there is a tradeoff between the savings obtained when producing

shredded results due to the avoidance of an extra join, and the additional costs incurred when

consuming these results, and finally having to perform the join between top-level records and

intermediate results corresponding to the processing of label definitions. However, partial

shredding addresses this issue as it creates distributed label definitions only for those inner

collections that are large enough to provoke load imbalance. This way we can shift back the

additional join to the query producing the nested output, while the query consuming it has to

match only the relatively few labels that have been introduced by shredding. More importantly,

all this is done without the risk of generating load imbalance. As a consequence, the partially

shredded versions of flat-to-nested queries (Q1-Q3) have higher evaluation costs than the fully

87

Chapter 5. Deep Scaling for Nested Queries

shredded variants, while for the rest of the queries consuming their results we see substantial

improvements.

Considering that none of the shredding strategies preform optimally for all queries and for all

levels of skew we argue that choosing the best shredding strategy should be left to the query

optimizer which can take the appropriate decision based on the structure of the query in

terms of its nesting and join pattern, along with statistics regarding the distribution of values

within grouping columns.

Finally, we also show that shredding can dramatically increase performance when processing

top level collections with low cardinality but large inner collections even in the absence of

skew (Figure 5.7), with speedups ranging between 2.68x and 10.19x.

5.5.2 Incremental Evaluation

We compare the speedups provided by (recursive) incremental view maintenance wrt. full re-

evaluation (see Figure 5.8), in terms of the time it takes to process the entire input data divided

in 50 equal batches, with each batch randomly partitioned between the available workers

and preloaded in memory before the start of the experiment. The streams are obtained by

interleaving batches of insertions to the base relations in a round-robin fashion. We run one

Spark job per batch to refresh the results, while the auxiliary materialized views are updated

lazily when used. We rely on simple heuristics for deciding how to partition auxiliary views

and use the key of the join that references the view. In the case of views referenced by multiple

joins we use the key with the highest cardinality.

If the input is nested, the updates will also consist of nested tuples, while the output is

incrementally maintained in shredded form, with the final nested result being computed

only on demand. We argue that this final step should be performed lazily only for the values

that end up being outputted, while the memory/storage layout should remain shredded, as it

facilitates efficient further updating and processing.

Unfortunately, neither Streaming Spark [73], nor the incremental evaluation engine of Spark

(Spark Structured Streaming) support joins between two streaming datasets with full seman-

tics, and while DBToaster [36, 54] implements a recursive incrementalization strategy that

does support joins, it currently cannot handle queries that process nested data. Therefore,

we compare our approach against Spark Streaming only for queries that do not join dynamic

datasets (Q4, Q5 and Q7), whereas for the rest we compare against a standard incremental-

ization (IVM) technique that materializes the intermediate results of joins and uses them in

propagating delta changes up the query plan.

The speedups obtained through recursive incrementalization by the trigger programs we

generate range from 11.05x to 21.93x, when compared to reevaluation. By contrast, standard

IVM manages speedups of only 1.49x to 16.89x. These speedups are supported by the fact

that the incrementalization techniques maintain query results while processing overall much

88

5.5. Experiments

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Q1 Q2 Q3 Q4 Q5 Q6 Q7

IVM RecursiveIVM

Figure 5.8 – Speedups of incremental evaluation of queries vs recomputation.

1.0

10.0

100.0

1000.0

10000.0

Q1 Q2 Q3 Q4 Q5 Q6 Q7

REX IVM RecursiveIVM

Figure 5.9 – Number of tuples (x 10 million) processed during the maintenance of queries via
re-execution (REX), vs. incremental maintenance (IVM), vs. Recursive IVM.

89

Chapter 5. Deep Scaling for Nested Queries

1

1.5

2

2.5

3

3.5

4

20 30 40 50 60 70 80 90 100

Sp
ee

du
p

Number of workers

Q1 Q2 Q3 Q4 Q6

Figure 5.10 – Speedups of Recursive IVM for different number of workers (25, 50 and 100).

fewer tuples than by reevaluation, as highlighted in Figure 5.9. We remark that the queries

where Recursive IVM significantly outperforms standard IVM (up to 7.7x faster) are exactly

those that execute several joins, whereas for queries with no joins (Q4-Q5) or those that join

against a static table (Q7), the two techniques behave similarly.

Finally, we show in Figure 5.10 the speedups obtained by Recursive IVM when processing

batches on 25, 50 and 100 workers. Query Q6 achieves almost linear speedup considering that

its trigger program requires no reshuffling for updating shredded results. The performance

with 100 workers more than doubles when compared to the 50 workers data point, as the

pressure on the memory resources of each node diminishes, leading to less time wasted on

memory management. On the other hand, queries Q1-Q4 reach at most a 2.41x improvement

for 100 workers vs.2̇5. This is a consequence of the additional intermediate views (i.e. materi-

alized delta queries) that they have to maintain, and ultimately have to join against in order

to refresh their output. We omitted from Figure 5.10 queries Q5 and Q7 since the amount of

work required to process one of their batches was relatively small thus leading to poor scaling

behavior.

90

6 Related Work

6.1 Incremental processing for nested queries

The nested data model has been thoroughly studied in the literature over multiple decades

and has enjoyed a wide adoption in industry among NoSQL data management systems and in

the form of data format standards like XML or JSON. However, solutions to the problem of

incremental maintenance for nested queries either focus only on the fragment of the language

that does not generate changes to inner collections [25], or propagate those changes based

on auxiliary data structures designed to track the lineage of tuples in the view [21, 24, 33, 53].

The use of dedicated data-structures as well as custom update languages make it extremely

difficult to further apply query optimizations on top of these techniques.

Delta processing was originally proposed for datalog programs [30, 31] but it is even more

natural for algebraic query languages [7, 9, 13, 15, 27, 38, 57, 60, 71], especially relational algebra

on bags, simply because the algebraic structure of a group is the necessary and sufficient envi-

ronment in which deltas live. In many cases the derived deltas are asymptotically faster than

the original queries and the resulting speedups prompted a wide adoption of such techniques

in commercial database systems. Our work is an attempt to develop similarly powerful static

incrementalization tools for languages on nested collections and comes in the context of ad-

vances in the complexity class separation between recomputation and IVM [35,74]. Compared

to [35] which discusses the recursive incrementalization of a flat query language, we address

the challenges raised by a nested data model, i.e. we design a closed delta transformation

for IncNRC+’s constructs and a semantics-preserving shredding transformation for imple-

menting ‘deep’ updates. Furthermore, we provide cost domains and a cost interpretations

for IncNRC+’s constructs, according to which we define the notion of an incremental nested

update and we show that the deltas we generate have lower upper-bound time estimates than

re-evaluation.

In our implementation we adopt an eager evaluation strategy, but a broad discussion of the

implications of this choice on the view maintenance process can be found in the literature [18,

19, 31, 61, 75].

91

Chapter 6. Related Work

The related topic of incremental computation has also received considerable attention within

the programming languages community, with proposals being divided between dynamic and

static approaches. The dynamic solutions, such as self-adjusting computation [2–5, 41], record

at runtime the dependency-graph of the computation. Then, upon updates, one can easily

identify the intermediate results affected and trigger their re-evaluation. Similarly, Maier et.

al. [48] leveraged the existing infrastructure in a functional reactive programming framework

to allow for incremental reactivity over lists. As this techniques make few assumptions about

their target language, they are applicable to a variety of languages ranging from Standard ML

to C. Nonetheless, their generality comes at the price of significant runtime overheads for

building dependency graphs. Moreover, while static solutions derive deltas that can be further

optimized via global transformations, such an opportunity is mostly missed by dynamic

approaches (the potential for optimizations is even more consequential when dealing with

languages with powerful algebraic laws). For instance, one can combine factorization and the

commutativity of operators to implement a more powerful form of the traditional optimization

of common subexpression elimination. By contrast, this would not be applicable to general-

purpose Turing-complete languages, as such algebraic laws do not exist on arbitrary data

values.

When compared to a monolithic incremental view maintenance algorithm, an algebraic ap-

proach by delta-query rewriting has the additional advantage of re-using the query processing

and evaluation infrastructure of the database system. One can thus leverage decades of

progress on query processing technology for incremental view maintenance and does not

need to invent analogous technology – say, reinvent indexes for IVM.

Delta derivation has also been proposed in the context of incremental computation, initially

only for first-order languages [56], and more recently it has been extended to higher-order

languages [11]. Their work represents an initial step towards closing the gap between the

applicability of static and dynamic approaches, and creating a unified field and understanding

of incremental computation.

However, these approaches offer no guarantees wrt. the efficiency of the generated deltas,

whereas in our work we introduce cost interpretations and discuss the requirements for cost-

efficient delta processing. Moreover, when incrementalizing functional values f ∶B A they only

allow functional updates d f ∶B A×A , that satisfy an additional non-trivial constraint:

f (a)⊕B d f (a,d a) = f (a⊕A d a)⊕B d f (a⊕A d a,∅)

= f (a)⊕B δ(f)(a,d a)⊕B d f (a⊕A d a,∅).

In other words, if we consider g(a) = d f (a,∅) to be an independent function, it follows that

d f (a,d a) must compute both the value of g(a ⊕A d a) and δ(f)(a,d a). This effectively

leaves the problem of delta derivation to the user. This constraint along with their definition of

⊕B A , (f ⊕B A d f)(a) = f (a)⊕B d f (a,∅), guarantees that function application app ∶B A×A →B

92

6.2. Shredding nested queries

can be easily incrementalized as follows:

app(f ⊕B A d f , a⊕A d a) = app(f , a)⊕B app(d f ,⟨a,d a⟩).

By contrast, we allow any functional value d f ∶B A to act as a change and in incrementalizing

app we leverage the fact that functional values in a simply typed lambda language can be

represented as closures. Thus, we can apply the δ derivation on their underlying term, just like

we would on any other term of the language. In addition, we extend to simply-typed lambda

calculi the concept of higher-order deltas (i.e deltas of deltas) which was shown to provide

significant speedups when compared to traditional delta processing [36].

Memoization or function caching has also been used for incremental computation. Liu [46,47]

employs static dependency analysis in order to infer which subexpressions of a function do

not depend on the input update. It then transforms the original program into an incremental

version where those independent intermediate results are reused from the initial run. However,

these transformations depend on a library of rewriting rules that apply only under very

restrictive conditions.

Data streaming systems [1, 51] provide fast online analytics by employing techniques like

approximate processing, load shedding, prioritization [67], on-the-fly aggregation [37], or

specialized algorithms [20]. However these proposals have seen limited adoption as they do

not preserve SQL semantics and are challenging to compose.

6.2 Shredding nested queries

While, the idea of encoding inner bags by fresh indices/labels and then keeping track of

the mapping between the labels and the contents of those bags has been studied before in

the literature in various contexts [17, 29, 34, 40, 63, 68], we are, to the best of our knowledge,

the first to propose a generic and compositional shredding transformation that can handle

any nested-to-nested queries1, for solving the problem of efficient IVM for NRC+ queries.

The compositional nature of our solution is essential for applications where nested data is

exchanged between several layers of the system.

Previous approaches cover a range of semantics and serve various goals, from proving ex-

pressiveness/complexity results to off-loading query processing to backend database systems.

However, many of them are global (or context dependent), i.e. in translating a construct they

require a full (or partial) view of the query being translated, which makes them hard to ex-

tend with new language constructs or adapt to new applications, thus leading to a flurry of

proposals, one for each new use-case.

The challenge of shredding nested queries has been initially addressed by Paredaens et al. [58],

who propose a translation taking flat-to-flat nested relational algebra expressions into flat

1 As opposed to only flat-to-flat or flat-to-nested queries.

93

Chapter 6. Related Work

relational algebra. Van den Bussche [68] also showed that it is possible to evaluate nested

queries over sets via multiple flat queries, but his solution may produce results that are

quadratically larger than needed [17].

Shredding transformations have been studied more recently in the context of language inte-

grated querying systems such as Links [44] and Ferry [28]. In order to efficiently evaluate a

nested query, it is first converted to a series of flat queries which are then sent to the database

engine for execution. While these transformations also replace inner collections with flat

values, they are geared towards generating SQL queries and thus they make assumptions that

are not applicable to our goal of efficiently incrementalizing any nested-to-nested expressions.

For example, Ferry makes extensive use of On-Line Analytic Processing (OLAP) features of

SQL:1999, such as ��������	� and
	��	����
 [29], while Links relies on a normalization

phase and handles only flat-to-nested expressions [17]. More importantly, none of the existing

proposals translate NRC+ queries to an efficiently incrementalizable language (for instance,

the output language of Ferry includes the difference operator which cannot be maintained

efficiently).

The challenges raised by working with potentially large nested collections have been primarily

addressed at the storage level by the introduction of columnar storage formats, as the one

proposed by Dremel [50]. While these formats store data in shredded form, and by doing

so they enable large reductions in the costs of retrieving it (due to a compact layout and

pushing projections), the processing of the data is still done in nested form, meaning that

the relevant fields are still assembled back into (nested) records before being delivered to the

querying engine. This means that they cannot avoid the imbalances inflicted by skewed inner

collections. By contrast, the shredding transformation we developed produces shredded

queries that operate directly on shredded data, thus enjoying better scalability.

In its efforts to extract as much parallel computation as possible out of programs manipu-

lating nested data structures, Data Parallel Haskell [59] relies on a flattening transformation

extending to a higher-order language the proposals of Blelloch et al. [8] and Suciu et al. [65].

However, they use arrays as their underlying data model, which lack many of the optimiza-

tions opportunities afforded by our collections with ring typed multiplicities, including those

essential for incrementalization via delta derivation. Moreover, their scheme for addressing

flattened data is based on random index lookups, and as such only appropriate for a shared

memory multicore execution environment. By contrast, we target map-reduce frameworks

where such access patterns would be prohibitively expensive.

94

7 Conclusions

Due to its familiar abstractions, collection programming has played a key role in lowering the

entrance barrier for practitioners of many computer science fields when it comes to processing

large datasets. In addition, a major factor in its wide adoption lies in its optimization potential,

particularly in terms of parallelization. The fact that collection programming fits in a low

parallel complexity class makes it especially suitable for scaling processing within massively

distributed platforms.

In this work, we showed that collection programming is also amenable to efficient incremen-

talization via re-writing rules. In particular, we assessed the cost of collection programs based

on a cost semantics proposal tailored to nested data, and we showed that the incrementalized

versions of queries written in the positive fragment of the language are indeed cheaper than

recomputation.

Moreover, we proved that the incrementalized versions of collection programs running over

constant-size updates are in a lower complexity class than re-evaluation (NC0 vs. TC0). Con-

sidering that the computation model assumed by TC0 allows for circuits with unbounded

fan-in, while NC0 precludes them, this class separation implies that incrementalization incurs

less communication overhead, which is a major bottleneck in large-scale processing.

We also took an important step towards extending the reach of incrementalization techniques

based on algebraic re-writings from classic first-order querying languages to higher-order

(functional) languages. This is especially relevant for collection programming as it is often

embedded within functional programming languages, but it also opens up the possibility of

developing processing frameworks that can react to both dynamic datasets as well as dynamic

query-sets (small changes to queries should not necessarily require the full re-evaluation of

the workload as long as they can be captured as delta’s of functional values). In particular, we

show that given efficiently incrementalizable primitives, the simply-typed lambda calculus

built around them admits a delta-transformation that produces efficient incremental versions

of programs. To do so, we internalize the delta-transformation as a construct of the language

and apply it as needed over the term component of closures.

95

Chapter 7. Conclusions

In order to fulfill the promise of current collection processing systems of virtually unlimited

scaling both in online and offline scenarios, special consideration is required towards the way

inner collections are distributed among workers. The status-quo of sequentially processing

each inner collection on a single node can result in severe slow-downs in the cases when their

sizes are drastically different from one top-level record to the next. To that end we proposed

the SLeNDer compilation framework which relies on shredding in order to translate a nested

query into code that evenly load balances the computation of nested collections across cluster

resources. In addition, shredding is also leveraged for generating trigger programs which

efficiently incrementalize nested queries based on the technique of Recursive IVM.

Our experimental evaluation showed that shredding is indeed effective in eliminating skew

wrt. the sizes of inner collections, and that applying updates via recursive incrementalization

results in an order of magnitude speedups compared to re-evaluation. All this comes on top of

already established benefits of shredding in terms of enabling optimizations across nesting

levels as highlighted by previous work on query unnesting / decorrelation. Moreover, we show

that partial shredding is effective in eliminating most of the overheads incurred when stitching

back shredded results, while retaining its load balancing benefits wrt. large inner collections.

96

A Appendix

A.1 Incrementalizing IncNRC+

A.1.1 The delta transformation

Proposition 3.2.1. Given an IncNRC+ expression h[R] ∶ Bag(B) with input R ∶ Bag(A) and

update ΔR ∶Bag(A), then:

h[R ⊎ΔR] = h[R] ⊎ δR(h)[R,ΔR].

Proof. The proof follows by structural induction on h and from the semantics of IncNRC+

constructs.

• For h =R, the result follows immediately.

• For h ∈ {∅, p,sng(x),sng(πi(x)),sng(⟨⟩),sng∗(e)} as the query does not depend on

the input bag R we have h[R ⊎ΔR] = h[R] and the result follows immediately.

• For h = for x in e1 union e2:

[[(for x in e1 union e2)[R ⊎ΔR]]]γ;ε =

=⊎v∈[[e1[R⊎ΔR]]]γ;ε
[[e2[R ⊎ΔR]]]γ;ε[x∶=v]

=⊎v∈[[e1[R]]]γ;ε⊎[[δ(e1)[R,ΔR]]]γ;ε
[[e2[R ⊎ΔR]]]γ;ε[x∶=v]

= [⊎v∈[[e1[R]]]γ;ε
[[e2[R ⊎ΔR]]]γ;ε[x∶=v]] ⊎ [⊎v∈[[δ(e1)[R,ΔR]]]γ;ε

[[e2[R ⊎ΔR]]]γ;ε[x∶=v]]

= [⊎v∈[[e1[R]]]γ;ε
[[e2[R]]]γ;ε[x∶=v]⊎[[δ(e2)[R,ΔR]]]γ;ε[x∶=v]] ⊎

[⊎v∈[[δ(e1)[R,ΔR]]]γ;ε
[[e2[R]]]γ;ε[x∶=v]⊎[[δ(e2)[R,ΔR]]]γ;ε[x∶=v]]

= [⊎v∈[[e1[R]]]γ;ε
[[e2[R]]]γ;ε[x∶=v]] ⊎ [⊎v∈[[e1[R]]]γ;ε

[[δ(e2)[R,ΔR]]]γ;ε[x∶=v]] ⊎

[⊎v∈[[δ(e1)[R,ΔR]]]γ;ε
[[e2[R]]]γ;ε[x∶=v]] ⊎ [⊎v∈[[δ(e1)[R,ΔR]]]γ;ε

[[δ(e2)[R,ΔR]]]γ;ε[x∶=v]]

97

Appendix A. Appendix

= [[(for x in e1 union e2)[R]]]γ;ε ⊎ [[(for x in e1 union δ(e2))[R,ΔR]]]γ;ε ⊎

[[(for x in δ(e1)union e2)[R,ΔR]]]γ;ε ⊎ [[(for x in δ(e1)union δ(e2))[R,ΔR]]]γ;ε

= [[(for x in e1 union e2)[R]]]γ;ε ⊎ [[δ(for x in e1 union e2)[R,ΔR]]]γ;ε

= [[(for x in e1 union e2)[R]⊎δ(for x in e1 union e2)[R,ΔR]]]γ;ε

• For h = e1×e2 the reasoning is similar to the case of h = for x in e1 union e2.

• For h = e1⊎e2 the result follows from the associativity and commutativity of ⊎.

• For h =⊖(e) the result follows from the associativity and commutativity of ⊎ and the

fact that ⊖ is the inverse operation wrt. ⊎.

• For h =flatten(e):

[[flatten(e)[R ⊎ΔR]]] =⊎v∈[[e[R⊎ΔR]]]v =⊎v∈[[e[R]]]⊎[[δ(e)[R,ΔR]]]v =

=⊎v∈[[e[R]]]v ⊎ ⊎v∈[[δ(e)[R,ΔR]]]v = [[flatten(e)[R]]] ⊎[[flatten(δ(e))[R,ΔR]]] =

= [[flatten(e)[R]⊎flatten(δ(e))[R,ΔR]]] = [[flatten(e)[R]⊎δ(flatten(e))[R,ΔR]]]

• For h = let X ∶= e1 in e2

[[(let X ∶= e1 in e2)[R ⊎ΔR]]]γ;ε = [[e2[R ⊎ΔR, X]]]γ;ε[X ∶=[[e1[R⊎ΔR]]]γ;ε] =

= [[e2[R, X]]]γ;ε[X ∶=[[e1[R⊎ΔR]]]γ;ε]⊎[[δR(e2)[R, X ,ΔR]]]γ;ε[X ∶=[[e1[R⊎ΔR]]]γ;ε]

= [[e2[R, X]]]γ;ε[X ∶=[[e1[R]]]γ;ε⊎[[δ(e1)[R,ΔR]]]γ;ε] ⊎

[[δR(e2)[R, X ,ΔR]]]γ;ε[X ∶=[[e1[R]]]γ;ε⊎[[δ(e1)[R,ΔR]]]γ;ε]

= [[e2[R, X ⊎ΔX]]]γ;ε[X ∶=[[e1[R]]]γ;ε,ΔX ∶=[[δ(e1)[R,ΔR]]]γ;ε] ⊎

[[δR(e2)[R, X ⊎ΔX ,ΔR]]]γ;ε[X ∶=[[e1[R]]]γ;ε,ΔX ∶=[[δ(e1)[R,ΔR]]]γ;ε]

= [[e2[R, X ⊎ΔX]⊎δR(e2)[R, X ⊎ΔX ,ΔR]]]γ;ε[X ∶=[[e1[R]]]γ;ε,ΔX ∶=[[δ(e1)[R,ΔR]]]γ;ε]

= [[e2[R, X]⊎δX (e2)[R, X ,ΔX]⊎δR(e2)[R, X ,ΔR]⊎

δX (δR(e2))[R, X ,ΔX ,ΔR]]]γ;ε[X ∶=[[e1[R]]]γ;ε,ΔX ∶=[[δ(e1)[R,ΔR]]]γ;ε]

= let X ∶= e1[R], ΔX ∶= δ(e1)[R,ΔR] in

(e2[R, X]⊎δX (e2)[R, X ,ΔX]⊎δR(e2)[R, X ,ΔR]⊎δX (δR(e2))[R, X ,ΔX ,ΔR])

Lemma 1. The delta of an input-independent IncNRC+ expression h is the empty bag, δR(h) =
∅.

Proof. We do a case by case analysis on h.

98

A.1. Incrementalizing IncNRC+

• For h ∈ {∅, p,sng(⟨⟩),sng(x),sng(πi(x)),sng∗(e)} we have from the definition of δ(⋅)
that δ(h) =∅.

• For h = for x in e1 union e2, we have by the induction hypothesis that δ(e1) =∅, δ(e2) =
∅, therefore δ(for x in e1 union e2) = (for x in ∅ union e2)⊎(for x in e1 union ∅)⊎
(for x in ∅union∅) =∅.

• For h = e1×e2 the reasoning is similar to the case of h = for x in e1 union e2.

• For h = e1⊎e2, we have by the induction hypothesis that δ(e1) =∅, δ(e2) =∅, therefore

δ(e1⊎e2) =∅⊎∅=∅.

• For h =⊖(e), we have by the induction hypothesis that δ(e) = ∅, therefore δ(⊖(e)) =
⊖(∅) =∅.

• For h = flatten(e), we have by the induction hypothesis that δ(e) = ∅, therefore

δ(flatten(e)) =flatten(∅) =∅.

• For h = let X ∶= e1 in e2, we have by the induction hypothesis that δR(e2) = ∅, ΔX =
δR(e1) =∅, and the result follows from the fact the δX (e2)[X ,∅] =∅.

A.1.2 The cost transformation

Lemma 15. For any IncNRC+ expression Γ;Π, x ∶C ⊢ h ∶Bag(A), the cost interpretation C[[h]]
is monotonic, i.e. ∀c1,c2 ∈C○ s.t. c1 ⪯ c2 then C[[h]]γ○;ε○[x∶=c1] ⪯ C[[h]]γ○;ε○[x∶=c2].

Proof. The result follows via structural induction on h and from the fact that the cost functions

of the IncNRC+ constructs are themselves monotonic.

We do a case by case analysis on h ∶

• For h ∈ {R, p,∅,sng(⟨⟩)} the result follows from the fact that ∀c1,c2. C[[h]]γ○;ε○[x∶=c1] =
C[[h]]γ○;ε○[x∶=c2].

• For h = sng(x) ∶ C[[sng(x)]]γ○;ε○[x∶=c1] = {c1} ⪯ {c2} = C[[sng(x)]]γ○;ε○[x∶=c2]

• For h = sng(πx(i)) ∶ C[[sng(πx(i))]]γ○;ε○[x∶=⟨c11,c12⟩] = {c1i} ⪯ {c2i} = C[[sng(πx(i))]]γ○;ε○[x∶=⟨c21,c22⟩]

• For h = for y in e1 union e2, we have from the induction hypothesis that:

Ci [[e1]]γ○;ε○[x∶=c1] ⪯ Ci [[e1]]γ○;ε○[x∶=c2]

Co[[e1]]γ○;ε○[x∶=c1] ≤ Co[[e1]]γ○;ε○[x∶=c2]

Ci [[e2]]γ○;ε○[y ∶=Ci [[e1]]γ○ ;ε○[x∶=c1]
] ⪯ Ci [[e2]]γ○;ε○[y ∶=Ci [[e1]]γ○ ;ε○[x∶=c2]

]]

99

Appendix A. Appendix

Co[[e2]]γ○;ε○[y ∶=Ci [[e1]]γ○ ;ε○[x∶=c1]
]] ≤ Co[[e2]]γ○;ε○[y ∶=Ci [[e1]]γ○ ;ε○[x∶=c2]

]],

therefore:

C[[for x in e1 union e2]]γ○;ε○[x∶=c1] =

= Co[[e2]]γ○;ε○[y ∶=Ci [[e1]]γ○ ;ε○[x∶=c1]
] ⋅ Co[[e1]]γ○;ε○[x∶=c1]{Ci [[e2]]γ○;ε○[y ∶=Ci [[e1]]γ○ ;ε○[x∶=c1]

]}

⪯ Co[[e2]]γ○;ε○[y ∶=Ci [[e1]]γ○ ;ε○[x∶=c2]
] ⋅ Co[[e1]]γ○;ε○[x∶=c2]{Ci [[e2]]γ○;ε○[y ∶=Ci [[e1]]γ○ ;ε○[x∶=c2]

]}

= C[[for x in e1 union e2]]γ○;ε○[x∶=c2]

• For h = e1×e2, we have from the induction hypothesis that

Ci [[e1]]γ○;ε○[x∶=c1] ⪯ Ci [[e1]]γ○;ε○[x∶=c2] Ci [[e2]]γ○;ε○[x∶=c1] ⪯ Ci [[e2]]γ○;ε○[x∶=c2]

Co[[e1]]γ○;ε○[x∶=c1] ≤ Co[[e1]]γ○;ε○[x∶=c2] Co[[e2]]γ○;ε○[x∶=c1] ≤ Co[[e2]]γ○;ε○[x∶=c2],

therefore:

C[[e1×e2]]γ○;ε○[x∶=c1] =

= Co[[e1]]γ○;ε○[x∶=c1] ⋅ Co[[e2]]γ○;ε○[x∶=c1]{⟨Ci [[e1]]γ○;ε○[x∶=c1],Ci [[e2]]γ○;ε○[x∶=c1]⟩}

⪯ Co[[e1]]γ○;ε○[x∶=c2] ⋅ Co[[e2]]γ○;ε○[x∶=c2]{⟨Ci [[e1]]γ○;ε○[x∶=c2],Ci [[e2]]γ○;ε○[x∶=c2]⟩}

= C[[e1×e2]]γ○;ε○[x∶=c2]

• For h = e1⊎e2, we have from the induction hypothesis that C[[e1]]γ○;ε○[x∶=c1] ⪯ C[[e1]]γ○;ε○[x∶=c2]

and C[[e2]]γ○;ε○[x∶=c1] ⪯ C[[e2]]γ○;ε○[x∶=c2], therefore:

C[[e1⊎e2]]γ○;ε○[x∶=c1] = sup(C[[e1]]γ○;ε○[x∶=c1],C[[e2]]γ○;ε○[x∶=c1])

⪯ sup(C[[e1]]γ○;ε○[x∶=c2],C[[e2]]γ○;ε○[x∶=c2]) = C[[e1⊎e2]]γ○;ε○[x∶=c2]

• For h =⊖(e), we have from the induction hypothesis that C[[e]]γ○;ε○[x∶=c1] ⪯ C[[e]]γ○;ε○[x∶=c2],

therefore:

C[[⊖(e)]]γ○;ε○[x∶=c1] = C[[e]]γ○;ε○[x∶=c1] ⪯ C[[e]]γ○;ε○[x∶=c2] = C[[⊖(e)]]γ○;ε○[x∶=c2]

• For h = flatten(e), we have from the induction hypothesis that Co[[e]]γ○;ε○[x∶=c1] ≤
Co[[e]]γ○;ε○[x∶=c2],Ci o[[e]]γ○;ε○[x∶=c1] ≤ Ci o[[f]]γ○;ε○[x∶=c2] andCi i [[e]]γ○;ε○[x∶=c1] ⪯ Ci i [[e]]γ○;ε○[x∶=c2],

therefore:

C[[flatten(e)]](c1) = Co[[e]]γ○;ε○[x∶=c1] ⋅ Ci o[[e]]γ○;ε○[x∶=c1]{Ci i [[e]]γ○;ε○[x∶=c1]}

⪯ Co[[e]]γ○;ε○[x∶=c2] ⋅ Ci o[[e]]γ○;ε○[x∶=c2]{Ci i [[e]]γ○;ε○[x∶=c2]} = C[[flatten(e)]](c2)

• For h = sng∗(e), we have from the induction hypothesis that C[[e]]γ○;ε○[x∶=c1] ⪯

100

A.1. Incrementalizing IncNRC+

C[[f]]γ○;ε○[x∶=c2], therefore:

C[[sng∗(e)]]γ○;ε○[x∶=c1] = {C[[e]]γ○;ε○[x∶=c1]} ⪯ {C[[e]]γ○;ε○[x∶=c2]} = C[[sng∗(e)]]γ○;ε○[x∶=c2]

Theorem 4. IncNRC+ is efficiently incrementalizable, i.e. for any input-dependent IncNRC+

query h[R] and incremental update ΔR, then:

tcost(C[[δ(h)]]) < tcost(C[[h]]).

Proof. The proof follows via structural induction on h and from the cost semantics of IncNRC+

constructs as well as the monotonicity of tcost(⋅).

• For h =R we have: C[[δ(R)]] = C[[ΔR]] = size(ΔR) ≺ size(R) = C[[R]]

• For h = for x in e1 union e2 we need to show that:

C[[δ(for x in e1 union e2)]] =

= C[[(for x in δ(e1)union e2)⊎(for x in e1 union δ(e2))⊎

(for x in δ(e1)union δ(e2))]]

= sup(C[[for x in δ(e1)union e2]],C[[for x in e1 union δ(e2)]],

C[[for x in δ(e1)union δ(e2)]])

≺ C[[for x in e1 union e2]]

Case 1: C[[δ(e1)]] ≺ C[[e1]] and e2 is input-independent, therefore δ(e2) = ∅ (from

Lemma 1):

C[[δ(for x in e1 union e2)]] = C[[for x in δ(e1)union e2]] =

= Co[[e2]]γ○;ε○[x∶=Ci [[δ(e1)]]] ⋅ Co[[δ(e1)]]{Ci [[e2]]γ○;ε○[x∶=Ci [[δ(e1)]]]}

≺ Co[[e2]]γ○;ε○[x∶=Ci [[e1]]] ⋅ Co[[e1]]{Ci [[e2]]γ○;ε○[x∶=Ci [[e1]]]} = C[[for x in e1 union e2]],

where we used the fact that Co[[δ(e1)]] < Co[[e1]] and C[[e2]]γ○;ε○[x∶=Ci [[δ(e1)]]] ⪯
C[[e2]]γ○;ε○[x∶=Ci [[e1]]] (from Lemma 15).

Case 2: C[[δ(e2)]] ≺ C[[e2]] and e1 is input-independent, therefore δ(e1) = ∅ (from

Lemma 1):

C[[δ(for x in e1 union e2)]] = C[[for x in e1 union δ(e2)]]

= Co[[δ(e2)]]γ○;ε○[x∶=Ci [[e1]]] ⋅ Co[[e1]]{Ci [[δ(e2)]]γ○;ε○[x∶=Ci [[e1]]]}

≺ Co[[e2]]γ○;ε○[x∶=Ci [[e1]]] ⋅ Co[[e1]]{Ci [[e2]]γ○;ε○[x∶=Ci [[e1]]]} = C[[for x in e1 union e2]],

101

Appendix A. Appendix

where we used the fact that Ci [[δ(e2)]]γ○;ε○[x∶=Ci [[e1]]] ⪯ Ci [[e2]]γ○;ε○[x∶=Ci [[e1]]] and

Co[[δ(e2)]]γ○;ε○[x∶=Ci [[e1]]] < Co[[e2]]γ○;ε○[x∶=Ci [[e1]]].

Case 3: C[[δ(e2)]] ≺ C[[e2]] and C[[δ(e1)]] ≺ C[[e1]]. We show that each term of the sup

function is less than the cost of the original function:

C[[for x in δ(e1)union e2]] ≺ C[[for x in e1 union e2]], see Case 1.

C[[for x in e1 union δ(e2)]] ≺ C[[for x in e1 union e2]], see Case 2.

C[[for x in δ(e1)union δ(e2)]](c) =

= Co[[δ(e2)]]γ○;ε○[x∶=Ci [[δ(e1)]]] ⋅ Co[[δ(e1)]]{Ci [[δ(e2)]]γ○;ε○[x∶=Ci [[δ(e1)]]]}

≺ Co[[e2]]γ○;ε○[x∶=Ci [[δ(e1)]]] ⋅ Co[[δ(e1)]]{Ci [[e2]]γ○;ε○[x∶=Ci [[δ(e1)]]]}

= C[[for x in δ(e1)union e2]] ≺ C[[for x in e1 union e2]].

• For h = e1×e2 we need to show that:

C[[δ(e1×e2)]] = C[[e1×δ(e2)⊎δ(e1)×e2⊎δ(e1)×δ(e2)]]

= sup(C[[e1×δ(e2)]],C[[δ(e1)×e2]],C[[δ(e1)×δ(e2)]]) ≺ C[[e1×e2]]

Case 1: C[[δ(e2)]] ≺ C[[e2]] and e1 is input-independent, therefore δ(e1) = ∅ (from

Lemma 1):

C[[δ(e1×e2)]] = C[[e1×δ(e2)]] = Co[[e1]] ⋅Co[[δ(e2)]]{⟨Ci [[e1]],Ci [[δ(e2)]]⟩}

≺ Co[[e1]] ⋅Co[[e2]]{⟨Ci [[e1]],Ci [[e2]]⟩} = C[[e1×e2]]

Case 2: C[[δ(e1)]] ≺ C[[e1]] and e2 is input-independent: Analogous to Case 1.

Case 3: C[[δ(e1)]] ≺ C[[e1]] and C[[δ(e2)]] ≺ C[[e2]]. We show that each term of the sup

function is less than the cost of the original function:

C[[e1×δ(e2)]] ≺ C[[e1×e2]], see Case 2.

C[[δ(e1)×e2]] ≺ C[[e1×e2]], see Case 3.

C[[δ(e1)×δ(e2)]] = Co[[δ(e1)]] ⋅Co[[δ(e2)]]{⟨Ci [[δ(e1)]],Ci [[δ(e2)]]⟩}

≺ Co[[e1]] ⋅Co[[δ(e2)]]{⟨Ci [[e1]],Ci [[δ(e2)]]⟩} = C[[e1×δ(e2)]] ≺ C[[e1×e2]].

• For h = e1⊎e2 we have the following cases:

Case 1: C[[δ(e2)]] ≺ C[[e2]] and e1 is input-independent, therefore δ(e1) = ∅ (from

Lemma 1):

C[[δ(e1⊎e2)]] = C[[δ(e2)]] ≺ sup(C[[e1]],C[[e2]]) = C[[e1⊎e2]].

Case 2: C[[δ(e1)]] ≺ C[[e1]] and e2 is input-independent: Analogous to Case 1.

102

A.2. Consistency of shredded values

Case 3: C[[δ(e1)]] ≺ C[[e1]] and C[[δ(e2)]] ≺ C[[e2]] ∶

C[[δ(e1⊎e2)]] = C[[δ(e1)⊎δ(e2)]] = sup(C[[δ(e1)]],C[[δ(e2)]])

≺ sup(C[[e1]],C[[e2]]) = C[[e1⊎e2]].

• For h =⊖(e) we have that C[[δ(⊖(e))]] = C[[⊖(δ(e))]] = C[[δ(e)]] ≺ C[[e]] = C[[⊖(e)]].

• For h =flatten(e) we have that C[[δ(e)]] ≺ C[[e]], therefore:

C[[δ(flatten(e))]] = C[[flatten(δ(e))]] = Co[[δ(e)]] ⋅Coi [[δ(e)]]{Ci i [[δ(e)]]}

≺ Co[[e]] ⋅Coi [[e]]{Ci i [[e]]} = C[[flatten(e)]],

where we used the fact that Co[[δ(e)]] < Co[[e]] and Ci [[δ(e)]] ⪯ Ci [[e]].

A.2 Consistency of shredded values

Given an input bag R ∶Bag(A), its shredding version consists of a flat component RF ∶Bag(AF)
and a context component RΓ ∶ AΓ, which is essentially a tuple of dictionaries dk ∶ L→Bag(C F)
such that the definition of any label l in dk corresponds to a inner bag of type Bag(C) from R.

In order to be able to manipulate shredded values in a consistent manner we must guarantee

that i) the union of label dictionaries is always well defined and that ii) each label occurring

in the flat component of a shredded value has a corresponding definition in the associated

context component. More formally:

Definition 4. We say that shredded bags ⟨RF
i ,RΓ

i ⟩ ∶ Bag(AF
i)× AΓ

i are consistent if the union

operation over dictionaries is well-defined between any two compatible dictionaries in RΓ
i ,1 ≤

i ≤ n and if all the elements of RF
i are consistent wrt. their context RΓ

i , where v ∶ AF is consistent

wrt. vΓ ∶ AΓ, if:

• A =B ase or

• A = A1 × A2, v = ⟨v1, v2⟩, vΓ = ⟨vΓ
1 , vΓ

2 ⟩ and v1, v2 are consistent wrt. vΓ
1 and vΓ

2 , respec-

tively, or

• A = Bag(C), v = l ∶ L, vΓ = ⟨vD ,cΓ⟩ ∶ (L→ Bag(C F))×CΓ, there exists a definition for l

in vD (i.e. l ∈ supp(vD)) and for every element c j of the definition vD(l) =⊎ j{c j}, c j is

consistent wrt. cΓ.

Regarding the first requirement, we note that the union of label dictionaries d1 ∪d2 results

in an error when a label l is defined in both d1 and d2 (i.e. l ∈ supp(d1)∩ supp(d2)) but the

103

Appendix A. Appendix

definitions do not match. Therefore, in order to avoid this scenario a label l must have the

same definitions in all dictionaries where it appears. This is true for shredded input bags,

since the shredding function introduces a fresh label for every inner bag encountered in the

process. Furthermore, this property continues to be true after evaluating the shredding of

query h[Ri] ∶Bag(B) :

shF (h)[RF
i ,RΓ

i] ∶Bag(B F) shΓ(h)[RF
i ,RΓ

i] ∶B
Γ

over shredded input bags RF
i ∶Bag(AF),RΓ

i ∶ AΓ because a) the labels introduced by the query

(corresponding to the shredding of sng(f) constructs) are guaranteed to be fresh and b) within

the queries shF (h) and shΓ(h) dictionaries are combined only via label union which doesn’t

modify label definitions (i.e. we never apply bag union over dictionaries).

Lemma 16. Shredding produces consistent values, i.e. for any input bags Ri , their shredding

RF
i = for r in Ri union sF

Ai
(r),RΓ

i = sΓAi
is consistent.

Lemma 17. Shredded NRC+ queries preserve consistency of shredded bags, i.e. for any NRC+

query h[Ri], the output of ⟨hF ,hΓ⟩[RF
i ,RΓ

i] over consistent shredded bags ⟨RF
i ,RΓ

i ⟩, is also

consistent.

When discussing the update of shredded bags ⟨RF
i ,RΓ

i ⟩ by pointwise bag union with

⟨ΔRF
i ,ΔRΓ

i ⟩ we require that both shreddings are independently consistent. Nonetheless,

the definition of a label l from RΓ
i will most likely differ from its definition in ΔRΓ

i since the

first one contains the initial value of the bag denoted by l , while the second one represents its

update. We remark that this does not create a problem wrt. label union of dictionaries since

we only union two dictionaries which are both from RΓ
i or ΔRΓ

i , but we never label union a

dictionary from RΓ
i with a dictionary from ΔRΓ

i .

The definitions provided by ΔRΓ
i can be split in two categories: i) update definitions for

bags that have been initially defined in RΓ
i ; and ii) fresh definitions corresponding to new

labels introduced in the delta update. We require that if a label l ∈ supp(RΓ
i) has an update

definition in ΔRΓ
i , then that label must have the same update definition in every ΔRΓ

k ,k = 1..n,

for which l ∈ supp(RΓ
k). This is necessary in order to make sure that the resulting shredded

value ⟨RF
i ⊎ΔRF

i ,RΓ
i ⊎ΔRΓ

i ⟩ is also consistent. For the fresh definitions we require that their

labels are distinct from any label introduced by RΓ
k ,k = 1..n. More formally:

Definition 5. We say that update ⟨ΔRF
i ,ΔRΓ

i ⟩ is consistent wrt. shredded bags ⟨RF
i ,RΓ

i ⟩ if both

⟨ΔRF
i ,ΔRΓ

i ⟩ and ⟨RF
i ,RΓ

i ⟩ are consistent and

• for every label l ∈ supp(ΔRΓ
i)∩ supp(RΓ

i)∩ supp(RΓ
k) then l ∈ supp(ΔRΓ

k),k = 1..n.

• for every label l ∈ supp(ΔRΓ
i)∖ supp(RΓ

i) then l ∉ supp(RΓ
k),k = 1..n.

Lemma 18. Deltas of shredded NRC+ queries preserve consistency of updates, i.e. for any

NRC+ query h[Ri] and shredded update ⟨ΔRF
i ,ΔRΓ

i ⟩ consistent wrt. shredded input ⟨RF
i ,RΓ

i ⟩,

104

A.3. Delta transformation for IncNRC+l

then the output update ⟨δ(hF),δ(hΓ)⟩[RF
i ,RΓ

i ,ΔRF
i ,ΔRΓ

i] is also consistent wrt. output

⟨hF ,hΓ⟩[RF
i ,RΓ

i].

Proof. The first requirement of Definition 5 follows from the fact that if l ∈ supp(δ(hΓ
j))∩

supp(hΓ
j)∩supp(hΓ

k), where hΓ
j /hΓ

k stands for the j ’th/k’th dictionary in hΓ, then taking delta

over hΓ
k will also produce a definition for l in δ(hΓ

k).

As the delta transformation does not add any new labels we have that:

supp(hΓ
j) ⊆ supph ∪supp(RΓ

i) supp(δ(hΓ
j)) ⊆ supph ∪supp(RΓ

i)∪ supp(ΔRΓ
i),

where supph represents the labels introduced by the query h itself via singleton constructs

sngι(e).

For the second requirement of Definition 5 we note that if l ∈ supp(δ(hΓ
j))∖ supp(hΓ

j), then

l ∈ supp(ΔRΓ
i)∖RΓ

i . Therefore, l ∉ supp(hΓ
k) for any dictionary in hΓ.

A.3 Delta transformation for IncNRC+
l

Theorem 5. IncNRC+l is recursively and efficiently incrementalizable, i.e. given any input-

dependent IncNRC+l query h[R], and incremental update ΔR then:

h[R ⊎ΔR] = h[R]⊎δ(h)[R,ΔR],

deg(δ(h)) = deg(h)−1 and

tcost(C[[δ(h)]]) < tcost(C[[h]]).

Proof. The proof follows by structural induction on h and from the semantics of IncNRC+l
constructs.

• For h = inLl we have δ(h) =∅ as the query does not depend on the input bags Ri and

the result follows immediately.

• For h = [(ι,Π) ↦ e](l ′) = for ⟨ι′,ε⟩ in sng(l ′) where ι == ι′ union ρε(e), the result fol-

lows from the delta of for and from the fact that sng(l ′) does not depend on the input

bags, therefore its delta is ∅.

• For h = e1∪e2,e1,e2 ∶ L→Bag(A), we need to show that for any l ∈ L:

[[(eold
1 ⊎eΔ1)∪(eold

2 ⊎eΔ2)]](l) = [[(eold
1 ∪eold

2)⊎(eΔ1 ∪eΔ2)]](l),

where: eold
k = ek[RF

i ,RΓ
i], and eΔk = δ(ek)[RF

i ,RΓ
i ,ΔRF

i ,ΔRΓ
i], with k = 1,2.

We assume that update ⟨ΔRF
i ,ΔRΓ

i ⟩ is consistent wrt. input bags ⟨RF
i ,RΓ

i ⟩ and from

Lemma 18 we conclude that update ⟨eΔ1 ,eΔ2 ⟩ is also consistent wrt. ⟨eold
1 ,eold

2 ⟩.

105

Appendix A. Appendix

We do a case analysis on l (there are 16 possibilities):

– l ∉ supp(eold
1), l ∉ supp(eΔ1), l ∉ supp(eold

2), l ∉ supp(eΔ2). Trivial.

– l ∈ supp(eold
1), l ∈ supp(eΔ1), l ∈ supp(eold

2), l ∈ supp(eΔ2). From the consistency

of ⟨eold
1 ,eold

2 ⟩ we have that eold
1 (l) = eold

2 (l). Similarly, we get that eΔ1 (l) = eΔ2 (l).

Therefore, we have that: (eold
1 ⊎ eΔ1)(l) = (eold

2 ⊎ eΔ2)(l) and ((eold
1 ⊎ eΔ1)∪(eold

2 ⊎
eΔ2))(l) = (eold

1 ⊎eΔ1)(l) = ((eold
1 ∪eold

2)⊎(eΔ1 ∪eΔ2))(l)

– Two cases lead to a contradiction with the first requirement of a consistent update

value, since the label l is defined in both eold
1 and eold

2 , but is updated by only one

of eΔ1 /eΔ2 .

* l ∈ supp(eold
1), l ∉ supp(eΔ1), l ∈ supp(eold

2), l ∈ supp(eΔ2).

* l ∈ supp(eold
1), l ∈ supp(eΔ1), l ∈ supp(eold

2), l ∉ supp(eΔ2).

– Four cases lead to a contradiction with the second requirement of a consistent up-

date value since eΔ1 /eΔ2 introduce a fresh definition for a label that already appears

in eold
2 /eold

1 .

* l ∉ supp(eold
1), l ∈ supp(eΔ1), l ∈ supp(eold

2), l ∉ supp(eΔ2).

* l ∉ supp(eold
1), l ∈ supp(eΔ1), l ∈ supp(eold

2), l ∈ supp(eΔ2).

* l ∈ supp(eold
1), l ∉ supp(eΔ1), l ∉ supp(eold

2), l ∈ supp(eΔ2).

* l ∈ supp(eold
1), l ∈ supp(eΔ1), l ∉ supp(eold

2), l ∈ supp(eΔ2).

– Two cases follow from the fact that l only appears in eold
1 ,eold

2 , or eΔ1 ,eΔ2 , which are

consistent.

* l ∈ supp(eold
1), l ∉ supp(eΔ1), l ∈ supp(eold

2), l ∉ supp(eΔ2).

* l ∉ supp(eold
1), l ∈ supp(eΔ1), l ∉ supp(eold

2), l ∈ supp(eΔ2).

– The final six cases follow immediately as l appears in dictionaries only on the left

or only on the right hand side of label union.

* l ∈ supp(eold
1), l ∉ supp(eΔ1), l ∉ supp(eold

2), l ∉ supp(eΔ2).

* l ∉ supp(eold
1), l ∈ supp(eΔ1), l ∉ supp(eold

2), l ∉ supp(eΔ2).

* l ∈ supp(eold
1), l ∈ supp(eΔ1), l ∉ supp(eold

2), l ∉ supp(eΔ2).

* l ∉ supp(eold
1), l ∉ supp(eΔ1), l ∈ supp(eold

2), l ∉ supp(eΔ2).

* l ∉ supp(eold
1), l ∉ supp(eΔ1), l ∉ supp(eold

2), l ∈ supp(eΔ2).

* l ∉ supp(eold
1), l ∉ supp(eΔ1), l ∈ supp(eold

2), l ∈ supp(eΔ2).

For the second part, relating the cost and degree of the delta to the cost and degree of the

original query, the proofs are analogous to the cases from Theorem 2 and Theorem 4, when

h = for x in e1 union e2 and e1 is input-independent, and h = e1⊎e2, respectively.

106

A.4. Delta-processing for simply-typed lambda calculi

A.4 Delta-processing for simply-typed lambda calculi

A.4.1 Group structures over product and functional types

As it is essential for delta derivation that each type in the language has a commutative group

structure, we use the operations of commutative groups over primitive types to inductively

define similar structures for product and functional types as well:

0A×B ∶ 1→ A×B ⊕A×B ∶ (A×B)2 →(A×B) ⊖A×B ∶ (A×B)→ (A×B)

0A×B = ⟨0A ,0B⟩ ⊕A×B = (⊕A ×⊕B)○ repair ⊖A×B = (⊖A ×⊖B)

0B A ∶ 1→B A ⊕B A ∶ (B A)2 →B A ⊖B A ∶B A →B A

0B A = curry(0B !1×A) ⊕B A = curry(⊕B⟨app○(π1× idA), ⊖B A = curry(⊖B ○app)

app○(π2× idA)⟩)

We extend addition over product values in a straightforward way by placing in each component

of the output tuple the sum of the corresponding components from the input tuples. Similarly,

the sum of two function values f1, f2, produces a function that returns for every possible

input v the sum of f1(v) and f2(v). We show below that these definitions do indeed exhibit

commutative group structures (lemmas 19 and 20). Additionally, the unit type can be seen as

the commutative group containing just the neutral element: (1,01= id1,⊕1=!1×1,⊖1= id1).

We remark that function application distributes wrt. our definition of addition over functional

values, thus facilitating its incrementalization:

app(f ⊕B A d f , a) = app(f , a)⊕B app(d f , a)

Lemma 19. If (A,0A ,⊕A ,⊖A) and (B ,0B ,⊕B ,⊖B) are commutative groups, then (A×B ,0A×B ,⊕A×B ,⊖A×B)
is also a commutative group.

Proof. This is a well known fact, but we include the proof for completeness.

• Associativity:

⊕A×B ○(⊕A×B × idA×B) =

= (⊕A ×⊕B)○ repair○(((⊕A ×⊕B)○ repair)× idA×B)

= (⊕A ×⊕B)○⟨⟨π11,π12⟩,⟨π21,π22⟩⟩○(((⊕A ×⊕B)○⟨⟨π11,π12⟩,⟨π21,π22⟩⟩)× idA×B)

= ⟨⊕A ○⟨π11,π12⟩,⊕B ○⟨π21,π22⟩⟩○(⟨⊕A ○⟨π11,π12⟩,⊕B ○⟨π21,π22⟩⟩× idA×B)

= ⟨⊕A ○⟨π11,π12⟩,⊕B ○⟨π21,π22⟩⟩○⟨⟨⊕A ○⟨π111,π121⟩,⊕B ○⟨π211,π221⟩⟩,π2⟩

= ⟨⊕A ○⟨⊕A ○⟨π111,π121⟩,π12⟩,⊕B ○⟨⊕B ○⟨π211,π221⟩,π22⟩⟩

107

Appendix A. Appendix

= ⟨⊕A ○((⊕A ○(π1×π1))×π1),⊕B ○((⊕B ○(π2×π2))×π2)⟩

= ⟨⊕A ○(⊕A × idA)○((π1×π1)×π1),⊕B ○(⊕B × idB)○((π2×π2)×π2)⟩

= ⟨⊕A ○(idA×⊕A)○ rassoc×○((π1×π1)×π1),

⊕B ○(idB ×⊕B)○ rassoc×○((π2×π2)×π2)⟩

= ⟨⊕A ○(idA×⊕A)○(π1×(π1×π1)),⊕B ○(idB ×⊕B)○(π2×(π2×π2))⟩○ rassoc×

= ⟨⊕A ○(idA×⊕A)○⟨π11,⟨π112,π122⟩⟩,⊕B ○(idB ×⊕B)○⟨π21,⟨π212,π222⟩⟩⟩○ rassoc×

= ⟨⊕A ○⟨π11,⊕A ○⟨π112,π122⟩⟩,⊕B ○⟨π21,⊕B ○⟨π212,π222⟩⟩⟩○ rassoc×

= (⊕A ×⊕B)○⟨⟨π11,⊕A ○⟨π112,π122⟩⟩,⟨π21,⊕B ○⟨π212,π222⟩⟩⟩○ rassoc×

= (⊕A ×⊕B)○ repair○⟨⟨π11,π21⟩,⟨⊕A ○⟨π112,π122⟩,⊕B ○⟨π212,π222⟩⟩⟩○ rassoc×

= (⊕A ×⊕B)○ repair○(idA×B ×⟨⊕A ○⟨π11,π12⟩,⊕B ○⟨π21,π22⟩⟩)○ rassoc×

= (⊕A ×⊕B)○ repair○(idA×B ×((⊕A ×⊕A)○ repair))○ rassoc×

=⊕A×B ○(idA×B ×⊕A×B)○ rassoc×

• Neutral Element:

⊕A×B ○⟨idA×B ,0A×B○!A×B⟩

= (⊕A ×⊕B)○ repair○⟨idA× idB ,(0A○!A)×(0B○!B)⟩

= (⊕A ×⊕B)○(⟨idA ,(0A○!A)⟩×⟨idB ,(0B○!B)⟩)

= (⊕A ○⟨idA ,(0A○!A)⟩)×(⊕B ○⟨idB ,(0B○!B)⟩)

= idA× idB = idA×B

The proof of ⊕A×B ○⟨0A×B○!A×B , idA×B⟩ = idA×B is analogous.

• Inverse element:

⊕A×B ○⟨idA×B ,⊖A×B⟩

= (⊕A ×⊕B)○ repair○⟨(idA× idB),(⊖A ×⊖B)⟩

= (⊕A ×⊕B)○(⟨idA ,⊖A⟩×⟨idB ,⊖B⟩)

= (⊕A ○⟨idA ,⊖A⟩)×(⊕B ○⟨idB ,⊖B⟩)

= (0A○!A)×(0B○!B) = ⟨0A ,0B⟩○!A×B = 0A×B○!A×B

The proof of ⊕A×B ○⟨⊖A×B , idA×B⟩ = 0A×B○!A×B is analogous.

• Commutativity:

⊕A×B ○sw×

= (⊕A ×⊕B)○ repair○⟨π2,π1⟩

= (⊕A ×⊕B)○⟨⟨π11,π12⟩,⟨π21,π22⟩⟩○⟨π2,π1⟩

= (⊕A ×⊕B)○⟨⟨π12,π11⟩,⟨π22,π21⟩⟩

108

A.4. Delta-processing for simply-typed lambda calculi

= (⊕A ×⊕B)○(sw××sw×)○⟨⟨π11,π12⟩,⟨π21,π22⟩⟩

= ((⊕A ○ sw×)×(⊕B ○ sw×))○ repair

= (⊕A ×⊕B)○ repair =⊕A×B

Lemma 20. If (B ,0B ,⊕B ,⊖B) is a commutative group, then (B A ,0B A ,⊕B A ,⊖B A) is also a com-

mutative group.

Proof. We use the fact that curry is a hom-set isomorphism, with curry−1(g) = app○(g ×
idA), where g ∶ C → B A . Therefore we can prove that f1 = f2 by proving that curry−1(f1) =
curry−1(f2).

• Associativity:

curry−1(⊕B A ○(⊕B A × idB A)) =

= app○((⊕B A ○(⊕B A × idB A))× idA)

= app○(⊕B A × idA)○((⊕B A × idB A)× idA)

=⊕B ○⟨app○(π1× idA),app○(π2× idA)⟩○((⊕B A × idB A)× idA)

=⊕B ○⟨app○((⊕B A ○π1)× idA),app○((idB A ○π2)× idA)⟩

=⊕B ○⟨app○(⊕B A × idA)○(π1× idA),app○(idB A × idA)○(π2× idA)⟩

=⊕B ○⟨⊕B ○⟨app○(π1× idA),app○(π2× idA)⟩○(π1× idA),app○(π2× idA)⟩

=⊕B ○⟨⊕B ○⟨app○(π11× idA),app○(π21× idA)⟩,app○(π2× idA)⟩

=⊕B ○(⊕B × idB)○((app×app)×app)○⟨⟨π11× idA ,π21× idA⟩,π2× idA⟩

=⊕B ○(idB ×⊕B)○ rassoc×○((app×app)×app)○⟨⟨π11× idA ,π21× idA⟩,π2× idA⟩

=⊕B ○(idB ×⊕B)○(app×(app×app))○ rassoc×○⟨⟨π11× idA ,π21× idA⟩,π2× idA⟩

=⊕B ○(idB ×⊕B)○(app×(app×app))○⟨π11× idA ,⟨π21× idA ,π2× idA⟩⟩

=⊕B ○(idB ×⊕B)○(app×(app×app))○⟨π1× idA ,⟨π12× idA ,π22× idA⟩⟩○

(rassoc×× idA)

=⊕B ○(app×(⊕B ○(app×app)○⟨π1× idA ,π2× idA⟩))○⟨π1× idA ,π2× idA⟩○

(rassoc×× idA)

=⊕B ○(app×(app○(⊕B A × idA)))○⟨π1× idA ,π2× idA⟩○(rassoc×× idA)

=⊕B ○(app×app)○⟨π1× idA ,π2× idA⟩○((idB A ×⊕B A)× idA)○(rassoc×× idA)

= app○((⊕B A ○(idB A ×⊕B A)○ rassoc×)× idA)

= curry−1(⊕B A ○(idB A ×⊕B A)○ rassoc×)

109

Appendix A. Appendix

• Neutral Element:

curry−1(⊕B A ○⟨idB A ,0B A○!B A⟩) =

= app○((⊕B A ○⟨idB A ,0B A○!B A⟩)× idA)

= app○(⊕B A × idA)○(⟨idB A ,0B A○!B A⟩× idA)

=⊕B ○(app×app)○⟨π1× idA ,π2× idA⟩○(⟨idB A ,0B A○!B A⟩× idA)

=⊕B ○(app×app)○⟨idB A × idA ,(0B A○!B A)× idA⟩

=⊕B ○⟨app,app○(0B A × idA)○(!B A × idA)⟩

=⊕B ○⟨app,0B○!A ○π2 ○(!B A × idA)⟩

=⊕B ○⟨app,0B○!A ○π2⟩ =⊕B ○⟨idB ,0B○!B⟩○app = app = curry−1(idB A)

The proof of ⊕B A ○⟨0B A○!B A , idB A⟩ = idB A is analogous.

• Inverse Element:

curry−1(⊕B A ○⟨idB A ,⊖B A⟩) =

= app○((⊕B A ○⟨idB A ,⊖B A⟩)× idA)

= app○(⊕B A × idA)○(⟨idB A ,⊖B A⟩× idA)

=⊕B ○(app×app)○⟨π1× idA ,π2× idA⟩○(⟨idB A ,⊖B A⟩× idA)

=⊕B ○(app×app)○⟨idB A × idA ,⊖B A × idA⟩

=⊕B ○⟨app,app○(⊖B A × idA)⟩

=⊕B ○⟨app,⊖B ○app⟩ =⊕B ○⟨idB ,⊖B⟩○app = 0B○!B ○app = 0B○!A ○π2 = curry−1(0B A)

The proof of ⊕B A ○⟨⊖B A , idB A⟩ = 0B A is analogous.

• Commutativity:

curry−1(⊕B A ○ sw×) =

= app○((⊕B A ○ sw×)× idA)

= app○(⊕B A × idA)○(sw×× idA)

=⊕B ○(app×app)○⟨π1× idA ,π2× idA⟩○(sw×× idA)

=⊕B ○(app×app)○⟨(π1 ○ sw×)× idA ,(π2 ○ sw×)× idA⟩

=⊕B ○(app×app)○⟨π2× idA ,π1× idA⟩

=⊕B ○ sw×○(app×app)○⟨π1× idA ,π2× idA⟩

=⊕B ○(app×app)○⟨π1× idA ,π2× idA⟩ = curry−1(⊕B A)

110

A.4. Delta-processing for simply-typed lambda calculi

A.4.2 Deriving δ and cost functions

Theorem 12. (Incrementality) For every L term h ∶ A→B

h ○⊕A =⊕B⟨h ○π1,δ(h)⟩,

given that this holds for every primitive in the language.

Proof. The proof follows by induction on the structure of h.

• h = idA : idA ○⊕A =⊕A⟨π1,π2⟩ =⊕A⟨idA ○π1,δ(idA)⟩

• h = g ○ f : (g ○ f) ○ ⊕A = g ○ ⊕B⟨ f ○π1,δ(f)⟩ = ⊕C ⟨g ○π1,δ(g)⟩ ○ ⟨ f ○π1,δ(f)⟩ =
⊕C ⟨(g ○ f)○π1,δ(g ○ f)⟩

• h =!A : !A ○⊕A =!A×A =!1×1 ○⟨!A ○π1, !A ○π2⟩ =⊕1⟨!A ○π1,δ(!A)⟩

• h = ⟨ f1, f2⟩

⟨ f1, f2⟩○⊕A = ⟨ f1 ○⊕A , f2 ○⊕A⟩ = ⟨⊕B1⟨ f1 ○π1,δ(f1)⟩,⊕B2⟨ f2 ○π1,δ(f2)⟩⟩ =

= (⊕B1 ×⊕B2)○⟨⟨ f1 ○π1,δ(f1)⟩,⟨ f2 ○π1,δ(f2)⟩⟩ =

= (⊕B1 ×⊕B2)○ repair○repair○⟨⟨ f1 ○π1,δ(f1)⟩,⟨ f2 ○π1,δ(f2)⟩⟩ =

=⊕B1×B2⟨⟨ f1 ○π1, f2 ○π1⟩,⟨δ(f1),δ(f2)⟩⟩ =⊕B1×B2⟨⟨ f1, f2⟩○π1,δ(⟨ f1, f2⟩)⟩

• h = πi : πi ○ ⊕B1×B2 = πi ○ (⊕B1 × ⊕B2) ○ repair = ⊕Bi ○ πi ○ repair = ⊕Bi ⟨πi 1,πi 2⟩ =
⊕Bi ⟨πi ○π1,δ(πi)⟩

• h = curry(f)

In order to prove this case we apply curry−1 on both sides and make use of the induction

hypothesis on f .

curry−1(curry(f)○⊕C) =

= app○((curry(f)○⊕C)× idA)

= app○(curry(f)× idA)○(⊕C × idA)

= f ○(⊕C × idA)

= f ○(⊕C ×(⊕A ○⟨idA ,0A !⟩))

= f ○(⊕C ×⊕A)○(idC×C ×⟨idA ,0A !⟩)

= f ○(⊕C ×⊕A)○ repair○⟨⟨π11,π2⟩,⟨π21,0A !⟩⟩

= f ○⊕C×A ○⟨⟨π11,π2⟩,⟨π21,0A !⟩⟩

=⊕B⟨ f ○π1,δ(f)⟩○⟨⟨π11,π2⟩,⟨π21,0A !⟩⟩

=⊕B⟨ f ○⟨π11,π2⟩,δ(f)○⟨⟨π11,π2⟩,⟨π21,0A !⟩⟩⟩

=⊕B⟨app○(curry(f)× idA)○(π1× idA),app○(δ(curry(f))× idA)⟩

111

Appendix A. Appendix

=⊕B⟨app○(π1× idA),app○(π2× idA)⟩○(⟨curry(f)○π1,δ(curry(f))⟩× idA)

= app○(⊕B A × idA)○(⟨curry(f)○π1,δ(curry(f))⟩× idA)

= app○(⊕B A⟨curry(f)○π1,δ(curry(f))⟩× idA)

= curry−1(⊕B A⟨curry(f)○π1,δ(curry(f))⟩)

• h = app

In order to prove this case we show that for any f ∶ C × A → B , s.t.: f ○ ⊕C×A =
⊕B⟨ f ○π1,δ(f)⟩, the following holds:

app○⊕B A×A○((curry(f)×idA)×idB A×A) =⊕B○⟨app○π1,δ(app)⟩○((curry(f)×idA)×idB A×A).

Left-side:

app○⊕B A×A ((curry(f)× idA)× idB A×A) =

= app○(⊕B A ×⊕A)○ repair○((curry(f)× idA)× idB A×A)

= app○(⊕B A × idA)○(idB A×B A ×⊕A)○((curry(f)× idB A)× idA×A)○ repair

=⊕B⟨app○(π1× idA),app○(π2× idA)⟩○((curry(f)× idB A)×⊕A)○ repair

=⊕B⟨app○(curry(f)× idA)○(π1×⊕A),app○(π2×⊕A)⟩○ repair

=⊕B⟨ f ○(π1×⊕A),app○(π2×⊕A)⟩○ repair

=⊕B⟨ f ○(⊕C ×⊕A)○(⟨π1,0C !⟩× idA×A),app○(π2×⊕A)⟩○ repair

=⊕B⟨ f ○⊕C×A ○⟨⟨π11,π12⟩,⟨0C !,π22⟩⟩,app○(π2×⊕A)⟩○ repair

=⊕B ⟨⊕B⟨ f ○π1,δ(f)⟩○⟨⟨π11,π12⟩,⟨0C !,π22⟩⟩,app○(π2×⊕A)⟩○ repair

=⊕B⟨⊕B⟨ f ○⟨π11,π12⟩,δ(f)○⟨⟨π11,π12⟩,⟨0C !,π22⟩⟩⟩,app○(π2×⊕A)⟩○ repair

=⊕B⟨ f ○⟨π11,π12⟩,⊕B⟨δ(f)○⟨⟨π11,π12⟩,⟨0C !,π22⟩⟩,app○(π2×⊕A)⟩⟩○ repair

=⊕B⟨ f ○π1,⊕B⟨δ(f)○⟨⟨π11,π12⟩,⟨0C !,π22⟩⟩,app○(π2×⊕A)⟩○ repair⟩

Right-side:

⊕B ⟨app○π1,δ(app)⟩○((curry(f)× idA)× idB A×A) =

=⊕B⟨app○(curry(f)× idA)○π1,δ(app)○((curry(f)× idA)× idB A×A)⟩

=⊕B⟨ f ○π1,⊕B⟨app○((deltao ○π1)× idA×A),app○(π2×⊕A)⟩○

repair○((curry(f)× idA)× idB A×A)⟩

=⊕B⟨ f ○π1,⊕B⟨app○((deltao ○π1)× idA×A),app○(π2×⊕A)⟩○

((curry(f)× idB A)× idA×A)○ repair⟩

=⊕B⟨ f ○π1,⊕B⟨app○((deltao ○curry(f)○π1)× idA×A),app○(π2×⊕A)⟩○ repair⟩

=⊕B⟨ f ○π1,⊕B⟨app○((deltao ○curry(f))× idA×A)○(π1× idA×A),app○(π2×⊕A)⟩○

repair⟩

=⊕B⟨ f ○π1,⊕B⟨δ(f)○⟨⟨π1,π12⟩,⟨0C !,π22⟩⟩○(π1× idA×A),app○(π2×⊕A)⟩○ repair⟩

112

A.4. Delta-processing for simply-typed lambda calculi

=⊕B⟨ f ○π1,⊕B⟨δ(f)○⟨⟨π11,π12⟩,⟨0C !,π22⟩⟩,app○(π2×⊕A)⟩○ repair⟩

• h = deltao

deltao ○⊕B A ⟨curry(f),curry(d f)⟩ = deltao ○curry(⊕B⟨ f ,d f ⟩) =

= curry(δ−,A(⊕B⟨ f ,d f ⟩)) = curry(⊕B ○δ−,A(⟨ f ,d f ⟩)) =

= curry(⊕B⟨δ−,A(f),δ−,A(d f)⟩) =⊕B A×A⟨curry(δ−,A(f)),curry(δ−,A(d f))⟩ =

=⊕B A×A⟨deltao ○curry(f),deltao ○curry(d f)⟩

=⊕B A×A⟨deltao ○π1,deltao ○π2⟩○⟨curry(f),curry(d f)⟩

=⊕B A×A⟨deltao ○π1,δ(deltao)⟩○⟨curry(f),curry(d f)⟩

• h = 0D

0D ○⊕1 = 0D○!1×1 = 0D ○π1 = idD ○0D ○π1 =⊕D⟨idD,0D!D⟩○0D ○π1 =⊕D⟨0D ○π1,0D!1×1⟩ =

=⊕D⟨0D ○π1,0D ○π2⟩ =⊕D⟨0D ○π1,δ(0D)⟩

• h =⊕D

⊕D ○⊕D×D =⊕D ○(⊕D×⊕D)○ repair =⊕D⟨⊕D⟨π11,π12⟩,⊕D⟨π21,π22⟩⟩ =

=⊕D⟨⊕D⟨π11,π21⟩,⊕D⟨π12,π22⟩⟩ =⊕D⟨⊕D ○π1,⊕D ○π2⟩ =⊕D⟨⊕D ○π1,δ(⊕D)⟩

• h =⊖D

We prove this case for arbitrary a,b ∈D and we use ⊕D in infix form.

⊖D (a⊕D b) = (⊖D(a⊕D b))⊕D 0D⊕D 0D =

= (⊖D(a⊕D b))⊕D (a⊕D (⊖Da))⊕D (b⊕D (⊖Db))

= (⊖D(a⊕D b))⊕D (a⊕D b)⊕D ((⊖Da)⊕D (⊖Db))

= 0D⊕D ((⊖Da)⊕D (⊖Db)) = ((⊖Da)⊕D (⊖Db))

Theorem 13. If every primitive udef is efficiently incrementalizable, then the same property

holds for the entire language L(D,udef), where a input-dependent term h ∶ A →B is efficiently

incrementalizable if ∀ε,εΔ ∈ A○ s.t. εΔ ≺ ε, then

cost(δ(h))(ε,εΔ) ≺ cost(h)(ε).

Proof. The proof follows by induction on the structure of h.

113

Appendix A. Appendix

• h = idA

cost(δ(idA))(εA ,εΔA) = cost(π2)(εA ,εΔA) =π2(εA ,εΔA) = εΔA ⪯A εA = cost(idA)(εA)

• h = g ○ f

cost(δ(g ○ f))(εA ,εΔA) = cost(δ(g)○⟨ f ○π1,δ(f)⟩))(εA ,εΔA) =

= cost(δ(g))○⟨cost(f)○π1,cost(δ(f))⟩))(εA ,εΔA) =

= cost(δ(g))(cost(f)(εA),cost(δ(f))(εA ,εΔA))

⪯C cost(g)(cost(f)(εA)) = cost(g ○ f)(εA)

• h =!A

cost(δ(!A))(εA ,εΔA) = cost(!A ○π2)(εA ,εΔA) = (cost(!A)○π2)(εA ,εΔA) =

= cost(!A)(εΔA) ⪯1 cost(!A)(εA)

• h = ⟨ f1, f2⟩

cost(δ(⟨ f1, f2⟩))(εA ,εΔA) = cost(⟨δ(f1),δ(f2)⟩)(εA ,εΔA) =

= ⟨cost(δ(f1)),cost(δ(f2))⟩(εA ,εΔA) = ⟨cost(δ(f1))(εA ,εΔA),cost(δ(f2))(εA ,εΔA)⟩

⪯B1×B2 ⟨cost(f1)(εA),cost(f2)(εA)⟩ = ⟨cost(f1),cost(f2)⟩(εA) = cost(⟨ f1, f2⟩)(εA)

• h =πi

cost(δ(πi))(⟨εB1 ,εB2⟩,⟨εΔB1 ,εΔB2⟩) = cost(πi ○π2)(⟨εB1 ,εB2⟩,⟨εΔB1 ,εΔB2⟩) =

= εΔBi ⪯Bi εBi = cost(πi)(⟨εB1 ,εB2⟩)

• h = curry(f). We show that for any εA ∈ A○ such that:

cost(δ(curry(f)))(εC ,εΔC)(εA) ⪯B cost(curry(f))(εC)(εA), then:

cost(δ(curry(f)))(εC ,εΔC)(εA) =

= cost(curry(δ(f)○⟨⟨π11,π2⟩,⟨π21,0A !⟩⟩))(εC ,εΔC)(εA) =

= curry(cost(δ(f))○⟨⟨π11,π2⟩,⟨π21,1A !⟩⟩)(εC ,εΔC)(εA) =

= cost(δ(f))(⟨εC ,εA⟩,⟨εΔC ,1A !⟩)

⪯B cost(f)(⟨εC ,εA⟩) = curry(cost(f))(εC)(εA) = cost(curry(f))(εC)(εA)

• h = app

Left side:

cost(δ(app))(⟨εB A ,εA⟩,⟨εΔB A ,εΔA⟩) =

114

A.4. Delta-processing for simply-typed lambda calculi

= cost(⊕B ○⟨app○((deltao ○π1)× idA×A),app○(π2×⊕A)⟩○ repair)

(⟨εB A ,εA⟩,⟨εΔB A ,εΔA⟩)

= (maxB ○⟨app○((cost(deltao)○π1)× idA○×A○),app○(π2×maxA)⟩○ repair)

(⟨εB A ,εA⟩,⟨εΔB A ,εΔA⟩)

=maxB(cost(deltao)(εB A)(⟨εA ,εΔA⟩),εΔB A(εA))

Right side:

cost(app)(⟨εB A ,εA⟩) = app(⟨εB A ,εA⟩) = εB A(εA)

The result follows from εΔB A ⪯B A εB A and the induction hypothesis on f ∶C × A →B s.t.

εB A = curry(cost(f))(εC):

cost(deltao)(εB A)(⟨εA ,εΔA⟩) =

= cost(deltao)(curry(cost(f))(εC))(⟨εA ,εΔA⟩)

= cost(deltao ○curry(f))(εC)(⟨εA ,εΔA⟩)

= cost(curry(δ(f)○⟨⟨π1,π12⟩,⟨0C○!,π22⟩⟩))(εC)(⟨εA ,εΔA⟩)

= curry(cost(δ(f))○⟨⟨π1,π12⟩,⟨1C○!,π22⟩⟩)(εC)(⟨εA ,εΔA⟩)

= cost(δ(f))(⟨εC ,εA⟩,⟨1C○!,εΔA⟩)

⪯B cost(f)(⟨εC ,εA⟩) = curry(cost(f))(εC)(εA) = εB A(εA)

• h = 0D

cost(δ(0D))(ε1,εΔ1) = cost(0D ○π2)(ε1,εΔ1) = 1D(εΔ1) ⪯D 1D(ε1) = cost(0D)(ε1)

• h =⊕D

cost(δ(⊕D))(⟨ε1D,ε2D⟩,⟨ε1ΔD,ε2ΔD⟩) = cost(⊕D ○π2)(⟨ε1D,ε2D⟩,⟨ε1ΔD,ε2ΔD⟩) =

= cost(⊕D)(⟨ε1ΔD,ε2ΔD⟩) =maxD(⟨ε1ΔD,ε2ΔD⟩)

⪯D maxD(⟨ε1D,ε2D⟩) = cost(⊕D)(⟨ε1D,ε2D⟩)

• h =⊖D

cost(δ(⊖D))(εD,εΔD) = cost(⊖D ○π2)(εD,εΔD) = cost(⊖D)(εΔD) = idN+(εΔD) = εΔD

⪯D εD = idN+(εD) = cost(⊖D)(εD)

115

Appendix A. Appendix

A.5 SLeNDer Benchmark

Below we present the definitions of the queries used in our benchmark. We provide a version

based strictly on comprehension syntax (as we consider it more readable), as well as a Spark

version that works around Spark’s restriction wrt. referencing RDDs within the body of a

comprehension.

�� �� � ����	
�
�
��� ��
	�

��	 �� �

��	 �� �� ��
���
	�

��
�� ������
�

��	 �� �� �	�
	

�� ����
�
� �� ����
�
��

��
�� ����	�
	���
�

��	 �� �� !��
��
�" � �� #�	�

�� ���	�
	
� �� ���	�
	
� $$

����	�
� �� ����	�
��

��
�� �����
��

�� �� � %��	 ��
	�

��	 �	�
	#�	�
 � �

��	 ��&� ��&�	�
	
�� �&���
�� ��

!��
��
������� �' ����	�
� �' ���	�
	
��

�(���� #�	������� �' ����	�
� �' �����
� � �

��
�� ��&�	�
	
�� �&���
� �

�)	���*�+
���

��	 ��
���
	�	�
	
 � �

��	 ��&� ���&��
�
�� �&�	�
	���
�� ��	�
�� ��

�	�
	
������ �' ���	�
	
��'�����
�
�� ���	�
	���
��

�(�����	�
	#�	�
� �

��
�� �����
�
�� ��&�	�
	���
� ��	�
�� �

�)	���*�+
���

��	 �� �

��	 ��&� ��&���
��	�
	
�� ��

��
���
	������ �' ����
�
� �' �����
�

�(������
���
	�	�
	
� �

��
�� ��&���
� �	�
	
�

��

�� �, � ����	
�
�
��� ��
	�

��	 �, �

��	 �
 �� %�����
	�

��
���
����
�

��	 �� �� !��
��
� ��
�
���
� �� ��
���
�"

� �� �	�
	
 �� ���	�
	
� �� ���	�
	
�"

116

A.5. SLeNDer Benchmark

� �� �����	
� �
 �������
� �� �������
��

��
�� ����	
�

�� �� � ����� ��
��

��� ���
����
��
	� �

�� �� ! �� �����
�!� �����
��� ��

���
���	���� �" �����
��
� �" �������
��

�#���� ���
��
	�	���� �" �����
��
��"�������
�� ��

��
�� �� �����
�!� �����
��

��� $�����
������	
�� � �

�� �� ! �� ��	
!� �����
��� ��

�����	
��	���� �" �������
� �" ����	
�

�#���� ���
����
��
	� ��

��
�� �� �����
�!� ��	
� �

�%����&�'
���

��� �� �

�� �� ! �� ��	
! �����	
���� ��

$�����
��	���� �" �������
� �" ����	
�

�#���� $�����
������	
�� ��

��
�� �� ��	
! �����	
���

��

�� �(� ��	��
)
����� ��
��

��� �(�

�� �� �� *����

��
�� �����	
!

�� ��� �� *���$��� �
 ��������
� �� �������
�+

� �� $�����
� �
 �������
� �� ��������
��

��
�� ����	
!

�� �� �� ���
��
	 �
 �������
� �� �������
�+

� �� ���
�� �
 �����
��
� �� �����
��
�+

� �� �����	
� �
 �������
� �� �������
��

��
�� ����	
�

�� �(� $���� ��
��

��� *���$�����
�� � �

�� ��� �� *���$���+

� �� $�����
� �
 �������
� �� ��������
��

��
�� ���������
�! ����	
� �

�%����&�'
���

��� *��������	
�� � �

�� �� �� ���
��
	+

� �� ���
�� �
 �����
��
� �� �����
��
�+

� �� �����	
� �
 �������
� �� �������
��

117

Appendix A. Appendix

����� ����	
����
 ���	��� �

��
����������

�	
 �� �

��
 ���
 ����	��
 ��������
�
�������
���� ��

 	
���	��� �! ���	
���� �! ���	���

�"���� 	
�#������
��"���� 	
�$������
�� ��

����� ����	��
 �������
�
 �������
��

%%

%% �& � ����
�'������%#�	
� (��
�

�	
 �& � �

��
 �����	��
 ���
��
�� �� �)*

����
��
�	��
 ���	
��� �� ���
��
�*

����	��
 ��(��� �� ���	
���

����� �����	��
���	��
���+���'����
��
�	����
��(��� �

�
������������ , ��

%%

%% �- � ����
�'������%#�	
� (��
�

�	
 �- � �

��
 �����	��
 �������
�
 �������
�� �� ��*

����	��
���	�������� �� �������
�

�� �������
����
	��. �	�� ��
���	�������� �!

���	������� /� ���	������� 0�

����� ����	��
)� �

�
������������ , ��

%%

%% �1 � ����
�'������ (��
�

�	
 �1 �

��
 �����	��
�� �� $������
�

����� ����	��

��
 �����	��
�������
�2� �� �2*

���	��2 �� �������
�2 �� ���	��2 �� ���	���

����� ���	���

%%

%% �3 � ����
�'������ (��
�

�	
 �3 �

��
 �� �� 4	�����

����� ����	��

��
 �����	��
�������
�
�������
�� �� ��

�� �������
���5����. �	�� ��
���	�������� �!

���	������� �� ���	������� 0 66

�������
����
	��. �	�� ��
���	�������� �!

���	������� /� ���	������� 0�

118

A.5. SLeNDer Benchmark

����� ���	
��

119

List of Figures

2.1 Typing rules for the nested relational calculus (NRC+). 10

2.2 Semantics of the nested relational calculus (NRC+). 11

2.3 The gates representing a binary relation R(x, y)when the active domain consists

of only two values, a and b. 16

2.4 Circuit implementations of Relational Algebra operators over relations R(x, y),S(x)
and T (y), when the active domain consists of two values, a and b. 17

3.1 Delta rules for the constructs of IncNRC+ . 29

3.2 The cost transformation C[[f]]=Co[[f]]{Ci [[f]]} ∶N+{B○} over the constructs

of IncNRC+ . 36

3.3 The shredding transformation, where sF
A and sΓA are described in Figure 3.4. . . . 40

3.4 Shredding nested values: sF
A ∶ A →Bag(AF), sΓA ∶ AΓ 40

3.5 Nesting shredded values: uA[aΓ] ∶ AF →Bag(A) 41

4.1 The constructs of L. 54

4.2 The equational theory of L. 55

4.3 Derivation of deltas for the constructs of L. 56

4.4 Derivation of cost functions for the constructs of L. 58

5.1 Delta derivation rules for the constructs of our core calculus 75

5.2 Transformation rules for deriving shredding contexts 78

5.3 The architecture of SLeNDer. 80

121

List of Figures

5.4 Running times ratio of Shredded and Partially Shredded queries vs the original

queries for high percentages of skewed data (20% and 10%). 84

5.5 Running times ratio of Shredded and Partially Shredded queries vs the original

queries for low percentages of skewed data (5% and 0%). 85

5.6 Ratio between the running time of the longest and the median tasks aggregated

per stage (when 20% of the data is skewed). 86

5.7 Running times ratio of shredded vs original queries for low cardinality top-level

collections (10 top-level records). 87

5.8 Speedups of incremental evaluation of queries vs recomputation. 89

5.9 Number of tuples (x 10 million) processed during the maintenance of queries

via re-execution (REX), vs. incremental maintenance (IVM), vs. Recursive IVM. . 89

5.10 Speedups of Recursive IVM for different number of workers (25, 50 and 100). . . 90

122

List of Tables

5.1 Description of the queries included in our workload, along with the number of

joins they require. 83

123

Bibliography

[1] D. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack, J. Hwang, W. Lindner,

A. Maskey, A. Rasin, E. Ryvkina, et al. The design of the Borealis stream processing engine.

In CIDR, pages 277–289, 2005.

[2] U. A. Acar. Self-adjusting computation: (an overview). In Proc. Workshop on Partial

Evaluation and Program Manipulation, 2009.

[3] U. A. Acar, A. Ahmed, and M. Blume. Imperative self-adjusting computation. In Proc.

POPL, pages 309–322, 2008.

[4] U. A. Acar, G. Blelloch, R. Ley-Wild, K. Tangwongsan, and D. Turkoglu. Traceable data

types for self-adjusting computation. In Proc. PLDI, pages 483–496, 2010.

[5] U. A. Acar, G. E. Blelloch, and R. Harper. Adaptive functional programming. In Proc.

POPL, pages 247–259, 2002.

[6] D. A. M. Barrington, N. Immerman, and H. Straubing. “On Uniformity within NC1”.

Journal of Computer and System Sciences, 41(3):274–306, 1990.

[7] J. A. Blakeley, P.-Å. Larson, and F. W. Tompa. Efficiently updating materialized views. In

Proc. SIGMOD Conference, pages 61–71, 1986.

[8] G. E. Blelloch, J. C. Hardwick, S. Chatterjee, J. Sipelstein, and M. Zagha. Implementation

of a portable nested data-parallel language. In Proceedings of the Fourth ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, PPOPP ’93, pages 102–

111, 1993.

[9] P. Buneman and E. K. Clemons. Efficient monitoring relational databases. ACM Trans.

Database Syst., 4(3):368–382, 1979.

[10] P. Buneman, S. A. Naqvi, V. Tannen, and L. Wong. Principles of programming with

complex objects and collection types. Theor. Comput. Sci., 149(1):3–48, 1995.

[11] Y. Cai, P. G. Giarrusso, T. Rendel, and K. Ostermann. A theory of changes for higher-order

languages: Incrementalizing λ-calculi by static differentiation. In Proc. PLDI, pages

145–155, 2014.

125

Bibliography

[12] S. Ceri and J. Widom. Deriving production rules for incremental view maintenance. In

Proceedings of the 17th International Conference on Very Large Data Bases, VLDB ’91,

pages 577–589, 1991.

[13] S. Ceri and J. Widom. Deriving production rules for incremental view maintenance. In

Proc. VLDB, pages 577–589, 1991.

[14] R. Chaiken, B. Jenkins, P.-Å. Larson, B. Ramsey, D. Shakib, S. Weaver, and J. Zhou. Scope:

Easy and efficient parallel processing of massive data sets. Proc. VLDB Endow., 1(2):1265–

1276, Aug. 2008.

[15] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and K. Shim. Optimizing queries with

materialized views. In ICDE, pages 190–200, 1995.

[16] S. Chaudhuri and V. Narasayy. Tpc-d data generation with skew.

[17] J. Cheney, S. Lindley, and P. Wadler. Query shredding: Efficient relational evaluation of

queries over nested multisets. In Proc. SIGMOD, pages 1027–1038, 2014.

[18] L. S. Colby, T. Griffin, L. Libkin, I. S. Mumick, and H. Trickey. Algorithms for deferred view

maintenance. In SIGMOD, pages 469–480, 1996.

[19] L. S. Colby, A. Kawaguchi, D. F. Lieuwen, I. S. Mumick, and K. A. Ross. Supporting multiple

view maintenance policies. In SIGMOD, pages 405–416, 1997.

[20] G. Cormode and S. Muthukrishnan. What’s hot and what’s not: Tracking most frequent

items dynamically. ACM TODS, 30(1):249–278, 2005.

[21] K. Dimitrova, M. El-Sayed, and E. Rundensteiner. Order-sensitive view maintenance of

materialized xquery views. In Conceptual Modeling - ER 2003, volume 2813 of Lecture

Notes in Computer Science, pages 144–157. 2003.

[22] M. EL-Sayed, L. Wang, L. Ding, and E. A. Rundensteiner. An algebraic approach for incre-

mental maintenance of materialized xquery views. In Proceedings of the 4th International

Workshop on Web Information and Data Management, WIDM ’02, pages 88–91, 2002.

[23] L. Fegaras and D. Maier. Optimizing object queries using an effective calculus. ACM

Trans. Database Syst., 25(4):457–516, Dec. 2000.

[24] J. N. Foster, R. Konuru, J. Siméon, and L. Villard. An algebraic approach to view main-

tenance for XQuery. In PLAN-X 2008, Programming Language Technologies for XML,

2008.

[25] D. Gluche, T. Grust, C. Mainberger, and M. Scholl. Incremental updates for materialized

oql views. In Deductive and Object-Oriented Databases, volume 1341 of Lecture Notes in

Computer Science, pages 52–66. 1997.

126

Bibliography

[26] R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to Parallel Computation: P-

Completeness Theory. Oxford University Press, 1995.

[27] T. Griffin and L. Libkin. Incremental maintenance of views with duplicates. In Proc.

SIGMOD, pages 328–339, 1995.

[28] T. Grust, M. Mayr, J. Rittinger, and T. Schreiber. Ferry: Database-supported program

execution. In Proc. SIGMOD, pages 1063–1066, 2009.

[29] T. Grust, J. Rittinger, and T. Schreiber. Avalanche-safe linq compilation. Proc. VLDB

Endow., 3(1-2):162–172, 2010.

[30] A. Gupta, D. Katiyar, and I. S. Mumick. Counting solutions to the view maintenance

problem. In Proc. Workshop on Deductive Databases, JICSLP, 1992.

[31] A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintaining views incrementally. In

SIGMOD’93, pages 157–166, 1993.

[32] D. S. Johnson. “A Catalog of Complexity Classes”. In J. van Leeuwen, editor, Handbook

of Theoretical Computer Science, volume 1, chapter 2, pages 67–161. Elsevier Science

Publishers B.V., 1990.

[33] A. Kawaguchi, D. Lieuwen, I. Mumick, and K. Ross. Implementing incremental view

maintenance in nested data models. In In Proceedings of the Workshop on Database

Programming Languages, pages 202–221, 1997.

[34] C. Koch. On the complexity of nonrecursive xquery and functional query languages on

complex values. In Proc. PODS, pages 84–97, 2005.

[35] C. Koch. Incremental query evaluation in a ring of databases. In Proc. PODS, pages 87–98,

2010.

[36] C. Koch, Y. Ahmad, O. Kennedy, M. Nikolic, A. Nötzli, D. Lupei, and A. Shaikhha. Dbtoaster:

higher-order delta processing for dynamic, frequently fresh views. VLDB J., 23(2):253–278,

2014.

[37] S. Krishnamurthy, C. Wu, and M. J. Franklin. On-the-fly sharing for streamed aggregation.

In SIGMOD, pages 623–634, 2006.

[38] P.-Å. Larson and J. Zhou. Efficient maintenance of materialized outer-join views. In ICDE,

pages 56–65, 2007.

[39] S. K. Lellahi and V. Tannen. A calculus for collections and aggregates. In Category Theory

and Computer Science, 7th International Conference, CTCS ’97, Proceedings, pages 261–

280, 1997.

[40] A. Y. Levy and D. Suciu. Deciding containment for queries with complex objects. In Proc.

PODS, pages 20–31, 1997.

127

Bibliography

[41] R. Ley-Wild, U. A. Acar, and M. Fluet. A cost semantics for self-adjusting computation. In

Proc. POPL, pages 186–199, 2009.

[42] L. Libkin and L. Wong. Query languages for bags and aggregate functions. J. Comput.

Syst. Sci., 55(2):241–272, 1997.

[43] H. Liefke and S. B. Davidson. Specifying updates in biomedical databases. In Proceedings.

Eleventh International Conference on Scientific and Statistical Database Management,

pages 44–53, Aug 1999.

[44] S. Lindley and J. Cheney. Row-based effect types for database integration. In Proc.

Workshop on Types in Language Design and Implementation, TLDI ’12, pages 91–102,

2012.

[45] J. Liu, M. W. Vincent, and M. K. Mohania. Incremental evaluation of nest and unnest

operators in nested relations. In Proc. of 1999 CODAS Conf, pages 264–275, 1999.

[46] Y. A. Liu. Efficiency by incrementalization: An introduction. Higher Order Symbol.

Comput., 13(4):289–313, Dec. 2000.

[47] Y. A. Liu, S. D. Stoller, and T. Teitelbaum. Static caching for incremental computation.

ACM TOPLAS, 20(3):546–585, 1998.

[48] I. Maier and M. Odersky. Higher-order reactive programming with incremental lists. In

Proc. European Conference on Object-Oriented Programming, ECOOP’13, pages 707–731,

2013.

[49] F. McSherry, D. Murray, R. Isaacs, and M. Isard. Differential dataflow. In Proceedings of

CIDR 2013, January 2013.

[50] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton, and T. Vassilakis.

Dremel: Interactive analysis of web-scale datasets. Proc. VLDB Endow., 3(1-2):330–339,

Sept. 2010.

[51] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G. S. Manku, C. Olston,

J. Rosenstein, and R. Varma. Query processing, approximation, and resource manage-

ment in a data stream management system. In CIDR, 2003.

[52] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi. Naiad: A timely

dataflow system. In Proceedings of the Twenty-Fourth ACM Symposium on Operating

Systems Principles, SOSP ’13, pages 439–455, 2013.

[53] H. Nakamura. Incremental computation of complex object queries. OOPSLA, pages

156–165, 2001.

[54] M. Nikolic, M. Dashti, and C. Koch. How to win a hot dog eating contest: Distributed

incremental view maintenance with batch updates. In Proc. SIGMOD ’16, pages 511–526,

2016.

128

Bibliography

[55] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin: A not-so-foreign

language for data processing. In Proceedings of the 2008 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’08, pages 1099–1110, 2008.

[56] R. Paige and S. Koenig. Finite differencing of computable expressions. ACM Trans.

Program. Lang. Syst., 4(3):402–454, 1982.

[57] T. Palpanas, R. Sidle, R. Cochrane, and H. Pirahesh. Incremental maintenance for non-

distributive aggregate functions. In VLDB, pages 802–813, 2002.

[58] J. Paredaens and D. Van Gucht. Converting nested algebra expressions into flat algebra

expressions. ACM Trans. Database Syst., 17(1):65–93, Mar. 1992.

[59] S. Peyton Jones. Harnessing the multicores: Nested data parallelism in haskell. In

Proceedings of the 6th Asian Symposium on Programming Languages and Systems, APLAS

’08, 2008.

[60] N. Roussopoulos. An incremental access method for viewcache: Concept, algorithms,

and cost analysis. ACM Trans. Database Syst., 16(3):535–563, 1991.

[61] K. Salem, K. S. Beyer, R. Cochrane, and B. G. Lindsay. How to roll a join: Asynchronous

incremental view maintenance. In SIGMOD, pages 129–140, 2000.

[62] L. J. Stockmeyer and U. Vishkin. Simulation of parallel random access machines by

circuits. SIAM J. Comput., 13(2):409–422, 1984.

[63] D. Suciu. Bounded fixpoints for complex objects. In Database Programming Languages

(DBPL-4), Proc. of the Fourth International Workshop on Database Programming Lan-

guages - Object Models and Languages, pages 263–281, 1993.

[64] D. Suciu and V. Tannen. “A Query Language for NC”. In Proc. PODS’94, pages 167–178,

1994.

[65] D. Suciu and V. Tannen. Efficient compilation of high-level data parallel algorithms. In

Proceedings of the Sixth Annual ACM Symposium on Parallel Algorithms and Architectures,

SPAA ’94, pages 57–66, 1994.

[66] D. Suciu and V. Tannen. A query language for nc. J. Comput. Syst. Sci., 55(2):299–321, Oct.

1997.

[67] N. Tatbul, U. Çetintemel, S. B. Zdonik, M. Cherniack, and M. Stonebraker. Load shedding

in a data stream manager. In VLDB, pages 309–320, 2003.

[68] J. Van den Bussche. Simulation of the nested relational algebra by the flat relational

algebra, with an application to the complexity of evaluating powerset algebra expressions.

Theoretical Computer Science, 254(1–2):363 – 377, 2001.

129

Bibliography

[69] J. Van den Bussche, D. Van Gucht, and S. Vansummeren. Well-definedness and semantic

type-checking for the nested relational calculus. Theor. Comput. Sci., 371(3):183–199,

2007.

[70] J. Van den Bussche and S. Vansummeren. Well-defined NRC queries can be typed -

(extended abstract). In In Search of Elegance in the Theory and Practice of Computation -

Essays Dedicated to Peter Buneman, pages 494–506, 2013.

[71] D. Vista. Integration of incremental view maintenance into query optimizers. In Advances

in Database Technology — EDBT’98, volume 1377, pages 374–388. 1998.

[72] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: Cluster

computing with working sets. In Proceedings of the 2Nd USENIX Conference on Hot Topics

in Cloud Computing, HotCloud’10, 2010.

[73] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica. Discretized streams: Fault-

tolerant streaming computation at scale. In Proc. SOSP, pages 423–438, 2013.

[74] T. Zeume and T. Schwentick. Dynamic conjunctive queries. In Proc. ICDT, pages 38–49,

2014.

[75] J. Zhou, P.-Å. Larson, and H. G. Elmongui. Lazy maintenance of materialized views. In

VLDB, pages 231–242, 2007.

130

Daniel Lupei
Chemin de Chandieu, 24

1006 Lausanne
� +41 (79) 862 49 70

� daniellupei@gmail.com

Education
Sep. 2011 -
Aug. 2017

Ecole Polytechnique Fédérale de Lausanne (EPFL), PhD in Computer Science.
Thesis advisor Prof. Christoph Koch

Sep. 2007 -
Sep. 2009

University of Toronto (UofT), MASc in Electrical and Computer Engineering.
Thesis advisor Prof. Cristiana Amza

Oct. 2002 -
Aug. 2007

University Politehnica of Bucharest (UPB), BASc in Computer Science and Engineer-
ing, GPA: 9.63/10.

Core Experience
Sep. 2011 -
Sep. 2017

Ecole Polytechnique Fédérale de Lausanne (EPFL), Research Assistant.
Proposed incremental computation techniques for query languages that operate on nested collections
(as they are widely used by NoSQL systems like MongoDB, Apache Pig, Dremel or Spark). The
developed approach is based on delta processing, for which we can statically guarantee that the
derived delta query is able to update the result of the original query in response to input changes
more efficiently than by re-evaluation. I implemented the approach in SLeNDer, a compilation
framework that takes nested relational queries and generates optimized update triggers for a Spark
backend. The generated code achieves up to 21.93x speedups in refreshing the results of a range
of queries when compared to recomputation.

Jun. -
Aug. 2015,

Mar. -
Jun. 2016

Microsoft Research, Redmond (USA), Research Intern.
Developed optimizations for pattern matching queries operating on large scale streams of complex
events. The proposed techniques leverage symbolic execution and abstract interpretation to locally
produce small summaries based on which the global query can be answered. Prototyped the
approach on terrabytes of data on a map-reduce platform (Cosmos/Scope) and demonstrated
1000x reduction in the amount of data shuffled across the network as well as up to 50% reductions
in processing and response times on production queries.

Sep. 2007 -
Sep. 2009

University of Toronto (UofT), Research Assistant.
I worked in the area of parallel programming using Software Transactional Memory (STM) and
developed libTM, a library implementing the STM abstraction as well as a wide range of conflict
detection/resolution strategies for it. Proposed a novel optimistic conflict detection strategy with
support for partial rollbacks which provides performance close to optimum regardless of the access
pattern of the application. Applied libTM to SynQuake, a parallel massively multiplayer game
server and showed improved scalability compared to a lock-based version.

Oct. 2009 -
Aug. 2011

Softwin, R&D Department, Bucharest (Romania), Software Engineer.
Designed algorithms and data structures for natural language processing applications, including
grammar checking and automatic translation. For improved accuracy, deep syntactic matching is
performed based on an extensive linguistic knowledge base containing grammar rules annotated
with morphological attributes.

Selected Publications
Koch, Christoph, Daniel Lupei, and Val Tannen. “Incremental View Maintenance for

Collection Programming”. In: Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems. PODS ’16. San Francisco, California,
USA, 2016.

131

Koch, Christoph, Yanif Ahmad, Oliver Kennedy, Milos Nikolic, Andres Nötzli, Daniel Lupei,
and Amir Shaikhha. “DBToaster: higher-order delta processing for dynamic, frequently
fresh views”. In: VLDB J. 23.2 (2014), pp. 253–278.

Lupei, Daniel, Bogdan Simion, Don Pinto, Matthew Misler, Mihai Burcea, William Krick,
and Cristiana Amza. “Transactional memory support for scalable and transparent par-
allelization of multiplayer games”. In: Proceedings of the 5th European conference on
Computer systems, EuroSys, Paris, France. 2010.

Soundararajan, Gokul, Daniel Lupei, Saeed Ghanbari, Adrian Daniel Popescu, Jin Chen,
and Cristiana Amza. “Dynamic Resource Allocation for Database Servers Running on
Virtual Storage”. In: Proceedings of the 7th USENIX Conference on File and Storage
Technologies, San Francisco, CA, February 24-27. 2009.

Additional Experience
2012–2016 Ecole Polytechnique Fédérale de Lausanne (Switzerland), Teaching Assistant.

Teaching and supervision of exercise sessions; design of exercises and assignments for courses in
Advanced Databases, Algorithms, Concurrency Control and Programming Fundamentals.

2005–2006 Outside Software, Bucharest (Romania), Software Engineer.
Developed web applications, including a Content Management System, using the .NET framework.

2004 Microsoft Lab (UPB), Bucharest (Romania), Intern.
Created a suite of .NET client-server applications for managing a distribution network between
suppliers and consumers.

Software Developing Skills
Programming

Languages
Java, Scala, C/C++, C# (.NET), Python, OCaml, Haskell, JavaScript, SQL, Matlab,
Octave, R

Databases Relational: Oracle DB, MySQL / NoSQL: Apache Pig, Cosmos/Scope, BigQuery
Frameworks

/Tools
Spark, Hadoop, Yarn, ASP.NET, Git, SVN, Maven, Puppet, Jenkins, Vagrant

Technical Interests
Compiler/Domain-Specific Optimizations for Expressive Analytics on Massive Datasets
Large-scale Online Processing over Streaming Data / Incremental Computation
Complex Event Pattern Matching on Time Series
Machine learning / Information Retrieval / Natural Language Processing
Automation Tools for DevOps

Academic Awards
2007–2009 Rogers Scholarship, University of Toronto
2002–2007 Study Scholarship awarded to (approx.) 10% students, UPB

2000 3rd prize at the National Mathematics Olympiad, Romania

Languages
English Fluent Six years of graduate studies within English-speaking working group
French Conversational Four years of studies in Lausanne

132

