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The Scrape-off Layer (SOL)

q Plasma boundary conditions

q Heat exhaust

q Plasma fueling and ashes removal

q Impurity control

Open magnetic 
field lines
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Properties of SOL Turbulence

q Large structures

q Field aligned 

q No separation between 

equilibrium and fluctuations

q
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Is the SOL Collisional?

Extremely different collisionality regimes!
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Kinetic Simulations (collisionless + collisional)

XGC1 code
Chang et. al., Nuclear Fusion 57 (2017)

300 billion particles

90% of the 27 petaflop Titan supercomputer

Solving

Extremely
Expensive

df

dt
= ...
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Fluid Simulations (collisional)
Considerably less expensive

SOL Confinement time scales

Solving

Assume
High Collisionality

GBS code
Ricci et. al., Plasma Phys. Controlled Fusion 54 (2012)

dn

dt
= ...
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Our Goal – Develop a Model

q Retain necessary kinetic effects (and no more)

q Remain numerically tractable

Hierarchy of Fluid Equations
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Outline

while retaining

q Full-F, 

q Full Coulomb collisions

q Simple Maxwellian (collisional) limit

Kinetic Drift-Kinetic Moment 
Hierarchy Closure
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Kinetic Model – Our Ordering Assumptions

From collisionless to 

collisional (still magnetized)

Spatial Scale 

(Drift-Kinetic)

Temporal Scale 

(low frequency)

✏ ⌧ 1
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From Full Particle Dynamics to Guiding Center

Particle

Guiding 
Center

Average out fast gyromotion
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Guiding Center Equations of Motion

Other Drifts

Non-Linear Forces

Guiding 
Center
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From Single-Particle to Particle Distribution

q 5-D + time

q Full Coulomb Collisions

Challenges - Full gyroaveraged 
distribution function

Drift-Kinetic Equation

F

These challenges can be successfully approached 
by using a moment hierarchy



12

From DK Equation to Moment Hierarchy

DK Eq.



F = FM

X

p,j

Npj(R)Hp(vk)Lj(µ)
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Orthogonal Basis for the velocity space

Simple expression for

= moments of

Projection 
coefficients

Orthogonal 
Basis

F
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The choice of basis

Orthogonal with Maxwellian
as weighting function

Hermite Polynomials

Laguerre Polynomials
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Most efficient representation of kinetic effects

Larger number of moments 
required, as F deviates more 

significantly from a 
Maxwellian

Fn = FM ⇥
nX

p=0

NpHp(vk)
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From DK Equation to Moment Hierarchy

Fluid Operator
(density, velocity, 

temperature)

Forces included at p>0

Spatial evolution of
Moments + Fields

Collisions
(which may be 
complicated…)

Z
(DK Eq.)
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From DK Equation to Moment Hierarchy

q Phase-Mixing

q Coupling with EM fields

q Lowest order fluid equations

q Collisions          = …

Z
(DK Eq.)

⇠ vE⇥B ·rNpj
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Example – 1D Linear Drift-Kinetic

In Hermite space

Collisions
(which may be 
complicated…)

Phase Mixing
(coupling with other moments)

Time Evolution Electric Field Drive
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Projection of the Collision Operator

In general
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Projection of the Collision Operator

and
Lenard & Bernstein

Phys. Rev. 112 (1958)

Example: Lenard-
Bernstein Operator

In general
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Projection of the Collision Operator

and
Lenard & Bernstein

Phys. Rev. 112 (1958)

Example: Lenard-
Bernstein Operator

Assumes constant collision frequency in velocity space…
Need for Full Coulomb collision operator!

In general
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Full Coulomb Collision Operator

Not immediate...
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Eigenfunctions of the collision operator

If

then

Pitch Angle 
Scattering

Braginskii solution 
(collision integral)

However,    and         are not DK variables…v vk/v



Pl

⇣vk
v

⌘
L
l+1/2
k (v2) ⇠ T pj

lk Hp(vk)Lj(µ)
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Change of Basis

Find an analytical expression

can be analytically evaluated!

Change of basisso that
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Moment of Collision Operator

After integration
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Infinite Moment Hierarchy: How to Close?

Hard to control:
q Large number of moments needed

q Recurrence problem

q …

…
= 0

Truncation
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Infinite Moment Hierarchy: How to Close?

Option 2
Semi-collisional 

closure /
(0,0)
(1,0)
(0,1)
(2,0)

Dissipation range Use result of dissipation range in 
previous phase-mixing terms 
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Infinite Moment Hierarchy: How to Close?

Chapman-Enskog, 
Braginskii Closure
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Infinite Moment Hierarchy: How to Close?

Drive
Drive

Chapman-Enskog, 
Braginskii Closure
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Infinite Moment Hierarchy: How to Close?

Drive
Drive

Chapman-Enskog, 
Braginskii Closure
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Infinite Moment Hierarchy: How to Close?

Chapman-Enskog, 
Braginskii Closure
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Infinite Moment Hierarchy: How to Close?

q Improved Drift-Reduced Braginskii Equations

q Full Coulomb collision effects

q Proper treatment of particle density vs. guiding-center density 

leads to

q Transport coefficients with parallel/perpendicular temperature dependence

q Polarization effects due to particle moments vs. guiding center moments

Chapman-Enskog, 
Braginskii Closure
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Summary

q Tune the number of moments according to the level of collisionality

q Most efficient representation of kinetic effects (deviation from a Maxwellian)

q Set of moment equations with reasonable computationally cost

q Improvement over drift-reduced Braginskii equations

q Generalizable to a gyrokinetic theory

Systematic inclusion of kinetic effects in a 3D 
model in the low/high collisionality regime

arXiv:1709.01411 – accepted for publication in JPP
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