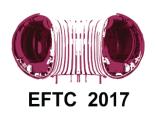
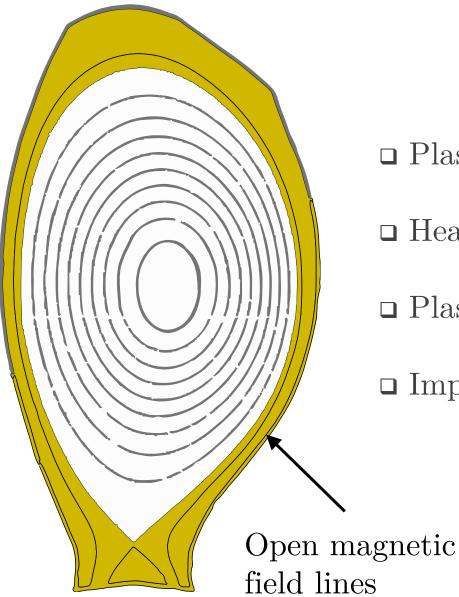
An analytical model for scrape-off layer plasma dynamics at arbitrary collisionality

R. Jorge^{1,2}, P. Ricci¹, N. F. Loureiro³



European Fusion Theory Conference, Athens, October 12, 2017

The Scrape-off Layer (SOL)



□ Plasma boundary conditions

 \square Heat exhaust

□ Plasma fueling and ashes removal

□ Impurity control

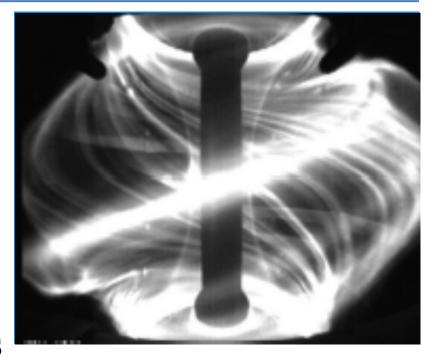
1

Properties of SOL Turbulence

- □ Large structures
- □ Field aligned

$$\rho_i \ll L_\perp \ll L_\parallel$$

No separation between
 equilibrium and fluctuations



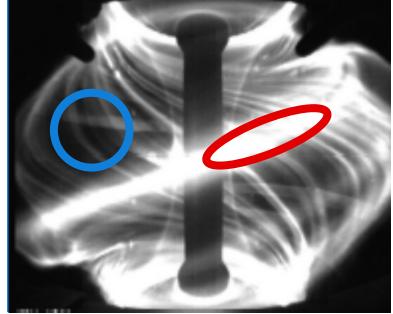
$$\langle n \rangle_t \sim \tilde{n} \qquad \quad L_{\langle n \rangle_t} \sim L_{\tilde{n}}$$

$$\frac{e\phi}{T_e} \sim 1$$

T ~ $5-200~{\rm eV}$

Is the SOL Collisional?

$$\frac{T_e = 5 \text{ eV}}{\frac{\lambda_{\text{mfp}}}{L_{\parallel}}} \simeq 0.002$$

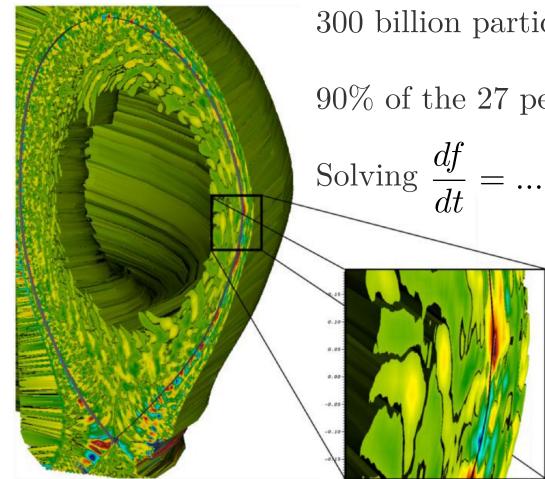


$$T_e = 200 \text{ eV}$$

 $rac{\lambda_{
m mfp}}{L_{\parallel}} \simeq 3$

Extremely different collisionality regimes!

Kinetic Simulations (collisionless + collisional)



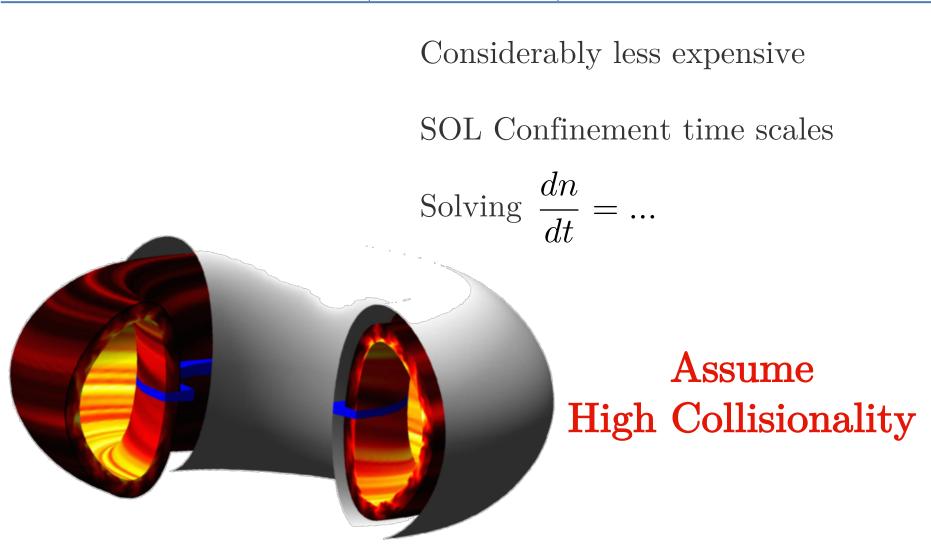
300 billion particles

90% of the 27 petaflop Titan supercomputer

Extremely Expensive

XGC1 code Chang et. al., Nuclear Fusion 57 (2017)

Fluid Simulations (collisional)



GBS code Ricci et. al., Plasma Phys. Controlled Fusion **54** (2012) □ Retain necessary kinetic effects (and no more)

□ Remain numerically tractable

Hierarchy of Fluid Equations

while retaining

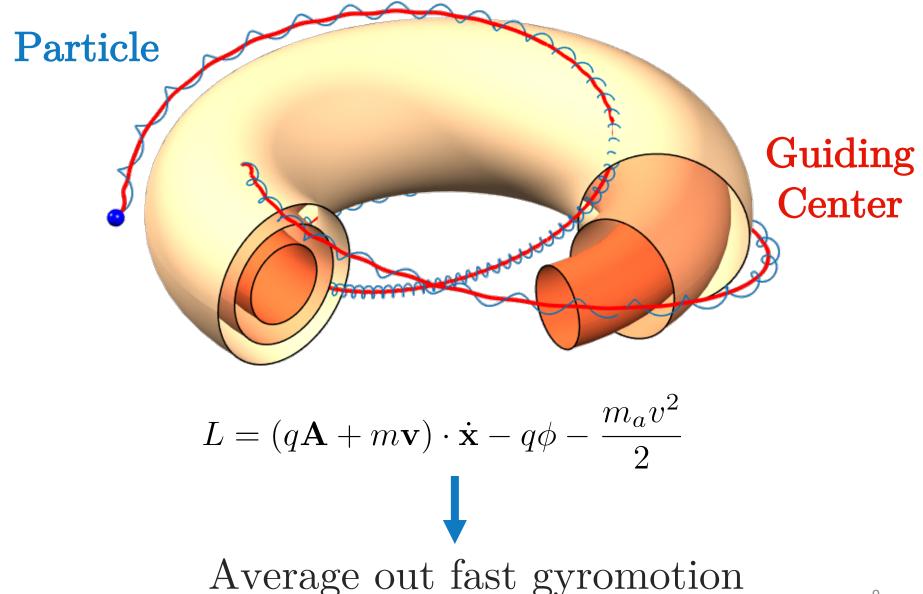
- Full-F, $\langle n \rangle_t \sim \tilde{n}$
- □ Full Coulomb collisions
- □ Simple Maxwellian (collisional) limit

Kinetic Model – Our Ordering AssumptionsSpatial Scale
(Drift-Kinetic)
$$k_{\perp}\rho_i \sim \epsilon$$
Temporal Scale
(low frequency) $\frac{\omega}{\Omega_i} \sim \epsilon$

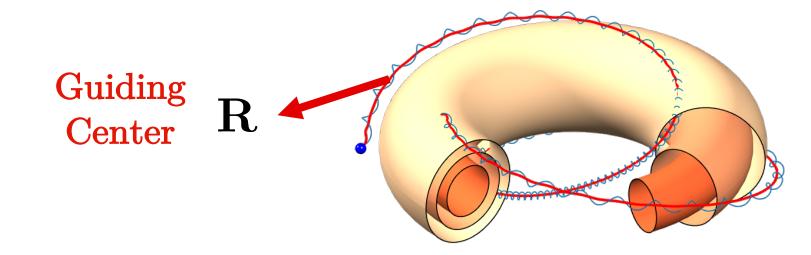
From collisionless to $\frac{\nu}{5}$ collisional (still magnetized)

$$\frac{\nu_{ei}}{\Omega_i} \sim \epsilon_{\nu} \lesssim \epsilon$$

From Full Particle Dynamics to Guiding Center



Guiding Center Equations of Motion



$\dot{\mathbf{R}} = v_{\parallel} \mathbf{b} + \mathbf{v}_{\mathbf{E} \times \mathbf{B}} + \text{Other Drifts}$

 $\dot{v}_{\parallel} = qE_{\parallel} + \mu \nabla_{\parallel}B + \text{Non-Linear Forces}$

$\dot{\mu} = 0$

From Single-Particle to Particle Distribution

Drift-Kinetic Equation

$$\frac{\partial F}{\partial t} + \dot{\mathbf{R}} \cdot \nabla F + \dot{v}_{\parallel} \frac{\partial F}{\partial v_{\parallel}} = \langle C(F) \rangle$$

Challenges

F- Full gyroaveraged distribution function

- \Box 5-D + time
- **G** Full Coulomb Collisions

These challenges can be successfully approached by using a moment hierarchy From DK Equation to Moment Hierarchy

 $\int \mathbf{DK} \, \mathrm{Eq.}(v_{\parallel})^{p}(\mu)^{j} dv_{\parallel} d\mu$

$$(p,j) = (0,0)$$

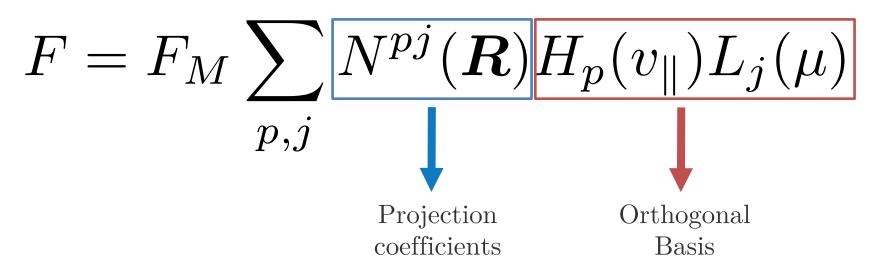
$$\frac{\partial n}{\partial t} = \dots$$

$$(p, j) = (1, 0)$$

$$\frac{\partial u_{\parallel}}{\partial t} = \dots$$

12

Orthogonal Basis for the velocity space



Simple expression for

$$N^{pj}(\mathbf{R}) = \int F \ H_p(v_{\parallel}) L_j(\mu) dv_{\parallel} d\mu$$

= moments of F

Orthogonal with Maxwellian as weighting function

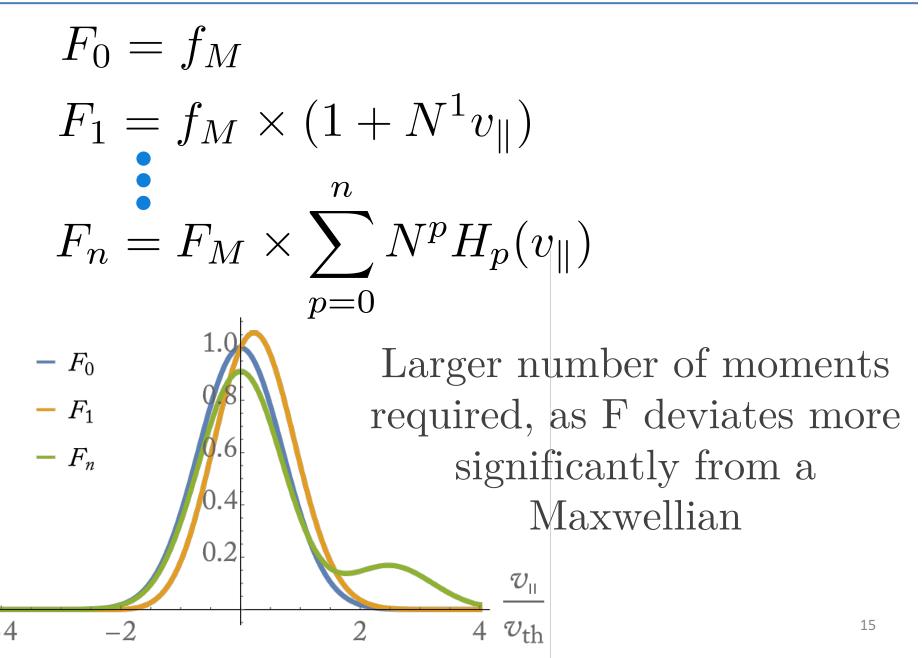
Hermite Polynomials

$$\int H_p(v_{\parallel}) H_l(v_{\parallel}) e^{-v_{\parallel}^2} dv_{\parallel} = \delta_{p,l}$$

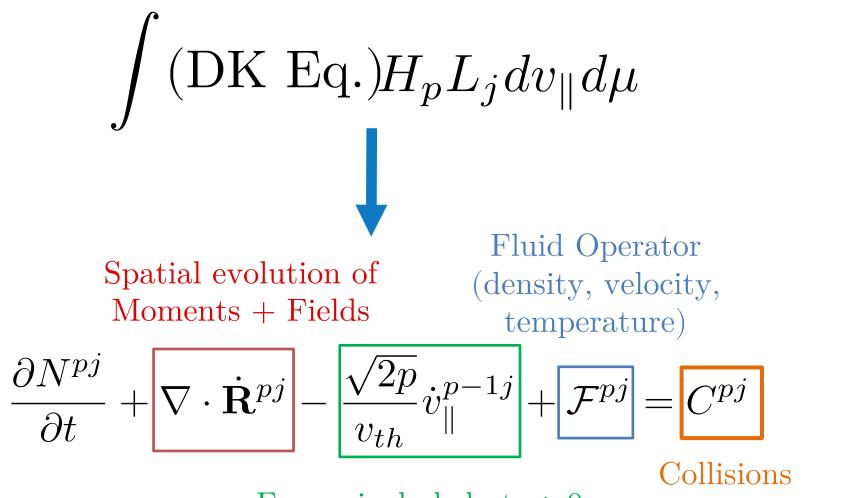
Laguerre Polynomials

$$\int L_j(\mu) L_k(\mu) e^{-\mu} d\mu = \delta_{j,k}$$

Most efficient representation of kinetic effects



From DK Equation to Moment Hierarchy



Forces included at p>0

(which may be complicated...) From DK Equation to Moment Hierarchy

 $\int (\mathrm{DK \ Eq.}) H_p L_j dv_{\parallel} d\mu$

- □ Phase-Mixing $\sim N^{p+1j}, N^{p-1j}, N^{pj+1}, \dots$
- Coupling with EM fields $\sim \boldsymbol{v}_{\boldsymbol{E} \times \boldsymbol{B}} \cdot \nabla N^{pj}$

 Lowest order fluid equations $\frac{\partial N^{00}}{\partial t} + \nabla \cdot (N^{00} \mathbf{u}) = 0$ Collisions $C^{pj} = \dots$ Example – 1D Linear Drift-Kinetic

$$\frac{\partial F}{\partial t} + v_{\parallel} \frac{\partial F}{\partial z} + E_{\parallel} \frac{\partial f_{M}}{\partial v_{\parallel}} = C(F)$$

In Hermite space $F = f_{M} \sum_{p} N^{p} H_{p}(v_{\parallel})$
Collisions
(which may be
complicated...)
$$\frac{\partial N^{p}}{\partial t} + \frac{1}{2} \frac{\partial N^{p+1}}{\partial z} + p \frac{\partial N^{p-1}}{\partial z} = 2\delta_{p,1} E_{\parallel} + C^{p}$$

Time Evolution

Electric Field Drive

Projection of the Collision Operator

$$C^{pj} = \int \langle C(F) \rangle \ H_p \ L_j \ dv_{\parallel} d\mu$$

In general
$$C(F) = \frac{\partial}{\partial \mathbf{v}} (\mathbf{A}F) + \frac{\partial^2}{\partial \mathbf{v} \partial \mathbf{v}} : (\mathbf{D}F)$$

Projection of the Collision Operator

$$C^{pj} = \int \langle C(F) \rangle \ H_p \ L_j \ dv_{\parallel} d\mu$$

In general
$$C(F) = \frac{\partial}{\partial \mathbf{v}} (\mathbf{A}F) + \frac{\partial^2}{\partial \mathbf{v} \partial \mathbf{v}} : (\mathbf{D}F)$$

Example: Lenard-Bernstein Operator Lenard & Bernstein $A = \mathbf{v}$ and $\mathbf{D} = \mathbf{I}v_{th}^2$ $C^{pj} = -(p+2j)N^{pj}$

Phys. Rev. 112 (1958)

Projection of the Collision Operator

$$C^{pj} = \int \langle C(F) \rangle \ H_p \ L_j \ dv_{\parallel} d\mu$$

In general
$$C(F) = \frac{\partial}{\partial \mathbf{v}} (\mathbf{A}F) + \frac{\partial^2}{\partial \mathbf{v} \partial \mathbf{v}} : (\mathbf{D}F)$$

Example: Lenard-Bernstein Operator Lenard & Bernstein $A = \mathbf{v}$ and $\mathbf{D} = \mathbf{I}v_{th}^2$ $C^{pj} = -(p+2j)N^{pj}$

Phys. Rev. 112 (1958)

Assumes constant collision frequency in velocity space... Need for Full Coulomb collision operator!

Full Coulomb Collision Operator

$C^{pj} = \int \langle C(F) \rangle \ H_p \ L_j \ dv_{\parallel} d\mu$

Not immediate...

Eigenfunctions of the collision operator

If
$$F \sim \sum P_l\left(\frac{v_{\parallel}}{v}\right) L_k^{l+1/2}(v^2)$$

Pitch Angle Braginskii solution Scattering (collision integral)

then
$$C(F) \sim \sum P_l\left(\frac{v_{\parallel}}{v}\right) L_k^{l+1/2}(v^2)$$

However, v and v_{\parallel}/v are not DK variables...

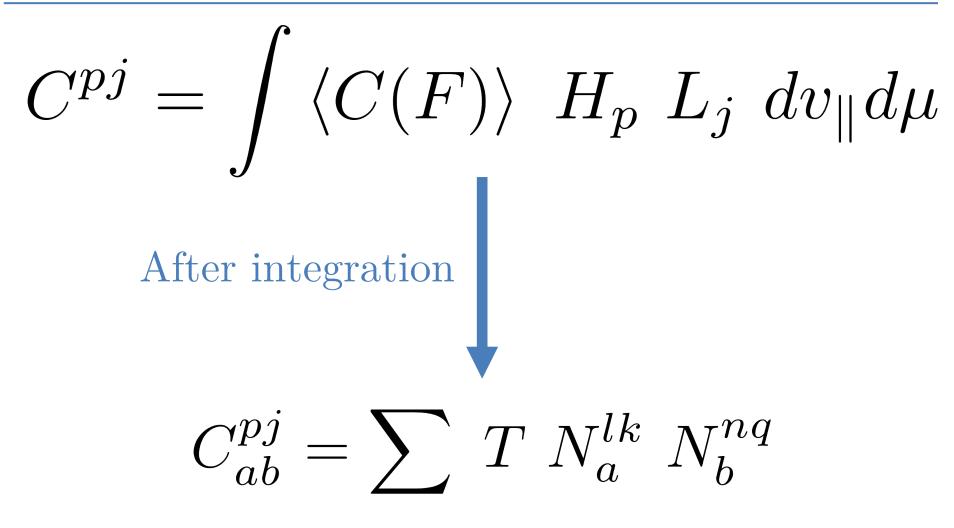
Find an analytical expression

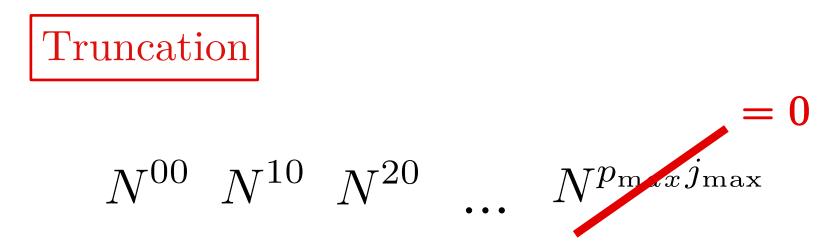
$$P_{l}\left(\frac{v_{\parallel}}{v}\right)L_{k}^{l+1/2}(v^{2})\sim T_{lk}^{pj}H_{p}(v_{\parallel})L_{j}(\mu)$$

So that
$$C^{pj}=\int\left\langle C(F)\right\rangle H_{p}L_{j}dv_{\parallel}d\mu$$

can be analytically evaluated!

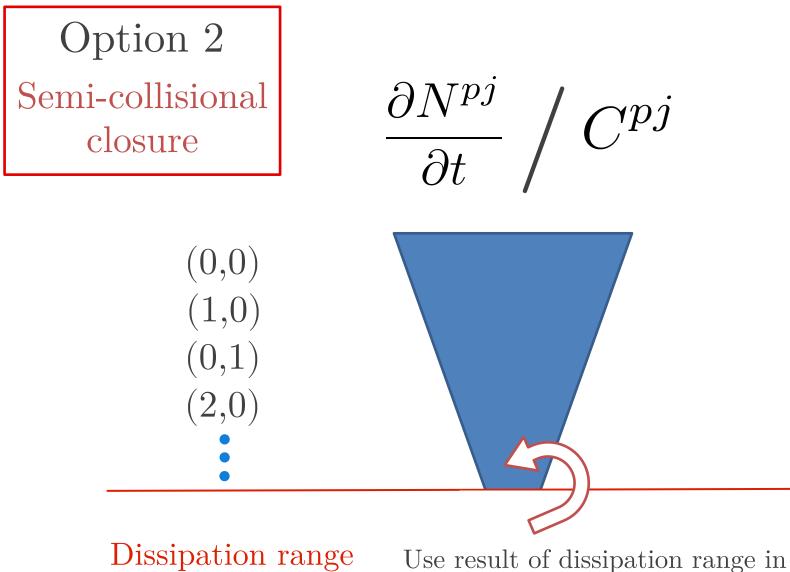
Moment of Collision Operator





Hard to control:

- □ Large number of moments needed
- **Recurrence** problem



previous phase-mixing terms

Chapman-Enskog, Braginskii Closure

 $F = F_M (1 + \delta F)$ $\frac{\delta F}{F_M} \sim \frac{\lambda_{\rm mfp}}{L_{\parallel}} \sum_{p,j} N^{pj} H_p L_j$

Chapman-Enskog, Braginskii Closure

 $F = F_M (1 + \delta F)$ $\frac{\delta F}{F_M} \sim \frac{\lambda_{\rm mfp}}{L_{\parallel}} \sum_{p,j} N^{pj} H_p L_j$

 $\begin{array}{c|c} d & n \\ u_{\parallel} \\ \hline dt & T \\ T \\ Drive \\ Drive \\ O \end{array}$ $= \nu \begin{pmatrix} 0 \\ C^{10} \\ C^{01} \\ C^{30} \\ C^{11} \\ C^{21} \end{pmatrix}$ $+ \frac{d}{dt} \begin{bmatrix} 0 \\ 0 \\ 0 \\ N^{30} \\ N^{11} \\ N^{21} \end{bmatrix}$

 $F = F_M(1 + \delta F)$ Chapman-Enskog, $\frac{\delta F}{F_M} \sim \frac{\lambda_{\rm mfp}}{L_{\parallel}}$ Braginskii Closure $N^{pj}H_pL_j$ $_{p,j}$ $\sim \omega \delta$ $\sim \nu \delta$ $\sim \omega$ $egin{array}{c} 0 \\ C^{10} \\ C^{01} \end{array}$ d \overline{dt} Drive Drive

Chapman-Enskog, Braginskii Closure

$$F = F_M (1 + \delta F)$$

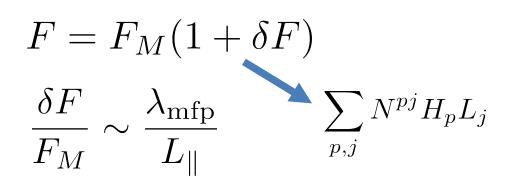
$$\frac{\delta F}{F_M} \sim \frac{\lambda_{\rm mfp}}{L_{\parallel}} \sum_{p,j} N^{pj} H_p L_j$$

$$C^{30} = v_{th} \nabla_{\parallel} T$$

$$C^{21} = 0 \longrightarrow N^{30} \sim q_{\parallel} = -\chi_{\parallel} \nabla_{\parallel} T$$

$$C^{12} = 0$$

Chapman-Enskog, Braginskii Closure



- Improved Drift-Reduced Braginskii Equations
- **•** Full Coulomb collision effects
- Proper treatment of particle density vs. guiding-center density leads to
 - □ Transport coefficients with parallel/perpendicular temperature dependence
 - Polarization effects due to particle moments vs. guiding center moments

Summary

Systematic inclusion of kinetic effects in a 3D model in the low/high collisionality regime

- □ Tune the number of moments according to the level of collisionality
- □ Most efficient representation of kinetic effects (deviation from a Maxwellian)
- □ Set of moment equations with reasonable computationally cost
- □ Improvement over drift-reduced Braginskii equations
- Generalizable to a gyrokinetic theory

arXiv:1709.01411 – accepted for publication in JPP $\,$

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053.

RJ was partially funded by the Portuguese FCT - Fundação para a Ciência e Tecnologia, under grant PD/BD/105979/2014.

NFL was partially funded by US Department of Energy Grant no. DE-FG02-91ER54109.

The views and opinions expressed herein do not necessarily reflect those of the European Commission.