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Abstract

Snow microstructure and its evolution play an important role for various applications of snow
physics in cryospheric sciences. The main modes of microstructure evolution in snow are referred
to as isothermal and temperature gradient metamorphism. The former describes the coarsening
driven by interfacial energy while the latter is dominated by recrystallization processes induced
by temperature gradients. An accurate description of these processes in snowpack models is
of key importance. However, common snowpack models are still based on traditional grain
metrics, originally tailored to field observations, and empirical evolution laws. This treatment of
snow microstructure is essentially unrelated to recent advances of snow observations by micro-
computed tomography (μCT). The present thesis contributes to the solution of this problem by
i) identifying suitable microstructure parameters ii) deriving evolution equations for these from
first principles and iii) developing methods that allow to utilize 4D μCT measurements of snow
as a link between local ice crystal growth and upscaled microstructure as relevant on the scales
of interest for common snowpack models. To this end, three studies have been conducted.
The first study focuses on estimating local ice-crystal growth rates from interface tracking
by analyzing 4D μCT data of in-situ snow metamorphism experiments under isothermal and
temperature gradient conditions. For temperature gradient metamorphism, diffusion-limited
growth is considered, while for isothermal metamorphism the data is compared to kinetics and
diffusion limited growth. Despite considerable scatter, in both cases the significance of underlying
growth laws could be statistically confirmed.
The second study uses μCT images from a variety of snow samples to investigate the role of
grain shape in the context of microwave and optical properties of snow. Grain shape can be
objectively defined via size-dispersity of structure from the second moment of either the mean
curvature distribution or the chord-length distribution. In addition, a quantitative link between
these quantities and the exponential correlation length is established. The latter is relevant
for parameterizing macroscopic properties such as microwave scattering coefficients, dielectric
permittivity and thermal conductivity.
Finally, a rigorous, upscaled microstructure scheme is developed by deriving mathematically
exact evolution equations for the density, specific surface area, the mean and Gaussian curvature
and the second moment of mean curvature. The microstructural evolution is driven by local
ice crystal growth. All parameters are upscaled by volume averaging and the correctness of the
model is confirmed for the time evolution of idealized grains. The model can be compared to 4D
μCT data without any a-priori assumptions. This benchmarking reveals the uncertainties of the
interface tracking method which are largely caused by limited temporal and spatial resolution.
The model allows to statistically assess the validity of ice crystal growth laws during snow
metamorphism. For a temperature gradient experiment it is shown that a diffusion limited
growth law is not consistent with the observed decay of the specific surface area.
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The developed model is a powerful and rigorous tool that is tailored to 4D μCT data. It connects
microscale ice-crystal growth thermodynamics with the macroscale snowpack modeling.

Key words:
snow, crystal growth, metamorphism, microstructure modeling, grain shape, exponential correla-
tion length, mean curvature, Gaussian curvature, micro-computed tomography.
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Zusammenfassung

Die Mikrostruktur von Schnee und ihre zeitliche Entwicklung spielen für verschiedene An-
wendungen in den Kryosphärenwissenschaften eine grosse Rolle. Die wichtigsten Formen der
mikrostrukturellen Umwandlung sind abbauende und aufbauende Metamorphose. Erstere be-
schreibt die durch Oberflächenenergie angetriebene Vergröberung unter isothermen Bedingungen.
Letztere wird durch Rekristallisationsprozesse dominiert, die durch Temperaturgradienten her-
vorgerufen werden. Eine genaue Beschreibung dieser Prozesse in Schneedeckenmodellen ist von
zentraler Bedeutung. Gängige Schneedeckenmodelle basieren jedoch auf Kornmetriken und
empirischen Evolutionsgesetzen, die auf traditionelle Schnee-Beobachtungen zugeschnitten sind.
Eine derartige Beschreibung der Schnee-Mikrostruktur steht jedoch kaum in einem Bezug zu den
Fortschritten, die durch neueste Untersuchungen mittels Mikro-Computertomographie (μCT) ge-
macht wurden. Die vorliegende Arbeit leistet wie folgt einen Beitrag zur Lösung dieses Problems:
i) Identifizierung geeigneter Mikrostruktur-Parameter, ii) Herleitung von Entwicklungsgleichun-
gen basierend auf grundlegenden Prinzipien, iii) Entwicklung einer Methode, die es erlaubt 4D
μCT Daten von Schnee als Link zwischen dem Wachstum von Eiskristallen auf kleinen Skalen
und der Strukturbeschreibung auf der für Schneedeckenmodelle relevanten Skalen zu benutzen.
Die Arbeit gliedert sich in drei separate Beiträg.
Die erste Studie konzentriert sich auf die Abschätzung lokaler Wachstumsraten von Eiskristallen
anhand der Verfolgung von Grenzflächen bei in-situ Metamorphose-Experimenten von Schnee.
Die analysierten 4D μCT-Daten decken sowohl isotherme Bedingungen als auch solche unter
Temperaturgradienten ab. Für die aufbauende Metamorphose wird ein diffusionsbegrenztes
Wachstum in Betracht gezogen. Bei der abbauenden Metamorphose werden die Daten mit
kinetisch begrenztem und diffusionsbegrenztem Wachstum verglichen. Trotz einer beträchtlichen
Streuung, konnte für beide Fälle eine Signifikanz der zugrundeliegenden Wachstumsgesetze
statistisch bestätigt werden.
Die zweite Studie verwendet μCT-Bilder aus einer Vielzahl von Schneeproben, um den Einfluss
der Kornform vor dem Hintergrund von optischen und Mikrowellen-Eigenschaften von Schnee zu
untersuchen. Eine Kornform kann objektiv über die Heterogenität der Strukturgrösse defininiert
werden, entweder durch das zweite Moment der Verteilung der mittleren Krümmungen oder durch
das zweite Moment der Sehnenlängenverteilung. Zusätzlich wird eine quantitative Verknüpfung
zwischen diesen Grössen und der exponentiellen Korrelationslänge hergestellt. Letztere ist für die
Parametrisierung makroskopischer Eigenschaften wie Mikrowellenstreukoeffizient, dielektrische
Leitfähigkeit und Wärmeleitfähigkeit relevant.
Abschliessend wird ein rigoroses, Mikrostrukturmodell für den Skalenübergang entwickelt, indem
mathematisch exakte Entwicklungsgleichungen für die Dichte, die spezifische Oberfläche, die
mittlere und Gausssche Krümmung und das zweite Moment der mittleren Krümmung abgeleitet
werden. Das lokale Eiskristallwachstum bestimmt dabei die Entwicklung der Mikrostruktur. Der
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Skalenübergang für die Parameter wird dabei durch Volumenmittelung erzielt. Die Richtigkeit des
Modells wird anhand der zeitlichen Entwicklung von idealisierten Körnern verifiziert. Das Modell
kann mit 4D μCT Daten ohne a-priori Annahmen verglichen werden. Dieses Benchmarking zeigt
die Unsicherheiten der Methode zur Verfolgung von Grenzflächen, die weitgehend durch die
begrenzte zeitliche und räumliche Auflösung verursacht werden. Das Modell ermöglicht es, die
Gültigkeit des Eiskristallwachstums während der Schneemetamorphose statistisch zu überprüfen.
Für ein Experiment mit Temperaturgradienten wird gezeigt, dass ein diffusionsbegrenztes
Wachstumsgesetz im Widerspruch zur beobachteten Abnahme der spezifischen Oberfläche ist.
Das neu entwickelte Modell ist ein mächtiges und rigoroses Werkzeug welches auf 4D μCT Daten
zugeschnitten wurde. Es verknüpft dabei die Thermodynamik des Eiskristallwachstums auf der
Mikroskala mit der makroskopischen Schneedecken-Modellierung.

Stich wörter:
Schnee, Kristallwachstum, Metamorphose, Mikrostrukturmodellierung, Kornform, exponentielle
Korrelationslänge, mittlere Krümmung, Gausssche Krümmung, Mikro-Computertomographie.
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1Introduction

1.1 Context

Ice crystal growth is not only of fundamental interest because of the fascinating morphologies of
isolated crystals on small scales [Nakaya, 1954], there is also a practical demand for understanding
the evolution of crystal growth in snow on large scales e.g. for applications like avalanche formation
[Schweizer et al., 2003]. Virtually any scientific problem involving physical properties of snow
depends highly on the microstructure of the snowpack. Given the range of scales of interest,
there is a clear need from an application point of view to model the evolution of snowpacks on
large scales within continuum approaches for heat and mass transfer, and describe the snowpack
in terms of objective microstructural parameters that are relevant for the application. Current
snowpack models are still formulated (SNOWPACK [Lehning et al., 2002] and CROCUS [Vionnet
et al., 2012]) in terms of traditional parameters [Fierz et al., 2009] that can be conveniently
measured in the field. On the other hand, significant progress has been made in previous years
to characterize snow metamorphism in the laboratory by micro-computed-tomography (μCT)
measurements. However, a systematic attempt to establish a link between the requirements
of microstructure evolution in snowpack models and the full capabilities of μCT has not yet
been undertaken. This requires a “microstructural balancing act” between fully oppositional
perspectives on snow dynamics, the large-scale, environmental modeling perspective [Barrere
et al., 2017] and the small-scale, material science perspective [Demange et al., 2017a]. A
contribution to this balancing act is the subject of the present thesis.

1.2 Structural controls on physical properties

One of the most important effects of snow on the climate system is that the relatively high
albedo reflects a large part of the electromagnetic radiation back into the atmosphere. The
surface of the earth is up to 50% for land and up to 7% for oceans, covered by snow and ice,
significantly influencing the energy budget of the earth [IPCC, 2013]. The snow cover on the
Antarctic as well as the Arctic and Greenland protects the sea-ice and ice-sheets from melting
[IPCC, 2013]. The snow cover albedo is found to be highly dependent on snow microstructure,
specifically on the specific surface area (SSA), (e.g. Wiscombe and Warren [1980], Gardner and
Sharp [2010] and Dumont et al. [2014]), which is defined as the surface area per ice-mass. The
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SSA is an objective measure related to the optical diameter by dopt = 6/SSAρi in terms of the
density of ice ρi. In the optical spectral regime the reflected radiation surmounts up to 95%,
and is approximately independent of wavelength, giving the snow its white appearance.

Besides the predominant role of SSA on the snow surface to reflect radiation, the penetration-
depth of the remaining, transmitted radiation depends also on the shape of the crystals [Libois
et al., 2013, 2014]. Here, the shape is defined by two parameters that can be inferred from optical
measurements [Kokhanovsky and Zege, 2004]. These shape parameters can be calculated for
simple geometrical objects such as spheroids and hexagonal plates [Picard et al., 2009], but for a
continuous structure such as snow it is unclear how these shape factors should be derived. An
interesting approach modeling light absorption and scattering in porous material is geometrical
optics developed by Malinka [2014] which is based on the chord length distribution. The first
moment of the chord length distribution, the mean chord length, can be directly related to the
SSA [Linow et al., 2012]. Including the ice-volume fraction φ the mean chord length can be
related to the average pore size which is relevant for various pore space transport properties (e.g.
Zalc et al. [2004]).

Another effect of snow microstructure becomes apparent for both active and passive (remote)
sensing of the earth in the microwave regime (e.g. Mätzler [1998], Mätzler and Wiesmann [1999],
Roy et al. [2013], Koch et al. [2014] and Leinss et al. [2016]), which is used to estimate the grain
size and water-content of the snow. Since the grain size of the snowpack and its water-content
are relevant for the energy balance of snow covered surfaces, it also influences the energy balance
of the earth at a global scale, and the state of melt and consecutive flooding on regional scales
[Würzer et al., 2017]. To retrieve grain size from remote sensing in the microwave regime,
radiative transfer models are used [Brucker et al., 2010, Roy et al., 2013]. A key microstructural
parameter influencing microwave radiative transfer is the exponential correlation length, derived
from the two-point correlation function [Vallese and Kong, 1981, Wiesmann and Mätzler, 1999].
The exponential correlation length is approximately related to the Porod length (related to the
inverse SSA) [Mätzler, 2002], however a considerable scatter between these two parameters is
observed and the uncertainties still lack a geometrical interpretation.

The two-point correlation function of snow is an important quantity for deriving also other
effective properties of complex random heterogeneous materials [Torquato, 2002]. For example,
the effective thermal conductivity of the snowpack is, to a large extent controlled by the density
but the remaining scatter can be explained by the anisotropy of the ice-matrix [Löwe et al., 2013].
The same anisotropy metric derived from the two-point correlation function can be alternatively
retrieved from polarimetric radar measurements [Leinss et al., 2016].

This non-comprehensive list of examples shows that key physical properties are governed by
different microstructural parameters, posing a key-challenge for unified modeling approaches
that can focus only on a few of them.
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1.3 Experimental characterization of snow microstructure

A prerequisite of understanding physical properties of snow are objective microstructural mea-
surements. Snow microstructure has been characterized in alpine snowpacks for over decades.
Historically, snow has been characterized by grain size, grain shape, density, and hardness from
snowprofiles experiments in their natural environment. Parameters such as grain size and grain
shape are defined according to ‘The international classification of seasonal snow on the ground’
[Fierz et al., 2009] and are generally determined from individual grains by visual inspection
under a magnifying glass. Grain shape is a very important characteristic for the prognostics
of snow conditions in alpine regions, particularly due to their importance for avalanche risk
assessment and forecasting. A comprehensive list of typical shapes that indicates the state of
the snowpack is given in Fierz et al. [2009].

Besides snow profiling, snow samples can also be casted and analyzed in a cold laboratory. The
SSA can be obtained from stereology [Underwood, 1969], on thin-sections [Perla et al., 1986],
gas-absorption experiments [Legagneux et al., 2002] and micro-computed tomography (μCT)
[Hagenmuller et al., 2016]. All methods measuring the SSA come with their strengths, practical
limitations and uncertainties. The ‘Intercomparison of snow grain size measurements workshop’
reported their findings in a special issue in The Cryosphere dedicated to this issue (e.g. Carlsen
et al. [2017]).

One of the most influencing experimental methods developed in the last two decades is certainly
X-ray tomography. 3D imaging of snow samples with μCT has thereby made considerable
progress [Coléou et al., 2001, Flin et al., 2004, Schneebeli and Sokratov, 2004, Kaempfer and
Schneebeli, 2007, Wang, 2008, Haussener et al., 2012, Pinzer et al., 2012, Schleef and Löwe, 2013,
Calonne et al., 2014a, Wiese and Schneebeli, 2017]. In Fig. 1.1 a comparison of 2D microscopy
and 3D μCT imaging of two typical snow types is shown. Since μCT gives access to the full
microstructure of the sample at the micrometer scale, it enables computation of virtually any
parameter of interest.

A powerful extension to regular 3D and 4D X-ray images was developed in recent years, where
time-resolved (4D) imaging became more popular. Given its non-destructive nature, it enables
time-lapse analysis, such as the assessment of the evolution of the microstructure over time.
Due to instrumented sample holders, e.g. with Peltier-elements for temperature control [Pinzer
et al., 2012, Calonne et al., 2015, Wiese and Schneebeli, 2017], both isothermal and temperature
gradient metamorphism can be studied in-situ.

1.4 Snow metamorphism

In contrast to the human perception of being a cold substance, snow is actually a ‘hot’ material
from a physical point of view. In typical terrestrial environments for temperatures in the range
(−30◦C to 0◦C), the homologous temperature Th = T/Tm (i.e. the ratio of the temperature to
the melting temperature in Kelvin) ranges from 0.9 to 1.0. This means that snow is always
very close to its melting temperature, far from equilibrium and prone to structural changes at
short times. The focus of this thesis will be on dry snow, and is therefore only concerned with
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Figure 1.1 – A comparison between microscopic images and μCT visualization of two snowtypes.
Left: depth hoar (DH), right: Precipitation particles (PP). Photographs are taken from Fierz
et al. [2009]. 3D images are taken from a temperature gradient metamorphism experiment
[Pinzer et al., 2012] and an isothermal metamorphism experiment [Schleef et al., 2014].

solid-vapor phase changes.

After snowfall, fresh snow consists of aggregated precipitation particles formed in the atmosphere.
Depending on the temperature and water vapor concentration of the environment, the initial
structure of snowflakes varies considerably from columnar or needle like shapes to highly
dendritic structures [Nakaya, 1954] (see Fig. 1.2). Once fallen on the earth’s surface, snow
immediately sinters into a highly-connected, heterogeneous material consisting of an aggregate
of mono-crystalline particles. The hexagonal and plate-like structures, a clear signature of the
underlying crystal orientation, rapidly disappear and cannot be visually discerned anymore. The
heterogeneous material of new (dry) snow can have very low density, even below 50 kg m−3.
Over time, the microstructure changes due to recrystallization and gravitational compaction,
resulting in higher densities of up to 500 kg m−3 for seasonal snow. The temporal variability of
snow microstructure yields a wide spread in its mechanical, optical and thermal macroscopic
properties.

Fresh snow crystals are highly dendritic with small structural features and therefore have a
high SSA. The SSA generally decreases over time due to coarsening, commonly referred to as
destructive or isothermal metamorphism [Fierz et al., 2009]. A visualization of this process
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Figure 1.2 – Schematic of Nakaya’s ice-crystal morphology diagram [Nakaya, 1954] showing
the various shapes of snow-crystals grown under different temperature and super-saturation
conditions (Fig. 4 from Deville [2013])

based on actual μCT images from an isothermal experiment [Schleef et al., 2014] is shown in
Fig. 1.3. This mechanism is driven by the minimization of the surface free energy [Ratke and
Voorhees, 2002] of the ice-air interface. The coarsening process in fresh snow is accompanied
by compaction due to the weight of (new) snow, in which the Euler characteristic plays an
important role [Schleef et al., 2014]. The Euler characteristic is a topological measure that is
related to the number of connections (or holes) of a given structure. It has been shown that
an applied stress in new snow influences the evolution of the Euler characteristic, but does not
significantly influence the evolution of the SSA [Schleef et al., 2014].

Typical thermodynamic conditions for a natural snowpack during the winter season are however
far from isothermal, they are rather dominated by the average temperature difference between
the ground (approximately zero degrees) and the colder air just above the snowpack. This
difference causes a dynamic heat flux through the snowpack. An important consequence of these
thermodynamic boundary conditions are the induced vapor fluxes in the pore space which in
turn cause ice-crystals to grow on the colder and sublimate on the warmer side [Colbeck, 1983].
This process causes a morphological evolution that can drastically change the entire structure,
thereby influencing its macroscopic physical properties. A visualization based on μCT images of
a temperature gradient metamorphism experiment [Pinzer et al., 2012] is given in Fig. 1.4. The
resulting depth hoar crystals are characterized by chain- or cup-like structures (see Fig. 1.1).
Similar to isothermal metamorphism, the SSA commonly decays over time but the rates are
much higher (e.g. Taillandier et al. [2007]). In most experiments the SSA decays [Calonne et al.,
2014a, Wiese and Schneebeli, 2017], but in some experiments the opposite is measured [Domine
et al., 2009, Pinzer et al., 2012]. The increase of SSA is not yet described by any model.

Temperature gradient conditions are typical for shallow snowpacks or in regions with highly
fluctuating temperatures caused by the diurnal cycle. Especially during the early season and
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Figure 1.3 – Visual representation of isothermal metamorphism at 4 timesteps (Δt = 45 hours
and the cube length is 1.5 mm)

in inner alpine regions, local temperature gradients can be very high. These conditions cause
depth-hoar crystals (DH) to grow rapidly, increasing the mechanical instability of the snowpack
[Schweizer and Wiesinger, 2001, Schweizer et al., 2003]. Unstable snowpacks are prone to trigger
avalanches which endanger not only skiers and mountaineers active in the mountain areas, but
also local infrastructure and mountain villages. For risk assessment it is therefore important to
predict where and when these layers form [Huggel, 2015], which requires appropriate models.
Besides that DH crystals cause mechanical unstable layers within the snowpack, they also
influence the density significantly. Shallow snowpacks or snowpacks that have been extensively
exposed to temperature gradients, develop a low density layer in the DH base which may
significantly influence the effective thermal conductivity of the snowpack [Domine et al., 2016].

1.5 Model approaches to microstructure evolution

1.5.1 Isothermal conditions

The most significant progress of relating the dynamics of microstructural properties to pore-scale
mass transport has been made for isothermal metamorphism. Isothermal metamorphism has
been studied thoroughly both from experimental [Flin et al., 2004, Kaempfer and Schneebeli,
2007] and theoretical points of view [Adams and Brown, 1982, Legagneux and Dominé, 2005,
Flanner and Zender, 2006].

All studies relate to, at least from the phenomenology, to the so called process of Ostwald ripening
[Ratke and Voorhees, 2002]. Ostwald ripening is characterized by the growth of the average size
of a collection of particles that interact by vapor diffusion and growth with or without attachment
kinetics. The classical theoretical framework is provided by the Lifshits-Slyozov-Wagner (LSW)
theory for diffusion limited [Lifshitz and Slyozov, 1961, Wagner, 1961] and kinetics limited
growth [Wagner, 1961], which provide minimal models for these processes. For a microstructure
comprising a collection of spheres, the larger particles can grow at the cost of smaller ones. The
time evolution of the average radius of the spheres can be seen as an upscaled isothermal model.

The dominant underlying process that cause the coarsening mat differ leading to different
power-laws for the growth of the average sizes of the particles [Ratke and Voorhees, 2002].
But all processes involve the equilibrium vapor pressure in the vicinity of the interface. The
equilibrium vapor pressure depends on the size of the individual particle, or more precisely on
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Figure 1.4 – Visual representation of temperature gradient metamorphism at 4 timesteps
(Δt = 192 hours and the cube length is 3.51 mm).

the mean curvature via the Gibbs-Thomson equation [Thomson, 1871]. The mean curvature H

is defined for all points on a smooth interface and given by the divergence of the normal vector
n, or equivalently, the mean of the two principle curvatures κ1, κ2 [Spivak, 1975],

H =
1
2

(∇ · n) =
1
2

(κ1 + κ2) . (1.1)

The principle curvatures are given by the minimal and maximal reciprocal of all possible inscribed
radii.

An obvious problem of the LSW model is that it is restricted to spherical particles. The
microstructure of snow is however highly connected and the LSW theory lacks an immediate
analogue if measured with μCT. Moreover, from an experimental point of view, it has been
recognized that the Euler characteristic, a topological measure for the connectivity, changes over
time [Schleef and Löwe, 2013, Calonne et al., 2014a]. The Euler characteristic χ is closely related
to the area average of the Gaussian curvature K by

χ =
1

2π

∫
K da, (1.2)

where K is given by the two principle curvatures

K = κ1κ2 . (1.3)

The Euler characteristic is relevant for mechanical properties in snow [Schleef et al., 2014], and
cannot be captured by isolated spherical particles. For bicontinuous heterogeneous media, such
as snow, a generalization of the LSW model framework to bicontinuous structures is required
in order to describe isothermal coarsening in porous snow and to cope with microstructural
parameters like the mean and Gaussian curvature.

The relevance of curvatures is also stressed from a purely material science point of view, where
the problem of predicting averaged properties of coarsening microstructures is ongoing and far
from being solved [Fife et al., 2014]. The latter work emphasizes the relevance of an additional
length scale for the diffusion process that depends on both mean and Gaussian curvature, which
are relevant to build a mean field theory for bicontinuous interfaces [Tomita, 2000]. In Fife et al.
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[2014] μCT was used as a tool to measure and verify the predicted interface velocities. These
recent advances from material science are highly relevant for the development of a microstructure
evolution model for snow.

1.5.2 Temperature gradient conditions

Although isothermal coarsening is a fundamental process for snow metamorphism, it becomes
less important when initial high-curvature parts of the structure disappear. Then, temperature
gradient metamorphism has a dominant influence and a microstructural evolution model must
be able to describe it. The main driver of temperature gradient metamorphism in snow is
the temperature difference in the snowpack as described in the previous section. Since the
equilibrium vapor pressure of water vapor depends on temperature, the vapor pressure varies
in the snowpack. These variations cause a flux of vapor in the pore spaces, which in turn
causes local ice crystals to sublimate on the warmer sides and vapor depositing on the colder
sides. To model these transport processes, the coupled heat and mass equations must be
solved simultaneously at the pore scale. Because structural changes are slow compared to the
adjustment of the heat and vapor fluxes to the structure, usually stationary versions of the
heat and vapor equations can be considered [Libbrecht, 2003]. Both equations are mutually
coupled via latent heat and the temperature influence on the equilibrium vapor pressure. It has
been recently theoretically confirmed that latent heat can be neglected in a first approximation
[Calonne et al., 2014b]. Thereby only a one-way coupling between the local temperature-field
and the local vapor-field remains and needs to be solved to retrieve the vapor-flux in the pore
spaces. A phase field approach has been put forward [Kaempfer and Plapp, 2009], which is
based on an isotropic variant of the Hertz-Knudsen growth law including the Gibbs-Thomson
effect. The computational requirements of the method are however, quite high.

Another approach to temperature gradient metamorphism has been suggested by Flanner and
Zender [2006] which is based on distributions of sphere radii and pore sizes. They argue that vapor
pressure sources and sinks are dependent on adjacent pore spaces. Each particle gets assigned
a vector representing the super-position of all surrounding particles and the irregular particle
spacings cause competition for water vapor sources, thereby favoring some particles over others
based on their position. With their model they show that this leads to the frequently observed
decay in SSA. However more detailed temperature gradient experiments are needed to tune their
parameters. Despite other modeling work on temperature gradient metamorphism [Miller and
Adams, 2009] first principles methods which are tailored to the complex microstructure of snow
are still missing.

Probably the most sophisticated growth model presently available for isolated snow crystal
growth is that of Barrett et al. [2012] which includes the competition between both diffusive and
kinetic effects, by taking into account the lattice anisotropy of ice crystals. In principle, such
a model could be generalized to more complex geometries to capture the effect in snow. This
would, however, require simultaneous information on crystal orientations during metamorphism,
which is technically feasible but still complex from an experimental point of view. Although a
proof of concept exists [Rolland du Roscoat et al., 2011], systematic approaches are presently
out of reach. In view of the structural complexity of snow, simplifications are needed to meet
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the requirements of snowpack models.

1.6 Microstructure representation in snowpack models

Predicting the macroscopic physical properties of snow from the microstructural evolution is
one of the long standing challenges for current snow pack models. Available snowpack models
that describe snow metamorphism, such as SNOWPACK [Lehning et al., 2002] and CROCUS
[Vionnet et al., 2012], use parameters like density, grain size, dendricity and sphericity to describe
the microstructure. The choice of parameters was based on the convenience for traditional
field observations to characterize snow on the millimeter scale with a magnifying glass. The
disadvantage of these parameters is that they depend on the observer and therefore are, to
a certain extent, subjective. Furthermore, they do not have an objective equivalent that can
be validated in controlled and reproducible laboratory experiments by using μCT. Current
snowpack models treat the evolution of the snow parameters in a phenomenological way (e.g
Bartelt and Lehning [2002] and Legagneux and Dominé [2005]). They often use parametrized
functions to predict the evolution of a few experiments, but these are derived from particle-based
growth mechanisms mentioned in the previous section and do not represent the complexity of a
highly connected geometry.

It has indeed been recognized by Carmagnola et al. [2014] that snowpack parameters are not
sufficient or not well-defined and in need of improvement. To evolve towards more objective
parameters, Carmagnola et al. [2014] have proposed a reformulation of the microstructural
description in terms of the optical diameter dopt and suggested to drop the dendricity parameter
without losing a reduction in predictability. The parameterization however, remains similar in
nature to the formulations used before. The improvement is that at least one parameter has an
objective definition. This study subsequently raises the question of how many parameters are
needed to predict snow microstructure. Based on Carmagnola et al. [2014], it is very likely that
the four parameters used by SNOWPACK are not orthogonal and three or even two parameters
describing the microstructure could have similar prognostic capabilities. Besides improving
the definitions or the choice of the actual parameters, the parametrization that describes its
evolution should be upgraded towards more physics-based descriptions.

To improve on the representation of microstructure in snowpack models, as required for many
applications in cryospheric sciences, the structural changes need to be related to the actual
physical processes for crystal-growth at a smaller scale. Therefore a constitutive growth law for
the ice-vapor interface that couples the transport of heat and mass diffusion to local properties
of the interface is needed. Recent attempts to upscale the transport equations to include a
macroscopic temperature gradient was developed by Calonne et al. [2014b] and Hansen and
Foslien [2015] using homogenization and mixture theory respectively. The upscaled temperature
and vapor equations thereby depend on the density and the SSA as microstructural parameters.
A microstructure model would thus at least require evolution equations for these parameters in
terms of the average temperature and temperature gradient.
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Figure 1.5 – Schematic overview of the thesis, which contributes to connecting microstructural
evolution at three different scales. Left: Snow as a continuum in macroscopic snow cover
modeling. Middle: Snow as a bicontinuous structure as seen by μCT. Right: Individual snow
crystals top: modeled figures from Demange et al. [2017a], bottom: photographs from Libbrecht
[2006]).

1.7 Research Gap and Objectives

Based on the previous introduction, we have to acknowledge that modeling snow microstructure
evolution is a multiscale problem. At the scale of individual ice-crystals, growth processes are
relatively well understood, which is reflected by the successful simulations of the 3D morphologies
of snow crystals formed in the atmosphere [Barrett et al., 2012, Demange et al., 2017a]. At the
micro scale snow microstructure has been extensively studied over the last two decades using 4D
μCT data. These studies have used the full 3D microstructure to assess the evolution of derived
physical properties such as density, SSA, effective conductivity and permeability. However,
crystal growth, which is the key process to assess microstructural changes at these scales, has
hitherto not been quantified. At the larger scales, snowpack models such as SNOWPACK
and CROCUS need microstructural parameters to calculate macroscopic quantities such as the
albedo and effective conductivity. As described in the previous section, it is not even clear on
which and how many parameters snowpack models should focus. Therefore, to ensure that
the choice of parameters is relevant and to some extent orthogonal, it is necessary to relate
most of the objective parameters that can be obtained from μCT. Although the ingredients of
microstructural evolution should be based on the same physical process, namely crystal growth,
the links between recent advances in crystal growth theory, microstructural evolution of snow at
the micro scale, and snowpack modeling are presently missing. There is a clear need to evolve
snow microstructure modeling to a more physics based approach that utilizes the recent advances
in μCT observations of snow. To assist this development, we have conducted three studies
that are presented in the upcoming chapters of this thesis. These studies, as diagrammatically
depicted in Fig.1.5, aim at 1) quantifying crystal growth in 4D μCT observations, 2) finding
relations between objective parameters obtained from 3D μCT images to avoid redundancy and
guide the choice of parameters for 3) developing a snow microstructure evolution model.

The aim of the first study is to develop an image analysis tool that can measure local crystal
growth rates in snow for both isothermal and temperature gradient conditions. The recent
development of time-lapse measurements of snow allows for a comparison of two consecutive,
3D binary images. To retrieve a measure of local ice-crystal growth, an image analysis method
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must be developed. This method will be based on the minimal distance calculation between two
consecutive images that estimates local growth rates at all points on the ice-air interface. With
a measure for local growth rates, a first attempt of relating crystal growth to theoretical growth
laws will be feasible. For isothermal conditions, the main focus will be on relating local growth
rates to local mean curvatures to assess existing ideas on coarsening processes in snow. For
temperature gradient conditions the local growth rates will be compared to local temperature
gradients in the vicinity of the ice-air interface. To obtain estimates for local temperature
gradients, we will use the finite element simulation developed by Pinzer et al. [2012].

The aim of the second study will be to interrelate a range of objective parameters that can be
obtained from μCT images to find a set of parameters that can be used for the development of
microstructure modeling. For this purpose, we will focus on parameters that can be estimated
using the two-point correlation function and the chord length distribution, since these structure
and distribution functions have been proven relevant to thermal conductivity, microwave modeling
and geometrical optics. These two functions can be directly measured from μCT images and
yield estimates for the density, optical diameter, SSA, Porod length, exponential correlation
length, chord length and higher order parameters, such as the curvature length. The latter
is related to the mean and Gaussian curvature and a size-dispersity parameter (the second
moment of the chord length distribution). In addition to an in-depth analysis of interrelating the
aforementioned listed parameters, the role of grain shape will be investigated within geometrical
optics and microwave modeling. The obtained relations between these parameters will guide the
choice of a minimal set of parameters that avoid unnecessary redundancy, and can be considered
in the development of a microstructure model for snow.

The third aim is to develop an upscaled microstructure model for snow that relates to objective
microstructural parameters and metamorphism by means of crystal growth. Local heat and vapor
transport and crystal growth are tightly coupled (e.g. Libbrecht [2005], Kaempfer and Plapp
[2009], Pinzer et al. [2012]) and upscaling local heat and vapor transport by homogenization
and mixture theory has successfully carried out [Calonne et al., 2014b, Hansen and Foslien,
2015]. The microstructure is nevertheless treated statically in both approaches. An equivalent
approach for microstructure modeling is therefore needed. The main idea is to start from a local
description of the dynamic ice-air interface that is given by the level-set equation [Sethian, 1999]
and use the local evolution of the principle curvatures driven by the a priori unknown interface
velocity (representing crystal growth) derived by Drew [1990]. The evolution of the averaged
surface area is then obtained by volume averaging these ingredients, from which a hierarchical
system of coupled partial differential equations arises that include evolution equations for the
Mean and Gaussian curvatures. Since crystal growth is represented by the interface velocity,
theoretical growth laws could in principle be validated via their influence on the overall evolution
of the microstructure.

1.8 Outline

The three main objectives mentioned in the previous section are addressed in the main body of
this thesis. The content of chapters 2, 3 and 4 has been published or submitted in peer-reviewed
open-access journals. The work is presented in chronological order. Chapter 4 presents the
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microstructural evolution model of snow in a general form and are compared only to 4D μCT
data of temperature gradient experiments. In chapter 5, preliminary results for comparison of
the model to isothermal metamorphism experiments are presented within the same mathematical
setup used in chapter 4.

Chapter 2: Analysis of local ice crystal growth in snow

This chapter has been published and reprinted with permission (with some additional typograph-
ical corrections).

• Q. Krol and H. Löwe. Analysis of local ice crystal growth in snow. J. Glaciol, 62(232):
378–390, 2016a. doi: 10.1017/jog.2016.32

Summary

The structural evolution of snow under metamorphism is one of the key challenges in snow
modeling. The main driving forces for metamorphism are curvature differences and temperature
gradients, inducing water vapor transport and corresponding crystal growth that is detectable by
the motion of the ice-air interface. To provide quantitative means for a microscopic validation
of metamorphism models, a VTK-based image analysis method is developed to track the
ice-air interface in time-lapse μCT experiments to measure local interface velocities under
both isothermal and temperature gradient conditions. Using estimates of local temperatures
from microstructure-based finite element simulations, a quantitative comparison of measured
interface velocities with theoretical expressions is facilitated. For isothermal metamorphism, the
data is compared to a kinetics and a diffusion limited growth law. In both cases the data is
largely scattered but consistently shows a mean curvature dependency of the interface velocity.
For temperature gradient metamorphism, we confirm that the main contribution stems from
the temperature gradient induced vapor flux, accompanied by effects of mean curvature as a
secondary process. The scatter and uncertainties are discussed in view of the present theoretical
understanding, the experimental setup, and complications such as mechanical deformations.

Chapter 3: Characteristics of snow microstructure: relevance of grain shape

This chapter has been published and reprinted with permission (with some additional typograph-
ical corrections).

• Q. Krol and H. Löwe. Relating optical and microwave grain metrics of snow: the relevance
of grain shape. The Cryosphere, 10(6):2847–2863, 2016b. doi: 10.5194/tc-10-2847-2016

Summary

Grain shape is commonly understood as a morphological characteristic of snow that is independent
of the optical diameter (or specific surface area) influencing its physical properties. In this
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study we use tomography images to investigate two objectively defined metrics of grain shape
that naturally extend the characterization of snow in terms of the optical diameter. One is the
curvature length λ2, related to the third order term in the expansion of the two-point correlation
function, and the other is the second moment μ2 of the chord length distributions. We show
that the exponential correlation length, widely used for microwave modeling, can be related to
the optical diameter and λ2. Likewise, we show that the absorption enhancement parameter
B and the asymmetry factor gG, required for optical modeling, can be related to the optical
diameter and μ2. We establish various statistical relations between all size metrics obtained
from the two-point correlation function and the chord length distribution. Overall, our results
suggest that the characterization of grain shape via λ2 or μ2 is virtually equivalent since both
capture similar aspects of size dispersity. Our results provide a common ground for the different
grain metrics required for optical and microwave modeling of snow.

Chapter 4: Upscaling microscopic crystal growth dynamics in snow

This chapter, has been submitted to Acta Materialia, July 2017. Some typographical corrections
are made here.

Summary

A unified treatment of microstructure dynamics in terrestrial snow from principles of ice crystal
growth is presently hindered by the lack of models for the evolution of the bicontinuous ice
matrix. To this end, we developed a rigorous microstructure upscaling scheme which takes
common pore-scale (diffusion) principles of crystal growth to predict the averaged evolution
of the interface morphology. We derived a coupled set of evolution equations for the (volume
averaged) ice volume fraction, specific surface area, Gaussian curvature and first and second
moment of the mean curvature distribution, and demonstrate their correctness by a comparison
to interface tracking of idealized grains. In a second step, we use the model as a benchmark tool
without a-priori assumptions for a comparison to experiments of snow microstructure evolution
via image analysis on 4D X-ray tomography data. The benchmarking allows us to quantify
uncertainties from local estimates of crystal growth velocities. Finally, we demonstrate how
the rigorous model facilitates a statistical assessment of common growth laws by combining 4D
microstructure data with finite element numerics. The results show that the prediction of the
specific surface area from first principles demands further conceptual insight from ice crystal
growth.

Chapter 5: Assessment of growth laws for isothermal metamorphism

This chapter shows preliminary results of the model developed in chapter 4, tailored to isothermal
metamorphism experiments.
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Summary

Isothermal snow metamorphism is characterized by a combination of coarsening and settling of
the highly porous heterogeneous material. Considering the specific surface area (SSA) instead of
the surface area per unit volume allows us to separate compaction and crystal-growth related
changes in the microstructure. We derived a new equation for the evolution of the SSA in terms
of surface averages of the local interface velocity and local curvature. We assess three possible
expressions for the interface velocity suggested by kinetic and diffusion limited growth laws.
This enables us to rewrite the model equations in terms of geometrical parameters that can be
computed by methods based on integral geometry and the two-point correlation function. The
best performing model (R2 = 0.88) predicts the evolution of the SSA in terms of the variance of
the mean curvature and the exponential correlation length. A parametrization for the evolution
of the second moment of the mean curvature is given in the terms of the same parameters
as the SSA, with similar performance (R2 = 0.83). The results of the model are discussed in
comparison with previously obtained results given by Schleef et al. [2014].
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2Analysis of local ice crystal growth
in snow

2.1 Introduction

Ice crystal growth is not only of fundamental interest related to the fascinating morphologies of
isolated crystals [Nakaya, 1954], there is also a practical demand of understanding the collective
growth of crystals in snow due to the relevance of metamorphism for environmental modeling
[Fierz and Lehning, 2001], [Vionnet et al., 2012], avalanche formation [Schweizer et al., 2003]
and remote sensing [Wiesmann and Mätzler, 1999]. A common phenomenological starting point
to model crystal growth are variants of the Stefan problem [Kaempfer and Plapp, 2009], i.e.
the coupled treatment of heat and mass diffusion in the presence of the growing crystal as
a moving boundary. Heat and mass conservation are coupled at the interface via boundary
conditions, which typically comprise two components, mass conservation and a so called growth
law, respectively. Both involve the normal velocity vn of the growing interface which is the key
quantity of crystal growth. The growth law is not a consequence of basic conservation laws and
thus requires additional input.

The simplest law for growth from the vapor phase is the Hertz–Knudsen law vn ∼ σ in which
the interface velocity is proportional to the supersaturation σ [Saito, 1996]. This has been used
e.g. in Libbrecht [2005] to estimate velocities of growing snow crystals. The growth law must be
understood as a microscopic constitutive equation for modeling crystal growth via ambient vapor
diffusion. If surface processes like step dynamics and surface diffusion play a role (cf. discussion
in Libbrecht [2005]) the growth law must be understood as an empirical closure relation, which
potentially contains non-local elements of surface kinetics. The relevance of the growth law for
snow modeling stems from the direct coupling to the upscaled thermodynamic fields [Calonne
et al., 2014b], since the net mass change ρ̇ of the ice matrix per unit volume V and unit time is
given by ρ̇ ∼ ρi

∫
A vnda/V . As long as snow metamorphism models are derived from pore scale

diffusion models, it is necessary to validate growth laws for vn from measurements.

From a theoretical viewpoint, an appealing example of crystal growth modeling is the migration
of vapor bubbles in ice under a temperature gradient [Shreve, 1967] which is caused by vapor
transport and subsequent growth. The migration and interface velocities in Shreve [1967]
are based on purely diffusion limited growth where the interface kinetics are assumed to be
infinitely fast. This model was e.g. used to analyze experiments for bubble migration in Antarctic
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ice in view of the albedo of blue ice fields [Dadic et al., 2010]. It predicts growth rates that
depend mainly on local temperature gradients which are realistic for spherical geometries. It
provides thus a reasonable starting point also for snow, if limitations due to geometry can be
overcome. The opposite extreme are so called geometrical models for crystal growth [Taylor
et al., 1992] which completely neglect diffusion effects. An anisotropic geometrical growth law
in two dimensions [Wettlaufer et al., 1994] is able to correctly predict out-of-existence-growth
of rough crystal orientations during kinetic faceting of spherical initial shapes. This so called
kinetic faceting is also observed if anisotropic kinetics is coupled to diffusion in two dimensions
[Yokoyama and Kuroda, 1990]. Only recently it was however claimed that three dimensional
faceted growth of snow crystals instead requires the mechanism of equilibrium faceting, i.e. an
anisotropy in the surface energy [Barrett et al., 2012].

Aggregated snow inherits growth properties of the single ice crystals it is comprised of but even
for single crystals it is tricky to measure the prefactors in the growth law [Libbrecht, 2003]. In
addition, the evolution of snow is complicated by the complexity of the microstructure. Time
lapse tomography [Pinzer et al., 2012, Schleef and Löwe, 2013, Calonne et al., 2015] has become
a powerful tool to monitor the evolution of snow microstructure under conditions of temperature
driving and mechanical stress. In principle, these techniques are perfectly suited to track the
growing interface and measure variations of the local normal velocity vn(x), which gained interest
only recently due to the new opportunities.

The aim of this paper is to present a method for the analysis and validation of local growth laws in
snow. We present estimates of the local ice-air interface velocity obtained from the analysis of time
lapse experiments of snow subject to constant temperature gradient and isothermal conditions.
From the three-dimensional structures obtained by micro-computed tomography, we track the
ice-air interface of snow by means of image analysis. For a quantitative comparison, we derive
three simple growth laws. For temperature gradient conditions we follow the classical approach by
Shreve [1967] used for vapor bubbles. For isothermal conditions we compared a diffusion limited
growth law which includes the Gibbs-Thomson effect to a kinetics limited growth law. All three
approaches are applicable to bicontinuous microstructures and involve closed form expression
which are solely determined by local temperatures, temperature gradients and geometrical
characteristics of the interface such as mean and Gaussian curvatures. Local temperatures are
computed by pore scale FE simulations and the geometrical features are estimated from the
reconstructed interface. The order of magnitude of measured interface velocities is similar to the
theoretical models. However, we observe large scatter, which we discuss in view of experimental
uncertainties, limitations of image analysis, and missing theoretical insight.

The paper is organized as follows. In Sec. 2.2 we present the necessary theoretical background
and governing equations for coupled heat and mass transport and the implications on interface
dynamics In Sec. 2.3 we provide a summary of the image analysis tools and develop an interface
tracking method based on VTK algorithms. The results are presented in Sec. 2.4 and discussed
in Sec. 2.5.
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2.2 Theoretical Background

Snow metamorphism is driven by coupled transport of heat and mass. A common starting point
for modeling is a description in terms of stationary, coupled diffusion equations at the pore scale
with appropriate boundary conditions at the ice-vapor interface. In the following description we
essentially follow Kaempfer and Plapp [2009], and Calonne et al. [2014b].

The (gravimetric) water vapor density ρv in the pore space is governed by the stationary diffusion
equation

∇2ρv = 0 (2.1)

which must be equipped with boundary conditions at the ice-air interface. The first boundary
condition is given by mass conservation at the interface. The diffusive vapor flux must balance
the flux caused by the solid-vapor interface which advances (by growth) with a normal velocity
vn, viz

(ρv − ρi)vn = Dv∇ρv · n|+ , (2.2)

where ρi denotes the ice density, Dv the diffusion constant for water vapor, and |+ the limit
of approaching the interface from the vapor phase. The orientation of the normal vector field
n on the interface is chosen to be directed from ice to vapor. Besides mass conservation, the
water vapor concentration satisfies a non-equilibrium “growth law” at the interface which is a
local constitutive equation relating vn to deviations from the saturation (equilibrium) density
ρv,s. The growth law must be understood as an Onsager relation, which relates a flux to a
thermodynamic force. Including the Gibbs-Thomson effect, the growth law can be written as

ρv = ρv,s(T )
(

1 + d0H +
1

αvkin
vn

)
(2.3)

It includes the influence of the mean curvature H on the equilibrium vapor density over a flat
surface, ρv,s(T ), which depends on local temperature T . The capillary length d0 = γa3/kBT

is related to the surface energy γ, the Boltzmann constant kB, temperature and the mean
intermolecular spacing a of water molecules in solid ice. The product αvkin describes the
attachment kinetics at the interface in terms of the condensation coefficient α and the velocity
scale vkin [Libbrecht, 2005]. The magnitude of αvkin discerns between diffusion and kinetics
limited growth. The diffusion limited case corresponds to αvkin � vn where the Robin boundary
condition, (2.2) and (2.3), reduces to a Dirichlet condition.

The equilibrium vapor density ρv,s, as the primary driver for crystal growth from vapor, depends

17



on temperature T . Therefore, the vapor field is coupled to the temperature field which is
governed by the static heat equation

∇2T = 0 . (2.4)

To solve this, a boundary condition at the interface is required. It describes the continuity of
the heat flux through two conducting media with different conductivities κa for vapor and κi for
ice [Carslaw and Jaeger, 1986]. Neglecting the latent heat contribution due to phase changes
[Calonne et al., 2014b] the boundary conditions reduce to

κi ∇T · n|− = κa ∇T · n|+ , Ta = Ti. (2.5)

The approach of using stationary diffusion equations (2.1) and (2.4) is commonly justified by
a time scale analysis of the diffusion and growth processes [Libbrecht, 2003]. The relevant
time scale of variations in the vapor density can be roughly estimated by the diffusion time
τdiff = 2/Dv, with  being a characteristic size of the microstructure. This has to be compared
to the time it takes to grow the ice crystal with size , which is τgrowth = /vn. The ratio of
these two scales is called the Peclet number which is given by p = τdiff/τgrowth ≈ 10−7 . Here
we used vn ≈ 10−9 m/s and  ≈ 10−3 m as typical values, which are rough estimates from the
data in this work and similar to the values used in Kaempfer and Plapp [2009]). Thus the vapor
density is adjusting itself by diffusion much faster than the crystal growth which justifies the
assumption of stationarity.

In practice, the coupled equations (2.1) and (2.4) in the presence of a moving interface can be
solved only numerically for complex geometries, e.g. via the phase field approach [Kaempfer
and Plapp, 2009]. Even such a computationally demanding approach still does not take into
account the anisotropy in kinetic coefficient and surface energy as a generalization of (2.3).
The anisotropy gives rise to faceting and branching which are key to obtain realistic, three
dimensional growth morphologies of single ice crystals [Barrett et al., 2012]. This will be likewise
relevant for aggregated ice crystals in snow. Due to these complexities, we re-derive simple
approximations for the local growth velocities in the next section to provide quantitative means
for the comparison with the developed image analysis method.

2.2.1 Temperature gradient dominated growth

To obtain an estimate for the local interface velocity in the presence of a steady, macroscopic
temperature gradient we follow the classical example of air bubble migration in ice [Shreve,
1967]. This can be readily generalized to arbitrary geometries to address crystal growth in snow.
Therein, it is assumed that the diffusion of water vapor in the pore space is predominantly
caused by temperature differences, which affect the equilibrium concentration ρv,s and in turn
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cause vapor fluxes across the pores. The dependence of curvatures is neglected by setting d0 = 0
in Equation (2.3). In this setting, it remains only a one-way coupling between the heat and
mass equations: First the temperature equation can be solved for a given microstructure, and
afterwards the vapor field can be obtained for a given temperature field.

More precisely, if the temperature gradient is not too large, it is reasonable to linearize the
dependence of the saturated vapor density on temperature

ρv,s(T ) = ρv,s(T0) + ρ′
v,s(T0) (T − T0) , (2.6)

around a reference temperature T0 where ρ′
v,s(T0) = dρv,s(T )/dT |T =T0 . Shreve [1967] has

implicitly considered αvkin � vn in (2.3). This corresponds to ρv − ρv,s → 0, i.e. the interface is
in quasi-equilibrium with the ambient vapor. This setting is also used by Pinzer et al. [2012],
Brzoska et al. [2008] and is equivalent to a Dirichlet boundary conditions at the ice-vapor
interface

ρv = ρv,s(T ) . (2.7)

This boundary conditions implies that the interface velocity is solely determined by the mass
conservation condition (2.2) yielding

(ρi − ρv)vn = Dv∇ρv,s · n|+ = Dvρ′
v,s∇T · n

∣∣∣
+

. (2.8)

This corresponds to a diffusion-limited problem where interfacial kinetics are ignored. As an
advantage, a minimal description for an effective growth law at the interface is obtained which
is determined by the local temperature gradient as follows

vn = A ∇T · n , (2.9)

where the rate coefficient A depends on temperature and is given by

A(T ) =
Dvρ′

v,s(T )
ρi − ρv

≈ Dvρ′
v,s(T )
ρi

. (2.10)

The temperature dependence of ρ′ can be parametrized as e.g. given in Kaempfer and Plapp
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[2009]. In writing down Equation (2.9), growth velocities vary throughout a sample because they
are determined by local temperatures and temperature gradients. This is the generalization to
migration of a single bubble, where the temperature gradient is uniform across the bubble [Shreve,
1967] due to the simplicity of the spherical microstructure. The analysis of Equation (2.9) only
requires a numerical solution of the temperature field which can be obtained by the Finite
element method as e.g. described in Pinzer et al. [2012].

2.2.2 Curvature dominated growth: Diffusion limited case

For isothermal conditions, T = T0 is a solution of Equations (2.4) and (2.5). Curvature differences
remain as the only driving force for vapor gradients and the evolution of the interface. For a
system of spherical particles, Equations (2.1)-(2.3) are equivalent to the classical problem of
Ostwald ripening which has been studied by Lifshitz and Slyozov [1961] and Wagner [1961], and
commonly referred to as LSW theory. It provides an analytical solution for the evolution of the
interface of spherical particles which mutually interact via a mean-field background concentration
determined by the averaged mean curvature H. If αvkin is assumed to be much larger than vn,
the boundary condition Equation (2.3) reduces to a Dirichlet condition

ρv = ρv,s(T )(1 + d0H) (2.11)

The application of LSW to snow has been addressed by Legagneux and Dominé [2005], subject to
the limitation of microstructures comprising spheres. Some progress for arbitrary microstructures
can be be made by exploiting that the growth problem defined by Equations (2.1), (2.8) and
(2.11) is equivalent to a Cahn–Hilliard phase-field model in its sharp interface limit [Garcke, 2013],
which is therefore considered as an equivalent approach to derive properties of LSW-type growth
[Wang, 2008]. A mean field approximation for the interface velocity of a bicontinuous system
derived from the Cahn–Hilliard equation has been put forward by Tomita [2000], suggesting an
explicit expression for the normal velocity

vn =
B

λ

(
H − H

)
. (2.12)

Here λ is a characteristic cutoff length scale for the diffusion field in the vicinity of an arbitrary
interface. This length scale can be defined by the mean and Gaussian curvature H and K to
be λ = (2H2 − K)− 1

2 . H is the averaged mean curvature. Equation (2.12) is the lowest order
approximation for the interface velocity when surface diffusion is neglected. The rate coefficient
B is related to the other parameters by

B(T ) =
Dvd0ρv,s(T )

ρi
(2.13)
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and also depends on temperature mainly via ρv,s(T ). Note that Equation (2.12) is not exact. It
was however used recently also by Fife et al. [2014] to study local growth velocities of Al-Cu
microstructures in liquid-solid systems. The coefficients in Equation (2.13) are chosen to be
consistent with physical parameters in the latter work. In general, the identification of phase
field parameters and sharp interface parameters requires some caution [Kaempfer and Plapp,
2009].

2.2.3 Curvature dominated growth: Kinetics limited case

If the growth is dominated by the kinetics at the interface, αvkin � vn [Libbrecht, 2005], the
vapor diffusion field adjusts reasonably fast and diffusion can be neglected. In this case the
ambient vapor density ρv in the boundary condition (2.3) can be approximation by the spatially
averaged equilibrium density, ρv = ρv,s(1 + d0H). This approach was used by Flin et al. [2003] to
predict the evolution of the specific surface area and the mean curvature in snow for isothermal
metamorphism. It follows immediately, that the interface velocity is given by

vn = C
(
H − H

)
, (2.14)

with a rate constant C which is related to the coefficients in (2.3) via

C(T ) = αvkind0 . (2.15)

For the kinetics limited case, an alternative justification for (2.14) can again be motivated by
the mapping on a phase field formulation. The kinetics limited case of LSW growth is often
alternatively addressed within an Allen–Cahn phase field description [Wang, 2008]. If subject to
a global conservation constraint (mass conservation) the normal velocity in the sharp interface
limit has the form of Eq. (2.14), cf. e.g. [Garcke, 2013]. The same form was obtained by Tomita
[2000].

The value for the condensation coefficient α in (2.15) is believed to be in the range 10−3 < α <

10−1 [Kaempfer and Plapp, 2009], though its experimental determination is difficult cf. [Libbrecht,
2003]. For the comparison of the measured C to the theoretical value (2.15) below we will chose
α = 10−2.

2.3 Methods

In the following section we summarize the methods to measure local crystal growth from
experimental time lapse data obtained from μCT. An assessment of the local growth laws
Equation (2.12) and Equation (2.9) requires a simultaneous evaluation of curvatures, normal
velocities and temperature gradients. Our image analysis is based on the open source library
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Figure 2.1 – Schematic of the iterative interface tracking. Γi and Γf represent two consecutive
images and the dashed lines the simulated intermediate interfaces. In contrast to dn, dmin is not
perpendicular to Γi. dg is perpendicular to the simulated interfaces.

VTK (www.vtk.org).

2.3.1 Curvatures and normal vectors

After reconstruction via μCT, the three-dimensional images are available as binary voxel data.
On the binary images, the VTK contour filter is applied to obtain a triangulated mesh which
represents the ice-air interface. The pseudo normal vectors of the interface are created at every
point x on the mesh by averaging face normals of adjacent triangles by angle weighting. A
smoothing filter, vtkSmoothPolyDataFilter(), is used to obtain a smooth distribution of the
normal vectors. The smoothing is iterated (controlled by the filter parameter number of iteration)
until the original voxel structure disappeared. Since the smoothing is controlled locally, it neither
preserves the volume nor the surface area of a closed surface and too much smoothing leads
to a contiuous decrease of the volume and surface area. As a tradeoff, for the analysis of
the experiments below the number of iterations was subjetively chosen to be 400 and 200 for
isothermal and temperature gradient case, respectively.

Local curvatures are obtained by standard VTK filter acting on the triangulated interface on
input. For a discrete, triangulated surface, local curvatures at a point x can be obtained by
standard means as e.g. described in [Sullivan, 2008]. The local mean curvature is calculated by

H(x) =
3

AΔν

ν∑
i=1

l(ei)α(ei) , (2.16)

where ei are the adjacent triangle edges, ν is the number of edges, l(ei) the length of the edges
in meters, AΔ is the sum of the areas of adjacent triangles and α(ei) the dihedral angles of the
edges. Note that the documentation of the algorithms (www.vtk.org) omits the normalization

22



−2 −1 0 1 2
dn

−2

−1

0

1

2

d
m
ea
s

N=4
N=8
N=12
N=16

dmin

dmeas

dn

Figure 2.2 – Scatter plot of measured distances dmeas as a function of prescribed distances dn for
N = 4, 8, 12, 16 iterations. dg = dmeas(df ), the averaged value for the final iteration (N = 18).

AΔ. The local Gaussian curvature is calculated from

K(x) =
3

AΔ
(2π −

ν∑
i=1

θi) , (2.17)

where θi are the angles between the two normal vectors of the neighboring faces of corresponding
edges.

2.3.2 Interface tracking

Measuring local crystal growth is related to the evolution of the ice-vapor interface. Normal
velocities are estimated from normal distances between points on the interfaces from consecutive
time steps. Such a method is not directly available in VTK and therefore developed in the
following.

We represent the interface by a discretized, time dependent triangular mesh Γt which comprises
a collection of a finite number of points evolving from x ∈ Γi to y ∈ Γf by a normal distance
dn(x)

y := x + dnn(x) , (2.18)

The triangulation is obtained by applying the VTK contour filter to the μCT voxel data.

VTK provides a method to estimate the minimal distance between two surfaces, this distance is not
necessarily normal to the reference surface, as required by Equation (2.9). To this end an iterative
procedure is used to estimate the normal distances. It is based on the vtkDistancePolyDataFilter()
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Figure 2.3 – Measured errors E as a function of prescribed growth with corresponding ε. The
lower bound for the estimated error Eεexp for the temperature gradient experiment are indicated
by the dashed red line.

implemented by Quammen et al. [2011] which computes the signed distance measure as proposed
by Baerentzen and Aanaes [2005]. The filter measures the minimal distance dmin between two
polygonal meshes that represent two consecutive ice-air interfaces. More precisely, for all points
x on interface Γi the minimal distance to the next interface Γf is calculated via

r(x, y) = x − y , (2.19)
dmin(x) = ± min

y
|r(x, y)| . (2.20)

The sign of the dmin is determined by the sign of r · n(x). If the time difference between two
interfaces is chosen to be very small, the minimal distance approximates the distance in the
normal direction. However, experimental data is available only at finite temporal resolution Δt in
the order of hours, which leads to a loss of information and a decorrelation of the two consecutive
interfaces and thus to a failure of the method. Instead an iterative process is suggested, in
which the configurations of the interface between two time steps are guessed by a number N

of interfaces Γj . A measure for the normal distance dn is then retrieved using the simulated
intermediate interfaces. We start with two interfaces Γi at time t = 0 and Γf a time step Δt

later, which are specified by their points x and normal vectors n(x). For all points on Γi the
minimal distances dmin to Γf are calculated as described above. Then the interface is moved
along the normal vectors by a given fraction 1/m1, of dmin, depending on the choice of number
of simulated interfaces and the relative distances between them, yielding a new interface Γ1.
This is done by using the VTK filter WarpByVector(), that moves the surface along the normal
vectors with a given measure that can be defined locally. From the newly created interface the
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Figure 2.4 – Measured errors E as a function of the number of iterations N . The estimated error
corresponding to the minimal distance measurement of the experimental data Eεexp is indicated
by the dashed red line.

procedure is repeated. The simulated interfaces Γj are defined by

xj = xj−1 + nj−1dmin(xj)/mj , (2.21)

where nj−1 are the normal vectors of interface Γj−1 and Γ0 := Γi. Finally the distances between
the two interfaces are estimated by

dn ≈ dg =
N+1∑
j=1

dmin(xj)/mj , (2.22)

with N the number of simulated interfaces and mN+1 := 1. The procedure can be envisaged as
guessing the sequence of two (real) consecutive interfaces Γi and Γf by intermediate auxiliary
interfaces to obtain an improved estimate of the normal distance. Choosing the values for mj is a
trade off between computation time and fraction of points that represent topological inconsistent
simulated surfaces. Taking small values for mj is computationally favorable but increases the
number of points that have their relative position changed with respect to their nearest neighbors.
This results in negative normal vectors with respect to Γi and consequently diverging values for
dg. The points with diverging distances are filtered out by setting a threshold for the distances.
The difference between dmin, dg and dn is illustrated in Fig. 2.1.

Test case

To test the previously described method a known growth law is applied to a reference interface
and the method must recover the prescribed normal distances. To this end a real snow sample
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has been used with a prescribed growth law dn = c n · ez, which represents a local, uniaxial field
in z−direction where c determines the amplitude.

A scatter plot of the prescribed and measured distances dmeas is shown in Fig. 2.2. The error
of the algorithm is now calculated as the average difference between prescribed and measured
distances

E =
1

M

∑
x

|dmeas − dn| . (2.23)

where M denotes the number of interface points. The error has dimensions of length and must
be compared to the typical size of the structure. To compare the performance for different
structural sizes we introduce a dimensionless quantity

ε =
1
A

∫
|Hdn|da. (2.24)

which is the average prescribed distance dn weighted by the local mean curvature H. For
illustration, increasing c in the prescribed growth law mimics the influence of an increasing time
step, which leads to increasing values for ε.

To assess the errors we varied the local growth law dn by varying the amplitude c, with
corresponding ε, and measured the local distances dmeas with the minimal distance dmin. The
errors as a function of ε are shown in Fig. 2.3 and decreases to zero for small ε. Our experiments
however always come with a finite time and spatial resolution that leads to an estimated
εexp = 1

A

∫ |Hdmin|da of 0.32. This estimate is a lower bound since dmin < dn and actual errors
might be higher. To do better than the minimal distance estimation of the normal distances the
iterative interface tracking as described above is tested on the snow sample with a prescribed
growth corresponding to ε = 0.32. The number of iterations and the divisor mj together define
how fast and how accurate the error is decreasing. In Fig. 2.4 two possible choices for mi and
number of iterations are plotted. The faster the simulated interfaces approache the second
interface, the more scatter and the less topological inconsistencies are measured. The results
show that the iterative approach reduces the error by at least 45%. To optimize computation
time, and limit the number of topological inconsistencies we choose to limit the number of
simulated interfaces to seven. As seen in Fig. 2.4, four or five iterations would be sufficient for
this particular choice for mj , but the threshold that cuts away points from the interface with
divergent distances works more efficiently if the number of iterations is increased.

2.3.3 Local Temperature Gradients

In addition to purely geometric properties of the image, a Finite Element solution of Equation (2.4)
with boundary condition Equation (2.5) is computed to estimate the local temperature gradient
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for all voxels in the dataset. According to the growth law Equation (2.9), the temperature
gradients must be known in the limit of approaching the interface from the vapor space.
This limiting procedure is mimicked by a VTK interpolation filter (ResampleDataSets) which
interpolates the temperature field in the pore space “close” to the interface

∇T (x) = ∇T (x + εn(x)) , (2.25)

where ε is the spatial distance from the interface where the temperature gradient is sampled.

2.3.4 Discerning settling and growth

Estimating growth velocities in snow bears the fundamental difficulty, that the effect of growth
cannot be well distinguished from settling effects due to gravity. This is readily illustrated by a
hypothetical spherical ice particle, for which the growing interface in a constant temperature
gradient (cf. Equation (2.9)) has the same effect as a translation of the particle in the absence of
growth. If settling velocities are in the same order of magnitude as growth velocities, it requires
a method to correct for the effects of settling. For the temperature gradient experiment the
settling is assumed to be small compared to the actual crystal growth, but for the isothermal
experiment the displacement fields generally depend on the position in the sample [Schleef and
Löwe, 2013]. However, by evaluating only a shallow layer at the bottom of the snow (100 voxels
thick) it is reasonable to assume a uniaxial displacement field as a first approximation. In
addition, settling effects are minimized at the bottom of the snow. Vertical displacements of
the structure are estimated manually. Once the settling rates are known, the μCT images are
translated back, and the remaining differences are interpreted as growth and analyzed by the
methods described in the previous section.

2.3.5 Sub voxel sample position corrections

As a result of the experimental setup, the exact location of the sample has a sub voxel uncertainty.
This originates from the error in absolute positions of consecutive images in the μCT scanning
procedure. The sample must be repeatedly moved to the scan position for each image acquisition
which comes with an uncertainty. It is possible to correct for this uncertainty by measuring the
average translation of the entire sample in x and y-direction by

Δrx,y = dn/(n · êx,y) , (2.26)

and translate the data back accordingly. The μCT sub voxel uncertainty in the z-direction
cannot be distinguished from both, settling and crystal growth in z-direction, and is therefore not
corrected automatically. Local mechanical deformations play a significant role in the isothermal
experiment and give a bias in the correction Δrx,y. As a consequence the translation rates for
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Figure 2.5 – Visualization of the curvature difference H − H (left) and the normal distances dg

computed from the interface tracking (right) for the the first sample of the isothermal time-series.
The size of the sample is 60 × 60 × 60 voxels.

the isothermal experiment are estimated manually.

2.4 Results

2.4.1 Curvature driven metamorphism

Experimental data

For the isothermal analysis we chose a time series from the isothermal metamorphism experiments
described by Schleef and Löwe [2013]. In these experiments, the coupling of isothermal coarsening
and densification was investigated within time-lapse experiments with new snow produced from
a laboratory snowmaker. For further experimental details we refer to Schleef and Löwe [2013].
To minimize complications emerging from settling, we chose a sample which had very small
densification. The temperature of the experiments was −18 ◦C and the time step of the time
lapse measurements of Δt = 3 h. The spatial resolution of the data is 10 μm. The size of the
dataset is 600 × 600 × 100 voxels, where we have restricted the data in the z-direction to the
bottom 100 voxels, such that settling rates are uniform. The initial condition for the experiment
were precipitation particles i.e. plates (PPpl) with rounded grains (RGsr) according to Fierz
et al. [2009], with a relative high initial value for the specific surface area of 58 m2kg−1.

Visual overview

For a qualitative overview of the image analyis data that was used to assess the curvature-driven
growth laws Eqs. (2.12),(2.14), we show an example visualization of the key quantities in Fig. 2.5.
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Figure 2.6 – Interface velocities for the isothermal time series. Top: Two-dimensional histograms
for vn and the growth law Equation (2.12) for t = 0 h (left) and t = 30 h (right). Bottom:
Two-dimensional histograms for vn and the growth law Equation (2.14), for t = 0 h (left) and
t = 30 h (right).

For the first image of the time series, the curvature difference H − H is shown (left) together
with the normal distance dn (right), which was obtained from the interface tracking method
applied to the first and the fifth image of the time series. Here and for the the analysis below,
we did not use consecutive images of the experiment but rather compared every fifth image
(Δt = 15 h) to increase the signal to noise ratio. The normal velocity is then obtained from the
normal distance via dn = vnΔt. The images are restricted to a subset of the total data with
a size of 60 × 60 × 60 voxels. Further insight into the data is obtained below by a pointwise
comparison of vn with H − H as predicted by Eqs. (2.12),(2.14).

Interface velocity histograms

First we assess the diffusion limited growth law Equation (2.14). For every point on the interface
we computed the mean curvature H and the velocity vn and the results are shown in a two-
dimensional histogram plot for t = 0 and t = 30 h, shown in Fig.2.6. A strong signal around
zero velocities and zero mean curvatures, and a weaker signal that has a dependency of the
velocity on the mean curvature. If we conduct the same analysis for two consecutive images
with a smaller time step 3 and 9 hours, the curvature depending signal becomes much weaker.
Secondly we compared the velocity to the actual growth law from Equation (2.12), that includes
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Figure 2.7 – Left: Fitted values Bexp from Equation (2.12) with the Pearson correlation coefficient
r over time t. For comparison the theoretical value Btheo evaluated at −18◦C from Equation
(2.13) is shown. Right: Fitted values Cexp from Equation (2.14) with the Pearson correlation
coefficient r over time t. For comparison the theoretical value Ctheo evaluated at −18◦C from
Equation (2.15). Note that Ctheo is only an order of magnitude estimate.

the curvature dependent length scale λ as depicted in Fig. 2.6. Again large scatter is observed
at the origin, which is rather symmetric in the velocity distribution.

Time evolution of growth law coefficients

Despite the scatter we have conducted an area weighted least squared analysis on Equation (2.12)
and Equation (2.14) to obtain an estimate for Bexp and Cexp including its evolution over time
during the experiment. The results include the sample Pearson correlation coefficients r and
are shown in Fig. 2.7 (left). The correlation coefficient r related to Bexp is slowly decreasing
over time with mean r ≈ 0.32. The estimated values for Bexp are consistently higher than the
theoretical value Btheo. Similarly the estimated values for Cexp shown in Fig. 2.7 (right) are
consistently higher than Ctheo, but it should be noted that the order of magnitude of Ctheo
strongly depends on the order of the condensation coefficient α, which for this evaluation is
set to 10−2 [Kaempfer and Plapp, 2009]. The correlation coefficient r related to Cexp, with an
average value of r = .39, is significantly higher, and again shows a decrease over time. These
results will be discussed in Sec. 2.5.1.

2.4.2 Temperature gradient driven metamorphism

Experimental data

For the temperature gradient analysis we have chosen a time series from the temperature gradient
experiments described by Pinzer et al. [2012], where vapor fluxes during temperature gradient
metamorphism were analyzed via time-lapse experiments carried out in a snow breeder. For
further experimental details we refer to Pinzer and Schneebeli [2009], Pinzer et al. [2012]. For
the present analysis, one time series was chosen with a time step between two images of Δt = 8 h
and a spatial resolution of 18 μm. The size of the dataset is 190 × 190 × 190 voxels. The average
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Figure 2.8 – Visualization of the temperature gradient projected on the normal ∇T · n (left) and
the normal distances dg computed from the interface tracking (right) for the the first sample of
the temperature gradient time-series. The size of the sample is 70 × 70 × 70 voxels.

temperature was −7.8 ◦C and the applied temperature gradient was 55 K/m. The initial crystal
condition for the experiment was rounded grains, RGlr [Fierz et al., 2009] with an initial specific
surface area of 22 m2kg−1. The uncertainty in the relative x and y positions of two consecutive
images was corrected automatically.

Visual overview

Again, we provide a qualitative overview of the image analysis data which is used to assess the
growth law Equation (2.9) in Fig. 2.8. The images are restricted to a subset of the total data
with a size of 70 × 70 × 70 voxels. For the first image of the time series, the dot product ∇T · n

of the temperature gradient at the interface with the normal vector is shown (left) together with
the normal distances measured by the interface tracking method between first and second time
step (right). The normal velocity of the interface is then obtained via dn = vnΔt.

Interface velocity histograms

To assess the relevance of Equation (2.9), we compared local interface velocities with local
temperature gradients for all points on the interface at different times in our time-lapse data.
The relation between velocities and temperature gradients is shown in Fig. 2.9 in terms of
two-dimensional histograms for four equally spaced pairs of consecutive μCT images. In addition,
two linear fits are included in Fig. 2.9 to compare the data to the growth law Equation (2.9).
The tangent fit represents a linear fit of the histogram data in the small gradient region
−50 K/m < ∇T · n < 50 K/m that describes the linear approximation of the interface velocity
for small gradients close to zero. For small velocities, we clearly measure a higher A when
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Figure 2.9 – Interface velocities for the temperature gradient time series shown as two-dimensional
histograms at four different times for the velocity vn as a function of local temperature gradients
∇T · n. Included are two fits for A from Equation (2.9), a weighted least squares and a tangent
fit for small ∇T · n.

compared to a linear fit of all data points. In addition, we have plotted a binned average which
gives a measure for the average velocity for a small range of temperature gradients.

Time evolution of growth law coefficients

To assess the temporal evolution of the growth law parameter A, a linear fit and the sample
Pearson correlation coefficient r is evaluated for the entire time-lapse experiment and shown
in Fig. 2.10 (left). The results show that the measured values of A are close to the theoretical
value.

In a next step we analyzed the statistical significance of the presence of a curvature dependent
term in the data. To this end we first fitted the data to the coarsening growth law Equation (2.12).
The results of the estimates Bexp are shown in Fig. 2.10 (right). The correlation coefficients
found here are in the same order as for the isothermal experiment (Fig. 2.7, left).

32



0 1 2 3 4 5 6
t (h) ×102

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

A
(m

2
s−

1
K

−1
)

×10−11

Aexp

Atheo

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

r

r

0 1 2 3 4 5 6
t (h) ×102

0

1

2

3

4

5

6

7

B
(m

3
s−

1
)

×10−19

Bexp

Btheo

0.15

0.20

0.25

0.30

0.35

0.40

0.45

r

r

Figure 2.10 – Left: Fitted values Aexp from Equation (2.9) with the Pearson correlation coefficient
r over time t. For comparison the theoretical value Atheo evaluated at −7.8◦C from Equation
(2.10) is shown. Right: Fitted values for B to Equation (2.12) and the sample Pearson correlation
coefficient r over time. For comparison the theoretical value Btheo evaluated at −7.8◦C from
Equation (2.13) is shown.

It is thus reasonable to assess also the linear combination of Equation (2.9) and Equation (2.12)

vn = A∇T · n +
B

λ

(
H − H

)
, (2.27)

The values for A and B are similar to those obtained before (not shown). However the correlation
coefficient changes, depending on which growth law is used. We assessed first rA from fitting A to
Equation (2.9). Secondly we calculated rB where B is fitted to Equation (2.12). Finally rA,B is
computed where A and B are simultaneously fitted in the combined growth law, Equation (2.27).
The time-evolution of these coefficients is plotted in Fig. 2.11. The data shows that rB ≈ 0.30,
rA ≈ 0.46 and rA,B ≈ 0.57.

Sensitivity analysis

Finally, we assess the impact of the limit parameter ε introduced in Sec. 2.3.3. To this end we
have analyzed the dependence of the growth law coefficient A on ε for one sample at t = 0. The
results are shown in Fig. 2.12. Our choice of ε = 1.25 used for the analysis of all the samples
then corresponds to the minimal sensitivity of this parameter. The dependence on ε will be
further detailed in the discussion.

2.5 Discussion

2.5.1 Curvature driven metamorphism

For isothermal metamorphism, we compared the data of the interface velocities obtained by the
proposed interface tracking method to two available models: Diffusion limited, Equation (2.12)
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Figure 2.11 – The sample Pearson correlation coefficients over time for various fits. rA corresponds
to the fitted data to Equation (2.9), rB to Equation (2.12) and rA,B to Equation (2.27).

and kinetics limited, Equation (2.14) growth. For the diffusion limited model (Fig. 2.6, top) the
data revealed a large scatter around the origin and the scatter plots are difficult to interpret
visually due to the symmetric appearance of the data. However, we observed a weak but
consistent correlation (Fig. 2.7, left) when fitting the data to the diffusion limited growth
law, Equation (2.12). The fitted values Bexp are higher than the theoretical value Btheo. If
Equation (2.12) was strictly valid, a possible explanation would be an underestimation of the
mean curvatures. We recall that our curvature estimates rely on the smoothing parameter,
which had to be chosen subjectively and smoothing predominantly reduces always high curvature
regions. Another explanation could be the presence of surface diffusion, which is neglected in
Equation (2.12). If surface diffusion plays a role it would increase the value for the estimated
Bexp, since both processes simultaneously contribute to the reduction of mean curvature. As
suggested by Tomita [2000], surface diffusion should manifest itself as a higher order correction
to Equation (2.12) according to

vn =
B

λ

(
1 − λ2∇2

S

)[
H − H

]
, (2.28)

with ∇2
S the surface Laplacian. It would be principally possible to also evaluate the growth

law (2.28) and discern effects of surface diffusion and bulk vapor diffusion. However this would
require a higher quality of the experimental data. The available dataset of new snow with a voxel
size 10 μm is presently at the limit of resolution, where curvatures can be estimated reliably,
as can be seen from Fig.2.5 (left). The algorithms used by Flin et al. [2005] and Brzoska et al.
[2007] use a different smoothing procedure and might give an improved curvature estimation
for fresh snow, which would enable the analysis of surface diffusion depending growth laws.
Previous results [Löwe et al., 2011] in fact suggest that surface diffusion does play a role at
lower temperatures. This is indicated by the exponent governing the power law decrease of the
specific surface area, which is closer to 1/4, indicating surface diffusion, than 1/3 indicating bulk
diffusion.

If the data is fitted to the kinetics limited growth law, Equation (2.14), instead (Fig. 2.6, bottom),
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Figure 2.12 – The fitted A to Equation (2.9) as a function of the scale factor ε as defined by
Equation (2.24).

the correlation coefficient slightly increases (Fig. 2.7, right). Within the limited accuracy of the
data we would conclude that kinetics cannot be completely ignored. This is consistent with
the dominant snow type (PPpl) of the sample which contains many plate-like structures, where
kinetics should play a crucial role on the basal orientations of the plates [Libbrecht, 2005]. The
same kinetics limited growth law (Equation (2.14)) was already suggested by Flin et al. [2003],
to model isothermal metamorphism.

Our experimental setup bears another uncertainty in the order of one voxel in x, y and z direction
(Sec. 2.3.5) which stems from the uncertainty in absolute position. Here the experimental setup
developed by Calonne et al. [2015] might improve on that, since the sample is left exactly at
the same position during the time-series. Another difficulty encountered here for the isothermal
dataset is the necessity of correcting for settling effects. We outlined that the motion of an
interface by crystal growth and the motion of the interface by gravitational settling can a priori
not be discerned. On one hand, large specific surface areas are required to ensure a good
signal-to-noise ratio for metamorphism. On the other hand, large specific surface areas increase
the effect of settling [Schleef et al., 2014]. In new snow, the crystals experience significant
displacements which are larger than the size of the particles. It is difficult to compensate for
these effects automatically. In addition the settling is not uniform, as assumed in Equation
(2.26) employed here. In the future, an ideal isothermal experiment would comprise artificially
compacted, slightly sintered new snow in order to minimize settling effects with reasonably high
curvature for significant growth effects.

2.5.2 Temperature gradient driven metamorphism

As a reference model, the obtained data was compared to the generalization of the classical
picture from Shreve [1967] for the migration of vapor bubbles in ice. Despite its simplicity, the
model is still used as reference to analyze experiments for the migration of vapor bubbles in ice
[Dadic et al., 2010]. In the Shreve picture, the local interface velocities are mainly determined
by the local temperature gradient in the pore space. For a single sphere, the simplicity of
the geometry allows to compute the temperature gradient in the pore space analytically. This
can be generalized to complex microstructures, if the temperature gradients are computed
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numerically. Our results revealed that, on average, the Shreve picture holds reasonably well
for the entire snow structure. Compared to the isothermal case, we found less scatter in the
histograms (Fig. 2.9) and estimated values Aexp which are in the same order of magnitude
as the theoretical value for the entire time series (Fig. 2.10, left). The estimate Aexp is fairly
constant over time which implies that, on average, the relation between the interface velocities
and the temperature gradient constitute an important physical contribution to the growth
under temperature gradients. However, the fact that facets and depth hoar emerge during
metamorphism clearly indicates that the purely diffusion limited picture (2.9) cannot be strictly
valid.

In addition, we analyzed an empirical, linear superposition of the curvature and gradient driven
processes, cf. Equation (2.27). Again, the analysis shows a low correlation implying a slight
influence of the curvature term, but less pronounced than the temperature gradient contribution
(Fig. 2.11). Similar to the isothermal analysis the estimated values for Bexp are higher than
their theoretical value. The same explanations given for isothermal case are applicable here. A
comparison to the isothermal case is however difficult due to the differences in their apparent
kinetic regime, temperature, voxel resolution and initial snow type.

The analysis of the temperature gradient growth law has revealed another uncertainty, namely
the numerical solution of the temperature field. A subtle source of error originates from the
numerical solution on voxel-based images for the proposed method of estimating the temperature
gradients in the pore space (Sec. 2.3.3). The temperature gradient must be computed in the
limit of approaching the interface from the vapor space in Equation (2.9). This sampling must
be close enough to the interface to represent the vapor-space near the interface, but not too
close since the sampling will be in the ice-phase for a fraction of the points, resulting in a lower
value for the average temperature gradient, and higher values for A. If the sampling were too
far away from the interface, temperature gradients decrease, resulting in a higher value for A, as
observed in the sensitivity analysis (Fig. 2.12). Accordingly we have chosen the spatial distance
ε from the interface to be in the order of one voxel, more precisely ε = 1.25 which corresponds to
the minimum of the sensitivity. The choice and sensitivity of the results on ε are closely related
to the accuracy of the numerical solution of the temperature distribution at that point. The
numerical solution, [Pinzer et al., 2012] implements the two-phase material by a space-dependent,
thermal conductivity which changes discontinuously from the ice conductivity κi to the air
conductivity κa at the interface. Theoretically, the interface condition Equation (2.5) should be
recovered. An a posteriori analysis was made of the interface condition by computing the ratio

∇T · n|−
∇T · n|+

= κa/κi . (2.29)

Theoretically the ratio should assume a value of ≈ 0.01. From the simulations, an average
ratio close to 0.125 was found, with significant scatter. This is a clear indication of limited
accuracy close to the interface on a voxel mesh. This implies uncertainties of the estimated A

up to a factor of 12.5. The origin of this uncertainty is the voxel based Finite Element solution
which are commonly used [Pinzer et al., 2012, Löwe et al., 2013, Calonne et al., 2014a] and also
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applied here. Apparently, the present case of discontinuous coefficients clearly requires more
sophisticated methods [Soghrati et al., 2012] to ensure reasonable accuracy of the solution at
the interface.

A crucial aspect of the temperature gradient analysis is the temporal resolution of the time-lapse
experiment. The analysis has shown that interface tracking is feasible, but limited by the
resolution of μCT time series. The time difference of eight hours has turned out to be too
high to avoid the loss of interface correlations between two consecutive images. The optimal
temporal resolution depends on typical sizes of the structure, which could e.g. be assessed by
the dimensionless quantity (2.24). The interface dynamics of small features naturally requires a
higher temporal and spatial resolution. Consecutive interfaces also become decorrelated during
structural re-arrangements triggered by growth under gravity which were occasionally observed.
Such a mechanism of “dropping grains” has been observed in Vetter et al. [2010] for isothermal
metamorphism. These events contribute to the scatter in the velocity, since dropping structures
cannot be registered anymore by the interface tracking.

Overall the temperature gradient analysis is less affected by the influence of settling due to the
higher initial density and the faster growth during temperature gradient metamorphism. But
in contrast to the isothermal case, where vapor transport and growth are isotropic, here the
main growth direction (temperature gradient) and the main settling direction (gravity) have the
same direction. An ideal experimental setup would realize a temperature gradient perpendicular
to gravity, or at least reverse the direction of the temperature gradient to better discern these
effects.

2.6 Conclusions

A first attempt has been made to measure the local interface dynamics of the ice-air interface
in snow from μCT time-lapse experiments and interpret the data in terms of non-equilibrium
vapor processes at the pore level. We have developed an interface tracking method for time-lapse
experiments and compared the measured normal velocities to the simplest, isotropic diffusion
limited and kinetics limited growth models which are applicable to bicontinuous structures.
While the growth rates predicted by these models are in the same order of magnitude as the
experimental data, a final conclusion about this coincidence is not possible yet. This is due to the
large scatter, which was discussed and related to experimental, theoretical and methodological
limitations. Given the possible improvements suggested from the analysis, it seems promising
to further advance the method, and validate growth laws as required for the upscaling in
macroscopic snow modeling.
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3Relating optical and microwave
grain metrics of snow: The rele-
vance of grain shape

3.1 Introduction

Linking physical properties of snow to the microstructure always requires to identify appropriate
metrics of grain size. In this regard the two-point correlation function has become a key
quantity for the prediction of various properties such as thermal conductivity, permeability and
electromagnetic properties of snow [Wiesmann and Mätzler, 1999, Löwe et al., 2013, Calonne et al.,
2014b, Löwe and Picard, 2015]. The two-point correlation function carries, in essence, information
about a distribution of relevant sizes in the microstructure. For microwave applications, the
analysis of two-point correlation functions was already used in the era before micro-computed
tomography (μCT), where thin section data and stereology were employed to obtain the required
information [Vallese and Kong, 1981, Zurk et al., 1997, Mätzler and Wiesmann, 1999]. The
recently gained interest in two-point correlation functions is mainly driven by available data from
μCT, from which the two-point correlation function can be conveniently estimated. The relevance
of the two-point correlation function for microwave modeling originates from the connection
between its Fourier transform and the scattering phase function in the Born approximation for
small scatterers [Mätzler, 1998, Ding et al., 2010, Löwe and Picard, 2015], or the connection to
the effective dielectric tensor via depolarization factors [Leinss et al., 2016].

A common practical way to characterize the two-point correlation function is a fit to an
exponential, such that the fit parameter, the so called exponential correlation length ξ, can
be used to model the decay of microstructural correlations in snow by a single size parameter.
This approach dates back to Debye et al. [1957] in the context of small angle scattering of
heterogeneous materials. However the characterization of snow by a single length ξ is only an
approximation since the occurrence of multiple length scales [Löwe et al., 2011] are known to play
a role, in particular to characterize anisotropy [Löwe et al., 2013, Calonne et al., 2014b]. Despite
this caveat, ξ still constitutes the main microstructural parameter for microwave modeling of
snow [Proksch et al., 2015a, Pan et al., 2016] when the Microwave Emission Model of layered
snowpacks [Wiesmann et al., 1998] is used.

The exponential correlation length is often inferred from measurements of the optical equivalent
diameter dopt or, equivalently, from the specific surface area (SSA). This link was established
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statistically [Mätzler, 2002] leading to the empirical relation

ξ ≈ 0.5dopt(1 − φ), (3.1)

where φ is the ice volume fraction. This relation facilitates using the measured optical diameter
as the primary input for microwave modeling [Durand et al., 2008, Proksch et al., 2015b, Tan
et al., 2015]. However, this link between ξ and dopt can only serve as a first approximation. The
numerical prefactor in Eq. (3.1) seems to depend on snow type [Mätzler, 2002] which causes a
significant scatter in estimating the exponential correlation length from optical diameter. This
poses the question which additional size metric captures variations in grain shape and explains
the scatter.

A similar issue of grain shape emerges in the context of optical measurements. Optical properties
(e.g. reflectance) can be largely predicted from the optical diameter or SSA [Kokhanovsky and
Zege, 2004]. The remaining scatter is commonly attributed to shape [Picard et al., 2009] which
influences the absorption enhancement parameter B and the asymmetry factor gG [Kokhanovsky
and Zege, 2004]. The influence of grain shape on B for light penetration was recently addressed
and measured by Libois et al. [2013, 2014]. The question remains which additional size metric of
the microstructure can be used to capture variations in grain shape and measured scatter in B.

The two examples from microwave or optical modeling above reflect the known fact that the
optical diameter as a single metric of grain size is not sufficient to characterize the microstructure
for many physical properties. It is thus necessary to account for additional grain size metrics
which implement the idea of grain shape. A key requirement for potential, new shape metrics is
a well-defined geometrical meaning. Present snowpack models [Vionnet et al., 2012, Lehning
et al., 2002] contain empirical shape descriptors such as sphericity [Brun et al., 1992]. An
objective definition of these quantities for arbitrary two-phase materials is, however, not possible.
New shape metrics should thus ideally seek to replace empirical parameters by an objective,
measurable and geometrically comprehensible metric.

One appealing route to define shape is via curvatures of the ice-air interface because curvatures i)
have already been used to comprehend snow metamorphism via mean and Gaussian curvatures
[Brzoska et al., 2008, Schleef et al., 2014, Calonne et al., 2014a] ii) are natural quantities to
assess shape via deviations from a sphere, very close to the definition of sphericity in Lesaffre
et al. [1998] and iii) naturally emerge as higher order terms in the expansion of the two-point
correlation function [Torquato, 2002]. The latter fact can be used in turn to assess variations of
the microwave parameter (ξ) from μCT images which links back to the aforementioned microwave
modeling problem.

Another appealing route to define shape is via chord length distributions because they i) naturally
implement the idea of size dispersity and ii) have recently been put forward by Malinka [2014]
to derive closed-form expressions for the averaged optical properties of a porous medium. Again,
the latter fact can in turn be used to assess variations in the optical parameters (gG, B) from
μCT images which links back to the aforementioned optical modeling problem.

The motivation of the present paper is to investigate and interconnect these two routes of
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(objectively) defining grain shape. First, we will assess the curvature-length in the expansion of
the two-point correlation function. We will be guided by the question if and how the well-known
statistical relation Eq. (3.1) between the exponential correlation length and the optical diameter
can be improved by incorporating curvatures. Second, we will characterize the microstructure
in terms of chord length distributions in order to make contact to aspects of shape in snow
optics. An interconnection between the two routes can be established by an approximate relation
between the two-point correlation function and the chord length distribution that was originally
suggested in the context of small angle scattering [Méring and Tchoubar, 1968]. By means of
this approximate relation we establish various statistical links between all involved size metrics,
the moments of the chord length distributions, optical diameter, surface areas, curvatures and
the exponential correlation length. The established links imply a microstructural connection
between geometrical optics and microwave scattering via size dispersity, which constitutes one
aspect of grain shape.

The paper is organized as follows. In section 3.2 we present the theoretical background for
the two-point correlation function, the chord length distribution, the connection between both
quantities and the governing length scales. In section 3.3 we provide a summary of the μCT
image analysis methods. To provide confidence of the interpretation of the curvature metrics
derived from the two-point correlation function, we present an independent validation of these
quantities via the triangulation of the ice-air interface. The results of the statistical models are
presented in Section 3.4 and discussed in section 3.5.

3.2 Theoretical background

3.2.1 Two-point correlation function and microwave metrics

The interaction of microwaves with snow is commonly interpreted as scattering at permittivity
fluctuations in the microstructure which can be described by the two-point correlation function
[Vallese and Kong, 1981, Mätzler, 1998, Ding et al., 2010, Löwe and Picard, 2015]. The two-
point correlation function can be derived from the spatial distribution of ice and air that is
characterized by the ice phase indicator function I(x), which is equal to 1 for a point x in ice
and 0 for x in air. From that, a covariance function can be defined which is often referred to as
the two-point correlation function

C(r) = I(x + r)I(x) − φ2. (3.2)

In the following we disregard anisotropy by stating that C(r) only depends on the magnitude of
r = |r|. To interpret snow with this approach, an average over different coordinate directions
must be carried out.

The value of the two-point correlation function C(0) = φ(1 − φ) is simply related to the volume
fractions of ice φ and air (1 − φ). Therefore, often only the normalized two-point correlation
function

A(r) = C(r)/C(0) (3.3)
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is used, (see Fig. 3.1b). Since A(r) must decay from A(0) = 1 to zero for r → ∞, the two-point
correlation function is often described by an exponential form

A(r) = exp (−r/ξ) , (3.4)

in terms of the exponential correlation length ξ. This single length scale empirically characterizes
the decay of A(r).

For small arguments r, rigorous results for the decay of the correlation can be inferred since
the expansion of A(r) can be interpreted in terms of geometrical properties of the interface.
According to Torquato [2002], the expansion for an isotropic medium reads

A(r) = 1 − r

λ1

[
1 − r2

λ 2
2

+ O(r3)
]

(3.5)

in terms of the length scales λ1, λ2. The first order term

1
λ1

= − d

dr
A(r)

∣∣∣∣
r=0

=
s

4φ(1 − φ)
, (3.6)

is the slope of the two-point correlation function at the origin and can be expressed in terms
of the interfacial area per unit volume s [Debye et al., 1957]. The size metric λ1 is one of the
most fundamental lengths scales for a two-phase medium and referred to as the Porod length in
small angle scattering, or correlation length in Mätzler [2002]. We will adhere to Porod length
here to clearly distinguish λ1 from the exponential correlation length ξ. The metric λ1 can be
also related to the SSA, defined as the surface area per ice mass (m2kg−1), or in turn to the
equivalent optical diameter dopt of snow via

λ1 =
4φ(1 − φ)

s
=

4(1 − φ)
ρi SSA

=
2(1 − φ)

3
dopt (3.7)

with ρi representing the density of ice. The last equality is obtained when the definition of
dopt = 6/ρiSSA is inserted (see Mätzler [2002]).

For a two-phase material with a smooth interface, the second order term ∼ r2 is missing in
the expansion Eq. (3.5) and the next non-zero term is the cubic one with a prefactor 1/λ1λ 2

2 .
Here the length scale λ2 has a geometric interpretation in terms of interfacial curvatures and
is therfore referred to as the curvature length hereafter. As originally shown by Frisch and
Stillinger [1963], the following identity holds

1
λ 2

2
= λ1

d3

dr3 A(r)
∣∣∣∣∣
r=0

=
1
8

(
H2 − K

3

)
(3.8)

in terms of the average squared mean curvature H2 and the averaged Gaussian curvature K.
The quantity λ−2

2 is proportional to the orientationally averaged normal curvature of an interface
[Tomita, 1986].
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Figure 3.1 – a) Illustration of the chord lengths obtained from an ice sample. The mean chord
length is defined as the average length of the green line lengths. A stereological approach
[Underwood, 1969] to calculate s is to count the number of blue dots per unit length. The
estimation for smf is given by the red contour. b) Illustration of the two-point correlation
function A(r) and the method obtaining an estimate for the Porod length λ1 to get scf by fitting
the slope at the origin, and the exponential correlation length ξ by fitting A(r) to exp (−r/ξ)
over a larger span.

3.2.2 Chord length distributions and optical metrics

In snow optics the microstructural characterization within radiative transfer theory [Kokhanovsky
and Zege, 2004] commonly involves a single metric, the optical diameter. An interesting approach
for geometrical optics in arbitrary two-phase media was recently put forward by Malinka [2014].
Thereby, the microstructure is taken into account by the chord length distribution of a medium
which can be unambiguously defined for arbitrary two-phase random media [Torquato, 2002].
Chord lengths in an isotropic medium are defined as the lengths of the intersections of random
rays through the sample with the ice phase, as illustrated in the schematic in Fig. 3.1a. The
chord length distribution p() of the ice phase denotes the probability (density) for finding a
chord of length .

In contrast to the Born approximation for microwaves, where the microstructure enters as the
Fourier transform of the two-point correlation function, the theoretical approach [Malinka, 2014]
relates the key optical quantities (absorption, phase function, asymmetry-factor) to the Laplace
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transform of the chord length distribution p() which is denoted by

p̂(z) =
∫ ∞

0
d p()e−z� (3.9)

with Laplace variable z. For small z, the Laplace transform can be approximated by the
expansion

p̂(z) = 1 − μ1z +
μ2
2

z2 + O(z3), (3.10)

where μi denotes the i−th moment of the chord length distribution, viz

μi =
∫ ∞

0
d ip(). (3.11)

Hence, within the approach from Malinka [2014], the optical response of snow can be system-
atically improved by successively including higher moments of the chord length distribution.
According to Malinka [2014], the Laplace transform has to be evaluated at z = α, with the
absorption coefficient α = 4πκ/λ. Here λ is the wavelength and κ the imaginary part of the
refractive index of ice. It is generally sufficient [Malinka, 2014] to retain only a few terms in
Eq. (3.10). It is straightforward to show [Underwood, 1969] that the first moment, i.e, the mean
chord length μ1 is given by

μ1 =
4φ

s
=

λ1
1 − φ

=
2
3

dopt (3.12)

and thus related to the surface area per unit volume s from Eq. (3.6), or the optical diameter
dopt via Eq. (3.7). Therefore, in lowest order, the Laplace transform Eq. (3.9) only contains the
Porod length or specific surface area of snow. The next order correction involves the second
moment μ2 for which no geometric interpretation has been hitherto given for arbitrary two-phase
random media.

For known chord length distribution, all optical quantities (phase function, single scattering
albedo, etc) can be directly computed from Malinka [2014]. To make contact to other approaches
e.g. Libois et al. [2013] and discuss our results for the chord lengths in light of shape, an
expression of the absorption enhancement parameter B is required within the framework of
Malinka [2014] which is derived in Appendix 3.7. From these expressions we can assess the
relative importance of the μ2 correction to the optical diameter μ1.

3.2.3 Connection between chord lengths and the Porod length and the curvature-
length

Following the previous two sections, a link between optical and microwave metrics of snow thus
requires to establish a link between two-point correlation functions and chord length distributions.
To this end we employ a relation between the two-point correlation function and chord length
distribution that was put forward in the early stages of small angle scattering [Méring and
Tchoubar, 1968] to interpret the scattering curve in terms of particle properties. In the present
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notation the relation can be written as

p() = μ1
d2

d2 A(), (3.13)

which was also used by Gille [2000].

Although Eq. (3.13) is only valid under certain assumptions which will be discussed in section 3.5,
it has already some non-trivial implications that can be exploited for the subsequent analysis.
As a first consistency check of the approximation Eq. (3.13), we can compute the first moment of
the chord length distribution from Eq. (3.11) for n = 1, by inserting Eq. (3.13) and integrating
by parts. This yields μ1 = μ1A(0) which is correct by virtue of Eq. (3.3). As a next step, we aim
at an expression for the second moment of the chord length distribution in terms of interfacial
curvatures by using Eq. (3.11) for n = 2. Again, inserting Eq. (3.13) and integrating by parts
yields

μ2 = 2μ1

∫ ∞

0
A(r) dr = 2μ1f(φ, λ1, λ2, . . .). (3.14)

Though f is an unknown function here, this link shows that the chord length metric μ2 must be
somehow related to the two-point correlation function metrics λ1 and λ2. In section 3.4 we will
statistically investigate the dependence of f on its arguments.

3.3 Methods

3.3.1 Data

For the following analysis we used an existing μCT dataset of 3D microstructure images described
and used in Löwe et al. [2013] for a thermal conductivity analysis and Löwe and Picard [2015]
for a comparison of microwave scattering coefficients. All samples were classified according to
Fierz et al. [2009] as described in the supplement of Löwe et al. [2013]. The data set comprises
167 different samples including two time series of isothermal experiments, four time series of
temperature gradient metamorphism experiments and a set of 37 individual samples. In total,
the set includes 62 samples of depth hoar (DH), 54 of rounded grains (RG), 33 of faceted crystals
(FC) 10 of decomposing and fragmented precipitation particles (DF), 5 of melt forms (MF) and
3 of precipitation particles (PP).

3.3.2 Geometry from two-point correlation functions

Obtaining the normalized two-point correlation function A(r) from a μCT image can be con-
veniently done by using the Fast Fourier Transform (FFT) as e.g. described in Newman and
Barkema [1999]. The FFT is typically used for performance issues to evaluate the convolution
integral Eq. (3.2) since direct methods can be very slow. The spatial resolution of the two-point
correlation function depends on the voxel size Δ of the μCT image which ranges from 10 to
50 μm.
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Since the snow samples in the data set are anisotropic [Löwe et al., 2013], the normalized
two-point correlation function is first obtained in the x, y and z direction and then averaged
arithmetically over the three directions i.e, A(r) = (Ax(r) + Ay(r) + Az(r)) /3.

From the normalized two-point correlation function two types of parameter fittings are performed.
First, the exponential correlation length ξ is obtained by fitting the μCT data to the exponential
form Eq. (3.4). Technically, we estimated the inverse parameter k by least-squares optimization
of the model A(r) = exp (−kr) to the data in a fixed range of 0 < r < 50Δ. An illustration of
this method is shown in Fig. 3.1b. In the following we denote by ξ the inverse of the optimal fit
parameter ξ := 1/k. Secondly, we estimated the expansion parameters λ1 and λ2 of the two-point
correlation function by a least-squares regression to the expansion Eq. (3.5). Technically, we
fitted A(r) = 1 − k1r(1 − k2r2) in the fixed range of 0 < r < 3Δ which determines the derivatives
at the origin. We denote by λcf

1 and λcf
2 the inverse of the optimal fit parameters λcf

1 := 1/k1
and λcf

2 := 1/k2. The superscript is added to discern these two-point correlation function based
estimates from those presented in the next section for a validation. The influence of resolution
and anisotropy to the estimates of λ1 and λ2 is discussed in section 3.5.

3.3.3 Geometry from triangulations

To confirm the geometrical interpretation of λcf
1 and λcf

2 we use an alternative and independent
method to estimate these parameters by measuring the surface area and the local curvatures
with a VTK-based image analysis as described in chapter 2. In short, a triangulated ice-air
interface is obtained by applying the VTKContour filter. After this step, the interface still
resembles the underlying voxel structure. Therefore, in a second step the triangulated interface
is smoothed by applying the VTKSmoothing filter which involves a smoothing parameter S

which is the number of iterations a Laplacian smoothing on a mesh is repeated. For further
details we refer to chapter 2.

3.3.4 Accuracy of surface area and curvatures estimates

The measured total surface area is obtained by integrating (summing) the surface area of the
triangles over the surface and the estimate λvtk

1 which naturally depends on the smoothing
parameter. A comparison of the triangulation and the two-point correlation function based
length scale is shown in Fig. 3.2 (middle row). A higher value of the smoothing parameter
implies a lower surface area s (caused by shrinking of the enclosed volume upon smoothing) and
in turn higher estimates for λvtk

1 . Using higher smoothing also results in a higher variance in the
data. This is likely due to filtering of small perturbations in the surface causing the individual
samples to react differently.

It is illustrative to note that even without smoothing for S = 0 the obtained triangulated surface
is still different from the voxel surface smf , which is obtained by the union of ice-air transition
faces in the voxel based image (as illustrated by the red contour in Fig. 3.1a). The quantity smf
is one of the four Minkowski functionals and can be computed by standard counting algorithms
[Michielsen and Raedt, 2001]. For isotropic systems, and statistically representative samples, the
relation between the surface obtained from the two-point correlation function scf = 4φ(1−φ)/λcf

1
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Figure 3.2 – Comparison between smoothing parameter S = 50 (left) and S = 200 (right). Top:
Representation of the triangulated surface of a subsection of a snow sample. Middle: Scatter
plots of the Porod length λcf

1 versus λvtk
1 , including a fit (red dotted line). Bottom: Scatter plots

of the curvature-length λcf
2 versus λvtk

2 , including a fit (red dotted line).

and the Minkowski functionals is known to be scf = 2smf/3 as discussed in Torquato [2002,
p. 290].

An estimate for the curvature-length λvtk
2 is obtained from the VTKCurvature filter on the

triangulated ice-air interface yielding local values for mean and Gaussian curvature which
can be integrated to compute λvtk

2 via Eq. (3.8). The comparison of the triangulation based
curvature-length and the two-point correlation function based curvature length is shown in
Fig. 3.2 (bottom row). Again, λvtk

2 depends strongly on the smoothing parameter S. The value
S = 200 performed best by comparing the value λcf

2 to λvtk
2 , see Fig. 3.2 (bottom row). The

deviations from the 1:1 line are caused by the overestimation of the curvatures by the remaining
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steps in the triangulation from the underlying voxel-based data, and is thus negatively correlated
with the size of the structures and the resolution. In the end, we chose a smoothing parameter
S = 200 that is, on average, acceptable for all involved samples.

Overall, the comparison provides reasonable confidence that the geometrical interpretation of
the two-point correlation function parameters is correct, though uncertainties inherent to the
smoothing operations must be acknowledged. In the following we solely use the quantities derived
from the two-point correlation function, viz. λ1 = λcf

1 and λ2 = λcf
2 where the superscripts are

omitted for brevity.

3.3.5 Chord length distribution

To compute the ice chord length distribution from the binary images, all linear lines through
the sample in all three Cartesian directions β = x, y, z are considered and all ice chords were
measured and binned to obtain direction dependent counting densities nβ(). Here nx() denotes
the total number of chords in x direction which have length . For a binary CT image,  can
take integer values 0 <  < Lx which are restricted by the sample size Lx = NxΔ and the voxel
size Δ of the image. The mean chord length and other moments μi are then computed from

μi =
1∑

�,β nα()
∑
�,β

inβ(). (3.15)

3.3.6 Statistical models

The main part of the following analysis comprises statistical relations between the length scales
derived from the chord length distribution and the two-point correlation function in section 3.2.
In total, we will consider a few statistical models that first relate the exponential correlation
length ξ and μ2 to the geometrical length scales λ1 and λ2 and second, relate ξ to μ1 and μ2. We
will start with a one-parameter statistical model and compare the results to the two parameter
models. We will assess and compare the quality of the fits with the adjusted correlation coefficient
R2.

3.4 Results

3.4.1 Relating exponential correlation length to the Porod length and curvature-
length

As a starting point for the statistical analysis we revisit the empirical relation

ξ = 0.75λ1, (3.16)

which is equivalent to Eq. (3.1) by virtue of Eq. (3.7), as suggested by Mätzler [2002]. To this
end we fitted ξ and λ1 and obtained an average slope of 0.79 with a correlation coefficient of
R2 = 0.733, shown by the green dashed line in Fig. 3.3a. In the next step we fitted the same
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data to include an intercept parameter

ξ = a0 + a1λ1. (3.17)

Here the adjusted correlation coefficient, accounting for the inclusion of extra parameters, is
R2 = 0.731 and the parameters are given by a0 = 5.93 × 10−2 mm, a1 = 0.794, with very low
p-values (p < 5×10−4) for the intercept and the slope ensuring the significance of the parameters
of the fit. The order of magnitude of the intercept a0 is negligible. To understand the remaining
scatter we have plotted the residuals ξ − (a0 + a1λ1) versus the curvature-length λ2 as shown in
Fig. 3.3b. The correlation coefficient is given by R2 = 0.644 and suggests that including the
curvature lengths can improve Eq. (3.17). For an overview, this and all other statistical models
will be listed in Table 3.1.

In the next step we include the curvature-length λ2 where we fitted the exponential correlation
length ξ to the model

ξ = b0 + b1λ1 + b2λ2. (3.18)

The results are shown in Fig. 3.3c. Here we find an improvement compared to Eq. (3.17). The
correlation coefficient is R2 = 0.922 and the fit parameters are given by b0 = 1.23 × 10−2 mm,
b1 = 1.32 and b2 = −3.85 × 10−1. The p-values are very small for all coefficients bi. The order of
magnitude of the improvement can already be roughly estimated from the ratio of the prefactors
b1 and b2.

3.4.2 Connection between chord length distributions and two-point correla-
tion functions

To relate the chord length metrics to the Porod length and the curvature-length, we first assessed
the relation between the chord length distribution p() and the two-point correlation function
A() as suggested by Eq. (3.13). To this end we compared the chord length distribution obtained
directly from the μCT image (cf. section 3.3.5) with the prediction of Eq. (3.13) via the
two-point correlation function for a few examples of different snow types. The results are shown
in Fig. 3.4. The selected snow samples are the same as those used in Löwe and Picard [2015,
Fig. 8 and Fig. 9]. Qualitatively, the characteristic form (i.e, single maximum), the location
of the maximum, and the width of the distribution are correctly predicted by Eq. (3.13). On
the other hand, there are obvious shortcomings, such as the oscillatory tail for the RG example
when the chord length distribution is derived via Eq. (3.15). We will revisit these characteristics
in the discussion.

3.4.3 Relating the second moment of the chord length distribution to the
Porod length and the curvature-length

Using the previous results we can derive an approximate relation between the second moment of
the chord length distribution and the interfacial curvatures. To motivate a statistical model, we
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Figure 3.3 – Scatter plots of a) the exponential correlation length ξ versus the Porod length
λ1. A linear fit is plotted in green. Additionally the prediction of Eq. (3.16) (MM) is plotted
in red. b) The residuals of ξ and the statistical model Eq. (3.17), versus the curvature-length
λ2. c) The statistical model Eq. (3.18) predicting ξ depending on the Porod length λ1 and the
curvature-length λ2.
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Figure 3.4 – Comparison of the chord length distributions computed from Eq. (3.13) (symbols)
and by direct analysis of the μCT data (solid-line) for three examples of snow types (PP, RG
and DH).

start from Eq. (3.14),

μ2
2μ1

= f (φ, λ1, λ2, . . .) . (3.19)

We investigate the dependency of the function f on parameters λ1, λ2 and φ of this expression
by successively including λ1, λ2 and φ in a statistical model. In a first step we approximate f by
a statistical model including only λ1

μ2
2μ1

= l0 + l1λ1. (3.20)

The optimal parameters for model Eq. (3.20) are l0 = −2.40 × 10−2 mm and l1 = 1.25, with
negligible p−values and a correlation coefficient of R2 = 0.898. The results are shown in Fig. 3.5a.

In view of the inclusion of the curvature-length λ2, we analyzed the residuals of the previous
statistical model and plotted them as a function of λ2 (Fig. 3.5b). The correlation coefficient
(R2 = 0.295) is small but including λ2 in the analysis further improves the fit. The respective
statistical model

μ2
2μ1

= n0 + n1λ1 + n2λ2 (3.21)

yields optimal parameters n0 = −3.95 × 10−3 mm, n1 = 1.50 and n2 = −2.46 × 10−1 with a
correlation coefficient R2 = 0.949. The p-value for the intercept n0 is 0.36. For n1 and n2 the
p-values are again very low.

We have heuristically found a possibility of improving Eq. (3.21) even further. This was achieved
by including a factor (1 − φ) on the left-hand side. More precisely, we tried

(1 − φ)μ2
2μ1

= q0 + q1λ1 + q2λ2 (3.22)
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Figure 3.5 – Scatter plots of a) the statistical model see Eq. (3.20) predicting μ2/2μ1 depending
on the Porod length λ1, b) the residuals of μ2/2μ1 and the statistical model Eq. (3.20) versus
the curvature-length scale parameter λ2, c) the statistical model predicting (1 − φ)μ2/2μ1 (see
Eq. (3.22)) depending on the Porod length λ1 and the curvature-length λ2.
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Figure 3.6 – Scatterplot of the exponential correlation length ξ versus the statistical model
Eq. (3.23) that depends on the first and second moment of the chord length distribution, μ1 and
μ2.

as a statistical model. Here the optimal parameters are q0 = −1.23 × 10−2 mm, q1 = 1.03, and
q2 = −1.98 × 10−1. The p-values for all coefficients are negligible and the correlation coefficient
is R2 = 0.980. The results are shown in Fig. 3.5c.

3.4.4 Relating microwave metrics and optical metrics

In the previous sections we found a statistical relation between the exponential correlation length
ξ and the geometrical lengths λ1 and λ2 on one hand and a relation between the first and second
moment of the chord length distribution (μ1 and μ2) and λ1 and λ2 on the other hand. Both
findings can be recast into a direct connection between the moments of the chord lengths μ1 and
μ2 and the exponential correlation length ξ. We express this relation in the statistical model

ξ = c0 + c1(1 − φ)μ1 + c2
(1 − φ)μ2

2μ1
. (3.23)

Note that (1 − φ)μ1 = λ1 by virtue of Eq. (3.12), which means that we essentially replace
λ2 by (1 − φ)μ2/2μ1 in the statistical model Eq. (3.18) that relates ξ to λ1 and λ2. We
obtained the correlation coefficient R2 = 0.985 for the optimal parameters c0 = 9.28 × 10−3 mm,
c1 = −7.53 × 10−1, c2 = 2.00. This final relation Eq. (3.23) significantly improves both models
Eq. (3.17) and Eq. (3.18).

The summary of all models is given in Table 3.1. To ensure that the inclusion of an additional
parameter, e.g. by going from model Eq. (3.17) to model Eq. (3.18), is indeed an improvement,
we have employed the Akaike information criterion (AIC) [Akaike, 1998]. The AIC measure
allows to discern if the improvement of the correlation coefficient is trivially caused by an
increasing number of fit parameters or an actual improvement on the likelihood of the fit due
to the relevance of the added parameters. Absolute AIC-measures have no direct meaning,
however a decrease of at least 2k between two models, where k is the number of extra parameters,
implies a statistical improvement. For our case k = 1 the difference in the AIC-measure between
Eq. (3.17) and Eq. (3.18) is 177 confirming the statistical relevance significance of λ2.
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Table 3.1 – Summary Statistical Models

model Eq.(#) parameters (in order) (adj.) R2

ξ = a0 + a1λ1 (3.17) 5.93 × 10−2 mm, 0.79 0.731
ξ = b0 + b1λ1 + b2λ2 (3.18) 1.23 × 10−2 mm, 1.32, −3.85 × 10−1 0.922
ξ = b0 + c1(1 − φ)μ1 + c2(1 − φ)μ2/2μ1 (3.23) 9.28 × 10−3 mm, −7.53 × 10−1, 2.00 0.985
μ2/2μ1 = l0 + l1λ1 (3.20) −2.40 × 10−2 mm, 1.25 0.898
μ2/2μ1 = n0 + n1λ1 + n2λ2 (3.21) −3.95 × 10−3 mm, 1.50, −2.46 × 10−1 0.949
(1 − φ)μ2/2μ1 = q0 + q1λ1 + q2λ2 (3.22) −1.23 × 10−2 mm, 1.03, −1.98 × 10−1 0.980

3.4.5 Shape factors gG and B

As an application of the values obtained for the moments of the chord length distribution we can
now compute the “shape diagram” of the optical parameters (gG, B) suggested in Libois et al.
[2013] derived from [Malinka, 2014, Eq. 60], and Eq. (3.27). The results depend on the value
of the Laplace transform at the absorption coefficient α, and thus on wavelengths. For most
wavelengths in the visible and near infrared regime αμ1 � 1 is small and therefore the Laplace
transform Eq. (3.9) can be approximated by a few terms in the expansion Eq. (3.10). Taking
typical values for α allows us to estimate the relative importance αμ2/2μ1 of the second-order
term compared to the first-order term in the expansion Eq. (3.10). These values are obtained by
using the values for κ provided by Warren and Brandt [2008]. The first order αμ1 and ratio
αμ2/2μ1 are calculated for typical wavelengths and shown in Table 3.2. The values and standard
deviations denote averages taken over all samples. Wavelengths are selected to match common
optical methods, namely 0.9 μm [Matzl and Schneebeli, 2006], 1.31 μm [Arnaud et al., 2011],
and the SWIR wavelengths 1.63 μm, 1.74 μm and 2.26 μm used by Domine et al. [2006]. We
added the wavelength 2.00 μm, which is not used by any instrument, but has the highest value
for α in this range. Note that for this wavelength αμ1 is not small and the expansion of the
Laplace transform, Eq. 3.10, likely not a good approximation. The standard deviations are high
as a result of the variations due to grain type. The lowest values of αμ2/2μ1 are found for fresh
snow (PP) and highest for depth hoar (DH) and melt forms (MF).

The values in Fig. 3.7 for gG and B are computed for wavelength 1.3 μm and shown as a scatter
plot of B versus 1−gG similar to Libois et al. [2013]. The range of values for B ∈ [1.54, 1.72] and
(1 − gG) ∈ [0.315, 0.335] is within the range B ∈ [1.25, 2.09] and (1 − gG) ∈ [0.2, 0.5] obtained
by ray-tracing simulations for different geometrical shapes [Libois et al., 2013]. The variations
of the values for different snow types is however very small. To complete the analysis we have
computed gG and B for higher absorbing wavelengths for which the shape signature might be
higher, but the expansion of Eq. (3.10), less reliable. The results are averaged over all snow
samples and included in Table 3.2.

1this wavelength is not used for optical measurements
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Table 3.2 – Determination of the absorption coefficient α [Warren and Brandt, 2008], the first
order, the fraction of the first and second order of Eq. (3.10), and the obtained estimates for B
and gG averaged over all snowsamples, including the standard deviation σ.

wavelength (μm) α (m−1) αμ1 ± σ μ2/2μ1α ± σ (%) B 1 − gG

0.90 4.1 0.00094 ± 0.0003 < 0.5 1.71 ± 0.00 0.323 ± 0.000
1.31 1.2 × 102 0.026 ± 0.008 2 ± 1 1.64 ± 0.02 0.316 ± 0.000
1.63 2.0 × 103 0.45 ± 0.14 37 ± 13 0.89 ± 0.20 0.253 ± 0.011
1.74 1.1 × 103 0.24 ± 0.079 20 ± 7 1.19 ± 0.14 0.272 ± 0.010
2.00 1 9.4 × 103 2.1 ± 0.68 172 ± 60 - -
2.26 1.1 × 103 0.25 ± 0.08 20 ± 7 1.14 ± 0.13 0.240 ± 0.010

3.5 Discussion

3.5.1 Methodology

Before turning to the discussion of physical implications of the results, we first address method-
ological details. Retrieving parameters from μCT images must be taken with care. In addition
to the uncertainties related to filtering and segmentation pointed out by Hagenmuller et al.
[2016], the present method also requires to discuss the interface-smoothing for the validation of
λ1 and λ2, the image resolution, and the anisotropy of the samples.

Geometrical interpretation

The present analysis and cross-validation of the curvature metric imposes requirements on the
smoothness of the interface. The subtle influence of the smoothing parameter on the surface area
s and averaged mean and Gaussian curvatures H and K is apparent from Fig. 3.2. Naturally,
H2 is most sensitive to smoothing. We found a competing performance of λ1 and λ2 with the
smoothing parameter when comparing the triangulation based estimates with the two-point
correlation function based values. The agreement for the surface area seems to be best with
smoothing parameter S = 50. In contrast, more smoothing is required to obtain an agreement
for the curvature-length. This higher sensitivity on the smoothing parameter is reasonable,
since curvatures are defined by surface gradients which are more sensitive to a smooth mesh
representation than the surface area. The competing behavior is caused by the smoothing filter,
which neither preserves the volume nor the surface area of the enclosed ice upon smoothing
iterations. This causes the drop in agreement for λ1 in Fig. 3.2 (left, middle) with increased
smoothing. As a remedy, more sophisticated smoothing filters could be used which, for example,
ensure the conservation of the enclosed volume [Kuprat et al., 2001]. Such problems could
be partly avoided by computing normal vector fields and curvatures directly from voxel-based
distance maps [Flin et al., 2005]. A detailed comparison of all these different methods however,
is beyond the scope of this paper. In contrast to λ1 and λ2, the interpretation of first and second
moments of the chord length distribution, μ1 and μ2, is rather straightforward, where μ1 is
directly related to the optical diameter dopt, and μ2 is a measure of the variations of this size
metric.
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Figure 3.7 – Scatterplot of the asymmetry factor gG and the optical shape factor B evaluated
for the refractive index at wavelength λ = 1.3 μm.

Resolution

Resolution plays an important role in obtaining estimates for λ1 and λ2. For a μCT measurement
the resolution is commonly chosen appropriately depending on snow type. While fresh Snow
(PP) is typically reconstructed with 10 μm voxel size, melt forms (MF) and larger particles have
larger voxel sizes of 35 μm or 54 μm. Since we have obtained λ1 and λ2 with two independent
methods that agree reasonably well we conclude that the resolution is generally sufficient to
estimate the involved length scales. To further confirm that there is no remaining bias with
resolution we assessed the ratio λ2/voxelsize. For our data, this ratio is 9.8 on average, with
a standard deviation of 2.6 and no systematic difference between small and large voxel sizes,
implying that λ2 can be considered as equally well resolved for all snow samples.

The image resolution plays another important role in the interpretation of the expansion of
the two-point correlation function. As pointed out by Torquato [2002], a missing r2 term is
generally equivalent to a smooth interface while discontinuities, like sharp edges, would lead to a
second order term. Fresh snow and depth hoar crystals are known to have these discontinuities,
at least visually. But it remains questionable if these features can be detected objectively at
the micrometer scale from image analysis. In an image, discontinuities are always smeared out,
virtually contributing to the third order term.

Anisotropy

The present dataset was previously used to study the anisotropic properties of snow [Löwe et al.,
2013]. Therefore it is necessary to elaborate on the impact of anisotropy in the present analysis
which exclusively involves isotropic two-point correlation functions. It is important to note that
the our analysis does not assume isotropy, but it rather includes the orientational averaging in
the three Cartesian directions as a part of the method. Such a procedure is principally valid
for arbitrary samples. Moreover, also the geometrical interpretation of the quantities remains
valid. This was rigorously shown for λ1 Berryman [1998] which relates the slope of the two-point
correlation function at the origin for arbitrary anisotropic structures after orientational averaging
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to the surface area per unit volume s. Though we did not find a mathematical proof for the
corresponding statement for λ2, the agreement of λcf

2 (obtained from the two-point correlation
function, orientationally averaged) with λvtk

2 (obtained from direct computation of the interfacial
curvatures) strongly suggests its validity. In addition, we assessed that the residuals between λvtk

2
(where anisotropy does not play a role) and λcf

2 are not correlated with anisotropy (R2 = .026).

Overall, we are confident that the method can be applied to arbitrary anisotropic samples to
provide orientationally averaged length scales with the correct geometric interpretation with
acceptable uncertainties due to image resolution.

3.5.2 Linking size metrics in snow

Accepting the methodological uncertainties, we shall now discuss our findings of the statistical
analysis and their relevance for the interpretation of snow microstructure.

Including size dispersity to estimate the exponential correlation length

By construction, the exponential correlation length ξ must be understood as a proxy to charac-
terize the entire two-point correlation function with a single length scale. This single length scale
contains signatures of both; properties that dominate the behavior of the two-point correlation
function for small arguments (λ1 and λ2) and other properties that dominate the tail-behavior
of the two-point correlation function for large arguments.

To discuss the statistical relations we will start with recovering Mätzler’s model [Mätzler, 2002].
This statistical model covers a relation between the exponential correlation length and the optical
grain size, or in their nomenclature: the correlation length. Mätzler’s model predicts the slope to
be a1 = 0.75, which is an average of a1 = 0.8 for depth hoar and a1 = 0.6 for other snow types.
This is consistent with our finding a1 = 0.79 since we have many depth hoar samples in the data
set, suggesting that grain shape has a direct influence on the statistical relation. This influence
was made quantitative by including the curvature-length to the statistical analysis, resulting
in the statistical model Eq. (3.18) (Fig. 3.3c). The quantitative improvement on the statistical
model Eq. (3.16) by using Eq. (3.18) is given by the increase in the correlation coefficient from
R2 = 0.733 to R2 = 0.922.

In addition we established a new statistical relation Eq. (3.23) between ξ and the moments of
the chord length distribution, μ1 and μ2. This model performs even better when the correlation
coefficient R2 = 0.985 is taken as a quality measure. We confirmed that the inclusion of an
additional parameter in Eq. (3.18) and Eq. (3.23) indeed improves on eq. (3.16), by employing
the Akaike information criterion (AIC) measure [Akaike, 1998].

All proposed statistical models show an improvement to Eq. (3.1) indicating that at least two
different length scales λ1 and λ2 or μ1 and μ2 are required to obtain a reasonable prediction of the
exponential correlation length. While λ1 and μ1 are both trivially related to the optical radius
via Eq. (3.7) and Eq. (3.12), the two other size metrics μ2 or λ2 are the origin of performance
increase.
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This seems surprising at first sight. Why should local aspects of the interface (λ1 and λ2)
determine the non-local decay of structural correlations (ξ)? To illustrate our explanation for
this finding, we resort to a particle picture and consider a dense, random packing of monodisperse
hard spheres. For such a packing, the particle “shape” is trivial and fully determined by the
sphere diameter d, which determines the slope of the two-point correlation function at the origin.
However, also particle positions and thus the decay of correlations is fixed by d. This becomes
obvious from the representation C(r) = nvint(r) + n2vint(r) ∗ h(r) for the two-point correlation
function for such a system at number density n [Löwe and Picard, 2015]. In this representation,
the spherical intersection volume vint and the statistics of particle positions h(r) both depend
on d. Now imagine that each sphere is deformed by a hypothetical, volume-conserving re-shape
operation to an irregular, non-convex particle, which is still located at the center of the original
sphere. Due to re-shaping, the parameter H2 would increase. After the re-shape, neighboring
particles would overlap (on average), since their maximum extension must have been increased
compared to the sphere diameter. To recover a non-overlapping configuration, all particle
positions must be dilated. The latter, however, also affects the tail of the two-point correlation
function. This is exactly what we observe: the “shape of structural units” in snow, as exemplified
by H2 is always correlated with the “position of the structural units” in space. We note that
this particle analogy has clear limitations and only serves here to illustrate the rather abstract
statistical relations between different length scales. Snow remains a bi-continuous material where
individual particles cannot be distinguished.

Overall, we conclude that both, λ2 or μ2 can be used to significantly improve estimates of ξ

when compared to optical diameter based estimates.

Linking moments of the chord length distributions to Porod and curvature-length

Hitherto no geometrical interpretation for the second moment μ2 of the chord length distribution
was known. Our results suggest an empirical relation, Eq. (3.22), that involves the two geometrical
length scales λ1 and λ2. In the following we provide supporting arguments for the link between
μ2 and λ1 and λ2 by discussing the relation Eq. (3.13) between the chord length distribution
and the two-point correlation function.

The relation Eq. (3.13) was originally raised in the context of small angle scattering long time ago
[Méring and Tchoubar, 1968] and later revisited e.g. by Levitz and Tchoubar [1992], revealing two
different approximation steps. A first simplification comes from the assumption that consecutive
chords on the random ray in Fig. 3.1 are statistically independent. This issue has been discussed
in detail also by Roberts and Torquato [1999], who established an exact relation between the
Laplace transforms of the two-point correlation function, the chord length distribution, and a
surface-void correlation function based on this assumption. Their results however show that for
level-cut Gaussian random fields, where this assumption is violated, the prediction of the chord
length distribution can be still very accurate. This indicates that assuming independent chords
is per se not a serious limitation. Secondly, Eq. (3.13) is actually an approximation for dilute
systems which is generally not valid for snow.

To test the range of validity of the relation (3.13) for snow, we have taken three samples and
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computed the chord length distribution directly to compare them to the prediction of Eq. (3.13)
as shown in Fig. 3.4. An obvious drawback of Eq. (3.13) can be seen for the rounded grains
(RG) sample. Due to the quasi-oscillations in the two-point correlation function (cf. Löwe et al.
[2011]), A() and its second derivative assume negative values, which would imply negative
values for p() via Eq. (3.13). This is in contradiction to the meaning of p() as a probability
density and likely a consequence of the assumptions which are not valid for snow. Despite this
obvious drawback, Fig. 3.4 shows that Eq. (3.13) yields three, qualitatively consistent results for
different snow types where the basic features of the chord length distrbution are well predicted:
First, it captures the considerable variations of the position of the maximum, the width, and
decay of the chord length distribution. Secondly, the relation Eq. (3.13) predicts that the chord
length distribution tends to zero for small values i.e. p(0) = 0 (as confirmed in Fig. 3.4). This
is a direct consequence of a smooth interface as shown in Wu and Schmidt [1971]. Thirdly,
it leads to Eq. (3.14), that involves the integral over the two-point correlation function. The
latter indicated a connection between μ2 and λ1 and λ2, which was confirmed quantitatively
via Eq. (3.21). Given the assumptions discussed above, it is not surprising that a heuristic
improvement could be achieved by including a term (1 − φ) in Eq. (3.22), since snow is not a
dilute particle system and corrections containing φ-terms are to be expected.

Overall, our analysis confirms that both approaches to microstructure characterization, via
two-point correlation functions (with metrics λ1, λ2) or via chord length distribution (with
metrics μ1, μ2) are not independent. They rather describe, slightly different but interrelated,
structural properties which are now discussed in view of grain shape.

3.5.3 Grain shape

Grain shape, a geometrical interpretation

The international classification for seasonal snow on the ground [Fierz et al., 2009] considers
grain shape as the morphological classification into snow types. This is motivated by the common
but loose perception of shape as the basic geometrical form of constituent particles. It is clear
that grain shape remains a vague concept unless it is formulated in terms of quantities which
are unambiguously defined on the 3D microstructure.

Local curvatures are often regarded as shape parameters and used to characterize snow on a
more fundamental level. The relevance of the mean curvature is described and analyzed in
detail in Calonne et al. [2015], where morphological transitions (e.g, faceting) of snow during
temperature gradient metamorphism are visible in the distribution of mean curvatures. The
present description of grain shape in snowpack models [Lehning et al., 2002, Vionnet et al.,
2012] is based on the variance of the mean curvature, by the sphericity parameter as defined by
Lesaffre et al. [1998]. There were attempts to measure the sphericity from digital photographs
as described by Lesaffre et al. [1998] and Bartlett et al. [2008]. This definition is valid only in
two dimensions and therefore difficult to compare directly to their 3D counterparts in Calonne
et al. [2015].

It is therefore natural to use objective measures such as the mean and Gaussian curvature H
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and K to quantify shape. Though K is computed from local properties of the interface, it has a
strict topological meaning due to its relation to the Euler characteristic which is by definition
strictly independent of local shape variations of the ice-air interface. The Euler characteristic
was e.g. used by Schleef et al. [2014] to characterize microstructural changes during densification.
We found however, that the contribution K/3 in λ2 from Eq. (3.8) ranges from 1-13% and is
on average 3.7 % of H2. Hence the curvature-length λ2 is dominated by the second moment
H2, and thus closely related to the variance of an (inverse) size distribution, the distribution
of mean curvatures. This indicates the formal similarity to μ2 which is also a second moment
of a size distribution, the chord length distribution. Hence, both metrics can be regarded as
accounting for size dispersity in snow.

Overall, we suggest that both parameters, μ2 and λ2 can be used to objectively define a grain
shape for 3D microstructures which is closely connected to size dispersity and which naturally
extends grain size (optical diameter) determining μ1 or λ1. Note that within this definition,
grain shape is not a dimensionless parameter. With this perception of shape we now connect
back to the original applications of microwave and optical modeling.

Grain shape for microwave modeling

Thus far, the exponential correlation length ξ as a key parameter for MEMLS based microwave
modeling (MEMLS) was mainly predicted from the optical diameter. Our conclusions from
section 3.5.2 could now be restated: The inclusion of a grain shape parameter, λ2 or μ2 improves
the prediction of the exponential correlation length significantly. Or, according to the conclusion
from the previous section, one may alternatively restate that size dispersity has an influence on
microwave properties. This is known from other models than MEMLS, where an influence of
polydispersity on the effective grain scaling parameter within DMRT-ML microwave modeling
was found [Roy et al., 2013].

This equivalence of shape and size dispersity at the level of two-point correlation functions can
be further illustrated by an interesting example. Consider a microstructure of polydisperse
spherical particles. The definition of grain shape from the classification [Fierz et al., 2009] would
assign a spherical shape to this microstructure, while the averaged squared mean curvature
H2 would instead vary depending on the variance of particle radii. As pointed out by Tomita
[1986], for low density, such a system of polydisperse spherical particles can always be mapped
uniquely onto an assembly of monodisperse but irregularly shaped particles by solving an integral
equation, if only the two-point correlation function is considered. Shape can be equivalent to
polydispersity, and snow types which are visually very different might still have very similar
physical properties. This example also explains why the objective size dispersity parameters λ2
or μ2 cannot be mapped onto the classical definition of grain type from Fierz et al. [2009].

Grain shape in geometrical optics

Finally, we turn to the implications of size dispersity or grain shape on geometrical optics within
the scope of Malinka [2014] based on chord length distributions.
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As pointed out by Malinka [2014], if consecutive chords were statistically independent i.e. a
Markovian process, then the obtained distribution would be an exponential, and all optical
properties solely determined by the optical diameter (or μ1). To quantify the deviation from an
exponential chord length distributions we calculated the fraction μ2/2μ2

1 which is unity for a
exponential chord length distribution. This fraction is on average 0.75 for rounded grains (RG),
0.76 for melt forms (MF), 0.77 for precipitation particles (PP) and defragmented particles (DF),
0.79 for faceted crystals (FC) and the closest value to unity is 0.876 for depth hoar (DH). This
implies that the chord length distribution for depth hoar is closest to an exponential, which can
be visually confirmed by Fig. 3.4. We reach a similar conclusion for the two-point correlation
function where λ1 is already a fairly good predictor for the exponential correlation length
when depth hoar is considered (see Fig. 3.3)a). But due to the deviations from an exponential
distribution, an influence of shape via μ2 on the optical properties would be expected according
to Malinka [2014].

Using the chord length distributions we were able to calculate the shape factors B and gG from
Malinka [2014] and Libois et al. [2013] in the limit of low absorption where both approaches can
be compared. The (B, gG) shape diagram (cf. Fig 1.(a) in Libois et al. [2013]) in Fig. 3.7 was
obtained for wavelength 1.3 μm where the Laplace transform Eq. (3.10) can be approximated
by the first and second order. The variations of the absolute values for B, gG shown in Fig. 3.7
predominantly stem from corrections which are linear in μ1 (by virtue of (3.28)), while the small,
scattered deviations from a perfect straight line are caused by μ2. If B and gG were evaluated
for wavelength 0.9 μm, the influence of μ2 would be even smaller. Our results show that the
values for B and gG are exactly within the range that is suggested by ray-tracing simulations
for various geometrical shapes for a wavelength of 0.9μm [Libois et al., 2013], but show a much
smaller variation over the entire set of snow samples. Comparing our results to ray-tracing
of geometrical shapes is however not straightforward, since the 3D microstructures cannot be
mapped on an ensemble of regular geometrical objects.

The predicted values for B (Fig. 3.7) are very similar to the values obtained by experiments
[Libois et al., 2014] but show a smaller variation. It should be noted that, as the authors discuss,
the correlation between the experimentally obtained B and shape, as defined by Fierz et al.
[2009], is statistically not significant and variations might be attributed to shadowing effects
relevant at higher densities.

Overall, our analysis indicates a smaller variation of optical properties with shape via μ2 according
to Malinka [2014] when compared other methods. We can only hypothesize potential origins
which are connected to the present analysis. A crucial assumption made in the geometrical
optics framework [Malinka, 2014] is the statistical independence of the chord length and the
consecutive ice-air incidence angle for a ray which passes through a grain. Such an assumption
might be progressively violated for lower absorption where a higher number of internal reflections
in fact probes this assumption more often. Hence the true effect of shape on B and gG might
be more pronounced than predicted by size dispersity via μ2 [Malinka, 2014]. Further details
on the discrepancies between measurements, simulations and theory remain to be elucidated
by combining tomography imaging and shape analysis together with optical measurements and
ray-tracing simulations in the future.
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3.6 Conclusions

We have analyzed different microstructural length scales (λ1, λ2 and μ1, μ2) of snow samples which
were derived from the two-point correlation function and chord length distribution, respectively.
All length scales have a well-defined geometrical meaning. While the first order quantities
(μ1, λ1) are both related to the mean size (optical equivalent diameter), their higher order
counterparts (λ2, μ2) are objective measures of size dispersity present in the snow microstructure.

For the two-point correlation function, the length scale λ2 is essentially determined by the second
moment of the mean curvature distribution. For the chord lengths, μ2 is the second moment of
the chord length distribution. Both quantities naturally extend the concept of mean grain size as
covered by the optical equivalent diameter. The statistical relation established between (λ1, λ2,
μ1, μ2) indicates that in practice the two measures of size dispersity can be used interchangeably.

We have argued that size dispersity is one possible route towards an objective definition of grain
shape, and thus both quantities (λ2, μ2) can be regarded as measures of shape. Within this
interpretation, we found that grain shape or size dispersity significantly improves a widely used
statistical model for the exponential correlation length (as a key size metric for MEMLS based
microwave modeling).

We have also used this interpretation of shape to assess the so called optical shape factor B

which can be related to μ1 and μ2 in the framework of Malinka [2014]. The results suggest that
size dispersity is only a first, but likely not a complete step to characterize shape for optical
modeling.

Overall, defining grain shape via dispersity measures μ2 or λ2 provides a clear intersection
between microwave modeling of snow (if based on the exponential correlation length) and
optical modeling of snow (if based on Malinka [2014]). We do not believe this intersection to be
exhaustive: The influence of shape in snow optics likely involves more than size dispersity. And
size dispersity is likely not sufficient to explain the full diversity of microwave properties of snow.
But the established overlap of relevant microstructure parameters provides a clear quantitative
starting point for further improvements.

3.7 Appendix: Optical shape factor B from moments of the
chord length distribution

To derive an expression of the optical shape factor B in terms of the moments of the chord
length distribution, we start from expression [Libois et al., 2013, Eq. 6] for the single scattering
co-albedo

(1 − ω) = B
γV

2Σ
, (3.24)

which is related to B, the average volume of a particle V , the average projected area of a particle
Σ, and the absorption coefficient γ. This can be recast in terms of the mean chord-length using
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[Malinka, 2014, Eq. 6], which yields, adopting the notation of the present paper, the relation

(1 − ω) = B
αμ1

2
(3.25)

On the other hand, an expression for the single scattering co-albedo is directly provided by
Malinka [2014, Eq. 56]. Inserting [Malinka, 2014, Eq. 29,42,49,18] and re-arranging terms we
obtain

(1 − ω) =
Tout(n)

1 +
Tout(n)

n2
p̂(α)

1 − p̂(α)

(3.26)

in terms of the real part of the refractive index n, the averaged Fresnel transmittance coefficient
Tout(n) (given by Malinka [2014, Eq. 19] in closed form) and the Laplace transform of the chord
length distribution p̂(α).

To obtain an expression for B by comparing Eq. (3.25) and Eq. (3.26) it must be noted that both
expression are based on slightly different assumptions. While Eq. (3.24) is meant to be valid only
in the limit of low absorption [Libois et al., 2013], Eq. (3.26) is valid for arbitrary values of α.
This is reflected by the existence of the limit α → ∞ in Eq. (3.26), while Eq. (3.25) diverges if B

is regarded as a constant which is strictly independent of α. Hence the comparison of Eq. (3.25)
and Eq. (3.26) must be limited to small values of αμ1 in order to obtain an expression for B

which can be compared to the results from [Libois et al., 2013]. That said, we equate Eq. (3.25)
and Eq. (3.26), take into account an additional factor of 2 between Malinka [2014] and Libois
et al. [2013] due to a different treatment of the extinction efficiency, we end up with

B =
1

αμ1

Tout(n)

1 +
Tout(n)

n2
p̂(α)

1 − p̂(α)

(3.27)

Complemented by the approximation Eq. (3.10) for the Laplace transform p̂, the expression
[Malinka, 2014, Eq. 19] for Tout(n), this yields an expression of the shape factor B in terms of
the first and second moments, μ1 and μ2, of the chord length distribution, the real part of the
refractive index n and the absorption coefficient α.

To explicitly reveal the correction of B for small α which involves the second moment of the
chord-length distribution, we expand Eq. (3.27) around α = 0 to obtain

B = n2
[
1 − (αμ1)

(
n2

Tout(n)
− 1 +

μ2
2μ2

1

)]
(3.28)
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4Upscaling ice-crystal growth dynam-
ics in snow: Rigorous modeling and
comparison to 4D X-ray tomography
data

4.1 Introduction

Snow on the ground is an interesting example of a porous, high-temperature material close to
the melting point of ice, where a continuous evolution of microstructure, referred to as snow
metamorphism [Colbeck, 1982], is ubiquitous under ambient conditions. The dynamical evolution
originates from micro-scales where sintered ice crystals grow collectively from the vapor phase.
Ice crystal growth is therefore not only of interest due to the fascinating morphologies of isolated
crystals [Libbrecht, 2005, Barrett et al., 2012], it also constitutes the essential ingredient for
upscaled material models of snow. There is an increasing demand to move from empirical to
first-principles approaches of microstructure evolution to limit uncertainties of snow models in
environmental or climate applications.

The prediction of the morphological evolution of snow on the ground is subject to the common
difficulty of separation of spatial scales in heterogeneous materials [Torquato, 2002]. Various
techniques [Berryman, 2005] can be employed to bridge between microscopic (grain or pore)
growth processes and the macroscopic (spatially averaged) scales of interest for continuum
modeling. However, snow microstructure evolution is still based on simple geometrical shapes
when relating size changes to dominant thermodynamic driving conditions (e.g. Adams and Brown
[1982], Colbeck [1983], Legagneux and Dominé [2005]). Existing approaches are based on variants
of classical coarsening models [Ratke and Voorhees, 2002] as a multi-particle diffusion problem,
mediated by the curvature dependence of the equilibrium vapor pressure in the Gibbs-Thomson
boundary condition.

Sphere based approaches are however not satisfying for obvious reasons. The simplistic model
geometry reflects by no means the complex, bicontinuous microstructure of snow. Recent
advancements [Pinzer et al., 2012, Calonne et al., 2014a, Schleef et al., 2014, Hammonds
et al., 2015, Wiese and Schneebeli, 2017] in observing snow microstructure evolution in time-
lapse experiments using X-ray micro-computed tomography (μCT) can not be related to these
approaches which hinders full exploitation of advanced morphological observations. Tomography
has e.g. revealed that the Euler characteristic is correlated with the evolution of the surface area
via the topological evolution upon unidirectional compression [Schleef et al., 2014]. Another
study [Calonne et al., 2014a] has shown that the distribution of mean curvatures in snow develops
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an asymmetry between growth and sublimation sites as a consequence of growth kinetics. Even
though a visual inspection of snow unambiguously demonstrates that kinetic effects play a role
Colbeck [1982], it is difficult to quantitatively relate these aspects to averaged morphological
properties. In addition, state-of-the-art 3D modeling of growing single crystals has demonstrated
the importance of combining vapor and heat diffusion with anisotropic growth laws [Barrett
et al., 2012, Demange et al., 2017a]. This insight is presently however completely disconnected
from snow continuum modeling. Only a faithful representation of geometry will allow to utilize
local thermodynamic aspects of ice crystal growth for terrestrial snow and exploit 4D data of
snow evolution for improvements in upscaled snow models.

Apart from snow, the evolution of bicontinuous microstructures is relevant for other materials as
well. A fundamental understanding of isothermal coarsening of bicontinuous structures can be
obtained from phase field simulations [Kwon et al., 2007] which demonstrated the discriminating
power of the joint probability distributions of mean and Gaussian curvature. A key difficulty
in bicontinuous systems arises from non-local terms in the growth law which are related to
topological changes [Park et al., 2015]. For solidification in Cu-Al composites it has been
demonstrated how an interface analysis can be combined with 4D tomography [Fife et al.,
2014]. However a full understanding of the coupled evolution of interface parameters in evolving
microstructures is still missing and advancements in relating 4D data to rigorous evolution
models is still of broader interest.

A common question of upscaling is the choice of parameters for which evolution equations are to
be derived. From a thermodynamic view point, upscaled conservation equations for mass and
energy in snow [Calonne et al., 2014b] explicitly involve the ice volume fraction and the specific
surface area. Hence an appropriate microstructural viewpoint must provide evolution equations
at least for these quantities. Often it is however necessary to extend the set of parameters,
either as closure for the initial ones, or because there is specific interest in them. Chapter 3 has
e.g. shown that the second moment H2 of the mean curvature distribution is also of relevance
due to its appearance in the expansion of the two-point correlation function. The latter can be
related to macroscopic transport properties via bounds [Torquato, 2002], and thus the dynamics
of H2 allows constraining the evolution of two-point correlations. This has practical consequences
e.g. for situations where 3D microstructure observations are not available and the dynamical
characterization relies on estimating interfacial shape via small-angle scattering [Micha et al.,
1998].

A powerful starting point to microstructure evolution was suggested by Drew [1990] who
developed a mathematically rigorous description of the evolution of averaged properties for an
evolving interface by starting from differential equations for the local, principal curvatures. The
averaged evolution of the surface is determined by the local interface velocity which must be
provided as a “constitutive law” as a closure relation. The strength of the approach [Drew, 1990]
has been demonstrated e.g. by Fife et al. [2014] and Morel [2007].

The goal of the present paper is to built on Drew [1990] and derive a rigorous upscaling scheme for
snow microstructure which can be coupled to upscaling of heat and mass transfer [Calonne et al.,
2014b]. This is achieved by volume averaging the time evolution of local geometrical properties
of the ice-air interface, which is determined by a normal interface velocity relating crystal growth
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to geometrical and thermodynamic quantities. For snow-specific reasons, we generalize Drew
[1990] to include a contribution of the interface velocity from mechanical deformation, and
include an equation for the second moment of mean curvature. The averaged microstructural
properties are governed by partial differential equations valid in a Eulerian frame of reference.
We demonstrate the correctness of the equations in the absence of deformations by numerically
tracking the interfaces of idealized grains under a prescribed growth law. This test enables
to infer the uncertainties originating from the smoothness of the interface. In a next step we
apply the same procedure to 4D data of a time-lapse snow metamorphism experiment under a
stationary temperature gradient conducted by μCT. This comparison quantifies the uncertainties
of velocities estimates from 4D data, the representation of curvatures and topological effects.
Finally, we exploit that independent of velocity measurements, the analytical framework allows
to statistically assess the relevance of common closure models. Using Finite Element simulations
of heat transfer, we provide evidence that a diffusion limited picture is in contradiction with the
experimentally observed evolution of the specific surface area.

The paper is organized as follows. In Section 4.2 we derive the microstructural evolution
equations in the general setting. In Section 4.3 we simplify the equations to the situation of
absent macroscopic gradients and show the correctness of the equations for idealized grains. In
Section 4.4 we apply the same framework to 4D tomography data of snow evolution experiments
and discuss the uncertainties. In Section 4.5 we show how the exact model can be used for a
statistical assessment of growth laws. The results are discussed in Section 4.6.

4.2 Upscaling of microstructure in snow metamorphism

4.2.1 Preliminaries and notation

We consider snow in a sample volume V = Vi + Vv comprising ice and (vapor-filled) air sub-
volumes Vi, Vv separated by an interface Γ with area A = |Γ|. The microstructure is characterized
by an indicator function

I(x, t) =

⎧⎨⎩1 if x ∈ Vi at time t

0 otherwise
(4.1)

The dynamical evolution of the indicator function can be inferred from the motion of the ice-air
interface which is described by the discontinuous variant [Drew, 1990] of the level-set equation
[Sethian, 1999]

∂

∂t
I(x, t) + w(x, t) · ∇I(x, t) = 0 (4.2)

in terms of the total interface velocity field w. Due to the relevance of both, we allow for a
contribution u from mechanical deformations and v from crystal growth according to

w = u + v (4.3)
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Here only the growth part can be assumed to be normal to the interface v = vnn in terms of
the normal vector n. Eq. (4.2) is defined in the sense of distributions since ∇I is a gradient of a
discontinuous function that acts as delta function concentrated on the interface according to

∇I = −n
∂I
∂n

(4.4)

Here ∂I/∂n is a 1D delta function in the normal direction. Note, with this definition the normal
vector field is oriented from ice to air. The local mean curvature H and the Gaussian curvature,
K, are given by the spatial derivatives of the normal vector

H =
1
2

∇ · n =
1
2

(κ1 + κ2), K = κ1κ2 (4.5)

where κ1 and κ2 denote the principal curvatures.

4.2.2 Volume and surface averages

The volume average of a function f(x) for x ∈ V is defined by

〈f〉 :=
1
V

∫
dx f(x) (4.6)

A function f can be restricted to the ice or vapor phase via fi := fI or fv := f (1 − I) and the
volume-average of fi can be written as

〈fi〉 = φ
1
Vi

∫
Vi

f(x) dx =: φ 〈f〉i (4.7)

which defines the intrinsic average 〈•〉i and the ice volume fraction φ = 〈I〉 = Vi/V .

Due to the delta-function in the level-set equation, volume-averages of various microstructural
quantities reduce to surface averages. For a function g defined on the interface Γ the surface
average is defined by

g :=
1
s

〈
g(x)

∂I
∂n

〉
=

1
A

∫
Γ

da g(x) (4.8)

with the surface area element da and s denoting the surface area per unit volume

s =
〈

∂I
∂n

〉
=

A

V
(4.9)

Using the notation above we can restate the temporal and spatial averaging theorems. The
Reynolds rules [Flanders, 1973] allows interchanging temporal and spatial derivatives, viz
∇ 〈f〉 = 〈∇f〉. When calculating the time derivative of Eq. (4.6) and exploiting the level-set
equation Eq. (4.2) this gives rise to additional surface average terms for time and space derivatives
of a phase-restricted functions fi according to

∂ 〈fi〉
∂t

=
〈

∂f

∂t i

〉
+ sfwn (4.10)
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in terms of the normal component of the interface velocity field wn, and according to

∇ 〈fi〉 = 〈∇f i〉 − sfn (4.11)

These equations are also known by the volume and surface averaging theorems [Whitaker, 1998].

4.2.3 Evolution of the ice volume fraction

The micro-scale ice mass conservation equation can be written as

∂ρi
∂t

+ ∇ · (ρiui) = 0 (4.12)

where ui = uI is the ice deformation velocity field and ρi = ρI the density, both restricted to
the ice phase. Note that 〈ρi〉 = φρice with ρice the density of ice.

In principle u must be determined by a micro-scale mechanical treatment (force balance and
constitutive equation), in the following we shall assume these quantities to be given. By volume
averaging the continuity equation Eq. (4.12) and using the averaging theorems Eq. (4.10) and
Eq. (4.11) we obtain

∂φ

∂t
+ ∇ (φ 〈u〉i) = svn (4.13)

This result corresponds to Calonne et al. [2014b] when u was set to zero. It relates ice mass
changes in the control volume V to the deformation velocity u and the accretion of mass vn

integrated over the surface s.

4.2.4 Evolution of the surface area per unit volume

Eq. (4.13) implies that the macroscopic mass conservation equation requires an evolution equation
for the surface area s. Due to the general form of the velocity field (4.3) the derivation of the
surface area evolution must be generalized compared to Drew [1990]. The essential steps are
provided in Appendix 4.8.1, the result is given by

∂s

∂t
+ ∇sw = sFs (4.14)

in terms of the source term Fs given by

Fs = 2vnH + (∇ · u) − n [∇ ⊗ u] n (4.15)

Here ⊗ denotes the outer product of two vectors. Eq. (4.14) is a partial differential equation for
the surface area per unit volume in a Eulerian frame of reference which accounts for the change
in surface area from the divergence in the mean velocity field (left hand side) while the right
hand side captures the contribution from growth (first term) and the first order correction of the
surface area from deformation gradients involving u (second and third term). Due to a typo in
Drew [1990] the first term on the right hand side of (4.15) differs by a factor of 2 which affects
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the form of the following curvature equations as well.

4.2.5 Evolution of interfacial curvatures

While the evolution equation for the ice volume fraction (4.13) requires the surface area, the
equation for the surface area (4.15) requires the mean curvature. Analogous to Drew [1990]
the local evolution equations for arbitrary moments of the curvature can be derived again by
algebraic manipulation of (4.2) and subsequent averaging. For the curvatures we neglect higher
order changes from non-normal components of the interface velocity via u in (4.3) which is
tedious, but principally feasible via the evolution of the metric tensor McLachlan and Segur
[1994]. The key steps are provided in the Appendix 4.8.2, resulting in the set of continuity
equations

∂

∂t
H + w · ∇H = − 1

s
∇sw

(
H − H

)
+ FH +

(
H − H

)
Fs (4.16)

∂

∂t
K + w · ∇K = − 1

s
∇sw

(
K − K

)
+ FK +

(
K − K

)
Fs (4.17)

∂

∂t
H2 + w · ∇H2 = − 1

s
∇sw

(
H2 − H2

)
+ 2HFH +

(
H2 − H2

)
Fs (4.18)

with the source terms

FH = −
(
2H2 − K

)
vn − 1

2

(
∂2

1 + ∂2
2
)

vn

FK = − 2HKvn − H
(
∂2

1 + ∂2
2
)

vn +
√

H2 − K
(
∂2

1 − ∂2
2
)

vn

(4.19)

where ∂2
1 , ∂2

2 denote the second derivatives along principal coordinates on the surface. Eqs. (4.13),
(4.15), (4.16), (4.17), (4.18) constitute the evolution equations for the most important interface
parameters hitherto investigated for snow.

4.3 Interface evolution of idealized grains

To assess the correctness of the coupled evolution equations we first consider the evolution of
grains with idealized shapes but non-trivial curvature distributions (spheroids, tori) under a
uniform growth law.

4.3.1 Reduced evolution equations

For single grains or statistically homogeneous microstructures the evolution equations can be
simplified due to absence of the gradient terms in Eq. (4.16) to (4.18). Furthermore we can
neglect deformation in the evolution for the averaged surface area i.e. the last two terms in Fs

vanish in (4.15). Due to the constant velocity field also non-local, surface gradient terms in the
curvature equations vanish. Overall we end up with

∂s
∂t = 2svnH ∂H

∂t = vnK − 2H vnH
∂K
∂t = −2vnH K

(4.20)
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0.011.0e-03 1.6e-02

 H

Figure 4.1 – Idealized grains (spheroids A,B,C and torus), surfaces colored by mean curvature
H.

4.3.2 Generation of initial states

For the comparison we created three equally sized spheroids with different smoothing methods
and a torus using VTK and Paraview Hernderson [2007]. Spheroid A is based on a parametric
surface from a vtkSphere object and rescaled to a spheroid using vtkTransform. Spheroid B
was sampled on a voxel image and convoluted with a Gaussian filter (support 4.5, σ = 9 voxels)
for smoothing before applying a contour filter to obtain the triangulated surface mesh as the
zero-level set of the image. Spheroid C is also based on a binary voxel image, but here contouring
was applied before the mesh was smoothed by Laplacian smoothing with S = 500 iterations
as described in chapter 2. To include also a grain with negative mean curvatures, a torus was
chosen which is also based on a parametric surface with numerically exact positions of the
mesh-points. All objects are shown in Fig. 4.1 revealing the differences in surface representation
by the mean curvatures.

Results

All objects are evolved forward in time by (Euler) integrating the trajectories of the mesh points
under a uniform normal velocity field vn using the VTK filter WarpByVector. To ensure stability
via the CFL-condition [Sethian, 1999], time steps are adapted to the mesh size. The procedure
yields a time series of surfaces and at each time-step the averaged quantities s, H, K, H2 are
obtained by integrating their local counterparts over the surface according to (4.8). This allows
comparing left and right hand side of the evolution equations (4.20) using a Crank–Nicholson
scheme for their (finite-differences) discretization. In the following we refer to the left hand
side as the measured quantity and the right hand side as the modeled quantity. The results are
shown in Fig. 4.2. For the Spheroid A and the torus, which are based on parametric surfaces,
a very good agreement is obtained indicating the correctness of equations and calculation of
interface parameters. The comparison of Spheroid A to B and C (Fig. 4.1) reveals the influence
of different smoothing procedures when the objects are derived from voxel data, similar to the
typical experimental situations discussed below. In particular higher order moments such as H2

are considerably affected by the apparent surface roughness (Fig. 4.2), but still resulting in a
reasonable correlation between modeled and measured rates.
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Figure 4.2 – Scatter plots of measured and modeled rates for interface parameters of the grains
from Fig. 4.1.

The results for the evolution of idealized grains show that under certain requirements of surface
smoothness, the image analysis can be applied to infer the evolution of interface properties via
(4.20). This comparison can be directly carried out at the level of their governing differential
equations if an estimate of the interface velocity is available.

4.4 Ice-air interface evolution from 4D tomography data

4.4.1 Time lapse experiments and interface tracking

Next we conduct a comparison of the model to 4D image data of a temperature gradient
metamorphism experiment by using interface tracking, as developed in chapter 2, to estimate
the a-priori unknown interface velocity. To this end we analyzed two temperature gradient
experiments (Series 1 and 2) that were previously presented in Pinzer et al. [2012]. In these
experiments, homogeneous cylindrical snow samples of diameter 3.6 cm and height 2 cm were
thermodynamically driven by a constant temperature gradient applied via Peltier elements in an
instrumented tomography sample holder to monitor the microstructure by μCT. The snow in
the experiments has the same mean temperature T = −8 ◦C, while slightly different temperature
gradients ∇T = 46, 55 K/m were applied for 384, 665 h with a time step between successive μCT
scans of 8 h.

For the image analysis the reconstructed binary images were blurred with a Gaussian filter
(support = 2.0, σ = 1.5) to improve the extraction of the zero-level set from the contour filter, as
suggested by the performance comparison from the previous section. From the time series of
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Figure 4.3 – Cubic cutouts of the ice-air interface at t = 0 (left) and t = 288h (right) from Series
1 (top, cube length 1.26 mm) and Series 2 (bottom, cube length 2.52 mm) colored by interface
velocities vn.

images we extracted the interface velocity field using the interface tracking method developed in
Krol and Löwe [2016a]. The rendered initial (t = 0) and intermediate (t = 288 h) states of the
microstructure together with their estimated velocity fields are shown in Fig. 4.3. The analysis
yields local estimates of the geometrical quantities s, H, K, H2 and the interface velocity vn

from which the right hand side (“modeled”) of (4.20) can be computed by integration over the
surface. Again, we employ the set of reduced equations (4.20). We have tested the assumption
of statistical homogeneity of the sample to drop the gradient terms. The relevance of neglecting
the non-local terms requires however a separate discussion.

4.4.2 Results

The comparison of the measured and modeled rates from Eq. (4.20) (again compiled by Crank–
Nicholson finite differencing) is shown in Fig. 4.4. The volume fraction rates φ̇ allow for the
most basic assessment of the derived interface velocities via the right hand side of (4.13) which
highly underestimates the measured rates. This is partly caused by the errors of the interface
tracking method which converges to the correct values only for high temporal and spatial
resolution (see chapter 2). Velocity estimates are additionally influenced by crystals entering
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Figure 4.4 – Plot of measured rates versus predicted rates for the φ, s, H, K, χ and H2 from
Eqs. (4.20).

and leaving the control volume during a time step. Likewise, the modeled values for ṡ are also
significantly influenced by the errors of 2vnH. As a remedy, for the other parameters we have
therefore replaced 2vnH on the right hand side by the measured ṡ/s values since the latter
can be estimated reliably. This is immediately reflected by the H comparison giving at least
reasonable agreement which indicates −H vnH (cf. (4.20)) to be the dominant contribution.
The consequence of omitting surface gradients in (4.20) is that the topology evolution is not
well captured [Park et al., 2015]. This is reflected by (4.20), which implies ṡ/s = −K̇/K. This
is equivalent to an Euler characteristic per unit volume, χ = sK/(2π), which is constant in
time. As shown by K or χ, topology stabilizes only in the second part of the experiments while
the initial dynamic phase is not captured by the reduced model. The H2 predictions are most
affected by velocity errors in joint averages with higher order moments of K, H.

4.5 Statistical analysis of crystal growth laws

Independent of the errors in the estimation of interface velocities revealed in the previous section,
the exact model allows conducting a statistical assessment of crystal growth laws which typically
depend on quantities that can be computed with higher accuracy.

4.5.1 Growth laws for temperature gradient driven growth

If crystal growth is modeled as a variant of a Stefan-type of diffusion problem [Libbrecht, 2005],
the local interface velocity must be related to the chemical potential difference between ice and
vapor, i.e. to the difference between the actual vapor concentration ρv(x) and the equilibrium
concentration ρeq

v (x) at a point x on the interface according to vn(x) = α [ρv(x) − ρeq
v (x)] with a
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Figure 4.5 – Comparison of modeled and measured evolution of ṡ according to (4.22).

kinetic coefficient α. It is well-known that the excess vapor concentration comprises diffusive and
kinetic contributions [Colbeck, 1983], their relative importance was however difficult to assess
quantitatively so far. If for the diffusion limited part local equilibrium between temperature
and vapor is assumed [Shreve, 1967], the local interface velocity can be related to temperature
gradients in the pore space according to chapter 3

vn(x) = A n(x) · ∇T (x)
∣∣∣
+

, (4.21)

where + denotes the limit of approaching the interface from the pore side.

To assess (4.21) we have computed the temperature fields for Series 1,2 in the microstructure by
the Finite Element Method [Pinzer et al., 2012] using standard means of a voxel-based solution
of the stationary heat equation in the air-ice “composite” by applying the average temperature
gradient of the experiment as boundary condition in the numerics. This allows to compute the
local temperatures and gradients at the interface to infer a theoretical estimate of the local
interface velocity vn according to (4.21). For A we used the temperature dependent theoretical
prefactor A from chapter 3. These local values for vn can be used in Eq. (4.20) to compute
sHvn by integration over the surface and estimate the theoretical rates for the surface area
evolution. This amounts to a statistical analysis since we are actually probing the implicit
curvature dependence of the temperature field in (4.21) via

ṡ = 2sHvn = s

∫
dHp(H) Hvn(H) . (4.22)

4.5.2 Results

The comparison of the left and right hand side of Eq. 4.22 are shown in Fig. 4.5. While the
agreement is reasonable for Series 1, the experimental data for Series 2 is showing a decrease in
surface area per unit volume while the growth law (4.21) would predict an increase (positive
rates). To discuss the different behavior of Series 1,2 we note that the approximation (4.21)
essentially implements the idea of purely diffusion limited growth where vapor fluxes in the
pore space are related to temperature gradients assuming local equilibrium. In this picture,
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Figure 4.6 – Evolution of H and H2 restricted to growing (nz < 0) and sublimating (nz > 0)
parts of the interface.

variations of the interface velocity are mainly due to variations of temperature gradients caused
by geometrical effects. Since the temperature is determined by the Laplace equation, the most
prominent effect of geometry on the solution in a heterogeneous medium is the local “deformation”
of temperature iso-lines. This leads to an increase of gradients at positive curvature regions
(convexities) and a decrease of gradients in negative curvature regions (concavities). This effect
is akin to Laplacian growth, i.e. the destabilizing contribution in the Mullins–Sekerka problem
[Libbrecht, 2005] which principally allows for positive ṡ in (4.22). This effect is superimposed
by more complex microstructural signatures in vn(H). The analyzed Series 2 provides clear
evidence that the relation (4.21), which has been confirmed statistically chapter 2, is merely a
side effect and not the origin of the observed evolution of the specific surface area since it is in
contradiction with (4.22).

To further demonstrate the morphological differences between the two series we compared the
difference between sublimating and growing surface sites by constraining the surface averages
on upward and downward faces as a proxy for it (cf. Fig. 4.3 and Calonne et al. [2014a]). The
results are shown in Fig. 4.6 which confirms the findings from Calonne et al. [2014a]: While
H on growing and sublimating parts remain the same, H2 starts from the same initial values
but split up during the evolution reflecting the morphological asymmetry between growing
and sublimating surfaces. The onset of disagreement found in Fig. 4.5 roughly corresponds to
the onset of the H2 split up in Fig. 4.6. Fig. 4.6 also reveals that the width of the curvature
distribution H2 − H

2 of Series 2 is considerably (60%) higher when compared to Series 1.
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4.6 Discussion

4.6.1 Main findings

We have derived a mathematically exact model for the coupled evolution of the most important
parameters that are presently used to analyze snow microstructure in tomography experiments
[Flin et al., 2004, Schleef et al., 2014, Calonne et al., 2014a, Krol and Löwe, 2016b]. The
derivation is based on volume averaging the (discontinuous) level-set equation as a full dynamical
characterization of the ice indicator function at the micro-scale. The volume averaged evolution
equations (4.13), (4.15), (4.16), (4.17), (4.18) enables to bridge from micro to macro scales
relevant for continuum snow modeling [Calonne et al., 2014b].

We generalized the approach from Drew [1990] for a contribution of the interface velocity
stemming from mechanical deformations. Even though we have not yet exploited these terms,
they are crucial for future applicability to account for the fact that crystal growth in snow is
always accompanied by viscoplastic deformations. The growth contribution to the interface
velocity captures the non-equilibrium thermodynamics at the ice-air interface at the micro-scale
scale, within the known limitations of diffusion modeling of crystal growth [Libbrecht, 2005].
Strictly, the set of equations are incomplete and must be regarded as a part of a hierarchy of
evolution equations for the moments of the joint distribution of mean and Gaussian curvatures.
For a validation of the PDEs in the reduced form this is however irrelevant since all terms can
in principle be computed without a priori information solely from 4D observations.

We have shown that the equations are formally correct in a reduced setting (Eq. (4.20)) by
comparing their predictions to the numerical propagation of interfaces of idealized grains
(Fig. 4.1). The comparison revealed the impact of surface smoothness, with a stronger impact
on the accuracy of higher order curvature terms K and H2, in particular if the interfaces are
derived from contouring binary voxel images for the 3D representation of geometry (Fig. 4.2).

In a next step we have compared the system of equations to 4D image data of snow microstructure
evolution acquired from temperature gradient metamorphism experiments. These experiments
were chosen to have negligible densification. Even though estimated interface velocities appear
to be reasonably smooth (Fig. 4.3), the benchmark revealed considerable errors (Fig. 4.4). The
main reason for the disagreement is the limited temporal and spatial resolution of present
experiments which do not continuously resolve the evolution, causing a bias in the interface
tracking method (chapter 2). An additional contribution stems from surface smoothness for the
images derived from binary data, as suggested by the grain evolution tests. For an improvement
it seems advantageous to combine segmentation, interface detection and velocity measurements
directly from gray values by using level-set segmentation methods as e.g. employed in Fife et al.
[2014].

We have further used the fact that uncertainties in velocity estimates do not play a role if
the model is employed for a statistical assessment of closure relations for snow metamorphism
under temperature gradient growth. We have shown that the surface area evolution cannot be
explained in both experiments (especially Series 2 in Fig. 4.5) from the diffusion limited growth
law Eq. 4.21, even though the latter itself has been previously confirmed statistically in chapter 2.
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The excess vapor originating from temperature differences [Colbeck, 1983] either does (Fig. 4.5,
Series 1) or does not (Fig. 4.5, Series 2) provide the dominating contribution to the surface area
evolution, though uncertainties of the solution of the Laplace (heat) equation at the interface
(see chapter 2) on voxel data must be acknowledged. Here further insight of the relation between
kinetic effects and shape of ice crystals is required. In a first step it seems necessary to clarify
the role of the morphological asymmetry between growing and sublimating parts of the surface
(Fig. 4.6). The asymmetry reflects that sublimating surfaces (upward, cf. 4.3) tend to be rounded
while growing surfaces (downward) become faceted prior to the skeletal instability (onset visible
in Fig. 4.3). This is consistent with a variance of the mean curvatures which is higher on the
downward surfaces, confirming the observations from Calonne et al. [2014a].

4.6.2 Limitations and prospects

It is obvious that inferring ice crystal growth thermodynamics solely from image data is inherently
ill-posed since discriminating the cause for a moving ice-air interface either by deformation
or by growth is locally impossible: A single sphere growing in temperature gradient simply
migrates in a shape-invariant way [Shreve, 1967], equivalent to a rigid-body translation. The
problem must in fact be constrained by additional micro-scale information on the strain field
(densification). Fig.4.3 reveals that heterogeneities in growth are heterogeneous over length scales
of a single grain, while deformation processes are expected to be slow and with heterogeneities
over larger scales [Theile et al., 2011]. It seems thus feasible to combine the interface tracking with
e.g. volume correlation techniques on hierarchical scales and correct for deformation gradients
which were neglected in (4.20). Deformations presently hinder a benchmark analysis (Sec. 4.4) of
isothermal coarsening experiments of low density snow [Schleef et al., 2014] which are dominated
by curvature effects but also strongly affected by deformations.

Another drawback of the present analysis is neglecting surface gradients in (4.19) for the reduced
equations (4.20). Surface gradients are important for topological transitions [Park et al., 2015]
which can be illustrated by the following hand-waving argument: Upon a topological transition
(e.g. pinch-off) the velocity field must develop a discontinuity and surface gradients develop
a delta-function leading to non-differentiable evolutions for the parameters H, K, H2. These
aspects are notoriously difficult for surface tracking methods, while they are naturally accounted
for in phase field models. For a finite number of droplets, the consequence of topology changes
in the Mullins–Sekerka problem on a non-differentiable surface area is shown in Garcke [2013].
Although not mathematically exact, topological changes may be captured on a phenomenological
level as source terms in the evolution equations as suggested in Drew [1990].

For our comparison we have chosen experiments where the densification is small. To reduce
the uncertainties and further exploit the predictions of the model it would be helpful to carry
out dedicated experiments at higher temporal and spatial resolution [Calonne et al., 2015] to
capture the processes in a truly time-resolved manner. It seems sufficient to focus thereby on
smaller volumes of interest since the representativeness of averages is not a problem. Ideally
experiments would cover a few sintered ice crystals interacting by diffusion in a closed cavity
for a full control of mass conservation. In the absence of micro-gravity, temperature gradients
should be applied under different, relative orientation to gravity to discern growth from vertical
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deformation velocities. Here the analysis of sinusoidal temperature gradient forcing [Pinzer and
Schneebeli, 2009] may provide valuable insight. Additional input can be expected from phase
field models, when the growth law vn of the associated sharp interface limit is known exactly
[Garcke, 2013]. Thereby details of the volume averaged microstructure model can be assessed
beyond the scope of the idealized grain evolution presented here.

4.7 Conclusions

We have derived a mathematically exact upscaling model for microstructure parameters which are
presently most commonly used to characterize snow microstructure in tomography experiments.
The key ingredient is the local interface velocity of the ice-air interface which characterizes
local crystal growth dynamics. The model can be used to benchmark the involved image
analysis methods, since local estimates of the interface velocity can be obtained from 4D X-ray
tomography image data without a-priori assumptions. Alternatively the model can be used for
a statistical assessment of growth laws to improve simplifications for macroscopic continuum
modeling of snow. Due to the rigorous starting point, we believe that the derived evolution
scheme is a powerful tool to assess the simplifications employed for crystal growth in snow by
combining 4D data and simulations and exploiting the overlap to closely related coarsening
problems.
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4.8 Appendices

4.8.1 Derivation of the surface area equation

To derive (4.14) we consider the auxiliary expression

∂

∂t
(n · ∇I) + ∇ · ([w ⊗ n] ∇I) (4.23)

and note, by taking the gradient of (4.2), the validity of another auxiliary relation

∂

∂t
∇I + w [∇ ⊗ ∇] I = − [∇ ⊗ w] ∇I . (4.24)

Carrying out the derivatives in (4.23) using the product rule, subsequently inserting (4.24) and
further exploiting ṅ · n = 0 and (∇ ⊗ n) · n = 0 yields the identity

∂

∂t
(n · ∇I) + ∇ · ([w ⊗ n] ∇I) = (∇ · w)(n · ∇I) − n · [∇ ⊗ w] ∇I (4.25)

which is valid for arbitrary w. Now we insert the specific superposition (4.3) into the right hand
side of (4.25) and note that the two velocity contributions must be treated differently: For the
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deformation part u no further simplifications can be made. For the growth part v = vnn that is
normal to the interface, the right hand side reduces to vn(∇ · n)(n · ∇I). Collecting all the
terms and additionally inserting (4.4) we obtain

∂

∂t

(
∂I
∂n

)
+ ∇ ·

(
w

∂I
∂n

)
= Fs

(
∂I
∂n

)
(4.26)

with Fs given by (4.15). Volume averaging (4.26) and exploiting (4.8) and (4.9) finally leads to
(4.14).

4.8.2 Derivation of the curvature equations

To derive evolution equations for averages of arbitrary functions of the principal curvatures we
start from the time evolution of the principal curvatures κi , i = 1, 2 under a normal velocity
field vn in a surface-following (Lagrangian) frame of reference which is given by Drew [1990]

κ̇i = −vnκ2
i − ∂2

i vn . (4.27)

The time evolution for H, K, H2 can be inferred by using (4.5) which yields

Ḣ = FH , K̇ = FK , Ḣ2 = 2HFH (4.28)

with FH,K given by Eq. 4.19. The respective Eulerian counterparts of (4.28) are obtained by
adding w · ∇(•) on the left hand side.

The derivation of averaged quantities is shown below for the mean curvature H as an example.
To this end we multiply Eq. 4.26 by H and add the Eulerian counterpart of Eq. (4.28) times ∂I

∂t

which yields

∂

∂t

(
H

∂I
∂n

)
+ ∇ ·

(
wH

∂I
∂n

)
= HFs

∂I
∂n

+ FH
∂I
∂n

(4.29)

and volume averaging implies

∂

∂t

(
sH

)
+ ∇

(
swH

)
= sFH + sHFs (4.30)

After insertion of Eq. (4.14) and reshuffling terms we arrive at (4.16). Equations for K and H2

can be derived accordingly.
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5Assessment of growth laws for
isothermal metamorphism

5.1 Introduction

Isothermal metamorphism of snow has been studied for a long time from both, experimental
(e.g [Kaempfer and Schneebeli, 2007, Flin et al., 2004, Schleef and Löwe, 2013, Schleef et al.,
2014]) and theoretical point of view (e.g. [Adams and Brown, 1982, Flanner and Zender, 2006,
Legagneux and Dominé, 2005]). All studies relate to, at least from a phenomenological point
of view, to the process of Ostwald ripening [Ratke and Voorhees, 2002]. Ostwald ripening is
characterized by the growth of the average size of a collection of particles which interact by mass
heat diffusion. The classical theoretical framework is provided by the Lifshits-Slyozov-Wagner
(LSW) theory [Lifshitz and Slyozov, 1961, Wagner, 1961] which provides a minimal model for
this process. The collective behavior is mediated by a curvature term in the equilibrium vapor
pressure referred to as Gibbs-Thomson effect, which is incorporated in the boundary condition
of the diffusion problem [Ratke and Voorhees, 2002]. The interaction of spheres of different size
leads to an effective transport of mass from small to large particles.

To apply the model developed in chapter 4 to low density, isothermal experiments published
earlier in Schleef et al. [2014] and Löwe et al. [2011], a full image analysis similar to the one
presented in Section 4.4 must be carried out. However a major difficulty arises due to considerable
deformation velocities (i.e. displacement rates that are larger than the average grain size). This
makes it impossible to get reliable measurements for the interface velocities, especially since the
deformation field is not uniform over the whole sample. Therefore, the motion of the interface
from deformations are fundamentally indiscernible from curvature driven crystal growth. A
different approach is thus needed here. To account for crystal growth and deformations we show
that specific surface area

SSAV = s/φ, (5.1)

with φ the volume fraction of ice, is essentially independent of the deformation field after making
some simplifying assumptions. This approach requires us to derive an evolution equation for
the SSAV which can be combined with the statistical analysis similarly to Section 4.5, given a
prescription of the interface velocity vn in terms of local and averaged parameters is provided.
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This Chapter is organized as follows. In Section 5.2 we derive an expression for the coupled
evolution of the SSAV and the second moment of the mean curvature H2. In Section 5.3 we
discuss the available methods and the parameters that can be conveniently estimated within
the scope of the thesis before going into the full analysis of the 600 samples. In Section 5.4 we
will assess three different growth laws and derive corresponding evolution for SSAV and H2. In
Section 5.5 we show the results of the three different approaches that will be discussed in Section
5.6.

5.2 Evolution equation for SSAV and H2

To predict the surface area evolution under coarsening of arbitrary interfaces we propose a similar
expression for the interface velocity as suggested by Fife et al. [2014] and Tomita [2000]. This
allows us to connect the components of LSW theory to the mathematical framework developed
in Chapter 4.

The starting point is given by the evolution equation (4.14) for the averaged interfacial area

∂s

∂t
+ ∇sw = s2vnH + (∇ · u) − n [∇ ⊗ u] n (5.2)

The corresponding equation for SSAV can be derived by using equations (4.13), (5.2) and (5.1)
yielding

∂SSAV
∂t

+ w · ∇SSAV + SSAV
1
φ

· ∇(φ w − φ 〈u〉i) =

2SSAVvnH − SSA2
V vn − SSAVn [∇ ⊗ u] n + SSAV ∇ · u

(5.3)

For simplicity, we neglect deformation velocities, specifically we omit the last two terms of
Eq. (5.3). This implies u = 〈u〉i. Furthermore we assume that the volume fraction φ and surface
s are homogeneous to neglect corresponding gradients in (5.3), which leads to

∂SSAV
∂t

+ SSAV∇ · (v) = 2SSAVvnH − SSA2
V vn. (5.4)

Note that Eq. 5.4 only involves the divergence of the yet unspecified growth velocity v while the
divergence of the deformation velocity ∇ · u drops out due to u = 〈u〉i.

Therefore, considering the specific surface area SSAV instead of s, enables the separation of
densification and crystal growth and the only contribution to the evolution of SSAV comes from
crystal growth. This approach is supported by the finding of Schleef et al. [2014], who showed
that the evolution of the SSAV is not statistically influenced by the applied external stress. This
approach can be considered as a formalization of the fact that the SSAV in a volume does not
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change if additional snow of the sample type is added.

Next, we derive here a similar expression for H2 by starting from Eq.(4.18) for H2

∂

∂t
H2 + w · ∇H2 = −1

s
∇sw

(
H2 − H2

)
+ 2HFH +

(
H2 − H2

)
Fs, (5.5)

with

FH = −
(
2H2 − K

)
vn − 1

2

(
∂2

1 + ∂2
2
)

vn. (5.6)

In addition to the homogeneity assumptions for s and φ we also have to assume ∇H2 = 0 and
∇ ·

(
swH2

)
= sH2∇ · w to obtain an expression for H2 that is independent of gradient terms.

In addition, we neglect the second term in Eq.(5.6) as done in Section 4.5 to arrive at

∂

∂t
H2 = −2

(
vnH3 − vnHK + H2 vnH

)
. (5.7)

which is the same equation (4.20), as used in Chapter 4.

5.3 Data and Methodology

To validate the mathematical model developed in Chapter 4 for isothermal metamorphism of
snow we will reanalyze the dataset originally published in Schleef and Löwe [2013] and Schleef
et al. [2014]. The data set consists of 45 time-series containing 600 μCT samples of naturally
and artificially produced fresh snow with various morphologies undergoing metamorphism and
compaction under applied stresses. The dataset is extended by three longer term time series
consisting of 36 μCT samples originally published by Löwe et al. [2011].

A thorough analysis similar to Chapter 4 would require a full VTK interface analysis of the 636
measurements, which has not been done due to time constraints. But even without this analysis
it is possible to proceed with already existing data and asses Eq.(5.4) and (5.7) in a preliminary
test. To this end, we use an alternative curvature characterization presented in Schleef and
Löwe [2013], namely by the integral-geometric computation of the mean and Gaussian curvature
according to Michielsen and Raedt [2001]. This data is complemented by estimates of H2 that
can be retrieved from the two-point correlation function (see chapter 3).

The estimates for H and K are calculated from the Minkowski functionals MF2, MF3 and MF4
[Michielsen and Raedt, 2001] by

H =
3MF3
MF2

and K =
6πMF4
MF2

. (5.8)

We tested these relations by comparing the Minkowski-based estimates for H and K to the
VTK-based estimates for temperature gradient series 2, analyzed in Chapter 4. The results are
given in Fig. 5.2 and show a principle agreement for both quantities, with increased scatter
in the Gaussian curvature. The higher order moment H2 can be obtained from the two-point
correlation functions, which have also been computed previously for the data-sets of interest. By
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Figure 5.1 – Visualization of initial and final mean curvature measures on one of the compaction
experiments (natural snow at −13◦C , Schleef et al. [2014]), retrieved from the VTK-based
image analysis.

fitting the two-point correlation function we can retrieve the parameters SSAV, the curvature
length λ2 and the exponential correlation length ξ (see Chapter 3). To obtain the second moment
of the mean curvature H2 we use Eq.(3.8), from which we calculate

H2 = λ−2
2 /8 + K/24, (5.9)

where K is estimated from the Minkowski functionals via Eq.(5.8).

5.4 Growth laws for isothermal metamorphism

Finding a valid model for vn is not a trivial task. In chapter 2, two growth laws were tested on
an isothermal experiment, 1) a kinetics limited and 2) a diffusion limited growth law. Here we
will test these different growth laws that can be represented in the general form

vn = C
(
H − H

)
/L (5.10)

with three possible expressions for L

L =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

λ =
(
2H2 − K

)−1/2 →
(
2H2 − K

)−1/2

ξ = f(SSAV , H2 − K/3).

(5.11)

For L = 1 we obtain the kinetics limited growth law used in chapter 2. For a and L = λ we
obtain the form for diffusion limited growth, which is believed to hold for bicontinuous structures
[Fife et al., 2014, Tomita, 2000], where λ can be interpreted as a screening length [Tomita, 2000].
As such λ is actually a local quantity, but for reasons related to the limitations of available data
we will replace 2H2 − K by 2H2 − K in Eq. (5.11) as indicated by the arrow. The third growth
law with L given by the exponential correlation length ξ is an ad-hoc, empirical variation of the
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Figure 5.2 – Scatter plots of the mean curvature H and the Gaussian curvature K measured
with the VTK based image analysis and with the Minkowski functionals, according to Eq. 5.8
on TG series 2 from chapter 4. The red lines indicate the 1 : 1 correspondence.

diffusion limited growth law.

For all mentioned possible growth laws vn = 0. The expressions Eq. (5.11) and vn = 0 can be
used in Eq.(5.4) to obtain the evolution equation for the SSAV

∂SSAV
∂t

= 2C(T ) SSAV
(
H

2 − H2
)

/L (5.12)

with a temperature dependent prefactor C(T ).

For the evolution of the second moment of the mean curvature we plug Eq. (5.11) into Eq. (5.7)
and obtain

∂

∂t
H2 = −2C(T )

L

(
H4 − H H3 − H2K + H HK + H2 H2 − H

2)
. (5.13)

This form obviously has many higher order terms that cannot be computed from the Minkowski
functionals and two-correlation function data. Therefore we have to resort to a parametrization
of the higher order terms. Inspired by the form of Eq.(5.12), a first attempt is given by

∂

∂t
H2 = 2D(T )H2

(
H

2 − H2
)

/L (5.14)

with a temperature dependent prefactor D(T ). Both equations (5.12) and (5.14) can be validated
with the given methodology discussed in Section 5.3.
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Figure 5.3 – Plot of the measured parameters φ, SSAV, H and H2 of all 48 datasets over time.

5.5 Results

For illustration purposes we have generated two VTK-based visualizations of an initial and final
snow sample out of the isothermal metamorphism experiments from Schleef et al. [2014] shown
in Fig. 5.1.

For all 48 isothermal experimental time series we have estimated the parameters of the model by
means of the integral geometry estimates for H and K and a fitting procedure of the two-point
correlation function to estimate H2, λ and ξ as described in Section 5.3. The time evolution of
all parameters SSAV, ξ and the curvatures terms H and H2 are shown in Fig. 5.3.

Each time-series is fitted to C(T ) and D(T ) for which we allow a nonlinear dependency on
temperature by including three fit parameters

C(T ) =a1 + b1T + c1T 2

D(T ) =a2 + b2T + c2T 2.
(5.15)

We have tested Eq. (5.12) and Eq. (5.14) with the three possible expressions for the interface
velocity Eq. (5.11) and measured its performance by the Pearson correlation coefficient R2. The
results are given in Table 5.1. The best model performance was obtained when L = ξ with
a Pearson correlation coefficient R2 = 0.88 for the evolution of the SSAV and H2 (see Table
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Table 5.1 – Summary: Correlation coefficients for ISO closure models

interface velocity R2 for Eq. (5.12) R2 for Eq. (5.14)
vn = C

(
H − H

)
0.80 0.76

vn = C
(
H − H

)
/λ 0.84 0.80

vn = C
(
H − H

)
/ξ 0.88 0.83

5.1). In Fig. 5.4 we show measured and modeled rates for SSAV and H2 for the best performing
model (L = ξ in Eq. (5.11)). For this growth law, the optimal parameters from Eq. (5.15) are
a1 = 4.7 × 10−17, b1 − 3.6 × 10−19, c1 = 7.0 × 10−22 and a2 = 1.3 × 10−16, b2 = −9.9 × 10−19, c2 =
1.9 × 10−21.

5.6 Discussion and Conclusion

We have made a first attempt to validate the mathematical framework proposed in Chapter
4 for 48 isothermal compaction experiments in a statistical closure modeling approach. The
chosen expression for vn has a measurable impact on the performance.

Overall, the performance of this model for SSAV is similar to the model that is proposed by
Schleef et al. [2014]. We suggested a preliminary but reasonable approach to predict evolution
of H2, which has never been done before.

For the data in Chapter 2, there was more support for the kinetic-based growth law, i.e. L = 1
in Eq. (5.1), than for diffusion limited growth laws for fresh snow samples. Here we find that if
L is chosen to be the exponential correlation length ξ, the model performs slightly better. It is
however, important to note that the analysis in Chapter 2 was based on a local quantity λ in
Eq. (5.11) while here we only tested averaged length scales (ξ and λ). We can therefore not yet
conclude that this model gives more physical insight to the problem.

Despite a similar performance, the model for SSAV presented in [Schleef et al., 2014] has the
advantage of being rather simple. Its prediction is given by

˙SSAV = (a′ + b′T )SSAm′
V (5.16)

and only needs an initial measurement of SSAV, which could be achieved with infrared-
photography [Matzl and Schneebeli, 2006]. Thus, Eq. (5.16) does not rely on μCT measurements
or uncertain predictions of H2.

Despite the fact that many assumptions on the homogeneity of the samples had to be made to
arrive at Eq. (5.12), they can all be eventually investigated by going back to the mathematically
exact starting point Eq. (5.3) and (5.5).

The scatter that is observed in Fig. 5.4 can have various origins. To investigate the temperature
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Figure 5.4 – Plot of measured rates versus predicted rates for the SSAV and H2.

dependence of the prefactors C(T ) and D(T ), we have also fitted all series in the dataset
individually with one parameter C, D and assessed the distribution of the fitted values as a
function of temperature. The results are shown in Fig. 5.5 together with the best estimate
of C(T ) and D(T ) from Eq. (5.15). Although a non-linear dependency of ice-kinetics could
be expected [Libbrecht, 2005], the scatter is rather large especially given the scarce data for
higher temperatures. However, the scatter plots of the coefficients for C and D look very
similar, indicating that the growth laws from Eq. (5.11) are a reasonable starting point. The
parametrization of Eq. (5.14) is considerably influenced by the higher order terms in FHH.

The evolution of both SSAV and H2 can, at least to some extent, be related to the variance
of the mean curvature. This suggests that all length scales discussed here behave similarly
in isothermal metamorphism. This also explains why Eq. (5.16) can be relatively successful.
However, in view of temperature gradient metamorphism, where the curvature length behaves
differently from the SSAV, see Chapter 3 and Chapter 4, the potentials of a rigorous starting
point which distinguishes between both quantities will become obvious.

88



2.54 2.56 2.58 2.60 2.62 2.64 2.66 2.68 2.70 2.72

 T  
1e2

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

 C
(T

) 
 

1e−19

−3 ◦  C

−8 ◦  C

−9 ◦  C

−13 ◦  C

−18 ◦  C

−19 ◦  C

2.54 2.56 2.58 2.60 2.62 2.64 2.66 2.68 2.70 2.72

 T  
1e2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

 D
(T

) 
 

1e−19

−3 ◦  C

−8 ◦  C

−9 ◦  C

−13 ◦  C

−18 ◦  C

−19 ◦  C

Figure 5.5 – Scatter plot of fitted values for C(T ) and D(T ) as a function of temperature.
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6Conclusion

The research gap for modeling microstructure evolution in snow could be described from two
diametrically opposed perspectives. One is the applied, macroscopic perspective, of continuum
modeling of heat and mass transfer in operational snowpack models [Lehning et al., 2002, Vionnet
et al., 2012], with empirical choices of microstructure parameters, tailored to traditional measure-
ments in the field [Fierz et al., 2009], and employing pragmatic approaches for the rate equations
of theses parameters in the models. The other is the fundamental, microscopic perspective,
which focuses on details of shape evolution for single ice-crystals [Demange et al., 2017a] and
employs ice crystal growth thermodynamics via non-equilibrium growth laws [Libbrecht, 2003].
In between these two perspectives, there are recent advancements of X-ray tomography and
time-lapse observations that were already focusing on relevant parameters from the microscopic
perspective (interfacial curvatures), but still missing key ingredients to serve as a validation
tool for macroscopic snowpack modeling. Overall, the two perspectives were hitherto largely
disconnected.

The goal of improving microstructure dynamics in snowpack models bears fundamental difficulties
of choosing a suitable modeling strategy and deciding which microstructure parameters should
be actually considered in a future model. To this end, the problem needed to be iterated from
different sides cf Fig. 1.5, and these are reflected by the main research focuses of the thesis
i) deciding on what kind of microstructure parameters should be considered ii) assessing the
possibilities of extracting key crystal growth properties from time-lapse tomography and iii)
deriving an evolution model for the parameters of interest.

Based on the literature and the results from Chapters 2 and 3 we decided to derive a microstruc-
ture evolution scheme from first principles. We re-derived a rigorous upscaling approach of
interfacial evolution based on Drew [1990], and tailored it to snow microstructural parameters.
The advantage of being mathematically exact means that the model can be unambiguously
validated in idealized situations (Sec. 4.18). The model comprises coupled partial differential
equations for the parameters. The equations are naturally coupled to the upscaled evolution
equations for heat and mass via the local apriori unknown velocity vn of the ice-air interface
driving the microstructural evolution of snow. To quantify the interface velocity we developed a
VTK-based image analysis tool (see chapter 2) that enables tracking the ice-air interface from
two consecutive μCT images. We showed that in principle it is feasible to assess the validity of
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theoretical growth laws, but we observed a considerate scatter for isothermal and temperature
gradient conditions. This was mainly due to experimentally difficulties and subsequent resolution
issues and uncertainties inherent to the image analysis methods, which will be discussed in
chapter 7.

The derivation of the model has shown that the evolution equation for the surface area per
unit volume s is mainly determined by a volume average of the interface velocity times the
mean curvature. It was therefore mandatory to derive an equation for the mean curvature using
Eq. (4.16) for the local evolution of the principle curvatures κ1, κ2. In the evolution equation for
H, the Gaussian curvature K appears, highlighting the hierarchal character of these coupled
differential equations. Technically, the upscaling scheme can be applied to any geometrical
parameter f(κ1, κ2), which can be expressed as a function of the principal curvatures κ1 and
κ2 since the local time evolution of such a parameter can be derived via ḟ = ∇f · (κ̇1, κ̇2) via
Eq.(4.27) and subsequently volume-averaged. The Gaussian curvature K = κ1κ2 is an example
of such a parameter. The appearance of the curvatures in the model is a very convenient
coincidence since exactly these quantities are being increasingly investigated experimentally,
and the microstructure model thus naturally follows present trends in time-lapse tomography
with a focus on mean [Flin et al., 2004], Gaussian [Schleef et al., 2014, Calonne et al., 2014a] or
variance of mean curvatures [Calonne et al., 2014a].

The fact that the model predicts parameters (s, H, K, H2) that can be conveniently measured
does not, however, imply that these parameters are the most important ones to model physical
properties of snow. While the relevance of s (or alternatively any other (inverse) length scale which
is related via Eq. (3.7)) is without a doubt, the relevance of averaged curvatures for macroscopic
physical properties of snow has not yet been discussed in literature. In contrast, recent work
rather focused on the correlation length as key parameter, due to the relevance for microwave
scattering coefficient, dielectric permittivity, and thermal conductivity parameterization [Löwe
et al., 2013, Calonne et al., 2014b, Löwe and Picard, 2015, Leinss et al., 2016]. Due to the
predictive power of correlation lengths, it is clear that a new modeling approach should include
the possibility to predict the exponential correlation length.

It was thus necessary to confirm that the new evolution model is able to make contact to the
correlation lengths. The analysis from Section 3.4 shows that exponential correlation lengths
can be accurately predicted from the Porod length λ1 and the curvature length λ2, or likewise
from φ, SSA and H2. This finding has two important consequences. First, it confirms that a
dynamic model for φ, SSA and H2 can also be used to infer the evolution of the exponential
correlation lengths via the parametrization (3.18). Second, it reveals that H2 carries independent
information, beyond the SSA, and can thus be regarded as a shape parameter (Section 3.5.3).
This is conceptually highly satisfying since the suggested new approach thereby follows exactly
the previous strategy in snowpack models where the parameters (grain size, sphericity, dendricity)
essentially characterize the size of and deviations from an equivalent spherical shape. The new
objective parameters SSA, H, K, H2 naturally follow the same idea and even come with their
exact evolution equations. The immediate question if one of these parameters will possibly turn
out to be more redundant than the others could not yet be answered unambiguously from the
analysis (see chapter 5).
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One of the unique features of the model is that it can be used as a benchmark, suited to assess
experimental methods, image analysis and assumptions underlying the microstructure evolution
during time-lapse μCT imaging (sec. 4.5). Such a benchmark comparison has revealed that
errors from the current image analysis setup related to the interface velocity estimates is the
origin of the current disagreement between model and measurements in snow. On the other
hand, prescribing the interface velocity enables a statistical approach to model validation that
circumvents the estimation of velocity estimates. For temperature gradient metamorphism
we confirmed before that local growth is correlated to the local temperature gradient (see
chapter 2). However, the statistical model analysis showed that this correlation was unable
to correctly predict the measured SSA decay for at least one of the two tested temperature
gradient experiments. This means that the evolution of SSA cannot be recovered if the growth
law Eq. (4.21) in terms of the local temperature gradient (diffusion limited growth) is used to
evolve the microstructure. It is therefore clear that the growth law for temperature gradient
metamorphism must be critically revisited in the future, e.g. by considering kinetic effects. Some
ideas which will be further discussed in chapter 7. While kinetics effects have been well-discussed
in the literature for a long time [Colbeck, 1983] and are clearly visible from the depth hoar
morphology (see Figures 1.1,1.4, and 4.3), this is the first time that the diffusion limited growth
law given by the local temperature gradient approximation can be discarded as the source of
SSA decay based on quantitative measurements from 4D μCT data.
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7Limitations and Outlook

7.1 Image analysis and experimental setup

Despite the wealth of new opportunities that come with the new microstructure evolution model,
this work also clearly revealed key issues that need to be solved in the future. The interface
tracking method developed in chapter 2 bares fundamental deficiencies when estimating local
crystal growth rates. It gives rise to topological inconsistencies as discussed in chapter 2 and
is biased towards negative velocities, as shown in chapter 4, Fig. 4.4. In addition the method
can not discern crystal growth from settling. Although this is inherent to interface tracking
and not dependent on the methodology that is used here, it prevents drawing firm conclusions
on the curvature dependence of growth in isothermal metamorphism and also contributes to
the error in the benchmarking of the developed model in chapter 4. Although we have shown
that the interface-tracking method can, in principle, recover prescribed growth laws for high
spatial and temporal resolution in an idealized setup, the present experimental setting gives rise
to a significant signal-to-noise problem, which limits the extraction of the correctness of growth
laws and subsequently the validation of metamorphism models from 4D time-lapse data. This
error also influences the solution of the finite element method for computing local temperature
gradients in the vicinity of the interface. Here the question remains to what extent higher
resolution experiments would solve the inherent problem of re-sampling a voxel-based, numerical
solution on a triangular mesh representing the interface, or if 3D solutions to the heat equation
must generally move towards more sophisticated methods as discussed e.g. in Soghrati et al.
[2012].

The temporal and spatial resolution of the μCT images give rise to a significant signal-to-noise
problem which must be approached twofold. First, it is desirable that the spatial and temporal
resolution of experiments become higher in the future. The spatial resolution of the μCT
measurements may be increased to similar values obtained by Calonne et al. [2015] which would
already gain a factor 3 in resolution. For crystal growth, a trade-off between resolution and
statistical representative sample size must be achieved. To estimate to what extent the spatial
and temporal resolution must be improved, a sensitivity study should be conducted on existing
data. For the purpose of benchmarking the microstructure model, experimental data with higher
resolution is likely required. Second the interface tracking for local crystal growth rates can
be likely improved by working on gray-scale data rather than on binary images. For example,
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estimating the ice-air interface can be done by contouring the original gray-scale images before
thresholding them to binary images on which the present analysis is based. This suggests that
level-set segmentation methods [Fife et al., 2014] might be advantageous since they directly make
contact to the level-set equation (4.2), which is the core of the microstructure model presented
here.

Another important source of uncertainty is the compaction by gravity. This is most pronounced
in isothermal metamorphism of fresh snow, making it presently impossible to benchmark the
experimental data by the model. Although there are alternatives to validate present ideas
of curvature-driven coarsening (shown in chapter 5), the interface velocities cannot discern
displacements from crystal growth. Especially in temperature gradient metamorphism, the
temperature gradient is typically vertically oriented (parallel to gravity) in both, the lab-
experiments and in the natural snowpack. Experiments with horizontal temperature gradients
may be able to discern between the two contributions to the interface velocities.

7.2 Modeling snow microstructure

The model equations are mathematically exact and are shown to correctly predict the evolution
of simple geometrical objects without topological changes. However, further work needs to be
done before this microstructure model can be implemented in a snowpack model. The form of
the equations requires an interface velocity prescription that describes growth rates specific to
the type of snow metamorphism. In particular, the results for the temperature gradient case
have shown that there is a clear lack of insight in the growth law that describes the evolution of
the microstructure with sufficient success.

In additions to the uncertainties related to crystal growth, the equations also contain higher
order curvature terms. Strictly speaking, the evolution equation for these terms must be derived
as well, revealing the hierarchical structure of the partial differential equations involving higher
moments of curvatures of arbitrary order. For practical reasons, a truncation or effective
mean-field approach, has to be given to solve the closure problem of these coupled partial
differential equations. Chapter 5 of this thesis indicates how this can be done for isothermal
conditions where an effective description of the SSA decay is derived and a parametrization for
the evolution equation for second moment of the curvature is proposed. The results suggest that
some curvature metrics are correlated and therefore a similar parametrization for the mean and
Gaussian curvature could be expected. Once the equations are rewritten in terms of available
parameters, the coupled set of equations can be solved numerically and could serve as a module
in a snowpack model.

A different route to utilize the equations is to perform a term-by-term parametrization based
on the form of the present equations, and by fitting the parameters to existing datasets. For
this approach however, two temperature gradient metamorphism experiments are not sufficient.
For this purpose, more experiments, with variation in the initial values for density, SSA and
curvatures at various temperatures and temperature gradients, should be conducted.

Another issue that needs to be addressed, is topological changes. The evolution equations for
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both the mean curvature H and the Gaussian curvature K depend on the surface gradients
of the interface velocity (see Eq. (4.19)). The evolution of the Euler characteristic defined by
χ = sK/2π in the reduced setting (where surface gradients of the interface velocity are neglected)
predicts zero changes. Therefore, the reduced set of equations cannot predict topological changes.
This suggests that the changes in topology are related to the terms that have been neglected,
which is well-discussed in Park et al. [2015]. Interestingly, these terms affect the evolution
equation of the SSA only indirectly, but have a direct effect on the evolution of the curvatures. A
qualitative argument can be made that a topological change initiates from a discontinuity in the
derivative of the interface velocities. However these transitions are far from being experimentally
detectable due to limited resolution. As a remedy, it seems possible to tackle this problem
statistically, similar to Drew [1990], by replacing terms involving surface gradients, with terms
that statistically capture the contribution related to χ̇ in a parametrized manner. These choices
should be verified of course by experiments.

Furthermore, it is instructive to comment on a potential extension of the model to anisotropic
microstructures. As shown by Löwe et al. [2013], the anisotropy of snow is an important
parameter to estimate the effective thermal conductivity of snow. A possible route to include
anisotropy in the present framework could be to derive an evolution equation for an anisotropy
(fabric) tensor n ⊗ n as used by López-Barrón and Macosko [2010] and Shertzer and Adams
[2011]. Such a definition of structural fabric can be conveniently related to the level-set equation
(4.2) that enables a treatment within the present framework.

The analysis in chapter 4 shows that the details of temperature gradient metamorphism case
is far from being understood, and more insight from crystal growth dynamics is needed. To
improve on the growth law for temperature gradient metamorphism in snow we should revisit the
Gibbs-Thomson boundary condition Eq. (2.3). In chapter 2 we have assumed Dirichlet boundary
conditions and local thermodynamic equilibrium for vapor and temperature which basically
means that the vapor flux and subsequently the interface velocity, is completely determined
by local temperature gradients in the vicinity of the ice-air interface. To obtain an improved
interface velocity, the mass transport equation should be solved with the Gibbs-Thomson
boundary condition, including the curvature and/or kinetic corrections. It remains uncertain
however, if this inclusion would be sufficient to capture the decay of the SSA since additional
effects like the observed growth-sublimation asymmetry (Fig. 4.6) are then still not included.

To quantify the effect of the boundary conditions on the interface velocity, it might be interesting
to conduct numerical studies such as phase-field simulations. Recently a successful attempt to
simulate the morphology of precipitation particles was done by Demange et al. [2017a,b]. From
these studies we learn that two types of anisotropy control the growth laws that lead to the
known complex morphologies of precipitation particles. The first is given by an anisotropy in the
condensation coefficient (kinetics), which cause a geometrical anisotropy resulting in plate-like or
needle-like particles. A second anisotropy is related to the surface tension, which manifests the
hexagonal symmetry. Both anisotropies are inherited from the underlying crystal orientation. If
the inclusion of crystal orientation will solve open questions in metamorphism in snow, remains
to be seen, however the much observed faceted crystals, hexagonal and cubic depth hoar crystals
in temperature gradient experiments indicate that crystal growth is fairly dependent on these
effects. Applying phase-field modeling directly to snow however bares the fundamental difficulty
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of high computational demands [Kaempfer and Plapp, 2009]. With recent advances in this field
it is more likely that phase-field modeling of single grains under temperature gradient conditions,
combined with experimental studies like Adams and Miller [2002], would be an interesting first
step to reveal the relevant growth laws for temperature gradient metamorphism.

From an experimental point of view, assessing crystal orientation during metamorphism can
presently be determined destructively by thin-sections [Riche et al., 2012, Calonne et al., 2017]
which prohibits measuring growth rates in that setup. A proof of concept of simultaneously
retrieving 3D imaging and local crystal orientation by X-Ray Diffraction Contrast Tomography
is done by Rolland du Roscoat et al. [2011]. Though promising for future research, the method
is quite complex and has not yet been systematically developed.

The combination of a phase field model including anisotropy, combined with in-situ imaging of
microstructures and crystal orientation, and a generalization of the developed rigorous averaging
scheme to crystal anisotropy would ultimately advance understanding of metamorphism in snow.
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