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We establish the well-posedness, the finite speed propagation, and a regularity result for
Maxwell’s equations in media consisting of dispersive (frequency dependent) metamate-
rials. Two typical examples for such metamaterials are materials obeying Drude’s and
Lorentz’ models. The causality and the passivity are the two main assumptions and play
a crucial role in the analysis. It is worth noting that by contrast the well-posedness in the
frequency domain is not ensured in general. We also provide some numerical experiments
using the Drude’s model to illustrate its dispersive behaviour.
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RESUME

Nous montrons que les équations de Maxwell dans un milieu constitué de métamaté-
riaux dispersifs (dépendant de la fréquence) forment un probléme bien posé, a vitesse
de propagation finie et satisfaisant un résultat de régularité. Deux exemples typiques de
tels métamatériaux sont les matériaux régis par les modéles de Drude et de Lorentz. La
causalité et la passivité sont les deux hypothéses principales ; elles jouent un role essentiel
dans I'analyse. Il vaut la peine de remarquer qu’en revanche, rien n'assure, en général, le
caractére bien posé dans le domaine des fréquences. Nous présentons également quelques
résultats numériques utilisant le modéle de Drude, afin d'illustrer le comportement disper-
sif.
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1. Introduction

Metamaterials are smart materials engineered to have properties that have not yet been found in nature. They have
recently attracted a lot of attention from the scientific community, not only because of potentially interesting applications,
but also because of challenges in understanding their peculiar properties.

An important class of metamaterials is the one of negative index metamaterials (NIMs). The study of NIMs was initiated
a few decades ago in the seminal work of Veselago [42], in which the existence of such materials was postulated. The exis-
tence of NIMs was confirmed by Shelby, Smith, and Schultz in [39]. New fabrication techniques now allow the construction
of NIMs at scales that are interesting for applications, and have made them a very active topic of investigation. One of
the interesting properties of NIMs is superlensing, i.e. the possibility to beat the Rayleigh diffraction limit: no constraint
between the size of the object and the wavelength is imposed. This was first proposed by Veselago for a slab of index
—1 and later studied in various contexts in [21,32,35,36,38]. The rigorous proof of superlensing was given in [25,28] for
related lens designs. Another interesting application of NIMs is cloaking objects. Various schemes were suggested in [17,29]
and established rigorously in [26,29]. NIMs can be used for cloaking sources, see, e.g., [22,24]. Another attracting class of
metamaterials is the one of hyperbolic metamaterials (HMMs). HMMs can be used for superlensing, see [3,15,19]; other
promising potential applications of HMMs can be found in [37] and references therein. The peculiar properties and the dif-
ficulties in the study of NIMs come from the fact that the modelling equations have sign-changing coefficients. In contrast,
the modelling of HMMs involves equations of changing type, elliptic in some regions, hyperbolic in other ones.

The well-posedness of equations modelling metamaterials has been investigated mainly in the frequency domain.
Concerning NIMs, it is now known that one needs to impose conditions on the coefficients of the equations near the
sign-changing coefficient-interface to insure the well-posedness, see [2,8,23,27,34] and references therein; otherwise, the
equations are unstable, see [27]. Concerning HMMs, it is shown in [3] that the stability is very sensitive to the geometry of
the hyperbolic region. As far as we know, there are very few works on the stability of metamaterials apart from NIMs in
the frequency domain.

This work is on Maxwell’s equations in the time domain for media consisting of dispersive metamaterials. These are
metamaterials whose material constants are frequency dependent. Two typical examples of such metamaterials are the ones
obeying Drude’s and Lorentz’ models. The study of dispersive metamaterials in the time domain for NIMs was considered
by Tip in [41] and Gralak and Tip in [12]. In [12], the authors considered the class of anisotropic media and showed the
stability of the energy for smooth solutions. In the two-dimensional space setting, in which NIMs occupy a half-plane and
obey Drude’s model, Bécache, Joly, and the second author in [1] (see also [43]) showed the instability of the standard
PMLs and designed a new one in this context. Again for this setting, the limiting amplitude principle was studied by
Cassier in [5] and Cassier, Hazard, and Joly in [6], and confirmed numerically in [43]. In [7], Cassier, Joly, and Kachanovska
considered a class of dispersive isotropic media in the spirit of [12] (see also Remark 2.1). For homogeneous media in
their class, they established the well-posedness via the auxiliary field approach using Nevanlinna’s representation theorem
and the Hille-Yosida theory (see Remark 3.2). They also derived the finite-speed propagation for regular solutions for the
homogeneous media in the class of materials considered in their paper.

In this paper, we deal with bi-anisotropic media, i.e. anisotropic media for which the electric and magnetic induction
fields D and B depend on both electric and magnetic fields E and H. This general class of metamaterials covers the usual
anisotropic one, for which D (resp. B) depends only on E (resp. H). In particular, the bi-anisotropic class contains NIMs
and HMMs. More precisely, we establish the well-posedness for weak solutions associated with this model (Theorem 3.1
in Section 3), the finite-speed propagation of weak solutions associated with these media (Theorem 3.2 in Section 3), and
a regularity result for the weak solutions (Theorem 3.3 in Section 3.3). By the dispersivity, the corresponding evolution
equations are non-local in time inspired from [30,31]. Two key assumptions in our analysis are the causality (2.13) and the
passivity (2.15), which roughly speaking say that the effect cannot precede the cause and that the medium is dissipative
rather than producing electromagnetic energy. Causality and passivity are given in [7] through the concept of the Herlglotz
functions; in various situations, these definitions of passivity are equivalent (see Remark 2.1). In this paper, we work directly
with the non-local equations. This is different from the approaches in [6,7,12,43] (see also [11]) where auxiliary fields are
introduced to transform the non-local equations into local ones. The initial data of auxiliary fields are imposed by zero in
these works. It is interesting to know whether or not other choices are possible and give the same results.

This paper is organized as follows. In Section 2, we present the dispersive model for Maxwell’s equations. We there
discuss bi-anisotropic media, but confine ourselves to linear and local-in-space ones. The well-posedness, the finite-speed
propagation of electromagnetic fields, and the regularity result are discussed in Section 3. Finally, some numerical experi-
ments are presented in Section 4, in which Drude’s model and its particular structure are used for simplicity.

2. Maxwell’s equations in dispersive media

In this section, we describe Maxwell’s equations in dispersive media. The materials presented here are mainly from [14,
chapter 7], [16, chapters 1 and 2], [18, chapter IX], [33] and [20, chapter 1]. The fundamental Maxwell’s equations — without
source - are
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fort e R, x € R3, (2.1)

orD(t,x) = curl H(t, x),
orB(t,x) = —curl E(t, x),

where E € R3 (resp. H € R3) is the electric (resp. magnetic) field and D € R3 (respectively, B € R3) is the electric (respec-
tively, magnetic) induction field. In order to close the system (2.1), one adds constitutive relations that express D and B as
functions of E and H. For dispersive media, these relations are more conveniently presented in the frequency domain. In
this paper, for a time-dependent field X(t, x), its temporal Fourier transform is given by

X(w, x) = X(t,xedt, forweR, xeR3 (2.2)

7=/
R

(this definition is understood in the distributional sense). In the frequency domain, Maxwell’s equations (2.1) are of the
form
- iwﬁ(w, X) = curlﬁ(w, X), 3
o~ ~ forweR, xeR°. (2.3)
—iwB(w, x) = —curl E(w, x),

In this paper, we consider linear bi-anisotropic materials, i.e. D and B depend linearly on both E and H (see, e.g., [16,
Chapters 1 and 2] and [20, Chapter 1]). This class of materials contains the anisotropic ones for which D (resp. B) depends
only on E (resp. B), see, e.g., [14, chapter 7] and [18, chapter IX]. We also assume that the media considered are local in
space. The constitutive relations in the frequency domain of bi-anisotropic media are then of the form

[ D (@, X) = (Erel (%) + Xee(@, 0))E(@, %) + Xem (@, X)H (@, X), for o € . xC B, 24

B(@,X) = Jme(@, ) E(@, %) + (Lrel (%) + Xmm (@, ) H (@, %),

Here Xij(w,x), (i, j) € {e,m}?, are 3 x 3 matrices called the susceptibilities that characterize the dispersive effects of the
medium, i.e. its response with respect to the frequency w at the point x. The permittivity ¢ and the permeability wu of the
medium are given by

C:=¢rel+ Xee and I := fhrel + Xmm- (2.5)

We assume that

&re1 and firel are two 3 x 3 real symmetric uniformly elliptic matrices defined in R3. (2.6)

One can check that &g and fie correspond respectively to € and & for large frequencies provided that xee and ymm are in
LT(R, L®(R3)3*3), These constitution relations are Lorentz covariants (see, e.g., [16, chapter 2]).

If all the x;; are independent of w, the corresponding medium is called a dielectric medium; otherwise it is a dispersive
medium. In the case Yem = Xme =0, (2.4) models anisotropic media. In a special case of (2.4), in which yx;; are isotropic,
media are called reciprocal chiral and consist of Pasteur and Tellegen ones, see, e.g., [40].

Set

Mij(@,X) := —iwxij(w, %), for (i, j) € fe,m}?, w e R, xe R, (2.7)
Inserting (2.4) in (2.3) gives, for w € R and x € R3,

— i (N E (@, X) + hee (@, ) E(@, X) + Jem (@, )H (@, x) = curl H(w, x),

— — _ — ~ ~ (2.8)
— iwfrel (X)H (@, X) + Ame (@, X) E(w, X) + Apm (@, X) H(w, X) = — curl E(w, x).
One can derive that iij is analytic in the upper half w-plane as long as
rjj € LN (R, LO(RHP3P) + L®(R, L°(R3)**3),  for (i, j) € e, m}>. (2.9)

This allows us to use Cauchy’s theorem and obtain a relation between Re ¥j; and Im xjj, which is known as the Kramers-
Kronig relation (see, e.g., [33] for further information). We will make the following assumptions on A;;:

Xij» hij € Lp (R, L (R?)>*3) and Aj; is real-valued, for (i, j) € {e. m}z. (2.10)

By the inverse Fourier transform !

1 This formula is again understood in the distributional sense.
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X(t,x) = X(w,x)e ' dw, forteR, xeR3, (2.11)

|
2n

R
the system corresponding to (2.8) in the time domain is

{ Erel(X)OE(t, X) + (Aee * E)(t, X) + (Aem * H)(t, X) = curl H(t, X), 3
teR, xeR>, (2.12)
Mrel () H(t, X) + (e * E) (£, X) + (Am * H)(t, X) = —curl E(¢, %),

where x stands for the convolution with respect to time t.
Two fundamental assumptions physically relevant on the model, causality and passivity, are imposed.

Causality: the effect cannot precede the cause, i.e. the present states of the system depend only on its states in the past.
Mathematically, one requires

2ij() =0,  forallt <0and forall (i, j) € {e, m}%. (2.13)
Under this assumption, we have, for (i, j) € {e, m}?,
t 00
(Lij * X)(E, ) = / Aijt —T,)X(T,)dT :/A,-j(t, )Xt —r1,)dr, forteR. (2.14)
—00 0

Passivity: One assumes, for almost every x € R3, for almost every w € R and for all X e C8, that?

Tee(@, %) Aom(®, X) —
Re([fz;(ww) @(w!x)])«x)zo, (2.15)

Under the terms of y;; (see (2.7)), condition (2.15) can be written as

Xee@,%)  Yem@.%) |,
wlm([ﬂe(w,x) m(a),x)]x'x)zo' (2.16)

Assumption (2.15) means that the medium is dissipative, i.e. it does not produce electromagnetic energy by itself. We
emphasize that no assumption on the sign of the real part of the y;; in (2.16) is required (or equivalently on the imaginary
part of the A;; in (2.15)). Moreover, no symmetry on the x;; (or equivalently on the 1;;) is assumed.

Some comments on these assumptions are in order in the anisotropic case (Aem = Ame = 0) and in the frequency domain.
It is possible, for some frequencies, that € and ji are both negative in some regions. This corresponds to NIMs (see Lorentz’
and Drude’s models below). It is also possible that € and [ have both positive and negative eigenvalues in some region. In
this case, one deals with HMMs. In the anisotropic case, condition (2.16) is equivalent to®

wlmg(w), wlmi(w) >0, foralmostallweR. (217)

Condition (2.17) ensures that when small loss is added, the problem associated with the outgoing (Silver-Miiller) condition
at infinity is well-posed (see, e.g., [28]). Adding a small loss is the standard mechanism to study phenomena related to
metamaterials in the frequency domain. Nevertheless, condition (2.17) does not exclude the ill-posedness in the frequency
domain (see [27, Proposition 2]). As one sees later, even if the problem is ill-posed in the frequency domain for some
frequency, the well-posedness is ensured for the problem in the time domain under, roughly speaking, the causality and
passivity conditions mentioned above (see Theorem 3.1).

Remark 2.1. The causality and passivity used in [7], where the authors dealt with isotropic media, i.e. Ae;y = Ame = 0 and
Lee and Ay are functions, are defined as follows: the causality means that (see [7, page 2795])

w ):ee(a)) and w +— imm (w) are analytic in {w € C; J(w) > a}, for some o >0, (2.18)

and the passivity means that (see [7, Definition 2.5])

w— wiee(a), Xx)and w — wimm(w, x) are Herglotz functions. (219)

2 Here - stands for the Euclidean scalar product in CS.
3 Here for a 3 x 3 matrix A, we denote A <0 if Ax-x <0 for all xeR3.
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Recall that (see, e.g., [7, Definition 2.3]) a Herglotz function ¢ is a function ¢ : {w € C; I(w) > 0} — C that is analytic and
satisfies the condition J¢(w) > 0 (compare (2.19) with (2.9) and (2.17)). Note that several notions concerning passivity are
discussed in [7]. In various situations (see [7, Theorem 2.11, Remark 2.12, and Definitions 2.5 and 2.9]), (2.19) is equivalent
to (2.17).

We next recall two typical examples of dispersive anisotropic media (xme = Xem = 0) satisfying condition (2.10), the
causality (2.13), and the passivity (2.15). The first one is that of media obeying Lorentz’ model. For a homogeneous isotropic
medium, the susceptibilities xee and xmm are of the form (see, e.g., [14, (7.51)])

n

K@=y —

P IEY
o Wh @ 2y

2
Dp.e

I3, forweR, (2.20)

where wp ¢ (resp. wo and y;) are positive (resp. non negative) material constants. Here and in what follows, I3 denotes
the 3 x 3 identity matrix. Using the residue theorem, one can show (see, e.g., [14, (7.110)]) that for t € R, one has

n . n .
sin(vet) _ d [/sin(vet) _
H=vV2m0(t)Y w2, ———e 73 and A()=2m0()Y w?,—(———=e")I3, 2.21
X =~ ()E1 e 3 O =+ (); g\ 3 (2.21)
where 12 = a)gl —y2 (if wo¢ > y¢) and @ is the Heaviside function, i.e. 6(t) =1 if t > 0 and 6(t) = 0 otherwise. Here A is
defined in such a way that l\(a)) = —iwX (w) for w e R.

One can easily check that Lorentz’ model satisfies conditions (2.10), (2.13), and (2.15) (which implies (2.16)).
The second example is Drude’s model. It is a particular case of the Lorentz model (2.20) with n =1 and @, = 0:

_ W}

X(a)): m13, for w € R. (222)
One thus has

XO=V2rwly "1 —e 7o) I3 and A(t) =+2mwie V'Ot I3, forteR. (2.23)

Remark 2.2. Using homogeneization theory, one can obtain HMMs from positive-index materials and NIMs (see, e.g., [3]).
3. Electromagnetic wave propagation in dispersive media

In this paper, we study (2.12) under the form of the initial problem at time t = 0, assuming that the data are known in
the past t < 0. Set

t
(Aij > X) (L, -) 5=/k(t—t,-)X(t,-)dt, fort > 0. 31)
0

For X = E or H, under the causality assumption (2.13)-(2.14), one has for t > 0 that

t 0
(A * X) (¢, ')=/)»,-j(t—r,~)X(r,')dr+ / Aijt —T,)X(T,)dT
0 —00
o (3.2)
= (Ajj * X)(t, -)+/kij(t—r,~)X(r,-)dr.

Hence if the data are known for the past t < 0, then the last term is known at time ¢t > 0. With the presence of sources,
one can then reformulate system (2.12) under the form

Erel () E(t, X) + (hee x E)(t, X) 4+ (Aem x H)(t, X) = curl H(t, X) + fe(t, x),
et (X)0:H (t, X) + (Ame * E)(t, X) + (Anm x H) (t, X) = — curl E(t, X) + fm (¢, X), (3.3)
E(0,x) = Eo(x), H(0,x) = Ho(x),

for t > 0 and x € R3. Here Eg, Hg are the initial data at time t =0 and f., fn are given fields that can be considered as
“effective” sources since they also take into account the last terms in (3.2). Note that if sources are O for t < 0, then the
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initial problem considered here with Eqg = Hg = 0 gives exactly the solutions to (2.12), admitting that E=H =0 for t <0
since there is no source for t < 0 (see Remark 3.5).

Set
_|E | Eo | fe [ curlH
e [H] 1= [HO] f= |:fmi|7 Au '_[—curlE}’ (34)
Aee  Aem el O
|:)\me )\mm:| an |: 0 Mrel] (3.5)

System (3.3) can then be rewritten in the following compact form:

M(x)o:u(t,x) + (A *u)(t,x) = Au(t, x) + f(t, x),

‘ fort >0, xeR>. (3.6)
u(0,x) =uo(x),

The goal of this paper is to establish the well-posedness, the finite speed propagation, and to present a regularity result for
(3.6).
Define

H:=L*>R3Z x?®R>? and V:=Hq@®R?) x Hoyn (RY), (3.7)

equipped with the standard inner products induced from L?(R3)3 and Hcy(R3). One can verify that  and V are Hilbert
spaces. We also denote

Mg (L*®(IR?)) the space of 6 x 6 real matrices whose entries are L (R?) functions. (3.8)

In what follows, in the time domain, we only consider real quantities.
The first result of this paper is the well-posedness of (3.6), whose proof is given in Section 3.1.

Theorem 3.1. Let T € (0, +00), ug € H, f € L1(0,T; H), and A € L'(0, T; Mg(L>°(R?)). Assume that (2.6), (2.10), (2.13) and
(2.15) hold. There exists a unique weak solution u € L*°(0, T; H) to (3.6) on (0, T). Moreover, the following estimate holds

2
t
1/2 .
(Mu(t, ), u(t, )y < (MUO,uO)q.f +C/ (s, )l ds in(0,T), (3.9)
0
where C is a positive constant depending only on the coercivity of M.
The notion of weak solutions to (3.6) is as follows.

Definition 3.1. Let T € (0, +00), ug € # and f € L1(0, T; H). A function u € L°°(0, T; H) is called a weak solution to (3.6) on

[0, T] if
% (Muct, -), Vg + (A % U)(E, -), Vg = (U(t, ), Av)y + (f(t,), V)3 in (0, T) forall v e V, (3.10)
and
u(0, -) = up. (3.11)

Remark 3.1. One can easily check that if u is a smooth solution and decays enough at infinity, then u is a weak solution by
integration by parts, and that if u is a weak solution and smooth, then u is a classical solution.

Some comments on Definition (3.1) are in order. Equation (3.10) is understood in the distributional sense. Initial condition
(3.11) is understood as

(Mu(0, ), v}y = (Mug, v)y, forallveV. (312)

Under the assumptions u € L®(0,T;H), veV, feL'(0,T;H) and A € L1(0,T;M6(L°°(R)), one can check that
((Axu)(t), v)g, (), Av)gy, (f(t), V)4 are in L1(0, T). It follows from (3.10) that

(Mu(t), vy, € W10, T). (313)

This in turn ensures the trace sense of (Mu(0, -), v) in (3.12).
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Remark 3.2. In [7, Theorem 4.7 and Corollary 4.11], the authors establish the well-posedness of electromagnetic waves in
homogeneous isotropic dispersive media, i.e. Ae;; = Ame = 0 and Aee and Amgy, are constant functions (with respect to space
variables) that satisfy (2.18), (2.19), and the following condition (see [7, (HP) on page 2795])

Vn>0if3(w)>n, lim &éx w)=¢and lim &(x, w)=uo, (3.14)
|w|— 400 |w|— 400

for some positive constants &g, 0. They use the auxiliary field method, and apply Nevanlinna’s representation theorem and
the Hille-Yosida semi-group theory.

We next discuss the finite speed propagation for (3.6). In what follows, B(a, R) stands for the ball of R3 of radius R > 0
centred at a € R and 9B(a, R) denotes its boundary. In the case a =0 - the origin -, we simply denote B(0, R) by Bg. Set

c(X):=veX)ym(x), forxe R3, (3.15)

where y,(x) and yn(x) are respectively the largest eigenvalues of £rj(x)™'/% and fire1(x)~1/2. According to assumptions

(2.6), c(x) is bounded below and above by a positive constant. For a € R? and R > 0, we denote

Cq,R := €SS Sup c(x). (3.16)
xeB(a,R)

The second result of this paper is on the finite speed propagation of (3.6), whose proof is given in Section 3.2.

Theorem 3.2. Let R > 0,a € R* and ug € H. For T > R/cq g, let f € L'(0, T; H) and A € L1(0, T; Mg (L (R?)). Assume that (2.6),
(2.10), (2.13) and (2.15) hold,

suppug N B(a,R) =0, (3.17)
and

supp f(t,-) N B(a,R —cqrt) =0, foralmosteveryte (0,R/cqR). (3.18)
Let u € L°°(0, T; H) be the unique weak solution to (3.6) on (0, T). Then

suppu(t,-) N B(a,R —cqrt) =0, foralmosteveryte (0,R/cqR). (3.19)

We finally discuss the regularity of the weak solutions to (3.6). To motivate the regularity result stated below, let us first
assume that u is a weak solution to (3.6) and that u, A, and f are regular in [0, T] x R3. Set

v(t,X) == du(t,x), forte(0,T), xeR3. (3.20)
Differentiating (3.6) with respect to t, we have

M(x)orv(t,x) + (A*Vv)(t,x) =Av(t,x) + g(t,x), forte(0,T), xeR3, (3.21)
where

g(t,x):=0:f(t,x) — A(t,X)up(x) in[0,T) x R3. (3.22)

Applying Theorem 3.1 to v and noting that Mv(0, -) = Aug + f (0, -), we obtain

t
I = C(Huolly + 17l + [ 10076+ IAG. ey ). in 0.7 (3.23)
0

for some positive constant C depending only on the ellipticity of M.
In fact, we can prove the following result.

Theorem 3.3. Let T € (0, 4+00), ug € V, f € L1(0, T; H), and A € L'(0, T; Mg(L™(R?)). Assume that (2.6), (2.10), (2.13) and
(2.15) hold and 8, f € L1(0, T; ). Let u € L°°(0, T; ) be the unique weak solution to (3.6) on (0, T). Then 8;u € L°°(0, T; ) and,
forte (0, T),

2

t
I9eu(t, )13, < C | Nuolly + 11F(0, )% +/ 195 £ (s, Mo 4 WAL, )llpoo g3y luls, Hliwds | (3.24)
0

for some positive constant C depending only on the coercivity of M.
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Remark 3.3. One can bound ||u(s, )|l using (3.9).

The next three sections are respectively devoted to the proof of Theorems 3.1, 3.2, and 3.3.
3.1. Proof of Theorem 3.1

The proof is based on the standard Galerkin approach, see, e.g., [9,10]. We first establish the existence of a weak solution.
Let (¢r)keny be a (real) orthogonal basis of V. For n € N, consider u, of the form

Un(t,x) = Zdn.k(f)QSk(X), forte (0, T), xe R3, (3.25)
k=1

such that for all ke {1,...,n}

d

a (Mun(£), P + (A xun) (), pkdyy = (Un (@), Ad)y + (F (), Prdy,  In(0,T), (3.26)
and

un(0) =ug,, the projection of ug to the space spanned by {q>1, s, ¢n} inH. (3.27)

Since (¢y)ken is linearly independent in V), it is also linearly independent in 7. This implies that the n x n matrix whose
(i, j)-entry is given by (¢;, ¢j)3 is invertible. Since

1A xulleeo.1:7) < Al L1 (0, 7: Mg (150 (R)) 1l L20 0. 71745 (3.28)

the existence and uniqueness of d, y € w110, T) follow by a standard point-fixed argument (see, e.g., [4, Theorem 2.1.1]).
This implies the existence and uniqueness of uy.
We now derive an estimate for u,. The key point of the analysis is the following two observations:

t
/ ((Axv)(s,-), v(s,))yds>0 forvel™0,T;H), te(0,T), (3.29)
0
and
(v,Av)y =0, forveV. (3.30)

Note that (3.30) follows by an integration by parts and the density of CCl (R*)® in V. We now verify (3.29). Let v be the
extension of v in R by O for t e R\ [0, T]. It follows from (2.13) and (3.1) that
(AxV)(s,-)=(A*V)(s,-), forsel0,t]. (3.31)

By Parseval’s identity, one has, for t € (0, T),

t
/ <(A * V)(S, ')a V(S7 ))’H ds= / <(A *V)(S, ')a V(S! ))’H ds
0

R

- Re/ (J—‘(A * V) (@, ), W, .))H dw (3.32)
R
- / Re(X(w, F(w, ), ¥, -)}H dw >0,
R

thanks to the passivity (2.15). Assertions (3.29) and (3.30) are proved.
Multiplying (3.26) by d, «(t) and summing with respect to k yields that, in (0, T),

1d
Ea(Mun(t, D, Un(t, Ny + ((Axup)(t, ), up(t, )y = (Un(t, ), Aup (t, Ny + (f(t, ), unt, N - (3.33)
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Integrating (3.33) from O to t and using (3.30), we obtain that, in (0, T),

t
1
5 (Mun(ts ')7 un(ts ))H + / <(A *uﬂ)(s7 ')7 uﬂ(57 )>’H ds
0

t
1
=3 (Mup(0, -), un (0, )% +/<f(s, 2), Un(s, )3 ds. (3.34)
0

We derive from (3.29) that, in (0, T),

t
(Mun(t, ), un(t, )3 < (Muon, to,n)y, +2/ £ s, ) llaellun(s, )% ds. (3.35)
0

By Gronwall’s inequality (see Lemma 3.1 below) and assumptions (2.6), one gets from (3.35)

2

.
(Mn(t, ), tn(t, )3 < | (Mitn,0. tn0)y)> +C / If)lds | ,in(©,T), (336)
0

where C is a positive constant depending only on the ellipticity of M. Since |lunoll% < |luollyz by (3.27), the sequence
(Up)nen is hence bounded in L*°(0, T; H). Up to a subsequence, (u,)ney Weakly star converges to u € L°°(0, T; H). It is
clear from (3.36) that (3.9) holds and, for k € N,

d

a <Mu(t7 ')a ¢k>7—[ + <(A *u)(ts ')7 (bk>'H = <u(tv ')7 A¢k>7—[ + <f(t7 ')7 ¢k>']—[ ) in (07 T) (337)
Since (¢) is dense in V, we derive that for ¢ € V

d

a (Muct, ), ¢)q + ((Axu)(t, ), Phyy = (u(t, ), Ad)y + (f (&, ), )y, In(0,T). (3.38)

One can also check that the initial condition (3.11) holds.
We finally establish the uniqueness of u. It suffices to show that if u € L*°(0, T; H) is a weak solution to (3.6) on [0, T]
with up =0 and f =0, then u =0. Set

t
U(t, x) ::/u(s,x) ds, fortel[0,T], xeR3. (3.39)
0

Integrating (3.10) from O to t and using the fact that u(t =0, -) =0, we obtain that, for all v € V and almost every t € [0, T],

t
(Mu(t,-), v)y + f ((Axu)(s, ), vy ds=(U(t, ), Av)y . (3.40)
0

Using the fact that

o:U(t, ) =u(t,-), forae.te(0,T), (3.41)

we derive that, for all v € H,
t
(Mo U(t,-),v)y + f ((Axu)(s,)ds, vyy =(U(t, ), Av)y, in(0,T). (3.42)
0
We claim that

t
/(A *U)(s,-)ds = (A xU)(t,-), foralmosteveryte (0,T). (3.43)
0
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Indeed, by Fubini’s theorem, one gets, for almost every t € (0, T),

t t N t t

/(A*u)(s, -)ds:/ /A(f,-)u(s—r,-)dr ds:/A(r,-) /u(s—r,-)ds dr
0 o Lo 0 T

. o (3.44)

=/A(r, ) / u(t’,)dt’ | dr = (A« U)(L, ).
0 0
From (3.6), we derive that

Mx)a:U(t, x) + (A« U)(t,x) = AU(t,x), forte(0,T), xR (3.45)

and hence U € L1(0, T; V). Multiplying (3.45) by U(t, -), integrating with respect to x, and using Fubini’s theorem as well as
the fact that (v, Av)y =0 for all v €V, we obtain

%% (MU(t, ), U(t, )y +{((A*xU)(,-),U(t, )y =0, foralmosteverytel[0,T]. (3.46)

Integrating this equation from 0 to t gives
. t
3 (MU(t,-),U(t, )y + / ((AxU)(s,-),U(s, )y ds=0, foralmosteveryte[O,T]. (3.47)
0

We derive from (3.29) that ||U(t)||%_t <0 for almost every t € [0, T]. It follows that

u,-)=0, for almost every t € [0, T]. (3.48)

This in turn implies that u = 0. The proof is complete. O
In the proof of Theorem 3.1, we use the following Gronwall inequality:

Lemma3.1.LetT >0, 7 € (0,1), v, B > 0 and let & and ¢ be two non-negative, measurable functions defined in (0, T) such that

t
EH)<a+p / d(s)é(s)T ds,  foralmost every t € (0, T). (3.49)
0
We have
¢ 1/(1-1)
E(b) < a4+ (1- )8 / ¢(s)ds , foralmosteveryt e (0,T). (3.50)
0

Proof. The proof of this result is standard. Set

t
G(t) ::Oé—|—,3/<i)(s)?§(s)r ds, forte(0,T). (3.51)
0

Then G'(t) = B (H)EM)T < B (t)G(t)T for t € (0, T) and consequently

GOTTC () <pp®), forte(0,T). (3.52)

Integrating this with respect to t and using the fact G(t) > &(t) for t € (0, T) yield the conclusion. O

Remark 3.4. In [31], the authors used Lorentz’s model to study approximate cloaking via a change of variables for the
acoustic waves in the time domain. Wave equations that are non-local in time also appeared in a very different context in
[30], the one of generalized impedance boundary conditions for conducting obstacles. The proof of Theorem 3.1 is inspired
from these works.
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Remark 3.5. Assume that (2.6), (2.10), (2.13) and (2.15) hold. Let u € L°°(—o00, +00; H) be a weak solution to

M(x)ou(t,x) + (A xu)(t,x) =Au(t,x)+ f(t,x), forteR, xe R3. (3.53)

Note that the time convolution x is considered here, and not the operator « defined by (3.1). Assume that f(t,-) =0 for
t <t; and in addition that u € L1 (—o0, t1; V) and

liminf|u(t, )| =0. (3.54)
t——00

Then u(t,-) =0 for t < t1. The definition of weak solutions to (3.53) is similar to the one given in Definition 3.1: u is
required to satisfy the following equation, in the distributional sense,

d

a(MU(L ),V)f;_['f‘((A*U)(f, ')5V>H:(u(ta )7AV)H+<f(t’ ')7V)'Hs in (—O0,00), (355)
for all v € V. Indeed, we have

1d

2ar (Mu(t, -), u(t, )y + ((Axu)t, ), ut,))y =0, in(—oo,ty). (3.56)

This implies, by (3.54),
t
5 (MU uE )+ [ (A0 ) =0, in(~o0,t0). (357)
Similar to (3.29), we obtain, for t < tq,
t
f ((Axu)(s,-),u(s,-))yds>0. (3.58)

Therefore, u(t,-) =0 for t < tq.
3.2. Proof of Theorem 3.2

In the case where u is regular enough, the argument is quite standard using the two observations (3.29) and (3.30). As
far as we know, the proof of finite-speed propagation for energy solutions is not presented in standard references on partial
differential equations. To overcome the lack of the regularity of u, we implement the strategy used in the proof of the
uniqueness part of Theorem 3.1. For simplicity of notations, we assume that a =0 and we denote cq g by c in this proof.

Set

t
U(t,x) = / u(s,x)ds, forte[0,T), xe R3. (3.59)
0

Integrating (3.10) from O to t and using the fact that u(t =0, -) = up, we obtain that, for all v € V and for almost every
te(,T),

t
(Mu(t,-), v)y — (Mug, v)¢ + / ((Axu)(s, ), v)g ds=(U(t, ), Av)y + (F(t), V)y , (3.60)
0
where
t
F(t,-) :=/f(s, )ds, forte[0,T). (3.61)
0

As in (3.44), we have

t
/(A *U)(s,-)ds = (AxU)(t,-), foralmosteverytel[0,T). (3.62)
0
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Since

oU(t,)=u(t,-), foralmosteveryte (0,T),
we derive, for all v € H, that in (0, T)

(MogU(t, ), V) + ((AxU)(s,-)ds, v)y = (U(t, "), Av)y + (F(t,-), dk)yy + (Mug, v)4 .
It follows that

MX)o:U(t, x) + (A xU)(t,x) =AU(t, x) + F(t,x) + Mug(x), forte(0,T), x€ R3.
From (3.63), we obtain

UelL',T;V).
We claim

U(t,)=0, inBg_sandfort e (0,R/c).

Since ug =0 in Bg, it is clear that the conclusion follows from claim (3.67) and the definition of U.

(3.63)

(3.64)

(3.65)

(3.66)

(3.67)

It remains to prove (3.67). Multiplying the equation of U (3.65) by U(t, x), integrating with respect to x in Bgr_, and
using the facts that up =0 in Bgr_ and F(t,-) =0 in Br_ for almost every t € (0, R/c), we have, for almost every

te(0,R/0),
/.MatU(t,x) - U, x)dx + /(A * U)(t,x) - Ut,x)dx = /AU(t,x) - U(t, x)dx.
BRr_ct BR—ct Br—ct

The divergence theorem gives, for almost every t € (0, R/c),

1d
2dt
BR—ct Br—ct 0BR—ct

It follows from (3.68) that, for almost every t € (0, R/c),

%% / MU(t,x)'U(t,x)dx—k/(A*U)(t,x)~u(t,x)dx
BRr—ct BR—ct
=—§ / MU(t, x) - U(t,x)dx + / AU(t, x) - U(t, x) dx.
dBR_ct BR—ct

/MU(t,x) - U, x)dx = /Man(t,x) - U, x)dx — % / MU(t,x) - U(t,x)dx.

(3.68)

(3.69)

(3.70)

Integrating this identity from 0 to t with t € (0, R/c) and using the fact that U(0, ) = 0, we obtain, for almost every

te(0,R/c),
t

1
3 / MU(t,x)-U(t,x)dx+//(A*U)(s,x)-U(s,x)dxds
BR—/:t OBR—CS
¢ t

=—%/ / MU(s,x)-U(s,x)dxds—i—//AU(s,x)~U(s,x)dxds.

0 dBR—cs 0 BR—cs

In a similar fashion to (3.29), we have

t
/ / (AxU)(s,x)-U(s,x)dxds >0, foralmosteveryt e (0,R/c).
0 BR—cs
Combining (3.71) and (3.72) yields, for almost every t € (0, R/c),

t

t
% / MU(t,x) - U(t,x)dx < —%/ / MU (s, x) - U(s,x)dxds + / / AU(s,x) - U(s,x)dxds.

Br—ct 0 9BRr—cs 0 Br—cs

(3.71)

(3.72)

(3.73)
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We claim that, for 0 < s < R/c, one has

—% / MU(s,x)-U(s,x)dx + f AU(s,x)-U(s,x)dx <0. (3.74)
aBR—cs BR—CS

Indeed, for U = (E, H)T, one has

/ AU(s,x)-U(s,x)dx = / [curl H(s, x) - E(s,x) —curl E(s, x) - H(s, x)] dx

BR—cs B(0,R—cs)
=— / (H(s,x) x e;) - E(s,x)dx < f |H||E|dx
dBR_cs OBR—cs
and
MU(s,%) - U(s,X) = erelE - E + pretH - H > 2| P E || [P H]. (3.75)

Assertion (3.74) now follows from the definition (3.16) of ¢ = cq .
We derive from (3.73) and (3.74) that

1
3 / MU (t,x)-U(t,x)dx <0, foralmosteveryte (0,R/c), (3.76)
BRr—ct

and claim (3.67) follows from the ellipticity of M. O
3.3. Proof of Theorem 3.3

In this proof, we use the notations from the one of Theorem 3.1. For n € N*, set

Va(t, X) := deun(t,x), forte[0,T), xeR3.

We recall that u, is the approximate solution constructed by the Galerkin approach in the proof of Theorem 3.1. It follows
from (3.25) that

n
vn(t,X) = Zd;!k(t)qﬁk(x), forte[0,T), xe R3 (3.77)
k=1

(note that dy  is Lipschitz with respect to t € [0, T]). Differentiating (3.26) with respect to t, we have

d .

i@ (Mvn(t, ), rday + ((A*vn) (L, ), Pr) g = (Va(t, ), Adr) gy + (8n(E,-), dk)py,  In(0,T), (3.78)
where

Zn(t,x):=0:f(t,x) — A(t,X)upn(x), forte(0,T), xe R3. (3.79)
We have

(Morun(0, ), di) gy = (Un(0, ), Adr) gy + (F(O, ), Py, forkefl, ... n} (3.80)

It follows from (3.80) that M'/28;u,(0, -) is the projection of M~1/2(Aug + f(0,-)) into the space spanned by {M!/2¢, .-,
M2¢,} in H. This implies

Va0, )i = 10cun(0, )l < C(Iluollv + 1 £(0, ')”H)- (3.81)

By (3.78), d], , € WI-1(0, T). As in (3.36), we derive from (3.78) that

2

t
Iva(t, I3, < C | lluolly + 1£0, )% +/ 195 f (s, Il + IACS, )l lun(s.) Iz ds in (0, 7). (3.82)
0
This in turn yields
¢ 2
v, )3, = C | luolly + 11 £ (O, -)IIH~I—/||35f(S, Iz + NACS, e lucs.)llx ds in (0, T), (3.83)
0

and the conclusion follows. O
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obstacle P
we >0 20 M| |30
W > 0 'L

Fig. 1. Geometry of the problem (4.7).

4. Numerical results

We now perform some numerical simulations. In this section, we focus on the Drude’s model without absorption de-

scribed at the end of Section 2. More precisely, we consider &re| = flre; = 1, );Tﬂ = )Tn; =0,

2 2
o~ W2 (X — W (X
e (W, X) = e_( ) and  Apm(w,x) = # forweR, xeR>,
— —iw
or equivalently
Ree(t,X) =W2(X)0(t) and  Apm(t,X) =w2,(x)0(t),  forteR, xe R,

where w. and wy, are two functions defined later.
In this context, the problem (3.3) rewrites

t
BtE(t,x)+w§(x)/E(s,x)ds:curlH(t,x)+fe(t,x),
0

t
orH(t, x)~|—w%1(x)/H(s,x) ds = —curl E(t, x) + fim(t, x),
0

E(t=0,.)=Ey, H(t=0,-) = Hp.
Define

t t
J(t, %) ::fE(s,x)ds and K(t,x) ::/H(s,x)ds, fort >0, xe R>.
0 0

It is clear that J(t =0,-) =K(t =0,-) =0 and that

o J(t,x)=E(t,x) and 0:K(t,x)=H(t,x), fort >0, xe R3.

fort > 0, xeR3.

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

From (4.3), one obtains the following local in time problem which is the advantage of the special structure of Drude’s

model:
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14.6667 s

t=

6.6667 s

t=

t=22

x) + fe(t, %),

—curl E(t

El

Fig. 2. Snapshots of E3 at different times for the first experiment.

curl H(t

HE(t, %) + W20 J(£,%)

X) + fin(t, %),

)

(OK(E, )

2
m

OrH(t, x) +w,

8t.](tv X)

(4.6)

fort >0, x e R3.

E(t,x),

H(t, x),

QK (£, X)

=0,

J(=0,-)

E(t=0,-) =Eo,

=0.

Kt=0,

H(t=0,-) = Ho,
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772

14.6667 s

t=

6.6667 s

t=

t=150s

95.3333 s

t=

Fig. 3. Snapshots of E3 at different times for the second experiment.

We are interested in simulations on (4.6) in the 2d setting for simplicity. We thus consider the case in which (Eg, Hp),

(fe, fm), and (We, Wy;) do not depend on the third variable x3 in space (here x = (X', x3) € R3

(%1, x2) € R?). One

/

with x

can show that the four fields E, H, J and K are also independent of x3 and that one has the two decoupled systems

respectively called transverse-electric and transverse-magnetic modes. Here we focus on the transverse-electric modes, which

(x1,%2) e R?:

are given as follows, for t > 0 and x’
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t=6.6667 s t=14.6667 s

t=22s =34.6667 s
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Fig. 4. Snapshots of E3 at different times for the third experiment.

O E3(t,X) + W2 (x1,X2) J3(t, X') = 0, Ha(t, X') — 0, H1 (£, X) + fe3(t,X),
O H1(t, X)) +Wh(X)K1 (6, X) = =3, E3(t, X) + fm1(t,X),

Ho(t, x) +w,%1(x’)l<2(t, X)) = ox, E3(t, X))+ fm2(t, x),

3 J3(t. %) = E3(t,x), 8K1(t,X) = Hi(t,X), K2(t.x) = Ha(t,X),
E3(t=0,-)=Eg3, Hi(t=0,-)=Hop1, H2(t=0,-) = Ho2,

J3t=0,)=0, K1(t=0,-)=0, K2(t=0,-)=0.

773

(4.7)
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The setting for the simulation is the following. The medium consists of a bounded rectangular obstacle filled with a
Drude’s material with positive constants w, and wp, which is surrounded by vacuum, i.e. (We, Wy;) = (we, @) inside the
rectangle and (0, 0) otherwise (see Fig. 1). We impose zero initial conditions for the electric and the magnetic fields:

Es(t=0,)=H1(t=0,) = Hy(t=0,) =0, (4.8)

and zero magnetic sources:

fm,l = fm,2 =0. (4-9)
We choose
fe3(t,x1, %) =sin(@yt)g(x1,%2), fort >0, (x1,x) € R?, (4.10)

where g is a Gaussian given by

X1,X2) =€ - 5, or (x1,x2) € R”. .
g( ) 25(x1+10)%—-25x for ( ) R2 (411)

By selecting appropriately we, wn and wy, the obstacle can have a negative permittivity, a negative permeability or even
both.

Concerning the numerical methods, we use classical PMLs to artificially bound the computational domain and, for the
numerical scheme, we use P'-P% mixed finite elements (with mass lumping for efficiency) for the space discretization and
centred finite difference approximations on staggered grids for the time discretization. The computations were done with
FreeFem++ [13]. We refer to [43] for more details about these numerical methods.

We perform three numerical experiments.

e In the first one, we take w, =5, w, =4 and wp = 2. With this choice, we have

E(wy)>~036>0 and [i(wy) ~0.84>0.

Here, the “effective” permittivity and permeability are both positive. Fig. 2 shows some snapshots of E3 at different
times. One can see that there is propagation inside the obstacle, but with different speeds (and consequently wave-
lengths). This is due to dispersion.

o In the second simulation, we take w, =5, w. =6 and w,; = 2. With this choice, we have

B(wy)~—044 <0 and [i(w,)~0.84>0.

Here, the “effective” permittivity and permeability are of opposite signs. Fig. 3 shows some snapshots of E3 at different
times. One can see that there is no propagation inside the obstacle: the field is exponentially decaying (after the
transient wave has passed).

o In the third simulation, we take wy =5, we = 5+/2 and @y, = 5+/2. With this choice, we have

T(wy)~—1<0 and [(wy)~—-1<0.

Here, the “effective” permittivity and permeability are both negative. Fig. 4 shows some snapshots of E3 at different
times. There is propagation inside the obstacle. The field focuses inside the obstacle and re-focuses symmetrically to
the source outside the obstacle on the right.
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