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A B S T R A C T

In previous work, we showed that two degree of freedom oscillators can be advantageously applied to hor-
ological time bases since they can be used to eliminate the escapement mechanism. We subsequently examined
planar two degree of freedom oscillators based on parallel flexure stages. We noted that these oscillators are
strongly affected by the orientation of gravity so are not directly suitable for portable timekeepers such as
wristwatches. In this paper we examine the design and performance of two degree of freedom spherical oscil-
lators. By spherical oscillator, we mean a spherical mass having purely rotational kinematics and subject to
elastic restoring torque. As opposed to our previously examined oscillators, the oscillation period of spherical
oscillators is relatively insensitive to the effect of tilting the mechanism in the presence of gravity. In order to
restrict spherical rotation to two degrees of freedom, we restrict the kinematics to obey Listing's law, a well-
known constraint occurring in human eye movement. We show that a particular central restoring force we call
the scissors law is best suited for chronometric performance and propose a number of theoretical mechanisms
producing it. We then design an actual spherical oscillator based on our theoretical results. The design uses
flexure springs to restrict kinematics to Listing's law, produce the scissors law and provide the necessary sus-
pension. Finally, we present experimental data based on a physical realization indicating promising chrono-
metric performance.

1. Introduction

1.1. Oscillator time-bases without escapement

The biggest improvement in timekeeper accuracy was due to the
introduction of the oscillator as a time base, first the pendulum by
Christiaan Huygens in 1656 [18], then the balance wheel-spiral spring
by Huygens and Hooke in about 1675, and the tuning fork by N.
Niaudet and L.C. Breguet in 1866 [26]. Since that time, these have been
the only mechanical oscillators used in mechanical clocks and in all
watches, see the survey [27].

In [14], we presented new time bases for mechanical timekeepers
which, in their simplest form, were based on a harmonic oscillator first
described in 1687 by Isaac Newton in Principia Mathematica [25,Book
I,Proposition X]. This oscillator is the isotropic harmonic oscillator,
where a mass m at position r is subject to a central linear restoring force
(Hooke's law), and as Newton showed, the resulting trajectories are
elliptical (Fig. 2). More significantly for our purposes, Newton showed

that trajectories are isochronous, that is, the frequency of rotation is the
same for all orbits. Since isochronism is the basis of precision time-
keeping, such oscillators are ideal candidates for mechanical time-
keepers, however, it appears that this has not been previously con-
structed or even proposed [15].

Since trajectories have unidirectional rotation, these oscillators
have the advantage of solving the problem of inefficiency of the esca-
pement by eliminating it completely [14]. Unidirectional rotational
motion is the key to eliminating the escapement, and this desirable
property is achieved by passing from the one degree of freedom oscil-
lators found in classical time keepers: pendulum, balance wheel, tuning
fork, to two degree of freedom mechanical oscillators having a central
force, that is, a restoring force towards a unique stable position. In
practice, the escapement mechanism is replaced by a crank which is
driven by the energy storage mechanism such as a watch mainspring
and which then maintains and counts time base oscillations by a pin
attached to the oscillator, see [14,15].
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1.2. Specifications for an oscillator for time-base without escapement

The ultimate goal is to have a time base for a mechanical wristwatch
which requires excellent isochronism which means following Newton's
model as closely as possible. The model assumes a point mass and, as
described in [14], a positive angular momentum yields an isochronism
defect, so any mass rotational inertia should be eliminated.

Wristwatches are portable timekeepers so the oscillator should be
insensitive to gravity and to shocks.

These considerations lead to the following specifications for an os-
cillator time-base for a mechanical watch without escapement

1. A two degree of freedom oscillator.
2. A linear restoring force, i.e., which obeys Hooke's law.
3. A central restoring force, i.e., the spring potential has a unique

minimum.
4. The central restoring force is isotropic, i.e., it is the same in all radial

directions.
5. The mobile mass behaves as a particle, i.e., as a point mass.
6. Motion is restricted to a plane.
7. Mass is independent of position.
8. Chronometric accuracy is insensitive to oscillator energy (iso-

chronism).
9. Chronometric accuracy is insensitive to gravity and shocks.

1.3. Spherical oscillators

In a previous article [30], we focused our attention to planar two
degree of freedom oscillators based on configurations of X–Y stages,
which were designed to very closely satisfy the first eight conditions but
which does not at all satisfy condition 9. This makes it very suitable as a

clock time-base and the authors built a prototype clock which has been
on exhibit at the Neuchatel, Switzerland, city hall since December 2016
[9]. However, failure to satisfy condition 9 makes this oscillator design
unsuitable for portable timekeepers.

We therefore turned our attention to spherical oscillators which do
satisfy condition 9. By spherical oscillator, we mean a spherical mass
having purely rotational kinematics and subject to elastic restoring
torque. Since the center of gravity of the mass is immobile during os-
cillation, the oscillator period is relatively insensitive to the effect of
tilting the mechanism in the presence of gravity.

Not all specifications of Section 1.2 can be respected, since for
spherical oscillators motion is no longer planar (condition 6). Since
Newton's model does not hold, it follows that our oscillator is no longer
isochronous (condition 8). We do manage to retain a weaker form of
isochronism by considering what happens at stable circular orbits. Such
orbits always occur for central forces and we show that replacing
Hooke's law (condition 1) by what we have called the scissors law
produces isochronism of stable circular orbits.

The isotropy defect of our constructed oscillator was not optimized
and this is the subject of our ongoing research. Our constructed oscil-
lator thus satisfies conditions 3, 5, 7 and potentially 9.

We therefore note that the above specifications were used as a
guideline for constructing an oscillator and the object of our study is to
design an oscillator with sufficient chronometric performance to be
used as a time-base for a wristwatch. Experimental tests of our design
indicates that this is indeed the case.

We constructed a clock with the spherical oscillator described in this
paper and shown in Fig. 1. This fully functional clock will be exhibited
at the International Museum of Horology, La Chaux-de-Fonds, Swit-
zerland, in September 2017 [22].

Remark. Spherical oscillator time bases were previously considered in
the early 1960s by the CEH, the Swiss research group which invented
the quartz watch, but they were unable to find acceptable methods of
suspending the sphere and maintaining oscillations . This paper
effectively solves this problem.

1.4. Outline of the paper

We first examine the theoretical aspects of spherical oscillators. Due
to the remarkable similarity with eye movements, which are spherical
rotations, we will adopt much of the notation of eye movements. In fact,
our results here have led to applications to eye movements [16].

Since the sphere with fixed center has three degrees of freedom,
condition 1 requires a restriction to two degrees of freedom. This is
accomplished by specifying that the kinematics of our spherical oscil-
lator respect Listing's law, which is well-known to apply to human eye
movement.

We analyze the kinematics and dynamics of spherical rotation under
Listing's law. We will show that the dynamics are essentially that of a
point mass, i.e., condition 5 above.

We then examine potentials corresponding to central restoring
forces and we show that there is a unique potential producing iso-
chronism for stable circular orbits. Due to its physical realization, we
call this the scissors law.

We then describe theoretical mechanisms realizing the kinematics.
We show that Listing's law can be realized by a constant velocity joint
and our restoring force by a scissors mechanism. We then show that the
scissors restoring force can also be realized by a constant velocity joint
and N ≥ 3 evenly distributed equatorial linear springs, and this has the
advantage of eliminating spring circular motion present in our initial
scissors mechanism.

We then proceed to the design of an actual spherical oscillator. A
physical design requires limiting kinematics to Listing's law, springs
producing the scissors law as well as suspension to hold the sphere. We
based our design on the equatorial realization by having three equally

Fig. 2. Elliptical orbit under central Hooke law.

Fig. 1. Clock with time base our spherical oscillator.
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distributed equatorial beams. The first point is that this beam place-
ment almost eliminates torsion, so the kinematics closely follow
Listing's law and constructing a complicated CV joint is avoided.
Secondly, the beams approximate linear springs, so the restoring force
approximates the scissors law without any spurious spring motion.
Finally, the polar beam provides the required suspension.

Our design is not quite faithful to the theoretical mechanism so we
model the behavior of our equatorial beams to estimate the isotropy
defect of our restoring force as well as its discrepancy from the ideal
scissors law. In fact, the numerical data of Section 3.2.5 indicates that
our mechanism does not approximate the scissors law, due to the effect
of the polar beam suspension.

Finally, we describe our actual construction of the three equatorial
beam spherical oscillator and present experimental data indicating that
our demonstrator has an acceptable isochronism defect.

The structure of the paper is summarized by

• Study the analytic theory of spherical 2-DOF oscillators and theo-
retical mechanisms realizing their kinematics.

• Use the ideal theoretical mechanisms as an inspiration for a simple
mechanical design.

• Provide an analytical model of the design.

• Derive numerical data from the analytical model of the design.

• Construct a physical realization of the design.

• Evaluate the chronometric performance of the physical realization.

2. Theory

2.1. Kinematics

2.1.1. Listing's law
The first specification we address is condition 1 which requires re-

stricting motion to two degrees of freedom. We do this by having our
spherical mechanisms obey Listing's law, which is a restriction on
spherical positions reducing the degree of freedom of rotation to two.
Since this concept first appeared in relation to eye movement, we
present a brief description of its history.

Three dimensional rotations have three degrees of freedom and do
not commute, so total freedom of eye position could conceivably cause
problems, since eye orientation for a given line of sight could depend on
the path chosen to reach it, causing different retinal images (this can
indeed occur [34]). It was first suggested by Donders [8] that in some
situations, each given line of sight corresponds to a unique eye or-
ientation and eliminating path dependence. This was subsequently
named Donders’ Law by Helmholtz in Volume III of his treatise of
physiological optics [12]. Donders’ Law is the exact statement that
spherical rotations are limited to two degrees of freedom.

A more explicit description of possible eye positions was given by
Johannes Benedict Listing (1808–1882),1 apparently without any
physical evidence nor subsequent publication, the statement is given
below. This constraint was subsequently named Listing's Law by Helm-
holtz [12], see [29] for surveys of the subject, [36] for experimental
confirmation, it is known in robotics as a zero torsion mechanism for
spherical rotation [4]. Though Listing's Law is generally thought to be a
method of restricting the degree of freedom of the eye from three to two
in order to avoid orientational confusion, this is not entirely obvious, as
explained by Tweed [33]. Listing's Law restricts the possible orienta-
tions as follows.

Listing's law. There is a direction called the primary position so that
any admissible position is obtained from this position by a rotation
whose axis is perpendicular to the direction of the primary position.

It follows that all axes of rotation lie on a single plane which we call

the Listing plane. In Section 2.2, we will consider dynamics of the sphere
under the Listing constraint and we will call admissible motion one
passing only through admissible Listing positions.

2.1.2. Notational conventions
Since our models follow Listing's law and this restriction has been

the subject of active research in the field of eye movement, we have
decided to follow the notational convention of the eye in which the
primary position is pointing in the x direction and the z direction is
pointing vertically up, that is, opposite to the gravitational force
(Fig. 3).

We will also freely use reference to eye movement, in particular, we
use the term line of sight to mean the modified position of the point (1,
0, 0) under rotation. We use the term torsion to mean a rotation around
the line of sight.

Unless otherwise indicated, we will assume that the sphere radius
equals 1. We let the primary position be such that the line of sight
points to the positive x axis. We will denote the point i = (1, 0, 0) as the
primary position since there is only one admissible rotation with that
line of sight. With these coordinates, the y–z plane becomes the Listing
plane containing all admissible rotational axes. Any such rotational axis
can be taken to be the z-axis rotated around the x-axis by an angle φ, so
represented by the unit vector n= (0, − sinφ, cosφ). One then rotates
around n by an angle θ taking the front pole i to the point v = (cosθ,
sinθ cosφ, sinθ sinφ), the v direction thus becomes the current line of
sight. This expresses the fact that any admissible Listing position is
described by the spherical coordinates (θ, φ) corresponding to the
Euclidean coordinates (cosθ, sinθ cosφ, sinθ sinφ) of the resulting line
of sight v, as calculated above. It is important to note that θ is colatitude,
so our coordinate system may differ from other definitions of spherical
coordinates.

As will be seen in Section 2.2.1, it is natural to decompose rotations
into radial motion in θ and circular motion in φ, see Fig. 4. Admissible
motion in θ with φ fixed moves either directly towards or directly away
from the primary position, so is radial motion. We will also call θ the tilt
angle, a notation consistent with the term “tip-tilt mechanism” well-
known in the literature.

Motion in φ with θ fixed keeps a constant distance from the primary
position, so is circular motion. The decomposition is analogous to polar
coordinates in the plane. This interpretation is physically consistent
with θ and φ as generalized coordinates and will be the basis for our
dynamical analysis of Section 2.2.

Finally, we use the notation R(α, a) to denote a rotation by angle α
around the axis a. The rotation R(α, a) is applied to vectors on the right,

Fig. 3. Eye looking in v direction: vector n in the Listing plane is axis of rotation of eye by
angle θ.

1 Listing's most famous discovery, the Möbius strip, is better known by the name of its
co-discoverer.
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so vector u is rotated by R(α, a) to obtain vector v according to v = u R
(α, a). This is consistent with using row vectors and the 3 × 3 matrix
representation for rotations, with rotation of vectors by matrix multi-
plication.

2.2. Dynamics

Listing's Law gives a set of constraints on possible sphere rotations.
The standard method of analyzing the dynamics of mechanical systems
under a set of constraints is to appeal to analytical dynamics, that is
using φ, θ as generalized coordinates and replacing Newton's Laws and
vectors in favor of energy considerations, see [10,32,38] for a de-
scription. This will require a computation of the kinetic energy and
therefore of the angular velocity vector, and the most direct approach
appears to be Euler angles.

2.2.1. Euler angles
To analyze Listing's Law, we appeal to the well-known Euler angle

formulation of rigid body rotation, see . Using the notation of the
previous section, any rotation of a rigid body is expressed by three
angles φ, θ, ψ (Fig. 5): a rotation of angle φ around i taking the z-axis
vector k to n, followed by a rotation of angle θ around n taking i to v,
followed by a rotation of angle ψ around v.2 In terms of the notation
defined in Section 2.1.2, this is the product R(φ, i) R(θ, n) R(ψ, v).

In our case, it is easily seen that a Listing position (θ, φ) is obtained
by the Euler angles φ, θ, − φ, that is, ψ=− φ. In terms of Section
2.1.2, this says that an admissible Listing rotation is the composition of
rotations

−φ θ φR i R n R v( , ) ( , ) ( , ). (2.2.1.1)

This relation among the Euler angles of Listing positions is not usually
presented in the literature, though it is stated by Helmholtz without any
emphasis or accompanying figures. Moreover, the Euler angle for-
mulation is essentially: “torsion, rotation without torsion, undo tor-
sion,” so spurious torsion is introduced by Euler angles. It follows Euler
angles are counter-intuitive and are probably not a faithful model of the
physiological mechanism. However, they are used here because they

radically simplify the formulation of the eye's angular velocity by re-
ducing it to a single line.

One of the main applications of Euler angles is to provide an explicit
formula for the angular velocity ω of a rotating body and it is well-
known that, due to additivity of infinitesimal rotations,3 that the
composition of rotations given by R(φ, i), R(θ, n) R(ψ, v) can be quite
simply derived term by term to give

= + +ω φ θ ψi n v˙ ˙ ˙ .

Our case is ψ=− φ, so the angular velocity of admissible Listing ro-
tations is given by

= − +ω φ θi v n˙ ( ) ˙ . (2.2.1.2)

Remark. The Euler angle convention is to call φ, θ, ψ precession,
nutation, and spin. Listing circular motion therefore corresponds exactly
to “precession exactly opposite spin.” In the case of the Earth, this
would mean that the 26,000 year precession cycle would speed up to a
23 h 56 min sidereal day.

2.2.2. Energy considerations
In order to set up the Lagrangian formulation of the dynamics, one

begins by computing the kinetic energy of the system. Assume that the
mass density is spherically symmetric so the moment of inertia of the
mass is given by the single scalar I, then the kinetic energy is
K= I ∥ ω ∥ 2/2. Formula (2.2.1.2) gives

= − +ω φ θi v˙ ˙ ,2 2 2 2

since n is a unit vector orthogonal to i− v, so that

= +K I θ θ φ
2

( ˙ 4sin ( /2) ˙ ).2 2 2

Given a potential V(θ, φ), the Lagrangian is

L = − = + −K V I θ θ φ V θ φ
2

( ˙ 4sin ( /2) ˙ ) ( , ).2 2 2
(2.2.2.1)

The generalized momentums are

L L= ∂
∂

= = ∂
∂

=p
θ

Iθ p
φ

I θ φ˙
˙ ,

˙
4 sin ( /2) ˙ ,θ φ

2

confirming that θ resembles radial motion, since pθ is analogous to
standard linear momentum of a particle moving in Euclidean space,
while pφ is analogous to angular momentum of such a particle (though
both pθ and pφ are actually angular momentum).

In analogy with the central forces examined by Newton, we restrict
ourselves to central potentials, by which we mean potentials which do
not depend on φ and φ̇. In this case, pφ is a constant, usually written L in
this context, and this generalized angular momentum L is preserved. In
particular, this implies that for sufficiently small θ, if motion is not

Fig. 4. Motion viewed from i direction: (a) primary position, (b) radial
motion (tilt), (c) circular motion.

Fig. 5. Euler angles sequence of rotations φ, θ, ψ.

2 The standard sequence is to rotate with respect to k, j, v, but this has been modified
here since the primary position point in direction i instead of k.

3 It appears that the derivation of the angular velocity given in [35,equations
(19)–(24)] is essentially the proof of additivity of angular velocity, compare with
[23,Proof of Theorem 9.3,p. 374]. Additivity also implies that infinitesimal rotations
commute, compare with [21,28]. See [2,p. 42–44] for a geometric proof of the additivity
of infinitesimal rotations.
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perfectly radial, ≠φ t˙ ( ) 0 for some t, then trajectories orbit around the
primary position without ever attaining it. This is the unidirectional
motion required for our time bases without escapement.

Given a central potential V(θ), one expresses φ̇ in terms of L= pφ to
derive an expression for the total energy

⎜ ⎟= + = ⎛
⎝

+ ⎞
⎠

+E K V I θ L
I θ

V θ
2

˙
4 sin ( /2)

( ).2 2

2 2 (2.2.2.2)

This energy formula is similar to the spherical pendulum, in which case
V is the gravitational potential, see [20,38] for a complete explicit so-
lution to the dynamics of the spherical pendulum in terms of elliptic
functions. Using similar methods, we were able to compute explicit
solutions in terms of elliptic functions to our problem in the special case
of the scissors potential of Section 2.3.4.

In further announced work [16], we have shown that the dynamics
are equivalent to the dynamics of a point mass on an associated two
dimensional sphere of unit quaternions. This goes to show that our
model satisfies condition 5 of the specifications of Section 1.2.

2.3. Circular isochronism

Since our spherical oscillators do not follow Newton's model, iso-
chronism of arbitrary orbits is no longer possible so we consider a re-
stricted form.

Definition. We define circular isochronism to mean that circular steady
state orbits all have the same period.

Note that there are steady-state circular orbits since we only con-
sider central potentials. We will consider possible central potentials V
and examine the behavior of circular steady state orbits, in other words,
orbits with constant θ and constant φ̇. For every angle θ, there exists a
circular constant angular speed φ̇ satisfying the equations of motion,
the corresponding period is =T θ π φ( ) 2 / ˙ .

Definition. By circular isochronism defect we mean the relative
discrepancy T(θ)/T0 − 1 of circular steady state orbits at angle θ,
where T0 is a nominal period.

2.3.1. General circular orbits
Consider a general central potential V and the corresponding

Lagrangian of Eq. (2.2.2.1). The Euler–Lagrange equation in θ is

L L⎛
⎝

∂
∂

⎞
⎠

= ∂
∂

d
θ θdt ˙

which gives the equation of motion

− + ∂
∂

=Iθ Iφ θ V
θ

¨ ˙ sin 0.2

For steady state circular orbits =θ̈ 0 and φ̇ is a constant. This gives the
following equation for steady state circular motion

= ∂
∂

φ
I θ

V
θ

˙ 1
sin

,

confirming that φ̇ is constant for any fixed value of θ. The corre-
sponding steady-state period is

= ∂
∂

T θ π I θ V
θ

( ) 2 sin .
(2.3.1)

2.3.2. Linear restoring force
The simplest analogy with the planar case examined by Newton is a

linear central restoring force with potential Vℓ = κθ2/2, so that

∂
∂

=V
θ

κθℓ

and formula (2.3.1) says that the period of constant rotational motion is

=T θ π I θ
κθ

( ) 2 sin .
(2.3.1.1)

Note that =T π I κ2 /0 is the period of the classical one dimensional
rotational harmonic oscillator with stiffness κ and restoring torque I.
Taking as nominal period the value of T0 in Eq. (2.3.1.1) gives

=T θ
T

θ
θ

( ) sin .
0

The right hand side of the previous equation has the series expansion

O= − +θ
θ

θ θsin 1 1
12

( ),2 4

so the circular isochronism defect is

O− = − +T
T

θ θ1 1
12

( ).
0

2 4

2.3.3. Comparison with pendulums
It is interesting to compare the circular isochronism defect of the

linear restoring force to the well-known classical isochronism defect for
the simple pendulum

O− = +T θ
T

θ θ( ) 1 1
16

( ),
0

2 3

and the circular isochronism defect of the conical pendulum

O− = − +T θ
T

θ θ( ) 1 1
4

( ).
0

2 3

The performance of the linear restoring force is therefore inferior to the
classical pendulum, though superior to the conical pendulum. We
conclude that linear restoring force is not a promising candidate for a
time base.

2.3.4. Scissors law restoring force
It turns out that there is a particular central potential which elim-

inates the isochronism defect of steady-state circular orbits for our
model, the scissors potential Vs = κ sin2(θ/2), with constant κ. The name
“scissors potential” comes from the spring mechanism described in
Section 2.4.3 which generates this potential. Since

∂
∂

=V
θ

κ θ1
2

sins

Formula (2.3.1) for steady state orbits yields

=T θ π I
κ

( ) 2 2 ,

which is a constant so circular isochronism holds. This justifies the
statement that this potential is the correct choice for our model.

Remark. The total energy formula (2.2.2.2) for the scissors potential is

⎜ ⎟= ⎛
⎝

+ ⎞
⎠

+E I θ L
I θ

κ θ
2

˙
4 sin ( /2)

sin ( /2).2 2

2 2
2

(2.3.3.1)

2.4. Theoretical mechanisms

2.4.1. State of the art
The description of Listing positions given by Euler angles in Section

2.2.1, i.e., that spin is exactly opposite precession, suggested to us a
new model and a new mechanism for Listing's law, described Section
2.4.2 below. We begin by reviewing previous mechanizations.

Simple mechanisms modeling eye rotation were proposed by Fick
and Helmholtz using gimbals, but these do not respect Listing's Law, see
[5,p. 150] [11].

A physical realization was first observed by Nakayama [24] who
noted that Listing rotations could be induced via the bending of an

I. Vardi et al. Precision Engineering 51 (2018) 499–513

503



isotropic object, i.e., whose elastic restoring force is the same in all
directions. His example consisted of an isotropic membrane holding a
rigid beam. We have modified this mechanism slightly by using an
isotropic beam, see Fig. 6. Applying a force causes it to bend with the
sphere at its extremity rotating around its center according to Listing's

Law. This realization is not pursued here since it has the defect of
translating the sphere.

2.4.2. Constant velocity joint realization of Listing's law
A mechanical realization of Listing's Law is possible using constant

velocity joint, usually abbreviated CV joint. These are variants of the
universal joint, in which a cylindrical rod enters the joint at a given
axial rotation speed, and a cylindrical rod exiting the joint at an arbi-
trary angle has the same axial rotation speed. An example of a constant
velocity joint is given in Fig. 7, see the patent for details [31]. Constant
velocity joints have numerous automotive applications, but it does not
appear that this mechanism has been proposed as a physical im-
plementation of Listing's Law.

To see how this implements Listing's Law, a spherical shell re-
presenting the eye is rigidly attached to the output shaft, where the
output shaft axis corresponds to the line of sight. The constant velocity
joint is situated at the center of the spherical shell, with the output shaft
able to rotate freely in radial motion as in the convention of Fig. 4, for
angles 0≤ θ < θmax, e.g., θmax = 45°. The output shaft can also rotate
freely about its axis. Fig. 8 gives a cross-sectional view of this me-
chanism, where spin occurs around the input shaft axis and precession
around the output shaft, so both of these are rotations out of the page.

The construction is such that the input shaft is attached to a fixed
frame and does not rotate. We then consider a rotation of the sphere
around this fixed input shaft, where the angle of the output shaft θ is
constant. Note that this corresponds to precession. Since the input shaft
is fixed, the CV joint causes an opposite and equal rotation of the sphere
around the output shaft, corresponding to spin. Therefore, precession
and spin are exactly opposite which is the exact condition for circular
admissible motion and Listing circular motion is achieved. Since Listing
radial motion is free, this mechanism realizes Listing's Law.

2.4.3. A mechanical realization of the scissors law
The central potential of Section 2.3.4 can be physically realized by

the mechanism shown in Fig. 9. The mechanism provides a restoring
force to bring the eye back towards the principal position. It is situated
behind the eye so as not to interfere with vision but an equivalent
construction consists of transposing the mechanism to the front of the
eye. Despite any similarity to the construction of Fig. 8, the mechanism
is independent of the constant velocity joint realization of Listing's law
of that figure, and the mechanism described here applies to a general
physical realization of sphere rotation.

The basic mechanism illustrated in Fig. 9 is a linear spring joining A
and B, where A is a fixed position in the negative direction of the
principal position, so behind the occipital point, and B in the negative
direction of the current line of sight so rotating with the radial angle
−θ. Both A and B are placed at the same distance R from the center of
the sphere. The construction is such that the attachments are unaffected
by sphere rotation, i.e., the spring rotates around A with sphere pre-
cession and is not affected by sphere spin at B. It is also assumed that
the spring is in its neutral position when the sphere is in the principal

Fig. 6. An isotropic beam producing Listing rotations of the sphere around its center.

Fig. 7. An Rzeppa constant velocity joint [6].

Fig. 8. CV joint realization of Listing's law.

Fig. 9. Spring applies a force of magnitude 2k R sin(θ/2) on B towards A.
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position, i.e., when A coincides with B.4

At radial angle θ, elementary trigonometry shows that the spring
length is 2R sin(θ/2), see Fig. 9, so extended by this amount from its
neutral position at A= B. The spring then exerts a force −2k R sin(θ/
2) at B and towards A, where k is the spring constant. Neglecting axial
compression force on the sphere beam, the resulting force at B is the
projection of the spring force in the direction orthogonal to the sphere
beam, and this equals −2k R sin(θ/2) cos(θ/2) =− k R sinθ. Since B is

at distance R from the sphere center, this gives a torque, or generalized
force, −kR2 sinθ. Using the fact that a potential V generates the gen-
eralized force −∂V/∂θ, this gives V= 2kR2 sin2(θ/2), yielding the
potential Vs defined in Section 2.3.4, with κ = 2kR2.

2.4.4. Equatorial springs realization of the scissors law
The realization of the scissors law of the previous section has the

defect that the spring mechanism is on the polar axis so the spring
mechanism itself rotates under circular motion. We address this issue
by showing that for a sphere with rotations restricted to Listing Law,
N ≥ 3 identical equally distributed equatorial linear springs produce a
scissors law restoring torque acting towards the principal position. Here
we assume that the springs have zero free length when the sphere is in
its primary (neutral) position.

We begin by considering a single spring. Without loss of generality,
we assume that the sphere has radius 1 and that the spring is placed at
the point A on the equator at an angle φ measured clockwise from the z
axis in the y–z plane, see Fig. 10. Since the spring is assumed to be
linear with zero free length, a displacement A↦ A′ produces a restoring
force k(A − A′), where k is the spring stiffness.

We now consider what happens when the sphere is tilted by an
angle θ, where, without loss of generality, this rotation can be assume

to be around the z axis. Explicitly, the attached point goes from A= (0,
sinφ, cosφ) to A′= (−sinθ sinφ, cosθ sinφ, cosφ).

The lever arm at A′ is the projection L= (−sinθ sinφ, cosθ sinφ, 0)
of A′ onto the x–y plane so the restoring torque is the cross product
L× k(A − A′). A direct computation shows that

× − = −k k φ θL A A′( ) (0, 0, sin sin ),2

so the torque resulting from a single spring at angle φ to the z-axis
results in a restoring torque −k sin2φ sinθ about the z-axis.

In the case of N evenly distributed equatorial springs, the previous
result shows that the total torque is given by

∑− ⎛
⎝

+ ⎞
⎠=

−

k θ φ πm
N

sin sin 2 .
m

N

0

1
2

Fig. 10. Linear spring attached to the equatorial plane of the sphere.

Fig. 11. Schematic design depicting the three equatorial beams (a) and the polar beam (b).

4 This is a conceptual construction which is not physically correct since the spring is not
physically supported and the neutral position indicated requires that the spring be at-
tached at a fixed position distinct from A, in the direction opposite B. However, an actual
physical realization having the exact properties is easily obtained. Note that a physical
realization requires that spring and sphere do not intersect, so R cos(θ/2) ≥ 1 which
shows that his mechanism only works for a radial angle bounded away from π.
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The sum on the right is easily shown to equal N/2 when N ≥ 3, for
example, as proved using the identities sin2t= (1 − cos2t)/2 and ei
t = cost+ i sint, and expressing the sum in terms of the real part of a
geometric series [19]. It follows that the total restoring torque due to
the N ≥ 3 springs is

− θkN
2

sin ,

which is a scissors law, since k and N are constants.

3. Design

3.1. Description of the design

A physical realization of a theoretical mechanism must approximate
the theoretical kinematics, Listing's Law, and also approximate a scis-
sors restoring torque. Moreover, the mechanism must also have a sus-
pension, as it operates under a gravitational field and this is achieved
using flexures (compliant mechanisms) [13,17].

Our design has three equatorial beams, which restrict the kine-
matics and produce a restoring torque. In addition, a single polar beam
is added to provide an adequate suspension for the mechanism. All the
beams have uniform circular cross sections of radius r. Following a well-
known result of Wittrick [39], we suspend the sphere on the polar beam
above the center of the sphere at a ratio of 1/8 above center and 7/8
below center in order to minimize the parasitic shift of the center in the
x direction, so d = Lp/8 in Fig. 11(b). The three equatorial beams are
arranged by a 120° consecutive rotation about the center O in the
equatorial plane (y, z plane, see Fig. 11). This arrangement is inspired
by the equatorial spring mechanism of Section 2.4.4 which indicates
that this setup has a good chance of approximating the scissors law.

Since our model only uses three equatorial springs and one spring as
a suspension, it appears to be the simplest possible realization of a
spherical oscillator obeying Listing's Law and approximating a scissors
law.

3.1.1. Design parameter values
The following Table 1 gives the values used for our design and the

construction described in Section 4.1.

3.1.2. Assumptions
We make two assumptions which imply that our mechanism re-

stricts rotations to a good approximation to Listing's Law. The first as-
sumption is that our four beams have infinite axial stiffness. In the
principal position, the three co-planar equatorial beams suppress all in
plane motion including torsion (rotation around the polar axis), while
the polar beam suppresses the out-of-plane translation. The second
assumption is that the tilt angle is small so that the previous argument
remains valid up to first order and sphere translation and torsion
around the tilted polar axis are negligible. Since torsion is suppressed
for these small angles, Listing's Law holds in this range.

3.1.3. Outline of results and computations
We construct an analytical model based on Euler–Bernoulli theory,

as described in Section 3.3, which provides a theoretical estimate for
the restoring torque of each beam under a Listing rotation. Adding these
torques gives an estimate of the restoring torque for three equatorial
beams and the polar beam.

This allowed us to estimate the isotropy defect of our model. Note

that the polar beam is inherently isotropic since it is axial in the prin-
cipal position i and has circular cross-section, so the isotropy defect
depends only on the three equatorial beams.

We also made a finite element simulation using COMSOL of the

Table 1
Parameter values.

I L Lp r Ly Lz E ν

1.23 × 10−3 kgm2 112 mm 70 mm 0.5 mm 45 mm 41 mm 210 GPa 0.3

Fig. 12. Single equatorial beam normalized restoring torque around n as function of φ
and θ = 1°.

Fig. 13. Single equatorial beam normalized restoring torque around m as function of φ
and θ = 1°.

Fig. 14. Single equatorial beam normalized restoring torque around i as function of φ and
θ = 1°.
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three beam model and the four beam model under standard gravity and
compared the isotropy defect.

Finally, we compared the stiffness of our model with scissors law
stiffness. Note that we have used the term normalized restoring torque
instead of stiffness, as this is a more precise description, see Section
3.2.1 below.

3.2. Numerical results

In order to get directly to our results, we first present our numerical
results based on the computations of Section 3.3. We start with data
computed for a single equatorial beam, then proceed to the case of three
equatorial beams and finally three equatorial beams and the polar
beam.

3.2.1. Single equatorial beam
Applying a tilt angle θ around n, we define the normalized restoring

torque of a single equatorial beam around n, m and i as the restoring
torque of that beam around n, m and i divided by θ. Figs. 12–14 re-
present these for φ ranging from 1° to 360° in 1° increments and tilt
angle θ= 1°. Here m= i × n, see Section 3.3.2. The exact values are
not important, since we expect significant cancellation when con-
sidering three evenly spaced equatorial beams. However, we still

provide this data in order to present our approach.

3.2.2. Three equatorial beams
We took the data given in Section 3.2.1 and added it for three

equatorial beams shifted by 120°. Figs. 15–17 give the total normalized
restoring torque, respectively, around the n, m and i axes for angle φ
from 1° to 360° in 1° increments.

We note that Fig. 15 only shows the result for θ= 1°, the data for
θ= 10° was virtually identical. Figs. 16 and 17 show that normalized
restoring torque for θ = 1° is much smaller than for θ= 10°.

The theory outlined in Section 2 requires that normalized restoring
torque only depends on the tilt angle θ, that is, on rotations around n. It
is therefore desirable for the contributions of the m and i normalized
restoring torques to be small compared to the n normalized restoring
torque.

Figs. 15–17 show that for θ = 1°, the m and i normalized restoring
torques are 0.0013% and 0.9292%, respectively, of the n normalized
restoring torque.

For θ= 10°, m and i normalized restoring torques are 0.1296% and
9.2824%, respectively, of the n normalized restoring torque.

3.2.3. Three equatorial beams and polar beam
We now add to the data of Section 3.2.2 the normalized restoring

Fig. 15. Normalized restoring torque of three equatorial beams around n as a function of
φ for θ= 1°.

Fig. 16. Normalized restoring torque of three equatorial beams around m as a function of
φ for θ= 1° and θ = 10°.

Fig. 17. Normalized restoring torque of three equatorial beams around i as a function of
φ for θ = 1° and θ = 10°.

Fig. 18. Normalized restoring torque of three equatorial beams and polar beam around n
as a function of φ, under gravity and for θ= 1°.
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torque due to the polar beam, as computed in Section 3.3.3. We note
that the polar beam has zero torsion, so it only contributes restoring
torque to tilt around n. It follows that the graphs shown in Figs. 16 and
17 remain the same, so we only present Fig. 18, the modified version of
Fig. 15.

Once again, we wish to compare the n normalized restoring torque
to the m and i normalized restoring torques. Fig. 18 with Figs. 16 and
17 show that for θ= 1°, the m and i normalized restoring torques are
7.42 × 10−4% and 0.5501%, respectively, of the n normalized re-
storing torque.

For θ= 10°, the m and i normalized restoring torques are 0.0750%
and 5.4832%, respectively, of the n normalized restoring torques.

These numerical values characterize the defect from our ideal the-
oretical design. This defect seems negligible.

3.2.4. Comparison with scissors law: isotropy
The scissors law requires an isotropic restoring torque, since it does

not depend on the circular angle φ.
We evaluate isotropy by taking the stiffness values kφ around n, i.e.,

the normalized restoring torques as defined in Section 3.2.1, which are
shown in Fig. 18 and looking at the relative error εφ = (kφ − kmin)/
kmin, for φ= 1°, 2°, …, 360°, where kmin is the minimal value of kφ.

Fig. 19 shows that for tilt angle θ= 1°, the relative isotropy defect
εφ is less than 1.68 × 10−4 ppm. A similar computation θ = 10° shows
that the relative isotropy defect is less than 1.68 ppm.

We conclude that isotropy holds up to a very small error.

3.2.5. Comparison with scissors law: stiffness
The scissors law requires the restoring force to be proportional to

sinθ, so that stiffness with respect to rotation around an axis n in the y–z

plane is proportional to sinθ/θ. Recall that this stiffness is actually the
normalized restoring torque as defined in Section 3.2.1 and, by abuse of
notation, we use to the word “stiffness” in this section, since it is the
usual term, and no confusion should result.

The fact that isotropy holds up to small error, as shown in Section
3.2.4, means that we can study the stiffness for an arbitrary angle φ and
the results will hold in general.

The actual stiffness should be computed by the sum of stiffnesses
around n, m and i. For the purposes of this paper, we only consider
stiffness around n and make the assumption that the induced error is
negligible.

Fig. 20 compares the 3-beam stiffness around n with a best fit

Fig. 19. Isotropy defect εφ of four beams around n, θ = 1°.

Fig. 20. Three equatorial beam stiffness around n.

Fig. 21. Polar beam stiffness behavior around n.

Fig. 22. Four beam stiffness around n.

Fig. 23. Four beam stiffness around n for Ly = 90 mm and Lz = 56 mm.
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scissors law. The numerical data seems to indicate that our three beam
model is a fair approximation to the scissors law.

The stiffness numerical data of the polar beam is shown in Fig. 21
indicating that it does not at all respect a scissors law.

Finally, the stiffness data of all four beams is shown in Fig. 22 in-
dicating that the overall restoring torque is more close to the linear
restoring torque than the scissors law restoring torque.

Our numerical simulation indicates that, in term of stiffness, our
design does not respect a scissors law. Hence, we expect circular iso-
chronism defect for our design which will be less than the isochronism
defect of a design with linear restoring torque discussed in Section
2.3.2.

Remark. It appears that our design can be further improved to closely
follow the scissors law. In particular, setting Ly = 90 mm and Lz = L/
2 =56 mm results in a very good approximation of scissors law as
illustrated in Fig. 23.

3.3. Analytical model

Having assumed Listing's Law and Euler–Bernoulli beam theory, we
derive analytical formulas to compute the restoring torque of the
equatorial and polar beams.

The physical situation is inherently nonlinear and we note that our
model only takes some nonlinearity into account:

• At the tip of a beam, the restoring moment and shear force are
nonlinear functions of the bending angle and deflection which leads
to nonlinearity of the beam stiffness. Our analytical model, does not
take this nonlinearity into account, i.e., we assume that the bending
moment and shear force are linear functions of the bending angle
and deflection.

• At the tip of the beams attached to the sphere, the bending angle,
torsion angle and deflection are nonlinear functions of the sphere tilt
angle θ, which leads to nonlinearity of the stiffness of our me-
chanism. Our analytical model taken this nonlinearity into account.

• The center of rotation O undergoes a parasitic shift during oscilla-
tion which affects the stiffness of our mechanism. Our model ne-
glects the effect of parasitic shift in the equatorial plane. However,
the parasitic shift along the polar axis is taken into account since
effect of gravity along this parasitic shift affects the stiffness of the
polar beam.

3.3.1. Restoring torque
We use an explicit vectorial approach to derive expression for re-

storing torque under a spherical tilt. We take a unit sphere with center

at the origin O = (0, 0, 0) rigidly attached to an arm lying on the
equatorial plane with end tip at point B = (0, Ly, Lz). As in Section
2.1.1, we assume Listing's Law holds with the respect to the principal
position i = (1, 0, 0) with all admissible positions corresponding to
rotations with axis on the y–z plane. Any admissible rotational axis can
be taken to be the z-axis rotated around the x-axis by an angle φ re-
presented by the vector n= (0, − sinφ, cosφ). One then rotates around
n by an angle θ taking vector i to the vector i′.

As in Section 2.1.2, we call rotation in θ radial motion and in φ
circular motion. Under pure circular motion, i′ describes a circle of
radius sinθ while the point B′ describes a Fig. 8-shaped curve on a
sphere of radius ∥OB∥.

Recall the notation of Section 2.1.2 expressing a rotation of angle α
around axis a as R(α, a) and acting on the right on row vectors. We also
use formula (2.2.1.1) stating that the Listing rotation with tilt θ and
rotation φ around n can be expressed as right action by

− ′ =φ θ φ θR i R n R i i′ i R n( , ) ( , ) ( , ), where ( , ).

3.3.2. Single equatorial beam
Our equatorial beam is taken to be a cantilever Euler–Bernoulli

beam of length L with uniform circular cross-section of radius r
(Fig. 24). Without loss of generality, we assume that the beam at its
resting position is parallel to the z axis, rigidly fixed at A = (0, Ly,
Lz − L) and attached to the sphere at B = (0, Ly, Lz). It is assumed that
the beam undergoes no tension or compression.

The tilt θ in the φ direction imposes a change in position and or-
ientation of the beam tip B. The new position is given by B ↦ B′ and the
new orientation is described by the local frame i′, j′, k′ at the beam tip,
where i ↦ i′, j ↦ j′, k↦ k′.

The tip bending angle α is the angle between k and k′ and the torsion
angle β is the angle between j and j′.

Euler–Bernoulli theory says that the displacement and new or-
ientation give rise to a restoring shear force F and a restoring moment
M due to bending as well as a restoring torque T due to torsion.

The total restoring torque τ applied to the sphere by the beam is
therefore

= − × − −τ TB′ F M k′, (3.3.2.1)

where B′ is given by Listing's Law

= − ′φ θ φB′ B R i R n R i( , ) ( , ) ( , ).

We now proceed to the computation each of the quantities in formula
(3.3.2.1). Due to three dimensional deflection, bending of the beam
consists of two bendings which are projections of the deflected beam on
the x, z plane, and y, z plane. For the x, z plane bending, we denote the
tip deflection and bending angle by fx and αy, respectively; and for the
y, z plane bending, we denote them by fy and αx, respectively, where

= = =

=

f f α αBB′ i BB′ j k′ j k′ k

k′ i k′ k

· , · , arctan( · / · ),

arctan( · / · ).
x y x y

One obtains F and M by solving the Euler–Bernoulli problem with
boundary conditions deflections fx, fy and bending angles αy and αx at
the tip of the beam, yielding

= − = − −

+ −

L
f f

L
α α

L
f f

L
α α

F M12EI ( , , 0) 6EI ( , , 0), 6EI ( , , 0)

4EI ( , , 0),

x y y x y x

x y

3 2 2

where I = πr4/4 is the area moment of inertia of the beam cross-section
and E is the Young modulus.

Saint Venant torsion theory holds, so the torsional torque is well-
known to be

= ′T
L

βGJ
Fig. 24. Notations. View 1.
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where G = E/(2(1 + ν)) is the shear modulus with ν the Poisson ratio,
J = πr4/2 is the polar area moment of inertia of the beam cross-section,
and angle ′ = − ×β α α j′ k′arcsin{[(0, cos , sin ) ]· }x x .

3.3.3. Polar beam
We now consider the polar beam which lies in the principal direc-

tion i and which in its nominal position passes through the sphere
center O. Since the beam acts as the sphere suspension, we assume it is
subjected to the force of gravity. Moreover, under a Listing rotation
with tilt θ, the tip of the beam D is constrained to move in a circle of
radius d with center at O.

We want to compute the restoring torque around O under a Listing
rotation with tilt θ. Note that the beam is isotropic, since it has cy-
lindrical cross-section, so we do not have to take the direction φ of the
rotational axis into account.

We do this by considering an Euler–Bernoulli beam under com-
pression with boundary conditions given by the above constraints.
Hence, the force–displacement relation of the polar beam is [3]

⎛

⎝
⎜

⎞

⎠
⎟

=
− −

⎛

⎝
⎜

−
− −

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

F L
M L

δ
δ δ δ

δ δ δ δ
δ δ δ δ δ

d θ L
θ

/EI
/EI

2(1 cos ) sin
sin (cos 1)

(cos 1) sin cos
sin /

,

p p

p p

p

2

2

where Fp and Mp denote the shear force and the bending moment of the
polar beam at the mobile end, respectively. In addition, =δ mgL /EIp

2

where m is the sphere mass and g is standard gravity (Fig. 25).
Given the shear force and the bending moment of the polar beam,

we obtain the restoring torque τp (torque around point O) applied by the
polar beam to the sphere as follows

= + +τ M F d θ θcos mgd sin .p p P

4. Construction and experimental data

4.1. Construction

The oscillator design described in Section 3 was constructed ac-
cording to the parameter values given in Section 3.1.1 and built on a
wooden frame, as shown in Fig. 26.

The sphere was constructed of stainless steel and has radius

40.5 mm. The actual oscillating body consists of the sphere, its impulse
pin, pieces to attach the equatorial and polar beams and six assembly
screws, yielding total mass 1.79 kg and moment of inertia
I= 1.23 × 10−3 kgm2. The extra pieces are why the moment of inertia
I is greater than the theoretical moment of inertia 1.17 × 10−3 kgm2

given by the sphere formula 2mr2/5 with radius 40.5 mm and mass
1.79 kg.

A vertical pin was attached to the top of the sphere, see Fig. 26(a),
and, as described in Section 1.1, the oscillator was then maintained by a
crank producing torque via an external energy source, as shown in
Fig. 27(a). In our case, the energy source was an electric motor Maxon
DCX10S EB KL 1.5V, as shown in Fig. 27(b), with angle encoder ENX10
EASY 1024IMP. The electrical current was provided by a Keithley 2460
SourceMeter.

4.2. Chronometry

4.2.1. Chronometry definition
We consider our oscillator and we record times of passage t0, t1, …,

tn, in seconds, to a specified reference angle as described in Section
4.2.2. This is done over the given time interval t0 to tn. One then defines
the period Ti = ti − ti−1, for i= 1, …, n.

A linear regression is then performed on t0, …, tn to get a best linear
fit ti = T*i + C. It follows that T* is the best linear fit period approx-
imating the Ti, i= 1, …, n. Finally, we consider the error with respect
to the best fit by considering the values

=
−

− −e
t t

t T i C86400 ( * )i
n

i
0

which quantify, in seconds per day, the discrepancy from a perfectly
regular oscillator with constant period.

4.2.2. Chronometry data
The time values t0, …, tn were measured by recording the time of

passage of the motor at a specified reference angle. This was done as
follows: when the motor is at the specified angle, its encoder sends a
signal to an Arduino Uno R2 micro-controller board which records the
value ci of a counter incremented at 32768 Hz by a ChronoDot V2.1
High Precision RTC (Real Time Clock). Thus, the time value ti is taken
to be ci/32768. This introduces a measurement error due to the re-
solution of the time base. However, it is well-known that such mea-
surements errors do not affect the qualitative data in the long run [1].

Fig. 25. Detail of polar beam deflection.

Fig. 26. Constructed oscillator prototype.
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A 24 h test was performed which found the best fit period
T* = 237.76 ms corresponding to frequency 4.20592 Hz, see Fig. 28.
With this best fit estimate, the errors ei were found to lie between 3s/d
and −1.5s/d, as shown in Fig. 29. Note that the model stiffness
k = 0.9146 N m/rad gives model frequency =π k I1/(2 ) / 4.3399 Hz,
which is slightly higher than the experimentally observed frequency.

4.3. Isochronism

4.3.1. Isochronism definition
Isochronism is the basis of timekeeper chronometric performance

since it frees the time base from variations of maintaining energy.
Maintaining energy is directly proportional to total oscillator energy,
the proportionality is essentially the quality factor Q, see [37]. It follows
that isochronism can be evaluated by seeing how oscillator rate varies
as oscillator energy varies.

Remark. The classical definition of isochronism considers oscillator
rate with respect to oscillator amplitude [7]. This approach is not
suitable here as it is unclear how to define the amplitude. However, our
energy definition is equivalent to the classical amplitude approach since
in that case energy is proportional to the square of the amplitude, see
[37]. In the classical case, the correspondence between energy and
amplitude is evident for small amplitude variation by noting that
energy variation is double amplitude variation.

Given an oscillator with nominal energy E0, we compute a nominal
best fit period T*0 by recording periods over a given time interval t and
doing a linear fit, as described in Section 4.2.1. We now consider the
same oscillator with energy E and record its periods over the same time
interval t and obtain a best fit period T* and define the daily rate to be

=
−

ρ
T T

T
86400

* *
*

,0

expressed in seconds per day. We are interested in how this rate varies
as the oscillator energy E varies, so we let ΔE = E− E0 represent the
energy variation and ΔE/E the relative energy variation. We finally
evaluate isochronism by comparing the rate ρ with E% = 100ΔE/E, the
relative energy variation expressed in percentage.

4.3.2. Indirect energy measure
For harmonic oscillators obeying Newton's model described in

Section 1, this method is possible since total oscillator energy is pro-
portional to A2 + B2, where A and B are the major and minor axes of
the mass’ elliptical trajectory, so relatively easy to measure experi-
mentally.

For our spherical oscillators, however, experimental measurement
of total oscillator energy does not appear to be simple since the total
energy

⎜ ⎟= ⎛
⎝

+ ⎞
⎠

+E I θ L
I θ

κ θ
2

˙
4 sin ( /2)

sin ( /2)2 2

2 2
2

of the scissors potential, formula (2.3.3.1) derived in Section 2.3.4 is
not proportional to any easily measurable quantity. We therefore turn
to measurement of maintaining torque which is proportional to total
oscillator energy. This can be seen using well-known formulation of
energy loss Er per oscillator period given a quality factor Q, see [37],

=E πE
Q

2 .r

We assume a maintaining torque τ allowing the oscillator to keep total
energy E, so the work done by the maintaining torque in one oscillator

Fig. 27. Maintaining mechanism.

Fig. 28. 24 h chronometry test with linear regression.
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period is 2πτ. It follows that

=E τQ,

so total energy is proportional to maintaining torque. Finally, we esti-
mate maintaining torque by assuming it to be proportional to motor
current as indicated by the motor controller.

In Section 4.3.1, we defined isochronism as the relation between the
rate ρ and the relative energy variation E% in percent. Based on the
above argument, we replace E% with the relative current variation
ι% = 100(ι − ι0)/ι, where ι is the current and ι0 the nominal current.

4.3.3. Isochronism data
The nominal current was taken to be ι0 = 40 mA and a range

of± 15% of the nominal current was chosen in 5% increments. For
each current value ι, the motor was run for 2 min to let the oscillator
achieve its stable energy E. A 30 min chronometry test was then per-
formed, as described in Section 4.2.1, to obtain a best fit period T*. The
best fit period T*0 corresponding to ι0 is considered the nominal rate. As
described in Section 4.3.1, a rate ρ was then computed for each ι and
compared to relative current variation which estimates the relative
energy variation, see Fig. 30.

Finally, a linear regression was performed on the values of ρ as
compared to the relative current variation ι%, as shown in Fig. 30. The
slope of this regression line was computed to be −2.2s/d/%.

5. Discussion

We discuss whether the goals given in Section 1.4 have been
achieved.

• Study the analytic theory of spherical 2-DOF oscillators and theoretical
mechanisms realizing their kinematics.

Section 2 gives an overview of the theory of 2-DOF spherical os-
cillators. The kinematic restriction to 2-DOF, Listing's Law, is well-
known in the field of eye movements, but the dynamics described in
Section 2.2 appear to be new.

The theoretical mechanisms described in Section 2.4 appear to be
new, in particular, the observation that a constant velocity joint can be
used to mechanize Listing's Law.

• Use the ideal theoretical mechanisms as an inspiration for a simple
mechanical design.

The mechanical design described in Section 3 is very simple, only
four beams are used for the suspension and the implementation of
Listing's Law.

• Provide an analytical model of the design.

The analytical model of the design described in Section 3.3 uses a
classical approach known to apply to the small amplitudes we examine.

Fig. 29. Time error with respect to best fit period.

Fig. 30. Daily rate versus estimated relative energy variation.
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• Derive numerical data from the analytical model of the design.

The numerical data given in Section 3.2 was validated by finite
element analysis. This data shows that our three equatorial beams ap-
proach a scissors law. However, adding the polar beam produces a large
deviation from the scissors law. We address this by stating that the
theory was used as inspiration for our design and we did not necessarily
intend this design to faithfully reproduce the theoretical model.

• Construct a physical realization of the design.

The physical realization of Section 4.1 was simple to construct as
was its interface with the measurement apparatus also described in that
section.

• Evaluate the chronometric performance of the physical realization.

The chronometric performance of the physical realization described
in Sections 4.2 and 4.3 are promising since they are consistent with the
performance of comparable horological time bases.
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