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les principaux figurent l’état d’esprit et les discussions avec autrui. Si ces deux points ont été
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J’aimerais ensuite remercier ma famille et particulièrement mes parents. Mes parents, sans qui, il
est certain, je n’aurais pas accompli ce travail. Je ne saurais exprimer toutes les raisons pour
lesquelles je vous suis reconnaissant. Vous avez toujours été présents et m’avez guidé sur le
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Abstract
Modeling wave propagation in highly heterogeneous media is of prime importance in engineering
applications of diverse nature such as seismic inversion, medical imaging or the design of composite
materials. The numerical approximation of such multiscale physical models is a mathematical
challenge. Indeed, to reach an acceptable accuracy, standard numerical methods require the
discretization of the whole medium at the microscopic scale, which leads to a prohibitive
computational cost. Homogenization theory ensures the existence of a homogenized wave
equation, obtained from the original problem by a limiting process. As this equation does not
depend on the microscopic scale, it is a good target for numerical methods. Unfortunately, for
general media, the homogenized equation may not be unique and no formulas are available for its
effective data. Nevertheless, such formulas are known for media described by a locally periodic
tensor. In that case, or more generally for problems with scale separation, methods such as the
finite element heterogeneous multiscale method (FE-HMM) are proved to efficiently approximate
the homogenized solution. For wave propagation in heterogeneous media, however, it is known
that at large timescales the homogenized solution fails to describe the dispersive behavior of the
original wave. Hence, a new equation that captures this dispersion is needed. In this thesis, we
study such effective equations for long time wave propagation in heterogeneous media.
The first result that we present holds in periodic media. Using the technique of asymptotic
expansion, we obtain the characterization of a whole family of equations that describes the long
time dispersive effects of the oscillating wave. The validity of our derivation is ensured by rigorous
a priori error estimates. We also derive a numerical procedure for the computation of the tensors
involved in the first order effective equations. This leads to a numerical homogenization method
for long time wave propagation in periodic media. The second result that we present generalizes
the procedure for deriving effective equations to arbitrary timescales. This generalization is also
useful, for example, for the homogenization of the wave equation with high frequency initial data.
We also provide a numerical procedure allowing to compute effective tensors of arbitrary order.
The third result is the generalization of the family of first order effective equations from periodic
to locally periodic media. A rigorous a priori error analysis is also derived in this situation.
This constitutes the first analysis of effective models for the long time approximation of the
wave equation in locally periodic media. In a second part of the thesis, we derive numerical
homogenization methods for the long time approximation of the wave equation in locally periodic
media. In one dimension, we analyze a modification of the FE-HMM called the FE-HMM-L.
In higher dimensions, we design a spectral homogenization method. For both methods, we
prove error estimates valid for large timescales and in arbitrarily large spatial domains. In
particular, we show that these numerical homogenization methods converge to effective solutions
that approximate the highly oscillatory wave equation over long time.

Key words: homogenization, wave equation, multiscale, long time behavior, dispersive waves,
numerical homogenization, finite element, spectral method, heterogeneous multiscale method, a
priori error analysis.

iii





Résumé
Modéliser la propagation d’ondes dans des milieux hétérogènes est indispensable dans diverses ap-
plications en ingénierie telles que l’inversion sismique, l’imagerie médicale ou encore la manufacture
de matériaux composites. L’approximation numérique de tels modèles physiques multi-échelles
est un défi mathématique. En effet, pour atteindre une précision satisfaisante, les méthodes
numériques standards nécessitent une discrétisation globale à l’échelle microscopique, ce qui
entrâıne un coût computationnel prohibitif. La théorie de l’homogénéisation garantit l’existence
d’une équation homogène, obtenue du problème initial par un procédé de passage à la limite.
Comme cette équation ne dépend pas de l’échelle microscopique, elle est une bonne cible pour
les méthodes numériques. Cependant, dans le cas général, l’équation homogène peut ne pas être
unique et aucune formule n’est disponible pour calculer ses données effectives. Néanmoins, une
telle formule est connue lorsque le milieu peut être décrit par un tenseur localement périodique.
Dans ce cas, et plus généralement lorsque les échelles sont séparées, il est démontré que des
méthodes telles que la méthode d’éléments finis hétérogène multi-échelles (FE-HMM) approximent
efficacement la solution homogène. Toutefois, pour la propagation d’ondes dans des milieux
hétérogènes, sur des temps longs, la solution homogène échoue à décrire le comportement dispersif
de l’onde originale. De ce fait, une nouvelle équation capable de capturer cette dispersion est
nécessaire. Dans cette thèse, nous étudions de telles équations effectives pour la propagation
d’ondes en milieux hétérogènes sur des temps longs.
Le premier résultat que nous présentons est valable dans des milieux périodiques. En utilisant un
développement asymptotique, nous obtenons la caractérisation de toute une famille d’équations
effectives qui décrivent les effets dispersifs de l’onde originale sur des temps longs. La validité
de notre dérivation est attestée par des estimations rigoureuses de l’erreur. Nous élaborons
également une procédure numérique pour calculer les tenseurs impliqués dans les équations
effectives de premier ordre. Il en résulte une méthode efficace d’homogénéisation numérique pour
la propagation d’ondes à temps longs dans des milieux périodiques. Le deuxième résultat que nous
présentons généralise la procédure de dérivation d’équations effectives à des temps arbitrairement
longs. Cette généralisation est aussi utile, par exemple, pour l’homogénéisation de l’équation des
ondes avec des données initiales à hautes fréquences. Nous fournissons également une procédure
numérique pour calculer des tenseurs effectifs d’ordre arbitraire. Le troisième résultat est une
généralisation de la famille d’équations effectives de premier ordre, de milieux périodiques à
localement périodiques. Une analyse rigoureuse de l’erreur à priori est également prouvée dans
ce cas. Ce résultat constitue la première analyse de modèles effectifs pour l’approximation de
l’équation des ondes dans des milieux localement périodiques sur des temps longs. Dans une
seconde partie de la thèse, nous dérivons des méthodes d’homogénéisation numérique pour
l’approximation à temps longs de l’équation des ondes dans des milieux localement périodiques.
En une dimension, nous analysons une modification de la méthode FE-HMM appelée FE-HMM-L.
En dimension plus élevée, nous élaborons une méthode spectrale d’homogénéisation. Pour les
deux méthodes, nous démontrons des estimations d’erreur à priori, valables pour des temps
longs et des domaines arbitrairement grands. En particulier, nous prouvons que ces méthodes
d’homogénéisation numérique convergent vers des solutions effectives qui approximent l’équation
des ondes en milieux localement périodiques sur des temps longs.

Mots clefs : homogénéisation, équation des ondes, multi-échelles, comportement sur des temps
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longs, ondes dispersives, homogénéisation numérique, éléments finis, méthode spectrale, méthode
hétérogène multi-échelles, analyse d’erreur a priori.

vi



Contents

Acknowledgements (français) i
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Notation

Abbreviations
ODE ordinary differential equation

PDE partial differential equation

FE / FEM finite element / finite element method

HMM heterogeneous multiscale method
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Standard sets of numbers
N set of positive integers {0, 1, 2, . . .}
N>0 set of strictly positive integers {1, 2, . . .}
Z set of integers

R set of real numbers

Differentials
∂t partial differential with respect to the time t

∂xi / ∂i partial differential with respect to the i-th space variable xi
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· · · ∂αd
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Functional spaces

Let O be an open domain of Rd and consider functions O → R.

Ck(O) k-times continuously differentiable functions

D(O) functions of class C∞ with a compact support in O
D′(O) space of distributions, dual space of D(O)

Lp(O) usual Lebesgue space with p ∈ [1,∞]

Wk,p(O) usual Sobolev space with k ∈ N and p ∈ [1,∞]

Hk(O) Sobolev space W k,2(O)

L2
per(O) O-periodic functions in L2(O)

H1
per(O) closure of C∞

per(O) for the H1 norm

L2(O) quotient space L2(O)/R

Wper(O) quotient space H1
per(O)/R

L2
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per(O) with zero mean

Pk(O) space of polynomials of degree ≤ k
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Other notations for functions
X∗ dual space of the vector space X〈
·, ·
〉
X∗,X
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Tensors
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Symn(Rd) vector subspace of symmetric tensors of order n

b⊗ c standard tensor product

b∂n shorthand for bi1···in∂
n
i1···in (for b ∈ Tenn(Rd))
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Sn
i1···in{bi1···in} (i1, · · · , id)-th component of Sn(b) : Sn
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Miscellaneous
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1 Introduction

Multiscale models are ubiquitous when considering a physical phenomenon that takes place in a
heterogeneous medium. Indeed, while in applications we are often interested in a macroscopic
quantity, the microscopic structure of the medium influences the physical process and must be
incorporated in the model. Many engineering applications involve wave phenomena in a multiscale
framework. Assume, for example, that we want to design a wall to filter the noise generated by
the vehicles on a highway. For this task, the aspects that must be studied include the shape and
the size of the wall as well as the constituent material, as its microscopic composition affects the
macroscopic propagation of the acoustic wave (see e.g., [77]). Another situation where modeling
multiscale wave propagation is needed is the simulation of an earthquake (see e.g. [73, 86]). For
example, in the planning of a construction, it is crucial to predict the consequences of seismic
tremors on the future building. The composition of the ground consists of large and small rocks as
well as microscopic fissures. Since we want to predict the displacement of the macroscopic seismic
wave, we are again in a multiscale regime. Inverse problems involve multiscale wave propagation
as well. For instance, we may be interested in sending a wave in an object whose composition is
unknown and reconstructing it from output measurements. In seismic inversion, for example,
seismic waves are emitted and an approximate description of the geology of the underground is
obtained through measurements of the response (see e.g., [93]). Likewise, in medical imaging,
ultrasounds are used to reveal the internal body structure (see e.g., [28, 67]).

As mentioned, a large variety of wave phenomena such as highway noise, earthquake, medical
ultrasounds can be modeled by the wave equation. Mathematically, waves are described by the
function uε : [0, T ]× Rd → R such that

∂2t u
ε(t, x)−∇x ·

(
aε(x)∇xu

ε(t, x)
)
= f(t, x) in (0, T ]× Rd, (1.1)

with given initial conditions uε(0, x), ∂tu
ε(0, x), where T > 0 is the final time, f is a source term,

and aε is the tensor describing the medium. The scalar ε > 0 is the characteristic length of the
spatial variation of the tensor aε. As we consider (1.1) in a multiscale regime, we assume that
the highest wavelength of the initial conditions and f are of order O(1) and that ε � 1. We
refer to these two scales as the microscopic (micro) scale O(ε) and the macroscopic (macro) scale
O(1). When it comes to approximating numerically uε, we first need to truncate the infinite
domain Rd. We thus consider a hypercube Ω ⊂ Rd and impose Ω-periodic boundary conditions
on x → uε(t, x). Note that Ω must be sufficiently large for the waves not to reach the boundaries
in the time interval [0, T ] (we call Ω a pseudoinfinite domain). To be accurate, standard numerical
methods such as finite elements (FE) or finite differences (FD) require a grid that resolve the
whole domain Ω at the scale O(ε). These methods thus require to solve linear systems of size
O(ε−d) at every time iteration. More precisely, if for example 10 points per wavelength are used,
the computational cost of each iteration is O(10dε−d). Hence, as ε→ 0, or as the time increases
(i.e. Ω increases), the computational cost becomes prohibitive. Therefore, more sophisticated
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numerical methods that do not require scale resolution are needed.

The study of multiscale problems such as (1.1) is tied to homogenization theory (see [24, 66, 37, 76]
for general theory and [27] for the wave equation). The general homogenization result for (1.1)
with T = O(1) ensures the convergence of uε to a function u0 as ε → 0 (in the appropriate
functional space, see Section 3.2), where u0 : [0, T ]× Rd → R solves the so-called homogenized
equation:

∂2t u
0(t, x)−∇x ·

(
a0(x)∇xu

0(t, x)
)
= f(t, x) in (0, T ]× Rd, (1.2)

with the same initial conditions as uε. The homogenized tensor a0 in (1.2) is obtained as the
so-called G-limit of the sequence {aε}ε>0 as ε→ 0. Hence, a0 does not depend on the microscopic
scale O(ε) and thus the homogenized solution u0 is a good target for numerical methods. However,
for a general tensor aε, no explicit formula is available for a0, which may not even be unique.
Nevertheless, if aε is endowed with some specific structure, a0 is unique and can be computed.
Namely, if aε is uniformly periodic, i.e.,

aε(x) = a
(
x
ε

)
where y → a(y) is Y -periodic, (1.3)

where Y is a reference cell (typically Y = (0, 1)d), then the homogenized tensor is computed as
a0ij =

〈
eTi a(∇yχj + ej)

〉
Y
, where χj are the Y -periodic functions solving the cell problem

−∇y ·
(
a(y)χj(y)

)
= ∇y ·

(
a(y)ej

)
in Y. (1.4)

An example of a two-dimensional uniformly periodic medium is displayed in Figure 1.1. If we
assume that aε is locally periodic, i.e.,

aε(x) = a
(
x, xε
)

where y → a(x, y) is Y -periodic, (1.5)

then a0(x) can still be computed for any x ∈ Ω with the solutions of (1.4) where a(y) is replaced
by a(x, y). In this case the function χj(x, y) thus depends on the slow variable x. An example of
a two-dimensional locally periodic medium is displayed in Figure 1.2.

Figure 1.1: Example of a two-dimensional uniformly periodic medium (1.3) displayed in (0, 1)2.
From left to right: ε = 1/10, 1/16, and 1/25.

In the last few years, several multiscale methods have been developed for the approximation
of (1.1). All the methods rely on an upscaling procedure that somehow extracts the micro
information of the medium and use it at the macro scale. The physical origin of (1.1) motivates
the choice of an appropriate method. We can divide the problems in two classes, depending
whether aε has, or not, scale separation. We refer to scale separation if there are two clearly
separated scales. Conversely, we say that the problem does not have scale separation if the
medium depends on a continuum of scales. On the one hand, problems with scale separation
derive mainly from cases where the medium is artificially designed, which is often the case in
material science and can concern geoscience in certain applications. On the other hand, problems
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Figure 1.2: Example of a two-dimensional locally periodic medium (1.5) displayed in (0, 1)2.
From left to right: ε = 1/10, 1/16, and 1/25.

without scale separation arise when the medium is natural, as for example the ground or the
human body. Logically, the methods dealing with problems without scale separation are more
general, and thus more costly. Indeed, a method that takes advantage of the specific structure of
the medium is expected to have a smaller cost. Let us shortly review the multiscale methods
available for the approximation of (1.1) (it is done in more details in Section 3.1).

Let us begin with the methods that are suited for problems with scale separation. In this case,
heterogeneous multiscale methods (HMM) use a sampling strategy to approximate an effective
medium at the macro scale (see [7]). As the fine scale has to be resolved only locally in small
sampling domains, the cost of a HMM is proportional to the number of degrees of freedom at the
macro scale. Furthermore, as it involves small independent problems, the sampling procedure can
be efficiently parallelized. The finite difference HMM (FD-HMM), defined in [45] and analyzed in
[20], relies on a FD method at the macro scale. The effective flux is approximated by solving
micro problems in space-time sampling domains of size τ × ηd, where τ, η ≥ ε. The finite element
HMM (FE-HMM), defined and analyzed in [8], relies on the FEM on a macro mesh of Ω to
approximate the homogenized solution. The homogenized tensor is approximated by solving
micro problems in spatial sampling domains of size δd (δ ≥ ε) that are localized at the quadrature
points of the macro mesh. In the case of a locally periodic tensor (assumption (1.5), Figure
1.2), the FD-HMM and the FE-HMM are proved to converge to the homogenized solution u0.
The sampling strategy of the HMM is in general not conclusive in applications without scale
separations. Indeed, some important features of the micro structure can be missed.

Let us then present the methods that are suited for problems without scale separation (see
[11] for a detailed review). Owhadi and Zhang presented in [79] a multiscale method based
on a harmonic change of coordinates Gε. Once Gε is available, the cost of the method is
independent of ε. Furthermore, under a so-called Cordes type condition, the approximation is
proved to converge to uε. The major drawback of this method is the one time overhead involved
by the computation of the fine scale fields Gε. Indeed, this step requires to solve d elliptic
PDEs at the fine scale, globally in Ω. In the multiscale finite element method using limited
global information presented by Jiang, Efendiev, and Ginting [65, 64], a multiscale method is
defined under the assumption that there exists n global fields {Gε

k}nk=1 such that uε can be
approximated as uε(t, x) ≈ v(t, Gε

1(x), . . . , G
ε
n(x)). Verifying the validity of this assumption is

problematic. Furthermore, in the best case, the method still endures the one time overhead
involved by the global computations of fine scale fields. In [80], Owhadi and Zhang used a
flux-transfer property to localize the computations at the fine scale to portions of the macro
mesh. In particular, the space of approximation involves the solutions of elliptic problems in
small domains of size O(H1/2| log(H)|), where H is the diameter of a macro element. As these
problems are independent, they can be solved in parallel, which represents a valuable gain of the
execution time. Note that the coarse basis functions used in the definition of the multiscale space

3



CHAPTER 1. INTRODUCTION

are required to have sufficient smoothness (e.g., B-splines). Finally, Abdulle and Henning defined
in [12] a multiscale method in the framework of the localized orthogonal decomposition (LOD)
method. In this method, the construction of the space of approximation requires to solve fine
scale problems in patches of size O(H| log(H)|), where H is the diameter of a macro element. As
these problems are independent, this construction can be efficiently parallelized.

In this thesis, we concentrate on problems with scale separation (see (1.3) and (1.5), Figures 1.1
and 1.2) and design numerical methods for the approximation of (1.1) at timescales T = O(ε−2)
and beyond. As mentioned, in the case of scale separation, the FE-HMM and the FD-HMM
provide an accurate approximation of the homogenized solution for a cheap cost. However, these
methods must only be used for short time approximation. Indeed, at large timescales T = O(ε−2),
uε is described at the macro scale by a superposition of several waves moving with different
speeds (left plot in Figure 1.3). This phenomenon is known as dispersion. As this dispersion
is not captured by the homogenized solution u0 (right plot in Figure 1.3), the approximation
provided by either method is inaccurate. Hence, a new effective solution that describes the
macro behavior of uε at timescales of order O(ε−2) is needed for the development of long time
homogenization methods. Calling the homogenized solution u0 a zero-th order effective equation
(valid for timescales O(ε0)), we look for a higher order effective equation (valid for timescales
O(ε−2)). This equation must agree with (1.2) at order O(ε0) and have additional higher order
differential operators that describe the dispersion.
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Figure 1.3: Comparison between uε and u0 in a moving frame for a one-dimensional example
(replica of Figure 4.1, see Section 4.1 for the data of the problem).

Finding a higher order effective equation for (1.1) in the case of a uniformly periodic tensor (1.3) is
an active field of research and the topic of numerous papers (see [85, 52, 51, 72, 42, 43, 13, 18, 14]).
Let us mention the main recent results (discussed in more details in Chapter 4). Santosa and
Symes formally derived in [85] an equation of the form (for f = 0)

∂2t u(t, x)− a0ij∂
2
iju(t, x) + ε2cijkl∂

4
ijklu(t, x) = 0 in (0, ε−2T ]× Rd. (1.6)

However, due to the negative sign of the tensor c, (1.6) is ill-posed. Recently, Lamacz proposed
in [72], a well-posed Boussinesq type equation in the one-dimensional case given by (for f = 0)

∂2t u(t, x)− a0∂2xu(t, x)− ε2b∂2x∂
2
t u(t, x) = 0 in (0, ε−2T ]× R. (1.7)

This derivation is supported by an error estimate for uε−u. Then, Dohnal, Lamacz and Schweizer
defined in [42, 43] a well-posed equation (for f = 0)

∂2t u(t, x)− a0ij∂
2
iju(t, x) + ε2dijkl∂

4
ijklu(t, x)− ε2eij∂

2
ij∂

2
t u(t, x) = 0 in (0, ε−2T ]× Rd. (1.8)

This derivation is also validated by an error estimate for uε − u. Finally, Allaire, Briane, and
Vanninathan [18] formally derived an equation of the form (1.8). These different derivations for
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the effective equations are done in two different frameworks: [85] and [42, 43] use the expansion of
uε in Bloch waves, while [72] uses asymptotic expansions (and [18] compares this two approaches,
focusing on the elliptic case). The well-posed effective equations in [72] and [42, 43] are obtained
after transforming the ill-posed equation (1.6) from [85]. To transform the ill-posed equation into
a well-posed one, a Boussinesq trick is performed (as designated in [18]). Formally, this trick
consists in using the effective equation at order O(1) (i.e., the homogenized equation) to replace
space derivatives into time derivatives. While it is an easy task in one dimension, the general case
in [42, 43] requires a complicated algebraic procedure to decompose the operator cijkl∂

4
ijkl as

cijkl∂
4
ijkl = dijkl∂

4
ijkl − (a0ij∂

2
ij)(ekl∂

2
kl), (1.9)

which leads to one possible pair of effective tensors dijkl, eij .

In a recent paper, Benoit and Gloria [23] proposed an effective equation of arbitrary order for the
wave equation. Their derivation is based on the so-called Bloch–Taylor expansion of uε, which is
a generalization of the Bloch expansion used in [85] and [42, 43]. Their effective equation has the
form (for f = 0)

∂2t u− a0∂2u−
�α/2�∑
r=1

ε2rā2r∂2r+2u− (iε)2(�
α
2 �+1)γId∂2(�

α
2 �+1)+2u = 0 in (0, ε−αT ]×Rd, (1.10)

where ā2r are effective tensors defined via so-call extended correctors and γ is a regularization
parameter. While their analysis holds for more general tensors (almost periodic, quasiperiodic
and random), they avoid the crucial question of well-posedness of the equations by introducing a
regularization term. As no practical procedure for computing γ is available, this result does not
yes translate into a numerical method.

In the literature, apart from the methods studied in this thesis, one numerical methods has
been introduced in [46] for the long time approximation of the wave equation. The method is a
modification of the FD-HMM from [45]. It is built to capture the effective flux of the ill-posed
equation (1.6) from [85]. However, to capture the long time effects, the space-time sampling
strategy requires larger sampling domains as ε→ 0. Furthermore, as the target equation (1.6) is
ill-posed, a regularization process is needed. Nevertheless, in one dimension and for uniformly
periodic tensors, the method is shown in [19] to capture the effective flux of (1.6).

Before presenting the details of the contributions of this thesis, let us summarize our main
results and present the organization of the thesis. Chapter 2 is an introduction on the analysis
of numerical methods for hyperbolic equations. We prove the well-posedness of the partial
differential equations used in the thesis and discuss their numerical approximations. In Chapter
3, we discuss homogenization results for the wave equations (1.1) and introduce the tool of
asymptotic expansion, which is central for most results of this thesis. Chapter 4 contains the first
main result. In particular, we derive a new family of effective equations for timescales O(ε−2)
and uniformly periodic tensors. Furthermore, we provide an algorithm for the computation of
the first order effective tensors. In Chapter 5, we present the second main result generalizing
the family of effective equations for timescales O(ε−2) to arbitrarily large timescales O(ε−α) (in
the case of a uniformly periodic tensor (1.3)). In this case as well, we present an algorithm for
the computation of the arbitrary order effective tensors. In Chapter 6, we provide the third
main result. In particular, we derive a family of effective equations for timescales O(ε−2), in
the case of a locally periodic tensor (1.5). Based on this result, in Chapter 7, we construct and
analyze numerical homogenization methods for the long time approximation of (1.1), in the case
of locally periodic tensors (1.5). In particular, two methods are analyzed. The first one, based on
the FE-HMM, is designed specifically for the one-dimensional case, and the second one, based on
a spectral approximation, is valid in arbitrary dimensions.
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CHAPTER 1. INTRODUCTION

We now describe in more details the main contributions of the thesis.

Effective equations for timescales O(ε−2) in periodic media

In Chapter 4, we present the first main result of this thesis. We derive a new family of effective
equations in the case of a periodic tensor (1.3) (Figure 1.1). The derivation is validated by
a rigorous a priori error estimate. Furthermore, we provide a numerical procedure for the
computation of the effective tensors. This result has been published in [14] ([13] for the one-
dimensional case). Note that various additional results are presented in this work.

The family is composed of equations of the form

∂2t ũ(t, x)−a0ij∂2ij ũ(t, x)+ε2a2ijkl∂4ijklũ(t, x)−ε2b2ij∂2ij∂2t ũ(t, x) = f(t, x) in (0, ε−2T ]×Ω, (1.11)

where Ω is an arbitrarily large hypercube in Rd. Let us emphasize that whereas in [42, 43], a
single effective equation (1.8) is obtained, we define a whole family that is characterized by a
constraint on the tensors a2, b2. Furthermore, we prove an error estimate that guarantees the
error uε − ũ to be of order O(ε) in the norm L∞(0, ε−2T ;W ), where the norm

‖w‖W = inf
w=w1+w2

w1,w2∈Wper(Ω)

{
‖w1‖L2(Ω) + ‖∇w2‖L2(Ω)

}
, (1.12)

is equivalent to the L2(Ω) norm through the Poincaré constant. For the analysis to hold, the
hypercube Ω and the reference cell Y have to satisfy the assumption

Ω is the union of cells of volume ε|Y |. (1.13)

Essentially, this assumption ensures the Ω-periodicity of v
( ·
ε

)
for any Y -periodic function v. As

we track the dependence of the error estimate on Ω, our result is comparable to the ones obtained
in [72] and [42, 43], which hold in the whole space Rd.

In our derivation, we use asymptotic expansions, as it was done in one dimension in [72]. We
construct an adaptation Bεũ of the candidate effective solution ũ (the form of (1.11) is an ansatz).
The adaptation takes the general form

Bεũ(t, x) = ũ(t, x) +

K∑
k=1

εkχk
i1··ik

(
x
ε

)
∂ki1··ik ũ(t, x), (1.14)

and is built to solve the same equation as uε with an additional remainder. The timescale dictates
the accuracy of Bεũ, i.e., the order of the remainder. In the case T = O(ε−2), four correctors are
sufficient, i.e. K = 4. This process leads to the definition of the correctors χk

i1··ik as the solutions
of elliptic PDEs in Y with periodic boundary conditions: the so-called cell problems (χ1

i solves
(1.4)). The well-posedness of the cell problems for χ4

i1··i4 characterizes the family of effective
equations by providing a constraint on the tensors a2, b2. From this constraint, we elaborate a
constructive process to obtain pairs of tensors a2, b2 of effective equations in the family. Our
algorithm involves the solutions of d+

(
d+1
2

)
cell problems, while in [42, 43] d+

(
d+1
2

)
+
(
d+2
3

)
cell problems need to be solved.

Let us mention an important difference in our approach. In [72] and [42, 43], the well-posed
effective equations are obtained after transforming the ill-posed equation (1.6). In our derivation,
we directly start with an ansatz that enables the effective equation to be well-posed. We are thus
naturally led to the understanding that the effective equations are characterized by the constraint
obtained on a2, b2.

6



While the effective equations (1.6), (1.7), (1.8), and (1.11) are derived in different frameworks,
we verify that the tensors involved in these equations are in fact the same. As a second result, we
prove that the well-posed equations (1.7) and (1.8) belongs to our family of effective equations.
To see it, note that the constraint characterizing the family reads

a2 − a0 ⊗ b2 =S c, (1.15)

where c is the tensor in (1.6) (the notation =S means that the equality must hold up to symmetries).
First, in one dimension, we verify that the pair (a2, b2) = (0, b), where b is the coefficient in (1.7),
satisfies (1.15). Hence, (1.7) belongs to the family. Furthermore, recall that the tensors d, e in
(1.8) are built such that (1.9) holds. Hence, the pair (a2, b2) = (d, e) satisfies (1.15) and (1.8)
thus belongs to the family.

Effective equations for arbitrary large timescales in periodic media

In Chapter 5, we present the second main result of this thesis. The family of effective equations
for timescales O(ε−2), derived in Chapter 4, is generalized to arbitrary timescales O(ε−α). We
thus obtain effective equations of arbitrary order for the wave equation in periodic media.

Effective equations of arbitrary order are not only necessary for large timescales O(ε−α), but
also, for example, when dealing with high-frequency initial data. Indeed, in this situation the
dispersive effects appear at shorter time. Furthermore, in some cases, additional effects that are
visible are not described by the family of first order effective equations derived in Chapter 4.
Hence, higher order effective equations are needed.

The family of effective equations for arbitrary timescales is composed of equations of the form:
ũ : [0, T ε]× Ω→ R such that

∂2t ũ− a0∂2ũ−
�α/2�∑
r=1

(−1)rε2r
(
a2r∂2r+2ũ− b2r∂2r∂2t ũ

)
= f in (0, ε−αT ]× Ω, (1.16)

where a0 is the homogenized tensor and a2r ∈ Ten2r+2(Rd), b2r ∈ Ten2r(Rd) are pairs of non-
negative tensors that satisfy some symmetry. The domain Ω is an arbitrarily large hypercube
satisfying assumption (1.13).

The derivation of the family follows the same process as in Chapter 4. We formulate the ansatz
that the effective equations have the form (1.16) and construct an adaptation of ũ that takes the
form (1.14). As the timescale is now of order O(ε−α), K = α+ 2 correction terms are needed.
After technical developments, we obtain the definition of the cell problems for χ1 to χα+2. The
well-posedness of these cell problems provides constraints on the pairs {a2r, b2r} that characterize
the family of effective equations.

While the family is defined implicitly by the constraint, we provide a numerical procedure for the
computation of tensors a2r, b2r defining effective equations in the family. As a second result of
the chapter, we prove a relation between the correctors that allows to substantially reduce the
cost of this computation.

The regularized effective equation (1.10), derived in [23], is connected to (1.16). Indeed, we
prove a relation between the tensors ā2r in (1.10) and the constraints on a2r, b2r characterizing
our family. In particular, the extended correctors defined in [23] are the same functions as the
solutions of our cell problems {χk}. Nevertheless, (1.16) has the fundamental advantage of being
well-posed without any regularization process and can be used in practice
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Effective equations for timescales O(ε−2) in locally periodic media

In Chapter 6, we present the third main result of this thesis. We generalize the family of effective
equations for uniformly periodic tensors, derived in Chapter 4, to locally periodic tensors (see
(1.5) and Figure 1.2). This is the first result regarding the long time homogenization of the wave
equation in locally periodic media.

The family is constituted of equations of the form

∂2t ũ(t, x)− ∂i
(
a0ij(x)∂j ũ(t, x)

)
+ εL1ũ(t, x) + ε2L2ũ(t, x) = f(t, x) in (0, ε−2T ]× Ω, (1.17)

where a0(x) is the homogenized tensor and Ω is an arbitrarily large hypercube of Rd satisfying
the assumption (1.13). The correction operators L1 and L2 are given by

L1 = −∂i
(
a12ij (x)∂j ·

)
+b10∂2t , L2 = ∂2ij

(
a24ijkl(x)∂

2
kl ·
)
−∂i
(
b22ij (x)∂j∂

2
t ·
)
−∂i
(
a22ij (x)∂j ·

)
+b20∂2t ,

where the involved tensors are defined via the solutions of local cell problems (for all x ∈ Ω). We
prove an error estimate ensuring that uε − ũ is of order O(ε) in the norm L∞(0, ε−2T ;W ) (see
(1.12)). This result is a direct generalization of the estimate obtained in Chapter 4. Indeed, we
verify that if the tensor is constant in the slow variable, i.e., a(x, y) = a(y), we recover the family
of effective equations (1.11) defined for uniformly periodic tensors (with a24 = a2 and b22 = b2).

The derivation of the family follows a similar process as in the uniformly periodic case. We
start with the ansatz that the effective equation has the form (1.17), where L1, L2 are unknown.
Indeed, in this case the exact form of the correction operators is not known a priori. We thus
build them as we cancel each term in the expansion. Then, the dependence of a(x, y) on the slow
variable leads to an adaptation of the form (for a timescale O(ε−2))

Bεũ(t, x) = ũ(t, x) +

4∑
k=1

εk
k∑

�=1

χk,�
i1··ik−�+1

(
x, xε
)
∂k−�+1
i1··ik−�+1

ũ(t, x).

Imposing that Bεũ must solve the same equation as uε up to a remainder, we obtain the definitions
of the correctors as the solutions of cell problems. The cell problems are defined locally, i.e., for
all x ∈ Ω, χk,�

i1··ik−�+1
(x, ·) solves an elliptic PDE in Y , with periodic boundary conditions. The

well-posedness of these cell problems imposes quantitative constraints on L1 and L2. We thus
design L1 and L2 so that these constraints are satisfied whilst (1.17) is well-posed.

Compared to the effective equations (1.11) in the uniformly periodic case, (1.17) contains the
additional operators εL1 and ε2L2,1 = −∂i

(
a22ij (x)∂j ·

)
+ b20∂2t . The presence of εL1 suggests

that the homogenized equation already needs to be corrected for timescales O(ε−1). However, in
all the numerical examples that we considered, the effect of εL1 is not significant. Furthermore,
the only examples where ε2L2,1 is important is when the variation of x → a(x, y) is sharp. These
considerations indicate that εL1 and ε2L2,1 could, in certain cases, be removed from the effective
equation. This possibility is especially attractive as the corresponding cost of approximation
would be significantly lighter. Nevertheless, no practical criterion could be found to support such
simplification.

Numerical homogenization methods for long time wave propagation in locally peri-
odic media

Chapter 7 contains the main results for the numerical homogenization of the wave equation in
locally periodic media at long times O(ε−2) (see (1.5) and Figure 1.2). Based on the effective
equations derived in Chapter 6 for locally periodic tensors, we define numerical homogenization
methods.
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In the first part of the chapter, we consider the FE-HMM-L: a modification of the FE-HMM
for long time applications that was introduced in [10, 9]. This method is well-suited for the
one-dimensional case. Indeed, this case is particular as one equation in the family does not
contain a fourth order differential operator. Furthermore, one single corrector is sufficient to
compute the effective coefficients. The dispersion effects in the numerical model is built in by an
appropriate modification of the mass matrix of an effective FEM solution. The effective solution
is obtained by approximating the effective coefficients at each quadrature point of a macroscopic
mesh of Ω by solving a micro problem. Two different a priori analyses for the error between
uε and the approximation of the FE-HMM-L are presented. First, we state an error estimate
valid for timescales O(ε−2) and small domains Ω such that diam(Ω) = O(1), which was published
in [13]. Second, we prove an error estimate valid for timescales O(ε−2) and arbitrarily large
domains.

In the second part of the chapter, we define a numerical homogenization method for the multidi-
mensional wave equation in locally periodic media at timescales O(ε−2). In the multidimensional
case, the effective equations are of the form (1.17). In order to handle the fourth order differential
operator, we define a spectral homogenization method. The effective tensors are computed locally
at the nodes of a macro grid of Ω by approximating the cell problems with the FEM. They are
then used in a spectral method defined on the macro grid (or on a subgrid). For this method, we
prove an error estimate between uε and the approximation, which is valid for timescales O(ε−2)
and arbitrarily large hypercubes Ω. In particular, the method converges to an effective equation
of the family derived in Chapter 6.
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2 Numerical methods for linear hyperbolic
equations

This chapter is a survey of some classical numerical methods used in the approximation of
hyperbolic equations. We concentrate on the two partial differential equations that are studied
in this thesis: the wave equation and the linear Boussinesq equation. For the first equation,
we consider a heterogeneous medium described by a tensor aε in an open hypercube Ω ⊂ Rd.
The number ε > 0 is the characteristic length of variation of the tensor. We consider the
equation on a long time interval [0, T ε], where T ε = ε−2T and T = O(1). The wave equation is:
uε : [0, T ε]× Ω→ R such that

∂2t u
ε(t, x) +∇x ·

(
aε(x)∇xu

ε(t, x)
)
= f(t, x) in (0, T ε]× Ω, (2.1)

given with periodic boundary conditions and initial conditions for uε(0), ∂tu
ε(0). As we will see in

Chapters 4 and 6, if the tensor has a periodic or locally periodic structure, the macroscopic long
time behavior of uε can be described by the solution of a linear Boussinesq equation. Namely, for
tensors a0, a2, b2, that will be specified, we consider ũ : [0, T ε]× Ω→ R such that

∂2t ũ+ ∂i
(
a0ij(x)∂j ũ

)
+ ε2∂2ij

(
a2ijkl(x)∂

2
klũ
)
− ε2∂i

(
b2ij(x)∂j∂

2
t ũ
)
= f in (0, T ε]× Ω, (2.2)

with periodic boundary conditions and initial conditions for ũ(0), ∂tũ(0). In this chapter, we
investigate some numerical methods that can be used to approximate the solutions of (2.1) and
(2.2). In particular, we introduce three classical numerical methods: the finite element method
(FEM), the spectral method and the Fourier method. First, we prove a priori error estimates
for the FEM with numerical integration for the approximation of (2.2), in the case a2 = 0. This
result uses classical techniques but is not found in the literature. Furthermore, the estimates and
the technique will be useful for the analysis of a numerical homogenization method in Chapter
7. The FE approximation of (2.1) is postponed to Chapter 3, where we discuss the multiscale
character of the equation. Second, we analyze the spectral method for the approximation of (2.1)
and provide some indications for its application. Indeed, this method will be used to approximate
(2.1) in a few possible cases (in one dimension and in small two-dimensional domains). Note that
in Chapter 7, we will design a numerical homogenization method for the long time approximation
of (2.1), that relies on a spectral approximation of an effective model of the form (2.1). Finally,
we define and analyze the Fourier method for the approximation of (2.2) in the case of constant
tensors a0, a2, b2. This method will be used extensively in Chapters 4 and 5, where the obtained
effective models are hyperbolic equations with constant coefficients. Note that in all the error
estimates that are derived, the dependence on Ω and the final time T ε is tracked. Indeed, as
these quantities are assumed to be large in the main results of this thesis, their influence needs to
be clarified.

The Chapter is organized as follows. In Section 2.1, we prove the well-posedness of (2.1) and (2.2).
In Section 2.2, we discuss the FEM for the approximation of (2.2) (with a2 = 0). In particular,

11



CHAPTER 2. NUMERICAL METHODS FOR LINEAR HYPERBOLIC EQUATIONS

we provide a priori error estimates in the L∞(H1) and L∞(L2) norms. Next, in Section 2.3, we
introduce the spectral method for the approximation of (2.1) and proceed to the corresponding
analysis. Finally, in Section 2.4, we present the Fourier method for the approximation of (2.2) in
the case of constant coefficients.

2.1 Well-posedness and energy estimates for linear hyperbolic equations

In this section, we prove the well-posedness of the wave equation (2.1) and of the linear Boussinesq
equation (2.2). In particular, we define the appropriate functional spaces and prove the existence
and uniqueness of a weak solution using the Faedo–Galerkin method.

Let us briefly summarize the Faedo–Galerkin method. Assume that V is an appropriate functional
space for the equation. We want to prove the existence and uniqueness of a weak solution
u : [0, T ε] → V . The first step is the construction of a sequence of approximate solutions
{um(t)} ⊂ V m, where V m ⊂ V is finite-dimensional. As the coefficients of um in the basis of
V m solve an ODE, standard theory provides the existence and uniqueness of um, for all m ∈ N.
The second step is to prove a bound for the sequence {um} in V norm (independently of m).
Then, functional analysis results provide a weak limit u, which is proved to be the unique weak
solution. Note that the techniques used to derive the uniform bound for the sequence—the energy
estimates—will be employed repeatedly in this thesis.

To define the finite dimensional subspace V m, we use an orthonormal basis of L2
0(Ω). As we

are in a periodic setting, we select the Fourier basis, introduced in Appendix A.4.1. Indeed,
this basis satisfies useful properties. Let {w�}�∈N be the Fourier basis of L2(Ω) and define
the finite dimensional space Ṽ m = span{w� : 0 ≤ � ≤ m}. An important property of V m is
that the differentiation with respect to xν is a linear map Ṽ m → Ṽ m, i.e., Ṽ m is closed under
differentiation: ∂νw� = DΩ,�

ν w�, where D
Ω,�
ν ∈ iR. We define the orthogonal projection onto V m

as

Pm : L2(Ω)→ Ṽ m, v → Pmv =

m∑
�=0

(v, w�)L2(Ω)w�. (2.3)

We verify that the differentiation map permutes with Pm: for v ∈Wper(Ω),

∂ν
(
Pmv

)
=

m∑
�=0

(v, w�)L2DΩ,�
ν w� =

m∑
�=0

(v,DΩ,�
ν w�)L2w� = −

m∑
�=0

(v,DΩ,�
ν w�)L2w�

= −
m∑
�=0

(v, ∂νw�)L2w� =
m∑
�=0

(∂νv, w�)L2w� = Pm
(
∂νv
)
,

(2.4)

where we used integration by parts and the fact that DΩ,�
ν = −DΩ,�

ν . Thanks to Plancherel
formula (A.52), we verify that the projection Pm is stable in L2(Ω)

‖Pmv‖2L2 =

m∑
�=0

|(v, w�)L2 |2 ≤
∞∑
�=0

|(v, w�)L2 |2 = ‖v‖2L2 .

Furthermore, thanks to (2.4), Pm is stable in H1(Ω)

|Pmv|2H1 =

d∑
ν=1

‖∂νPmv‖2L2 =

d∑
ν=1

‖Pm(∂νv)‖2L2 ≤
d∑

ν=1

‖∂νv‖2L2 = |v|2H1 ,

and similarly in any Hn(Ω):
|Pmv|Hn ≤ |v|Hn . (2.5)
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Note that the mean of a function v ∈ L2(Ω) is given by 〈v〉Ω = (v, w0)L2(Ω) (see Appendix A.4.1).
Hence, {w�}�∈N>0 is an orthonormal basis of L2

0(Ω) and we set V m = span{w� : 1 ≤ � ≤ m}. We
verify that V m ⊂Wper(Ω) and the previous properties still holds in this space.

2.1.1 The wave equation in heterogeneous media

In this section, we prove the well-posedness of the wave equation (2.1). The proof follows the
Faedo–Galerkin method and can be found in [74, 48].

Let Ω ⊂ Rd be a hypercube and let aε ∈ [L∞
per(Ω)]

d×d be a symmetric, uniformly elliptic and
bounded tensor, i.e.,

λ|ξ|2 ≤ aε(x)ξ · ξ ≤ Λ|ξ|2 ∀ξ ∈ Rd for a.e. x ∈ Ω. (2.6)

We consider the wave equation: find uε : [0, T ε]× Ω→ R such that

∂2t u
ε(t, x) +∇x ·

(
aε(x)∇xu

ε(t, x)
)
= f(t, x) in (0, T ε]× Ω,

x → uε(t, x) Ω-periodic in [0, T ε],

uε(0, x) = g0(x), ∂tu
ε(0, x) = g1(x) in Ω,

(2.7)

where g0, g1 are given initial conditions and f is a source term. In order to prove the well-posedness
of (2.7), let us introduce its variational formulation. We define the following bilinear form

Aε : Wper(Ω)×Wper(Ω)→ R : (v, w) → Aε(v, w) = (aε∇v,∇w)L2(Ω). (2.8)

Note that the assumptions on aε ensures that Aε is coercive and bounded:

Aε(v, v) ≥ λ‖∇v‖2L2(Ω), Aε(v, w) ≥ Λ‖∇v‖L2(Ω)‖∇w‖L2(Ω) ∀v, w ∈Wper(Ω).

We call a function

uε ∈ L∞(0, T ε;Wper(Ω)), ∂tu
ε ∈ L∞(0, T ε; L2

0(Ω)), ∂2t u
ε ∈ L2(0, T ε;W∗

per(Ω)),

a weak solution of (2.7) if〈
∂2t u

ε(t), v
〉
+Aε

(
uε, v

)
=
(
f(t), w

)
L2(Ω)

∀v ∈Wper(Ω) for a.e. t ∈ [0, T ε],

uε(0) = g0, ∂tu
ε(0) = g1,

(2.9)

where we denoted the dual evaluation 〈·, ·〉W∗
per(Ω),Wper(Ω) as 〈·, ·〉. Note that if we assume the

regularity (2.10) to hold, (2.9) makes sense thanks to the embeddings{
v ∈ L2(0, T ε;Wper(Ω)), ∂tv ∈ L2(0, T ε;W∗

per(Ω))
}
↪→ C([0, T ]; L2

0(Ω)),{
v ∈ L2(0, T ε; L2

0(Ω)), ∂tv ∈ L2(0, T ε;W∗
per(Ω))

}
↪→ C([0, T ];W∗

per(Ω)).

Finally, note that the choice of normalization, 〈uε(t)〉Ω = 0, is arbitrary. In fact, the well-
posedness can be proved for any normalization 〈uε(t)〉Ω = 〈g0〉Ω. The following theorem ensures
the existence and uniqueness of a weak solution of (2.7).

Theorem 2.1.1. Assume that the data satisfy

g0 ∈Wper(Ω), g1 ∈ L2
0(Ω), f ∈ L2(0, T ε; L2

0(Ω)). (2.10)

Then, there exists a unique weak solution uε of (2.7). Furthermore, the following estimate holds

‖∂tuε‖L∞(0,T ε;L2(Ω)) + ‖uε‖L∞(0,T ε;H1(Ω)) ≤ C
(
‖g1‖L2(Ω) + |g0|H1(Ω) + ‖f‖L1(0,T ε;L2(Ω))

)
, (2.11)

where C depends only on λ,Λ and the Poincaré constant CΩ.
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Remark 2.1.2. Note that the energy bound (2.11) depends on T ε through the quantity

‖f‖L1(0,T ε;L2(Ω)) =

∫ T ε

0

‖f(t)‖L2(Ω)dt.

Furthermore, C depends on the domain Ω through the Poincaré constant CΩ. However, this
dependence can be avoided if we keep the estimate in the H1 seminorm (which is a norm on
Wper(Ω)), i.e.,

‖∂tuε‖L∞(0,T ε;L2(Ω)) + |uε|L∞(0,T ε;H1(Ω)) ≤ C
(
‖g1‖L2(Ω) + |g0|H1(Ω) + ‖f‖L1(0,T ε;L2(Ω))

)
, (2.12)

where C depends only on λ and Λ. The bound (2.12) thus depends on T ε and Ω only through
the norms of the data.

Remark 2.1.3. Note that uε can be proved to satisfy the stronger regularity uε ∈ C0([0, T ε];Wper(Ω))
and ∂tu

ε ∈ C0([0, T ε]; L2
0(Ω)) (see e.g. [74]).

Proof. Let {w�}∞�=1 ⊂ Wper(Ω) be the Fourier basis of L2
0(Ω). We define the finite dimensional

space V m = span{w� : 1 ≤ � ≤ m}. Let Pm be the projection onto V m defined by the restriction
of (2.3) to L2

0(Ω). Define um(t) =
∑m

�=1 α
m
� (t)w�, as the solution of the problem(

∂2t u
m(t), wk

)
L2 +Aε

(
um(t), wk

)
=
(
f(t), wk

)
L2 1 ≤ k ≤ m for a.e. t ∈ [0, T ε],

um(0) = Pmg0, ∂tu
m(0) = Pmg1.

(2.13)

Problem (2.13) can be rewritten as a second order ordinary differential equation on [0, T ε] for

αm(t) =
(
αm
1 (t), . . . , αm

m(t)
)T

:

M̄(αm)′′(t) + Āαm(t) = F (t),

αm(0) = G0, (αm)′(0) = G1,

where Gi
k = (gi, wk)L2 , (F (t))k =

(
f(t), wk

)
L2 , and the m×m matrices M̄ and Ā are defined as

M̄k� = (w�, wk)L2 , Āk� = Aε(w�, wk)L2 . As M is positive definite, classical theory on ordinary
differential equations ensures the existence and unicity of a solution αm ∈ C1([0, T ε];Rm) with
(αm)′′ ∈ L2([0, T ε];Rm) (see e.g. [38]). We thus have um ∈ C1([0, T ε];V m) and ∂2t u

m ∈
L2(0, T ε;V m) . Let us now derive an energy estimate for um that does not depend on m. For
t ∈ [0, T ε], we multiply (2.13) by (αm

k )′(t) and sum up over 1 ≤ k ≤ m, to obtain for a.e.
t ∈ [0, T ε] (

∂2t u
m(t), ∂tu

m(t)
)
L2 +Aε

(
um(t), ∂tu

m(t)
)
=
(
f(t), ∂tu

m(t)
)
L2 .

Using the symmetry of (·, ·)L2 and Aε, we rewrite this equality as

1
2

d
dt

(
‖∂tum(t)‖2L2 +Aε

(
um(t), um(t)

))
=
(
f(t), ∂tu

m(t)
)
L2 .

Defining Eum(t) = ‖∂tum(t)‖2L2 + Aε(um(t), um(t)), we integrate over [0, ξ] and get for any
ξ ∈ [0, T ε]

Eum(ξ) = Eum(0) + 2

∫
0

ξ(
f(t), ∂tu

m(t)
)
L2 dt. (2.14)

We bound the second term of the right hand side using the Cauchy–Schwartz, Hölder, and Young
inequalities:

2

∫
0

ξ(
f(t), ∂tu

m(t)
)
L2 dt ≤ 2‖f‖L1(L2)‖∂tum‖L∞(L2) ≤ 2‖f‖2L1(L2) +

1
2‖∂tu

m‖2L∞(L2).

As Aε
(
um(ξ), um(ξ)

)
≥ 0, we have ‖∂tum(ξ)‖2L2 ≤ Eum(ξ) and we obtain from (2.14)

1
2‖∂tu

m‖2L∞(L2) ≤ Eum(0) + 2‖f‖2L1(L2). (2.15)
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Then, again using (2.14), (2.8), and the Poincaré inequality, we deduce that for any ξ,

‖um(ξ)‖2H1 ≤ CAε
(
um(ξ), um(ξ)

)
≤ CEum(ξ) ≤ C

(
Eum(0) + ‖f‖2L1(L2)

)
. (2.16)

Note that Eum(0) ≤ ‖g1‖2L2 +Λ|g0|H1 . Hence, combining (2.15) and (2.16), we obtain the energy
estimate

‖∂tum‖L∞(L2) + ‖um‖L∞(H1) ≤ C
(
‖g1‖L2 + |g0|H1 + ‖f‖L1(L2)

)
. (2.17)

We next derive an estimate for ‖∂2t um‖L2(0,T ε;W∗
per(Ω)). For v ∈Wper(Ω) such that ‖v‖H1 ≤ 1, as

the basis {w�}∞�=1 is orthogonal and using (2.13), we find that〈
∂2t u

m(t), v
〉
=
(
∂2t u

m(t), v
)
L2 =

(
∂2t u

m(t), Pmv
)
L2 =

(
f(t), Pmv

)
L2 −Aε

(
um(t), Pmv

)
.

As |Pmv|H1 ≤ |v|H1 , we obtain

‖∂2t um(t)‖W∗
per

≤ ‖f(t)‖L2 + Λ|um(t)|H1 ,

and thus, as |um|L2(H1) ≤
√
T ε|um|L∞(H1), using (2.17) leads to

‖∂2t um‖L2(W∗
per)

≤ C
√
T ε
(
‖g1‖L2 + |g0|H1 + ‖f‖L1(L2)

)
+ ‖f‖L2(L2). (2.18)

Estimates (2.17) and (2.18) imply that {um}, {∂tum}, and {∂2t um} are bounded sequences in the

spaces L∞(0, T ε;Wper(Ω)) = [L1(0, T ε;Wper(Ω)
∗
)]
∗
, L∞(0, T ε; L2

0(Ω)) = [L1(0, T ε; L2
0(Ω)

∗
)]
∗
,

and L2(0, T ε;W∗
per(Ω)), respectively. As L2(0, T ε;W∗

per(Ω)) is reflexive, and as the spaces

L1(0, T ε;Wper(Ω)
∗
) and L1(0, T ε; L2

0(Ω)
∗
) are separable, standard functional analysis results

(see e.g. [94]) ensure the existence of subsequences of {um}, {∂tum}, {∂2t um}, still indexed by m,
such that

um ⇀ uε weakly∗ in L∞(0, T ε;Wper(Ω)),

∂tu
m ⇀ ∂tu

ε weakly∗ in L∞(0, T ε; L2
0(Ω)),

∂2t u
m ⇀ ∂2t u

ε weakly in L2(0, T ε;W∗
per(Ω)),

(2.19)

as m→∞. Furthermore, the limits uε, ∂tu
ε, and ∂2t u

ε satisfy the same estimates as the sequences
(2.17). Using the weak convergences (2.19), we can verify that uε satisfies (2.9) and is a weak
solution of (2.7). To prove the uniqueness, we use the estimate (2.17).

2.1.2 The Boussinesq equation

In this section, we prove the well-posedness of the Boussinesq equation (2.2). In a first part,
we provide three results of well-posedness of the equation. The first one is more general as it
requires less regularity of the data. The second and third ones ensures more regularity of the weak
solution. In a second part, we state the corresponding results for the equation without fourth
order operator. Indeed, this case is important for the one-dimensional study of long time effective
models in locally periodic medium in Chapters 6 and 7. Finally, in the last part, we provide error
estimates ensuring a higher regularity of the solution, in the case of constant tensors.

Let Ω ⊂ Rd be a hypercube. Let a0 ∈ [L∞
per(Ω)]

d×d be a symmetric tensor, uniformly elliptic, and
bounded tensor, i.e.,

λ|ξ|2 ≤ a0(x)ξ · ξ ≤ Λ|ξ|2 ∀ξ ∈ Rd for a.e. x ∈ Ω. (2.20)

Let also b2 ∈ [L∞
per(Ω)]

d×d and let a2 be a fourth order tensor function such that a2ijkl ∈ L∞
per(Ω).

We assume that b2 and a2 satisfy

b2ij = b2ji, b2(x)ξ · ξ ≥ 0 ∀ξ ∈ Rd for a.e. x ∈ Ω, (2.21a)

a2ijkl = a2klij , a2(x)η : η ≥ 0 ∀η ∈ Sym2(Rd) for a.e. x ∈ Ω, (2.21b)
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where we recall the notation

a2η : ξ = a2ijklηklξij ∀η, ξ ∈ Sym2(Rd).

We consider the Boussinesq equation: ũ : [0, T ε]× Ω→ R such that

∂2t ũ+ ∂i
(
a0ij∂j ũ

)
+ ε2∂2ij

(
a2ijkl∂

2
klũ
)
− ε2∂i

(
b2ij∂j∂

2
t ũ
)
= f in (0, T ε]× Ω,

x → ũ(t, x) Ω-periodic in [0, T ε],

ũ(0, x) = g0(x), ∂tũ(0, x) = g1(x) in Ω.

(2.22)

We now present three different well-posedness results for (2.22). The first one is the more general.
It ensures the existence and uniqueness of a weak solution under minimum regularity requirements.
In the second result, under some stronger requirement on the tensors a2, b2, the weak solution
is proved more regular. Finally, the third result provides conditions on the data for the weak
solution to be even more regular.

We begin with the general well-posedness result. Let us introduce a first definition of a weak
solution of (2.22). We define the forms(

v, w
)
S =

(
v, w
)
L2 + ε2

(
b2∇v,∇w

)
L2 , v, w ∈ L2

0(Ω) ∩H1(Ω),

Ã
(
v, w
)
=
(
a0∇v,∇w

)
L2 − ε2

(
∂iv, ∂j(a

2
ijkl∂

2
klw)

)
L2 v ∈Wper(Ω), w ∈Wper(Ω) ∩H3(Ω),

A
(
v, w
)
=
(
a0∇v,∇w

)
L2 + ε2

(
a2∇2v,∇2w

)
L2 v, w ∈Wper(Ω) ∩H2(Ω).

Note that in the definition of Ã, we assume that a2 ∈ W1,∞(Ω). Furthermore, if v and w are
sufficiently regular, an integration by parts ensures that Ã

(
v, w
)
= A

(
v, w
)
We call a function

ũ ∈ L∞(0, T ε;Wper(Ω)), with ∂tũ ∈ L∞(0, T ε; L2
0(Ω)), a weak solution of (2.22) if, for all test

functions v ∈ C2([0, T ε];Wper(Ω)(Ω) ∩H3(Ω)) with v(T ε) = ∂tv(T
ε) = 0,∫

0

T ε(
ũ(t), ∂2t v(t)

)
S + Ã

(
ũ(t), v(t)

)
dt =

∫
0

T ε(
f(t), v(t)

)
L2(Ω)

dt+
(
g1, v(0)

)
S−
(
g0, ∂tv(0)

)
S . (2.23)

Using integration by parts (in space and time), we verify that a sufficiently regular weak solution
ũ satisfies (2.22) in a L2 sense.

The following theorem is the more general well-posedness result for the Boussinesq equation
(2.22) (the proof is provided below).

Theorem 2.1.4. Assume that a2 ∈W1,∞(Ω) and that the data satisfy the regularity

g0 ∈Wper(Ω) ∩H2(Ω), g1 ∈ L2
0(Ω) ∩H1(Ω), f ∈ L2(0, T ε; L2

0(Ω)). (2.24)

Then there exists a unique weak solution ũ (in the sense of (2.23)), and the following estimate
holds

‖∂tũ‖L∞(0,T ε;L2(Ω))+‖ũ‖L∞(0,T ε;Wper(Ω)) ≤ C
(
‖g1‖H1(Ω)+‖g0‖H2(Ω)+‖f‖L1(0,T ε;L2(Ω))

)
, (2.25)

where C depends only on λ,Λ, ‖b2‖L∞(Ω), ε
2‖a2‖L∞(Ω) and the Poincaré constant CΩ.

Let us now show that, under additional requirements on the tensors, we obtain a weak solution
which is more regular. In this direction, let us define the natural functional spaces associated
to (2.22). Note that as b2(x) is a symmetric positive semidefinite matrix for a.e. x, the
square root

√
b2(x) is well defined (using the diagonalization of b2(x)). We define in a similar

manner the square root of a2 as follows. Referring to Section 4.3.3, there exist a bijective map
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ν : Sym2(Rd)→ RN(d), where N(d) =
(
d+1
2

)
, and a symmetric N(d)×N(d) matrix M(a2) such

that
a2η : ξ =M(a2)ν(η) · ν(ξ) ∀η, ξ ∈ Sym2(Rd).

In particular, thanks to (2.21b), M(a2) is positive semidefinite. The square root of a2 is then

defined as
√
a2 =

√
M(a2). We define the functional spaces

S(Ω) =
{
v ∈ L2

0(Ω) :
√
b2∇v ∈ [L2(Ω)]d

}
,

V(Ω) =
{
v ∈Wper(Ω) :

√
a2∇2v ∈ [L2(Ω)]d×d

}
,

(2.26)

where
(√
a2∇2v

)
ij
=
(√
a2
)
ijkl

∂2klv. Note that the spaces of definition of the forms (·, ·)S and

A(·, ·) can be extended to S(Ω) and V(Ω), respectively. In order to ensure the spaces S(Ω) and
V(Ω) to be complete, we require either of the following assumptions to hold:

the tensors a2, b2 are constant (H1)

the tensors a2, b2 are strictly positive definite (H2)

Then, if (H1) or (H2) holds, we verify that, equipped with the inner products (·, ·)S and
A(·, ·), respectively, S(Ω) and V(Ω) are Hilbert spaces. On V(Ω), we define the inner product
(v, w)V = (v, w)S +A(v, w). Thanks to the Poincaré–Wirtinger inequality, the ellipticity of a0 and
(2.21), the norms ‖v‖V =

√
(v, v)V and ‖v‖ =

√
A(v, v) are equivalent. Using Riesz representation

theorem, we obtain the following characterization for the dual V∗(Ω). For F ∈ V∗(Ω), there exist
f0 ∈ L2

0(Ω), f
1
l , f

2
kl ∈ L2(Ω), 1 ≤ k, l ≤ d such that〈

F, v
〉
V∗,V =

(
f0, v

)
L2 +

(
(a0kl + ε2b2kl)f

1
l , ∂kv

)
L2 +

(
ε2a2ijklf

2
kl, ∂

2
ijv
)
L2 . (2.27)

We thus obtain the following embeddings

V(Ω) ↪→ S(Ω) ↪→ L2
0(Ω) ↪→ V∗(Ω).

Furthermore, V(Ω) is dense in L2
0(Ω).

We now define a more regular weak solution of (2.22). If (H1) or (H2) holds, a function
ũ ∈ L∞(0, T ε;V(Ω)) with ∂tũ ∈ L∞(0, T ε;S(Ω)) is a weak solution of (2.22) if, for all test
functions v ∈ C2([0, T ε];V(Ω)) with v(T ε) = ∂tv(T

ε) = 0,∫
0

T ε(
ũ(t), ∂2t v(t)

)
S +A

(
ũ(t), v(t)

)
dt =

∫
0

T ε(
f(t), v(t)

)
L2(Ω)

dt+
(
g1, v(0)

)
S−
(
g0, ∂tv(0)

)
S . (2.28)

Again, we verify that a sufficiently regular weak solution satisfies (2.22) in a L2 sense.

The following theorem is the second well-posedness result for the Boussinesq equation. It ensures
the existence and uniqueness of a weak solution in the sense of (2.28) (the proof is provided
below).

Theorem 2.1.5. Assume that either (H1) or (H2) holds and that the data satisfy the regularity

g0 ∈ V(Ω) ∩H2(Ω), g1 ∈ S(Ω) ∩H1(Ω), f ∈ L2(0, T ε; L2
0(Ω)). (2.29)

Then there exists a unique weak solution ũ (in the sense of (2.28)), and the following estimate
holds

‖∂tũ‖L∞(0,T ε;S) + ‖ũ‖L∞(0,T ε;V) ≤ C
(
‖g1‖H1(Ω) + ‖g0‖H2(Ω) + ‖f‖L1(0,T ε;L2(Ω))

)
, (2.30)

where C depends only on λ,Λ, ‖b2‖L∞(Ω), ε
2‖a2‖L∞(Ω) and the Poincaré constant CΩ.
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Finally, the following result provides requirements on the data to obtain more regularity of the
weak solution.

Theorem 2.1.6. Assume that either (H1) or (H2) holds and that the data satisfy the regularity

a0 ∈W1,∞(Ω), a2 ∈W2,∞(Ω),

g0 ∈ V(Ω) ∩H4(Ω), g1 ∈ S(Ω) ∩H2(Ω), f ∈ H1(0, T ε; L2
0(Ω)).

(2.31)

Then the unique weak solution ũ (in the sense of (2.28)) satisfies ∂tũ ∈ L∞(0, T ε;V(Ω)), ∂2t ũ ∈
L∞(0, T ε;S(Ω)) and the following estimate holds:

‖∂2t ũ‖L∞(0,T ε;S) + ‖∂tũ‖L∞(0,T ε;V) ≤ C
(
‖g1‖H2(Ω) + ‖g0‖H4(Ω) + ‖f‖W1,1(0,T ε;L2(Ω))

)
, (2.32)

where C depends only on λ, ‖b2‖L∞(Ω), ‖a0‖W1,∞(Ω), ε
2‖a2‖W2,∞(Ω) and the Poincaré constant

CΩ.

Thanks to Theorem 2.1.6, under the regularity (2.31), ũ satisfies the regularity

ũ ∈W1,∞(0, T ε;V(Ω)) ↪→ C0([0, T ε];V(Ω)), ∂tũ ∈W1,∞(0, T ε;S(Ω)) ↪→ C0([0, T ε];S(Ω)).
(2.33)

Then, integrating by parts twice with respect to t in (2.28), and using the test function wϕ(t),
where w ∈ V(Ω) and ϕ ∈ C2c ([0, T ε]), we obtain, by density of C2c ([0, T ε]) in L2(0, T ε),∫

0

T ε((
∂2t ũ(t), w

)
S +A

(
ũ(t), w

)
−
(
f(t), w

)
L2

)
ψ(t) dt = 0 ∀ψ ∈ L2(0, T ε).

Hence, we verify that ũ is the unique solution of the following variational formulation of (2.22),(
∂2t ũ(t), w

)
S +A

(
ũ(t), w

)
=
(
f(t), w

)
L2 ∀w ∈ V(Ω) for a.e. t ∈ [0, T ε],

ũ(0) = g0, ∂tũ(0) = g1,
(2.34)

where the initial conditions make sense in V(Ω) and S(Ω), respectively (thanks to (2.33)). Note
that the variational formulation (2.34) is suited for the development and analysis of numerical
methods such as the finite element method or the spectral method.

Proof of Theorem 2.1.5 (and Theorem 2.1.4). We prove here Theorem 2.1.5. The proof of
Theorem 2.1.4 is very similar and the few necessary changes are specified.

Let {w�}∞�=1 be the Fourier basis of L2
0(Ω). We define the finite dimensional space V m = span{w� :

1 ≤ � ≤ m}. Let Pm be the projection onto V m defined by the restriction of (2.3) to L2
0(Ω). We

define um(t) =
∑m

�=1 α
m
� (t)w� as the solution of the problem(

∂2t u
m(t), wk

)
S +A

(
um(t), wk

)
=
(
f(t), wk

)
L2 1 ≤ k ≤ m for a.e. t ∈ [0, T ε],

um(0) = Pmg0, ∂tu
m(0) = Pmg1. (2.35)

Problem (2.35) can be rewritten as a second order ordinary differential equation on [0, T ε] for

αm(t) =
(
αm
1 (t), . . . , αm

m(t)
)T

:

M̄(αm)′′(t) + Āαm(t) = F (t),

αm(0) = G0, (αm)′(0) = G1,

where Gi
k = (gi, wk)L2 , (F (t))k =

(
f(t), wk

)
L2 , and the m ×m matrices M̄ and Ā are defined

as M̄k� = (w�, wk)S , Āk� = A(w�, wk)L2 . As b2 is positive semidefinite, M̄ is positive definite.
Consequently, classical theory on ordinary differential equations ensures the existence and unicity
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of a solution αm ∈ C1([0, T ε];Rm) with (αm)′′ ∈ L2(0, T ε;Rm) (see e.g. [38]). Hence, we have
um ∈ C1([0, T ε];V m) and ∂2t u

m ∈ L2(0, T ε;V m). Let us now derive an energy estimate for um,
independently of m. For a t ∈ [0, T ε], we multiply (2.35) by (αm

k )′(t) and sum over 1 ≤ k ≤ m,
to obtain for a.e. t ∈ [0, T ε](

∂2t u
m(t), ∂tu

m(t)
)
S +A(um(t), ∂tu

m(t)) =
(
f(t), ∂tu

m(t)
)
L2 .

Using the symmetry of the forms, this equality can be rewritten as

1
2

d
dt

(
‖∂tum(t)‖2S +A(um(t), um(t))

)
=
(
f(t), ∂tu

m(t)
)
L2 .

Defining Eum(t) = ‖∂tum(t)‖2S +A(um(t), um(t)), we integrate over [0, ξ] for ξ ∈ [0, T ε] and get

Eum(ξ) = Eum(0) + 2

∫
0

ξ(
f(t), ∂tu

m(t)
)
L2 dt. (2.36)

We bound the second term of the right hand side using Cauchy–Schwartz, Hölder, and Young
inequalities:

2

∫
0

ξ(
f(t), ∂tu

m(t)
)
L2 dt ≤ 2‖f‖L1(L2)‖∂tum‖L∞(L2) ≤ 2‖f‖2L1(L2) +

1
2‖∂tu

m‖2L∞(S).

As A(um(ξ), um(ξ)) ≥ 0, we have ‖∂tum(ξ)‖2S ≤ Eum(ξ) and we obtain from (2.36)

1
2‖∂tu

m‖2L∞(S) ≤ Eum(0) + 2‖f‖2L1(L2). (2.37)

Then, again using (2.36), we deduce that for any ξ ∈ [0, T ε,

‖um(ξ)‖2V ≤ CA
(
um(ξ), um(ξ)

)
≤ CEum(ξ) ≤ C

(
Eum(0) + ‖f‖2L1(L2)

)
. (2.38)

Let us now bound Eum(0) = ‖Pmg1‖2S + A
(
Pmg0, Pmg0

)
. For the first term, recalling the

stability of Pm (2.5), we have

‖Pmg1‖2S ≤ ‖Pmg1‖2L2 + Cε2‖∇(Pmg1)‖2L2 ≤ C
(
‖g1‖2L2 + ε2‖∇g1‖2L2

)
.

For the second term, we have

A
(
Pmg0, Pmg0

)
≤ C

(
‖∇(Pmg0)‖2L2 + ε2‖∇2(Pmg0)‖2L2 ≤ C

(
‖∇g0‖2L2 + ε2‖∇2g0‖2L2

)
.

Combining the two last estimates with (2.37) and (2.38), we obtain the energy estimate

‖∂tum‖L∞(S) + ‖um‖L∞(V) ≤ C
(
‖g1‖H1 + ‖g0‖H2 + ‖f‖L1(L2)

)
. (2.39)

Estimate (2.39) implies that {um} and {∂tum} are bounded sequences in the spaces
L∞(0, T ε;V(Ω)) = [L1(0, T ε;V∗(Ω))]

∗
and L∞(0, T ε;S(Ω)) = [L1(0, T ε;S∗(Ω))]

∗
, respectively.

As the spaces L1(0, T ε;V∗(Ω)) and L1(0, T ε;S∗(Ω)) are separable, standard functional analysis
results (see e.g. [94]) ensure the existence of subsequences of {um}, {∂tum}, still indexed by m,
such that

um ⇀ ũ weakly∗ in L∞(0, T ε;V(Ω)),
∂tu

m ⇀ ∂tũ weakly∗ in L∞(0, T ε;S(Ω)), (2.40)

as m→∞. Furthermore, the limits ũ and ∂tũ satisfy the same estimate as um (2.39).

In the context of Theorem 2.1.4, we note that (2.39) implies the estimate

‖∂tum‖L∞(L2) + ‖um‖L∞(H1) ≤ C
(
‖g1‖H1 + ‖g0‖H2 + ‖f‖L1(L2)

)
.
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The sequences {um} and {∂tum} are thus bounded in the spaces L∞(0, T ε;Wper(Ω)) =
[L1(0, T ε;W∗

per(Ω))]
∗
and L∞(0, T ε; L2

0(Ω)) = [L1(0, T ε; L2
0(Ω))]

∗
, and we obtain a weak limit

of subsequence in these spaces.

Finally, we prove that the weak limit ũ is a weak solution, in the sense of (2.28) (for Theorem
2.1.4, we prove similarly that the weak limit is a weak solution in the sense of (2.23)). Note that
the space of functions of the form ϕw, with ϕ ∈ C2(0, T ε), ϕ(T ε) = ϕ′(T ε) = 0, and w ∈ V(Ω) is
dense in the space of test functions. It is thus sufficient to verify that (2.28) holds for v = ϕwk.
Multiplying (2.35) with ϕ(t), integrating over [0, T ε] and integrating by parts, we obtain∫

0

T ε(
um(t), ϕ′′(t)wk

)
S dt+

∫
0

T ε

A
(
um(t), ϕ(t)wk

)
dt =

∫
0

T ε(
f(t), ϕ(t)wk

)
L2 dt

+
(
Pmg1, v(0)

)
S −

(
Pmg0, ∂tv(0)

)
S .

Thanks to the weak∗ convergences (2.40) and as limm→∞ Pmgi = gi, we verify that ũ satisfies
(2.28) for v = ϕwk (∂tv = ϕ′wk) and that completes the proof. �

Proof of Theorem 2.1.6. Thanks to the regularity and symmetry of the tensors a0 and a2, the
proof of Theorem 2.1.5 can be performed with the orthonormal basis of L2

0(Ω) formed by the
eigenfunctions of the elliptic operator Av = −∂i(a0ij∂jv) + ε2∂ij(a

2
ijkl∂klv). We still denote the

basis {wk}k∈N ⊂ V(Ω). From the time differentiation of (2.35), similarly as (2.39) yields

‖∂2t um‖L∞(S) + ‖∂tum‖L∞(V) ≤ C
(
‖∂2t um(0)‖S + ‖g1‖H2 + ‖∂tf‖L1(L2(Ω))

)
. (2.41)

Let us estimate the term ‖∂tum(0)‖S . Using (2.35), we get

‖∂2t um(0)‖2S =
(
f(0)−Aum(0), ∂2t u

m(0)
)
L2 .

Hence
‖∂2t um(0)‖S ≤ ‖f(0)‖L2 + ‖Aum(0)‖L2 . (2.42)

The embedding W1,1(0, T ε; L2(Ω)) ↪→ C0([0, T ε]; L2(Ω)) implies that

‖f(0)‖L2 ≤ max{1, 1/T ε}‖f‖W1,1(L2).

We still have to estimate ‖Aum(0)‖L2 . Integrating by parts we have

‖Aum(0)‖2L2 =
(
Aum(0),Aum(0)

)
L2 =

(
Pmg0,A2um(0)

)
L2 .

As Awk = λkwk for any k ∈ N, we verify that A2um(0) ∈ V m and thus

‖Aum(0)‖2L2 =
(
g0,A2um(0)

)
L2 =

(
Ag0,Aum(0)

)
L2 ≤ C‖g0‖H4‖Aum(0)‖L2 , (2.43)

where C depends on ‖a0‖W1,∞(Ω) and ε2‖a2‖W2,∞(Ω). Combining estimates (2.41), (2.42) and
(2.43) and passing to the limit m→∞ proves estimate (2.32). �

Special case: no fourth order operator

In the case without the fourth order tensor a2 in the Boussinesq equation 2.22, the well-posedness
can be proved under weaker regularity of the data. We state here the results, the proofs follow
the same lines as for Theorems 2.1.5 and 2.1.6.

We consider the following equation: find ū : [0, T ε]× Ω→ R such that

∂2t ū− ∂i
(
a0ij∂j ū

)
− ε2∂i

(
b2ij∂j∂

2
t ū
)
= f in (0, T ε]× Ω,

x → ū(t, x) Ω-periodic in [0, T ε],

ū(0) = g0, ∂tū(0) = g1 in Ω.

(2.44)
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We define a weak solution of (2.44) similarly as in (2.28) (with V(Ω) = Wper(Ω) and a
2 = 0).

Define the bilinear forms(
v, w
)
S =

(
v, w
)
L2 + ε2

(
b2∇v,∇w

)
L2 , v, w ∈ S(Ω), (2.45)

A(v, w) =
(
a0∇v,∇w

)
L2 v, w ∈Wper(Ω). (2.46)

We call a function ū ∈ L∞(0, T ε;Wper(Ω)), with ∂tū ∈ L∞(0, T ε;S(Ω)), a weak solution of (2.44)
if, for all test functions v ∈ C2([0, T ε];Wper(Ω)) with v(T

ε) = ∂tv(T
ε) = 0,∫

0

T ε(
ū(t), ∂2t v(t)

)
S +A

(
ũ(t), v(t)

)
dt =

∫
0

T ε(
f(t), v(t)

)
L2(Ω)

dt+
(
g1, v(0)

)
S−
(
g0, ∂tv(0)

)
S . (2.47)

The following result provides the existence and uniqueness of a weak solution ū to (2.44).

Theorem 2.1.7. Assume that the data satisfy the following regularity

g0 ∈Wper(Ω), g1 ∈ S(Ω) ∩H1(Ω), f ∈ L2(0, T ε; L2
0(Ω)). (2.48)

Then there exists a unique weak solution ū of (2.44) and the following estimate holds

‖∂tū‖L∞(0,T ε;S(Ω)) + ‖ū‖L∞(0,T ε;H1(Ω)) ≤ C
(
‖g1‖H1(Ω) + ‖g0‖H1(Ω) + ‖f‖L1(0,T ε;L2(Ω))

)
, (2.49)

where C depends only on λ,Λ, ‖b2‖L∞(Ω) and the Poincaré constant CΩ.

Under stronger regularity assumptions on the data, we prove a higher regularity of the weak
solution.

Theorem 2.1.8. Assume that

a0 ∈W1,∞(Ω), g0 ∈Wper(Ω) ∩H2(Ω), g1 ∈ S(Ω) ∩H1(Ω), f ∈ H1(0, T ε; L2
0(Ω)). (2.50)

Then ∂tū ∈ L∞(0, T ε; H1(Ω)), ∂2t ū ∈ L∞(0, T ε;S(Ω)) and the following estimate holds:

‖∂2t ū‖L∞(0,T ε;S(Ω)) + ‖∂tū‖L∞(0,T ε;H1(Ω)) ≤ C
(
‖g1‖H1(Ω) + ‖g0‖H2(Ω) + ‖f‖W1,1(0,T ε;L2(Ω))

)
,

(2.51)
where C depends only on λ, ‖b2‖L∞(Ω), ‖a0‖W1,∞(Ω) and the Poincaré constant CΩ.

Theorem 2.1.8 ensures that if (2.50) holds, ū is the unique solution of the following varia-
tional formulation of (2.44): ū ∈ L∞(0, T ε;Wper(Ω)), with ∂tū ∈ L∞(0, T ε;S(Ω)) and ∂2t ū ∈
L∞(0, T ε;S(Ω)), such that(

∂2t ũ(t), w
)
S +A

(
ũ(t), w

)
=
(
f(t), w

)
L2 ∀w ∈Wper(Ω) for a.e. t ∈ [0, T ε],

ũ(0) = g0, ∂tũ(0) = g1,
(2.52)

where the initial conditions makes sense in Wper(Ω) and S(Ω), respectively (thanks to (2.33) with
V(Ω) = Wper(Ω)).

Energy estimate for higher regularity of the solution (constant tensors)

In the last part of this section, we prove energy estimates that ensure a higher regularity of the
weak solution of the Boussinesq equation 2.22, in the case of constant tensors a0, b2, a2.

Theorem 2.1.9. Assume that the tensors a0, b2 and a2 are constant, that f is Ω-periodic and
assume that the assumptions of Theorem 2.1.5 holds.
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i) If we assume in addition that for some k ≥ 0 the data satisfy the regularity

g0 ∈ Hk+2(Ω), g1 ∈ Hk+1(Ω), f ∈ L2(0, T ε; Hk(Ω)),

then the weak solution ũ of (2.28) satisfies the estimate

|∂tũ|L∞(0,T ε;Hk(Ω)) + |ũ|L∞(0,T ε;Hk+1(Ω)) ≤ C
(
‖g1‖Hk+1(Ω) + ‖g0‖Hk+2(Ω) + ‖f‖L1(0,T ε;Hk(Ω))

)
,

(2.53)
where the constant depends only on λ, a0, b2, a2.

ii) If we assume in addition that for some k ≥ 0 the data satisfy the regularity

g0 ∈ Hk+4(Ω), g1 ∈ Hk+2(Ω), f ∈ H1(0, T ε; Hk(Ω)),

then the weak solution ũ of (2.28) satisfies the estimate

|∂2t ũ|L∞(0,T ε;Hk(Ω))+ |∂tũ|L∞(0,T ε;Hk+1(Ω)) ≤ C
(
‖g1‖Hk+2(Ω)+ ‖g0‖Hk+4(Ω)+ ‖f‖W1,1(0,T ε;Hk(Ω))

)
,

(2.54)
where the constant depends only on λ, a0, b2, a2 and max{1, 1/T ε}.

Proof. We prove estimate (2.53) and (2.54) for k = 1. The proof for a general k ≥ 0 follows
the same line with obvious modifications. For the sake of simplicity, we assume that Ω =
(0, L1)× · · · × (0, Ld). Let {w�}�∈N be the Fourier basis and consider the approximated problem
in V m given in (2.35).

i) Recall that the Fourier basis functions satisfy ∂xν
w� = DΩ,�

ν w�, where D
Ω,�
ν ∈ iR. Hence,

multiplying (2.35) by −DΩ,�
ν , we obtain

−
(
∂2t u

m(t), ∂xνw�

)
S −A

(
um(t), ∂xνw�

)
= −

(
f(t), ∂xνw�

)
L2 1 ≤ � ≤ m for a.e. t ∈ [0, T ε].

As the tensors are assumed to be constant, we integrate by parts and get(
∂2t u

m
ν (t), w�

)
S +A

(
umν (t), w�

)
=
(
fν(t), w�

)
L2 1 ≤ � ≤ m for a.e. t ∈ [0, T ε]. (2.55)

where we used the short hand notation umν (t) = ∂xν
um(t) =

∑m
�=1 α�(t)∂xν

w� and fν = ∂xν
f .

Multiplying this equality by α̇�(t)D
Ω,�
ν and summing over 1 ≤ � ≤ m, we obtain(

∂2t u
m
ν (t), ∂tu

m
ν (t)

)
S +A

(
umν (t), ∂tu

m
ν (t)

)
=
(
fν(t), ∂tu

m
ν (t)

)
L2 for a.e. t ∈ [0, T ε],

which can be rewritten as

1
2

d
dt

(
‖∂tumν (t)‖2S +A

(
umν (t), umν (t)

))
=
(
fν(t), ∂tu

m
ν (t)

)
L2 for a.e. t ∈ [0, T ε].

Denoting Eumν (t) = ‖∂tumν (t)‖2S +A
(
umν (t), umν (t)

)
, we integrate the equality over [0, ξ] and get

Eumν (ξ) = Eumν (0) + 2
(
fν(t), ∂tu

m
ν (t)

)
L2 . (2.56)

The second term of the right hand side is bounded using Cauchy–Schwartz, Hölder and Young
inequalities:

2

∫
0

ξ(
fν(t), ∂tu

m
ν (t)

)
L2 dt ≤ 2‖fν‖L1(L2)‖∂tumν ‖L∞(L2) ≤ 2‖fν‖2L1(L2) +

1
2‖∂tu

m
ν ‖2L∞(S). (2.57)

Taking the L∞ norm with respect to ξ in (2.56), we thus obtain

1
2‖∂tu

m
ν ‖2L∞(S) ≤ Eumν (0) + 2‖fν‖2L1(L2),
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which combined with (2.56) and (2.57) gives

ess sup
ξ∈[0,T ε]

A
(
umν (ξ), umν (ξ)

)
≤ Eumν (0) + 2‖fν‖2L1(L2).

Thanks to the properties of A(·, ·) and the definition of ‖ · ‖S , we thus have

ess sup
ξ∈[0,T ε]

‖∂tumν (ξ)‖L2 + ess sup
ξ∈[0,T ε]

|umν (ξ)|H1 ≤ C
(
‖∂tumν (0)‖H1 + ‖umν (0)‖H2 + ‖fν‖L1(L2)

)
, (2.58)

where C depends only on a0, a2, b2. As umν (0) = ∂xν
(Pmg0) = Pm(∂xν

g0) and ∂tu
m
ν (0) =

Pm(∂xνg
1), using the stability of Pm and applying (2.58) for ν = 1, . . . , d, we obtain the estimate

ess sup
ξ∈[0,T ε]

|∂tum(ξ)|H1 + ess sup
ξ∈[0,T ε]

|um(ξ)|H2 ≤ C
(
‖g1‖H2 + ‖g0‖H3 + ‖f‖L1(H1)

)
. (2.59)

Taking the limit m→∞, we obtain (2.53) for k = 1.

ii) Let us now prove (2.54) for k = 1. From the time differentiation of (2.35), we obtain in a
similar manner as (2.58) (we keep the S norm for the first term of E∂2t u

m
ν (0))

ess sup
ξ∈[0,T ε]

|∂2t um(ξ)|H1 + ess sup
ξ∈[0,T ε]

|∂tum(ξ)|H2 ≤ C
(
‖∂2t umν (0)‖S + ‖g1‖H3 + ‖∂tf‖L1(H1)

)
. (2.60)

Let us bound ‖∂2t umν (0)‖S . Using (2.55) , we have

‖∂2t umν (0)‖2S =
(
∂2t u

m
ν (0), ∂2t u

m
ν (0)

)
S =

(
fν(0)−Aumν (0), ∂2t u

m
ν (0)

)
L2 ,

which, using Cauchy–Schwartz, implies

‖∂2t umν (0)‖S ≤ ‖fν(0)‖L2 + ‖Aumν (0)‖L2 . (2.61)

To bound the first term of the right hand side, we use the continuous embedding
W1,1(0, T ε; L2(Ω)) ↪→ C([0, T ε]; L2(Ω)) which implies that

‖fν(0)‖L2 = ‖∂xνf(0)‖L2 ≤ max{1, 1/T ε}‖f‖W1,1(H1).

For the second term, note that as the tensors are constant we have A2umν (0) ∈ V m. Hence,
integrating by parts and using that ∂xν

Pmg0 = Pm(∂xν
g0) and the definition of Pm, we have

‖Aumν (0)‖2L2 =
(
Pm∂xνg

0,A2umν (0)
)
L2 =

(
∂xνg

0,A2umν (0)
)
L2 =

(
A(∂xνg

0),Aumν (0)
)
L2 ,

which implies via Cauchy–Schwartz inequality that ‖Aumν (0)‖L2 ≤ C‖g0‖H5 , where C depends
only on a0 and a2. Finally, combining (2.60), (2.61) with the two last bounds, we obtain

ess sup
ξ∈[0,T ε]

|∂2t um(ξ)|H1 + ess sup
ξ∈[0,T ε]

|∂tum(ξ)|H2 ≤ C
(
‖g1‖H3 + ‖g0‖H5 + ‖f‖W1,1(H1)

)
.

Taking the limit m→∞, we obtain (2.54) for k = 1.

2.2 The finite element method for hyperbolic equations

In this section, we present the finite element method with numerical integration for the approxi-
mation of the Boussinesq equation (without fourth order differential operator). The results and
techniques presented in this section will be used in the analysis of a numerical homogenization
method in Chapter 7. Note that the study of the effects of numerical integration in the finite
element method is essential in numerical homogenization methods (as discussed in [4]). We
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refer to Appendix A.3 for an introduction on this topic. Note that the analysis of the finite
element method for the multiscale wave equation is postponed to Section 3.1, where we discuss
its multiscale character.

The a priori error analysis of the finite element method with numerical integration for the
Boussinesq equation follows the technique of elliptic projection (see [44, 21, 22]). Even though
the proof is classical, it is not found in the literature. The standard error estimates involve a
constant that depends on the domain Ω. Indeed, we verify that it depends on the Poincaré
constant for the L∞(H1) estimate and on the H2 regularity constant for the L∞(L2) estimate
(coming from the Aubin–Nitsche argument). As we want to avoid this dependence to consider
pseudoinfinite domains, this issue is settled in Chapter 7, Section 7.1.4. In particular, we modify
the elliptic projection and obtain an error estimate in the norm ‖∇ · ‖L∞(0,T ε;L2(Ω)) (it is a norm
on L∞(0, T ε;Wper(Ω))) with a constant independent of Ω.

Let Ω be a periodic hypercube in Rd, let a0 ∈ W1,∞(Ω) be a symmetric tensor, elliptic and
bounded and let b2 be a symmetric, positive semidefinite tensor (see the assumptions (2.20) and
(2.21)). We consider the Boussinesq equation: ū : [0, T ε]× Ω such that

∂2t ū− ∂i
(
a0ij∂j ū

)
− ε2∂i

(
b2ij∂j∂

2
t ū
)
= f in (0, T ε]× Ω,

x → ū(t, x) Ω-periodic in [0, T ε],

ū(0, x) = g0(x), ∂tū(0, x) = g1(x) in Ω.

(2.62)

Recall the definition of the functional space

S(Ω) =
{
v ∈ L2

0(Ω) :
√
b2∇v ∈ [L2(Ω)]d

}
,

and define the bilinear forms

A0
(
v, w
)
=
(
a0∇v,∇w

)
L2 ,(

v, w
)
S =

(
v, w
)
L2(Ω)

+ ε2B2
(
v, w
)
,

B2
(
v, w
)
=
(
b2∇v,∇w

)
L2 .

If the initial conditions and the right hand side satisfy the regularity (2.50), Theorem 2.1.8 ensures
that there exists a unique weak solution ū ∈ L∞(0, T ε;Wper(Ω)), with ∂tū ∈ L∞(0, T ε;S(Ω)) and
∂2t ū ∈ L∞(0, T ε;S(Ω)), such that(

∂2t ū(t), w
)
S +A0

(
ū(t), w

)
=
(
f(t), w

)
L2 ∀w ∈Wper(Ω) for a.e. t ∈ [0, T ε],

ū(0) = g0, ∂tū(0) = g1.
(2.63)

Let us define the finite element method with numerical integration for the approximation of ū.
Let TH be a regular shape regular mesh of Ω with simplicial elements. For an integer � ≥ 1, we
define the finite element space

VH(Ω) = {vH ∈Wper(Ω) : vH |K ∈ P�(K) ∀K ∈ TH}. (2.64)

Let {ω̂j , x̂j}Jj=1 be the quadrature formula used in the computation of the stiffness matrix. We
assume that it satisfies the following hypotheses

(i) ω̂j > 0, j = 1, . . . , J,

(ii)
∫
K̂
p̂(x̂) dx̂ =

∑J
j=1ω̂j p̂(x̂j) ∀p̂ ∈ Pσ(K̂), σ = max{2�− 2, 1}. (2.65)

We emphasize that (2.65) are the requirements for simplicial elements and that for quadrilaterals
they are different (see e.g. [4]). Furthermore, we assume that the quadrature formula {ω̂′

j , x̂
′
j}J

′
j=1,

required for the computation of the mass matrix, fulfills the following hypothesis

(iii)
∑J ′

j=1ω̂
′
j |p̂(x̂′j)|2 ≥ λ̂′‖p̂‖L2(K̂) ∀p̂ ∈ P�(K̂), for a λ̂′ > 0. (2.66)
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We define the following bilinear forms, for vH , wH ∈ VH(Ω),

A0
H(vH , wH) =

∑
K∈TH

J∑
j=1

ωKj
a0(xKj

)vH(xKj
)wH(xKj

),

(
vH , wH

)
Q
=
(
vH , wH

)
H
+ ε2B2

H(vH , wH),

(
vH , wH

)
H

=
∑

K∈TH

J ′∑
j=1

ω′
Kj
vH(x′Kj

)wH(x′Kj
),

B2
H(vH , wH) =

∑
K∈TH

J∑
j=1

ωKj
b2(xKj

)vH(xKj
)wH(xKj

).

The finite elements approximation of ū is defined as follows: find uH : [0, T ε]→ VH(Ω) such that(
∂2t uH(t), vH

)
Q
+A0

H

(
uH(t), vH

)
=
(
f(t), vH

)
L2 ∀vH ∈ VH(Ω) for a.e. t ∈ [0, T ],

uH(0) = g0H , ∂tuH(0) = g1H ,
(2.67)

where g0H , g
1
H are approximations of the initial conditions in VH(Ω).

Let us show the well-posedness of (2.67). Let {ϕi(x)}Ni=1 be a basis of VH(Ω) (e.g., the Lagrangian
basis) and write the initial conditions and the solution as

gkH =

N∑
j=1

Gk
j (t)ϕj(x), uH(t, x) =

N∑
j=1

Uj(t)ϕj(x).

We verify that (2.67) is equivalent to the following well-posed second order ODE in RN :

MÜ(t) +AU(t) = F (t) for a.e. t ∈ [0, T ε],

U(0) = G0, U̇(0) = G1,
(2.68)

where
Aij = A0

H(ϕj , ϕi), Mij =
(
ϕj , ϕi

)
Q
,
(
F (t)

)
i
=
(
f(t), ϕi

)
L2 .

Hence, standard theory ensures the existence and uniqueness of uH ∈ C1([0, T ε];VH(Ω)) (see e.g.
[38]).

In practice, we need a fully discretized scheme to implement the method. Let us apply the leap
frog method for the time discretization of (2.68) (see in Appendix A.5). Consider a uniform
discretization of the time interval [0, T ε]: tn = nΔt, n = 1, . . . , N , where Δt = T ε/N . The fully
discretized method is defined as

V n+1/2 = V n−1/2 +ΔtM−1
(
F (tn)−AUn

)
n = 1, . . . , N − 1,

Un+1 = Un +ΔtV n+1/2 n = 0, . . . , N − 1,

U0 = G0, V 1/2 = G1 + Δt
2

(
F (0)−AU0

)
.

(2.69)

Observe that at each time iteration, we have to solve a linear system involving the matrix M .
As M is sparse, symmetric, positive definite, this can be done with an iterative solver such as
the conjugate gradient method. The performance can be improved by computing a Cholesky
decomposition of M in a preprocessing step.

We prove the following error estimates for ū− uH .

Theorem 2.2.1. Assume that the quadrature formulas satisfy the assumptions (2.65) and (2.66).
Let ū and uH be the solution of (2.63) and (2.67), respectively.
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i) Assume that a0, b2 ∈ W�,∞(Ω) and ∂kt ū ∈ L∞(0, T ε; H�+1(Ω)) for 0 ≤ k ≤ 4. Then the
error satisfies ‖ū− uH‖L∞(0,T ε;H1(Ω)) ≤ eFEH1 , where

eFEH1 =C1

(
‖g1 − g1H‖H1(Ω) + ‖g0 − g0H‖H1(Ω)

)
+ C2

(
H� + T εH�+1 + T ε(1 + ε)εH�

)∑4
k=0‖∂kt ū‖L∞(H�+1),

where C1, C2 are independent of H and ε but depend on Ω.

ii) Assume that a0 ∈W�+1,∞(Ω), b2 ∈W�,∞(Ω) and ∂kt ū ∈ L∞(0, T ε; H�+1(Ω)) for 0 ≤ k ≤ 3.
Then the error satisfies ‖ū− uH‖L∞(0,T ε;L2(Ω)) ≤ eFEL2 , where

eFEL2 =C1

(
‖g0 − g0H‖L2(Ω) + ε‖g0 − g0H‖H1(Ω) + ‖g1 − g1H‖L2(Ω) + ε‖g1 − g1H‖H1(Ω)

)
+ C2(1 + T ε)

(
H�+1 + εH�

)∑3
k=0‖∂kt ū‖L∞(H�+1),

where C1, C2 are independent of H and ε but depend on Ω.

Note that both estimates depends linearly on the final time T ε. This dependence indicates that
the error accumulates as the time increases. Assuming ε,H ≤ 1, T ε = O(ε−2), and if the initial
conditions are chosen as giH = IHg

i with IH as in (2.73), we have (under sufficient regularity of
the data)

eFEH1 = O
(
ε−2H�+1 + ε−1H�

)
, eFEL2 = O

(
ε−2H�+1 + ε−1H�

)
.

Hence, for large timescales and in small domains, the errors in the H1 and in the L2 norms have
the same asymptotic behavior.

Proof of the a priori error estimates

The proof of Theorem 2.2.1 is divided into three Lemmas. We split the error ū− uH as

ū− uH = (ū− πH ū)− (uH − πH ū) = η − ζH , (2.70)

where πH ū is the elliptic projection defined below. First, we derive estimates for η in the L∞(L2)
and the L∞(H1) norms in Lemma 2.2.2. Second, we estimate ζH in the L∞(H1) norm in Lemma
2.2.3 and in the L∞(L2) norm in Lemma 2.2.4.

Let us first give some preliminary results. In all the proof, C denotes a generic constant that is
independent of H, ε, and T ε. First, the assumption (2.66) on the quadrature formula {ω̂′

j , x̂
′
j}J

′
j=1

ensures that ‖vH‖H = (vH , vH)
1/2
H is a norm on VH , equivalent to the L2 norm independently of

H. Hence, as b2 is positive semidefinite, the norm ‖vH‖Q = (vH , vH)
1/2
Q satisfies

cQ‖vH‖L2 ≤ ‖vH‖Q ≤ CQ

(
‖vH‖L2 + ε‖vH‖H1

)
, (2.71)

for some constants cQ, CQ independent of H and ε. Thanks to assumptions (2.65) on {ω̂j , x̂j}Jj=1,

provided sufficient regularity of a0 and b2, we the following estimates hold (see Theorems A.3.6
and A.3.9):

|A0(vH , wH)−A0
H(vH , wH)| ≤ CH�+μ maxij ‖a0ij‖W�+μ,∞‖vH‖H̄�‖wH‖H̄1+μ ,

|A0(vH , wH)−A0
H(vH , wH)| ≤ CHmaxij ‖a0ij‖W1,∞‖vH‖H1‖wH‖H1 ,

|B2(vH , wH)−B2
H(vH , wH)| ≤ CH� maxij ‖b2ij‖W�,∞‖vH‖H̄�‖wH‖H̄1 ,

|(vH , wH)L2 − (vH , wH)H | ≤ CH�+μ‖vH‖H̄�‖wH‖H̄1+μ ,

(2.72)
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for any vH , wH ∈ VH and μ = 0, 1. Furthermore, recall that the projection operator IH satisfies,
for any for v ∈Wper(Ω) ∩Hs+1(Ω) with 1 ≤ s ≤ � (see (A.19)):( ∑

K∈TH

‖v − IHv‖2Hm(K)

)1/2
≤ CHs+1−m‖v‖Hs+1(Ω) 0 ≤ m ≤ s+ 1. (2.73)

Combining the two last estimates in (2.72) with (2.73), we verify that for v ∈Wper(Ω) ∩H�+1,
wH ∈ VH

|(v, wH)S − (IHv, wH)Q| ≤ C
(
H�+1 + ε2H�

)
‖v‖H̄�+1‖wH‖H̄2 . (2.74)

Let us now define the elliptic projection πH ū(t) ∈ VH(Ω) as the solution of

A0
H

(
πH ū(t), vH

)
=
(
f(t), vH

)
L2 −

(
IH∂

2
t ū(t), vH

)
Q

∀vH ∈ VH(Ω) for a.e. t ∈ [0, T ε]. (2.75)

As A0
H is elliptic and bounded, Lax–Milgram theorem ensures that πH ū(t) exists and is unique

for a.e. t ∈ [0, T ε]. Moreover, using equation (2.63), we have

A0
H

(
πH ū(t), vH

)
= A0

(
ū(t), vH

)
+
(
IH∂

2
t ū(t), vH

)
S −

(
IH∂

2
t ū(t), vH

)
Q
,

and thus the following estimate is obtained

‖πH ū(t)‖H1 ≤ C
(
‖ū(t)‖H1 + ‖∂2t ū(t)‖H1

)
for a.e. t ∈ [0, T ε]. (2.76)

Hence, provided ∂2t u belongs to L∞(0, T ε; H1(Ω)), we get πH ū ∈ L∞(0, T ε; H1(Ω)).

In the three following lemmas, we provide error estimates for η = ū− uH and ζH = uH − πH ū in
the L∞(L2) and the L∞(H1) norms.

Lemma 2.2.2. Assume that for 1 ≤ p ≤ ∞, ∂kt ū, ∂
k+2
t ū ∈ Lp(0, T ε; H�+1(Ω)) for k ≥ 0 and

that a0, b2 ∈ W�,∞(Ω). Then ∂kt πH ū ∈ Lp(0, T ε; H1(Ω)) and the following estimate holds for
η = ū− πH ū,

‖IH∂kt η‖Lp(H1) + ‖∂kt η‖Lp(H1) ≤ CH�
(
‖∂kt ū‖Lp(H�+1) + ‖∂k+2

t ū‖Lp(H�+1)

)
, (2.77)

where C is independent of H, ε, T ε but depends on the Poincaré constant. If in addition we
assume a0 ∈W�+1,∞(Ω), then

‖IH∂kt η‖Lp(L2) + ‖∂kt η‖Lp(L2) ≤ C
(
H�+1 + ε2H�

)(
‖∂kt ū‖Lp(H�+1) + ‖∂k+2

t ū‖Lp(H�+1)

)
, (2.78)

where C is independent of H, ε, T ε but depends on Ω.

Proof. First, note that the forms A0, (., .)S , A0
H and (., .)Q are time independent, and hence the

time differentiation of equations (2.75) and (2.63) yields, similarly to (2.76), the estimate

‖∂kt πH ū(t)‖H1 ≤ C
(
‖∂kt ū(t)‖H1 + ‖∂k+2

t ū(t)‖H1

)
for a.e. t ∈ [0, T ε].

We thus verify that ∂kt πH ū ∈ Lp(0, T ε; H1(Ω)). Second, we prove estimates (2.77) and (2.78)
for k = 0. The proof for k > 0 is obtained in the same way by differentiating (2.75) and (2.63)
with respect to t. Using (2.75) and (2.63) we have almost everywhere in [0, T ε] and for any
vH ∈ VH(Ω)

A0
H

(
IHη, vH

)
=A0

H

(
IH ū, vH

)
−A0

(
IH ū, vH

)
+A0

(
IH ū− ū, vH

)
+
(
∂2t ū− IH∂

2
t ū, vH

)
S +

(
IH∂

2
t ū, vH

)
S −

(
IH∂

2
t ū, vH

)
Q
.
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Using (2.72) and (2.73), we obtain for a.e. t ∈ [0, T ε]

A0
H

(
IHη(t), vH

)
≤ CH�

(
‖ū(t)‖H�+1 + ‖∂2t ū(t)‖H�+1

)
‖vH‖H1 .

We let vH = IHη(t) in this inequality and, using the ellipticity of A0
H and taking the Lp norm

with respect to t, we obtain the estimate for ‖IHη‖Lp(H1). As η = ū − IH ū + IHη, estimate
(2.77) for k = 0 follows, thanks to (2.73). Next, we prove (2.78) using a standard Aubin–Nitsche
argument. For a.e. t ∈ [0, T ε], we write

‖η(t)‖L2 = sup
g∈L2(Ω)

1

‖g‖L2

∣∣(η(t), g)
L2

∣∣. (2.79)

Let g ∈ L2(Ω) be fixed and define ϕg as the solution of the elliptic problem A0(v, ϕg) =
(g, v)L2 ∀v ∈Wper(Ω). An elliptic regularity result ensures that ‖ϕg‖H2 ≤ C‖g‖L2 (thanks to the
regularity of a0 and as the domain Ω is polygonal, see [71]). Using (2.75) and (2.63), we verify
that for any vH ∈ VH and a.e. t ∈ [0, T ε]

|A0
(
η(t), ϕg

)
| = |A0

(
η(t), ϕg − vH

)
|+ |

(
IH∂

2
t ū(t), vH

)
Q
−
(
∂2t ū(t), vH

)
S |

+ |A0
H

(
πH ū(t), vH

)
−A0

(
πH ū(t), vH

)
|. (2.80)

We bound the last term of the right hand side, using (2.72) and (2.73), as

|A0
H

(
πH ū, vH

)
−A0(πH ū, vH)| ≤ |A0

(
IHη, vH

)
−A0

H

(
IHη, vH

)
|+ |A0

H

(
IH ū, vH

)
−A0

(
IH ū, vH

)
|

≤C
(
H‖IHη‖H1 +H�+1‖ū‖H�

)
‖vH‖H2 . (2.81)

In (2.80), we let vH = IHϕg, so that using (2.73), we have

|A0
(
η(t), ϕg − IHϕg

)
| ≤ Λ‖η(t)‖H1‖ϕg − IHϕg‖H1 ≤ CH‖η(t)‖H1‖ϕg‖H2 . (2.82)

We combine then (2.80) with (2.82), (2.74) and (2.81), and we obtain (also using again (2.73))

|A0
(
η(t), ϕg

)
| ≤ C

(
H‖IHη‖H1 +H‖η‖H1 +H�+1‖ū‖H� +

(
H�+1 + ε2H�

)
‖∂2t ū‖H�+1

)
‖ϕg‖H2 .

Finally, we use this estimate in (2.79) together with (2.77), the definition of ϕg and the bound
‖ϕg‖H2 ≤ C‖g‖L2 to prove (2.78) for k = 0. The proof of Lemma 2.2.2 is complete.

Lemma 2.2.3. The following estimate holds for ζH = uH − πH ū,

‖∂tζH‖L∞(L2) + ‖ζH‖L∞(H1) ≤ C
(
edataH1 + ‖η‖L∞(H1) + ‖∂tη‖L∞(L2) + ε‖∂tη‖L∞(H1)

+ ‖IH∂2t η‖L1(L2) + ε‖IH∂2t η‖L1(H1)

)
, (2.83)

where edataH1 = ‖g0 − g0H‖H1 + ‖g1 − g1H‖L2 + ε‖g1 − g1H‖H1 and C is independent of H, ε and T ε.

Proof. Using equations (2.67), (2.63) and (2.75), we verify that for any vH ∈ VH(Ω) and a.e.
t ∈ [0, T ε],(

∂2t ζH(t), vH
)
Q
+A0

H

(
ζH(t), vH

)
=
(
f(t), vH

)
L2 −

(
∂2t πH ū(t), vH

)
Q
−A0

H

(
πH ū(t), vH

)
=
(
IH∂

2
t η(t), vH

)
Q
. (2.84)

We let vH = ∂tζH(t) and use the symmetry of the forms (·, ·)Q and A0
H to get for a.e. t ∈ [0, T ε]

1
2

d
dt

(
‖∂tζH(t)‖2Q +A0

H

(
ζH(t), ζH(t)

))
=
(
IH∂

2
t η(t), ∂tζH(t)

)
Q
.
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We denote the discrete energy as EHζH(t) = ‖∂tζH(t)‖2Q +A0
H

(
ζH(t), ζH(t)

)
and integrate the

last equality to get ∀ξ ∈ [0, T ]

EHζH(ξ) = EHζH(0) + 2

∫
0

ξ(
IH∂

2
t η(t), ∂tζH(t)

)
Q
dt. (2.85)

Applying Cauchy–Schwartz, Hölder, and Young inequalities, we obtain the following bound on
the second term of the right hand side

2

∫
0

ξ(
IH∂

2
t η(t), ∂tζH(t)

)
Q
dt ≤ 2‖IH∂2t η‖L1(Q)‖∂tζH‖L∞(Q) ≤ 2‖IH∂2t η‖2L1(Q) +

1
2‖∂tζH‖

2
L∞(Q).

(2.86)

As A0
H

(
ζH(ξ), ζH(ξ)

)
≥ 0, we obtain successively from (2.85) and (2.86)

1
2‖∂tζH‖2L∞(Q) ≤ EHζH(0) + 2‖IH∂2t η‖2L1(Q),

‖∇ζH‖2L∞(L2) ≤ 2/λ
(
EHζH(0) + 2‖IH∂2t η‖2L1(Q)

)
.

(2.87)

where λ is the ellipticity constant of A0
H(·, ·). Note that ζH(0) = (ū− uH)(0) + η(0), so that

EHζH(0) ≤ ‖g1H − g1‖Q + Λ‖g0H − g0‖H1 + Λ‖η‖L∞(H1) + ‖∂tη‖L∞(Q). (2.88)

Combining (2.87), (2.88) and (2.71), we obtain estimate (2.83) and the proof of the lemma is
complete.

Lemma 2.2.4. The following estimate holds for ζH = uH − πH ū,

‖ζH‖L∞(L2) ≤ C
(
edataL2 + ‖η‖L∞(L2) + ε‖η‖L∞(H1) + ‖IH∂tη‖L1(L2) + ε‖IH∂tη‖L1(H1)

)
, (2.89)

where edataL2 = ‖g0−g0H‖L2+ε‖g0−g0H‖H1+‖IHg1−g1H‖L2+ε‖IHg1−g1H‖H1 and C is independent
of H, ε and T ε.

Proof. We use (2.84) with vH = wH(t), where wH ∈ H1(0, T ε;VH(Ω)), and have almost every-
where in [0, T ε]

d
dt

(
∂tζH , wH

)
Q
−
(
∂tζH , ∂twH

)
Q
+A0

H

(
ζH , wH

)
= d

dt

(
∂tIHη, wH

)
Q
−
(
∂tIHη, ∂twH

)
Q
.

Denoting e = u− uH = η − ζH , we rewrite this equality as

−
(
∂tζH , ∂twH

)
Q
+A0

H

(
ζH , wH

)
= d

dt

(
∂tIHe, wH

)
Q
−
(
∂tIHη, ∂twH

)
Q
. (2.90)

For ξ ∈ [0, T ε], we define ŵH(t) =
∫ ξ

t
ζH(τ)dτ , which satisfies ŵH ∈ H1(0, T ε;VH(Ω)), ŵH(ξ) = 0

and ∂tŵH = −ζH . We set wH = ŵH in (2.90) and thanks to the symmetry of the forms A0
H and

(·, ·)Q, we get almost everywhere in [0, T ε]

1
2

d
dt

(
‖ζH‖2Q +A0

H

(
ŵH , ŵH

))
= d

dt

(
∂tIHe, ŵH

)
Q
+
(
IH∂tη, ζH

)
Q
.

We integrate over [0, ξ] and obtain for all ξ ∈ [0, T ε],

‖ζH(ξ)‖2Q +A0
H

(
ŵH(0), ŵH(0)

)
= ‖ζH(0)‖2Q − 2

(
IH∂te(0), ŵH(0)

)
Q
+ 2

∫
0

ξ(
IH∂tη(t), ζH(t)

)
Q
dt.

(2.91)
The first term of the right hand side is bounded using the triangle inequality as

‖ζH(0)‖Q ≤ ‖ū(0)− uH(0)‖Q + ‖η(0)‖Q ≤ ‖g0 − g0H‖Q + ‖η‖L∞(Q).
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The second term is bounded using Cauchy-Schwartz and Young inequalities as

2
(
IH∂te(0), ŵH(0)

)
Q
≤ 2C2

Q

λΩ
‖IH∂te(0)‖2Q + λΩ

2C2
Q
‖ŵH(0)‖2Q ≤ 2C2

Q

λΩ
‖IH∂te(0)‖2Q + λΩ

2 ‖ŵH(0)‖2H1 ,

where CQ is the constant in (2.71) and λΩ = λ/(1 +C2
Ω), where λ is the ellipticity constant of a0

and CΩ is the Poincaré constant. The third term is bounded using Cauchy–Schwartz, Hölder,
and Young inequality as

2

∫
0

ξ(
IH∂tη(t), ζH(t)

)
Q
dt ≤ 2‖IH∂tη‖L1(Q)‖ζH‖L∞(Q) ≤ 2‖IH∂tη‖L1(Q) +

1
2‖ζH‖

2
L∞(Q).

Thus, we obtain from the combination of (2.91) with the last three bounds and the ellipticity of
A0

H(·, ·)
1
2‖ζH‖

2
L∞(Q) +

λΩ

2 ‖ŵH(0)‖2H1 ≤ C
(
‖g0 − g0H‖2Q + ‖IHg1 − g1H‖2Q + ‖η‖2L∞(Q) + ‖IH∂tη‖2L1(Q)

)
.

This estimate and (2.71) implies (2.89) and the proof of the lemma is complete.

Proof of Theorem 2.2.1. Let e = ū− uH and denote the norm ‖v‖ = ‖∂tv‖L∞(L2) + ‖v‖L∞(H1).
Recalling the splitting (2.70), we use the triangle inequality and Lemma 2.2.3 and obtain

‖e‖ ≤ ‖η‖+ ‖ζH‖ ≤ C
(
edataH1 + ‖η‖L∞(H1) + ‖∂tη‖L∞(H1) + ‖IH∂2t η‖L1(L2) + ε‖IH∂2t η‖L1(H1)

)
.

Using Hölder inequality gives

‖IH∂2t η‖L1(L2) + ε‖IH∂2t η‖L1(H1) ≤ T ε‖IH∂2t η‖L∞(L2) + T εε‖IH∂2t η‖L∞(H1),

hence, applying Lemma 2.2.2, we obtain the estimate of Theorem 2.2.1 i). Let us prove the
second estimate. Using the splitting (2.70), the triangle inequality and (2.71) we have

‖e‖L∞(L2) ≤ ‖η‖L∞(L2) + ‖ζH‖L∞(L2)

≤ C
(
edataL2 + ‖η‖L∞(L2) + ε‖η‖L∞(H1) + ‖IH∂tη‖L1(L2) + ε‖IH∂tη‖L1(H1)

)
.

Using Hölder inequality and the L2 estimate of Lemma 2.2.2, we obtain the estimate of Theo-
rem 2.2.1 ii). The proof of the theorem is complete.

2.3 The spectral method for hyperbolic equations

In this section, we analyze the spectral method for the approximation of the multiscale wave
equation. Spectral methods are appropriate numerical methods for the approximation of linear,
time dependent PDEs with smooth solutions. Indeed, if the solution is smooth, the method
reaches so-called spectral accuracy. However, in the case of the multiscale wave equation, the grid
must resolve globally the fine scale to capture the features of the tensor. Hence, the method is
extremely costly and can be used only if the tensor is smooth. In this thesis, the only applications
where we approximate the multiscale wave equation are either in one dimension or in small
two-dimensional domains.

The analysis of the method relies on the interpolation of smooth periodic functions by trigonometric
polynomials. For further details on this topic, we refer to Appendix A.4. For the complete theory
on the spectral method, we refer to [59, 58, 68, 69, 89, 29, 25, 63] ([91] for the implementation).

The spectral method is judicious for the approximation of the Boussinesq equation, introduced in
Section 2.1.2, when the tensors have a spatial variation. In particular, as long as the solution is
smooth, the method is capable of handling the fourth order differential operator in space. The
analysis of the spectral method for the Boussinesq equation follows the same techniques as for
the wave equation. Note that a spectral homogenization method for the long time approximation
of wave propagation in locally periodic media is analyzed in Chapter 7, Section 7.2. In particular,
the effective model on which the method relies is a Boussinesq equation.
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Analysis of the spectral method for the wave equation

Let Ω ⊂ Rd be a periodic hypercube, Ω = (a1, b1) × · · · × (ad, bd) and denote FΩ the bijective
affine mapping

FΩ : (0, 2π)d → Ω, x̄ → FΩ(x̄) = BΩx̄+ a, (2.92)

where BΩ is the diagonal matrix defined as (BΩ)jj = (bj − aj)/(2π). Let a
ε ∈ [L∞

per(Ω)]
d×d be a

symmetric, uniformly elliptic and bounded tensor, i.e.,

λ|ξ|2 ≤ aε(x)ξ · ξ ≤ Λ|ξ|2 ∀ξ ∈ Rd for a.e. x ∈ Ω. (2.93)

We consider the wave equation: find uε : [0, T ε]× Ω→ R such that

∂2t u
ε(t, x) +∇x ·

(
aε(x)∇xu

ε(t, x)
)
= f(t, x) in (0, T ε]× Ω,

x → uε(t, x) Ω-periodic in [0, T ε],

uε(0, x) = g0(x), ∂tu
ε(0, x) = g1(x) in Ω,

(2.94)

where g0, g1 are given initial conditions and f is a source term. Theorem 2.1.1 ensures that if the
data satisfy g0 ∈Wper(Ω), g

1 ∈ L2
0(Ω), and f ∈ L2(0, T ε; L2

0(Ω)), then there exists a unique weak
solution uε ∈ L∞(0, T ε;Wper(Ω)), with ∂tu

ε ∈ L∞(0, T ε; L2
0(Ω)), ∂

2
t u

ε ∈ L2(0, T ε;W∗
per(Ω)) such

that 〈
∂2t u

ε(t), v
〉
+Aε

(
uε, v

)
=
(
f(t), w

)
L2(Ω)

∀v ∈Wper(Ω) for a.e. t ∈ [0, T ε],

uε(0) = g0, ∂tu
ε(0) = g1,

(2.95)

where we denoted the dual evaluation 〈·, ·〉W∗
per(Ω),Wper(Ω) as 〈·, ·〉 and the bilinear form Aε is

defined as Aε(v, w) = (aε∇v,∇w)L2(Ω).

Let us introduce the spectral method for the approximation of uε. For N ∈ Nd
>0, let hν =

(bν − aν)/Nν and let GN be the uniform grid of Ω given by

GN = {xn = (n1h1, . . . , ndhd) : 0 ≤ nν ≤ 2Nν − 1}.

We define the space of trigonometric polynomials of order N as (see Appendix A.4.4)

VN (Ω) = span(BN ),

BN =
{
wk1···kd

(x) =
∏d

ν=1 w̄
ν
kν
◦ F−1

Ω (x) : w̄ν
kν
∈ B1

Nν

}
,

where B1
Nν

=
{
w̄ν

kν
(x̄) = eikν x̄ : |kν | ≤ Nν − 1

}
∪
{
w̄ν

Nν
(x̄) = 1

2

(
eiNν x̄ + eiNν x̄

)}
.

We define the following inner product on VN (Ω):

(p, q)N = h1
∑

xn∈GN

p(xn)q(xn) = h1

2N1−1∑
n1=0

· · ·hd
2Nd−1∑
nd=0

p(xn1···nd
)q(xn1···nd

) ∀p, q ∈ VN (Ω),

where h1 = h1 · · ·hd and z denote the complex conjugate of z ∈ C. The corresponding norm is
denoted ‖ · ‖N =

√
(·, ·)N . We verify that p ∈ VN (Ω) is uniquely determined by its values on the

grid GN and (
p, q
)
N

=
(
p, q
)
L2(Ω)

∀p, q ∈ VN (Ω). (2.96)

Let IN : L2
per(Ω)→ VN (Ω) be the interpolation operator defined in (A.74). Theorem A.4.4 states

that if v ∈ L2
per(Ω) ∩Hs(Ω), for some s ≥ (d+ 1)/2, then, for any σ ≤ s,

∣∣v − INv
∣∣
Hσ(Ω)

≤ C
r(N)s−σ∣∣B−1
Ω N

∣∣s−σ |v|Hs(Ω), (2.97)
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where BΩ is the matrix in (2.92) and C is a constant depending only on d, s, and r(N) =
Nmax/Nmin. Let us introduce the convolution of two trigonometric polynomials p, q ∈ VN (Ω)
as the unique trigonometric polynomial p ∗ q ∈ VN (Ω) such that p ∗ q(xn) = p(xn)q(xn) for
all xn ∈ GN (the name comes from the fact that the coefficients of p ∗ q are given as a finite
convolution of the coefficients of p and q). For b ∈ L∞

per(Ω), v ∈ L2
per(Ω), we verify that for all

xn ∈ GN ,
INb ∗ INv(xn) = INb(xn)INv(xn) = bv(xn) = IN (bv)(xn), (2.98)

which implies the equality INb ∗ INv = IN (bv). For the approximation of uε, we introduce the
subspace

V̊N (Ω) = VN (Ω) ∩Wper(Ω),

and the corresponding interpolation operator I̊N : L2
per(Ω)→ V̊N (Ω), defined in (A.82). Theorem

A.4.5 ensures that if v ∈Wper(Ω) ∩Hs(Ω), for some s ≥ (d+ 1)/2, then for any σ ≤ s,

∣∣v − I̊Nv
∣∣
Hσ(Ω)

≤ C
r(N)s−σ∣∣B−1
Ω N

∣∣s−σ |v|Hs(Ω), (2.99)

where C is a constant depending only on d, s, and r(N) = Nmax/Nmin. Finally, we define the
bilinear form Aε

N : V̊N (Ω)× V̊N (Ω)→ R, as

Aε
N (vN , wN ) =

(
INa

ε
ij ∗ ∂jvN , ∂iwN

)
N

= h1
∑

xn∈GN

aεij(xn)∂jv(xn)∂iw(xn). (2.100)

The spectral method for the approximation of (2.94) is defined as follows: find uN : [0, T ε] →
V̊N (Ω) such that(

∂2t uN (t), vN
)
N
+Aε

N

(
uN (t), vN

)
=
(
I̊Nf(t), vN

)
N

∀vN ∈ V̊N (Ω) for a.e. t ∈ [0, T ε],

uN (0) = I̊Ng
0, ∂tuN (0) = I̊Ng

1.
(2.101)

To prove the well-posedness of (2.101), we need the following lemma.

Lemma 2.3.1. The bilinear form Aε
N is symmetric, elliptic, and bounded. In particular, for all

vN , wN ∈ V̊N (Ω)

Aε
N (vN , vN ) ≥ λ‖∇vN‖2L2(Ω), Aε

N (vN , wN ) ≤ Λ‖∇vN‖L2(Ω)‖∇wN‖L2(Ω),

where λ and Λ are given in (2.93).

Proof. First, the symmetry of Aε
N is a direct consequence of the symmetry of aε. Next, using the

ellipticity of aε(x) and (2.96), we have

Aε
N (vN , vN ) ≥ λh1

∑
xn∈GN

|∇vN (xn)|2 = λ‖∇vN‖2L2 .

Similarly, the bound on aε(x), the Cauchy–Schwartz inequality, and (2.96) gives

Aε
N (vN , wN ) ≤ Λ

(
h1
∑

xn∈GN

|∇vN (xn)|2
)1/2(

h1
∑

xn∈GN

|∇wN (xn)|2
)1/2

= Λ‖∇vN‖L2‖∇wN‖L2 .

The proof of the lemma is complete.
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Let us show that (2.101) is equivalent to a well-posed second order ODE. Recall that for any
t ∈ [0, T ε], the trigonometric polynomial uN (t) ∈ V̊N (Ω) is uniquely determined by its values on
the grid GN . Define the following elements of C2N1×···×2Nd :

(F (t))n = f(t, xn), Gi
n = gi(xn). 0 ≤ nν ≤ 2Nν − 1.

Furthermore, let Di be the spectral differentiation map, defined in (A.81) (Appendix A.4.5). We
denote the convolution product Aij∗V ∈ C2N1×···×2Nd , where (Aij∗V )n = aεij(xn)Vn. We can then

rewrite (2.101) as an evolution equation: U : [0, T ε] → C2N1×···×2Nd , where (U(t))n = u(t, xn),
satisfies

Ü(t) = F (t) +Di

(
Aij ∗DjU(t)

)
, for a.e. t ∈ [0, T ε],

U(0) = G0, U̇(0) = G1.
(2.102)

Thanks to Lemma 2.3.1, a standard result on ODE ensures that (2.102) is well-posed and we
obtain a unique solution of (2.101) uN ∈ C1(0, T ; V̊N (Ω)) (see e.g. [38]).

Let us proceed to the time discretization of (2.102) with the leap frog method (see Appendix
A.5). Consider a uniform discretization of the time interval [0, T ε], tk = kΔt, k = 1, . . . ,K, where
Δt = T ε/K. We obtain the fully discretized method

V k+1/2 = V k−1/2 +Δt
(
F (tk) +Di

(
Aij ∗DjU

k
)

k = 1, . . . ,K − 1,

Uk+1 = Uk +ΔtV k+1/2 k = 0, . . . ,K − 1,

U0 = G0, V 1/2 = G1 + Δt
2

(
F (0) +Di

(
Aij ∗DjU

0
)
.

(2.103)

An implementation of (2.103) is given in Appendix A.4.7. Observe that at each time iteration, we
need to compute V → Di

(
Aij ∗DjV

)
. As discussed in Appendix A.4.5, this can be done using the

Fast Fourier Transform algorithm (see [62], [56]). Hence, the construction of the corresponding
full matrices is avoided and we can apply the method with large N .

Let us prove that the spectral method (2.101) is stable. Using ∂tuN (t) as a test function in
(2.101) and thanks to the symmetry of Aε

N , we obtain for a.e. t ∈ [0, T ε]

1
2

d
dt

(
‖uN (t)‖2L2 +Aε

N

(
uN (t), uN (t)

))
=
(
I̊Nf(t), ∂tuN (t)

)
L2 .

Integrating the equality over [0, ξ], and using Lemma 2.3.1, we get

‖∂tuN (ξ)‖2L2 + λ‖∇uN (ξ)‖2L2 ≤ ‖I̊Ng1‖2L2 + Λ‖I̊Ng0‖2H1 + 2

∫
0

ξ(
I̊Nf(t), ∂tuN (t)

)
L2dt

for any ξ ∈ [0, T ]. Using Cauchy–Schwartz, Hölder, and Young inequalities on the last term, we
obtain the estimate

1
2‖∂tuN‖

2
L∞(L2) + λ‖∇uN‖2L∞(L2) ≤ ‖I̊Ng1‖2L2 + Λ‖I̊Ng0‖2H1 + 4‖I̊Nf‖2L1(L2). (2.104)

Using the stability of I̊N we verify that the method is stable.

We prove the following a priori error estimate.

Theorem 2.3.2. Let uε be the solution of (2.94) and uN its approximation defined by (2.101).
Assume that the data and the solution satisfy for some s ≥ (d+ 1)/2:

aεij ∈Ws,∞(Ω), g0 ∈ Hs+1(Ω), g1 ∈ Hs(Ω), f ∈ L1(0, T ε; Hs(Ω)),

uε, ∂tu
ε, ∂2t u

ε ∈ L∞(0, T ε; Hs+1(Ω)).
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Then the following estimate holds for e = uε − uN

‖∂te‖L∞(L2) + ‖e‖L∞(H1) ≤ C
r(N)s+1

|B−1
Ω N |s

(
‖g1‖Hs(Ω) + ‖g0‖Hs+1(Ω) + ‖f‖L1(0,T ε;Hs(Ω))

(1 + T ε)‖aε‖Ws,∞(Ω)

2∑
k=0

‖∂kt uε‖L∞(0,T ε;Hs+1(Ω))

)
,

(2.105)
where r(N) = maxν Nν/minν Nν , BΩ is the matrix in (2.92), and the constant C depends only
on the Poincaré constant CΩ, d, λ, and Λ.

Estimate (2.105) ensures the convergence of uN to uε as N →∞. Observe that the limit has to be
taken in all dimension simultaneously, i.e., Nν →∞ at the same time so that r(N) stays bounded
(this is rigorously expressed in Remark A.4.1). Even though the method converges, (2.105) cannot
be used in applications to choose N and target an order of tolerance for the error. Indeed, as
we are in a regime where ε � 1, the L∞(Hs) norms of uε and its time derivatives cannot be
computed and are probably extremely large quantities (and so is ‖aε‖Ws,∞(Ω)). Nevertheless, we
verify that the method is accurate only if hν ≤ ε. Indeed, this is the critical value for the grid GN

to capture the frequencies of aε. This condition is supported by the presence of B−1
Ω in (2.105),

implying that if the domain grows, N must be increased accordingly to keep the same accuracy.
In addition, the stability of the method depends strongly on the size hν . Indeed, we observe
that if hν is too large, the approximation of (2.102) is unstable. An instability that cannot be
acceptably compensated by the reduction of the time step. Altogether, if the tensor aε is smooth,
the method gives an accurate approximation for hν ∼ ε/16. In one-dimension, the corresponding
cost of the method is tolerable (even for large domains). However, in two dimensions, the cost of
the method is not affordable in large domains.

Proof of the a priori error estimate

The proof of Theorem 2.3.2 is structured as follows. We split the error as

uε − uN = (uε − πNu)− (uN − πNu
ε) = η − ζN ,

where πNu
ε is the elliptic projection defined below. First, we prove a preliminary result on the

approximation of the form Aε (Lemma 2.3.3). Then, the terms η and ζN are estimated separately
(Lemmas 2.3.4 and 2.3.5).

Let us define the elliptic projection: for t ∈ [0, T ε], πNu
ε(t) ∈ V̊N (Ω) is the solution of the elliptic

equation
Aε

N

(
πNu

ε(t), vN
)
= Aε

(
uε(t), vN

)
∀vN ∈ V̊N (Ω). (2.106)

Thanks to the properties of the form Aε
N , in Lemma 2.3.1, Lax–Milgram theorem ensures the

existence and uniqueness of πNu
ε(t).

We prove the following preliminary result on the approximation of Aε by Aε
N .

Lemma 2.3.3. Assume that aε ∈ [Ws,∞(Ω)]d×d. Then the bilinear form Aε
N satisfies for any

v ∈Wper(Ω) ∩Hs+1(Ω), wN ∈ V̊N (Ω),

∣∣Aε
(
v, wN

)
−Aε

N

(
I̊Nv, wN

)∣∣ ≤ C‖aε‖Ws,∞(Ω)
r(N)s+1

|B−1
Ω N |s

‖v‖Hs+1(Ω)‖∇wN‖L2(Ω),

where r(N) = maxν Nν/minν Nν and the constant C depends s and d.
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Proof. As I̊Nv = INv − 〈INv〉Ω, it holds ∇(I̊Nv) = ∇(INv) and we prove the result for INv. We
thus split the error as

eAε =
∣∣(aεij∂jv, ∂iwN

)
L2 −

(
INa

ε
ij ∗ ∂j(INv), ∂iwN

)
N

∣∣ ≤ e1Aε + e2Aε ,

where

e1Aε =
∣∣(aεij∂jv, ∂iwN

)
L2 −

(
INa

ε
ij ∗ IN (∂jv), ∂iwN

)
N

∣∣,
e2Aε =

∣∣(INaεij ∗ IN (∂jv), ∂iwN

)
N
−
(
INa

ε
ij ∗ ∂j(INv), ∂iwN

)
N

∣∣.
Thanks to (2.98), it holds INa

ε
ij ∗ IN (∂jv) = IN (aεij∂jv). Hence, using (2.96) and (2.97), we have

e1Aε =
∣∣(aεij∂jv − IN (aεij∂jv), ∂iwN

)
L2

∣∣
≤ C

r(N)s+1

|B−1
Ω N |s

‖aεij∂jv‖Hs‖wN‖H1 ≤ C
r(N)s+1

|B−1
Ω N |s

‖aε‖Ws,∞‖v‖Hs+1‖wN‖H1 .

For the second term, the triangle inequality and (2.97) give

e2Aε ≤ ‖aεij‖L∞‖IN (∂jv)− ∂j(INv)‖L2‖wN‖H1

≤ ‖aεij‖L∞
(
‖IN (∂jv)− ∂jv‖L2 + ‖∂jv − ∂j(INv)‖L2

)
‖wN‖H1

≤ C
r(N)s+1

|B−1
Ω N |s

‖aε‖L∞‖v‖Hs+1‖wN‖H1 .

Combining the estimates for e1Aε and e2Aε , we obtain the desired bound and the proof of the
lemma is complete.

The next lemma provides an estimate of η = uε − πNu
ε.

Lemma 2.3.4. Assume that aε ∈ [Ws,∞(Ω)]d×d and that for p ∈ [1,∞] and some k ≥ 0 we have
∂kt u

ε ∈ Lp(0, T ε; Hs(Ω)). Then ∂kt πNu
ε ∈ Lp(0, T ε; Hs(Ω)) and the following estimate holds

‖∂kt η‖Lp(0,T ε;H1(Ω)) + ‖I̊N∂kt η‖Lp(0,T ε;H1(Ω)) ≤ C
r(N)s+1

|B−1
Ω N |s

‖aε‖Ws,∞(Ω)‖uε‖Lp(0,T ε;Hs+1(Ω)),

where the constant C depends on the Poincaré constant CΩ, d, s, and λ.

Proof. We prove the result for k = 0. The result for k > 0 is obtained in the same way, starting
from the time differentiations of (2.95) and (2.106). Using (2.95) and (2.106), we have for any
vN ∈ V̊N (Ω) and a.e. t ∈ [0, T ε],∣∣Aε

N

(
I̊Nη(t), vN

)∣∣ = ∣∣Aε
N

(
I̊Nu

ε(t), vN
)
−Aε

(
uε(t), vN

)∣∣.
Using Lemma 2.3.3 gives∣∣Aε

N

(
I̊Nη(t), vN

)∣∣ ≤ r(N)s+1

|B−1
Ω N |s

‖uε(t)‖Hs+1‖wN‖H1 .

The ellipticity of Aε
N (Lemma 2.3.1) thus implies

λ/(1 + C2
Ω)‖I̊Nη(t)‖2H1 ≤

∣∣Aε
N

(
I̊Nη(t), I̊Nη(t)

)∣∣ ≤ r(N)s+1

|B−1
Ω N |s

‖uε(t)‖Hs+1‖I̊Nη(t)‖H1 .

Dividing both side of the inequality by ‖I̊Nη(t)‖H1 and taking the Lp norm in time proves the
estimate for I̊Nη. To obtain the estimate for η, we use the relation η = uε − I̊Nu

ε + I̊Nη and
(2.99). The proof of the lemma is complete.
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Next, the following lemma provides an estimate for ζN = uN − πNu
ε.

Lemma 2.3.5. Under the assumptions of Theorem 2.3.2, the following estimate holds

‖∂tζN‖L∞(L2) + ‖ζN‖L∞(H1) ≤C
r(N)s+1

|B−1
Ω N |s

(
‖g1‖Hs + ‖g0‖Hs+1 + ‖f‖L1(Hs)

)
+ C

(
‖η‖L∞(H1) + ‖∂tη‖L∞(L2) + ‖∂2t η‖L1(L2)

)
, (2.107)

where the constant C depends on d, s, Λ and λ.

Proof. Let us denote the L2 inner product as (·, ·) = (·, ·)L2(Ω). Using (2.96) and equations (2.101)

and (2.106), we verify that for any vN ∈ V̊N (Ω) and a.e. t ∈ [0, T ε],(
∂2t ζN (t), vN

)
+Aε

N

(
ζN (t), vN

)
=
(
∂2t η(t), vN

)
+
(
I̊Nf(t)− f(t), vN

)
.

Using the test function vN = ∂tζN (t), we obtain

1
2

d
dt

(
‖ζN (t)‖2L2 +Aε

N

(
ζN (t), ζN (t)

))
=
(
∂2t η(t) + I̊Nf(t)− f(t), ∂tζN (t)

)
.

Defining ENζ(ξ) = ‖∂tζN (t)‖2L2 +Aε
N

(
ζN (t), ζN (t)

)
and integrating over [0, ξ], we find that for

any ξ ∈ [0, T ε]

ENζ(ξ) = ENζ(0) + 2

∫
o

ξ(
∂2t η(t) + I̊Nf(t)− f(t), vN

)
dt. (2.108)

Using Cauchy–Schwartz, Hölder and Young inequalities, we bound the second term of the right
hand side as

2

∫
o

ξ(
∂2t η(t)+ I̊Nf(t)−f(t), vN

)
dt ≤ 4‖∂2t η‖2L1(L2)+4‖f− I̊Nf‖2L1(L2)+

1
2‖∂tζN‖

2
L∞(L2). (2.109)

Combining this estimate with (2.108), where we take the L∞ norm with respect to ξ, and because
AN

(
ζN (ξ), ζN (ξ)

)
≥ 0, we get

1
2‖∂tζN‖

2
L∞(L2) ≤ ENζN (0) + 4‖∂2t η‖2L1(L2) + 4‖f − I̊Nf‖2L1(L2).

Using (2.108) and (2.109) with the ellipticity of Aε
N and the last estimate, we obtain

λ‖∇ζN‖2L∞(L2) ≤ 2ENζN (0) + 8‖∂2t η‖2L1(L2) + 8‖f − I̊Nf‖2L1(L2).

We bound the term ENζN (0) using the equality ζN = η − e, where e = uε − uN , the triangle
inequality, and Lemma 2.3.1:

ENζN (0) ≤ ‖∂te(0)‖2L2 + ‖∂tη(0)‖2L2 + Λ‖e(0)‖2H1 + Λ‖η(0)‖2H1

≤ ‖g1 − I̊Ng
1‖2L2 + ‖∂tη‖2L∞(L2) + Λ‖g0 − I̊Ng

0‖2H1 + Λ‖η‖2L∞(H1).

Estimate (2.107) is obtained by the combination of the three last estimates, (2.99), and the
Poincaré inequality.

Proof of Theorem 2.3.2. Recall that e = uε − uN = η − ζN . Applying the triangle inequality
and Lemma 2.3.5, we have

‖∂te‖L∞(L2) + ‖e‖L∞H1 ≤ ‖∂tη‖L∞(L2) + ‖η‖L∞H1 + ‖∂tζN‖L∞(L2) + ‖ζN‖L∞H1

≤ Cr(N)s+1|B−1
Ω N |−s

(
‖g1‖Hs + ‖g0‖Hs+1 + ‖f‖L1(Hs)

)
+ C

(
‖η‖L∞(H1) + ‖∂tη‖L∞(L2) + ‖∂2t η‖L1(L2)

)
.

Hölder inequality implies ‖∂2t η‖L1(L2) ≤ T ε‖∂2t η‖L∞(L2), and, applying Lemma 2.3.4, we have

‖η‖L∞(H1) + ‖∂tη‖L∞(L2) + T ε‖∂2t η‖L∞(L2) ≤ C
r(N)s+1

|B−1
Ω N |s

(1 + T ε)‖aε‖Ws,∞
2∑

k=0

‖∂kt uε‖L∞(Hs+1).

Combining the three estimates, we obtain (2.105) and the proof of the theorem is complete. �
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2.4 Fourier method for constant coefficients hyperbolic equations

When the tensors in the Boussinesq equation (Section 2.1.2) are constant, an explicit form of
the solution is available in the Fourier basis. In this section, we take advantage of this explicit
form to derive a Fourier method for the approximation of this equation and perform its a
priori error analysis. In particular, the method does not require a discretization in time and is
extremely accurate when the data are smooth. Note that the method and its analysis rely on
the interpolation of smooth periodic function by trigonometric polynomials, which is analyzed in
Appendix A.4.

Let Ω ⊂ Rd be a periodic hypercube, Ω = (a1, b1) × · · · × (ad, bd) and denote FΩ the bijective
affine mapping

FΩ : (0, 2π)d → Ω, x̄ → FΩ(x̄) = BΩx̄+ a, (2.110)

where BΩ is the diagonal matrix defined as (BΩ)jj = (bj − aj)/(2π). We consider the Boussinesq
equation from Section 2.1.2 with constant coefficients: ũ : [0, T ε]× Ω→ R such that

∂2t ũ+ a0ij∂
2
ij ũ− ε2b2ij∂

2
ij∂

2
t u+ ε2a2ijkl∂

4
ijklũ = 0 in (0, T ε]× Ω,

x → ũ(t, x) Ω-periodic in [0, T ε],

ũ(0, x) = g0(x), ∂tũ(0, x) = g1(x) in Ω.

(2.111)

The tensors a0, b2, a2 are constant and satisfy for some λ,Λ > 0:

a0ij = a0ji, λ|ξ|2 ≤ a0ξ · ξ ≤ Λ|ξ|2 ∀ξ ∈ Rd,

b2ij = b2ji, b2ξ · ξ ≥ 0 ∀ξ ∈ Rd,

a2ijkl = a2klij , a2η : η ≥ 0 ∀η ∈ Sym2(Rd),

(2.112)

where we recall the notation

a2η : ξ = a2ijklηklξij ∀η, ξ ∈ Sym2(Rd).

Referring to Theorem 2.1.5, if the data satisfy g0 ∈ Wper(Ω) ∩ H2(Ω), g1 ∈ Wper(Ω), f ∈
L2(0, T ε; L2

0(Ω)), then there exists a unique weak solution of (2.111). In particular, ũ belongs to
L∞(0, T ε;Wper(Ω)).

Let us formally find an explicit form for ũ in the Fourier basis (see Appendix A.4.1). Recall that
v ∈ L2

per(Ω) can be expanded in the Fourier basis as

v(x)
L2

=
∑
k∈Zd

v̂(k)eik·F
−1
Ω (x), v̂(k) =

1

|Ω|

∫
Ω

v(x)e−ik·F−1
Ω (x) dx.

The initial conditions can thus be expressed as gi(x)
L2

=
∑

k∈Zd ĝi(k)eik·F
−1
Ω (x). As the map

x → ũ(t, x) is Ω-periodic, we look for a solution of the form

ũ(t, x)
L2

=
∑

Zd\{0}
û(t, k)eik·F

−1
Ω (x), (2.113)

where we used that ũ ∈ Wper(Ω) implies û(t, k = 0) =
〈
ũ(t)
〉
Ω
= 0. Inserting this ansatz in

equation (2.111), we obtain for any k ∈ Zd\{0}, the second order ODE

d2

dt2 û(t, k) = −p(k)û(t, k) t ∈ (0, T ε],

û(0, k) = ĝ0(k), d
dt û(0, k) = ĝ1(k),

(2.114)
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where, defining kΩ = B−1
Ω k,

p(k) =
a0kΩ · kΩ + ε2a2kΩk

T
Ω : kΩk

T
Ω

1 + ε2b2kΩ · kΩ
.

Note that the assumptions on the tensors (2.112) ensures that p(k) > 0 for any k ∈ Zd\{0}.
Consequently, (2.114) admits the unique solution

û(t, k) = ĝ0(k) cos
(√

p(k)t
)
+

ĝ1(k)√
p(k)

sin
(√

p(k)t
)
. (2.115)

We can show that ũ, defined in (2.113) with the coefficients in (2.115), is the unique solution of
(2.111).

With the tools introduced in Appendix A.4.4, we can define an efficient numerical method for the
approximation of ũ. For N ∈ Nd

>0, let hν = (bν − aν)/Nν and let GN be the uniform grid of Ω
given by

GN =
{
xn = (n1h1, . . . , ndhd) : 0 ≤ nν ≤ 2Nν − 1

}
.

The approximation is defined for any t ∈ [0, T ε] as

uN (t, x) =
∑′

|k1|≤N1

· · ·
∑′

|kd|≤Nd

ûk(t)e
ik·F−1

Ω (x), (2.116)

ûk(t) = ÎNg0(k) cos
(√

p(k)t
)
+
ÎNg1(k)√

p(k)
sin
(√

p(k)t
)

k ∈
{
|kν | ≤ Nν , 1 ≤ ν ≤ d

}
\{0},

û0(t) = 0,

where IN and its coefficients are defined for v ∈ L2
per(Ω) as (see (A.74))

INv(x) =
∑′

|k1|≤N1

· · ·
∑′

|kd|≤Nd

v̂k1···kd
eik·F

−1
Ω (x),

v̂k1···kd
=

1

2N1

2N1−1∑
n1=0

· · · 1

2Nd

2Nd−1∑
nd=0

v(xn1···nd
)e−ik1n1h̄1 · · · e−ikdndh̄d ,

where the notation
∑′

indicates that the terms kν ∈ {−Nν , Nν} are halved. We emphasize that
the method (2.116) is explicit in time. In particular, no time discretization is needed, which

represents a huge saving of computational time. Furthermore, the coefficients ÎNgi(k) can be
computed with a Fast Fourier Transform (FFT) algorithm and the value of uN (t, ·) on the grid
GN are computed with an inverse FFT algorithm. An implementation of the method (2.116) for
a two-dimensional example is provided in Appendix A.4.7 (see also Appendix A.4.5). Note that
the data used in the implementation are defined in Section 4.4.3, in the context of the long time
homogenization of the wave equation in periodic media.

We prove the following a priori error estimate for the Fourier method (2.116).

Theorem 2.4.1. Assume that ũ ∈ L∞(0, T ε;Wper(Ω)) ∩ Hs(Ω)), g0 ∈ Wper(Ω) ∩ Hs(Ω) and
g1 ∈Wper(Ω) ∩Hs(Ω) for some s ≥ (d+ 1)/2. Then, for any t ∈ [0, T ε] and σ ≤ s,

|ũ(t)− uN (t)|Hσ(Ω) ≤ C
r(N)s−σ

|B−1
Ω N |s−σ

(
|ũ|L∞(0,T ε;Hs(Ω)) + |g0|Hs(Ω) + |g1|Hs(Ω)

)
,

where r(N) = maxν Nν/minν Nν and C depends on r(N), d, s, a0 and b2.
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Proof. The proof is done in the context introduced in Appendix A.4.4. In particular, it is similar
to the proof of Theorem A.4.4. We prove the result in the case Ω = (0, 2π)d. The proof in the
general case follows the same line by replacing k with kΩ = B−1

Ω k. We split the H̃σ norm (see
(A.56)) of the error as in (A.66)

|u(t)− uN (t)|2
H̃σ ≤

∑
k∈K≥

|k|2σ|û(t, k)|2 +
∑

k∈K≤

|k|2σ|û(t, k)− ûN (t, k)|2 =: E1 + E2,

where the sets of indices are given as

K≥ =
{
k ∈ Zd : |kν | ≥ Nν for at least one ν

}
, K≤ =

{
k ∈ Zd : |kν | ≤ Nν for all ν

}
.

For the first term, similarly as in (A.78), we obtain

E1 =
∑

k∈K≥

1

|k|2(s−σ)
|k|2s|û(t, k)|2 ≤ C

r(N)2(s−σ)

|N |2(s−σ)
|u(t)|2

H̃s(Ω)
.

For the second term, note that thanks to (2.112), we have 1/p(k) ≤ C for some constant C
depending on a0 and b2. Hence,

|û(t, k)− ûN (t, k)|2 ≤ |ĝ0(k)− ÎNg0(k)|2 + Cr|ĝ1(k)− ÎNg1(k)|2,

and thus using Theorem A.4.4 and (A.55), we obtain

E2 ≤ |g0 − INg
0|2

H̃σ + Cr|g1 − INg
1|2

H̃σ ≤ C
r(N)2(s−σ)

|N |2(s−σ)

(
‖g0‖Hs + ‖g1‖Hs

)
.

Combining the estimates for E1 and E2 gives the proof of the theorem.
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3 Homogenization theory and multiscale
methods for the wave equation

In this chapter, we discuss the approximation of the multiscale wave equation. We consider the
solution uε : [0, T ]× Ω→ R of

∂2t u
ε(t, x)−∇x ·

(
aε(x)∇xu

ε(t, x)
)
= f(t, x) in (0, T ]× Ω, (3.1)

where we impose periodic boundary conditions and initial conditions on uε(0, x), ∂tu
ε(0, x). In

the multiscale regime, the wavelengths of the initial data and of the source term are macroscopic
O(1), while the tensor varies at the microscopic scale O(ε), ε� 1. As we will see, approximating
(3.1) with standard numerical methods such as the finite element method (FEM) or the finite
difference method (FDM) leads to an expensive cost that becomes prohibitive as ε→ 0. Indeed,
for such method to attain a tolerable accuracy, the discretization must resolve the medium at the
microscopic scale O(ε) in the whole domain Ω. Hence, more sophisticated methods that do not
require scale resolution are needed. The methods available in the literature for the approximation
of (3.1) are reviewed in Section 3.1.

To elaborate more sophisticated numerical methods, one possibility is to look for a function that
describes well the effective behavior of uε, i.e., its macroscopic behavior without the variations
occurring at the microscopic scale. We call such function an effective solution. The homogenization
theory is the study of effective equations: it deals with the existence and uniqueness of effective
solutions and, in certain cases, provides formulas for their computation. A vast literature is
available on the homogenization of elliptic operators for which several different mathematical
techniques are used. The basics can be found in [24, 84, 81, 78, 66, 37, 17], with a focus on periodic
homogenization, essential in this thesis and introduced in Section 3.3. For the homogenization of
elliptic operators driven by general symmetric tensors, the theory on G-convergence is used to
prove the existence of effective equations [87, 41] (see Section 3.2). This theory was generalized
to non necessarily symmetric tensors and called H-convergence in [76, 90]. Finally, let us cite
the two-scale convergence method [16] and the homogenization by unfolding [35, 36], which are
widely used in homogenization processes.

Among the homogenization processes, we can dissociate two approaches. The first one is to
study the problem at the limit ε → 0. In fact, the majority of the available homogenization
results are obtained through a limiting process. The second approach, is to fix ε > 0 and prove
error estimates between the solution uε and an effective solution. This approach is less general
as it naturally requires stronger assumptions on the data and on the structure of the tensor.
Asymptotic expansions, which are extensively used for homogenization processes in periodic
media, goes in the direction of this second approach. In this chapter, both approaches are
introduced in the context of the wave equation. Nevertheless, we focus on asymptotic expansions
and adaptation techniques, as these tools will be imperative in the derivation of long time effective
models in Chapters 4, 5, and 6.
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The chapter is organized as follows. First, in Section 3.1, we discuss the numerical approximation
of the multiscale wave equation (3.1). In particular, we review the multiscale methods that are
available in the literature. Then, in Section 3.2, we present the general homogenization result for
the wave equation, obtained via G-convergence. Furthermore, we discuss a particularity of the
wave equation connected to the convergence of the associated energy. In Section 3.3, we introduce
the technique of asymptotic expansions and how to use it to prove rigorous error estimates.
Finally, in Section 3.4, we present the finite element heterogeneous method (FE-HMM), which is
a numerical homogenization method that will be adapted to the long time approximation of the
wave equation in Chapter 7.

3.1 Numerical approximation of the wave equation in heterogeneous media

In this section, we discuss the numerical approximation of the multiscale wave equation. In
particular, we justify why standard numerical methods can not be used and review the multiscale
methods available in the literature.

Let aε be a symmetric, elliptic and bounded tensor and consider uε : [0, T ]× Ω→ R such that

∂2t u
ε(t, x)−∇x ·

(
aε(x)∇xu

ε(t, x)
)
= f(t, x) in (0, T ]× Ω,

x → uε(t, x) Ω-periodic in [0, T ],

uε(0, x) = g0(x), ∂tu
ε(0) = g1(x) in Ω,

(3.2)

where the data are such that the equation is well-posed (see Section 2.1.1). We assume that we
are in a multiscale setting, i.e., the initial data and f have wavelengths of order O(1) and aε

varies at the scale O(ε), with ε� 1. Intuitively, the multiscale character of (3.2) is a problem for
its numerical approximation. Indeed, a standard numerical method, such as the finite element
method or the finite difference method, accurately approximates uε only if the discretization of
Ω is sufficiently fine to capture the microscopic features of aε. Hence, such methods have an
expensive cost, which is prohibitive as ε→ 0 or if the domain grows.

Let us now follow [11] and mathematically justify why the finite element method is not suited
to approximate (3.2). Referring to Section 2.1.1, let us assume that the weak solution of (3.2)
uε ∈ L∞(0, T ;Wper(Ω)) satisfies the variational formulation

〈∂2t uε(t), v〉+Aε
(
uε(t), v

)
=
(
f(t), v

)
L2 ∀v ∈Wper(Ω) for a.e. t ∈ [0, T ],

u(0) = g0, ∂tu(0) = g1,
(3.3)

where Aε is the bilinear form defined by

Aε : Wper(Ω)×Wper(Ω)→ R, (v, w) → Aε(v, w) = (aε∇v,∇w)L2 .

Let Vh ⊂Wper(Ω) be a finite element space (see Appendix A.3) and consider the approximation
of uε defined as the unique solution of(

∂2t uh(t), vh
)
L2 +Aε

(
uh(t), vh

)
=
(
f(t), vh

)
L2 ∀vh ∈ Vh for a.e. t ∈ [0, T ],

uh(0) = g0h, ∂tuh(0) = g1h.
(3.4)

In order to derive estimates for uε−uh, we introduce the Riesz projection onto Vh: πhu
ε : [0, T ]→

Vh, where πhu
ε(t) ∈ Vh solves

Aε
(
πhu

ε(t), vh
)
= Aε

(
uε(t), vh

)
∀vh ∈ Vh.

We verify that if ∂kt u
ε ∈ L∞(0, T ; H1(Ω)), for k ≥ 0, then the projection satisfies πh∂

k
t u

ε ∈
L∞(0, T ; H1(Ω)) and for any t ∈ [0, T ], the following estimate holds for η = uε − πhu

ε:

‖∂kt η(t)‖H1 ≤ C inf
vh∈Vh

‖∂kt uε(t)− vh‖H1 . (3.5)
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Then, following the analysis from [44], we verify that the error satisfies

‖uε − uh‖L∞(H1) ≤ C
(
‖η‖L∞(H1) + ‖∂tη‖L∞(H1) + T‖∂2t η‖L∞(H1)

)
, (3.6)

where we assumed the best case scenario where the initial conditions in (3.4) are g0h = πhg
0,

g1h = πhg
1. Combining (3.5) with (3.6), we conclude that for uh to approximate accurately uε in

H1(Ω), we need infvh∈Vh
‖∂kt uε(t) − vh‖H1 to be small for k = 0, 1, 2. This requirement means

that Vh must be able to describe uε and its time derivatives in the H1 norm. If Vh is a standard
piecewise polynomial finite element space, we thus need h ∼ ε. This conclusion agrees with
the instinctive fact that to capture the gradient ∇uε, the finite element space must be able to
describe its variations at the microscopic scale O(ε). Assuming that the size of the domain is
of order O(1), the computational cost of the method is then of order O(ε−d). As ε is a small
quantity, the cost of the FEM is extremely large. Let us then verify that the error estimate in the
L∞(L2) norm does not change this conclusion. Assuming that ‖aε‖W1,∞ ≤ Cε−1, Aubin–Nitsche
duality argument implies

‖∂kt η(t)‖L2 ≤ C‖aε‖W1,∞h‖∂kt η(t)‖H1 ≤ C
h

ε
inf

vh∈Vh

‖∂kt uε(t)− vh‖H1 , (3.7)

and, following [21], the error satisfies the following optimal error estimate

‖uε − uh‖L∞(L2) ≤ C
(
‖η‖L∞(L2) + T‖∂tη‖L∞(L2)

)
. (3.8)

Hence, (3.7) and (3.8) leads to the same conclusion as (3.6): to ensure a small L∞(L2) error
we need h ∼ ε and again the corresponding cost is of order O(ε−d). We conclude that to reach
an acceptable accuracy, the FEM requires extremely large computational resources. Hence, to
approximate the wave equation (3.2), more sophisticated numerical methods are needed.

Literature review on multiscale methods for the wave equation

Let us review the multiscale methods available in the literature to approximate the wave equation
in heterogeneous media (3.2) at short time. We refer to [11] for a more detailed survey. The
methods can be divided in two categories and it is the physical nature of the problem that
motivates their selection. The determining criterion is whether the medium has or not scale
separation. The medium has scale separation, if the involved scales can clearly be distinguished.
Such structure mainly happens in the study of composite materials, or in other material science
applications, where the medium is artificially designed. It can also concern geoscience, when the
medium is fictional (i.e., not from natural data). The medium does not have scale separation, if
it involves a continuum of scales. This is the case when the medium is a natural datum. For
example, in geoscience, when considering the ground or in medical imaging, when considering the
human body. The methods suited for problems with scale separation derive from homogenization
results. They are cheaper but less general than the methods suited for problems without scale
separation. Indeed, on the one hand they make use of the specific structures of the medium to
reduce the cost of approximation, while on the second hand if the structure is not respected they
provide an approximation of poor accuracy. Let us describe in some more details the numerical
methods that are available for the short time approximation of (3.2).

We begin with the methods from the first category, suited when the medium has scale separation.
In this case, the numerical homogenization methods provide an affordable approximation of uε,
accurate in the L∞(L2) norm. The two main numerical homogenization methods have been
developed in the framework of the heterogeneous multiscale method (HMM). Let us concisely
explain the HMM. Considering an abstract incomplete physical system, the HMM is constituted
of two components: first, a model at the macro scale, with a preferred solver, and second, a
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numerical procedure at the micro scale, whose purpose is to extract the missing information by a
sampling strategy. As the computations at the fine scale are performed independently in small
sampling domains, the procedure can be efficiently parallelized thus granting a significant gain of
time. In the case of the wave equation (3.2), the HMM aims to solve the homogenized equation
at the macro scale and the missing datum is the homogenized tensor, which is approximated by
solving micro problems. Two HMM are available for the wave equation.

The finite difference HMM (FD-HMM), introduced in [46, 19], relies on a finite difference method
at the macro scale. The missing data, the effective flux, is approximated by solving micro
problems in space-time sampling domains of size τ × ηd, where τ, η ≥ ε. The method is formally
analyzed in [20], where an a priori error estimate for the approximate effective flux is shown. In
particular, if the medium is locally periodic, the method converges to the homogenized solution.

In the finite element HMM (FE-HMM) from [8], finite elements are used at the macro scale (the
FE-HMM is studied in Section 3.4). The homogenized tensor is approximated at the quadrature
points of the macro mesh by solving micro problems in sampling domains of volume δd, where
δ ≥ ε. The a priori error analysis provides a priori error estimates in the L∞(H1) and L∞(L2)
norms. In particular, when the medium has a locally periodic structure, the FE-HMM converges
to the homogenized solution. Note that in [6], a reduced basis approach is described to lighten
the cost of the computation of the micro problems (see Section 3.4).

In a different framework, let us also mention the method presented in [70, 30]. At the macro
scale, a spectral method is applied. The approximation of the homogenized medium is based
on asymptotic expansions (in the periodic case) and computed in a preprocessing step. When
applied to non periodic media, this step includes a filtering process. Despite a lack of theoretical
support, the method appears to give satisfying numerical results.

Let us also cite the method from [53, 54]. It is designed to deal with wave problems in infinite
periodic media that are locally perturbed. The procedure allows to find artificial boundary
conditions in order to limit the computational domain to a neighborhood of the perturbation
of the medium. In particular, the method provides the construction of discrete Dirichlet to
Neumann operators for the coupling between the small domain, where the medium is perturbed,
and the exterior domain, where the medium is periodic.

We continue with the second category of methods, suited when the medium does not have scale
separation. In this case, the microscopic features of the medium are extracted and used in
the construction a low dimensional space. The methods differ both in the way to acquire the
microscopic informations and in the way to use it in the definition of the approximation space.

The first such method is found in [79]. It relies on a harmonic change of coordinates Gε =
(Gε

1, . . . , G
ε
d). The space of approximation is a FE space with basis functions defined as com-

positions of coarse FE basis functions with Gε. Under a so-called Cordes type condition, they
provide a rigorous analysis of the method. Even though this condition is difficult to verify in
practice, numerical experiments suggests that it might in fact not be necessary for the method to
perform well. The main drawback of the method is the computation of Gε, which requires to
solve d elliptic PDEs at the fine scale, globally in Ω. This computation is indeed extremely costly
if not impossible.

In the multiscale finite element methods using limited global information, introduced in [65, 64], it
is assumed that uε can be approximated as uε(t, x) ≈ v(t, Gε

1(x), . . . , G
ε
m(x)), where (Gε

1, . . . , G
ε
m)

are available fine scale fields. The approximation space is constructed by products of coarse FE
basis functions with the fields Gε

k. As the support of the obtained basis functions is local, the
obtained matrices are sparse and the cost of the method is low. However, apart from the harmonic
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change of coordinate introduced in [79], the only available procedures for the computation of
the fields (Gε

1, . . . , G
ε
m) are heuristic. Furthermore, they also involve extremely costly global

computations at the fine scale.

The multiscale method defined in [80] brings a notable improvement. Thanks to a flux-transfer
transformation, the computation of the fine scale information is localized to portions of the
domain Ω. To ensure optimal convergence rates, the diameter of these portions must be of order
O(H1/2| log(H)|), where H is the size of a macroscopic mesh. As these problems can be solved
independently, the procedure can be efficiently parallelized, thus ensuring a considerable gain of
time. Note however, that in this approach, the locally supported coarse basis functions have to
be sufficiently smooth (e.g., B-splines).

Finally, the multiscale method from [12] enters the framework of the localized orthogonal
decomposition (LOD, see [75]). The method is based on a decomposition of a fine scale finite
element space into a coarse part and a fine part. The fine part is computed by approximating
the Riesz projection with respect to (aε∇·,∇·). This approximation can be done locally by
solving elliptic problems on patches of size O(H| log(H)|). As these problems are independent,
the preprocessing step for the construction of the multiscale basis can be efficiently parallelized

3.2 Homogenization of the wave equation in general media

In this section, we discuss different results for the homogenization of the wave equation. First, we
introduce the general homogenization result for the wave equation viaG-convergence. Furthermore,
we discuss the convergence of the energy and its connection to a corrector result. Second, we
explain the process of asymptotic expansion in the cases of the elliptic and wave equations in
periodic media. In particular, we rigorously prove error estimates for the homogenized solutions
following adaptation techniques. This part is an essential prerequisite to Chapters 4, 5, and 6,
where we derive effective models for the wave over long time.

3.2.1 General homogenization of the wave equation by G-convergence

We state here the homogenization of the wave equation by G-convergence, proved in [27]. We
refer to [87, 41] for the theory on G-convergence.

We defineM(λ,Λ,Ω) as the set of symmetric matrix functions a ∈ [L∞(Ω)]d×d that are uniformly
elliptic and bounded, i.e.,

λ|ξ|2 ≤ a(x)ξ · ξ ≤ Λ|ξ|2 ∀ξ ∈ Rd for a.e. x ∈ Ω. (3.9)

Note that as a is symmetric, (3.9) implies that a is bounded is the classical sense: |a(x)ξ| ≤
‖a(x)‖2|ξ| ≤ Λ|ξ| (‖ · ‖2 denotes the spectral norm).

For a given f ∈W∗
per(Ω), we consider the elliptic equation

−∇x ·
(
aε(x)∇xu

ε(x)
)
= f(x) in Ω,

uε Ω-periodic,
(3.10)

where {aε}ε>0 is a sequence of matrices in M(λ,Λ,Ω). For ε > 0, as aε ∈ M(λ,Λ,Ω), Lax–
Milgram theorem ensures the existence and uniqueness of a weak solution of (3.10) uε ∈Wper(Ω).
To study the behavior of (3.10) and of its solution in the limit ε→ 0, we introduce the notion of
G-convergence.

Definition 3.2.1. A sequence of matrices {aε} ⊂ M(λ,Λ,Ω) G-converges to the matrix a0 ∈
M(λ,Λ,Ω) if, for every f ∈W∗

per(Ω), the solution of (3.10) uε weakly converges in Wper(Ω) to
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the solution u0 of
−∇x ·

(
a0(x)∇xu

0(x)
)
= f(x) in Ω,

u0 Ω-periodic.
(3.11)

The main result on G-convergence is its compactness property: for any sequence {aε} ⊂
M(λ,Λ,Ω), there exists a subsequence {aε′} and a matrix a0 ∈ M(λ,Λ,Ω) such that {aε′} G-
converges to a0. This property implies the following result for (3.10): there exists a0 ∈M(λ,Λ,Ω)
and a subsequence {uε′} of {uε} that weakly converges in Wper(Ω) to the solution u0 of (3.11).
However, without additional assumption on {aε}, the theory does not provide an explicit for-
mula for a0. Furthermore, a0 may not be unique as nothing ensures in general that different
G-converging subsequences have the same limit. In other words, we have the existence of a limit
equation, but it might not be unique and we have no way of computing its solution.

We consider now the wave equation in heterogeneous media. Let Ω ⊂ Rd be an open hypercube
and let aε ∈ M(λ,Λ,Ω) be a symmetric, uniformly elliptic, bounded tensor (see (3.9)) . We
consider the following equation : find uε : [0, T ]× Ω→ R such that

∂2t u
ε(t, x)−∇x ·

(
aε(x)∇xu

ε(t, x)
)
= f(t, x) in (0, T ]× Ω,

x → uε(t, x) Ω-periodic in [0, T ],

uε(0, x) = g0(x), ∂tu
ε(0) = g1(x) in Ω,

(3.12)

where g0, g1 are initial conditions and f is a source term. As proved in Section 2.1.1, if g0 ∈
Wper(Ω), g

1 ∈ L2
0(Ω) and f ∈ L2(0, T ; L2

0(Ω)), then there exists a unique weak solution of (3.12)
such that uε ∈ L∞(0, T ;Wper(Ω)), ∂tu

ε ∈ L∞(0, T ; L2
0(Ω)) and ∂

2
t u

ε ∈ L∞(0, T ;W∗
per(Ω)).

The general result of homogenization for the wave equation (3.12) is proved in [27]. In particular,
we have the following theorem.

Theorem 3.2.2. If {aε} ⊂ M(λ,Λ,Ω) G-converges to a0, then the solution uε of (3.12) satisfies

uε ⇀∗ u0 in L∞(0, T ;Wper(Ω)), ∂tu
ε ⇀∗ ∂tu

0 in L∞(0, T ; L2
0(Ω)),

where u0 : [0, T ]× Ω→ R is the solution of

∂2t u
0(t, x)−∇x ·

(
a0(x)∇xu

0(t, x)
)
= f(t, x) in (0, T ]× Ω,

x → u0(t, x) Ω-periodic in [0, T ],

u0(0, x) = g0(x), ∂tu
0(0) = g1(x) in Ω.

(3.13)

Theorem 3.2.2 ensures the existence of an effective equation, namely the homogenized equation
(3.13). However, for a general tensor aε, neither do we have a formula for the computation of a0

nor do we even have its uniqueness.

In section 3.3, we discuss the homogenization of (3.12) in the particular case of a periodic tensor
aε(x) = a

(
x
ε

)
. In particular, in this case the homogenized solution u0 is unique and we derive an

explicit formula for the homogenized tensor a0, which is constant. We also prove a homogenization
result under the form of an error estimate for uε − u0.

3.2.2 Convergence of the energy and well-prepared initial data

We present here a particularity of the wave equation connected to the convergence of the energy.
In particular, we present a corrector result proved in [27].
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The homogenization of the wave equation has a particularity. Indeed, as presented in [27], the
energy associated to uε does not converge in general to the energy associated to u0 as ε→ 0. As
a consequence, it is not possible to derive a standard corrector result.

For simplicity, assume that f = 0 and consider the energies associated to (3.12) and (3.13):

Eεuε(t) = 1
2‖∂tu

ε(t)‖2L2(Ω) +
1
2A

ε
(
uε(t), uε(t)

)
,

E0u0(t) = 1
2‖∂tu

0(t)‖2L2(Ω) +
1
2A

0
(
u0(t), u0(t)

)
.

As f = 0, we verify that Eεuε(t) and E0u0(t) are conserved and thus, for any t ∈ [0, T ],

Eεuε(t) = Eεuε(0) = 1
2‖g

1‖2L2(Ω) +
1
2A

ε
(
g0, g0

)
,

E0u0(t) = E0u0(0) = 1
2‖g

1‖2L2(Ω) +
1
2A

0
(
g0, g0

)
.

Let us verify that in general, Aε(g0, g0) does not converge to A0(g0, g0) as ε → 0. Let d = 1
and consider a smooth Y -periodic tensor a

(
x
ε

)
. It can be proved that a

( ·
ε

)
⇀∗ 〈a〉Y in L∞(Rd)

as ε → 0 (see e.g. [37]). Hence, in this case we have Aε(g0, g0) →
(
〈a〉Y ∂xg0, ∂xg0

)
Ω
. If the

tensor is not constant, we verify that a0 �= 〈a〉Y (see Section 3.3.2) and thus Aε(g0, g0) does not
converge to A0(g0, g0). Therefore, the energy of Eεuε(t) does not converge to E0u0(t).

The heart of the problem is in fact an incompatibility between the initial condition g0 and the
tensor aε. Indeed, we show that if the initial condition is well prepared, we obtain the desired
convergence of the energy. Let ũε : [0, T ]× Ω→ Rd be the solution of

∂2t ũ
ε(t, x)−∇x ·

(
aε(x)∇xũ

ε(t, x)
)
= f(t, x) in (0, T ]× Ω,

x → ũε(t, x) Ω-periodic in [0, T ],

ũε(0, x) = g̃0(x), ∂tũ
ε(0) = g1(x) in Ω,

(3.14)

where the prepared initial position g̃0 is the solution of the elliptic equation

−∇x ·
(
aε(x)∇xg̃

0(x)
)
= −∇x ·

(
a0(x)∇xg

0(x)
)

in Ω,
g̃0 Ω-periodic.

(3.15)

Then, ũε still satisfies the weak convergences ũε ⇀∗ u0 in L∞(0, T ;Wper(Ω)) and ∂tũ
ε ⇀∗ ∂tu0

in L∞(0, T ; L2
0(Ω)). Furthermore, the homogenization of (3.15) ensures the convergence (see e.g.

[37])
lim
ε→0

Aε(g̃0, g̃0)→ A0(g0, g0).

We thus obtain Eεũε(t)→ E0u0(t) as ε→ 0, as desired. This preparation of the initial condition
allows to prove a corrector result. In particular, [27] proves that

∇xũ
ε − Cε∇xu

0 → 0 in C0([0, T ]; [L1(Ω)]d),

where Cε is a corrector matrix associated to aε. The incompatibility between g0 and aε is then
contained in the residual uε − ũε. The residual satisfies uε − ũε ⇀∗ 0 in L∞(0, T ;Wper(Ω)), but
its energy does not vanish in general:

Eε(uε − ũε)(t) = 1
2A

ε
(
g̃0, g̃0

)
− 1

2A
ε
(
g0, g0

)
�= 0.

Note that in the case of a periodic tensor a
(
x
ε

)
, the corrector matrix Cε can be defined explicitly.

This is done in Section 3.3.3, where we prove an error estimate for ‖∇xũ
ε − Cε∇xu

0‖L∞(L2).
Furthermore, we show that under sufficient regularity, g̃0 in (3.14) can be replaced by ḡ0 =
g0 + εχi

( ·
ε

)
∂ig

0, where χi are the standard correctors in periodic homogenization.
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3.3 Homogenization in periodic media using asymptotic expansion

Asymptotic expansion is a widely used technique in homogenization processes (see e.g. [24, 66, 37]).
This technique plays a fundamental role in the derivation of the main results obtained in this
thesis. In this section, we introduce asymptotic expansions in two different contexts. We first
proceed to the homogenization of the elliptic equation in periodic media. Second, we perform the
short time homogenization of the wave equation in periodic media. In particular, in both cases,
we use the process to prove a rigorous error estimate between the homogenized solution and the
original solution.

3.3.1 Error estimate for the homogenization of elliptic equations

We proceed here to the homogenization of the elliptic equation in periodic media using asymptotic
expansion. In particular, we derive the homogenized equation and prove an error estimate
ensuring that the homogenized solution is ε-close to the oscillating solution in the L∞(L2) norm.

Let Ω ⊂ Rd be an open hypercube. Let a ∈M(λ,Λ, Y ) be a symmetric tensor that is periodic
on the reference cell Y , i.e., y → a(y) is Y -periodic. We consider the elliptic equation : find
uε : Ω→ R such that

−∇x ·
(
a
(
x
ε

)
∇xu

ε(x)
)
= f(x) in Ω,

uε Ω-periodic.
(3.16)

The well-posedness of (3.16) is ensured by Lax–Milgram theorem. The compactness property of
the G-convergence, introduced in Section 3.2.1, ensures that the sequence {a

( ·
ε

)
}ε>0 admits a

subsequence that G-converges to a tensor a0 ∈M(λ,Λ, Y ). Hence, there exists a homogenized
solution u0 that solves (3.16) such that uε ⇀ u0 in Wper(Ω). In what follows, we use asymptotic
expansion to derive a formula for a0 and thus identify the homogenized solution.

The asymptotic expansion starts with the ansatz that uε can be expanded under the form

uε(x) = u0
(
x, xε
)
+ εu1

(
x, xε
)
+ ε2u2

(
x, xε
)
+ . . . , (3.17)

where the ui(x, y) are Ω-periodic in x and Y -periodic in y. Let us denote the operator Aε =
−∇x ·

(
a
(
x
ε

)
∇x ·

)
. We introduce the differential operators

Ayy = −∇y ·
(
a(y)∇y ·

)
, Axy = −∇y ·

(
a(y)∇x ·

)
−∇x ·

(
a(y)∇y ·

)
,

Axx = −∇x ·
(
a(y)∇x ·

)
,

and the chain rule implies that Aεψ
(
x, xε
)
=
(
ε−2Ayy+ε

−1Axy+Axx

)
ψ
(
x, xε
)
for any sufficiently

smooth function ψ(x, y). Inserting the ansatz (3.17) in (3.16), we obtain for any x ∈ Ω, with
y = x

ε ,

0 = Aεuε(x)− f(x) = ε−2
(
Ayyu

0(x, y)
)

+ ε−1
(
Ayyu

1(x, y)+Axyu
0
(
x, y)

)
+ ε0

(
Ayyu

2(x, y)+Axyu
1(x, y)+Axxu

0(x, y)− f(x)
)

+O(ε).

(3.18)

The right hand side of (3.18) is a polynomial of infinite degree in the variable ε. As this equality
must hold for any ε > 0, all the coefficients of the polynomial have to vanish. Hence, the
successive cancellations of the terms of order εi, i increasing, provide equations for ui(x, y). At
order ε−2, the equation reads : for all x ∈ Ω, find a Y -periodic function y → u0(x, y) such
that Ayyu

0(x, y) = 0 for all y ∈ Y . We verify that any solution to this problem is of the form
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u0(x, y) = u0(x), where the dependence in x is still to be determined. Canceling the term of
order ε−1 in (3.18), and taking into account the definition of u0, we obtain the following equation
for u1: for all x ∈ Ω, find a Y -periodic function y → u1(x, y) such that

−∂ym

(
amn(y)

(
∂yn

u1(x, y) + ∂xn
u0(x)

))
= 0 ∀y ∈ Y. (3.19)

To prove the well-posedness of this elliptic PDE, we apply Lax–Milgram theorem in the space
Wper(Y ). As the bilinear form (v, w) → (a∇yv,∇yw)Y is elliptic and bounded, we have to verify
that the right hand side belong to W∗

per(Y ). We refer to Appendix A.2 for a characterization of

W∗
per(Y ). In particular, f ∈ [H1

per(Y )]
∗
given by〈

f, w
〉
=
(
f0, w

)
L2(Y )

+
(
f1k , ∂kw

)
L2(Y )

,

for some f0, f11 , . . . , f
1
d ∈ L2(Y ) belongs to W∗

per(Y ) if and only if(
f0, 1

)
L2(Y )

= 0. (3.20)

We thus write the weak formulation of (3.19) : for all x ∈ Ω, we look for u1(x) = u1(x, ·) ∈Wper(Y )
such that (

a∇yu
1(x),∇yw

)
L2(Y )

= −
(
a∇xu

0(x),∇yw
)
L2(Y )

∀w ∈Wper(Y ). (3.21)

Using the characterization of W∗
per(Y ), we verify that the right hand side of (3.21) belongs

to W∗
per(Y ) and thus (3.19) is well-posed. Looking for a solution of the form u1(x, y) =

χi(y)∂xiu
0(x) + ũ1(x), (3.19) can be rewritten as(

−∇y · (a(y)
(
∇yχi(y) + ei

))
∂xi

u0(x) = 0 y ∈ Y.

We thus define u1(x, y) = χi(y)∂xi
u0(x), where χi ∈Wper(Y ) is the solution of the cell problem

−∇y ·
(
a(y)

(
∇yχi(y) + ei

))
= 0 ∀y ∈ Y. (3.22)

Note that we chose ũ1(x) = 0 for simplicity. The process can indeed be carried on with ũ1(x)
unknown, which is then constrained by the cancellation of higher order terms. Finally, we cancel
the term of order ε0 in (3.18), obtaining the following equation for u2: for all x ∈ Ω, find a
Y -periodic function y → u2(x, y) such that

−∂ym

(
amn(y)

(
∂yn

u2(x, y)+eiχj(y)∂
2
xij
u0(x)

))
−eTi a(y)

(
∇yχj(y)+ej

)
∂2xij

u0(x) = f(x) ∀y ∈ Y.

This elliptic PDE is well-posed if the right hand side belongs to W∗
per(Y ). Imposing the constraint

(3.20), we verify that this equation is well-posed if

−
〈
eTi a(∇yχj + ej)

〉
Y
∂2xij

u0(x) = f(x) ∀x ∈ Ω. (3.23)

If (3.23) holds, then the term of order ε0 in (3.18) vanishes if u2(x, y) = θij(y)∂
2
xij
u0(x), where

θij ∈Wper(Y ) solves the cell problem

−∇y ·
(
a(y)

(
∇yθij(y) + eiχj(y)

))
− eTi a(y)

(
∇yχj(y) + ej

)
+ a0ij = 0 ∀y ∈ Y, (3.24)

where we denoted
a0ij =

〈
eTi a(∇yχj + ej)

〉
Y
.

Hence, the equation characterizing u0 (3.23), is an elliptic problem. To guarantee its well-
posedness, we prove that a0 is symmetric, elliptic and bounded in the following lemma.
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Lemma 3.3.1. Let a be a Y -periodic tensor that belongs toM(λ,Λ, Y ) and define the homogenized
tensor a0ij =

〈
eTi a(∇yχj + ej)

〉
Y
, where χj ∈Wper(Y ) solves the cell problem (weak formulation

of (3.22)) (
a(∇yχj + ej),∇yw

)
L2(Y )

= 0 ∀w ∈Wper(Y ). (3.25)

Then a0 can be alternatively written as

a0ij =
〈
a(∇yχj + ej) · (∇yχi + ei)

〉
Y
= −

〈
a∇yχj · ∇yχi

〉
Y
+
〈
aej · ei

〉
Y
, (3.26)

and satisfies a0 ∈M(λ,Λ, Y ).

Proof. First, note that Lax–Milgram theorem ensures the existence and uniqueness of χj . Note
that the choice of normalization 〈χj〉Y = 0 is arbitrary and has no influence on the definition of
a0. Next, using (3.25) with the test function w = χi gives

(
a(∇yχj + ej),∇yχi

)
= 0 and we can

thus rewrite

|Y |a0ij =
(
a(∇yχj + ej), ei)

)
Y
+
(
a(∇yχj + ej),∇yχi

)
Y
=
(
a(∇yχj + ej), (∇yχi + ei)

)
Y
,

which proves the first equality in (3.26) and the symmetry of a0. Note that (3.25) can also be
used to rewrite a0 as

|Y |a0ij =
(
a∇yχj , ei

)
Y
+
(
aej , ei

)
Y
= −

(
a∇yχj ,∇yχi

)
Y
+
(
aej , ei

)
Y
,

proving the second equality in (3.26). Let us now prove that a0 is λ-elliptic and Λ-bounded. For
ξ ∈ Rd, we have

|Y |a0ξ · ξ =
d∑

ij=1

(
a(∇yχj + ej) · (∇yχi + ei)

)
Y
ξiξj =

(
aFξ, Fξ

)
Y
, (3.27)

where we denoted the field Fξ =
∑d

i=1(∇yχi+ei)ξi. As χi is Y -periodic, it satisfies
(
∇yχi, ej

)
Y
=∫

Y
∂yjχi dy = 0, and thus

‖Fξ‖2L2(Y ) =
(
Fξ, Fξ

)
Y
=
(
∇yχi,∇yχj

)
Y
ξiξj +

(
∇yχi, ej

)
Y
ξiξj +

(
ei,∇yχj

)
Y
ξiξj +

(
ei, ej

)
Y
ξiξj

=
∥∥∑

i∇yχiξi
∥∥2
L2 + |Y ||ξ|2 ≥ |Y ||ξ|2.

Using (3.27) and the ellipticity of a, this estimate implies |Y |a0ξ · ξ ≥ λ‖Fξ‖2L2(Y ) ≥ |Y |λ|ξ|2,
which proves the λ-ellipticity of a0. Using again (3.25) with the test function w = χi, and the
ellipticity of a, we write(

aFξ, Fξ

)
Y
=
(
a∇yχi,∇yχj

)
Y
ξiξj +

(
a∇yχi, ej

)
Y
ξiξj +

(
aei,∇yχj

)
Y
ξiξj +

(
aei, ej

)
Y
ξiξj

= −
(
a∇yχi,∇yχj

)
Y
ξiξj +

(
aei, ej

)
Y
ξiξj

= −
(
a
(∑

i∇yχiξi
)
·
(∑

i∇yχiξi
))

Y
+ (aξ, ξ)Y ≤ (aξ, ξ)Y .

Using (3.27) and the bound on a, we thus get |Y |a0ξ · ξ ≤ (aξ, ξ)Y ≤ |Y |Λ|ξ|2. This estimate
proves the Λ-boundedness of a0 and ends the proof of the lemma.

Let us synthesize the conclusion of the asymptotic expansion. We have found the equation (3.23)
which is well-posed and characterizes u0, the first term in the expansion (3.17). The function
u0 is independent of ε and is an effective solution for uε. To support this last point, we prove a
rigorous error estimate in the following theorem.
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Theorem 3.3.2. Assume that d ≤ 3, Y = (−1/2, 1/2)d and that Ω = (a1, b1) × · · · × (ad, bd)
satisfies (bi − ai)/ε ∈ N>0. Let uε ∈Wper(Ω) be the solution of (3.16) and let u0 ∈Wper(Ω) be
the unique weak solution of

−∇x ·
(
a0∇xu

0(x)
)
= f(x) x ∈ Ω,

u0 Ω-periodic,
(3.28)

where a0ij =
〈
eTi a(∇yχj + ej)

〉
Y

and χj is the solution of (3.22). Then, if a ∈ W2,∞(Y ) and

f ∈ L2
0(Ω) ∩H1(Ω), the following error estimate holds

‖uε − u0‖L2(Ω) ≤ Cε‖u0‖H3(Ω), (3.29)

where the constant C depends on the Poincaré constant, λ and maxij ‖aij‖W2,∞(Y ).

Proof. Note that thanks to the definition of a0, (3.24) is well-posed and θij exists and is unique.
Thanks to the assumption f ∈ L2

0(Ω) ∩H1(Ω), a regularity result ensures that u0 ∈ H3(Ω) (see
Theorem A.2.2). Similarly, a ∈W2,∞(Y ) ensures that χi, θij ∈ H3(Y ). Furthermore, as d ≤ 3,
the Sobolev embedding H2

per(Y ) ↪→ C0per(Ȳ ) (see Appendix A.2) ensures χi, θij ∈ C1per(Ȳ ). We
can now define the following adaptation of u0,

Bεu0(x) = [u0(x) + εχi

(
x
ε

)
∂iu

0(x) + ε2θij
(
x
ε

)
∂2iju

0(x)] x ∈ Ω,

where [·] denotes the equivalence class in the quotient Wper(Ω) = H1
per(Ω)/R. Thanks to the

assumption on Ω, we verify that Bεu0 is Ω-periodic (χi and θij are extended to Ω by periodicity).
Furthermore, the regularity of u0, χj , θij ensures that Bεu0 belongs to Wper(Ω). Using (3.16), we
verify that Bεu0 satisfies AεBεu0 − [f] = Rεu0, where〈Rεu0,w

〉
=
(
[ ε−1

(
−∇y · (a(∇yχi + ei))

)
∂iu

0

+
(
−∇y · (a(∇yθij + eiχj))− eTi a(∇yχj + ej) + a0ij

)
∂2iju

0],w
)
L2

+ ε
(
[eTi a(∇yθij + eiχj)∂

3
ijku

0],w
)
L2

+ ε
(
amiθjk∂

3
ijku

0, ∂mw
)
L2
.

The cell problems for χi and θij imply that the two first terms of the right hand side vanish, and
we thus verify ‖Rεu0‖W∗

per
≤ Cε‖u0‖H3 . Defining now η = [uε] − Bεu0 ∈ Wper(Ω), we verify

that η satisfies Aεη = Rεu0 in W∗
per(Ω). Using the estimate provided by Lax–Milgram theorem,

we obtain
‖∇xη‖L2 ≤ Cε‖u0‖H3 . (3.30)

Hence, as uε − u0 ∈Wper(Ω), using the triangle and the Poincaré–Wirtinger inequalities, we have

‖uε−u0‖L2 = ‖[uε − u0]‖L2 ≤ ‖η‖L2+‖[u0]−Bεu0‖L2 ≤ CΩ‖∇xη‖L2+Cε‖u0‖H2 ≤ Cε‖u0‖H3 ,

where we used the trivial estimate ‖[u0] − Bεu0‖L2 ≤ Cε‖u0‖H2 . We have proved estimate
(3.29) and the proof of the theorem is complete.

3.3.2 Error estimate for the homogenization of the wave equation

Following the process used in the previous section for the elliptic equation, we proceed here to the
short time homogenization of the wave equation in periodic media using asymptotic expansions.
In particular, we derive the homogenized equation and prove an error estimate ensuring that the
homogenized solution describes well the oscillating wave in the L∞(L2) norm.
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Let Ω ⊂ Rd be an open hypercube and let a ∈ M(λ,Λ, Y ) (see (3.9)), where Y ⊂ Rd is the
reference cell. We consider the following equation : find uε : [0, T ]× Ω→ R such that

∂2t u
ε(t, x)−∇x ·

(
a
(
x
ε

)
∇xu

ε(t, x)
)
= f(t, x) in (0, T ]× Ω,

x → uε(t, x) Ω-periodic in [0, T ],

uε(0, x) = g0(x), ∂tu
ε(0) = g1(x) in Ω,

(3.31)

where g0, g1 are initial conditions and f is a source term. Referring to Section 2.1.1, if g0 ∈
Wper(Ω), g

1 ∈ L2
0(Ω) and f ∈ L2(0, T ; L2

0(Ω)), then there exists a unique weak solution of
(3.31) such that uε ∈ L∞(0, T ;Wper(Ω)), ∂tu

ε ∈ L∞(0, T ; L2
0(Ω)) and ∂

2
t u

ε ∈ L∞(0, T ;W∗
per(Ω)).

The compactness property of the G-convergence ensures the existence of a subsequence of
{a
( ·
ε

)
}ε>0 that G-converges to a tensor a0 ∈ M(λ,Λ,Ω) (see Section 3.2.1). Hence, Theorem

3.2.2 ensures that there exists a homogenized solution u0 that solves (3.11) such that uε ⇀∗ u0

in L∞(0, T ;Wper(Ω)). In what follows, we use asymptotic expansion to characterize a0 and u0.

In order to introduce a systematic methodology for the derivation of effective equations, let us
change a little the process used in the previous section in the elliptic case. We start with two
ansatz. The first ansatz is the form of the effective equation. In particular, we assume that
u0 : [0, T ]× Ω→ R solves the equation

∂2t u
0(t, x)− a0ij∂

2
iju

0(t, x)
)
= f(t, x) in (0, T ]× Ω,

x → u0(t, x) Ω-periodic in [0, T ],

u0(0, x) = g0(x), ∂tu
0(0, x) = g1(x) in Ω,

(3.32)

where the tensor a0ij has to be defined. The second ansatz is that uε can be approximated by an

adaptation of u0 of the form

Bεu0(t, x) = u0(t, x) + εu1
(
t, x, xε

)
+ ε2u2

(
t, x, xε

)
, (3.33)

where u1 and u2 are bounded operators of u0 to be defined. The asymptotic expansion consists
now in imposing (∂2t −Aε)(Bεu0 − uε) = O(ε), where Aε = −∇x ·

(
a
(
x
ε

)
∇x ·

)
, to find explicitly

u1 and u2 and link their definitions with the definition of a0 in (3.32). Using equations (3.31)
and (3.32) and the form of the adaptation (3.33), we obtain for any t, x,

(∂2t −Aε)
(
Bεu0(t, x)− uε(t, x)

)
= (∂2t −Aε)Bεu0(t, x)− f(t, x)

= ε−1
(
Ayyu

1(t, x, y)+Axyu
0
(
t, x, y)

)
+ ε0

(
Ayyu

2(t, x, y)+Axyu
1(t, x, y)+Axxu

0(t, x)− a0ij∂2iju0(t, x)
)

+O(ε). (3.34)

where y = x
ε . Canceling the term of order O(ε−1) leads to defining u1(t, x, y) = χi

(
x
ε

)
∂iu

0(t, x),

where χi solves (3.22). To cancel the term of order O(ε0), we define u2(t, x, y) = θij
(
x
ε

)
∂2iju

0(t, x)
where θij ∈Wper(Y ) solves (compare with (3.24))(
a∇yθij ,∇yw

)
L2(Y )

= −
(
aeiχj ,∇yw

)
L2(Y )

+
(
a(∇yχj + ej)− a0ej , ei∇yw

)
L2(Y )

∀w ∈Wper(Y ).

(3.35)
Imposing the solvability condition (3.20) on (3.35), we obtain the same definition for the homoge-
nized tensor as obtained in the elliptic case in the previous section: a0ij =

〈
eTi a(∇yχj + ej)

〉
Y
.

Lemma 3.3.1 ensures that a0 is elliptic and bounded. Hence, the solution u0 of (3.31) exists and
is unique.

We are now able to prove the desired error estimate. For the sake of simplicity, we require here
the regularity u0 ∈ L∞(0, T ; H4(Ω)), ∂2t u

0 ∈ L∞(0, T ; H2(Ω)). Note, however, that the lower
regularity u0 ∈ L∞(0, T ; H3(Ω)), ∂2t u

0 ∈ L∞(0, T ; H1(Ω)) is sufficient to prove an error estimate
(using the same technique as in the proof of Theorem 4.2.4, in Section 4.2.5).
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Theorem 3.3.3. Assume that d ≤ 3, Y = (−1/2, 1/2)d and that Ω = (a1, b1) × · · · × (ad, bd)
satisfies (bi − ai)/ε ∈ N>0. Let uε be the solution of (3.31) and let u0 ∈Wper(Ω) be the unique
weak solution of (3.32), where a0ij =

〈
eTi a(∇yχj + ej)

〉
Y

and χj is the solution of (3.22). We

assume that a ∈ W2,∞(Y ) and that u0 satisfies the regularity u0 ∈ L∞(0, T ; H4(Ω)), ∂2t u
0 ∈

L∞(0, T ; H2(Ω)). Then the following error estimate holds

‖uε − u0‖L∞(0,T ;L2(Ω)) ≤ Cε
(
‖g1‖H2(Ω) + ‖g0‖H2(Ω)

+ ‖u0‖L∞(0,T ;H4(Ω)) + ‖∂2t u0‖L∞(0,T ;H2(Ω))

)
,

(3.36)

where the constant C depends on the Poincaré constant T , λ and maxij ‖aij‖W2,∞(Y ).

Proof. First, note that the regularity of the tensor ensures that χi, θij ∈ C1per(Ȳ ). We define the
adaptation

Bεu0(t, x) = [u0(t, x) + εχi

(
x
ε

)
∂iu

0(t, x) + ε2θij
(
x
ε

)
∂2iju

0(t, x)],

and verify that the assumptions ensure Bεu0(t) ∈ Wper(Ω). Thanks to the regularity of u0, the
following equality holds in L2(Ω):

[∂2t u
0(t)] = [f(t)] + [a0ij∂

2
iju

0(t)].

We thus compute
∂2tBεu0(t) = [f(t)] + [a0ij∂

2
iju

0(t)] +Rε
1u

0(t), (3.37)

where Rε
1u

0(t) = [εχi∂i∂
2
t u

0(t) + ε2θij∂
2
ij∂

2
t u

0(t)]. For any t ∈ [0, T ],

AεBεu0(t) = [ ε−1
(
−∇y · (a(∇yχk + ek))

)
∂ku

0(t)

+
(
−∇y · (a(∇yθij + eiχj))− eTi a(∇yχj + ej)

)
∂2iju

0(t)] +Rε
2u

0(t), (3.38)

where Rε
2u

0(t) =
(
−∇y · (aeiθjk)− eTi a(∇yθjk + ejχk)

)
∂3ijku

0(t)− ε2aijθkl∂4ijklu0(t). Combining

(3.37) and (3.38) and equation (3.31), we verify that η = [uε]−Bεu0 satisfies

(∂2t +Aε)η(t) = Rεu0(t) in Wper(Ω) for a.e. t ∈ [0, T ],

η(0) = [g0 −Bεg0], ∂tη(0) = [g1 −Bεg1].

where Rεu0 = Rε
1u

0 +Rε
2u

0. Using the error estimate from Lemma 4.2.1 gives the bound

‖η‖L∞(W) ≤ C
(
‖∂tη(0)‖L2 + ‖η(0)‖L2 + ‖Rεu0‖L1(L2)

)
, (3.39)

where the norm ‖ · ‖W is defined in (A.3) and satisfies ‖ · ‖L2 ≤ (1+CΩ)‖ · ‖W (CΩ is the Poincaré
constant). As Hölder’s inequality gives ‖Rεu0‖L1(L2) ≤ T‖Rεu0‖L∞(L2), the definition of Bε in
(3.37) and the regularity of the correctors leads to

‖η‖L∞(L2) ≤ C‖η‖L∞(L2) ≤ Cε
(
‖g1‖H2 + ‖g0‖H2 + ‖u0‖L∞(H4) + ‖∂2t u0‖L∞(H2)

)
.

As (uε − u0)(t) ∈Wper(Ω), we have ‖uε − u0‖L∞(L2) = ‖[uε − u0]‖L∞(L2) and thus the triangle
inequality and the definition of Bεu0 give

‖uε − u0‖L∞(L2) ≤‖η‖L∞(L2) + ‖[Bεu0 − u0]‖L∞(L2)

≤Cε
(
‖u0‖L∞(H4) + ‖∂2t u0‖L∞(H2)

)
.

We have proved (3.36) and the proof of the theorem is complete.
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3.3.3 A corrector result for the wave equation

As discussed in Section 3.2.2, the corrector result that can be proved for the wave equation is
not standard. Namely, it requires a preparation of the initial condition. This issue is connected
to the convergence of the energy and to an incompatibility between the tensor and the initial
wave. In this section, in the particular case of a periodic tensor, we prove a corrector result for a
prepared initial condition. In particular, we show that the corrected initial condition corresponds
to the first order adaptation obtained in the previous section.

Let ūε : [0, T ]× Ω→ R be the solution of the wave equation

∂2t ū
ε(t, x)−∇x ·

(
a
(
x
ε

)
∇xū

ε(t, x)
)
= f(t, x) in (0, T ]× Ω,

x → ūε(t, x) Ω-periodic in [0, T ],

ūε(0, x) = ḡ0(x), ∂tū
ε(0) = g1(x) in Ω,

(3.40)

where the prepared initial position is

ḡ0 = g0 + εχi

( ·
ε

)
∂ig

0 −
〈
εχi

( ·
ε

)
∂ig

0
〉
Ω
,

and χi are the solution of the cell problem (3.32). Note that ūε is not defined in the same way as
ũε in (3.14). Let us show that they are in fact ε-close in Wper(Ω). Indeed, recall that ũ

ε(0) = g̃0,
where g̃0 is the solution in Wper(Ω) of the elliptic equation

−∇x ·
(
aε∇xg̃

0
)
= −∇x ·

(
a0∇xg

0
)
.

This PDE matches the homogenization result of Theorem 3.3.2. in particular, (3.30) reads

‖[g̃0]−Bεg0‖H1 ≤ Cε‖g0‖H3(Ω).

As we also have ‖[ḡ0]−Bεg0‖H1 ≤ Cε‖g0‖H3(Ω), applying the standard energy estimate for the
wave equation solved by ũε − ūε (see Theorem 2.1.1), we obtain

‖ũε − ūε‖H1 ≤ C‖[g̃0 − ḡ0]‖H1 ≤ C
(
‖[g̃0]−Bεg0‖H1 + ‖[ḡ0]−Bεg0‖H1

)
≤ Cε‖g0‖H3(Ω).

We prove the following corrector result.

Theorem 3.3.4. Assume that the hypotheses of Theorem 3.3.3 hold and define the corrector
matrix Cε

ij = δij + ∂yi
χj

( ·
ε

)
. Then the following estimate holds

‖∇xū
ε − Cε∇xu

0‖L∞(0,T ;L2(Ω)) ≤ Cε
(
‖g1‖H2(Ω) + ‖g0‖H3(Ω)

+ ‖u0‖L∞(0,T ;H4(Ω)) + ‖∂2t u0‖L∞(0,T ;H2(Ω))

)
,

(3.41)

where the constant C depends on the Poincaré constant, T, λ and maxij ‖aij‖C2(Y ).

Proof. Define η = [ūε]−Bεu0, and use (3.37) and (3.38) to verify that it satisfies (∂2t +Aε)η(t) =
Rεu0(t) in Wper(Ω), where Rεu0 = Rε

1u
0 +Rε

2u
0. The standard error estimate for the wave

equation (see Theorem 2.1.1) ensures that (compare with (3.39))

‖∂tη‖L∞(L2) + ‖∇xη‖L∞(L2) ≤ C
(
‖∂tη(0)‖L2 + ‖∇xη(0)‖L2 + ‖Rεu0‖L1(L2)

)
.

Thanks to the definition of ūε(0), we verify that ‖∇xη(0)‖L2 ≤ Cε‖g0‖H3 and thus

‖∇xη‖L∞(L2) ≤ Cε
(
‖g1‖H2(Ω) + ‖g0‖H3(Ω) + ‖u0‖L∞(0,T ;H4(Ω)) + ‖∂2t u0‖L∞(0,T ;H2(Ω))

)
. (3.42)

Thanks to the equality Cε∇xu
0 = ∇x

(Bεu0 − ε2[θij∂2iju
0]
)
− εejχi∂

2
iju

0, we have

‖∇xū
ε − Cε∇xu

0‖L2 ≤ ‖∇xη‖L∞(L2) + Cε‖u0‖H3 ,

which, combined with (3.42), gives (3.41) and the proof of the theorem is complete.
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3.3. HOMOGENIZATION IN PERIODIC MEDIA USING ASYMPTOTIC EXPANSION

3.3.4 Numerical experiments

In this section, we illustrate the homogenization of the wave equation in periodic media in various
numerical experiments. First, we compare the oscillating wave and the homogenized solution in a
simple example. Then, we verify the corrector result of the previous section. In particular, we
compute the remaining wave corresponding to the incompatibility between the tensor and the
initial position.

Let the reference cell be Y = (−1/2, 1/2) and consider to following oscillating tensor

a
(
x
ε

)
=
√
2− cos

(
2π x

ε

)
, (3.43)

where ε = 1/20. We consider the solution uε of (3.16), where the initial conditions are given as

g0(x) = e−10x2

and g1(x) = 0 and the source f = 0. Furthermore, we assume that Ω is large
enough to have no influence on uε on the time interval t ∈ [0, 10] (see below). Theorem 3.3.3
predicts that uε is close to the homogenized solution u0 in the L∞(L2) norm. Hence, we study
the homogenized solution. We compute the zero mean corrector and the homogenized tensor
corresponding to a

(
x
ε

)
are (see Theorem (3.3.2))

χ(y) =
1

π
atan

(
(1 +

√
2) tan(πy)

)
− y, a0 = 1.

Therefore, the homogenized equation (3.32) is the wave equation with constant wave speed√
a0 = 1 For x ∈ R, its solution is given by d’Alembert’s formula:

u0(t, x) = 1
2

(
g0(x− t) + g0(x+ t)

)
+ 1

2

∫ x+t

x−t

g1(s) ds = 1
2

(
g0(x− t) + g0(x+ t)

)
.

Hence, u0 is the sum of two traveling waves of speed ±1, i.e., one moving to the right and
one moving to the left. In the left plot of Figure 3.1, we display the solution u0 for (t, x) ∈
[0, 1] × [−1.5, 1.5]. We verify that the behavior of u0 follows d’Alembert’s formula. From this

t
x

u0

−1

0

1

0

0.5

1

t
x

u0

−1

0

1

0

0.5

1

Figure 3.1: Left : the homogenized solution u0 for (t, x) ∈ [0, 1] × [−1.8, 1.8]. Right : the fine
scale solution uε for (t, x) ∈ [0, 1]× [−1.8, 1.8].

information, we deduce that Ω = (−11, 11) is a sufficiently large domain for the two waves
composing u0 never to reach the boundary. We compute now an accurate approximation of
uε using the pseudospectral method, introduced in Section 2.3, on a grid of size Δx = ε/16.
The leap frog method is used for the time integration of the obtained second order ODE, with
time step Δt = Δx/50. In the right plot of Figure 3.1, we displayed the evolution of uε for
(t, x) ∈ [0, 1]× [−1.5, 1.5]. Furthermore, in Figure 3.2, we display the right going waves of uε and
u0 at t = 10. As predicted by Theorem 3.3.3, we observe that uε is close to u0 in the L∞(L2)
norm. Furthermore, we see that the oscillations at the micro scale O(ε) in uε are not described
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by u0. As discussed in Section 3.2.2, the gradient of uε can be captured by the correction Cε∇xu
0

only if the initial condition is prepared with respect to the oscillatory tensor. Denote ūε the
solution of the equation (3.3.3), where the initial position is prepared as

ūε(0) = ḡ0 = g0 ++εχi

( ·
ε

)
∂ig

0 −
〈
εχi

( ·
ε

)
∂ig

0
〉
Ω
.

Theorem 3.3.4 ensures that ∇xū
ε is close to Cε∇xu

0 in L∞(L2). However, as discussed in Section
3.2.2, the remainder uε − ūε has a non vanishing energy. In Figure 3.3, we display uε − ūε at
t = 0 and its right going wave at t = 10. We observe that uε − ūε is close to zero in L∞(L2).
However, as

λ‖∇x(u
ε − ūε)(t)‖2L∞(L2) ≤ Aε

(
(uε − ūε)(t), (uε − ūε)(t)

)
≤ Eε(uε − ūε)(t),

and as uε − ūε oscillates at the scale ε, we verify that the energy Eε(uε − ūε)(t) is positive. This
testifies the incompatibility between the initial position g0 and the tensor a

(
x
ε

)
. Let us now

define the errors

e(ūε) = ‖∇xu
ε − Cε∇xu

0‖L∞(L2), e(uε) = ‖∇xū
ε − Cε∇xu

0‖L∞(L2),

where the correction Cε is defined in Theorem 3.3.4. In Figure 3.4, e(uε) and e(ūε) are displayed
for several values of ε (same settings as in the previous example). On the one hand, we observe
that e(ūε) converges with a linear rate, as predicted by Theorem 3.3.4. On the other hand, e(uε)
stagnates to an error of order O(1), as expected.

9 9.5 10 10.5 11

0

0.1
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0.3
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t = 10 uε

u0

Figure 3.2: Comparison of the right-going waves of uε and u0 at t = 10.

3.4 The finite element heterogeneous multiscale method (FE-HMM) for the wave
equation

In this section, we follow [8] and define the finite element heterogeneous multiscale method
(FE-HMM) for the wave equation and give its a priori error analysis. We refer to [8] for the
missing proofs and further explanations. Note that the FE-HMM-L, studied in Chapter 7, is a
modification of the FE-HMM designed for the long time approximation of the wave equation in
one dimension.

Let Ω ⊂ Rd be an open hypercube and let aε ∈ M(λ,Λ,Ω) be a symmetric, uniformly elliptic,
bounded tensor (see (3.9)). We consider the wave equation : find uε : [0, T ]× Ω→ R such that

∂2t u
ε(t, x)−∇x ·

(
aε(x)∇xu

ε(t, x)
)
= f(t, x) in (0, T ]× Ω,

x → uε(t, x) Ω-periodic in [0, T ],

uε(0, x) = g0(x), ∂tu
ε(0) = g1(x) in Ω,

(3.44)
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Figure 3.3: Illustration of the incompatibility between the initial position g0 and the tensor a
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Figure 3.4: Loglog plots of the errors e(ūε) and e(ūε) for different size ε.

where g0, g1 are initial conditions and f is a source term. As proved in Section 2.1.1, if g0 ∈
Wper(Ω), g

1 ∈ L2
0(Ω) and f ∈ L2(0, T ; L2

0(Ω)), then there exists a unique weak solution of (3.44)
such that uε ∈ L∞(0, T ;Wper(Ω)), ∂tu

ε ∈ L∞(0, T ; L2
0(Ω)) and ∂

2
t u

ε ∈ L2(0, T ;W∗
per(Ω)).

Recall that if we assume that aε G-converges to a0, Theorem 3.2.2 ensures the weak convergence
uε ⇀∗ u0 in L∞(0, T ;Wper(Ω)), where u

0 is the solution of the homogenized equation

∂2t u
0(t, x)−∇x ·

(
a0(x)∇xu

0(t, x)
)
= f(t, x) in (0, T ]× Ω,

x → u0(t, x) Ω-periodic in [0, T ],

u0(0, x) = g0(x), ∂tu
0(0) = g1(x) in Ω.

(3.45)

Recall that for general tensors aε, there is no explicit formula to compute the homogenized tensor
a0 in (3.45). The FE-HMM approximates a0 on the fly by a sampling strategy. If the tensor aε

has a locally periodic structure, the method is proved to converge to the homogenized solution
u0 (see Section 3.4.2).

3.4.1 The FE-HMM for the wave equation

Following [8], we define the FE-HMM for the numerical approximation of the wave equation
(3.44). For simplicity, we restrict the definition of the method to simplicial meshes. Note that
the analysis in [8] also holds for meshes with quadrilateral elements.
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Let TH be a partition of Ω into d-simplices. Denote by HK the diameter of the element K ∈ TH
and define H = maxK∈TH

HK . The macro finite element space is defined, for a given � ∈ N>0, as

VH(Ω) =
{
vH ∈Wper(Ω) : vH |K ∈ P�(K) ∀K ∈ TH

}
. (3.46)

Let K̂ be a reference element and, for every K ∈ TH , let FK be the unique continuous mapping
such that FK(K̂) = K with det(∇FK) > 0, where ∇FK denotes the Jacobian matrix of FK .
We are given a quadrature formula on K̂ by a set of weights and quadrature points {ω̂j , x̂j}Jj=1.
Note that it naturally induces a quadrature formula on K, whose weights and quadrature points
are given by {ωKj

= ∇FK ω̂j , xKj
= FK(x̂j)}Jj=1. The following assumptions are required for

the construction of the stiffness matrix to ensure the optimal convergence rate of FEM with
numerical quadrature [34, 33] (see Theorems A.3.6 and A.3.9 in Section A.3):

(i) ω̂j > 0, j = 1, . . . , J,

(ii)
∫
K̂
p̂(x̂) dx̂ =

∑J
j=1ω̂j p̂(x̂j) ∀p̂ ∈ Pσ(K̂), σ = max{2�− 2, 1}. (3.47)

Furthermore, we assume that the quadrature formula {ω̂′
j , x̂

′
j}J

′
j=1, required for the computation

of the mass matrix, fulfills the following hypothesis

(iii)
∑J ′

j=1ω̂
′
j |p̂(x̂′j)|2 ≥ λ̂′‖p̂‖L2(K̂) ∀p̂ ∈ P�(K̂), for a λ̂′ > 0. (3.48)

The quadrature formula {ω̂′
j , x̂

′
j}J

′
j=1 defines a scalar product (and associated norm) on VH(Ω)×

VH(Ω), equivalent to the standard L2 scalar product. For every macro element K ∈ TH and every
j ∈ {1, . . . , J}, we define around the quadrature point xKj

a sampling domain Kδj = xKj
+ δY ,

where δ is a positive real number such that δ ≥ ε. Each sampling domain Kδj is discretized in
a partition Th, where h = maxQ∈Th

hQ is the maximal diameter of the elements Q ∈ Th. The
micro finite element space is defined, for a q ∈ N>0, as

Vh(Kδj) = {zh ∈W (Kδj) : zh|Q ∈ Pq(Q) ∀Q ∈ Th}, (3.49)

where we let W (Kδj) = Wper(Kδj) for a periodic coupling and W (Kδj) = H1
0(Kδj) for a coupling

with Dirichlet boundary conditions.

The FE-HMM is then defined as follows: find uH : [0, T ]→ VH(Ω) such that(
∂2t uH(t), vH

)
H
+AH

(
uH(t), vH

)
=
(
f(t), vH

)
L2 ∀vH ∈ VH(Ω) for a.e. t ∈ [0, T ],

uH(0) = g0H , ∂tuH(0) = g1H ,
(3.50)

where g0H , g1H are appropriate approximations of the initial conditions g0, g1 in VH(Ω), and the
bilinear forms are defined for vH , wH ∈ VH(Ω) as

AH(vH , wH) =
∑

K∈TH

J∑
j=1

ωKj

|Kδj |

∫
Kδj

aε(x)∇vh,Kj
(x)∇wh,Kj

(x) dx, (3.51)

(
vH , wH

)
H

=
∑

K∈TH

J ′∑
j=1

ω′
Kj
vH(x′Kj

)wH(x′Kj
).

The micro functions vh,Kj
for vH (resp. wH) are the solutions of the following micro problems in

Kδj : find vh,Kj
such that (vh,Kj

− vlinH,Kj
) ∈ Vh(Kδj) and(

aε∇vh,Kj
,∇zh

)
L2(Kδj)

= 0 ∀zh ∈ Vh(Kδj), (3.52)
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where the piecewise linear approximation of vH (resp. wH) around xKj
is given by

vlinH,Kj
(x) = vH(xKj

) + (x− xKj
) · ∇vH(xKj

).

We reformulate the FE-HMM (3.50) to understand its connection with the homogenization theory

(see [8, 1, 3]). For every (K, j) ∈ TH × {1, . . . , J} and 1 ≤ n ≤ d, define ψK,j
h,n ∈ Vh(Kδj) as the

solution of the cell problem in the sampling domain Kδj :(
aε∇ψK,j

h,n ,∇zh
)
L2(Kδj)

= −
(
aεen,∇zh

)
L2(Kδj)

∀zh ∈ Vh(Kδj), (3.53)

and define the tensor a0K at the quadrature point xKj
as(

a0K(xKj
)
)
mn

=
〈
eTma

ε
(
en +∇ψK,j

h,n

)〉
Kδj

, 1 ≤ m,n ≤ d. (3.54)

The following lemma is proved in [1, 3].

Lemma 3.4.1. The bilinear form AH can be rewritten for vH , wH ∈ VH(Ω) as

AH(vH , wH) =
∑

K∈TH

J∑
j=1

ωKj
a0K(xKj

)∇vH(xKj
)∇wH(xKj

). (3.55)

Furthermore, AH is elliptic and bounded, i.e., such that for any vH , wH ∈ VH(Ω),

AH(vH , vH) ≥ λ‖∇vH‖2L2(Ω), AH(vH , wH) ≤ Λ2/λ‖∇vH‖L2(Ω)‖∇wH‖L2(Ω). (3.56)

Proof. First, we verify that the micro function vh,Kj
satisfies vh,Kj

= vlinH,Kj
+ ψK,j

h,n ∂nv
lin
H,Kj

.

Indeed, as the right hand side is a solution of (3.52), by unicity, it is equal to vh,Kj
. Using this

equality in definition (3.51) gives (3.55). In order to prove the ellipticity and continuity of AH ,
let us follow [2] and prove that

‖∇vlinH,Kj
‖L2(Kδj) ≤ ‖∇vh,Kj

‖L2(Kδj) ≤
√
Λ/λ‖∇vlinH,Kj

‖L2(Kδj). (3.57)

Let us drop the notation of Kj and denote Kδ = Kδj . As vh − vlinH ∈ Vh(Kδ), note that for both
couplings it holds vh − vlinH |∂Kδ

= 0. Hence, using that ∇vlinH is constant on Kδ,(
∇vlinH ,∇vh

)
Kδ

= ∇vlinH ·
∫
Kδ

∇vh −∇vlinH dx+
(
∇vlinH ,∇vlinH

)
Kδ

= ‖∇vlinH ‖2Kδ
.

We thus have

0 ≤ ‖∇vh −∇vlinH ‖2Kδ
= ‖∇vh‖2Kδ

+ ‖∇vh‖2Kδ
− 2
(
∇vlinH ,∇vh

)
Kδ

= ‖∇vh‖2Kδ
− ‖∇vlinH ‖2Kδ

,

which proves the first inequality in (3.57). Next, (3.52) gives
(
∇vh,∇vh−∇vlinH

)
Kδ

= 0. We thus

write(
aε∇vh,∇vh

)
Kδ

=
(
aε∇vh,∇vh

)
Kδ

−
(
aε∇vh,∇vh −∇vlinH

)
Kδ

+
(
aε∇vlinH ,∇vh −∇vlinH

)
Kδ

−
(
aε∇vlinH ,∇vh

)
Kδ

+
(
aε∇vlinH ,∇vlinH

)
Kδ

=
(
aε∇vlinH ,∇vlinH

)
Kδ

−
(
aε∇vh −∇vlinH,Kj

,∇vh −∇vlinH
)
Kδ
.

Using the ellipticity and the bound on aε, we obtain λ‖∇vh‖2Kδ
≤ Λ‖∇vlinH,Kj

‖2Kδ
, proving

the second inequality in (3.57). The estimates in (3.56) follow from (3.57), the fact that
∇vlinH,Kj

(xKj
) = ∇vH(xKj

), and the hypothesis on the quadrature formula (3.47).

As a consequence of Lemma 3.4.1, (3.50) is equivalent to a regular second order ordinary differential
equation. Therefore, existence and uniqueness of a solution of (3.50) is ensured by classical theory
for ordinary differential equations [38] and the FE-HMM is well-posed. Furthermore, the solution
uH satisfies the regularity uH ∈ L∞(0, T ε;Wper(Ω)), ∂tuH ∈ L∞(0, T ε; L2

0(Ω)).
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3.4.2 A priori error analysis of the FE-HMM for the wave equation

In this section, we present the analysis of the FE-HMM for the wave equation provided in [8]. In
particular, we discuss the different contributions of the error between the approximation and the
homogenized solution.

Recall that a0 is the homogenized tensor obtained as the G-limit of {aε} as ε→ 0, and u0 is the
solution of the corresponding homogenized equation (3.45). The error u0 − uH is composed of
three parts. First, the error made at the macro level, coming from the FEM approximation at
the macro scale. Second, the error made at the micro level, coming from the FEM approximation
of the micro problems. Finally, the remaining error, called the modeling error, comes from the
sampling strategy for computing a0 and can be quantified only in the case where explicit formulas
for a0 are known. It is discussed below.

The a priori error analysis of the FE-HMM is stated in the following theorems (see [8] for the
proofs).

Theorem 3.4.2. Assume that a0 ∈ W�,∞(Ω) and ∂kt u
0 ∈ L∞(0, T ; H�+1(Ω)) for 0 ≤ k ≤ 4.

Then e = u0 − uH satisfies the estimate

‖∂te‖L∞(L2) + ‖e‖L∞(H1) ≤ CedataH1 + C
(
H� + eHMM

) 4∑
k=0

‖∂kt u0‖L∞(0,T ;H�+1(Ω),

where edataH1 = ‖g1 − g1H‖L2 + ‖g0 − g0H‖H1 ,

eHMM = sup
K∈TH ,1≤j≤J

‖a0(xKj
)− a0K(xKj

)‖F ,

and C is a constant independent of ε, δ, h, and H

Theorem 3.4.3. Assume that a0 ∈ W�+1,∞(Ω) and ∂kt u
0 ∈ L∞(0, T ; H�+1(Ω)) for 0 ≤ k ≤ 3.

Then e = u0 − uH satisfies the estimate

‖e‖L∞(L2) ≤ CedataL2 + C
(
H�+1 + eHMM

) 3∑
k=0

‖∂kt u0‖L∞(0,T ;H�+1(Ω),

where edataL2 = ‖IHg1 − g1H‖L2 + ‖g0 − g0H‖L2 and C is a constant independent of ε, δ, h, and H
(IH denotes any projection operator onto VH(Ω)).

In order to estimate the HMM error eHMM, let us introduce the exact solution of the micro
problems: for every (K, j) ∈ TH × {1, . . . , J} and 1 ≤ n ≤ d, define ψK,j

n ∈ W (Kδj) as the
solution of (

aε∇ψK,j
n ,∇z

)
L2(Kδj)

= −
(
aεen,∇z

)
L2(Kδj)

∀z ∈W (Kδj), (3.58)

and define
(
ā0K(xKj

)
)
mn

=
〈
eTma

ε
(
en +∇ψK,j

n

)〉
Kδj

for 1 ≤ m,n ≤ d. We now split the HMM

error into the micro error and the modeling error, eHMM ≤ emic + emod, where

emic = sup
K∈TH ,1≤j≤J

‖a0K(xKj
)− ā0K(xKj

)‖F , emod = sup
K∈TH ,1≤j≤J

‖a0(xKj
)− ā0K(xKj

)‖F .

In order to estimate emic, no assumption on the structure of the tensor is required, but we assume
that the solution of (3.58) satisfies

|ψK,j
n |Hq+1(Kδj) ≤ Cε−q

√
|Kδj |, (3.59)

with C independent of ε, xKj
, and Kδj . Note that for a periodic coupling, W (Kδj) = Wper(Kδj),

(3.59) is satisfied if the tensor satisfies the regularity aε ∈Wq,∞(Ω) and |aε|Wq,∞ ≤ Cε−q. For a

60



3.4. THE FINITE ELEMENT HETEROGENEOUS MULTISCALE METHOD (FE-HMM) FOR THE WAVE EQUATION

coupling with homogeneous Dirichlet boundary conditions, W (Kδj) = H1
0(Kδj), (3.59) holds for

q = 1 if the tensor satisfies the regularity aε ∈W1,∞(Ω) and |aε|W1,∞ ≤ Cε−1. If (3.59) holds,
then the micro error is proved to satisfy

emic ≤ C

(
h

ε

)2q

. (3.60)

To analyze the modeling error emod, we assume that the tensor aε has a locally periodic structure,
i.e., aε(x) = a

(
x, xε
)
, where a(x, y) is Y -periodic in y and the reference cell Y = (−1/2, 1/2).

Under this assumption, the following explicit formula for a0 can be proved for x ∈ Ω

a0mn(x) =
〈
eTma(x, ·)(∇yχn(x, ·) + en)

〉
Y
,

where for all x ∈ Ω χn(x, ·) ∈ Wper(Y ) is the solution of the local cell problem (compare with
(3.58)) (

a(x, ·)∇yχn(x, ·),∇yw
)
L2(Y )

= −
(
a(x, ·)en,∇yw

)
L2(Y )

∀w ∈Wper(Y ).

Hence, if we assume that the tensor aε is collocated in the slow variable in each sampling domain,
i.e., aε|Kδj

= a
(
xKj

, ·
ε

)
, and if, in addition, we assume the regularity aij ∈ C0(Ω̄;W1,∞(Y )), the

following estimates can be proved

emod ≤
{

0 if δ/ε ∈ N>0 and W (Kδj) = Wper(Kδj),

Cε/δ if δ/ε /∈ N>0 and W (Kδj) = H1
0(Kδj).

(3.61)

Without assuming that aε is collocated in the slow variable, an additional error proportional to
the size of the sampling domain Cδ is expected in both estimates (3.61). In the case δ/ε /∈ N>0,
the error in (3.61) is called the resonance error and comes from a mismatch between the size of
the sampling domains δ and the period of the tensor ε. In the case where the period is unknown,
an oversampling strategy is used: use W (Kδj) = H1

0(Kδj) and use δ large enough to reduce the
error term ε/δ. Note that this process increases notably the cost of the method. In particualr,
finding an efficient method for the reduction of the resonance error is an active field of research.

Let us discuss the cost of the method. We denote Mmic = C(h/ε)−d the number of degrees
of freedom (DOF) in one micro problem and let Nmic be such that h = δ/Nmic. We first
note that Mmic is independent of ε. Indeed, we have δ = Cε, where C = O(1), and thus
h/ε = Ch/δ = C/Nmic. As the number of DOF at the macro scale is also independent of ε, if
emod = 0, the method converges independently of ε. Note that the main cost of the FE-HMM
lies in solving the O(Nmac) micro problems (3.52), where Nmac = O(H−d). Indeed, once the
stiffness matrix is assembled, (3.50) has the standard cost of the FEM on the macro mesh TH . As
the micro computations are independent, they can be done in parallel, which notably decreases
the execution time. However, according to Theorem 3.4.3 and (3.60), to increase the accuracy
both the micro and macro mesh sizes have to be decreased. Hence, increasing the accuracy
substantially increases the cost to solve the micro problems: NmacMmic. To settle this issue, a
reduced order method has been developed. Based on the reduced basis method (see [83] and the
references therein), the FE-HMM was enhanced to a reduced basis FE-HMM (RB-FE-HMM) (see
[6] for the elliptic case and [5] for the wave equation). Briefly, the RB-FE-HMM is divided into
an offline and an online stages. The offline stage consists in the construction of a low dimensional
subspace for the micro solutions. It relies on a greedy procedure based on an a posteriori error
estimate for the approximation of the homogenized tensor. In the online stage, the homogenized
tensor is then approximated inexpensively in the low dimensional subspace. The offline process is
costly, but as it relies only on the tensor and on the domain, it can be reused for different initial
data, source terms, boundary conditions, and even different physical problems.
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4 Effective models for long time wave
propagation in periodic media

This chapter contains the first main contributions of this thesis. In particular, we derive a new
family of effective equations for the wave equation over long time. A substantial part of the
content of the chapter was published in [14] (see also [13] for the one-dimensional case). Note
that various additional results are presented.

We consider the wave equation in heterogeneous media over long time. Let Ω ⊂ Rd be an
arbitrarily large hypercube, let aε(x) = a

(
x
ε

)
be a tensor, where a(y) is periodic in a reference

cell Y (e.g. Y = (0, 1)d), and let T ε = ε−2T , where T = O(1). We consider the solution
uε : [0, T ε]× Ω→ R of

∂2t u
ε(t, x)−∇x ·

(
aε(x)∇xu

ε(t, x)
)
= f(t, x) in (0, ε−2T ]× Ω, (4.1)

where the initial conditions uε(0, x) and ∂tu
ε(0, x) are given and x → uε(t, x) is Ω-periodic. We

assume that we are in a multiscale regime, i.e., the wavelengths of the initial conditions and of
the source term are of order O(1), while the wavelength ε of the tensor is much smaller. We saw
in Chapter 3 that at timescales O(1), the macroscopic behavior of uε is well described by the
homogenized solution. However, at timescales O(ε−2), dispersion develops in the macroscopic
behavior of uε. As this dispersion is not described by the homogenized solution, a new effective
equation is needed. Finding such equation is an active field of research and the literature on this
topic is reviewed in detail in Section 4.1. In particular, the main result available is presented in
[42, 43], where one effective equation of the form (for f = 0)

∂2t u(t, x)−a0ij∂2iju(t, x)+ε2dijkl∂4ijklu(t, x)−ε2eij∂2ij∂2t u(t, x) = f(t, x) in (0, ε−2T ]×Ω, (4.2)

is defined. To attest the validity of this equation, an error estimate is proved (the result holds in
fact for the whole space Ω = Rd). In this chapter, we derive a new family of effective equations
of the form

∂2t ũ(t, x)−a0ij∂2ij ũ(t, x)+ε2a2ijkl∂4ijklũ(t, x)−ε2b2ij∂2ij∂2t ũ(t, x) = f(t, x) in (0, ε−2T ]×Ω. (4.3)

We emphasize that while [42, 43] construct one particular effective equation, we provide a
characterization of an infinite set of effective equations. Under sufficient regularity of the data,
we prove that any element ũ of the family satisfies the estimate

‖uε − ũ‖L∞(0,T ε;W ) ≤ Cε,

where the norm ‖ · ‖W is defined as (see (4.23))

‖w‖W = inf
w=w1+w2

w1,w2∈Wper(Ω)

{
‖w1‖L2(Ω) + ‖∇w2‖L2(Ω)

}
, (4.4)
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and is equivalent to the L2(Ω) norm through the Poincaré constant. As the estimate holds for
arbitrarily large hypercubes Ω, we can compare it to the result from [42, 43], which holds in the
whole Rd.

While the equation (4.2) is derived in [42, 43] using the Bloch wave expansion of uε, our
derivation is done using asymptotic expansions. As a secondary result, we prove that these
different approaches lead to the same effective equations. In particular, we prove that the effective
equation (4.2) belongs to our family. Note that a similar comparison of these derivations was
done independently in [18], with a focus on the elliptic case.

The family of effective equations is derived as follows. Assuming that an effective equation has
the form (4.3), we construct an adaptation of ũ. The construction of the adaptation uses the
asymptotic expansion technique, introduced for timescales O(1) in Section 3.3. In particular, the
adaptation involves correctors, which are defined as the solutions of cell problems (elliptic PDEs
in Y with periodic boundary conditions). However, as the timescale is now of order O(ε−2),
more correctors are needed in the adaptation. Recall that in the derivation at short times, in
Section 3.3, the homogenized tensor a0 was characterized by the well-posedness of the second
order cell problems. In a similar way, the well-posedness of the fourth order cell problems provides
a constraint on the tensors a2, b2 in (4.3). Combined with the positive sign of a2, b2, required for
the well-posedness of (4.3), this constraint characterizes the family of effective equations. Note
that the ansatz on the effective equation is primordial. Indeed, we verify that if we start with the
equation (4.3) without the operator b2ij∂

2
ij∂

2
t , we end up with an ill-posed equation (which was

obtained in [85]). Hence, the starting equation needs to be general enough. In particular, this
conclusion will be essential for the derivation of effective equations in locally periodic media in
Chapter 6.

The implicit definition of the family through the constraint on a2, b2 is not usable as such in
practice. We thus provide a constructive procedure to compute pairs of non-negative effective
tensors a2, b2 defining equations of the family. Note that the algorithm requires to solve d+

(
d+1
2

)
cell problems, while in [42, 43] this number is d+

(
d+1
2

)
+
(
d+2
3

)
.

The chapter is organized as follows. In Section 4.1, we present with an example the dispersive
effects that appear at long times and review the literature available on this topic. Then, in Section
4.2, we present the main result of the chapter: we define the new family of effective equations
and state the corresponding error estimate. In particular, we explain how asymptotic expansions
are used to rigorously prove error estimates with adaptation techniques. Next, in Section 4.3, a
procedure to construct effective equations is presented and an algorithm for the computation
of the tensors is provided. Finally, we verify our theoretical findings through various numerical
examples in Section 4.4.

4.1 Dispersive effects appearing at timescales O(ε−2) : literature overview

In this section, we discuss the dispersive effects developed at long times by the solution of the
wave equation in periodic media. In particular, we review the results available in the literature
on this topic.

We consider the wave equation in an infinite periodic medium. Let aε(x) = a
(
x
ε

)
= a(y) be a

symmetric Y -periodic tensor in a reference cell Y (e.g., Y = (−1/2, 1/2)d). We assume that aε is
uniformly elliptic and bounded. Given initial conditions and a source f , we look for the wave
displacement uε : [0, T ]→ R such that

∂2t u
ε(t, x)−∇x ·

(
aε(x)∇xu

ε(t, x)
)
= f(t, x) in (0, T ]× Rd. (4.5)
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Note that in applications (4.5) can not be approximated in the full space Rd. One simple way to
proceed is to solve the equation in a hypercube Ω that is large enough for the wave never to reach
the boundary and add artificial periodic boundary conditions (we call such Ω a pseudoinfinite
domain). For now, let us discuss (4.5) in the whole space Rd. In Chapter 3 (Theorem 3.3.3), we
presented the homogenization result for (4.5). In particular, we derived explicitly the homogenized
equation

∂2t u
0(t, x)− a0ij∂

2
iju

0(t, x) = f(t, x) in (0, T ]× Rd, (4.6)

whose solution u0 no longer oscillates at the microscopic scale and describes the macroscopic
behavior of the wave uε at short timescales O(1). Thanks to the periodic structure of aε, the
homogenized tensor a0 ∈ Sym2(Rd) in (4.6) can be computed explicitly via the solutions of d cell
problems in Y .

However, it is known that at long timescales of order O(ε−2), dispersion effects appear in the
macroscopic behavior of the wave uε. These effects are not described by the homogenized solution
u0. To see it, let us come back to the example from Section 3.3.4. We recall that the data are

a
(
x
ε

)
=
√
2− cos

(
2π x

ε

)
, ε = 1/20, g0(x) = e−10x2

, g1(x) = 0, f = 0.

As we want to approximate uε at the time t = ε−2 = 400, recalling that the homogenized wave
speed is

√
a0 = 1, we let the computational domain be Ω = (−402, 402). In Figure 4.1, the time

evolutions of uε (left) and u0 (right) are displayed in the moving frame x ∈ [
√
a0t−2.9,

√
a0t+1.1].

We observe that, as the time increases, uε is macroscopically a superposition of waves moving with
different speeds. This phenomenon is known as dispersion. Manifestly, the homogenized solution
u0 does not describe this dispersive behavior. Hence, a new effective solution that describes uε at
timescales O(ε−2) is needed. Considering that u0, valid for timescales O(ε0), is a zero-th order
effective equation, we are looking for a higher order effective equation, valid for timescales O(ε−2).
Such equation must agree with (4.6) at order O(1) and have additional higher order constant
differential operators for the description of the dispersion. The challenge lies first in exhibiting
the form of these operators, then defining the coefficients driving them, and, finally, giving an
efficient algorithm to compute them.

t

x =
√
a0t

10

100

200

300

400

uε(t, x)

t

x =
√
a0t

10

100

200

300

400

u0(t, x)

Figure 4.1: Comparison between uε and u0 in a moving frame. The data of the problem are
given in the text.

In the literature, several papers have addressed this problem (see [85, 52, 51, 72, 42, 43, 13, 18, 14]).
Before going into details on some results, let us give a chronological review. In [85], Santosa and
Symes formally built an approximation of uε (for f = 0) over times of order O(ε−2) that solves
(with a higher order remainder) an equation of the form

∂2t u(t, x)− a0ij∂
2
iju(t, x) + ε2cijkl∂

4
ijklu(t, x) = 0 in (0, ε−2T ]× Rd. (4.7)
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However, due to the negative sign of the tensors c, (4.7) is ill-posed. Nevertheless, numerical
experiments show that a regularized approximation of (4.7) captures the desired dispersive effects
of uε. Recently, several authors proposed a well-posed modification of (4.7).

The first rigorous result was presented by Lamacz in [72], in the one-dimensional case. An error
estimate is proved for timescales O(ε−2) between uε (for f = 0) and the solution of a Boussinesq
type equation given by

∂2t u(t, x)− a0∂2xu(t, x)− ε2b∂2x∂
2
t u(t, x) = 0 in (0, ε−2T ]× R. (4.8)

The coefficient b in (4.8) is computed via a cascade of 3 elliptic cell problems (including the cell
problem necessary for a0). This result is discussed in detail in Section 4.1.2.

In the multidimensional case, an error estimate over long times O(ε−2) was then proved by
Dohnal, Lamacz, and Schweizer in [42, 43]. The (well-posed) effective equation is of the form (for
f = 0)

∂2t u(t, x)− a0ij∂
2
iju(t, x) + ε2

(
dijkl∂

4
ijklu(t, x)− eij∂

2
ij∂

2
t u(t, x)

)
= 0 in (0, ε−2T ]× Rd, (4.9)

where the tensors d, e are computed via an algebraic decomposition of the tensor c in (4.7). Their
numerical procedure involves the solution of d+

(
d+1
2

)
+
(
d+2
3

)
cell problems. A summary of the

derivation is given in Section 4.1.1.

In [13], we generalized the one-dimensional result from [72]. Using a similar technique, we derived
a family of (well-posed) effective equations of the form (4.9) (in one dimension), where the
coefficients are computed with the help of a single cell problem (the same as to compute a0). We
emphasize that while the equations (4.8) in [72] and (4.9) in [42, 43] defined single equations, we
provided the characterization of infinitely many. In addition, the family is validated by the proof
of an error estimate. This result contributes to this thesis and is presented in Section 4.2 (Section
4.3.1 for the particular one-dimensional case).

Next, Allaire, Briane, and Vanninathan [18] derived in a formal way an equation of the form

∂2t u(t, x)−a0ij∂2iju(t, x)+ ε2
(
d̃ijkl∂

4
ijklu(t, x)− ε2ẽij∂2ij∂2t u(t, x)

)
= f(t, x)− ẽij∂2ijf(t, x), (4.10)

in (0, ε−2T ]× Rd. The tensors d̃, ẽ are obtained by a theoretical decomposition of the tensor c in
(4.7), which differs from the one in [42, 43]. Although their derivation clarifies the connection
between the approaches of Bloch-wave expansion and of asymptotic expansion, no numerical
procedure is provided for the computation of the tensors. Furthermore, no error estimate is
provided to certify the derivation.

Then, we generalized our result from [13] to the multidimensional case in [14]. In particular, a
whole family of effective equations of the form (4.9) was defined. Furthermore, we described a
numerical procedure that involves the solution of only d+

(
d+1
2

)
cell problems. This is the main

result presented in the current chapter.

To be complete, let us finally mention a recent paper from Benoit and Gloria [23] dealing with the
long time homogenization of the wave equation. However, the review of their result is postponed
to the next chapter, as they provide an effective equation of arbitrary order (which is precisely
the topic of Chapter 5).

4.1.1 Derivation of an effective equation via Bloch wave expansion

The first framework used to derive effective equations uses the expansion of uε in Bloch waves (see
[92]). This approach has first been used by Santosa and Symes in [85], where an ill-posed equation
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is formally derived. The approach was then carried on by Dohnal, Lamacz, and Schweizer in
[42, 43], where a well-posed effective model is obtained and an error estimate is rigorously proved.
In this section, we summarize the result from [42, 43] and indicate what is owed to [85]. Let
us mention that Bloch waves have also been used for the homogenization of elliptic equations
(see [40] and the references therein). Note that the survey given here continues in Section 4.2.7,
where we compare the effective tensors obtained in this thesis via asymptotic expansion with
the ones obtained in [85, 42, 43] via Bloch wave expansion. In particular, we show that the two
approaches lead to the same effective tensors.

Let us present the exact settings of [85, 42, 43]. We consider the wave equation in periodic media
at timescale O(ε−2) in the whole space Rd: uε : [0, ε−2T ]× Rd → R such that

∂2t u
ε(t, x)−∇x ·

(
a
(
x
ε

)
∇xu

ε(t, x)
)
= 0 in (0, ε−2T ]× Rd,

uε(0, x) = g(x), ∂tu
ε(0, x) = 0 in Rd,

(4.11)

where we assume that g ∈ L2(Rd) ∩ L1(Rd) is such that its Fourier transform G has a compact
support K ⊂⊂ Rd. The tensor a(y) is assumed to belong to [C1per(Ȳ )]d×d, where Y = (−π, π)d.
The effective equation from [42, 43] is given by wε : [0, ε−2T ]× Rd → R

∂2tw
ε(t, x)− a0ij∂

2
ijw

ε − ε2
(
Eij∂

2
ij∂

2
tw

ε − Fijmn∂
4
ijmnw

ε
)
= 0 in (0, ε−2T ]× Rd,

wε(0, x) = g(x), ∂tw
ε(0, x) = 0 in Rd,

(4.12)

where a0 is the homogenized tensor and E, F are defined through an algebraical procedure (see
(4.18) below).

The following error estimate is then proved in [42, 43], in the norm

‖v‖L2(Rd)+L∞(Rd) = inf
v=v1+v2

v1∈L2(Rd),v2∈L∞(Rd)

{
‖v1‖L2(Rd) + ‖v2‖L∞(Rd)

}
.

Theorem 4.1.1 (Dohnal, Lamacz & Schweizer, [42, 43]). The solutions uε and wε of respectively
(4.11) and (4.12) satisfy the error estimate

‖uε − wε‖L∞(0,ε−2T ;L2(Rd)+L∞(Rd)) ≤ Cε, (4.13)

where C depends only on a, Y , T and g.

The starting point of [85] and [42, 43] is the expression of uε in Bloch waves. Let the reciprocal
periodicity cell be Z = (−1/2, 1/2)d. Then, for a fixed k ∈ Z, we construct {μm(k), ψm(y, k)}∞m=0

the eigenvalues and eigenfunctions of the problem

−(∇y + ik) ·
(
a(y)(∇y + ik)ψm(y, k)

)
= μm(k)ψm(y, k),

where μm(k) are real and μm+1(k) ≥ μm(k) ≥ 0. We define then the rescaled Bloch waves
wε

m(x, k) = ψm

(
x
ε , εk

)
eik·x and the rescaled eigenvalues με

m(k) = μm(εk). In particular,
{με

m(k), wε
m(x, k)} satisfy

−∇x ·
(
a
(
x
ε

)
∇xw

ε
m(x, k)

)
= με

m(k)wε
m(x, k),

and the Bloch waves {wε
m(x, k)}m≥0 form a basis of L2(Rd). Then uε can be expressed as

uε(t, x) =

∞∑
m=0

∫
Z/ε

ĝεm(k)wm(x, k)�
(
eit
√

με
m(k)

)
dk, ĝεm(k) =

∫
Rd

g(x)wε
m(x, k) dx, (4.14)
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where z denotes the complex conjugate of z and �(z) its real part. First, it is proved in [85] (and
used in [42, 43]) that∥∥∥ ∞∑

m=1

∫
Z/ε

ĝεm(k)wm(x, k)�
(
eit
√

με
m(k)

)
dk
∥∥∥
L∞(0,ε−2T ;L2(Rd))

≤ Cε.

In particular, for the homogenization process the only relevant part in the expansion (4.14) is
the term m = 0. As the rest of the derivation is done rather formally in [85] (and ends with the
ill-posed equation (4.17)), we now exclusively follow the derivation in [42, 43]. The approximation

Uε(t, x) = (2π)−d/2

∫
K

G(k)eik·x�
(
eit
√

με
0(k)
)
dk,

where G is the Fourier transform of g and K is its support, is proved to satisfy the error estimate

‖uε − Uε‖L∞(0,∞;L2(Rd)+L∞(Rd)) ≤ Cε. (4.15)

The next step is the approximation of �
(
eit
√

με
0(k)
)
using Taylor expansion. In particular,

με
0(k) = Aijkikj + ε2Cijmnkikjkmkn +O(ε4),

where Aij = ∂2ijμ0(0) and Cijmn = ∂4ijmnμ0(0), and we obtain the approximation

vε(t, x) = (2π)−d/2 1

2

∑
±

∫
K

G(k)eik·xexp
(
± it
√
Aijkikj

)
exp
(
± iε2t

2

Cijmnkikjkmkn√
Aijkikj

)
.

The function vε satisfies the error estimate

‖Uε − vε‖L∞(0,ε−2T ;L2(Rd)+L∞(Rd)) ≤ Cε. (4.16)

As shown in [43], it holds in fact Aij = ∂2ijμ0(0) = a0ij , where a
0 is the homogenized tensor defined

in (4.41). Hence, vε satisfies

∂2t v
ε = a0ij∂

2
ijv

ε − ε2Cijmn∂
4
ijmnv

ε − ε4(Cijmnkikjkmkn)
2/(4a0ijkikj)v

ε.

However, C being negative, the equation

∂2t v = a0ij∂
2
ijv − ε2Cijmn∂

4
ijmnv (4.17)

is ill-posed and cannot be used. Next, [42, 43] gives an algebraic procedure to build E ∈
Ten2(Rd), F ∈ Ten4(Rd) that satisfy some symmetry and sign assumption (to ensure the well-
posedness of (4.12), see (4.55)) and such that the following decomposition holds:

−Cijmn∂
4
ijmn =

(
Eij∂

2
ij

)(
a0mn∂

2
mn

)
− Fijmn∂

4
ijmn. (4.18)

We observe that the decomposition (4.18) is a preparation for a Boussinesq trick, i.e., to use
the effective equation to replace the operator a0mn∂

2
mn with ∂2t (plus a higher order error term).

Finally, it is proved in [42, 43] that the solution wε of the (well-posed) equation (4.12) satisfies
‖∇(vε −wε)‖L∞(0,T ε;L2(Rd)) ≤ Cε2, which combined with (4.15), (4.16) proves the error estimate
(4.13).

4.1.2 Derivation in one dimension of an effective equation via asymptotic expansion

The second framework used for the derivation of effective equations is the technique of asymptotic
expansion, that we introduced in Section 3.3. This technique was used by Lamacz in [72] to derive
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an effective equation in one-dimension. Chronologically, [72] situates after the formal derivation
via Bloch waves of [85] and before the rigorous one in [42, 43]. This derivation from [72] and the
proof of the error estimate were the starting point of the results presented in the current chapter.

We summarize here the result from [72] and present the main ideas of the derivation of the
effective equation. Given a Y -periodic, elliptic, bounded tensor a ∈ C∞per(Y ), we consider the
solution uε : [0, ε−2T ]× R→ R of

∂2t u
ε(t, x)− ∂x

(
a
(
x
ε

)
∂xu

ε(t, x)
)
= 0 in (0, ε−2T ]× R,

uε(0, x) = g0(x) + εχ
(
x
ε

)
∂xg

0(x) + ε2θ
(
x
ε

)
∂2xg

0(x), in R,

∂tu
ε(0, x) = g1(x) + εχ

(
x
ε

)
∂xg

1(x), in R,

(4.19)

where χ, θ are Y -periodic solution of given cell problems (the same as in Section 3.3). The
effective equation is given as wε : [0, ε−2T ]× R→ R such that

∂2tw
ε(t, x)− a0∂2xw

ε(t, x)− a2

a0
∂2x∂

2
tw

ε(t, x) = 0 in (0, ε−2T ]× R,

wε(0, x) = g0(x) in R,

∂tw
ε(0, x) = g1(x) in R,

(4.20)

where a0 is the homogenized coefficient and a2 is defined via a cascade of cell problems, depending
on a(y). The following convergence is then proved.

Theorem 4.1.2 (Lamacz, [72]). Assume that g0, g1 ∈ C∞c (−R,R) for some R > 0 and∫ R

−R
g1(x) dx = 0. Then the following convergence holds

lim
ε→0

‖uε − wε‖L∞(0,ε−2T ;L∞(R)) = 0,

where the limit makes sense through the change of variables τ = ε2t, i.e.

lim
ε→0

‖uε − wε‖L∞(0,ε−2T ;L∞(R)) = lim
ε→0

‖uε(·/ε2, ·)− wε(·/ε2, ·)‖L∞(0,T ;L∞(R)) = 0.

Theorem 4.1.2 is the first rigorous result asserting that the long time dispersive effects could be
modeled by a well-posed equation. The result, however, requires prepared initial conditions in
(4.19). This issue is in fact connected to the convergence of the energy (and to the correctors
problem), discussed in Sections 3.2.2 and 3.3.3. In our result, in Section 4.2, we overcome this
difficulty by weakening the norm of the error estimate.

Let us summarize how (4.20) is obtained. The main step is the adaptation of a (sufficiently
regular) function v to the micro structure of the medium. This is done through the definition of
a linear, time independent adaptation operator Bε that satisfies

−∂x
(
a
( ·
ε

)
∂x(Bεv)

)
= −Bε

( 3∑
i=0

εiai∂2+i
x v

)
+Rεv,

with a remainder Rεv that is sufficiently small and where {ai}3i=0 are constant coefficients (based
on the tensor a). The construction of the adaptation operator Bε relies on asymptotic expansion.
Its role is clarified by the following observation: if vε satisfies

∂2t v
ε(t, x)−

3∑
i=0

εiai∂2+i
x vε(t, x) = 0, (4.21)

then Bεvε solves

∂2t (Bεvε)− ∂x
(
a
( ·
ε

)
∂x(Bεvε)

)
= Bε

(
∂2t v

ε −
3∑

i=0

εiai∂2+i
x vε

)
+Rεvε = Rεvε,
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which ensures by energy techniques that ‖∂x(uε − Bεvε)‖L∞(L2) is small. However, [72] proves
that the coefficients satisfy a0 > 0, a1 = a3 = 0, and a2 ≥ 0. Hence, the same issue as in [85]
is encountered: (4.21) is ill-posed due to the sign of a2. To overcome the problem, [72] uses a
Boussinesq trick to transform (4.21) into a well-posed equation. Namely, using (4.21) at order
O(1), ∂2xv

ε is replaced by ∂2t v
ε/a0 so that vε satisfies

ε2a2∂4xv
ε(t, x) = ε2

a2

a0
∂2x∂

2
t v

ε(t, x) +O(ε4).

Combined to (4.21), this equality leads to the well-posed equation (4.20).

4.2 A new family of effective equations for long time wave propagation

In the previous section, we presented different derivations of effective equations for the long time
homogenization of the wave equation. In particular, [72] and [42, 43] define effective equations
and rigorously prove their validity with error estimates (in the one-dimensional case for [72] and
in the general case in [42, 43]). In this section, we present the first main contribution of this thesis.
We define a family of effective equations and prove an error estimate ensuring that any element of
the family is ε-close to uε over a time interval of length ε−2T (see Section 4.2.4, Theorem 4.2.4).

Let us mention a fundamental difference between the results in [72] and [42, 43] and the result of
this chapter. The error estimate in Theorem 4.2.4 holds in arbitrarily large periodic domains Ω,
while [42, 43] deals with the whole space Rd (and [72] with R). Nevertheless, as the dependence
of our error estimate on the domain is explicit, our result can be compared with [42, 43]. In
particular, we prove that the effective equations defined in [72] and [42, 43] belong to the family
of effective equations.

The settings of our result, compared to [72] and [42, 43], are more general on the following aspects.
First, we do not require prepared initial data as in [72], and, contrarily to [42, 43], we allow for
a non zero initial speed. Second, we allow for a source term, which is neither the case in [72]
nor in [42, 43]. Third, we obtain a result for a tensor with minimal regularity, a ∈ [L∞(Y )]d×d

(Section 4.2.6), while it is required to be of class C1 in [42, 43] and C∞ in [72]. Fourth, we
provide a numerical procedure that is significantly cheaper than in [42, 43] and [72]. Indeed, in
the one-dimensional case, we show that solving 1 single cell problem is sufficient to compute
an effective equation, whereas [72] requires 3. And in the multidimensional case, our algorithm
requires the solutions of d+

(
d+1
2

)
cell problems, while d+

(
d+1
2

)
+
(
d+2
3

)
are necessary in [42, 43].

Let us define the norms that are involved in the main result (see Appendix A.1 for the details).
Recall that we denote the quotient space L2(Ω) = L2(Ω)/R. A bracket [v] is used to denote the
equivalence class of v ∈ L2(Ω) in L2(Ω). Furthermore, we denote Wper(Ω) = H1

per(Ω)/R and a
bold face letter v is used to denote the elements of Wper(Ω). The space Wper(Ω) is composed
of the zero mean representatives of the equivalence classes in Wper(Ω). We define the following
norm on Wper(Ω)

‖w‖W = inf
w=w1+w2

wi=[wi]∈Wper(Ω)

{
‖[w1]‖L2(Ω) + ‖∇w2‖L2(Ω)

}
∀w ∈ Wper(Ω), (4.22)

and the corresponding norm on Wper(Ω)

‖w‖W = inf
w=w1+w2

w1,w2∈Wper(Ω)

{
‖w1‖L2(Ω) + ‖∇w2‖L2(Ω)

}
∀w ∈Wper(Ω). (4.23)

We verify that a function w ∈ Wper(Ω) satisfies ‖w‖W = ‖[w]‖W . Furthermore, using the
Poincaré–Wirtinger inequality, we verify that ‖ · ‖W is equivalent to the L2 norm:

‖w‖W ≤ ‖w‖L2(Ω) ≤ max{1, CΩ}‖w‖W ∀w ∈Wper(Ω), (4.24)
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where CΩ is the Poincaré constant.

4.2.1 The wave equation in an arbitrarily large periodic domain

We introduce here the precise settings of our result. Recall that in applications, we do not
approximate the wave equation in the full space Rd, but in a pseudoinfinite domain. (a sufficiently
large periodic domain so that the waves never reach the boundaries). We thus assume that Ω is
an arbitrarily large hypercube in Rd. We emphasize that in the long time analysis, we track the
influence of the size of Ω on the error estimates.

Let Ω, Y ∈ Rd be open hypercubes such that Ω is a union of cells of volume ε|Y |, as in Figure
4.2. More precisely, letting � ∈ Rd be the period of the tensor a, i.e., a(y + k · �) = a(y) for all
y ∈ Y and k ∈ Zd, we assume that Ω = (ωl

1, ω
r
1)× · · · × (ωl

d, ω
r
d) satisfies

ωr
i − ωl

i

ε�i
∈ N>0 ∀i = 1, . . . , d. (4.25)

Assumption (4.25) ensures that for any Y -periodic function γ, the map x → γ
(
x
ε

)
is Ω-periodic

(γ is extended to Rd by periodicity). In particular, as we assume a to be Y -periodic, a
( ·
ε

)
is

Ω-periodic.

x1

x2
Ω

εY

x1 x2

x3
Ω

εY

Figure 4.2: The hypercube Ω is assumed to be a union of unit cells of volume ε|Y | (on the left
d = 2, on the right d = 3).

For T ε = ε−2T , we consider the wave equation: find uε : [0, T ε]× Ω→ R such that

∂2t u
ε(t, x)−∇x ·

(
a
(
x
ε

)
∇xu

ε(t, x)
)
= f(t, x) in (0, T ε]× Ω,

x → uε(t, x) Ω-periodic in [0, T ε],

uε(0, x) = g0(x), ∂tu
ε(0, x) = g1(x) in Ω,

(4.26)

where g0, g1 are given initial conditions and f is a source. The following notation is used for the
differential operator Aε = −∇x ·

(
a
(
x
ε

)
∇x ·

)
. We assume that a ∈ [L∞

per(Y )]d×d is symmetric,
uniformly elliptic and bounded, i.e. there exists λ,Λ > 0 such that

λ|ξ|2 ≤ a(y)ξ · ξ ≤ Λ|ξ|2 for a.e. y ∈ Y ∀ξ ∈ Rd. (4.27)

The well-posedness of (4.26) is proved in Section 2.1.1. If g0 ∈ Wper(Ω), g
1 ∈ L2

0(Ω), and
f ∈ L2(0, T ε; L2

0(Ω)), then there exists a unique weak solution uε ∈ L∞(0, T ε;Wper(Ω)) with
∂tu

ε ∈ L∞(0, T ε; L2
0(Ω)) and ∂

2
t u

ε ∈ L2(0, T ε;W∗
per(Ω)).

4.2.2 An energy estimate to motivate asymptotic expansion

In this section, we explain how using asymptotic expansion we construct an adaptation operator
that can be used to rigorously prove an error estimate for the long time homogenization of the
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wave equation. Recall that this approach was used in section 3.3.2 to prove an error estimate for
the homogenized equation at timescales O(1). We explain here the approach in the case of an
arbitrary timescale O(ε−α), where α is a non-negative integer. In particular, we establish the
connection between the timescale α and the accuracy that has to be attained by the adaptation.

We start by proving an energy estimate for a function satisfying the wave equation (with a right
hand side in W∗

per(Ω)). We emphasize that the constant in the estimate neither depends on the
length of the time interval nor on the domain.

Lemma 4.2.1. Let τ > 0 and assume that η ∈ L∞(0, τ ;Wper(Ω)), with ∂tη ∈ L∞(0, τ ;L2(Ω)),
∂2t η ∈ L2(0, τ ;W∗

per(Ω)) satisfies

∂2t η(t) +Aεη(t) = r(t) in W∗
per(Ω) for a.e. t ∈ [0, τ ],

η(0) = η0, ∂tη(0) = η1,
(4.28)

where η0 ∈ Wper(Ω), η
1 ∈ L2(Ω) and r ∈ L2(0, τ ;W∗

per(Ω)) is given as〈
r(t),w

〉
W∗

per(Ω),Wper(Ω)
=
(
r0(t),w

)
L2(Ω)

+
(
r1(t),∇w

)
L2(Ω)

,

with r0 ∈ L2(0, τ ;L2(Ω)) and r1 ∈ [L2(0, τ ; L2(Ω))]d. Then the following estimate holds

‖η‖L∞(0,τ ;W) ≤ C(λ)
(
‖η1‖L2(Ω) + ‖η0‖L2(Ω) + ‖r0‖L1(0,τ ;L2(Ω)) + ‖r1‖L1(0,τ ;L2(Ω))

)
, (4.29)

where C(λ) depends only on the ellipticity constant λ and the norm ‖ · ‖W is defined in (4.22).

Proof. We denote 〈·, ·〉 = 〈·, ·〉W∗
per,Wper

and Lp(X) = Lp(0, τ ;X). Define ζ2 ∈ L∞(Wper(Ω)), with

∂tζ2 ∈ L∞(L2(Ω)), ∂2t ζ2 ∈ L2(W∗
per(Ω)) as the unique solution of the equation〈

∂2t ζ2(t) +Aεζ2(t),w
〉
=
(
r0(t),w

)
L2 ∀w ∈ Wper(Ω) for a.e. t ∈ [0, τ ],

ζ2(0) = [0], ∂tζ2(0) = η1.

The standard well-posedness of the wave equation ensures the existence and uniqueness of ζ2

(see Theorem 2.1.1). Furthermore, ζ2 satisfies the energy estimate

1
2‖∂tζ2‖2L∞(L2) + λ‖∇ζ2‖2L∞(L2) ≤ 2‖η1‖2L2 + 4‖r0‖2L1(L2). (4.30)

We define then ζ1 = η − ζ2 and verify that ζ1 satisfies

ζ1 ∈ L∞(Wper(Ω)), ∂tζ1 ∈ L∞(L2(Ω)), ∂2t ζ1 ∈ L2(W∗
per(Ω)),

and 〈
∂2t ζ1(t) +Aεζ1(t),w

〉
=
(
r1(t),∇w

)
L2 ∀w ∈ Wper(Ω) for a.e. t ∈ [0, τ ],

ζ1(0) = η0, ∂tζ1(0) = [0].
(4.31)

For all t ∈ [0, τ ], let v̂(t) = (Aε)−1∂tζ1(t) ∈ Wper(Ω), i.e.,(
aε∇v̂(t),∇w

)
L2 =

〈
∂tζ1(t),w

〉
∀w ∈ Wper(Ω).

Note that the existence and uniqueness of v̂(t) are ensured by Lax–Milgram theorem. In particular,
v̂(t) satisfies the estimate

λ‖∇v̂(t)‖2L2 ≤
(
aε∇v̂(t),∇v̂(t)

)
L2 =

〈
∂tζ1(t), v̂(t)

〉
. (4.32)

Using v̂(t) as a test function in (4.31), we get〈
∂2t ζ1(t), (Aε)−1∂tζ1(t)

〉
+
〈
Aεζ1(t), (Aε)−1∂tζ1(t)

〉
=
(
r1(t),∇v̂(t)

)
L2 .
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Thanks to the symmetry of Aε, this equality can be rewritten as

1
2

d
dt

(〈
∂tζ1(t), v̂(t)

〉
+ ‖ζ1(t)‖2L2

)
=
(
r1(t),∇v̂(t)

)
L2 .

For ξ ∈ [0, τ ], we integrate this equality over [0, ξ] and, using (4.32), we obtain

λ‖∇v̂(ξ)‖2L2 ≤
〈
∂tζ1(ξ), v̂(ξ)

〉
+ ‖ζ1(ξ)‖2L2 = ‖η0‖2L2 + 2

∫ ξ

0

(
r1(t),∇v̂(t)

)
L2 dt. (4.33)

Using Cauchy–Schwartz, Hölder and Young inequalities, we bound the second term of the right
hand side as

2

∫ ξ

0

(
r1(t),∇v̂(t)

)
L2 dt ≤ 2‖r1‖L1(L2)‖∇v̂‖L∞(L2) ≤ 2λ−1‖r1‖2L1(L2) +

1
2λ‖∇v̂‖2L∞(L2). (4.34)

Taking now the L∞ norm with respect to ξ in (4.33) and using (4.34), we obtain the estimate

1
2λ‖∇v̂‖2L∞(L2) ≤ ‖η0‖2L2 + 2λ−1‖r1‖2L1(L2). (4.35)

Finally, we combine (4.33), (4.34) and (4.35) and obtain the following bound

‖ζ1‖2L∞(L2) ≤ 2‖η0‖2L2 + 4λ−1‖r1‖2L1(L2). (4.36)

Recalling the definition of the norm ‖ · ‖W in (4.22) and as η = ζ1 + ζ2, the combination of
estimates (4.30) and (4.36) gives (4.29) and the proof of the lemma is complete.

Let us now explain what is the asymptotic expansion and how, with Lemma 4.2.1, it leads to a
rigorous error estimate between uε and an effective solution in the L∞(0, ε−2T ;W ) norm . In
order to have a better understanding of the influence of the time interval, let us consider the
equation (4.26) on the time interval [0, ε−αT ], where α > 0. We consider a candidate effective
solution ũ. The form of the effective equation is an ansatz (discussed in the next section).
Typically, ũ solves an equation composed of the homogenized equation plus some higher order
corrections operators, which depend on ε and whose tensors have to be defined (hence ũ depends
on ε). Let us then assume that ũ is sufficiently smooth and satisfies 〈ũ〉Ω = 〈uε〉Ω and the energy

bounds
∑kn

k=1 |∂nt ũ(t)|L∞(0,ε−αT ;Hk(Ω)) ≤ C, independently of ε, for n = 0, 1, 2 and for some kn.

The asymptotic expansion is a technique to build an adaptation of ũ of the form Bεũ = [ũ]+Cεũ.
We first require the adaptation to satisfy the following conditions

Bεũ ∈ L∞(0, ε−αT ;Wper(Ω)), ∂tBεũ ∈ L∞(0, ε−αT ;L2(Ω)),

∂2tBεũ ∈ L2(0, ε−αT ;W∗
per(Ω)),

(4.37a)

‖Cεũ‖L∞(0,ε−αT ;W) ≤ Cε
k0∑
k=1

|ũ|L∞(0,ε−αT ;Hk(Ω)), (4.37b)

Bεũ(0) = [uε(0)] + Cε, ∂tBεũ(0) = [∂tu
ε(0)] + Cε. (4.37c)

Next, we have to determine how accurately Bεũ must approximate uε. The Hölder inequality
leads to the following corollary of Lemma 4.2.1.

Corollary 4.2.2. If in Lemma 4.2.1 τ = ε−αT and

r0 ∈ L∞(0, ε−αT ;L2(Ω)), r1 ∈ [L∞(0, ε−αT ; L2(Ω))]d,

then η satisfies the estimate

‖η‖L∞(0,ε−αT ;W) ≤ C
(
‖η1‖L2(Ω) + ‖η0‖L2(Ω) + ε−α‖r0‖L∞(0,ε−αT ;L2(Ω))

+ ε−α‖r1‖L∞(0,ε−αT ;L2(Ω))

)
,

where C depends only on λ and T .
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Hence, the last condition on the adaptation is to require that the remainder(
r0(t),w

)
L2(Ω)

+
(
r1(t),∇w

)
L2(Ω)

=
〈
(∂2t +Aε)(Bεũ− [uε])(t),w

〉
W∗

per,Wper

satisfies

‖r0‖L∞(0,ε−αT ;L2(Ω)) + ‖r1‖L∞(0,ε−αT ;L2(Ω)) ≤ Cεγ
2∑

n=0

kn∑
k=1

|∂nt ũ|L∞(0,ε−αT ;Hk(Ω)), (4.38)

for some γ > α. If conditions (4.37) and (4.38) are met, we can prove the error estimate as
follows. As (uε − ũ)(t) ∈ Wper(Ω), we have ‖uε − ũ‖L∞(0,ε−αT ;W ) = ‖[uε − ũ]‖L∞(0,ε−αT ;W).
Hence, using the triangle inequality gives

‖uε − ũ‖L∞(0,ε−αT ;W ) ≤ ‖[uε]−Bεũ‖L∞(0,ε−αT ;W) + ‖Bεũ− [ũ]‖L∞(0,ε−αT ;W).

The second term of the right hand side is bounded using (4.37b). For the first term, we apply
Corollary 4.2.2 to η = [uε]−Bεũ and, using the properties of ũ, (4.37c) and (4.38), we obtain
the error estimate

‖uε − ũ‖L∞(0,ε−αT ;W ) ≤ Cεmin{1,γ−α}. (4.39)

4.2.3 Asymptotic expansion and constraints on the effective tensors

Our goal is now to construct an adaptation satisfying the requirements presented in the previous
section. The construction is done with asymptotic expansion. In particular, we derive cell
problems for the definition of the correctors that constitute the adaptation. In addition, the well-
posedness of these cell problems provides constraints on the effective tensors thus characterizing
the effective equations. All the computations are done formally, i.e., we assume as much regularity
as required. The rigorous result with its detailed proof is presented in the next section.

We are looking for an effective solution on a time interval [0, T ε], with T ε = ε−2T . As discussed in
the previous section, we thus need to construct an adaptation Bεũ(t) such that (∂2t +Aε)(Bεũ−
[uε])(t) = O(ε3) for a.e. t ∈ [0, T ε]. In what follows, we construct Bεũ(t) ∈ H1

per(Ω), such that

(∂2t +Aε)(Bεũ− uε)(t) = O(ε3) and we will then set Bεũ = [Bεũ] in W∗
per(Ω).

First, we introduce the effective solution ũ. Referring to [81, 43, 42, 13], we make the ansatz that
the effective equation is of the form

∂2t ũ− a0ij∂
2
ij ũ+ ε2

(
a2ijkl∂

4
ijklũ− b2ij∂

2
ij∂

2
t ũ
)
= f in (0, T ε]× Ω,

x → ũ(t, x) Ω-periodic in [0, T ε],

ũ(0, x) = g0(x), ∂tũ(0, x) = g1(x) in Ω,

(4.40)

where b2 ∈ Ten2(Rd), a2 ∈ Ten4(Rd) are tensors to determine and a0 ∈ Sym2(Rd) is the
homogenized tensor defined by (see Lemma 3.3.1)

a0ij =
〈
eTi a(∇χj + ej)

〉
Y
, (4.41)

where χj belongs to the class of solutions of (4.45). Notice that in (4.40) the tensors a0, b2 and
a2 are constant but ũ depends on ε.

The form of equation (4.40), and more particularly the form of the O(ε2) order operator, is an
important ansatz. In fact, performing the asymptotic expansion with an equation of the form
∂2t ũ− a0ij∂

2
ij ũ+ ε2cijkl∂

4
ijklũ = f , leads to a dead end as the tensor c that we obtain is negative.

Indeed, we obtain the same ill-posed equation as the one obtained via Bloch wave techniques in
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[85] (see Section 4.2.7). We will see that using equation (4.40) brings sufficient freedom in the
definition of b2, a2 to obtain well-posed effective equations.

The second ansatz that we make is that the adaptation of ũ is of the form

Bεũ(t, x) = ũ
(
t, x
)
+ εu1

(
t, x, xε

)
+ ε2u2

(
t, x, xε

)
+ ε3u3

(
t, x, xε

)
+ ε4u4

(
t, x, xε

)
, (4.42)

where the ui(t, x, y) are Ω-periodic in x and Y -periodic in y. We introduce the differential
operators

Ayy = −∇y ·
(
a(y)∇y ·

)
, Axy = −∇y ·

(
a(y)∇x ·

)
−∇x ·

(
a(y)∇y ·

)
,

Axx = −∇x ·
(
a(y)∇x ·

)
,

so that for ψ(x, y) smooth enough, using the chain rule, we have Aεψ
(
x, xε
)
=
(
ε−2Ayy+ε

−1Axy+

Axx

)
ψ
(
x, xε
)
. We fix a t ∈ [0, T ε] and using equations (4.26), (4.40) and ansatz (4.42), we compute

(∂2t +Aε)(Bεũ−uε)(t, x) = ∂2t Bεũ(t, x) +AεBεũ(t, x)− f(t, x)

= ε−1
(

Ayyu
1 +Axyũ

)
+ ε0

(
Ayyu

2 +Axyu
1 +Axxũ + a0ij∂

2
ij ũ

)
+ ε1

(
∂2t u

1 +Ayyu
3 +Axyu

2 +Axxu
1

)
+ ε2

(
∂2t u

2 +Ayyu
4 +Axyu

3 +Axxu
2− a2ijkl∂4ijklũ+ b2ij∂

2
ij∂

2
t ũ
)

+O(ε3),

(4.43)

where the ui are evaluated at (t, x, y = x
ε ). We now define successively u1 to u4 so that the

terms of order O(ε−1) to O(ε2) in (4.43) cancel. At order O(ε−1), we obtain the equation
Ayyu

1 +Axyũ = 0, which reads

−∇y ·
(
a(y)(∇yu

1(t, x, y) +∇xũ(t, x))
)
= 0.

We can show that any solution of this elliptic equation is of the form χi(y)∂iũ(t, x) + ũ1(t, x)
(see Section 3.3.1), where ũ1 is a function that is independent of y and for all 1 ≤ i ≤ d, χi is
Y -periodic and solves the cell problem

−∇y ·
(
a(∇yχi + ei)

)
= 0 in Y.

For simplicity, we choose ũ1 = 0, i.e., u1(t, x, y) = χi(y)∂iũ(t, x). Consider now the O(1) order
term in (4.43), which now reads

−∇y ·
(
a(y)∇yu

2(t, x, y)
)
=
(
∇y · (a(y)eiχj(y)) + eTi a(y)(∇yχj(y) + ej)− a0ij

)
∂2ij ũ(t, x).

The solution is given by u2(t, x, y) = θ̃ij(y)∂
2
ij ũ(t, x) + ũ2(t, x), where for 1 ≤ i, j ≤ d θ̃ij is

Y -periodic and solves the cell problem

−∇y ·
(
a∇y θ̃ij

)
= ∇y ·

(
aeiχj

)
+ eTi a∇yχj + aij − a0ij in Y.

Once again, we let ũ2 = 0 for simplicity. We note here that for sufficiently smooth ũ, u2 can also
be written as θij(y)∂

2
ij ũ(t, x), where θij = 1

2 (θ̃ij + θ̃ji) = S2
ij{θ̃ij} is the symmetrization of θ̃ij

and solves the cell problem

−∇y ·
(
a∇yθij

)
= S2

ij

{
∇y ·

(
aeiχj

)
+ eTi a∇yχj + aij − a0ij

}
in Y.

The advantage of the second form of u2 is that there are only
(
d+1
2

)
cell problems describing {θij}

compared to the d2 for {θ̃ij}. Before canceling the O(ε1) and O(ε2) order terms, we take into
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account the definition of u1 and u2 to rewrite (4.43). Using (4.40), we have

∂2t u
1 = χi∂i∂

2
t ũ = χi∂if + a0ijχk∂

3
ijkũ+O(ε2),

∂2t u
2 = θij∂

2
ij∂

2
t ũ = θij∂

2
ijf + a0ijθkl∂

4
ijklũ+O(ε2),

b2ij∂
2
ij∂

2
t ũ = b2ij∂

2
ijf + a0ijb

2
kl∂

4
ijklũ+O(ε2),

hence (4.43) reads

(∂2t +Aε)(Bεũ− uε) = ε1
(
Ayyu

3 +Axyu
2 +Axxu

1 + a0ijχk∂
3
ijkũ
)

+ ε2
(
Ayyu

4 +Axyu
3 +Axxu

2 +
(
a0ij(b

2
kl + θkl)− a2ijkl

)
∂4ijklũ

)
+ ε1χi∂if + ε2(b2ij + θij)∂

2
ijf+O(ε3).

(4.44)

Let us first assume that f = 0. To cancel the O(ε1) and O(ε2) order terms in (4.44), we can set
u3(t, x, y) = κijk(y)∂

3
ijkũ(t, x), and u

4(t, x, y) = ρijkl(y)∂
4
ijklũ(t, x), where κijk and ρijkl are the

solutions of cell problems obtained in a similar manner as for χi and θij . As previously, in order
to minimize the number of cell problems, we use the symmetrization operators S3 and S4. In
summary, we obtain the following cell problems: for 1 ≤ i, j, k, l ≤ d, find Y -periodic functions
χi, θij , κijk, ρijkl such that

ε−1 :
(
a∇yχi,∇yw

)
Y
= −

(
aei,∇yw

)
Y
, (4.45a)

ε0 :
(
a∇yθij ,∇yw

)
Y
= S2

ij

{
−
(
aeiχj ,∇yw

)
Y
+
(
a(∇yχj + ej)− a0ej , eiw

)
Y

}
, (4.45b)

ε1 :
(
a∇yκijk,∇yw

)
Y
= S3

ijk

{
−
(
aeiθjk,∇yw

)
Y

+
(
a(∇yθjk + ejχk)− a0ejχk, eiw

)
Y

}
, (4.45c)

ε2 :
(
a∇yρijkl,∇yw

)
Y
= S4

ijkl

{
−
(
aeiκjkl,∇yw

)
Y
+
(
a(∇yκjkl + ejθkl), eiw

)
Y

+
(
a2ijkl − a0ijθkl − a0ijb

2
kl, w

)
Y

}
, (4.45d)

for Y -periodic test functions w ∈ H1
per(Y ).

Let us now explain how the well-posedness of these cell problems constrains the definition of the
effective tensors a2 and b2. To show that (4.45a) to (4.45d) are well-posed in the quotient space
Wper(Y ), we apply Lax–Milgram theorem (we thus obtain a solution unique up to a constant).
As the bilinear form (v, w) → (a∇yv,∇yw)Y is elliptic and bounded, we have to verify that the
right hand sides belong to W∗

per(Y ). We refer to Appendix A.2 for a characterization of W∗
per(Y ).

In particular, F ∈ [H1
per(Y )]

∗
given by〈
F,w

〉
=
(
f0, w

)
L2(Y )

+
(
f1k , ∂kw

)
L2(Y )

,

for some f0, f11 , . . . , f
1
d ∈ L2(Y ) belongs to W∗

per(Y ) if and only if(
f0, 1

)
L2(Y )

= 0. (4.46)

Consequently, the right hand sides of the cell problems (4.45) have to satisfy the solvability
condition (4.46). In particular, imposing the well-posedness of (4.45d) provides a constraint
on the effective tensors a2, b2. Let us prove the well-posedness of (4.45a) to (4.45c) and derive
explicitly the constraint on a2, b2 dictated by the well-posedness of (4.45d).

First, note that the right hand side of (4.45a) trivially satisfies (4.46). Next, if we let w = 1 in
the right hand side of (4.45b), we obtain

S2
ij

{(
a(∇yχj + ej)− a0ej , ei

)
Y

}
= |Y |S2

ij

{〈
eTi a(∇yχj + ej)

〉
Y

}
− |Y |S2

ij

{
a0ij
}
= 0, (4.47)
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where we used the definition of the homogenized tensor (4.41). Hence, the cell problem (4.45b) is
well-posed. Next, letting w = 1 in the right hand side of (4.45c) we obtain

S3
ijk

{
−
(
a∇yθjk, ei

)
Y
−
(
ejχk, ei

)
Y
+ a0ij

(
χk, 1

)
Y

}
, (4.48)

and we need this quantity to vanish for any 1 ≤ i, j, k ≤ d. Using the symmetry of a, equations
(4.45a) with the test function w = θjk, and (4.45b) with w = χi, we have

−
(
a∇yθjk, ei

)
Y
=
(
a∇yθjk,∇yχi

)
Y

= S2
jk

{
−
(
aejχk,∇yχi

)
Y
+
(
a(∇yχk + ek), ejχi

)
Y
−
(
a0jk, χi

)
Y

}
,

and (4.48) can thus be rewritten as

S3
ijk

{
−
(
aejχk,∇yχi + ei

)
Y
+
(
a(∇yχk + ek), ejχi

)
Y
− a0jk

(
1, χi

)
Y
+ a0ij

(
χk, 1

)
Y

}
= 0.

This equality proves that the cell problem (4.45c) is well-posed. Finally, we apply the solvability
condition (4.46) to the right hand side of equation (4.45d) in order to obtain a constraint on a2

and b2. Letting w = 1, we have

|Y |S4
ijkl

{
a2ijkl − a0ijb

2
kl

}
= S4

ijkl

{
−
(
a∇yκjkl, ei

)
Y
−
(
aejθkl, ei

)
Y
+
(
a0ij , θkl

)
Y
}. (4.49)

We use the symmetry of a, equation (4.45a) with test function w = κjkl, and equation (4.45c)
with w = χi, to get

−
(
a∇yκjkl, ei

)
Y
=
(
a∇yκjkl,∇yχi

)
Y

=S3
jkl

{
−
(
aejθkl,∇yχi

)
Y
+
(
a(∇yθkl + ekχl), ejχi

)
Y
− a0jk

(
χl, χi

)}
.

Used in (4.49), this equality gives (using the symmetry of a)

|Y |S4
ijkl

{
a2ijkl − a0ijb

2
kl

}
= S4

ijkl

{(
aejχi,∇yθkl

)
Y
−
(
a(∇yχi + ei), ejθkl

)
Y
+
(
a0ij , θkl

)
Y

− a0jk
(
χl, χi

)
Y
+
(
aekχl, ejχi

)
Y

}
.

Using equation (4.45b) with the test function w = θkl, we obtain then the following constraint on
a2 and b2

|Y |S4
ijkl

{
a2ijkl − a0ijb

2
kl

}
= S4

ijkl

{(
ajkχl, χi

)
Y
−
(
a∇yθji,∇yθkl

)
Y
− a0jk

(
χl, χi

)
Y

}
. (4.50)

We conclude that the cell problem (4.45d) is well-posed in Wper(Y ) if and only if the tensors
a2, b2 satisfy (4.50). In particular, if this constraint is satisfied, we can define the adaptation Bεũ
as in (4.42) and show that (∂2t + Aε)(Bεũ − uε) = O(ε3) (under sufficient regularity of ũ and
the correctors). Hence, following the plan described in Section 4.2.2 with Bεũ = [Bεũ], we can
prove the estimate ‖uε − ũ‖L∞(0,T ε;W ) ≤ Cε. This result is rigorously proved in the next section.

It is interesting to note that the tensor in the right hand side of (4.50) is independent of the
choice of χi ∈ χi. Indeed, as this tensor must characterizes the long time effects its definition
must be independent of any choice. This is proved in Section 4.3.5.

Recall that we assumed f = 0. It is in fact not necessary if we proceed as follows. Indeed, in
order to cancel the non-vanishing terms εχi∂if + ε2(b2ij + θij)∂

2
ijf in (4.44), we add a term in

the adaptation (4.42). Namely, we replace (4.42) by

Bεũ(t, x) = ũ(t, x) + εχi

(
x
ε

)
∂iũ(t, x) + ε2θij

(
x
ε

)
∂2ij ũ(t, x)

+ ε3κijk
(
x
ε

)
∂3ijkũ(t, x) + ε4ρijkl

(
x
ε

)
∂4ijklũ(t, x) + ϕ(t, x),

(4.51)
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where ϕ(t, ·) belongs to the class ϕ(t) ∈ Wper(Ω) that solves

(∂2t +Aε)ϕ(t) = −[εχi

( ·
ε

)
∂if(t) + ε2

(
b2ij + θij

( ·
ε

))
∂2ijf(t)] in W∗

per(Ω) a.e. t ∈ [0, T ε],

ϕ(0) = ∂tϕ(0) = [0].
(4.52)

The standard well-posedness of the wave equation (Theorem 2.1.1) ensures that if f ∈
L2(0, T ε; H2(Ω)) and χi, θij ∈ L∞(Y ), there exists a unique solution ϕ of (4.52), satisfying

ϕ ∈ L∞(0, T ε;Wper(Ω)), ∂tϕ ∈ L∞(0, T ε;L2(Ω)), ∂2tϕ ∈ L2(0, T ε;W∗
per(Ω)). (4.53)

Observe then that Bεũ, defined in (4.51), satisfies(
∂2t +Aε

)(
[Bεũ]− [uε]

)
=[rε(t)−εχi

(
x
ε

)
∂if(t, x)−ε2

(
b2ij+θij

(
x
ε

))
∂2ijf(t, x)],

where rε is the right hand side of (4.44), so that
(
∂2t +Aε

)(
[Bεũ]−[uε]

)
= O(ε3). Furthermore,

we verify that under sufficient regularity of the data, [Bεũ](t) belongs to Wper(Ω) and [Bεũ]
satisfies the conditions in (4.37). First, condition (4.37c) follows directly from (4.51) and the
initial conditions in (4.52). Next, let us verify that (4.37b) holds. Applying the estimate from
Lemma 4.2.1 to ϕ, we obtain, provided χk ∈ C0(Ȳ ), θij ∈ C0(Ȳ ), f ∈ L2(0, T ε; H2(Ω)),

‖ϕ‖L∞(0,T ε;W) ≤ Cε‖f‖L1(0,T ε;H2(Ω)), (4.54)

where C only depends on λ,maxk ‖χk‖L∞(Y ) and maxij ‖θij‖L∞(Y ). Hence, provided sufficient
regularity on the correctors, and if f satisfies ‖f‖L1(0,T ε;H2(Ω)) = O(1), (4.54) ensures (4.37b)
(more details on the requirement ‖f‖L1(0,T ε;H2(Ω)) = O(1) are given in the next section).

Remark 4.2.3. The effective equation obtained in [18] is of the same form as (4.40), with the
additional term −ε2b2ij∂2ijf in the right hand side (see (4.10)). We can verify that this modification
indeed cancels a part of the second term in (4.44) and thus leads to a slightly better equation
(better in the sense that the constant in the error estimate of Theorem 4.2.4 below is smaller).
Nevertheless, in the regime of our result, this correction is negligible. Indeed, denoting ũ1, ũ2 the
solutions of the equations with and without the additional term, respectively , we verify that
‖ũ1 − ũ2‖L∞(W ) ≤ ε22/λ1/2|b2|∞‖f‖L1(H2). As we require f to satisfy ‖f‖L1(H4) = O(1) (see
Corollary 4.2.5), the benefit of the correction of the right hand side is not significant. Note that
for more general source term, this correction might be worth.

To conclude this section, let us discuss the correctors and their dependence. First, as (4.45a-4.45d)
are well-posed in Wper(Y ), we obtain the unique (class of) solutions χk,θij ,κijk,ρijkl ∈ Wper(Y )
for 1 ≤ i, j, k, l ≤ d. Note that θij depends on the choice χk ∈ χk, κijk depends on the choices
χk ∈ χk, θij ∈ θij , etc. A natural choice for the normalization of the correctors is the zero-mean
function. However, observe that the constraint (4.50) has been derived independently of the
choice of normalization. Hence, any normalization can be used.

4.2.4 A priori error estimate and definition of the family of effective equations

We present here the main result of this chapter and the first contribution of the thesis. In
particular, we define a family of effective equation and prove that its elements are ε-close to the
oscillatory solution uε in the L∞(0, T ε;W ) norm.

Let a0 ∈ Sym2(Rd) be the homogeneous tensor defined as (4.41) and let b2 ∈ Ten2(Rd) and
a2 ∈ Ten4(Rd) be constant tensors such that

i) b2ij = b2ji, b2η · η ≥ 0 ∀η ∈ Rd,

ii) a2ijkl = a2klij , a2ξ : ξ ≥ 0 ∀ξ ∈ Sym2(Rd).
(4.55)

78



4.2. A NEW FAMILY OF EFFECTIVE EQUATIONS FOR LONG TIME WAVE PROPAGATION

Consider the following linear Boussinesq equation: ũ : [0, T ε]× Ω→ R such that

∂2t ũ− a0ij∂
2
ij ũ+ ε2

(
a2ijkl∂

4
ijklũ− b2ij∂

2
ij∂

2
t ũ
)
= f in (0, T ε]× Ω

x → ũ(t, x) Ω-periodic in [0, T ε],

ũ(0, x) = g0(x), ∂tũ(0, x) = g1(x) in Ω,

(4.56)

where the initial conditions g0, g1 and the source term f are the same as in the equation for uε

(4.26). As proved in Section 2.1.2, if the data satisfy the regularity g0 ∈Wper(Ω) ∩H2(Ω), g1 ∈
L2
0 ∩H1(Ω), and f ∈ L2(0, T ε; L2

0(Ω)), (4.56) has a unique weak solution ũ ∈ L∞(0, T ε;Wper(Ω))
with ∂tũ ∈ L∞(0, T ε; L2

0(Ω)).

The following theorem provides a sufficient condition on the tensors a2, b2 such that (4.56) is an
effective equation up to timescales O(ε−2).

Theorem 4.2.4. Assume that the Y -periodic tensor satisfies a(y) ∈ W2,∞(Y ). Furthermore,
assume that the solution ũ of (4.56), the initial conditions, and the right hand side satisfy the
regularity

ũ ∈ L∞(0, T ε; H5(Ω)), ∂tũ ∈ L∞(0, T ε; H4(Ω)), ∂2t ũ ∈ L∞(0, T ε; H3(Ω)),

g0 ∈ H4(Ω), g1 ∈ H4(Ω), f ∈ L2(0, T ε; H2(Ω)).

Let χk be the (class of) solution of (4.45a), fix any χk ∈ χk, let θij be the corresponding (class
of) solution of (4.45b) and fix θij ∈ θij. Assume then that b2 and a2 satisfy the relation

S4
ijkl

{
a2ijkl − a0ijb

2
kl

}
= S4

ijkl

{〈
ajkχlχi

〉
Y
−
〈
a∇θji · ∇θkl

〉
Y
− a0jk

〈
χlχi

〉
Y

}
. (4.57)

Then the following error estimate holds

‖uε − ũ‖L∞(0,T ε;W ) ≤ Cε
(
‖g1‖H4(Ω) + ‖g0‖H4(Ω) + ‖f‖L1(0,T ε;H2(Ω))

+
∑5

k=1 |ũ|L∞(0,T ε;Hk(Ω)) + |∂2t ũ|L∞(0,T ε;H3(Ω))

)
,

(4.58)

where C depends only on T, λ,Λ, |b2|∞, |a2|∞, ‖a‖W2,∞(Y ), and Y , and we recall the definition of
the norm (see (4.23))

‖w‖W = inf
w=w1+w2

w1,w2∈Wper(Ω)

{
‖w1‖L2(Ω) + ‖∇w2‖L2(Ω)

}
∀w ∈Wper(Ω).

Using the estimates for the higher regularity of ũ, we can prove an error estimate that depends
only on the data of the problem.

Corollary 4.2.5. Assume that the assumptions of Theorem 4.2.4 hold. If in addition the data
satisfy the regularity

g0 ∈ H7(Ω), g1 ∈ H5(Ω), f ∈ L2(0, T ε;Wper(Ω) ∩H4(Ω)), ∂tf ∈ L2(0, T ε; H3(Ω)),

then the following error estimates holds

‖uε−ũ‖L∞(0,T ε;W ) ≤ Cε
(
‖g1‖H5(Ω)+‖g0‖H7(Ω)+‖f‖L1(0,T ε;H4(Ω))+‖∂tf‖L1(0,T ε;H3(Ω))

)
, (4.59)

where C depends only on T, λ,Λ, |b2|∞, |a2|∞, ‖a‖W2,∞(Y ) and Y .
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Proof. Under the assumptions, we can show that the weak solution ũ satisfies for 1 ≤ k ≤ 5 the
energy estimate (see Theorem 2.1.9 i))

|ũ|L∞(0,T ε;Hk(Ω)) ≤ C
(
‖g1‖Hk(Ω) + ‖g0‖Hk+1(Ω) + ‖f‖L1(0,T ε;Hk−1(Ω))

)
,

where the constant depends only on λ,Λ, |b2|∞, |a2|∞. Similarly, we have for 0 ≤ k ≤ 3, (see
Theorem 2.1.9 ii))

|∂2t ũ|L∞(0,T ε;Hk(Ω)) ≤ C
(
‖g1‖Hk+2(Ω) + ‖g0‖Hk+4(Ω) + ‖f‖W1,1(0,T ε;Hk(Ω))

)
.

Combining these energy estimates with (4.58), we obtain (4.59) and the proof is complete.

Let us emphasize that the constant C in estimate (4.59) does not depend on Ω. Hence, for an
arbitrarily large domain Ω, if the quantities

‖g1‖H5(Ω), ‖g0‖H7(Ω), ‖f‖L1(0,T ε;H4(Ω)), ‖∂tf‖L1(0,T ε;H3(Ω)), (4.60)

are bounded independently of ε, estimate (4.58) reads ‖uε − ũ‖L∞(0,T ε;W ) = O(ε). In particular,
a source term f with a sufficiently small support in space and decaying sufficiently fast to zero in
time satisfies (4.60).

Let us discuss the case when Ω is a small periodic domain, i.e., diam(Ω) = O(1). In this case, ũ
is the superposition of reflexions of the wave and long time dispersive effects are still observed
(see e.g. [13]). Combining (4.59) with (4.24) and using that the Poincaré constant CΩ is bounded
by diam(Ω), we obtain an error estimate proving that ũ is ε-close to uε in the L∞(0, T ε; L2(Ω))
norm.

Thanks to Theorem 4.2.4, we define the family of effective equations as follows.

Definition 4.2.6. The family E of effective equations is the set of equations (4.56) where b2, a2

satisfy both (4.55) and (4.57). Note that E is used to denote both the family of effective equations
and the corresponding solutions.

4.2.5 Proof of the error estimate (Theorem 4.2.4)

We prove here Theorem 4.2.4. The proof follows two steps. First, we define the adaptation
operator Bε using the correctors defined in Section 4.2.3. In particular, the existence and
uniqueness of the correctors is ensured by the assumption (4.57) on the tensors a2, b2. We then
split the error as

‖uε − ũ‖L∞(W ) = ‖[uε − ũ]‖L∞(W) ≤ ‖Bεũ− [uε]‖L∞(W) + ‖[ũ]−Bεũ‖L∞(W),

and estimate both terms separately. In particular, we prove that Bεũ satisfies the same wave
equation as uε up to a remainder of order O(ε3) (Lemma 4.2.8).

First, note that the cell problems (4.45a), (4.45b) and (4.45c) are well-posed (a0 is defined as
(4.41)). Then, as we assume that (4.57) holds, the cell problem (4.45d) is well-posed. Let χi

and θij be as in Theorem 4.2.4, let κijk be the corresponding solution of (4.45c), fix κijk ∈ κijk,
and similarly fix ρijkl in the corresponding class ρijkl of solution of (4.45d). As we assume
a ∈W2,∞(Y ), elliptic regularity result (Theorem A.2.2) and Sobolev embeddings (see Appendix
A.2) ensure that χi, θij , κijk, ρijkl ∈ C1per(Ȳ ) and for any 1 ≤ i, j, k, l ≤ d it holds

‖χi‖C1(Ȳ ), ‖θij‖C1(Ȳ ), ‖κijk‖C1(Ȳ ), ‖ρijkl‖C1(Ȳ ) ≤ Cmax
ij

‖aij‖W2,∞(Y ), (4.61)
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where C depends only on λ,Λ in (4.27) and Y . Finally, let ϕ ∈ L∞(0, T ε;Wper(Ω)) be the unique
(class of) solution of (4.52).

We now define the adaptation operator as

Bε : L2(0, T ε; H1
per(Ω) ∩H3(Ω))→ L2(0, T ε;W∗

per(Ω)), v → Bεv,

〈Bεv(t),w
〉
W∗

per,Wper
=
(
[v(t) + ε(χj − ∂ym

θmj)∂jv(t) + ε3(κjkl − ∂ym
ρmjkl)∂

3
jklv(t)],w

)
L2(Ω)

−
(
ε2θmj∂jv(t) + ε4ρmjkl∂

3
jklv(t), ∂mw

)
L2(Ω)

+
〈
ϕ(t),w

〉
W∗

per,Wper
,

(4.62)

for a.e. t ∈ [0, T ε], where the correctors χi, θij , κijk and ρijkl are evaluated at y = x
ε . Using the

Green formula (as in Remark 4.2.7), we verify that for v ∈ L2(0, T ε; H1
per(Ω) ∩H4(Ω)), we have〈Bεv(t),w

〉
=
(
[Bεv(t)],w

)
L2 where Bε is defined in (4.51). Moreover, if v ∈ L2(0, T ε; H1

per(Ω)∩
H5(Ω)), then Bεv(t) ∈ Wper(Ω) and we can define〈

AεBεũ(t),w
〉
W∗

per,Wper
=
〈
Aε[(Bεv(t)],w

〉
W∗

per,Wper
.

Finally, note that under the assumptions of Theorem 4.2.4, Bε verifies the requirements in (4.37).

Remark 4.2.7. The following formula (applications of the Green formula) is useful: for any
c ∈ [W1,∞

per (Ω)]d, v ∈ H1
per(Ω) and w = [w] ∈ Wper(Ω),(

[εcm
( ·
ε

)
∂mv],w

)
L2(Ω)

=
(
εcm
( ·
ε

)
∂mv, w

)
L2(Ω)

− |Ω|
〈
εcm
( ·
ε

)
∂mv

〉
Ω

〈
w
〉
Ω

= −
(
∂ym

cm
( ·
ε

)
v, w
)
L2(Ω)

−
(
εcm
( ·
ε

)
v, ∂mw

)
L2(Ω)

+ |Ω|
〈
∂ym

cm
( ·
ε

)
v
〉
Ω

〈
w
〉
Ω

= −
(
[∂ym

cm
( ·
ε

)
v],w

)
L2(Ω)

−
(
εcm
( ·
ε

)
v, ∂mw

)
L2(Ω)

, (4.63)

where we recall the notation ∂ymcm =
∑d

m=1 ∂ymcm.

Lemma 4.2.8. Under the assumptions of Theorem 4.2.4, Bεũ satisfies for a.e. t ∈ [0, T ε]

(∂2t +Aε)Bεũ(t) = [f(t)] +Rεũ(t) in W∗
per(Ω) for a.e. t ∈ [0, T ε],

where the remainder Rεũ ∈ L∞(0, T ε;W∗
per(Ω)) satisfies〈Rεũ(t),w

〉
W∗

per,Wper
=
(
(Rεũ)0(t),w

)
L2 +

(
(Rεũ)1(t),∇w

)
L2 ,

with the bound

‖(Rεũ)0‖L∞(0,T ε;L2(Ω)) + ‖(Rεũ)1‖L∞(0,T ε;L2(Ω))

≤ Cε3
(
|ũ|L∞(0,T ε;H5(Ω)) + |∂2t ũ|L∞(0,T ε;H3(Ω))

)
, (4.64)

for a constant C that depends only on λ,Λ, |b2|∞, |a2|∞, ‖a‖W2,∞(Y ) and Y .

Proof. To simplify the notation, 〈·, ·〉W∗
per,Wper is denoted by 〈·, ·〉. First, using equation (4.56)

and the assumptions on the regularity of ũ, note that the following equalities hold in L2(Ω) for
a.e. t ∈ [0, T ε] and for 1 ≤ p ≤ d,

∂2t ũ = f + a0ij∂
2
ij ũ− ε2a2ijkl∂

4
ijklũ+ ε2b2ij∂

2
ij∂

2
t ũ, (4.65)

∂p∂
2
t ũ = ∂pf + a0ij∂

3
pij ũ− ε2a2ijkl∂

5
pijklũ+ ε2b2ij∂

3
pij∂

2
t ũ. (4.66)
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Then, we fix t ∈ [0, T ε] and develop the terms ∂2tBεũ(t) and AεBεũ(t) separately. Using (4.65)
and formula (4.63), we have(

[∂2t ũ],w
)
L2 =

(
[f + a0ij∂

2
ij ũ− ε2a2ijkl∂

4
ijklũ],w

)
L2 −

(
ε2b2mj∂j∂

2
t ũ, ∂mw

)
L2 . (4.67)

Using (4.62) and (4.67), we compute〈
∂2tBεũ,w

〉
=
(
[f + a0ij∂

2
ij ũ+ ε(χj − ∂ymθmj)∂j∂

2
t ũ− ε2a2ijkl∂

4
ijklũ

+ ε3(κjkl − ∂ymρmjkl)∂
3
jkl∂

2
t ũ],w

)
L2

−
(
ε2(θmj + b2mj)∂j∂

2
t ũ+ ε4ρmjkl∂

3
jkl∂

2
t ũ, ∂mw

)
L2

+
〈
∂2tϕ,w

〉
.

Using now (4.66) to substitute ∂j∂
2
t ũ, we obtain〈

∂2tBεũ,w
〉
=
(
[f + a0ij∂

2
ij ũ+ εa0ij(χk − ∂ym

θmk)∂
3
ijk∂

2
t ũ− ε2a2ijkl∂

4
ijklũ],w

)
L2

−
(
ε2a0ij(θmk + b2mk)∂

3
ijkũ, ∂mw

)
L2

+
(
[ε(χk − ∂ym

θmk)∂kf],w
)
L2
−
(
ε2(θmj + b2mj)∂jf, ∂mw

)
L2

+
〈
∂2tϕ,w

〉
+
〈Rε

1ũ,w
〉
,

where〈Rε
1ũ,w

〉
=
(
[ε3(κjkl + b2jkχl − ∂ym(ρmjkl + b2jkθml))∂

3
jkl∂

2
t ũ

− ε3a2ijkl(χp − ∂ymθmp)∂
5
ijklpũ],w

)
L2

+
(
ε4(ρmijk − b2ijθmk + b2ijb

2
mk)∂

3
ijk∂

2
t ũ+ ε4a2ijkl(θmp + b2mp)∂

5
ijklpũ, ∂mw

)
L2
.

Finally, applying formula (4.63), we obtain〈
∂2tBεũ,w

〉
=
(
[f + a0ij∂

2
ij ũ+ εa0ijχk∂

3
ijkũ+ ε2

(
a0ijθkl + a0ijb

2
kl − a2ijkl

)
∂4ijklũ],w

)
L2

+
(
[εχk∂kf + ε2(θij + b2ij)∂

2
ijf],w

)
L2

+
〈
∂2tϕ,w

〉
+
〈Rε

1ũ,w
〉
.

(4.68)

Next, the second term is computed as〈
AεBεũ,w

〉
=
(
[ ε−1

(
−∇y · (a(∇yχk + ek))

)
∂kũ

+
(
−∇y · (a(∇yθij + eiχj))− eTi a(∇yχj + ej)

)
∂2ij ũ

+ ε1
(
−∇y · (a(∇yκijk + eiθjk))− eTi a(∇yθjk + ejχk)

)
∂3ijkũ

+ ε2
(
−∇y · (a(∇yρijkl + eiκjkl))− eTi a(∇yκjkl + ejθkl)

)
∂4ijklũ],w

)
L2

+
〈
Aεϕ,w

〉
+
〈Rε

2ũ,w
〉
,

(4.69)
where〈Rε

2ũ,w
〉
= ε3

(
[−eTi a(∇yρjklp + ejκklp)∂

5
ijklpũ],w

)
L2 +

(
amiρjklp∂

5
ijklpũ, ∂mw

)
L2 .

Now, we combine (4.68) and (4.69) and use cell problems (4.45a-4.45d) and (4.52) and obtain
(∂2t +Aε)Bεũ(t) = [f(t)] +Rεũ(t), where Rεũ = Rε

1ũ+Rε
2ũ. Thanks to the regularity of the

correctors and using (4.61), we verify estimate (4.64) for the remainder Rεũ and the proof of the
lemma is complete.
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Proof of Theorem 4.2.4. As (uε − ũ)(t) ∈Wper(Ω), we have ‖uε − ũ‖L∞(W ) = ‖[uε − ũ]‖L∞(W).
Hence, using the triangle inequality, we split the error as

‖uε − ũ‖L∞(W ) ≤ ‖Bεũ− [uε]‖L∞(W) + ‖[ũ]−Bεũ‖L∞(W). (4.70)

Let us bound the two terms of the right hand side. The equation for uε (4.26) implies that
(∂2t +Aε)[uε(t)] = [f(t)] in W∗

per(Ω) for a.e. t ∈ [0, T ε]. Lemma 4.2.8 thus implies that

(∂2t +Aε)(Bεũ− [uε])(t) = Rεũ(t) in W∗
per(Ω) for a.e. t ∈ [0, T ε].

Applying Corollary 4.2.2 to η = Bεũ− [uε], using estimate (4.64) and the definition of Bε in
(4.62), we obtain

‖Bεũ− [uε]‖L∞(W) ≤ Cε
(
‖g1‖H4 + ‖g0‖H4 + |ũ|L∞(H5) + |∂2t ũ|L∞(H3)

)
, (4.71)

where C depends only on λ,Λ, |b2|∞, |a2|∞, ‖a‖W2,∞(Y ), Y and T . For the second term of (4.70),
we use the definition of Bε (4.62) and estimate (4.54) and obtain

‖[ũ]−Bεũ‖L∞(W) ≤ Cε
(∑4

k=1 |ũ|L∞(Hk) + ‖f‖L1(H2)

)
, (4.72)

where C depends only on ‖a‖W2,∞(Y ) and |b2|∞. Combining (4.70), (4.71) and (4.72), we obtain
estimate (4.58) and the proof of the theorem is complete. �

4.2.6 A priori error estimate for a tensor with minimal regularity

In Theorem 4.2.4, the requirement on the regularity of the tensor, a ∈W2,∞(Y ), is severe. Indeed,
general homogenization results only require the tensor to be bounded, i.e., a ∈ L∞(Y ) (see
Section 3.2.1). In this section, we prove an error estimate ensuring that the family of effective
equations E , defined in Definition 4.2.6, is still valid when the tensor is only bounded. For the
result to hold, the only penalty is to require more regularity on the effective solutions.

To understand the idea of the proof, let us track the need for the regularity of the tensor in the
proof of Theorem 4.2.4. First, observe that a ∈ L∞(Y ) is sufficient for the correctors to be well
defined in H1

per(Y ) (see Section 4.2.3). The first need for the regularity a ∈W2,∞(Y ) is found in
the definition of the adaptation operator in (4.62). Indeed, under the assumption ũ(t) ∈Wper(Ω),
to ensure that, for example, the term χi

( ·
ε

)
∂iũ(t) belongs to L2(Ω), we need χi ∈ L∞(Y ) (and

similarly the other terms require the corrector to belong to L∞(Y )). Observe however that under
the stronger regularity ũ(t) ∈W1,∞(Ω), χi ∈ L2(Y ) is sufficient for the adaptation to make sense.
The second need for a ∈W2,∞(Y ) lies in the estimation of the remainder in Lemma 4.2.8. Indeed,
to bound it we need the correctors to belong to W1,∞(Y ). We will see that the remainder can
still be estimated if the correctors only belongs to H1

per(Y ) (Lemma 4.2.10).

The error estimate for a bounded tensor is stated in the following theorem.

Theorem 4.2.9. Assume that the Y -periodic tensor satisfies a(y) ∈ L∞(Y ). Furthermore,
assume that the solution ũ of (4.56), the initial conditions and the right hand side satisfy the
regularity

ũ ∈ L∞(0, T ε; H7(Ω)), ∂tũ ∈ L∞(0, T ε; H6(Ω)), ∂2t ũ ∈ L∞(0, T ε; H5(Ω)),

g0 ∈ H6(Ω), g1 ∈ H6(Ω), f ∈ L2(0, T ε;Wper(Ω) ∩H4(Ω)),

and that b2 and a2 satisfy the relation (4.57). Then the following error estimate holds

‖uε − ũ‖L∞(0,T ε;W ) ≤ Cε
(
‖g1‖H6(Ω) + ‖g0‖H6(Ω) + ‖f‖L1(0,T ε;H4(Ω))

+
∑7

k=1 |ũ|L∞(0,T ε;Hk(Ω)) +
∑5

k=3 |∂2t ũ|L∞(0,T ε;Hk(Ω))

)
,

(4.73)
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where C depends only on T, λ,Λ, |b2|∞, |a2|∞, and Y .

Proof of the error estimate (Theorem 4.2.9)

The structure of the proof of Theorem 4.2.9 is similar to that of Theorem 4.2.4. We first verify
that the regularity assumptions enable to define an adaptation operator Bε using the correctors
defined in Section 4.2.3. We then split the error as

‖uε − ũ‖L∞(W ) = ‖[uε − ũ]‖L∞(W) ≤ ‖Bεũ− [uε]‖L∞(W) + ‖[ũ]−Bεũ‖L∞(W),

and estimate both terms separately. In particular, we verify that Lemma 4.2.8 still holds, i.e., that
Bεũ satisfies the same wave equation as uε up to a remainder. Finally, we prove that the terms
composing the remainder can still be estimated in a convenient way under the new regularity
assumptions (Lemma 4.2.10).

Let us first define the adaptation. As the tensor a(y) belongs to L∞(Y ), Lax–Milgram theorem
ensures that the correctors χi, θij , κijk, and ρijkl, defined in Section 4.2.3, belong to H1

per(Y ) and
satisfy

‖χi‖H1(Y ), ‖θij‖H1(Y ), ‖κijk‖H1(Y ), ‖ρijkl‖H1(Y ) ≤ C, (4.74)

for some constant C depending only on λ, Λ, |b2|∞, |a2|∞ and Y . Next, as we assume d ≤ 3, the
embedding H2

per(Ω) ↪→ C0per(Ω̄) is continuous and we verify that f ∈ L2(0, T ε; C2per(Ω̄)). Hence,
the right hand side of (4.52) belongs to L2(0, T ε;L2(Ω)) and ϕ exists, is unique, and satisfies
the regularity (4.53). Consequently, the adaptation operator defined in (4.62) defines a linear
operator (still denoted Bε)

Bε : L2(0, T ε; C3per(Ω̄))→ L2(0, T ε;W∗
per(Ω)).

Thanks to the embedding H2
per(Ω) ↪→ C0per(Ω̄), ũ satisfies the regularity

ũ ∈ L∞(0, T ε; C5per(Ω̄)), ∂tũ ∈ L∞(0, T ε; C4per(Ω̄)), ∂2t ũ ∈ L∞(0, T ε; C3per(Ω̄)), (4.75)

which ensures that

Bεũ ∈ L∞(0, T ε;Wper(Ω)), ∂tBεũ ∈ L∞(0, T ε;L2(Ω)), ∂2tBεũ ∈ L∞(0, T ε;W∗
per(Ω)).

Note that the result of Lemma 4.2.8 still holds: Bεũ satisfies

(∂2t +Aε)Bεũ(t) = [f(t)] +Rεũ(t) in W∗
per(Ω) for a.e. t ∈ [0, T ε], (4.76)

where the remainder Rεũ is defined in the proof of Lemma 4.2.8. Thanks to the regularity of the
correctors and ũ, we verify that Rεũ ∈ L∞(0, T ε;W∗

per(Ω)). In order to estimate the terms in
the remainder Rεũ, we prove the following lemma.

Lemma 4.2.10. Assume that ε is bounded independently of diam(Ω). Then γ ∈ L2
per(Y ) and

v ∈ H2
per(Ω) satisfy the estimate∥∥γ( ·ε)v∥∥L2(Ω)

≤ C‖γ‖L2(Y )‖v‖H2(Ω), (4.77)

for some constant C that depends only on Y , d and the bound on ε.

Proof. Let us first introduce some notations. Let � ∈ Rd be the period of the tensor a and assume
without loss of generality that Y = (0, �1) × · · · × (0, �d) and Ω = (0, ω1) × · · · × (0, ωd). As Ω
satisfies the assumption (4.25), the numbers Ni = ωi/�iε are integers and the cells constituting Ω
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belongs to the set {ε(n · �+ Y ) : 0 ≤ ni ≤ Ni − 1}. Denoting Ξ = {ξ = n · � : 0 ≤ ni ≤ Ni − 1},
the domain Ω is then given by

Ω = int

( ⋃
ξ∈Ξ

ε(ξ + Ȳ )

)
. (4.78)

Hence, almost every x ∈ Ω satisfies x = ε(ξ + y), with ξ ∈ Ξ, y ∈ Y , and the Y -periodic function
γ satisfies γ

(
x
ε

)
= γ(ξ + y) = γ(y), for a.e. x = ε(ξ + y) ∈ Ω. Furthermore, let Z ⊂ Rd be an

open set with a C1 boundary, that contains Y and is contained in the neighbor cells, i.e.,

Y ⊂ Z ⊂ NY = (−�1, 2�1)× · · · × (−�d, 2�d).

For example, Z = F−1
Y (S), where S is the open sphere of diameter

√
d centered in (1/2, · · · , 1/2)

(recall that d ≤ 3) and FY : NY → (−1, 2)d is a smooth change of coordinates. As Z has a C1
boundary and d ≤ 3, Sobolev embedding theorem ensures that the embedding H2(Z) ↪→ C0(Z̄) is
continuous. Hence, there exists a constant CY , depending only Y , such that

‖w‖C0(Ȳ ) ≤ ‖w‖C0(Z̄) ≤ CY ‖w‖H2(Z) ≤ CY ‖w‖H2(NY ) ∀w ∈ H2(NY ). (4.79)

We now prove (4.77). Using (4.78), we have∥∥γ( ·ε)v∥∥2L2(Ω)
=
∑
ξ∈Ξ

∫
ε(ξ+Y )

∣∣∣γ(xε )v(x)∣∣∣2 dx =
∑
ξ∈Ξ

∫
Y

∣∣∣γ(y)v(ε(ξ + y)
)∣∣∣2εd dy,

where we made the change of variables x = ε(ξ + y). As v ∈ H2
per(Ω) ↪→ C0per(Ω̄), we have∥∥γ( ·ε)v∥∥2L2(Ω)

≤ ‖γ‖2L2(Y )

∑
ξ∈Ξ

εd‖vξ,ε‖2C0(Ȳ ), (4.80)

where vξ,ε is the function of C0(Ȳ ) defined by vξ,ε(y) = v
(
ε(ξ + y)

)
. Using (4.79) gives

‖vξ,ε‖C0(Ȳ ) ≤ CY ‖vξ,ε‖H2(NY ). Furthermore, we have

εd‖vξ,ε‖2H2(NY ) =

∫
NY

|vξ,ε(y)|2εddy +
∫
NY

|∇yvξ,ε(y)|2εddy +
∫
NY

|∇2
y vξ,ε(y)|2εddy.

As ∂yi
vξ,ε = ε∂xi

v and ∂2yij
vξ,ε = ε2∂2xij

v, the change of variable x = ε(ξ + y) leads to∥∥γ( ·ε)v∥∥2L2(Ω)
≤ C‖γ‖2L2(Y )

∑
ξ∈Ξ

‖v‖2H2(ε(ξ+NY )) ≤ (2d2 + 1)C‖γ‖2L2(Y )

∑
ξ∈Ξ

‖v‖2H2(ε(ξ+Y )),

where we used that every cell ε(ξ + Y ) belongs to the neighborhoods of (2d2 + 1) cells. This
proves (4.77) and the proof of the lemma is complete.

Proof of Theorem 4.2.9. Thanks to Lemma 4.2.10 and (4.74), we verify that the remainder Rεũ
in (4.76) (defined in the proof of Lemma 4.2.8) satisfies〈Rεũ(t),w

〉
W∗

per,Wper
=
(
(Rεũ)0(t),w

)
L2 +

(
(Rεũ)1(t),∇w

)
L2 ,

with the bound

‖(Rεũ)0‖L∞(L2(Ω)) + ‖(Rεũ)1‖L∞(L2(Ω)) ≤ Cε3
(∑7

k=5 |ũ|L∞(Hk) +
∑5

k=3 |∂2t ũ|L∞(Hk)

)
,

where C depends on λ, Λ, |b2|∞, |a2|∞, and Y . Defining η = [uε]− Bεũ, we verify thanks to
Lemma 4.2.10 that

‖η(0)‖L2(Ω) ≤ Cε‖g0‖H6(Ω), ‖∂tη(0)‖L2(Ω) ≤ Cε‖g1‖H6(Ω).
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Hence, Corollary 4.2.2 ensures that

‖η‖L∞(W) ≤ Cε
(
‖g1‖H6(Ω) + ‖g0‖H6(Ω) +

∑7
k=5 |ũ|L∞(Hk) +

∑5
k=3 |∂2t ũ|L∞(Hk)

)
. (4.81)

Furthermore, using once again Lemma 4.2.10, we have

‖[ũ]−Bεũ‖L∞(L2(Ω)) ≤ Cε
(∑7

k=1 |ũ|L∞(Hk) + ‖f‖L1(H4)

)
. (4.82)

Finally, as (uε − ũ)(t) ∈Wper(Ω), the triangle inequality gives

‖uε − ũ‖L∞(W ) = ‖[uε − ũ]‖L∞(W) ≤ ‖η‖L∞(W) + ‖[ũ]−Bεũ‖L∞(W),

which, combined with (4.81) and (4.82), gives estimate (4.73) and that completes the proof of
Theorem 4.2.9. �

4.2.7 Comparison with the coefficients obtained via Bloch wave expansion

In this section, we compare the effective equation obtained in [42, 43], presented in Section 4.1.1,
with the effective equations of the family E , defined in Definition 4.2.6. In particular, we prove
that the effective equation from [42, 43] belongs to the family E . This result attests that the
derivations using Bloch wave expansion and asymptotic expansion lead to the same effective
equations. Note that this comparison has been done independently in [18], with a particular
attention to the elliptic case.

Let us recall the result of [42, 43], presented in Section 4.1.1. The effective equation is given by

∂2tw
ε = a0ij∂

2
ijw

ε + ε2
(
Eij∂

2
ij∂

2
tw

ε − Fijmn∂
4
ijmnw

ε
)

in (0, T ε]× Rd,

wε(0, x) = g(x), ∂tw
ε(0, x) = 0,

where the tensors E ∈ Ten2(Rd), F ∈ Ten4(Rd) are built to satisfy the symmetry and sign (4.55),
and such that

−Cijmn∂
4
ijmn = Eij∂

2
ija

0
mn∂

2
mn − Fijmn∂

4
ijmn. (4.83)

In this section, we prove that the decomposition (4.83) is equivalent to the constraint involved in
the definition of the family E . In particular, that proves that (4.83) belongs to E .

Let us give explicitly the formulas from [42] to compute Cijkl. We consider the following cell

problems: for 1 ≤ i ≤ j ≤ k ≤ d, let ψ
ej
0 , ψ

ei+ej
0 , ψ

ei+ej+ek
0 be the Y -periodic zero mean solutions

of

−∇ ·
(
a∇ψej

0

)
= i∇ ·

(
aej
)
, (4.84a)

−∇ ·
(
a∇ψei+ej

0

)
= 2S2

ij

{
i∇ ·

(
aeiψ

ej
0

)
+ ieTi a∇ψ

ej
0 − aij + a0ij

}
, (4.84b)

−∇ ·
(
a∇ψei+ej+ek

0

)
= 3S3

ijk

{
i∇ ·

(
aeiψ

ej+ek
0

)
+ ieTi a∇ψ

ej+ek
0

− 2aijψ
ek
0 + 2a0ijψ

ek
0

}
. (4.84c)

Then, C is defined for 1 ≤ i, j, k, l ≤ d as

Cijkl =
1
2S

4
ijkl

{〈
aijψ

ek+el
0

〉
Y

}
− 1

6 iS
4
ijkl

{〈
eTi a∇ψ

ej+ek+el
0

〉
Y

}
. (4.85)

The cell problems (4.84a), (4.84b) and (4.84c) are similar to the ones obtained in (4.45a), (4.45b)
and (4.45c) with asymptotic expansion. Let us determine their exact relation. First, note that
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ψ
ej
0 and ψ

ei+ej+ek
0 are purely complex valued and ψ

ei+ej
0 are real valued (this ensures that Cijkl

is real). Second, consider χk, θij , κijk the zero mean solutions of respectively problems (4.45a),
(4.45b) and (4.45c). Using the unicity of a solution of an elliptic boundary value problem, we
verify that

ψ
ej
0 = iχj , ψ

ei+ej
0 = −2θij , ψ

ei+ej+ek
0 = −6iκijk. (4.86)

We now show that the computed effective quantities are in fact the same. Using (4.86), we rewrite
Cijkl in (4.85) as

Cijkl = S4
ijkl

{
−
〈
aijθkl

〉
Y
−
〈
eTi a∇κjkl

〉
Y

}
= |Y |S4

ijkl

{
−
(
a∇κjkl, ei

)
Y
−
(
aejθkl, ei

)
Y

}
.

As 〈θkl〉Y = 0, this expression is equal to the right hand side of (4.49). Hence, from (4.50), we
verify that

Cijkl = S4
ijkl

{〈
ajkχlχi

〉
Y
−
〈
a∇θji · ∇θkl

〉
Y
− a0jk

(
χl, χi

)
Y

}
. (4.87)

Now, as E,F defined in [43] satisfies (4.83), thanks to (4.87) we can infer that they satisfy
the constraint (4.57) from Theorem 4.2.4. As E,F satisfy the symmetry and sign (4.55) by
construction, the effective equation defined in [43] belongs to the family E , defined in Definition
4.2.6.

4.3 Computing the tensors of an effective equation

The family of effective equations E , relies on an implicit definition of the tensors a2, b2 through
a constraint (Definition 4.2.6). However, the constraint does not provide a way to compute a2

and b2 nor does it even ensure the existence of an effective equation. In this section, we prove
in a constructive way that there exists tensors a2, b2 satisfying the requirements of Definition
4.2.6, thus ensuring that the family E is not empty. First, in the one-dimensional case, we show
that the family can be parametrized by the normalization value of the first corrector. Second,
in the multidimensional case, we provide an algorithm to compute the tensors of some effective
equations in E . These results were published in [13] and [14].

4.3.1 One-dimensional case

The computation of the effective coefficients in the one-dimensional case is particular. Indeed, we
proved in [13] that the coefficients a2 and b2 in the effective equations can be computed with
the solution of one single cell problem. This property leads to an explicit parametrization of
the family of effective equations E , defined in Definition 4.2.6. We prove here how this result is
obtained with Theorem 4.2.4.

We consider the result of Theorem 4.2.4 in one dimension. In particular, let us rewrite the
constraint (4.57) on the coefficients a2, b2 as

|Y |(a2 − a0b2) =
(
a(∂yθ + χ), χ− ∂yθ

)
Y
− a0

(
χ, χ
)
Y
. (4.88)

We now derive two relations that are only valid in the one-dimensional case. Noting that
a(∂yχ+ 1) ∈ H(div, Y ), we use integration by parts, the periodicity of a(∂yχ+ 1) and the cell
problem for χ (4.45a) to obtain for any y1, y2 ∈ Y

a(∂yχ+ 1)
∣∣∣y2

y1

= a(∂yχ+ 1)
(
Hy2

−Hy1

)∣∣∣
∂Y

−
∫
Y

(
Hy2

−Hy1

)
∂y
(
a(∂yχ+ 1)

)
dy = 0,

where Hyi
is the Heaviside step function centered in yi. Hence, a(∂yχ + 1) is constant on Y .

Thanks to the definition of a0 (see (4.41)), we conclude that a(y)
(
∂yχ(y) + 1

)
= a0 ∀y ∈ Y . A

similar argument proves that a(y)
(
∂yθ(y)+χ(y)

)
= C is constant on Y (see the cell problem for θ
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in (4.45b)). Dividing this equality by a(y), taking the mean over Y and using that 〈1/a〉Y = 1/a0,
we verify that C = a0〈χ〉Y . This equality, used in (4.88), leads to a constraint independent of θ:

a2 − a0b2 = a0〈χ〉Y 〈χ− ∂yθ〉Y − a0
〈
χ2
〉
Y
= a0〈χ〉2Y − a0

〈
χ2
〉
Y
. (4.89)

We claim that the two following sets are equal:

E1 =
{
(b2, a2) ∈ R2

≥0 : a0b2 − a2 = a0〈χ2〉Y − a0〈χ〉2Y for a χ ∈ χ
}
,

E2 =
{
(b2, a2) ∈ R2 : b2 =

〈
(χ− 〈χ〉Y )2

〉
Y
+ 〈χ〉2Y , a2 = a0〈χ〉2Y for a χ ∈ χ

}
,

where we observe that b20 =
〈
(χ− 〈χ〉Y )2

〉
Y

is non-negative and independent of the representative
χ ∈ χ. To prove the equality, first verify by a direct computation that E2 ⊂ E1. Next, we show
the converse inclusion. Let (b2, a2) ∈ E1 and note that we can write

a0b2 − a2 = a0
〈
(χ− 〈χ〉Y )2

〉
Y
= a0b20,

where b20 =
〈
(χ− 〈χ〉Y )2

〉
Y

depends only on the zero mean element χ− 〈χ〉Y in χ and is thus

independent of 〈χ〉Y . Set μ =
√
a2/a0 (a2 is non-negative) and fix χ ∈ χ such that 〈χ〉Y = μ so

that we have a2 = a0〈χ〉2Y . We then obtain

a0b2 = a0
〈
(χ− 〈χ〉Y )2

〉
Y
+ a2 = a0

(〈
(χ− 〈χ〉Y )2

〉
Y
+ 〈χ〉2Y

)
,

which implies (b2, a2) ∈ E2. As we have proved both inclusions, we obtain the equality E1 = E2.
We can then parametrize the family of effective solutions as

E = {ũ〈χ〉 solution of (4.56) where (b2, a2) ∈ E2}.

Observe that for 〈χ〉Y = 0, the coefficient a2 vanishes and hence there is no fourth order operator
a2∂4x in the effective equation. This particular equation is the effective equation obtained in [72].
It is also the effective model on which the FE-HMM-L from [13] relies (see Chapter 7).

It is interesting to remark that the coefficient of the ill-posed equation introduced in [85] satisfies
the condition (4.89). The equation is ∂2t u = a0∂2xu − ε2c∂4xu, where c has been proved in [19]
to satisfy c = −a0〈χ2〉Y , χ being the zero mean element of χ. Hence, the pair (b2, a2) = (0, c)
satisfies (4.89). However, c being negative, (0, c) /∈ E1, the corresponding equation is ill-posed
and hence does not belong to E .

4.3.2 Multidimensional case

In this section, we prove in the multidimensional case that the family of effective equations
E , defined in Definition 4.2.6, is not empty. Furthermore, we design a numerical procedure to
construct the tensors of effective equations in E . In particular, we need to construct a matrix
whose sign is associated to a fourth order major symmetric tensor. The details of this construction
are postponed to Section 4.3.3.

Recall that the family of effective equations E is defined by the pairs of tensors b2 ∈ Ten2(Rd),
a2 ∈ Ten4(Rd) such that (see Definition 4.2.6)

b2ij = b2ji, b2η · η ≥ 0 ∀η ∈ Rd, (4.90a)

a2ijkl = a2klij , a2ξ : ξ ≥ 0 ∀ξ ∈ Sym2(Rd), (4.90b)

S4
ijkl

{
a2ijkl − a0ijb

2
kl

}
= S4

ijkl

{〈
ajkχlχi

〉
Y
−
〈
a∇yθji · ∇yθkl

〉
Y
− a0jk

〈
χlχi

〉
Y

}
, (4.90c)
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where χi ∈ χi, θij ∈ θij and χi,θij are the unique (class of) solutions of the cell problems (4.45a)
and (4.45b), respectively.

Let us refer to Section 4.3.3 for the following definitions. A tensor q ∈ Ten4(Rd) is called major
symmetric, if it satisfies the symmetry relation in (4.90b). Furthermore, a tensor q ∈ Ten4(Rd) is
positive semidefinite if

qξ : ξ = qijklξijξkl ≥ 0 ∀ξ ∈ Sym2(Rd). (4.91)

Similarly, a tensor q ∈ Ten4(Rd) is positive definite if the inequality in (4.91) is strict for all
ξ ∈ Sym2(Rd)\{0}.

Let us call a pair of tensors a2, b2 valid if it satisfies the requirements (4.90). In the multidimen-
sional case, constructing a valid pair a2, b2 is not as straightforward as in the one-dimensional
case. As mentioned several times, the issue when looking for an effective equation is to obtain a
well-posed equation. In particular, the sign of the tensor a2 is crucial. For example, considering
(4.90c), it is first tempting to try the pair

a2ijkl = qijkl, b2ij = 0, where qijkl = S4
ijkl

{〈
ajkχlχi

〉
Y
−
〈
a∇yθji · ∇yθkl

〉
Y
− a0jk

〈
χlχi

〉
Y

}
.

However, the corresponding equation is precisely the one obtained in [85], which is known to be
ill-posed due to the sign of qijkl (see [39]). The second logical attempt is the choice

a2ijkl = qijkl, b2ij =
〈
χiχj

〉
Y
, where qijkl = S4

ijkl

{〈
ajkχlχi

〉
Y
−
〈
a∇yθji · ∇yθkl

〉
Y

}
.

Indeed, this pair satisfies (4.90a) and (4.90c). However, a simple numerical example (see Section
4.4.3) shows that q does not have a non-negative sign and thus does not fulfill (4.90b) in general.
In fact, to construct a valid pair of effective tensors a2, b2, we need to use the freedom provided by
the second minus sign of the right hand side in the constraint (4.90c) and the positive definiteness
of the homogenized tensor a0.

In this direction, we have the following lemma.

Lemma 4.3.1. Let A and R be symmetric, positive definite matrices. Then, the tensor defined
by qijkl = AjkRil is positive definite.

Proof. As R is symmetric positive definite, the Cholesky factorization ensures the existence of an
invertible matrix H such that R = HTH. As A is positive definite, for ξ ∈ Sym2(Rd) we have

qξ : ξ = AjkRilξijξkl = Ajk

(
Hmiξij

)(
Hmlξlk

)
= (ξHm)TAξHm ≥ 0,

where we denoted Hm = (Hm1, . . . , Hmd)
T . Now, assume that the equality holds. Then, as A is

positive definite, it must hold ξHm = 0 for all m = 1, . . . , d, or equivalently ξHT = 0. As H is
regular so is HT and we conclude that ξ = 0. This proves that the inequality is strict for ξ �= 0
and the proof of the lemma is complete.

Thanks to this result, we are able to prove the existence of effective equations in the family. Let
us first define the symmetrization operator S2,2:(

S2,2(q)
)
ijkl

= S2,2
ij,kl{qijkl} = S2

ij{S2
kl{qijkl}} ∀q ∈ Ten4(Rd).

Referring to Remark 4.3.5, if q satisfies qijkl = qlkji for 1 ≤ i, j, k, l ≤ d, then the tensor S2,2(q) is
major symmetric. Note that the use of S2,2 instead of S4 is not strictly needed and is discussed
below. Then, let {Rδ}δ>0 ⊂ Sym2(Rd) be a sequence of parametrized symmetric, positive definite
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matrices such that the smallest eigenvalue of Rδ increases as δ increases. We verify that for
sufficiently large values of δ, the tensors

a2ijkl = S2,2
ij,kl

{〈
ajkχiχl

〉
Y
−
〈
a∇yθji · ∇yθkl

〉
Y
+ a0jkR

δ
il

}
, b2ij = 〈χiχj〉Y +Rδ

ij , (4.92)

satisfy all the requirements (4.90) (we recall that a0 is positive definite). This construction proves
that the family of effective equations E , defined in Definition 4.2.6, is not empty (see Figure
4.6, Section 4.4.3). Note that a related construction of effective tensors has been independently
described theoretically in [18].

We still need a practical way for the computation of Rδ such that the pair a2, b2 in (4.92) is valid.
To that end, the following tool is introduced in Section 4.3.3. For a major symmetric tensor
q ∈ Ten4(Rd), there exists a bijective map ν : Sym2(Rd) → RN(d), where N(d) =

(
d+1
2

)
, and a

matrix M(q) ∈ Sym2(RN(d)) such that

qξ : η =M(q)ν(ξ) · ν(η) ∀ξ, η ∈ Sym2(Rd). (4.93)

In particular, q is positive (semi)definite if and only if M(q) is positive (semi)definite (see Lemma
4.3.6). Thanks to this tool, we now have a constructive method to obtain effective equations. In
the following lemma, we apply (4.92) with Rδ = δI, where I is the d× d identity matrix.

Lemma 4.3.2. Define the tensor ǎ2ijkl = S2,2
ij,kl

{〈
ajkχiχl

〉
Y
−
〈
a∇yθji · ∇yθkl

〉
Y

}
, and the ma-

trices A2 =M(ǎ2), A0 =M
(
S2,2
ij,kl{a0jkIil}

)
. The minimal eigenvalues of A2 and A0 are denoted

λmin(A
2) and λmin(A

0), respectively. Then the tensor (recall that {·}+ = max{0, ·})

a2ijkl = ǎ2ijkl + δS2,2
ij,kl

{
a0jkIil

}
, with δ ≥ δ∗ =

{
− λmin(A

2)

λmin(A0)

}
+

,

is positive semidefinite (i.e., it satisfies a2ξ : ξ ≥ 0 ∀ξ ∈ Sym2(Rd)).

Proof. First, as A2 and A0 are symmetric matrices it is clear that λmin(A
2) and λmin(A

0) are
real and thanks to Lemma 4.3.1 and (4.93) it holds λmin(A

0) > 0. Furthermore, λmin(A
2) ≤

(A2v · v)/(v · v) for any v ∈ RN(d) and similarly for A0. Now, if A2 is positive semidefinite, then
δ∗ = 0 and the tensor a2 is positive semidefinite for any δ ≥ 0. Next, assume that λmin(A

2) < 0.
We verify then that for any v ∈ RN(d),

δ∗ = −λmin(A
2)

λmin(A0)
≥ −A

2v · v
A0v · v .

Then, let ξ ∈ Sym2(Rd) and denote v = ν(ξ) (see (4.93)). Decomposing δ = δ∗+Δδ with Δδ ≥ 0,
we obtain

a2ξ : ξ = A2v · v + δ∗A0v · v +ΔδA0v · v ≥ 0.

The proof of the lemma is complete.

Let us discuss alternatives to the process to construct valid pairs a2, b2 provided by Lemma 4.3.2.
Indeed, the choice of the positive definite tensor S2,2

ij,kl{a0jkIil} is arbitrary. As an alternative, we

can use, for example, S2,2
ij,kl{a0jka0il}, and obtain the subset of the family defined by the pairs

A2 =M(ǎ2), A0 =M
(
S2,2
ij,kl{a0jka0il}

)
, δ ≥ δ∗ =

{
− λmin(A

2)

λmin(A0)

}
+

,

a2ijkl = ǎ2ijkl + δS2,2
ij,kl

{
a0jka

0
il

}
, b2ij = 〈χiχj〉Y + δa0ij .

(4.94)
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Numerical experiments indicates that this choice works equally. It is however interesting to note
that in the case of a locally periodic tensor, studied in Chapter 6, this second choice is imposed
naturally (see Section 6.2.2, in particular Lemma 6.2.8). Another alternative, is to use the full
symmetrization S4, instead of S2,2. Indeed, we have the following lemma.

Lemma 4.3.3. If A is a symmetric, positive definite matrix, then the tensor defined by
S4
ijkl

{
AijAkl

}
is positive definite.

Proof. Let ξ ∈ Sym2(Rd)\{0}. As

AijAklξijξkl =
(
Aijξij

)2 ≥ 0 ∀ξ ∈ Sym2(Rd),

the tensor AijAkl is positive semidefinite. Note that it is not positive definite in general because
A may have zero entries. Thanks to the symmetry of A and ξ, we verify that

S4
ijkl{AijAkl}ξijξkl = 1

2

(
AijAkl +AjkAil

)
ξijξkl.

As Lemma 4.3.1 ensures the second term to be strictly positive for ξ �= 0, we obtain the positive
definiteness of S4

ijkl{AijAkl}.

Hence, using S4{a0ija0kl} in the above process also leads to effective equations. Nevertheless, the

following result might be used to argue that the choices S2,2
ij,kl{a0jkIil} and S2,2

ij,kl{a0jka0il} are more
natural (note that it is a complement to Lemma 4.3.4).

Lemma 4.3.4. Let A,R be symmetric, positive semidefinite matrices with respective minimal
eigenvalues λmin(A), λmin(R). Then

S2,2
ij,kl{AjkRil}ξijξkl = AjkRilξijξkl ≥ λmin(A)λmin(R)‖ξ‖F ∀ξ ∈ Sym2(Rd),

where ‖ · ‖F denotes the Frobenius norm.

Proof. For i = 1, . . . , d, we denote λi(A), λi(R) the eigenvalues of A and R, respectively. The
symmetry of A and R ensures the existence of orthogonal matrices Q,P such that A = QTL(A)Q
and R = PTL(R)P , where L(A) = diag

(
λ1(A), . . . , λd(A)

)
and L(R) similarly. Using the

symmetry of ξ, we thus have

AjkRilξijξkl = λn(A)λm(R)QmjQmkPniPnlξijξkl =
∑

mn λn(A)λm(R)
(∑

ij QmjPniξij
)2

≥ λmin(A)λmin(R)
∑

mn

(∑
ij QmjPniξij

)2
.

(4.95)
Denoting vmi =

∑
j Qmjξij and using the orthogonality of P , we get

∑
mn

(∑
ij QmjPniξij

)2
=
∑

m

∑
n

(∑
i Pniv

m
i

)2
=
∑

m

(
vij
)2

=
∑

i

∑
m

(∑
j Qmjξij

)2
.

Using then the orthogonality of Q, we obtain∑
mn

(∑
ij QmjPniξij

)2
=
∑

ij ξ
2
ij = ‖ξ‖F .

Combined with (4.95), this equality concludes the proof of the lemma.
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4.3.3 Matrix associated to a major symmetric tensor of order four

In this section, from a fourth order major symmetric tensor q ∈ Ten4(Rd), we build a matrix
whose eigenvalues are associated to the sign of q. This tool is used to construct pairs of tensors
defining effective equations (see the previous section).

Let us first give some definitions. A tensor q ∈ Ten4(Rd) is major symmetric if

qijkl = qklij 1 ≤ i, j, k, l ≤ d. (4.96)

A tensor q ∈ Ten4(Rd) is minor symmetric if

qijkl = qjikl = qijlk 1 ≤ i, j, k, l ≤ d. (4.97)

We say that q ∈ Ten4(Rd) is positive definite if

qξ : ξ > 0 ∀ξ ∈ Sym2(Rd)\{0},

and is positive semidefinite if

qξ : ξ ≥ 0 ∀ξ ∈ Sym2(Rd).

Remark 4.3.5. Let q ∈ Ten4(Rd) be a minor symmetric tensor. Then q is major symmetric if
and only if it satisfies the symmetry relation qijkl = qlkji 1 ≤ i, j, k, l ≤ d. Indeed, if q is major
symmetric, using the minor symmetry we have

qijkl =
1
4

(
qijkl + qjikl + qijlk + qjilk

)
= 1

4

(
qklij + qklji + qlkij + qlkji

)
= qlkji.

And conversely, if qijkl = qlkji, using the minor symmetries gives

qijkl =
1
4

(
qijkl + qjikl + qijlk + qjilk

)
= 1

4

(
qlkji + qlkij + qklji + qklij

)
= qklij .

Consequently, the major symmetry relation is sometimes defined alternatively as qijkl = qlkji.

For q ∈ Ten4(Rd), we define a matrix M(q) such that q is positive (semi)definite if and only if
M(q) is positive (semi)definite. First, let us define the minor symmetrization of q as

q̄ijkl = S2,2
ij,kl

{
qijkl

}
= 1

4

(
qijkl + qjikl + qijlk + qjilk

)
,

which satisfies (4.97) and qξ : η = q̄ξ : η for any ξ, η ∈ Sym2(Rd). The tensor q̄ defines a linear
map Sym2(Rd)→ Sym2(Rd), ξ → q̄ξ as

(q̄ξ)ij = q̄ijklξkl =

d∑
k=1

q̄ijkkξkk + 2

d∑
k=1

d∑
l=k+1

q̄ijklξkl. (4.98)

In order to build a matrix associated to this linear map, we define the sets of indices

J = {(i, j) : 1 ≤ i ≤ j ≤ d}, I = {1, . . . , N(d)},

where N(d) =
(
d+1
2

)
is the number of distinct entries of a symmetric matrix in Sym2(Rd). Let

�−1 : J → I be the one to one map given by �−1(i, j) = Kd
ij , where K

d is the symmetric d× d
matrix given by (fill the diagonal, then successively the d− 1 upper diagonal rows)

Kd =

⎛⎜⎜⎜⎜⎜⎜⎝

1 d+ 1 · · · · · · 2d− 1
2 2d · · · 3d− 3

. . .
. . .

...
. . . N(d)

d

⎞⎟⎟⎟⎟⎟⎟⎠ .
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Define then the bijective map ν : Sym2(Rd) → RN(d), ξ → ν(ξ), by
(
ν(ξ)

)
m

= ξ�(m) and

note that its inverse is given for v ∈ RN(d) by
(
ν−1(v)

)
ij

= v�−1(i,j). Defining the linear map

Q : RN(d) → RN(d), Q = ν ◦ q̄ ◦ ν−1, we verify that for v ∈ RN(d)

(
Qv
)
m

=

d∑
k=1

q̄�(m)�(k)vk + 2

N(d)∑
k=d+1

q̄�(m)�(k)vk.

Hence, denoting {ei}N(d)
i=1 the canonical basis of RN(d), the matrix associated to the linear map

(4.98) is given in the basis
{
e1, . . . ed,

1
2ed+1, . . . ,

1
2eN(d)

}
by Qmn = q̄�(m)�(n). We can then show

that for any ξ, η ∈ Sym2(Rd), we have

q̄ξ : η =

d∑
ik=1

q̄iikkξiiηkk + 2

(
d∑

ik=1
k<l

q̄iiklξiiηkl +

d∑
jk=1
i<j

q̄ijkkξijηkk

)
+ 4

d∑
i<j
k<l

q̄ijklξijηkl

= ν(ξ)TPTQPν(η),

where

Pmn = δmnzn, zn =

{
1 if 1 ≤ n ≤ d,
2 if d+ 1 ≤ n ≤ N(d).

Hence, we define the matrix associated to q̄ as M̃(q̄) = PTQP , given by(
M̃(q̄)

)
mn

= zmznq̄�(m)�(n). (4.99)

For d = 2, 3 M̃(q̄) is given respectively as

M̃(q̄) =

⎛⎝q̄1111 q̄1122 2q̄1112
q̄2222 2q̄2212

4q̄1212

⎞⎠ , M̃(q̄) =

⎛⎜⎜⎜⎜⎜⎜⎝
q̄1111 q̄1122 q̄1133 2q̄1112 2q̄1113 2q̄1123

q̄2222 q̄2233 2q̄2212 2q̄2213 2q̄2223
q̄3333 2q̄3312 2q̄3313 2q̄3323

4q̄1212 4q̄1213 4q̄1223
4q̄1313 4q̄1323

4q̄2323

⎞⎟⎟⎟⎟⎟⎟⎠ .

We summarize the results of this section in the following lemma.

Lemma 4.3.6. Let q ∈ Ten4(Rd) be a tensor satisfying the major symmetry (4.96) and let
M(q) = M̃

(
S2,2(q)), where M̃ is defined in (4.99) and S2,2

ij,kl = S2
ij{S2

kl{·}}. Then

qξ : η =M(q)ν(ξ) · ν(η) ∀ξ, η ∈ Sym2(Rd).

In particular, q is positive (semi)definite if and only if M(q) is positive (semi)definite.

4.3.4 Algorithm to compute the tensors of an effective equation

As discussed in Section 4.3.2, Lemma 4.3.2 provides a procedure for the construction of pairs
of tensors of some effective equations in the family E , defined in Definition 4.2.6. We present
here the full algorithm to compute the effective tensors a0, b2 and a2 of one of the corresponding
effective equations. Note that the algorithm can easily be modified to obtain different effective
equations. We emphasize that this algorithm is appropriate for dimensions d ≥ 2 as a simpler
one is given for d = 1 in Section 4.3.1.

Let J(d) ⊂ {1, . . . , d}4 denotes the set of indices of distinct entries of a major an minor symmetric
tensor of order 4. Let M(q) = M̃

(
S2,2(q)), where M̃ is defined in (4.99) and S2,2

ij,kl = S2
ij{S2

kl{·}}.
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Note that we compute here the homogenized tensor under a naturally symmetric form (see Lemma
3.3.1).

Algorithm 4.3.7. Computation of the tensors a0, b2, a2 of an effective equation in the family E .

1. for 1 ≤ k ≤ d find χk ∈Wper(Y ) such that ∀w ∈Wper(Y )(
a∇yχk,∇yw

)
Y
= −

(
aek,∇yw

)
Y
,

2. for 1 ≤ i ≤ j ≤ d compute

a0ij = a0ji = −
〈
a∇yχj · ∇yχi

〉
Y
+
〈
aei · ej

〉
Y
,

3. for 1 ≤ i ≤ j ≤ d find θij = θji ∈Wper(Y ) such that ∀w ∈Wper(Y )(
a∇yθij ,∇yw

)
Y
=S2

ij

{
−
(
aχjei,∇yw

)
Y
+
(
a(∇yχj + ej)− a0ej , eiw

)
Y

}
,

4. for (i, j, k, l) ∈ J(d) compute

ǎ2ijkl = S2,2
ij,kl

{〈
ajkχiχl

〉
Y
−
〈
a∇yθij · ∇yθkl

〉
Y

}
,

5. build the matrices A2 =M(ǎ2), A0 =M
(
S2,2
ij,kl{a0jkIil}

)
and compute

δ∗ =

{
− λmin(A

2)

λmin(A0)

}
+

,

6. for 1 ≤ i ≤ j ≤ d compute

b2ij = b2ji =
〈
χiχj

〉
Y
+ δ∗Iij ,

7. for (i, j, k, l) ∈ J(d) compute

a2ijkl = ǎ2ijkl + δ∗S2,2
ij,kl

{
a0jkIil

}
.

4.3.5 Subset of the family parametrizable by the mean of the first corrector

In Section 4.3.1, we have seen that in the one-dimensional case, the family E of effective equations,
defined in Definition 4.2.6, can be parameterized by the normalization value of the first corrector.
This parametrization gives a connection between the unique class of corrector χ ∈ Wper(Y ) and
the family E . In higher dimensions, the different subsets of the family constructed in Section
4.3.2 do not a priori satisfy a similar relation. In this section, we show that, in the general case, a
subset of the family E can indeed be parametrized by the normalization parameter of the first
correctors, but this subset might be empty.

Let us first introduce some notations. For i = 1, . . . , d, let us parametrize the class of the first
corrector χi (solution of (4.45a)) by its mean, denoted μi ∈ R. Explicitly, we denote χμ

i the
element of χi such that 〈χμ

i 〉Y = μi. Furthermore, let θμij denote the zero mean element of the
corresponding class of second correctors θij , i.e., the solution of (4.45b) that corresponds to
χμ
i . Note that the normalization of θμij has no influence and we pick the zero mean element

for simplicity. In particular, χμ
i ∈ H1

per(Y ) and θμij ∈ Wper(Y ) satisfy for any test functions

w ∈ H1
per(Y ):(
a∇yχ

μ
i ,∇yw

)
Y
= −

(
aei,∇yw

)
Y
, (4.100a)(

a∇yθ
μ
ij ,∇yw

)
Y
= S2

ij

{
−
(
aeiχ

μ
j ,∇yw

)
Y
+
(
a(∇yχ

μ
j + ej)− a0ej , eiw

)
Y

}
. (4.100b)

Hence, χ0
i is the zero mean element of χi and θ

0
ij is the zero mean element of θij , corresponding

to χ0
i . We verify that

χμ
i = χ0

i + μi, θμij = θ0ij + S2
ij{μiχj}. (4.101)
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Indeed, plugging the right hand sides of these equalities in (4.100a) and (4.100b), respectively,
and using the uniqueness of χμ

i and θμij , we obtain (4.101). Recall now that the family of effective

equations, defined in Definition 4.2.6, consists in the pairs of tensors a2, b2 satisfying (4.55) and
(4.57). In particular, a2, b2 must satisfy

|Y |
(
a2ijkl − a0ijb

2
kl

)
=S

(
ajkχ

μ
l , χ

μ
i

)
Y
−
(
a∇yθ

μ
ji,∇yθ

μ
kl

)
Y
− a0jk

(
χμ
l , χ

μ
i

)
Y
, (4.102)

where =S signifies that the equality holds up to symmetries, i.e., b, c ∈ Tenn(Rd) satisfy b =S c
iff Sn(b) = Sn(c). Let us prove that(

ajkχ
μ
l , χ

μ
i

)
Y
−
(
a∇yθ

μ
ji,∇yθ

μ
kl

)
Y
=S

(
ajkχ

0
l , χ

0
i

)
Y
−
(
a∇yθ

0
ji,∇yθ

0
kl

)
Y
+ a0jkμiμl,(

χμ
i , χ

μ
j

)
Y
=
(
χ0
i , χ

0
j

)
Y
+ μiμj .

(4.103)

Using (4.101), the second equality is proved by a direct computation (recall that 〈χ0
i 〉Y = 0). Let

us prove the first equality. Using (4.101), we rewrite(
ajkχ

μ
l , χ

μ
i

)
Y
−
(
a∇yθ

μ
ji,∇yθ

μ
kl

)
Y
=S

(
ajkχ

0
l , χ

0
i

)
Y
−
(
a∇yθ

0
ji,∇yθ

0
kl

)
Y

+ 2μi

((
a∇yχ

0
j ,∇yθ

0
kl

)
Y
−
(
aej , ekχ

0
l

)
Y

)
+ μiμl

((
a∇yχ

0
j ,∇yχ

0
k

)
Y
−
(
aej , ek

)
Y

)
.

Equation (4.100b), with the test function χ0
j , implies(

a∇yχ
0
j ,∇yθ

0
kl

)
Y
−
(
aej , ekχ

0
l

)
Y
=S −

(
aekχ

0
l ,∇yχ

0
j

)
Y
+
(
a(∇yχ

0
l + el)− a0el, ekχ

0
j

)
Y

−
(
aej , ekχ

0
l

)
Y
=S 0.

Using (4.100a) with the test function χ0
j implies(

a∇yχ
0
j ,∇yχ

0
k

)
Y
−
(
aej , ek

)
Y
= −

(
a(∇yχ

0
j + ej), ek

)
Y
= −|Y |a0jk.

Combining the last three equalities, we obtain the first equality in (4.103).

The first implication of (4.103) is that the fourth order tensor in the right hand side of (4.102)
does not depend on the normalization of χi. This was expected as this tensor constrains the pair
b2, a2 which characterizes the dispersion.

Further, thanks to (4.103), we follow the process given in (4.92), with the matrix Rδ
ij = μiμj ,

and define the pair

a2ijkl(μ) = S2,2
ij,kl

{(
ajkχ

μ
l , χ

μ
i

)
Y
−
(
a∇yθ

μ
ji,∇yθ

μ
kl

)
Y

}
,

b2ij(μ) =
(
χμ
i , χ

μ
j

)
Y
.

(4.104)

Indeed, (4.103) ensure that

a2ijkl(μ) =S

(
ajkχ

0
l , χ

0
i

)
Y
−
(
a∇yθ

0
ji,∇yθ

0
kl

)
Y
+ a0jkμiμl,

b2ij(μ) =S

(
χ0
i , χ

0
i

)
Y
+ μiμl,

and if the tensor a0jkμiμl is “sufficiently large”, the pair a2(μ), b2(μ) defines an effective equation

in the family. Furthermore, the pairs a2(μ), b2(μ) defined by (4.104) are parametrized by the
normalization parameters (μ1, . . . , μd), μi = 〈χμ

i 〉Y . Hence, the pairs a2(μ), b2(μ) defines a subset
of the family that is parametrized by the normalization of the correctors χ1, . . . , χd. However, we
verify that this subset might be empty. Indeed, the tensor a0jkμiμl is only positive semidefinite:

a0jkμiμlξijξkl = a0(ξμ) · (ξμ) ≥ 0,

and, for example, we have ξμ = 0 for ξ = diag(v) with v ⊥ μ. Consequently, there may not exist
μ such that a0jkμiμl is sufficiently large for a2(μ) to be positive semidefinite.
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4.4 Numerical experiments

In this section, we illustrate the theoretical results obtained in this chapter through various
numerical experiments. In particular, we present several examples that confirm the result of
Theorem 4.2.4, which states that the family of effective equation captures the dispersion effects
of uε (Theorem 4.2.9 if the tensor is only bounded).

First, we consider two examples in the one-dimensional case. One with a smooth tensor and
one with a discontinuous tensor. Second, we consider two and three dimensional examples in
layered materials. In a last experiment, we show that the dispersion effects are not due to the
incompatibility of the initial condition with the tensor discussed in Section 3.2.2.

4.4.1 One-dimensional example: smooth tensor

For the first example, let us come back to the example of Section 4.1. Let the reference cell be
Y = (−1/2, 1/2) and consider the smooth oscillating tensor :

a
(
x
ε

)
=
√
2− cos

(
2π x

ε

)
,

where ε = 1/20. We find that the (class of) the first corrector, the homogenized tensor, and〈
(χ− 〈χ〉

)2〉
Y

are given by

χ(y) =
1

π
atan

(
(1 +

√
2) tan(πy)

)
− y + 〈χ〉, a0 = 1,

〈
(χ− 〈χ〉

)2〉
Y
� 0.00909633,

where 〈χ〉 is any real number. In Section 4.3.1, we proved that the family of effective equations is
composed of the solutions ũ〈χ〉 of (4.56), where b

2 and a2 are defined as

b2 =
〈
(χ− 〈χ〉

)2〉
Y
+ 〈χ〉2, a2 = a0〈χ〉2,

for any given value of the parameter 〈χ〉. Let us illustrate this result with an example. We set
Ω = (−402, 402), which is large enough for the waves never to reach the boundary. We consider

the wave equation (4.26), where the initial conditions are given as g0(x) = e−10x2

, g1(x) = 0
and the source f = 0. We approximate uε with a spectral method on a grid of size Δx = ε/20
(see Section 2.3). The leap frog method is used for the time integration of the obtained second
order ODE (see Section A.5). To approximate ũ〈χ〉 and the homogenized solution u0, we use the
Fourier method, defined in Section 2.4, on a grid of size Δx = ε/8. In Figure 4.3, we display
uε, u0, and ũ〈χ〉 for 20 values of the parameter 〈χ〉 ∈ [0, 0.38], at the time t = ε−2 = 400. We
observe that the dispersion visible in the macroscopic behavior of uε is not captured by u0. On
the contrary, all the elements of the family E describe well this dispersive feature. This example
corroborates the result of Theorem 4.2.4 and the derivation of the family in Section 4.3.1.

4.4.2 One-dimensional example: discontinuous tensor

In the previous example, the tensor was smooth. Let us now consider an example where it
is bounded but not smooth. Let the reference cell be Y = (0, 1) and consider the Y -periodic
discontinuous tensor

a(y) = a21[0,1/4[

(
{y}Y

)
+ a11[1/4,3/4[

(
{y}Y

)
+ a21[3/4,1[

(
{y}Y

)
,

where a1, a2 > 0, 1X denotes the indicator function of the set X, and {y}Y = y − �y�. We
compute the first corrector:

χ(y) = 1
a1
y1]0,1/4[(y)+

(
1

4a1
+ 1

a2
(y−1/4)

)
1[1/4,3/4[(y)+

(
1

4a1
+ 1

2a2
+ 1

a1
(y−3/4)

)
1[3/4,1[(y)+〈χ〉,
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Figure 4.3: Comparison of the wave uε (smooth tensor) with the homogenized solution u0 and
effective solutions ũ〈χ〉 from the family E , for several values of the parameter 〈χ〉 ∈ [0, 0.38] at
t = ε−2 = 400 and zoom on x ∈ [397.1, 399.1].

where 〈χ〉 is any real number. We then fix a2 = 3.255 and a1 =
(
2− 1

a2

)−1
so that a0 = 1 and〈

(χ− 〈χ〉
)2〉

Y
� 0.00999885. As in the example in the previous section, we consider the family

of effective equations E defined in Section 4.3.1. We consider the same data: g0(x) = e−10x2

,
g1(x) = 0, and f = 0. In order to approximate uε, we construct the following mesh. The
subintervals where aε is constant are discretized into Chebyshev grids of 32 nodes (i.e. the nodes
are distributed on the interval as the Chebyshev nodes in (−1, 1)). Hence, the mesh has a node
at each discontinuity of aε and a high concentration of nodes in its neighborhood. The wave uε is
then approximated on this mesh with P1-FEM. The effective solutions ũ〈χ〉 and the homogenized
solution u0 are approximated using the method defined in Section 2.4 on a grid of size Δx = ε/8.
As the method for the approximation of uε is costly, we consider the small domain Ω = (−6, 6)
(which verifies |Ω|/ε|Y | ∈ N). In Figure 4.4, we display uε, u0, and ũ〈χ〉 for different values of the
parameter 〈χ〉 ∈ [0, 0.38] at time t = ε−2 = 400. We observe that the dispersive behavior of uε is
not captured by u0, while it is well described by all the elements of the family E . This example
corroborates the result of Theorem 4.2.9 ensuring that even if the tensor is only bounded, the
family of effective equations is still valid.

4.4.3 Two-dimensional example in small and pseudoinfinite domains

We now consider a two-dimensional example. First, we compute effective tensors using Algorithm
4.3.7. Then, we compare uε with the corresponding effective solution and the homogenized solution,
on a large time interval O(ε−2) in a small domain. Finally, we display the effective solution and
the homogenized solution in a pseudoinfinite domain. In particular, we provide visualizations of
the dispersion phenomenon in two dimensions. Note that a Matlab implementation of the long
time homogenization method for this example is provided in Appendix A.4.7.

Let the reference cell be Y = (−1/2, 1/2) and consider the Y -periodic diagonal tensor given by

a(y) =

(
ã(y2) 0
0 ã(y2)

)
=

(
1− 0.5 cos(2πy2) 0

0 1− 0.5 cos(2πy2)

)
. (4.105)
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Figure 4.4: Comparison of the wave uε (discontinuous tensor (4.4.2)) with the homogenized
solution u0 and effective solutions ũ〈χ〉 from the family E for several values of the parameter
〈χ〉 ∈ [0, 0.38] at t = ε−2 = 400.

For ε > 0, the oscillatory tensor a
(
x
ε

)
describes the layered material displayed in Figure 4.5.

It is well known that the corresponding homogenized tensor is anisotropic and given by (see
[24, 66, 37])

a0 =

⎛⎝∫ 1/2

−1/2
ã(y2) dy2 0

0
( ∫ 1/2

−1/2
(ã(y2))

−1 dy2

)−1

⎞⎠ =

(
1 0

0
√
3/2

)
, (4.106)

where
√
a0ii is the homogenized wave speed in the i-th direction. Theorem 4.2.4 ensures that

at timescales O(ε−2), uε is well described by the effective equations in the family E (Definition
4.2.6). To obtain an effective solution, we first compute the tensors b2 and a2 using Algorithm
4.3.7, and then approximate the solution of the corresponding effective equation using the Fourier
method presented in Section 2.4.

Figure 4.5: Tensor aε(x) = a
(
x
ε

)
where a is defined in (4.105) displayed in (0, 1)2 for, respectively

from left to right, ε = 1/10, 1/16, and 1/25.

Computation of the tensors of effective equations

We use Algorithm 4.3.7 to compute the tensors a2, b2 of an effective equation in the family E
(Definition 4.2.6). Although an analytic expression for the first correctors χ1, χ2 is available for
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the tensor (4.105), in order to test the numerical procedure, we approximate the cell functions
χ1, χ2, θ11, θ12, θ22. To do so, we use a P1 finite element method on a uniform mesh of Y with
1024 points in both directions. We verify that the corresponding approximation of a0 is accurate.
Then, we compute the 6 distinct entries of the tensor ǎ2 and find

ǎ21111 = −0.00339360, ǎ22222 = 0, ǎ21212 = 0.00086375,
ǎ21122 = 0.00339360, ǎ21112 = 0, ǎ22212 = 0.

From ǎ2, we construct the 3×3 symmetric matrix A2 =M(ǎ2) (see Section 4.3.3). The eigenvalues
of A2 are computed as

spec(A2) = {−0.0054909, 0.0020973, 0.0034550},

so that A2 is not positive semidefinite. In order to compute the non-negative tensor a2, we build
the matrix A0 =M

(
S2,2
ij,kl{a0jkIil}

)
and obtain

A0 =

⎛⎝a011 0 1
2 (a

0
12 + a021)

a022
1
2 (a

0
12 + a021)

a011 + a022

⎞⎠ , spec(A0) = {a011, a022, a011 + a022}.

We then compute δ∗ =
{
0,−λmin(A

2)
λmin(A0)

}
+
= 0.006340411 and the tensors b2, a2 are

b211 =
〈
χ2
1

〉
Y
+ δ∗ = 0.00634041,

b222 =
〈
χ2
2

〉
Y
+ δ∗ = 0.01004512,

b212 = 0,

a21111 = ǎ21111 + δ∗a011 = 0.00294681,

a22222 = ǎ22222 + δ∗a022 = 0.00549097,

a21212 = ǎ21212 +
1
4δ

∗(a011 + a022) = 0.0038215948,

a21122 = ǎ21122 = 0.0033935973,

a21112 = ǎ21112 +
1
4δ

∗(a012 + a021) = 0,

a22212 = ǎ21222 +
1
4δ

∗(a012 + a021) = 0.

We recall that other effective equations can be obtained by defining the tensors as in (4.92),
where Rδ ∈ Sym2(Rd) is a positive definite matrix with sufficiently large eigenvalues. In order to
illustrate this, we let r = (r1, r2) ∈ R2, Rδ = diag(r1, r2), and denote a2r, b

2
r as defined in (4.92),

where the subscript specifies the dependence in r. For several values of r ∈ R2, we compute the
minimal eigenvalue λmin(r) of M(a2r). In Figure 4.6, we plot r = (r1, r2) with a red square ( ) if
λmin(r) < 0 and a green square ( ) if λmin(r) ≥ 0. Hence, each green square corresponds to a
different well-posed effective equation in the family and we call the corresponding r valid. We
observe that there is a distinct frontier between valid and invalid values of r. The black square
is (δ∗, δ∗), where δ∗ is defined in Algorithm 4.3.7 (see Lemma 4.3.2). As expected, (δ∗, δ∗) lies
in the domain of valid values. The subset of the diagonal in the valid values {(δ, δ) : δ ≥ δ∗}
corresponds to the effective equations provided by Lemma 4.3.2. For a future experiment in this
section, let us introduce the following notation:

{ũδ}δ≥δ∗ is the solution of the effective equation (4.56) with a2 = a2δ , b
2 = b2δ ,

ū = ũδ∗ is the effective solution given by Algorithm 4.3.7.
(4.107)

Example in a small domain

Let us fix ε = 1/10 and consider equation (4.26), where the initial conditions and the source term
are given as

g0(x) = e−20(x2
1+x2

2), g1(x) = 0, f(t, x) = 0, (4.108)
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Figure 4.6: Sorting of the minimal eigenvalues of M(a2r), where a
2
r is defined in (4.92) with

Rδ = diag(r1, r2). Each green square corresponds to an effective equation in the family E . The
black square is (δ∗, δ∗), where δ∗ is computed in Algorithm 4.3.7. The diagonal {(δ, δ), δ ≥ δ∗}
corresponds to the effective solutions provided by Lemma 4.3.2 and denoted {ũδ}δ≥δ∗ in the text.

and the periodic domain is Ω = (−2, 2)2. Even though (4.26) does not have a physical interest,
on this small domain we are able to approximate uε, the solution of (4.26) (g0 must be replaced
with g0 − 〈g0〉Ω to fit the setting of (4.26)). To do so, we use a spectral method on a uniform
grid of Ω of size h = ε/10 (see Section 2.3). The time integration of the obtained second order
ordinary differential equation is done with the leap frog scheme with time step Δt = h/100 (see
Section A.5). The solutions u0 and ū are approximated using the Fourier method, defined in
Section 2.4, on the same grid as uε. On Figure 4.7, we display uε, u0, and ū at t = ε−2 = 100.
We first observe that, as expected, the behavior of uε is not well described by the homogenized
solution u0. As ensured by Theorem 4.2.4, the effective equation ū does describe well uε in the
L∞(0, T ε; L2(Ω)) norm. Next, we compute the normalized errors

err(v)(t) = ‖(uε − v)(t)‖L2(Ω)/‖uε(t)‖L2(Ω), v ∈ {u0, ū},

on the time interval [0, 100]. The result is displayed in Figure 4.8. We observe that the
homogenized solution quickly drift away from the fine scale solution uε. As we know, this is due
to the dispersion effects developed by uε. On the contrary, we see that for up to t = ε−2 = 100,
the error uε − ū is small, as predicted by Theorem 4.2.4.

Example in a pseudoinfinite domain

Let us now consider the wave equation with the data (4.108) in a pseudoinfinite medium. We
thus have to find a domain that is large enough for the wave not to reach the boundary. As the
homogenized tensor (4.106) is diagonal, we know the form of the homogenized solution u0: the
initial pulse g0, centered at the origin, spreads in all directions with speeds

√
a011 along the x

axis and
√
a022 along the y axis. We thus set

Ω = (−L1, L1)× (−L2, L2), Li =
⌊√

a0iit
⌋
+ 2.

We compute u0 and ū (see (4.107)) with the Fourier method (see Section 2.4), on a grid of size
ε/16. In Figure 4.9, we display the global form of ū at t = 100 and in the zooms we can observe
the dispersion effects. Note that although a

(
x
ε

)
oscillates only in the y direction, the dispersion
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Figure 4.7: Comparison on Ω between uε (top-left), the homogenized solution u0 (top-right) and
the effective solution ū (bottom-left) and cuts at x = −0.7 (bottom-right) at t = ε−2 = 100 .
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Figure 4.8: Plot of the time evolution of the normalized L2(Ω) errors uε − u0 and uε − ū.

is as strong in the x direction as in the y direction. In the top-left plot of Figure 4.10, we can see
a closer view of the dispersion developed in ū at t = 100. Furthermore, the same view of u0 is
displayed in the top-right plot of Figure 4.10 and we see that there is no dispersion after the main
pulse. In the bottom plot of Figure 4.10, we can compare cuts at y = 0 of ū, {ũδ}δ for several
values of δ ∈ [δ∗, 11δ∗] (see (4.107)) and u0. We see that the effective solutions {ũδ}δ and ū have
almost the same dispersive behavior. As Theorem 4.2.4 ensures that ū and ũδ approximate well
uε, we conclude that u0 is a poor approximation of uε at t = 100.
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Figure 4.9: Global view of ū at t = 100 and zooms on the subdomains (94, 102)× (−20, 20) and
(−20, 20)× (87, 95).
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Figure 4.10: Top: 3d views of ū (top-left) and u0 (top-right) at t = 100 for (x, y) ∈ (96, 102)×
(−8, 8) Bottom: 1d cuts x ∈ [97.25, 101], y = 0, t = 100 of u0 and the effective solutions ū, ũδ for
several values of δ ∈ [δ∗, 11δ∗] (see (4.107)).
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4.4.4 Three-dimensional example in a pseudoinfinite domain

Let us consider a three dimensional example. In three dimensions, approximating uε is not
feasible. Indeed, even in small domains the computational cost of a spectral method (or FEM) is
extremely large. However, using the homogenization method obtained in this chapter, we can
visualize the description of the dispersion developed by uε at long times.

Let the reference cell be Y = (−1/2, 1/2)3 and consider the Y -periodic diagonal tensor given by

a(y) = ã(y2)I3 =
(
1− 0.5 cos(2πy3)

)
I3, (4.109)

where I3 is the 3× 3 identity matrix. For ε > 0, the oscillatory tensor a
(
x
ε

)
describes the layered

material displayed in Figure 4.11. We compute the effective tensors a0 and a2, b2 corresponding
to a(y) using Algorithm 4.3.7. In particular, we verify that the homogenized tensor is diagonal
and given by

a0 = diag(1, 1,
√
3/2).

We fix ε = 1/5 and consider the model problem given by the data

g0(x) = e50|x|
2

, g1 = 0, f = 0.

Using the Fourier method (see Section 2.4), we approximate the homogenized solution and the
effective solution ū at t = ε−2 = 25 in the pseudoinfinite domain defined as

Ω = (−L1, L1)× (−L2, L2)× (−L3, L3), Li =
⌊√

a0iit
⌋
+ 1.

Visualizations of the computed u0 and ū are displayed in Figures 4.12 and 4.13. Both solutions
are waves spreading away from the origin. However, comparing the frontal waves, we see that
dispersive effects are clearly visible in ū, while no such behavior is to be seen in u0. Theorem
4.2.4 ensures that ū describes well uε.

Figure 4.11: Tensor aε(x) = a
(
x
ε

)
where a is defined in (4.109) displayed in (0, 1)3 for, respectively

from left to right, ε = 1/5, 1/9, and 1/15.

4.4.5 Long time effects for a prepared initial condition

In this section, we illustrate that the long time dispersive phenomenon is not a consequence of
the incompatibility between the tensor a

(
x
ε

)
and the initial position g0, discussed in Section 3.2.2.

To do so, we show that the solution of (3.40) ūε, which has a prepared initial condition (see
Section 3.3.3), still develops dispersion.

Consider the settings of Section 4.4.1:

Y = (−1/2, 1/2), a
(
x
ε

)
=
√
2− cos

(
2π x

ε

)
, ε = 1/20, Ω = (−402, 402),

g0(x) = e−10x2

, g1(x) = 0, f = 0.
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Figure 4.12: Visualization of the homogenized solution u0 for the layered material of Figure 4.11
with ε = 1/5 at time t = 25.

Figure 4.13: Visualization of the effective solution ū for the layered material of Figure 4.11 with
ε = 1/5 at time t = 25.

As we have an explicit formula for χ, we can compute the initial position of ūε as ḡ0(x) =
g0(x) + εχ

(
x
ε

)
∂xg

0(x). The function ūε is approximated with a spectral method on a grid of
size Δx = ε/20 (see Section 2.3). The leap frog method is used for the time integration of the
obtained second order ODE (see Section A.5). The functions ũ〈χ〉 and u

0, are approximated (with
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initial position g0) using the Fourier method (Section 2.4) on a grid of size Δx = ε/8. In Figure
4.14, we display ūε, u0, and ũ〈χ〉 for 20 values of the parameter 〈χ〉 ∈ [0, 0.38], at t = ε−2 = 400.

We observe that even though its initial position is compatible with the tensor a(
(
x
ε

)
), ūε have a

similar dispersive behavior as uε. The dispersion is well described by the element of the family of
effective equations ũ〈χ〉 but not by u

0.

In Section 3.3.3, thanks to the preparation of the initial condition, we proved that the gradient of
ūε could be approximated by a correction of u0 (see Theorem 3.3.4). Similarly, under sufficient
regularity of the data, the adaptation Bεũ, defined in (4.51), satisfies

‖∇xū
ε −∇xBεũ‖L∞(0,T ε;L2(Ω)) ≤ Cε.

To prove it, we apply the standard energy estimate for the wave equation to the function
η = ūε − Bεũ (see lemma 4.2.8).
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Figure 4.14: Comparison of ūε with the homogenized solution u0 and effective solutions ũ〈χ〉 from
the family E for several values of the parameter 〈χ〉 ∈ [0, 0.38] at t = ε−2 = 400.
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5 Effective models for wave propagation in
periodic media for arbitrary timescales

In Chapter 4, we derived a family of effective equations for wave propagation in periodic media
at timescales O(ε−2). In this chapter, we generalize this result to arbitrary timescales. Let
Ω ⊂ Rd be an arbitrarily large hypercube, α be a non-negative integer, and let aε(x) = a

(
x
ε

)
be a

symmetric, elliptic and bounded tensor, where a(y) is Y -periodic (see Section 4.2.1). We consider
uε : [0, ε−αT ]× Ω→ R the solution of

∂2t u
ε(t, x)−∇x ·

(
a
(
x
ε

)
∇xu

ε(t, x)
)
= f(t, x) in (0, ε−αT ]× Ω.

x → uε(t, x) Ω-periodic in [0, ε−αT ],

uε(0, x) = g0(x), ∂tu
ε(0, x) = g1(x) in Ω,

(5.1)

where g0, g1 are initial conditions and f is a source term (see Section 2.1.1 for the well-posedness
of (5.1)).

Effective equations of arbitrary order are not only useful for long time wave propagation. Recall
that the family of effective equations, defined in Chapter 4, is valid in the standard multiscale
regime. In particular, we assume that the wavelengths of the initial conditions and of the source
term are of order O(1), while the wavelength ε of the tensor is much smaller. However, in regimes
where either the initial conditions or the source term have higher frequencies, the error estimate
from Theorem 4.2.4 does not guarantee an acceptable bound. In particular, it is not ensured that
the effective equations provide accurate approximations of uε. In fact, numerical experiments
confirm that the provided approximations do not capture the correct macroscopic behavior of
uε. For example, we verify that the higher the frequency of the initial wave is, the sooner the
dispersive effects of uε appear. We also observe that for high frequency regimes, uε develops
additional effects that are not described by the effective equations in the family from Chapter 4.
Hence, in that situation, we need higher order effective equations.

The main result of this chapter is the derivation of a family of well-posed effective equations that
describe uε for arbitrary timescales ε−αT . The family is composed of equations of the form

∂2t ũ− a0∂2ũ−
�α/2�∑
r=1

(−1)rε2r
(
a2r∂2r+2ũ− b2r∂2r∂2t ũ

)
= f in (0, ε−αT ]× Ω, (5.2)

where a0 is the homogenized tensor and a2r ∈ Ten2r+2(Rd), b2r ∈ Ten2r(Rd) are pairs of non-
negative tensors satisfying some given constraints. In (5.2) and in the whole chapter, ∂nv denotes
the tensor of Tenn(Rd) with coordinates ∂ni1··inv. Furthermore, for q ∈ Tenn(Rd), we use the
shorthand q∂nv to denote the operator qi1··in∂

n
i1··inv.

The derivation of the family (5.2) follows the technique introduced in Chapter 4. First, assuming
that the form of the equation is (5.2), we construct an adaptation of ũ. As the timescale is now
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of order O(ε−α), the adaptation is composed of α + 2 correction terms. After some technical
developments, we obtain the cell problems of order 1 to α+ 2. The well-posedness of these cell
problems provides constraints on each pair of tensors a2r, b2r. The family is then defined implicitly
by the pairs of non-negative, major symmetric tensors a2r, b2r satisfying these constraints.

In addition, we provide an algorithm for the computation of the tensors of effective equations in
the family. In particular, we generalize the matrix construction associated to a major symmetric
tensor of order four, from Chapter 4, to symmetric tensors of arbitrary even order. Following this
process we obtain one possible construction of effective equations in the family.

The fact that no odd correction is needed in (5.2) is a consequence of the unconditional well-
posedness of the odd order cell problems. The proof of this remarkable property relies on a
technical relation that involves all the previous cell problems (i.e., to prove that the cell problem
of order 2r + 1 is well-posed, we need to use the cell problems 1 to 2r). Note that this result
is already known in the context of Bloch wave (see e.g. [42], [23] and the references therein).
The second result of this chapter is a new technical relation that enables to reduce significantly
the cost of computation of the effective tensors. Namely, while the naive formula to compute
a2r, b2r requires to solve the cell problems of order 1 to 2r + 1, we prove that in fact only the cell
problems of order 1 to r + 1 are necessary.

We note that recently, an effective equation of arbitrary order for wave problems was derived in
[23] (the result holds in fact for more general tensors: almost periodic, quasiperiodic and random).
The derivation of this effective equation significantly differs from our approach as it is based on
regularization techniques. In particular, using the so-called Bloch–Taylor expansion of uε, an
effective equation of the form (for f = 0)

∂2t u− a0∂2u−
�α/2�∑
r=1

ε2rā2r∂2r+2u− (iε)2(�
α
2 �+1)γId∂2(�

α
2 �+1)+2u = 0 in (0, ε−αT ]× Rd, (5.3)

is derived, where ā2r are effective tensors defined via so-call extended correctors and γ is a
regularization parameter (γ is large enough for (5.3) to be well-posed). Furthermore, under low
regularity requirements, an error estimate for uε − u is proved. However, no procedure for the
computation of γ is available. In fact, numerical tests indicate that the range of acceptable values
for γ is narrow. If γ is too small, the equation is ill-posed and if γ is too large, the solution u of (5.3)
does not describe uε accurately. Hence, the use of (5.3) in practice is problematic. Comparatively,
equation (5.2) has the evident advantage of being well-posed without regularization.

As the derivations of (5.2) and (5.3) are done in different frameworks, their comparison is not
trivial. As a supplementary result, we prove that the so-called extended correctors, defined in
[23], and the correctors obtained in this chapter are the same functions. Furthermore, we derive
an exact relation between the tensors ā2r in (5.3) and the constraint imposed on the pair a2r, b2r

in (5.2). This result attests that the two approaches of derivation, via Taylor–Bloch expansion
and via asymptotic expansions, lead to the same effective quantities. However, the form of the
equation is primordial to obtain well-posed equations without the need of regularization.

The chapter is organized as follows. In Section 5.1, we discuss the effective models for the specific
timescales O(ε−1) and O(ε−3). In particular, we prove that the homogenized equation is still
valid at timescales O(ε−1) and that the family of effective equations from Chapter 4 is still valid
at timescales O(ε−3). Then, we present the main result of the chapter in Section 5.2. We define
the family of effective equations for arbitrary timescales and present the complete derivation.
Furthermore, we provide a numerical procedure to compute the effective tensors of arbitrary
order. In Section 5.3, we illustrate numerically that in high frequency regimes, the first order
effective equations from Chapter 4 do not describe all the macroscopic feature of uε. Finally, in
Section 5.4, we test our theoretical results in diverse numerical experiments.
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5.1 Effective equations for timescales O(ε0) to O(ε−3)

In order to have a better understanding on the derivation of effective equations for arbitrary
timescales, we consider the odd timescales O(ε−1) and O(ε−3) (these results were given in
one-dimension in our paper [13]). First, we prove that the effective model for timescales O(ε0),
the homogenized equation, is still valid at timescales O(ε−1). Second, we prove that the effective
models for timescales O(ε−2), derived in Chapter 4, are still valid at timescales O(ε−3). These
results are particular cases of the general rule that the effective models for even timescales O(ε−α)
(α even) are still valid at timescales O(ε−(α+1)). This is a consequence of the general result
provided in the next section.

5.1.1 The homogenized equation is still valid at timescales O(ε−1)

We prove here that the classical homogenized equation, derived in Section 3.3.2, is still valid at
timescales O(ε−1).

Let u0 : [0, ε−1T ]× Ω→ R be the solution of the homogenized equation

∂2t u
0(t, x)− a0ij∂

2
iju

0(t, x) = f(t, x) in (0, ε−1T ]× Ω,

x → u0(t, x) Ω-periodic in [0, ε−1T ],

u0(0, x) = g0(x), ∂tu
0(0, x) = g1(x) in Ω,

(5.4)

where a0 is the homogenized tensor defined as a0ij =
〈
eTi a(∇yχj + ej)

〉
Y
, where χj ∈ Wper(Y )

are the first correctors (defined in (4.45)). We prove the following result.

Theorem 5.1.1. Assume that the Y -periodic tensor satisfies a(y) ∈ W2,∞(Y ). Furthermore,
assume that the solution u0 of (5.4), the initial conditions and the right hand side satisfy the
regularity

u0 ∈ L∞(0, ε−1T ; H4(Ω)), ∂tu
0 ∈ L∞(0, ε−1T ; H3(Ω)), ∂2t u

0 ∈ L∞(0, ε−1T ; H2(Ω)),

g0 ∈ H3(Ω), g1 ∈ H3(Ω), f ∈ L2(0, ε−1T ; H1(Ω)).

Then the following estimate holds:

‖uε − u0‖L∞(0,ε−1T ;W ) ≤ Cε
(
‖g1‖H3(Ω) + ‖g0‖H3(Ω) + ‖f‖L1(0,ε−1T ;H1(Ω))

+
∑4

k=1 |u0|L∞(0,ε−1T ;Hk(Ω)) + |∂2t u0|L∞(0,ε−1T ;H2(Ω))

)
,

(5.5)

where C depends only on T, λ, ‖a‖W2,∞(Y ), and Y , and we recall the definition of the norm (see
(A.4))

‖w‖W = inf
w=w1+w2

w1,w2∈Wper(Ω)

{
‖w1‖L2(Ω) + ‖∇w2‖L2(Ω)

}
∀w ∈Wper(Ω).

Remark 5.1.2. Referring to Section 4.2.6, a similar result as Theorem 5.1.1 can be proved for a
bounded tensor a(y) ∈ L∞(Y ), provided

u0 ∈ L∞(0, ε−1T ; H6(Ω)), ∂tu
0 ∈ L∞(0, ε−1T ; H5(Ω)), ∂2t u

0 ∈ L∞(0, ε−1T ; H4(Ω)),

g0 ∈ H5(Ω), g1 ∈ H5(Ω), f ∈ L2(0, ε−1T ; H3(Ω)).

Proof. The proof of Theorem 5.1.1 is analogous to the proof of Theorem 4.2.4. First, we define
the adaptation operator B̄ε

: L2(0, ε−1T ; H3(Ω))→ L2(0, ε−1T ;W∗
per(Ω)) as〈B̄ε

v(t),w
〉
W∗

per,Wper
=
(
[v(t) + εχi∂iv(t) + ε2(θij − ∂ymκmij)∂

2
ijv(t)],w

)
L2

−
(
ε3κmij∂

2
ijv(t), ∂mw

)
L2 ,+

〈
ϕ̄(t),w

〉
W∗

per,Wper
,
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where χi ∈ χi, θij ∈ θij , κijk ∈ κijk are the correctors defined in (4.45a), (4.45b), and (4.45c)
and are evaluated in y = x

ε , and ϕ̄ ∈ L∞(0, ε−1T ;Wper(Ω)) is the unique solution of

(∂2t +Aε)ϕ̄(t) = −[εχi

( ·
ε

)
∂if(t)] in W∗

per(Ω) for a.e. t ∈ [0, ε−1T ],

ϕ̄(0) = ∂tϕ̄(0) = [0].
(5.6)

Note that ∂tϕ̄ ∈ L∞(0, ε−1T ;L2(Ω)), ∂2t ϕ̄ ∈ L∞(0, ε−1T ;W∗
per(Ω)), and that the correctors

belong to C1per(Ω̄). We thus have B̄ε
u0(t) ∈ Wper(Ω) and ∂

2
t B̄ε

u0(t) ∈ W∗
per(Ω). Let us compute

explicitly the remainder R̄ε
u0 such that

(∂2t +Aε)B̄ε
u0(t) = [f(t)] + R̄ε

u0(t) in W∗
per(Ω) for a.e. t ∈ [0, ε−1T ]. (5.7)

First, thanks to the regularity of u0, (5.4) gives the following equalities

∂2t u
0 = f + a0ij∂

2
iju

0 in L2
0(Ω), ∂k∂

2
t u

0 = ∂kf + a0ij∂
3
ijku

0 in L2(Ω).

Using these equalities, we find that〈
∂2t B̄ε

u0,w
〉
=
(
[f] + [a0ij∂

2
iju

0 + εa0ijχk∂
3
ijku

0],w
)
L2

+
〈
∂2t ϕ̄,w

〉
+
(
[εχi∂if],w

)
L2 +

〈R̄ε
1u

0,w
〉
,

where
〈R̄ε

1u
0,w

〉
=
(
[ε2(θij − ∂ym

κmij)∂
2
ij∂

2
t u

0],w
)
L2 −

(
ε3κmij∂

2
ij∂

2
t u

0, ∂mw
)
L2 . Next, we

compute the second term as〈
AεB̄ε

u0,w
〉
=
(
[ ε−1

(
−∇y · (a(∇yχk + ek))

)
∂ku

0

+
(
−∇y · (a(∇yθij + eiχj))− eTi a(∇yχj + ej)

)
∂2iju

0

+ ε1
(
−∇y · (a(∇yκijk + eiθjk))− eTi a(∇yθjk + ejχk)

)
∂3ijku

0],w
)
L2

+
〈
Aεϕ,w

〉
+
〈R̄ε

2u
0,w

〉
,

where
〈R̄ε

2u
0,w

〉
= ε2

(
[−eTi a(∇yκjkl + ejθkl)∂

4
ijklu

0],w
)
L2 +

(
amiκjkl∂

4
ijklu

0, ∂mw
)
L2 . Using

the cell problems for χi, θij , and κijk, we find that R̄ε
u0 = R̄ε

1u
0 + R̄ε

2u
0 satisfies (5.7). Setting

η = [uε]− B̄ε
u0, we apply Corollary 4.2.2 and obtain

‖η‖L∞(0,ε−1T ;W) ≤ Cε
(
‖g1‖H3 + ‖g0‖H3 + |u0|L∞(0,ε−1T ;H4(Ω)) + |∂2t u0|L∞(0,ε−1T ;H2(Ω))

)
. (5.8)

The definition of B̄ε
gives the estimate

‖B̄ε
u0 − [u0]‖L∞(0,ε−1T ;W) ≤ Cε

(∑4
k=1 |u0|L∞(ε−1T ;Hk(Ω)) + ‖f‖L1(ε−1T ;H1(Ω))

)
, (5.9)

where we used the standard energy estimate for the wave equation to get ‖ϕ̄‖L∞(W) ≤ ‖f‖L1(H1)

from (5.6). As (uε − u0)(t) ∈ Wper(Ω), we have ‖uε − u0‖L∞(W ) = ‖[uε − u0]‖L∞(W) and the
triangle inequality gives

‖uε − u0‖L∞(0,ε−1T ;W ) ≤ ‖η‖L∞(0,ε−1T ;W) + ‖B̄ε
u0 − [u0]‖L∞(0,ε−1T ;W). (5.10)

Combining (5.10) with (5.8) and (5.9), we obtain estimate (5.5) and the proof of the theorem is
complete.
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5.1.2 The family of effective equations for timescales O(ε−2) is still valid at
timescales O(ε−3)

We now turn to timescales O(ε−3). In particular, we prove that the family of effective equations
for timescales O(ε−2), defined in Definition 4.2.6, is still valid at timescales O(ε−3).

According to the discussion from Section 4.2.2, in order to prove that a solution ũ describes
well uε on [0, ε−3T ], we need to construct an adaptation [B̂εũ](t), which satisfies the properties
(4.37) and is such that (∂2t +Aε)([B̂εũ− uε])(t) = O(ε4) for a.e. t (see (4.38)). To do so, let us
come back to the asymptotic expansion of Section 4.2.3. The ansatz on the form of the effective
equation remains (4.40) and we now assume that the adaptation has the form

B̂εũ(t, x) = ũ
(
t, x
)
+ εu1

(
t, x, xε

)
+ ε2u2

(
t, x, xε

)
+ ε3u3

(
t, x, xε

)
+ ε4u4

(
t, x, xε

)
+ ε5u5

(
t, x, xε

)
+ ϕ̂(t, x). (5.11)

Compared with (4.42), the adaptation B̂εũ contains the two additional terms ε5u5
(
t, x, xε

)
and ϕ̂(t, x). The term ε5u5

(
t, x, xε

)
is present to increase the accuracy of the adaptation, i.e,

(∂2t +Aε)([B̂εũ− uε])(t) = O(ε4) (instead of O(ε3)), while the term ϕ̂(t, x) is present to cancel
the terms coming from the right hand side f (as done in (4.51)). Repeating the process of Section
4.2.3, we obtain successively the definitions

u1(t, x, y) = χi(y)∂iũ(t, x), u2(t, x, y) = θij(y)∂
2
ij ũ(t, x),

u3(t, x, y) = κijk(y)∂
3
ijkũ(t, x), u4(t, x, y) = ρijkl(y)∂

4
ijklũ(t, x),

where the correctors solves the cell problems (4.45a), (4.45b), (4.45c), and (4.45d). Using these
definitions and the effective equation leads, in place of (4.44), to

(∂2t +Aε)(B̂εũ− uε) = ε3
(
Ayyu

5 +Axyu
4 +Axxu

3 +
(
(a0ijb

2
kl − a2ijkl)χm + a0ijκklm

)
∂5ijklmũ

)
+ (∂2t +Aε)ϕ̂+ εχi∂if + ε2(b2ij + θij)∂

2
ijf + ε3(b2ijχk + κijk)∂

3
ijkf

+O(ε4). (5.12)

To cancel the term of order O(ε3), we thus define u5(t, x, y) = σijklm(y)∂5ijklmũ(t, x), where
σijklm is Y -periodic and solves the cell problems

ε3 :
(
a∇yσijklm,∇yw

)
Y
= S5

ijklm

{
−
(
aeiρjklm,∇yw

)
Y
+
(
a(∇yρjklm + ejκklm), eiw

)
Y

+
(
(a2ijkl − a0ijb

2
kl)χm − a0ijκklm, w

)
Y

}
, (5.13)

for any Y -periodic test functions w ∈ H1
per(Y ). Let us prove that the right hand side of (5.13)

belongs to W∗
per(Y ). To do so, we prove that it satisfies the solvability condition (A.8), i.e., that

the tensor

cijklm = S5
ijklm

{(
a(∇yρjklm + ejκklm), ei

)
Y
+
(
(a2ijkl − a0ijb

2
kl)χm − a0ijκklm, 1

)
Y

}
,

vanishes for any 1 ≤ i, j, k, l,m ≤ d. Using successively the cell problem (4.45a) with the test
function ρjklm and the cell problem (4.45d) with the test function χi, we obtain(

a∇yρjklm, ei
)
Y
= −

(
a∇yρjklm,∇yχi

)
Y

= S4
jklm

{(
aejκklm,∇yχi

)
Y
−
(
a(∇yκklm + ekθlm), ejχi

)
Y

−
(
a2jklm − a0jkθlm − a0jkb

2
lm, χi

)
Y

}
,

and we can rewrite

cijklm = S5
ijklm

{
−
(
aejχi,∇yκklm

)
Y
+
(
a(∇yχi + ei), ejκklm

)
Y
−
(
a0ij , κklm

)
Y

−
(
aekθlm, ejχi

)
Y
+
(
a0jkθlm, χi

)
Y

}
.
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Using then (4.45b) with the test function κklm and (4.45c) with the test function θji, we get

cijklm = S5
ijklm

{(
a∇yθji,∇yκklm

)
Y
−
(
aekθlm, ejχi

)
Y
+
(
a0jkθlm, χi

)
Y

}
= S5

ijklm

{
−
(
aekθlm,∇yθji

)
Y
+
(
a(∇yθlm + elχm)− a0elχm, ekθji)

)
Y

−
(
aekθlm, ejχi

)
Y
+
(
a0jkθlm, χi

)
Y

}
= 0,

and (5.13) is well-posed in Wper(Y ).

To complete the asymptotic expansion, we define the function ϕ̂ in (5.11) so that the terms
containing the source f in (5.12) cancel (i.e. ϕ̂ ∈ ϕ̂, where ϕ̂ is defined in (5.14)). Assuming
sufficient regularity of the data, we verify that the adaptation [B̂εũ] satisfies the requirements
(4.37) and (4.38) on the time interval [0, ε−3T ]. We prove the following theorem.

Theorem 5.1.3. Assume that the Y -periodic tensor satisfies a(y) ∈W2,∞(Y ) and let ũ belongs
to the family of effective equations E defined in Definition 4.2.6. Furthermore, assume that the
data and ũ satisfy the regularity

ũ ∈ L∞(0, ε−3T ; H6(Ω)), ∂tũ ∈ L∞(0, ε−3T ; H5(Ω)), ∂2t ũ ∈ L∞(0, ε−3T ; H4(Ω)),

g0 ∈ H5(Ω), g1 ∈ H5(Ω), f ∈ L2(0, ε−3T ; H3(Ω)).

Then the following error estimate holds

‖uε − ũ‖L∞(0,ε−3T ;W ) ≤ Cε
(
‖g1‖H5(Ω) + ‖g0‖H5(Ω) + ‖f‖L1(0,ε−3T ;H3(Ω))

+
∑6

k=1 |ũ|L∞(0,ε−3T ;Hk(Ω)) + |∂2t ũ|L∞(0,ε−3T ;H4(Ω))

)
,

where C depends only on T, λ, |b2|∞, |a2|∞, ‖a‖W2,∞(Y ), and Y , and we recall the definition of
the norm (see (A.4))

‖w‖W = inf
w=w1+w2

w1,w2∈Wper(Ω)

{
‖w1‖L2(Ω) + ‖∇w2‖L2(Ω)

}
∀w ∈Wper(Ω).

Remark 5.1.4. Referring to Section 4.2.6, a similar result as Theorem 5.1.3 can be proved for a
bounded tensor a(y) ∈ L∞(Y ), provided

ũ ∈ L∞(0, ε−3T ; H8(Ω)), ∂tũ ∈ L∞(0, ε−3T ; H7(Ω)), ∂2t ũ ∈ L∞(0, ε−3T ; H5(Ω)),

g0 ∈ H7(Ω), g1 ∈ H7(Ω), f ∈ L2(0, ε−3T ; H5(Ω)).

Proof. Define the adaptation operator B̂ε
: L2(0, ε−3T ; H4(Ω))→ L2(0, ε−3T ;W∗

per(Ω)) as〈B̂ε
v(t),w

〉
=
〈Bεv(t),w

〉
−
(
ε4[∂ym

σmijkl∂
4
ijklv(t)],w

)
L2 −

(
ε5σmijkl∂

4
ijklv(t), ∂mw

)
L2

+
〈
ϕ̂(t),w

〉
,

where
〈
·, ·
〉

=
〈
·, ·
〉
W∗

per,Wper
, Bε is the adaptation operator defined in (4.62), and ϕ̂ ∈

L∞(0, ε−3T ;Wper(Ω)) is the unique solution of

(∂2t +Aε)ϕ̂ = −[εχi∂if + ε2
(
b2ij + θij

)
∂2ijf

+ ε3
(
b2ijχk + κijk

)
∂3ijkf] in W∗

per(Ω) a.e. t ∈ [0, ε−3T ],

ϕ̂(0) = ∂tϕ̂(0) = [0].

(5.14)

The rest of the proof follows the same steps as the proofs of Theorems 4.2.4 and 5.1.1.
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5.2 Effective equations for arbitrary timescales

In Section 4.2.2, we described a procedure to derive effective equations for wave propagation at
timescales O(ε−α), where α ≥ 0 is an integer. In particular, the main task is the construction of
an adaptation of an effective solution using asymptotic expansion. This procedure was used in
Section 4.2.3 to derive a family of effective equations E valid at timescales O(ε−2). It was then
used in Section 5.1, to prove that the homogenized equation is valid at timescales O(ε−1) and
that the family E is still valid at timescales O(ε−3). In this section, the same procedure is applied
at arbitrary timescales. The main result of the chapter is presented in Section 5.2.1, where we
define a family of effective equations for arbitrary timescales. The technical construction of the
adaptation, i.e., the derivation of the cell problems of arbitrary order, is postponed to Section
5.2.5.

As suggested by the results of the previous section, an effective equation valid at even timescales
O(ε−α) (α even) is still valid for timescales O(ε−(α+1)). This fact is already known from the
Bloch wave theory as the odd derivatives of the first Bloch eigenvalue cancel (see e.g. [42], [23]).
In our derivation, it is a consequence of the unconditional well-posedness of the odd order cell
problems. This important feature follows a technical relation between the solutions of the cell
problems (see (5.25) and Lemma 5.2.5). The second result of this chapter is a new relation
between the solutions of the cell problems that allows to reduce the cost of computation of
the effective tensors. This remarkable relation is proved in Lemma 5.2.6, in Section 5.2.2, and
discussed in Section 5.2.4.

In the whole section, we denote (·, ·) = (·, ·)L2(Y ) and assume |Y | = 1 for simplicity. As we
deal with tensors of arbitrary order, let us introduce some definitions and notations. A tensor
q ∈ Ten2n(Rd) is major symmetric if

qi1···inin+1···i2n = qin+1···i2ni1···in 1 ≤ i1 · · · i2n ≤ d. (5.15)

A tensor q ∈ Ten2n(Rd) is positive semidefinite if

qi1···i2nξi1···inξin+1···i2n ≥ 0 ∀ξ ∈ Symn(Rd), (5.16)

and it is positive definite if

qi1···i2nξi1···inξin+1···i2n > 0 ∀ξ ∈ Symn(Rd)\{0}. (5.17)

We use the standard notation for the tensor product

⊗ : Tenm(Rd)× Tenn(Rd)→ Tenn+m(Rd), (p, q) → (p⊗ q)i1···im+n
= pi1···imqim+1···im+n

.

Furthermore, we use the shorthand notation

⊗sp = p⊗ · · · ⊗ p︸ ︷︷ ︸
s times

.

To improve the readability, the differential operator qi1···in∂
n
i1···in is denoted q∂n, i.e.,

q∂n = qi1···in∂
n
i1···in . (5.18)

Note that for a sufficiently smooth function v, any q ∈ Tenn(Rd) satisfies q∂n = Sn(q)∂n, where
Sn(q) ∈ Symn(Rd) is the symmetrization of q. For this reason, in the derivation we mostly
deal with symmetric tensors. We denote =S an equality that holds up to symmetries, i.e.,
p, q ∈ Tenn(Rd) satisfy p =S q if and only if Sn(p) = Sn(q). Note that, up to symmetries, the
tensor products is commutative: p ⊗ q =S q ⊗ p ∀p ∈ Tenn(Rd), q ∈ Tenm(Rd). Finally, we
denote I(d, n) the set of multiindices of the distinct entries of a tensor in Symn(Rd), i.e.,

I(d, n) =
{
i = (i1, . . . , in) : 1 ≤ i1 ≤ . . . ≤ in ≤ d

}
.

We verify that the cardinality of I(d, n) is given by N(d, n) = |I(d, n)| =
(
d+n−1

n

)
.
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5.2.1 A priori error estimate and family of effective equations

We present here the main result of this chapter, contributing to the thesis. We define a family of
effective equations that capture the macroscopic behavior of uε on arbitrarily large timescales.
The family relies on constraints for the effective tensors that are imposed by the well-posedness
of the cell problems of arbitrary order. The derivation of these cell problems is presented in detail
in Section 5.2.5.

Let α be an integer and let Ω ⊂ Rd be an arbitrarily large hypercube, assumed to be the union
of cells of volume ε|Y | (see assumption (4.25), Figure 4.2). Let a0 be the homogenized tensor
and for r = 1, . . . , �α/2�, let a2r ∈ Ten2r+2(Rd), b2r ∈ Ten2r(Rd) be positive semidefinite major
symmetric tensors (see (5.15) and (5.16)). We consider the equation: ũ : [0, ε−αT ]× Ω→ R such
that

∂2t ũ− a0∂2ũ−
�α/2�∑
r=1

(−1)rε2r
(
a2r∂2r+2ũ− b2r∂2r∂2t ũ

)
= f in (0, ε−αT ]× Ω,

x → ũ(t, x) Ω-periodic in [0, ε−αT ],

ũ(0, x) = g0(x), ∂tũ(0, x) = g1(x) in Ω,

(5.19)

where we recall the notation for the differential operators (5.18). The existence and uniqueness
of a weak solution of (5.19) is ensured by the non-negative signs of the tensors if the data satisfy
the regularity (see Section 5.2.5 for more details)

g0 ∈Wper(Ω) ∩H�α/2�+1(Ω), g1 ∈ L2
0(Ω) ∩H�α/2�(Ω), f ∈ L2(0, ε−αT ; L2

0(Ω)).

Remark 5.2.1. Following the argument of Remark 4.2.3, the right hand side of the effective
equation (5.19) could also be corrected as f − Sε

1f , where Sε
1f is defined in Remark 5.2.12.

Let us summarize how the cell problems of arbitrary order are obtained (see Section 5.2.5 for the
full derivation). We look for an adaptation of ũ of the form

Bεũ(t, x) = ũ(t, x) +

α+2∑
k=1

εkχk
(
x
ε

)
∂kũ(t, x), (5.20)

where {χk
i1··ik}

α+2
k=1 are Y -periodic functions to be defined and we recall that ∂kũ is the tensor of

Tenk(Rd) with coordinates ∂ki1··ik ũ. Following the argument of Section 4.2.2, we need to build
Bεũ such that rε = (∂2t + Aε)(Bεũ − uε) is of order O(εα+1). Applying inductive Boussinesq
tricks, we substitute ∂2t ũ in the terms of order ε−1 to εα in rε. This technical task is postponed
to Section 5.2.5. Canceling then the terms in the expansion, we obtain the cell problems of order
1 to α+ 2. They read as follows. Define the tensor cr ∈ Ten2r(Rd) as

c0 = a0, cr = a2r −
r−1∑
�=0

b2(r−�)⊗c� r = 1, . . . , �α/2�. (5.21)

Let then {χk
i1··ik}

α+2
k=1 be functions in H1

per(Y ) such that for all test functions w ∈ H1
per(Y ),(

a∇yχ
1
i ,∇yw

)
= −

(
aei,∇yw

)
, (5.22a)(

a∇yχ
2
i1i2 ,∇yw

)
=S2

i1i2

{
−
(
aei1χ

1
i2 ,∇yw

)
+
(
a(∇yχ

1
i2 + ei2)− a0ei2 , ei1w

)}
, (5.22b)(

a∇yχ
2r+1
i1··i2r+1

,∇yw
)
=S2r+1

i1··i2r+1

{
−
(
aei1χ

2r
i2··i2r+1

,∇yw
)

+
(
a
(
∇yχ

2r
i2··i2r+1

+ ei2χ
2r−1
i3··i2r+1

)
, ei1w

)
+
( r∑

�=1

(−1)r−�+1
(
cr−� ⊗ χ2�−1

)
i1··i2r+1

, w
)}
,

(5.22c)
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(
a∇yχ

2r+2
i1··i2r+2

,∇yw
)
=S2r+2

i1··i2r+2

{
−
(
aei1χ

2r+1
i2··i2r+2

,∇yw
)

+
(
a
(
∇yχ

2r+1
i2··i2r+2

+ ei2χ
2r
i3··i2r+2

)
, ei1w

)
+
( r∑

�=1

(−1)r−�+1
(
cr−� ⊗ χ2�

)
i1··i2r+2

, w
)

−
(
(−1)rcri1··i2r+2

, w
)}
,

(5.22d)

where (·, ·) = (·, ·)L2(Y ). We recognize that χ1 and χ2 are the two first cell functions defined in
(4.45a) and (4.45b) in Section 4.2.3. Furthermore, we can verify that χ3, χ4, and χ5 are the cell
functions defined in (4.45c), (4.45d), and (5.13), respectively.

We now investigate the well-posedness of the cell problems (5.22) in order to derive the constraints
on {a2r, b2r}. For simplicity, we choose the zero mean correctors χk

i1··ik ∈Wper(Y ). Recall that
we assume |Y | = 1. To apply the Lax–Milgram theorem and prove that the cell problems are
well-posed in Wper(Y ), we need the right hand sides to belong to W∗

per(Y ). In Appendix A.2, we

provide a characterization of W∗
per(Y ). In particular, F ∈ [H1

per(Y )]
∗
given by〈

F,w
〉
=
(
f0, w

)
L2(Y )

+
(
f1k , ∂kw

)
L2(Y )

,

for some f0, f11 , . . . , f
1
d ∈ L2(Y ) belongs to W∗

per(Y ) if and only if(
f0, 1

)
L2(Y )

= 0. (5.23)

Let us then consider the cell problems (5.22). As already seen, (5.22a) is well-posed unconditionally,
while (5.22b) is well-posed provided a0 is the homogenized tensor (see Section 4.2.3). Similarly,
we verified in Section 4.2.3 that the cell problem for χ3 is well-posed unconditionally, while the
cell problem for χ4 is well-posed provided a2, b2 satisfy the constraint (see (4.49))

c1 = a2 − b2⊗a0 =S −h1, h1i1··i4 =
(
a
(
∇yχ

3
i2i3i4 + ei2χ

2
i3i4

)
, ei1
)
. (5.24)

Let us derive the constraint imposed by the well-posedness of the higher order cell problems.
Assume that the cell problems are well-posed up to order 2r, where r ≥ 2. The odd order cell
problem (5.22c) is well-posed provided(

a
(
∇yχ

2r
i2··i2r+1

+ ei2χ
2r−1
i3··i2r+1

)
, ei1
)
=S 0. (5.25)

This equality is verified in Lemma 5.2.5, in Section 5.2.2. Next, the even order cell problem
(5.22d) is well-posed provided the following equality holds:

cr =S (−1)rhr, hri1··i2r+2
=
(
a
(
∇yχ

2r+1
i2··i2r+2

+ ei2χ
2r
i2··i2r+2

)
, ei1
)
. (5.26)

Using the definition of cr in (5.21), the constraint (5.26) can be rewritten for a2r, b2r as

a2r − b2r⊗a0 =S (−1)rhr +
r−1∑
�=1

b2(r−�)⊗c�. (5.27)

Equality (5.27) is thus the characterization of the family of effective equations. Namely, if (5.19)
is well-posed and if its tensors satisfy (5.27) and (5.24), the solution describes well uε. Indeed,
we verify the following result.

Theorem 5.2.2. Assume that the Y -periodic tensor satisfies a(y) ∈ W2,∞(Y ). Furthermore,
assume that the data and the solution of (5.19) satisfy the regularity

ũ ∈ L∞(0, ε−αT ; Hα+3(Ω)), ∂tũ ∈ L∞(0, ε−αT ; Hα+2(Ω)), ∂2t ũ ∈ L∞(0, ε−αT ; Hα+1(Ω)),

g0 ∈ Hα+2(Ω), g1 ∈ Hα+2(Ω), f ∈ L2(0, ε−αT ; Hα(Ω)).
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Let {χk
i1··ik}k=1 be the zero mean solutions of the cell problems (5.22) and assume that the tensors

{a2r, b2r}�α/2�r=1 satisfy the constraints (5.24) and (5.27). Then the following error estimate holds

‖uε − ũ‖L∞(0,ε−αT ;W ) ≤ Cε
(
‖g1‖Hα+2(Ω) + ‖g0‖Hα+2(Ω) + ‖f‖L1(0,ε−αT ;Hα(Ω))

+
∑α+3

k=1 |ũ|L∞(0,ε−αT ;Hk(Ω)) + |∂2t ũ|L∞(0,ε−αT ;Hα+1(Ω))

)
,

where C depends only on T , λ, {|b2r|∞, |a2r|∞}�α/2�r=1 , ‖a‖W2,∞(Y ), and Y , and we recall the
definition of the norm (see (A.4))

‖w‖W = inf
w=w1+w2

w1,w2∈Wper(Ω)

{
‖w1‖L2(Ω) + ‖∇w2‖L2(Ω)

}
∀w ∈Wper(Ω).

Remark 5.2.3. Referring to Section 4.2.6, a similar result as Theorem 5.2.2 can be proved for a
bounded tensor a(y) ∈ L∞(Y ), provided

ũ ∈ L∞(0, ε−αT ; Hα+5(Ω)), ∂tũ ∈ L∞(0, ε−αT ; Hα+4(Ω)), ∂2t ũ ∈ L∞(0, ε−αT ; Hα+3(Ω)),

g0 ∈ Hα+4(Ω), g1 ∈ Hα+4(Ω), f ∈ L2(0, ε−αT ; Hα+2(Ω)).

Thanks to Theorem 5.2.2, we define the family of effective equations for arbitrary timescales.

Definition 5.2.4. The family E of effective equations is the set of equations (5.19), where the

tensors {b2r, a2r}�α/2�r=1 are major symmetric, positive semidefinite (see (5.15) and (5.16)), and
satisfy the constraints (5.24) and (5.27).

The proof of Theorem 5.2.2 has the same structure as for Theorems 4.2.3, 5.1.1, and 5.1.3. First,
we define an adaptation operator

Bε : L2(0, ε−αT ; Hα+3(Ω))→ L2(0, ε−αT ;Wper(Ω)),

such that Bεũ = [Bεũ] +ϕ, where Bεũ is defined in (5.20) and ϕ is the unique solution of

(∂2t +Aε)ϕ(t, x) = −[Sεf(t, x)] in W∗
per(Ω) a.e. t ∈ [0, ε−αT ],

ϕ(0) = ∂tϕ(0) = [0],

where Sεf is defined in Remark 5.2.12. Note that the assumptions on the effective tensors (5.24)
and (5.27) ensure the well-posedness of the cell problems and thus Bε is well defined. Next, we
define the remainder Rεũ(t) = (∂2t +Aε)(Bεũ(t))− [f(t)] and, using the equation (5.19), we
substitute ∂2t ũ in every term of Rεũ up to order O(εα). The cell problems ensure then that Rεũ
can be written as〈Rεũ(t),w

〉
W∗

per,Wper
=
(
(Rεũ)0(t),w

)
L2 +

(
(Rεũ)1(t),∇w

)
L2 ,

where (Rεũ)0(t) and (Rεũ)1(t) satisfy

‖(Rεũ)0‖L∞(L2(Ω)) + ‖(Rεũ)1‖L∞(L2(Ω)) ≤ Cεα+1
(
|ũ|L∞(Hα+3) + |∂2t ũ|L∞(Hα+1)

)
.

Hence, Corollary 4.2.2 ensures that η = [uε]−Bεũ satisfies

‖η‖L∞(W) ≤ Cε
(
|ũ|L∞(Hα+3) + |∂2t ũ|L∞(Hα+1) + ‖g0‖Hα+2 + ‖g1‖Hα+2

)
. (5.28)

As (uε − ũ)(t) ∈Wper(Ω), the triangle inequality gives the estimate

‖uε − ũ‖L∞(W ) = ‖[uε − ũ]‖L∞(W) ≤ ‖η‖L∞(W) + ‖Bεũ− [ũ]‖L∞(W),

which, combined with (5.28) and the trivial bound for ‖Bεũ− [ũ]‖L∞(W), proves the theorem.
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5.2.2 Two remarkable relations between the solutions of the cell problems

In this section, we present two technical relations between the solutions of the cell problems
defined in (5.22). The first one, Lemma 5.2.5, guarantees that the odd order cell problems are
well-posed unconditionally (see (5.25)). This fact is already known in the context of Bloch wave
theory (see e.g. [42], [23] and the references therein). In particular, this feature implies that no
additional correction is required in the effective equation for odd timescales. The second relation
is a new result. Recall that in the case r = 1, in Section 4.2.3, the dependence on χ3 of the
constraint h1, in (5.24), was removed. This remarkable fact is generalized in Lemma 5.2.6, were
we show that the constraint hr, in (5.27), can be computed with {χk}r+1

k=1 instead of {χk}2r+1
k=1 .

As discussed in Section 5.2.4, the consequence of this relation is an meaningful reduction of the
computational cost for the computation of the effective tensors.

Lemma 5.2.5. For any 1 ≤ r ≤ α/2, we have(
a
(
∇yχ

2r
i2··i2r+1

+ ei2χ
2r−1
i3··i2r+1

)
, ei1

)
=S 0.

Proof. First note that thanks to the symmetry of a, the terms of the following sum cancel two by
two :

T =
2r∑
k=1

(−1)k
(
a∇yχ

k
i1··ik ,∇yχ

2r+1−k
ik+1··i2r+1

)
=S 0. (5.29)

We write T as

T = −
(
a∇yχ

1
i1 ,∇yχ

2r
i2··i2r+1

)
+
(
a∇yχ

2
i1i2 ,∇yχ

2r−1
i3··i2r+1

)
+ T 1 + T 2,

where, if r = 1, T 1 = T 2 = 0 and, if r ≥ 2, T 1 and T 2 are the sums over the odd and the even
indices, respectively:

T 1 = −
r−1∑
s=1

(
a∇yχ

2s+1
i1··i2s+1

,∇yχ
2(r−s)
i2s+2··i2r+1

)
, T 2 =

r−1∑
s=1

(
a∇yχ

2s+2
i1··i2s+2

,∇yχ
2(r−s)−1
i2s+3··i2r+1

)
.

Using (5.22a), (5.22b), and the symmetry of a, we find that

T =S

(
a(∇yχ

2r
i2··i2r+1

+ ei2χ
2r−1
i3··i2r+1

), ei1
)

−
(
aei1χ

1
i2 ,∇yχ

2r−1
i3··i2r+1

)
+
(
a∇yχ

1
i2 , ei1χ

2r−1
i3··i2r+1

)
+ T 1 + T 2.

(5.30)

We claim that

T 1 + T 2 =S

(
aei1χ

1
i2 ,∇yχ

2r−1
i3··i2r+1

)
−
(
a∇yχ

1
i2 , ei1χ

2r−1
i3··i2r+1

)
. (5.31)

If r = 1, (5.31) is trivial. Let us prove it for r ≥ 2. We use (5.22c) and (5.22d) to write T 1 and
T 2 as T i =S T

i
1 + T i

2 + T i
3, where

T 1
1 =S

r−1∑
s=1

(
aei1χ

2s
i2··i2s+1

,∇yχ
2(r−s)
i2s+2··i2r+1

)
−

r−1∑
s=1

(
a∇yχ

2s
i2··i2s+1

, ei1χ
2(r−s)
i2s+2··i2r+1

)
,

T 1
2 =S −

r−1∑
s=1

(
aei2χ

2s−1
i3··i2s+1

, ei1χ
2(r−s)
i2s+2··i2r+1

)
,

T 1
3 =S −

r−1∑
s=1

s∑
�=1

(−1)s−�+1
(
(cs−� ⊗ χ2�−1)i1··i2s+1 , χ

2(r−s)
i2s+2··i2r+1

)
,
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T 2
1 =S −

r−1∑
s=1

(
aei1χ

2s+1
i2··i2s+3

,∇yχ
2(r−s)−1
i2s+3··i2r+1

)
+

r−1∑
s=1

(
a∇yχ

2s+1
i2··i2s+2

, ei1χ
2(r−s)−1
i2s+3··i2r+1

)
,

T 2
2 =S

r−1∑
s=1

(
aei2χ

2s
i3··i2s+2

, ei1χ
2(r−s)−1
i2s+3··i2r+1

)
,

T 2
3 =S

r−1∑
s=1

s∑
�=1

(−1)s−�+1
(
(cs−� ⊗ χ2�)i1··i2s+3 , χ

2(r−s)−1
i2s+3··i2r+1

)
.

Changing the index as m = r − s in T 1
1 gives T 1

1 =S 0. The same change of indices in T 1
2 gives

T 1
2 + T 2

2 =S 0. Next, in T 1
3 , we make the change of indices m = r − s, invert the order of

summation, and again change k = r − � to get

T 1
3 =

r−1∑
s=1

s∑
�=1

(−1)s−�cs−�⊗χ2�−1⊗χ2(r−s) =

r−1∑
m=1

r−m∑
�=1

(−1)r−m−�cr−m−�⊗χ2�−1⊗χ2m

=

r∑
�=1

r−�∑
m=1

(−1)r−m−�cr−m−�⊗χ2�−1⊗χ2m=

r−1∑
k=1

k∑
m=1

(−1)k−mck−m⊗χ2(r−k)−1⊗χ2m = −T 2
3 ,

which proves that T 1
3 + T 2

3 =S 0. Combining the different equalities for the T i
j , we now have

T 1 + T 2 =S T
1
1 + (T 1

2 + T 2
2 ) + (T 1

3 + T 2
3 ) + T 2

1 =S T
2
1 .

Finally, the change of indices m = r − s− 1 in the first term of T 2
1 leads to

T 1 + T 2 =S T
2
1 = −

r−2∑
m=0

(
aei1χ

2(r−m)−1
i2··i2(r−m)

,∇yχ
2m+1
i2(r−m)+1··i2r+1

)
+

r−1∑
s=1

(
a∇yχ

2s+1
i2··i2s+2

, ei1χ
2(r−s)−1
i2s+3··i2r+1

)
= −

(
aei1χ

2r−1
i2··i2r ,∇yχ

1
i2r+1

)
+
(
a∇yχ

2r−1
i2··i2r , ei1χ

1
i2r+1

)
,

which proves the claim (5.31). Combining then (5.29), (5.30), and (5.31) gives the result of the
lemma.

Lemma 5.2.6. Recall that we assume |Y | = 1. For 2 ≤ r ≤ α/2, the tensor

hri1··i2r+2
=
(
a
(
∇yχ

2r+1
i2··i2r+2

+ ei2χ
2r
i3··i2r+2

)
, ei1
)
,

satisfies the decomposition

hr =S (−1)rkr +
r−1∑

s=�r+1
2 �

� r
2 �∑

�=1

pr,s,� −
r∑

s=� r
2 �+1

�r+1
2 �∑

�=1

qr,s,�,

where pr,s,�, qr,s,�, and kr are defined as

pr,s,� = (−1)s−�+1
〈
cs−�⊗χ2�⊗χ2(r−s)

〉
Y
,

qr,s,� = (−1)s−�+1
〈
cs−�⊗χ2�−1⊗χ2(r−s)+1

〉
Y
,

kri1··i2r+2
= −

(
a∇yχ

r+1
i1··ir+1

,∇yχ
r+1
ir+2··i2r+2

)
+
(
aei2χ

r
i3··ir+2

, ei1χ
r
ir+3··i2r+2

)
.

(5.32)

Proof. Defining σk =

{
(−1)k if k ≤ r + 1
(−1)k+1 if k > r + 1

, we verify thanks to the symmetry of a that

T =
2r+1∑
k=1

σk
(
a∇yχ

k
i1··ik ,∇yχ

2r+2−k
ik+1··i2r+2

)
=S (−1)r+1

(
a∇yχ

r+1
i1··ir+1

,∇yχ
r+1
ir+2··i2r+2

)
. (5.33)

118



5.2. EFFECTIVE EQUATIONS FOR ARBITRARY TIMESCALES

We write T as

T = −
(
a∇yχ

1
i1 ,∇yχ

2r+1
i2··i2r+2

)
+
(
a∇yχ

2
i1i2 ,∇yχ

2r
i3··i2r+2

)
+ T 1 + T 2,

where, if r = 1, T 1 = σ2r+1
(
a∇yχ

2r+1
i1··i2r+1

,∇yχ
1
i2r+2

)
and T 2 = 0 and, if r ≥ 2, T 1 and T 2 are the

sums over the odd and the even indices, respectively:

T 1 =

r∑
s=1

σ2s+1
(
a∇yχ

2s+1
i1··i2s+1

,∇yχ
2(r−s)+1
i2s+2··i2r+2

)
, T 2 =

r−1∑
s=1

σ2s+2
(
a∇yχ

2s+2
i1··i2s+2

,∇yχ
2(r−s)
i2s+3··i2r+2

)
.

Using (5.22a), (5.22b), and the symmetry of a, we find that

T =S

(
a(∇yχ

2r+1
i2··i2r+2

+ ei2χ
2r
i3··i2r+2

), ei1
)

−
(
aei1χ

1
i2 ,∇yχ

2r
i3··i2r+2

)
+
(
a∇yχ

1
i2 , ei1χ

2r
i3··i2r+2

)
+ T 1 + T 2.

(5.34)

Using (5.22c) and (5.22d), we write T 1 and T 2 as T i =S T
i
1 + T i

2 + T i
3, where

T 1
1 =S −

r∑
s=1

σ2s+1
(
aei1χ

2s
i2··i2s+1

,∇yχ
2(r−s)+1
i2s+2··i2r+2

)
+

r∑
s=1

σ2s+1
(
a∇yχ

2s
i2··i2s+1

, ei1χ
2(r−s)+1
i2s+2··i2r+2

)
,

T 1
2 =S

r∑
s=1

σ2s+1
(
aei2χ

2s−1
i3··i2s+1

, ei1χ
2(r−s)+1
i2s+2··i2r+2

)
, T 1

3 =S

r∑
s=1

σ2s+1
s∑

�=1

qr,s,�i1··i2r+2
,

T 2
1 =S −

r−1∑
s=1

σ2s+2
(
aei1χ

2s+1
i2··i2s+3

,∇yχ
2(r−s)
i2s+3··i2r+2

)
+

r−1∑
s=1

σ2s+2
(
a∇yχ

2s+1
i2··i2s+2

, ei1χ
2(r−s)
i2s+3··i2r+2

)
,

T 2
2 =S

r−1∑
s=1

σ2s+2
(
aei2χ

2s
i3··i2s+2

, ei1χ
2(r−s)
i2s+3··i2r+2

)
, T 2

3 =S

r−1∑
s=1

σ2s+2
s∑

�=1

pr,s,�i1··i2r+2
,

where qr,s,� and pr,s,� are defined in (5.32). We claim that the following equalities hold:

T 1
1 + T 2

1 =S

(
aei1χ

1
i2 ,∇yχ

2r
i3··i2r+2

)
−
(
a∇yχ

1
i2 , ei1χ

2r
i3··i2r+2

)
, (5.35)

T 1
2 + T 2

2 =S (−1)r+1
(
aei2χ

r
i3··ir+2

, ei1χ
r
ir+3··i2r+2

)
, (5.36)

T 1
3 =S

r∑
s=� r

2 �+1

�r+1
2 �∑

�=1

qr,s,�i1··i2r+2
, (5.37)

T 2
3 =S −

r−1∑
s=�r+1

2 �

� r
2 �∑

�=1

pr,s,�i1··i2r+2
. (5.38)

Let us first prove (5.35). In T 1
1 , we separate the terms s = r in both sums and then make the

change of indices m = r − s in the remaining sums. Summing with T 2
1 , we find

T 1
1 + T 2

1 =S − σ2r+1
(
aei1χ

2r
i2··i2r+1

,∇yχ
1
i2r+2

)
+ σ2r+1

(
a∇yχ

2r
i2··i2r+1

, ei1χ
1
i2r+2

)
+

r−1∑
m=1

(σ2m+2 − σ2(r−m)+1)
(
aei1χ

2m+1
i2··i2m+3

,∇yχ
2(r−m)
i2m+3··i2r+2

)
+

r−1∑
s=1

(σ2(r−m)+1 − σ2m+2)
(
a∇yχ

2m+1
i2··i2m+2

, ei1χ
2(r−m)
i2m+3··i2r+2

)
.

As σ2r+1 = (−1)2(r+1) = 1 and

σ2m+2 = σ2(r−m)+1 =

{
1 if m ≤ �r−1

2 �,
−1 if m > �r−1

2 �,
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(5.35) is proved. Let us now prove (5.36). Studying the signs of σ2s+1 and σ2s+2, we write
T i
2 = T i

21 + T i
22, where

T 1
21 = −

� r
2 �∑

s=1

(
aei2χ

2s−1
i3··i2s+1

, ei1χ
2(r−s)+1
i2s+2··i2r+2

)
, T 1

22 =

r∑
s=� r

2 �+1

(
aei2χ

2s−1
i3··i2s+1

, ei1χ
2(r−s)+1
i2s+2··i2r+2

)
,

T 2
21 =

�r−1
2 �∑

s=1

(
aei2χ

2s
i3··i2s+2

, ei1χ
2(r−s)
i2s+3··i2r+2

)
, T 2

22 = −
r∑

s=�r−1
2 �+1

(
aei2χ

2s
i3··i2s+2

, ei1χ
2(r−s)
i2s+3··i2r+2

)
.

Making the change of indices m = r − s+ 1 in T 1
21 and m = r − s in T 2

21, we find

T 1
21 = −

r∑
m=�r+1

2 �+1

(
aei2χ

2(r−m)+1
i3··i2(r−m)+3

, ei1χ
2m−1
i2(r−m)+4··i2r+2

)
,

T 2
21 =

r∑
m=� r

2 �+1

(
aei2χ

2(r−m)
i3··i2(r−m)+2

, ei1χ
2m
i2(r−m)+3··i2r+2

)
.

Assume first that r is even. In this case, � r2� = �r+1
2 � and that implies T 1

2 =S 0. Furthermore,

as �r−1
2 �+ 1 = � r2�, we obtain T 2

2 =S −
(
aei2χ

r
i3··ir+2

, ei1χ
r
ir+3··i2r+2

)
, which implies (5.36) in the

case where r is even. Assume then that r is odd. In this case, we verify that T 2
2 =S 0 and

T 1
2 =S

(
aei2χ

r
i3··ir+2

, ei1χ
r
ir+3··i2r+2

)
, and that concludes the proof of (5.36). Next, we prove

(5.37). Let us write T 1
3 as T 1

3 =
〈
(T̃ 1

31 + T̃ 1
32)i1··i2r+2

〉
Y
, where

T̃ 1
31 = −

� r
2 �∑

s=1

s∑
�=1

qr,s,�, T̃ 1
32 =

r∑
s=� r

2 �+1

s∑
�=1

qr,s,�,

and qr,s,� is defined in (5.32). Making the change of indices m = r − s+ 1, exchanging the sums,
changing the indices k = r − �+ 1, and using the equality qr−m+1,r−k+1 =S q

k,m, we rewrite T̃ 1
31

as

T̃ 1
31 = −

r∑
m=�r+1

2 �+1

r−m+1∑
�=1

qr−m+1,� = −
� r
2 �∑

�=1

r−�+1∑
m=�r+1

2 �+1

qr−m+1,� =S −
r∑

k=�r+1
2 �+1

k∑
m=�r+1

2 �+1

qk,m.

If r is even, we verify that � r2� = �r+1
2 � and summing T̃ 1

31 + T̃ 1
32, we obtain (5.37). Similarly, if

r is odd, we verify that � r2�+ 1 = �r+1
2 � and summing T̃ 1

31 + T̃ 1
32 gives (5.37). Finally, we prove

(5.38). Let us write T 2
3 as T 2

3 =
〈
(T̃ 2

31 + T̃ 2
32)i1··i2r+2

〉
Y
, where

T̃ 2
31 =

�r−1
2 �∑

s=1

s∑
�=1

pr,s,�, T̃ 2
32 = −

r∑
s=�r−1

2 �+1

s∑
�=1

pr,s,�,

and pr,s,� is defined in (5.32). Making the change of indices m = r − s, exchanging the sums,
again changing k = r − �, and using that pr−m,r−k =S p

k,m, we rewrite T̃ 2
31 as

T̃ 2
31 =

r−1∑
m=� r

2 �+1

r−m∑
�=1

pr−m,� =

�r−1
2 �∑

�=1

r−�∑
m=� r

2 �+1

pr−m,� =

r−1∑
k=� r

2 �+1

k∑
m=� r

2 �+1

pk,m.

Studying the parities of r separately, we sum T̃ 2
31 + T̃ 2

32 and obtain (5.38). Combining now (5.33),
(5.34), and (5.35), we obtain(
a
(
∇yχ

2r+1
i2··i2r+2

+ei2χ
2r
i3··i2r+2

)
, ei1
)
=S (−1)r+1

(
a∇yχ

r+1
i1··ir+1

,∇yχ
r+1
ir+2··i2r+2

)
−(T 1

2 +T
2
2 +T

1
3 +T

2
3 ).

This equality, combined with (5.36), (5.37), and (5.38) proves the lemma.
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5.2.3 Existence of effective equations and matrix associated to a symmetric tensor
of even order

Recall that the family of effective equations for arbitrary timescales E is defined implicitly by

constraints on the tensors {(a2r, b2r)}�α/2�r=1 (Definition 5.2.4). However, these constraints do not
provide a way to compute the tensors explicitly. Furthermore, we have yet no guaranty of the
existence of an equation in the family E . In this section, we prove that the family E is not
empty. Furthermore, we describe one possible construction of effective tensors. In particular, we
generalize the procedure used for fourth order tensors, presented in Section 4.3.2.

Let us recall the definitions of positive (semi)definite tensors of even order in (5.16) and (5.17).
A tensor q ∈ Ten2n(Rd) is said positive semidefinite if

qi1···i2nξi1···inξin+1···i2n ≥ 0 ∀ξ ∈ Symn(Rd). (5.39)

It is positive definite if the inequality in (5.39) is strict for all ξ ∈ Symn(Rd)\{0}.

In a first time, we prove two results on the sign of even order tensors. The first is a generalization
of Lemma 4.3.1, while the second generalizes Lemma 4.3.3 and ensures that the tensor S2n(⊗na0)
is positive definite.

Lemma 5.2.7. Let R ∈ Ten2n(Rd) be a positive definite tensor and let A ∈ Sym2(Rd) be a
symmetric, positive definite matrix. Then the tensor of Ten2n+2(Rd) defined by Ai1i2n+2

Ri2··i2n+1

is positive definite.

Proof. As A is symmetric positive definite, the Cholesky factorization gives an invertible H such
that A = HTH. For ξ ∈ Symn+1(Rd), we thus have

Ai1i2n+2Ri2··i2n+1ξi1··in+1ξin+1··i2n+2 = Ri2··i2n+1

(
Hrjξji2··in+1

)(
Hrjξjin+2··i2n+2

)
≥ 0. (5.40)

As R is positive definite, the equality holds if and only if Hrjξji2··in+1
= 0 for all r, i2, . . . , in+1 ∈

{1, . . . , d}. Let i2, · · · , in+1 be arbitrarily fixed and denote vj = ξji2··in+1
. Hence, we have

Hrjvj = 0 for all r, which is equivalent to HT v = 0. As H is regular, so is HT , and thus v = 0.
We have proved that if the equality holds in (5.40) then ξ = 0. Hence the tensor is positive
definite and the proof of the lemma is complete.

Lemma 5.2.8. If A ∈ Sym2(Rd) is a symmetric, positive definite matrix, then the tensor
S2n(⊗nA) ∈ Sym2n(Rd) is positive definite.

Proof. We proceed by induction. The case n = 1 is proved by Lemma 4.3.3. We assume that the
result holds for 1, . . . , n− 1 and prove it for n. Let ξ ∈ Symn(Rd)\{0}. First, assume that n is
odd. Then, the product S2n(⊗nA)ξ : ξ is composed of terms of the form

AjkAi1i2 · · ·Ai2n−3i2n−2
ξji1···in−1

ξkin···i2n−2
, (5.41)

i.e., one of the factor Airis share indices with both ξ. Thanks to Lemma 5.2.7, the induction
assumption ensures that all these terms are strictly positive and thus S2n(⊗nA) is positive
definite. Second, we assume that n is even. Then, the product S2n(⊗nA)ξ : ξ is composed of
terms of two forms. First, there are terms of the form (5.41). By the same induction argument
as before, they are strictly positive. Second, terms of the form

Ai1i2 · · ·Ain−1inAin+1in+2
· · ·Ai2n−1i2nξi1···inξin+1···i2n =

(
Ai1i2 · · ·Ain−1inξi1···in

)2 ≥ 0.

Altogether, we verify that S2n(⊗nA)ξ : ξ > 0 and the proof of the lemma is complete.
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Let us now prove that the family E , defined in Definition 5.2.4, is not empty. Recall that the
existence of valid pairs a2, b2 was already proved in Section 4.3.2. We thus need to find pairs of

positive semidefinite, major symmetric tensors {a2r, b2r}α/2r=2 that satisfy the constraints (5.27),
given by

a2r − b2r⊗a0 =S (−1)rhr +
r−1∑
�=1

b2(r−�)⊗c� =: q̌r, (5.42)

where hr and cr are the tensors defined in (5.24) and (5.21), respectively. The existence of such
pairs is guaranteed by Lemma 5.2.7. Indeed, it ensures that if R ∈ Sym2r(Rd) is a “sufficiently
large” positive definite tensor, then the pair

a2r = S2r+2
(
q̌r +R⊗a0

)
, b2r = S2r

(
R
)
, (5.43)

define an effective equation in the family E . Indeed, these tensors are positive semidefinite by
construction. Furthermore, they are also major symmetric and satisfy the constraint (5.42).

We now need a practical way to construct the tensor R in (5.43). To that purpose, for a given
symmetric tensor of even order q, we construct a matrix M(q), whose spectrum is connected
to the sign of q. The construction is similar to what was done in Section 4.3.3 for fourth order
major symmetric tensors. We consider the bilinear map

Symn(Rd)× Symn(Rd)→ R, (ξ, η) → qξ : η = qi1···inin+1···i2nξi1···inηin+1···i2n . (5.44)

Denote I(d, n) the set of multiindices of the distinct entries of a tensor in Symn(Rd), i.e.,

I(d, n) =
{
i = (i1, . . . , in) : 1 ≤ i1 ≤ . . . ≤ in ≤ d

}
.

We verify that the cardinality of I(d, n) is given by N(d, n) = |I(d, n)| =
(
d+n−1

n

)
. Denote then

J(d, n) = {1, . . . , N(d, n)} and let � : J(d, n)→ I(d, n) be a bijection. We define then the bijective
mapping

ν : Symn(Rd)→ RN(d,n), ξ → ν(ξ),
(
ν(ξ)

)
m

= ξ�(m) m ∈ J(d, n).

For i ∈ I(d, n), let z(i) be the number of multiindices in {1, . . . , d}n that are equivalent to i up
to symmetries, i.e.,

z(i) =
∣∣{j ∈ {1, . . . d}n : there exists a permutation σ s.t. σ(j) = i}

∣∣.
With these notations, we rewrite the map defined in (5.44) as

qξ : η =
∑

i,j∈I(d,n)

z(i)z(j)qijξiηj =

N(d,n)∑
n,m=1

z
(
�(n)

)
z
(
�(m)

)
q�(n)�(m)ξ�(n)η�(m).

Defining then the matrix associated to a tensor as

M : Sym2n(Rd)→ Sym2(RN(d,n)),

q →M(q)
(
M(q)

)
mn

= z
(
�(n)

)
z
(
�(m)

)
q�(n)�(m) m,n ∈ J(d, n),

(5.45)

we verify that qξ : η =M(q)ν(ξ) · ν(η). Hence, q is positive definite (resp. semidefinite) if and
only if M(q) is positive definite (resp. semidefinite).

We prove the following lemma.
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Lemma 5.2.9. Let q̌ ∈ Sym2n(Rd) and define the matrices Q =M(q̌) and A =M
(
S2n(⊗na0)

)
.

Then the tensor

q = q̌ + δS2n(⊗na0), δ ≥ δ∗ =

{
−
λmin

(
Q
)

λmin(A)

}
+

,

is positive semidefinite, where we denoted λmin(·) the minimal eigenvalue of the matrices.

Proof. First, as Q and A are symmetric matrices by definition, λmin(Q) and λmin(A) are real.
Next, thanks to Lemma 5.2.8 S2n(⊗na0) is positive definite and thus λmin(A) > 0. Note that
λmin(Q) ≤ (Qv · v)/(v · v) for any v ∈ RN(d,n) and similarly for A. If Q is positive semidefinite,
then δ∗ = 0 and the tensor q is positive semidefinite for any δ ≥ δ∗ = 0. Assuming then that
λmin(Q) < 0, we verify that for any v ∈ RN(d,n),

δ∗ = −λmin(Q)

λmin(A)
≥ −Qv · v

Av · v .

Hence, writing δ = δ∗ +Δδ with Δδ ≥ 0 and denoting vξ = ν(ξ), we have

qξ : ξ = Qvξ · vξ + δ∗Avξ · vξ +ΔδAvξ · vξ ≥ 0 ∀ξ ∈ Symn(Rd),

and the proof of the lemma is complete.

Thanks to Lemma 5.2.9, we can complete the construction given in (5.43) by setting R =
δ∗S2r(⊗ra0), where

δ∗ =

{
−
λmin

(
Q
)

λmin(A

}
+

, Q =M(q̌r), A =M
(
S2r+2(⊗r+1a0)

)
.

This process is used to compute the pairs {a2r, b2r} for every r ≥ 1 in the next section (Algorithm
5.2.10).

5.2.4 Algorithm for the computation of the tensors of an effective equation

In this section, we provide a numerical procedure for the computation of the effective tensors
of an effective equation that belongs to the family E , defined in Definition 5.2.4. Note that the
procedure relies on the results of the previous section, where we presented a process to increase
the sign of symmetric tensors.

The numerical procedure is given in Algorithm 5.2.10. Let us discuss it. From line 1 to line 8, we
recognize Algorithm 4.3.7 for the computation of the tensors a2, b2 (Section 4.3.4). However, note
that in Algorithm 4.3.7, (5.43) was applied with R = δS2,2

ij,kl{a0jkIil}, while in Algorithm 5.2.10,

we use R = δS4(a0⊗a0). This alternative was discussed in Section 4.3.2). Next, let us verify that
the tensors a2r, b2r, defined in lines 22 and 23, satisfy the constraint (5.26) characterizing the
family E . Indeed, we have

a2r − b2r⊗a0 =S ǎ
2r −

〈
a0⊗χr⊗χr

〉
Y
=S k

r + (−1)r
r−1∑

s=�r+1
2 �

� r
2 �∑

�=1

pr,s,� + (−1)r+1
r∑

s=� r
2 �+1

�r+1
2 �∑

�=1

qr,s,�.

As Lemma 5.2.6 ensures that the right hand side equals (−1)rhr, a2r, b2r satisfy (5.26). Finally,
observe that

−
〈
a0⊗χr⊗χr

〉
Y
=

{
(−1)rpr,r/2,r/2 if r is even,

(−1)r+1qr,(r+1)/2,(r+1)/2 if r is odd.
(5.46)
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Thus, the term
〈
a0⊗χr⊗χr

〉
Y

in line 18 cancels one term in one of the preceding double sums.

It is interesting to note that the construction to obtain positive semidefinite tensors is also
necessary in one dimension. Indeed, recall that in one dimension, for r = 1 it holds ǎ2 = 0 and
thus a2 = 0, b2 =

〈
(χ1)2

〉
Y

(see Section 4.3.1). However, for r ≥ 2, the algorithm defines

(
a2r, b2r

)
=

{ (
0,
〈
(χr)2

〉
Y
+ |ǎ2r|

)
if ǎ2r ≤ 0,(

ǎ2r,
〈
(χr)2

〉
Y

)
if ǎ2r > 0.

As the sign of ǎ2r is unknown a priori, this process is needed to guarantee the well-posedness of
the corresponding effective equation.

Let us discuss the complexity of Algorithm 5.2.10. Let then CP(d, k) be the total number of
cell problems to solve to obtain χ1 to χk. As χr has N(d, r) = |I(d, r)| =

(
d+r−1

r

)
entries, we

calculate

CP(d, k) =
k∑

r=1

N(d, r) =

k∑
r=1

(
r + d− 1

r

)
=

(
k + d

d

)
− 1.

The cost of Algorithm 5.2.10 is thus CP(d, �α/2�+1). Note that without Lemma 5.2.6, computing
the tensors requires χ1 to χ2�α/2�+1, i.e., the cost would be CP(d, 2�α/2�+1). To fully appreciate
the gain obtained thanks to Lemma 5.2.6, let us compare the corresponding costs for the
computation of the effective tensors for a timescale O(ε−6), i.e. �α/2� = 3. If d = 2, only 14 cell
problems need to be solved thanks to Lemma 5.2.6 instead of 35. If d = 3, 34 cell problems are
sufficient thanks to Lemma 5.2.6 instead of 119.
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Algorithm 5.2.10 Compute the tensors of an effective equation (5.19). Note that the matrix
construction M(·) is defined in (5.45).

Input : tensor a, timescale α.

Output : effective tensors a0, {a2r, b2r}�α/2�r=1 .

1: for all i ∈ I(d, 1) χ1
i ← solve (5.22a) with

〈
χ1
i

〉
Y
= 0

2: for all i ∈ I(d, 2) a0i1i2 = −
〈
a∇yχ

1
i2
· ∇yχ

1
i1

〉
Y
+
〈
aei2 · ei1

〉
Y

3: for all i ∈ I(d, 2) χ2
i1i2

← solve (5.22b) with
〈
χ2
i1i2

〉
Y
= 0

4: for all i ∈ I(d, 4) ǎ2i1··i4 = S4
i1··i4

{
−
〈
a∇yχ

2
i1i2

· ∇yχ
2
i3i4

〉
Y
+
〈
aei2χ

1
i3
· ei1χ1

i4

〉
Y

}
5: A2 =M(ǎ2), A0 =M

(
S4(a0⊗a0)

)
6: δ∗ =

{
− λmin(A

2)

λmin(A0)

}
+

7: a2 = S4
(
ǎ2 + δ∗a0⊗a0

)
8: b2 =

〈
χ1⊗χ1

〉
Y
+ δ∗a0

9: c0 = a0, c1 = a2 − b2⊗a0
10: for r = 2, . . . , �α/2� do
11: for all i ∈ I(d, r + 1) χr+1

i1··ir+1
← solve (5.22c) or (5.22d) with

〈
χr+1
i1··ir+1

〉
Y
= 0

12: for all i ∈ I(d, 2r + 2)
13: kri1··i2r+2

= −
〈
a∇yχ

r+1
i1··ir+1

· ∇yχ
r+1
ir+2··i2r+2

〉
Y
+
〈
aei2χ

r
i3··ir+1

· ei1χr
ir+2··i2r+2

〉
Y

14: for s = � r+1
2 �, . . . , r − 1 and � = 1, . . . , � r2�

15: pr,s,� = (−1)s−�+1
〈
cs−�⊗χ2�⊗χ2(r−s)

〉
Y

16: for s = � r2�+ 1, . . . , r and � = 1, . . . , � r+1
2 �

17: qr,s,� = (−1)s−�+1
〈
cs−�⊗χ2�−1⊗χ2(r−s)+1

〉
Y

18: ǎ2r = S2r+2

(
kr + (−1)r

r−1∑
s=�r+1

2 �

� r
2 �∑

�=1

pr,s,� + (−1)r+1
r∑

s=� r
2 �+1

�r+1
2 �∑

�=1

qr,s,� +
〈
a0⊗χr⊗χr

〉
Y

19: +
r−1∑
�=1

b2(r−�) ⊗ c�

)
20: A2r =M(ǎ2r), A0 =M

(
S2r+2(⊗r+1a0)

)
21: δ∗ =

{
− λmin(A

2r)

λmin(A0)

}
+

22: a2r = ǎ2r + δ∗S2r+2(⊗r+1a0)
23: b2r = S2r

(〈
χr⊗χr

〉
+ δ∗ ⊗r a0

)
24: cr = a2r −

r−1∑
�=0

b2(r−�)⊗c�

25: end for

5.2.5 Derivation of the cell problems of arbitrary order via asymptotic expansion

In this section, we proceed to the technical derivation of the cell problems defined in (5.22). Let
us briefly recall how we proceed. First, we consider a candidate effective equation, whose solution
is denoted ũ. As we know from Chapter 4, the form of this equation is of major importance.
Indeed, if it is too restrictive, it may lead to ill-posed equations. We thus let the higher order
differential operators be composed of pairs of operators: one with purely space derivatives and
one with mixed space and time derivatives (see (5.47)). The main task is then the construction
of an adaptation of ũ. In particular, the adaptation involves correctors that are solution of cell
problems. To obtain the cell problems, we need to recursively apply Boussinesq tricks, i.e., use
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the effective equation at first order to substitute the time derivatives in the expansion. This is a
technical task whose result is given in Lemma 5.2.11.

Let us proceed to the derivation of the cell problems. For simplicity, let us consider an even
timescale: O(ε−α), with α even. We also let f = 0 (see Remark 5.2.12 for the case f �= 0).
Finally, recall that to simplify the notations we assume |Y | = 1. Let us first discuss the ansatz on
the form of the effective equation. Let a0 be the homogenized tensor and for r = 1, . . . , �α/2�, let
a2r ∈ Ten2r+2(Rd), b2r ∈ Ten2r(Rd) be positive semidefinite major symmetric tensors (see (5.17)
and (5.15)). Consider the following ansatz for the effective equation:

∂2t ũ = a0∂2ũ+

α/2∑
r=1

(−1)rε2r
(
a2r∂2r+2ũ− b2r∂2r∂2t ũ

)
in (0, ε−αT ]× Ω,

x → ũ(t, x) Ω-periodic in [0, ε−αT ],

ũ(0, x) = g0(x), ∂tũ(0, x) = g1(x) in Ω,

(5.47)

where we recall the notation for the differential operators (5.18). Observe that thanks to the
sign of the tensors, under sufficient regularity of g0, g1, (5.47) is well-posed. Indeed, its weak
formulation is∫

0

ε−αT(
ũ(t), ∂2t v(t)

)
H +A

(
ũ(t), v(t)

)
dt =

∫
0

ε−αT(
f(t), v(t)

)
L2(Ω)

dt

+
(
g1, v(0)

)
H −

(
g0, ∂tv(0)

)
H.

for any test functions v ∈ C2([0, ε−αT ];Wper(Ω) ∩ Hα/2+1(Ω)) with v(ε−αT ) = ∂tv(ε
−αT ) = 0,

where the bilinear forms are defined as

(
v, w
)
H =

(
v, w
)
L2 +

α/2∑
r=1

ε2r
(
b2ri1···i2r∂

r
i1···irv, ∂

r
ir+1···i2rw

)
L2 ,

A
(
v, w
)
=
(
a0∇v,∇w

)
L2 +

α/2∑
r=1

ε2r
(
a2ri1···i2r+2

∂r+1
i1···ir+1

v, ∂r+1
ir+2···i2r+2

w
)
L2 .

Thanks to the sign and major symmetry of the tensors, we can prove the existence and uniqueness
of a weak solution ũ of (5.48) (see also Section 2.1.2). We assume here that ũ and its time
derivatives are as smooth as required. Furthermore, we assume that the following quantities are
bounded independently of ε∑K

k=1 |ũ|L∞(0,ε−αT ;Hk(Ω)),
∑K

k=1 |∂2t ũ|L∞(0,ε−αT ;Hk(Ω)) ≤ C,

for a sufficiently large K. The ansatz on the adaptation of ũ is

Bεũ(t, x) = ũ(t, x) +

α+2∑
k=1

εkuk
(
t, x, xε

)
= ũ(t, x) +

α+2∑
k=1

εkχk
(
x
ε

)
∂kũ(t, x). (5.48)

We develop

rε = (∂2t +Aε)(Bεũ− uε) = ε−1
(

Ayyu
1 +Axyũ

)
+ ε0

(
∂2t ũ+Ayyu

2 +Axyu
1 +Axxũ

)
(5.49)

+
α∑

k=1

εk
(
∂2t u

k +Ayyu
k+2 +Axyu

k+1 +Axyu
k
)

+O(εα+1),

where Ayy,Axy,Axx are defined as

Ayy = −∇y ·
(
a(y)∇y ·

)
, Axy = −∇y ·

(
a(y)∇x ·

)
−∇x ·

(
a(y)∇y ·

)
,

Axx = −∇x ·
(
a(y)∇x ·

)
.
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We now need to substitute all the terms containing ∂2t ũ in this development until only space
derivatives of ũ are left. To do so, we apply recursive Boussinesq tricks. The result of this
technical task is contained in the following lemma (the proof is postponed to the end of the
section).

Lemma 5.2.11. The solution of (5.47) satisfies

∂2t ũ =

α/2∑
r=0

ε2r(−1)rcr∂2r+2ũ+O(εα+2), (5.50)

where the tensors cr ∈ Ten2r+2(Rd) are defined by

c0 = a0, cr = a2r −
r−1∑
�=0

b2(r−�)⊗c� 1 ≤ r ≤ α/2. (5.51)

Let us now rewrite the terms εk∂2t u
k in the expansion (5.49). We deal with the two parities of k

separately. Consider first k odd: k = 2�− 1 for some 1 ≤ � ≤ α/2. Using the definition of uk in
(5.48) and Lemma 5.2.11, we find

ε2�−1∂2t u
2�−1 =

α/2∑
r=�

ε2r(−1)r−�
(
cr−� ⊗ χ2�−1

)
∂2r+1ũ+O(εα+2�+1).

Summing over the odd indices k = 2�− 1 ≤ α and reordering the terms, we get

α/2∑
�=1

ε2�−1∂2t u
2�−1 =

α/2∑
�=1

α/2∑
r=�

ε2r−1(−1)r−�
(
cr−� ⊗ χ2�−1

)
∂2r+1ũ+O(εα+3)

=

α/2∑
r=1

ε2r−1

( r∑
�=1

(−1)r−�cr−� ⊗ χ2�−1

)
∂2r+1ũ+O(εα+3). (5.52)

We proceed in the same way for the even indices k = 2�, where 1 ≤ � ≤ α/2. Lemma 5.2.11
ensures that

ε2�∂2t u
2� =

α/2∑
r=�

ε2r(−1)r−�
(
cr−� ⊗ χ2�

)
∂2r+2ũ+O(εα+2�+2),

and, summing over the even indices k = 2� ≤ α, we obtain

α/2∑
�=1

ε2�∂2t u
2� =

α/2∑
r=1

ε2r
( r∑

�=1

(−1)r−�cr−� ⊗ χ2�

)
∂2r+2ũ+O(εα+4). (5.53)

Using Lemma 5.2.11, (5.52), and (5.53) in the development (5.49) then brings

rε = ε−1
(
Ayyu

1 +Axyũ
)

+ ε0
(
Ayyu

2 +Axyu
1 +Axxũ+ a0∂2ũ

)
+

α/2∑
r=1

ε2r−1
(
Ayyu

2r+1 +Axyu
2r +Axyu

2r−1 +
( r∑

�=1

(−1)r−�cr−� ⊗ χ2�−1
)
∂2r+1ũ

)

+

α/2∑
r=1

ε2r
(
Ayyu

2r+2 +Axyu
2r+1 +Axyu

2r +
( r∑

�=1

(−1)r−�cr−� ⊗ χ2� +(−1)rcr
)
∂2r+2ũ

)
+O(εα+1). (5.54)
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Using the definition of uk, we compute

Ayyu
k = −∇y ·

(
a∇yχ

k
i1··ik

)
∂ki1··ik ũ,

Axyu
k = −∇y ·

(
aei1χ

k
i2··ik

)
∂ki1··ik ũ− eTi1a∇yχ

k
i2··ik∂

k
i1··ik ũ,

Axxu
k = −eTi1aei2χ

k
i3··ik∂

k
i1··ik ũ.

Finally, canceling successively the term of order O(εk) for k = −1, . . . , α, in (5.54), we obtain
the cell problems given in (5.22).

Remark 5.2.12. In the case where the right hand side f is not zero, we verify, instead of (5.50),
that

∂2t ũ =

α/2∑
r=0

ε2r(−1)rcr∂2r+2ũ+ Sε
1f +O(εα+2),

where Sε
1f is given by

Sε
1f(t, x) = f(t, x) +

α/2∑
r=1

(−1)rε2r
( r−1∑

j=0

Br(j − 1)

)
∂2rf(t, x),

and Br(j − 1) are the constant tensors defined in (5.56) below. Then, (5.54) contains the
additional term Sεf = Sε

1f + Sε
2f , where

Sε
2f(t, x) =

α∑
k=1

χk
( ·
ε

)
∂kf(t, x) +

α/2∑
r=1

α−2r∑
k=1

(−1)rε2r+kχk
( ·
ε

)( r−1∑
j=0

Br(j − 1)

)
∂2r+kf(t, x).

Proof of Lemma 5.2.11. Step 1. In a first step, let us prove that (5.50) holds with cr = c̃r

defined as

c̃0 = a0, c̃r = a2r +

r∑
j=1

r−j∑
s=0

Br−s(j − 1)⊗ a2s 1 ≤ r ≤ α/2, (5.55)

where Br(j) is defined recursively as

Br(0) = −b2r 1 ≤ r ≤ α/2,

Br(j) = −
r−j∑
s=1

Br−s(j − 1)⊗ b2s j + 1 ≤ r ≤ α/2, 1 ≤ j ≤ α/2− 1.
(5.56)

We define the sequence of tensors

Ar(0) = a2r 0 ≤ r ≤ α/2,

Ar(j) =

r−j∑
s=0

Br−s(j − 1)⊗ a2s j ≤ r ≤ α/2, 1 ≤ j ≤ α/2,
(5.57)

and denote

R(j) =

α/2∑
r=j

(−1)rε2rAr(j)∂2r+2ũ 0 ≤ j ≤ α/2,

S(j) =

α/2∑
r=j+1

(−1)rε2rBr(j)∂2r∂2t ũ 0 ≤ j ≤ α/2− 1.

128



5.2. EFFECTIVE EQUATIONS FOR ARBITRARY TIMESCALES

With this notation, the effective equation (5.47) can be written as

∂2t ũ =

α/2∑
r=0

(−1)rε2ra2r∂2r+2ũ+

α/2∑
r=1

(−1)rε2r
(
− b2r

)
∂2∂2t ũ = R(0) + S(0). (5.58)

We claim that R(j) and S(j) satisfy the following inductive relation.

S(j) = R(j + 1) + S(j + 1) +O(εα+2) 0 ≤ j ≤ α/2− 2, (5.59a)

S(α/2− 1) = R(α/2) +O(εα+2). (5.59b)

Let us first prove (5.59a). Using (5.58) to substitute ∂2t ũ in S(j), we have

S(j) =

α/2∑
r1=j+1

α/2∑
r2=0

(−1)r1+r2ε2(r1+r2)
(
Br1(j)⊗ a2r2

)
∂2(r1+r2)+2ũ

+

α/2∑
r1=j+1

α/2∑
r2=1

(−1)r1+r2ε2(r1+r2)
(
−Br1(j)⊗ b2r2

)
∂2(r1+r2)∂2t ũ.

Changing the index r = r1 + r2 and reordering the sum, we find that the two sums satisfy

S(i) =

α/2∑
r=j+1

(−1)rε2r
( r−(j+1)∑

s=0

Br−s(j)⊗ a2s
)
∂2r+2ũ

+

α/2∑
r=j+2

(−1)rε2r
(
−

r−(j+1)∑
s=1

Br−s(j)⊗ b2s
)
∂2r∂2t ũ+O(εα+2).

Using the definitions of Ar(j) and Br(j), we verify that the right hand side equals R(j + 1) +
S(j + 1) +O(εα+2) and (5.59a) is proved. To prove (5.59b), we use the definition of S(j) and
(5.58) to get

S(α/2− 1) = (−1)α/2εαBα/2(α/2− 1)∂α∂2t ũ = (−1)α/2εα
(
Bα/2(α/2− 1)⊗ a0

)
∂α+2ũ+O(εα+2)

= (−1)α/2εαAα/2(α/2)∂α+2ũ = R(α/2) +O(εα+2),

and the claim (5.59) is verified. We now prove that (5.50) holds with cr = c̃r. From (5.58),
applying recursively (5.59) gives

∂2t ũ =

α/2∑
j=0

R(j) +O(εα+2). (5.60)

Exchanging the sums, we find that

α/2∑
j=0

R(j) =

α/2∑
j=0

α/2∑
r=j

(−1)rε2rAr(j)∂2r+2ũ =

α/2∑
r=0

ε2r(−1)r
( r∑

j=0

Ar(j)

)
∂2r+2ũ. (5.61)

Using the definition of Ar(i) in (5.57), we verify that for r = 0,
∑r

j=0A
r(j) = a0 = c̃0 and for

1 ≤ r ≤ α/2:

r∑
j=0

Ar(j) = A0(j) +

r∑
j=1

Ar(j) = a2r +

r∑
j=1

r−j∑
s=0

Br−s(j − 1)⊗ a2s = c̃r.

Combining this equality with (5.60) and (5.60) (5.50) holds with cr = c̃r and Step 1 is proved.
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Step 2. The second step is to prove that the sequence of tensors c̃r, defined in (5.55), satisfies
c̃r = cr, i.e., that c̃r satisfies the inductive relation (5.51). We prove this result by induction on r.
The base case is trivially verified as (5.55) and (5.51) give c1 = a2 − b2⊗a0 = c̃1. Let now r ≥ 2
and assume that c̃s = cs for s = 1, . . . , r − 1. We have to verify that the tensor

cr = a2r −
r−1∑
�=0

b2(r−k)⊗c� = a2r − b2r⊗c0 −
r−1∑
�=1

b2(r−�)⊗c�,

equals c̃r, defined in (5.55). Using the induction assumption and (5.55), we write

cr = a2r −
r−1∑
k=0

b2(r−�)⊗a2� −
r−1∑
k=1

�∑
j=1

�−j∑
s=0

b2(r−k)⊗B�−s(j − 1)⊗a2s. (5.62)

Let us denote the triple sum T and its summand xr�,j,s = b2(r−�)⊗B�−s(j − 1)⊗a2s. We apply
the change of indices m = r − � and exchange the sums twice to get

T =

r−1∑
m=1

r−m∑
j=1

r−m−j∑
s=0

xrr−m,j,s =

r−1∑
j=1

r−j∑
m=1

r−m−j∑
s=0

xrr−m,j,s =

r−1∑
j=1

r−j−1∑
s=0

r−j−s∑
m=1

xrr−m,j,s.

We claim that Br(j) satisfies (compare to (5.56))

Br(j) =

r−j∑
m=1

b2m⊗Br−m(j − 1). (5.63)

We proceed by induction on j. The case j = 1 follows the change of index m = r − s:

Br(1) = −
r−1∑
s=1

b2(r−s)⊗b2s = −
r−1∑
m=1

b2m⊗b2(r−m) = −
r−1∑
m=1

b2m⊗Br−m(0).

Assuming that (5.63) holds from 1 to j − 1, we use (5.56) an get

Br(j) =

r−j∑
s=1

Br−s(j − 1)⊗b2s =
r−j∑
s=1

r−s−j+1∑
m=1

b2m⊗Br−s−m(j − 2)⊗b2s

=

r−j∑
m=1

b2m⊗
( r−m−j+1∑

s=1

Br−s−m(j − 2)⊗b2s
)

=

r−j∑
m=1

b2m⊗Br−m(j − 1),

which proves (5.63). Thanks to (5.63), we then have

T =
r−1∑
j=1

r−j−1∑
s=0

( r−s−j∑
m=1

b2m⊗Br−s−m(j − 1)

)
⊗a2s = −

r−1∑
j=1

r−j−1∑
s=0

Br−s(j)⊗a2s.

We use this equality and the definition of Br(0) in (5.62), and change the index j to obtain

cr = a2r +

r−1∑
k=0

Br−k(0)⊗a2k +

r∑
j=2

r−j∑
s=0

Br−s(j − 1)⊗a2s = a2r +

r∑
j=1

r−j∑
s=0

Br−s(j − 1)⊗a2s.

This expression matches the definition of c̃r in (5.55) and Step 2 is proved. The proof of Lemma
5.2.11 is complete. �
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5.2.6 Comparison with the tensors obtained via Taylor–Bloch expansion

Recently, a result for the long time homogenization of the wave equation was presented in [23].
The analysis from [23] generalizes the results for periodic tensors to quasiperiodic, almost-periodic
and random tensors. In particular, an effective equation of arbitrary order is derived from
the so-called Bloch–Taylor expansion of uε. Note that this derivation is profoundly different
from our result, presented in Section 5.2.1, as the obtained equation is based on regularization
techniques. In this section, we prove that, in the periodic case, the correctors defined in [23]
match the correctors defined in (5.22), obtained with asymptotic expansion. This relation allows
us to express the connection between the effective equation from [23] and the family of effective
equations, defined in Definition 5.2.4.

Let us first summarize the derivation and the result from [23]. We consider uε : [0, ε−αT ]×Rd → R

∂2t u
ε(t, x)−∇x ·

(
a
(
x
ε

)
∇xu

ε(t, x)
)
= 0 in (0, ε−αT ]× Rd,

uε(0, x) = g(x), ∂tu
ε(0, x) = 0 in Rd,

(5.64)

where a is a tensor that can be of different nature: periodic, almost periodic, quasiperiodic, and
random with decaying correlation at infinity (we refer to [23] for more details on these different
assumptions). Recall that in [85] and [42, 43], the Bloch wave expansion of uε is used for the
long time homogenization of (5.64) in the periodic case (see Section 4.1.1). As the Bloch theory
does not apply for more general tensors, it is generalized in [23] as follows. As in that case the
Bloch eigenfunctions might not exists, they are replaced by their formal Taylor expansion, that is
based on the extended correctors. Then an expansion for uε is obtained and validated by the
study of the corresponding defect. The tensors in the effective equations of arbitrary order are
obtained with the definition of the extended correctors (detailed below).

Let us give some more details on their result in the periodic case. We consider the case α ≥ 4,
as for α ≤ 3, [23] essentially cite the result from [18], which corresponds to what was done in
Chapter 4. The effective equation is given by

∂2tw
ε(t, x)−

α∑
j=0

εj āj∂
j+1wε(t, x)− ε2(�

α
2 �+1)Rwε(t, x) = 0 in (0, ε−αT ]× Rd,

wε(0, x) = g(x), ∂tw
ε(0, x) = 0 in Rd,

(5.65)

where āj are the effective tensors defined below (in particular āj = 0 for odd j, see (5.69)).
Furthermore, Rwε is a regularization term given by

Rwε(t, x) = γ(−1)�α
2 �+1Id∂2(�

α
2 �+1)+2wε(t, x), (5.66)

where γ is sufficiently large for (5.65) to be well-posed. They prove the following error estimate
(given here in the particular periodic case).

Theorem 5.2.13 (Benoit & Gloria [23]). Assume that g belongs to the Schwartz space and
a ∈ L∞

per(Y ). Then
‖uε − wε‖L∞(0,ε−αT ;L2(Rd)) ≤ Cε,

where the constant C depends on a norm of g, α, T , and γ.

The error estimate is thus obtained in a stronger norm than the preceding results ([42, 43]
and Theorem 4.2.4). Nevertheless, in applications, no procedure is available to compute the
regularization parameter γ in (5.66). Furthermore, numerical experiments shows that to find an
acceptable value for γ is not an easy task (see the example in Section 5.4.3). This issue does not
occur in the effective equation defined in Section 5.2.1. Indeed, in our effective equation as the
corrections of order ε2r are composed of pairs of positive operators, the well-posedness is obtained
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without regularization. Nevertheless, in what follows, we verify that the tensors involved in both
equations are the same. In particular, we show that it holds

ā2r = (−1)rcr r = 1, . . . , �α/2�, (5.67)

where cr is the tensor given in (5.21) (and (5.55)) and ā2r are the tensors in (5.65).

Let us first define the extended correctors from [23]. For K ≥ 0, the first K extended correctors
(ϕk, σk, ψk)

K
k=0 in the direction η ∈ Rd, |η| = 1, are defined as follows.

• ϕ0 = 0 and for k ≥ 1, ϕk ∈Wper(Y ) solves

−∇y · (a∇yϕk) = ∇y · (−σk−1η + aηϕk−1 +∇yψk−1), (5.68)

• for all k ≥ 0, the tensor āk ∈ Symk+2(Rd), the symmetric matrix ãk and the scalar λk are
given by

(āk)i1··ik+2
ηi1 · · · ηik+2

= ãkη =
〈
a(∇yϕk+1 + ηϕk)

〉
Y
, λk = ãkη · η,

• ψ0 = ψ1 = 0 and for k ≥ 2, ψ1 ∈Wper(Y ) solves

−Δψk = ∇yψk−1 · η +
k−1∑
�=1

λk−1−�ϕ�,

• for k ≥ 1, the field qk is given by

qk = a(∇yϕk + ηϕk−1)− ãk−1η +∇yψk−1 − σk−1η,
〈
qk
〉
Y
= 0,

• σ0 = 0 and for k ≥ 1, σk ∈Wper(Y ) is a skew-symmetric matrix (i.e., (σk)mn = −(σk)nm)
that satisfies

−Δ(σk)mn = ∂m(qk)n − ∂n(qk)m ∀1 ≤ m,n ≤ d, ∂n(σk)mn = (qk)m ∀1 ≤ m ≤ d.

Let us now verify that the extended correctors are the same functions as the correctors defined in
(5.22). For k ≥ 0, let us denote the function χk

η = χk
i1··ikηi1 · · · ηik , where χk

i1··ik are the correctors

defined in (5.22). Let Rk
i1··ik denote the right hand side of the cell problem for χk

i1··ik . Then, the
right hand side of the cell problem for χk

η is given by Rk
i1··ikηi1 · · · ηik . Note that the following

important property is proved in [23]:

ã2j−1 = 0, λ2j−1 = 0 ∀j ≥ 1. (5.69)

We prove the following relation by induction:

ψk = χk
η k ≥ 1. (5.70)

Writing (5.68) for k = 1, we verify that ψ1 = χ1
η. Then, the equality λ0 = a0η · η follows and

(5.70) is verified for k = 2. Assume now that ψj = χj
η for j = 1, . . . , k − 1 for some k ≥ 3.

Comparing the definition of λk with the constraint that we fixed on cj in (5.26), we verify that

λ2j = (−1)jcjη j = 0, . . . , �k−2
2 �, (5.71)

where we denoted cjη = cji1··i2j+2
ηi1 · · · ηi2j+2

. Let us now rewrite the cell problem for ϕk. First,
using the definitions of σk, we verify that

−∇y · (σk−1η) = −∂m(σk−1)mnηn = ∂m(σk−1)nmηn = qk−1 · η.
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Using the definition of qk−1, we thus rewrite (5.68) as

−∇y ·(a∇yϕk) = a(∇yϕk−1+ηϕk−2) ·η− ãk−2η ·η+∇yψk−2 ·η−σk−1η ·η+∇y ·(aηϕk−1)+Δψk−1.

As σk−1 is skew-symmetric, it satisfies σk−1η · η = 0. Using then the definitions of ψk−1 and
λk−2, we obtain

−∇y · (a∇yϕk) = ∇y · (aηϕk−1) + a(∇yϕk−1 + ηϕk−2) · η −
k−2∑
�=1

λk−2−�ϕ� − λk−2.

Reordering the terms, separating the even and odd indices, and using (5.69) and (5.71), we have

k−2∑
�=1

λk−2−�ϕ� =
k−3∑
�=0

λ�ϕk−2−� =
� k−3

2 �∑
j=0

λ2jϕk−2−2j +
� k−2

2 �∑
j=1

λ2j−1ϕk−1−2j =
� k−3

2 �∑
j=0

(−1)jcjηϕk−2−2j .

(5.72)
Assuming that k is odd, k = 2r + 1, (5.72) implies

k−2∑
�=1

λk−2−�ϕ� =
r∑

�=1

(−1)r−�cr−�
η ϕ2�−1,

and, using (5.69), the cell problem for ϕ2r+1 thus reads

−∇y · (a∇yϕ2r+1) = ∇y · (aηϕ2r) + a(∇yϕ2r + ηϕ2r−1) · η +
r∑

�=1

(−1)r−�+1cr−�
η ϕ2�−1.

Comparing this equation with (5.22c) proves that ψk = χk
η. Assume then that k is even, k = 2r+2.

Thanks to (5.72), we have

k−2∑
�=1

λk−2−�ϕ� =
r∑

�=1

(−1)r−�cr−�
η ϕ2�,

and, using (5.71), the corresponding cell problem for ϕ2r+2 thus reads

−∇y · (a∇yϕ2r+2) = ∇y · (aηϕ2r+1) + a(∇yϕ2r+1 + ηϕ2r) · η +
r∑

�=1

(−1)r−�+1cr−�
η ϕ2� − (−1)rcrη.

Comparing this equation with (5.22d) proves that ψk = χk
η. We have proved that (5.70) holds

for all k. The same argument as for (5.71) thus proves that (5.67) holds.

5.3 Effective behavior of high frequency waves

In this section, we discuss the influence of high frequency waves on the dispersion phenomena
occurring in long time wave propagation in periodic media. In particular, we show that the higher
the frequencies of the initial position are, the sooner dispersion effects appear. Two conclusions
are then drawn. First, the so-called “long time effects” are related to the wave and particularly
to its high frequencies. Second, to deal with certain frequency regimes, we need higher order
effective equations.

Let us consider a simple one-dimensional problem. Let a : [0, 1] → R be a smooth 1-periodic,
positive, bounded tensor and let g0 be a given initial wave. We consider uε1 : R+ × R→ R, the
solution of the equation

∂2t u
ε
1(t, x) = ∂x

(
a
(
x
ε

)
∂xu

ε
1(t, x)

)
(t, x) ∈ R+ × R,

uε1(0, x) = g0(x), ∂tu
ε
1(0, x) = 0 x ∈ R.

(5.73)
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We recall the result of Theorem 4.2.4, in Section 4.3.1: on the time interval [0, ε−2T ], uε1 is
approximated by the solution ũ1 : R+ × R→ R of the effective equation

∂2t ũ(t, x) = a0∂2xũ(t, x) + ε2b2∂2x∂
2
t ũ(t, x) (t, x) ∈ R+ × R,

ũ(0, x) = g0(x), ∂tũ(0, x) = 0 x ∈ R,
(5.74)

where b2 =
〈
χ2
〉
Y

and χ ∈Wper(Y ) is the zero mean first corrector corresponding to a(y). This

is in fact true in any interval Ω ⊂ R and, for example, for sufficiently regular g0 with an O(1)
support. This result means that, given g0, the dispersive behavior of uε1 at t = ε−2 is determined
by a(y) and the size ε. For that reason, let us specify the dependence of ũ on ε as ũ(ε; t, x).
Consider now uεν : R+ × R→ R, the solution of

∂2t u
ε
ν(t, x) = ∂x

(
a
(
x
ε

)
∂xu

ε
ν(t, x)

)
(t, x) ∈ R+ × R,

uεν(0, x) = g0(νx), ∂tu
ε
ν(0, x) = 0 x ∈ R,

(5.75)

where ν > 0 is a given scaling parameter. Making the changes of variables x̂ = νx and t̂ = νt in
(5.75) and introducing ûεν(t̂, x̂) = uεν(t̂/ν, x̂/ν), we verify that

∂2
t̂
ûεν(t̂, x̂) = ∂x̂

(
a
(

x̂
νε

)
∂x̂û

ε
ν(t̂, x̂)

)
(t̂, x̂) ∈ R+ × R,

ûεν(0, x̂) = g0(x̂), ∂t̂û
ε
ν(0, x̂) = 0 x̂ ∈ R.

(5.76)

Observe that (5.76) is the same equation as (5.73) up to the period of oscillation of the tensor: ε
is replaced by νε. Accordingly, the macroscopic behavior of ûεν can be described up to timescales
O((νε)−2) by ũ(νε; t, x) (the solution of (5.74) where ε is replaced by νε). Consequently, ûεν(t̂ =
(νε)−2, x̂), i.e., uεν(t = ε−2/ν3, x/ν), must have a similar dispersive behavior as uε1(t = ε−2, x).
In other words, if ν > 1 (i.e., an increase of the frequencies of the initial wave), the amplitude of
the dispersion developed by uεν is as important as for uε1, but it occurs at a shorter time.

To illustrate this conclusion, let us consider the example introduced in Section 4.4.1. We consider
the model problem given by the data

g0(x) = e−10x2

, a(y) =
√
2− cos(2πy), ε = 1/20.

Recall that for these data, uε1 has a visible long time dispersive behavior at t = ε−2 = 400 (see
Figure 4.3 and also Figure 5.1). We let ν = 21/3 so that, based on the previous argument, a
similar dispersive effect must appear in the behaviour of uεν at t = ε−2/ν3 = 200. Denote ũν the
effective solution for uεν , i.e., ũ1(t, x) = ũ(ε; t, x) and ũν(t, x) = ũ(νε; t, x). To account for the
scaling x/ν, we compare uε1 and uεν in the space intervals

I1 =
√
a0t+ [−4, 1], Iν =

√
a0t+ [−4, 1]/ν,

respectively. In Figure 5.1, uεν , ũν are displayed in their respective settings. As predicted, the
graphs of {ũ1 : t = ε−2, x ∈ I1} and {ũν : t = ε−2/ν3, x ∈ Iν} are identical. Accordingly, the
amplitudes of the dispersion in uε1 and uεν are the same (up to the microscopic oscillations). Let
us now proceed to the same experiment for larger values of ν. We let ν = 401/3 and ν = 801/3 so
that the dispersive effects are expected to happen at t = 10 and t = 5, respectively. In Figure 5.2,
we display the solutions uεν and ũν at t = ε−2/ν3 and for x ∈ Iν . In both cases, we verify that
{ũν : t = ε−2/ν3, x ∈ Iν} is the same as in both plots of Figure 5.1. However, this time, the tail
of ũν does not match the dispersion developed by uεν . We observe that the farther of the front
wave we are, the worse ũν is.

These experiments lead to two conclusions. First, the higher the frequencies of the initial wave is,
the sooner uε develops dispersion. Second, for certain regimes, the effective equations obtained
in Section 4.2 does not describe well the dispersion of uε. Note that this second issue does
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not contradicts Theorem 4.2.4. Indeed, in the examples with ν = 401/3 and ν = 801/3, the
quantities ‖g0(ν·)‖H5(Ω) are considerable so that the corresponding bound on the error is large.
The consequence of these conclusions is that to homogenize high frequency waves, we need higher
order effective models. In Section 5.4.1, we use the higher order effective equations of the family
defined in Definition 5.2.4 to capture the additional dispersion effects observed in Figure 5.2.
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Figure 5.1: Comparison of uε1, ũ1 at t = ε−2 = 400 for x ∈ I1 and uεν , ũν at t = ε−2/ν3 = 200 for
x ∈ Iν (ν = 21/3).
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Figure 5.2: Plots of uεν , ũν at t = ε−2/ν3 for x ∈ Iν for ν = 401/3 (left) and ν = 801/3 (right).

5.4 Numerical experiments

In this section, we illustrate the use of the family of high order effective equations, defined in
Section 5.2.1 (Definition 5.2.4). Instead of considering examples on large timescales, where uε

is extremely costly—or impossible—to approximate, we consider examples with high frequency
initial data. Indeed, we have seen in Section 5.3 that higher order effective equations are also
needed for the homogenization of the wave equation in high frequency regimes. First, we consider
the one-dimensional examples, considered in Section 5.3. Second, we deal with a two-dimensional
example.
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5.4.1 One-dimensional example

We come back to the examples presented in Section 5.3. Recall that the model problem is given
by the data

g0(x) = e−10x2

, a(y) =
√
2− cos(2πy), ε = 1/20,

and let ν > 0 determine the variance of the initial pulse g0(ν·). The solution of (5.75) is denoted
uεν and the solution of the effective equation of order 1 (5.76) is denoted ũ1ν . Similarly, we let ũsν
be the effective equation of order s, i.e., the solution of (5.19) with α/2 = s, where the coefficients
are computed with Algorithm 5.2.10.

Recall that for ν = 401/3 and ν = 801/3, ũ1ν does not describe all the dispersion developed by uεν
at t = ε−2/ν3 (see Figure 5.2). In these two cases, we compute ũ2ν , ũ

3
ν , ũ

4
ν using a Fourier method

on a grid of size h = ε/8 (see Section 2.4). For s = 1, . . . , 4, we define the normalized error

err(ũsν)(t) = ‖(uεν − ũsν)(t)‖L2(Ω)/‖uεν(t)‖L2(Ω).

In Figure 5.3, the computed normalized errors are displayed for {ũsν}4s=1 on the time interval
[0, 100], for ν = 401/3 (left) and ν = 801/3 (right). In both cases, we observe that the higher the
order of the effective solution is, the lower the error is. Furthermore, as already noticed, we see
that for ν = 801/3 the effective solutions drift away from uεν more quickly than for ν = 401/3. In

Figure 5.4, we compare uεν and {ũsν}3s=1 in the interval Iν =
√
a0t+ [−4, 1]/ν at t = ε−2/ν3. In

the case ν = 401/3, in the left plot, we observe that ũ2ν and ũ3ν capture well the dispersion of uεν
while ũ1ν does not. No significant difference between ũ2ν and ũ3ν is visible. In the case ν = 801/3,
in the right plot, we see that ũ3ν does capture slightly better the tail of the dispersion than ũ2ν . As
expected, the higher the order of the effective equation is, the better the dispersion is captured.
However, the improvement from ũsν to ũs+1

ν is modest (this is also visible in Figure 5.3).
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Figure 5.3: Comparison of the normalized errors of {ũsν}4s=1 for the time interval [0, 100] for
ν = 401/3 (left) and ν = 801/3 (right).

5.4.2 Two-dimensional example

We now turn to a two dimensional example. We consider the model problem given by the data

g0(x) = e−20|νx|2 , ν = 51/3, a(y) =

(
1− 0.5 cos(2πy2) 0

0 1− 0.5 cos(2πy2)

)
, ε = 1/10.

Note that for ν = 1, these are the data of the example considered in Section 4.4.3. In particular,
aε(x) = a

(
x
ε

)
describes a layered material (in the x2-direction). Following the same argument as

in Section 5.3, we thus expect visible dispersive effects at T = ε−2/ν3 = 20. For this moderately
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Figure 5.4: Plots of uεν and {ũsν}3s=1 at t = ε−2/ν3 for x ∈ Iν for ν = 401/3 (left) and ν = 801/3

(right).

long time, we are able to compute uε (which is still extremely costly). We thus consider the
pseudoinfinite domain

Ω = (−L1, L1)× (−L2, L2), Li =
⌊√

a0iiT
⌋
+ 2.

For the space discretization of uε, we use a spectral method on a grid of size h = ε/16 (see
Section 2.3). The time integration of the obtained second order ODE is done with the leap frog
scheme with Δt = h/100. We denote ũs the effective solution of order s (i.e., the solution of
(5.19) with α/2 = s). The higher order effective tensors are computed using Algorithm 5.2.10.
To approximate ũs, we use a Fourier method on a grid of size h = ε/8 (see Section 2.4).

We first compare the front waves that travel in the x2-direction, which is the oscillating direction
of the medium. In Figure 5.5, we display uε (top-left), ũ1 (top-right), and ũ2 (bottom-left) on
subdomains of Ω and the corresponding cuts along x1 = 0 (bottom-right). We observe that uε

oscillates at the micro scale and has a strongly dispersive behavior at the macro scale. This
dispersion is not accurately described by ũ1. The description of the dispersion is better for ũ2.
The comparison of the cuts along x1 = 0 reveals that ũ2 (green) indeed describes the dispersion
better but further on the tail it is not accurate either. We also observe that ũ3 (red) is slightly
better. As in the one-dimensional case, the improvement brought by ũs+1 compared to ũs is
rather limited.

Second, we compare the front waves that travel in the x1-direction. In Figure 5.6, we display uε

(top-left), ũ1 (top-right), and ũ2 (bottom-left) on the subdomains of Ω and the corresponding
cuts along x2 = 0 (bottom-right). First, we observe that uε oscillates at the microscopic scale in
the x2 direction. We see that the macroscopic behavior of uε is well captured by both ũ1 and
ũ2. However, a closer look reveals that the tail of the dispersion is better described by ũ1 than
ũ2. Furthermore, in the bottom-left plot, we see that ũ3 (red) has an even stronger flattening
effect. Hence, while ũ3 is supposed to describe more accurately the dispersion effects, it does
the contrary. This negative effect must be linked to the construction of the effective tensors in
Algorithm 5.2.10. It is doubtless that other effective equations in the family E would describe uε

more accurately.

Let us summarize the outcome of this example. On one hand, the effects developed in the x2
direction by uε are described better by the higher order effective solutions. On the other hand, in
the x1 direction uε is already well described by the first order effective solution and higher order
effective solutions are less and less accurate. To remedy this issue, further research is needed to
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find other effective equations that do not have such effect.

cuts at x1 = 0, t = 20

16 17 18 19
−0.02

0

0.02

 

 

uε

ũ1

ũ2

ũ3

Figure 5.5: Comparison of uε and ũs at t = 20 on the subdomains [−4, 4]× [
√
a022t−5/ν,

√
a022t+

1/ν], and the corresponding cuts along x1 = 0.

5.4.3 Attempt of regularization of the ill-posed high order effective equation

In this example, we illustrate that the regularized effective equation (5.65) from [23] is difficult
to use in practice.

Consider the one-dimensional model problem of Section 5.4.1, for ν = 401/3 (see the left plot of
Figure 5.4). Let wε

γ be the solution of the regularized effective equation (5.65) of order 2, i.e., wε
γ

solves
∂2tw

ε − a0∂2xw
ε
γ − ε2ā2∂

2
xw

ε
γ − ε4ā4∂

4
xw

ε
γ + ε6γ∂6xw

ε
γ = 0.

The index γ specifies the dependence of wε
γ on the regularization parameter γ. Recall that in

Section 5.2.6, we proved that the coefficients satisfy ā2r = (−1)rcr, where cr are defined in (5.21).
To approximate wε

γ we use the Fourier method. We notice that the grid size h has an influence
on the well-posedness of the equation. Indeed, the method can lead to a stable approximation for
some h and explodes for some smaller h. For our test, we fix h = ε/4 (the grid has to capture

the frequencies of the initial position g0(νx) = e−10(νx)2 , ν = 401/3). On this grid, we verify
numerically that the equation is ill-posed for γ = 10−5 and well-posed for γ = γ∗ = 2 · 10−5.
Then, we compute wε

γ for 30 values of γ in the interval [γ∗, 2.5 · 10−3]. The obtained solutions are
displayed with uε in Figure 5.7. We observe that for γ = γ∗ and the 2 next values, wε

γ acceptably
capture the dispersion of uε. However, for all higher values of γ, wε

γ is far from describing uε.
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Figure 5.6: Comparison of uε and ũs at t = 20 on the subdomains [
√
a011t− 5/ν,

√
a011t+1/ν]×

[−4, 4], and the corresponding cuts along x2 = 0.

The conclusion of this experiment is that in order to use the effective equation from [23] in this
application, we would need a procedure providing γ in the small window [2 · 10−5, 2.7 · 10−4]. In
particular, γ cannot be randomly guessed to obtain a valid effective equation.
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Figure 5.7: Comparison of uε and the regularization effective equation wε
γ for several value of

the regularization parameter γ ∈ [2 · 10−5, 2.5 · 10−3].
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6 Effective models for long time wave
propagation in locally periodic media

In Chapter 4, we derived a family of effective equations for wave propagation in periodic media
for timescales of order O(ε−2). In practice, the periodicity assumption is often relaxed to local
periodicity, i.e., a slow deformation in the tensor is allowed. Such model is useful if the features of
the material are changing at the macroscopic scale. In this chapter, we generalize the technique
and result from Chapter 4 and derive effective models for wave propagation in locally periodic
media at timescales O(ε−2). This analysis constitutes the first result for the description of long
time effects for the wave equation in locally periodic media.

Let Ω ⊂ Rd be an arbitrarily large hypercube and let aε(x) be a tensor with a locally periodic
structure, i.e., aε(x) = a

(
x, xε
)
, where a(x, y) is Ω-periodic in x and Y -periodic in y (Y is a

reference cell, e.g. Y = (0, 1)d). For T ε = ε−2T , consider the wave equation: uε : [0, T ε]×Rd → R

such that
∂2t u

ε(t, x)−∇x ·
(
aε(x)∇xu

ε(t, x)
)
= f(t, x) in (0, T ε]× Ω, (6.1)

with given initial position and speed uε(0, x), ∂tu
ε(0, x) and periodic boundary conditions. For

such tensor, homogenization theory still provides formula for the homogenized tensor. Namely,
a0ij(x) =

〈
eTi a(x, ·)(∇yχj(x, ·) + ej)

〉
Y
, where {χj(x, ·)}dj=1 are the solutions of local cell problems

in Y (i.e., a different cell problems for every x ∈ Ω). However, at timescales O(ε−2), some features
of the macroscopic behavior of uε are not described by the homogenized solution. Hence, a new
effective equation that describes these additional effects is needed.

In this chapter, we define a family of effective equations of the form

∂2t ũ(t, x)− ∂i
(
a0ij(x)∂j ũ(t, x)

)
+ εL1ũ(t, x) + ε2L2ũ(t, x) = f(t, x) in (0, T ε]× Ω, (6.2)

with the same initial conditions as uε and periodic boundary conditions. In one dimension, the
operators are defined as

L1 = 0, L2 = ∂2x
(
a24(x)∂2x ·

)
− ∂x

(
b22(x)∂x∂

2
t ·
)
− ∂x

(
a22(x)∂x ·

)
+ b20∂2t ,

where the formulas for a24, b22, b20, a22 only involve the first corrector χ(x, ·), the homogenized
tensor a0(x), and are linked by a parameter. In the multidimensional case, we obtain the operators

L1 = −∂i
(
a12ij (x)∂j ·

)
+b10∂2t , L2 = ∂2ij

(
a24ijkl(x)∂

2
kl ·
)
−∂i
(
b22ij (x)∂j∂

2
t ·
)
−∂i
(
a22ij (x)∂j ·

)
+b20∂2t ,

where the formulas for the tensors a2i, b2i involve the first corrector {χi(x, ·)}di=1, a parameter,
and two other correctors: {θ0ij(x, ·)}dij=1 and {θ1i (x, ·)}di=1. While θ0ij(x, ·) corresponds to a local

version of the second order corrector obtained in the uniformly periodic case, θ1i (x, ·) is a new
corrector originating from the variation x → a(x, y). We verify that this family generalizes the
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family obtained in the uniformly periodic case, in Chapter 4. Indeed, if the tensor has no variation
in x, i.e., a(x, y) = a(y), both families match.

The main result of the chapter is an error estimate validating the family of effective equations.
Namely, under sufficient regularity of the data, we prove that any element ũ of the family satisfies

‖uε − ũ‖L∞(0,T ε;W ) ≤ Cε,

where the norm ‖ · ‖W is defined as (see (A.4))

‖w‖W = inf
w=w1+w2

w1,w2∈Wper(Ω)

{
‖w1‖L2(Ω) + ‖∇w2‖L2(Ω)

}
∀w ∈Wper(Ω).

As the dependence of the constant C on Ω is given explicitly, this result holds for arbitrarily large
hypercubes Ω.

Let us explain how the operators L1 and L2 are derived. As in Chapter 4, we construct an
adaptation of ũ using asymptotic expansions. The adaptation involves correctors, which are the
solutions of local (in x) cell problems in Y . While in Chapter 4 the form of the effective equation
was a fixed ansatz, here we do not fix it a priori and construct L1, L2 as we match the different
levels of the expansion. For each level, the well-posedness of the effective equation (6.2) constrains
the form of the correction operators Li, while the well-posedness of the obtained cell problems
constrains them quantitatively. Compared to the uniformly periodic case, the dependency of the
tensor on the slow variable x → a(x, y) requires additional corrections in the adaptation. The
repercussion of these new correctors is the apparition of additional operators in the effective
equations.

Compared to the effective equations obtained in the uniformly periodic case, (6.2) contains the
additional operators εL1 and ε2L2,1 = ε2

(
b20∂2t − ∂i(a

22
ij ∂j ·)

)
(in the general case). In particular,

as L1 �= 0, a correction of the homogenized equation is already needed to obtain effective equations
at timescales O(ε−1). However, in all the numerical examples that we considered, the effect of εL1

is not significant. Furthermore, the importance of ε2L2,1 is confirmed, but only in examples where
the variation x → a(x, y) is sharp. These facts suggest that, in certain applications, the operators
εL1 and ε2L2,1 could be removed from the effective equations. This possibility is tempting as the
computational cost for approximating the corresponding effective equations is significantly lower.
Nevertheless, we could not derive a practical criterion to attest whether the removal of εL1 and
ε2L2,1 can be done without affecting the order of accuracy.

The chapter is organized as follows. In Section 6.1, we discuss the modifications that are done in
the derivation compared to the uniformly periodic case. Then, we define the family of effective
equations in the one-dimensional case and present the complete derivation. Next, in Section
6.2, we state the main result of the chapter: we define the family of effective equations in the
multidimensional case. In particular, we present the technical derivation of the cell problems and
of the correction operators L1 and L2. In Section 6.3, we extend the validity of the family of
effective equations to tensors with minimal regularity in the second variable. Next, in Section 6.4,
the potential simplification of the effective equations is discussed. Finally, in Section 6.5, we test
the different theoretical results of the chapter in various numerical examples.

6.1 Effective equations for locally periodic media in one dimension

In this section, we define a family of effective equations for locally periodic media in the one-
dimensional case. The main result is presented in Section 6.1.2, where we provide an a priori
error analysis ensuring that the elements of the family are ε-close to the oscillatory solution. The
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derivation of the family is presented in Section 6.1.3 and the rigorous proof of the error estimate
is provided in Section 6.1.4.

Let aε(x) = a
(
x, xε
)
be a one-dimensional locally periodic tensor, where a(x, y) is Y -periodic in

y and Ω-periodic in x. The domain Ω ⊂ R is arbitrarily large and assumed to be the union of
cells of length ε|Y | (see assumption (4.25), Figure 4.2). In particular, this assumption ensures
that aε(x) is Ω-periodic (y → a(x, y) is extended by periodicity). For T ε = ε−2T , we consider
the wave equation: uε : [0, T ε]× Ω→ R such that

∂2t u
ε(t, x)− ∂x

(
a
(
x, xε
)
∂xu

ε(t, x)
)
= f(t, x) in (0, T ε]× Ω,

x → uε(t, x) Ω-periodic in [0, T ε],

uε(0, x) = g0(x), ∂tu
ε(0, x) = g1(x) in Ω,

(6.3)

where g0, g1 are the initial position and speed and f is a source. We denote the differential
operator Aε = −∂x

(
a
(
x, xε
)
∂x ·

)
. We assume that a(x, y) is uniformly elliptic and bounded, i.e.

there exists λ,Λ > 0 such that

λ ≤ a(x, y) ≤ Λ for a.e. (x, y) ∈ Ω× Y. (6.4)

The well-posedness of problem (6.3) is proved in Section 2.1.1. If g0 ∈ Wper(Ω), g
1 ∈ L2

0(Ω),
f ∈ L2(0, T ε; L2

0(Ω)), then there exists a unique weak solution uε ∈ L∞(0, T ε;Wper(Ω)) with
∂tu

ε ∈ L∞(0, T ε; L2
0(Ω)) and ∂

2
t u

ε ∈ L2(0, T ε;W∗
per(Ω)).

6.1.1 Comment on the methodology for the construction of effective equation

In this section, we discuss the methodology of the derivation of the family of effective equations.
In particular, we present the modifications that we operate compared to the uniformly periodic
case.

Let us briefly recall how the effective coefficients are obtained for a uniformly periodic tensor in
Chapter 4 (for simplicity, let us assume f = 0 and d = 1). We start with two ansatz. The first is
that the effective equation has the form

∂2t ũ− a0∂2xũ+ ε2(a2∂4xũ− b2∂2x∂
2
t ũ) = 0, (6.5)

which is well-posed if b2, a2 ≥ 0 (a0 is the homogenized tensor). The second is that uε can be
approximated by an adaptation of ũ, which takes the form

Bεũ(t, x) = ũ(t, x)+εχ
(
x
ε

)
∂xũ(t, x)+ε

2θ
(
x
ε

)
∂2xũ(t, x)+ε

3κ
(
x
ε

)
∂3xũ(t, x)+ε

4ρ
(
x
ε

)
∂4xũ(t, x). (6.6)

We impose Bεũ to solve the same equation as uε, up to a remainder. We thus obtain the definition
of the correctors χ, θ, κ, ρ as the solutions of cell problems, which are elliptic PDEs in the reference
cell Y , with periodic boundary conditions. These cell problems must be well-posed in the quotient
space Wper(Y ). We verify that the cell problems for χ and κ are well-posed unconditionally.
Furthermore, the well-posedness of the cell problem for θ is guaranteed by the definition of the
homogenized tensor a0. Finally, the well-posedness of the cell problem for ρ imposes a constraint
for the definition of b2, a2. Namely, we need the following equality to hold:

a0b2 − a2 = a0〈χ2〉Y − a0〈χ〉2Y . (6.7)

The family of effective equations is then defined by the pairs of coefficients b2, a2 ≥ 0 satisfying
(6.7). To find such pairs, two different processes lead to the same family. The first, used in
Section 4.3.1, is to define b2 = 〈χ2〉Y , a2 = a0〈χ〉2Y , and observe that each value of 〈χ〉Y leads to
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a different valid pair b2, a2. An alternative way to derive such pairs is, after rewriting (6.7) as
a0b2 − a2 = a0

〈
(χ− 〈χ〉Y )2

〉
Y
, to define

b2 =
〈
(χ− 〈χ〉Y )2

〉
Y
+ s, a2 = a0s, (6.8)

for some parameter s ≥ 0. In this case we can fix 〈χ〉Y = 0. Even though these two ways
are equivalent and lead to the same parametrized family of effective equations, we can note
the following differences. First, the corresponding constants C in the error estimate ‖uε −
ũ‖L∞(0,T ε;W ) ≤ Cε (Theorem 4.2.4) are different. The constant C grows in a simpler way with
respect to the parameter in the case where 〈χ〉Y = 0 is fixed. Indeed, we verify that C depends
on a2, b2, but also on ‖χ‖C1(Ȳ ), ‖θ‖C1(Ȳ ), ‖κ‖C1(Ȳ ), ‖ρ‖C1(Ȳ ) and these quantities depend on 〈χ〉Y .
Note also that in the multidimensional case, varying the parameters 〈χi〉Y does not necessarily
lead to well-posed effective equations (see Section 4.3.5), in which case setting 〈χi〉Y �= 0 is
superfluous. Note that in the locally periodic setting, an additional question for the choice
of normalization is brought by the variation in x. Indeed, as we deal with a corrector that
depends on the slow variable x, χ(x, y), if the normalization is not fixed, we must make sense of
∂x〈χ(x)〉Y = 〈∂xχ(x)〉Y . Finally, note that setting 〈χi〉Y = 0 is more consistent in the following
sense: in the special case of a constant tensor a(y) = a, the natural requirement Bεũ = uε = ũ
holds if and only if 〈χi〉Y = 0. Following these considerations, in the whole section (and in the
whole chapter), we make the following assumption:

all the correctors have zero mean. (H1)

Let us now summarize how we construct effective equations for a locally periodic tensor in one
dimension (the full derivation is presented in Section 6.1.3). We still assume for simplicity that
f = 0. First, we make the ansatz that the effective equation has the form

∂2t ũ− ∂x
(
a0(x)∂xũ

)
+ εL1ũ+ ε2L2ũ = 0, (6.9)

where a0(x) is the homogenized tensor and L1, L2 are differential operators to be defined. Then,
we construct an adaptation Bεũ of ũ that solves the same equation as uε up to a remainder of
order O(ε3). The adaptation takes the form

Bεũ(t, x) = ũ(t, x) + εχ
(
x, xε
)
∂xũ(t, x) + ε2

1∑
i=0

θi
(
x, xε
)
∂2−i
x ũ(t, x)

+ ε3
2∑

i=0

κi
(
x, xε
)
∂3−i
x ũ(t, x) + ε4

3∑
i=0

ρi
(
x, xε
)
∂4−i
x ũ(t, x),

(6.10)

where the correctors χ, θi, κi, ρi are solutions of cell problems. Observe that compared to (6.6),
the adaptation (6.10) contains more correctors. They come from the dependence of a(x, y) on the
slow variable x. The differential operators L1 and L2 are then defined to satisfy two conditions.
First, the coefficients involved in L1, L2 must verify the constraints given by the well-posedness
of the cell problems. Second, they must ensure that (6.9) is well-posed. After some technical
simplifications, we obtain L1 = 0 and

L2 = ∂2x(a
24(x)∂2x·)− ∂x(b

22(x)∂x∂
2
t ·)− ∂x(a

22(x)∂x·) + b20∂2t ,

where a24(x), b22(x) must satisfy a constraint similar to (6.7) for all x ∈ Ω and a22(x), b20 a
new constraint. Note that the cancelation of L1 is specific to the one-dimensional case. In the
multidimensional case, in Section 6.2, we verify that in general L1 �= 0.

6.1.2 Error estimate and family of effective equations in one dimension

We state here the main result of this section and define the family of effective equations in one
dimension. The derivation of the cell problems and of the corresponding constraints on the
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effective tensors is presented in Section 6.1.3 and the rigorous proof of the error estimate is
provided in Section 6.1.4.

Let us define the effective equations. For all x ∈ Ω, let χ(x) = χ(x, ·) ∈Wper(Y ) be the unique
solution of (

a(x)∂yχ(x), ∂yw
)
Y
= −

(
a(x), ∂yw

)
Y

∀w ∈Wper(Y ), (6.11)

and let a0(x) be the homogenized tensor defined for all x ∈ Ω by

a0(x) =
〈
a(x)(∂yχ(x) + 1)

〉
Y
. (6.12)

We emphasize that
〈
χ(x)

〉
Y

= 0 (assumption (H1)). Let then b20(x), a22(x), a24(x), b22(x) be
Ω-periodic coefficients that satisfy

b20, a22, a24, b22 ∈ L∞
per(Ω), b20(x), a22(x), a24(x), b22(x) ≥ 0 for a.e. x ∈ Ω. (6.13)

Let ũ : [0, T ε]× Ω→ R be the solution of the equation

∂2t ũ− ∂x(a
0∂xũ) + ε2

(
∂2x(a

24∂2xũ)− ∂x(b
22∂x∂

2
t ũ)− ∂x(a

22∂xũ) + b20∂2t ũ
)
= f in (0, T ε]× Ω,

x → ũ(t, x) Ω-periodic in [0, T ε],

ũ(0, x) = g0(x), ∂tũ(0, x) = g1(x) in Ω.
(6.14)

As the homogenized tensor is elliptic and bounded (see Lemma 3.3.1), and as (6.13) holds, if
the data satisfy the regularity a24 ∈ W1,∞(Ω), g0 ∈ Wper(Ω) ∩ H2(Ω), g1 ∈ L2

0(Ω) ∩ H1(Ω),
f ∈ L2(0, T ε; L2

0(Ω)), then there exists a unique weak solution of (6.14) (see Section 2.1.2). The
main result of this section is the error estimate provided by the following theorem.

Theorem 6.1.1. Assume (H1) and that the tensor satisfies a ∈ C1(Ω̄;W1,∞(Y ))∩C4(Ω̄; L∞(Y )).
Furthermore, assume that the solution ũ of (6.14), the initial conditions and the source term
satisfy the regularity

ũ ∈ L∞(0, T ε; H5(Ω)), ∂tũ ∈ L∞(0, T ε; H4(Ω)), ∂2t ũ ∈ L∞(0, T ε; H3(Ω)),

g0 ∈ H4(Ω), g1 ∈ H4(Ω), f ∈ L2(0, T ε; H2(Ω)).

Let χ(x, ·) ∈ Wper(Y ) be the solution of (6.11) and assume that the coefficients of (6.14) are
defined, for some r ≥ 0, as

a24(x) = ra0(x)2, b22(x) =
〈
χ(x)2

〉
Y
+ ra0(x),

b20 = rmaxx∈Ω{∂2xa0(x)}, a22(x) = −ra0(x)∂2xa0(x) + b20a0(x).
(6.15)

Then the following error estimate holds

‖uε − ũ‖L∞(0,T ε;W ) ≤ Cε
(
‖g1‖H4(Ω) + ‖g0‖H4(Ω) + ‖f‖L1(0,T ε;H2(Ω))

+
∑5

k=1 |ũ|L∞(0,T ε;Hk(Ω)) + ‖∂2t ũ‖L∞(0,T ε;H3(Ω))

)
,

(6.16)

where C depends only on T , λ, Y , ‖a‖C1(Ω̄;W1,∞(Y )), ‖a‖C4(Ω̄;L∞(Y )), and r, and we recall the
definition of the norm (see (A.4))

‖w‖W = inf
w=w1+w2

w1,w2∈Wper(Ω)

{
‖w1‖L2(Ω) + ‖∇w2‖L2(Ω)

}
∀w ∈Wper(Ω).

Thanks to Theorem 6.16, we define the family of effective equations.
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Definition 6.1.2. The family of effective equations E is the set of equations (6.14), where a0

is the homogenized tensor, defined in (6.12), and the coefficients b20, a22, a24, b22 are defined in
(6.15) for some parameter r ≥ 0.

Remark 6.1.3. As proved in the multidimensional case in Section 6.3, an error estimate still
holds for a tensor a ∈ C4(Ω̄; L∞(Y )), if we assume

ũ ∈ L∞(0, T ε; H6(Ω)), ∂tũ ∈ L∞(0, T ε; H5(Ω)), ∂2t ũ ∈ L∞(0, T ε; H4(Ω)),

g0 ∈ H5(Ω), g1 ∈ H5(Ω), f ∈ L2(0, T ε; H3(Ω)).

To prove it, we use the Sobolev embedding H1(Ω) ↪→ C0(Ω̄) and Lemma 6.3.2.

Remark 6.1.4. The family E , defined in Definition 6.1.2, generalizes the family obtained for a
one-dimensional uniformly periodic tensor in Section 4.3.1. Indeed, if the tensor does not depend
on the slow variable, i.e., a(x, y) = a(y), then, we verify that χ(x, y) and a0(x) are constant in x.
Hence, a22, b20 vanish and a24, b22 are constant. The effective equation (6.14) is thus left with
the single correction ε2(a24∂4x − b22∂2x∂

2
t ), which has the same form as in the uniformly periodic

case (see (6.5)). In the uniformly periodic case, the family is defined by the pairs b2 = 〈χ2〉Y ,
a2 = a0〈χ〉2Y , parametrized by 〈χ〉Y ∈ R (see (6.7)). We verify that the pairs a24, b22, defined
by (6.15), are the same (a24 = a2, b22 = b2) via the following relation between the parameters:
〈χ〉2Y = ra0. Furthermore, for the alternative definition of the family given in (6.8), the pairs
match via the relation s = ra0.

6.1.3 Derivation of the adaptation operator and of the effective equations

In this section, we present the full derivation of the family of effective equations defined in
Definition 6.1.2. The derivation follows the plan described in Section 6.1.1. In particular, we
derive the cell problems for the correctors that are necessary to define the adaptation operator
used in the proof of Theorem 6.1.1. Recall that the well-posedness of these cell problems provides
constraints on the effective coefficients. Let us recall that we assume all the correctors to have
zero mean (assumption (H1)).

The result of the section is synthesized in the following theorem.

Theorem 6.1.5. Let ũ belong to the family E (Definition 6.1.2). Then there exists an adaptation
of the form

Bεũ(t, x) = ũ(t, x) + εu1
(
t, x, xε

)
+ ε2u2

(
t, x, xε

)
+ ε3u3

(
t, x, xε

)
+ ε4u4

(
t, x, xε

)
+ ϕ(t, x), (6.17)

such that x → Bεũ(t, x) is Ω-periodic and

(uε − Bεũ)(0) = O(ε), ∂t(u
ε − Bεũ)(0) = O(ε), (6.18a)

(∂2t +Aε)(uε − Bεũ)(t) = O(ε3) for a.e. t ∈ [0, T ε], (6.18b)

where we denoted Aε = −∂x
(
a
(
x, xε )∂x ·

)
.

Thanks to Theorem 6.1.5, and in particular to (6.18), the adaptation can be used in the process
described in Section 4.2.2 to prove that ũ is close to uε in the L∞(0, T ε;W ) norm.

In the rest of the section, we proceed with the construction of the adaptation Bεũ and of the
effective equations. In particular, we need to define the functions uk and ϕ in (6.67) so that
(6.18) holds. Note that in contrast to the uniformly periodic case in Chapter 4, we do not have
an a priori knowledge on the form of the higher order operators needed in the effective equation.
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Consequently, we construct the higher order operators at the same time as we cancel the levels in
the asymptotic expansion.

Let us now construct explicitly the adaptation and derive the constraint on the effective operators.
We make the ansatz that the effective equation has the form

∂2t ũ− ∂x
(
a0(x)∂xũ

)
+ εL̃1ũ+ ε2L̃2ũ = f in (0, T ε]× Ω,

x → ũ(t, x) Ω-periodic in [0, T ε],

ũ(0, x) = g0(x), ∂tũ(0, x) = g1(x) in Ω,

(6.19)

where a0 is the homogenized tensor (defined in (6.12) and (6.26) below) and L̃1, L̃2 are linear,
ε-independent differential operators to be defined. Next, we make the ansatz that the adaptation
Bεũ has the form (6.17), where ui(t, x, y) are unknown operators of ũ, Ω-periodic in x and
Y -periodic in y, and ϕ is an unknown operator of f . Let us introduce the differential operators

Ayy = −∂y
(
a(x, y)∂y ·

)
, Ayx = −∂y

(
a(x, y)∂x ·

)
−∂x

(
a(x, y)∂y ·

)
, Axx = −∂x

(
a(x, y)∂x ·

)
.

For ψ(x, y) smooth enough, we verify that Aεψ
(
x, xε
)
=
(
ε−2Ayy+ε

−1Axy+Axx

)
ψ
(
x, xε
)
. Using

(6.3), (6.19) and (6.17), we obtain the development

Rε = (∂2t +Aε)(Bεũ− uε)(t, x) = ∂2t Bεũ(t, x) +AεBεũ(t, x)− f(t, x)

= ε−1
(

Ayyu
1 +Axyũ

)
+ ε0

(
Ayyu

2 +Axyu
1 +Axxũ+ ∂x(a

0∂xũ)
)

+ ε1
(
∂2t u

1 +Ayyu
3 +Axyu

2 +Axxu
1− L̃1ũ

)
+ ε2

(
∂2t u

2 +Ayyu
4 +Axyu

3 +Axxu
2− L̃2ũ

)
+(∂2t +Aε)ϕ+O(ε3),

(6.20)

where the ui are evaluated at
(
t, x, y = x

ε

)
. We now successively find u1, . . . , u4 and ϕ such that

the terms of order O(ε−1) to O(ε2) in (6.20) vanish. Note that the uk are set to cancel the terms
containing ũ and ϕ is set to cancel the terms containing f that will appear.

Canceling the ε−1, ε0 and ε terms and derivation of the constraints defining L̃1

Canceling the ε−1 order term in (6.20) leads to defining

u1(t, x, y) = χ(x, y)∂xũ(t, x) + ũ1(t, x), (6.21)

where for all x ∈ Ω, χ(x, y) is Y -periodic in y and solves the cell problem

−∂y
(
a(x, y)(∂yχ(x, y) + 1)

)
= 0.

Let us write the weak formulation of the cell problem in Wper(Y ): for all x ∈ Ω, χ(x) = χ(x, ·) ∈
Wper(Y ) is the solution of

ε−1 :
(
a(x)∂yχ(x), ∂yw

)
Y
= −

(
a(x), ∂yw

)
Y
, (6.22)

for all test functions w ∈Wper(Y ). Observe that for a fixed x ∈ Ω, (6.22) is the same cell problem
as obtained at order ε−1 in the periodic case (see (4.45a)). To simplify, we let ũ1(t, x) = 0 in
(6.21). Using the definition of u1, the term of order ε0 in (6.20) reads

Ayyu
2(t, x, y) +

(
− ∂y

(
a(x, y)(χ(x, y) + 1)− a(x, y)(∂yχ(x, y) + 1) + a0(x)

)
∂2xũ(t, x)

+
(
− ∂y

(
a(x, y)(∂xχ(x, y) + 1)− ∂x

(
a(x, y)(∂yχ(x, y) + 1)

)
+ ∂xa

0(x)
)
∂xũ(t, x).
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In order to cancel this term, it is sufficient to define

u2(t, x, y) = θ0(x, y)∂
2
xũ(t, x) + θ1(x, y)∂xũ(t, x), (6.23)

where for all x ∈ Ω, θ0(x) = θ0(x, ·), θ1(x) = θ1(x, ·) are the solutions in Wper(Y ) of the cell
problems

ε0 :(
a(x)∂yθ0(x), ∂yw

)
Y
= −

(
a(x)χ(x), ∂yw

)
Y
+
(
a(x)(∂yχ(x) + 1)− a0(x), w

)
Y
, (6.24a)(

a(x)∂yθ1(x), ∂yw
)
Y
= −

(
a(x)∂xχ(x), ∂yw

)
Y
+
(
∂x
(
a(x)(∂yχ(x) + 1)

)
− ∂xa

0(x), w
)
Y
,

(6.24b)

for all test functions w ∈Wper(Y ). While for fixed x ∈ Ω, (6.24a) corresponds to the cell problem
obtained at order ε0 in the periodic case (see (4.45b)), (6.24b) is a new cell problem coming from
the variation of the tensor in the slow variable x. In order to verify that equations (6.24) are
well-posed in Wper(Y ), we apply Lax–Milgram theorem. In particular, we need to show that the
right hand sides belong to W∗

per(Ω). Referring to Appendix A.2, F ∈ [H1
per(Y )]

∗
given by〈

F,w
〉
=
(
f0, w

)
L2(Y )

+
(
f1, ∂xw

)
L2(Y )

,

for some f0, f1 ∈ L2(Y ) belongs to W∗
per(Y ) if and only if(
f0, 1

)
L2(Y )

= 0. (6.25)

We thus have to verify that the right hand sides of the cell problems (6.24) satisfy (6.25). For
(6.24a), the condition is satisfied as the definition of the homogenized tensor at x ∈ Ω is

a0(x) =
〈
a(x)∂yχ(x) + 1)

〉
Y
. (6.26)

To verify the solvability of (6.24b), observe that for a sufficiently regular tensor a, it holds

∂xa
0(x) =

〈
∂x
(
a(x)∂yχ(x) + 1)

)〉
Y
.

Note that at this point we can prove the classical homogenization result at short times T = O(1),
for a locally periodic tensor (under suitable regularity assumptions, see Section 4.2.2). Indeed,
the current adaptation (6.17), with u3 = u4 = 0, solves the same equation as uε up to a reminder
of order ε. As we look for an adaptation with a remainder of order ε3 (see (6.18b)), we carry on
with the asymptotic expansion. Taking into account the definitions of u1, u2, we have

∂2t u
1 = χ∂xf + χ∂2x(a

0∂xũ)− εχ∂x(L̃
1ũ) +O(ε2),

∂2t u
2 = θ0∂

2
xf + θ1∂xf + θ0∂

3
x(a

0∂xũ) + θ1∂
2
x(a

0∂xũ) +O(ε),

and (6.20) can be rewritten as

Rε = ε1
(
Ayyu

3 +Axyu
2 +Axxu

1 +χ∂2x(a
0∂xũ)− L̃1ũ

)
+ ε2

(
Ayyu

4 +Axyu
3 +Axxu

2 + θ0∂
3
x(a

0∂xũ)+ θ1∂
2
x(a

0∂xũ)−χ∂x(L̃1ũ)− L̃2ũ
)

(6.27)

+ (∂2t +Aε)ϕ+ εχ∂xf + ε2
(
θ0∂

2
xf + θ1∂xf

)
+O(ε3).

As done in Section 4.2.3, we will deal with the terms coming from the right hand side f separately.
Canceling the ε1 order term of (6.27) leads similarly as for order ε0 to defining

u3(t, x, y) = κ0(x, y)∂
3
xũ(t, x) + κ1(x, y)∂

2
xũ(t, x) + κ2(x, y)∂xũ(t, x). (6.28)
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Furthermore, in order to ensure the well-posedness of the obtained cell problems for the κi, we
let L̃1 have the form L̃1 = a13(x)∂3x + a12(x)∂2x + a11(x)∂x, where the coefficients a1i(x) are to
be defined. The variational formulations of the obtained cell problems are then: for all x ∈ Ω,
κ0(x, ·), κ1(x, ·), κ2(x, ·) are the solutions in Wper(Y ) of the cell problems (we drop the notation
of the evaluation at x for readability)

ε1 :
(
a∂yκ0, ∂yw

)
Y
=−

(
aθ0, ∂yw

)
Y
+
(
a(∂yθ0 + χ)− a0χ+ a13, w

)
Y
, (6.29a)(

a∂yκ1, ∂yw
)
Y
=−

(
a(∂xθ0 + θ1), ∂yw

)
Y
+
(
a(∂yθ1 + ∂xχ), w

)
Y

+
(
∂x(a(∂yθ0 + χ)), w

)
Y
+
(
− 2∂xa

0χ+ a12, w
)
Y
,

(6.29b)(
a∂yκ2, ∂yw

)
Y
=−

(
a∂xθ1, ∂yw

)
Y
+
(
∂x(a(∂yθ1 + ∂xχ)), w

)
Y
+
(
− ∂2xa

0χ+ a11, w
)
Y
,

(6.29c)

for all test functions w ∈ Wper(Y ). Again, we note that for a fixed x ∈ Ω, (6.29a) is the same
as the cell problem (4.45c) obtained in the uniformly periodic case, while (6.29b) and (6.29c)
are new cell problems. The coefficients of L̃1 are then defined so that the cell problems (6.29)
are well-posed in Wper(Y ), i.e., such that the right hand sides satisfy (6.25): for all x ∈ Ω,
a13(x), a12(x) and a11(x) are defined as (assumption (H1) implies 〈χ(x)〉Y = 0)

a13(x) = −
〈
a(x)(∂yθ0(x) + χ(x))

〉
Y
, (6.30a)

a12(x) = −
〈
a(x)(∂yθ1(x) + ∂xχ(x))

〉
Y
− ∂x

〈
a(x)(∂yθ0(x) + χ(x))

〉
Y
, (6.30b)

a11(x) = −∂x
〈
a(x)(∂yθ1(x) + ∂xχ(x))

〉
Y
. (6.30c)

These constraints are simplified in the following Lemma.

Lemma 6.1.6. Under assumption (H1), the coefficients defined in (6.30) satisfy for all x ∈ Ω

a13(x) = 0, a12(x) = 0, a11(x) = 0.

Proof. Let x ∈ Ω be fixed and recall that 〈χ(x)〉Y = 0. As a(x, ·)(1 + ∂yχ(x, ·)) ∈ H(div, Y ),
using integration by parts and equation (6.22), we obtain for any y1, y2 ∈ Y ,

a(x, y)(∂yχ(x, y) + 1)
∣∣∣y2

y=y1

= −
∫
Y

(
Hy2 −Hy1

)
∂y
(
a(x, y)(∂yχ(x, y) + 1)

)
dy = 0,

where Hy is the Heaviside step function centered in y. Hence, the function y → a(x, y)(∂yχ(x, y)+
1) is constant. The definition of a0 in (6.26) then implies

a(x, y)(∂yχ(x, y) + 1) = a0(x) ∀(x, y) ∈ Ω× Y. (6.31)

Dividing this equality by a(x, y) and taking the mean over Y , we obtain the expression
a0(x) = 1/〈1/a(x, ·)〉Y . Consider now equation (6.24a). A similar argument implies that
y → a(x, y)(∂yθ0(x, y) + χ(x, y)) is constant, i.e.,

a(x, y)
(
∂yθ0(x, y) + χ(x, y)

)
= C(x).

Dividing the equality by a(x, y) and taking the mean in y over Y , we verify that

a(x, y)
(
∂yθ0(x, y) + χ(x, y)

)
= a0(x)

〈
χ(x)

〉
Y
= 0 ∀(x, y) ∈ Ω× Y. (6.32)

In the same way, we can prove from (6.24b) that

a(x, y)
(
∂yθ1(x, y) + ∂xχ(x, y)

)
= a0(x)

〈
∂xχ(x)

〉
Y
= a0(x)∂x

〈
χ(x)

〉
Y
= 0 ∀(x, y) ∈ Ω× Y.

(6.33)
Using equalities (6.31), (6.32) and (6.33) in the definitions (6.30) proves the result of the lemma.
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Lemma 6.1.6 implies that L̃1 = 0. Hence, there is no correction of order ε in the effective
equation (6.19). This fact ensures that the standard homogenized solution u0 approximates well
uε for timescales O(ε−1). Note that this result is specific to the one-dimensional case. In higher
dimensions, we will see in Section 6.2 that the operator L̃1 obtained in the same way does not
vanish in general.

Canceling the ε2 terms and derivation of the constraints defining L̃2

Let us come back to the asymptotic expansion. We need to cancel the ε2 order term in (6.27).
As for the first terms, we thus define

u4(t, x, y) =

3∑
i=0

ρi(x, y)∂
4−i
x ũ(t, x), (6.34)

where ρ0, . . . , ρ3 are the solutions of cell problems. We now need to define the operator L̃2. To
design it, we focus on two points: the well-posedness of the cell problems and the well-posedness
of equation (6.19). The first point is familiar by now and consists in enforcing the solvability
condition (6.25) to the cell problems. The latter is connected to what was done in Chapter 4 to
obtain well-posed effective equation. For the well-posedness of such hyperbolic linear equations, we
refer to Section 2.1.2. We have to introduce enough terms in L̃2 so that the well-posedness of the
cell problems for {ρi(x, y)}3i=0 can be ensured. As we have 4 cell problems, the first idea is to try

with L̃2 =
∑4

i=1 a
2i(x)∂ix. However, doing so leads to the definition a24(x) = −a0(x)〈χ(x)2〉Y and

provokes the ill-posedness of (6.19). Hence, this definition for L̃2 is not adequate. Nevertheless, a
similar issue has been solved in the uniformly periodic case using a Boussinesq trick. The trick
consists in using the equation (6.19) at order O(1), i.e., ∂2t ũ = f + ∂x(a

0∂xũ) and take advantage
of the sign of a0. Explicitly, we introduce the additional operator −∂x

(
b22(x)∂x∂

2
t ·) in L̃2. Then,

replacing ∂2t ũ with f + ∂x
(
a0(x)∂xũ), we obtain a constraint on the difference a24 − a0b22, which

can be satisfied by pairs of non-negative coefficients a24, b22. Each pair corresponds to a well-posed
effective equation. This reflexion indicates that the initial definition of L̃2 must have as many
liberties as possible, i.e., as many different operators as possible. Note that a similar issue appears
for the term a22∂2x of L̃2. Namely, if a22 > 0 the ellipticity of the second order operator in (6.19)
is weakened and could even break. Adding the term b20∂2t ũ in L̃2 and using a Boussinesq trick,
we obtain a constraint on a22 − a0b20 that can be satisfied by non-negative a22, b20. Regarding
the odd operators a23, a21, we will see that they can be handled conveniently later. Following the
previous reasoning, we make the following ansatz:

L̃2 = ∂2x
(
a24(x)∂2x ·

)
− ∂x

(
b22(x)∂x∂

2
t ·
)
+ a23(x)∂3x − a22(x)∂2x + b20(x)∂2t + a21(x)∂x. (6.35)

Note that the sign of each term are chosen following the conventions in the theory of PDEs.
Using the effective equation (6.19) to substitute the second time derivative, we obtain

L̃2ũ = ∂2x
(
a24∂2xũ

)
− ∂x

(
b22∂2x(a

0∂xũ)
)
+ a23∂3xũ+ (a0b20 − a22)∂2xũ+ (a21 + ∂xa

0b20)∂xũ

− ∂x
(
b22∂xf

)
+ b20f +O(ε). (6.36)

Inserting (6.36) in (6.27), we obtain the following cell problems for the cancellation of the terms
of order ε2 in (6.27): for all x ∈ Ω, ρi(x) = ρi(x, ·) 0 ≤ i ≤ 3 are the solutions in Wper(Y ) of (the
cell functions, a, and the coefficients are evaluated in x)

ε2 :(
a∂yρ0, ∂yw

)
Y
=−

(
aκ0, ∂yw

)
Y
+
(
a(∂yκ0 + θ0), w

)
Y
+
(
− a0θ0 + a13χ,w

)
Y
,

+
(
a24 − a0b22, w

)
Y
,

(6.37a)
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(
a∂yρ1, ∂yw

)
Y
=−

(
a(∂xκ0 + κ1), ∂yw

)
Y
+
(
a(∂yκ1 + ∂xθ0 + θ1), w

)
Y

+
(
∂x(a(∂yκ0 + θ0)), w

)
Y
+
(
− 3∂xa

0θ0 − a0θ1 + (∂xa
13 + a12)χ,w

)
Y

+
(
2∂xa

24 − ∂x(a
0b22)− 2∂xa

0b22 + a23, w
)
Y
,

(6.37b)(
a∂yρ2, ∂yw

)
Y
=−

(
a(∂xκ1 + κ2), ∂yw

)
Y

+
(
a(∂yκ2 + ∂xθ1), w

)
Y
+
(
∂x(a(∂yκ1 + ∂xθ0 + θ1)), w

)
Y

+
(
− 3∂2xa

0θ0 − 2∂xa
0θ1 + (∂xa

12 + a11)χ,w
)
Y

+
(
∂2xa

24 − 2∂x(∂xa
0b22)− ∂2xa

0b22 + a0b20 − a22, w
)
Y
,

(6.37c)

(
a∂yρ3, ∂yw

)
Y
=−

(
a∂xκ2, ∂yw

)
Y
+
(
∂x(a(∂yκ2 + ∂xθ1)), w

)
Y

+
(
− ∂3xa

0θ0 − ∂2xa
0θ1 + ∂xa

11χ− ∂x(∂
2
xa

0b22) + a21 + ∂xa
0b20, w

)
Y
,

(6.37d)

for all test functions w ∈Wper(Y ). In order for the cell problems (6.37) to be well-posed in Wper(Y ),
their right hand sides have to satisfy (6.25). Accordingly, recalling that

〈
χ
〉
Y
=
〈
θ0
〉
Y
=
〈
θ1
〉
Y
= 0

(assumption (H1)), we impose the following constraints on a24, a23, a22, a21 and b22, b20, for all
x ∈ Ω:

a24 − a0b22 =−
〈
a(∂yκ0 + θ0)

〉
Y
, (6.38a)

a23 =−
〈
a(∂yκ1 + ∂xθ0 + θ1)

〉
Y
− ∂x

〈
a(∂yκ0 + θ0)

〉
Y

+ ∂x(a
0b22 − a24)− ∂xa

24 + 2∂xa
0b22,

(6.38b)

a0b20 − a22 =−
〈
a(∂yκ2 + ∂xθ1)

〉
Y
− ∂x

〈
a(∂yκ1 + ∂xθ0 + θ1)

〉
Y

+ 2∂x(∂xa
0b22) + ∂2xa

0b22 − ∂2xa
24,

(6.38c)

a21 =− ∂x
〈
a(∂yκ2 + ∂xθ1)

〉
Y
+ ∂x(∂

2
xa

0b22)− ∂xa
0b20. (6.38d)

These constraints are simplified in the following lemma.

Lemma 6.1.7. Under assumption (H1), if we denote R(x) = b22(x) −
〈
χ(x)2

〉
Y
, then the

constraints (6.38) can be rewritten for all x ∈ Ω as

a24 = a0R, (6.39a)

a23 = ∂xa
0R− a0∂xR, (6.39b)

a0b20 − a22 = 2∂2xa
0R− a0∂2xR, (6.39c)

a21 = ∂x(∂
2
xa

0R)− b20∂xa
0. (6.39d)

Proof. Let us first prove (6.39a). Using (6.22) with the test function w = κ0 and (6.29a) with
w = χ, we have

−
(
a(∂yκ0 + θ0), 1

)
Y
=
(
a∂yκ0, ∂yχ

)
Y
−
(
aθ0, 1

)
Y

= −
(
a(∂yχ+ 1), θ0

)
Y
+
(
a(∂yθ0 + χ)− a0χ+ a13, χ

)
Y
.

Using (6.31) and (6.32), (6.38a) simplifies to (6.39a). Let us now prove (6.39b). Using (6.22)
with the test function w = κ1 and (6.29b) with w = χ, we obtain

−
(
a(∂yκ1 + ∂xθ0 + θ1), 1

)
Y
=
(
a∂yκ1, ∂yχ

)
Y
−
(
a(∂xθ0 + θ1), 1

)
Y

=−
(
a(∂yχ+ 1), ∂xθ0 + θ1

)
Y
+
(
a(∂yθ1 + ∂xχ), χ

)
Y

+
(
∂x(a(∂yθ0 + χ)), χ

)
Y
+
(
− 2∂xa

0χ+ a12, χ
)
Y
.
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Using (6.31), (6.32), and (6.33), we obtain

−
(
a(∂yκ1 + ∂xθ0 + θ1), 1

)
Y
= −2∂xa0

(
χ, χ
)
Y
. (6.40)

Thanks to (6.38a), we have −∂x
〈
a(∂yκ0 + θ0)

〉
Y
= ∂x(a

24−a0b22). Using then (6.40) and (6.39a)
in (6.38b), we obtain (6.39b). We now prove (6.39c). Using (6.22) with the test function w = κ1
and (6.29c) with w = χ, we get

−
(
a(∂yκ2 + ∂xθ1), 1

)
Y
=
(
a∂yκ2, ∂yχ

)
Y
−
(
a∂xθ1, 1

)
Y

= −
(
a(∂yχ+ 1), ∂xθ1

)
Y
+
(
∂x(a(∂yθ1 + ∂xχ)), χ

)
Y
+
(
− ∂2xa

0χ+ a11, χ
)
Y
.

Using (6.31), (6.32), and (6.33) brings

−
(
a(∂yκ2 + ∂xθ1), 1

)
Y
= −∂2xa0

(
χ, χ
)
Y
. (6.41)

This equality combined with (6.40), (6.31), (6.32), (6.33), and (6.39a) leads after simplification
to the equality (6.39c). Finally, (6.39d) is proved by combining (6.41), (6.31), (6.32), (6.33), and
(6.39a).

Including a non-zero right hand side

To complete the definition of the adaptation (6.17), we have to define the corrector ϕ to
remove the terms coming from the right hand side f in the expansion (6.27) combined with
(6.36). We thus define ϕ = [ϕ] ∈ L∞(0, T ε;Wper(Ω)), with ∂tϕ ∈ L∞(0, T ε;L2(Ω)) and
∂2tϕ ∈ L2(0, T ε;W∗

per(Ω)), as the unique solution of the equation

(∂2t +Aε)ϕ = −[εχ
(
·, ·

ε

)
∂xf + ε2

(
∂x
(
b22∂xf

)
+ θ0(·, ·

ε

)
∂2xf + θ1(·, ·

ε

)
∂xf − b20f

)
]

in W∗
per(Ω) a.e. t ∈ [0, T ε],

ϕ(0) = ∂tϕ(0) = [0].
(6.42)

The standard energy estimate for the wave equation ensures the following bound:

‖ϕ‖L∞(0,T ε;W) ≤ ‖∂xϕ‖L∞(0,T ε;L2(Ω)) ≤ Cε‖f‖L1(0,T ε;H2(Ω)), (6.43)

where C depends only on λ, Λ, ‖χ‖C0(Ω̄;C0(Ȳ )), ‖b22‖C1(Ω̄), ‖b20‖C0(Ω̄), ‖θ0‖C0(Ω̄;C0(Ȳ )), and
‖θ1‖C0(Ω̄;C0(Ȳ )).

Now that all the correctors have been defined, let us discuss what happens in the case of a
uniformly periodic tensor, i.e., a(x, y) = a(y) ∀x ∈ Ω. In Remark 6.1.4, we have shown that in
this case we recover the family defined in Section 4.3.1. In addition, we verify that the adaptations
are the same (if we require the correctors to have zero mean, see Section 4.2.3). Indeed, we verify
that we have θ1 = 0, κ1 = κ2 = 0, ρ1 = ρ2 = ρ3 = 0 and χ, θ0, κ0, ρ0, ϕ are the same (zero mean)
correctors as in the uniformly periodic case (defined in (4.45)).

Proof of Theorem 6.1.5

The adaptation Bεũ in (6.17) is defined explicitly by u1, . . . , u4 and ϕ (see (6.21), (6.23), (6.28),
(6.34), and (6.42)). Thanks to assumption (4.25), we verify that x → Bεũ(t, x) is Ω-periodic.
Furthermore, by construction, Bεũ satisfies the properties (6.18). We only need to verify that the
effective coefficients in (6.15) satisfy the constraints ensuring the well-posedness of the correctors.
First, we have verified that the cell problems (6.22) for χ(x) are well-posed unconditionally.
Second, thanks to the definition of the homogenized tensor, we have verified that the cell problems
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(6.24) for θi(x) are well-posed. Next, as Lemma 6.1.6 ensures that L̃1 = 0, the cell problems
(6.29) for κi(x) are well-posed unconditionally. Finally, we verify that the coefficients in (6.15)
satisfy the equalities (6.39) for R(x) = ra0(x). Hence, Lemma 6.1.7 guarantees the well-posedness
of the cell problems (6.37) for ρi(x). As all the cell problems are well-posed, Bεũ is well-defined
and the proof of the theorem is complete.

6.1.4 Proof of the error estimate (Theorem 6.1.1)

In this section, we prove Theorem 6.1.1. The proof is structured as follows. First, based on
the correctors derived in Section 6.1.3, we define the adaptation operator Bε. In particular, we
recall that the definition of the effective coefficients ensures the existence and uniqueness of the
correctors. The error is then split as

‖uε − ũ‖L∞(W ) = ‖[uε − ũ]‖L∞(W) ≤ ‖Bεũ− [uε]‖L∞(W) + ‖[ũ]−Bεũ‖L∞(W),

and both terms are estimated separately. In particular, we prove that Bεũ satisfies the same
equation as uε up to a remainder of order O(ε3) (Lemma 6.1.8).

We first introduce the correctors derived in Section 6.1.3. Let χ, {θi}1i=0, {κi}2i=0 and {ρi}3i=0 be
the correctors defined by the cell problems in (6.22), (6.24), (6.29) and (6.37), and let ϕ be the
solution of (6.42). Thanks to the definition of a0 in (6.12) and the definition of the coefficients
in (6.15) ensures that all the cell problems are well-posed in Wper(Y ) (see Section 6.1.3 and in
particular the proof of Theorem 6.1.5). Using Lemma 6.2.10, we obtain the following regularity
implications, for m,n ≥ 0:

χ, θ0, κ0, ρ0 ∈ Cn(Ω̄; Hm+1(Y )) ⇐ a ∈ Cn(Ω̄;Wm,∞(Y )),

θ1, κ1, ρ1 ∈ Cn(Ω̄; Hm+1(Y )) ⇐ a ∈ Cn(Ω̄; Cm(Y )) ∩ Cn+1(Ω̄;W{m−1}+,∞(Y )),

κ2, ρ2 ∈ Cn(Ω̄; Hm+1(Y )) ⇐ a ∈ ∩2
k=0Cn+k(Ω̄;W{m−k}+,∞(Y )), (6.44)

ρ3 ∈ Cn(Ω̄; Hm+1(Y )) ⇐ a ∈ ∩3
k=0Cn+k(Ω̄;W{m−k}+,∞(Y )),

a0 ∈ Cn(Ω̄) ⇐ a ∈ Cn(Ω̄; L∞(Y )),

where {·}+ = max{0, ·}. In particular, under the assumption of Theorem 6.1.1, i.e., a ∈
C1(Ω̄;W1,∞(Y )) ∩ C4(Ω̄; L∞(Y )), all the correctors belongs to C1(Ω̄; H2(Y )). Furthermore,
κ0, κ1, κ2 ∈ C2(Ω̄; H1(Y )). As d = 1, the embedding H1(Y ) ↪→ C0(Ȳ ) holds and we have
the following estimates (needed in the proof of Lemma 6.1.8 below)

‖χ‖C0(Ω̄;C0(Ȳ )), ‖θ0‖C1(Ω̄;C1(Ȳ )), ‖θ1‖C0(Ω̄;C0(Ȳ )) ≤ C(a, λ, Y ),

‖κi‖C2(Ω̄;C0(Ȳ )), ‖ρi‖C1(Ω̄;C1(Ȳ )), ‖a0‖C4(Ω̄) ≤ C(a, λ, Y ),
(6.45)

where C(a, λ, Y ) is a constant depending only on λ, Y, ‖a‖C1(Ω̄;W1,∞(Y )), and ‖a‖C4(Ω̄;L∞(Y )).

Let us introduce the following useful application of the Green formula (see Remark 4.2.7): For
c ∈W1,∞

per (Ω;W1,∞
per (Y )), v ∈ H1

per(Ω) and w ∈ Wper(Ω), we have(
[c(·, ·/ε)∂xv],w

)
L2 = −

(
[(∂xc(·, ·/ε) + ε−1∂yc(·, ·/ε))v],w

)
L2 −

(
c(·, ·/ε)v, ∂xw

)
L2 . (6.46)
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For i = 0, . . . , 3, we define the operators Bε
i : H

4
per(Ω)→Wper(Ω) for v ∈ H4

per(Ω) as〈Bε
0v,w

〉
=
(
[v],w

)
L2 ,〈Bε

1v,w
〉
=
(
ε[χ∂xv],w

)
L2 ,〈Bε

2v,w
〉
=
(
ε2[(−∂xθ0 − ε−1∂yθ0 + θ1)∂xv],w

)
L2 −

(
ε2θ0∂xv, ∂xw

)
L2 ,〈Bε

3v,w
〉
=
(
ε3[κ0∂

3
xv + κ1∂

2
xv + κ2∂xv],w

)
L2 ,〈Bε

4v,w
〉
=
(
ε4[(−∂xρ0 − ε−1∂yρ0 + ρ1)∂

3
xv + ρ2∂

2
xv + ρ3∂xv],w

)
L2 −

(
ε4ρ0∂xv, ∂xw

)
L2 ,

where the correctors are evaluated at (x, x/ε) and 〈·, ·〉 denotes 〈·, ·〉Wper,Wper
. The adaptation

operator Bε : L2(0, T ε; H4
per(Ω))→ L2(0, T ε;W∗

per(Ω)) is then defined for v ∈ L2(0, T ε; H4
per(Ω))

as

Bεv(t) =

4∑
i=0

Bε
i (v(t)) +ϕ(t). (6.47)

Note that if v ∈ L2(0, T ε; H1
per(Ω) ∩H5(Ω)), then Bεv(t) ∈ Wper(Ω) and, using (6.110), we verify

that Bεũ(t) = [Bεũ(t)], For Aε = −∂x
(
aε(x)∂x ·

)
, we thus define〈

AεBεũ(t),w
〉
W∗

per,Wper
=
〈
Aε[Bεv(t)],w

〉
W∗

per,Wper
,

where Bεũ is defined in (6.17). Remark that the definition of Bε in (6.47) allows to consider
functions with lower regularity than Bε. In particular, as ∂2t ũ ∈ L∞(0, T ε; H3

per(Ω)), Bε(∂2t ũ) is
well-defined. This is needed to prove the following lemma, which ensures that Bεũ solves the
same equation as [uε] with a remainder of order ε3.

Lemma 6.1.8. Under the assumptions of Theorem 6.1.1, Bεũ satisfies

(∂2t +Aε)Bεũ(t) = [f(t)] +Rεũ(t) in W∗
per(Ω) for a.e. t ∈ [0, T ε],

where the remainder Rεũ ∈ L∞(0, T ε;W∗
per(Ω)) is given as〈Rεũ(t),w

〉
W∗

per,Wper
=
(
(Rεũ)0(t),w

)
L2 +

(
(Rεũ)1(t), ∂xw

)
L2 ,

with the bound

‖(Rεũ)0‖L∞(0,T ε;L2(Ω))+‖(Rεũ)1‖L∞(0,T ε;L2(Ω))

≤ Cε3
(

5∑
k=1

|ũ|L∞((0,T ε;Hk(Ω))) + ‖∂2t ũ‖L∞(0,T ε;H3(Ω))

)
, (6.48)

for a constant C that only depends on λ, Y , ‖a‖C1(Ω̄;W1,∞(Y )), ‖a‖C4(Ω̄;L∞(Y )), |b20|, ‖a22‖C2(Ω̄),

‖a24‖C3(Ω̄) and ‖b22‖C2(Ω̄).

Proof. Let us denote 〈·, ·〉Wper,Wper
as 〈·, ·〉. For a fixed t ∈ [0, T ε] and w ∈ Wper(Ω), we compute

the remainder
〈Rεũ(t),w

〉
= ([f],w)L2 −

〈
(∂2t +Aε)Bεũ(t),w

〉
. Let us develop the two terms

separately. For the sake of clarity, we drop the function evaluations in t and the evaluation
of the correctors at (x, x/ε). From the definition of the adaptation Bε in (6.47), we have

∂2tBεũ =
∑2

i=0 Bε
i∂

2
t ũ+ ∂2tϕ+Rε

1ũ, where Rε
1ũ =

∑4
i=3 Bε

i∂
2
t ũ. Thanks to the regularity of ũ

and (6.14), we have the following equalities(
[∂2t ũ],w

)
L2 =

(
[f] + [∂x(a

0∂xũ)− ε2
(
∂x(a

22∂xũ)− b20∂2t ũ− ∂2x(a
24∂2xũ)

)
],w

)
L2

−
(
ε2b22∂x∂

2
t ũ, ∂xw

)
L2 , (6.49)

∂x∂
2
t ũ = ∂xf + ∂2x(a

0∂xũ) + ε2
(
∂3x(∂

2
x(b

22∂x∂
2
t ũ)− a24∂2xũ) + ∂2x(a

22∂xũ)− b20∂x∂
2
t ũ
)
, (6.50)
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where (6.50) holds in L2(Ω). We use (6.49) to rewrite〈
∂2tBεũ,w

〉
=
(
[f] + [∂x(a

0∂xũ) + εχ∂x∂
2
t ũ+ ε2

(
∂x(a

22∂xũ)− b20∂2t ũ− ∂2x(a
24∂2xũ)

)
],w

)
L2

+
(
ε2[(−∂xθ0 − ε∂yθ0 + θ1)∂x∂

2
t ũ],w

)
L2 −

(
ε2(θ0 + b22)∂x∂

2
t ũ, ∂xw

)
L2

+
〈
∂2tϕ,w

〉
+
〈Rε

1ũ,w
〉
,

Then, we rewrite ∂x∂
2
t ũ and b20

(
[∂2t ũ],w

)
L2 using (6.50) and (6.49) and obtain〈

∂2tBεũ,w
〉

=
(
[f] + [∂x(a

0∂xũ) + εχ∂2x(a
0∂xũ) + ε2

(
∂x(a

22∂xũ)− b20∂x(a
0∂xũ)− ∂2x(a

24∂2xũ)
)
],w

)
L2

+
(
ε2[(−∂xθ0 − ε−1∂yθ0 + θ1)∂

2
x(a

0∂xũ)],w
)
L2 −

(
ε2(θ0 + b22)∂2x(a

0∂xũ), ∂xw
)
L2

+
〈
∂2tϕ,w

〉
+
(
[(εχ+ ε2(−∂xθ0 − ε−1∂yθ0 + θ1)∂xf − b20f],w

)
L2

−
(
ε2(θ0 + b22)∂xf, ∂xw

)
L2 +

〈Rε
1ũ+Rε

2ũ,w
〉
,

where Rε
2ũ is given by〈Rε

2ũ,w
〉

=
(
[(ε3χ− ε4∂xθ0 − ε3∂yθ0 + ε4θ1)(−b20∂x∂2t ũ+ ∂2x(a

22∂xũ)− ∂3x(a
24∂2xũ) + ∂2x(b

22∂x∂
2
t ũ))

− ε4b20(−b20∂2t ũ+ ∂x(a
22∂xũ)− ∂2x(a

24∂2xũ) + ∂x(b
22∂x∂

2
t ũ))],w

)
L2

−
(
ε4(θ0 + b22)(−b20∂x∂2t ũ+ ∂2x(a

22∂xũ)− ∂3x(a
24∂2xũ) + ∂2x(b

22∂x∂
2
t ũ)), ∂xw

)
L2 .

Applying formula (6.46), we obtain〈
∂2tBεũ,w

〉
=
(
[f] + [∂x(a

0∂xũ) + εχ∂2x(a
0∂xũ)],w

)
L2

+
(
ε2[θ0∂

3
x(a

0∂xũ) + θ1∂
2
x(a

0∂xũ) + ∂x(b
22∂2x(a

0∂xũ))

− ∂2x(a
24∂2xũ) + ∂x(a

22∂xũ)− b20∂x(a
0∂xũ)],w

)
L2

+
(
[εχ∂xf + ε2θ0∂

2
xf + ε2θ1∂xf + ∂x(b

22∂xf)− b20f],w
)
L2 +

〈
∂2tϕ,w

〉
+
〈Rε

1ũ+Rε
2ũ,w

〉
, (6.51)

Let us now compute the other term, AεBεũ. We have in W∗
per(Ω)

AεBεũ = [ ε−1
(
− ∂y(a(∂yχ+ 1))

)
∂xũ

+ ε0
(
− ∂y(a(∂yθ0 + χ))− a(∂yχ+ 1)

)
∂2xũ

+ ε0
(
− ∂y(a(∂yθ1 + ∂xχ))− ∂x(a(∂yχ+ 1))

)
∂xũ

+ ε1
(
− ∂y(a(∂yκ0 + θ0))− a(∂yθ0 + χ)

)
∂3xũ

+ ε1
(
− ∂y(a(∂yκ1 + ∂xθ0 + θ1))− ∂x(a(∂yθ0 + χ))− a(∂yθ1 + ∂xχ)

)
∂2xũ

+ ε1
(
− ∂y(a(∂yκ2 + ∂xθ1))− ∂x(a(∂yθ1 + ∂xχ))

)
∂xũ

+ ε2
(
− ∂y(a(∂yρ0 + κ0))− a(∂yκ0 + θ0)

)
∂4xũ

+ ε2
(
− ∂y(a(∂yρ1 + ∂xκ0 + κ1))− ∂x(a(∂yκ0 + θ0))− a(∂yκ1 + ∂xθ0)

)
∂3xũ

+ ε2
(
− ∂y(a(∂yρ2 + ∂xκ1 + κ2))− ∂x(a(∂yκ1 + ∂xθ0 + θ1))− a(∂yκ2 + ∂xθ1)

)
∂2xũ

+ ε2
(
− ∂y(a(∂yρ3 + ∂xκ2))− ∂x(a(∂yκ2 + ∂xθ1))

)
∂xũ ]

+Aεϕ+Rε
3ũ, (6.52)

where, defining the functions Ri(x, y) 0 ≤ i ≤ 3, as

R0 = a(∂yρ0 + κ0), R1 = a(∂yρ1 + ∂xκ0 + κ1),

R2 = a(∂yρ2 + ∂xκ1 + κ2), R3 = a(∂yρ3 + ∂xκ2),
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Rε
3ũ is given by〈Rε

3ũ,w
〉
= − ε3

(
[
∑3

i=0(Ri∂
5−i
x ũ+ ∂xRi∂

4−i
x ũ)],w

)
L2

+ ε4
(
a
∑3

i=0 ρi∂
5−i
x ũ+ a

∑3
i=0 ∂xρi∂

4−i
x ũ, ∂xw

)
L2 .

Combining now (6.51) and (6.52) and using the definitions of the correctors (6.22), (6.24), (6.29),

(6.37) and (6.42), we obtain Rεũ =
∑3

i=1 Rε
i ũ. Thanks to (6.45), we verify that Rεũ satisfies

estimate (6.48) and the proof of the lemma is complete.

Proof of Theorem 6.1.1. Using that uε − ũ ∈Wper(Ω) and the triangle inequality, we have

‖uε − ũ‖L∞(W ) = ‖[uε − ũ]‖L∞(W) ≤ ‖[uε]−Bεũ‖L∞(W) + ‖Bεũ− [ũ]‖L∞(W). (6.53)

Let us estimate the two terms of the right hand side. First, note that η = [uε]−Bεũ satisfies
(∂2t + Aε)η(t) = Rεũ(t) in W∗

per(Ω) for a.e t ∈ [0, T ε], where Rεũ is defined in Lemma 6.1.8.
Hence, using Corollary 4.2.2, the first term satisfies

‖[uε]−Bεũ‖L∞(W) ≤ Cε
(
‖g1‖H4 + ‖g0‖H4 +

5∑
k=1

|ũ|L∞(Hk) + ‖∂2t ũ‖L∞H3

)
, (6.54)

where C depends on T , λ, Y , ‖a‖C1(Ω̄;W1,∞(Y )), ‖a‖C4(Ω̄;L∞(Y )), |b20|, ‖a22‖C2(Ω̄), ‖a24‖C3(Ω̄), and

‖b22‖C2(Ω̄). Using the definition of the coefficients (6.15) and (6.45), we verify that

|b20|+ ‖a22‖C2(Ω̄) + ‖a24‖C3(Ω̄) + ‖b22‖C2(Ω̄) ≤ C0(a, λ, Y ) + C1(a, λ, Y )r.

Next, using the definition of Bε (6.47) and the estimates (6.43) and (6.45), the second term of
(6.53) satisfies

‖Bεũ− [ũ]‖L∞(W) ≤ Cε
( 5∑

k=1

|ũ|L∞(Hk) + ‖f‖L1(H2)

)
, (6.55)

where C depends on λ, Y, ‖a‖C1(Ω̄;W1,∞(Y )), and ‖a‖C4(Ω̄;L∞(Y )). Combining (6.53), (6.54) and
(6.55), we obtain (6.16) and the proof of the theorem is complete. �

6.2 Effective equations in several dimensions

In this section, we present the main result of the chapter. We derive effective equations for long
time wave propagation in locally periodic media in the multidimensional case. In particular, in
Section 6.2.1, we define a parametrized family of effective equations and present an error estimate
establishing its validity. The derivation is done in a similar manner as in the one-dimensional
case, in Section 6.1. We refer to Section 6.1.1 for an explanation of the process. The technical
derivation of the cell problems and of the corresponding constraints for the characterization of the
family is presented in Section 6.2.2 and the proof of the main result is provided in Section 6.2.4.

Let aε(x) = a
(
x, xε
)
be a d×d locally periodic tensor, i.e., a(x, y) is Y -periodic in y and Ω-periodic

in x. The domain Ω ⊂ Rd is an arbitrarily large hypercube, assumed to be the union of cells
of volume ε|Y | (see assumption (4.25), Figure 4.2). In particular, this assumption ensures that
aε(x) is Ω-periodic (y → a(x, y) is extended by periodicity). For T ε = ε−2T , we consider the
wave equation: find uε : [0, T ε]× Ω→ R such that

∂2t u
ε(t, x)−∇x ·

(
a
(
x, xε
)
∇xu

ε(t, x)
)
= f(t, x) in (0, T ε]× Ω,

x → uε(t, x) Ω-periodic in [0, T ε],

uε(0, x) = g0(x), ∂tu
ε(0, x) = g1(x) in Ω,

(6.56)
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where g0, g1 are given initial conditions and f is a source. The tensor a(x, y) is assumed to be
uniformly elliptic and bounded, i.e. there exists λ,Λ > 0 such that

λ|ξ|2 ≤ a(x, y)ξ · ξ ≤ Λ|ξ|2 for a.e. (x, y) ∈ Ω× Y. (6.57)

The well-posedness of (6.56) is proved in Section 2.1.1. If g0 ∈ Wper(Ω), g
1 ∈ L2

0(Ω), f ∈
L2(0, T ε; L2

0(Ω)), then there exists a unique weak solution uε ∈ L∞(0, T ε;Wper(Ω)) with ∂tu
ε ∈

L∞(0, T ε; L2
0(Ω)) and ∂

2
t u

ε ∈ L2(0, T ε;W∗
per(Ω)).

6.2.1 Error estimate and family of effective equations

We present here the main result of this chapter, which contributes to this thesis. We define
a family of effective equations for the wave equation over long time in locally periodic media.
The family is validated by an error estimate ensuring that its elements are ε-close to uε in the
L∞(0, T ε;W ) norm. The complete derivation of the family is presented in Section 6.2.2 and the
proof of the main result is provided in Section 6.2.4. We refer to Section 6.1.1 for a summary on
the process used for the derivation. In particular, we recall assumption (H1).

Let us first define the parametrized tensors of the family of effective equations, as obtained in
Section 6.2.2. For x ∈ Ω, {χi(x)}di=1, {θ0ij(x)}dij=1, {θ1i (x)}di=1 ⊂ Wper(Y ) are the zero mean
solutions of the cell problems(
a(x)∇yχi(x),∇yw

)
Y
= −

(
a(x)ei,∇yw

)
Y
, (6.58a)(

a(x)∇yθ
0
ij(x),∇yw

)
Y
= −

(
a(x)eiχj(x),∇yw

)
Y
+
(
a(x)(∇yχj(x) + ej)− a0(x)ej , eiw

)
Y
,

(6.58b)(
a(x)∇yθ

1
i (x),∇yw

)
Y
= −

(
a(x)∇xχi(x),∇yw

)
Y
+
(
∇x · a(x)(∇yχi(x) + ei)−∇x · a0(x)ei, w

)
Y
,

(6.58c)

for all test functions w ∈Wper(Y ), where a0(x) is the homogenized tensor defined by

a0ij(x) =
〈
eTi a(x)(∇yχj(x) + ej)

〉
Y
. (6.59)

We define the differential operator

L1 = −∂i
(
ā12ij (x)∂j ·

)
+ b10∂2t , (6.60)

based on the following tensors

p13ijk(x) =
〈
a(x)(∇yχk(x) + ek) · ejχi(x)

〉
Y
,

q12ij (x) =
〈
a(x)(∇yχj(x) + ej) · ∇xχi(x)

〉
Y
,

ǎ12ij (x) = S2
ij

{
− ∂rp

13
rij(x) + ∂rp

13
jir(x)− ∂rp

13
irj(x) + 2q12ij (x)

}
,

b10 = max
x∈Ω

{
− λmin(ǎ

12(x))

λmin(a0(x))

}
+

,

ā12ij (x) = ǎ12ij (x) + b10a0ij(x).

(6.61)

Furthermore, we define the differential operator

L2 = ∂2ij
(
ā24ijkl(x)∂

2
kl ·
)
− ∂i

(
b22ij (x)∂j∂

2
t ·
)
− ∂i

(
ā22ij (x)∂j ·

)
+ b20∂2t , (6.62)
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based upon the following tensors

ǎ24ijkl(x) = S2,2
ij,kl

{〈
a(x)χi(x)ej · χl(x)ek

〉
Y
−
〈
a(x)∇yθ

0
ij(x) · ∇yθ

0
kl(x)

〉
Y

}
,

A24(x) =M
(
ǎ24(x)

)
, A0(x) =M

(
S2,2
ij,kl{a0jk(x)a0il(x)}

)
,

δ ≥ δ∗ = max
x∈Ω

{
− λmin(A

24(x))

λmin(A0(x))

}
+

,

ā24ijkl(x) = ǎ24ijkl(x) + δS2,2
ij,kl

{
a0jk(x)a

0
il(x)

}
,

b22ij (x) =
〈
χi(x)χj(x)

〉
Y
+ δa0ij(x),

(6.63)

where S2,2
ij,kl{·} = S2

ij{S2
kl{·}} and M(·) is the matrix construction defined in Section 4.3.3, and

p23ijk(x) =
〈
a(x)ejχi(x) · ∇xχk(x)

〉
Y
−
〈
a(x)∇yθ

0
ji(x) · ∇yθ

1
k(x)

〉
Y
,

p22ij (x) =
〈
a(x)∇xχj(x) · ∇xχi(x)

〉
Y
−
〈
a(x)∇yθ

1
i (x) · ∇yθ

1
j (x)

〉
Y
,

ǎ22ij (x) = S2
ij

{
∂rp

23
jir(x)− ∂rp

23
rij(x)− ∂rp

23
irj(x) + p22ij (x)

}
+ b10ǎ12ij (x) + δ∂sa

0
ri(x)∂ra

0
sj(x)− δ∂r

(
a0rs(x)∂sa

0
ij(x)

)
,

b20 = max
x∈Ω

{
− λmin(ǎ

22(x))

λmin(a0(x))

}
+

,

ā22ij (x) = ǎ22ij (x) + b20a0ij(x).

(6.64)

Observe that the tensors of L2 are parametrized by δ ≥ δ∗. Let then ũ : [0, T ε]× Ω→ R be the
solution of

∂2t ũ− ∂i
(
a0ij(x)∂j ũ

)
+ εL1ũ+ ε2L2ũ = f in (0, T ε]× Ω,

x → ũ(t, x) Ω-periodic in [0, T ε],

ũ(0, x) = g0(x), ∂tũ(0, x) = g1(x) in Ω,

(6.65)

where the initial conditions g0, g1 and the source f are the same as in the equation for uε (6.56).
As the homogenized tensor is symmetric, elliptic, and bounded (see Lemma 3.3.1), if the tensors
and the data satisfy the regularity

a24ijkl ∈W1,∞(Ω), b22ij , a
12
ij , a

22
ij ∈ L∞(Ω),

g0 ∈Wper(Ω) ∩H2(Ω), g1 ∈ L2
0(Ω) ∩H1(Ω), f ∈ L2(0, T ε; L2

0(Ω)),

then there exists a unique weak solution of (6.65) (see Section 2.1.2). The main result of this
chapter is the following theorem.

Theorem 6.2.1. Assume (H1) and that the tensor a(x, y) satisfies

a ∈ C1(Ω̄;W2,∞(Y )) ∩ C2(Ω̄;W1,∞(Y )) ∩ C4(Ω̄; L∞(Y )).

Furthermore, assume that the solution ũ of (6.65), the initial conditions and the right hand side
satisfy the regularity

ũ ∈ L∞(0, T ε; H5(Ω)), ∂tũ ∈ L∞(0, T ε; H4(Ω)), ∂2t ũ ∈ L∞(0, T ε; H3(Ω)),

g0 ∈ H4(Ω), g1 ∈ H4(Ω), f ∈ L2(0, T ε; H2(Ω)).

Then the following estimate holds

‖uε − ũ‖L∞(0,T ε;W ) ≤ Cε
(
‖g1‖H4(Ω) + ‖g0‖H4(Ω) + ‖f‖L1(0,T ε;H2(Ω))

+
∑5

k=1 |ũ|L∞(0,T ε;Hk(Ω)) + ‖∂2t ũ‖L∞(0,T ε;H3(Ω))

)
,

(6.66)
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where C depends only on T , λ, Y , ‖a‖C1(Ω̄;W2,∞Y )), ‖a‖C2(Ω̄;W1,∞(Y )), ‖a‖C4(Ω̄;L∞(Y )), and δ, and
we recall the definition of the norm (see (A.4))

‖w‖W = inf
w=w1+w2

w1,w2∈Wper(Ω)

{
‖w1‖L2(Ω) + ‖∇w2‖L2(Ω)

}
∀w ∈Wper(Ω).

Theorem 6.2.1 leads to the following definition.

Definition 6.2.2. We define the family of effective equations E as the set of equations (6.65),
where a0 is the homogenized tensor defined in (6.59) and L1, L2 are defined in (6.60) and (6.62)
for some parameter δ ≥ δ∗.

Remark 6.2.3. The family E , defined in Definition 6.2.2, generalizes the family for a uniformly
periodic tensor defined by (4.94), in Section 4.3.2. Indeed, if the tensor does not depend on the
slow variable, i.e., a(x, y) = a(y), we verify successively that χi(x, y), a

0(x), θ0ij(x, y) are constant

in x and θ1i (x, y) = 0. Hence, we have ā12 = ā22 = 0, b10 = b20 = 0, and ā24, b22 are constant.
Equation (6.65) is thus left with the only correction ε2(ā24ijkl∂

4
ijkl− b22ij ∂2ij∂2t ), which is of the same

form as in the uniformly periodic case. Furthermore, we verify that the pairs (ā24, b22), defined
by (6.63), match the pairs defined in the uniformly periodic case in (4.94) (ā24 = a2, b22 = b2,
indeed we have S2

ij{θ0ij(x, y)} = θij(y)).

Remark 6.2.4. Assume that ε and a(x, y) are such that a0 + εǎ12 + ε2ǎ22 is uniformly elliptic,
i.e., there exists λ̃ > 0 such that(

a0(x) + εǎ12(x) + ε2ǎ22(x)
)
ξ · ξ ≥ λ̃|ξ|2 for a.e. x ∈ Ω ∀ξ ∈ Rd.

Then the equation (6.65) with

L1 = −∂i
(
ǎ12ij ∂j ·

)
, L2 = ∂2ij

(
ā24ijkl∂

2
kl ·
)
− ∂i

(
b22ij ∂j∂

2
t ·
)
− ∂i

(
ǎ22ij ∂j ·

)
,

is well-posed and its solution also satisfies the error estimate (6.66). Indeed, the role of the
operators b10∂2t and b20∂2t is only to ensure the ellipticity of a0 + εa12 + ε2a22. In the case where
ǎ12 and ǎ22 are sufficiently small, b10∂2t and b20∂2t are superfluous. This discussion is carried on
in Section 6.4, where we discuss the necessity of the operators −ε∂i

(
ǎ12ij ∂j ·

)
and −ε2∂i

(
ǎ22ij ∂j ·

)
in the effective equations.

6.2.2 Derivation of the adaptation operator and of the effective equations

In this section, we present the complete derivation of the family of effective equations (Definition
6.2.2). In particular, we build the adaptation operator, used in the proof of Theorem 6.2.1. To
that end, we derive the cell problems and the corresponding constraints on the effective tensors.
The technical part is the simplification of the constraints. We refer to Section 6.1.1 for the
description of the procedure used for the derivation and, in particular, we recall assumption (H1).

The main result of the section is the following theorem.

Theorem 6.2.5. Let L1 and L2 be defined in (6.60) and (6.62), respectively. Then there exists
an adaptation of the form

Bεũ(t, x) = ũ(t, x) + εu1
(
t, x, xε

)
+ ε2u2

(
t, x, xε

)
+ ε3u3

(
t, x, xε

)
+ ε4u4

(
t, x, xε

)
+ ϕ(t, x), (6.67)

such that x → Bεũ(t, x) is Ω-periodic and

(uε − Bεũ)(0) = O(ε), ∂t(u
ε − Bεũ)(0) = O(ε), (6.68a)

(∂2t +Aε)(uε − Bεũ)(t) = O(ε3) for a.e. t ∈ [0, T ε], (6.68b)

where we denoted Aε = −∇x ·
(
a
(
x, xε )∇x ·

)
.
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Thanks to the properties (6.68), we can use the adaptation (6.67) in the process described in
Section 4.2.2 to prove that ũ is close to uε in the L∞(0, T ε;W ) norm. This is done in Section
6.2.4, where we prove Theorem 6.2.1.

Let us now construct explicitly the adaptation Bεũ in (6.67). To do so, we use asymptotic
expansions to derive cell problems. As we know, the well-posedness of these cell problems
constrains quantitatively the operators in the effective equations. Note that, as in one dimension
in Section 6.1.3, we do not have an a priori knowledge on the form of the higher order operators
L1 and L2 in the effective equation. We thus design them as we cancel the levels of the expansion.
They must guarantee that the effective equations are well-posed whilst the constraints provided
by the cell problems are satisfied.

We make the ansatz that the effective solution ũ : [0, T ε]× Ω→ R solves

∂2t ũ− ∂i
(
a0ij(x)∂j ũ

)
+ εL̃1ũ+ ε2L̃2ũ = f in (0, T ε]× Ω,

x → ũ(t, x) Ω-periodic in [0, T ε],

ũ(0, x) = g0(x), ∂tũ(0, x) = g1(x) in Ω,

(6.69)

where a0(x) is the homogeneous tensor (defined in (6.59)) and L̃1, L̃2 are linear, ε-independent
differential operators to be defined. We use here the notation L̃1, L̃2 to emphasize that at this
point the operators are unknown. Furthermore, we make the ansatz that Bεũ has the form
(6.67), where the ui(t, x, y) are unknown operators of ũ, Ω-periodic in x and Y -periodic in y. We
introduce the differential operators

Ayy = −∇y·
(
a(x, y)∇y·

)
, Axy = −∇y·

(
a(x, y)∇x·

)
−∇x·

(
a(x, y)∇y·

)
, Axx = −∇x·

(
a(x, y)∇x·

)
.

For a sufficiently regular function ψ(x, y), we verify that Aεψ
(
x, xε
)
=
(
ε−2Ayy + ε−1Axy +

Axx

)
ψ
(
x, xε
)
. Hence, using (6.56), (6.69) and (6.67), we obtain the development

Rε = (∂2t +Aε)(Bεũ− uε)(t, x) = ∂2t Bεũ(t, x) +AεBεũ(t, x)− f(t, x)

= ε−1
(

Ayyu
1 +Axyũ

)
+ ε0

(
Ayyu

2 +Axyu
1 +Axxũ + ∂i(a

0
ij∂j ũ)

)
+ ε1

(
∂2t u

1 +Ayyu
3 +Axyu

2 +Axxu
1− L̃1ũ

)
+ ε2

(
∂2t u

2 +Ayyu
4 +Axyu

3 +Axxu
2− L̃2ũ

)
+(∂2t +Aε)ϕ+O(ε3),

(6.70)

where the ui are evaluated at
(
t, x, y = x

ε

)
. We now look for u1, . . . , u4 such that the terms

of order O(ε−1) to O(ε2) in (6.70) vanish. Note that the role of the uk is to cancel the terms
containing ũ and the role of ϕ is to cancel the terms containing f that will appear.

Canceling the ε−1, ε0 and ε terms and derivation of the constraints defining L̃1

The cancellation of the term of order O(ε−1) in (6.70) leads to defining

u1(t, x, y) = χi(x, y)∂iũ(t, x), (6.71)

where for x ∈ Ω, 1 ≤ i ≤ d, χi(x) = χi(x, ·) is Y -periodic and solves the cell problem

ε−1 :
(
a(x)∇yχi(x),∇yw

)
Y
= −

(
a(x)ei,∇yw

)
Y
, (6.72)

for all test functions w ∈Wper(Y ). Referring to Appendix A.2, F ∈ [H1
per(Y )]

∗
given by〈

F,w
〉
=
(
f0, w

)
L2(Y )

+
(
f1k , ∂kw

)
L2(Y )

,
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for some f0, f11 , . . . , f
1
d ∈ L2(Y ) belongs to W∗

per(Y ) if and only if(
f0, 1

)
L2(Y )

= 0. (6.73)

As the right hand side of (6.72) satisfies trivially the condition (6.73), it belongs to W∗
per(Y ) and

the equation is well-posed in Wper(Y ). Next, the equation obtained by canceling the term of
order O(1) reads now

−∇y · (a∇yu
2) =

(
∇y · (eiχj) + eTi a(∇yχj + ej)− a0ij

)
∂2ij ũ

+
(
∇y · (∇xχi) +∇x · a(∇yχi + ei)−∇x · (a0ei)

)
∂iũ.

Compared to the uniformly periodic case, observe that a supplementary term coming from the
variation in x appears in this equation. To satisfy this equality, we can define

u2(t, x, y) = θ0ij(x, y)∂
2
ij ũ(t, x) + θ1i (x, y)∂iũ(t, x), (6.74)

where for x ∈ Ω, 1 ≤ i, j ≤ d, θ0ij(x) = θ0ij(x, ·) and θ1i (x) = θ1i (x, ·) belong to Wper(Y ) and solve
the cell problems

ε0 :(
a(x)∇yθ

0
ij(x),∇yw

)
Y
=−

(
a(x)eiχj(x),∇yw

)
Y

+
(
a(x)(∇yχj(x) + ej)− a0(x)ej , eiw

)
Y
,

(6.75a)(
a(x)∇yθ

1
i (x),∇yw

)
Y
=−

(
a(x)∇xχi(x),∇yw

)
Y

+
(
∇x · a(x)(∇yχi(x) + ei)−∇x · (a0(x)ei), w

)
Y
,

(6.75b)

for all test functions w ∈ Wper(Y ). In order to apply Lax–Milgram theorem and obtain the
well-posedness of these equations, we need to verify that the right hand sides belong to W∗

per(Y )
or equivalently that they satisfy (6.73). As the homogenized tensor a0 is defined as

a0ij(x) =
〈
eTi a(x)(∇yχj(x) + ej)

〉
Y
, (6.76)

the right hand side of (6.75a) has zero mean and thus, for all x ∈ Ω, θ0ij(x) ∈Wper(Y ) exists and
is unique. Let us now check that (6.75b) is well-posed. Using (6.76), we have(

∇x · a(∇yχi + ei)−∇x · (a0ei), 1
)
Y
= |Y |∂m

(〈
eTma(∇yχi + ei)

〉
Y
− a0mi

)
= 0,

so that the right hand side of (6.75b) satisfies (6.73) and thus belongs to W∗
per(Ω). Hence, (6.75b)

is well-posed in Wper(Y ) and, for all x ∈ Ω, θ1i (x) ∈Wper(Y ) exists and is unique. At this point,
we have defined an adaptation such that (∂2t + Aε)(Bεũ − uε) = O(ε). Hence, following the
process described in Section 4.2.2, we can prove the classical homogenization result at short times
T = O(1), for a locally periodic tensor (under suitable regularity assumptions). In order to find
effective equations at timescales O(ε−2), we continue and cancel the higher order terms in (6.70).
Taking into account the definitions of u1 and u2 and the effective equation (6.69), we have

∂2t u
1 = χk∂k∂

2
t ũ = χk∂kf + χk∂km(a0mn∂nũ)− εχi∂kL̃

1ũ+O(ε2),

∂2t u
2 = θ0ij∂

2
ij∂

2
t ũ+ θ1i ∂i∂

2
t ũ = θ0ij∂

2
ijf + θ1i ∂if + θ0ij∂

3
ijm(a0mn∂nũ) + θ1k∂km(a0mn∂nũ) +O(ε).

These equalities used in (6.70) lead to

Rε = ε
(
Ayyu

3 +Axyu
2 +Axxu

1 +χk∂
2
km(a0mn∂nũ)− L̃1ũ

)
+ ε2

(
Ayyu

4 +Axyu
3 +Axxu

2 + θ0ij∂
3
ijm(a0mn∂nũ)+ θ1i ∂

2
im(a0mn∂nũ)−χi∂iL̃

1ũ− L̃2ũ
)

+(∂2t +Aε)ϕ+ εχi∂if + ε2(θ0ij∂
2
ijf + θ1i ∂if)+O(ε3), (6.77)
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We are now looking for u3 such that the O(ε) order term in (6.77) cancels. We thus define

u3(t, x, y) = κ0ijk(x, y)∂
3
ijkũ(t, x) + κ1ij(x, y)∂

2
ij ũ(t, x) + κ2i (x, y)∂iũ(t, x), (6.78)

where κ0ijk(x, ·), κ1ij(x, ·) and κ2i (x, ·) are solutions of cell problems to define. We now need to

define L̃1 such that these cell problems are well-posed. The first idea is to set L̃1 = a13ijk(x)∂
3
ijk −

a12ij (x)∂
2
ij + a11i (x)∂i and to define the coefficients a13, a12, a11 thanks to the constraints obtained

for the solvability of the cell problems. However, we also have to ensure that L̃1 allows the
well-posedness of the effective equation (6.69). From the uniformly periodic case, we can anticipate
that a13ijk(x)∂

3
ijk = 0. Nevertheless, the operator −εa12ij (x)∂2ij need not to deteriorate the ellipticity

of −∂i(a0ij∂j ·) in the effective equation and thus a12ij has to be positive semidefinite. This condition
can not be ensured in general by the obtained tensor. As in Section 6.1.3, we thus apply a
Boussinesq trick. Namely, we add the term b10∂2t in L̃1. Observe that if we formally substitute
∂2t ũ = f − ∂i(a0ij∂j ũ) in L̃1ũ, the constraint imposed by the well-posedness of the cell problem for

κ1ij applies on a12ij − b10a0ij . As a0 is positive definite, we can then find b10 ≥ 0 and a12 positive
semidefinite satisfying it. Let then

L̃1 = a13ijk(x)∂
3
ijk − a12ij (x)∂

2
ij + a11i (x)∂i + b10(x)∂2t . (6.79)

Using the effective equation, we obtain

L̃1ũ = L̃1,xũ+ b10∂m(a0mn∂nũ) + b10f + εb10L̃1ũ+O(ε2), (6.80)

where we denoted L̃1,x = L̃1 − b10(x)∂2t , the spatial part of L̃1. Hence, we rewrite (6.77) as

Rε = ε
(
Ayyu

3 +Axyu
2 +Axxu

1 +χi∂
2
im(a0mn∂nũ)− L̃1,xũ− b10∂m(a0mn∂nũ)

)
+ ε2

(
Ayyu

4 +Axyu
3 +Axxu

2 + θ0ij∂
3
ijm(a0mn∂nũ)+ θ1i ∂

2
im(a0mn∂nũ)

−χi∂i(L̃
1ũ) + b10L̃1ũ− L̃2ũ

)
+(∂2t +Aε)ϕ+ εχi∂if + ε2(θ0ij∂

2
ijf + θ1i ∂if)− εb10f +O(ε3). (6.81)

Recall that u3 is defined as (6.78), hence, rewriting explicitly the equations obtained by
canceling the O(ε) order term in (6.81), we obtain the following cell problems: for x ∈ Ω,
κ0ijk(x), κ

1
ij(x), κ

2
i (x) ∈Wper(Y ) satisfy (we do not specify the evaluation in x for readability)

ε1 :(
a∇yκ

0
ijk,∇yw

)
Y
=−

(
aeiθ

0
jk,∇yw

)
Y

+
(
a(∇yθ

0
jk + ejχk), eiw

)
Y
−
(
a0ijχk, w

)
Y
+
(
a13ijk, w

)
Y
,

(6.82a)(
a∇yκ

1
ij ,∇yw

)
Y
=−

(
a(∇xθ

0
ij + eiθ

1
j ),∇yw

)
Y
+
(
∇x · a(∇yθ

0
ij + eiχj), w

)
Y

+
(
a(∇yθ

1
j +∇xχj), eiw

)
Y
−
(
χi∂ma

0
mj + χm∂ma

0
ij , w

)
Y

−
(
a12ij − b10a0ij , w

)
Y
,

(6.82b)

(
a∇yκ

2
i ,∇yw

)
Y
=−

(
a∇xθ

1
i ,∇yw

)
Y
+
(
∇x · a(∇yθ

1
i +∇xχi), w

)
Y

−
(
χm∂

2
mna

0
ni, w

)
Y
+
(
b10∂ma

0
mi + a11i , w

)
Y
,

(6.82c)

for all test functions w ∈Wper(Y ). We enforce the right hand sides of these equations to satisfy the
solvability condition (6.73), i.e., to belong to W∗

per(Y ), and that leads to the following constraints

on the tensors (recall that
〈
χi(x)

〉
Y
= 0):

|Y |a13ijk = −
(
a(∇yθ

0
jk + ejχk), ei

)
Y
, (6.83a)

|Y |(a12ij − b10a0ij) =
(
∇x · a(∇yθ

0
ij + eiχj), 1

)
Y
+
(
a(∇yθ

1
j +∇xχj), ei

)
Y
, (6.83b)

|Y |a11i = −
(
∇x · a(θ1i +∇xχi), 1

)
Y
− |Y |b10∂ma0mi. (6.83c)
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We emphasize that the constraints (6.83) must hold locally for each x ∈ Ω. These expressions
and the expression for L̃1 are simplified in the two following lemmas.

Lemma 6.2.6. The constraints on a13, a12, b10 and a11 in (6.83) can be rewritten for all x ∈ Ω
as

a13ijk(x) = (p13ijk − p13kji)(x), p13ijk =
〈
a(∇yχk + ek) · ejχi

〉
Y
, (6.84a)

(a12ij − b10a0ij)(x) = −∂ma13mij(x) + p12ij (x), p12ij =
〈
a(∇yθ

1
j +∇xχj) · ei

〉
Y
, (6.84b)

a11i (x) = −∂mp12mi(x)− b10∂ma
0
mi(x). (6.84c)

Furthermore, p12(x) can be expressed as

p12ij (x) = −∂mp13imj(x) + q12ij (x) + q12ji (x), q12ij =
〈
a(∇yχj + ej) · ∇xχi

〉
Y
. (6.84d)

Proof. Let us denote (·, ·)Y as (·, ·) and 〈·〉Y as 〈·〉. We first prove (6.84a). Using (6.72) with the
test function w = θ0jk and (6.75a) with w = χi, we have

−
(
a(∇yθ

0
jk + ejχk), ei

)
=
(
a∇yθ

0
jk,∇yχi

)
−
(
aejχk, ei

)
= −

(
aejχk,∇yχi + ei

)
+
(
a(∇yχk + ek), ejχi

)
,

which, thanks to the symmetry of a(x, y) proves (6.84a). Let us now prove (6.84b). Thanks to
(6.83a), the first term of (6.83b) is(

∇x · a(∇yθ
0
ij + eiχj), 1

)
= ∂m

(
a(∇yθ

0
ij + eiχj), em

)
= −|Y |∂ma13mij ,

and thus (6.83b) can be rewritten as (6.84b). To rewrite a11i as in (6.84c), we simply note that
−
(
∇x · a(∇yθ

1
i +∇xχi), 1

)
= −|Y |∂mp12mi. Finally, let us prove (6.84d). Using (6.72) with the test

function w = θ1j and (6.75b) with w = χi, we have(
a(∇yθ

1
j+∇xχj), ei

)
= −

(
a∇yθ

1
j ,∇yχi

)
+
(
a∇xχj , ei

)
=
(
a∇xχj ,∇yχi+ei

)
−
(
∇x·a(∇yχj+ej), χi

)
.

Furthermore,

−
(
∇x ·a(∇yχj+ej), χi

)
= −∂m

(
a(∇yχj+ej), emχi

)
+
(
a(∇yχj+ej),∇xχi

)
= |Y |(−∂mp13imj+q

12
ij ),

and thus, combining the two last equalities gives (6.84d). The proof of the lemma is complete.

We then verify that the two operators L̃1 and L1 coincide.

Lemma 6.2.7. Let ā12 and b10 be the tensors defined in (6.61) and assume that ā12 ∈ C1(Ω̄).
Let also L̃1 and L1 be the operators defined in (6.79) and (6.60), respectively. Then L̃1v = L1v
for any v ∈ L∞(0, T ε; H3(Ω)) with ∂2t v ∈ L∞(0, T ε; L2(Ω)).

Proof. First, note that thanks to (6.84a), we have S3
ijk{a13ijk} = 0 and thus a13ijk∂

3
ijkv = 0.

Furthermore, thanks to (6.84a), (6.84b), and (6.84d), we verify that S2
ij{a12ij } = ā12ij . Hence, we

have

L̃1v − b10∂2t v = −S2
ij{a12ij }∂2ijv + a11i ∂iv = −∂i

(
ā12ij ∂jv

)
+
(
a11i + ∂m(S2

mi{a12mi})
)
∂iv. (6.85)

We claim that a11i + ∂m(S2
mi{a12mi}) = 0. To prove it, note that as b10 is constant, using (6.84b)

and (6.84c), we have

a11i + ∂m(S2
mi{a12mi}) = 1

2∂m
(
p12im − p12mi

)
− 1

2∂
2
mn

(
a13nmi + a13nim

)
.

Using then (6.84a) and (6.84d), we verify that

a11i + ∂m(S2
mi{a12mi}) = 1

2∂
2
mn

(
− p13inm + p13mni − p13nmi + p13imn − p13nim + p13min

)
= 0,

and the claim is proved. Combined with (6.85), the claim concludes the proof of the lemma.
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Canceling the ε2 terms and derivation of the constraints defining L̃2

We come back to the asymptotic expansion. The next step is to cancel the O(ε2) order term
containing ũ in (6.81). Following the same reasoning as for u3, we look for u4 of the form

u4(t, x, y) = ρ0ijkl(x, y)∂
4
ijklũ(t, x) + ρ1ijk(x, y)∂

3
ijkũ(t, x) + ρ2ij(x, y)∂

2
ij ũ(t, x) + ρ3i (x, y)∂iũ(t, x),

(6.86)
for some correctors ρ0, ρ1, ρ2, ρ3 to be defined. The ansatz on the form of L̃2 could be ∂2ij(a

24
ijkl∂

2
kl)+

a23ijk∂
3
ijk − a22ij ∂

2
ij + a21i ∂i. However, referring to the argument presented in Section 6.1.3 in one

dimension, this choice cannot guarantee the well-posedness of the effective equation (6.69). We
thus apply Boussinesq tricks. First, similarly as for L̃1, we add the operator b20∂2t in order to
obtain a constraint on the difference a22ij − b20a0ij . Second, we know from the uniformly periodic

case that the constraint on a24ijkl leads to a negative tensor. Hence, we add the term −∂i(b22ij ∂j∂2t )
in L̃2 in order to obtain a constraint on a24ijkl − a0jkb

22
il . Note that this trick is not possible for the

operator of order 3. Nevertheless, we will see that we can find a tensor a23 such that a23ijk∂
3
ijk = 0

that satisfies the corresponding constraint. We thus define

L̃2 = ∂2ij(a
24
ijkl(x)∂

2
kl·)− ∂i(b

22
ij (x)∂j∂

2
t ·) + a23ijk(x)∂

3
ijk − a22ij (x)∂

2
ij + a21i (x)∂i + b20(x)∂2t , (6.87)

and using (6.69), we obtain

L̃2ũ = L̃2,xũ− ∂i(b
22
ij ∂

2
jk(a

0
kl∂lũ)) + b20∂m(a0mn∂nũ)− ∂i(b

22
ij ∂jf) + b20f +O(ε), (6.88)

where L̃2,x = L̃2+∂i(b
22
ij ∂j∂

2
t ·)−b20∂2t is the spatial part of L̃2. Taking into account the definition

of L̃1 and using (6.69), we have

χi∂i(L̃
1ũ) = χi∂i(L̃

1,xũ) + χi∂i(b
10∂m(a0mn∂nũ)) + χi∂i(b

10f) +O(ε),

b10L̃1ũ = b10L̃1,xũ+ (b10)2∂m(a0mn∂nũ) + (b10)2f +O(ε).

Therefore, using (6.74), (6.78), (6.86), (6.80) and (6.88), we rewrite the O(ε2) order term in
(6.81) as

Rε = ε2
(
Ayyu

4 +Axyu
3 +Axxu

2 + θ0ij∂
3
ijm(a0mn∂nũ)+ θ1i ∂

2
im(a0mn∂nũ)− χi∂i(L̃

1,xũ)

+ χi∂i(b
10∂m(a0mn∂nũ))− b10L̃1,xũ+ (b10)2∂m(a0mn∂nũ)

− L̃2,xũ+ ∂i(b
22
ij ∂

2
jm(a0mn∂nũ))− b20∂m(a0mn∂nũ)

)
+ ε(χi∂if − b10f)+ ε2

(
θ0ij∂

2
ijf + θ1i ∂if − χi∂i(b

10f) + (b10)2f + ∂i(b
22
ij ∂jf)− b20f

)
+(∂2t +Aε)ϕ+O(ε3). (6.89)

Canceling this term leads to the following cell problems: for x ∈ Ω, 1 ≤ i, j, k, l ≤ d, we look for
ρ0ijkl(x), ρ

1
ijk(x), ρ

2
ij(x), ρ

3
i (x) ∈Wper(Y ) such that

ε2 :(
a∇yρ

0
ijkl,∇yw

)
Y
=−

(
aeiκ

0
jkl,∇yw

)
Y
+
(
a(∇yκ

0
jkl + ejθ

0
kl), eiw

)
Y

+
(
a13jklχi − a0ijθ

0
kl, w

)
Y
+
(
a24ijkl − a0jkb

22
il , w

)
Y
,

(6.90a)(
a∇yρ

1
ijk,∇yw

)
Y
=−

(
a(eiκ

1
jk +∇xκ

0
ijk,∇yw

)
Y
+
(
∇x · a(∇yκ

0
ijk + eiθ

0
jk), w

)
Y

+
(
a(∇yκ

1
jk +∇xθ

0
jk + ejθ

1
k), eiw

)
Y

+
(
χm∂ma

13
ijk + (b10a0ij − a12ij )χk

− θ0ij∂ma
0
mk − θ0mi∂ma

0
jk − θ0im∂ma

0
jk − a0ijθ

1
k, w
)
Y

+
(
∂m(a24imjk + a24mijk − b22mka

0
ij)− b22im∂ma

0
jk − b22ij ∂ma

0
mk

− b10a13ijk + a23ijk, w
)
Y
,

(6.90b)
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(
a∇yρ

2
ij ,∇yw

)
Y
=−

(
a(eiκ

2
j +∇xκ

1
ij),∇yw

)
+
(
∇x · a(∇yκ

1
ij +∇xθ

0
ij + eiθ

1
j ), w

)
Y

+
(
a(∇yκ

2
j +∇xθ

1
j ), eiw

)
Y

+
(
χm∂m(b10a0ij − a12ij ) + b10χi∂ma

0
mj + a11i χj

− θ1i ∂ma
0
mj − θ1m∂ma

0
ij − (θ0im + θ0mi)∂

2
mna

0
nj − θ0mn∂

2
mna

0
ij , w

)
Y

+
(
∂2mna

24
mnij − ∂m(b22mi∂na

0
nj)− ∂m(b22mn∂na

0
ij)− b22im∂

2
mna

0
nj

+ b10(a12ij − b10a0ij)− (a22ij − b20a0ij), w
)
Y
,

(6.90c)(
a∇yρ

3
i ,∇yw

)
Y
=−

(
a∇xκ

2
i ,∇yw

)
Y
+
(
∇x · a(∇yκ

2
i +∇xθ

1
i ), w

)
Y

+
(
χm∂ma

11
i + χm∂m(b10∂na

0
ni)− θ0mn∂

3
mnpa

0
pi − θ1m∂

2
mna

0
ni, w

)
Y

+
(
b20∂ma

0
mi − b10(b10∂ma

0
mi + a11i )− ∂m(b22mn∂

2
npa

0
pi) + a21i , w

)
Y
,

(6.90d)

for all test functions w ∈ Wper(Y ). We enforce the right hand sides of (6.90a-6.90d) to satisfy
(6.73), which leads to the following constraints (recall that χi(x), θ

0
ij(x) and θ1i (x) have zero

mean):

|Y |(a24ijkl − a0jkb
22
il ) = −

(
a(∇yκ

0
jkl + ejθ

0
kl), ei

)
Y
, (6.91a)

|Y |a23ijk = −
(
∇x · a(∇yκ

0
ijk + eiθ

0
jk), 1

)
Y
−
(
a(∇yκ

1
jk +∇xθ

0
jk + ejθ

1
k), ei

)
Y

+ |Y |
(
b22im∂ma

0
jk + b22ij ∂ma

0
mk + b10a13ijk + ∂m(b22mka

0
ij − a24imjk − a24mijk)

)
,

(6.91b)

|Y |(a22ij − b20a0ij) =
(
∇x · a(∇yκ

1
ij +∇xθ

0
ij + eiθ

1
j ), 1

)
Y
+
(
a(∇yκ

2
j +∇xθ

1
j ), ei

)
Y

+ |Y |
(
∂2mna

24
mnij − ∂m(b22mi∂na

0
nj)− ∂m(b22mn∂na

0
ij)− b22im∂

2
mna

0
nj

+ b10(a12ij − b10a0ij)
)
,

(6.91c)

|Y |a21i = −
(
∇x · a(∇yκ

2
i +∇xθ

1
i ), 1

)
Y

+ |Y |
(
b10(b10∂ma

0
mi + a11i )− b20∂ma

0
mi + ∂m(b22mn∂

2
npa

0
pi)
)
,

(6.91d)

where each constraint is given locally for x ∈ Ω. These expressions are simplified in the following
Lemma.

Lemma 6.2.8. Denote Rij(x) = b22ij (x)−
〈
χj(x)χi(x)

〉
Y
. Then the constraints on a24, b22, a23,

a22, b20 and a21 given in (6.91) can be rewritten as

a24ijkl =
〈
ajkχlχi

〉
Y
−
〈
a∇yθ

0
kl · ∇yθ

0
ji

〉
Y
+ a0jkRil, (6.92a)

a23ijk = p23ijk − p23kji + b10a13ijk − ∂m(a0mjRik) + ∂ma
0
mkRij + ∂ma

0
jkRmi, (6.92b)

p23ijk =
〈
aejχi · ∇xχk

〉
Y
−
〈
a∇yθ

0
ji · ∇yθ

1
k

〉
Y
, (6.92c)

a22ij − b20a0ij = ∂m(p23jim − p23mij − p23imj) + p22ij + b10(a12ij − b10a0ij)

+ ∂2mn(a
0
niRmj)− ∂m(∂na

0
njRmi)− ∂m(∂na

0
ijRmn)− ∂2mna

0
njRim,

(6.92d)

p22ij =
〈
a∇xχj · ∇xχi

〉
Y
−
〈
a∇yθ

1
i · ∇yθ

1
j

〉
Y
, (6.92e)

a21i = ∂2mnp
23
mni − ∂mp

22
mi + b10(b10∂ma

0
mi + a11i )− b20∂ma

0
mi + ∂m(∂2npa

0
piRmn). (6.92f)

Proof. We simply denote (·, ·)Y as (·, ·) and 〈·〉Y as 〈·〉. We first prove (6.92a). Using (6.72) with
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the test function w = κ0jkl and (6.82a) with w = χi, we have

−
(
a(∇yκ

0
jkl + ejθ

0
kl), ei

)
=
(
a∇yκ

0
jkl,∇yχi

)
−
(
aejθ

0
kl, ei

)
= −

(
aejθ

0
kl,∇yχi + ei

)
+
(
a∇yθ

0
kl, ejχi

)
+
(
aekχl, ejχi

)
− a0jk

(
χl, χi

)
.

Cell problem (6.75a) wiht w = θ0kl leads then to

−
(
a(∇yκ

0
jkl + ejθ

0
kl), ei

)
= −

(
a∇yθ

0
kl,∇yθ

0
ji

)
+
(
ajkχl, χi

)
− a0jk

(
χl, χi

)
,

which, used in (6.91a), proves (6.92a). Let us now prove (6.92b). Using (6.91a), we verify that
the first term of (6.91b) is

−
(
∇x · a(∇yκ

0
ijk + eiθ

0
jk), 1

)
= −∂m

(
a(∇yκ

0
ijk + eiθ

0
jk), em

)
= |Y |∂m(a24mijk − a0ijb

22
mk). (6.93)

Then, using cell problems (6.72) with w = κ1jk and (6.82b) with w = χi, the second term of
(6.91b) satisfies

−
(
a(∇yκ

1
jk +∇xθ

0
jk + ejθ

1
k), ei

)
=
(
a∇yκ

1
jk,∇yχi

)
−
(
a(∇xθ

0
jk + ejθ

1
k), ei

)
= −

(
a(∇xθ

0
jk + ejθ

1
k),∇yχi + ei

)
+
(
∇x · a(∇yθ

0
jk + ejχk), χi

)
+
(
a(∇yθ

1
k +∇xχk), ejχi

)
− ∂ma

0
mk

(
χj , χi

)
− ∂ma

0
jk

(
χm, χi

)
. (6.94)

From (6.92a), using cell problem (6.75a) with w = θ0jk, we verify that(
a(∇yθ

0
jk + ejχk), emχi

)
=
(
a(∇yχi + ei), emθ

0
jk

)
+ |Y |(a24imjk − a0mjRik),

so that we can rewrite the second term of the right hand side of (6.94) as(
∇x · a(∇yθ

0
jk + ejχk), χi

)
= ∂m

(
a(∇yθ

0
jk + ejχk), emχi

)
−
(
a(∇yθ

0
jk + ejχk),∇xχi

)
= ∂m

(
a(∇yχi + ei), emθ

0
jk

)
+ |Y |∂m(a24imjk − a0mjRik)−

(
a(∇yθ

0
jk + ejχk),∇xχi

)
. (6.95)

Note that

∂m
(
a(∇yχi + ei), emθ

0
jk

)
−
(
a(∇yχi + ei),∇xθ

0
jk

)
=
(
∇x · a(∇yχi + ei), θ

0
jk

)
, (6.96)

hence, using (6.95) and (6.96) in (6.94), we obtain

−
(
a(∇yκ

1
jk +∇xθ

0
jk + ejθ

1
k), ei

)
=
(
aejχi,∇yθ

1
k

)
−
(
a(∇yχi + ei), ejθ

1
k

)
−
(
a∇xχi,∇yθ

0
jk

)
+
(
∇x · a(∇yχi + ei), θ

0
jk

)
+
(
a∇xχk, ejχi

)
−
(
aejχk,∇xχi

)
+ |Y |

(
∂m(a24imjk − a0mjRik)− ∂ma

0
mk〈χjχi〉 − ∂ma

0
jk〈χmχi〉

)
.

Using cell problems (6.75a) with w = θ1k and (6.75b) with w = θ0jk, we finally obtain the expression

−
(
a(∇yκ

1
jk +∇xθ

0
jk + ejθ

1
k), ei

)
= |Y |

(
p23ijk − p23kji + ∂m(a24imjk − a0mjRik)

− ∂ma
0
mk〈χjχi〉 − ∂ma

0
jk〈χmχi〉

)
, (6.97)

where p23ijk is defined is (6.92c). Now, using (6.93) and (6.97), the constraint (6.91b) can be
rewritten as (6.92b). Let us now prove (6.92d). First, we use (6.97) to rewrite the first term of
(6.91c) as(

∇x · a(∇yκ
1
ij +∇xθ

0
ij + eiθ

1
j ), 1

)
= |Y |

(
∂m(p23jim − p23mij) + ∂2mn(a

0
niRmj − a24mnij)

+ ∂m(∂na
0
nj〈χiχm〉) + ∂m(∂na

0
ij〈χnχm〉)

)
. (6.98)
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Using cell problems (6.72) with w = κ2j and (6.82c) with w = χi, the second term of (6.91c) can
be written as(

a(∇yκ
2
j +∇xθ

1
j ), ei

)
= −

(
a∇yκ

2
j ,∇yχi

)
+
(
a∇xθ

1
j , ei
)

=
(
a∇xθ

1
j ,∇yχi + ei

)
−
(
∇x · a(∇yθ

1
j +∇xχj), χi

)
+ ∂2mna

0
nj

(
χm, χi

)
.

(6.99)

Now, using cell problems (6.75a) and (6.75b) with w = θ1j , the first term in (6.99) can be written
as (

a(∇yχi + ei),∇xθ
1
j

)
= ∂m

(
a(∇yχi + ei), emθ

1
j

)
−
(
∇x · a(∇yχi + ei), θ

1
j

)
= ∂m

(
a(∇yθ

0
mi + emχi),∇yθ

1
j

)
−
(
a(∇yθ

1
i +∇xχi),∇yθ

1
j

)
.

Fruthermore, note that the second term of (6.99) can be written as

−
(
∇x · a(∇yθ

1
j +∇xχj), χi

)
= −∂m

(
a(∇yθ

1
j +∇xχj), emχi

)
+
(
a(∇yθ

1
j +∇xχj),∇xχi

)
,

hence, we obtain from (6.99), after simplification,(
a(∇yκ

2
j +∇xθ

1
j ), ei

)
= ∂m

(
a∇yθ

0
mi,∇yθ

1
j

)
−
(
a∇yθ

1
i ,∇yθ

1
j

)
− ∂m

(
a∇xχj , emχi

)
+
(
a∇xχj ,∇xχi

)
+ ∂2mna

0
nj

(
χm, χi

)
= |Y |

(
− ∂mp

23
imj + p22ij + ∂2mna

0
nj〈χmχi〉

)
, (6.100)

where p22ij is defined in (6.92e). Now, starting from (6.91c) and using (6.98) and (6.100), we
obtain (6.92d) (after simplification). Finally, using (6.100), we have

−
(
∇x · a(∇yκ

2
i +∇xθ

1
i ), 1

)
= ∂2mnp

23
mni − ∂mp

22
mi − ∂m(∂2npa

0
pi〈χnχm〉),

and (6.92f) follows directly from (6.91d).

We then verify that the two operators L̃2 and L2 coincide.

Lemma 6.2.9. Let ā24, b22, ā22 be the tensors defined in (6.63) and (6.64) and assume that
ā24 ∈ C2(Ω̄) and b22, ā12 ∈ C1(Ω̄). Let also L2 be the operator defined in (6.62) and L̃2 be the
operator defined in (6.87) with the tensors given in (6.92) where Rij = δa0ij for some δ ∈ R. Then

L̃2v = L2v for any v ∈ L∞(0, T ε; H4(Ω)) with ∂2t v ∈ L∞(0, T ε; H2(Ω)).

Proof. First, inserting Rij = δa0ij in (6.92d) and using (6.84a), we verify that S3
ijk{a23ijk} = 0

and thus a23ijk∂
3
ijkv = 0. Second, using (6.92d), (6.61), and the definition of Rij , we verify

that S2
ij{a22ij } = ā22ij . Furthermore, it holds S2,2

ij,kl{a24ijkl} = ā24ijkl. Hence, denoting L̃2,x =

L̃2 + ∂i
(
b22ij ∂j∂

2
t ·
)
− b20∂2t , we have

L̃2,xv = ∂2ij
(
ā24ijkl∂

2
klv
)
− ∂i

(
S2
ij{a22ij }∂jv

)
+
(
a21i + ∂m(S2

mi{a22mi})
)
∂iv. (6.101)

We claim that a21i +∂m(S2
mi{a22mi}) = 0. Indeed, using (6.92d), the form of Rij , and the symmetry

of p22 and a0, we compute

S2
ij{a22ij } =S2

ij

{
∂n(p

23
jin − p23nij − p23inj)

}
+ p22ij + b10S2

ij{a12ij } − (b10)2a0ij

+ δ∂na
0
pi∂pa

0
nj − δ∂p

(
a0pn∂na

0
ij

)
+ b20a0ij .

Note that we have seen in the proof of Proposition 6.2.7 that a11i + ∂m(S2
mi{a12mi}) = 0. Using

then (6.92f), direct computations lead to

a21i + ∂m(S2
mi{a22mi}) = δ∂m

(
∂2npa

0
pia

0
mn

)
+ δ∂m

(
∂na

0
pm∂pa

0
ni

)
− δ∂2mp

(
a0pn∂na

0
mi

)
= 0,

which proves the claim. Combined with (6.101), the claim concludes the proof of the lemma.
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Including a non-zero right hand side

In order to ensure that Rε = O(ε3) in (6.89), we still have to define the corrector ϕ in the
adaptation (6.67) to remove the terms coming from the right hand side f . We thus define
ϕ = [ϕ] ∈ L∞(0, T ε;Wper(Ω)), with ∂tϕ ∈ L∞(0, T ε;L2(Ω)) and ∂2tϕ ∈ L2(0, T ε;W∗

per(Ω)), as
the unique solution of the equation

(∂2t +Aε)ϕ(t) = −Sεf(t) in W∗
per(Ω) for a.e. t ∈ [0, T ε],

ϕ(0) = ∂tϕ(0) = [0],
(6.102)

where, denoting χε
i = χi

(
·, ·

ε

)
, θ0εij = θ0ij

(
·, ·

ε

)
, θ1εi = θ1i

(
·, ·

ε

)
,

Sεf = [ε(χε
i∂if − b10f)+ ε2

(
θ0εij ∂

2
ijf + θ1εi ∂if − χε

i∂i(b
10f) + (b10)2f + ∂i(b

22
ij ∂jf)− b20f

)
].

The standard energy estimate for the wave equation ensures

‖ϕ‖L∞(0,T ε;W) ≤ ‖∇xϕ‖L∞(0,T ε;L2(Ω)) ≤ Cε‖f‖L1(0,T ε;H2(Ω)), (6.103)

where C depends only on

λ,Λ, ‖χi‖C0(Ω̄;C0(Y )), ‖b22ij ‖C1(Ω̄), |b10|, |b20|, ‖θ0ij‖C0(Ω̄;C0(Y )), ‖θ1i ‖C0(Ω̄;C0(Y )).

We have defined explicitly all the correctors in the adaptation (6.67). Let us show that if the
tensor is uniformly periodic, i.e., a(x, y) = a(y), we recover the adaptation and effective equations
derived in Section 4.3.2. We already proved in Remark 6.2.3 that the family of effective equations
coincides. In addition, we verify that, if we require all the correctors to have zero mean, the
adaptation built in this section, is the same as in the uniformly periodic case. Indeed, we have

θ1i = κ1ij = κ2i = ρ1ijk = ρ2ij = ρ3i = 0,

χi = χ̂i, S2
{
θ0ij
}
= θ̂ij , S3

{
κ0ij
}
= κ̂ijk, S4

{
θ0ij
}
= ρ̂ijkl, ϕ = ϕ̂,

where χ̂i, θ̂ij , κ̂ijk, ρ̂ijkl and ϕ̂ are the zero mean correctors defined in the uniformly periodic
case in (4.45).

Proof of Theorem 6.2.5

To conclude this section, let us prove Theorem 6.2.5. The adaptation Bεũ is defined explicitly by
(6.67), where u1, . . . , u4 are defined in (6.71), (6.74), (6.78), and (6.86), and ϕ ∈ ϕ solves (6.102).
Then, combining Lemma 6.2.6 with Proposition 6.2.7, we verify that L1ũ = L̃1ũ, where the
tensors involved in the definition of L̃1ũ satisfy the constraints (6.83). Hence, the cell problems
(6.82) are well-posed and u3 is well defined. Similarly, combining Lemma 6.2.8 with Proposition
6.2.9, we verify that L2ũ = L̃2ũ and the definition of L̃2 ensures that u4 is well defined. Note
that thanks to assumption (4.25), we verify that x → Bεũ(t, x) is Ω-periodic. This proves the
existence of the adaptation Bεũ. By construction (see (6.70)), Bεũ satisfies the properties (6.68)
and the proof of the theorem is complete.

6.2.3 A regularity result for the correctors

In Section 6.2.2, we derived cell problems for the correctors involved in the adaptation As the
adaptation is the main tool in the proof of Theorem 6.2.1 (Section 6.2.4), we need to establish
the influence of the tensor a(x, y) on the regularity of the correctors. In this section, we prove a
sufficient condition for the correctors to belong to Cn(Ω̄; Hm+1(Y )).
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Let a ∈ [C0per(Ω̄; L∞
per(Y ))]d×d be the tensor and r ∈ C0per(Ω̄;W∗

per(Y )) a right hand side. For all
x ∈ Ω, let v(x) ∈Wper(Y ) be the solution of the cell problem(

a(x)∇yv(x),∇yw
)
L2(Y )

=
〈
r(x), w

〉
W∗

per(Y ),Wper(Y )
∀w ∈Wper(Y ). (6.104)

Thanks to the Lax–Milgram theorem, v(x) exists and is unique for all x ∈ Ω. The following result
provides a sufficient conditino for v to belong to Cn(Ω̄; Hm+1(Y )).

Lemma 6.2.10. If a ∈ [Cn(Ω̄;Wm,∞(Y ))]d×d and r ∈ Cn(Ω̄; Hm−1(Y )) (H0(Y ) = L2
0(Y )) for

some integers n ≥ 0 and m ≥ 1, then v satisfies the regularity v ∈ Cn(Ω̄; Hm+1(Y )) and the
following estimate holds

‖v‖Cn(Ω̄;Hm+1(Y )) ≤ C‖r‖Cn(Ω̄;Hm−1(Y )), (6.105)

where C depends only on Y, λ,m, n and maxij ‖aij‖Cn(Ω̄;Wm,∞(Y )).

Proof. We prove the result by induction on n ∈ N. Let us prove it for n = 0. As a(x) ∈
Wm,∞(Y ), r(x) ∈ Hm−1(Y ), the regularity result of Theorem A.2.2 ensures that v(x) ∈ Hm+1(Y )
and

‖v(x)‖Hm+1(Y ) ≤ C‖r(x)‖Hm−1(Y ), (6.106)

where the constant C depends on Y, λ,m and maxij ‖aij(x)‖Wm,∞(Y ). Further, from (6.104),
v(x+ h)− v(x) solves the variational equation(
a(x)∇y(v(x+h)−v(x)),∇yw

)
Y
=
(
r(x+h)−r(x), w

)
Y
+
(
∇y ·
(
(a(x+h)−a(x))∇yv(x+h)

)
, w
)
Y
,

∀w ∈Wper(Y ) and thus satisfies

‖v(x+ h)− v(x)‖Hm+1(Y ) ≤ C
(
‖r(x+ h)− r(x)‖Hm−1(Y )

+ ‖a(x+ h)− a(x)‖Wm,∞(Y )‖v(x+ h)‖Hm+1(Y )

)
.

As we assume a ∈ C0(Ω̄;Wm,∞(Y )), r ∈ C0(Ω̄; Hm−1(Y )), we conclude that v ∈ C0(Ω̄; Hm+1(Y )).
Estimate (6.105) for n = 0 follows from (6.106), and that proves the result for n = 0. Assume
now that the result holds true for n− 1 and let us prove that it remains true for n. Let α ∈ Nd

be a multi-index such that |α| =∑d
i=1 αi = n. For two functions f, g ∈ Cn(Ω̄), we write

∂α(fg) = f∂αg +Rα(f, g), Rα(f, g) =
∑

|γ|+|β|=|α|
|β|≥1

bαβ,γ∂
βf∂γg,

where bαβ,γ are coefficients in R. Differentiating (6.104) with respect to α, we find that ∂αv(x) ∈
Wper(Y ) is the solution of the variational problem(

a(x)∇y∂
αv(x),∇yw

)
Y
=
(
∂αr(x), w

)
Y
+
∑
ij

(
∂yi

Rα

(
aij(x), ∂yj

v(x)
)
, w
)
Y

for all w ∈Wper(Y ). Thus it satisfies

‖∂αv(x)‖Hm+1(Y ) ≤ C
(
‖r‖Cn(Hm−1) + ‖a‖Cn(Wm,∞)‖v‖Cn−1(Hm+1)

)
. (6.107)

Furthermore, ∂αv(x+ h)− ∂αv(x) solves(
a(x)∇y

(
∂αv(x+ h)− ∂αv(x)

)
,∇yw

)
Y
=
(
∂αr(x+ h)− ∂αr(x), w

)
Y

+
∑
ij

(
∂yiRα

(
aij(x+ h)− aij(x), ∂yjv(x)

)
, w
)
Y

+
∑
ij

(
∂yi

Rα

(
aij(x+ h), ∂yj

v(x+ h)− ∂yj
v(x)

)
, w
)
Y

+
∑
ij

(
∂yi

(
aij(x+ h)− aij(x), ∂yj

∂αv(x)
)
, w
)
Y
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for all w ∈Wper(Y ), and we thus have

‖∂αv(x+ h)−∂αv(x)‖Hm+1(Y ) ≤ C

(
‖∂αr(x+ h)− ∂αr(x)‖Hm−1(Y )

+
( ∑

|β|≤n

maxij ‖∂βaij(x+ h)− ∂βaij(x)‖Wm,∞(Y )

) ∑
|γ|≤n−1

‖∂γv(x)‖Hm+1(Y )

+
( ∑

|β|≤n

maxij ‖∂βaij(x)‖Wm,∞(Y )

) ∑
|γ|≤n−1

‖∂γv(x+ h)− ∂γv(x)‖Hm+1(Y )

+max
ij

‖aij(x+ h)− aij(x)‖Wm,∞(Y )‖v‖Cn(Hm+1)

)
.

As we assume a ∈ Cn(Ω̄;Wm,∞(Y )), r ∈ Cn(Ω̄; Hm−1(Y )), using (6.107) and the induction
hypothesis v ∈ Cn−1(Ω̄; Hm+1(Y )), we conclude that v ∈ Cn(Ω̄; Hm+1(Y )). Finally, estimate
(6.105) follows from (6.107) and the proof of the lemma is complete.

6.2.4 Proof of the error estimate (Theorem 6.2.1)

In this section, we prove the main result of the chapter, Theorem 6.2.1. The proof is structured
as follows. First, using the correctors derived in Section 6.2, we define the adaptation operator
Bε. In particular, recall that the definition of the effective tensors ensures the well-posedness of
the cell problems. We then split the error as

‖uε − ũ‖L∞(W ) = ‖[uε − ũ]‖L∞(W) ≤ ‖Bεũ− [uε]‖L∞(W) + ‖[ũ]−Bεũ‖L∞(W),

and both terms are estimated separately. In particular, we prove that Bεũ satisfies the same
equation as uε up to a remainder of order O(ε3) (Lemma 6.2.11).

Let us first introduced the correctors involved in the definition the adaptation operator. Consider
the correctors

χi(x), θ
0
ij(x), θ

1
i (x), κ

0
ijk(x), κ

1
ij(x), κ

2
i (x), ρ

0
ijkl(x), ρ

1
ijk(x), ρ

2
ij(x), ρ

3
i (x) ∈Wper(Y ),

defined in the cell problems (6.72), (6.75), (6.82) and (6.90), and let ϕ be the solution of (6.102).
Propositions 6.2.7 and 6.2.9 ensure that L1ũ = L̃1ũ and L2ũ = L̃2ũ, where the definitions of the
tensors in L̃1 (resp. L̃2) guarantee the well-posedness of the cell problems (6.82) (resp. (6.90)).
Let us investigate the regularity of the correctors. Using Lemma 6.2.10, we can show the following
implications, for n ≥ 0, m ≥ 0:

χi, θ
0
ij , κ

0
ijk, ρ

0
ijkl ∈ Cn(Ω̄; Hm+1(Y )) ⇐ a ∈ Cn(Ω̄;Wm,∞(Y )),

θ1i , κ
1
ij , ρ

1
ijk ∈ Cn(Ω̄; Hm+1(Y )) ⇐ a ∈ Cn(Ω̄;Wm,∞(Y )) ∩ Cn+1(Ω̄;W{m−1}+,∞(Y )),

κ2i , ρ
2
ij ∈ Cn(Ω̄; Hm+1(Y )) ⇐ a ∈ ∩2

k=0Cn+k(Ω̄;W{m−k}+,∞(Y )),

ρ3i ∈ Cn(Ω̄; Hm+1(Y )) ⇐ a ∈ ∩3
k=0Cn+k(Ω̄;W{m−k}+,∞(Y )), (6.108)

a0ij , ā
24
ijkl, b

22
ij ∈ Cn(Ω̄) ⇐ a ∈ Cn(Ω̄; L∞(Y )),

ā12ij ∈ Cn(Ω̄) ⇐ a ∈ Cn+1(Ω̄; L∞(Y )),

ā22ij ∈ Cn(Ω̄) ⇐ a ∈ Cn+2(Ω̄; L∞(Y )),

where {·}+ = max{0, ·}. In particular, under the assumption of Theorem 6.2.1:

a ∈ C1(Ω̄;W2,∞(Y )) ∩ C2(Ω̄;W1,∞(Y )) ∩ C4(Ω̄; L∞(Y )),
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all the correctors belongs to C1(Ω̄; H3(Y )) ∩ C2(Ω̄; H2(Y )). As d ≤ 3, the Sobolev embedding
H2

per(Y ) ↪→ C0per(Ȳ ) holds and the correctors belongs to C1(Ω̄; C1per(Ȳ )) ∩ C2(Ω̄; C0per(Ȳ )). Hence,
the following estimates (needed in the proof of Lemma 6.2.11 below) hold

max
ijkl

{
‖χi‖C0(C0), ‖θ0ij‖C1(C1), ‖θ1i ‖C0(C0), ‖κ0ijk‖C2(C0), ‖κ1ij‖C2(C0),

‖κ2i ‖C2(C0), ‖ρ0ijkl‖C1(C1), ‖ρ1ijk‖C1(C1), ‖ρ2ij‖C1(C1), ‖ρ3i ‖C1(C1),

‖ā12ij ‖C2 , |b10|, ‖ā24ijkl‖C3 , ‖b22ij ‖C2 , ‖ā22ij ‖C2 , |b20|
}

≤ C1(a, λ, Y ) + δC2(a, λ, Y ), (6.109)

where Ci(a, λ, Y ) depend only on λ, Y , ‖a‖C1(W2,∞), ‖a‖C2(W1,∞), and ‖a‖C4(L∞), and δ is the
parameter.

Let us introduce the following useful application of the Green formula (see Remark 4.2.7 for a
proof): for c ∈ [W1,∞

per (Ω)]d, v ∈ H1
per(Ω), and w ∈ Wper(Ω), we have(

[cm∂mv],w
)
L2 = −

(
[∂mcmv],w

)
L2 −

(
cm, ∂mw

)
L2 , (6.110)

where we recall that ∂mcm =
∑d

m=1 ∂mcm. In order to shorten the notation, we define the
following functions of C1per(Ω̄): χε

i = χi

(
·, ·

ε

)
, θ0εij = θ0ij

(
·, ·

ε

)
, θ1εi = θ1i

(
·, ·

ε

)
, and similarly

κ0εijk, κ
1ε
ij , κ

2ε
i , ρ

0ε
ijkl, ρ

1ε
ijk, ρ

2ε
ij , ρ

3ε
i . We define then the operators Bε

i : H3
per(Ω) → W∗

per(Ω) for

v ∈ H3
per(Ω) as〈Bε

0v,w
〉
=
(
[v],w

)
L2 ,〈Bε

1v,w
〉
=
(
ε[χε

i∂iv],w
)
L2 ,〈Bε

2v,w
〉
=
(
ε2[(−∂mθ0εmi + θ1εi )∂iv],w

)
L2 −

(
ε2θ0εmi∂iv, ∂mw

)
L2 ,〈Bε

3v,w
〉
=
(
ε3[κ0εijk∂

3
ijkv + κ1εij ∂

2
ijv + κ2εi ∂iv],w

)
L2 ,〈Bε

4v,w
〉
=
(
ε4[(−∂mρ0εmijk + ρ1εijk)∂

3
ijkv + ρ2εij ∂

2
ijv + ρ3εi ∂iv],w

)
L2 −

(
ε4ρ0εmijk∂

3
ijkv, ∂mw

)
L2 ,

where 〈·, ·〉 denotes the dual evaluation 〈·, ·〉W∗
per,Wper

. The adaptation operator is then defined as

Bε : L2(0, T ε; H3
per(Ω))→ L2(0, T ε;W∗

per(Ω)), v → Bεv(t) =
4∑

i=0

Bε
i (v(t)) +ϕ(t). (6.111)

Note that if v ∈ L2(0, T ε; H1
per(Ω) ∩H5(Ω)), then Bεv(t) ∈ Wper(Ω) and, using (6.110), we verify

that Bεũ(t) = [Bεũ(t)], where Bεũ is defined in (6.67) (with {uk}4k=1 defined in (6.71), (6.74),
(6.78), and (6.86)). For Aε = −∇x ·

(
aε(x)∇x ·

)
, we thus define〈

AεBεũ(t),w
〉
W∗

per,Wper
=
〈
Aε[Bεv(t)],w

〉
W∗

per,Wper
.

Remark that the definition of Bε in (6.111) allows to consider functions with lower regularity
than Bε. In particular, as ∂2t ũ ∈ L∞(0, T ε; H3

per(Ω)), Bε(∂2t ũ) is well-defined, . This is needed in
the proof of the following lemma, where we prove that Bεũ solves the same equation as [uε]
with a remainder of order ε3.

Lemma 6.2.11. Under the assumptions of Theorem 6.2.1, Bεũ satisfies

(∂2t +Aε)Bεũ(t) = [f(t)] +Rεũ(t) in W∗
per(Ω) for a.e. t ∈ [0, T ε],

where the remainder Rεũ ∈ L∞(0, T ε;W∗
per(Ω)) is given as〈Rεũ(t),w

〉
W∗

per,Wper
=
(
(Rεũ)0(t),w

)
L2 +

(
(Rεũ)1(t),∇xw

)
L2 ,
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with the bound

‖(Rεũ)0‖L∞(0,T ε;L2(Ω))+‖(Rεũ)1‖L∞(0,T ε;L2(Ω))

≤ Cε3
(∑5

k=1 |ũ|L∞(0,T ε;Hk(Ω)) + ‖∂2t ũ‖L∞(0,T ε;H3(Ω))

)
,

for a constant C that depends only on λ, Y , ‖a‖C1(Ω̄;W2,∞(Y )), ‖a‖C2(Ω̄;W1,∞(Y )), ‖a‖C4(Ω̄;L∞(Y )),
and δ.

Proof. Let us denote 〈·, ·〉Wper,Wper as 〈·, ·〉. For a fixed t ∈ [0, T ε], we compute the remainder
Rεũ(t) = (∂2t + Aε)Bεũ(t) − [f(t)]. Let us first compute explicitly the first term, ∂2tBεũ(t).
For the sake of clarity, we drop the notation of the evaluation in t. From the definition of Bε in
(6.111), it holds ∂2tBεũ =

∑2
i=0 Bε

i∂
2
t ũ+ ∂2tϕ+Rε

1ũ, where Rε
1ũ =

∑4
i=3 Bε

i∂
2
t ũ, i.e.,〈

∂2tBεũ,w
〉
=
(
[∂2t ũ],w

)
L2 +

(
[εχε

i∂i∂
2
t ũ+ ε2(−∂mθ0εmi + θ1εi )∂i∂

2
t ũ],w

)
L2

−
(
ε2θ0εmi∂i∂

2
t ũ, ∂mw

)
+
〈
∂2tϕ+Rε

1ũ,w
〉
. (6.112)

We rewrite the three first terms of the right hand side. Note that thanks to the regularity of ũ
and the effective equation (6.65), we have the following equalities

∂2t ũ = f + ∂m(a0mn∂nũ)− εL1ũ− ε2L2ũ in L2
0(Ω), (6.113)

∂i∂
2
t ũ = ∂if + ∂2im(a0mn∂nũ)− ε∂i(L

1ũ)− ε2∂i(L
2ũ) in L2(Ω). (6.114)

Using (6.113), we rewrite the first term of (6.112) as

[∂2t ũ] =[f] + [∂m(a0mn∂nũ) + ε
(
− L1,xũ− b10∂m(a0mn∂nũ)

)
+ ε2

(
− L2ũ+ b10L1ũ

)
]

+ [−εb10f + ε3b10L2ũ].

Using the definitions of L1 and L2 and (6.113), we have

ε2
(
[−L2ũ+ b10L1ũ],w

)
L2

= ε2
(
[−L2,xũ− b10L1,xũ+ ((b10)2 − b20)∂m(a0mn∂nũ)],w

)
L2

− ε2
(
b22mi∂i∂

2
t ũ, ∂mw

)
L2 + ε2

(
[((b10)2 − b20)(f + εL1ũ+ ε2L2ũ)],w

)
L2 ,

where L1,x = L1−b10∂2t and L2,x = L2+∂i(b
22
ij ∂j∂

2
t ·)−b20∂2t are the spatial parts of the operators.

We thus obtain(
[∂2t ũ],w

)
L2 =

(
[f] + [∂m(a0mn∂nũ) + ε

(
− L1,xũ− b10∂m(a0mn∂nũ)

)
+ ε2

(
− L2,xũ+ b10L1,xũ+ ((b10)2 − b20)∂m(a0mn∂nũ)],w

)
L2

−
(
ε2b22mi∂i∂

2
t ũ, ∂mw

)
L2 +

(Sε
1f +Rε

2ũ,w
)
L2 , (6.115)

where

Sε
1f = [−εb10f + ε2((b10)2 − b20)f],

Rε
2ũ = [ε3b10L2ũ+ ε3((b10)2 − b20)(L1ũ+ εL2ũ)].

Next, we use (6.114) and then (6.113) to write the second term of (6.112) as

[εχε
i∂i∂

2
t ũ] =[εχ

ε
i∂

2
im(a0mn∂nũ)− ε2χε

i∂i(L
1,xũ)− ε2χε

i∂i(b
10∂m(a0mn∂nũ))] + Sε

2f +Rε
3ũ,

(6.116)
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where

Sε
2f = [εχε

i∂if − ε2χε
i∂i(b

10f)],

Rε
3ũ = [−ε3χε

i∂i(L
2ũ) + ε3χε

i∂i(b
10(L1ũ+ εL2ũ))].

Furthermore, using (6.114) and formula (6.110), we rewrite

−
(
[ε2∂mθ

0ε
mi∂i∂

2
t ũ],w

)
L2 −

(
ε2(θ0εmi + b22mi)∂i∂

2
t ũ, ∂mw

)
L2

=
(
[ε2θ0εij ∂

3
ijm(a0mn∂nũ) + ∂i(b

22
ij ∂

2
jm(a0mn∂nũ))],w

)
L2 +

〈Sε
3f +Rε

4ũ,w
〉
. (6.117)

where〈Sε
3f,w

〉
=
(
ε2[θ0εij ∂

2
ijf + ∂i(b

22
ij ∂jf)],w

)
L2 ,〈Rε

4ũ,w
〉
=
(
ε3[∂mθ

0ε
mi∂i(L

1ũ+ εL2ũ)],w
)
L2 +

(
ε3(θ0εmi + b22mi)∂i(L

1ũ+ εL2ũ), ∂mw
)
L2 ,

and, using (6.114), we rewrite

[ε2θ1εi ∂i∂
2
t ũ] =[ε

2θ1εi ∂
2
im(a0mn∂nũ)] + Sε

4f +Rε
5ũ, (6.118)

where Sε
4f = [ε2θ1εi ∂if] and Rε

5ũ = [ε3θ1εi ∂i(L
1ũ+ εL2ũ)]. Combining equalities (6.112),

(6.115), (6.116), (6.117) and (6.118), we finally obtain

∂2tBεũ =[f] + [∂m(a0mn∂nũ)] + ε[χi∂
2
im(a0mn∂nũ)− L1,xũ− b10∂m(a0mn∂nũ)]

+ ε2[θ0εij ∂
3
ijm(a0mn∂nũ) + θ1εi ∂

2
im(a0mn∂nũ)− χε

i∂i(L
1,xũ)− χε

i∂i(b
10∂m(a0mn∂nũ))

− L2,xũ+ b10L1,xũ+ ((b10)2 − b20)∂m(a0mn∂nũ) + ∂i(b
22
ij ∂

2
jm(a0mn∂nũ))]

+ ∂2tϕ+
∑4

i=1 Sε
if +

∑5
i=1 Rε

i ũ. (6.119)

For the second term, AεBεũ(t), we have (the correctors and a are evaluated at
(
x, y = x

ε

)
)

AεBεũ =

[ ε−1
(
−∇y · (a(∇yχi + ei))

)
∂iũ

+ ε0
(
−∇y · (a(∇yθ

0
ij + eiχj))− eTi a(∇yχj + ej)

)
∂2ij ũ

+ ε0
(
−∇y · (a(∇yθ

1
i +∇xχi))−∇x · (a(∇yχi + ei))

)
∂iũ

+ ε1
(
−∇y · (a(∇yκ

0
ijk + eiθ

0
jk))− eTi a(∇yθ

0
jk + ejχk)

)
∂3ijkũ

+ ε1
(
−∇y · (a(∇yκ

1
ij +∇xθ

0
ij + eiθ

1
j ))−∇x · (a(∇yθ

0
ij + eiχj))− eTi a(∇yθ

1
j +∇xχj)

)
∂2ij ũ

+ ε1
(
−∇y · (a(∇yκ

2
i +∇xθ

1
i ))−∇x · (a(∇yθ

1
i +∇xχi))

)
∂iũ

+ ε2
(
−∇y · (a(∇yρ

0
ijkl + eiκ

0
jkl))− eTi a(∇yκ

0
jkl + ejθ

0
kl)
)
∂4ijklũ

+ ε2
(
−∇y · (a(∇yρ

1
ijk +∇xκ

0
ijk + eiκ

1
jk))−∇x · (a(∇yκ

0
ijk + eiθ

0
jk))

− eTi a(∇yκ
1
jk +∇xθ

0
jk)
)
∂3ijkũ

+ ε2
(
−∇y · (a(∇yρ

2
ij +∇xκ

1
ij + eiκ

2
j ))−∇x · (a(∇yκ

1
ij +∇xθ

0
ij + eiθ

1
j ))

− eTi a(∇yκ
2
j +∇xθ

1
j )
)
∂2ij ũ

+ ε2
(
−∇y · (a(∇yρ

3
i +∇xκ

2
i ))−∇x(a(∇yκ

2
i +∇xθ

1
i ))
)
∂iũ ]

+Aεϕ+Rε
6ũ+Rε

7ũ, (6.120)

where, defining the following functions of (x, y),

R0
ijkl = a(∇yρ

0
ijkl + eiκ

0
jkl), R1

ijk = a(∇yρ
1
ijk +∇xκ

0
ijk + eiκ

1
jk),

R2
ij = a(∇yρ

2
ij +∇xκ

1
ij + eiκ

2
j ), R3

i = a(∇yρ
3
i +∇xκ

2
i ),
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the remainders Rε
6ũ and Rε

7ũ are given by

Rε
6ũ = ε3[eTmR

0
ijkl∂

5
mijklũ+∇x ·R0

ijkl∂
4
ijklũ+ eTmR

1
ijk∂

4
mijkũ+∇x ·R1

ijk∂
3
ijkũ

+ eTmR
2
ij∂

3
mij ũ+∇x ·R2

ij∂
2
ij ũ+ eTmR

3
i ∂

2
miũ+∇x ·R3

i ∂iũ],〈Rε
7ũ,w

〉
= ε4

(
eTma(∇xρ

0
ijkl∂

4
ijklũ+∇xρ

1
ijk∂

3
ijkũ+∇xρ

2
ij∂

2
ij ũ+∇xρ

3
i ∂iũ, ∂mw

)
L2

+ ε4
(
amnρ

0
ijkl∂

5
nijklũ+ amnρ

1
ijk∂

4
nijkũ+ amnρ

2
ij∂

3
nij ũ+ amnρ

3
i ∂

2
niũ, ∂mw

)
L2 .

Combining now (6.119) and (6.120), and using cell problems (6.72), (6.75), (6.82), (6.90), and

the definition of ϕ in (6.102) (verify that
∑4

i=1 Sε
if = Sεf ), the remainder is given by Rεũ =∑7

i=1 Rε
i ũ. Using (6.109),we verify that Rεũ satisfies estimate (6.112) and the proof of the

lemma is complete.

Proof of Theorem 6.2.1. As uε − ũ ∈Wper(Ω) and thanks to the triangle inequality, we have

‖uε − ũ‖L∞(W ) = ‖[uε − ũ]‖L∞(W) ≤ ‖[uε]−Bεũ‖L∞(W) + ‖Bεũ− [ũ]‖L∞(W). (6.121)

Let us estimate the two terms of the right hand side. First, note that η = [uε]−Bεũ satisfies
(∂2t + Aε)η(t) = Rεũ(t) in W∗

per(Ω) for a.e t ∈ [0, T ε], where Rεũ is defined in Lemma 6.2.11.
Hence, using Corollary 4.2.2, the first term satisfies

‖[uε]−Bεũ‖L∞(W) ≤ Cε
(
‖g1‖H4 + ‖g0‖H4 +

∑5
k=1 |ũ|L∞(Hk) + ‖∂2t ũ‖L∞(H3)

)
, (6.122)

where C depends on T , λ, Y , ‖a‖C1(Ω̄;W2,∞(Y )), ‖a‖C2(Ω̄;W1,∞(Y )), ‖a‖C4(Ω̄;L∞(Y )), and δ. Next,
using the definition of Bε (6.111) and the estimates (6.103) and (6.109), the second term of
(6.121) satisfies

‖Bεũ− [ũ]‖L∞(W) ≤ Cε
(∑5

k=1 |ũ|L∞(Hk) + ‖f‖L1(H2)

)
, (6.123)

where C depends on λ, Y , ‖a‖C1(Ω̄;W2,∞(Y )), ‖a‖C2(Ω̄;W1,∞(Y )), ‖a‖C4(Ω̄;L∞(Y )), and δ. Combining
(6.121), (6.122), and (6.123), we obtain (6.66) and the proof of the theorem is complete. �

6.3 Effective equations for tensors with minimal regularity in the second variable

Theorem 6.2.1 provides an error estimate for a family of effective equations under the assumption
that the tensor a(x, y) satisfies the regularity

a ∈ C1(Ω̄;W2,∞(Y )) ∩ C2(Ω̄;W1,∞(Y )) ∩ C4(Ω̄; L∞(Y )).

The requirement on the regularity of y → a(x, y) is severe. In this section, we adapt what was
done in Section 4.2.6, for uniformly periodic tensors, and prove an error estimate for a tensor
with minimal regularity in the second variable: a ∈ C4(Ω̄; L∞(Y )). In particular, this allows for
discontinuities in the map y → a(x, y). To enable this lower regularity of the tensor, we increase
the regularity requirements on the effective solution, on the initial conditions, and on the right
hand side.

Let us present the key points of the proof of the result. The lower regularity of the tensor ensures
the correctors to belong to C1(Ω̄; H1(Y )) instead of C1(Ω̄; C1(Ȳ )). However, the higher regularity
of the solution, combined with Sobolev embeddings, ensures ũ ∈ L∞(0, T ε; C5(Ω̄)) instead of
L∞(0, T ε; H5(Ω)). Hence, we verify that the adaptation Bεũ (defined in (6.111)) still belongs
to L∞(0, T ε;Wper(Ω)). Note that in order to estimate the terms composing the remainder of
Lemma 6.2.11, we generalize Lemma 4.2.10 to locally periodic functions (see Lemma 6.3.2).
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Theorem 6.3.1. Assume that the tensor a(x, y) satisfies the regularity a ∈ C4(Ω̄; L∞(Y )).
Furthermore, assume that the solution ũ of (6.65), the initial conditions and the right hand side
satisfy the regularity

ũ ∈ L∞(0, T ε; H7(Ω)), ∂tũ ∈ L∞(0, T ε; H6(Ω)), ∂2t ũ ∈ L∞(0, T ε; H5(Ω)),

g0 ∈ H6(Ω), g1 ∈ H5(Ω), f ∈ L2(0, T ε;Wper(Ω) ∩H4(Ω)).

Then the following estimate holds

‖uε − ũ‖L∞(0,T ε;W ) ≤ Cε
(
‖g1‖H6(Ω) + ‖g0‖H6(Ω) + ‖f‖L1(0,T ε;H4(Ω))

+
∑7

k=1 |ũ|L∞(0,T ε;Hk(Ω)) + ‖∂2t ũ‖L∞(0,T ε;H5(Ω))

)
,

(6.124)

where C depends only on T , λ, Y , ‖a‖C4(Ω̄;L∞(Y )), and δ.

The proof of Theorem 6.3.1 follows the same structure as that of Theorem 6.2.1. First, we
investigate the regularity of the correctors. As a ∈ C0(Ω̄; L∞(Y )), we verify thanks to (6.108)
that all the correctors belong (at least) to C1(Ω̄;Wper(Ω)) and that κ0, κ1, κ2 ∈ C2(Ω̄; L2

0(Ω)).
Furthermore, the following estimate (needed in the proof) hold

max
ijkl

{
‖χi‖C0(H1), ‖θ0ij‖C1(H1), ‖θ1i ‖C0(H1), ‖κ0ijk‖C2(H1), ‖κ1ij‖C2(H1),

‖κ2i ‖C2(H1), ‖ρ0ijkl‖C1(H1), ‖ρ1ijk‖C1(H1), ‖ρ2ij‖C1(H1), ‖ρ3i ‖C1(H1),

‖ā12ij ‖C2 , |b10|, ‖ā24ijkl‖C3 , ‖b22ij ‖C2 , ‖ā22ij ‖C2 , |b20|
}

≤ C1(a, λ, Y ) + δC2(a, λ, Y ), (6.125)

where Ci(a, λ, Y ) depend only on λ, Y , ‖a‖C4(L∞), and δ is the parameter. Next, as d ≤ 3, the
embedding H2

per(Ω) ↪→ C0per(Ω̄) is continuous. Hence, we have f ∈ L2(0, T ε; C2per(Ω)) and the right
hand side Sεf of (6.102) belongs to L2(0, T ε;L2(Ω)). Consequently, ϕ ∈ L∞(0, T ε;Wper(Ω))
exists, is unique, and satisfies ∂2t ϕ ∈ L2(0, T ε;W∗

per(Ω)). We thus verify that (6.111) defines a
linear map (still denoted Bε)

Bε : L2(0, T ε;W3,∞(Ω))→ L2(0, T ε;W∗
per(Ω)), v → Bεv(t) =

4∑
i=0

Bε
i (v(t)) +ϕ(t).

Again, the embedding H2
per(Ω) ↪→ C0per(Ω̄) ensures that

ũ ∈ L∞(0, T ε; C5per(Ω)), ∂tũ ∈ L∞(0, T ε; C4per(Ω)), ∂2t ũ ∈ L∞(0, T ε; C3per(Ω)),

and we have

Bεũ ∈ L∞(0, T ε;Wper(Ω)), Bε∂tũ ∈ L∞(0, T ε;L2(Ω)), Bε∂2t ũ ∈ L∞(0, T ε;W∗
per(Ω)).

Furthermore, we verify that Bεũ satisfies

(∂2t +Aε)Bεũ(t) = [f(t)] +Rεũ(t) in W∗
per(Ω) for a.e. t ∈ [0, T ε], (6.126)

where the remainder Rεũ ∈ L∞(0, T ε;W∗
per(Ω)) is defined in the proof of Lemma 6.2.11. In order

to estimate ‖Rεũ‖L∞(0,T ε;W∗
per(Ω)), we need the following result.

Lemma 6.3.2. Then γ ∈ C0(Ω̄; L2
per(Y )) and v ∈ H2

per(Ω) satisfy the estimate∥∥γ(·, ·
ε

)
v
∥∥
L2(Ω)

≤ C‖γ‖C0(Ω̄;L2(Y ))‖v‖H2(Ω), (6.127)

for some constant C that depends only on Y , d and the bound on ε.
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Proof. The proof follows the same lines as for Lemma 4.2.10. Let us first recall the notations.
Let � ∈ Rd be the period of the tensor a and assume without loss of generality that Y =
(0, �1) × · · · × (0, �d) and Ω = (0, ω1) × · · · × (0, ωd). As Ω satisfies the assumption (4.25) (see
Figure 4.2), the numbers Ni = ωi/�iε are integers and the cells constituting Ω belongs to the set
{ε(n · �+ Y ) : 0 ≤ ni ≤ Ni − 1}. Denoting Ξ = {ξ = n · � : 0 ≤ ni ≤ Ni − 1}, the domain Ω is
then given by

Ω = int

( ⋃
ξ∈Ξ

ε(ξ + Ȳ )

)
. (6.128)

Furthermore, let Z ⊂ Rd be an open set with C1 boundary that contains Y and is contained in
the neighbor cells, i.e.,

Y ⊂ Z ⊂ NY = (−�1, 2�1)× · · · × (−�d, 2�d).

For example, Z = F−1
Y (S), where S is the open sphere of diameter

√
d centered in (1/2, · · · , 1/2)

(recall that d ≤ 3) and FY : NY → (−1, 2)d is a smooth change of coordinates. As Z has a C1
boundary and d ≤ 3, Sobolev embedding theorem ensures that the embedding H2(Z) ↪→ C0( ¯̂Y ) is
continuous. Hence, there exists a constant CY , depending only Y , such that

‖w‖C0(Ȳ ) ≤ ‖w‖C0(Z̄) ≤ CY ‖w‖H2(Z) ≤ CY ‖w‖H2(NY ) ∀w ∈ H2(NY ). (6.129)

We now prove the estimate. Using (6.128) and the Y -periodicity of y → γ(x, y), we have∥∥γ(·, ·
ε

)
v
∥∥2
L2(Ω)

=
∑
ξ∈Ξ

∫
ε(ξ+Y )

∣∣∣γ(x, xε )v(x)∣∣∣2 dx =
∑
ξ∈Ξ

∫
Y

∣∣∣γ(ε(ξ + y), y
)
v
(
ε(ξ + y)

)∣∣∣2εd dy,
where we made the change of variables x = ε(ξ+ y). We define the function vξ,ε(y) = v

(
ε(ξ+ y)

)
.

As v ∈ H2
per(Ω) ↪→ C0per(Ω̄), we have vξ,ε ∈ C0(Ȳ ) and

∥∥γ(·, ·
ε

)
v
∥∥2
L2(Ω)

≤
∑
ξ∈Ξ

εd‖vξ,ε‖2C0(Ȳ )

∫
Y

∣∣∣γ(ε(ξ + y), y
)∣∣∣2 dy ≤ ‖γ‖2C0(Ω̄;L2(Y ))

∑
ξ∈Ξ

εd‖vξ,ε‖2C0(Ȳ ).

Using (6.129) gives ‖vξ,ε‖C0(Ȳ ) ≤ CY ‖vξ,ε‖H2(NY ). Furthermore, we have

εd‖vξ,ε‖2H2(NY ) =

∫
NY

|vξ,ε(y)|2εddy +
∫
NY

|∇yvξ,ε(y)|2εddy +
∫
NY

|∇2
y vξ,ε(y)|2εddy

=

∫
NY

∣∣v(ε(ξ + y)
)∣∣2εddy + ε2

∫
NY

∣∣∇xv
(
ε(ξ + y)

)∣∣2εddy + ε4
∫
NY

∣∣∇2
xv
(
ε(ξ + y)

)∣∣2εddy.
Hence, the change of variable x = ε(ξ + y) leads to∥∥γ(·, ·

ε

)
v
∥∥2
L2(Ω)

≤ C‖γ‖2C0(Ω̄;L2(Y ))

∑
ξ∈Ξ

‖v‖2H2(ε(ξ+NY ))

≤ (2d2 + 1)C‖γ‖2C0(Ω̄;L2(Y ))

∑
ξ∈Ξ

‖v‖2H2(ε(ξ+Y )),

where we used that every cell ε(ξ + Y ) belongs to the neighborhoods of (2d2 + 1) cells. This is
(6.129) and the proof of the lemma is complete.

Proof of Theorem 6.3.1. Applying Lemma 6.3.2 and using (6.125), we verify that the remainder
Rεũ in (6.126) satisfies〈Rεũ(t),w

〉
W∗

per,Wper
=
(
(Rεũ)0(t),w

)
L2 +

(
(Rεũ)1(t),∇w

)
L2 ,
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with the bound

‖(Rεũ)0‖L∞(L2(Ω)) + ‖(Rεũ)1‖L∞(L2(Ω)) ≤ Cε3
(∑7

k=5 |ũ|L∞(Hk) +
∑5

k=3 |∂2t ũ|L∞(Hk)

)
,

where C depends only on λ, Y , ‖a‖C4(L∞), b
10, b20, and δ. Define now η = [uε]−Bεũ. Using

Lemma 6.3.2 and (6.125), we verify that

‖η(0)‖L2(Ω) ≤ Cε‖g0‖H6(Ω), ‖∂tη(0)‖L2(Ω) ≤ Cε‖g1‖H6(Ω).

Hence, applying Corollary 4.2.2 gives

‖η‖L∞(W) ≤ Cε
(
‖g1‖H6(Ω) + ‖g0‖H6(Ω) +

∑7
k=1 |ũ|L∞(Hk) + ‖∂2t ũ‖L∞(H5)

)
. (6.130)

Using once againg Lemma 6.3.2 and (6.125), we verify that

‖[ũ]−Bεũ‖L∞(L2(Ω)) ≤ Cε
(∑7

k=1 |ũ|L∞(Hk) + ‖f‖L1(H4)

)
. (6.131)

Finally, as uε − ũ ∈Wper(Ω), the triangle inequality gives

‖uε − ũ‖L∞(W ) = ‖[uε − ũ]‖L∞(W) ≤ ‖η‖L∞(W) + ‖[ũ]−Bεũ‖L∞(W),

which, combined with (6.130) and (6.131), proves estimate (6.124). That completes the proof of
Theorem 6.3.1. �

6.4 Simplified family of the effective equations

In this section, we discuss the possibility of simplifying the effective equations obtained in Section
6.2 (Definition 6.2.2). In particular, some of the effective operators seem, in practice, to be
unnecessary in certain cases. As the removal of these operators leads to a significant gain of
computational cost for the corresponding approximation, it has to be studied with attention.

In Section 6.2, we obtained a family of effective equations of the form

(1+εb10+ε2b20)∂2t ũ−∂i
(
(a0ij+εa

12
ij +ε

2a22ij )∂j ũ
)
+ε2∂2ij

(
ā24ijkl∂

2
klũ
)
−ε2∂i

(
b22ij ∂j ũ

)
= f, (6.132)

where the tensors depend on x ∈ Ω. We recall that the effective equations for a uniformly periodic
tensor are of the form (Chapter 4, Section 4.2).

∂2t ũ− a0ij∂
2
ij ũ+ ε2ā24ijkl∂

4
ijklũ− ε2b22ij ∂

2
ij ũ = f,

where the tensors are constant. Comparing the two equations, we note that (6.132) contains the
additional operators

εL1 = ε
(
b10∂2t − ∂i(a

12
ij ∂j ·)

)
, ε2L2,1 = ε2

(
b20∂2t − ∂i(a

22
ij ∂j ·)

)
. (6.133)

This difference naturally questions the role of εL1 and ε2L2,1 in (6.132). Indeed, a priori, the
presence of εL1 in (6.132) indicates that the homogenized equation must already be corrected for
timescales O(ε−1). Despite several attempts, we failed to find an example of tensor for which ũ
exhibits a visible difference with and without εL1 in (6.132). The use of ε2L2,1 is illustrated in
a numerical example in Section 6.5.1. However, for its influence to be notable, the variation of
the map x → a(x, y) must be sharp. These considerations interrogate the necessity of εL1 and
ε2L2,1 in the effective equations. The prospect of removing these estimates from the equation
is especially interesting as the corresponding cost of approximation is significantly reduced (as
discussed in Chapter 7, Remark 7.2.5). For these reasons, we prove an error estimate that
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quantifies the repercussion of the removal of εL1 and ε2L2,1. Nevertheless, no criterion was found
to assess a priori whether these operators can be removed or not in practice.

For simplicity, we assume that ε and a(x, y) are such that the matrix a0 + εǎ12 + ε2ǎ22 is positive
definite, everywhere in Ω (see Remark 6.2.4). This assumption can be avoided, but the proof is
more technical. Furthermore, recall that the role of εL1 and ε2L2,1 in the equation is precisely to
replace the operator ∂i(εǎ

12 + ε2ǎ22∂j ·). Indeed, the decomposition into pairs of operators in
(6.133) is a trick to guarantee unconditionally the well-posedness of the equation (see Section
6.2.2). Hence, to study the effects of εL1 and ε2L2,1 on the effective solution, we must study the
tensors εǎ12 and ε2ǎ22. We thus consider the solution ũ : [0, T ε]× Ω→ R the solution of

∂2t ũ− ∂i
(
(a0ij + εǎ12ij + ε2ǎ22ij )∂j ũ

)
+ ε2∂2ij

(
ā24ijkl∂

2
klũ
)
− ε2∂i

(
b22ij ∂j ũ

)
= f in (0, T ε]× Ω,

x → ũ(t, x) Ω-periodic in [0, T ε],

ũ(0, x) = g0(x), ∂tũ(0, x) = g1(x) in Ω,
(6.134)

where the tensors are defined in (6.61), (6.64), and (6.63). Referring to Remark 6.2.4, ũ is an
effective solution. Let then û : [0, T ε]× Ω→ R, be the solution of the equation

∂2t û− ∂i
(
a0ij∂j û

)
+ ε2∂2ij

(
ā24ijkl∂

2
klû
)
− ε2∂i

(
b22ij ∂j û

)
= f in (0, T ε]× Ω,

x → û(t, x) Ω-periodic in [0, T ε],

û(0, x) = g0(x), ∂tû(0, x) = g1(x) in Ω.

(6.135)

We prove the following error estimate for ũ− û.

Theorem 6.4.1. Assume that the assumptions of Theorem 6.2.1 hold. Then the following
estimate holds

‖ũ− û‖L∞(0,T ε;L2(Ω)) ≤ C
(
ε−1 max

ij
‖ǎ12ij ‖C0(Ω̄) +max

ij
‖ǎ22ij ‖C0(Ω̄)

)
|ũ|L∞(H1), (6.136)

where C depends only on λ, and T .

Combined with Theorem 6.2.1 and Remark 6.2.4, Theorem 6.4.1 ensures that (under the regularity
assumptions of Theorem 6.2.1)

‖uε − û‖L∞(0,T ε;W ) ≤ C
(
ε+ ε−1 max

ij
‖ǎ12ij ‖C0(Ω̄) +max

ij
‖ǎ22ij ‖C0(Ω̄)

)
,

where the constant C depends on Ω and T ε only through the norms of the data and ũ. This
estimate ensures that for some tensors and under some regimes of ε, the corrections εL1 and
ε2L2,1 in the effective equations (6.132) are superfluous. Namely, if

max
ij

‖ǎ12ij ‖C0(Ω) = O(ε2), max
ij

‖ǎ22ij ‖C0(Ω) = O(ε), (6.137)

then approximating uε with û is accurate enough. In all the numerical examples that we
considered, (6.137) was satisfied. Nevertheless, to take advantage of this fact in practice, we need
a criterion to determine whether (6.137) holds without having to compute ǎ12ij and ǎ22ij . Ideally,
the knowledge of a(x, y), and in particular of x → a(x, y), should be enough to take the decision
of the removal of εǎ12ij and ε2ǎ22ij in the equation. Unfortunately, we were unable to derive such
criterion.

Proof of the error estimate

Let us recall the functional spaces introduced in Section 2.1.2. We define the bilinear forms(
v, w
)
S =

(
v, w
)
L2(Ω)

+
(
ε2b22∇v,∇w

)
L2(Ω)

,

A
(
v, w
)
=
(
a0∇v,∇w

)
L2(Ω)

+
(
ε2ā24∇2v,∇2w

)
L2(Ω)

.
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Equipped with the inner product (·, ·)S and A(·, ·), respectively, we verify that the spaces

S(Ω) = {v ∈ L2
0(Ω) :

√
b22∇v ∈ [L2(Ω)]d}, V(Ω) = {v ∈Wper(Ω) :

√
ā24∇2v ∈ [L2(Ω)]d×d},

are Hilbert spaces. Define the error η = ũ− û. Using (6.134) and (6.135), we verify that for any
w ∈ V(Ω) (

∂tη(t), w
)
S +A

(
η(t), w

)
= −

(
(εǎ12 + ε2ǎ22)∇ũ,∇w

)
L2(Ω)

, (6.138)

and η(0) = ∂tη(0) = 0. To estimates ‖η‖L∞(L2), we need the following generalization of Lemma
4.2.1.

Lemma 6.4.2. Let η ∈ L∞(0, T ε;V(Ω)) with ∂tη ∈ L∞(0, T ε;S(Ω)) and ∂2t η ∈ L2(0, T ε;S(Ω))
satisfies(

∂2t η(t), w
)
S +A

(
η(t), w

)
=
(
r(t),∇w

)
L2 ∀w ∈ V(Ω) for a.e. t ∈ [0, T ε],

η(0) = ∂tη(0) = 0,
(6.139)

where r ∈ L∞(0, T ε; L2(Ω)). Then the following estimate holds

‖η‖L∞(0,T ε;L2(Ω)) ≤ Cε−2‖r‖L∞(0,T ε;L2(Ω)),

where C depends only on λ and T .

Proof. For a.e. t ∈ [0, T ε], let v̂(t) ∈ V(Ω) be the solution of the elliptic problem

A
(
v̂(t), w

)
=
(
∂tη(t), w

)
S ∀w ∈ V(Ω). (6.140)

Thanks to Lax–Milgram theorem, v̂(t) exists and is unique. Differentiating (6.140) with respect
to t, we find that for all w ∈ V(Ω), A

(
∂tv̂(t), w

)
=
(
∂2t η(t), w

)
S . Using the test function w = v̂(t)

in (6.139), we thus get(
r(t),∇v̂(t)

)
L2 =

(
∂2t η(t), v̂(t)

)
S +A

(
η(t), v̂(t)

)
= A

(
∂tv̂(t), v̂(t)

)
+
(
∂tη(t), η(t)

)
S .

Thanks to the symmetry of the forms A and (·, ·)S , this equality can be rewritten as

1
2

d
dt

(
A
(
v̂(t), v̂(t)

)
+
(
η(t), η(t)

)
S

)
=
(
r(t),∇v̂(t)

)
L2 .

Integrating over [0, ξ], we get, for any ξ ∈ [0, T ε],

A
(
v̂(ξ), v̂(ξ)

)
+
(
η(ξ), η(ξ)

)
S = 2

∫
0

ξ(
r(t),∇v̂(t)

)
L2 .

Using the Cauchy–Schwartz, Hölder, and Young inequalities, we bound the term of the right
hand side as

2

∫
0

ξ(
r(t),∇v̂(t)

)
L2 ≤ 2‖r‖L1(L2)‖∇v̂‖L∞(L2) ≤ 2

λ‖r‖
2
L1(L2) +

λ
2 ‖∇v̂‖

2
L∞(L2).

Combining the two last equations with the ellipticity of A, we obtain successively

λ
2 ‖∇v̂‖

2
L∞(L2) ≤ 2

λ‖r‖
2
L1(L2), ‖η‖2L∞(0,T ε;S) ≤ 4

λ‖r‖
2
L1(L2).

Using Hölder’s inequality gives ‖r‖L1(L2) ≤ Tε−2‖r‖L∞(L2) and we obtain the desired estimate.

Proof of Theorem 6.4.1. Combining (6.138) with Lemma 6.4.2, we verify that η = ũ− û satisfies

‖η‖L∞(0,T ε;L2(Ω)) ≤ C
(
ε−1 max

ij
‖ǎ12ij ‖C0(Ω̄) +max

ij
‖ǎ22ij ‖C0(Ω̄)

)
|ũ|L∞(H1),

where C depends only on λ and T . The proof of the theorem is complete. �
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6.5 Numerical experiments

In this section, we test the theoretical results obtained in this chapter in diverse numerical
experiments. First, we consider a one-dimensional example in a pseudoinfinite domain and verify
that the family of effective equations describes well the long time behavior of the heterogeneous
wave. Second, we consider a two-dimensional example in a small domain and verify the long
time validity of an effective solution. Finally, in a two-dimensional pseudoinfinite domain, we
compare an effective solution with the classical homogenized solution. In particular, we provide a
visualization of the long time dispersion effects.

6.5.1 One-dimensional example

We consider here a one-dimensional example in a pseudoinfinite locally periodic medium. Let us
fix the initial data and the right hand side for the test problem as g0(x) = e−20x2

, g1 = 0, f = 0.
Let us first consider the locally periodic tensor given by

a
(
x, xε
)
= 249

419 + 1
6 sin(2πx) +

1
6 sin

(
2π x

ε

)
, (6.141)

with ε = 1/20 (Y = (−0.5, 0.5)). Denoting c = 249
419 and

I(x, y) =

∫ y 1

a(x, z)
dz =

6
√
2atan

( √
2(tan(πx)(6c+sin(2πy))+1)√

72c2+24c sin(2πy)−cos(4πy)−1

)
π
√
72c2 + 24c sin(2πy)− cos(4πy)− 1

,

we verify that

a0(x) =
1

I(x, 1/2)− I(x,−1/2) , χ(x, y) = a0(x)I(x, y)− y + C0,

where C0 is such that
〈
χ(x)

〉
Y
= 0. Furthermore, we have∫

Ω

√
a0(x) dx ≈ 3/4,

∫
Ω

〈
χ(x)2

〉
Y
dx ≈ 1.1978 · 10−3.

For these data, we compare the solution uε of (6.3), the homogenized solution u0 and effective
solutions ũ in the family E (Definition 6.1.2) at the time T ε = ε−2 = 400. For the waves not
to reach the boundary, we set Ω = (−301, 301). We denote ũr the solutions of the family E
defined in Definition 6.1.2, where the subscript r specify the dependence on the parameter r. To
approximate uε, we use a spectral method (Section 2.3) on a grid of size h = ε/25 and a leap-frog
scheme for the time integration with a time step Δt = h/50 (Section A.5). To approximate u0

and ũr, the same methods are used with h = ε/4 and Δt = h/50. Note that a gradient method is
needed as the second order ODE for ũr is implicit.

In Figure 6.1, we display the frontal wave of uε, u0, and ũr for some r ∈ [0, 0.1] at t = ε−2 = 400.
As expected, we observe that the macroscopic behavior of uε is not well described by u0. On the
contrary, ũr describes well these effects, as predicted by Theorem 6.1.1. Let us now compare the
L2 error between uε(t) and u0(t), ũr(t). Let us denote the normalized error as

err(v)(t) = ‖(uε − v)(t)‖L2(Ω)/‖uε(t)‖L2(Ω), v ∈ {u0, ũ},

In Figure 6.2, the computed errors for u0 and ũr are compared. First, we note that the error
of the homogenized solution increases comparatively fast with respect to t. Next, we see that
the error of ũr increases notably as r increases. As Figure 6.1 showed, the frontal wave is well
captured for all the values of r, hence the error is located elsewhere. In Figure 6.3, uε, u0, and ũr
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are displayed away from the frontal wave. We observe that as r increases, ũr significantly drives
away from uε. Indeed, for most of the values of r, ũr is locally even worse than u0. We conclude
that the elements of the family of effective equations E capture well the long time dispersion
effects at the frontal wave, while u0 does not. However, as r increases, ũr drifts away from the
frontal wave. From this example, we can thus conclude that a too large increase of the parameter
has negative repercussion on the accuracy of the effective solutions.
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Figure 6.1: Comparison between the frontal waves of uε, u0, and ũr at time t = 400 and zoom
on x ∈ [296.3, 296.9].
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Figure 6.2: Comparison of the normalized L2 error between uε and u0, ũr over the time interval
[0, 400].

In Section 6.4, we discussed the importance of the operators εL1, ε2L2,1 in the effective equations.
In one dimension, we know that L1 = 0. However, we verify in an example that the operator
ε2L2,1 = ε2(b20∂2t − ∂x(a

22∂x·)) is important in certain situations. Let ûr be the solution of the
equation

∂2t ûr − ∂x(a
0∂xûr) + ε2

(
∂2x(a

24∂2xûr)− ∂x(b
22∂x∂

2
t ûr)

)
= f in (0, T ε]× Ω, (6.142)

with periodic boundary conditions and initial conditions ûr(0) = g0, ∂tûr(0) = g1 (we write
w = wr to specify the dependence on the parameter r). For the tensor (6.141), we verify
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Figure 6.3: Comparison of uε, u0, and ũr at t = 400 away from the frontal wave (x ∈
[291.5, 294.25]) and zoom.

that ûr and ũr are almost the same function. Indeed, for r = 0.16 we compute the difference
‖ûr − ũr‖L∞(L2) = 2.681 · 10−2 and ûr and ũr can not be distinguished at the macroscopic scale.
To obtain an example where the difference between ûr and ũr is significant, we consider a tensor
with a sharper variation in the slow variable. Let us then define the tensor

a
(
x, xε
)
= 676

1221 + 1
4erf
(
10({x} − 1/4)

)
− 1

4erf
(
10({x} − 3/4)

)
+ 1

2 cos
(
2π x

ε

)
,

where {x} = x − �x� is used to extend x → a(x, y) from [0, 1[ to R by periodicity. We fix
ε = 1/20. As for the previous tensor, a0(x) and χ(x, ·) can be computed analytically. We verify
that

∫
Ω

√
a0(x) dx ≈ 0.75 and

∫
Ω

〈
χ(x)2

〉
Y
dx ≈ 1.0452 ·10−2. For this tensor, the approximation

of uε is more demanding. Indeed, if the grid is not sufficiently fine, the sharpness of the variation
in x provokes the instability of the numerical method. We thus fix the domain Ω = (−4, 4) and
apply the same method as for the previous example with mesh sizes h = ε/40 and Δt = h/100.
To compute ûr and ũr, we use the same method with the mesh sizes h = ε/4 and Δt = h/50. In
Figure 6.4, we compare the errors computed for ũr and ûr for r = 0.16. We observe that err(ũr)
remains small at all times t ∈ [0, 400], while err(ûr) becomes significantly large as t increases.
From these examples, we conclude that ε2L2,1 is necessary only for certain tensor. Furthermore,
its importance is connected to the variation of the map x → a(x, y).

6.5.2 Two-dimensional example

Let us now consider an example of locally periodic media in two dimensions. First, we compare
the effective solution with the original wave and the homogenized solution in a small domain.
Then, we compare the effective solution with the homogenized solution in a pseudoinfinite domain.
Note that the effective solution is approximated using the numerical method defined in Chapter
7, Section 7.2.

Let us first define the locally periodic tensor describing the medium. We let the reference cell be
Y = (−1/2, 1/2)2. For given parameters s, c ∈ R, let us define ϕ[s, c] : R→ R as

ϕ[s, c](z) =
1

2

(
erf
(
s(z − c)

)
+ 1
)
, erf(z) =

2√
π

∫ z

0

e−s2 ds.
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Figure 6.4: Comparison between the errors of the effective solution ũr and the solution of (6.142)
wr for r = 0.16 over the time interval [0, 400].

The function ϕ[s, c] is a “smooth step function” between 0 and 1. The parameter s determines
the slope of the step, and c is its center. We define the tensor a(x, y) on the subdomain
(x, y) ∈ (0, 1)2 × Y and then extend it by periodicity to R2 × R2. Let R[θ] be the matrix of
rotation of angle θ. To each macro point x ∈ (0, 1)2, we associate an angle αx ∈ [0, π/2] and the
associated matrix of rotation Rx = R[αx] of y ∈ Rd:

αx = π
8

(
− cos(2πx1) + 1

)(
− cos(2πx2) + 1

)
,

Rxy =
(
(Rxy)1, (Rxy)2

)
=
(
y1 cos(αx) + y2 sin(αx), −y1 sin(αx) + y2 cos(αx)

)
.

The tensor a : (0, 1)2 × Y → R2×2 is then defined as

a(x, y) =

(
ã(x, y) 0

0 ã(x, y)

)
,

ã(x, y) =
1

2
+

2∏
i=1

μ(yi)ϕ[s, c
i
1]
(
(Rxy)i

)
− ϕ[s, c]

(
(Rxy)i

)
,

(6.143)

where we set the parameters s = 10, c1 = (−1/4, 1/4), c2 = (−1/8, 1/8), and μ(yi) =
ϕ[50,−0.45](yi) − ϕ[50, 0.45](yi) is a cutoff function in the i-th direction. We then extend
a(x, y) by periodicity to R2 × R2: a�(x, y) = a

(
{x}[0,1[, {y}Y

)
, where {x}[0,1[ = x − �x� and

{y}Y = {y + 1/2}[0,1[ − 1/2. In Figure 6.5, we display the tensor aε(x) = a
(
x, xε
)
, where a(x, y)

is defined in (6.143), in (0, 1)2 and for ε = 1/10, 1/20, and 1/30.

Figure 6.5: Tensor aε(x) = a
(
x, xε
)
where a(x, y) is defined in (6.143) displayed in (0, 1)2 for,

respectively from left to right, ε = 1/10, 1/16, and 1/25.
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Example in a small domain

Let us consider the test problem given by the data g0(x) = e−40x2

, g1 = 0, f = 0, and the tensor
aε(x) = a

(
x, xε
)
, with ε = 1/10, where a(x, y) is defined in (6.143). We are interested in the long

time behavior of uε. In order to be able to approximate uε, we consider the bounded domain
Ω = (−1, 1)2. We compare uε at t = ε−2 with the homogenized solution u0 and an effective
solution ū in the family E (see Section 6.2.1). We compute the oscillating wave uε as follows.
The space discretization is done using P1 FEM on a mesh of size href = ε/32. The leap frog
scheme is used for the time integration with the timestep Δt = href/40. To approximate ū, we
use the spectral homogenization method given in Section 7.2.2 (an obvious simplification of the
method is used to compute u0). Note that for ū, a gradient method is needed as the obtained
ODE is implicit. The settings of the spectral homogenization method are as follows. In Step 1,
we approximate the effective tensors at the nodes of the grid of Ω of size Δx = ε/8 (M = 160
in both directions) with a P2-FEM on a mesh of size h = 1/200. As x → a(x, y) is 1-periodic,
we compute the tensors only at the points lying in the subdomain (0, 1)2 and extend them by
periodicity. In Step 2, the spectral method is used to approximate ū and u0 on the same grid, i.e.,
N =M . The leap frog scheme with timestep Δt = Δx/50 is used for the time integration. For
v ∈ {u0, ū}, we denote the normalized error err(v)(t) = ‖(uε−v)(t)‖L2(Ω)/‖uε(t)‖L2(Ω). In Figure
6.6, we observe that the error for u0 increases notably with respect to t, while the error for ū
stays low. This example illustrates the result of Theorem 6.2.1 that establishes that the elements
of the family of effective equations describes well the behavior of uε up to timescales O(ε−2).
Visualizations of uε, u0, and ū are displayed in Figure 6.7 at t = ε−2 = 100. The macroscopic
difference between the two surfaces uε and u0 is clearly visible. On the contrary, ū describes well
uε up to the micro oscillations, as predicted by Theorem 6.2.1.

t
20 40 60 80 100

0

0.25

0.5

0.75

 

 

err(u0)
err(ū)

Figure 6.6: Comparison of the normalized errors of the effective solution ū and the homogenized
solution u0 over the time interval [0, 100].

Example in a pseudoinfinite domain

Let us now consider the same locally periodic medium in a pseudoinfinite domain. let the data
be g0(x) = e−100x2

, g1 = 0, f = 0. We are interested in approximating uε at time T = 50. We
define the pseudoinfinite domain as

Ω = (−L1, L1)× (−L2, L2), Li =
⌊√

〈a0ii〉Y T
⌋
+ 2.

In such a large domain, approximating uε with reasonable accuracy is not possible. We are
however able to approximate an effective solution ū in the family defined in Definition 6.2.2 and
Theorem 6.2.1 ensures that ū is a good approximation of uε. We compare ū with the homogenized
solution u0. To compute ū, we use the spectral homogenization method defined in Section 7.2.2

184



6.5. NUMERICAL EXPERIMENTS

−1 −0.5 0 0.5 1

−0.2

0

0.2

 

 
cuts at t = 100, x = −0.25

uε

u0

ū

Figure 6.7: Comparison on Ω between uε (top-left), the homogenized solution u0 (top-right) and
the effective solution ū (bottom-left) and cuts at x = −0.25 (bottom-right) at t = ε−2 = 100 .

(an obvious simplification of the method is used to compute u0). We re-use the effective tensors
computed in the previous example on the grid of Ω of size Δx = ε/8, i.e., Mi = 80 ·Li. In Step 2,
we apply the spectral method on the subgrid with Ni =Mi/2 nodes in each directions. The leap
frog scheme with timestep Δt = Δx/16 is used for the time integration. For ū, a gradient method
is needed as the ODE is implicit. The obtained approximations are displayed on subdomains
in Figure 6.8: ū on the top-left plot, u0 on the top-right plot, and the corresponding cuts along
y = 0 in the bottom plot. We observe that both functions have variations at the macroscopic
scale, which are due to the dependence of the tensors in the slow variable. The front waves of ū
and u0 are clearly distinct. In particular, the amplitude of the front wave of ū is notably smaller
than that of u0.
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cuts at y = 0, t = 50

36 37 38

−0.01

0

0.01

 

 

u0

ū

Figure 6.8: Top: Comparison of the effective solution ū and the homogenized solution u0 on the
subdomain [36, 38.75]× [−6, 6] at t = 50. Bottom: Corresponding cuts along y = 0.
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7 Analysis of numerical homogenization
methods for long time wave propagation

In Chapter 6, we defined a family of effective equations for wave propagation in locally periodic
media at timescales O(ε−2). In this chapter, we analyze numerical methods that are designed to
approximate effective solutions. We consider an arbitrarily large hypercube Ω ⊂ Rd and let aε(x)
be a locally periodic tensor: aε(x) = a

(
x, xε
)
, where a(x, y) is Ω-periodic in x and Y -periodic

in y (Y is a reference cell, e.g. Y = (0, 1)d). For T ε = ε−2T , we consider the wave equation:
uε : [0, T ε]× Rd → R such that

∂2t u
ε(t, x)−∇x ·

(
aε(x)∇xu

ε(t, x)
)
= f(t, x) in (0, T ε]× Ω, (7.1)

where uε(0, x), ∂tu
ε(0, x) are given and periodic boundary conditions are imposed.

In the first part of the chapter, we study a method designed specifically for the one-dimensional
case. In that case, one effective equation in the family does not have a fourth order operator in
space and reads

∂2t ū(t, x)− ∂x
(
a0(x)∂xū(t, x)

)
− ε2∂x

(
b2(x)∂x∂

2
t ū(t, x)

)
= f(t, x) in (0, T ε]× Ω,

where the coefficients a0 and b2 can be computed with the first corrector. We can thus easily
modify the finite element heterogeneous multiscale method (FE-HMM), defined in Section 3.4, to
capture the long time dispersive effects of uε. This method, called the FE-HMM-L, was introduced
in [10, 9], and was fully analyzed for small domains in [13] (this analysis is presented in Section
7.1.3). The following error estimate is proved between the approximation of the FE-HMM-L uH
and uε:

‖uε − uH‖L∞(0,T ε;L2(Ω)) ≤ C

(
ε+

(
h

ε2

)2
+
H�+1

ε2

)
,

where h is the micro mesh size, H is the macro mesh size, and � is the degree of the macro finite
element space. We emphasize that the factor ε−2 in the macro error comes from the length of
the time interval T ε = ε−2T . This error estimate holds if diam(Ω) = O(1). In addition, we
provide a new priori error analysis of the FE-HMM-L that is valid for arbitrarily large domains.
In particular, we prove the estimate

‖uε − uH‖L∞(0,T ε;W ) ≤ C

(
ε+

(
h

ε2

)2
+
H�

ε2

)
, (7.2)

where the norm ‖ · ‖W is defined as (see (A.4))

‖w‖W = inf
w=w1+w2

w1,w2∈Wper(Ω)

{
‖w1‖L2(Ω) + ‖∇w2‖L2(Ω)

}
∀w ∈Wper(Ω).
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As in the first estimate, the factor ε−2 in the macro error comes from the timescale T ε = ε−2T .
As the dependence on Ω of the constant in (7.2) is tracked (it is only present in the norms of the
data), it can be used to apply the method in pseudoinfinite domains. To prove (7.2), the key is
the definition of a new elliptic projection. In particular, this definition allows to avoid the use of
the Poincaré inequality needed in the classical proof.

In the second part of the chapter, we provide a method suited for multidimensional problems.
The method targets an effective solution in the family defined in Chapter 6, which reads

∂2t ū(t, x)− ∂i
(
a0ij(x)∂j ū(t, x)

)
+ εL1ū(t, x) + ε2L2ū(t, x) = f(t, x) in (0, T ε]× Ω,

where the correction operators are

L1 = −∂i
(
a12ij (x)∂j ·

)
+b10∂2t , L2 = ∂2ij

(
a24ijkl(x)∂

2
kl ·
)
−∂i
(
b22ij (x)∂j∂

2
t ·
)
−∂i
(
a22ij (x)∂j ·

)
+b20∂2t .

Let us present the method in a simple setting. Let GN be a uniform grid of Ω, with Nν points in
the direction ν and denote Δxν the size of the grid in the direction ν. In the first step of the
method, we approximate the effective tensors of L1, L2 at the nodes of the grid GN . To do so,
we use the FEM of degree q to approximate the solutions of the cell problems on a mesh of size h.
This process is costly but can be parallelized. In the second step, we use the computed tensors to
approximate ū with a spectral method on the grid GN . Assuming that the effective solution ū
and its time derivatives belongs to L∞(0, T ε; Hs+2(Ω)), we prove the following error estimate

‖uε − uN‖L∞(0,T ε;W ) ≤ C

(
ε+

|Δx|s
ε2

+

(
hq

ε

)2
+
|Δx|
ε

+
hq

ε
+
hq|1/Δx|

ε
+ hq|1/Δx|2

)
, (7.3)

where |1/Δx|2 =
∑

ν 1/Δx
2
ν . Note that if the effective solution is smooth and if the grid captures

the wavelength of the initial data and of the source term, the term ε−2|Δx|s is smaller than
ε. We emphasize that in (7.3) h is the size of the mesh of Y , while in (7.2) h is the size of the
mesh of εY . Again, the factors ε−2, ε−1 in (7.3) come from the timescale T ε = ε−2T . As the
dependence of (7.3) on Ω is tracked, the estimate can be used in pseudoinfinite domains. We
note that this result is the first a priori error analysis of a numerical homogenization method for
the approximation of the wave equation in locally periodic media over long time O(ε−2).

The chapter is organized as follows. In Section 7.1, we present the FE-HMM-L for the long time
approximation of the wave equation in one-dimension. In particular, we provide two a priori error
analyses of the FE-HMM-L: the first one is valid for small domains and the second one holds for
arbitrarily large domains. In Section 7.2, we present the spectral homogenization method for the
approximation of the multidimensional wave equation over long time. In particular, we proceed
to the a priori error analysis of the method and prove an error estimate that holds in arbitrarily
large hypercubes.

7.1 One dimension : finite element heterogeneous multiscale method for long time
wave propagation (FE-HMM-L)

In this section, we analyze the FE-HMM-L, a numerical homogenization method designed for
the long time approximation of the wave equation in heterogeneous media in one dimension.
The FE-HMM-L is a modification of the FE-HMM, defined in Section 3.4. The method was
introduced in [10, 9]. The main results are two a priori error analyses over long time. The first
one, published in [13] and presented in Section 7.1.3, is valid in small domains. The second one,
presented in Section 7.1.4, is new and holds for arbitrarily large domains.

To define the FE-HMM-L in the same settings as the FE-HMM in Section 3.4, we consider a
general tensor aε(x). However, we emphasize that all the results are proved under the assumption
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that the tensor is locally periodic (see assumption (7.28) below). Let then aε ∈ L∞(Ω) be tensor
that is elliptic and bounded, i.e., there exists 0 < λ ≤ Λ such that

λ ≤ aε(x) ≤ Λ for a.e. x ∈ Ω. (7.4)

We consider the one-dimensional wave equation: uε : [0, T ε]× Ω→ R such that

∂2t u
ε(t, x)− ∂x

(
aε(x)∂xu

ε(t, x)
)
= f(t, x) in (0, T ε]× Ω,

x → uε(t, x) Ω-periodic in [0, T ε],

uε(0, x) = g0(x), ∂tu
ε(0, x) = g1(x) in Ω.

(7.5)

The well-posedness of (7.5) is proved in Section 2.1.1. In particular, if we assume that the data
satisfy g0 ∈Wper(Ω), g

1 ∈ L2
0(Ω), f ∈ L2(0, T ε; L2

0(Ω)), then there exists a unique weak solution
uε ∈ L∞(0, T ε;Wper(Ω)), ∂tu

ε ∈ L∞(0, T ε; L2
0(Ω)), ∂

2
t u

ε ∈ L2(0, T ε;W∗
per(Ω)).

7.1.1 An appropriate effective model for numerical homogenization

To construct a numerical homogenization method for the approximation of the wave equation in
heterogeneous media over long time, we need to select an effective model. We discuss here the
selection of this model in the family of effective equations defined in Chapter 6.

In Chapter 6, we defined a family of effective equations E for uε in the case of a locally periodic
tensor aε(x) = a

(
x, xε
)
(Definition 6.1.2). We recall that the family E is composed of the equation

of the form

∂2t ũ− ∂x(a
0∂xũ) + ε2

(
∂2x(a

24∂2xũ)− ∂x(b
22∂x∂

2
t ũ) + b20∂2t ũ− ∂x(a

22∂xũ)
)
= f in (0, T ε]× Ω,

x → ũ(t, x) Ω-periodic in [0, T ε],

ũ(0, x) = g0(x), ∂tũ(0, x) = g1(x) in Ω,
(7.6)

where a0(x) is the homogenized tensor and

a24(x) = ra0(x)2, b22(x) =
〈
χ(x)2

〉
Y
+ ra0(x),

b20 = rmaxx∈Ω{∂2xa0(x)}, a22(x) = −ra0(x)∂2xa0(x) + b20a0(x),

for some parameter r ≥ 0 (χ(x, ·) is the first corrector, see (7.7)). In order to define a numerical
homogenization method, we first need to select an equation in E . Among the equations in the
family, one naturally distinguishes itself. For the choice of parameter r = 0, the coefficients
a24, a22 and b20 vanishes and the only remaining correction is −ε2∂x(b22∂x∂2t ũ). Note that in the
case of a uniformly periodic tensor, this choice corresponds to the natural choice of parameter
〈χ〉Y = 0 (see Section 4.3.1). The approximation of (7.6) is clearly easier in the case where the
fourth order operator vanishes. Furthermore, compared to the homogenized equation the only
additional coefficient is b22(x), which depends only on χ(x, ·). We can thus easily modify the
FE-HMM, defined in Section 3.4.

Let us define explicitly the selected effective equation. For each x ∈ Ω, define χ(x, ·) ∈Wper(Y )
as the unique solution of the cell problem(

a(x, ·)∂yχ(x, ·), ∂yw
)
L2(Y )

= −
(
a(x, ·), ∂yw

)
L2(Y )

∀w ∈Wper(Y ). (7.7)

For x ∈ Ω, let the tensors a0, b2 be defined as

a0(x) =
〈
a(x, ·)(1 + ∂yχ(x, ·))

〉
Y
, b2(x) =

〈(
χ(x, ·)

)2〉
Y
. (7.8)

We verify that a0(x) and b2(x) satisfy

λ ≤ a0(x) ≤ Λ, 0 ≤ b2(x) ≤ C for a.e. x ∈ Ω. (7.9)
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where λ,Λ are given in (7.4) and C depends on ‖a‖C0(Ω̄;L∞(Y )) and λ (see (6.44)). The effective
equation is then: ū : [0, T ε]× Ω→ R such that

∂2t ū− ∂x
(
a0(x)∂xū

)
− ε2∂x

(
b2(x)∂x∂

2
t ū
)
= f in (0, T ε]× Ω,

x → ū(t, x) Ω-periodic in [0, T ε],

ū(0, x) = g0(x), ∂tū(0, x) = g1(x) in Ω.

(7.10)

The well-posedness of (7.10) is proved in (2.1.2). Define the bilinear forms

A0(v, w) =
(
a0(x)∂xv, ∂xw

)
L2(Ω)

, B2(v, w) =
(
b2(x)∂xv, ∂xw

)
L2(Ω)

, (7.11)

and the functional space

S(Ω) =
{
v ∈ L2

0(Ω) :
√
b2∂xv ∈ L2(Ω)

}
.

Equipped with the inner product and corresponding norm

(v, w)S = (v, w)L2(Ω) + ε2B2(v, w), ‖v‖S =
√
(v, v)S , (7.12)

S(Ω) is a Hilbert space. If g0 ∈Wper(Ω), g
1 ∈ S(Ω) and f ∈ L∞(0, T ε; L2

0(Ω)), then there exists
a unique ū ∈ L∞(0, T ε;Wper(Ω)) with ∂tū ∈ L∞(0, T ε;S(Ω)) and ∂2t ū ∈ L∞(0, T ε;S(Ω)), such
that (

∂2t ū(t), v
)
S +A0

(
ū(t), v

)
=
(
f(t), v

)
L2 ∀v ∈Wper(Ω) for a.e. t ∈ [0, T ε],

ū(0) = g0, ∂tū(0) = g1.
(7.13)

7.1.2 Definition of the FE-HMM-L

Following [10, 9], we define here the FE-HMM-L. We recall that the definition of the method is
done for general tensors aε and the results are proved for locally periodic tensors (see assumption
(7.28), below).

Let TH be a partition of Ω. Denote by HK the diameter of the element K ∈ TH and define
H = maxK∈TH

HK . For a given � ∈ N>0, the macro finite element space is defined as

VH(Ω) = {vH ∈Wper(Ω) : vH |K ∈ P�(K) ∀K ∈ TH}, (7.14)

where P�(K) is the space of polynomials on K of degree at most �. Let K̂ be the reference
element and for every K ∈ TH let FK the unique continuous mapping such that FK(K̂) = K
with ∂xFK > 0. We are given a quadrature formula on K̂ by a set of weights and quadrature
points {ω̂j , x̂j}Jj=1. Note that it naturally induces a quadrature formula on K whose weights and

quadrature points are given by {ωKj
= ∂xFK ω̂j , xKj

= FK(x̂j)}Jj=1. The following assumptions

are required for the construction of the stiffness matrix to ensure the optimal convergence rate of
FEM with numerical quadrature (see Appendix A.3.2 and [34, 33]):

(i) ω̂j > 0, j = 1, . . . , J,

(ii)
∫
K̂
p̂(x̂) dx̂ =

∑J
j=1ω̂j p̂(x̂j) ∀p̂ ∈ Pσ(K̂), σ = max{2�− 2, 1}. (7.15)

Furthermore, we assume that the quadrature formula {ω̂′
j , x̂

′
j}J

′
j=1, required for the computation

of the mass matrix, fulfills the following hypothesis:

(iii)
∑J ′

j=1ω̂
′
j |p̂(x̂′j)|2 ≥ λ̂′‖p̂‖L2(K̂) ∀p̂ ∈ P�(K̂) for a λ̂′ > 0. (7.16)

Thanks to (7.16), the quadrature formula {ω̂′
j , x̂

′
j}J

′
j=1 defines an inner product (and associated

norm) on VH(Ω)× VH(Ω) equivalent to the standard L2 inner product. For every macro element
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K ∈ TH and every j ∈ {1, . . . , J}, we define around the quadrature point xKj
a sampling domain

Kδj = xKj
+ δY , where δ is a positive real number such that δ ≥ ε. Each sampling domain Kδj

is discretized in a partition Th, where h = maxQ∈Th
hQ is the maximal diameter of an element

Q ∈ Th. For a q ∈ N>0, the micro finite element space is defined as

Vh(Kδj) = {zh ∈Wper(Kδj) : zh|Q ∈ Pq(Q) ∀Q ∈ Th}. (7.17)

Remark 7.1.1. Other finite element spaces for the micro scale are possible. For example, we
can use V̊h(Kδj) = {zh ∈ H1

0(Kδj) : zh|Q ∈ Pq(Q) ∀Q ∈ Th}. The formulation of the FE-HMM-L
then has to be adapted accordingly, e.g., replacing the function vh by (vh − 〈vh〉Kδj

) in the
FE-HMM-L formulas below.

The FE-HMM-L

Let g0H , g1H be suitable approximations in VH(Ω) of the initial conditions g0, g1. The FE-HMM-L
is defined as follows: find uH : [0, T ε]→ VH(Ω) such that(

∂2t uH(t), vH
)
Q
+AH

(
uH(t), vH

)
=
(
f(t), vH

)
L2 ∀vH ∈ VH(Ω) for a.e. t ∈ [0, T ε],

uH(0) = g0H , ∂tuH(0) = g1H .
(7.18)

The bilinear forms are defined for vH , wH ∈ VH(Ω) as

AH(vH , wH) =
∑

K∈TH

J∑
j=1

ωKj

|Kδj |

∫
Kδj

aε(x)∂xvh,Kj
(x)∂xwh,Kj

(x) dx, (7.19)

(
vH , wH

)
Q
=
(
vH , wH

)
H
+
(
vH , wH

)
M
, (7.20)

(
vH , wH

)
H

=
∑

K∈TH

J ′∑
j=1

ω′
Kj
vH(x′Kj

)wH(x′Kj
), (7.21)

(
vH , wH

)
M

=
∑

K∈TH

J∑
j=1

ωKj

|Kδj |

∫
Kδj

(
vh,Kj

− vlinH,Kj

)(
wh,Kj

− wlin
H,Kj

)
(x) dx, (7.22)

where the piecewise linear approximation of vH (resp. wH) around xKj
is given by

vlinH,Kj
(x) = vH(xKj

) + (x− xKj
)∂xvH(xKj

),

and the micro functions vh,Kj
for vH (resp. wH) are the solutions of the following micro problems

in Kδj : find vh,Kj
such that (vh,Kj

− vlinH,Kj
) ∈ Vh(Kδj) and(

aε(x)∂xvh,Kj
, ∂xzh

)
L2(Kδj)

= 0 ∀zh ∈ Vh(Kδj). (7.23)

Useful reformulation of the FE-HMM-L

To proceed to the a priori analysis, let us reformulate the method. For every (K, j) ∈ TH ×
{1, . . . , J}, define ψh,Kj

∈ Vh(Kδj) as the solution of the cell problem in the sampling domain
Kδj : (

aε(x)∂xψh,Kj
, ∂xzh

)
L2(Kδj)

= −
(
aε(x), ∂xzh

)
L2(Kδj)

∀zh ∈ Vh(Kδj), (7.24)

and define the approximated tensors a0K and b2K at the quadrature point xKj
as

a0K(xKj
) =
〈
aε(x)

(
1 + ∂xψh,Kj

)〉
Kδj

, b2K(xKj
) = ε−2

〈(
ψh,Kj

)2〉
Kδj

. (7.25)
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We recall Lemma 3.4.1 from Section 3.4 (originally in [1, 3]).

Lemma 7.1.2. The bilinear form AH can be rewritten for vH , wH ∈ VH(Ω) as

AH(vH , wH) =
∑

K∈TH

J∑
j=1

ωKj
a0K(xKj

)∂xvH(xKj
)∂xwH(xKj

). (7.26)

Furthermore, AH is elliptic and bounded, i.e., for any vH , wH ∈ VH(Ω),

AH(vH , vH) ≥ λ‖∂xvH‖2L2(Ω), AH(vH , wH) ≤ Λ2/λ‖∂xvH‖L2(Ω)‖∂xwH‖L2(Ω).

Similarly, we prove the following result (originally in [9, 10]).

Lemma 7.1.3. The product (·, ·)M can be rewritten as (vH , wH)M = ε2BH(vH , wH), where the
bilinear form BH is defined as

BH(vH , wH) =
∑

K∈TH

J∑
j=1

ωKj
b2K(xKj

)∂xvH(xKj
)∂xwH(xKj

),

and is positive semidefinite and bounded, i.e., for any vH , wH ∈ VH(Ω),

BH(vH , vH) ≥ 0, BH(vH , wH) ≤ C‖∂xvH‖L2(Ω)‖∂xwH‖L2(Ω), (7.27)

where C is a constant independent of H.

Proof. First, note that by definition, BH satisfies BH(vH , vH) ≥ 0 for any vH ∈ VH(Ω). Let
us then prove that (vH , wH)M = ε2BH(vH , wH) and that BH is bounded. As in Lemma 3.4.1,
thanks the uniqueness of the solution of problem (7.24), we verify that the micro function vh,Kj

satisfies vh,Kj
= vlinH,Kj

+ ψh,Kj
∂xv

lin
H,Kj

(and similarly for wh,Kj
). Plugging this equalities in

(7.22), we obtain (vH , wH)M = ε2BH(vH , wH). As ‖ψh,Kj
‖L2 is bounded, so is BH and the proof

of the lemma is complete.

Remark 7.1.4. We emphasize that although b2K(xKj
) depends on ε, the product (·, ·)M does

not. In fact, ψh,Kj
is an approximation of εχ(xKj

, ·
ε ), where χ is defined in (7.7) (see the proof

of Lemma 7.1.14 for details). Hence, assuming δ = ε, we have via the change of variable x = εy

b2K(xKj
) = ε−2|Kδj |−1

∫
Kδj

(
ψh,Kj

(x)
)2

dx ≈ |Y |−1

∫
Y

(
χ(xKj

, y)
)2

dy = b2(xKj
),

where b2(x) is defined in (7.8). Consequently, BH is obtained from B2 by approximating the
integral with numerical quadrature and approximating b2(xKj

) with b2K(xKj
).

Remark 7.1.5. As a consequence of Lemmas 7.1.2 and 7.1.3, problem (7.18) is equivalent
to a regular second order ordinary differential equation. Therefore, existence and uniqueness
of a solution of (7.18) is given by classical theory for ordinary differential equations [38] and
the FE-HMM-L is well-posed. Furthermore, the solution uH satisfies the regularity uH ∈
L∞(0, T ε;Wper(Ω)), ∂tuH ∈ L∞(0, T ε; L2

0(Ω)).

7.1.3 Long time a priori error analysis of the FE-HMM-L in small domains

In this section, we present the long time a priori error analysis of the FE-HMM-L in small
domains, which was published in [13]. In particular, we prove error estimates in the L∞(L2)
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and L∞(H1) norms, valid for small domains Ω such that diam(Ω) = O(1). Indeed, the classical
techniques for such analysis lead to error estimates with a constant depending on the domain (as
done in [44, 21, 22], see Section 2.2). For the H1 norm, the constant depends on the Poincaré
constant, while for the L2 norm, it depends in addition on the constant coming from elliptic
regularity. In the next section, we prove an error estimate where the constant is independent of
the size of Ω.

We make the assumption that the tensor is locally periodic and collocated in the slow variable,
i.e.,

aε(x) = a
(
xKj

, xε
)

for a.e. x ∈ Kδj ∀(K, j) ∈ TH × {1, . . . , J}. (7.28)

Provided δ/ε ∈ N>0, this assumption ensures that the micro problems (7.24) match the cell
problems for χ, i.e., ψh,Kj

= εχ
(
xKj

, ·
ε

)
(see Lemma 7.1.14). At short time, if this assumption is

not satisfied, the error is known to suffer only a small additional term of order ε (see Section
3.4.2). However, the impact of this error on timescales O(ε−2) is not conceivable. Therefore, if
the tensor is not locally periodic, or its explicit form not known, the long time approximation
provided by the FE-HMM-L might be of poor accuracy.

Let us first comment on our analysis. Let ūH be the FE approximation in VH(Ω) of ū, defined
in Section 2.2. Theorem 7.1.6 provides a priori error estimates for eFE = ‖ū − ūH‖ in the H1

and L2 norms. In our analysis of the FE-HMM-L, the purpose is not to analyze eFE but to
estimate the error generated by the upscaling procedure eHMM = ‖ūH − uH‖. However, in order
to formulation regularity requirements on ū (and not on ūH), we have to proceed to the full
analysis and estimate ‖ū− uH‖.

Recall that � is the degree of the macro finite element space VH(Ω). Let IH be an interpolation
operator such that for v ∈Wper(Ω) ∩Hs+1(Ω), where 1 ≤ s ≤ �,( ∑

K∈TH

‖v − IHv‖2Hm(K)

)1/2

≤ CHs+1−m‖v‖Hs+1(Ω), 0 ≤ m ≤ s+ 1, (7.29)

where C is a constant independent of H and v. For example, IH can be the nodal interpolation
operator introduced in Section A.3 (see also [33]). We recall the a priori error estimates for the
FEM provided in Theorem 2.2.1, Section 2.2:

Theorem 7.1.6. Assume that the quadrature formulas satisfy the assumptions (7.15) and (7.16).
Let ū denote the solution of (7.13) and let ūH be its FE approximation in VH(Ω).

i) Assume that a0, b2 ∈ W�,∞(Ω) and ∂kt ū ∈ L∞(0, T ε; H�+1(Ω)) for 0 ≤ k ≤ 4. Then the
error satisfies ‖ū− ūH‖L∞(0,T ε;H1(Ω)) ≤ eFEH1 , where

eFEH1 =C1

(
‖g1 − g1H‖H1(Ω) + ‖g0 − g0H‖H1(Ω)

)
+ C2

(
H� + T εH�+1 + T ε(1 + ε)εH�

)∑4
k=0‖∂kt ū‖L∞(H�+1),

where C1, C2 are independent of H and ε but depend on Ω.

ii) Assume that a0 ∈W�+1,∞(Ω), b2 ∈W�,∞(Ω) and ∂kt ū ∈ L∞(0, T ε; H�+1(Ω)) for 0 ≤ k ≤ 3.
Then the error satisfies ‖ū− ūH‖L∞(0,T ε;L2(Ω)) ≤ eFEL2 , where

eFEL2 =C1

(
‖g0 − g0H‖L2(Ω) + ε‖g0 − g0H‖H1(Ω) + ‖g1 − g1H‖L2(Ω) + ε‖g1 − g1H‖H1(Ω)

)
+ C2(1 + T ε)

(
H�+1 + εH�

)∑3
k=0‖∂kt ū‖L∞(H�+1),

where C1, C2 are independent of H and ε but depend on Ω.
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The two following theorems provide a priori error estimates for the FE-HMM-L. We start with
an L∞(H1) estimate.

Theorem 7.1.7. Assume that δ satisfies δ/ε ∈ N>0, that the micro mesh size is h ≤ ε and that
the degree of the micro finite element space is q = 1. Furthermore, assume that the tensor is
locally periodic and collocated in the slow variable (assumption (7.28)). Finally, assume that
a ∈ C�(Ω̄; L∞(Y )) ∩ C0(Ω̄;W1,∞(Y )) and ∂kt ū ∈ L∞(0, T ε; H�+1(Ω)) for 0 ≤ k ≤ 4. Then the
error e = ū− uH satisfies the estimate

‖∂te‖L∞(0,T ε;L2(Ω)) + ‖e‖L∞(0,T ε;H1(Ω)) ≤ C

(
h

ε2

)2
+ eFEH1 , (7.30)

where C is independent of H, h, ε, and δ, but depends on Ω, and eFEH1 is the standard FEM error
estimate given in Theorem 7.1.6.

The next result is an L∞(L2) estimate.

Theorem 7.1.8. As in Theorem 7.1.7, assume that h ≤ ε, q = 1, that aε satisfies (7.28) where
a ∈ C0(Ω̄;W1,∞(Y ))∩ C�+1(Ω̄; L∞(Y )). Furthermore, assume that ∂kt ū ∈ L∞(0, T ε; H�+1(Ω)) for
0 ≤ k ≤ 3. Then the error e = ū− uH satisfies the estimate

‖e‖L∞(0,T ε;L2(Ω)) ≤ C

(
h

ε2

)2
+ eFEL2 , (7.31)

where C is independent of H, h, ε, and δ, but depends on Ω, and eFEL2 is the standard FEM error
estimate given in Theorem 7.1.6.

Next, we combine (7.31) with Theorem 6.1.1. We obtain an estimate of the error between the
oscillatory wave uε and the solution of the FE-HMM-L in the L∞(L2) norm, in the case of small
domain Ω such that diam(Ω) = O(1).

Corollary 7.1.9. Assume that Ω is a union of cells of volume ε|Y | (assumption (4.25)), that
the tensor is collocated in the slow variable (assumption (7.28)) and satisfies the regularity
a ∈ C1(Ω̄;W1,∞(Y )) ∩ C4(Ω̄; L∞(Y )). Also, assume that g0H = IHg

0, g1H = IHg
1, and let the

settings of the FE-HMM-L be such that δ/ε ∈ N>0, h ≤ ε, q = 1 and � = 1. Finally assume that
the following regularity holds:

g0 ∈ H4(Ω), g1 ∈ H3(Ω), f ∈ L2(0, T ε; H2(Ω)), ∂kt ū ∈ L∞(0, T ε; H5−k(Ω)), 0 ≤ k ≤ 3.

Then we have the following estimate:

‖uε − uH‖L∞(0,T ε;L2(Ω)) ≤ C

(
ε+

(
h

ε2

)2
+
H2

ε2
+
H

ε

)
,

where C independent of H, h, ε, and δ but depends on Ω.

Remark 7.1.10. Under suitable regularity of the initial conditions, the result of Corollary 7.1.9
can be generalized to obtain the error estimate

‖uε − uH‖L∞(0,T ε;L2(Ω)) ≤ C

(
ε+

(
h

ε2

)2
+
H�+1

ε2
+
H�

ε

)
. (7.32)
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To appreciate the benefit of the FE-HMM-L, we compare its cost with the cost of a fine scale
FEM applied to approximate uε. First, let us give the classical a priori error estimate for a fine
scale FEM on a mesh of size h (see [21] and also the discussion in [12] or in Section 3.1):

‖uε − uh‖L∞(0,T ε;L2(Ω)) ≤ C
h

ε

(
‖uε‖L∞(0,T ε;H1(Ω)) + ‖∂tuε‖L1(0,T ε;H1(Ω))

)
≤ C

h

ε3
, (7.33)

where a factor O(ε−2) comes from the time interval T ε = T/ε2 and a factor O(ε−1) comes
from the elliptic projection. Here, we have used well prepared initial data in order to bound
‖∂tuε‖L1(H1), for otherwise the standard FEM estimate would read ‖uε − uh‖L∞(L2(Ω)) ≤ Ch/ε4

(see [12] for details). We now fix an order of tolerance τ for the error and compute the cost of
each method, based on the corresponding error estimate. For the sake of simplicity denote as
cost(Δt,N) the cost per time-step of the time integration of a second order ODE of dimension
N . Based on (7.33), the cost of the fine scale FEM is cost(Δt, ε−3τ−1). For the FE-HMM-L
with linear elements (� = 1), from (7.32) we set H = ετ , h/ε = ετ1/2. The cost of resolution
of the micro problems is then H−1(ε/h) = ε−2τ−3/2, and the cost of the time integration is
cost(Δt, ε−1τ−1). As we are integrating over a long time interval, note that the resolution of
the micro problems is a negligible preprocessing step. We see that a significant reduction in
computational cost is achieved by the FE-HMM-L for long time interval O(ε−2). Note also that in
the FE-HMM-L, higher degree in the macro finite element (� ≥ 1) is allowed in (7.32), obtaining
then H = min{(ε2τ)1/(�+1), (ετ)1/�}. In that case, the cost of the preprocessing step is larger
as the number of micro problems increases (because a higher order macro quadrature formula
is required). For the fine scale FEM, using higher degree is not possible, as the error estimate
involves higher space derivatives of uε and ∂tu

ε, which brings ε−1 factors in the estimate. Finally,
we notice that the cost of the time integration is also significantly smaller with the FE-HMM-L.
If we use an explicit method (such as the leap-frog scheme), the stability constraint reads Δt ∼ ε3

for the fine scale integrator whereas it is only Δt ∼ ε for the FE-HMM-L. Of course, this could
be avoided by using an implicit solver, but then the cost of solving the linear system is also
significantly higher for the full fine scale solver due to the much larger system of ODEs.

Proof of the a priori error estimates

The proofs of Theorems 7.1.7 and 7.1.8 are divided into four lemmas. We split the error ū− uH
as

ū− uH = (ū− πH ū)− (uH − πH ū) = η − ζH , (7.34)

where πH ū is the elliptic projection defined below. We first provide a priori estimates for η and
ζH in Lemmas 7.1.11, 7.1.12, and 7.1.13. We then quantify the error made at the micro level by
the FEM and the error coming from the upscaling procedure of the FE-HMM-L in Lemma 7.1.14.

In the whole proof, c and C represent generic constants independent of H, h, ε, δ, ū, ea0 , eb2

(defined below). Hypothesis (7.16) ensures that ‖vH‖H = (vH , vH)
1/2
H is a norm on VH(Ω),

equivalent to the L2 norm independently of H . Hence, using the result of Lemma 7.1.3, the norm

‖vH‖Q = (vH , vH)
1/2
Q (where (·, ·)Q is defined in (7.20)) satisfies

c‖vH‖L2 ≤ ‖vH‖Q ≤ C
(
‖vH‖L2 + ε‖vH‖H1

)
. (7.35)

Let us introduce the following bilinear forms for vH , wH ∈ VH(Ω):

A0
H(vH , wH) =

∑
K∈TH

J∑
j=1

ωKj
a0(xKj

)∂xvH(xKj
)∂xwH(xKj

),

B2
H(vH , wH) =

∑
K∈TH

J∑
j=1

ωKj
b2(xKj

)∂xvH(xKj
)∂xwH(xKj

),
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where a0(x), b2(x) are the exact tensors defined in (7.8). The HMM errors are defined as

ea0 = sup
K∈TH ,1≤j≤J

|a0(xKj
)− a0K(xKj

)|, eb2 = sup
K∈TH ,1≤j≤J

ε2|b2(xKj
)− b2K(xKj

)|,

where a0K(xKj
), b2K(xKj

) are defined in (7.25). Using Lemmas 7.1.2 and 7.1.3, we verify that for

any vH , wH ∈ VH(Ω),

|AH(vH , wH)−A0
H(vH , wH)| ≤ ea0‖∂xvH‖L2‖∂xwH‖L2 ,

ε2|BH(vH , wH)−B2
H(vH , wH)| ≤ eb2‖∂xvH‖L2‖∂xwH‖L2 .

(7.36)

Finally, the broken norm on VH(Ω) is defined as ‖vH‖H̄k(Ω) =
(∑

K∈TH
‖vH‖2Hk(K)

)1/2
. Thanks

to assumptions (7.15) and (7.16) and provided sufficient regularity of a0, b2, we have the following
estimates for the numerical integration errors (see [33, 82] and Theorems A.3.6 and A.3.9 ):

|A0(vH , wH)−A0
H(vH , wH)| ≤ CH�+μ‖a0‖W�+μ,∞‖vH‖H̄�+1‖wH‖H̄1+μ ,

|A0(vH , wH)−A0
H(vH , wH)| ≤ CH‖a0‖W1,∞‖vH‖H1‖wH‖H1 ,

|B2(vH , wH)−B2
H(vH , wH)| ≤ CH�‖b2‖W�,∞‖vH‖H̄�+1‖wH‖H̄1 ,

|(vH , wH)L2 − (vH , wH)H | ≤ CH�+μ‖vH‖H̄�+1‖wH‖H̄1+μ ,

(7.37)

for any vH , wH ∈ VH(Ω) and μ = 0, 1 (A0, B2 are defined in (7.11)). Note that in Theorem
7.1.7, as we assume a ∈ C�(Ω̄; L∞(Y )), a0 and b2 satisfy the regularity a0, b2 ∈ C�(Ω̄) (see (6.44)).
Similarly, in Theorem 7.31, we have a0, b2 ∈ C�+1(Ω̄). In the proof, we need the following
estimates: for v ∈ H�+1(Ω) ∩Wper(Ω) and wH ∈ VH(Ω), μ = 0, 1,

|A0(v, wH)−AH(IHv, wH)| ≤ C
(
ea0‖v‖H1 +H�‖v‖H�+1

)
‖wH‖H̄1 ,

|(v, wH)S − (IHv, wH)Q| ≤ C
(
eb2‖v‖H1 + (H�+μ + ε2H�)‖v‖H�+1

)
‖wH‖H̄1+μ ,

(7.38)

where (·, ·)S is defined in (7.12). They are obtained by combining the triangle inequality, (7.29),
(7.36), and (7.37).

Define the elliptic projection πH ū : [0, T ε]→ VH(Ω), solution of

AH

(
πH ū(t), vH

)
=
(
f(t), vH

)
L2 −

(
IH∂

2
t ū(t), vH

)
Q

∀vH ∈ VH(Ω) for a.e. t ∈ [0, T ε].

(7.39)

As AH is elliptic and bounded πH ū(t) exists and is unique for a.e. t ∈ [0, T ε]. Furthermore, using
(7.13) we have

(
f(t), vH

)
L2 = A0

(
ū(t), vH

)
+
(
∂2t ū(t), vH

)
S and we obtain the estimate

‖πH ū(t)‖H1 ≤ C
(
‖ū(t)‖H1 + ‖∂2t ū(t)‖H1

)
for a.e. t ∈ [0, T ε]. (7.40)

Hence, provided ∂2t ū ∈ L∞(0, T ε; H1(Ω)), πH ū satisfies the regularity πH ū ∈ L∞(0, T ε; H1(Ω)).

We prove the following result for η = ū− πH ū.

Lemma 7.1.11. Assume that for 1 ≤ p ≤ ∞, ∂kt ū, ∂
k+2
t ū ∈ Lp(0, T ε; H�+1(Ω)) for k ≥ 0. Then

∂kt πH ū ∈ Lp(0, T ε; H1(Ω)) and, provided a0, b2 ∈ W�,∞(Ω), the following estimate holds for
η = ū− πH ū:

‖IH∂kt η‖Lp(H1) + ‖∂kt η‖Lp(H1) ≤ C
((

ea0 + eb2
)(
‖∂kt ū‖Lp(H1) + ‖∂k+2

t ū‖Lp(H1)

)
+H�

(
‖∂kt ū‖Lp(H�+1) + ‖∂k+2

t ū‖Lp(H�+1)

))
.

(7.41)
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If in addition we assume a0 ∈W�+1,∞(Ω), then

‖IH∂kt η‖Lp(L2) + ‖∂kt η‖Lp(L2) ≤ C
(
(1 + ea0)(ea0 + eb2) +H�+1 + ε2H�

)
×
(
‖∂kt ū‖Lp(H�+1) + ‖∂k+2

t ū‖Lp(H�+1)

)
.

(7.42)

Proof. First, as the forms A0, (., .)S , AH , and (., .)Q are time independent, the time differentiation
of (7.39) and (7.13) yields, similarly to (7.40), the estimate

‖∂kt πH ū(t)‖H1 ≤ C
(
‖∂kt ū(t)‖H1 + ‖∂k+2

t ū(t)‖H1

)
for a.e. t ∈ [0, T ε].

Hence in view of the assumption on ∂kt ū, ∂
k+2
t ū we obtain ∂kt ωH ∈ Lp(0, T ε; H1(Ω)). Second, we

prove estimates (7.41) and (7.42) for k = 0. The proof for k > 0 is obtained in the same way by
differentiating (7.39) and (7.13). Using (7.39) and (7.13) we have almost everywhere in [0, T ε],

AH

(
IHη, vH

)
= AH

(
IH ū, vH

)
−A0

(
ū, vH

)
+
(
∂2t ū, vH

)
S −

(
IH∂

2
t ū, vH

)
Q
.

We make use of (7.38) to obtain for a.e t ∈ [0, T ε],

AH

(
IHη(t), vH

)
≤ C

((
ea0 + eb2

)∑
k=0,2 ‖∂kt ū(t)‖H1 +H�

∑
k=0,2 ‖∂kt ū(t)‖H�+1

)
‖vH‖H1 .

Letting now vH = IHη(t), using the ellipticity of AH and taking the Lp norm with respect to t,
we obtain

‖IHη‖Lp(H1) ≤ C
((

ea0 + eb2
)∑

k=0,2 ‖∂kt ū‖Lp(H1)

)
+H�

∑
k=0,2 ‖∂kt ū‖Lp(H�+1)

)
.

Note that η = ū − IH ū + IHη and ‖ū − IH ū‖Lp(H1) ≤ CH�‖ū‖Lp(H�+1) and we have proved
estimate (7.41) for k = 0. To prove (7.42), we use a standard Aubin–Nitsche argument. For a.e.
t ∈ [0, T ε], note that ‖η(t)‖L2 = supg∈L2(Ω) ‖g‖−1

L2

∣∣(η(t), g)
L2

∣∣. Let now g ∈ L2(Ω) and define ϕg

as the solution of the elliptic problem A0(v, ϕg) = (g, v)L2 ∀v ∈Wper(Ω). The regularity of a0

and the polygonal domain ensure that ‖ϕg‖H2 ≤ C‖g‖L2 (see [71]). Using (7.39) and (7.13), we
verify that

A0
(
η(t), ϕg

)
=A0

(
η(t), ϕg − vH

)
+
(
IH∂

2
t ū(t), vH

)
Q
−
(
∂2t ū(t), vH

)
S

+AH

(
πH ū(t), vH

)
−A0

(
πH ū(t), vH

)
(7.43)

for any vH ∈ VH(Ω) and a.e. t ∈ [0, T ε]. Note that we can rewrite the last two terms as

AH

(
πH ū(t), vH

)
−A0(πH ū(t), vH) =A0

(
IHη(t), vH

)
−AH

(
IHη(t), vH

)
+AH

(
IH ū(t), vH

)
−A0

(
IH ū(t), vH

)
.

Hence, using the triangle inequality and (7.29), (7.36), and (7.37), we have∣∣AH

(
πH ū(t), vH

)
−A0(πH ū(t), vH)

∣∣ ≤ C
(
(ea0+H)‖IHη(t)‖H1+(ea0+H�+1)‖ū(t)‖H�+1

)
‖vH‖H̄2 .

Now, as (η(t), g)L2 = A0(η(t), ϕg), from (7.43) with vH = IHϕg, we use estimates (7.29) and
(7.38) to obtain for a.e. t∣∣(η(t), g)

L2

∣∣ ≤ C
(
H‖η(t)‖H1 + (ea0 +H)‖IHη(t)‖H1 + (ea0 +H�+1)‖ū(t)‖H�+1

+ eb2‖∂2t ū(t)‖H1 + (H�+1 + ε2H�)‖∂2t ū(t)‖H�+1

)
‖ϕg‖H2 .
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Hence, recalling that ‖η(t)‖L2 ≤ ‖g‖−1
L2

∣∣(η(t), g)
L2

∣∣ and ‖ϕg‖H2 ≤ C‖g‖L2 , we obtain for a.e.
t ∈ [0, T ε]

‖η(t)‖L2 ≤ C
(
(1 + ea0 +H)

(
ea0 + eb2) + ea0H� +H�+1 + ε2H�

)∑
k=0,2 ‖∂kt ū(t)‖H�+1 .

Taking the Lp norm with respect to t and using estimate (7.41) brings

‖η‖Lp(L2) ≤ C
(
(1 + ea0 +H)

(
ea0 + eb2) + ea0H� +H�+1 + ε2H�

)∑
k=0,2 ‖∂kt ū‖Lp(H�+1),

which yields estimate (7.42) for ‖η‖Lp(L2). Finally, note that ‖IHη‖Lp(L2) ≤ ‖ū− IH ū‖Lp(L2) +
‖η‖Lp(L2) and use (7.29) to obtain (7.42) for k = 0. That ends the proof of Lemma 7.1.11.

Lemma 7.1.12. The following estimate holds for ζH = uH − πH ū:

‖∂tζH‖L∞(L2) + ‖ζH‖L∞(H1) ≤ C
(
edataH1 + ‖η‖L∞(H1) + ‖∂tη‖L∞(L2) + ε‖∂tη‖L∞(H1)

+ ‖IH∂2t η‖L1(L2) + ε‖IH∂2t η‖L1(H1)

)
, (7.44)

where edataH1 = ‖g0 − g0H‖H1 + ‖g1 − g1H‖L2 + ε‖g1 − g1H‖H1 .

Proof. Using (7.18) and (7.39), we verify that for any vH ∈ VH(Ω) and a.e. t ∈ [0, T ε] it holds(
∂2t ζH(t), vH

)
Q
+AH

(
ζH(t), vH

)
=
(
IH∂

2
t η(t), vH

)
Q
. (7.45)

Set vH = ∂tζH(t) and use the symmetry of the forms (·, ·)Q and AH to get for a.e. t ∈ [0, T ε]

1
2

d
dt

(
‖∂tζH(t)‖2Q +AH

(
ζH(t), ζH(t)

))
=
(
IH∂

2
t η(t), ∂tζH(t)

)
Q
.

Setting EHζH(t) = ‖∂tζH(t)‖2Q +AH

(
ζH(t), ζH(t)

)
, we integrate this equality and get

EHζH(ξ) = EHζH(0) + 2

∫
0

ξ(
IH∂

2
t η(t), ∂tζH(t)

)
Q
dt ∀ξ ∈ [0, T ε]. (7.46)

We now apply the Cauchy–Schwartz, Hölder, and Young inequalities to bound the second term of
the right hand side of (7.46) as

2

∫
0

ξ(
IH∂

2
t η(t), ∂tζH(t)

)
Q
dt ≤ 2‖IH∂2t η‖2L1(Q) +

1
2‖∂tζH‖

2
L∞(Q). (7.47)

As AH

(
ζH(ξ), ζH(ξ)

)
≥ 0, combining (7.46) and (7.47) and taking the L∞ norm with respect

to ξ, we obtain the estimate 1
2‖∂tζH‖2L∞(Q) ≤ EHζH(0) + 2‖IH∂2t η‖2L1(Q). A similar bound can

then be deduced for ‖ζH‖2L∞(H1) from (7.46), (7.47), and the ellipticity of AH . Then, using the
boundedness of AH , we obtain

1
2‖∂tζH‖

2
L∞(Q) + λ‖ζH‖2L∞(H1) ≤ ‖∂tζH(0)‖2Q + Λ2/λ‖ζH(0)‖2H1 + 2‖IH∂2t η‖2L1(Q).

The first two terms satisfy (recall the splitting of the error (7.34))

‖∂tζH(0)‖Q ≤ ‖g1H − g1‖Q + ‖∂tη(0)‖Q ≤ ‖g1H − g1‖Q + ‖∂tη‖L∞(Q),

‖ζH(0)‖H1 ≤ ‖g0H − g0‖H1 + ‖η(0)‖H1 ≤ ‖g0H − g0‖H1 + ‖η‖L∞(H1).

Finally, we make use of (7.35) to obtain estimate (7.44) and that concludes the proof of Lemma
7.1.12.
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Lemma 7.1.13. The function ζH = uH − πH ū satisfies

‖ζH‖L∞(L2) ≤ C
(
edataL2 + ‖η‖L∞(L2) + ε‖η‖L∞(H1) + ‖IH∂tη‖L1(L2) + ε‖IH∂tη‖L1(H1)

)
, (7.48)

where edataL2 = ‖g0 − g0H‖L2 + ε‖g0 − g0H‖H1 + ‖g1 − g1H‖L2 + ε‖g1 − g1H‖H1 .

Proof. Rewriting (7.45) with vH = wH(t), where wH ∈ H1(0, T ε;VH(Ω)), we have almost
everywhere in [0, T ε]

−
(
∂tζH , ∂twH

)
Q
+AH

(
ζH , wH

)
= d

dt

(
∂t(IHη − ζH), wH

)
Q
−
(
∂tIHη, ∂twH

)
Q
.

For ξ ∈ [0, T ε], we define ŵH(t) =
∫ ξ

t
ζH(τ)dτ , which satisfies ŵH ∈ H1(0, T ε;VH(Ω)), ŵH(ξ) = 0,

and ∂tŵH = −ζH . We set wH = ŵH in the previous equality and thanks to the symmetry of the
forms AH , (·, ·)Q we get almost everywhere in [0, T ε]

1
2

d
dt

(
‖ζH‖2Q +AH

(
ŵH , ŵH

))
= d

dt

(
∂t(IHe), ŵH

)
Q
+
(
IH∂tη, ζH

)
Q
,

where we denoted e = u− uH = η − ζH . We integrate over [0, ξ] and obtain ∀ξ ∈ [0, T ε],

‖ζH(ξ)‖2Q +AH

(
ŵH(0), ŵH(0)

)
= ‖ζH(0)‖2Q − 2

(
IH∂te(0), ŵH(0)

)
Q
+ 2

∫
0

ξ(
IH∂tη(t), ζH(t)

)
Q
dt.

(7.49)
The first term of the right hand side is bounded using the triangle inequality as

‖ζH(0)‖Q ≤ ‖ū(0)− uH(0)‖Q + ‖η(0)‖Q ≤ ‖g0 − g0H‖Q + ‖η‖L∞(Q).

The second term is bounded using Cauchy-Schwartz and Young inequalities as

2
(
IH∂te(0), ŵH(0)

)
Q
≤ 2C2

λΩ
‖IH∂te(0)‖2Q + λΩ

2C2 ‖ŵH(0)‖2Q ≤ 2C2

λΩ
‖IH∂te(0)‖2Q + λΩ

2 ‖ŵH(0)‖2H1 ,

where C is the constant in (7.35) and λΩ = λ/(1 + C2
Ω), where λ is the ellipticity constant of a0

and CΩ is the Poincaré constant. For the third term we use Cauchy–Schwarz, Hölder, and Young
inequalities to get

2

∫
0

ξ(
IH∂tη(t), ζH(t)

)
Q
dt ≤ 2‖IH∂tη‖2L1(Q) +

1
2‖ζH‖

2
L∞(Q).

Thus, we obtain from the combination of (7.49) with the last three bounds and the ellipticity of
AH(·, ·):

1
2‖ζH‖

2
L∞(Q) +

λ
2 ‖ŵH(0)‖2H1 ≤ C

(
‖g0 − g0H‖2Q + ‖IHg1 − g1H‖2Q + ‖η‖2L∞(Q) + ‖IH∂tη‖2L1(Q)

)
.

Combined with (7.35) this estimate proves (7.48) and the proof of Lemma 7.1.13 is complete.

Lemma 7.1.14. Under the hypotheses of Theorem 7.1.7, ea0 and eb2 satisfy

ea0 ≤ C

(
h

ε

)2
, eb2 ≤ Cε

(
h

ε

)2
. (7.50)

Proof. The proof of the estimate for ea0 can be found in [1]. We prove here the estimate for
eb2 in a similar way. For (K, j) ∈ TH × {1, . . . , J}, we introduce the exact solution of the cell
problem in Kδj : ψKj

∈Wper(Kδj) is the solution of(
aε(x)∂xψKj

, ∂xz
)
L2(Kδj)

= −
(
aε(x), ∂xz

)
L2(Kδj)

∀z ∈Wper(Kδj). (7.51)
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We define b̄2K(xKj
) = ε−2〈ψ2

Kj
〉Kδj

and split eb2 as eb2 ≤ emod
b2 + emic

b2 , where

emod
b2 = sup

K,j
ε2
∣∣b2(xKj

)− b̄2K(xKj
)
∣∣, emic

b2 = sup
K,j

ε2
∣∣b̄2K(xKj

)− b2K(xKj
)
∣∣.

We show that (i) emod
b2 = 0 and (ii) emic

b2 ≤ Cε
(
h/ε
)2
. Fix (K, j) ∈ TH × {1, . . . , J} and write

n = δ
ε ∈ N>0, Knε = Kδj , xK = xKj

, ψ = ψKj
, ψh = ψh,Kj

, b2 = b2(xKj
), and similarly for b̄2K

and b2K . We verify that for any z ∈Wper(Knε),(
a
(
xK ,

x
ε

)(
∂x
(
εχ(xK ,

x
ε )
)
+ 1
)
, ∂xz

)
L2(Knε)

= 0. (7.52)

In order to do this, we split the integral over Knε into n integral over subcells of size ε|Y |, make
the change of variable x = εy, and use the equation for χ in (7.7). We conclude from (7.52) that
ψ(x) = εχ

(
xK ,

x
ε

)
a.e. on Knε. Similarly we show that

b̄2K = (nε)−1|Y |−1

∫
Knε

(
χ
(
xK ,

x
ε

))2
dx = (nε)−1|Y |−1

n∑
k=1

∫
Y

(
χ(xK , y)

)2
εdy = b2,

and that proves (i). We now show (ii). First, as aε ∈W1,∞(Ω) and |aε|W1,∞(Ω) ≤ Cε−1, elliptic

H2-regularity ensures that |ψ|H2(Kδ) ≤ Cε−1|Kδ|1/2. Hence,

‖ψ − ψh‖L2(Kδ) ≤ Ch2|ψ|H2(Kδ) ≤ Ch2ε−1|Kδ|1/2. (7.53)

We then evaluate |Kδ|ε2
∣∣b̄2K − b2K

∣∣ = ∣∣‖ψ‖2L2(Kδ)
− ‖ψh‖2L2(Kδ)

∣∣ as
|Kδ|ε2

∣∣b̄2K − b2K
∣∣ ≤ ‖ψ − ψh‖L2(Kδ)

(
2‖ψ‖L2(Kδ) + ‖ψ − ψh‖L2(Kδ)

)
,

and using (7.53), we obtain

|Kδ|ε2|b̄2K − b2K | ≤ Cε
(
h/ε
)2|Kδ|1/2

(
‖ψ‖L2(Kδ) + ε

(
h/ε
)2|Kδ|1/2

)
.

As we are in dimension 1, ψ ∈ L∞(Kδ) and ‖ψ‖L2(Kδ) ≤ |Kδ|1/2‖ψ‖L∞(Kδ), hence,

|Kδ|ε2|b̄2K − b2K | ≤ C|Kδ|
(
ε
(
h/ε
)2

+ ε2
(
h/ε
)4)

.

As we assume h ≤ ε, (ii) is proved, and the proof of Lemma 7.1.14 is complete.

Proof of Theorem 7.1.7. Let e = ū− uH and denote the norm ‖v‖ = ‖∂tv‖L∞(L2) + ‖v‖L∞(H1).
Recall the splitting (7.34): e = η − ζH . We apply the triangle inequality and Lemma 7.1.12 and
obtain

‖e‖ ≤ ‖η‖+ ‖ζH‖ ≤ C
(
edataH1 + ‖η‖L∞(H1) + ‖∂tη‖L∞(L2) + ε‖∂tη‖L∞(H1)

+ ‖IH∂2t η‖L1(L2) + ε‖IH∂2t η‖L1(H1)

)
,

(7.54)

where edataH1 = ‖g1 − g1H‖H1 + ‖g0 − g0H‖H1 . Using Hölder inequality, gives

‖IH∂2t η‖L1(L2) + ε‖IH∂2t η‖L1(H1) ≤ T ε
(
‖IH∂2t η‖L∞(L2) + ε‖IH∂2t η‖L∞(H1)

)
.

Applying then Lemma 7.1.11, we obtain

‖e‖ ≤ C1e
data
H1 + C2

(
(1 + T ε)(ea0 + eb2) +H� + T εH�+1 + εT εH�

)∑
k=0,4‖∂kt ū‖L∞(H�+1).
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As T ε = ε−2T , Lemma 7.1.14 ensures that

(1 + T ε)(ea0 + eb2) ≤ Cε−2(ea0 + eb2) ≤ C(h/ε2)2.

As all the other terms parts of eFEH1 , we obtain estimate (7.30) and the proof of Theorem 7.1.7 is
complete. �

Proof of Theorem 7.1.8. First, note that as we assume h ≤ ε Lemma 7.1.14 ensures that
(1 + ea0)(ea0 + eb2) ≤ C(h/ε)2. The rest of the proof follows the same line as for Theorem 7.1.7:
Using the triangle and Hölder inequalities and Lemma 7.1.13, we obtain

‖e‖L∞(L2) ≤ C
(
edataL2 + ‖η‖L∞(L2) + ε‖η‖L∞(H1) + ‖IH∂tη‖L1(L2) + ε‖IH∂tη‖L1(H1)

)
≤ Cε−2(h/ε)2

∑3
k=0‖∂kt ū‖L∞(H�+1) + eFEL2 ,

where edataL2 =
(
‖g0− g0H‖L2 + ε‖g0− g0H‖H1 +‖g1− g1H‖L2 + ε‖g1− g1H‖H1

)
. That proves estimate

(7.31) and the proof of Theorem 7.1.8 is complete. �

7.1.4 Long time a priori error analysis of the FE-HMM-L in arbitrarily large do-
mains

In Section 7.1.3, we derived a priori error estimates for the FE-HMM-L in the L∞(0, T ε; L2(Ω))
and L∞(0, T ε; H1(Ω)) norms in small domains of diameters O(1). As the constants in these
estimates depend on the size of Ω, they can not be used in pseudoinfinite domains. In this section,
we provide an a priori error analysis that is valid for arbitrarily large domains. In particular, we
track the dependence of the estimate on the size of the domain. Specifically, the key point of the
proof of the estimate is the use of a new elliptic projection that avoid the need of the Poincaré
inequality. Hence, under suitable assumptions, this error estimate can be used in pseudoinfinite
domains. This is the first a priori error analysis of a numerical homogenization method for long
time wave propagation that holds for arbitrarily large domains.

Again, we assume that the tensor is locally periodic and collocated in the slow variable, i.e.,

aε(x) = a
(
xKj

, xε
)

for a.e. x ∈ Kδj ∀(K, j) ∈ TH × {1, . . . , J}. (7.55)

Theorem 7.1.15. Let ū be the solution of (7.13), uH the solution of the FE-HMM-L (7.18).
Assume that δ satisfies δ/ε ∈ N>0, that the micro mesh size is h ≤ ε and that the degree of the
micro finite element space is q = 1. Furthermore, assume that the tensor is locally periodic and
collocated in the slow variable (assumption (7.55)). If a ∈ C0(Ω̄;W1,∞(Y )) ∩ C�(Ω̄; L∞(Y ) and
∂kt ū ∈ L∞(0, T ε; H�+1(Ω)) for 0 ≤ k ≤ 4, then the error e = ū− uH satisfies the estimate

‖∂te‖L∞(L2)+|e|L∞(H1) ≤ C

(
edataH1 +

(
h

ε2

)2
+
H�

ε2

)(
�+1∑
σ=1

|ū|L∞(Hσ)+
4∑

k=1

‖∂kt ū‖L∞(H�+1)

)
, (7.56)

where edataH1 = |g0 − g0H |H1(Ω) + ‖g1 − g1H‖H1(Ω) and C = C̃
(
‖a‖C�(Ω̄;L∞(Y )) + ‖a‖C0(Ω̄;W1,∞(Y ))

)
with C̃ independent of ε, H and Ω.

Remark 7.1.16. The term H�/ε2 in (7.56) is a part of the standard error estimate for the FE
approximation of ū in VH(Ω). In the proof, we verify that the factor ε−2 comes from the length
of the time interval and can not be avoided.

Combining Theorems 6.1.1 and 7.1.15, we obtain the following estimate for uε − uH in the
L∞(0, T ε;W ) norm.
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Corollary 7.1.17. Assume that Ω is a union of cells of volume ε|Y | and that the tensor is
locally periodic and collocated in the slow variable (assumption (7.55)) and satisfies the regularity
a ∈ C1(Ω̄;W1,∞(Y )) ∩ C4∨�(Ω̄; L∞(Y )). Also, assume that g0H = IHg

0, g1H = IHg
1, and let the

settings of the FE-HMM-L be such that δ/ε ∈ N>0, h ≤ ε, and q = 1. Finally assume that the
following regularity holds:

g0 ∈ H4(Ω), g1 ∈ H3(Ω), f ∈ L2(0, T ε; H2(Ω)), ∂kt ū ∈ L∞(0, T ε; H(5−k)∨(�+1)(Ω)), 0 ≤ k ≤ 4,

where we use the notation m ∨ n = max{m,n}. Then the following estimate holds

‖uε − uH‖L∞(0,T ε;W ) ≤ C

(
ε+

(
h

ε2

)2
+
H�

ε2

)(
5∨(�+1)∑

σ=1
|ū|L∞(Hσ) +

4∑
k=1

‖∂kt ū‖L∞(H(5−k)∨(�+1))

)
,

where C = C̃
(
‖a‖C1(W1,∞) + ‖a‖C4∨�(L∞)

)
and C̃ is independent of ε, H and Ω and we recall the

definition of the norm (see (A.4))

‖w‖W = inf
w=w1+w2

w1,w2∈Wper(Ω)

{
‖w1‖L2(Ω) + ‖∇w2‖L2(Ω)

}
∀w ∈Wper(Ω).

We emphasize that the constant C̃ in Theorem 7.1.15 is independent of the domain Ω. Hence, for
an arbitrarily large domain Ω, if the quantities

‖a‖C�(Ω̄;L∞(Y )),
�+1∑
σ=1

|ū|L∞(0,T ε;Hσ(Ω)),
4∑

k=1

‖∂kt ū‖L∞(0,T ε;H�+1(Ω)),

are of order O(1), then the mesh size h,H can be set such that the error satisfies a given order
of tolerance. This is the case for example if ū and its time derivatives have a sufficiently small
spatial support. Corollary 7.1.17 can then be used to set the parameters of the FE-HMM-L as
follows. Let τ ≥ ε be a desired order of tolerance. Then, setting

h = ε2τ1/2, H = (ε2τ)1/�, (7.57)

the error ‖uε − uH‖L∞(0,T ε;W ) is at most of order τ .

Proof of the a priori error estimate

The proof of Theorem 7.1.15 follows the same structure as that of Theorems 7.1.7 and 7.1.8, in
Section 7.1.3. We split the error as

ū− uH = (ū− πH ū)− (uH − πH ū) = η − ζH . (7.58)

The function πH ū is a new elliptic projection (defined in (7.62)). In particular, its definition
allows to avoid the use of the Poincaré inequality to estimate ‖η‖L∞(H1) (see Remark 7.1.18).

Let us recall some basic estimates and notations used in Section 7.1.3. Note that we need to
track the eventual dependence of the constants in the domain Ω. We denote the error in the
coefficients as

ea0 = sup
K∈TH ,1≤j≤J

|a0(xKj
)− a0K(xKj

)|, eb2 = sup
K∈TH ,1≤j≤J

ε2|b2(xKj
)− b2K(xKj

)|,

where a0, b2 and a0K(xKj
), b2K(xKj

). The broken seminorm and norm on VH(Ω) are

|vH |H̄k(Ω) =

( ∑
K∈TH

|vH |2Hk(K)

)1/2

, ‖vH‖H̄k(Ω) =

( ∑
K∈TH

‖vH‖2Hk(K)

)1/2

.
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As we assume a ∈ C�(Ω̄; L∞(Y )), a0 and b2 satisfy a0, b2 ∈ C�(Ω̄) (see (6.44)). Hence, we verify
that for v ∈ H�+1(Ω) ∩Wper(Ω) and wH ∈ VH(Ω), the following estimates hold

|A0(v, wH)−AH(IHv, wH)| ≤ C
(
ea0 |v|H1 +H�∑�+1

σ=1 |v|Hσ

)
|wH |H̄1 , (7.59a)

|(v, wH)S − (IHv, wH)Q| ≤ C
(
eb2‖v‖H1 +H�‖v‖H�+1

)
‖wH‖H̄1 . (7.59b)

where the C depends only λ, Λ, Y and ‖a‖C�(Ω̄;L∞(Y )) We emphasize that in (7.59), the only
dependence on Ω lies in the norms of v, wH , and a. To see it, let us recall how (7.59a) is obtained
(it is similar for (7.59b)). The error is split into three parts : the part coming from the error on
the coefficients, the part from the interpolation onto VH(Ω) and the part coming from numerical
integration :

|A0(v, wH)−AH(IHv, wH)| ≤ |A0(v − IHv, wH)|+ |A0(IHv, wH)−A0
H(IHv, wH)|

+ |A0
H(IHv, wH)−AH(IHv, wH)| = eIH + eint + ecoef ,

(7.60)

where the form A0
H is defined for vH , wH ∈ VH(Ω) as

A0
H(vH , wH) =

∑
K∈TH

J∑
j=1

ωKj
a0(xKj

)∂xvH(xKj
)∂xwH(xKj

).

The interpolation operator satisfies for v ∈Wper(Ω) ∩Hs+1(Ω) where 1 ≤ s ≤ �,( ∑
K∈TH

|v − IHv|2Hm(K)

)1/2
≤ CHs+1−m|v|Hs+1(Ω) 0 ≤ m ≤ s+ 1, (7.61)

where C is independent of Ω (see Section A.3 and [33]). Using the bound on A0 and (7.61), we
have

eIH ≤ Λ|v − IHv|H1 |wH |H1 ≤ CH�|v|H�+1 |wH |H1 ,

for a constant C that is independent of Ω. Next, standard results on numerical integration provide
the estimate (see [33, 82] and Theorems A.3.6 and A.3.9)

eint ≤ C‖a0‖W�,∞H�∑�
k=1 |IHv|H̄k |wH |H1 .

The proof is done locally for each K ∈ TH and the constant depends only on the reference element
K̂ (for d > 1, it would additionally depend on the shape regularity of the mesh). Finally, using the
definitions of A0

H and AH , we easily obtain ecoef ≤ ea0 |IHv|H1 |wH |H1 and then use the stability
of IH in H1(Ω). Combining the estimates for eIH , eint, and ecoef with (7.60), we obtain (7.59a).

We define now the elliptic projection πH ū : [0, T ε]→ VH(Ω), where for a.e. t, πH ū(t) ∈ VH(Ω)
satisfies(

πH ū(t), vH
)
Q
+AH

(
πH ū(t), vH

)
=
(
f(t), vH

)
L2 −

(
IH∂

2
t ū(t), vH

)
Q
+
(
IH ū(t), vH

)
Q
, (7.62)

for any test function vH ∈ VH(Ω). Using the ellipticity of AH and (7.35), we verify that the form
(·, ·)Q +AH(·, ·) is elliptic and bounded:

(vH , vH)Q +AH(vH , vH) ≥ c‖vH‖2H1 , (vH , wH)Q +AH(vH , wH) ≤ C‖vH‖H1‖wH‖H1 , (7.63)

where c, C are independent of ε and Ω. Furthermore, we verify that the right hand side of (7.62)
defines an element of the dual of VH(Ω). Hence, Lax–Milgram theorem ensures the existence and
uniqueness of πH ū(t).
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Remark 7.1.18. Observe that the elliptic projection defined in (7.62) is different from the
elliptic projection (7.39) from Section 7.1.3. Indeed, the terms

(
πH ū(t), vH

)
Q

and
(
IH ū(t), vH

)
Q

have been added respectively on the left and the right hand side. The purpose of these terms is
to prove (7.64), with a constant independent of the Poincaré constant. Indeed, the additional
term (·, ·)Q in the bilinear form ensures that the bounds (7.63) hold without dependence on the
Poincaré constant.

The two following lemmas provide bounds for η = ū− πH ū and ζH = uH − πH ū.

Lemma 7.1.19. Assume that ∂kt ū, ∂
k+2
t ū ∈ L∞(0, T ε; H�+1(Ω)) for k ≥ 0. Then ∂kt πH ū ∈

L∞(0, T ε; H1(Ω)) and the following estimate holds for η = ū− πH ū,

‖IH∂kt η‖L∞(H1) + ‖∂kt η‖L∞(H1)

≤ C
(
(ea0 +H�)

∑�+1
σ=1 |∂kt ū|L∞(Hσ) + (eb2 +H�)‖∂k+2

t ū‖L∞(H�+1)

)
,

(7.64)

where C = C̃‖a‖C�(Ω̄;L∞(Y )) with C̃ independent of H, ε, and Ω.

Proof. We prove the result for k = 0. The proof for k > 0 is obtained in the same way by
differentiating equations (7.62) and (7.13) with respect to t. First, using (7.13) we rewrite (7.62)
for all vH ∈ VH(Ω) as(

πH ū(t), vH
)
Q
+AH

(
πH ū(t), wH

)
= A0

(
ū(t), vH

)
+
(
∂2t ū(t), vH

)
S −

(
IH∂

2
t ū(t), vH

)
Q
+
(
IH ū(t), vH

)
Q
.

(7.65)

Using the test function vH = πH ū(t) in (7.65), the ellipticity of AH and the bound on A0, we
obtain the estimate

‖πH ū(t)‖H1 ≤ C
(
‖ū(t)‖H1 + ‖∂2t ū(t)‖H1

)
.

We take the L∞ norm with respect to t in this inequality and the regularity of ū ensures that
πH ū ∈ L∞(H1). Next, we prove estimate (7.64). Using (7.65) and (7.13), we verify that almost
everywhere in [0, T ε],(

IHη, vH
)
Q
+AH

(
IHη, vH

)
= AH

(
IH ū, vH

)
−A0

(
ū, vH

)
−
(
∂2t ū, vH

)
S +

(
IH∂

2
t ū, vH

)
Q
.

Thanks to (7.59), we obtain for a.e t ∈ [0, T ε],(
IHη, vH

)
Q
+AH

(
IHη(t), vH

)
≤ C

(
(ea0 +H�)

∑�+1
σ=1 |ū(t)|Hσ +(eb2 +H

�)‖∂2t ū(t)‖H�+1

)
‖vH‖H1 .

We let vH = IHη(t) and the ellipticity of the form (·, ·)Q +AH(·, ·) gives

‖IHη(t)‖H1 ≤ C
(
(ea0 +H�)

∑�+1
σ=1 |ū(t)|Hσ + (eb2 +H�)‖∂2t ū(t)‖H�+1

)
.

Taking the L∞ norm with respect to t, we obtain (7.64) for ‖IHη‖L∞(H1). Finally, the triangle
inequality yields ‖η‖L∞(H1) ≤ ‖ū− IH ū‖L∞(H1) + ‖IHη‖L∞(H1) and using (7.61) proves the (7.64)
for ‖η‖L∞(H1). The proof of Lemma 7.1.19 is complete.

Lemma 7.1.20. The following estimate holds for ζH = uH − πH ū,

‖∂tζH‖L∞(L2) + |ζH |L∞(H1) ≤ C
(
edataH1 + |η|L∞(H1) + ‖∂tη‖L∞(H1)

+ ‖IHη‖L1(H1) + ‖IH∂2t η‖L1(H1)

)
,

(7.66)

where edataH1 = |g0 − g0H |H1 + ‖g1 − g1H‖Q and C is independent of H, ε and Ω.
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Proof. Using equations (7.18) and (7.62), we verify that for any vH ∈ VH(Ω) and a.e. t ∈ [0, T ε]
it holds (

∂2t ζH(t), vH
)
Q
+AH

(
ζH(t), vH

)
=
(
IH∂

2
t η(t)− IHη(t), vH

)
Q
. (7.67)

We let vH = ∂tζH(t) and use the symmetry of the forms (·, ·)Q and AH to get for a.e. t ∈ [0, T ε]

1
2

d
dt

(
‖∂tζH(t)‖2Q +AH

(
ζH(t), ζH(t)

))
=
(
IH∂

2
t η(t)− IHη(t), vH

)
Q
.

Denoting EHζH(t) = ‖∂tζH(t)‖2Q + AH

(
ζH(t), ζH(t)

)
, we integrate the last equality over [0, ξ]

and obtain for any ξ ∈ [0, T ε]

EHζH(ξ) = EHζH(0) + 2

∫
0

ξ(
IH∂

2
t η(t)− IHη(t), ∂tζH(t)

)
Q
dt. (7.68)

Applying Cauchy–Schwartz, Hölder, and Young inequalities, we bound the right hand side as

2

∫
0

ξ(
IH∂

2
t η(t)− IHη(t), ∂tζH(t)

)
Q
dt ≤ 4‖IH∂2t η‖2L1(Q) + 4‖IHη‖2L1(Q) +

1
2‖∂tζH‖

2
L∞(Q). (7.69)

As AH

(
ζH(ξ), ζH(ξ)

)
≥ 0, combining (7.68) and (7.69) and taking the supremum with respect to

ξ, we obtain the estimate

1
2‖∂tζH‖

2
L∞(Q) ≤ EHζH(0) + 4‖IH∂2t η‖2L1(Q) + 4‖IHη‖2L1(Q).

A similar bound can then be deduced for |ζH |2L∞(H1) from (7.68), (7.69) and the ellipticity of AH .
Using the bound on AH , we then obtain

‖∂tζH‖L∞(Q) + ‖ζH‖L∞(H1) ≤ C
(
‖∂tζH(0)‖Q + |ζH(0)|H1 + ‖IH∂2t η‖L1(Q) + ‖IHη‖L1(Q)

)
.

Thanks to (7.58), the first terms satisfy

‖∂tζH(0)‖Q ≤ ‖g1H − g1‖Q + ‖∂tη(0)‖Q ≤ ‖g1H − g1‖Q + ‖∂tη‖L∞(Q),

|ζH(0)|H1 ≤ |g0H − g0|H1 + |η(0)|H1 ≤ |g0H − g0|H1 + |η|L∞(H1).

Using (7.35), we obtain (7.66) and that concludes the proof of the lemma.

Proof of Theorem 7.1.15. Let e = ū − uH and recall that e = η − ζH . Applying the triangle
inequality and Lemma 7.1.20, we have

‖∂te‖L∞(L2) + |e|L∞(H1) ≤ ‖∂tη‖L∞(L2) + |η|L∞(H1) + ‖∂tζH‖L∞(L2) + |ζH |L∞(H1)

≤ C
(
edataH1 + |η|L∞(H1) + ‖∂tη‖L∞(H1) + ‖IHη‖L1(H1) + ‖IH∂2t η‖L1(H1)

)
.

Hölder inequality implies ‖IHη‖L1(H1) + ‖IH∂2t η‖L1(H1) ≤ ε−2T
(
‖IHη‖L∞(H1) + ‖IH∂2t η‖L∞(H1)

)
and thus, applying Lemma 7.1.19, we obtain

‖∂te‖L∞(L2)+|e|L∞(H1) ≤ CedataH1 +Cε−2
(
ea0+eb2+H

�
)(∑�+1

σ=1 |ū|L∞(Hσ)+
∑4

k=1 ‖∂kt ū‖L∞(H�+1)

)
.

Lemma 7.1.14 gives ε−2(ea0 + eb2) ≤ C(h/ε2)2 and that proves estimate (7.56). The proof of
Theorem 7.1.15 is complete. �
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7.1.5 Numerical experiments

In this section, we perform numerical experiments to illustrate the theoretical results that were
obtained on the FE-HMM-L. In particular, we confirm the micro and macro convergence rates
provided by Theorem 7.1.15 for arbitrarily large domains. We also compare the approximation of
the FE-HMM-L with the heterogeneous wave uε at long time and in a pseudoinfinite medium.

First, we investigate the error estimate from Theorem 7.1.15. We consider the two model problems
given by the sets of data

g0(x) = e−10x2

, g1 = 0, f = 0, aε(x) = a
(
x
ε

)
=
√
2− cos

(
2π x

ε

)
,

Lε = ε−2 + 1, Ω = (−Lε, Lε),
(7.70a)

g0(x) = e−20x2

, g1 = 0, f = 0, aε(x) = a
(
x, xε
)
= 249

419 + 1
6 sin(2πx) +

1
6 sin

(
2π x

ε

)
,

Lε = 0.75ε−2 + 1, Ω = (−Lε, Lε),

(7.70b)

where we fix for now ε = 1/10. We refer respectively to Section 4.4.1 and 6.5.1 for the correctors
and effective tensors corresponding to each tensors. In particular, note that for both examples
the wave never reaches the boundary of Ω. We approximate uε with the FE-HMM-L, where we
set δ = ε, q = 1, � = 4, H = ε/4 and each micro mesh size in the sequence {hn = 2−(n−1)ε}8n=1.
The reference effective solution is computed with a P4-FEM on a mesh of size Href = ε/8. The
obtained L∞(L2) error for each micro mesh size is display in Figure 7.1. On the left, for model
problem (7.70a) and on the right for model problem (7.70b). We observe that in both cases the
error decreases with the rate (h/ε2)2 as predicted by Theorem 7.1.15. Next, for model problem
(7.70b), the same experiment is performed including smaller micro mesh sizes {hn = 2−(n−1)ε}12n=1

and for the different macro mesh sizes H1 = 0.025, H2 = 0.05, H3 = 0.1. In Figure 7.2, we
observe that the error saturates when the macro error ε−2H4 becomes dominant. Indeed, we
verify that the three saturation stages are of order O(ε−2H4

i ).

aε(x) = a(x/ε)
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Figure 7.1: Loglog plot of the error ū − uH for a decreasing micro mesh size h. Left: model
problem (7.70a). Right: model problem (7.70b).

Let us next use the error estimate and approximate uε with the FE-HMM-L. We fix ε = 1/20 and
T ε = ε−2 = 400) in the corresponding pseudo infinite domain Ω = (−Lε, Lε). For both examples
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‖ū− uH‖L∞(0,T ε;L2(Ω))

 

 

10
−6

10
−4

10
−2

10
0

 

 

10
−1

10
0

10
1

10
2

10
3

(h/ε2)−1

 

 

H1 = 0.025
H2 = 0.050
H3 = 0.100
slope (h/ε2)2

Figure 7.2: Loglog plot of the error ū− uH for a decreasing micro mesh size h for three different
macro mesh sizes.

in (7.70), recall that the effective solution ū and the other elements of the family E capture well
the dispersive behavior of uε (see Figures 4.3 and 6.1). At the macro scale, we use finite elements
of degree � = 3. We let the tolerance on the error be τ = ε. Using (7.57), we thus set h = ε5/2,
H = ε. The obtained approximations are displayed with uε in Figure 7.3 for example (7.70a)
and in Figure 7.4 for example (7.70b). In both examples, we observe that the approximation uH
captures well all the features of uε. In particular, it describes the long time dispersive effects.

397 398 399 400 401

−0.1

0

0.1

0.2

0.3

0.4

0.5

 

 

t = 400
uε

uH

Figure 7.3: Comparison between the wave uε with approximation obtained with the FE-HMM-L
uH for example (7.70a) at time t = ε−2 = 400 with zoom on x ∈ [397.1, 399.1].
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Figure 7.4: Comparison between the frontal waves of uε and the approximation obtained with
the FE-HMM-L uH for example (7.70b) at time t = 400 and with on x ∈ [296.3, 296.9].

7.2 Several dimensions : a spectral homogenization method for long time wave
propagation in locally periodic media

In this section, we define and analyze a spectral homogenization method for the approximation
of multidimensional long time wave propagation in locally periodic media. The method is built
to approximate an effective equation in the family of effective equations defined in Chapter 6. In
particular, it is structured as follows. In a first step, we use the FEM to solve the cell problems
and approximate the effective tensors at the nodes of a grid of the domain. In a second step, we
use a spectral method to approximate the effective solution on the grid. The main result of this
section is the a priori error analysis of the method, presented in Section 7.2.3. In particular, we
prove an error estimate between the approximation and the heterogeneous wave that holds on
long times O(ε−2) and in arbitrarily large periodic domains.

Let us introduce the settings. Let aε(x) = a
(
x, xε
)
be a d× d locally periodic tensor, i.e., a(x, y)

is Y -periodic in y and Ω-periodic in x. The domain Ω ⊂ Rd is an arbitrarily large hypercube,
assumed to be the union of cells of length ε|Y | (see assumption (4.25)). This assumption ensures
that aε(x) is Ω-periodic (y → a(x, y) is extended by periodicity). For T ε = ε−2T , we consider
the wave equation: find uε : [0, T ε]× Ω→ R such that

∂2t u
ε(t, x)−∇x ·

(
a
(
x, xε )∇xu

ε(t, x)
)
= f(t, x) in (0, T ε]× Ω,

x → uε(t, x) Ω-periodic in [0, T ε],

uε(0, x) = g0(x), ∂tu
ε(0, x) = g1(x) in Ω,

(7.71)

where g0, g1 are given initial conditions and f is a source. We assume that a is uniformly elliptic
and bounded, i.e. there exists λ,Λ > 0 such that

λ|ξ|2 ≤ a(x, y)ξ · ξ ≤ Λ|ξ|2 for a.e. (x, y) ∈ Ω× Y. (7.72)

The well-posedness of (7.71) is proved in Section 2.1.1. If g0 ∈ Wper(Ω), g
1 ∈ L2

0(Ω), f ∈
L2(0, T ε; L2

0(Ω)), then there exists a unique weak solution uε ∈ L∞(0, T ε;Wper(Ω)) with ∂tu
ε ∈

L∞(0, T ε; L2
0(Ω)) and ∂

2
t u

ε ∈ L2(0, T ε;W∗
per(Ω)).
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7.2.1 Selection of an effective equation for numerical homogenization

The first step on the derivation of a numerical homogenization method for the long time approxi-
mation of the wave equation in locally periodic media is to select an appropriate effective model.
Recall that a family of effective equations capturing the effective behavior of uε at timescales
O(ε−2) was parametrized in Definition 6.2.2, Section 6.2.1. In particular, in the multidimensional
case, we have to approximate a fourth order differential equation. As no equation in the family
has a specificity, we select the equation defined by the minimal value of the parameter. This is
what should be done in practice. For the a priori error analysis, however, we slightly increase the
value of the parameter (see below). Doing so ensures the coercivity of the corresponding bilinear
form in H2(Ω), which is needed in the proof of the error estimates (see Remark 7.2.1).

Let us then recall the definitions of the tensors of the selected effective equation (as defined in
(6.59) to (6.64)). For x ∈ Ω, let {χi(x)}di=1, {θ0ij(x)}dij=1, {θ1i (x)}di=1 ⊂Wper(Y ) be the solutions
of the local cell problems (6.72) and (6.75). Recall that the homogenized tensor is defined for all
x ∈ Ω as

a0ij(x) =
〈
a(x)(∇yχj(x) + ej) · (∇yχi(x) + ei)

〉
Y
. (7.73)

We recall the definition of the operator (see (6.60))

L1 = −∂i
(
ā12ij (x)∂j ·

)
+ b10∂2t ,

and of the tensors

p13ijk(x) =
〈
a(x)(∇yχk(x) + ek) · ejχi(x)

〉
Y
,

q12ij (x) =
〈
a(x)(∇yχj(x) + ej) · ∇xχi(x)

〉
Y
,

ǎ12ij (x) = S2
ij

{
− ∂rp

13
rij(x) + ∂rp

13
irj(x)− ∂rp

13
irj(x) + 2q12ij (x)

}
,

b10 = max
x∈Ω

{
− λmin(ǎ

12(x))

λmin(a0(x))

}
+

,

ā12ij (x) = ǎ12ij (x) + b10a0ij(x),

(7.74)

where {·}+ = max{0, ·}. Before recalling the definition of the operator L2, in (6.62), let us
observe that the tensors ā24ijkl and ā

22
ij , defined in (6.63) and (6.64), can be computed with the

symmetrized cell function θ̄0ij = S2
ij{θ0ij}. It is obvious for ā24ijkl and for ā22ij observe that we can

rewrite

S2
ij

{
∂r(p

23
jir − p23rij − p23irj)

}
= ∂rp̄

23
jir − ∂rS

2
ij

{
p23rij + p23irj

}
= ∂rp̄

23
jir − 2S2

ij

{
∂rp̄

23
rij

}
,

where
p̄23ijk = S2

ij

{
p23ijk
}
= S2

ij

{〈
aejχi · ∇xχk

〉
Y

}
−
〈
a∇y θ̄

0
ji · ∇yθ

1
〉
Y
.

This observation leads to a considerable gain of computational time. Indeed, d2 cell problems
must be solved to obtain {θ0ij(x)}, while only

(
d+1
2

)
cell problems are required to compute {θ̄0ij(x)}.

We now recall the definition of the operator

L2 = ∂2ij
(
ā24ijkl(x)∂

2
kl ·
)
− ∂i

(
b22ij (x)∂j∂

2
t ·
)
− ∂i

(
ā22ij (x)∂j ·

)
+ b20∂2t ,

and the tensors

ǎ24ijkl(x) = S2,2
ij,kl

{〈
a(x)χi(x)ej · χl(x)ek

〉
Y

}
−
〈
a(x)∇y θ̄

0
ij(x) · ∇y θ̄

0
kl(x)

〉
Y
,

A24(x) =M
(
ǎ24(x)

)
, A0(x) =M

(
S2,2
ij,kl{a0jk(x)a0il(x)}

)
,

δ = max
x∈Ω

{
− λmin(A

24(x))

λmin(A0(x))

}
+

+
α

λ2
,

ā24ijkl(x) = ǎ24ijkl(x) + δS2,2
ij,kl

{
a0jk(x)a

0
il(x)

}
,

b22ij (x) =
〈
χi(x)χj(x)

〉
Y
+ δa0ij(x),

(7.75)
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and

p̄23ijk(x) = S2
ij

{〈
a(x)ejχi(x) · ∇xχk(x)

〉
Y

}
−
〈
a(x)∇y θ̄

0
ji(x) · ∇yθ

1
k(x)

〉
Y
,

p22ij (x) =
〈
a(x)∇xχj(x) · ∇xχi(x)

〉
Y
−
〈
a(x)∇yθ

1
i (x) · ∇yθ

1
j (x)

〉
Y
,

ǎ22ij (x) = ∂rp̄
23
jir(x)− 2S2

ij{∂rp̄23rij(x)}+ p22ij (x)

+ b10ǎ12ij (x) + δ∂sa
0
ri(x)∂ra

0
sj(x)− δ∂r

(
a0rs(x)∂sa

0
ij(x)

)
,

b20 = max
x∈Ω

{
− λmin(ǎ

22(x))

λmin(a0(x))

}
+

,

ā22ij (x) = ǎ22ij (x) + b20a0ij(x).

(7.76)

Remark 7.2.1. In the definition of δ in (7.75), the parameter α ≥ 0 is a fixed real value. In
practice, α = 0 should be used. However, α > 0 is used in the a priori error analysis, in Section
7.2.3. Indeed, this ensure the coercivity of the bilinear form Ah

N in H2(Ω) (see (7.96) below) as
we verify that (see Lemmas 4.3.2 and 4.3.4)

ā24ijkl(x)ξijξkl ≥
α

λ2
S2,2
ij,kl

{
a0jk(x)a

0
il(x)

}
ξijξkl ≥ α‖ξ‖2F .

The target effective equation for the numerical method is then the solution ū of (6.65). Let us
give the weak formulation for ū (see Section 2.1.2 for the details). Define the bilinear forms (·, ·)S
and A(·, ·) as(

v, w
)
S =

(
(1 + εb10 + ε2b20)v, w

)
L2(Ω)

+
(
ε2b22∇v,∇w

)
L2(Ω)

,

A
(
v, w
)
=
(
(a0 + εā12 + ε2ā22)∇v,∇w

)
L2(Ω)

+
(
ε2ā24∇2v,∇2w

)
L2(Ω)

,
(7.77)

and define the spaces

S(Ω) =
{
v ∈ L2

0(Ω) :
√
b22∇v ∈ [L2(Ω)]d

}
, V(Ω) =

{
v ∈Wper(Ω) :

√
ā24∇2v ∈ [L2(Ω)]d×d

}
.

Equipped with the inner product (·, ·)S and A(·, ·), respectively, S(Ω) and V(Ω) are Hilbert spaces.
If we assume the regularity

a0, ā12, ā22 ∈W1,∞(Ω), ā24 ∈W2,∞(Ω),

g0 ∈ V(Ω) ∩H4(Ω), g1 ∈ S(Ω) ∩H2(Ω), f ∈ H1(0, T ε; L2
0(Ω)),

then there exists a unique weak solution ū ∈ L∞(0, T ε;V(Ω)), with ∂tū ∈ L2(0, T ε;S(Ω)) and
∂2t ū ∈ L2(0, T ε;S(Ω)), such that(

∂2t ū(t), v
)
S +A

(
ū(t), v

)
=
(
f(t), v

)
L2(Ω)

∀v ∈ V(Ω) for a.e. t ∈ [0, T ε],

ū(0) = g0, ∂tū(0) = g1.
(7.78)

7.2.2 Definition of the spectral homogenization method

In this section, we define the spectral homogenization method for the long time approximation of
the wave equation in locally periodic media. We first describe the structure of the method and
then provide all the details.

For N ∈ Nd
>0, let GN be a uniform grid of Ω (see (7.90)) and let V̊N (Ω) ⊂ V(Ω) be the associated

space of trigonometric polynomials of zero mean (defined in (7.94)). In Step 1, we approximate
the effective tensors at the nodes of GN by solving the cell problems with the FEM. In Step
2, using the tensors computed in Step 1, we define the bilinear forms (·, ·)Q and Ah

N (·, ·) on
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V̊N (Ω) × V̊N (Ω) to approximate the forms (·, ·)S and A(·, ·), defined in (7.77). The spectral
homogenization method for the long time approximation of the wave equation in locally periodic
media is then defined as: uN : [0, T ε]→ V̊N (Ω) such that(

∂2t uN (t), vN
)
Q
+Ah

N

(
uN (t), vN

)
=
(
f(t), vN

)
L2(Ω)

∀vN ∈ V̊N (Ω) for a.e. t ∈ [0, T ε],

uN (0) = g0N , ∂tuN (0) = g1N ,
(7.79)

where g0N and g1N are appropriate approximations of the initial conditions g0, g1 in V̊N (Ω).

In the method, Step 1 is a preprocessing step that only involves the tensor a(x, y). As the
cell problems can be decomposed into independent subsets of equations, this process can be
parallelized. Furthermore, the outcome of Step 1 can be reused for different initial data and
source terms.

Let us now provide the details of Step 1 and Step 2.

Step 1 – Approximation of the effective tensors

In the first step, we approximate the effective tensors at the nodes of the grid GN . To allow a
maximal control on the precision of the method, the tensors are in fact approximated on a subgrid
GM of GN . Indeed, recall that the definitions of the effective tensors involve space derivatives
with respect to the slow variable. As these derivatives are approximated with central differences,
considering the subgrid GM allows to increase the accuracy of the approximation.

Let M be a multiple of N , i.e., for all ν, Mν = �Nν for some � ∈ N>0. Let then GM = {xm} be
the uniform grid of Ω = (a1, b1)× · · · × (ad, bd), defined by

xm = (m1Δx1, . . . ,mdΔxd)
T , 0 ≤ m1 ≤ 2M1 − 1, . . . , 0 ≤ md ≤ 2Md − 1,

and the size in each direction is Δxν = (bν − aν)/(2Mν). For v ∈ C0(Ω̄; L2(Y )), let Dkv(xm) be
the approximation of ∂xk

v(xm) with a central difference, i.e.,

v → Dkv, Dkv(xm) =
1

2Δxk

(
v(x[m+ek])− v(x[m−ek])

)
∈ L2(Y ) ∀xm ∈ GM ,

where {e1, . . . , ed} is the canonical basis of Rd and [m] ∈ Nd is defined as
(
[m]
)
ν

=(
mod(mν , 2Mν − 1) (Ω is a periodic domain). Furthermore, we denote the approximation

of the operator ∇x as Dx = (D1·, . . . , Dd·)T . Using Taylor expansion, we can show the following
error estimate for v ∈ C3(Ω̄; Hs(Y ))

‖∂xk
v(xm)−Dkv(xm)‖Hs(Y ) ≤ CΔx2k‖v‖C3(Hs(Y )), (7.80)

where H0(Y ) = L2(Y ). The approximation of the second derivative of a function v ∈ C0(Ω̄; L2(Y ))
is defined as v → D2

klv, where for xm ∈ GM

D2
klv(xm)=

⎧⎪⎪⎨⎪⎪⎩
1

4ΔxkΔxl

(
v(x[n+ek+el])− v(x[n+ek−el])− v(x[n−ek+el]) + v(x[n−ek−el])

)
if k �= l,

1

Δx2k

(
v(x[n+ek])− 2v(x[n]) + v(x[n−ek])

)
if k = l.

Using Taylor expansion, we can show the following error estimate for v ∈ C4(Ω̄; Hs(Y ))

‖∂2xkl
v(xm)−D2

klv(xm)‖Hs(Y ) ≤ C
(
Δx2k +Δx2l

)
‖v‖C4(Hs(Y )). (7.81)
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Let us define the finite element space for the approximation of the cell problems. Let T h be a
triangulation of Y , where h is the maximum diameter of an element in T h. For and integer q ≥ 1,
the finite element space is then

V h(Y ) =
{
wh ∈Wper(Y ) : wh|K ∈ Pq(K) ∀K ∈ T h

}
,

where Pq(K) is the set of polynomials of degree smaller or equal to q on K.

We are now able to define the approximations of the correctors and of the effective tensors. For
all xm ∈ GM , let χh

i (xm) ∈ V h(Y ) solves(
a(xm)∇yχ

h
i (xm),∇yw

h
)
Y
= −

(
a(xm)ei,∇yw

h
)
Y

∀wh ∈ V h(Y ). (7.82)

The approximation of the homogenized tensor at xm ∈ GM is then defined as

a0hij (xm) =
〈
a(xm)(∇yχ

h
j (xm) + ej) · (∇yχ

h
i (xm) + ei)

〉
Y
. (7.83)

For all xm ∈ GM , let then θ̄0hij (xm), θ1hi (xm) ∈ V h(Y ) solve ∀wh ∈ V h(Y )(
a(xm)∇y θ̄

0h
ij (xm),∇wh

)
Y
=S2

ij

{(
a(xm)eiχ

h
j (xm),∇yw

h
)
Y

+
(
a(xm)(∇yχ

h
j (xm) + ej)− a0h(xm)ej , eiw

h
)
Y

}
, (7.84)(

a(xm)∇yθ
1h
i (xm),∇wh

)
Y
=−

(
a(xm)Dxχ

h
i (xm),∇yw

h
)
Y

+
(
Dx · (a(∇yχ

h
i + ei))(xm)−Dx · (a0h(xm)ei), w

h
)
Y
. (7.85)

We define the following tensors for all xm ∈ GM as (compare to (7.74))

p13hijk (xm) =
〈
a(xm)(∇yχ

h
k(xm) + ek) · ejχh

i (xm)
〉
Y
,

q12hij (xm) =
〈
a(xm)(∇yχ

h
j (xm) + ej) ·Dxχ

h
i (xm)

〉
Y
,

ǎ12hij (xm) = S2
ij

{
−Drp

13h
rij (xm) +Drp

13h
jir (xm)−Drp

13h
irj (xm) + 2q12hij (xm)

}
,

b10h = max
xm∈GM

{
− λmin(ǎ

12h(xm))

λmin(a0h(xm))

}
+

,

ā12hij (xm) = ǎ12hij (xm) + b10a0hij (xm).

(7.86)

Furthermore, for all xm ∈ GM ,

ǎ24hijkl(xm) = S2,2
ij,kl

{〈
a(xm)χh

i (xm)ej · χh
l (xm)ek

〉
Y

}
−
〈
a(xm)∇y θ̄

0h
ij (xm) · ∇y θ̄

0h
kl (xm)

〉
Y
,

A24h(xm) =M
(
ǎ24h(xm)

)
, A0h(xm) =M

(
S2,2
ij,kl

{
a0hjk (xm)a0hil (xm)

})
,

δh = max
xm∈GM

{
− λmin(A

24h(xm))

λmin(A0h(xm))

}
+

+
α

λ2
, (7.87)

ā24hijkl(xm) = ǎ24hijkl(xm) + δhS2,2
ij,kl

{
a0hjk (xm)a0hil (xm)

}
,

b22hij (xm) =
〈
χh
i (xm)χh

j (xm)
〉
Y
+ δha0hij (xm),
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and the tensor ā22hij as (compare to (7.76))

p̄23hijk (xm) = S2
ij

{〈
a(xm)ejχ

h
i (xm) ·Dxχ

h
k(xm)

〉
Y

}
−
〈
a(xm)∇y θ̄

0h
ji (xm) · ∇yθ

1h
k (xm)

〉
Y
,

p22hij (xm) =
〈
a(xm)Dxχ

h
j (xm) ·Dxχ

h
i (xm)

〉
Y
−
〈
a(xm)∇yθ

1h
i (xm) · ∇yθ

1h
j (xm)

〉
Y
,

ǎ22hij (xm) = Drp̄
23h
jir (xm)− 2S2

ij

{
Drp̄

23h
rij (xm)}+ p22hij (xm) + b10hǎ12hij (xm)

+ δh
(
Dsa

0h
ri (xm)Dra

0h
sj (xm)−Dra

0h
rs (xm)Dsa

0h
ij (xm)− a0hrs (xm)D2

rsa
0h
ij (xm)

)
,

b20h = max
xm∈GM

{
− λmin(ǎ

22h(xm))

λmin(a0h(xm))

}
+

, (7.88)

ā22hij (xm) = ǎ22hij (xm) + b20ha0hij (xm).

Recall that α in (7.87) has only a theoretical use and α = 0 should be used in applications.

Step 2 - Spectral method for the approximation of the wave

In the second step of the method, we approximate the effective solution with a spectral method.
We introduce here the space of approximation, i.e., the finite dimensional space of trigonometric
polynomials on the grid GN . We refer to Appendix A.4 for an introduction on the space of
trigonometric polynomials and the corresponding interpolation theory. See also Section 2.3, where
the spectral method for the wave equation is analyzed.

Let FΩ be the bijective affine mapping defined by

FΩ : (0, 2π)d → Ω, x̄ → FΩ(x̄) = BΩx̄+ a, (7.89)

where BΩ is the diagonal matrix defined by (BΩ)jj = (bj − aj)/(2π). Recall that GM = {xm}
is the grid of Ω = (a1, b1)× . . .× (ad, bd) on which the coefficients are approximated in Step 1.
In particular, we recall that N ∈ Nd

>0 divide M , i.e., Mν/Nν ∈ N>0 for ν = 1, · · · , d. Let us
define the size of the grid in each direction as Hν = (bν − aν)/(2Nν). Let then GN = {xn} be
the uniform subgrid of GM given by

xn = (n1H1, . . . , ndHd)
T , 0 ≤ n1 ≤ 2N1 − 1, . . . , 0 ≤ nd ≤ 2Nd − 1. (7.90)

We assume that the ratio r(N) = maxν Nν/minν Nν is bounded. We define the space of
trigonometric polynomials of order N as

VN (Ω) = span(BN ),

BN =
{
wk1···kd

(x) =
∏d

ν=1 w̄
ν
kν
◦ F−1

Ω (x) : w̄ν
kν
∈ B1

Nν

}
,

where B1
Nν

=
{
w̄ν

kν
(x̄) = eikν x̄ : |kν | ≤ Nν − 1

}
∪
{
w̄ν

Nν
(x̄) = 1

2

(
eiNν x̄ + eiNν x̄

)}
.

We verify that VN (Ω) is a vector space of dimension
∏d

ν=1 2Nν . On VN (Ω), we define the inner
product and corresponding norm

(p, q)N = H1
∑

xn∈GN

p(xn)q(xn) = H1

2N1−1∑
n1=0

· · ·Hd

2Nd−1∑
nd=0

p(xn1···nd
)q(xn1···nd

),

where H1 = H1 · · ·Hd and z denote the complex conjugate of z ∈ C. The corresponding norm is
denoted ‖ · ‖N =

√
(·, ·)N . We verify that(

p, q
)
N

=
(
p, q
)
L2(Ω)

∀p, q ∈ VN (Ω), (7.91)
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and thus p ∈ VN (Ω) is uniquely determined by its values on the grid GN . Let IN : L2
per(Ω) →

VN (Ω) be the interpolation operator defined in (A.74). Theorem A.4.4 states that if v ∈
L2
per(Ω) ∩Hs(Ω), for some s ≥ (d+ 1)/2, then, for any σ ≤ s,

∣∣v − INv
∣∣
Hσ(Ω)

≤ C
r(N)s−σ∣∣B−1
Ω N

∣∣s−σ |v|Hs(Ω), (7.92)

where BΩ is the matrix in (7.89) and C is a constant depending only on d, s, and r(N) =
maxν Nν/minν Nν . Let us introduce the convolution of two trigonometric polynomials p, q ∈
VN (Ω) as the unique trigonometric polynomial p ∗ q ∈ VN (Ω) such that p ∗ q(xn) = p(xn)q(xn)
for all xn ∈ GN (the name comes from the fact that the coefficients of p ∗ q are obtained as the
finite convolution of the coefficients of p and q). For c ∈ L∞

per(Ω), v ∈ L2
per(Ω), we verify that for

all xn ∈ GN ,
INc ∗ INv(xn) = INc(xn)INv(xn) = cv(xn) = IN (cv)(xn), (7.93)

which implies the equality INc ∗ INv = IN (cv). We introduce the subspace

V̊N (Ω) = VN (Ω) ∩Wper(Ω), (7.94)

and the corresponding interpolation operator I̊N : L2
per(Ω)→ V̊N (Ω), defined in (A.82). Theorem

A.4.5 ensures that if v ∈Wper(Ω) ∩Hs(Ω), for some s ≥ (d+ 1)/2, then, for any σ ≤ s,

∣∣v − I̊Nv
∣∣
Hσ(Ω)

≤ C
r(N)s−σ∣∣B−1
Ω N

∣∣s−σ |v|Hs(Ω), (7.95)

where C is a constant depending only on d, s, and r(N).

Let a0h, bi0h, āi2h, ā24h, and b22h be the tensors defined in Step 1 (see (7.86), (7.88), and (7.87)).
As they are defined at each node of the grid xn ∈ GN , they define trigonometric polynomials
in VN (Ω) (b10h and b20h are in fact constant). We define the following bilinear forms on V̊N (Ω)
(approximations of the forms in (7.77))(

vN , wN

)
Q
=
(
(1 + εb10h + ε2b20h)vN , wN

)
N
+
(
ε2b22h ∗ ∇vN ,∇wN

)
N
,

Ah
N

(
vN , wN

)
=
(
(a0h + εā12h + ε2ā22h) ∗ ∇vN ,∇wN

)
N
+
(
ε2ā24h ∗ ∇2vN ,∇2wN

)
N
.

(7.96)

In (7.96), the matrix-vector convolution products are defined as (a0h ∗ ∇vN )i = a0hij ∗ ∂jvN ∈
VN (Ω) (and ā24h ∗ ∇2vN similarly). Note that by construction, b10h, b20h and b22h are positive
semidefinite so that (·, ·)Q is an inner product on V̊N (Ω). We define the corresponding norm

‖vN‖Q =
√

(vN , vN )Q. Furthermore, the tensors a0h, ā12h, ā22h, ā24h being symmetric, the form
Ah

N (·, ·) is symmetric.

The spectral numerical homogenization method for long time wave propagation is then defined
as the solution uN : [0, T ε]→ V̊N (Ω) of (7.79). To prove the stability and well-posedness of the
method, we prove the following lemma.

Lemma 7.2.2. Assume that a ∈ C0(Ω̄;Wq,∞(Y )) ∩ C2(Ω̄; L∞(Y )), εhq ≤ Cs,1Δxmin, and
ε ≤ Cs,2Δxmin. Then, there exists L and Γ such that for all vN , wN ∈ VN (Ω)

‖vN‖L2(Ω) ≤ ‖vN‖Q ≤ L‖vN‖H1(Ω), (7.97)

Ah
N (vN , vN ) ≥ λ|vN |2H1(Ω) + ε2α|vN |2H2(Ω), Ah

N (vN , wN ) ≤ Γ‖vN‖H2(Ω)‖wN‖H2(Ω), (7.98)

where L and Γ depends on λ, Λ, Cs,1, Cs,2, ‖a‖C0(Ω̄;Wq,∞(Y )), ‖a‖C2(Ω̄;L∞(Y )) and d.
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Lemma 7.2.2 ensures that (7.79) is equivalent to a well-posed second order ODE and we obtain
the existence of a unique solution uN ∈ C1([0, T ε]; V̊N (Ω)) (see e.g. [38]). Furthermore, using
(7.97) and (7.98), we obtain the following stability estimate

‖∂tuN‖L∞(0,T ε;L2(Ω)) + ‖∇uN‖L∞(0,T ε;L2(Ω)) ≤ C
(
‖g1‖H1(Ω) + ‖g0‖H2(Ω) + ‖f‖L∞(0,T ε;L2(Ω))

)
,

where C depends on λ,Γ and L.

Proof of Lemma 7.2.2. The proof is structured as follows. First, to prove the ellipticity of Ah
N ,

we prove that the approximated homogenized tensor a0h(xm) is positive definite and bounded.
Second, we prove that all the approximated tensors are bounded, which ensures the bounds on
Ah

N and ‖ · ‖Q.
i) Let us prove the ellipticity of Ah

N . To that end, we first show that a0h(xm) is positive definite
and bounded. We follow the lines of the proof of Lemma 3.3.1 on the properties of a0. For ξ ∈ Rd,
we have for all xm ∈ GM ,

|Y |a0h(xm)ξ · ξ =
(
a(xm)(∇yχ

h
i (xm) + ei) · (∇yχ

h
i (xm) + ei)ξi)

)
Y
ξiξj =

(
a(xn)F

h,m
ξ , Fh,m

ξ

)
Y
,

(7.99)

where we denoted the field Fh,m
ξ =

∑d
i=1(∇yχ

h
i (xm) + ei)ξi. As χh

i (xm) is Y -periodic, it satisfies(
∇yχ

h
i (xm), ej

)
Y
=
∫
Y
∂yj

χh
i (xm) dy = 0, and thus

‖Fh,m
ξ ‖2L2(Y ) =

(
∇yχ

h
i ,∇yχ

h
j

)
Y
ξiξj +

(
∇yχ

h
i , ej

)
Y
ξiξj +

(
ei,∇yχ

h
j

)
Y
ξiξj +

(
ei, ej

)
Y
ξiξj

=
∥∥∑

i∇yχ
h
i ξi
∥∥2
L2 + |Y ||ξ|2 ≥ |Y ||ξ|2.

Using (7.99) and the ellipticity of a, this estimate implies |Y |a0h(xm)ξ · ξ ≥ λ‖Fh,m
ξ ‖2L2(Y ) ≥

|Y |λ|ξ|2, which proves the λ-ellipticity of a0h. Using the cell problem for χh
j and the ellipticity of

a, we have(
a(xm)Fh,m

ξ , Fh,m
ξ

)
Y
=
(
a∇yχ

h
i ,∇yχ

h
j

)
ξiξj +

(
a∇yχ

h
i , ej

)
ξiξj +

(
aei,∇yχ

h
j

)
ξiξj +

(
aei, ej

)
ξiξj

= −
(
a∇yχ

h
i ,∇yχ

h
j

)
ξiξj +

(
aei, ej

)
ξiξj

= −
(
a
(∑

i∇yχ
h
i ξi
)
·
(∑

i∇yχ
h
i ξi
))

Y
+ (aξ, ξ)Y ≤ (a(xm)ξ, ξ)Y .

Using then (7.99) and the bound on a, we get |Y |a0h(xm)ξ · ξ ≤
(
a(xm)ξ, ξ

)
Y
≤ |Y |Λ|ξ|2. This

estimate proves that a0h is bounded as a0h(xm)ξ · ξ ≤ Λ|ξ|2. A similar argument as in Remark
7.2.1 ensures that

(
ā24h∇2

xvN ,∇2
xvN
)
N
≥ α|vN |2H2 . Hence, the ellipticity of Ah

N in (7.98) is
proved.
ii) We next prove that the forms (·, ·)Q and Ah

N (·, ·) are bounded independently of N . Note that
the regularity of a(x, y) ensures (see (6.108))

χi, θ
0
ij ∈ C0(Ω̄; Hq+1(Y )) ∩ C2(Ω̄; H1(Y )), θ1ij ∈ C0(Ω̄; H1(Y )), a0 ∈ C2(Ω̄).

Standard estimates in the analysis of the finite element method thus ensure (see e.g., [33] or
Appendix A.3)

‖χh
i (xm)‖H1(Y ) ≤ C, ‖χi(xm)− χh

i (xm)‖H1(Y ) ≤ Chq, ‖χi(xm)− χh
i (xm)‖L2(Y ) ≤ Chq+1,

(7.100)

‖θ̄0hij (xm)‖H1(Y ) ≤ C, ‖θ̄0ij(xm)− θ̄0hij (xm)‖H1(Y ) ≤ Chq. (7.101)

Furthermore, the condition εhq ≤ Cs,1Δxmin and Taylor’s theorem ensure

ε‖Dkχ
h
i (xm)‖Y ≤ ε‖∂xk

χi(xm)‖Y + ε‖∂xk
χi(xm)−Dkχi(xm)‖Y + ε‖Dk(χ− χh

i )(xm)‖Y
≤ 2ε‖χi‖C1(L2) + Cεhq+1Δx−1

k ‖χi‖C0(Hq+1) ≤ C
(
1 + εhq+1Δx−1

min‖χ‖C1(Hq+1)

)
≤ C.
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Similarly, denoting Fik = eTk a(∇yχi + ei), F
h
ik = eTk a(∇yχ

h
i + ei), we have

ε‖DkF
h
ik(xm)‖Y ≤ ε‖∂xk

Fik(xm)‖Y + ε‖∂xk
Fik(xm)−DkFik(xm)‖Y + ε‖Dk(Fik − Fh

ik)(xm)‖Y
≤Cε‖Fik‖C1(L2) + CεhqΔx−1

k ‖χi‖C0(Hq+1) ≤ C
(
1 + εhqΔx−1

min

)
≤ C,

and we prove in the same way ε‖Dka
0h
ki (xm)‖Y ≤ C. We thus get ε‖θ1hi (xm)‖H1(Y ) ≤ C. Using

the bounds on χh
i , θ̄

0h
ij and θ1hi , we verify that a0hij , εā

12h
ij , εb10h, ā24hijkl, b

22h
ij ≤ C. We still have

to prove that ε2ā22ij and ε2b20 are bounded. To see it, first note that

ε2p22ij (xm) ≤ C
(
ε2‖Dxχ

h
i (xm)‖L2(Y )‖Dxχ

h
j (xm)‖L2(Y )+ε

2‖θ1hi (xm)‖H1(Y )‖θ1hj (xm)‖H1(Y )

)
≤ C.

Next,

εp̄23ijk(xm) ≤ C
(
ε‖χh

i (xm)‖L2(Y )‖Dxχ
h
k(xm)‖L2(Y ) + ε‖θ̄0hji (xm)‖H1(Y )‖θ1hk (xm)‖H1(Y )

)
≤ C,

and thus, thanks to the second condition, ε ≤ Cs,2Δxmin, we have

ε2Drp̄
23
ijk(xm) = ε(2Δxr)

−1
(
εp̄23ijk(xm+er )− εp̄23ijk(xm−er )

)
≤ CεΔx−1

min ≤ C.

Finally, as a0 ∈ C2(Ω̄) and thanks to the first condition,

ε2D2
rsa

0h
ij (xm) ≤ ε2|∂2xrs

a0ij(xm)|+ ε2|∂2xrs
a0ij(xm)−D2

rsa
0
ij(xm)|+ ε2|D2

rs(a
0
ij − a0hij )(xm)|

≤ Cε2Δx−2
minh

2q ≤ C,

and we obtain the bounds ε2ā22ij , ε
2b20 ≤ C. As all the coefficients are bounded, we obtain the

upper bounds in (7.97) and (7.98) and the proof of the lemma is complete. �

7.2.3 A priori error analysis of the spectral homogenization method

We present here the main result of this section: the a priori error analysis of the spectral
homogenization method defined in the previous section. In particular, we provide an error
estimate between the approximation and the effective solution that holds over long time and in
arbitrarily large periodic domains. The proof of the result is presented in Section 7.2.4.

Let ū be the effective solution (7.78) and let uN be its approximation defined in (7.79). Recall
that q is the degree of the finite element space V h(Y ) used for the approximation of the correctors.
We prove the following a priori error estimate for ū− uN .

Theorem 7.2.3. Assume that for some s ≥ (d + 1)/2, the tensor and the effective solution
satisfy the regularity

a ∈ C0(Ω̄;Wq,∞(Y )) ∩ C1(Ω̄;Wq−1,∞(Y )) ∩ Cs+2(Ω̄; L∞(Y )),

ū ∈ L∞(0, T ε; Hs+2(Ω)), ∂kt ū ∈ L∞(0, T ε; Hs+1(Ω)), 1 ≤ k ≤ 4.

Furthermore, assume that the ratios r(Δx) = maxν Δxν/minν Δxν and r(N) =
maxν Nν/minν Nν are bounded and that ε and Δxν are bounded independently of diam(Ω).
Then the error e = ū− uN satisfies the following estimate

‖∂te‖L∞(0,T ε;L2(Ω)) + |e|L∞(0,T ε;H1(Ω))

≤ Cedata + C

(
1

ε2|B−1
Ω N |s

+ e1 + e2

)(
s+2∑
σ=1

|ū|L∞(0,T ε;Hσ(Ω)) +
4∑

k=1

‖∂kt ū‖L∞(0,T ε;Hs+1(Ω))

)
,

(7.102)
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where edata = ‖g0 − g0N‖H2(Ω) + ‖g1 − g1N‖H1(Ω), BΩ is the matrix in the affine mapping FΩ :

(0, 2π)d → Ω in (7.89), and

e1 =

(
hq

ε

)2
+
|Δx|
ε

+
hq

ε
,

e2 =
hq|1/Δx|

ε
+ hq|1/Δx|2, |1/Δx| =

√∑d
ν=1 1/Δx

2
ν ,

(7.103)

and C depends only on λ, α, Y , d, s, r(N), r(Δx), ‖a‖C0(Ω̄;Wq,∞(Y )), ‖a‖C1(Ω̄;Wq−1,∞(Y )), and
‖a‖Cs+2(Ω̄;L∞(Y )).

Let us discuss the terms e1 and e2 in (7.102). The error term e1 originates from the approximations
of the tensors a0, b22 and a24. Note that we obtain a linear rate in |Δx| instead of the square rate
expected by the use of the central difference scheme. This lower rate is due to the approximation
of the maximum on the domain by a maximum on the grid in the definition of b22, a24 (see
Lemma 7.2.7). The error term e2 comes from the approximations of a12, b10, a22, and b20 and
constrains the value of h with respect Δx. Let us explain why. Note that the accuracy of
the approximated slope between two approximated points strongly depends on the accuracy
of the points. In particular, to obtain an accurate value of the slope, the smaller the distance
between the two points is, the more accurate the approximation of the points must be. Likewise,
in the spectral homogenization method, if the correctors χi(xn − ek) and χi(xn + ek) are not
approximated accurately enough, we can not expect the central difference scheme to provide an
accurate approximation of ∂kχi(xn).

We verify that e1 is connected to the second stability condition of Lemma 7.2.2. Indeed, if we
enforce a tolerance τ for e1, then the requirement ε ≤ Cs,2Δxmin holds for Cs,2 = τ/d. We see
that e2 is connected to the first stability condition of Lemma 7.2.2 in the following way. As

e2 ≥
√
d

hq

εΔxmax
+ d

hq

Δx2max

≥
√
dr(Δx)ε−2 hq

εΔxmin

(
1 +

ε

Δxmin

)
,

if we enforce a tolerance τ for e2, then the requirement εhq ≤ Cs,1Δxmin automatically holds for

Cs,1 = τε2/(
√
dr(Δx)).

Combining Theorems 6.2.1 and 7.2.3, we obtain the following estimate for uε − uN .

Corollary 7.2.4. Assume that for some s ≥ 3, the data and the effective solution satisfy the
regularity

a ∈ C0(Ω̄;Wq,∞(Y )) ∩ C1(Ω̄;W(q−1)∨2,∞(Y )) ∩ C2(Ω̄;W1,∞(Y )) ∩ Cs+2(Ω̄; L∞(Y )),

g0 ∈ Hs+2(Ω), g1 ∈ Hs+1(Ω), f ∈ L2(0, T ε; H2(Ω)), (7.104)

ū ∈ L∞(0, T ε; Hs+2(Ω)), ∂kt ū ∈ L∞(0, T ε; Hs+1(Ω)), 1 ≤ k ≤ 4,

where m ∨ n = max{m,n}. Furthermore, assume that the ratios r(Δx) and r(N) are bounded
and that ε and Δxν are bounded independently of diam(Ω). Finally, let the initial condition in
the method (7.79) be giN = I̊Ng

i. Then the following estimate holds

‖uε − uN‖L∞(0,T ε;W )

≤ C

(
ε+

1

ε2|B−1
Ω N |s

+ e1 + e2

)(
s+2∑
σ=1

|ū|L∞(0,T ε;Hσ(Ω)) +
4∑

k=1

‖∂kt ū‖L∞(0,T ε;Hs+1(Ω))

)
,

(7.105)
where e1, e2 are defined in (7.103) and C depends only on λ, α, Y , d, s, r(N), r(Δx),
‖a‖C0(Ω̄;Wq,∞(Y )), ‖a‖C1(Ω̄;W(q−1)∨2,∞(Y )), ‖a‖C2(Ω̄;W1,∞(Y )), and ‖a‖Cs+2(Ω̄;L∞(Y )) and we recall
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the definition of the norm (see (A.4))

‖w‖W = inf
w=w1+w2

w1,w2∈Wper(Ω)

{
‖w1‖L2(Ω) + ‖∇w2‖L2(Ω)

}
∀w ∈Wper(Ω).

We emphasize that the only dependence on the domain Ω of the constant C in (7.102) and (7.105)
is in the norms of a(x, y). In particular, for an arbitrarily large domain Ω, if a(x, y) is sufficiently
smooth and the quantities∑s+2

σ=1 |ū|L∞(0,T ε;Hσ(Ω)), ‖∂kt ū‖L∞(0,T ε;Hs+1(Ω)) 1 ≤ k ≤ 4,

are of orderO(1), then (7.105) ensures ‖uε−uN‖L∞(0,T ε;W ) to be of order ε+ε
−2|B−1

Ω N |−s+e1+e2.

Estimate (7.105) can thus be used as follows. Note first that we expect the term |B−1
Ω N |−s to be

negligible. Indeed, if N is reasonably large with respect to Ω, we can assume the existence of s,
such that (7.104) holds and |B−1

Ω N |−s ≤ ε3. In practice, N must be set so that the corresponding
grid captures the initial conditions (and the source). We then fix an order of tolerance τ for
the error, where ε ≤ τ ≤ 1. From the second term in e1, we set |Δx| = τε. For simplicity we
set Δx1 = . . . = Δxd = d−1/2τε (this makes sense if the variation x → a(x, y) is isotropic). The
second term in e2 then reads hq|1/Δx|2 = hqd2(τε)−2 and the imposition of the tolerance brings
h = (d−2τ3ε2)1/q. We verify that this value for h ensures the first and third terms of e1 and the
first term of e2 to be of order τ . To summarize, if we set the parameters of the method as

h = (d−2τ3ε2)1/q, Δxν = d−1/2τε, (7.106)

then (7.105) ensures the error ‖uε − uN‖L∞(0,T ε;W ) to be of order τ .

Remark 7.2.5. In Section 6.4, we discussed the necessity of the operators εL1 = εb10−ε∂i
(
a21ij ∂j ·

)
and ε2L2,1 = ε2b20∂2t − ε2∂i

(
a22ij )∂j ·

)
in the effective equations. In particular, in the tested

numerical examples, these operators are unnecessary to describe the observed long time effects.
We note that if we drop the approximation of these effective tensors in the method, its cost is
significantly reduced. Indeed, first, the approximations of the cell problems for {θ1i }di=1 are in
this case unnecessary (see (7.88)). Then, we verify that if we drop εL1 and ε2L2,1, the term e2
disappear from the error estimate (7.105). Hence, the severe restrictions on h imposed by e2
are relaxed and the computational cost is reduced. Nevertheless, as no applicable criterion were
found to determine whether the operators can be dropped, we are not able to provide a rigorous
numerical procedure that benefits this gain.

7.2.4 Proof of the a priori error estimate (Theorem 7.2.3)

The proof of Theorem 7.2.3 is divided into three parts. In the first part, we estimate the error
made in the approximation of the effective tensors (Step 1 of the method). In particular, we
use standard FE error estimates for the approximated correctors and we provide an estimate
for the error in the eigenvalues involved in the definition of the tensors (see Lemma 7.2.8). The
second part consists in the estimation of the error made in the approximation of the bilinear
forms (·, ·)S and A (Lemmas 7.2.9 and 7.2.10). Finally, in the third part, we derive the a priori
error estimate for the spectral homogenization method. For this last step, we follow a similar
process as in Section 7.1.4: we define an elliptic projection and split the error in two parts that
we estimate separately (Lemmas 7.2.11 and 7.2.12). In particular, as the definition of the elliptic
projection allows to avoid the use of the Poincaré inequality, we obtain an error estimate that
can be applied in pseudoinfinite domains.
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Part 1 – Error in the effective tensors

In the first part of the proof of Theorem 7.2.3, we provide error estimates for the approximated
effective tensors (Lemma 7.2.6). In particular, the main difficulty is to estimate the error for the

approximation of the terms of the form
{

λmin(B)
λmin(A)

}
+
(see Lemma 7.2.8). Indeed, the evaluation

of these terms involves two obstacles. First, the eigenvalues λmin(·) are approximated by the
eigenvalues of approximated matrices. And second, the maximum on the whole domain {·}+ is
approximated by a maximum on the grid GM .

Lemma 7.2.6. Assume that a satisfies the regularity

a ∈ C0(Ω̄;Wq,∞(Y )) ∩ C1(Ω̄;Wq−1,∞(Y )) ∩ C3(Ω̄; L∞(Y )),

and that r(Δx) = maxν Δxν/minν Δxν is bounded. Then, for any 1 ≤ i, j, k, l ≤ d and any
xm ∈ GM , the following estimates hold∣∣a0ij(xm)− a0hij (xm)

∣∣ ≤ Ch2q, (7.107a)∣∣b10 − b10h| ≤ C
(
|Δx|+ hq|1/Δx|+ hq

)
, (7.107b)∣∣ā12ij (xm)− ā12hij (xm)| ≤ C

(
|Δx|+ hq|1/Δx|+ hq

)
, (7.107c)∣∣ā24ijkl(xm)− ā24hijkl(xm)| ≤ C

(
|Δx|+ hq

)
, (7.107d)∣∣b22ij (xm)− b22hij (xm)| ≤ C

(
|Δx|+ hq

)
, (7.107e)∣∣b20 − b20h| ≤ C

(
|Δx|+ hq

(
|1/Δx|2 + |1/Δx|

)
+ hq

)
, (7.107f)∣∣ā22ij (xm)− ā22hij (xm)| ≤ C

(
|Δx|+ hq

(
|1/Δx|2 + |1/Δx|

)
+ hq

)
, (7.107g)

where |1/Δx| =
√∑d

ν=1 1/Δx
2
ν and C depends only on d, Y, λ, r(Δx), ‖a‖C0(Ω̄;Wq,∞(Y )),

‖a‖C1(Ω̄;Wq−1,∞(Y )), and ‖a‖C3(Ω̄;L∞(Y )).

To derive the error estimates involving eigenvalues, we need the two following lemmas.

Lemma 7.2.7. Let A, Ā be two symmetric positive definite matrices, and let B, B̄ be two
symmetric matrices. Then∣∣∣∣λmin(B)

λmin(A)
− λmin(B̄)

λmin(Ā)

∣∣∣∣ ≤ C
(
‖B − B̄‖F + ‖A− Ā‖F

)
,

where C depends on λmin(A)
−1, λmin(Ā)

−1 and λmin(B̄) and ‖ · ‖F is the Frobenius norm.

Proof. First, note that for two symmetric matrices D, D̄, the estimate |λmin(D) − λmin(D̄)| ≤
d‖D − D̄‖F holds. Denoting, a = λmin(A), ā = λmin(Ā), b = λmin(b), and b̄ = λmin(B̄), we then
use this estimate in the equality

a−1b− ā−1b̄ = a−1(b− b̄) + b̄(aā)−1(ā− a),

and obtain the lemma.

Lemma 7.2.8. Let A,B : Rd → Sym2
(
Rd
)
be two matrix functions of class C1 and let{

Ah(xm), Bh(xm)
}
xm∈GM

be bounded matrix functions given on the grid. We assume that
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A(x) and Ah(xm) are positive definite for any x ∈ Ω and xm ∈ GM . Then the following estimate
holds∣∣∣∣ sup

x∈Ω

{
− λmin(B(x))

λmin(A(x))

}
+

− max
xm∈GM

{
− λmin(B

h(xm))

λmin(Ah(xm))

}
+

∣∣∣∣ (7.108)

≤ C
(
|Δx|+ max

xm∈GM

{
‖B(xm)−Bh(xm)‖F + ‖A(xm)−Ah(xm)‖F

})
,

where the constant C depends on ‖λmin(A)
−1‖L∞ , ‖λmin(A

h)−1‖L∞ , ‖λmin(B)‖L∞ ,
‖λmin(B

h)‖L∞ , ‖Aij‖C1 , ‖Bij‖C1 and d.

Proof. Let us introduce some notations. For any xm ∈ GM , let K(xm) be the element defined as
K(xm) =

{
x ∈ Ω : x = xm + t, tν ∈ [0,Δxν [

}
. We verify that the diameter of K(xm) is |Δx| and

Ω = int
(
∪xm∈GM

K(xm)
)
. Using the shorthand notation H = |Δx|, we define the operator PH

onto the space of piecewise constant functions

v ∈ L∞(Ω) → PHv, PHv(x) =
∑

xm∈GM

v(xm)1K(xm)(x),

where 1K(xm)(x) is the indicator function, 1K(xm)(x) = 1 if x ∈ K(xm) and 0 otherwise. Note
that PHv ∈ L∞(Ω) and it satisfies PHv(xm) = v(xm). For a function v ∈ W1,∞(K(xm)), we
verify that for any x ∈ K(xm), |v(x) − v(xm)| ≤ |Δx||v|W1,∞(K(xm)). Hence, PHv satisfies the
following properties for any v ∈W1,∞(Ω)

‖PHv‖L∞(Ω) = max
xm∈GM

|v(xm)|, ‖v − PHv‖L∞(Ω) ≤ |Δx||v|W1,∞(Ω). (7.109)

Denoting R(x) = −λmin(B(x))
λmin(A(x)) and Rh(xm) = −λmin(B

h(xm))
λmin(Ah(xm))

, the left hand side of (7.108) is split
as

e =
∣∣‖{R}+‖L∞(Ω) − max

xm∈GM

{Rh(xm)}+
∣∣ ≤ e1 + e2,

e1 =
∣∣∣‖{R}+‖L∞(Ω) − ‖{PHR}+‖L∞(Ω)

∣∣∣, e2 =
∣∣∣ max
xm∈GM

{R(xm)}+ − max
xm∈GM

{Rh(xm)}+
∣∣∣.

In order to use (7.109) on e1, we need to verify that R ∈W1,∞(Ω). It is sufficient to prove that
R is Lipschitz continuous, which is done using Lemma 7.2.7: for any x, x̄ ∈ Ω

|R(x)−R(x̄)| ≤ C
(
‖B(x)− B̄(x̄)‖F + ‖A(x)− Ā(x̄)‖F

)
≤ L|x− x̄|,

where L depends on ‖λmin(A)‖L∞ , ‖λmin(B)‖L∞ , ‖Aij‖C1 , ‖Bij‖C1 and d. Using the reverse
triangle inequality, the fact that |{a}+ − {b}+| ≤ |a− b| and (7.109), we thus have

e1 ≤ ‖{R}+ − {PHR}+‖L∞ ≤ ‖R− PHR‖L∞ ≤ |R|W1,∞ |Δx| ≤ C|Δx|.

Following a similar argument, we have

e2 ≤ max
xm∈GM

∣∣{R(xm)}+ − {Rh(xm)}+
∣∣ ≤ max

xm∈GM

∣∣R(xm)−Rh(xm)
∣∣

≤ max
xm∈GM

{
‖B(xm)−Bh(xm)‖F + ‖A(xm)−Ah(xm)‖F

}
,

where we used Lemma 7.2.7 in the last inequality. Combining the two last estimates gives (7.108)
and the proof of the lemma is complete.
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We now have all the technical tools to prove the error estimates (7.107).

Proof of Lemma 7.2.6. Recall once and for all that the exact tensors are defined in (7.73), (7.74),
(7.75), and (7.76), and their approximations in (7.83), (7.86), (7.87), and (7.88). The exact cell
functions are defined in (6.72) and (6.75) and their approximations in (7.82), (7.84) and (7.85)
The L2(Y ) inner product is simply denoted (·, ·) and the corresponding norm is denoted ‖ · ‖Y .
Furthermore, for the sake of clarity, let us assume that |Y | = 1, so that 〈vw〉Y = (v, w) for any
v, w ∈ L2(Y ). In the whole proof, C denotes a generic constant that depends only on d, Y, λ,
Cr(Δx) ‖a‖C0(Ω̄;Wq,∞(Y )), ‖a‖C1(Ω̄;Wq−1,∞(Y )), and ‖a‖C3(Ω̄;L∞(Y )).

Using (6.108), the regularity of a ensures (at least) the following regularities:

χi, θ
0
ij ∈ C0(Ω̄; Hq+1(Y )) ∩ C3(Ω̄; H1(Y )), θ1i ∈ C0(Ω̄; Hq+1(Y )),

a0ij ∈ C4(Ω̄), ǎ12ij , ǎ
24
ijkl, ǎ

22
ij ∈ C1(Ω̄).

Let us fix an arbitrary grid point xm ∈ GM . From now on, all the tensors, cell functions and
their approximations are evaluated at xm.

We now prove the estimates in (7.107) one after another. We begin with the error estimate for
a0 (7.107a). Using the cell problem for χi and for χh

i , we verify that

a0ij − a0hij =
(
aei,∇y(χj − χh

j )
)
−
(
a∇yχi,∇y(χj − χh

j )
)
=
(
a∇y(χ

h
i − χi),∇y(χj − χh

j )
)
,

which, combined with (7.100), gives (7.107a). Next, we prove the error estimates for ā24ijkl and

b22ij in (7.107d) and (7.107e). Using (7.100) and (7.101), we have∣∣ǎ24ijkl − ǎ24hijkl

∣∣ = ∣∣S2,2
ij,kl

{(
a(χi − χh

i ), χl

)
+
(
aχh

i , χl − χh
l

)
−
(
a∇y(θ̄

0h
ji − θ̄0ji),∇y θ̄

0
kl

)
−
(
a∇y θ̄

0h,∇y(θ̄
0
kl − θ̄0hkl )

)}∣∣ ≤ Chq. (7.110)

Estimate (7.107a) ensures∣∣a0jka0il − a0hjka
0h
il

∣∣ ≤ ∣∣a0jk(a0il − a0hil ) + (a0jk − a0hjk )a
0h
il

∣∣ ≤ Ch2q. (7.111)

Note that for any major and minor symmetric q ∈ Ten4(Rd), we have ‖M(q)‖2F ≤ C(d)
∑

ijkl q
2
ijkl.

Hence, applying Lemma 7.2.8, we get

|δ − δh| ≤ C
(
|Δx|+ hq

)
. (7.112)

Writing then

ā24ijkl − ā24hijkl = ǎ24ijkl − ǎ24hijkl + S2,2
ij,kl

{
(δ − δh)a0jka

0
il + δh(a0jka

0
il − a0hjka

0h
il )
}
,

and using (7.110), (7.111), and (7.112), we obtain (7.107d). Similarly, writing

b22ij − b22hij =
(
χi, χj − χh

j

)
+
(
χi − χh

i , χ
h
j

)
+
(
δ − δh

)
a0hij + δ

(
a0ij − a0hij

)
,

and using (7.100), (7.112) and (7.107a) proves (7.107e). Next, we prove the estimate for the error
in the approximation of a12ij and b10 in (7.107c) and (7.107b). Using (7.100), we have∣∣p13ijk − p13hijk

∣∣ ≤ ∣∣(a∇y(χk − χh
k), ejχi

)∣∣+ ∣∣(a∇yχ
h
k , ej(χi − χh

i )
)∣∣ ≤ Chq.

Then, using this estimate and (7.80), we obtain∣∣∂rp13rij −Drp
13h
rij

∣∣ ≤ ∣∣∂rp13rij −Drp
13
rij

∣∣+ ∣∣Drp
13
mij −Drp

13h
rij

∣∣ ≤ C
(
|Δx|2 + hq|1/Δx|

)
, (7.113)
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where we denoted |1/Δx| =
√∑d

ν=1 1/Δx
2
ν . Next, using (7.80) and (7.100), we verify that

‖∇xχi −Dxχ
h
i ‖Y ≤‖∇xχi −Dxχi‖Y + ‖Dxχi −Dxχ

h
i ‖Y

≤C
(
|Δx|2 + hq+1|1/Δx|

)
, (7.114)

which, combined with (7.100) implies∣∣q12ij − q12hij

∣∣ ≤ ∣∣(a(∇yχ
h
j + ej),∇xχi −Dxχ

h
i )
)∣∣+ ∣∣(a∇y(χj − χh

j ),∇xχi

)∣∣
≤ C

(
|Δx|2 + hq+1|1/Δx|+ hq

)
. (7.115)

Combining (7.113) and (7.115) brings
∣∣ǎ12ij − ǎ12hij

∣∣ ≤ C
(
|Δx|2 + hq|1/Δx|+ hq

)
. Hence, using

(7.107a), Lemma 7.2.8 ensures
∣∣b10 − b10h

∣∣ ≤ C
(
|Δx|+ hq|1/Δx|+ hq

)
, which proves (7.107b).

We thus obtain∣∣a12ij − a12hij

∣∣ ≤ ∣∣ǎ12ij − ǎ12hij

∣∣+ ∣∣a0ij(b10 − b10h
)∣∣+ ∣∣(a0ij − a0hij

)
b10h
∣∣ ≤ C

(
|Δx|+ hq|1/Δx|+ hq

)
,

and that proves (7.107c). In order to prove (7.107f) and (7.107g), we derive an error estimate for
θ1hi . First, similarly as (7.114), we prove

‖∇x · (a(∇yχi + ei))−Dx · (a(∇yχ
h
i + ei))‖Y ≤C

(
|Δx|2 + hq|1/Δx|

)
,

|∇x · (a0ei)−Dx · (a0hei)| ≤C
(
|Δx|2 + h2q|1/Δx|

)
.

(7.116)

Then, as we assume Δxν ≤ C to be bounded independently of diam(Ω), using (7.114), we bound

‖Dxχ
h
i ‖Y ≤ ‖∇xχi‖Y + ‖∇xχi −Dxχ

h
i ‖Y ≤ C,

and similarly, using (7.116), we show that ‖Dx · (a(∇yχ
h
i + ei))‖Y ≤ C and ‖Dx · (a0hei)‖Y ≤ C.

Hence, thanks to (7.116) and (7.114), standard FEM error estimates ensure

‖θ1hi ‖H1(Y ) ≤ C, ‖θ1i − θ1hi ‖H1(Y ) ≤ C
(
hq + |Δx|2 + hq|1/Δx|

)
. (7.117)

We now need to estimate individually the numerous terms of ǎ22ij − ǎ22hij . First, using (7.100),
(7.114), (7.101) and (7.117), we obtain∣∣p̄23ijk − p̄23hijk

∣∣ ≤ ∣∣S2
ij

{(
aej(χi − χh

i ),∇xχk

)
+
(
aejχ

h
i , Dxχ

h
k

)}∣∣+ ∣∣(a∇y(θ̄
0h
ji − θ̄0ji),∇yθ

1
k

)∣∣
+
∣∣(a∇y θ̄

0h
ji ,∇y(θ

1h
k − θ1k)

)∣∣ ≤ C
(
|Δx|2 + hq|1/Δx|+ hq

)
.

Hence, we have∣∣∂mp̄23mij −Dmp̄
23h
mij

∣∣ ≤ ∣∣∂mp̄23mij −Dmp̄
23
mij

∣∣+ ∣∣Dmp̄
23
mij −Dmp̄

23h
mij

∣∣
≤ C

(
|Δx|2 + |Δx|2|1/Δx|+ hq|1/Δx|2 + hq|1/Δx|

)
.

Note that the hypothesis Δxmax/Δxmin ≤ C implies |Δx|2|1/Δx| ≤ |Δx| and thus∣∣∂mp̄23mij −Dmp̄
23h
mij

∣∣ ≤ C
(
|Δx|+ hq|1/Δx|2 + hq|1/Δx|

)
. (7.118)

Next, (7.114) and (7.101) imply that∣∣p12ij − p12hij

∣∣ ≤ ∣∣(a(∇xχj −Dxχ
h
j ),∇xχi

)∣∣+ ∣∣(aDxχ
h
j ,∇xχi −Dxχ

h
i

)∣∣+ ∣∣(a∇y(θ
1h
i − θ1i ),∇yθ

1
j

)∣∣
+
∣∣(a∇yθ

1h
i ,∇y(θ

1
j − θ1hj )

)∣∣ ≤ C
(
|Δx|2 + hq|1/Δx|+ hq

)
. (7.119)

Further, using (7.112) and (7.116), we have∣∣δ∂sa0ri∂ra0sj − δhDsa
0h
riDra

0h
sj

∣∣ ≤ C
(∣∣δ − δh

∣∣+∑
rs

∣∣∂sa0ri −Dsa
0h
ri

∣∣+∑
rs

∣∣∂ra0sj −Dra
0h
sj

∣∣)
≤ C

(
|Δx|+ h2q|1/Δx|+ hq

)
, (7.120)
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and a similar estimate holds for
∣∣δ∂ra0rs∂sa0ij − δhDra

0h
rsDsa

0h
ij

∣∣. Thanks to (7.81), we verify in a

similar way as (7.116) that
∑
rs

∣∣∂2rsa0ij −D2
rsa

0h
ij

∣∣ ≤ C
(
|Δx|2 + h2q|1/Δx|2

)
, and thus

∣∣δa0rs∂2rsa0ij − δha0hrsD
2
rsa

0h
ij

∣∣ ≤ C
(∣∣δ − δh

∣∣+∑
rs

∣∣a0rs − a0hrs
∣∣+∑

rs

∣∣∂2rsa0ij −D2
rsa

0h
ij

∣∣)
≤ C

(
|Δx|+ h2q|1/Δx|2 + hq

)
. (7.121)

Combining now (7.118) (7.119), (7.120), (7.121) and the estimate for b10, we obtain∣∣ǎ22ij − ǎ22hij

∣∣ ≤ C
(
|Δx|+ hq

(
|1/Δx|2 + |1/Δx|

)
+ hq

)
.

Applying Lemma 7.2.8, we obtain the bound (7.107f) for |b20 − b20h| and that proves (7.107g).
The proof of Lemma 7.2.6 is complete. �

Part 2 – Error in the bilinear forms

In the second part of the proof of Theorem 7.2.3, we estimate the errors in the approximation
of the forms (·, ·)S and A, defined in (7.77), by the forms (·, ·)Q and Ah

N , defined in (7.96). In
particular, we use the error estimates on the effective tensors obtained in the first part (Lemma
7.2.6). Let us define

ea0 = max
1≤ij≤d
xn∈GN

∣∣a0ij(xn)− a0hij (xn)
∣∣,

and similarly eā12 , eb10 , eā24 , eb22 , eā22 , and eb20 . Recall that FΩ is the bijective affine mapping
defined in (7.89) as

FΩ : (0, 2π)d → Ω, x̄ → FΩ(x̄) = BΩx̄+ a,

where BΩ is the diagonal matrix defined by (BΩ)jj = (bj − aj)/(2π).

Lemma 7.2.9. Assume that for some s ≥ (d + 1)/2, a(x, y) ∈ Cs(Ω̄; L∞(Y )). Then, for any
v ∈Wper(Ω) ∩Hs+1(Ω) and wN ∈ V̊N (Ω), the bilinear form (·, ·)Q satisfies∣∣(v, wN

)
S −

(
I̊Nv, wN

)
Q

∣∣ ≤ C

(
1

|B−1
Ω N |s

+ ebi

)
‖v‖Hs+1(Ω)‖wN‖H1(Ω),

where ebi = εeb10 + ε2eb20 + ε2eb22 and the constant C depends on d, s, r(N), λ, Y , and
‖a‖Cs(Ω̄;L∞(Y )).

Proof. First, we verify thanks to (6.108) that the regularity of a ensures b22 ∈ Cs(Ω̄). Hence,
(·, ·)S is bounded. We denote ρ = 1+ εb10 + ε2b20 and ρh = 1+ εb10h + ε2b20h, and split the error
as ∣∣(v, wN

)
S −

(
I̊Nv, wN

)
Q

∣∣ ≤ e1N + e2N + e1h + e2h,

where

e1N =
∣∣(ρv, wN

)
L2 −

(
ρI̊Nv, wN

)
N

∣∣,
e1h =

∣∣(ρI̊Nv, wN

)
N
−
(
ρhI̊Nv, wN

)
N

∣∣,
e2N =

∣∣(ε2b22∇v,∇wN

)
L2 −

(
ε2INb

22 ∗ ∇I̊Nv,∇wN

)
N

∣∣,
e2h =

∣∣(ε2INb22 ∗ ∇I̊Nv,∇wN

)
N
−
(
ε2b22h ∗ ∇I̊Nv,∇wN

)
N

∣∣.
Using (7.91) and (7.95), we find

e1N ≤ |ρ|
∣∣(v − I̊Nv, wN

)
L2

∣∣ ≤ C
1

|B−1
Ω N |s

|ρ||v|Hs‖wN‖L2 .
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Note that (7.93) and the definition of IN imply that IN (b22∇v) = INb
22 ∗ IN (∇v). Furthermore,

as I̊Nv = INv − 〈INv〉Ω, we have ∇I̊Nv = ∇INv. Hence, using (7.91), we bound

e2N ≤
∣∣(ε2b22∇v,∇wN

)
L2 −

(
ε2IN (b22∇v),∇wN

)
L2

∣∣
+
∣∣(ε2INb22 ∗ IN (∇v),∇wN

)
N
−
(
ε2INb

22 ∗ ∇INv,∇wN

)
N

∣∣ =: e2,1N + e2,2N .

Thanks to (7.92), we verify

e2,1N ≤ C
1

|B−1
Ω N |s

ε2|b22∇INv|Hs |wN |H1 ≤ C
ε2‖b22‖Cs

|B−1
Ω N |s

‖v‖Hs+1 |wN |H1 ,

e2,1N ≤ C‖b22‖C0

(
‖IN (∇v)−∇v‖L2 + |v − INv|L2

)
|wN |H1 ≤ C

ε2‖b22‖C0

|B−1
Ω N |s

‖v‖Hs+1 |wN |H1 .

Then, using (7.91), we have

e1h = H1
∣∣∣ ∑
xn∈GN

(ρ− ρh)I̊Nv(xn)wN (xn)
∣∣∣

≤ (εeb10 + ε2eb20)
(
I̊Nv, wN

)
N
≤ C(εeb10 + ε2eb20)‖v‖L2‖wN‖L2 .

Similarly, e2h ≤ Cε2eb22 |v|H1 |wN |H1 . Combining the estimates for e1N , e2N , e1h and e2h, we obtain
the desired estimate and the proof of the lemma is complete.

Lemma 7.2.10. Assume that for some s ≥ (d + 1)/2, a ∈ Cs+2(Ω̄; L∞(Y )). Then, for any
v ∈Wper(Ω) ∩Hs+2(Ω) and wN ∈ V̊N (Ω), the bilinear form Ah

N satisfies

∣∣A(v, wN

)
−Ah

N

(
I̊Nv, wN

)∣∣ ≤ C

(
1

|B−1
Ω N |s

+eai

)(
s+2∑
σ=1

|v|Hσ(Ω)

)(
|wN |2H1(Ω)+ ε

2|wN |2H2(Ω)

)1/2
,

(7.122)
where eai = ea0 + εeā12 + ε2eā22 + εeā24 , and the constant C depends on d, s, r(N), λ, Y , and
‖a‖Cs+2(Ω̄;L∞(Y )).

Proof. As ∇I̊Nv = ∇INv, it is sufficient to prove the estimate for Ah
N

(
INv, wN

)
. Thanks

to (6.108), the regularity of a ensures that a0, ā12, ā22, ā24 ∈ Cs(Ω̄). We denote the tensors
c = a0 + εā12 + ε2ā22, ch = a0h + εā12h + ε2ā22h, and define the following bilinear form on
V̊N (Ω)× V̊N (Ω):

AN

(
vN , wN

)
=
(
INc ∗ ∇vN ,∇wN

)
N
+
(
ε2IN ā

24 ∗ ∇2vN ,∇2wN

)
N
.

Let us split the forms as A = A1 +A2, AN = A1
N +A2

N , and Ah
N = Ah,1

N +Ah,2
N , where

A1
(
v, w
)
=
(
c∇v,∇w

)
L2 , A2

(
v, w
)
=
(
ε2ā24∇2v,∇2w

)
L2 ,

and A1
N , A2

N , Ah,1
N , Ah,2

N are defined similarly. We split the error as∣∣A(v, wN

)
−Ah

N

(
INv, wN

)∣∣ ≤ e1N + e2N + e1h + e2h,

where, for i = 1, 2,

eiN =
∣∣Ai
(
v, wN

)
−Ai

N

(
INv, wN

)∣∣, eih =
∣∣Ai

N

(
v, wN

)
−Ah,i

N

(
INv, wN

)∣∣.
Note that (7.93) implies IN (c∇v) = INc ∗ IN (∇v). Hence, we bound

e1N ≤
∣∣(c∇v,∇wN

)
L2 −

(
IN (c∇v),∇wN

)
N

∣∣
+
∣∣(INc ∗ IN (∇v),∇wN

)
L2 −

(
INc ∗ ∇(INv),∇wN

)
N

∣∣ =: e1,1N + e1,2N .
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Using (7.92), we verify that

e1,1N ≤ C
1

|B−1
Ω N |s

‖c∇v‖Hs ≤ C
‖c‖Cs

|B−1
Ω N |s

s+1∑
σ=1

|v|Hσ |wN |H1 ,

e1,2N ≤ C‖c‖C0

(
‖IN (∇v)−∇v‖L2 + |v − INv|H1

)
|wN |H1 ≤ C

‖c‖C0

|B−1
Ω N |s

|v|Hs+1 |wN |H1 .

We verify in a similar manner that

e2N ≤ C
ε‖ā24‖Cs

|B−1
Ω N |s

s+2∑
σ=2

|v|Hσε|wN |H2 .

Furthermore, denoting ec = ea0 + εeā12 + ε2eā22 and using (7.91), we have

e1h =
∣∣A1

N

(
INv, wN

)
−Ah,1

N

(
INv, wN

)∣∣ = H1
∣∣∣ ∑
xn∈GN

(c− ch)(xn)∇INv(xn)∇wN (xn)
∣∣∣

≤ ec‖∇INv‖N‖∇wN‖N ≤ Cec|v|H1 |wN |H1 .

Similarly,
e2h =

∣∣A2
N

(
INv, wN

)
−Ah,2

N

(
INv, wN

)∣∣ ≤ Cεeā24 |v|H2ε|wN |H2 .

Combining the estimates for eiN , eih and using the discrete Cauchy–Schwarz inequality proves the
result.

Part 3 – A priori error estimate

In the third and final part of the proof of Theorem 7.2.3, we prove the error estimate for ū− uN ,
where ū is the solution of (7.78) and uN is the approximation of the spectral homogenization
method defined in (7.79). To do so, we first split the error as

ū− uN = (ū− πN ū)− (uN − πN ū) = η − ζN ,

where πN ū is the elliptic projection defined below. Then, we estimate η and ζN separately in
the norm ‖∇ · ‖L∞(L2) (Lemmas 7.2.11 and 7.2.12). In particular, the definition of the elliptic
projection avoid the use of the Poincaré inequality in the estimate of ‖∇η‖L∞(L2) and we obtain
an error estimate valid in arbitrarily large domains.

Let us first define the elliptic projection. For almost every t ∈ [0, T ε], let πN ū : [0, T ε]→ V̊N be
the solution of(
πN ū(t), vN

)
Q
+Ah

N

(
πN ū(t), vN

)
=
(
f(t), vN

)
L2 −

(
I̊N∂

2
t ū(t), vN

)
Q
+
(
I̊N ū(t), vN

)
Q
, (7.123)

for all vN ∈ V̊N (Ω). Let us verify that (7.123) is well-posed. For notational convenience, let us
define the following norm on H2(Ω):

‖v‖H2,ε =
(
‖v‖2H1 + ε2|v|2H2

)1/2
. (7.124)

Thanks to Lemma 7.2.2, we verify that the bilinear form (·, ·)Q +Ah
N (·, ·) is coercive and bounded

for the norm ‖ · ‖H2,ε. Using (7.78) in (7.123), we verify that for all vN ∈ V̊N (Ω)(
πN ū(t), vN

)
Q
+Ah

N

(
πN ū(t), vN

)
= A

(
ū(t), vN

)
+
(
∂2t ū(t), vN

)
S −

(
I̊N∂

2
t ū(t), vN

)
Q
+
(
I̊N ū(t), vN

)
Q
.

(7.125)
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Using Lax–Milgram theorem, we obtain the existence and uniqueness of πN ū(t) ∈ V̊N (Ω).
Furthermore, using the test function vN = πN ū(t) (7.125) and making use of the properties of
(·, ·)Q, Ah

N , (·, ·)S , and A, we obtain for a.e. t ∈ [0, T ε]

‖πN ū(t)‖H2,ε ≤ C
(
‖ū(t)‖H2,ε + ‖∂2t ū(t)‖H1

)
, (7.126)

where C depends on λ, α, and ‖a‖C2(L∞).

The two following lemmas provide error estimates for η and ζN .

Lemma 7.2.11. Assume that for k ≥ 0, we have ∂kt ū ∈ L∞(0, T ε; Hs+2(Ω)) and ∂k+2
t ū ∈

L∞(0, T ε; Hs+1(Ω)) for some s ≥ (d + 1)/2. Then ∂kt πH ū ∈ L∞(0, T ε; V̊N (Ω)) and, provided
a ∈ Cs+2(Ω̄; L∞(Y )), the following estimate holds for η = ū− πN ū,

‖∂kt η‖L∞(H1) + ‖I̊N∂kt η‖L∞(H1) + ε|∂kt η|L∞(H2) + ε|I̊N∂kt η|L∞(H2)

≤ C

(
1

|B−1
Ω N |s

+ eai + ebi

)(
s+2∑
σ=1

|∂kt ū|L∞(Hσ) + ‖∂k+2
t ũ‖L∞(Hs+1)

)
,

(7.127)

where eai and ebi are defined in Lemma 7.2.9 and 7.2.10 and C depends only on λ, Λ, α,
‖a‖Cs+2(L∞), Y , d, s, and r(N).

Proof. Applying ∂kt to (7.125) and using that Ah
N is coercive and A bounded, Lax–Milgram

theorem ensures the existence and uniqueness of πN∂
k
t ū(t) ∈ V̊N (Ω). With a similar argument as

in (7.126), we prove that

‖∂kt πN ū(t)‖H2,ε ≤ C
(
‖∂kt ū(t)‖H2,ε + ‖∂k+2

t ū(t)‖H1

)
.

Taking the L∞ norm with respect to t, we obtain the regularity ∂kt πN ū ∈ L∞(0, T ε; V̊N (Ω)).
Next, we prove the estimate (7.127) for k = 0. The general proof follows the same lines, starting
with the time differentiation of (7.125). Using (7.125), we have, almost everywhere in [0, T ε] and
for any vN ∈ V̊N (Ω),(
I̊Nη, vN

)
Q
+Ah

N

(
I̊Nη, vN

)
= Ah

N

(
I̊N ū, vN

)
−A
(
ū(t), vN

)
+
(
I̊N∂

2
t ū(t), vN

)
Q
−
(
∂2t ū(t), vN

)
S .

Applying Lemmas 7.2.9 and 7.2.10, we obtain∣∣(I̊Nη(t), vN)Q +Ah
N

(
I̊Nη(t), vN

)∣∣ ≤ CeA,S

(
s+2∑
σ=1

|∂kt ū(t)|Hσ + ‖∂k+2
t ũ(t)‖Hs+1

)
‖vN‖H2,ε,

where eA,S = |B−1
Ω N |−s + eai + ebi . We let vN = INη(t) and use the coercivity of the bilinear

form to get

‖I̊Nη(t)‖2H2,ε ≤ CeA,S

(
s+2∑
σ=1

|∂kt ū(t)|L∞(Hσ) + ‖∂k+2
t ũ(t)‖Hs+1

)
.

Taking the L∞ norm with respect to t proves the estimate for I̊Nη (recall the definition of ‖ · ‖H2,ε

in (7.124)) The estimate for η is obtained with the equality η = ū − I̊N ū + I̊Nη, the triangle
inequality, and (7.92). The proof of the lemma is complete.

Lemma 7.2.12. The following estimate holds for ζN = uN − πN ū,

‖∂tζN‖L∞(L2) + |ζN |L∞(H1) ≤ C
(
edata + |η|L∞(H1) + ε|η|L∞(H2) + ‖∂tη‖L∞(H1)

+ ‖I̊Nη‖L1(H1) + ‖I̊N∂2t η‖L1(H1)

)
,

(7.128)

where edata = |g0 − g0N |H2,ε + ‖g1 − g1N‖Q and C depends only on λ, ‖a‖C2(L∞).
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Proof. Using (7.79) and (7.123) we verify that for any vN ∈ V̊N (Ω) and a.e. t ∈ [0, T ε](
∂2t ζN (t), vN

)
Q
+Ah

N

(
ζN (t), vN

)
=
(
I̊N∂

2
t η(t), vN

)
Q
−
(
I̊Nη(t), vN

)
Q
.

We let vN = ∂tζN (t) and use the symmetry of Ah
N and (·, ·)Q to obtain for a.e. t ∈ [0, T ε]

1
2

(
‖∂tζN (t)‖2Q +Ah

N

(
ζN (t), ζN (t)

))
=
(
I̊N∂

2
t η(t), ∂tζN (t)

)
Q
−
(
I̊Nη(t), ∂tζN (t)

)
Q
.

Denoting

ENζN (t) = ‖∂tζN (t)‖2Q +Ah
N

(
ζN (t), ζN (t)

)
, R(t) =

(
I̊N∂

2
t η(t), ∂tζN (t)

)
Q
−
(
I̊Nη(t), ∂tζN (t)

)
Q
,

we integrate over [0, ξ] and get for any ξ ∈ [0, T ε]

ENζN (ξ) = ENζN (0) + 2

∫
0

ξ

R(t) dt.

Using Cauchy–Schwartz, Hölder, and Young inequalities, we bound the integral term as

2

∫
0

ξ

R(t) dt ≤ 2‖I̊N∂2t η‖L1(Q)‖∂tζN‖L∞(Q) + 2‖I̊Nη‖L1(Q)‖∂tζN‖L∞(Q)

≤ 4‖I̊N∂2t η‖2L1(Q) + 4‖I̊Nη‖2L1(Q) +
1
2‖∂tζN‖

2
L∞(Q).

Combining the two last equations and using Ah
N ellipticity (7.98), we obtain successively

1
2‖∂tζN‖

2
L∞(Q) ≤ ENζN (0) + 4‖I̊N∂2t η‖2L1(Q) + 4‖I̊Nη‖2L1(Q),

λ|ζN |2L∞(H1) ≤ 2ENζN (0) + 8‖I̊N∂2t η‖2L1(Q) + 8‖I̊Nη‖2L1(Q).
(7.129)

Thanks to (7.98), we have ENζN (0) ≤ ‖∂tζN (0)‖2Q + C‖ζ(0)‖2H2,ε and denoting e = ū− uN , we
bound the two terms as

‖∂tζN (0)‖Q ≤ ‖∂te(0)‖Q + ‖∂tη(0)‖Q ≤ ‖g1 − g1N‖Q + ‖∂tη‖L∞(Q),

‖ζN (0)‖H2,ε ≤ ‖e(0)‖H2,ε + ‖η(0)‖H2,ε ≤ ‖g0 − g0N‖H2,ε + C
(
|η|L∞(H1) + ε|η|L∞(H2)

)
.

(7.130)

Combining (7.129) and (7.130), we obtain estimate (7.128) and the proof of the lemma is
complete.

Proof of Theorem 7.2.3. Let e = ū − uH and recall that e = η − ζN , where η = ū − πN ū,
ζN = uN − πN ū and πN ū is the elliptic projection defined in (7.123). The triangle inequality and
Lemma 7.2.12 ensure

‖∂te‖L∞(L2) + |e|L∞(H1) ≤ ‖∂tη‖L∞(L2) + |η|L∞(H1) + ‖∂tζN‖L∞(L2) + |ζN |L∞(H1)

≤ C
(
edataH1 + |η|L∞(H1) + ε|η|L∞(H2) + ‖∂tη‖L∞(H1)

+ ‖I̊Nη‖L1(H1) + ‖I̊N∂2t η‖L1(H1)

)
.

The Hölder inequality implies

‖I̊Nη‖L1(H1) + ‖I̊N∂2t η‖L1(H1) ≤ ε−2T
(
‖I̊Nη‖L∞(H1) + ‖I̊N∂2t η‖L∞(H1)

)
,

and thus, applying Lemma 7.2.11, we obtain

‖∂te‖L∞(L2) + |e|L∞(H1)

≤ CedataH1 + Cε−2
(
|B−1

Ω N |−s + eai + ebi
)(∑s+2

σ=1 |ū|L∞(Hσ) +
∑4

k=1 ‖∂kt ū‖L∞(Hs+1)

)
.
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Using the estimates from Lemma 7.2.6, we have

ε−2(eai + ebi) = ε−2(ea0 + εeā12 + ε2eā22 + εeā24 + εeb10 + ε2eb20 + ε2eb22) ≤ C(e1 + e2),

where

e1 =

(
hq

ε

)2
+
|Δx|
ε

+
hq

ε
, e2 =

hq|1/Δx|
ε

+ hq|1/Δx|2,

are the error terms defined in (7.103). We thus obtain the error estimate (7.102) and the proof
of Theorem 7.2.3 is complete. �

228



8 Conclusion and outlook

8.1 Conclusion

In this thesis, we have studied effective models for long time wave propagation in heterogeneous
media. In particular, we have designed numerical homogenization methods for the approximation
of the multiscale wave equation in periodic and locally periodic media over long time.

First, we considered periodic media. In particular, we defined a family of first order effective
equations that describe the macroscopic behavior of the wave at timescales O(ε−2). The derivation
was done using asymptotic expansions. Furthermore, an a priori error estimate that guarantees
the validity of the family was proved. In addition, we provided a numerical procedure for the
computation of first order effective tensors. In particular, the computational cost was significantly
reduced compared to the earlier procedures. This led to an efficient numerical homogenization
method for the approximation of wave propagation in periodic media at timescales O(ε−2).

Second, we constructed a family of effective equations for timescales of arbitrary order O(ε−α),
where α ∈ N. Furthermore, a numerical procedure for the computation of effective tensors of
arbitrary order was also provided. In particular, the resulting homogenization method is also
appropriate to approximate the wave equation in periodic media with high frequency initial data.
Numerical tests confirm the validity of the theory and indicate possible improvements of the
algorithm in several dimensions.

Third, the family of effective equations for timescales O(ε−2) was generalized from periodic to
locally periodic media. In this case as well, an a priori error estimate corroborating the validity
of the family was established. This result led to the design of a spectral homogenization method
for the numerical approximation of the multidimensional wave equation in locally periodic media
over long time. In particular, we provided an a priori error analysis of the method that guarantees
the convergence of the approximation to an effective solution. As the dependence of the error
estimate on the domain is explicit, it can be used in pseudoinfinite domains. Furthermore, we also
performed the a priori error analysis of the FE-HMM-L for the one-dimensional approximation of
the wave equation in locally periodic media over long time. In particular, we provided an a priori
error estimate that ensures the convergence of the approximation to an effective solution of the
family, over long time and in arbitrarily large domains.

8.2 Outlook

Some of the results and numerical methods of this thesis call for further investigations, both
from the practical and the theoretical point of view. Let us comment on some possible future
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directions of research.

8.2.1. Effective equations for arbitrary large timescales in periodic media

Let us discuss potential developments of the results obtained in Chapter 5, on the effective
equations for arbitrary timescales.

Construct better effective equations in the family. As discussed earlier, the algorithm for
the computation of effective tensors of arbitrary order could probably be improved. Indeed, we
observed in a two-dimensional example that the obtained higher order approximation exhibits,
locally, an undesired flattening of the dispersion. We think that this negative effect is connected
to the particular effective equation that is constructed by the algorithm. And it is likely that other
equations of the family would be more accurate. In particular, recall that the construction of the
effective tensors of each order follows an algebraic argument. Specifically, to obtain a non-negative
tensor, we add a positive contribution that relies on the minimal eigenvalues associated to the
tensors. Note that this process relies on several choices, like the form of the added positive tensor
or the construction of the matrix associated to the fourth order tensors. Hence, the influence of
these choices on the approximation should be investigated more carefully. However, we believe
that the right direction of research is to find an alternative to the algebraic procedure. Namely, an
argument based on physical properties would probably lead to more accurate effective equations
of the family. For example, we could attempt to minimize the energy associated to the error
between the oscillating wave and the adaptation of the effective solution. Other optimization
procedures could be designed in the attempt to obtain better effective equations in the family.

Link the order of the effective equation to the frequency of the initial data. To
homogenize the wave equation with high frequency initial data, we have seen that higher order
effective equations must be used. In particular, in order to capture the dispersion effects, the
higher the frequencies are, the higher the order of the effective equation should be. In practice, it
would be useful to have a criterion based on the frequency of the initial data in order to determine
what order of equation should be used. The results obtained in the thesis, and in particular the
formula for the effective tensors of arbitrary order, could be used in the attempt of deriving such
criterion.

8.2.2. Spectral homogenization method for long time wave propagation in locally
periodic media

Let us comment on possible improvements of the spectral homogenization method, defined in
Chapter 7.

Reduced order modelling for the spectral homogenization method. The first step of
the spectral homogenization method is time consuming. Indeed, even though it can be parallelized,
the approximation of the effective tensors requires to solve numerous cell problems. Furthermore,
we verify that to gain in accuracy, the number of cell problems must be increased and solved
on finer mesh thus augmenting the cost. However, a similar issue has been addressed for the
FE-HMM using a reduced order modeling technique. The reduced basis FE-HMM (RB-FE-HMM,
see [5, 6]), was precisely developed to diminish the cost of approximation of the effective data (it
was discussed in Section 3.4). The reduced basis technique is applicable to reduce the cost of
the spectral homogenization method. However, investigation is needed in order to incorporate
the additional tensors and correctors in the a posteriori error estimator involved in the greedy
procedure of the offline stage.
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Practical criterion to simplify the spectral homogenization method. Recall that there
is a possibility to simplify the effective model targeted by the spectral homogenization method. In
particular, for several examples we verified numerically that some of the operators in the effective
equations are unnecessary. In such cases, a simplified homogenization method could thus be used.
As the cost of this method is significantly lower, it would be profitable to have at our disposal a
criterion to decide when to use the simplified method and when not. Note that the application of
this criterion should be less expensive than computing all the effective tensors.

8.2.3. General prospects

Let us end this outlook by mentioning some general possibilities of research related to this thesis.

More general media. It would be interesting to apply the techniques that were developed for
locally periodic media to more general media. Indeed, the theory has recently been started for
almost periodic, quasiperiodic and random media (see [23]). However, these theoretical results
need to be translated to numerical homogenization methods capable of handling these media.
Furthermore, in the spirit of the generalization to locally periodic media, other types of media
could also be considered.

Other physical problems. The theory and techniques that were developed could probably
be applied to other physical problems. In particular, the extension to elastic waves should be
relatively direct. In addition, we could also attempt to adapt the theory to the challenging case of
electromagnetic waves. Further, the techniques could be used in other physical situations where
high order effective models are needed.

Boundary conditions. Recall that in thesis we exclusively considered infinite media. It would
be challenging to study what happens when we add boundary conditions. As the theory relies on
the assumption that the domain is a hypercube and the union of reference cells, it certainly can
not be applied easily to this case. In particular, a better understanding of the homogenization in
the boundary layers is essential.
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A Appendix

In this appendix, we discuss various aspects of the analysis and numerical analysis of the PDEs
met in this thesis. First, in Sections A.1 and A.2, we introduce the fundamentals of functional
analysis for the study of elliptic PDEs with periodic boundary conditions. In particular, we
discuss the well-posedness and regularity of such problems, which are essential questions in the
derivation of effective equations in Chapters 4 and 6. Then, in Section A.3, a short introduction
on the finite element method (FEM) is given, which is used in many parts of the thesis. In
addition, we discuss the main results of the analysis of FEM with numerical quadrature, which is
at the center of the finite element numerical homogenization methods studied in this thesis. Next,
in Section A.4, we present the basic theory for the interpolation by trigonometric polynomials. In
particular, these results are at the foundation of the spectral method used in Sections 2.3 and 7.2.
Finally, in Section A.5, we present the leap frog method, which is used in most of the numerical
experiments.

A.1 Definition of the functional spaces

Let O ⊂ Rd be an open set of Rd. We denote D(O) the space of functions ϕ : O → R of class
C∞ which are compactly supported in O. The dual space of D(O), denoted D′(O), is the space
of distributions. The derivatives of v ∈ D′(O) are defined as 〈∂xi

v, ϕ〉 = −〈v, ∂xi
ϕ〉, where 〈·, ·〉

denotes the dual evaluation in D′(O). Hence, for α ∈ Nd, we have 〈∂αv, ϕ〉 = (−1)α〈v, ∂αϕ〉.

For p ∈ [1,∞), the space of p-integrable functions Lp(O) consists of measurable functions
v : O → R such that

∫
O |v(x)|p dx <∞. For p =∞, L∞(O) is the space of measurable functions

v : O → R such that inf{a ∈ R : |v(x)| ≤ a for a.e. x ∈ O} < ∞. For p ∈ [1,∞], two functions
v, w ∈ Lp(O) are equivalent if the set where they differ has (Lebesque) measure zero. We define
then the space Lp(O) = Lp(O)/ ∼. Equipped with the norm

‖v‖Lp(O) =

⎧⎨⎩
(∫

O
|v(x)|p dx

)1/p
1 ≤ p <∞,

ess supx∈O |v(x)| = inf{a ∈ R : |v(x)| ≤ a for a.e. x ∈ O} p =∞.

Lp(O) is a Banach space. The space L2(O) is a Hilbert space for the following inner product and
corresponding norm:

(v, w)L2(O) =

∫
O
v(x)w(x) dx, ‖v‖L2(O) =

√
(v, v)L2(O), v, w ∈ L2(O).

For k ∈ N>0, p ∈ [1,∞], the Sobolev space Wk,p(O) is the set of functions v ∈ Lp(O) such that
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∂αv ∈ Lp(O) for all multi-index α ∈ Nd such that |α| ≤ k. Equipped with the norm

‖v‖Wk,p(O) =
( ∑

|α|≤k

‖∂αv‖pLp(O)

)1/p
,

Wk,p(O) is a Banach space. In the particular case p = 2, the space Wk,2(O) is denoted Hk(O).
Equipped with the inner product and corresponding norm

(v, w)Hk(O) =
∑
|α|≤k

(
∂αv, ∂αw

)
L2(Ω)

‖v‖Hk(O) =
√
(v, v)Hk(O), v, w ∈ L2(O),

Hk(O) is a Hilbert space.

The mean of a function v ∈ L1(O) is

〈v〉O = |O|−1

∫
O
v(x) dx.

We define the quotient space L2(O) = L2(O)/R and denote by a bracket [v] the equivalence
class in L2(O) of v ∈ L2(O). Equipped with the inner product(
[v],[w]

)
L2(O)

=
(
v − 〈v〉O, w − 〈w〉O

)
L2(O)

=
(
v, w
)
L2(O)

− |O|〈v〉O〈w〉O ∀v, w ∈ L2(O),

L2(O) is a Hilbert space. Let C∞per(O) be the space of O-periodic functions of C∞(O) and define
the space H1

per(O) as the closure of C∞per(O) for the H1 norm. We define the quotient space
Wper(O) = H1

per(O)/R and denote by a bold face letter v the elements of Wper(O). Equipped
with the inner product(

v,w
)
Wper(O)

=
(
[v],[w]

)
L2(O)

+
(
∂kv, ∂kw

)
L2(O)

, ∀v ∈ v, w ∈ w,

and the induced norm ‖v‖Wper(O) =
√
(v,v)Wper(O), Wper(O) is a Hilbert space. Note that the

k-th partial derivative of v ∈ Wper(O) is simply ∂kv = ∂kv ∈ L2(O) for all v ∈ v. Thanks to
the Poincaré–Wirtinger inequality, v → ‖∇v‖L2(O) is also a norm on Wper(O), equivalent to
‖ · ‖Wper(O). The dual space W∗

per(O) is characterized as follows: for F ∈ W∗
per(O), there exists

[f0] ∈ L2(O), f11 , . . . , f
1
d ∈ L2(O) such that〈

F,v
〉
W∗

per(O),Wper(O)
=
(
[f0],v

)
L2(O)

+
(
f1k , ∂kv

)
L2(O)

. (A.1)

Furthermore,

‖F‖W∗
per(O) = inf

{(
‖[f0]‖2L2(O) + ‖f1‖2L2(O)

)1/2
: [f0] ∈ L2(O), f1 ∈ L2(O) satisfies (A.1)

}
,

From characterization (A.1), we verify that a functional of [H1
per(O)]

∗
given by

w → (f0, w)L2(O) + (f1k , ∂kw)L2(O),

for some f0, f11 , . . . , f
1
d ∈ L2(O), belongs to W∗

per(O) if and only if(
f0, 1

)
L2(O)

= 0, (A.2)

or equivalently f0 has zero mean. Define L2
0(O) (resp. Wper(O)) as the set constituted with

the zero mean representative of L2(O) (resp. of Wper(O)). Equipped with the standard L2
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inner product (resp. H1), L2
0(O) is a Hilbert space (resp. Wper(O)). Note that the following

embeddings are dense Wper(O) ⊂ L2
0(O) ⊂W∗

per(O).

We define the following norm on Wper(O)

‖w‖W = inf
w=w1+w2

wi=[wi]∈Wper(O)

{
‖[w1]‖L2(O) + ‖∇w2‖L2(O)

}
∀w ∈ Wper(O), (A.3)

and the corresponding norm on Wper(O)

‖w‖W = inf
w=w1+w2

w1,w2∈Wper(O)

{
‖w1‖L2(O) + ‖∇w2‖L2(O)

}
∀w ∈Wper(O). (A.4)

Note that for all w1, w2 ∈ H1
per(O) it holds

‖[w1]‖L2(O) + ‖∇w2‖L2(O) = ‖w1 − 〈w1〉O‖L2(O) + ‖∇(w2 − 〈w2〉O)‖L2(O),

and thus, for w ∈Wper(O), we have the equality ‖w‖W = ‖[w]‖W . Note that ‖ ·‖W is equivalent
to the L2 norm

‖w‖W ≤ ‖w‖L2(O) ≤ max{1, CO}‖w‖W ∀w ∈Wper(O), (A.5)

where the second inequality follows from the Poincaré–Wirtinger inequality and CO is the Poincaré
constant.

For a Banach space X and 1 ≤ p ≤ ∞, Lp(0, T ;X) is the space of measurable functions
v : (0, T )→ X such that the map t → ‖v(t)‖X belongs to Lp(0, T ). Equipped with the norm

‖v‖Lp(0,T ;X) =

⎧⎪⎨⎪⎩
(∫

0

T

‖v(t)‖pX dt
)1/p

1 ≤ p <∞,

ess supt∈(0,T ) ‖v(t)‖X p =∞,

Lp(0, T ;X) is a Banach space. In the particular case X = Hk(O), we use the following notation
for the seminorm in Lp(0, T ; Hk(O):

|v|Lp(0,T ;Hk(O)) =

⎧⎪⎨⎪⎩
(∫

0

T

|v(t)|p
Hk(O)

dt
)1/p

1 ≤ p <∞,

ess supt∈(0,T ) |v(t)|Hk(O) p =∞.

For an open set O ⊂ Rd, we define the space C0(Ō;X) as the set of measurable functions
v : Ō → X,x → v(x) that are continuous, i.e., for all x ∈ Ō and for all ε > 0 there exists
δ = δ(ε) > 0 such that for ‖h‖Rd ≤ δ we have ‖v(x+ h)− v(x)‖X ≤ ε. Equipped with the norm
‖v‖C0(Ō;X) = supx∈O ‖v(x)‖X , C0(Ō;V ) is a Banach space. For m ≥ 0, the space Cm(Ō;V ) is

the set of functions v ∈ C0(Ō;X) such that ∂αv ∈ C0(Ō;X) for all the multi-index α ∈ Nd such
that 0 ≤ |α| ≤ m. Equipped with the norm ‖v‖Cm(Ō;X) =

∑
|α|≤m ‖∂αv‖C0(Ō;X), Cm(Ō;X) is a

Banach space.

A.2 Important results in the theory of partial differential equations

In this section, we present some general results in functional analysis for the study of PDES. In
particular, we apply these results in the periodic settings, used in most of the thesis.

We start with the following classical and essential result (we refer to [48] for the proof).
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Theorem A.2.1. (Lax–Milgram) Let V be a Hilbert space, A : V × V → R be a bilinear form,
and f ∈ V ∗ a linear functional. Assume that there exist α, β > 0 such that

A(v, v) ≥ α‖v‖2V , A(v, w) ≤ β‖v‖V ‖w‖V ∀v, w ∈ V. (A.6)

Then there exists a unique u ∈ V such that

A(u, v) = 〈f, v〉V ∗,V ∀v ∈ V.

Furthermore, u satisfies the estimate ‖u‖V ≤ 1
α‖f‖V ∗ .

Let us precise these results in the context of this thesis, where we encounter abundant elliptic
PDEs with periodic boundary conditions. For an open hypercube Y ⊂ Rd, let a be a Y -periodic
d× d symmetric tensor that is elliptic and bounded, i.e., there exists λ,Λ > 0 such that

a(y)ξ · ξ ≥ λ|ξ|2, a(y)ξ · ξ ≤ Λ|ξ|2 for a.e. y ∈ Y.

Given a function f , we look for a Y -periodic u such that

−∇y ·
(
a(y)∇yu(y)

)
= f(y) in Y. (A.7)

The existence and uniqueness of a solution u of this equation is classical in functional analysis.
It is proved using the Lax–Milgram theorem. We let V be the Hilbert space Wper(Y ) (or
similarly Wper(Y )) equipped with the H1 norm. Using the assumptions on a(y), the Poincaré–
Wirtinger and the Cauchy–Schwartz inequalities, we can prove that the bilinear form A(v,w) =(
a∇yv,∇yw

)
L2(Y )

satisfies (A.6). To apply Theorem A.2.1, we need f to belong to the dual

W∗
per(Y ). According to (A.2), f ∈ [H1

per(Y )]
∗
given by〈

f, w
〉
=
(
f0, w

)
L2(Y )

+
(
f1k , ∂kw

)
L2(Y )

.

for some f0, f11 , . . . , f
1
d ∈ L2(Y ) belongs to W∗

per(Y ) if and only if(
f0, 1

)
L2(Y )

= 0, (A.8)

Hence, provided f satisfies (A.8), Theorem (A.6) ensures that there exists a unique u ∈ W∗
per(Y )

such that
A(u,v) =

〈
f,v
〉

∀v ∈ W∗
per(Y ).

We verify that if u ∈ u is in H2(Y ), it satisfies (A.7) in the L2 sense. The solvability condition
(A.8) is essential for the derivation of effective equations in Chapters 4, 5, and 6.

Another classical result deals with the regularity of the weak solution u of (A.7). Let us state
it for the zero mean solution u ∈ u, u ∈Wper(Y ). The following result, discussed in [26], gives
sufficient conditions on a and f for u to belong to Hk(Y ).

Theorem A.2.2. Let u ∈Wper(Y ) be the zero mean weak solution of (A.7). If for some integer
m ≥ 0, a(y) and f satisfy the regularity a ∈Wm+1,∞(Y ) and f ∈ Hm(Y ) (where H0(Y ) = L2(Y )),
then u satisfies the regularity u ∈ Hm+2(Y ). Furthermore, the following estimate holds

‖u‖Hm+2 ≤ C‖f‖Hm ,

where the constant C depends only on Y , ‖a‖Wm+1,∞(Y ), d, and m.

Theorem A.2.2 provides sufficient conditions for the solution u to belong to the Sobolev space of
any order. The following theorem provides efficient condition for the solution to be continuous
(we refer to [48] for the proof).
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Theorem A.2.3. (Sobolev embeddings) Let O be an open subset of Rd with a C1 boundary.

i) If k < d
p , then for q satisfying 1

q = 1
p − k

d , we have Wk,p(O) ↪→ Lq(O).

ii) If k > d
p , then Wk,p(O) ↪→ C0(Ō).

Let us show how Theorem A.2.3 can be used in the context of periodic functions. Assuming for
simplicity that d ≤ 3, we prove that the following embedding holds:

H2
per(Y ) ↪→ C0per(Ȳ ). (A.9)

To see it, let v ∈ H2
per(Y ) and denote v� its extension to Rd by periodicity. Let {Yi}3

d−1
i=1 be

neighbor copies of Y surrounding Y . and let U be a smooth domain containing Ȳ and contained

in Y ∪
(
∪3d−1
i=1 Ȳi

)
. Thanks to Theorem A.2.3 ii) and the periodicity of v, we have

‖v‖C0(Ȳ ) ≤ ‖v�‖C0(Ū) ≤ C‖v�‖H2(U) ≤ 3d/2C‖v‖H2(Y ).

and (A.9) is verified.

We are now able to provide sufficient conditions for the solution of (A.7) to be, for example,
continuous. Indeed, assuming d ≤ 3, then if a ∈W1(Y ) and f ∈ L2(Y ), Theorem A.2.2 ensures
that u ∈ H2(Y ) and (A.9) implies u ∈ C0(Ȳ ).

A.3 A short introduction on the finite element method for elliptic equations

In this section, we briefly introduce the finite element method for the approximation of elliptic
problems. The purpose is to give an overview of the general theory and to describe the main
tools used for the derivation of a priori error estimates. We first follow [33] to introduce the
method for the approximation of elliptic equations. We prove the standard a priori error estimates
in the H1 and L2 norm. Second, we give some details on the tools used to estimate the error
caused by numerical integration [34, 33]. In particular, we derive conditions on the quadrature
formula such that the optimal convergence rates of the method are maintained. As most of the
results are classical, we refer to [33] for the missing proofs and for detailed explanations. For the
implementation of the method, we refer to [47, 32].

A.3.1 The finite element method for elliptic equations

We follow here [33] and introduce the finite element method for the approximation of elliptic
equations. The purpose is the general understanding of the method and we refer to [33, 47] for a
more thorough introduction.

Let Ω ⊂ Rd be a polygonal domain. Let a(x) be a tensor function. Given some function f : Ω→ R,
whose regularity will be specified, we want to approximate the solution u : Ω→ R of the boundary
value problem

−∇ ·
(
a(x)∇u(x)

)
= f(x) x ∈ Ω,

conditions on u|∂Ω.
(A.10)

The boundary conditions can be of diverse nature. For simplicity, we focus on the two (simple)
types of boundary conditions used in this thesis. First, homogeneous Dirichlet boundary conditions,
i.e. u|∂Ω = 0, in which case we define the functional space V = H1

0(Ω). Second, periodic boundary
conditions, i.e., x → u(x) is Ω-periodic (in this case, Ω is assumed to be a hypercube) and we
define V = Wper(Ω). In both case, a Poincaré type inequality holds: ‖v‖L2(Ω) ≤ CΩ‖∇v‖L2(Ω)
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∀v ∈ V . To ensure the well-posedness of (A.10), we assume that a is uniformly elliptic and
bounded, i.e., there exists α, β > 0 such that

a(x)ξ · ξ ≥ α|ξ|2, |a(x)ξ| ≤ β|ξ|, for a.e. x ∈ Ω.

These properties imply that the bilinear form

A : V × V → R, (v, w) → A(v, w) = (a∇v,∇w)L2(Ω), (A.11)

is elliptic and bounded, i.e.,

A(v, v) ≥ α̃Ω‖v‖2H1(Ω), A(v, w) ≤ β‖v‖H1(Ω)‖w‖H1(Ω), (A.12)

where α̃Ω = α
C2

Ω+1
and CΩ is the Poincaré constant. Then, for any f ∈ V ∗, Lax–Milgram theorem

ensures the well-posedness of the variational problem: u ∈ V is the unique function such that

A(u, v) = 〈f, v〉 ∀v ∈ V. (A.13)

Riesz representation theorem provides the following characterization of V ∗: f ∈ V ∗ has the form〈
f, v
〉
=
(
f0, v

)
L2(Ω)

+
(
f1,∇v

)
L2(Ω)

, (A.14)

for some f0 ∈ L2(Ω), f1 ∈ [L2(Ω)]d if V = H1
0(Ω), or f

0 ∈ L2
0(Ω), f

1 ∈ [L2(Ω)]d if V = Wper(Ω).
Let now VH be a finite dimensional subspace of V . The space VH can be defined in many ways,
depending on the specific context. As our purpose is the general understanding of the analysis of
the method, we will consider basic finite element spaces (defined later). Let us first define the
(yet abstract) finite element approximation of the solution of (A.10): uH ∈ VH is the solution of

A(uH , vH) = 〈f, vH〉 ∀vH ∈ VH . (A.15)

Note that the well-posedness of (A.15) follows the Lax–Milgram theorem (Theorem A.2.1), using
the properties of a(x) and f . From (A.13) and (A.15), Galerkin orthogonality follows naturally:

A(u− uH , vH) = 0 ∀vH ∈ VH . (A.16)

From (A.16), we obtain Céa’s lemma [33, Thm 2.4.1]:

Lemma A.3.1. (Céa’s lemma) Let u and uH be the solutions of respectively (A.13) and (A.15).
Then, the following error estimate holds

‖u− uH‖H1(Ω) ≤ β/̃̃αΩ inf
vH∈VH

‖u− vH‖H1(Ω),

where β and α̃Ω are given in (A.12).

The result of Lemma A.3.1 signifies that the FEM has the same order of accuracy as the best
approximation of u in VH , in the H1 norm. In other words, the accuracy of the FEM is directly
linked to the capacity of VH to capture u and its gradient. This naturally leads to the question of
interpolation of a function v ∈ V onto VH . Indeed, if IH : V → VH is an interpolation operator,
Lemma A.3.1 ensures the estimate ‖u− uH‖H1(Ω) ≤ C‖u− IHu‖H1(Ω). The challenge lies then
in finding an interpolation operator IH with optimal order of accuracy. There are several ways
to define such IH and we follow here [33] to define the nodal interpolation operator. To that
end, let us introduce a conformal mesh TH of Ω. We assume here that the elements K ∈ TH
are d-simplices (note that quadrilaterals could be used). Further, we assume that each K is
affine-equivalent to a reference element K̂ ⊂ Rd, i.e., there exists an invertible affine mapping

FK : Rd → Rd, x̂ → FK(x̂) = BK x̂+ b,
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such that FK(K̂) = K. For K ∈ TH , we define the quantities

HK = diam(K), ρK = sup{diam(SK) : SK is a ball contained in K},

and Ĥ, ρ̂ are defined similarly for K̂. The parameter H is the size of the partition, H =
maxK∈TH

HK . We have the following theorem [33, Thms 3.1.2 & 3.1.3].

Theorem A.3.2. Let v ∈Wm,p(K) for some m ≥ 0, p ∈ [1,∞]. Then v̂ = v ◦ FK ∈Wm,p(K̂)
and

|v̂|Wm,p(K̂) ≤ C
Hm

K

ρ̂m
∣∣ det(BK)

∣∣−1/p|v|Wm,p(K),

where the constant C depends only on d and m. Similarly, for v̂ ∈ Wm,p(K̂), we have v =
v̂ ◦ F−1

K ∈Wm,p(K) and

|v|Wm,p(K) ≤ C
Ĥm

ρmK

∣∣ det(BK)
∣∣1/p|v̂|Wm,p(K̂),

where the constant C depends only on d and m.

In this settings, we can rewrite ‖v − IHv‖H1(Ω) =
(∑

K∈TH
‖v − IHv‖2H1(K)

)1/2
, and the in-

terpolation operator can then be constructed locally for each element K ∈ TH . For notations
convenience, we introduce the broken norm on VH

‖vH‖H̄k(Ω) =

( ∑
K∈TH

‖vH‖2Hk(K)

)1/2

.

The following result provides a tool for the construction of IH . It establishes an error estimate
for any polynomial preserving operator [33, Thm 3.1.4].

Theorem A.3.3. For integers k,m ≥ 0 and real numbers p, q ∈ [1,∞], let Wk+1,p(K̂) and
Wm,q(K̂) be such that Wk+1,p(K̂) ↪→Wm,q(K̂). Furthermore, let Π̂ ∈ L(Wk+1,p(K̂);Wm,q(K̂))
be a linear mapping such that

Π̂p̂ = p̂ ∀p̂ ∈ Pk(K̂),

and define ΠK ∈ L(Wk+1,p(K);Wm,q(K)) as v → ΠKv =
(
Π̂(v ◦ FK)

)
◦ F−1

K . Then for any

v ∈Wk+1,p(K)

|v −ΠKv|Wm,q(K) ≤ C|K|1/q−1/pH
k+1
K

ρmK
|v|Wk+1,p(K),

where the constant C depends on Π̂ and K̂.

Theorem A.3.3 is an important tool for the design of finite element spaces. Recall that we
introduce here a simple type of finite elements and refer to [33, 47] for a wider variety. In
particular, we assume the elements K ∈ TH to be d-simplices. Let us also assume that they are
shape regular, i.e., there exist a constant σ such that

HK

ρK
≤ σ ∀K ∈ TH . (A.17)

For an integer � ≥ 1, we define the finite element space

VH = {vH ∈ V : vH |K ∈ P�(K) ∀K ∈ TH}. (A.18)

It can be verified that VH ⊂ C0(Ω̄) ∩ H1(Ω). Note that this finite element space is suited in
our context of general understanding of the theory and analysis. However, it is rarely used in
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applications for k ≥ 4. For higher order elements, more sophisticated finite elements spaces
should be used.

We are now able to define the interpolation operator. Denoting {aj}d+1
j=1 the vertices of the

d-simplex K, we verify that a polynomial p ∈ P�(K) is uniquely determined by its values on the
set

L�(K) =
{
x =

∑d+1
j=1 λjaj :

∑d+1
j=1 λj = 1, λj ∈ {0, 1/�, . . . , (�− 1)/�, 1}, 1 ≤ j ≤ d+ 1

}
.

We define the interpolation of v̂ ∈ H1(K̂) as the unique polynomial Î v̂ ∈ P�(K̂) such that
v̂(x̂) = Î v̂(x̂) for all nodes x̂ ∈ L�(K̂). The local interpolation operator is then given as
IK : H1(K)→ P�(K), v → IKv =

(
Î(v ◦FK)

)
◦F−1

K . Combining Theorem A.3.3 and assumption

(A.17), we obtain, for any v ∈ V ∩Hk+1(Ω) and 0 ≤ k ≤ �, the estimate

|v − IKv|Hm(K) ≤ CHk+1−m
K |v|Hk+1(K), 0 ≤ m ≤ k + 1, (A.19)

where C depends only on Î, K̂, and σ. In particular, for any v ∈ V ∩H�+1(Ω), we have

‖v − IKv‖L2(K) ≤ CH�+1
K |v|H�+1(K), |v − IKv|H1(K) ≤ CH�

K |v|H�+1(K), (A.20)

where C depends only on Î, K̂, and σ. The interpolation operator of v ∈ V onto VH is then
defined as IHv|K = IKv. Combining now Lemma A.3.1 and (A.20), we obtain the following a
priori error estimate for the finite element approximation uH (uH is the solution of (A.15) and
VH is defined in (A.18)):

‖u− uH‖H1(Ω) ≤ CH�‖u‖H�+1(Ω), (A.21)

where C is independent of H.

In view of (A.20), it is natural to ask whether uH approximate u with order �+1 in the L2 norm.
This question is answered by the following result, known as the Aubin–Nitsche duality argument
[33, Thm 3.2.4].

Theorem A.3.4. Let u and uH be the solutions of respectively (A.13) and (A.15). Then the
following estimate holds

‖u− uH‖L2(Ω) ≤ Λ‖u− uH‖H1(Ω)

(
sup

g∈L2(Ω)

{
‖g‖−1

L2(Ω) inf
ϕH∈VH

‖ϕg − ϕH‖H1(Ω)

})
,

where ϕg is the unique solution in V of the problem A(v, ϕg) = (g, v)L2(Ω) ∀v ∈ V .

Tanks to Theorem A.3.4 and elliptic regularity (Theorem A.2.2), we can prove an error estimate
in the L2 norm. Note that if V = H1

0(Ω), the elliptic regularity holds provided ∂Ω is polygonal or
sufficiently smooth. We then have

inf
ϕH∈VH

‖ϕg − ϕH‖H1(Ω) ≤ ‖ϕg − IHϕg‖H1(Ω) ≤ CH‖ϕg‖H2(Ω) ≤ CH‖g‖L2(Ω),

where C depends on Ω. Hence, combining this estimate to Theorem A.3.4 and (A.21), we obtain
the following error estimate in the L2 norm:

‖u− uH‖L2(Ω) ≤ CH�+1‖u‖H�+1(Ω), (A.22)

where C is independent of H.
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A.3.2 Effect of the numerical integration in the finite element method

Note that in the FEM (A.15), in the previous section, we assumed that the forms could be
computed exactly. In practice, except for special type of a and f , the forms A(vH , wH) and
〈f, vH〉, defined in (A.11) and (A.14) can not be evaluated exactly. To go further in the analysis,
we have to take into account the error made in the approximation of the integrals. In this section,
we follow [34, 33] and derive sufficient conditions on the quadrature formula for the optimal
order of convergence to be preserved (Theorems A.3.6 and A.3.9). Note that this analysis is also
performed in [15, 4], where the effect of numerical quadrature error is studied in the context of
numerical homogenization.

Let {ω̂j , x̂j}Jj=1 be a quadrature formula on the reference element K̂. Note that via FK , it induces

the quadrature formula {ωKj
, xKj

}Jj=1 on K, where ωKj
= | detBK |ω̂j and xKj

= FK(x̂j). Let

us define

AH(vH , wH) =
∑

K∈TH

J∑
j=1

ωKj
a(xKj

)∇vH(xKj
) · ∇wH(xKj

),

〈fH , vH〉 =
∑

K∈TH

J∑
j=1

ωKj
f0(xKj

)vH(xKj
) +

∑
K∈TH

J∑
j=1

ωKj
f1i (xKj

) · ∇vH(xKj
).

The finite element method is then to find uH ∈ VH such that

AH(uH , vH) = 〈fH , vH〉 ∀vH ∈ VH . (A.23)

The first question concerns the well-posedness of (A.23). In particular, we have to verify the
ellipticity of the bilinear form AH(·, ·). This question is addressed by [33, Thm 4.1.2], which
ensures that if the quadrature formula {ω̂j , x̂j}Jj=1 has order 2�− 1, then the form AH is elliptic

on VH . Explicitly, if {ω̂j , x̂j}Jj=1 satisfies

∫
K̂

p̂(x̂) dx̂ =

J∑
j=1

ω̂j p̂(x̂j) ∀p̂ ∈ P2�−2(K̂), (A.24)

then there exits γ > 0 such that AH(vH , vH) ≥ γ‖vH‖2H1(Ω) for any vH ∈ VH . Hence, Lax–

Milgram theorem ensures the well-posedness of (A.23).

The next concern is the accuracy of the method. We look for a quadrature formula accurate
enough so that the optimal order accuracy obtained in (A.21) and (A.22) are maintained. The
first tool for the analysis of the accuracy is provided by the following theorem [33, Thm 4.1.1].

Theorem A.3.5. (First Strang lemma) Let u and uH be the solutions of respectively (A.13)
and (A.15). Then the following error estimate holds

‖u− uH‖H1(Ω) ≤ C inf
vH∈VH

{
‖u− vH‖H1(Ω) + sup

wH∈VH

|A(vH , wH)−AH(vH , wH)|
‖wH‖H1(Ω)

+ sup
wH∈VH

|〈f, wH〉 − 〈fH , wH〉|
‖wH‖H1(Ω)

}
,

where C depends only on Λ and γ.

Theorem A.3.5 indicates that to analyze the error can be analyzed independently for the numerical
integration errors |A(vH , wH)−AH(vH , wH)| and |〈f, wH〉 − 〈fH , wH〉|. These errors are studied
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locally for each element K ∈ TH . Let us define the local quadrature error on K and K̂, for
ϕ ∈ L1(K), ϕ̂ ∈ L1(K̂), as

EK(ϕ) =

∫
K

ϕ(x)dx−
J∑

j=1

ωKj
ϕ(xKj

), Ê(ϕ̂) =

∫
K̂

ϕ̂(x̂)dx̂−
J∑

j=1

ω̂jϕ(x̂j).

Note that if for ϕ ∈ L1(K), EK(ϕ) = | det(BK)|Ê(ϕ̂), where ϕ̂ = ϕ ◦ FK . The following results
[33, Thms 4.1.4 & 4.1.5] give sufficient conditions for the method (A.23) to converge with optimal
order accuracy in the H1 norm. Note that point iii) is not proved in [33], but the proof follows
the same line as point ii) with minor modifications (as done in the proof of Theorem A.3.9 iii)
below).

Theorem A.3.6. Assume that the quadrature formula {ω̂j , x̂j}Jj=1 satisfies (A.24).

i) If a ∈ [W�,∞(K)]d×d, then, for any polynomials q, p ∈ P�(K), the following estimate holds

EK(a∇q∇p) ≤ CH�
K‖aij‖W�,∞(K)‖∂iq‖H�−1(K)‖∂jp‖L2(K),

where C is independent of K.

ii) If for some q ∈ [1,∞] such that �−d/q > 0, we have f ∈W�,q(K), then, for any polynomial
p ∈ P�(K), the following estimate holds

EK(fp) ≤ CH�
K |K|1/2−1/q‖f‖W�,q(K)‖p‖H1(K),

where C is independent of K.

iii) For any polynomials q, p ∈ P�(K), the following estimate holds

EK(qp) ≤ CH�
K‖q‖H�(K)‖p‖H1(K),

where C is independent of K.

Thanks to Theorems A.3.5 and A.3.6 and using the interpolation operator IH , we can prove the
following optimal a priori error estimate in the H1 norm.

Theorem A.3.7. Assume that d ≤ 3 and that the data in (A.13) satisfy the regularity a ∈
[W�,∞(Ω)]d×d and f0, f1 ∈ Hm+�(Ω) for some m ≥ d/4. Let u be the solution of (A.13) and uH
be the solution of (A.23). Then the following error estimate holds

‖u− uH‖H1(Ω) ≤ CH�
(
max
ij

‖aij‖W�,∞(Ω) + ‖f0‖Hm+�(Ω) + ‖f1‖Hm+�(Ω)

)
‖u‖H�+1(Ω), (A.25)

where C is independent of H.

Remark A.3.8. Note that Hm+�(Ω) ↪→ W�,4(K) and for d ≤ 3 we have q = 4 > d/� for any
� ≥ 1, so that the regularity assumption in Theorem A.3.6 ii) is satisfied for f0 and f1. Notice
also that the assumption on the quadrature formula to approximate (f1,∇vH)L2(Ω) could be
weakened, as ∂jvH |K ∈ P�−1(K).

We still need an estimate to ensure the optimal order of convergence in the L2 norm. We prove
the following theorem.

Theorem A.3.9. Assume that the quadrature formula {ω̂j , x̂j}Jj=1 satisfies∫
K̂

p̂(x̂) dx̂ =

J∑
j=1

ω̂j p̂(x̂j) ∀p̂ ∈ Pσ(K̂), σ = max{2�− 2, 1}. (A.26)
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i) If a ∈ [W�+1,∞(K)]d×d, then, for any polynomials q, p ∈ P�(K), the following estimate
holds

EK(a∇q∇p) ≤ CH�+1
K ‖aij‖W�+1,∞(K)‖∂iq‖H�−1(K)‖∂jp‖H1(K), (A.27)

where C is independent of K.

ii) If for some q ∈ [1,∞] such that � − d/q > 0, we have f ∈ W�+1,q(K), then, for any
polynomial p ∈ P�(K), the following estimate holds

EK(fp) ≤ CH�+1
K |K|1/2−1/q‖f‖W�+1,q(K)‖p‖H2(K), (A.28)

where C is independent of K.

iii) For any polynomials q, p ∈ P�(K), the following estimate holds

EK(qp) ≤ CH�+1
K ‖q‖H�(K)‖p‖H2(K), (A.29)

where C is independent of K.

These results are not proved in [33] and can only be found in [34] with different notations. We
provide here a detailed proof. We first prove ii), and then i), iii). The proof relies on the following
lemma [33, Thm 4.1.3].

Lemma A.3.10. (Bramble–Hilbert lemma) For an integer k ≥ 0 and a number q ∈ [1,∞],

let L ∈ [Wk+1,q(K̂)]
∗
be a continuous functional such that

L(p̂) = 0 ∀p̂ ∈ Pk(K̂).

Then there exists a constant C that depends on K̂ such that

|L(v)| ≤ C‖L‖[Wk+1,q(K̂)]
∗ |ψ̂|Wk+1,q(K̂) ∀ψ̂ ∈Wk+1,q(K̂).

Proof of Theorem A.3.9 ii). First, via a change of variable we have

EK(fp) = | det(BK)|Ê(f̂ p̂), (A.30)

where f̂ = f ◦ FK , p̂ = p ◦ FK . Let Π̂ be the L2 projection onto P1(K̂), i.e., Π̂ : L1(K̂)→ P1(K̂),
v̂ → Π̂v̂ such that (

Π̂v̂, p̂
)
L2(K̂)

=
(
v̂, p̂
)
L2(K̂)

∀p̂ ∈ P1(K̂). (A.31)

We split the error as
Ê(f̂ p̂) = Ê(f̂Π̂p̂) + Ê(f̂(p̂− Π̂p̂)). (A.32)

We first estimate the first term of the right hand side. Consider the linear functional L : ψ̂ →
L(ψ̂) = Ê(ψ̂). We verify that L belongs to [W�,q(K̂)]

∗
: note that the assumption � − d/q > 0

ensures the continuous embedding W�,q(K̂) ↪→ C0(K̂), hence for any ψ̂ ∈W�,q(K̂),

|L(ψ̂)| ≤ C‖ψ̂‖L∞(K̂) ≤ C‖ψ̂‖W�,q(K̂).

By assumption, L vanishes on P�(K̂) (indeed, as σ = max{2�− 2, 1}, it holds P�(K̂) ⊂ Pσ(K̂)),

hence applying Bramble–Hilbert lemma, we obtain |Ê(ψ̂)| ≤ C|ψ̂|W�+1,q(K̂). Applying that

estimate to ψ̂ = f̂Π̂p̂, we have

|Ê(f̂Π̂p̂)| ≤ C

�+1∑
j=0

|f̂ |W�+1−j,q(K̂)|Π̂p̂|Wj,∞(K̂)

≤ C
(
|f̂ |W�+1,q(K̂)‖Π̂p̂‖L∞(K̂) + |f̂ |W�,q(K̂)|Π̂p̂|W1,∞(K̂)

)
.
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Using that two norms are equivalent on the finite dimensional space P1(K̂), we have ‖Π̂p̂‖L∞(K̂) ≤
C‖Π̂p̂‖L2(K̂) and thus ‖Π̂p̂‖L∞(K̂) ≤ C‖p̂‖L2(K̂). Furthermore, using the norm equivalence and

Theorem A.3.3 (Π̂ leaves P0(K̂) invariant), we have

|Π̂p̂|W1,∞(K̂) ≤ C|Π̂p̂|H1(K̂) ≤ C
(
|p̂|H1(K̂) + |p̂− Π̂p̂|H1(K̂)

)
≤ C|p̂|H1(K̂),

and we obtain

|Ê(f̂Π̂p̂)| ≤ C
(
|f̂ |W�+1,q(K̂)‖p̂‖L2(K̂) + |f̂ |W�,q(K̂)|p̂|H1(K̂)

)
. (A.33)

Let us now estimate the second term of the right hand side of (A.32). Note that if � = 1, we
have (p̂− Π̂p̂) = 0, so from now on we assume that � ≥ 2. In that case, let us show that there
exists a number ρ ∈ [0,∞] such that the following embeddings hold

W�,q(K̂) ↪→W�−1,ρ(K̂) ↪→ C0(K̂). (A.34)

First, we assume that 1 ≤ q < d. We let ρ be such that 1/ρ = 1/q−1/d so that W1,q(K̂) ↪→ Lρ(K̂)
holds and thus the first embedding in (A.34) holds. The second embedding holds as we verify that
�− 1− (d/ρ) = �− d/q > 0. Second, assume that q ≥ d. Then, for any ρ �=∞, the embedding
W1,q(K̂) ↪→ Lρ(K̂) holds and thus the first embedding in (A.34) holds. For the second embedding
in (A.34) to hold, we choose ρ large enough so that �− 1− (d/ρ) > 0. Let us now define the linear

functional L : W�−1,ρ(K̂)→ R as ψ̂ → L(ψ̂) = Ê(ψ̂(p̂− Π̂p̂)). Using (A.34) and the equivalence

of norms in P�(K̂), we verify that L ∈ [W�−1,ρ(K̂)]
∗
:

|L(ψ̂)| ≤ C‖ψ̂‖L∞(K̂)‖p̂− Π̂p̂‖L∞(K̂) ≤ C‖ψ̂‖W�−1,ρ(K̂)‖p̂− Π̂p̂‖L2(K̂).

Furthermore, assumption (A.26) ensures that L vanishes over P�−2(K̂). Bramble–Hilbert lemma
thus implies that

|Ê(f̂(p̂− Π̂p̂))| = |L(f̂)| ≤ C‖L‖[W�−1,ρ(K̂)]
∗ |f̂ |W�−1,ρ(K̂)

≤ C‖p̂− Π̂p̂‖L2(K̂)

(
|f̂ |W�−1,q(K̂) + |f̂ |W�,q(K̂)

)
,

where for the second inequality we used the embedding W1,q(K̂) ↪→ Lρ(K̂). As Π̂ leaves P1(K̂)
invariant, using Theorem A.3.3, we obtain ‖p̂− Π̂p̂‖L2(K̂) ≤ C|p̂|H2(K̂) and thus

|Ê(f̂(p̂− Π̂p̂))| ≤ C
(
|f̂ |W�−1,q(K̂) + |f̂ |W�,q(K̂)

)
|p̂|H2(K̂). (A.35)

Combining now (A.30), (A.32), (A.33) and (A.35) with the following bounds

|f̂ |W�+1−j,q(K̂) ≤ CH�+1−j
K | det(BK)|−1/q|f |W�+1−j,q(K) j = 0, 1, 2,

|p̂|Hj(K̂) ≤ CHj
K | det(BK)|−1/2|p|Hj(K) j = 0, 1, 2,

obtained thanks to Theorem A.3.2 (note that | det(BK)| = |K|/|K̂|), the proof of (A.28) is
complete. �

Proof of Theorem A.3.9 i). Let us prove an estimate for

EK(bqp) = | det(BK)|Ê(b̂q̂p̂), (A.36)

where b ∈W�+1,∞(K), q, p ∈ P�−1(K̂) and b̂ = b ◦ FK , b̂ = b ◦ FK , b̂ = b ◦ FK . Let Π̂ be the L2

projection onto P1(K̂) (as defined in (A.31)) and split the error as

Ê(b̂q̂p̂) = Ê(b̂q̂Π̂p̂) + Ê(b̂q̂(p̂− Π̂p̂)). (A.37)
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Similarly as to obtain (A.33) (with f̂ = b̂q̂ ∈W�+1,∞(K̂)), we obtain

|Ê(b̂q̂Π̂p̂)| ≤ C
(
|b̂q̂|W�+1,∞(K̂)‖p̂‖L2(K̂) + |b̂q̂|W�,∞(K̂)|p̂|H1(K̂)

)
.

As q̂ ∈ P�−1(K̂), we have |q̂|W�,∞(K̂) = |q̂|W�+1,∞(K̂) = 0. Hence, using the equivalence of norms

in P�−1(K̂), we have

|b̂q̂|W�+1,∞(K̂) ≤ C

�+1∑
j=0

|b̂|W�+1−j,∞(K̂)|q̂|Wj,∞(K̂) ≤ C

�−1∑
j=0

|b̂|W�+1−j,∞(K̂)|q̂|Hj(K̂),

|b̂q̂|W�,∞(K̂) ≤ C

�∑
j=0

|b̂|W�−j,∞(K̂)|q̂|Wj,∞(K̂) ≤ C

�−1∑
j=0

|b̂|W�−j,∞(K̂)|q̂|Hj(K̂). (A.38)

We obtain the following estimate for the first term of the right hand side of (A.37):

|Ê(b̂q̂Π̂p̂)| ≤ C
( �−1∑

j=0

|b̂|W�+1−j,∞(K̂)|q̂|Hj(K̂)‖p̂‖L2(K̂) +

�−1∑
j=0

|b̂|W�−j,∞(K̂)|q̂|Hj(K̂)|p̂|H1(K̂)

)
. (A.39)

Let us now estimate the second term of the right hand side of (A.37). We define the linear

functional L : W�,∞(K̂)→ R as ψ̂ → L(ψ̂) = Ê(ψ̂(p̂− Π̂p̂)). Using the embedding W�,∞(K̂) ↪→
C0(K̂), and the equivalence of norms in P�−1(K̂), we verify that L ∈ [W�,∞(K̂)]

∗
:

|L(ψ̂)| ≤ C‖ψ̂‖L∞(K̂)‖p̂− Π̂p̂‖L∞(K̂) ≤ C‖ψ̂‖W�,∞(K̂)‖p̂− Π̂p̂‖L2(K̂).

As by assumption L vanishes over P�−1(K̂), Bramble–Hilbert lemma gives, for ψ̂ = b̂q̂,

Ê(b̂q̂(p̂− Π̂p̂)) = |L(b̂q̂)| ≤ C‖L‖[W�,∞(K̂)]
∗ |b̂q̂|W�,∞(K̂) ≤ C‖p̂− Π̂p̂‖L2(K̂)|b̂q̂|W�,∞(K̂).

Using (A.38) and the bound ‖p̂ − Π̂p̂‖L2(K̂) ≤ C|p̂|H1(K̂) (Theorem A.3.3, Π̂ leaves P0(K̂)

invariant), we get

Ê(b̂q̂(q̂ − Π̂q̂)) ≤ C

�−1∑
j=0

|b̂|W�−j,∞(K̂)|q̂|Hj(K̂)|p̂|H1(K̂). (A.40)

Combining (A.36), (A.37), (A.39) and (A.40) with the estimates

|b̂|Wk,∞(K̂) ≤ CHk
K |b|Wk,∞(K) k = 0, . . . , �+ 1,

|q̂|Hj(K̂) ≤ CHj
K | det(BK)|−1/2|q|Hj(K) j = 0, . . . , �− 1,

‖p̂‖L2(K̂) ≤ C| det(BK)|−1/2‖p‖L2(K), |p̂|H1(K̂) ≤ CHK | det(BK)|−1/2|p|H1(K),

(A.41)

obtained thanks to Theorem A.3.2, we get the bound

EK(bqp) ≤ CH�+1
K ‖b‖W�+1,∞(K)‖q‖H�−1(K)|p|H1(K).

To obtain (A.27), we apply this estimate to every term in a∇q · ∇p =
∑

ij aij∂jq∂ip, where
∂jq, ∂ip ∈ P�−1(K) and that completes the proof. �

Proof of Theorem A.3.9 iii). The proof follows the same lines as the proof of ii) with f = q ∈
W�+1,∞(K) and the following changes. Using the equivalence of norms in P�(K̂) in (A.33) and
(A.35), we obtain respectively

|Ê(q̂Π̂p̂)| ≤ C
(
|q̂|H�+1(K̂)‖p̂‖L2(K̂) + |q̂|H�(K̂)|p̂|H1(K̂)

)
,

|Ê(q̂(p̂− Π̂p̂))| ≤ C
(
|q̂|H�−1(K̂) + |q̂|H�(K̂)

)
|p̂|H2(K̂),
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where we note that |q̂|H�+1(K̂) = 0. The proof is then completed by combining these estimates

with (A.30), (A.32) and bounds as in (A.41). �

We are now able to prove an optimal a priori error estimate in the L2 norm.

Theorem A.3.11. Assume that d ≤ 3 and that the data in (A.13) satisfy the regularity a ∈
[W�,∞(Ω)]d×d and f0, f1 ∈ Hm+�+1(Ω) for some m ≥ d/4. Let u be the solution of (A.13) and
uH be the solution of (A.23). Then the following error estimate holds

‖u− uH‖L2(Ω) ≤ CH�+1
(
max
ij

‖aij‖W�+1,∞(Ω) + ‖f0‖Hm+�+1(Ω) + ‖f1‖Hm+�+1(Ω)

)
‖u‖H�+1(Ω),

(A.42)
where C is independent of H.

Proof. First, as discussed for Theorem A.3.7, a Sobolev embedding ensures f0, f1 ∈ Hm+�+1(Ω) ↪→
W�+1,4(Ω) and as q = 4 > d/� for any � ≥ 1, f0 and f1 satisfy the regularity assumption of
Theorem A.3.9 i). To prove the estimate, we apply the Aubin–Nitsche argument (see Theorem
A.3.4). We write the error in the L2 norm as

‖u− uH‖L2(Ω) = sup
g∈L2(Ω)

{
‖g‖−1

L2(Ω)|(u− uH , g)L2(Ω)|
}
. (A.43)

Let us fix g ∈ L2(Ω) and define ϕg ∈ V as the unique solution to the elliptic problem A(v, ϕg) =
(g, v)L2(Ω) ∀v ∈ V . Elliptic regularity ensures that ‖ϕg‖H2(Ω) ≤ C‖g‖L2(Ω). Next, we use the
definition of ϕg and equations (A.13) and (A.23) to write for any vH ∈ VH

|(u− uH , g)L2(Ω)| = |A(u− uH , ϕg)|
≤ |A(u− uH , ϕg − vH)|+ |〈f, vH〉 − 〈fH , vH〉|+ |AH(uH , vH)−A(uH , vH)|.

(A.44)

Let us estimate the three terms of the right hand side for vH = IHϕg. Using (A.19) we have
‖ϕg − IHϕg‖H1(Ω) ≤ C‖ϕg‖H̄2(Ω), and thus the first term satisfies

A(u−uH , ϕ−IHϕg) ≤ Λ‖u−uH‖H1(Ω)‖ϕg−IHϕg‖H1(Ω) ≤ CH‖u−uH‖H1(Ω)‖ϕg‖H2(Ω). (A.45)

To bound the second term, we use Theorem A.3.9 ii) to obtain

|〈f, IHϕg〉 − 〈fH , IHϕg〉| ≤ CH�+1
(
‖f0‖Hm+�+1(Ω) + ‖f1‖Hm+�+1(Ω)

)
‖IHϕg‖H̄2(Ω)

≤ CH�+1
(
‖f0‖Hm+�+1(Ω) + ‖f1‖Hm+�+1(Ω)

)
‖ϕg‖H2(Ω), (A.46)

where we also used (A.19) for the bound

‖IHϕg‖H̄2(Ω) ≤ ‖ϕg − IHϕg‖H̄2(Ω) + ‖ϕg‖H̄2(Ω) ≤ C‖ϕg‖H2(Ω).

To bound the third term, we first rewrite it as

AH(uH , vH)−A(uH , vH) = AH(uH−IHu, vH)−A(uH−IHu, vH)+AH(IHu, vH)−A(IHu, vH),

and then use Theorem A.3.6 i) and Theorem A.3.9 i) to get

|AH(uH , IHϕg)−A(uH , IHϕg)| ≤CHmax
ij

‖aij‖W1,∞(Ω)‖uH − IHu‖H1(Ω)‖ϕg‖H1(Ω)

+ CH�+1 max
ij

‖aij‖W�+1,∞(Ω)‖u‖H�(Ω)‖ϕg‖H2(Ω), (A.47)

where again we used (A.19) to bound ‖IHϕg‖H̄j(Ω) ≤ C‖ϕg‖Hj(Ω), j = 1, 2 and ‖IHu‖H̄�(Ω) ≤
C‖u‖H�(Ω). We now combine (A.44), (A.45), (A.46) and (A.47) with the triangle inequality
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‖uH − IHu‖H1(Ω) ≤ ‖u− IHu‖H1(Ω) + ‖u− uH‖H1(Ω) and recall that ‖ϕg‖H2(Ω) ≤ C‖g‖L2(Ω) to
obtain

|(u− uH , g)L2(Ω)| ≤ CH‖u− uH‖H1(Ω)‖g‖L2(Ω)

+ CH�+1
(
‖f0‖Hm+�+1(Ω) + ‖f1‖Hm+�+1(Ω) +max

ij
‖aij‖W�+1,∞(Ω)

)
‖u‖H�+1(Ω)‖g‖L2(Ω).

Finally, we use (A.43) and Theorem A.3.7 to prove (A.42) and the proof is complete.

A.4 Trigonometric interpolation and spectral methods

The spectral method, is extremely accurately method to approximate smooth solutions. Indeed,
under some high regularity requirements, the approximation is proved to reach so-called spectral
accuracy as their rate of approximation is exponential. The analysis of the spectral method
relies essentially on the study of interpolation by trigonometric polynomials, which are the
Fourier basis functions. In this section, we prove error estimates for the interpolation of periodic
functions by trigonometric polynomials. In particular, we define a Sobolev norm based on the
Fourier coefficients that allow to track the dependence of the estimate on the domain. We
refer to [59, 68, 69, 58, 89, 29, 25, 63] for the full theory on spectral method and to [91] for its
implementation. Trigonometric polynomials can also simply be used to differentiate smooth
functions. We also give simple Matlab implementations of the Fourier differencing method and
the spectral method for the wave equation (introduced in Section 2.3). The code uses the Fast
Fourier Transform (FFT) algorithm (see [62], [56]).

A.4.1 Basics of Fourier analysis for periodic functions

The fundamental question of Fourier analysis, is to ask what functions can be written as a linear
combination of smooth trigonometric functions. This question has been studied extensively in the
19th and 20th centuries. Many advances were done until finally the following famous result was
proved by Lennart Carleson in [31]: for Ω ⊂ R, any v ∈ L2

per(Ω) coincides with its Fourier series
in L2(Ω) (i.e. almost everywhere in Ω). This result was then generalized to several dimensions
in [50, 49]. A considerable literature is available on Fourier analysis and its applications (for
example [88, 55]). We introduce here only the objects and results needed in the scope of this
thesis, which is a non exhaustive part of this vast topic.

Let Ω ⊂ Rd be a periodic hypercube, Ω = (a1, b1) × · · · × (ad, bd) and denote FΩ the bijective
affine mapping

FΩ : Rd → Rd, x̂ → FΩ(x̂) = BΩx̂+ a, (A.48)

where BΩ is the diagonal matrix defined as (BΩ)jj = (bj−aj)/(2π). We verify that FΩ((0, 2π)
d) =

Ω. We consider the Fourier basis of L2
per(Ω) denoted {wk}k∈Zd . Explicitly, for k ∈ Zd, k �= 0

wk(x) = CΩ

d∏
ν=1

exp

(
ikν

2π(xν − aν)

bν − aν

)
= CΩe

ik·F−1
Ω (x),

where the scaling CΩ = |Ω|−1/2 =
(∏d

ν=1 bν − aν
)−1/2

, ensures that the basis {wk}k∈Zd is

orthonormal. Hence, for any v ∈ L2
per(Ω) the equality

v =
∑
k∈Zd

(v, wk)L2wk in L2
per(Ω). (A.49)

The right term in equality (A.49) is known as the Fourier series or Fourier expansion of v. It is
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more commonly written as

v(x)
L2

=
∑
k∈Zd

v̂(k)eik·F
−1
Ω (x), v̂(k) =

1

|Ω|

∫
Ω

v(x)e−ik·F−1
Ω (x) dx. (A.50)

Remark A.4.1. As the index of the series in (A.49) and (A.50) belongs to Zd, we need to
explain the meaning of the limit, i.e., we have to define what its partial sum is. As discussed in
[49], (A.49) does not hold for any definition of partial sum (e.g. taking the limit successively with
respect to each dimension leads to counter examples of (A.49)). We follow here [50, 49] to define
the meaning of the series

∑
k∈Zd Ak, where {Ak}k∈Zd is a sequence indexed by a multi-index

k ∈ Zd. Let P be an open polygon of Rd containing the origin and let Pλ = {λx : x ∈ P} ⊂ Rd

for some λ > 0. We define the partial sum Sλ and the corresponding series S as

Sλ =
∑

k∈λP∩Zd

Ak, S = lim
λ→∞

Sλ. (A.51)

The series S is denoted
∑

k∈Zd Ak.

From (A.49) and the orthogonality of the basis {wk}k∈Zd follows Plancherel formula

‖v‖2L2(Ω) =
∑
k∈Zd

|(v, wk)L2(Ω)|2 = |Ω|
∑
k∈Zd

|v̂(k)|2. (A.52)

Let us use this formula to define Sobolev norms that are convenient in the context of this
thesis. For simplicity consider first the periodic hypercube Ω = Td = (0, 2π)d (so that FΩ = Id).
Note that the Fourier coefficients of the derivatives of v ∈ Hs(Td) are given by (see (A.50))

∂̂αv(k) = (ik)αv̂(k), where kα = kα1
1 · · · kαd

d . We can thus write the Hs seminorm as

|v|2Hs(Td) =
∑
k∈Zd

∑
|α|1=s

k2α|v̂(k)|2.

Note that by convention the notation | · | denotes in general the 2-norm, i.e., |x| =
√
x21 + . . .+ x2d

for x ∈ Rd. For multiindices in Nd, | · |1 denotes the 1-norm, i.e., |α|1 = |α1| + . . . + |αd| for
α ∈ Nd. The multinomial formula gives

|k|2s = (k21+. . .+k
2
d)

s =
∑

|α|1=s

(
s

α

)
k2α =

∑
|α|1=s

(
s

α1 · · ·αd

)
k2α1
1 · · · k2αd

d ,

(
s

α

)
=

s!

α1! · · ·αd!
.

As
(
s
α

)
≥ 1 for all |α|1 = s, we verify that∑

|α|1=s

k2α ≤ |k|2s ≤ C(d, s)
∑

|α|1=s

k2α, (A.53)

where C(d, s) = max|α|1=s

(
s
α

)
. This relation ensures that the quantity

|v|2
H̃s(Td)

=
∑
k∈Zd

|k|2s|v̂(k)|2,

is a seminorm equivalent to | · |2Hs(Td): |v|Hs(Td) ≤ |v|H̃s(Td) ≤
√
C(d, s)|v|Hs(Td). For a general

hypercube Ω, the same reasoning leads to the definition

|v|2
H̃s(Ω)

=
∑
k∈Zd

∣∣B−1
Ω k
∣∣2s|v̂(k)|2, (A.54)
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where BΩ is the scaling matrix in FΩ (A.48), i.e., (B−1
Ω k)ν = 2π/(bν − aν)kν . Relation (A.53)

ensures the equivalence

|v|Hs(Ω) ≤ |v|H̃s(Ω) ≤
√
C(d, s)|v|Hs(Ω), (A.55)

where we emphasize that the constant C(d, s) does not depend on Ω. Finally, we define the H̃m

norm as

‖v‖2
H̃s(Ω)

=

s∑
m=0

|v|2
H̃m(Ω)

, (A.56)

and it is equivalent to the standard Hs norm. Note that the classical definition of the Sobolev
norm of order m using Fourier analysis is ‖v‖2 =

∑
k∈Zd

(
1 + |k|2

)m|v̂(k)|2, which is equivalent

to the H̃m norm defined in (A.56). In particular, this definition allow to generalize the Sobolev
space Hs(Ω) of integer order to real orders. However, this is not the purpose here and (A.54) and
(A.56) are more convenient in our analysis, as we want to track the dependence of our estimates
in the domain Ω.

A.4.2 Interpolation of periodic functions by trigonometric polynomials in 1d

In this section, we define the space of trigonometric polynomials in one dimension. In particular,
we define an interpolant for periodic functions and estimate the interpolation error. The proof of
the result is inspired by [89]. Note that the theory is generalized to the multidimensional case
and arbitrary hypercubes in Section A.4.4.

Let us consider a 2π-periodic function v ∈ L2
per(0, 2π). The Fourier expansion (A.50) for v reads

v(x)
L2

=
∑
k∈Z

v̂(k)eikx, v̂(k) =
1

2π

∫ 2π

0

v(x)e−ikx dx. (A.57)

The basis functions eikx are called trigonometric polynomials. Thanks to the properties of the

exponential function, we verify that ∂̂mx v(k) = (ik)mv̂(k). We would like to take advantage of
this relation to approximate the derivatives of v. In that purpose, we need to define a convenient
finite dimensional subspace of L2

per(0, 2π). For a given integer N ∈ N>0, we consider the uniform
grid of (0, 2π) of size h = π/N :

GN = {xn = nh : 0 ≤ n ≤ 2N − 1}.

We verify that the set {(eikx0 , . . . , eikx2N−1)T : k = −N +1, . . . , N} is an orthogonal basis of C2N ,

2N−1∑
n=0

eikxnei�xn =

2N−1∑
n=0

eiπ(k−l)n/N = 2Nδk�. (A.58)

Hence, we first consider the finite dimensional space ṼN (0, 2π) = span{eikx : k = −N +1, . . . , N}.
As ṼN (0, 2π) is a vector space of dimension 2N , its elements are uniquely determined by their
values on the grid GN . Note that in ṼN (0, 2π), the wave number k is treated asymmetrically and
a simple example illustrates why the symmetry should hold. Consider the sawtooth function
p ∈ ṼN (0, 2π), p(x) = eiNx. The function p oscillate smoothly between the values p(xn) = (−1)n
and its derivative is zero at the grid points xn. We thus expect that ∂xp = 0 in ṼN (0, 2π).
However, we verify that ∂xp(x) = iNeiNx in ṼN (0, 2π). To solve this issue we need to symmetrize
the higher wave number and we thus set

VN (0, 2π) = span(BN ), BN =
{
eikx : |k| ≤ N − 1

}
∪
{

1
2 (e

iNx + e−iNx)
}
. (A.59)

249



APPENDIX A. APPENDIX

The sawtooth function p(x) = eiNx does not belong to that space, but we will see that its
interpolant (defined in (A.63)) has a zero derivative in VN (0, 2π). As VN (0, 2π) has dimension
2N , p ∈ VN (0, 2π) is uniquely determined by its value on the grid GN . Furthermore, using (A.58),
we find that p is uniquely written in the basis BN as

p(x) =
∑

|k|≤N−1

p̂ke
ikx+ p̂N

1
2 (e

iNx+e−iNx), p̂k =
1

2N

2N−1∑
n=0

p(xn)e
−ikxn k = −N+1, . . . , N.

As eiNxn = eiπn = e−iNxn , we verify that the values of p on the grid are given by

p(xn) =

N∑
k=−N+1

p̂ke
ikxn 0 ≤ n ≤ 2N − 1. (A.60)

If we extend the definition of p̂k to k = −N , we verify that p̂−N = p̂N and we can thus rewrite
p ∈ VN (0, 2π) as

p(x) =
∑′

|k|≤N

p̂ke
ikx, p̂k =

1

2N

2N−1∑
n=0

p(xn)e
−ikxn |k| ≤ N, (A.61)

where the notation
∑′

indicates that the terms k ∈ {−N,N} are halved. We define the following
inner product and its corresponding norm on VN (0, 2π):

(p, q)h = h

2N−1∑
n=0

p(xn)q(xn), ‖p‖h =
√
(p, p)h ∀p, q ∈ VN (0, 2π). (A.62)

Using the orthogonality of the Fourier basis and the definition of p̂k in (A.61), we verify that for
any p, q ∈ VN (0, 2π), (p, q)L2(0,2π) = (p, q)h.

We have introduced the finite dimensional space of trigonometric polynomials VN (0, 2π). We now
define an interpolant for v ∈ L2

per(0, 2π) onto VN (0, 2π). We define the trigonometric interpolant
IN : L2

per(0, 2π)→ VN (0, 2π) as (compare to (A.61))

INv(x) =
∑′

|k|≤N

v̂ke
ikx, v̂k =

1

2N

2N−1∑
n=0

v(xn)e
−ikxn |k| ≤ N. (A.63)

As we verify that v̂−N = v̂N , INv indeed belongs to VN (0, 2π). Note that v̂k approximates the
Fourier coefficients v̂(k) in (A.57) as

v̂(k) =
1

2π

2N−1∑
n=0

∫ xn+1

xn

v(x)e−ikx dx ≈ 1

2π

2N−1∑
n=0

π

N
v(xn)e

−ikxn = v̂k,

where the integrals are approximated with the forward Euler rule. Let us verify that the interpolant
of the sawtooth function v(x) = eiNx seen earlier has a zero derivative in VN (0, 2π). Indeed, we
compute v̂k = 1 if k = ±N and v̂k = 0 otherwise, and thus ∂xINv(x) = iN(eiNx − e−iNx)/2,
which vanishes on the grid {xn}, so that ∂xINv(x) = 0 in VN (0, 2π).

In [89], an a priori estimate for ‖v − INv‖Hσ(0,2π) is proved for any order σ. Using the same

technique, we prove an estimate of the H̃σ seminorm of the error (the H̃σ seminorm is defined in
(A.54)). This is indeed more convenient in the context of this thesis, as it can be generalized to
an error estimate with an explicit dependence on the domain.
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Theorem A.4.2. Let v be a 2π-periodic function such that v ∈ Hs(0, 2π), for some s > 1/2.
Then, for any σ ≤ s, the trigonometric interpolant IN defined in (A.63) satisfies the estimate

|v − INv|H̃σ(0,2π) ≤ C(s)
1

Ns−σ
|v|H̃s(0,2π), (A.64)

where C(s) =
(
1 + 2

∑∞
�=1(�− 1)−2s

)1/2
.

Note that the constant C(s) in Theorem A.4.2 has a fast decay for 1/2 < s < 1 and C(s) ≤
C(1) =

√
1 + π2/2 for s ≥ 1. Estimate (A.64) implies that if v ∈ C∞per(0, 2π), then ‖∂mx v −

∂mx INv‖L2(0,2π) = O(N−s) for any s and thus ∂mx INv converges to ∂mx v with an arbitrarily large
order of convergence. These are strong theoretical results. In practice however, making use of
the error estimate is difficult as the quantity ‖v‖Hs(0,2π) might be difficult to estimate for large
values of s. For more practical estimate, we refer to [89].

In order to prove Theorem A.4.2, we need the following lemma.

Lemma A.4.3. (Aliasing) Let v be a 2π-periodic function such that v ∈ Hs(0, 2π), with s > 1/2.
Then

v̂k =
∑
�∈Z

v̂(k + 2�N) for |k| ≤ N. (A.65)

Proof. Using (A.57) in the definition of v̂k in (A.63), we have

v̂k =
1

2N

2N−1∑
n=0

(∑
j∈Z

v̂(j)eijxn

)
e−ikxn =

∑
j∈Z

v̂(j)

(
1

2N

2N−1∑
n=0

e2πin
j−k
2N

)
.

We define the set of index S = {j ∈ Z : j = k + 2�N for some � ∈ Z} and Sc = Z\S. For j ∈ S,
we have � = j−k

2N ∈ Z and thus e2πin
j−k
2N = e2πin� = 1. For j ∈ Sc, we have a = j−k

2N /∈ Z and

thus e2πina �= 1. Hence, for j ∈ Sc we have
∑2N−1

n=0 e2πina = 1−e2πi2Na

1−e2πia = 0, as we verify that
2Na = j − k ∈ Z. Finally, we obtain

v̂k =
∑
j∈S

v̂(j)

(
1

2N

2N−1∑
n=0

e2πin
j−k
2N

)
=
∑
j∈S

v̂(j) =
∑
�∈Z

v̂(k + 2�N),

which proves (A.65) and completes the proof of the lemma.

Proof of Theorem A.4.2. Using (A.63) and Lemma A.4.3, we write

INv(x) =
∑′

|k|≤N

v̂(k)eikx +
∑′

|k|≤N

(∑
��=0

v̂(k + 2�N)

)
eikx.

Using (A.57), we compute explicitly the error as

(v−INv)(x) = −
∑

|k|<N

(∑
�∈Z

v̂(k+2�N)

)
eikx+

∑
|k|=N

1

2

(
v̂(k)−

∑
��=0

v̂(k+2�N)

)
eikx+

∑
|k|>N

v̂(k)eikx.

Then, the H̃σ norm of the error satisfies (see (A.56))

|v − INv|2H̃σ ≤
∑′

|k|≤N

|k|2σ|v̂(k)|2 +
∑′

|k|≤N

|k|2σ
∣∣∣∑
��=0

v̂(k + 2�N)
∣∣∣2 =: E1 + E2. (A.66)
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As σ ≤ s, the first term can be bounded as

E1 ≤
∑′

|k|≥N

1

|k|2(s−σ)
|k|2s|v̂(k)|2 ≤ 1

N2(s−σ)
‖v‖2

H̃s . (A.67)

Let us estimate the second term E2. Using Cauchy–Schwartz inequality in �2, we have, for
|k| ≤ N ,∣∣∣∣∑

��=0

v̂(k + 2�N)

∣∣∣∣2 ≤ ( 1

N2s

∑
��=0

1

|k + 2�N |2sN−2s

)(∑
��=0

|k + 2�N |2s|v̂(k + 2�N)|2
)
.

Furthermore, using the reverse triangle inequality, we verify that

|k + 2�N | = |k − (−2�N)| ≥
∣∣|k| − 2|�|N

∣∣ = 2|�|N − |k|,

where we used that for � �= 0 and |k| ≤ N , we have 2|�|N ≥ |k|. As |k|/N ≤ 1, it holds
|k + 2�N |N−1 ≥ 2|�| − 1, and thus,

E2 ≤
2

N2(s−σ)

( ∞∑
�=1

1

(2�− 1)2s

)∑′

|k|≤N

∑
��=0

|k + 2�N |2s|v̂(k + 2�N)|2.

A careful study of the double sum reveals that the only indices appearing twice in the total sum
correspond to k = ±N : indeed, if (k1, �1) = (N, �) and (k2, �2) = (−N, �+ 1) then

k1 + 2�1N = N + 2�N = (−N) + 2(�+ 1)N = k2 + 2�2N.

These double terms are thus exactly removed by
∑′

and thus the double sum is bounded by
‖v‖2

H̃s . We thus obtain

E2 ≤
2

N2(s−σ)

∞∑
�=1

1

(2�− 1)2s
‖v‖2

H̃s ,

which, combined with (A.66) and (A.67), proves estimate (A.64). The proof of the theorem is
complete. �

A.4.3 The Fourier differencing method in one dimension and its implementation

One of the properties of the trigonometric polynomials is that they are easily differentiable. In
particular, the trigonometric interpolant naturally leads to the Fourier differencing method. In
this section, we introduce this method. Note that it is generalized in Section A.4.5.

Recall the definition of the trigonometric interpolant in (A.63). The spectral derivative of a
function is defined as the derivative of its trigonometric interpolant, i.e., for v ∈ Hm

per(0, 2π), we
approximate

∂mx v ≈ ∂mx INv ∈ VN (0, 2π).

For v ∈ Hs+m
per (0, 2π) with s > 1/2, Theorem A.4.2 ensures the error estimate

‖v − INv‖Hm(0,2π) ≤ C
1

Ns
‖v‖Hs+m(0,2π),

and the method converges as N →∞.

Let us explain how to apply the method and actually compute the approximation of the derivatives
of a given function. Let E be the map of evaluation on the grid GN , i.e., v ∈ L2

per(0, 2π) → Ev =
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(v(x0), . . . , v(x2N−1))
T . We have seen in the previous section that E|VN (0,2π) : VN (0, 2π)→ C2N

is an isomorphism. We define the discrete Fourier transform (DFT) as the map Fh : C2N → C2N ,
V → Fh(V ), where

Fh(V )k =
1

2N

2N−1∑
n=0

Vne
−ikxn k = −N + 1, . . . , N.

The inverse DFT (iDFT) is the map F−1
h : C2N → C2N , V̂ → F−1

h (V̂ ), where

F−1
h (V̂ )n =

∑′

|k|≤N

V̂ke
ikxn n = 0, . . . , 2N − 1.

With these definitions, equality (A.60) reads

(Ep)n =

N∑
k=−N+1

(
Fh ◦ E(p)

)
k
eikxn 0 ≤ n ≤ 2N − 1.

Let us define the map of differentiation in the Fourier space as D̂m : C2N → C2N , V̂ → DV̂ ,
where

(D̂mV̂ )k = (ik)mV̂k |k| ≤ N − 1, (D̂mV̂ )N = 0, if m is odd,

(D̂mV̂ )k = (ik)mV̂k k = −N + 1, . . . , N, if m is even.

Finally, we define the differentiation map as

Dm : C2N → C2N , V → DmV = F−1
h ◦ D̂m ◦ Fh(V ).

For a function v ∈ Hm
per(0, 2π), the approximation of ∂mx v is then defined as

∂xINv = (E|VN (0,2π))
−1 ◦Dm ◦ E(v),

and can be computed on the grid GN as

∂mx v(xn) ≈ ∂mx INv(xn) =
(
F−1

h ◦ D̂m ◦ Fh ◦ E(v)
)
n

0 ≤ n ≤ 2N − 1.

Note that the DFT Fh and the iDFT F−1
h can be computed respectively by the fast Fourier trans-

form algorithms (FFT) and inverse fast Fourier transform algorithms (iFFT), whose complexities
are O(N log(N)) (possibly less, depending on the prime decomposition of N , see [62], [56]).

In Program A.1, we present an example of implementation of the Fourier differencing method
using Matlab. Note that the Matlab implementation of iFFt require to shift the vectors in the
Fourier space (see the variable k and Matlab’s help on the function fft). Note that for data in
R, we have the relation v̂−k = v̂k. Some implementations of FFT and iFFT take advantage of
this symmetry to improve the performance by 2. While this feature is not available in the native
Matlab functions, it can be used in the FFTW library (see [56]).

A.4.4 Interpolation of general periodic functions by trigonometric polynomials

In this section, we generalize the theory on trigonometric polynomials introduced in one dimension
in Section A.4.2. We first define the space of trigonometric polynomials defined in the torus Td,
where T = (0, 2π), and then adapt it to any hypercube Ω ⊂ Rd. In particular, we prove an error
estimate for the trigonometric interpolant. We emphasize that thanks to the definition of the
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Program A.1: Matlab implementation of the Fourier differencing method in 1d.

1 % function v and its derivatives

2 v = @(x) exp(sin(x));

3 d1v = matlabFunction( diff(sym(v),’x’) );

4 d2v = matlabFunction( diff(sym(d1v),’x’) );

5 % discretization

6 N = 8;

7 h = pi/N;

8 x = (0:h:(2*pi-h))’;

9 % approximation of the derivatives

10 Ev = v(x);

11 k = fftshift((-N:N-1)’);

12 ifOdd = (k~=N);

13 D1v = real(ifft( 1i*k.*ifOdd .*fft(Ev) ));

14 D2v = real(ifft( (1i*k).^2 .*fft(Ev) ));

15 % error and plots

16 fprintf(’|d1v-D1v|=%g\n’, max(abs(d1v(x)-D1v)));

17 fprintf(’|d2v-D2v|=%g\n’, max(abs(d2v(x)-D2v)));

18 figure;

19 xf = (0:1e-3:2*pi)’;

20 subplot(1,2,1); plot(x,D1v,’bo’,xf,d1v(xf),’k’);

21 subplot(1,2,2); plot(x,D2v,’bo’,xf,d2v(xf),’k’);

particular Sobolev seminorm | · |H̃s , in (A.54), we are able to track the dependence of the estimate
in Ω. For the sake of clarity, we use the convention that x̄ ∈ Td and x ∈ Ω.

We consider a periodic function on the torus Td, v ∈ L2
per(T

d). The Fourier expansion (A.50) for
v is

v(x̄)
L2

=
∑
k∈Zd

v̂(k)eik·x̄, v̂(k) =
1

|Td|

∫
Td

v(x̄)e−ik·x̄ dx̄. (A.68)

For a given N ∈ Nd
>0, we consider a uniform grid of Td

ḠN =
{
x̄n1···nd

= (n1h̄1, . . . , ndh̄d)
T : 0 ≤ n1 ≤ 2N1 − 1, . . . , 0 ≤ nd ≤ 2Nd − 1

}
,

where the mesh size in each direction is h̄ν = π/Nν . We define the finite dimensional space of
trigonometric polynomials as

VN (Td) = spanBN , BN =
{∏d

ν=1 p̄ν(x̄) : p̄ν ∈ BNν

}
, (A.69)

where BNν
is the basis of VNν

(T), the one-dimensional space of trigonometric polynomials of order
Nν defined in (A.59). Using (A.58), we verify that a trigonometric polynomial p ∈ VN (Td) can
be written as (A.72) (with Ω = Td, i.e., FΩ = Id). We thus define the trigonometric interpolant
of v ∈ L2

per(T
d) as

INv(x̄) =
∑′

|k1|≤N1

· · ·
∑′

|kd|≤Nd

v̂k1···kd
eik·x̄, (A.70)

v̂k1···kd
=

1

2N1

2N1−1∑
n1=0

· · · 1

2Nd

2Nd−1∑
nd=0

v(x̄n1···nd
)e−ik1n1h̄1 · · · e−ikdndh̄d −Nν ≤ kν ≤ Nν .

Let us generalize the space of trigonometric polynomials and of the interpolant to any hypercubes.
Let Ω ⊂ Rd be a hypercube given by Ω = (a1, b1)× · · · × (ad, bd). Let FΩ be the bijective affine
mapping

FΩ : Td → Ω, x̄ → FΩ(x̄) = BΩx̄+ a,
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where BΩ is the diagonal matrix defined as (BΩ)jj = (bj − aj)/(2π). For N ∈ Nd
>0, let

GN =
{
xn1···nd

= FΩ(x̄n1···nd
)∀x̄n1···nd

∈ ḠN

}
.

be the uniform grid of Ω. We verify that the size of the grid GN in each direction is hν =
(bν − aν)/(2Nν). The finite dimensional space of trigonometric polynomials in L2

per(Ω) is defined
as

VN (Ω) = span{p = p̄ ◦ F−1
Ω : p̄ ∈ BN}, (A.71)

where BN is defined in (A.69). We verify that p ∈ VN (Ω), can be written as

p(x) =
∑′

|k1|≤N1

· · ·
∑′

|kd|≤Nd

p̂k1···kd
eik·F

−1
Ω (x), (A.72)

p̂k1···kd
=

1

2N1

2N1−1∑
n1=0

· · · 1

2Nd

2Nd−1∑
nd=0

p(xn1···nd
)e−ik1n1h1 · · · e−ikdndhd −Nν ≤ kν ≤ Nν .

We define the following inner product and corresponding norm on VN (Ω)

(p, q)N = h1

2N1−1∑
n1=0

· · ·hd
2Nd−1∑
nd=0

p(xn1···nd
)q(xn1···nd

) ‖p‖N =
√
(p, p)h ∀p, q ∈ VN (Ω).

(A.73)
Using the orthogonality of the Fourier basis and the definition of p̂k1···kd

in (A.72), we can show
that for any p, q ∈ VN (Ω), (p, q)L2(Ω) = (p, q)N .

The trigonometric interpolant L2
per(Ω)→ VN (Ω) is then defined as IΩNv = IN (v ◦ FΩ) ◦ F−1

Ω , i.e.,

IΩNv(x) =
∑′

|k1|≤N1

· · ·
∑′

|kd|≤Nd

v̂k1···kd
eik·F

−1
Ω (x), (A.74)

v̂k1···kd
=

1

2N1

2N1−1∑
n1=0

· · · 1

2Nd

2Nd−1∑
nd=0

v(xn1···nd
)e−ik1n1h̄1 · · · e−ikdndh̄d ,

where we used the fact that v◦FΩ(x̄n1···nd
) = v(xn1···nd

). Note that this definition agrees with the
Fourier expansion given in (A.50), where the change of variables x̄ = F−1

Ω (x) leads to rewriting

v(x)
L2

=
∑
k∈Zd

v̂(k)eik·F
−1
Ω (x), v̂(k) =

1

|Td|

∫
Td

v ◦ FΩ(x̄)e
−ik·x̄ dx̄.

Indeed, observe that v̂k1···kd
≈ v̂(k).

We prove the following generalization of Theorem A.4.2, for d ≤ 3: an estimate of
∣∣v − IΩNv

∣∣
H̃σ

for any order σ (the H̃σ seminorm is defined in (A.54)). In particular, we emphasize that the
constant in (A.75) does not depend on the domain Ω.

Theorem A.4.4. Let d ≤ 3 and assume that the ratio r(N) = Nmax/Nmin is bounded. Let v be
an Ω-periodic function such that v ∈ Hs(Ω), for some s ≥ (d+ 1)/2. Then, for any σ ≤ s, the
trigonometric interpolant IΩN defined in (A.74) satisfies the estimate

∣∣v − IΩNv
∣∣
H̃σ(Ω)

≤ C
r(N)s−σ∣∣B−1
Ω N

∣∣s−σ |v|H̃s(Ω), (A.75)

where C is a constant depending only on d and r(N).
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Proof. For simplicity, we prove the result for Ω = Td. The proof for a general hypercube Ω follows

the same line, with the basis functions eik·F
−1
Ω (x). First, using the properties of the exponential,

we prove the aliasing relation (see Lemma A.4.3).

v̂k1···kd
=
∑
�∈Zd

v̂(k1 + 2�1N1, . . . , kd + 2�dNd) for |k1| ≤ N1, . . . , |kd| ≤ Nd. (A.76)

Let us decompose the index set Zd into the disjoint sets

K> = {k ∈ Zd : |kν | ≥ Nν for at least one ν},
K= = {k ∈ Zd : |kν | = Nν for at least one ν},
K< = {k ∈ Zd : |kν | ≤ Nν for all ν},

and define also K≥ = K> K=, K≤ = K< K=. For k ∈ K=, we denotem(k) = |{ν : |kν | = Nν}|
and verify that m(k) ≥ 1 ∀k ∈ K=. Using the Fourier expansion of v in (A.50), the definition of
IΩN (A.70), and the aliasing relation (A.76), we write

(v − INv)(x̄) = −
∑

k∈K>

(∑
�∈Z

v̂(k + 2�N)

)
eikx̄

+
∑

k∈K=

(
1
2

)m(k)
(
v̂(k)−

∑
��=0

v̂(k + 2�N)

)
eikx̄ +

∑
k∈K<

v̂(k)eikx̄.

Using the inequality (a+ b)2 ≤ 2(a2 + b2) and the fact that 2(1/2)2m(k) ≤ 1/2, we obtain

|v − INv|2H̃σ ≤
∑′

k∈K≥

|k|2σ|v̂(k)|2 +
∑′

k∈K≤

|k|2σ
∣∣∣∑
��=0

v̂(k + 2�N)
∣∣∣2 =: E1 + E2, (A.77)

where we used the shortened notation (k + 2�N)ν = kν + 2�νNν and the multiindex � is summed
over Zd\{0}. For k ∈ K≥ we have |k| ≥ Nmin. Hence, as σ ≤ s, we estimate E1 as

E1 =
∑′

k∈K≥

1

|k|2(s−σ)
|k|2s|v̂(k)|2 ≤ 1

N
2(s−σ)
min

|v|2
H̃s(Td)

≤ (d1/2r(N))2(s−σ)

|N |2(s−σ)
|v|2

H̃s(Td)
, (A.78)

where we used the bound |N |2 ≤ dN2
max, which implies N−2

min = N−2
maxr(N)2 ≤ |N |−1dr(N)2. In

order to bound E2, we first use Cauchy–Schwartz in �2 to get∣∣∣∣∑
��=0

v̂(k + 2�N)

∣∣∣∣2 ≤ (∑
��=0

|k + 2�N |2s
∣∣v̂(k + 2�N)

∣∣2)( 1

|N |2s
∑
��=0

1

|k + 2�N |2s|N |−2s

)
, (A.79)

where we need to show that the second series converges. Using the reverse triangle inequality,
and as kν ≤ 2�νNν for k ∈ K≤, we have

|k + 2�N | ≥ d−1/2
d∑

ν=1

|kν + 2�νNν | ≥ d−1/2
d∑

ν=1

∣∣|kν | − 2|�ν |Nν

∣∣ = d−1/2
d∑

ν=1

2|�ν |Nν − |kν |.

Note that Nν |N |−1 ≥ Nmind
−1/2N−1

max = d−1/2r(N)−1 and |kν |/|N | ≤ |kν |/Nν ≤ 1 ≤ γ (for
k ∈ K≤) for any γ ≥ 1. Consequently,

|k + 2�N ||N |−1 ≥ d−1/2
d∑

ν=1

(
2|�ν |d−1/2r(N)−1 − γ

)
= d−1r(N)−1

(
2|�|1 − γd3/2r(N)

)
,
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where |�|1 =
∑d

ν=1 |�ν | is the 1-norm of the multiindex �. Fixing 1 ≤ γ ≤ 2 such that
γd3/2r(N)/2 /∈ N>0, and denoting the constant c = γd3/2r(N), we obtain the bound∑

��=0

1

|k + 2�N |2s|N |−2s
≤
∑
��=0

1

(2|�|1 − c)2s
=: T (d, c, s),

where all the terms of the series T (d, c, s) are well defined. Recall that the partial sum and its limit
are defined in the sense (A.51). Let Pλ be the open ball in �1 of radius λ, Pλ = {x ∈ Rd : |x|1 < λ},
and define Ld(n) as the cardinality of the set {� ∈ Nd : |�|1 = n}. We can then rewrite the partial
sum of T (d, s) as

Tλ(d, c, s) =
∑
�∈Pλ

1

(2|�|1 − c)2s
≤ 2d

�λ�∑
n=0

Ld(n)
1

(2n− c)2s
,

and we have T (d, c, s) = limλ→∞ Tλ(d, c, s). Let us consider the case d = 1, 2, 3 independently.
Assume that d = 1. As L1(n) = 1 for all n, the series converges for s > 1/2 (see the discussion
after Theorem A.4.2) and if s ≥ 1 the limit is bounded independently of s. In the case d = 2, we
count L2(n) = n+ 1 and the series converges for s > 1. If s ≥ (d+ 1)/2 = 3/2, then T (d, c, s)
is bounded independently of s. If d = 3, we count L3(n) = (n + 1)(n + 2)/2 and thus the
limit limλ→∞ Tλ(d, c, s) converges if s > 3/2. If s ≥ (d + 1)/2 = 2, then T (d, c, s) is bounded
independently of s. We thus denote T (d, c) = T (d, c, s). Using (A.79), we obtain the following
estimate for E2

E2 ≤
T (d, c)

|N |2(s−σ)

∑′

k∈K≤

∑
��=0

|k + 2�N |2s
∣∣v̂(k + 2�N)

∣∣2.
As in the proof of Theorem A.64, we verify that the only multiindices appearing twice in the
double sum correspond to kν = ±Nν . Hence, these double terms are exactly removed by

∑′
and

thus the double sum is bounded by |v|2
H̃s . We thus get

E2 ≤
T (d, c)

|N |2(s−σ)
|v|2

H̃s(Td)
,

which, combined with (A.78), proves estimate (A.75) and the proof of the theorem is complete.

A.4.5 The Fourier differencing method in several dimensions and its implementa-
tion

In this section, we generalize the Fourier differencing method presented in one dimension in
Section A.4.3. In particular, we adapt it to functions defined on any multidimensional hypercubes.
The method is based on the theory on trigonometric polynomials derived in the previous section.

Let Ω = (a1, b1)× · · ·× (ad, bd) be a hypercube and let FΩ be the bijective affine mapping defined
as

FΩ : Td → Ω, x̄ → FΩ(x̄) = BΩx̄+ a,

where BΩ is the diagonal matrix defined as (BΩ)jj = (bj − aj)/(2π). For a given multi-index
α ∈ Nd, with |α|1 ≤ m, the spectral derivatives of v ∈ Hm

per(Ω) are the derivatives of the
trigonometric interpolant of v, defined in (A.74), i.e,

∂αx v(x) ≈ ∂αx I
Ω
Nv(x) = Jα∂αx̄

(
IN (v ◦ FΩ)

)
(F−1

Ω x) ∈ VN (Ω),

where Jν = (2π)/(bν − aν) is the ν-th diagonal of B−1
Ω . For v ∈ Hs+m(Ω), where s ≥ (d+ 1)/2,

Theorem A.4.4 gives the error estimate

‖∂αx v − ∂αx I
Ω
Nv‖L2(Ω) ≤ C

r(N)s

|B−1
Ω N |s

|v|H̃s+m(Ω),
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where r(N) = Nmax/Nmin. Consequently, the method converges if all Nν →∞ simultaneously
(i.e. r(N) stays bounded).

Let us explain how the method is implemented. For N ∈ N>0 let GN = {xn1···nd
}2Nν−1
nν=0 be the

uniform grid of Ω, where the size in each direction is hν = (bν − aν)/(2Nν). Define the map of
evaluation on the grid E : L2

per(Ω)→ C2N1×···×2Nd as v → Ev, where Evn1···nd
= v(xn1···nd

). We

verify that E|VN (Ω) : VN (Ω)→ C2N1×···×2Nd is an isomorphism. We define the (multidimensional)
DFT as the map Fh : C2N1×···×2Nd → C2N1×···×2Nd , V → Fh(V ) given by

Fh(V )k1···kd
=

1

2N1

2N1−1∑
n1=0

· · · 1

2Nd

2Nd−1∑
nd=0

Vn1···nd
e−ik1n1h1 · · · e−ikdndhd , (A.80)

for kν = −Nν + 1, . . . , Nν , and the (multidimensional) inverse DFT as the map F−1
h :

C2N1×···×2Nd → C2N1×···×2Nd , V̂ → F−1
h (V̂ ) given by

F−1
h (V̂ )n1···nd

=

N1∑
k1=−N1+1

· · ·
Nd∑

kd=−Nd+1

V̂k1···kd
eik1n1h1 · · · eikdndhd .

Note that the multidimensional DFT and iDFT can be computed using FFT and iFFT algo-
rithms. Let us also define the map of differentiation in the Fourier space D̂m

ν : C2N1×···×2Nd →
C2N1×···×2Nd , V̂ → D̂m

ν V̂ , where

(D̂m
ν V̂ )k1···kd

= (ikν)
mV̂k1···kd

|kν | ≤ Nν − 1, (D̂m
ν V̂ )k1···kd

= 0 kν = Nν , if m is odd,

(D̂m
ν V̂ )k1···kd

= (ikν)
mV̂k1···kd

if m is even.

Then, the spectral differentiation map Dm
ν is

Dm
ν : C2N1×···×2Nd → C2N1×···×2Nd , V → Dm

ν V =
( 2π

bν − aν

)m
F−1

h ◦ D̂m
ν ◦ Fh(V ). (A.81)

For a multi-index α ∈ Nd
>0, the derivative of v ∈ L2

per(Ω) is then approximated on the grid GN as

∂αx v(xn1···nd
) ≈ ∂αx I

Ω
Nv(xn1···nd

) =
(
Dα1

1 ◦ · · · ◦Dαd

d (Ev)
)
n1···nd

.

In Program A.2, we present an example of implementation of the Fourier differencing method
using Matlab. Note that the Matlab implementation of iFFT require to shift the vectors in the
Fourier space (see k1, k2 and Matlab’s help for the function fft). The implementation takes
advantage of the fact that to compute Dm

ν , the maps DFT and iDFT can be performed only in the
direction ν. To approximate the mixed derivative ∂212v(xn), the DFT has to be computed along
both directions and for the iDFT, we use the fact that ifft2(V) = ifft(ifft(V,[],1),[],2).
As in 1d, Matlab does not allow to take advantage of the symmetry v̂−k = v̂k satisfied by real
valued functions v and the FFTW library [56] can be used to speed up the computations.

A.4.6 Finite dimensional space for the approximation of periodic partial differential
equations

The space of trigonometric polynomials, defined in Section A.4.4, is at the center of the definition
of the spectral method. The use of spectral methods is particularly judicious for the approximation
of smooth PDEs with periodic boundary conditions. In this section, we define the variational
settings of the spectral method. In particular, we define the finite dimensional subspace of
approximation and provide the corresponding error estimates for the corresponding interpolation
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Program A.2: Matlab implementation of the Fourier differencing method in 2d.

1 % domain and jacobian

2 Om = [-1 1 ; -2 2];

3 J = 2*pi./(Om(:,2)-Om(:,1));

4 % function v, its derivatives

5 v = @(x,y) exp(sin(pi*x)).*cos(pi*y);

6 d1v = matlabFunction( diff(sym(v),’x’) );

7 d2v = matlabFunction( diff(sym(v),’y’) );

8 d11v = matlabFunction( diff(sym(d1v),’x’) );

9 d12v = matlabFunction( diff(sym(d2v),’x’) );

10 d22v = matlabFunction( diff(sym(d2v),’y’) );

11 % discretization

12 N = [5 ; 10];

13 h = (Om(:,2)-Om(:,1))./(2*N);

14 x1 = (Om(1,1):h(1):Om(1,2)-h(1))’;

15 x2 = (Om(2,1):h(2):Om(2,2)-h(2))’;

16 [X1,X2] = meshgrid(x1,x2); X1 = X1’; X2 = X2’;

17 Eval = @(w) reshape( w(X1(:),X2(:)) , 2*N’);

18 % spectral differentiation

19 k1 = repmat( fftshift((-N(1):N(1)-1)’) ,[1,2*N(2)]);

20 k2 = repmat( fftshift((-N(2):N(2)-1) ) ,[2*N(1),1]);

21 ifOdd1 = (k1~=-N(1));

22 ifOdd2 = (k2~=-N(2));

23 Ev = Eval(v);

24 fft1_Ev = fft(Ev,[],1);

25 fft2_Ev = fft(Ev,[],2);

26 fft12_Ev = fft(fft1_Ev,[],2);

27 D1v = J(1) *real(ifft( 1i*k1.*ifOdd1.*fft1_Ev ,[],1));

28 D2v = J(2) *real(ifft( 1i*k2.*ifOdd2.*fft2_Ev ,[],2));

29 D11v = J(1)^2*real(ifft( (1i*k1).^2.*fft1_Ev ,[],1));

30 D22v = J(2)^2*real(ifft( (1i*k2).^2.*fft2_Ev ,[],2));

31 D12v = J(1)*J(2)*real(ifft2( (1i*k1).*ifOdd1.*(1i*k2).*ifOdd2.*fft12_Ev ));

32 % errors

33 Ed1v = Eval(d1v); Ed2v = Eval(d2v);

34 fprintf(’|Ed1v-D1v|=%g\n’, max(abs(Ed1v(:)-D1v(:))));

35 fprintf(’|Ed2v-D2v|=%g\n’, max(abs(Ed2v(:)-D2v(:))));

36 Ed11v = Eval(d11v); Ed12v = Eval(d12v); Ed22v = Eval(d22v);

37 fprintf(’|Ed11v-D11v|=%g\n’, max(abs(Ed11v(:)-D11v(:))));

38 fprintf(’|Ed12v-D12v|=%g\n’, max(abs(Ed12v(:)-D12v(:))));

39 fprintf(’|Ed22v-D22v|=%g\n’, max(abs(Ed22v(:)-D22v(:))));
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theory. These settings used are used in Sections 7.2 and 2.3, where spectral method for hyperbolic
PDEs are analyzed.

Let us assume that the solution of interest belongs to Wper(Ω), where Ω is a periodic hypercube
of Rd (d ≤ 3), Ω = (a1, b1)× · · · × (ad, bd). We denote FΩ the bijective affine mapping

FΩ : Td → Ω, x̄ → FΩ(x̄) = BΩx̄+ a,

where BΩ is the diagonal matrix defined as (BΩ)jj = (bj − aj)/(2π). We define the finite
dimensional subspace of Wper(Ω)

V̊N (Ω) = VN (Ω) ∩Wper(Ω),

where VN (Ω) is the finite dimensional space of trigonometric polynomials defined in (A.71).
Note that the condition 〈vN 〉Ω = 0 is satisfied if and only if the coefficient of the basis function
w0···0(x) = 1 is zero, i.e., V̊N (Ω) = span(BN\{w0···0}) (BN is also defined in (A.71)). We define
then the interpolant onto V̊N (Ω), I̊ΩN : Wper(Ω)→ V̊N (Ω), as

I̊ΩNv = IΩNv − 〈IΩNv〉Ω, (A.82)

where IΩN is the trigonometric interpolant defined in (A.74). Now, we verify that for v ∈
Wper(Ω)∩ ∈ Hs(Ω), where s ≥ (d+ 1)/2, we have

|〈IΩNv〉Ω| ≤ C
r(N)s−σ∣∣B−1
Ω N

∣∣s−σ |v|H̃s(Ω),

where r(N) = Nmax/Nmin and C is a constant depending only on d. The proof is similar to the
first part of the proof of Theorem A.4.4 (it corresponds to the aliasing error of v, see (A.76)).
Thus, combining this estimate with Theorem A.4.4 and (A.55), we obtain the following estimate
for I̊ΩN .

Theorem A.4.5. Let d ≤ 3 and assume that the ratio r(N) = Nmax/Nmin is bounded. Let v be
a zero mean Ω-periodic function such that v ∈Wper(Ω) ∩Hs(Ω), for some s ≥ (d+ 1)/2. Then,

for any σ ≤ s, the interpolant I̊ΩN , defined in (A.82), satisfies the estimate

∣∣v − I̊ΩNv
∣∣
Hσ(Ω)

≤ C
r(N)s−σ∣∣B−1
Ω N

∣∣s−σ |v|Hs(Ω), (A.83)

where C is a constant depending only on s, d and r(N).

We emphasize that the constant C in (A.83) is independent of the domain Ω. Furthermore,
the presence of B−1

Ω confirms the instinctive idea that the number of point in the grid must be
increased if the domain grows.

A.4.7 Implementations of the spectral method and of the Fourier method

In this section, we list two codes for the approximation of the wave equation and of the Boussinesq
equation with constant coefficients. First, Program A.3 presents an implementation of the
spectral method for the wave equation, analyzed in Section 2.3. Second, Program A.4 presents
an implementation of the Fourier method for constant coefficients PDEs, defined in Section 2.4.
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Program A.3: Matlab implementation of the spectral method defined in Section 2.3.

1 % time, epsilon & initial data

2 T = 5; epsilon = 0.1;

3 g0 = @(x,y) exp( -(x.^2 +y.^2)/0.05 );

4 % constant coefficents operators

5 a11 = @(x,y) 1-0.5*sin(pi*x).*sin(pi*y);

6 a22 = @(x,y) 1-0.5*sin(pi*x).*sin(pi*y);

7 % domain & jacobian

8 Om = [-2,2; -2,2]; J = 2*pi./(Om(:,2)-Om(:,1));

9 % discretization

10 N = ceil((Om(:,2)-Om(:,1))./(1*epsilon)); h = (Om(:,2)-Om(:,1))./(2*N);

11 x1 = (Om(1,1):h(1):Om(1,2)-h(1))’; x2 = (Om(2,1):h(2):Om(2,2)-h(2))’;

12 [X1,X2] = meshgrid(x1,x2); X1 = X1’; X2 = X2’;

13 Eval = @(w) reshape( w(X1(:),X2(:)) , 2*N’);

14 % differentiation map & operator A

15 k1 = J(1)*repmat( fftshift((-N(1):N(1)-1)’) ,[1,2*N(2)]);

16 k2 = J(2)*repmat( fftshift((-N(2):N(2)-1) ) ,[2*N(1),1]);

17 ifOdd1 = (k1~=-N(1)); ifOdd2 = (k2~=-N(2));

18 D1 = @(V) J(1)*real(ifft( 1i*k1.*ifOdd1.*fft(V,[],1) ,[],1));

19 D2 = @(V) J(2)*real(ifft( 1i*k2.*ifOdd2.*fft(V,[],2) ,[],2));

20 A11 = Eval(a11); A22 = Eval(a22);

21 apply_A = @(V) D1(A11.*D1(V)) + D2(A22.*D2(V));

22 % time integration with the leap frog method

23 U = Eval(g0); V = U + 0.5*dt^2*apply_A(U);

24 dt =min(h)/20; Ntime =ceil(T/dt); DTshow =0.01; nshow =ceil(DTshow/dt);

25 fig =figure; axlim =[Om(1,:),Om(2,:),[-1 1]];

26 for n=1:Ntime

27 V = V + dt*apply_A(U)*(1-0.5*(n==1));

28 U = U + dt*V;

29 if mod(n,nshow)==0;

30 if ~ishandle(fig); fprintf(’closed\n’); break; end;

31 mesh(x2,x1,U,’edgecolor’,’k’); axis(axlim); drawnow(); pause(DTshow);

32 end

33 end
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Program A.4: Matlab implementation of the method given in Section 2.4.

1 % time, epsilon & initial data

2 t = 100; epsilon = 0.1;

3 g0 = @(x,y) exp( -(x.^2 +y.^2)/0.05 );

4 % constant coefficents operators

5 opa0 = [1; 0; sqrt(3)/2]; % [a0_11 2a0_12 a0_22]

6 opb0 = [6.3404e-03; 0; 1.0045e-02]; % [b0_11 2b0_12 b0_22]

7 opa2 = [2.9468e-03; 0; 2.2074e-02; 0; 5.4910e-03];

8 % [a2_1111 4a2_1112 6a2_1122 4a2_1222 a2_2222]

9 % domain (based on a0 and t & jacobian

10 Om = [ [-1,1]*sqrt(opa0(1))*t+[-1,1] ; [-1,1]*sqrt(opa0(3))*t+[-1,1] ];

11 J = 2*pi./(Om(:,2)-Om(:,1));

12 % discretization

13 N = ceil((Om(:,2)-Om(:,1))./epsilon);

14 h = (Om(:,2)-Om(:,1))./(2*N);

15 x1 = (Om(1,1):h(1):Om(1,2)-h(1))’;

16 x2 = (Om(2,1):h(2):Om(2,2)-h(2))’;

17 [X1,X2] = meshgrid(x1,x2); X1 = X1’; X2 = X2’;

18 Eval = @(w) reshape( w(X1(:),X2(:)) , 2*N’);

19 % Fourier space indices k

20 k1 = J(1)*repmat( fftshift((-N(1):N(1)-1)’) ,[1,2*N(2)]);

21 k2 = J(2)*repmat( fftshift((-N(2):N(2)-1) ) ,[2*N(1),1]);

22 a0kk = opa0(1)*k1.^2 +opa0(2)*k1.*k2 +opa0(3)*k2.^2;

23 b0kk = opb0(1)*k1.^2 +opb0(2)*k1.*k2 +opb0(3)*k2.^2;

24 a2kkTkkT = opa2(1)*k1.^4 +opa2(2)*k1.^3.*k2 + opa2(3)*k1.^2.*k2.^2 ...

25 +opa2(4)*k1.*k2.^3 + opa2(5)*k2.^4;

26 rk = (a0kk +epsilon^2*a2kkTkkT)./(1 +epsilon^2*b0kk);

27 % approximation of u(t)

28 uN = real(ifft2( fft2(Eval(g0)).*cos(sqrt(rk)*t) ));

29 % display cut

30 cut1 = sqrt(opa0(1))*t +[-3,0.9];

31 icut1 = 1:2*N(1); icut1 = icut1(cut1(1)<=x1 & x1<=cut1(2));

32 cut2 = [max(Om(2,1),-4), min(Om(2,2),4)];

33 icut2 = 1:2*N(1); icut2 = icut2(cut2(1)<=x2 & x2<=cut2(2));

34 figure; surf(x2(icut2),x1(icut1),uN(icut1,icut2)); shading interp;

35 axis([cut2(1:2),cut1(1:2)]); view(2);
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A.5 Leap frog integration in time

The leap frog method is a simple and accurate integrator for the approximation of second order
ordinary differential equations. The advantages of this scheme are diverse. The main one is
its symplecticity, which ensures the (modified) energy associated to the dynamical system is
conserved by the approximation. In addition, the method is explicit when applied to a system of
the form (A.84), and has a second order accuracy. In this section, we prove a stability condition
and the second order of convergence of the method. We refer to [60, 61] for the general theory
(the method is also called the Störmer-Verlet method). For more general scheme with similar
properties, we refer to [57].

Let us consider the second order ODE in Rd

ü(t) = f(u(t)) for a.e. t ∈ (0, T ],

u(0) = u0, u̇(0) = v0,
(A.84)

where f : Rd → Rd is a field and u0, v0 ∈ Rd are given initial conditions. Denoting y(t) =
(u(t), u̇(t))T ∈ R2d, F (y(t)) = (u̇(t), f(u(t)))T and y0 = (u0, v0)T , we verify that (A.84) is
equivalent to the first order ODE R2d

ẏ(t) = F (y(t)) for a.e. t ∈ (0, T )

y(0) = y0.
(A.85)

If f is Lipschitz continuous, then standard theory ensures the existence and uniqueness of a
solution u ∈ C1([0, T ];Rn) to (A.84) (see e.g., [38]).

Let us discretized (A.84) with the leap frog method. For N ∈ N>0, let t
n = nΔt Δt = T/N be

the uniform discretization of the interval [0, T ]. If u is sufficiently regular, Taylor expansion gives

ü(tn) =
u(tn+1)− 2u(tn) + u(tn)

Δt2
+O(Δt2).

Using this approximation in (A.84) leads to the scheme

un+1 = 2un − un−1 +Δt2f(un). (A.86)

Let us define

vn+1/2 =
un+1 − un

Δt
, vn =

un+1 − un−1

2Δt
= vn+1/2 + vn−1/2.

Using this notation, (A.86) can be rewritten as a one step method

vn+1/2 = vn−1/2 +Δtf(un),
un+1 = un +Δtvn+1/2.

(A.87)

Using then (A.87) and the definition of vn leads to the relation 2vn+1/2 = 2vn +Δtf(un) which
is used for the initialization of the scheme (A.87), v1/2 = v0 + Δt

2 f(u
0).

Let us derive a stability condition for the leap frog method (A.86). Consider the linear scalar
equation

ü(t) = λu(t) for a.e. t > 0,

u(0) = u0, u̇(0) = u1,

where λ is an eigenvalue of the jacobian f ′. As the solution of this equation is u(t) = C1e
√
λt +

C2e
√
λt, where C1, C2 depend on u0, u1, the stability domain is {λ ≤ 0}. Applying the method

(A.86), we obtain the recursive relation

un+1 − (2 + λΔt2)un + un−1 = 0, (A.88)
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where u0, u1 are given. Let us find an explicit formula for un. Making the ansatz that un has the
form un = ζn, with ζ ∈ C, we find that ζ must be a root of the polynomial

ρ(ζ) = ζ2 − (2 + λΔt2)ζ + 1.

As the two roots of ρ ζ1, ζ2 satisfy ζ1ζ2 = 1, they can be written as ζ1 = ζ, ζ2 = ζ−1. By linearity,
un = Aζn + Bζ−n satisfies the recursive relation (A.88). If the roots of ρ are not simple, i.e.,
ζ = 1 or −1, we can chose u0, u1 such that |un| = n and the method is unstable (un = n if ζ = 1
and un = (−1)nn if ζ = −1). Hence, the roots have to be simple, i.e., ζ �= ±1. The solution of
(A.88) is thus un = Aζn + Bζ−n, where A,B are such that A+ B = u0 and Aζ + Bζ−1 = u1.
The method is thus stable if and only if |un| =

∣∣Aζn +Bζ−n
∣∣, is bounded for any A,B ∈ R. This

is equivalent to the condition |ζ| = 1, i.e., ζ must lie on the unit circle, i.e., ζ = eiθ. In that case,

λΔt2 = ζ−1ρ(ζ)− 2 = eiθ + eiθ − 2 = 2(cos θ − 1),

and the method is stable if and only if −4 < λΔt2 < 0, i.e., 0 < Δt < 2/
√
−λ.

Let us now prove that under sufficient regularity of f , the approximation yn = (un, vn)T of (A.85)
has order 2. First, we prove that it has local order 2, i.e., there exists a constant C depending on
f, |u0| and |v0| such that

|y(t1)− y1| ≤ CΔt3. (A.89)

To prove (A.89), we use the relation 2vn+1/2 = 2vn + Δtf(un) to rewrite (A.87) as y1 =
y0 +ΔtG(y0), where

G(y0) =

(
v0 + 1

2Δtf(u
0)

1
2

(
f(u0) + f(u1)

)) ,
so that

y(t1)− y1 =

∫ t1

0

F (y(t)) dt−ΔtG(y0).

Using Taylor expansion and (A.84), we compute for t ∈ (0, t1)

G2(y
0) = f(u0) + 1

2Δtf
′(u0)v0 +O(Δt2),∫ t1

0

F1(y(t)) dt =

∫ t1

0

v(t) dt = Δtv0 + 1
2Δt

2f(u0) +O(Δt3),∫ t1

0

F2(y(t)) dt =

∫ t1

0

f(u(t)) dt = Δtf(u0) + 1
2Δt

2f ′(u0)v0 +O(Δt3),

where f ′ denote the Jacobian matrix of f . That proves (A.89). Let us now prove that the local
order (A.89) ensures a global order 2 for the method. For each n = 1, . . . , N , we define

ŷ(tn) = yn−1 +

∫ tn

tn−1

F (y(t)) dt,

where yn−1 is the approximation at the step n− 1. Observe then that if the method is stable,
i.e., |un|, |vn| are bounded, then the estimate (A.89) applies to ŷ(tn)− yn. Using (A.89), we thus
verify that the global error satisfies

∣∣y(T )− yN
∣∣ = ∣∣∣∣y0 + N∑

n=1

∫ tn

tn−1

F (y(t)) dt−
(
y0 +

N∑
n=1

yn − yn−1
)∣∣∣∣ = N∑

n=1

∣∣ŷ(tn)− yn
∣∣

≤ CNΔtΔt2 = CTΔt2,

and the method has order 2.
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