
Measuring Latency: Am I doing it right?

Marios Kogias ⇤1, Christos Kozyrakis2 and Edouard Bugnion1

1EPFL
Email: {marios.kogias, edouard.bugnion}@epfl.ch

2Stanford University
Email: kozyraki@stanford.edu

1 Introduction

The ever increasing hardware speeds has led systems
and application designers to push software to its limits
and create applications with microsecond response times.
Moreover, such interactive applications, e.g. websearch,
run at massive scales, with large fan-in and fan-out patterns,
where the importance of tail-latency becomes crucial to
guarantee Service Level Agreements (SLAs). So being
able to measure latency accurately is vital to debug those
system, identify their behaviour and specify proper SLAs.

Accurate latency measurement proves to be very chal-
lenging. Unlike throughput, latency is a very sensitive
metric that is a�ected by multiple factors, both within
the application and the operating system [2], but also the
measuring client itself. Consequently, we are faced with
two major challenges related to latency measurement. We
need tools that are able to measure latency in such a low
microsecond scale, while independently of the tools, we
need an accurate an sound methodology that is able to pro-
duce unbiased and realistic results that are collected under
settings that highly resemble a production environment.

In this work we first collect and analyze some com-
mon methodology pitfalls that have been overlooked by
previous approaches [9] and then compare existing tools
and identify missing features, related to the experiment
methodology, that can either lead to more statistically
sound results or reduce necessary resources (time and
compute) for latency experiments.

2 Methodology Pitfalls

Specifying the system workload correctly is important
to run latency measuring experiments. Apart from the
application specific characteristics, e.g. key-value size
and popularity distributions for key-value stores, there
are generic workload characteristics that depend on the
⇤student

way the system is deployed and its interaction with clients.
Specifically, we focus on the number of connections, the
open vs closed system model and the distributions that
characterize the workload.

The number of connections that a system is expected
to serve is a crucial part of the workload definition. De-
spite the guidelines for some of the existing measuring
tools that suggest adding more clients for a higher load,
the workload itself is independent from the load level.
Di�erent connections might be treated di�erently given
NIC features such as RSS and Flow Director, while the
system might behave di�erently under di�erent number
of connections, e.g. connection scalability issues. More-
over, the workload itself might be inherently imbalanced
across connections. This should be reflected in the latency
experiment and the tools should capture such cases.

Each system that serves incoming requests can be mod-
eled as a closed or an open loop system. Open loop
systems resemble more systems with a larger number of
connections, where the incoming requests are character-
ized by an inter-arrival distribution. This inter-arrival
distribution severely a�ects latency measurement given
that it can lead to queuing e�ects, even in low loads, in
cases of bursty tra�c. In closed loop systems there is one
pending request per connection and accepting the response
for a request allows sending the next one. Although there
is no inter-arrival distribution, closed loop systems are
characterized by the distribution of the think time, the
time between accepting a response and sending the next
request, that can lead to di�erent latency results. Both
models exist in datacenter applications and even the same
application can be deployed in both open and closed loop
setups. Misidentifying the system setup [8] or violating
workload distributions leads to inaccurate measurements.

Although latency experiments measure round-trip time
and don’t di�erentiate between service and queuing time, it
is crucial to understand what are the main latency contrib-
utors, which change under di�erent load levels, to enable
targeted optimizations. At low-loads the main contributor

1

Feature/Tool memslap YCSB Cloudsuite Mutilate Treadmill
Distributed Coordination No No No Yes No
Measuring Model Symmetric Symmetric Symmetric Asymmetric Symmetric
Dynamic Histograms No Yes No No Yes

Table 1: Measuring Tools Comparison

is the server service time, while at higher loads queuing
e�ects dominate latency. According to the central limit
theorem for heavy tra�c queueing systems [4] the waiting
time in any G/G/m system under heavy load converges
to an exponential distribution. Consequently, any system
optimizations that change the distribution of the service
time will not be visible in round-trip latency measure-
ments under heavy load because they are amortized by the
queuing e�ects. Thus, latency versus throughput graphs,
instead of single load-point measurements, are necessary
to understand the system behaviour.

3 Missing Features

Table 1 compares existing latency measurement tool fea-
tures that are related to methodology questions. We focus
on Mutilate [5], YCSB [1], Treadmill [9], memaslap [6]
and CloudSuite [3] and features such as distributed coor-
dination since multiple machines are necessary to achieve
connection scaling and certain load levels, the measur-
ing model (asymmetric vs asymmetric), namely a clas-
sification of clients among latency-measuring and load-
generating, or client equality, and dynamic histograms to
avoid mistakes from statistical aggregation of results.

However, apart from those we argue that there are more
features related to methodology that can be integrated in
latency measuring tools to achieve better quality of results.
Specifically, we focus on automated experiment dura-
tion adjustment, identification of inter-arrival distri-
bution violations due to client load and heavy-tailed
distribution identification.

Existing tools require the user to manually specify
the experiment duration and the duration of warm-up
and cool-down phases, if any. The last two phases exist
either to avoid errors coming from the experiment setup,
e.g. launching loading threads, or to bring the system to a
stable state in order to measure it. Manually selecting these
durations can lead to unnecessarily running the experiment
longer, while the system has already converged or stopping
the experiment and reporting results even that have not
converged yet. Instead, those values can be identified by
the measuring tool based on a control loop that leverages
online statistical processing of the collected results, such
as confidence intervals. A similar control loop could be
used to identify the server load level, so that the latency
vs throughput experiment moves faster at low loads while

it’s more detailed when the system is close to saturation.
Having discussed the importance of the inter-arrival

distributions, latency measuring tools should be able
to identify whether the client respects the inter-arrival
distribution and should stop the experiment in case of
violations. This would eliminate the e�ects of client
induced latency and deployment setup misrepresentation.

Finally, measuring latency for services with heavy-tailed
distribution poses extra challenges. Heavy tailed distribu-
tions have an infinite variance and as a result the Central
Limit Theorem can not be applied. Consequently, no
analysis based on confidence intervals can be performed.
Moreover, statistical aggregation over heavy-tailed dis-
tributions is prone to statistical error, no matter how big
is the sample size. Outliers that unpredictably appear
can significantly a�ect the result and prevent convergence
even after multiple executions of the same experiment.
Thus, latency measuring tools should be able to identify
whether the collected results come from a heavy tailed
distribution [7] and if they do, warn about their validity
else proceed with performing a confidence analysis.

References
[1] C�����, B. F., S����������, A., T��, E., R�����������, R., ���

S����, R. Benchmarking cloud serving systems with YCSB. In
SOCC (2010), pp. 143–154.

[2] D���, J., ��� B������, L. A. The tail at scale. Commun. ACM 56,
2 (2013), 74–80.

[3] F������, M., A�����, A., K��������, Y. O., V����, S., A�-
�������, M., J������, D., K�����, C., P������, A. D., A�������,
A., ��� F������, B. Clearing the clouds: a study of emerging
scale-out workloads on modern hardware. In ASPLOS-XVII (2012),
pp. 37–48.

[4] K������, J. F. C., ��� A�����, M. F. The single server queue
in heavy tra�c. In Cambridge Philosophical Society 57 (1961),
pp. 902–904.

[5] L�������, J., ��� K��������, C. Reconciling high server utiliza-
tion and sub-millisecond quality-of-service. In EUROSYS (2014),
pp. 4:1–4:14.

[6] memaslap. http://docs.libmemcached.org/bin/memaslap.
html.

[7] N���, J., W������, A., ��� Z����, B. The fundamentals of heavy-
tails: properties, emergence, and identification. In SIGMETRICS
(2013), pp. 387–388.

[8] S��������, B., W������, A., ��� H������-B�����, M. Open
Versus Closed: A Cautionary Tale. In NSDI (2006).

[9] Z����, Y., M������, D., M���, J., ��� T���, L. Treadmill:
Attributing the Source of Tail Latency through Precise Load Testing
and Statistical Inference. In ISCA (2016), pp. 456–468.

2

http://docs.libmemcached.org/bin/memaslap.html
http://docs.libmemcached.org/bin/memaslap.html

Measuring Latency: Am I doing it right?
Marios Kogias 1, Christos Kozyrakis 2, Edouard Bugnion 1

1 2

Motivation

Decouple:
1. Workload: How the application is deployed and run?
2. Methodology: How the latency measurements are

collected and processed?
3. Tool: Which software is used for the experiment?

Workload

Workload is defined by:
● Protocol Used (e.g Memcached)
● Number of connections
● System Model (Open vs Closed loop)
● Interarrival distribution
● Connection balance

Methodology

Feature Potential Pitfall Solution

Experiment Duration
● Warm up
● Measurement
● Cool Down

● Report unconverged results
● Run longer than needed

Online feedback loop that checks
convergence and decides about the
experiment duration

Measurement Collection:
● Symmetric
● Asymmetric (Separation of

loading and measuring clients)

Uncaught behaviours:
● System imbalance
● Different latency across different

request types
● Different behaviour across

different connections

Symmetric models that exercise and
account for every possible system
behaviour

Statistical Aggregation:
● Aggregation over connection or

client machine
● Histograms

● Coarse grained bucketing
● Load imbalance across

connections

● Dynamic histograms
● Statistical aggregation over

every connection

Heavy-tailed Distribution
Identification

Underestimate latency because
cases of tail latency are rare

Systematic heavy tail identification
and warning about the accuracy of
results

Requirements:
● Avoid client measuring bias
● Respect distributions

Solution:
● Identify interarrival

distribution violations online
● Specify #clients using

goodness of fit tests for the
interarrival distribution

Tool/Feature Distributed
Coordination

Measuring
Model

Dynamic
Histograms

memaslap No Symmetric No

YCSB No Symmetric Yes

CloudSuite No Asymmetric No

Mutilate Yes Asymmetric No

TreadMill No Symmetric Yes

Tool Comparison

Problems:
● Many tools
● Incompatible results
● Tools bound to

methodology

Tool

Measure
RPC/KV-store
latency:
● Accurately
● Efficiently

Im
pa

ct
 o

f t
he

 S
ys

te
m

M

od
el

Im
pa

ct
 o

f t
he

 In
te

ra
rr

iv
al

D

is
tri

bu
tio

n

Impact of Loaded Clients

	Introduction
	Methodology Pitfalls
	Missing Features

