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Abstract. In the face of the increasing trend in application develop-
ment to interact with more and more remote services, and cognizant of
the fact that issues arising from data consistency and task coordination
are core challenges in distributed programming, the systems and data
management communities have taken a keen interest in developing even-
tually consistent coordination-free models of distributed programming.
These efforts have a striking similarity; they can all be characterized by
the use of monotone functions as fundamental primitives of composition
as well as the monotonic evolution of data over time. Yet, ensuring that
application code conforms to the monotonicity constraints of these pro-
gramming models is a tricky and manual affair, without support from
the underlying language or system. In this paper, we present Monotonic-
ity Types, a language and type system for proving functions monotone,
which we believe could enable the customization and extension of this
class of distributed programming models. We provide a full formalization
of Monotonicity Types, including a novel operational semantics oriented
from the perspective inside of a function, as well as a type soundness
proof using logical relations.
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1 Introduction
Programming is no longer a closed-world affair. Nowadays, essentially every

application must make and handle remote calls to myriad other services. Regular
application developers today generally have no choice but to write distributed
programs. Yet, building correct, performant, and reliable distributed systems
continues to be a challenge. Those challenges associated with distribution—
concurrency, partial failure, issues with availability and performance—can actu-
ally often be viewed as challenges in data management surrounding data consis-
tency and task coordination [3]. Faced with the reality that virtually all applica-
tions must interact with multiple services distributed over nodes spread increas-
ingly across the globe, and that issues surrounding data consistency are often at
the heart of the challenges faced by developers of such systems, the systems and
data management communities have identified two sets of design principles to
help developers navigate these issues; techniques that require coordination, and
techniques that don’t.
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Traditional approaches typically involve coordination: either in the form of
state machine replication via a consensus algorithm such as Paxos, or by using
distributed transactions. That is, both of these techniques require that concur-
rently executing operations either synchronously communicate or stall in order to
complete. While coordination in these systems ensures strong consistency, it lim-
its concurrency at the cost of scalability, availability, and performance. Thus, as
the need for applications to interact with more and more remote services grows,
these techniques don’t scale with that need.

More recently, it’s become evident that coordination isn’t always necessary
to preserve application invariants [7,12]; for some parts of an application, weaker
consistency can be tolerated in the interest of better availability (e.g., the exact
number of likes on a tweet; it’s likely OK most of the time to have a view
of this data that is perhaps a few seconds stale). Such situations may arise
from variable ordering of reads, writes, and messages in the face of a network
partition or partial failure. This weaker form of consistency is known as eventual
consistency, meaning that nodes in a distributed system will eventually agree
on a definitive data value (sometimes resolving conflicts along the way) so that
readers of that data will eventually all see the same value.

In this vein, several efforts have recently presented various programming
models or data structures which aim to give programmers ways to reason about
and reduce coordination without affecting application correctness by guarantee-
ing that programs are eventually consistent. These efforts include data struc-
tures designed to be replicated and distributed across a network like Conflict-
Free Replicated Data Types (CRDTs) [20,19], to new programming models and
languages which aim such as Bloom [3], BloomL [9], and Lasp [15].

A common thread across these efforts is that monotonicity across data types
and operations is the key to providing eventual consistency across replicated ob-
jects in a distributed system. For example, the CALM theorem [4], which stands
for Consistency And Logical Monotonicity, formally proves that logically mono-
tonic programs over sets are guaranteed to be eventually consistent. Informally,
this means that a block of code is logically monotonic if the following holds;
adding things to the input can only increase the output. In contrast, a non-
monotonic code block may need to retract a previous output if more is added to
its input [1]. Said simply, eventually consistent programs without coordination
can be expressed in monotonic program logic, while non-monotonic programs
(those requiring destructive state modification or aggregation operations) re-
quire coordination; that is, they must be resolved via distributed coordination
such as two-phase-commit or Paxos.

Bloom [3], a language that supports coordination-free distributed program-
ming over programs whose sets grow monotonically using a Datalog-like pro-
gramming abstraction, which was co-introduced alongside of the CALM theo-
rem, only supported sets. Bloom was generalized to BloomL [9], which extends
Bloom’s assessment of monotonicity from sets to arbitrary join-semilattices, en-
abling the support for more interesting (monotonic) data types such as maps,
or otherwise programs that “grow” according to a partial order other than set
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containment. Morphisms between lattices can also be defined in BloomL which
make it possible to ensure that per-component guarantees can be extended across
different lattice types. Both Bloom and BloomL provide montotone functions,
which taken together with BloomL’s morphisms enable monotonicity-preserving
mappings between lattices.

However, BloomL has its limitations; (1) it remains a first-order language,
where (2) morphisms and monotone functions must be user-specified to be mor-
phisms or monotone functions. The system has no way to ensure that a monotone
function annotated as such is indeed monotone. Rather, BloomL simply checks
that user-defined morphisms and monotone functions preserve monotonicity in
their arguments by merely being tagged by the user as monotonic. It assumes
that the monotonicity annotations on functions are correct as it cannot analyze
these functions to determine whether or not they are indeed monotonic.

Lasp [15], a functional programming model over CRDTs, improves on BloomL

by introducing higher-order programming over lattices, with combinators such
as map and filter. In particular, a main goal of Lasp is to enable the deter-
ministic composition of CRDTs into larger composite computations that remain
guaranteeably eventually consistent. Compared to BloomL, all of the expressible
operations in Lasp are morphisms (which are by necessity monotone functions).
However, while providing a higher-order programming facility and the ability
to define new combinators, Lasp provides no mechanism to ensure that new
user-defined combinators will exhibit the required properties of monotonicity.

Thus, while monotonicity is an essential property in the context of data struc-
tures and programming models for coordination-free distributed programming,
in all cases, users are expected to understand and enforce monotonicity in their
application code without support from the underlying language or system.

In this paper, we propose Monotonicity Types, a small language and type
system with the following two overarching goals:

– Support for higher-order programming. e.g., the use of higher-order
functions like map and filter over lattice-based replicated data structures
such as CRDTs.

– Support for tracking monotonicity with types. e.g., prove functions
monotone

Since monotone functions are used as primitive transformations across emerg-
ing coordination-free distributed and concurrent programming models and data
types like Lasp, BloomL, LVars [13,14], amongst others, we believe that Mono-
tonicity Types are a missing piece which could enable customization and ex-
tension of such systems by non-experts. For example, if applied in the context
of BloomL, Monotonicity Types would be able to guarantee that first order
user-defined morphisms and monotone functions preserve monotonicity in their
arguments, while for Lasp, Monotonicity Types would be able to guarantee that
combinators defined using higher order functions (e.g., compositional operations
like map and fold) are monotonic in each of their arguments.



4

This paper has the following contributions:

– A language and type system for proving functions monotone, which:
• is situated toward compositional programming with CRDTs, in the style

of Lasp.
• provides a novel foundation for proving relational properties with lightweight

types.
– Formal semantics. A novel operational semantics oriented from the per-

spective of inside a function, which
• describes the function’s structure through a sequence of function com-

positions.
• corresponds faithfully to the function’s applicative behavior.
• when characterized statically, allows tracking monotonicity across func-

tion composition.
– Soundness proof. A proof that the operational semantics of the calculus

is soundly approximated by the type system using logical relations.

2 Conflict-Free Replicated Data Types
In this section we briefly introduce state-based Conflict-Free Replicated Data

Types (CRDTs) [20,19], a core concept around which our language and type
system is built (Monotonicity Types is aimed at supporting compositional pro-
gramming with CRDTs), and a central concept in our running examples.

Informally, Conflict-Free Replicated Data Types are distributed data types
that allow different replicas of a distributed CRDT instance to diverge while
ensuring that, eventually, all replicas converge to the same state. State-based
CRDTs achieve this through propagating updates of the local state by dissemi-
nating the entire state across replicas. The received states are then merged with
remote states, leading to convergence (i.e., consistent states across all replicas).

A state-based CRDT, as defined in [2], consists of a triple (S,M,Q), where
S is a join-semilattice [10], Q is a set of query functions (which return some
result without modifying the state), and M is a set of mutators that perform
updates; a mutator m ∈M takes a state X ∈ S as input and returns a new state
X ′ = m(X). A join-semilattice is a set with a partial order ⊑ and a binary join
operation ⊔ that returns the least upper bound (LUB) of two elements in S; a
join is designed to be commutative, associative, and idempotent. Mutators are
defined in such a way to be inflations, i.e., for any mutator m and state X, the
following holds: X ⊑ m(X).

Thus, for each replica, there is a monotonic sequence of states, defined under
the lattice partial order, where each subsequent state subsumes the previous
state when joined elsewhere.

We assume that for each CRDT:M is a set of user-specified inflative mutators
and Q is a set of functions that derive a value from the join-semilattice. Given
each mutator computes the join with the current semilattice value, mutators are
guaranteed to be monotonic. Throughout the remainder of this text, when we
refer to lattice or semilattice, we mean a join-semilattice.
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3 Motivating Examples
To demonstrate the challenges of writing monotonic application code, we

examine three seemingly simple examples, each of which that fail to preserve
monotonicity through composition and function application: a unary function,
an n-ary function, and a higher-order function.

3.1 Unary Function
Our unary function example uses two primitive types:

1. Nat: where S is the join-semilattice with the set of naturals as elements, 0
as bottom, ≤ as the ordering relation, and max as the join operation; M is
the singleton set of assignment, that takes the join between a given value
and the current value; and Q is the singleton set of query that returns the
current value;

2. Bool: where S is the join-semilattice with the set of booleans as elements,
false as bottom, false ≤ true as the ordering relation, and ∨ as the join
operation; M is the singleton set of assignment, that takes the join between
the given value and the current value; and Q is the singleton set of query
that returns the current value.

In Figure 1, we define a function that operates on an instance of the Nat
type and computes whether or not the Nat is odd using the modulo operation.
Seemingly simple, while the input of this function will monotonically increase,
the output of this function is neither monotone or antitone; the output of this
function will alternate between true and false as the input monotonically in-
creases.

1 fun IsOdd(x : Nat) : Bool = X % 2 != 0

Fig. 1: Unary function that computes whether a natural is odd or not.

3.2 n-ary Function
Our n-ary function example uses one primitive type and one type constructor:

1. NatSet: where S is the join-semilattice with all finite subsets of the natural
numbers as elements, the empty set as bottom, set inclusion the ordering
relation, and set union as the join operation; M is singleton set containing
the operation insert, that adds an element into the set; and Q is the singleton
set of the operation query, that returns the current value;

2. Record S1 × S2 × M × Q → S × M × Q: where S is the join-semilattice
produced by the product of two join-semilattices S1 and S2, ordered com-
ponentwise; M is a user specified set of inflative mutators; and Q is a user
specified set of query functions.

By composing NatSet’s using the record data type we can implement the 2P-
Set as defined by Shapiro et al. [19] The 2P-Set supports the one-time addition
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1 type 2P-Set = {A : NatSet, R : NatSet}
2

3 fun 2PIntersect(a : 2P-Set, b : 2P-Set) : 2P-Set =
4 { A = intersect(a.A, b.A) - union(a.R, b.R), R = empty }

Fig. 2: n-ary function that returns the intersection of two 2P-Sets.

and removal of an element by composing two NatSets, each of which increases
monotonically.

In Figure 2, we define a function that computes the intersection of two
2P-Set’s by taking the intersection of its addition component and the union
of its removal component. Seemingly correct, this function is non-monotonic in
output, if you examine the case where an element has been added to both sets
and removed from only one of them.

3.3 Higher Order Functions
To demonstrate the problems with higher order programming, we use a single

primitive operation on collections.

1. Filter: which operates on a NatSet by filtering the elements of the set using
some predicate. Therefore, given a predicate function, filter will return a
function from NatSet to NatSet.

1 fun FilterOdd(x : NatSet) : NatSet = Filter(IsOdd, x)

Fig. 3: Binary function that filters a NatSet given a predicate.

In our example, a predicate function filtering the odd elements will result in
non-monotonic output as the naturals inside of the set increase.

4 Monotonicity Types
We saw in the previous section that it’s tricky to always know whether or

not some code is monotonic. For example, the unary function isOdd from Sec-
tion 3.1 is useful, but non-monotone. To prevent programmers from violating
the monotonicity constraints present in such scenarios, we’d like to have a type
system which can prove functions monotone.

Ideally, such a system would increase the programmer’s awareness and flu-
ency with monotonicity by inferring the monotonicity of program expressions,
and also allow type annotations to serve as a design language for asserting the
monotonicity of a function’s constituent parts.

4.1 Motivating Example
Recall the 2PIntersect example from Section 3.2. Wouldn’t it be nice if we

could annotate this function to instruct the compiler to verify that 2PIntersect
is indeed monotonic?

In our language for monotonicity typing, we introduce a special kind of func-
tion, called an sfun, which is augmented with qualifiers. These qualifiers instruct
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the type checker to verify that the function is either monotone or antitone in its
arguments.

Below we have adapted the example from Section 3.2 to use an sfun, and we
have annotated its type parameters with the monotone qualifier, ↑.

1 type 2P-Set = { A : NatSet, R : NatSet }
2

3 sfun 2PIntersect(a : 2P-Set, b : 2P-Set) : 2P-Set[↑ a, ↑ b] =
4 { A = intersect(a.A, b.A), R = union(a.R, b.R) }

Fig. 4: An intersection combinator for the 2P-Set CRDT

On line 3, the type annotation 2P-Set[↑ a, ↑ b] indicates that the combina-
tor produces a 2P-Set value and is monotone separately in each of its arguments.
But how do we go about proving this through type-based reasoning? As we shall
see shortly, we can reason about the monotonicity of complex functions by track-
ing the propagation of monotonicity across primitives.

4.2 Sfuns
An sfun is a special multi-argument function abstraction for which mono-

tonicity type-checking is applied. Sfuns have a special form of function type,
written (x1 : B1, x2 : B2, . . .) ⇒ B[q1 x1, q2 x2, . . .], called an sfun type, which
has multiple named arguments and associates the qualifier qi to each argument
xi. A qualifier expresses an argument-specific constraint placed on an sfun.
Qualifying the ith argument with ↑, for example, requires that the function
is separately monotone in that argument: if ci ≤ c′i then f(c1, . . . ci, . . . cn) ≤
f(c1, . . . , c

′
i, . . . , cn).

We provide other qualifiers in addition to ↑. ↓ qualifies arguments that are
separately antitone. Another qualifier, ∼ is associated with a function argument
whenever changes in the argument have no effect on the function’s result. The
qualifier = is associated with a function argument if the function simply pro-
duces the value supplied for that argument as its result. Finally, associating the
qualifier ? with an argument places no restrictions on the behavior of the func-
tion with respect to changes in that argument. Since we must always qualify an
sfun’s arguments, ? is used as a fallback for when we can’t guarantee that an
argument respects any of the other qualifiers. There is an precision ordering on
these qualifiers, displayed in Figure 5. We’ll examine the formal significance of
this ordering in section 5.9.

?

↑↓

=∼

Fig. 5: A Hasse diagram of the partial order on qualifiers

4.3 Sfuns in Action
Let’s examine what’s happening in the sfun in the above example in Figure 4.
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2PIntersect utilizes two primitive binary operators provided for working
with the NatSet type.

intersect : (x : NatSet, y : NatSet) ⇒ NatSet[↑ x, ↑ y]

union : (x : NatSet, y : NatSet) ⇒ NatSet[↑ x, ↑ y]

intersect and union associate both of their arguments with the ↑ qualifier,
meaning that each function is monotone separately in both of its arguments.
The definition of a record type such as 2P-Set automatically generates sfuns for
projecting its components. For example, the definition of 2P-Set generates pro-
jection sfuns projA and projR, both monotone due to 2P-Set’s componentwise
ordering, with the following types:

projA : (x : 2P-Set) ⇒ NatSet[↑ x]

projR : (x : 2P-Set) ⇒ NatSet[↑ x]

The application of an sfun f to a list of arguments a1, a2, . . . is written
f(a1, a2, ...). Dot notation for field projection is syntactic sugar for the appli-
cation of a projection sfun; for example, on line 4 of Figure 4, a.A is syntactic
sugar for the sfun application projA(a).

As with projections, an sfun for a record type’s value constructor is generated
implicitly; the constructor make-2P-Set for the type 2P-Set has the following
type:

make-2P-Set : (A : NatSet,R : NatSet) ⇒ 2P-Set[↑ A, ↑ R]

Line 4 of Figure 4 therefore desugars to a term consisting entirely of sfun appli-
cations:

make-2P-Set(intersect(projA(a), projA(b)), union(projR(a), projR(b)))

We would like a type system which can prove not only that this term nor-
malizes to a 2P-Set after a and b are instantiated with NatSets, but also that
when the term is treated as a multi-argument function of a and b, it is monotone
separately in each argument.

4.4 Monotonicity Typing
In a standard type system, a typing derivation of the following form can be

viewed as reasoning about a composition of functions.

Γ ⊢ c : S → T Γ ⊢ s : S
Γ ⊢ c s : T

The left premise Γ ⊢ c : S → T states that c is a function with domain S
and codomain T . The right premise Γ ⊢ s : S states that s is a multi-argument
function, the domain of which is the set of valuations of the type environment
Γ, and the codomain of which is S. The conclusion states that, because the
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codomain of s is equal to the domain of c, we can form a composite function
corresponding to Γ ⊢ c s : T by forwarding the result of s into c; this composite
function is a multi-argument function from the valuations of Γ into T .

The above derivation is concerned only with the domains and codomains of
functions. Our key idea is that, by using a richer type system, we can reason
about other function properties. In particular, we develop a type system which
can prove a function monotone by demonstrating it is a composition of monotone
functions.

Central to our approach is acknowledging the distinction between the for-
mal and actual arguments of a multi-argument function, and providing a way
to refer directly to formal arguments. Any variable that occurs in type syntax
is considered a reference to a formal argument. On the other hand, any variable
which occurs in a term is considered a placeholder for an actual argument. Be-
cause the contexts in which references to formal arguments and placeholders for
actual arguments occur are mutually exclusive, we can refer both to a formal
argument and to its corresponding actual argument using the same identifier,
unambiguously.

With the exception of sfuns, type-checking a program in our language is
not fundamentally different from type checking the simply typed lambda cal-
culus. But to type-check the body of an sfun abstraction such as Figure 4’s
2PIntersect, we defer to a richer set of typing rules called the lifted type sys-
tem, a type system oriented from the perspective of inside a function. Our type
system prohibits the nesting of sfun abstractions inside other sfun abstractions;
a lifted typing derivation therefore describes a term enclosed in exactly one sfun
abstraction. Its type environment is split into three components Γ, Ω, and Φ.
The terminal type environment Γ describes the context of the enclosing sfun;
it remains fixed across any lifted typing derivation. The ambient environment
Ω lists all formal arguments of the enclosing sfun (which we also call ambient
variables); it too remains fixed across any lifted typing derivation. Finally, the
lifted type environment, written Φ, contains all variables bound within the sfun
abstraction. Importantly, types in the lifted type environment can be augmented
with qualifiers constraining their dependence on the ambient variables.

As an example, we consider type checking the expression a.A (desugared into
projA(a)) on line 4 of the 2PIntersect sfun abstraction from Figure 4. Let Γ
be the terminal type environment of the 2PIntersect abstraction, and let Ω be
2PIntersect’s typed formal argument list taken verbatim from the program:

Ω
.
= a : 2P-Set, b : 2P-Set

Finally, let Φ be the lifted type environment obtained from qualifying each of
2PIntersect’s typed formal arguments:

Φ
.
= a : 2P-Set[= a, ∼ b], b : 2P-Set[∼ a,= b]

Then we have a typing derivation ending with a deduction of the following form:

Γ;Ω;Φ ⊢ projA : (x : 2P-Set) ⇒ NatSet[↑ x] Γ; Ω;Φ ⊢ a : 2P-Set[= a,∼ b]

Γ; Ω;Φ ⊢ projA(a) : NatSet[↑ a,∼ b]
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Just as with the standard typing rule for function application, we can view
this as a composition of functions. The left premise tells us that projA is
a monotone function with domain 2P-Set and codomain NatSet. The right
premise tells us that a is a function, the domain of which is the ambient en-
vironment a : 2P-Set, b : 2P-Set, and the codomain of which is 2P-Set. Addi-
tionally, the qualifier list [= a,∼ b] tells us that this function is a selector
for 2PIntersect’s formal argument a; that is, it returns the actual argument
provided to 2PIntersect for a and ignores the actual argument provided to
2PIntersect for b. The application projA(a) can be viewed as a binary func-
tion, the formal arguments of which are the entries a : 2P-Set and b : 2P-Set
of Ω, and the codomain of which is NatSet. At this point, how do we then
determine the application’s most precise qualifier for the formal argument a?

◦ ? ↑ ↓ = ∼
? ? ? ? ? ∼
↑ ? ↑ ↓ ↑ ∼
↓ ? ↓ ↑ ↓ ∼
= ? ↑ ↓ = ∼
∼ ∼ ∼ ∼ ∼ ∼

Fig. 6: Qualifier composition ◦

+ ? ↑ ↓ = ∼
? ? ? ? = ?
↑ ? ↑ ? = ↑
↓ ? ? ↓ = ↓
= = = = = =
∼ ? ↑ ↓ = ∼

Fig. 7: Qualifier contraction +

4.5 Qualifier Composition
In general, to compute a single-argument sfun application’s most precise

qualifier for some z ∈ Ω, we must draw from the information provided to us
by the premises of the sfun application’s typing derivation. The left premise
provides a qualifier q for the sole argument of the sfun being applied. The right
premise provides a qualifier p which describes the application argument as a
function of z.

The table of Figure 6 maps the pair of qualifiers p and q to the most precise
qualifier that we can safely conclude for the application.

Let’s look at how this strategy applies to determining the most precise qual-
ifier for the formal argument a in the previous section. We combine a’s qualifier
= for a with projA’s qualifier ↑ for its sole formal argument to determine that
the application’s qualifier for a is ↑ ◦ = which Figure 6 tells us is ↑. Likewise, the
application’s qualifier for b is ↑ ◦ ∼, which an examination of Figure 6 reveals
to be ∼.

4.6 Qualifier Contraction
Computing the qualifiers of a multi-argument sfun application requires ad-

ditional care. Suppose that we have a multiplication operator mult on natural
numbers with the following sfun type:

mult : (x : Nat, y : Nat) ⇒ Nat[↑ x, ↑ y]

Then the following typed term-in-context represents the squaring operation
on natural numbers:
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·;x : Nat;x : Nat[= x] ⊢ mult(x, x) : Nat[↑ x]
The squaring operator is obtained simply by identifying the two formal argu-

ments of mult. Performing such an identification is called argument contraction;
along with function composition, it is one of the two function operations used
to propagate monotonicity. When we know that two of a function’s formal ar-
guments x and y respect the qualifiers qx and qy (for example, mult’s formal
arguments x and y respect the qualifiers ↑ and ↑), we can conclude that the
formal argument resulting from the contraction of x and y respects the qualifier
qx + qy, where + is the qualifier contraction operator defined in Figure 7. Since
mult’s arguments both respect the qualifier ↑, their contraction, the sole formal
argument of the squaring operator, respects ↑ + ↑, which is equal to ↑.

4.7 Advanced Example

1 -- Map operations (sfuns)
2 getAt :: (m : NatMap, k : Nat) ⇒ Nat[↑ m, k ]
3 joinAt :: (m : NatMap, k : Nat, n : Nat) ⇒ NatMap[↑ m, k , ↑ n]
4 span :: (x : NatMap) ⇒ Nat[↑ x]
5 emptyMap :: NatMap
6
7 -- Nat operations (sfuns)
8 max :: (a : Nat, b : Nat) ⇒ Nat[↑ a, ↑ b]
9 + :: (x : Nat, y : Nat) ⇒ Nat[↑ x, ↑ y]

10 > :: (x : Nat, y : Nat) ⇒ Bool[↑ x, ↓ y]
11
12 type GCounter = { map : NatMap }
13

14 sfun sumCounters(x : GCounter, y : GCounter) : GCounter[↑ x, ↑ y] =
15 let xMap : NatMap[↑ x, ↑ y] = x.map
16 let yMap : NatMap[↑ x, ↑ y] = y.map
17 let maxSpan : Nat[↑ x, ↑ y] = max (span xMap) (span yMap)
18 fun sumCell(k : Nat, acc : NatMap[↑ x, ↑ y]) : NatMap[↑ x, ↑ y] =
19 let cond : Bool[↓ x, ↓ y] = k > maxSpan
20 if cond then
21 acc
22 else
23 let acc' = joinAt acc k ((getAt xMap k) + (getAt yMap k))
24 sumCell (k+1) acc'
25 let initMap : NatMap[↑ x, ↑ y] = emptyMap
26 { map = sumCell 0 initMap }

Fig. 8: A coordinatewise sum of two GCounters
We now turn our attention to a more interesting and aspirational example of

a CRDT combinator that we would like our type system to support in, shown
in Figure 8. Since correct CRDT combinators are necessarily monotone, this
example demonstrates that a monotonicity type system must generally handle
functions composed from a diverse collection of language constructs rather than
the homogeneous chunk of sfun applications that we saw in the 2PIntersect
example.

The combinator sumCounters takes two G-Counter [19] values as input,
and produces a G-Counter holding the sum of the two input counters as output.



12

Lines 1-10 assert the types of several built-in sfun operations for working with
the Nat and NatMap types. NatMap is the type of total maps from the natural
numbers to the natural numbers, represented as finite sets of input/output pairs.
getAt(m, k) gets the value to which the NatMap m maps the natural number k.
If k is not in the domain of m, getAt(m, k) returns 0. joinAt(m, k, n) returns a
new NatMap equal to m, except that its kth component has been replaced with
the join of n with m’s kth component. span(m) returns the greatest natural
number which m maps to a non-zero value. The sumCounters(x, y) combinator
iterates through the components of the two input G-Counters, placing the sum
of x and y’s kth components in the kth component of the result.

Importantly, this example contains a lifted function abstraction sumCell,
aware of monotonocity of the formal arguments of its enclosing sfun abstraction.
It also demonstrates the need to substitute values, like emptyMap on line 25,
through an sfun abstraction. This is interesting considering that any term defined
outside an sfun abstraction is type-checked with the terminal type system, while
terms defined inside an sfun abstraction are type-checked with the lifted type
system. Noting that sumCell is an instance of the fold operation, we see that
there’s also a need to substitute polymorphic higher-order functions (like fold)
through sfun abstractions.

We distill this example into two important features that a monotonicity type
system should support.

– Lifted function abstractions. A lifted function abstraction is nested inside of
an sfun body and is aware of the formal arguments of its enclosing sfun.

– Subtitution through sfun abstractions. A variable bound outside of an sfun
abstraction should be allowed to occur inside of it. The programmer should
be free to use this variable wherever it is deemed useful, without impeding
monotonicity typing. Such variables may be bound to data values, higher
order functions, or sfuns.

These points will motivate the design of the calculus presented in the follow-
ing section.

5 Formalization
We present a calculus featuring a type system exhibiting the ability to prop-

agate montonicity across functions composition and contraction, the need for
which was demonstrated in the examples above. Proofs of stated theorems, along
with a full formalization, are in the appendix.

5.1 Notational conventions
We write 1..n to denote the set containing the first n consecutive positive

integers {1, 2, ..., n}. We often use the notation 1..n without first introducing the
variable n; in these cases it is assumed that n is an arbitrary positive integer.
We denote a vector of homogenous syntax fragments by writing a colored line
over a pattern which all fragments in the vector conform to. For example, if x
is the metavariable used to denote variables and T is the metavariable used to
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denote types then x : T denotes a vector of variables ascribed with types. We use
superscript notation to specify a set used to index the elements of such a vector.
For example, xi : Ti

i∈1..n denotes a vector of n typed variables indexed by the
first n positive integers. We can then refer to the first variable in the vector by
x1, the second type in the vector by T2, etc. When the index set is clear from
context, it will be left explicit. When multiple syntax vectors in the same context
have the same index set, we denote them using overlines of the same color. When
multiple syntax vectors in the same context have distinct index sets, we denote
them using overlines with distinct colors. When we write a qualified base type
B[= x], we implicitly qualify all ambient variables other than x (if any) with ∼.

5.2 Valuations
A valuation of a type environment Γ, written γ, is an assignment of each

variable in the dom(Γ) to a value of type Γ(x). The substitution of a valuation γ
into a term t, written γt, is the result of recursively descending into t, replacing
any encountered variable x with the value γ(x). Likewise, we use the symbol
ω for valuations of ambient environments and ϕ for valuations of lifted type
environments.

5.3 Lifted Base Values and Types
Consider the following lifted typing judgment, which is similar to the typing

judgment for the body of the squaring function from Section 4.4.

·;x : Nat;x : Nat[= x] ⊢ mult(x, 3) : Nat[↑ x]

We interpret types as sets of values; for example, we interpret Nat as the set
{. . . , 0, 1, 2, . . .}. This typing judgment involves the familiar type Nat, but also
the novel-looking types Nat[= x] and Nat[↑ x]: how should we interpret these
types? Recall that base values are those values which describe pieces of data; 3
and 4 are base values whereas (λx : Nat. mult(x, 3)) is not. Additionally, for
any type T , if the values described by T are exclusively base values, we call T a
base type; for example, Nat is a base type but Nat→ Nat is not a base type. In
a lifted typing judgment, all base values are viewed as constant-valued functions
of the ambient environment, and so the occurrence of 3 in the above judgment
is considered a function which maps any valuation of x : Nat to the natural
number 3.

We generalize the base values of our language to include ambient maps, which
are essentially “lifted base values”. Under an ambient environment Ω, an am-
bient map, which is typically written with the metavariable a, is a function
from the valuations of Ω into the values of some base type. Ambient maps are
purely extensional: we can only observe them by applying them to valuations of
their ambient environment. Unlike lambda abstractions, ambient maps provide
no description of the process used to compute the output corresponding to an
input. An ambient map with whose domain is the set of valuations of ambient
environment Ω is call an Ω-ambient map.
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We’re now ready to provide the interpretation of lifted base types such as
Nat[= x] and Nat[↑ x]. A qualified base type is interpreted with respect to
an ambient environment Ω. For any Ω-ambient map, base type B and qualifier
map Ξ with dom(Ξ) = dom(Ω), the qualified base type B[Ξ] is interpreted as
the set of all B-valued ambient maps which respect the qualifiers of Ξ. The way
in which each qualifier constrains a lifted base type is defined formally in Figure
15. As a concrete example, let Ω be the ambient environment x : Nat and ax the
Ω-ambient map which maps any valuation ω of x : Nat to the natural number
ω(x). The type Nat[= x] is interpreted under Ω as the singleton set containing
only ax.

For the benefit of intuition, we will occasionally use the following “concrete”
notations for ambient valuations and ambient maps. Let xi : Bi

i∈1..n be an am-
bient environment. For i ∈ 1..n, let ci be a value of type Bi, then we write
(xi 7→ ci) to denote the ambient valuation of xi : Bi which maps xi to ci for
i ∈ 1..n. Ambient maps are written concretely using standard set notation from
mathematics. The ambient map ax discussed above is written concretely as:

{((x 7→ 0), 0), ((x 7→ 1), 1), ((x 7→ 2), 2), . . .}

5.4 Syntax

Noting that sfun abstractions are written (λ̃(xi : Bi
i∈1..n

). t), we’re now fa-
miliar with almost all of the novel syntax of our calculus, the entirety of which
is listed in Figure 9.

x ::= variables
a ::= ambient maps

p, q ::= ↑ | ↓ | ∼ | ? | = Qualifiers
Ξ ::= · | Ξ, q x Qualifier maps
c ::= true | false | 0 | 1 | −1 | 2 | −2 | . . . Terminal base-level constants
d ::= c | a Base-level constants
k ::= + | − | < | ≤ | = | ∧ | ∨ Sfun constants

A,B ::= Bool | Nat Base-level types
S, T, U ::= B | B[Ξ] | (xi : Bi

i∈1..n

) ⇒ A[Ξ] | Types
S → T | S Ω→ T

v ::= k | d | a | (λx : T.t) | (λ̃(xi : Bi
i∈1..n

). t) Values
s, t, u ::= v | x | t t | t(ti

i∈1..n

) | Terms
if t then t else t

E ::= E t | v E | E(t) | v(v,E, t) | Evaluation contexts
if E then t else t | []

Γ ::= · | Γ, x : T Terminal type environments
Ω ::= · | Ω, x : B Ambient type environments
Φ ::= · | Φ, x : T Lifted type environments

Fig. 9: Syntax
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A lifted function type S Ω→ T is the type of functions which, like the sumCell
function of Figure 8, inherit the ambient environment of an enclosing sfun ab-
straction.

5.5 Ambient Substitution
A term t for which a lifted typing judgment of the following form can be

derived is called a Ω-closed term.

·; Ω; · ⊢ t : T
In contrast to what we would normally think of as a closed term, an Ω-

closed term contains extensional fragments, the set of ambient maps occurring
in t. These ambient maps share the common domain Ω. Let OJΩK be the set
of all valuations of Ω. For any ω ∈ OJΩK, we can form an ambient substitution
operator ∥ω∥, a unary operator on terms. An application of ∥ω∥ to a to a term is
written ∥ω∥t. While defined on all terms, the restriction of ∥ω∥ to the Ω-closed
terms is well-behaved: it is a projection from the Ω-closed terms onto the terms
t for which · ⊢ t : T for some T , called the terminal terms. It constructs a
terminal term by recursively descending into t and replacing any ambient map
{(α, cα)

α∈OJΩK} that it encounters with cω. To produce a terminal result, ambient
substitution must also descend into type annotations occurring in t, converting
every lifted type to a terminal type. Figure 10 provides the full definition of
ambient substitution.

∥ω∥a = a(ω) when ω ∈ dom(a)
∥ω∥a = a when ω ̸∈ dom(a)
∥ω∥t t = ∥ω∥t ∥ω∥t
∥ω∥t(t) = ∥ω∥t(∥ω∥ti)
∥ω∥(λx : S.t) = (λx : ∥ω∥S.∥ω∥t)
∥ω∥if t then t else t = if ∥ω∥t then ∥ω∥t else ∥ω∥t
∥ω∥(λ̃(xi : Bi

i∈1..n

). t) = (λ̃(xi : Bi
i∈1..n

). ∥ω∥t)
∥ω∥t = t otherwise

∥ω∥T Ω→ T = ∥ω∥T → ∥ω∥T when ω ∈ OJΩK
∥ω∥B[Ξ] = B when dom(ω) = dom(Ξ)
∥ω∥T = T otherwise

Fig. 10: Ambient substitution

5.6 Terminal Reduction and Lifted Reduction
In Figure 11, we define a standard small-step reduction, a binary relation

on terms written t → t′, called terminal reduction. The only novel rule is Red-
SApp, for sfun applications. To apply an sfun abstraction (λ̃(xi : Bi

i∈1..n

). t) to
a vector of arguments ci, we can’t merely substitute each ci for its correspond-
ing variable xi. That would fail, for example, when performing the following
reduction step.
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(λ̃(x : Nat). (λy : Nat[= x].y) x)(3) → (λy : Nat[= x].y) 3

The problem here is that we would like terminal reduction to take terminal
terms to terminal terms, but the above reduction step takes a terminal term to an
Ω-closed term, where Ω is the ambient environment containing the single entry
x : Nat. Unlike the term (λy : Nat[= x].y) 3, terminal terms do not contain
any occurrences of qualifiers outside of sfun abstractions. To fix this, Red-SApp
must first substitute ax for x in the sfun body to obtain the Ω-closed term
(λy : Nat[= x].y) ax, and then project this Ω-closed term to a terminal term by
applying the ambient substitution ∥(x 7→ 3)∥ to obtain (λy : Nat.y) 3.

Red-Context
t → t′

E[t] → E[t′]

Red-App

(λx : T.t) v → [v/x]t

Red-SApp
ϕ ∈ Gxi:Bi

Jxi : Bi[= xi]K ω = ·[xi 7→ ci]

(λ̃(xi : Bi

i∈1..n

). t)(ci) → ∥ω∥ϕt

Red-SApp-Const
δn(k) is defined

k(ci
i∈1..n

) → δn(k)(ci)

Fig. 11: Selected terminal reduction rules

Recall that the aim of our system is to prove certain functions monotone,
functions such as (λ̃(x : Nat). mult(x, x)). A standard type system could infer
the codomain of the non-sfun version of this abstraction (λx : Nat.mult(x, x))
by deriving the following judgment:

x : Nat ⊢ mult(x, x) : Nat

The above judgment describes computation which occurs after the abstrac-
tion has been applied; roughly, it says that after an actual argument of type
Nat is substituted for x, the term mult(x, x) normalizes to a value of type Nat.
Here all occurrences of x are placeholders for the actual argument to which the
abstraction is applied. This is a lost opportunity, as the following lifted typing
judgment for (λ̃(x : Nat). mult(x, x)) allows us to reason about the composi-
tional behavior of the sfun before it is applied.

·;x : Nat;x : Nat[= x] ⊢ mult(x, x) : Nat[↑ x]

Notably, the ambient environment of this judgment provides a name x for the
abstraction’s formal argument, and its derivation refers to the formal argument
directly wherever the variable x occurs inside of a type. Let Ψ = x : Nat. Then,
roughly, the above judgment says that after the selector ax for the enclosing
sfun’s formal argument x is substituted for occurrences of x in mult(x, x), the
resulting term mult(ax, ax) normalizes to an Ψ-ambient map of type Nat[↑ x].
None of our terminal reduction rules allow the reduction of mult(ax, ax), which
is an sfun applied to ambient maps. In fact, terminal reduction, which describes
computation, is not the correct reduction relation for interpreting lifted typing
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judgments, which are intuitively about composition rather than computation.
For reasoning about composition, we define a family of binary reduction relations
on terms, indexed by ambient environments, for which we write Ω ⊢ t→ t′ and
say that t Ω-reduces to t′. For an ambient environment Ω, we obtain the Ω-
reduction relation by extending terminal reduction with the top-level reduction
rule LRed-SApp.

LRed-Term
t → t′

Ω ⊢ t → t′

LRed-Context
Ω ⊢ t → t′

Ω ⊢ E[t] → E[t′]

LRed-SApp
∥ω∥t(∥ω∥di) ⇓ cω

ω∈OJΩK
a = {(ω, cω)}

Ω ⊢ t(di
i∈1..n

) → a

Fig. 12: Ω-reduction

Intuitively, if the arguments di of an sfun application are Ω-ambient maps,
then an sfun application can be viewed as a composition of functions. Each di is
a function from OJΩK into some base type matching one of the sfun’s argument
types; the ambient map’s output is forwarded in as the value for this sfun argu-
ment. The resulting composite function is an Ω-ambient map whose codomain
matches that of the sfun. The rule LRed-SApp performs such a composition.
For each ω ∈ OJΩK, LRed-SApp has one premise of the form ∥ω∥t(∥ω∥di) ⇓ cω.
Ambient substitution is idempotent on well-typed sfuns: for any well-typed sfun
t, we have ∥ω∥t = t. Thus for a well-typed sfun application, such a premise is
equivalent to t(∥ω∥di) ⇓ cω by substitution.

LRed-SApp is non-algorithmic for two reasons. First, OJΩK can be infi-
nite, and in that case there are infinitely many premises. Second, for any given
ω ∈ OJΩK, determining if ∥ω∥t(∥ω∥di) ⇓ cω requires solving the halting problem.
We could overcome these issues by representing ambient maps as syntactic ab-
stractions rather than sets of pairs. However, for our purposes Ω-reduction need
not be algorithmic. Instead, it need only satisfy the following constraints:

– It must be statically characterized by an expressive and intuitive type system.
– It must simulate terminal reduction for all valuations of Ω simultaneously.

The first point implies that an Ω-closed term of type T Ω-normalizes to a
value v of type T :

·; Ω; · ⊢ t : T ⇒ Ω ⊢ t ⇓ v (where v has type T )
The second point is stated formally with the following theorem:

Theorem 1. If Ω ⊢ t ⇓ v then for all ω ∈ OJΩK we have ∥ω∥t ⇓ ∥ω∥v.

This theorem implies that monotonicity results proven using the lifted reduc-
tion relation transfer to terminal reduction. For example, consider the following
lifted typing judgment, for the body of the sfun (λ̃(x : Nat). mult(x, x)):

·;x : Nat;x : Nat[= x] ⊢ mult(x, x) : Nat[↑ x]

Together with this judgment, the fundamental theorem for lifted typing
(which we’ll cover in Section 5.10) implies that x : Nat ⊢ mult(ax, ax) ⇓ d,
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where d is an ambient map that is monotone with respect to the formal argu-
ment x. In concrete notation, we see that this is the case due to LRed-SApp:

x : Nat ⊢ mult({((x 7→ 0), 0), ((x 7→ 1), 1) . . .}, {((x 7→ 0), 0), ((x 7→ 1), 1) . . .}) →
{((x 7→ 0), 0), ((x 7→ 1), 1), ((x 7→ 2), 4), ((x 7→ 3), 9), . . .}

Formally, “d is monotone with respect to the formal argument x” means that
for all ω1, ω2 ∈ OJx : NatK with ω1(x) ≤ ω2(x) we have ∥ω1∥d ≤ ∥ω2∥d. But by
Red-SApp, for two terminally well-typed sfun applications (λ̃(x : Nat). mult(x, x))(c1)
and (λ̃(x : Nat). mult(x, x))(c2) with c1 ≤ c2, we have

(λ̃(x : Nat). mult(x, x))(c1) → ∥ω1∥mult(ax, ax) ⇓ ∥ω1∥d

and
(λ̃(x : Nat). mult(x, x))(c2) → ∥ω2∥mult(ax, ax) ⇓ ∥ω2∥d

where ω1 = (x 7→ c1) and ω2 = (x 7→ c2). Since ω1(x) = c1 ≤ c2 = ω2(x), we
know that ∥ω1∥d ≤ ∥ω2∥d.

5.7 Type Well-Formedness
The terminal type well-formedness relation of Figure 13 contains the set of

types which are meaningful to the terminal typing relation.

Wf-Base

⊢ B

Wf-Fun
⊢ S ⊢ T

⊢ S → T

Wf-SFun
dom(Ξ) = {xi | i ∈ 1..n}

⊢ (xi : Bi

i∈1..n

) ⇒ A[Ξ]

Fig. 13: Terminal type well-formedness

The set of types considered meaningful to the lifted typing relation under
an ambient environment Ω are called Ω-well-formed types. The definition Ω-
well-formedness is provided in Figure 14. For any ambient environment Ω the
Ω-well-formed types form a superset of the terminally well-formed types, due to
the inclusion of the ΩWF-Terminal rule.

ΩWf-Terminal
⊢ T

Ω ⊢ T

ΩWf-QualBase
dom(Ω) = dom(Ξ)

Ω ⊢ B[Ξ]

ΩWf-LFun
Ω ⊢ S Ω ⊢ T

Ω ⊢ S
Ω→ T

Fig. 14: Lifted type well-formedness

A type environment Γ is considered well-formed if ⊢ T for all x : T ∈ Γ. A
lifted type environment Φ is considered Ω-well-formed if Ω ⊢ T for all x : T ∈ Φ.
Let ω ∈ OJΩK. When restricted to Ω-well-formed types, ∥ω∥ is a projection onto
the terminally well-formed types.
Theorem 2 (Projection of Well-Formed Types). Let Ω be an ambient
environment, and let S and T be types. If Ω ⊢ T then for all ω ∈ OJΩK, ⊢ ∥ω∥T .
Furthermore, if ⊢ S then ∥ω∥S = S.
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5.8 Logical Relations
We use the logical relations soundness proof method [16]. For each terminally

well-formed type T , we define the set VJT K of all values belonging to type T
and the set T JT K of all terms which normalizes to values of type T . For each
terminally well-formed type environment Γ, we define GJΓK to be the set of all
valuations γ of Γ such that for all x ∈ dom(Γ), γ(x) ∈ VJΓ(x)K.

Likewise, for each Ω-well-formed type T , we define the set VΩJT K of all values
beloning to type T and the set TΩJT K of all terms which normalize to values of
type T . For each Ω-well-formed lifted type environment Φ, we define the set
GΩJΦK of all valuations ϕ of Φ such that for all x ∈ dom(Φ), ϕ(x) ∈ VΩJΦ(x)K.
Selected logical relations are given in Figures 15. While our terminal logical

VJNatK .
= {0, 1, 2, . . .}

VJS → UK .
= {v | ∀vs ∈ VJSK. v vs ∈ T JUK}

VJ(xi : Bi
i∈1..n

) ⇒ A[Ξ]K .
= {v | ∀ci ∈ VJBiK. v(ci) ∈ T JAK} ∩ V∗J(xi : Bi) ⇒ A[Ξ]K

X JΩK .
= {Ξ | dom(Ξ) = dom(Ω)}

KΩJ↑ xK .
= {d | ∀ω, ω′ ∈ OJΩK.( ω(x) ≤ ω′(x) ∧ ∀y ∈ dom(Ω)− {x}. ω(y) = ω′(y) )

=⇒ ∥ω∥d ≤ ∥ω′∥d}
KΩJ∼ xK .

= {d | ∀ω, ω′ ∈ OJΩK.(∀y ∈ dom(Ω)− {x}. ω(y) = ω′(y)) =⇒ ∥ω∥d = ∥ω′∥d}
BΩJBK .

= {d | ∀ω ∈ OJΩK. ∥ω∥d ∈ VJBK}
VΩJBK .

= VJBK
VΩJB[Ξ]K .

= {d | d ∈ BΩJBK ∧ d ∈
∩

z∈dom(Ξ) KΩJΞ(z) zK}
VΩJS Ω→ UK .

= {v | ∀vs ∈ VΩJSK. v vs ∈ TΩJUK}
VΩJ(xi : Bi

i∈1..n

) ⇒ A[Ξ]K .
= {v | ∀Ξi ∈ X JΩK. ∀di ∈ VΩJBi[Ξi]K.

v(di) ∈ TΩJA[(+n
i=1(Ξi(z) ◦ Ξ(xi))) z

z∈dom(Ω)

]K}
V∗JT K .

=
∩

VΩJT K where Ω ranges over all ambient environments

Fig. 15: Selected logical relations

relations are fairly straightforward, several aspects of the lifted logical relations
deserve notice. First, a set KΩJq xK is used to define the semantics of a single
qualifier map entry q x. It identifies a subset of lifted base values (i.e. constants
and ambient maps) by using ambient substitution. The set BΩJBK describes all
lifted base values which project to constants in the set VJBK. Together, these
families of sets can be used to provide an interpretation VΩJB[Ξ]K of the qualified
base type B[Ξ]: a lifted base value belongs to VΩJB[Ξ]K whenever it projects to an
element of VJBK and respects all qualifiers of Ξ. The type S Ω→ U is interpreted
as the set of all lambda abstractions which Ω-normalize to an value in VΩJUK
when applied to a value in VΩJSK. VΩJ(xi : Bi) ⇒ A[Ξ]K describes those values
which, when applied to lifted base values di respectively from the sets BΩJBiK,
have compositional behavior consistent with the qualifier map Ξ.

Recall from our discussion of Figure 8 that within the body of a well-typed
sfun, our type system allows occurrences of variables from both the terminal
type environment Γ and the lifted type environment Φ. In the body of an sfun
with ambient environment Ω, an occurrence of a variable x : T ∈ Γ is substituted
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with an value in VJT K, but the variable occurs in a context where a value of type
VΩJT K is expected. We therefore need the following result to allow substitution
through sfun abstractions.

Lemma 1. For all ambient environments Ω and types T with ⊢ T , we have
VJT K ⊆ VΩJT K.
5.9 Subtyping

Terminal subtyping, defined in Figure 16, is a binary relation on terminally
well-formed types. The derivability of a terminal subtyping judgment S <: U
implies the set containment VJSK ⊆ VJUK. Likewise, lifted subtyping is defined
in Figure 17. The derivability of a lifted subtyping judgment Ω ⊢ S <: U implies
the set containment VΩJSK ⊆ VΩJUK.
Sub-Base

B <: B

Sub-Fun
U1 <: S1 S2 <: U2

S1 → S2 <: U1 → U2

Sub-SFun
xi : Bi ⊢ A[Ξ1] <: A[Ξ2]

(xi : Bi

i∈1..n

) ⇒ A[Ξ1] <: (xi : Bi) ⇒ A[Ξ2]

Fig. 16: Terminal subtyping

Sub-SFun is interesting because its premise is a lifted subtyping judgment
rather than a terminal one. Intuitively, since we can substitute an sfun ab-
straction into any other sfun abstraction, we want a subtyping derivation for
(xi : Bi

i∈1..n

) ⇒ A[Ξ1] <: (xi : Bi) ⇒ A[Ξ2] that is independent of whichever
ambient environment these types arise in. By taking an internal perspective,
from within the ambient environment xi : Bi delineated by a value of type
(xi : Bi) ⇒ A[Ξ], we maintain independence from the ambient environment on
the outside of that value. This is not an issue for values of type S → T , since
VJS → T K is defined in terms of the terminal reduction relation, a subset of the
Ω-reduction relation for any ambient environment Ω.

LSub-Terminal
S <: U

Ω ⊢ S <: U

LSub-Base-TL
∼ ≤ qx

Ω ⊢ B <: B[qx x
x∈dom(Ω)

]

LSub-Base-LL
px ≤ qx

Ω ⊢ B[px x
x∈dom(Ω)

] <: B[qx x]

LSub-Fun-LL
Ω ⊢ U1 <: S1 Ω ⊢ S2 <: U2

Ω ⊢ S1
Ω→ S2 <: U1

Ω→ U2

LSub-Fun-TL
Ω ⊢ U1 <: S1 Ω ⊢ S2 <: U2 ⊢ S1 → S2

Ω ⊢ S1 → S2 <: U1
Ω→ U2

Fig. 17: Lifted Subtyping

Some of the lifted subtyping rules utilize the partial order on qualifiers of
Figure 5, written p ≤ q. Their usage is justified by the following lemma.

Lemma 2 (Soundness of Qualifiers). Suppose p and q are qualifiers with
p ≤ q. Then for all ambient environments Ω and x ∈ dom(Ω), we have KΩJp xK ⊆
KΩJq xK.
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LSub-Base-LL states that qualified base types are ordered componentwise
by their qualifiers. The soundness of this rule is due to the monotonicity of set
intersection: for all x ∈ dom(Ω) we have KΩJpx xK ⊆ KΩJqx xK, and so

(BΩJBK ∩ ∩
x∈dom(Ω)

KΩJpx xK) ⊆ (BΩJBK ∩ ∩
x∈dom(Ω)

KΩJqx xK)
The definition of VΩJB[∼ x

x∈dom(Ω)

]K implies that VΩJBK ⊆ VΩJB[∼ x
x∈dom(Ω)

]K;
this, combined with transitivity of set inclusion justifies LSub-Base-TL.

LSub-Fun-LL is a standard function subtyping rule, with a contravariant
premise for the domain type and a covariant premise for the codomain type.
Because of the LRed-Term rule in Figure 12, we know that for all Ω, if t ⇓ v
then Ω ⊢ t ⇓ v; this implies that for all types T with ⊢ T , T JT K ⊆ TΩJT K. Hence,
for all S with ⊢ S we have VJS → T K ⊆ VΩJS Ω→ T K. Combining this observation
with transitivity of set inclusion justifies LSub-Fun-TL.

5.10 Typing
Recall that our terminal type system is an ordinary type system with judg-

ments of the form Γ ⊢ t : T . It statically characterizes terms which are not
enclosed in an any sfun abstraction. Our lifted type system has judgments of the
form Γ;Ω;Φ ⊢ t : T . It statically characterizes terms which are enclosed in an
sfun abstraction. The type environment Γ contains all bindings formed outside of
the sfun abstraction, which must be terminally well-formed. Ω containins the en-
closing sfun’s formal arguments, which must have base types. Φ is a lifted type
environment containing bindings declared within the sfun abstraction, which
must be Ω-well-formed.

For ω ∈ Ω, let ∥ω∥Φ denote the result of performing the ambient substitution
∥ω∥ on every Ω-well-formed type bound in Φ. By Theorem 2, ∥ω∥Φ is a terminally
well-formed type environment. Writing the concatenation of ∥ω∥Φ onto Γ as
Γ, ∥ω∥Φ, we have the following theorem:

Theorem 3 (Projection of Well-Typed Terms). If Γ;Ω;Φ ⊢ t : T then for
all ω ∈ OJΩK, we have Γ, ∥ω∥Φ ⊢ ∥ω∥t : ∥ω∥T .

The fundamental theorems for terminal typing and lifted typing serve as sound-
ness criteria for these systems.

Theorem 4 (Fundamental Theorem for Terminal Typing). If Γ ⊢ t : T
then for all γ ∈ GJΓK, γt ∈ T JT K.
Theorem 5 (Fundamental Theorem for Lifted Typing). If Γ;Ω;Φ ⊢ t : T
then for all γ ∈ GJΓK and ϕ ∈ GΩJΦK we have γϕt ∈ T JT K.
There is a single novel terminal typing rule, for sfun abstractions:

T-SFun
Γ;xi : Bi;xi : Bi[= xi] ⊢ t : A[Ξ]

Γ ⊢ (λ̃(xi : Bi
i∈1..n

). t) : (xi : Bi) ⇒ A[Ξ]
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Intuitively, this rule is justified by our discussion below Theorem 1: because
a well-typed sfun’s body normalizes to an ambient map that is extensionally
equivalent to the sfun itself, the qualifier map in the premise accurately describes
the sfun being type-checked.

It’s worthwhile to compare the terminal and lifted abstraction typing rules,
and consider their relation to LT-Terminal, a rule which implies that the
terminally well-typed terms are a subset of the Ω-well-typed terms for each
Ω:
LT-Terminal

Γ ⊢ t : T
Γ;Ω;Φ ⊢ t : T

T-Fun
⊢ S Γ, x : S ⊢ t : T
Γ ⊢ (λx : S.t) : S → T

LT-LFun
Ω ⊢ S Γ;Ω;Φ, x : S ⊢ t : T

Γ;Ω;Φ ⊢ (λx : S.t) : S
Ω→ T

LT-Terminal can be justified by applying Lemma 1 and noting that Ω-
reduction subsumes terminal reduction. Our system is non-deterministic: be-
cause the lambda abstraction is an introduction form for both terminal and
lifted function types, a terminally well-typed lambda abstraction occuring in-
side an sfun could be typed as either. However, given that terminal function
types are more precise, they could be given precedence in an algorithmic version
of the system.

LT-SfApp
Γ;Ω;Φ ⊢ t : (xi : Bi) ⇒ A[Ξ] Γ;Ω;Φ ⊢ si : Bi[Ξi]

Γ; Ω;Φ ⊢ t(si
i∈1..n

) : A[(Σn
i=1(Ξ(xi) ◦ Ξi(z))) z

z∈dom(Ω)

]

In LT-SfApp, note that because (xi : Bi) ⇒ A[Ξ] is well-formed, dom(Ξ) =
{xi | i ∈ 1..n}, and because for i ∈ 1..n, Bi[Ξi] is Ω-well-formed, we have
dom(Ξi) = dom(Ω). The summation Σn

i=1 is a chain of applications of the qual-
ifier contraction operation + defined in Figure 7. ◦ is the qualifier composition
operator defined in Figure 6.

Suppose we’re dealing with an application of this rule with Ω = z : B, n = 2,
x = x1, and y = x2. Then for valuations γ ∈ GJΓK and ϕ ∈ GΩJΦK, γϕt Ω-
normalizes to an sfun v of type (x : B1, y : B2) ⇒ A[qx x, qy y], and for i ∈ 1, 2,
γϕsi Ω-normalizes to an ambient map ai of type Bi[qi z]. Then a1 and a2 are
both functions of Ω, and v is a function of its formal arguments x and y. An
Ω-reduction step due to LRed-SApp reduces the term Ω-closed v(a1, a2) to a
composite function w, which, written using the “function notation” of elementary
mathematics, looks as follows:

w(z) = v(a1(z), a2(z))

We would like to compute w’s qualifier for z given the qualifier information we
have for v, a1, and a2. To this end, we first compute the qualifiers of a simpler
function, in which a1 and a2 are applied to different variables z1 and z2.

ŵ(z1, z2) = v(a1(z1), a2(z2))

Holding z2 fixed we get a single-argument function which is the composition of
v′ ◦ a1 where v1(x) = v(x, a2(z2)). We know that the qualifier of a1 is q1 and
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the qualifier of v′ is qx, and so the qualifier of the composite v′ ◦ a1, which we’ll
call p1 is qx ◦ q1. All of our qualifiers denote single-argument properties: they are
concerned with properties involving variance in at most one argument while all
other arguments are held fixed. p1 is therefore ŵ’s qualifier for z1. Likewise, ŵ’s
qualifier for z2, which we’ll call p2, is qy ◦ q2.

We’ve computed ŵ’s qualifiers p1 and p2 for its arguments z1 and z2, but our
goal is to find w’s qualifier for z. Fortunately, since w is the result of contracting
ŵ’s two arguments z1 and z2 into a single argument z, the qualifier contraction
operator is just what we need: w’s qualifier for z is p1+ p2 = (qx ◦ q1)+ (qy ◦ q2).
Extending this reasoning to n-ary sfun applications using induction gives us the
conclusion of LT-SfApp.

6 Related Work
6.1 Type Systems

Monotonicity is a property relating multiple calls of a function. Such prop-
erties, called relational properties, are a blind spot of standard type systems.
Nonetheless, potential applications abound, and researchers are making progress
toward type systems capable of proving these properties. Putting Differential
Privacy to Work [11,18] developed a type system for proving functions Lip-
schitz continuous, using a substructural type system that treats perturbation
to a function’s output value as a limited resource. This project achieves veri-
fiable differential privacy for database access, and implements several realistic
examples.

Barthe et. al. developed Relational Refinement Types [8] for the application
domain of mechanisim design. Each relational refinement binds a pair of vari-
ables denoting corresponding values in separate computations. This technique
is general enough to subsume the previously mentioned work on differential pri-
vacy.

Asada et al. [6] designed a system for verifying refinements containing calls
to first-order functions. These refinement types, which can express monotonicity
and other relational properties, are checked via translation to first-order refine-
ments through a tupling transformation.

Datafun [5] is a typed calculus which captures the essence of Datalog, and
extends it with functional programming constructs. Central to Datalog is the
ability to calculate fixpoints of monotone functions, motivating the ability of
Datafun’s type system to prove functions monotone. The Datafun type environ-
ment is split into discrete and monotone parts, for variables bound by discrete
abstractions and monotone abstractions. Monotone variables are restricted to
positions which affect their contexts monotonically. A built-in type constructor
for finite sets enables the expression of an iterative monotone computation as a
join over a finitely indexed subset of some semilattice type. In contrast to our
system, Datafun has better support for higher-order functions, but the top-down
reasoning needed to program with monotone context may be less intuitive than
our system, which computes monotonicity in a bottom-up manner.
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6.2 Concurrent and Distributed Data Structures
LVars [13,14] are lattice-based variables designed to ensure that shared-

memory parallel computations are deterministic. This is achieved by only allow-
ing least-upper-bound writes and threshold reads of shared memory locations.
LVars share many similarities with CRDTs [20,19], focused on the problem of
deterministic parallel programming rather than on guaranteeing eventual con-
sistency. A store with least-upper-bound writes increases monotonically, thus
mapping a monotone function over the current state of such a store can be
done in parallel. Monotonicity types could potentially assist in verifying that
such functions are indeed monotone. Going one step further; if LVars were to be
eventually extended to support compositions of LVar-based computations using
higher-order functions, the techniques in this paper could potentially be used to
prove monotonicity across composition.

FlowPools [17] are a lock-free deterministic concurrent abstraction for dataflow
programming implemented in Scala. A main feature of FlowPools their support
for programming higher-order functions for composing computations on Flow-
Pools. Calls to higher-order functions like foreach or fold run concurrently
across elements, and are guaranteed to be eventually applied to every element.
An issue with this, however, is the fact that a user must take care to ensure that
the functions passed to and applied to each element via combinators like fore-
ach satisfy one of several properties, such as commutativity, idempotency, and
monotonicity, to ensure that the resulting FlowPools are deterministic. Mono-
tonicity types applied to FlowPools could guard against user errors caused by
non-monotonic functions passed to FlowPool combinators.

6.3 Distributed Programming Models
Bloom [3] is a Datalog-based language for distributed programming designed

to guarantee eventual consistency without coordination. This is made possible
due to a focus on providing users with only monotone functions and sets, en-
abling all Bloom programs be order-insensitive. Bloom provides a monotonicity
analysis procedure which is designed to identify points of order, or, program
locations where the output of an asynchronously derived value is consumed by
a non-monotonic operator. In this way, Bloom can identify and inform the pro-
grammer where synchronization points in a program are required. Bloom was
later extended to BloomL [9], a lattice-based variant of Bloom able to perform
Bloom’s monotonicity analysis on arbitrary join-semilattices (rather than on
sets only). The extension enabled BloomL to support more interesting (mono-
tonic) data types such as maps, or otherwise programs that “grow” according
to a partial order other than set containment. However, BloomL’s monotonic-
ity analysis simply checks that user-defined morphisms and monotone functions
preserve monotonicity in their arguments by merely being tagged by the user as
monotonic. That is, it assumes that the monotonicity annotations on functions
are correct as it cannot analyze these functions to determine whether or not
they are indeed monotonic. Monotonicity types could be of help here by proving
functions tagged as monotone are indeed monotone.
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Lasp [15] provides a functional programming model over CRDTs which fo-
cuses on providing higher-order functions (or combinators) such as map and fold
to compose computations on CRDTs. Lasp’s philosophy is to enable users to
build up larger composite computations through functional composition which
retain the properties of CRDTs over composition. However, while providing a
higher-order programming facility and the ability to define new combinators,
Lasp provides no mechanism to ensure that new user-defined combinators will
exhibit the required properties of monotonicity, risking the correctness of Lasp
programs. Monotonicity types are perfectly suited to guard against such errors
by statically rejecting non-monotonic combinators.

7 Future Work
Recall the aspirational example presented in Figure 8 illustrating the imple-

mentation of a CRDT combinator intended to take two G-Counters as input and
to return the sum of the two input counters as output. This example is aspira-
tional for a few reasons. First, we don’t yet support recursion. Our model assumes
that every well-typed term normalizes, so adding a standard fixpoint combina-
tor would be problematic. Recursion in this example is particularly tricky, since
the number of iterations performed is dependent upon the values of the sfun
arguments; as the values of x and y get arbitrarily high, so do the number of
iterations. Finally, this example involves an if expression which must be proven
monotone. When the if condition switches from true to false, we need to prove
that the expression in the then branch is less than or equal to the expression in
the else branch.

In future work, we intend to resolve these issues with the addition of depen-
dent refinement types to our language. In doing so, we could add a terminating
fixed point combinator as described by Vazou et al. [21], which performs recur-
sion under a well-founded, decreasing termination metric. Dependent refinement
types would also allow us to type if expressions, since we could include ordering
constraints in our typing rules.

8 Conclusion
In this paper, we presented a language and type system for proving functions

monotone, utilizing a novel approach for propagating properties across function
composition. Given that monotone functions are the fundamental primitives of
composition in emerging coordination-free distributed programming models, and
the relative difficulty in manually ensuring that application code satisfies these
models’ monotonicity constraints, Monotonicity Types could be the missing piece
which enable customization and extension of such systems by non-experts. Go-
ing further, Monotonicity Types could provide a foundation for future work on
extensions to practical languages, with the eventual goal of enabling safer and
more flexible abstractions for these emerging distributed programming models.
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Appendix A Language
We explain that the metavariable a is used to denote sets of pairs which

satisfy the function property: (x, c) ∈ a ∧ (x, d) ∈ a⇒ c = d.

x ::= variables
p, q ::= ↑ | ↓ | ∼ | ? | = Qualifiers
Ξ ::= · | Ξ, q x Qualifier maps
c ::= true | false | 0 | 1 | −1 | 2 | −2 | . . . Terminal base-level constants
d ::= c | a Base-level constants
k ::= + | − | < | ≤ | = | ∧ | ∨ Sfun constants

A,B ::= Bool | Int Base-level types
S, T, U ::= B | B[Ξ] | (xi : Bi

i∈1..n

) ⇒ A[Ξ] | Types
S → T | S Ω→ T

v ::= k | d | a | (λx : T.t) | (λ̃(xi : Bi
i∈1..n

). t) Values
s, t, u ::= v | x | t t | t [ ti

i∈1..n

] | Terms
if t then t else t | let x = t in t

E ::= E t | v E | E [t] | v [v E t] | Evaluation contexts
if E then t else t | let x = E in t | []

Fig. 18: Syntax

kty : k → T

ty(+) = (x : Int, y : Int) ⇒ Int[↑ x, ↑ y]
ty(−) = (x : Int, y : Int) ⇒ Int[↑ x, ↓ y]
ty(<) = (x : Int, y : Int) ⇒ Int[↓ x, ↑ y]
ty(≤) = (x : Int, y : Int) ⇒ Int[↓ x, ↑ y]
ty(=) = (x : Int, y : Int) ⇒ Int[? x, ? y]
ty(∧) = (x : Int, y : Int) ⇒ Int[↑ x, ↑ y]
ty(∨) = (x : Int, y : Int) ⇒ Int[↑ x, ↑ y]

Fig. 19: Sfun constant types
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cty : c → B

ty(true) = Bool
ty(false) = Bool
ty(0) = Int
ty(1) = Int

...

Fig. 20: Base constant types

◦ ? ↑ ↓ = ∼
? ? ? ? ? ∼
↑ ? ↑ ↓ ↑ ∼
↓ ? ↓ ↑ ↓ ∼
= ? ↑ ↓ = ∼
∼ ∼ ∼ ∼ ∼ ∼

Fig. 21: Qualifier composition ◦

+ ? ↑ ↓ = ∼
? ? ? ? = ?
↑ ? ↑ ? = ↑
↓ ? ? ↓ = ↓
= = = = = =
∼ ? ↑ ↓ = ∼

Fig. 22: Qualifier contraction +

Wf-Base

⊢ B

Wf-Fun
⊢ S ⊢ T

⊢ S → T

Wf-SFun
dom(Ξ) = {xi | i ∈ 1..n}

⊢ (xi : Bi

i∈1..n

) ⇒ A[Ξ]

Fig. 23: Terminal type well-formedness

ΩWf-Terminal
⊢ T

Ω ⊢ T

ΩWf-QualBase
dom(Ω) = dom(Ξ)

Ω ⊢ B[Ξ]

ΩWf-LFun
Ω ⊢ S Ω ⊢ T

Ω ⊢ S
Ω→ T

Fig. 24: Lifted type well-formedness

Sub-Base

B <: B

Sub-Fun
U1 <: S1 S2 <: U2

S1 → S2 <: U1 → U2

Sub-SFun
xi : Bi ⊢ A[Ξ1] <: A[Ξ2]

(xi : Bi

i∈1..n

) ⇒ A[Ξ1] <: (xi : Bi) ⇒ A[Ξ2]

Fig. 25: Terminal subtyping
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LSub-Terminal
S <: U

Ω ⊢ S <: U

LSub-Base-TL
∼ ≤ qx

Ω ⊢ B <: B[qx x
x∈dom(Ω)

]

LSub-Base-LL
px ≤ qx

Ω ⊢ B[px x
x∈dom(Ω)

] <: B[qx x]

LSub-Fun-LL
Ω ⊢ U1 <: S1 Ω ⊢ S2 <: U2

Ω ⊢ S1
Ω→ S2 <: U1

Ω→ U2

LSub-Fun-TL
Ω ⊢ U1 <: S1 Ω ⊢ S2 <: U2 ⊢ S1 → S2

Ω ⊢ S1 → S2 <: U1
Ω→ U2

Fig. 26: Lifted Subtyping

T-Constant
ty(c) = B

Γ ⊢ c : B

T-SfConstant
ty(k) = T

Γ ⊢ k : T

T-Var
x : T ∈ Γ

Γ ⊢ x : T

T-Fun
⊢ S Γ, x : S ⊢ t : T

Γ ⊢ (λx : S.t) : S → T

T-SFun
Γ;xi : Bi;xi : Bi[= xi] ⊢ t : A[Ξ]

Γ ⊢ (λ̃(xi : Bi

i∈1..n

). t) : (xi : Bi) ⇒ A[Ξ]

T-App
Γ ⊢ t : S → U Γ ⊢ s : S

Γ ⊢ t s : U

T-SfApp
Γ ⊢ t : (xi : Bi) ⇒ A[Ξ] Γ ⊢ si : Bi

Γ ⊢ t [si
i∈1..n

] : A

T-IfThenElse
Γ ⊢ s1 : Bool Γ ⊢ s2 : S Γ ⊢ s3 : S

Γ ⊢ if s1 then s2 else s3 : S

T-Sub
Γ ⊢ t : S ⊢ U S <: U

Γ ⊢ t : U

Fig. 27: Terminal typing
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LT-Terminal
Γ ⊢ t : T

Γ;Ω;Φ ⊢ t : T

LT-LVar
x : T ∈ Φ

Γ;Ω;Φ ⊢ x : T

LT-LFun
Ω ⊢ S Γ;Ω;Φ, x : S ⊢ t : T

Γ;Ω;Φ ⊢ (λx : S.t) : S
Ω→ T

LT-LApp
Γ;Ω;Φ ⊢ t : S

Ω→ U Γ;Ω;Φ ⊢ s : S

Γ;Ω;Φ ⊢ t s : U

LT-SfApp
Γ;Ω;Φ ⊢ t : (xi : Bi) ⇒ A[Ξ] Γ;Ω;Φ ⊢ si : Bi[Ξi]

Γ; Ω;Φ ⊢ t [si
i∈1..n

] : A[(+n
i=1(Ξ(xi) ◦ Ξi(z))) z

z∈dom(Ω)

]

LT-IfThenElse
Γ;Ω;Φ ⊢ s1 : Bool Γ;Ω;Φ ⊢ s2 : S Γ;Ω;Φ ⊢ s3 : S

Γ;Ω;Φ ⊢ if s1 then s2 else s3 : S

LT-Sub
Γ;Ω;Φ ⊢ t : S Ω ⊢ U Ω ⊢ S <: U

Γ;Ω;Φ ⊢ t : U

Fig. 28: Lifted typing

∥ω∥a = a(ω) when ω ∈ dom(a)
∥ω∥a = a when ω ̸∈ dom(a)
∥ω∥t t = ∥ω∥t ∥ω∥t
∥ω∥t [t] = ∥ω∥t [∥ω∥ti]
∥ω∥(λx : S.t) = (λx : ∥ω∥S.∥ω∥t)
∥ω∥if t then t else t = if ∥ω∥t then ∥ω∥t else ∥ω∥t
∥ω∥(λ̃(xi : Bi

i∈1..n

). t) = (λ̃(xi : Bi
i∈1..n

). ∥ω∥t)
∥ω∥t = t otherwise

∥ω∥T Ω→ T = ∥ω∥T → ∥ω∥T when ω ∈ OJΩK
∥ω∥B[Ξ] = B when dom(ω) = dom(Ξ)
∥ω∥T = T otherwise

Fig. 29: Ambient substitution
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Red-Context
t → t′

E[t] → E[t′]

Red-Let

let x = v in t → [v/x]t

Red-App

(λx : T.t) v → [v/x]t

Red-SApp
ϕ ∈ Gxi:Bi

Jxi : Bi[= xi]K ω = ·[xi 7→ ci]

(λ̃(xi : Bi

i∈1..n

). t) [ci] → ∥ω∥ϕt

Red-SApp-Const
δn(k) is defined

k [ci
i∈1..n

] → δn(k)(ci)

Red-IfTrue

if true then t1 else t2 → t1

Red-IfFalse

if false then t1 else t2 → t2

Fig. 30: Terminal reduction

LRed-Context
Ω ⊢ t → t′

Ω ⊢ E[t] → E[t′]

LRed-Let

Ω ⊢ let x = v in t → [v/x]t

LRed-App

Ω ⊢ (λx : T.t) v → [v/x]t

LRed-SApp-Lift
(λ̃(xi : Bi). t) [∥ω∥di] ⇓ cω

ω∈OJΩK
a = {(ω, cω)}

Ω ⊢ (λ̃(xi : Bi

i∈1..n

). t) [di] → a

LRed-SApp
ϕ ∈ Gxi:Bi

Jxi : Bi[= xi]K ω = ·[xi 7→ ci]

Ω ⊢ (λ̃(xi : Bi

i∈1..n

). t) [ci] → ∥ω∥ϕt

LRed-SApp-Const
δn(k) is defined

Ω ⊢ k [ci
i∈1..n

] → δ(k)(ci)

LRed-IfTrue

Ω ⊢ if true then t1 else t2 → t1

LRed-IfFalse

Ω ⊢ if false then t1 else t2 → t2

Fig. 31: Lifted reduction
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CJIntK .
= {0, 1,−1, 2,−2, . . .}

CJBoolK .
= {false, true}

VJBK .
= CJBK

VJS → UK .
= {v | ∀vs ∈ VJSK. v vs ∈ T JUK} ∩ V∗JS → UK

VJ(xi : Bi
i∈1..n

) ⇒ A[Ξ]K .
= {v | ∀ci ∈ VJBiK. v [ci] ∈ T JAK} ∩ V∗J(xi : Bi) ⇒ A[Ξ]K

T JT K .
= {t | t ⇓ v ∧ v ∈ VJT K}

GJ·K .
= {∅}

GJΓ, x : T K .
= {γ[x 7→ v] | γ ∈ GJΓK ∧ v ∈ VJT K}

OJ·K .
= {∅}

OJΩ, x : BK .
= {ω | ω[x 7→ c] ∧ c ∈ CJBK}

Fig. 32: Terminal logical relations
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X JΩK .
= {Ξ | dom(Ξ) = dom(Ω)}

KΩJ↑ xK .
= {d | ∀ω, ω′ ∈ OJΩK.( ω(x) ≤ ω′(x) ∧ ∀y ∈ dom(Ω)− {x}. ω(y) = ω′(y) )

=⇒ ∥ω∥d ≤ ∥ω′∥d}
KΩJ↓ xK .

= {d | ∀ω, ω′ ∈ OJΩK.( ω(x) ≤ ω′(x) ∧ ∀y ∈ dom(Ω)− {x}. ω(y) = ω′(y) )
=⇒ ∥ω∥d ≥ ∥ω′∥d}

KΩJ∼ xK .
= {d | ∀ω, ω′ ∈ OJΩK.(∀y ∈ dom(Ω)− {x}. ω(y) = ω′(y)) =⇒ ∥ω∥d = ∥ω′∥d}

KΩJ= xK .
= {d | ∀ω ∈ OJΩK. ∥ω∥d = ω(x)}

KΩJ? xK .
= {d | true}

BΩJBK .
= {d | ∀ω ∈ OJΩK. ∥ω∥d ∈ VJBK}

VΩJBK .
= VJBK

VΩJB[Ξ]K .
= {d | d ∈ BΩJBK ∧ d ∈

∩
z∈dom(Ξ) KΩJΞ(z) zK}

VΩJS → UK .
= VJS → T K

VΩJS Ω→ UK .
= {v | ∀vs ∈ VΩJSK. v vs ∈ TΩJUK}

VΩJ(xi : Bi
i∈1..n

) ⇒ A[Ξ]K .
= {v | ∀Ξi ∈ X JΩK. ∀di ∈ VΩJBi[Ξi]K.

v [di] ∈ TΩJA[(+n
i=1(Ξi(z) ◦ Ξ(xi))) z

z∈dom(Ω)

]K}
TΩJT K .

= {t | Ω ⊢ t ⇓ v ∧ v ∈ VΩJT K}
GΩJ·K .

= {∅}
GΩJΦ, x : T K .

= {ϕ[x 7→ v] | ϕ ∈ GΩJΦK ∧ v ∈ VΩJT K
G∗JΦK .

=
∩

GΩJΦK where Ω ranges over all ambient environments
V∗JT K .

=
∩

VΩJT K where Ω ranges over all ambient environments
T∗JT K .

=
∩

TΩJT K where Ω ranges over all ambient environments

Fig. 33: Lifted logical relations
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Appendix B Theorems
Lemma 3. For all values v and all ambient valuations ω, ∥ω∥v is a value.

Proof. Clear from a brief examination of Figure 29.

Theorem 6. If Ω ⊢ u→ u′ then for all ω ∈ OJΩK, ∥ω∥u→∗ ∥ω∥u′.

Proof. By induction on the derivation of Ω ⊢ u→ u′.

LRed-Context: u = E[t] u′ = E[t′] Ω ⊢ t→ t′

By the IH, we know that ∀ω ∈ OJΩK. ∥ω∥t →∗ ∥ω∥t′. Let ω ∈ OJΩK. We
need to show ∥ω∥E[t] →∗ ∥ω∥E[t′]. The proof proceeds by induction on the
structure of E[t], applying Lemma 3 implicitly in several places.
Case E = ·:

∥ω∥E[t] = ∥ω∥t→∗ ∥ω∥t′ = ∥ω∥E[t′] by the IH.
Case E[t] = E′[t] s:

∥ω∥E[t] = ∥ω∥E′[t] ∥ω∥s→∗ ∥ω∥E′[t′] ∥ω∥s = ∥ω∥E[t′]
Case E[t] = v E′[t]:

∥ω∥E[t] = ∥ω∥v ∥ω∥E′[t] →∗ ∥ω∥v ∥ω∥E′[t′] = ∥ω∥E[t′]
Case E[t] = v [v E′[t] s]:

∥ω∥E[t] = ∥ω∥v [∥ω∥v ∥ω∥E′[t] ∥ω∥s]

→∗ ∥ω∥v [∥ω∥v ∥ω∥E′[t′] ∥ω∥s] = ∥ω∥E[t′]

Case E[t] = E′[t] [ s ]:
∥ω∥E[t] = ∥ω∥E′[t] [ ∥ω∥s ] →∗ ∥ω∥E′[t′] [ ∥ω∥s ]

Case E[t] = if E′[t] then s1 else s2:
∥ω∥E[t] = if ∥ω∥E′[t] then ∥ω∥s1 else ∥ω∥s2 →∗

if ∥ω∥E′[t′] then ∥ω∥s1 else ∥ω∥s2 = ∥ω∥E[t′]
Case E[t] = let x = E′[t] in s:

∥ω∥E[t] = let x = ∥ω∥E′[t] in ∥ω∥s→∗ let x = ∥ω∥E′[t′] in ∥ω∥s
= ∥ω∥E[t′]

Case LRed-App: u = (λx : S. t) v u′ = [v/x]t
∥ω∥u = ∥ω∥(λx : S.t) ∥ω∥v → [∥ω∥v/x]∥ω∥t = ∥ω∥[v/x]t = ∥ω∥u′ .

Case LRed-SApp-Lift:
u = (λ̃(xi : Bi). s) [ di ]

u′ = {ω 7→ cω
ω∈OJΩK}

where ∀ω ∈ OJΩK. (λ̃(xi : Bi). s) [ ∥ω∥di ] ⇓ cω

∥ω∥u = (λ̃(xi : Bi). s) [ ∥ω∥di ] →∗ cω
= ∥ω∥{ω 7→ cω

ω∈OJΩK} = ∥ω∥u′
Case LRed-SApp:

u = (λ̃(xi : Bi). s) [ci]
ϕ ∈ Gxi:Bi

Jxi : Bi[= xi]K
ψ = ·[xi 7→ ci]
u′ = ∥ψ∥ϕs
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∥ω∥u = (λ̃(xi : Bi). ∥ω∥s) [∥ω∥ci] = (λ̃(xi : Bi). ∥ω∥s) [ci] → ∥ψ∥ϕ∥ω∥s =
∥ω∥∥ψ∥ϕs = ∥ω∥u′

Case LRed-SApp-Const:
u = k [ci

i∈1..n

]
u′ = δ(k)(ci)

∥ω∥u = u→ δ(k)(ci) = ∥ω∥δ(k)(ci) = ∥ω∥u′
Case LRed-If-True:

u = if true then t1 else t2
u′ = t1

∥ω∥u = if true then ∥ω∥t1 else ∥ω∥t2
→ ∥ω∥t1 = ∥ω∥u′

Case LRed-If-False:
Symmetric to LRed-If-True case.

Case LRed-Let:
u = let x = v in s
u′ = [v/x]s

∥ω∥u = let x = ∥ω∥v in ∥ω∥s→ [∥ω∥v/x]∥ω∥s = ∥ω∥u′

Corollary 1. For all ω ∈ OJΩK, Ω ⊢ u ⇓ v implies ∥ω∥u ⇓ ∥ω∥v.

Proof. Since Ω ⊢ u ⇓ v, there is a sequence of reduction steps Ω ⊢ u→ u1, Ω ⊢
u1 → u2, . . . ,Ω ⊢ ui → v. By the preceding lemma ∥ω∥u→∗ ∥ω∥u1, ∥ω∥u1 →∗

∥ω∥u2, . . ., and ∥ω∥ui →∗ ∥ω∥v. Stitching these together gives ∥ω∥u ⇓ ∥ω∥v.

Lemma 4 (Monotonicity of ◦ and +). The qualifier operators ◦ and + are
both monotone in each of their arguments separately.

Proof. Tedious but straightforward proof omitted.

Lemma 5 (Qualifier order soundness). Let Ω be an ambient environment,
and let p and q be qualifiers such that p ≤ q. Then for all z ∈ dom(Ω), KΩJp zK ⊆
KΩJq zK
Proof. ⊆ is a transitive relation, so it will be sufficient to show that containment
holds for each covering pair p ≺ q in the qualifier order. We say that p covers q,
or p ≺ q, whenever p ≤ q and for all r such that p ≤ r we have q ≤ r. It can be
seen from a cursory glance of Figure 32 that p ≺ q implies KΩJp zK ⊆ KΩJq zK.
Lemma 6. If Ω ⊢ A[Ξ1] <: A[Ξ2] then VΩJA[Ξ1]K ⊆ VΩJA[Ξ2]K.
Proof. For each z ∈ dom(Ω) we have KΩJΞ1(z) zK ⊆ KΩJΞ2(z) zK by Lemma 5.
Since the intersection operator is monotone with respect to each of its constituent
sets, we have

BΩJAK ∩ ∩
z∈dom(Ω)

KΩJΞ1(z) zK ⊆ BΩJAK ∩ ∩
z∈dom(Ω)

KΩJΞ2(z) zK
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i.e.
VΩJA[Ξ1]K ⊆ VΩJA[Ξ2]K

Assumption 1 (Types of Constants) For all constants c we have c ∈ VJty(c)K
and ⊢ ty(c). Also, for all sfun constants k we have k ∈ VJty(k)K and ⊢ ty(k).

Lemma 7. If t ⇓ v then for all ambient environments Ω we have Ω ⊢ t ⇓ v.

Proof. This is a simple consequence of the lifted reduction rules being a superset
of the terminal reduction rules.

Lemma 8. If ⊢ T then VJT K ⊆ V∗JT K.
Proof. Let Ω be an ambient environment. If ⊢ T then T must have the form B

(from Wf-Base), S → T (from Wf-Fun), or (xi : Bi
i∈1..n

) ⇒ A[Ξ]. In the first
two cases, we see that VΩJT K = VJT K by definition. In the third case, VJT K is
defined as the intersection of a set with V∗JT K, and so VJT K ⊆ V∗JT K ⊆ VΩJT K.
Lemma 9. If ⊢ T then T JT K ⊆ T∗JT K.
Proof. Assume ⊢ T and let t ∈ T JT K. Then there is some vt such that t ⇓ vt and
vt ∈ VJT K. But VJT K ⊆ V∗JT K and so vt ∈ V∗JT K. The lifted reduction rules are
a superset of the terminal reduction rules, hence Ω ⊢ t ⇓ vt, hence t ∈ T∗JT K.
Appendix C Fundamental subtyping theorems
Theorem 7. If ⊢ S, ⊢ U , and S <: U then VJSK ⊆ VJUK
Proof. By induction on the derivation of S <: U .

Case: Sub-Base
S = B U = B

By the reflexivity of set inclusion, we have VJBK ⊆ VJBK
Case: Sub-Fun

S = S1 → S2 U = U1 → U2 U1 <: S1 S2 <: U2

Applying the IH gives VJU1K ⊆ VJS1K and VJS2K ⊆ VJU2K
Let v ∈ VJS1 → S2K. Let v1 ∈ VJU1K. Since VJU1K ⊆ VJS1K, we have v1 ∈
VJS1K. Unfolding the definition of VJS1 → S2K, we see that v v1 ∈ T JS2K;
i.e., v v1 ⇓ v2 ∈ VJS2K subseteqVJU2K. Therefore v v1 ∈ T JU2K, and so
v ∈ VJU1 → U2K. Since v ∈ VJS1 → S2K implies v ∈ VJU1 → U2K, we have

VJS1 → S2K ⊆ VJU1 → U2K
Case: Sub-SFun

S = (xi : Bi
i∈1..n

) ⇒ A[ΞS ] U = (xi : Bi) ⇒ A[ΞU ] xi : Bi ⊢
A[ΞS ] <: A[ΞU ]
xi : Bi ⊢ A[Ξ1] <: A[Ξ2] must have been proven by the rule LSub-Base-LL,
and therefore for i ∈ 1..n we have Ξ1(xi) ≤ Ξ2(xi). Let Ω be an ambient
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environment. By monotonicity of qualifier composition and contraction we
have

Ω ⊢ A[(+n
i=1(Ξi(z) ◦ ΞS(xi)) z

z∈domΩ

] <: A[(+n
i=1(Ξi(z) ◦ ΞU (xi)) z

z∈domΩ

]

Hence by Lemma 6 we have

VΩJA[(+n
i=1(Ξi(z) ◦ ΞS(xi)) z

z∈domΩ

]K ⊆ VΩJA[(+n
i=1(Ξi(z) ◦ ΞU (xi)) z

z∈domΩ

]K
We then have

TΩJA[(+n
i=1(Ξi(z) ◦ ΞS(xi)) z

z∈domΩ

]K ⊆ TΩJA[(+n
i=1(Ξi(z) ◦ ΞU (xi)) z

z∈domΩ

]K
Which leads to

VΩJ(xi : Bi) ⇒ A[ΞS ]K ⊆ VΩJ(xi : Bi) ⇒ A[ΞU ]K
Finally, since ∩ is monotone separately in each argument, we have:
VJ(xi : Bi) ⇒ A[ΞS ]K =
{v | ∀ci ∈ VJBiK. v [ci] ∈ T JAK} ∩ V∗J(xi : Bi) ⇒ A[ΞS ]K ⊆
{v | ∀ci ∈ VJBiK. v [ci] ∈ T JAK} ∩ V∗J(xi : Bi) ⇒ A[ΞU ]K =
VJ(xi : Bi) ⇒ A[ΞU ]K

Theorem 8. For all ambient environments Ω, if Ω ⊢ S, Ω ⊢ U , and Ω ⊢ S <: U
then VΩJSK ⊆ VΩJUK.
Proof. By induction on the structure of Ω ⊢ S <: T .

Case: LSub-Terminal
S <: U could have been proven using one of the rules Sub-Base, Sub-Fun,
or Sub-SFun. We consider the three cases separately.
Case: Sub-Base

S = B U = B

Due to the reflexivity of ⊆ we have VΩJSK = VΩJBK ⊆ VΩJBK = VΩJUK
Case: Sub-Fun

S = S1 → S2 U = U1 → U2

VΩJS1 → S2K = VJS1 → S2K ⊆ VJU1 → U2K = VΩJU1 → U2K
Case: Sub-SFun

S = (xi : Bi
i∈1..n

) ⇒ A[ΞS ] U = (xi : Bi) ⇒ A[ΞU ] xi : Bi ⊢
A[ΞS ] <: A[ΞU ]

xi : Bi ⊢ A[ΞS ] <: A[ΞU ] could only have been proven by LSub-Base-
LL, and so for each i ∈ 1..n we must have ΞS(xi) ≤ ΞU (xi). By mono-
tonicity of qualifier composition and contraction we have

Ω ⊢ A[(+n
i=1(Ξi(z) ◦ ΞS(xi)) z

z∈domΩ

] <: A[(+n
i=1(Ξi(z) ◦ ΞU (xi)) z

z∈domΩ

]
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Hence by Lemma 6 we have

VΩJA[(+n
i=1(Ξi(z) ◦ ΞS(xi)) z

z∈domΩ

]K ⊆ VΩJA[(+n
i=1(Ξi(z) ◦ ΞU (xi)) z

z∈domΩ

]K
We then have

TΩJA[(+n
i=1(Ξi(z) ◦ ΞS(xi)) z

z∈domΩ

]K ⊆ TΩJA[(+n
i=1(Ξi(z) ◦ ΞU (xi)) z

z∈domΩ

]K
Which finally leads to

VΩJ(xi : Bi) ⇒ A[ΞS ]K ⊆ VΩJ(xi : Bi) ⇒ A[ΞU ]K
Case: LSub-Base-TL

S = B U = B[qz z
z∈dom(Ω)

] ∼≤ qz

Let c ∈ VΩJBK = CJBK. Since for all ω ∈ OJΩK we have ∥ω∥c = c, we
see that c ∈ BΩJBK. Letting z ∈ dom(Ω) and ω, ω′ ∈ OJΩK such that
∀x ∈ dom(Ω) − {z}. ω(x) = ω′(x), we have that ∥ω∥c = c = ∥ω′∥c. Hence,
c ∈ KΩJ∼ zK. By Lemma 5 we then have c ∈ KΩJ∼ zK ⊆ KΩJqz zK.
Therefore

c ∈ BΩJBK ∩ ∩
z∈dom(Ω)

KΩJqz zK = VΩJB[qz z]K
Case: LSub-Base-LL

S = A[px x
x∈dom(Ω)

] U = A[qx x
x∈dom(Ω)

] px ≤ qx

This case just amounts to Lemma 6.
Case: LSub-Fun-LL

S = S1
Ω→ S2 U = U1

Ω→ U2 Ω ⊢ U1 <: S1 Ω ⊢ S2 <: U2

Applying the IH gives us VΩJU1K ⊆ VΩJS1K and VΩJS2K ⊆ VΩJU2K. Let
v ∈ VΩJS1 → S2K. Let v1 ∈ VΩJU1K. Since VΩJU1K ⊆ VΩJS1K we have
v1 ∈ VΩJS1K. Unfolding the definition of VΩJS1

Ω→ S2K, we see that v v1 ∈
TΩJS2K. Since VΩJS2K ⊆ VΩJU2K, we have TΩJS2K ⊆ TΩJU2K and therefore
v v1 ∈ TΩJU2K. This proves that v ∈ VΩJU1 → U2K. Since v ∈ VΩJS1

Ω→ S2K
implies v ∈ VΩJU1

Ω→ U2K, we have

VΩJS1
Ω→ S2K ⊆ VΩJU1

Ω→ U2K
Case: LSub-FunTL

S = S1 → S2 U = U1
Ω→ U2 Ω ⊢ U1 <: S1 Ω ⊢ S2 <: U2

Applying the IH gives VΩJU1K ⊆ VΩJS1K and VΩJS2K ⊆ VΩJU2K.
Let v ∈ VΩJS1 → S2K. Let v1 ∈ VΩJU1K. Then since VΩJU1K ⊆ VΩJS1K, we
have v1 ∈ VΩJS1K. Hence, unfolding the definition of VΩJS1 → S2K we have
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v v1 ∈ T JS2K. By Lemma 9 we have v v1 ∈ TΩJS2K. Since VΩJS2K ⊆ VΩJU2K,
we have v v1 ∈ TΩJU2K. Hence v ∈ VΩJU1

Ω→ U2K. Since v ∈ VΩJS1 → S2K
implies v ∈ VΩJU1

Ω→ U2K, we have

VΩJS1 → S2K ⊆ VΩJU1
Ω→ U2K

Appendix D SFun Abstraction Typing
T-SFun is the thorniest case involved in our proof of the fundamental the-

orem for terminal typing. As such, I’ve split the proof into several lemmas.

Lemma 10. Let Ω be an ambient environment, z ∈ dom(Ω), and di ∈ BΩJBiK ∩ KΩJpi zKi∈1..n .
Further, let Ψ = xi : Bi and ϕ ∈ GΨJxi : Bi[= xi]K. Let t be a term such that
Ψ ⊢ ϕt ⇓ dt, where dt is a base-level value such that dt ∈ KΨJqi xiK.
For k ∈ 1..n and π = {πi

i∈1..n−{k}} where πi ∈ OJΩK, define the term sπk as

sπk
.
= (λ̃(xi : Bi

i∈1..n

). t) [∥πj∥dj
j∈1..(k−1)

dk ∥πj∥dj
j∈(k+1)..n

]

Then for all sπk we have Ω ⊢ sπk ⇓ dπk for some value dπk ∈ KΩJ(pk ◦ qk) zK

Proof.
Let k ∈ 1..n and ω ∈ OJΩK. By Red-SFun-App we have ∥ω∥sπk → ∥ψπω∥ϕt
where

ψπω
.
= [xj 7→ ∥πj∥dj ][xk 7→ ∥ω∥dk][xj 7→ ∥πj∥dj ]

Since Ψ ⊢ ϕt ⇓ dt and ψπω ∈ OJxi : BiK, we can apply Corollary 1 to get

∥ω∥sπk → ∥ψπω∥ϕt ⇓ ∥ψπω∥dt

Then by LRed-SFun-App we know that in Ω-lifted reduction, sπk normalizes to
a lifted constant dπk such that ∥ω∥dπk = ∥ψπω∥dt. To show dπk ∈ KΩJ(pk◦qk) zK,
we proceed by we case splitting on the qualifier pair (pk, qk), letting _ denote a
wildcard that matches any qualifier.

Case pk is ∼, qk is _ :
Let ω, ω′ ∈ OJΩK such that ω(x) = ω′(x) for all x ∈ dom(Ω) with x ̸= z.
Since dk ∈ KΩJ∼ zK, we have ∥ω∥dk = ∥ω′∥dk. We therefore have ∥ψπω∥ =
∥ψπω′∥, and so ∥ω∥dπk = ∥ψπω∥dt = ∥ψπω′∥dt = ∥ω′∥dπk. Hence dπk ∈
KΩJ∼ zK = KΩJ(pk ◦ qk) zK.

Case pk is _, qk is ∼:
Let ω, ω′ ∈ OJΩK such that ω(x) = ω′(x) for all x ∈ dom(Ω) with x ̸= z.
For i ̸= k we have ψπω(xi) = ∥πi∥di = ψπω′(xi). Since dt ∈ KΨJ∼ xiK we
have ∥ω∥dπk = ∥ψπω∥dt = ∥ψπω′∥dt = ∥ω′∥dπk, and so dπk ∈ KΩJ∼ zK =
KΩJ(pk ◦ qk) zK.
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Case pk is ? or qk is ? :
We’ve already established that Ω ⊢ sπk ⇓ dπk where dπk is some lifted con-
stant. Because we’re trying to prove that this constant belongs to KΩJ? zK =
{c | true}, that’s all we need to establish.

Case pk is =, qk ∈ {↑, ↓,=}:
For ω ∈ OJΩK we have ψπω(xk) = ∥ω∥dk = ω(z). Since

(pk ◦ qk) = (= ◦ qk) = qk

we just need to prove dπk ∈ KΩJqk zK.
Subcase qk is ↑:

Let ω, ω′ ∈ OJΩK such that ω(z) ≤ ω′(z) and ω(x) = ω′(x) for x ∈
dom(Ω) − {z}. Since dk ∈ KΩJ= zK we have ψπω(xk) = ω(z). Then
ψπω(xk) = ω(z) ≤ ω′(z) = ψπω′(xk) and for i ̸= k we have ψπω(xi) =
∥πi∥di = ψπω′(xi). Because dt ∈ KΨJ↑ xkK we have ∥ω∥dπk = ∥ψπω∥dt ≤
∥ψπω′∥dt = ∥ω′∥dπk, and so dπk ∈ KΩJ↑ zK.

Subcase qk is ↓:
This is symmetric to the above subcase. Let ω, ω′ ∈ OJΩK such that
ω(z) ≤ ω′(z) and ω(x) = ω′(x) for x ∈ dom(Ω)− {z}. Then ψπω(xk) =
ω(z) ≤ ω′(z) = ψπω′(xk) and for i ̸= k we have ψπω(xi) = ∥πi∥di =
ψπω′(xi).
Because dt ∈ KΩJ↓ xkK we have ∥ω∥dπk = ∥ψπω∥dt ≥ ∥ψπω′∥dt =
∥ω′∥dπk, and so dπk ∈ KΩJ↓ zK.

Subcase qk is =:
Let ω ∈ OJΩK. Then ψπω(xk) = ω(z).
Because dt ∈ KΨJ= xkK we have ∥ω∥dπk = ∥ψπω∥dt = ψπω(xk) = ω(z).
Hence dπk ∈ KΩJ= zK.

Case pk ∈ {↑, ↓}, qk is =:
Since

(pk ◦ qk) = (pk◦ =) = pk

we just need to prove dπk ∈ KΩJpk zK.
Subcase pk is ↑:

Let ω, ω′ ∈ OJΩK such that ω(z) ≤ ω′(z) and for all x ∈ dom(Ω)− {z},
ω(x) = ω′(x). Then since dk ∈ KΩJpk zK we have ψπω(xk) = ∥ω∥dk ≤
∥ω′∥dk = ψπω′(xk), and for i ̸= k we have ψπω(xi) = ∥πi∥di = ψπω′(xi).
Because dt ∈ KΨJ= xkK we have

∥ω∥dπk = ∥ψπω∥dt = ψπω(xk) ≤ ψπω′(xk) = ∥ψπω′∥dt = ∥ω′∥dπk

Hence dπk ∈ KΩJ↑ zK.
Subcase pk is ↓:

This is symmetric to the above subcase. Let ω, ω′ ∈ OJΩK such that
ω(z) ≤ ω′(z) and for all x ∈ dom(Ω) − {z}, ω(x) = ω′(x). Then since
dk ∈ KΩJpk zK we have ψπω(xk) = ∥ω∥dk ≥ ∥ω′∥dk = ψπω′(xk), and for



41

i ̸= k we have ψπω(xi) = ∥πi∥di = ψπω′(xi). Because dt ∈ KΨJ= xkK we
have

∥ω∥dπk = ∥ψπω∥dt = ψπω(xk) ≥ ψπω′(xk) = ∥ψπω′∥dt = ∥ω′∥dπk

Hence dπk ∈ KΩJ↓ zK.
Case pk is ↑, qk is ↑:

Since ↑ ◦ ↑=↑, we must show that dπk ∈ KΩJ↑ zK. Let ω, ω′ ∈ OJΩK such
that ω(z) ≤ ω′(z) and for x ∈ dom(Ω) − {z}, ω(x) = ω′(x). Then since
dk ∈ KΩJ↑ zK, we have ψπω(xk) = ∥ω∥dk ≤ ∥ω′∥dk = ψπω′(xk), and for
i ̸= k we have ψπω(xi) = ∥πi∥di = ψπω′(xi). Because dt ∈ KΨJ↑ xkK we have
∥ω∥dπk = ∥ψπω∥dt ≤ ∥ψπω′∥dt = ∥ω′∥dπk. Hence dπk ∈ KΩJ↑ zK.

Case pk is ↑, qk is ↓:
Since ↑ ◦ ↓=↓, we must show that dπk ∈ KΩJ↓ zK. Let ω, ω′ ∈ OJΩK such
that ω(z) ≤ ω′(z) and for x ∈ dom(Ω) − {z}, ω(x) = ω′(x). Then since
dk ∈ KΩJ↑ zK, we have ψπω(xk) = ∥ω∥dk ≤ ∥ω′∥dk = ψπω′(xk), and for
i ̸= k we have ψπω(xi) = ∥πi∥di = ψπω′(xi). Because dt ∈ KΨJ↓ xkK we have
∥ω∥dπk = ∥ψπω∥dt ≥ ∥ψπω′∥dt = ∥ω′∥dπk. Hence dπk ∈ KΩJ↓ zK.

Case pk is ↓, qk is ↑:
Since ↓ ◦ ↑=↓, we must show that dπk ∈ KΩJ↓ zK. Let ω, ω′ ∈ OJΩK such
that ω(z) ≤ ω′(z) and for x ∈ dom(Ω) − {z}, ω(x) = ω′(x). Then since
dk ∈ KΩJ↓ zK, we have ψπω(xk) = ∥ω∥dk ≥ ∥ω′∥dk = ψπω′(xk), and for
i ̸= k we have ψπω(xi) = ∥πi∥di = ψπω′(xi). Because dt ∈ KΨJ↓ xkK we have
∥ω′∥dπk = ∥ψπω′∥dt ≤ ∥ψπω∥dt = ∥ω∥dπk. Hence dπk ∈ KΩJ↓ zK.

Case pk is ↓, qk is ↓:
Since ↓ ◦ ↓=↑, we must show that dπk ∈ KΩJ↑ zK. Let ω, ω′ ∈ OJΩK such
that ω(z) ≤ ω′(z) and for x ∈ dom(Ω) − {z}, ω(x) = ω′(x). Then since
dk ∈ KΩJ↓ zK, we have ψπω(xk) = ∥ω∥dk ≥ ∥ω′∥dk = ψπω′(xk), and for
i ̸= k we have ψπω(xi) = ∥πi∥di = ψπω′(xi). Because dt ∈ KΨJ↓ xkK we have
∥ω′∥dπk = ∥ψπω′∥dt ≥ ∥ψπω∥dt = ∥ω∥dπk. Hence dπk ∈ KΩJ↑ zK.

Lemma 11. Let Ω be an ambient environment, z ∈ dom(Ω), Ψ .
= xi : Bi

i∈1..n ,
and di ∈ BΩJBiK ∩ KΩJpi zK. Let ϕ ∈ GΨJxi : Bi[= xi]K. Let t be a term such
that Ψ ⊢ ϕt ⇓ dt and dt ∈ KΨJqi xiK.
For k ∈ 1..n and π = {πi

i∈(k+1)..n} where πi ∈ OJΩK, we define the term sπk
as

sπk
.
= (λ̃(xi : Bi

i∈1..n

). t) [dj
j∈1..k

∥πj∥dj
j∈(k+1)..n

]

Additionally, letting ak = pk ◦ qk and defining rk with

– r1
.
= a1

– rk
.
= rk−1 + ak for k > 1.

Then for all sπk we have Ω ⊢ sπk ⇓ dπk for some value dπk in KΩJrk zK.
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Proof.
We proceed by induction on k.
Case k = 1:

This is a straightforward corollary of Lemma 10.
Case k > 1:

Let π ∈ (OJΩK)(k+1)..n. By Red-SFun-App we have ∥ω∥sπk → ∥ψπω∥ϕt
where

ψπω
.
= [xj 7→ ∥ω∥dj ]

j∈1..k

[xj 7→ ∥πj∥dj ]
j∈(k+1)..n

Since Ψ ⊢ ϕt ⇓ dt and ψπω ∈ OJΨK, we can apply Corollary 1 to get

∥ω∥sπk → ∥ψπω∥ϕt ⇓ ∥ψπω∥dt

Then by LRed-SFun-App we know that sπk Ω-normalizes to a lifted con-
stant dπk such that ∥ω∥dπk = ∥ψπω∥dt. We proceed to prove dπk ∈ KΩJrk zK
by case splitting on the qualifier pair (rk−1, ak), letting _ denote a wildcard
that matches any qualifier.
Case rk−1 is =, ak is _ :

For all qualifiers q, (= + q) is equal to =. We therefore must prove that
dπk ∈ KΩJ= zK. Let ω ∈ OJΩK and π′ = π[k 7→ ω]. Since by the IH
dπ′(k−1) ∈ KΩJ= zK we have ∥ω∥sπk = ∥ω∥sπ′(k−1) ⇓ ∥ω∥dπ′(k−1) =
ω(z). Since ∥ω∥sπk ⇓ ω(z), ∥ω∥sπk ⇓ ∥ω∥dπk, and our reduction relation
is deterministic, we have ∥ω∥dπk = ω(z). Hence dπk ∈ KΩJ= zK.

Case rk−1 is _, ak is =:
For all qualifiers q, (q + =) is equal to =. We therefore must prove that
dπk ∈ KΩJ= zK. Let ω ∈ OJΩK. We can apply Lemma 10 to the term

u
.
= (λ̃(xi : Bi

i∈1..n

). t) [∥ω∥dj
j∈1..(k−1)

dk ∥πj∥dj
j∈(k+1)..n

]

to get Ω ⊢ u ⇓ du ∈ KΩJ= zK. We therefore have

∥ω∥sπk ⇓ ∥ω∥dπk

and
∥ω∥sπk = ∥ω∥u ⇓ ∥ω∥du = ω(z)

Therefore ∥ω∥dπk = ω(z). Hence dπk ∈ KΩJ= zK.
Case rk−1 is ?, ak ∈ {↑, ↓,∼} :

Here rk−1 + ak = ?. Since KΩJ? zK = {c | true} and we’ve already
established that dπk is a lifted constant (at the top of the outer case k
> 1), we are done.

Case rk−1 ∈ {↑, ↓,∼}, ak is ? :
Similar to the above case.

Case rk−1 is ∼, ak is ∼:
We must show that dπk ∈ KΩJ∼ zK. Let ω1, ω2 ∈ OJΩK with ω1(x) =
ω2(x) for all x ∈ dom(Ω) − {z}. Let π′

1 = π[k 7→ ω1] and π′
2 = π[k 7→

ω2]. Then by the IH we have ∥ω1∥dπk = ∥ω1∥dπ′
1(k−1) = ∥ω2∥dπ′

1(k−1).
By Lemma 10 we have ∥ω2∥dπ′

1(k−1) = ∥ω2∥dπ′
2(k−1) = ∥ω2∥dπk. Hence

∥ω1∥dπk = ∥ω2∥dπk, and so dπk ∈ KΩJ∼ zK.
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Case rk−1 is ∼, ak is ↑:
We must show that dπk ∈ KΩJ↑ zK. Let ω1, ω2 ∈ OJΩK with ω1(z) ≤
ω2(z) and ω1(x) = ω2(x) for x ∈ dom(Ω) − {z}. Let π1

.
= π[k 7→

ω1] and π2
.
= π[k 7→ ω2]. Then ∥ω1∥dπk = ∥ω1∥dπ1(k−1). By the IH,

∥ω1∥dπ1(k−1) = ∥ω2∥dπ1(k−1). By Lemma 10, ∥ω2∥dπ1(k−1) ≤ ∥ω2∥dπ2(k−1).

Chaining these together, we get ∥ω1∥dπk = ∥ω1∥dπ1(k−1) = ∥ω2∥dπ1(k−1) ≤
∥ω2∥dπ2(k−1) = ∥ω2∥dπk, and so dπk ∈ KΩJ↑ zK.

Case rk−1 is ∼, ak is ↓:
Symmetric to the above case.

Case rk−1 is ↑, ak is ∼:
We must show that dπk ∈ KΩJ↑ zK. Let ω1, ω2 ∈ OJΩK with ω1(z) ≤
ω2(z) and ω1(x) = ω2(x) for x ∈ dom(Ω) − {z}. Let π1

.
= π[k 7→

ω1] and π2
.
= π[k 7→ ω2]. Then ∥ω1∥dπk = ∥ω1∥dπ1(k−1). By the IH,

∥ω1∥dπ1(k−1) ≤ ∥ω2∥dπ1(k−1). By Lemma 10, ∥ω2∥dπ1(k−1) = ∥ω2∥dπ2(k−1).

Chaining these together gives ∥ω1∥dπk = ∥ω1∥dπ1(k−1) ≤ ∥ω2∥dπ1(k−1) =
∥ω2∥dπ2(k−1) = ∥ω2∥dπk, and so dπk ∈ KΩJ↑ zK.

Case rk−1 is ↓, ak is ∼:
Symmetric to the above case.

Case rk−1 is ↑, ak is ↑:
Since ↑ + ↑ = ↑, we must show that dπk ∈ KΩJ↑ zK. Let ω1, ω2 ∈ OJΩK
such that ω1(z) ≤ ω2(z) and ω1(x) = ω2(x) for all x ∈ dom(Ω)−{z}. Let
π1

.
= π[k 7→ ω1] and π2

.
= π[k 7→ ω2]. Then ∥ω1∥dπk = ∥ω1∥dπ1(k−1) and

∥ω2∥dπk = ∥ω2∥dπ2(k−1). By the IH, we have ∥ω1∥dπ1(k−1) ≤ ∥ω2∥dπ1(k−1).
By Lemma 10 we have ∥ω2∥dπ1(k−1) ≤ ∥ω2∥dπ2(k−1).

Chaining these together gives ∥ω1∥dπk = ∥ω1∥dπ1(k−1) ≤ ∥ω2∥dπ1(k−1) ≤
∥ω2∥dπ2(k−1) = ∥ω2∥dπk, and hence dπk ∈ KΩJ↑ zK.

Case rk−1 is ↓, ak is ↓:
Symmetric to the above case.

Case rk−1 is ↑, ak is ↓:
↑ + ↓=?, so this case is trivial.

Case rk−1 is ↓, ak is ↑:
↓ + ↑=?, so this case is trivial.

Corollary 2. Let Ω be an ambient environment and z ∈ dom(Ω). Let Ψ
.
=

xi : Bi
i∈1..n , di ∈ BΩJBiK ∩ KΩJpi zK, and ϕ ∈ GΨJxi : Bi[= xi]K. Let t be a

term such that Ψ ⊢ ϕt ⇓ dt where dt ∈ KΨJqi xiK.
Then defining s .

= (λ̃(xi : Bi
i∈1..n

). t) [di] we have

Ω ⊢ s ⇓ ds ∈ KΩJ(+n
i=1 pi ◦ qi) zK

.

Proof. Apply Lemma 11 with π = ∅ and k = n.
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Corollary 3. Let Ω be an ambient environment and z ∈ dom(Ω). Let Ψ
.
=

xi : Bi
i∈1..n , di ∈ VΩJBi[piz z

z∈dom(Ω) ]K, and ϕ ∈ GΨJxi : Bi[= xi]K. Let t be a
term such that Ψ ⊢ ϕt ⇓ dt where dt ∈ VΨJA[qi xi]K.
Then defining s .

= (λ̃(xi : Bi
i∈1..n

). t) [di] we have

Ω ⊢ s ⇓ ds ∈ VΩJA[(+n
i=1 piz ◦ qi) z

z∈dom(Ω)

]K
Proof. Examining the definition of VΩJA[Ξ]K, we see that we must prove two
things:

1. For each z ∈ dom(Ω), ds ∈ KΩJ(+n
i=1piz ◦ qi) zK.

2. ds ∈ BΩJAK
(1) is a simple consequence of Corollary 2. Letting ω ∈ OJΩK. (2) can be shown
as follows. Define ψω

.
= [xi 7→ ∥ω∥di]. We then have ψ ∈ OJΨK.

Since ∥ω∥s → ∥ψ∥ϕt and Ψ ⊢ ϕt ⇓ dt ∈ VΨJA[qi xi]K, we have ∥ω∥s →
∥ψ∥ϕt ⇓ ∥ψ∥dt. Since dt ∈ VΨJA[qi xi]K, we know ∥ψ∥dt ∈ CJAK. By LRed-
SFun-App we then know Ω ⊢ s→ a, where a is an ambient map, mapping each
ω ∈ OJΩK to ∥ψω∥dt ∈ CJAK. In other words, ds = a ∈ BΩJAK.
Appendix E Fundamental typing theorems
Theorem 9 (Fundamental theorem for terminal typing). If Γ ⊢ t : T
then for all γ ∈ GJΓK, γt ∈ T JT K.
Theorem 10 (Fundamental theorem for lifted typing). If Γ;Ω;Φ ⊢ t : T
then for all γ ∈ GJΓK and ϕ ∈ GΩJΦK we have γϕt ∈ T JT K.
Proof. The above two theorems are proven by mutual induction on the derivation
of Γ ⊢ t : T and Γ;Ω;Φ ⊢ t : T .

Case: T-Constant
t = c T = ty(c)

Let γ ∈ GJΓK. By the Types of Constants assumption, γc = c ∈ VJty(c)K.
Case: T-SfConstant

t = k T = ty(k)

Let γ ∈ GJΓK. By the Types of Constants assumption, γk = k ∈ VJty(k)K.
Case: T-Var

t = x x : T ∈ Γ

Let γ ∈ GJΓK. Then by the definition of GJΓK, γx ∈ VJT K and hence
γx ∈ T JT K.
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Case: T-SFun
t = (λ̃(xi : Bi

i∈1..n

). s) T = (xi : Bi) ⇒ A[Ξ] Γ;xi : Bi;xi : Bi[= xi] ⊢
s : A[Ξ]

Let γ ∈ GJΓK. For this case, we must prove that γt = (λ̃(xi : Bi). γs) satisfies
two properties:

– (λ̃(xi : Bi). γs) ∈ {v | ci ∈ VJBiK.v [ci] ∈ T JAK}
– (λ̃(xi : Bi). γs) ∈ V∗J(xi : Bi) ⇒ A[Ξ]K

To prove the first point, let ci ∈ VJBiK, ϕ ∈ GJxi : Bi[= xi]K, and Ψ =
xi : Bi. Then (λ̃(xi : Bi). γs) [ci] → ∥ψ∥ϕγs where ψ = [xi 7→ ci] ∈ OJΨK.

By the IH, we know that γϕs ∈ TΨJA[Ξ]K and hence ϕγs = γϕs ∈ TΨJA[Ξ]K.
Unfolding the definition of TΨJA[Ξ]K we get the existence of a value ds such
that Ψ ⊢ ϕγs ⇓ ds ∈ BΨJAK. Applying Corollary 1 then gives ∥ψ∥ϕγs ⇓
∥ψ∥ds. Since ds ∈ BΨJAK, we know that ∥ψ∥ds ∈ VJAK. Chaining these facts
together gives

(λ̃(xi : Bi). γs) [ci] → ∥ψ∥ϕγs ⇓ ∥ψ∥ds ∈ VJAK
We then have

(λ̃(xi : Bi). γs) ∈ {v | ci ∈ VJBiK.v [ci] ∈ T JAK}
To prove the second point, letting Ω be an arbitrary ambient environment,
we must prove that

(λ̃(xi : Bi). γs) ∈ VΩJ(xi : Bi) ⇒ A[Ξ]K
To this end, let Ξi ∈ X JΩK and di ∈ VΩJBi[Ξi]K for i ∈ 1..n. We then

have t [di] ∈ TΩJA[(+n
i=1Ξi(z) ◦ Ξ(xi)) z

z∈dom(Ω)

]K by Corollary 3. Therefore
(λ̃(xi : Bi). γs) ∈ VΩJT K.

Case: T-Fun
t = (λx : S.u) T = S → U Γ, x : S ⊢ u : U

Let γ ∈ GJΓK. Then γt = (λx : S.γu). Since (λx : S.γu) is a value,
we must show that (λx : S.γu) ∈ VJS → UK. Let vs ∈ VJSK. Defining
γ′

.
= γ[x 7→ vs], we see from the definition of GJΓ, x : T K in Figure 32 that

γ′ ∈ GJΓ, x : SK. We then have (λx : S.γu) vs → [x 7→ vs]γu = γ′u. Applying
the IH to the premise Γ, x : S ⊢ u : U tells us that γ′u ⇓ vu ∈ VJUK. Hence
(λx : S.γu) vs →∗ γ′u ⇓ vu ∈ VJUK; i.e., γt ∈ T JUK.

Case: T-App
t = u s T = U Γ ⊢ u : S → U Γ ⊢ s : S

Let γ ∈ GJΓK. Applying the IH, we get γu ⇓ vuVJS → UK and γs ⇓ vsVJSK.
Hence we have γt = γu γs →∗ vu γs →∗ vu vs. By the definition of
VJS → UK, we have vu vs ⇓ vt ∈ VJUK, and so γt ⇓ vt ∈ VJUK; i.e.,
γt ∈ T JUK.
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Case: T-SfApp
t = u [si

i∈1..n

] T = A Γ ⊢ t : (xi : Bi) ⇒ A[Ξ] Γ ⊢ si : Bi

Let γ ∈ GJΓK. Applying the IH to Γ ⊢ u : (xi : Bi) ⇒ A[Ξ] gives γu ⇓ vu ∈
VJ(xi : Bi) ⇒ A[Ξ]K. Applying the IH to each of the hypotheses Γ ⊢ si : Bi

gives γsi ⇓ ci ∈ VJBiK. We then have γt = γu [γsi] →∗ vu [ci]. Since vu ∈
VJ(xi : Bi) ⇒ A[Ξ]K and ci ∈ VJBiK, the definition of VJ(xi : Bi) ⇒ A[Ξ]K in
Figure 32 tells us that vu [ci] ∈ T JAK. Since γt→∗ vu [ci] and vu [ci] ∈ T JAK
we have γt ∈ T JAK.

Case: T-IfThenElse
t = if s1 then s2 else s3 T = S Γ ⊢ s1 : Bool Γ ⊢ s2 : S
Γ ⊢ s3 : S

Let γ ∈ GJΓK. Applying the IH to Γ ⊢ s1 : Bool gives γs1 ∈ T JBoolK,
and so γs1 ⇓ v1 where either v1 = true or v1 = false.
Case: v1 = true

Then γt = if γs1 then γs2 else γs3 →∗ if true then γs2 else γs3 → γs2.
Applying the IH to Γ ⊢ s2 : S gives γs2 ∈ T JSK, and so γt →∗ γs2 ∈
T JSK.

Case: v1 = false
Then γt = if γs1 then γs2 else γs3 →∗ if false then γs2 else γs3 →
γs3. Applying the IH to Γ ⊢ s3 : S gives γs3 ∈ T JSK, and so γt →∗

γs3 ∈ T JSK.
Case: T-Sub

T = U Γ ⊢ t : S ⊢ U S <: U

By Lemma 18 we have ⊢ S. Since ⊢ S, ⊢ U , and S <: U we have VJSK <:
VJUK. Let γ ∈ GJΓK. Applying the IH to Γ ⊢ t : S gives γt ⇓ vt ∈ VJSK ⊂
VJUK, and therefore γt ∈ T JUK.

Case: LT-Terminal
Γ ⊢ t : T

Let γ ∈ GJΓK. By the IH, we have γt ↓ vt ∈ VJT K. Hence, letting ϕ ∈ GΩJΦK
γϕt = γt ⇓ vt ∈ VJT K ⊆ VΩJT K. The set inclusion VJT K ⊆ VΩJT K is a
consequence of Lemma 8.

Case: LT-LVar
t = x x : T ∈ Φ

Let ϕ ∈ GΩJΓK. Then by the definition of GΩJΦK, ϕx ∈ VJT K and hence
ϕx ∈ T JT K.

Case: LT-LFun
t = (λx : S.u) T = S

Ω→ U ⊢ S Γ;Ω;Φ, x : S ⊢ u : U

Let γ ∈ GJΓK and ϕ ∈ GΩJΦK. Let vs ∈ VΩJSK and ϕ′
.
= ϕ[x 7→ vs]. Then

ϕ′ ∈ GΩJΦ, x : SK. Applying the IH to the premise Γ;Ω;Φ, x : S ⊢ u : U then
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gives γϕ′uTΩJUK.
γϕt = (λx : S.γϕu), and so finally we have

(λx : S.γϕu) vs → [x 7→ vs]γϕu = γϕ′u ∈ TΩJUK
Proving that

γϕt = (λx : S.γϕu) ∈ VΩJS Ω→ UK ⊆ TΩJS Ω→ UK
.

Case: LT-LApp
t = s u T = S Γ;Ω;Φ ⊢ s : U Ω→ S Γ ⊢ u : U

Let γ ∈ GJΓK and ϕ ∈ GΩJΦK. Then γϕt = γϕs γϕu. By the IH, γϕs ⇓
vs ∈ VΩJU Ω→ SK and γϕu ⇓ vu ∈ VΩJUK. Unfolding the definition of
VΩJU Ω→ SK we see that Ω ⊢ γϕs γϕu →∗ vs γϕu →∗ vs vu ∈ TΩJSK.
Hence γϕt = γϕs γϕu ∈ TΩJSK.

Case: LT-SfApp
t = u [si

i∈1..n

] T = A[+n
i=1(Ξi(z) ◦ Ξ(xi))

z∈dom(Ω)

] Γ; Ω;Φ ⊢ u :

(xi : Bi) ⇒ A[Ξ] Γ;Ω;Φ ⊢ si : Bi[Ξi]

Let γ ∈ GJΓK and Φ ∈ GΩJΦK. Applying the IH, Ω ⊢ γϕu ⇓ vu ∈ VΩJ(xi : Bi) ⇒
A[Ξ]K and Ω ⊢ γϕsi ⇓ di ∈ VJBi[Ξi]K. Unfolding the definition of VΩJ(xi : Bi) ⇒
A[Ξ]K gives vu [di] ∈ TΩJA[+n

i=1(Ξi(z) ◦ Ξ(xi))
z∈dom(Ω)

]K. Therefore

γϕt = γϕu [γϕsi] →∗ vu [di] ∈ TΩJA[+n
i=1(Ξi(z) ◦ Ξ(xi))

z∈dom(Ω)

]K
Case: LT-IfThenElse

t = if s1 then s2 else s3 T = S Γ;Ω;Φ ⊢ s1 : Bool Γ;Ω;Φ ⊢
s2 : S Γ;Ω;Φ ⊢ s3 : S

Let γ ∈ GJΓK and ϕ ∈ GΩJΦK. Applying the IH to Γ;Ω;Φ ⊢ s1 : Bool
gives γϕs1 ∈ TΩJBoolK, and so Ω ⊢ γϕs1 ⇓ v1 where either v1 = true or
v1 = false.
Case: v1 = true

Then γϕt = if γϕs1 then γϕs2 else γϕs3 →∗ if true then γϕs2 else γϕs3 →
γϕs2. Applying the IH to Γ;Ω;Φ ⊢ s2 : S gives γs2 ∈ T JSK, and so
γϕt→∗ γϕs2 ∈ T JSK.

Case: v1 = false
Then γϕt = if γϕs1 then γϕs2 else γϕs3 →∗ if false then γϕs2 else γϕs3 →
γϕs3.
Applying the IH to Γ;Ω;Φ ⊢ s3 : S gives γϕs3 ∈ T JSK, and so γϕt →∗

γϕs3 ∈ T JSK.
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Case: LT-Sub
T = U Γ;Ω;Φ ⊢ t : S Ω ⊢ U Ω ⊢ S <: U

By Lemma 19 we have Ω ⊢ S. Since Ω ⊢ S, Ω ⊢ U , and Ω ⊢ S <: U we have
by the fundamental theorem for lifted subtyping that Ω ⊢ VΩJSK <: VΩJUK.
Let γ ∈ GΩJΓK. Applying the IH to Γ;Ω;Φ ⊢ t : S gives γϕt ⇓ vt ∈ VΩJSK ⊂
VΩJUK, and therefore, since VΩJUK ⊆ TΩJUK, γϕt ∈ TΩJUK.

Appendix F Projection Theorem and Friends
Lemma 12. If ⊢ T then for all ambient environments Ω we have Ω ⊢ T .

Proof. This is a simple consequence of the ΩWf-Terminal rule.

Lemma 13. If ⊢ T then for all ambient environments Ω and ω ∈ OJΩK we have
∥ω∥T = T

Proof. By induction on the structure of ⊢ T .

Case Wf-Base:
T = B
Trivial.

Case Wf-Fun:
T = S → T
Trivial.

Case Wf-SFun:
T = (xi : Bi) ⇒ A[Ξ]
Trivial.

Lemma 14. Suppose Ψ ⊢ T , Ω is an ambient environment such that dom(Ω) ̸=
dom(Ψ), and ω ∈ OJΩK. Then ∥ω∥T = T .

Proof. Case ΩWf-Base:
T = B
Trivial

Case ΩWf-QualBase:
T = B[Ξ]
We know that dom(ω) = dom(Ω) ̸= dom(Ψ) = dom(Ξ). Hence ∥ω∥B[Ξ] =
B[Ξ].

Case ΩWf-LFun:
T = S

Ψ→ U
Since Ψ ̸= Ω, we have ∥ω∥T = T .

Case ΩWf-SFun:
T = (xi : Bi

i∈1..n

) ⇒ A[Ξ]
Trivial.

Lemma 15 (Well-formed Type Projection). If Ω ⊢ T then for all ω ∈ OJΩK
we have ⊢ ∥ω∥T .
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Proof. By induction on the derivation of Ω ⊢ T .

Case ΩWf-Terminal
Applying Lemma 13 to the premise ⊢ T gives ∥ω∥T = T . Since ⊢ T and
∥ω∥T = T , we have ⊢ ∥ω∥T .

Case ΩWf-QualBase
T = B[Ξ] dom(Ξ) = dom(Ω)
Since dom(Ω) = dom(Ξ) we have ∥ω∥B[Ξ] = B. We then apply Wf-Base
to get ⊢ B. Since ⊢ B and ∥ω∥T = ∥ω∥B[Ξ] = B, we have ⊢ ∥ω∥T .

Case ΩWf-LFun
T = S

Ω→ U Ω ⊢ S Ω ⊢ U
Applying the IH to both premises gives ⊢ ∥ω∥S and ⊢ ∥ω∥U . An application
of the rule Wf-Fun then gives ⊢ ∥ω∥S → ∥ω∥U . Since ∥ω∥T = ∥ω∥(S Ω→
U) = ∥ω∥S → ∥ω∥U . Since ⊢ ∥ω∥S → ∥ω∥U and ∥ω∥T = ∥ω∥S → ∥ω∥U ,
we have ⊢ ∥ω∥T .

Lemma 16. Suppose Γ;Ψ;Φ ⊢ t : T . Let Ω be an ambient environment whose
variables are distinct from those of dom(Ψ) and those bound by sfun abstractions
occuring in t. Let ω ∈ OJΩK. Then we have ∥ω∥t = t.

Lemma 17. If Γ ⊢ t : T then for all ambient environments Ω whose variables
are distinct from those bound by sfun abstractions occuring in t, and all ω ∈ OJΩK
we have ∥ω∥t = t.

Proof. We prove the above two lemmas by simultaneous induction on the der-
vation of Γ;Ψ;Φ ⊢ t : T and Γ ⊢ t : T .

Case LT-Terminal:
Applying the IH gives ∥ω∥t = t.

Case LT-LVar:
Trivial.

Case LT-LFun:
t = (λx : S.u) Ψ ⊢ S Γ;Ψ;Φ, x : S ⊢ u : U
Applying Lemma 14 to the left premise gives ∥ω∥S = S. Applying the IH
to the right premise gives ∥ω∥u = u. Hence ∥ω∥t = ∥ω∥(λx : ∥ω∥S.∥ω∥u) =
(λx : S.u) = t.

Case LT-LApp:
t = u s Γ;Ψ;Φ ⊢ t : S Ω→ U Γ;Ω;Φ ⊢ s : S
Applying the IH to both premises gives ∥ω∥u = u and ∥ω∥s = s. Hence we
have ∥ω∥t = ∥ω∥(u s) = ∥ω∥u ∥ω∥s = u s = t

Case LT-SfApp:
t = u [si

i∈1..n

] Γ;Ψ;Φ ⊢ t : (xi : Bi) ⇒ A[Ξ] Γ;Ψ;Φ ⊢ si : Bi[Ξi]
Applying the IH to the premises gives ∥ω∥u = u and for all i ∈ 1..n, ∥ω∥si =
si. Then ∥ω∥t = ∥ω∥(u [si]) = ∥ω∥u [∥ω∥si] = u [si] = t

Case LT-IfThenElse:
t = if s1 then s2 else s3 Γ;Ψ;Φ ⊢ s1 : Bool Γ;Ψ;Φ ⊢ s2 Γ;Ψ;Φ ⊢
s3
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Applying the IH to the premises gives ∥ω∥s1 = s1, ∥ω∥s2 = s2, and ∥ω∥s3 =
s3. Then ∥ω∥t = ∥ω∥if s1 then s2 else s3 = if ∥ω∥s1 then ∥ω∥s2 else ∥ω∥s3 =
if s1 then s2 else s3 = t.

Case Lt-Sub:
Γ;Ψ;Φ ⊢ t : S Ψ ⊢ U Ω ⊢ S <: U
Applying the IH to the left premise gives ∥ω∥t = t.

Case T-Constant:
t = c
Trivial.

Case T-SfConstant:
t = k
Trivial.

Case T-Var:
t = x
Trivial.

Case T-Fun:
t = (λx : S.u) T = S → U ⊢ S Γ, x : S ⊢ u : U
Applying Lemma 13 to ⊢ S, we see that ∥ω∥S = S. Applying the IH to Γ, x :
S ⊢ u : U gives ∥ω∥u = u. Therefore ∥ω∥(λx : S.u) = (λx : ∥ω∥S.∥ω∥u) =
(λx : S.u)

Case T-SFun:
t = (λ̃(xi : Bi

i∈1..n

). u) Γ;xi : Bi;xi : Bi[= xi] ⊢ t : A[Ξ]
Since the domain of Ω is distinct from set of variables bound by sfun ab-
stractions in t, we can apply the IH to get ∥ω∥u = u. Therefore ∥ω∥t =
∥ω∥(λ̃(xi : Bi). u) = (λ̃(xi : Bi). ∥ω∥u) = (λ̃(xi : Bi). u) = t.

Case T-App:
t = u s Γ ⊢ u : S → U Γ ⊢ s : S
Applying the IH to both premises gives ∥ω∥u = u and ∥ω∥s = s. Then
∥ω∥t = ∥ω∥(u s) = ∥ω∥u ∥ω∥s = u s = t.

Case T-SfApp:
t = u [si

i∈1..n

] Γu : (xi : Bi) ⇒ A[Ξ] Γ ⊢ si

Case T-IfThenElse
t = if s1 then s2 else s3 Γ ⊢ s1 : Bool Γ ⊢ s2 : S Γs3 ⊢: S
Applying the IH to the premises gives ∥ω∥s1 = s1, ∥ω∥s2 = s2, and ∥ω∥s3 =
s3. We then have ∥ω∥t = ∥ω∥if s1 then s2 else s3 = if ∥ω∥s1 then ∥ω∥s2 else ∥ω∥s3 =
if s1 then s2 else s3 = t.

Case T-Sub:
Γ ⊢ t : S
Applying the IH to the premise Γ ⊢ t : S gives ∥ω∥t = t.

Lemma 18. If ⊢ Γ and Γ ⊢ t : T then ⊢ T .

Lemma 19. If Ω ⊢ Φ and Γ;Ω;Φ ⊢ t : T then Ω ⊢ T .

Proof. By mutual induction on the structure of Γ ⊢ t : T and Γ;Ω;Φ ⊢ t : T .
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Case T-Constant:
t = c T = ty(c) = B
This case is a corollary of the types of constants assumption.

Case T-SfConstant:
This case is a corollary of the types of constants assumption.

Case T-Var:
Since ⊢ Γ and x : T ∈ Γ, we know that ⊢ T .

Case T-Fun:
t = (λx : S.u) ⊢ S Γ, x : S ⊢ u : U
Applying the IH to the premise Γ, x : S ⊢ u : U gives ⊢ U . Since ⊢ S and
⊢ U Wf-Fun gives ⊢ S → U .

Case T-SFun:
t = (λ̃(xi : Bi

i∈1..n

). u) T = (xi : Bi) ⇒ A[Ξ] Γ;xi : Bi;xi : Bi[= xi] ⊢
A[Ξ]
Applying the IH to the premise gives xi : Bi ⊢ A[Ξ]. This can only be derived
from ΩWf-QualBase, the premise of which is dom(xi : Bi) = dom(Ξ);
i.e., dom(Ξ) = {xi | i ∈ 1..n}. Using this fact, we apply Wf-SFun to get
⊢ (xi : Bi) ⇒ A[Ξ] i.e. ⊢ T .

Case T-App:
t = u s T = U Γ ⊢ u : S → U Γ ⊢ s : S
Applying the IH to the left premise gives ⊢ S → U , which must have been
derived using Wf-Fun. The premises of Wf-Fun give us ⊢ S and ⊢ U .
Hence ⊢ U ; i.e., ⊢ T .

Case T-SfApp:
t = u [si

i∈1..n

] T = A Γ ⊢ si : Bi

Applying Wf-Base gives ⊢ A.
Case T-IfThenElse:

t = if s1 then s2 else s3 T = S Γ ⊢ s1 : Bool Γ ⊢ s2 : S
Γ ⊢ s3 : S
Applying the IH to Γ ⊢ s2 : S gives ⊢ S. Since T = S, we have ⊢ T .

Case T-Sub:
T = U ⊢ U . . .
⊢ U , which is what we are trying to prove, is a premise to this rule.

Case LT-Terminal:
Applying the IH gives ⊢ T . Applying ΩWf-Terminal then gives Ω ⊢ T .

Case LT-Var:
By assumption, Ω ⊢ Φ; because x : T ∈ Φ we have Ω ⊢ T .

Case LT-LFun:
t = (λ̃(x : S). u) T = S

Ω→ U Ω ⊢ S Γ;Ω;Φ, x : S ⊢ u : U
Applying the IH to Γ;Ω;Φ, x : S ⊢ u : U gives Ω ⊢ U . Because Ω ⊢ S and
Ω ⊢ U , ΩWf-LFun gives Ω ⊢ S Ω→ U . Since T = S

Ω→ U we have Ω ⊢ T .
Case LT-LApp:

t = u s T = U Γ;Ω;Φ ⊢ t : S Ω→ U Γ;Ω;Φ ⊢ s : S
Applying the IH to Γ;Ω;Φ ⊢ t : S

Ω→ U gives Ω ⊢ S
Ω→ U . This judgment

must have been derived from an application of ΩWf-LFun, the premises of
which are Ω ⊢ S and Ω ⊢ U . Since Ω ⊢ U and T = U , we have Ω ⊢ T .
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Case LT-SfApp:
t = u [si

i∈1..n

] T = A[(+n
i=1(Ξ(xi) ◦ Ξi(z))) z

z∈dom(Ω)

]

Since clearly dom((+n
i=1(Ξ(xi) ◦ Ξi(z))) z

z∈dom(Ω)

) = dom(Ω), we can apply
ΩWf-QualBase to get Ω ⊢ A[(+n

i=1(Ξ(xi) ◦ Ξi(z))) z
z∈dom(Ω)

].
Case LT-IfThenElse:

t = if s1 then s2 else s3 T = S Γ;Ω;Φ ⊢ s1 : Bool Γ;Ω;Φ ⊢
s2 : S Γ;Ω;Φ ⊢ s3 : S
Applying the IH to Γ;Ω;Φ ⊢ s2 : S gives Ω ⊢ S. Since T = S we have Ω ⊢ T .

Case LT-Sub:
Γ;Ω;Φ ⊢ t : S Ω ⊢ U Ω ⊢ S <: U
The premise Ω ⊢ U is what we are trying to prove.

Lemma 20. If S <: U then ⊢ S and ⊢ U .

Lemma 21. If Ω ⊢ S <: U then Ω ⊢ S and Ω ⊢ U .

Proof. We prove the above two lemmas by mutual induction on the derivation
of S <: U and Ω ⊢ S <: U .

Case Sub-Base:
S = B T = B
We have ⊢ B by Wf-Base, and so ⊢ S and ⊢ T .

Case Sub-Fun
S = S1 → S2 U = U1 → U2 U1 <: S1 S2 <: U2

Applying the IH to both premises gives ⊢ U1, ⊢ S1, ⊢ S2, and ⊢ U2. Applying
Wf-Fun then gives ⊢ S1 → S2 and ⊢ U1 → U2.

Case Sub-SFun:
S = (xi : Bi

i∈1..n

) ⇒ A[Ξ1] U = (xi : Bi
i∈1..n

) ⇒ A[Ξ2] Applying the IH
to the premise gives xi : Bi ⊢ A[Ξ1] and xi : Bi ⊢ A[Ξ2]. These judgments
must have been derived with applications of ΩWf-QualBase, the premise
of which tells us that dom(xi : Bi) = dom(Ξ1) and dom(xi : Bi) = dom(Ξ2).
Since {xi | i ∈ 1..n} = dom(xi : Bi) = dom(Ξj) for j = 1, 2, we can apply
Wf-SFun to get

⊢ (xi : Bi
i∈1..n

) ⇒ A[Ξ1]

and
⊢ (xi : Bi

i∈1..n

) ⇒ A[Ξ2]

Case LSub-Terminal:
S <: U
Applying the IH to premise yields ⊢ S and ⊢ U . By Lemma 12 we then have
Ω ⊢ S and Ω ⊢ U .

Case LSub-Base-TL:
S = B U = B[qx x

x∈dom(Ω)

]
By Wf-Base we have ⊢ B, so applying Lemma 12 gives Ω ⊢ B. Since
dom(qx x

x∈dom(Ω)

) = Ω, applying ΩWf-QualBase gives Ω ⊢ B[qx x].
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Case LSub-Base-LL:
S = B[px x

x∈dom(Ω)

] U = B[px x
x∈dom(Ω)

]

Since dom(px x
x∈dom(Ω)

) = Ω and dom(qx x
x∈dom(Ω)

) = Ω, we can apply
ΩWf-QualBase to get Ω ⊢ B[px x] and Ω ⊢ B[qx x].

Case LSub-FunLL:
S = S1

Ω→ S2 U = U1
Ω→ U2 Ω ⊢ U1 <: S1 Ω ⊢ S2 <: U2

Applying the IH to the left premise gives Ω ⊢ U1 and Ω ⊢ S1. Applying the
IH to the right premise gives Ω ⊢ S2 and Ω ⊢ U2. With this, we can apply
ΩWf-LFun to get Ω ⊢ S1

Ω→ S2 and Ω ⊢ U1
Ω→ U2.

Case LSub-FunTL:
S = S1 → S2 U = U1

Ω→ U2 Ω ⊢ U1 <: S1 Ω ⊢ S2 <: U2

⊢ S1 → S2

Applying the IH to our premises gives Ω ⊢ U1, Ω ⊢ S1, Ω ⊢ S2, and Ω ⊢ U2.
Applying ΩWf-LFun gives Ω ⊢ U1 → U2. Applying Lemma 12 to ⊢ S1 → S2

gives Ω ⊢ S1 → S2.

Lemma 22 (Subtyping Projection). If Ω ⊢ S, Ω ⊢ U , and Ω ⊢ S <: U then
for all ω ∈ OJΩK, we have ∥ω∥S <: ∥ω∥U .

Proof. Let ω ∈ OJΩK. We proceed by induction on the derivation of Ω ⊢ S <: U .

Case LSub-Terminal:
S <: U
Applying Lemma 20 to S <: U gives ⊢ S and ⊢ U . By idempotency of
ambient substitution on terminally well-formed types, we have ∥ω∥S = S
and ∥ω∥U = U , and hence since S <: T we have ∥ω∥S <: ∥ω∥U .

Case LSub-Base-TL:
S = B U = B[qx x

x∈dom(Ω)

] ≤ qx
∥ω∥B = B and ∥ω∥B[qx x] = B. Applying Sub-Base gives ⊢ B <: B, and
so by substitution we have ⊢ ∥ω∥B <: ∥ω∥B[qx x].

Case LSub-Base-LL:
S = B[px x

x∈dom(Ω)

] U = B[qx x
x∈dom(Ω)

] px ≤ qx
∥ω∥B[px x

x∈dom(Ω)

] = B and ∥ω∥B[qx x
x∈dom(Ω)

] = B. Applying Wf-Base
gives ⊢ B <: B. By substitution, ⊢ ∥ω∥B[px x

x∈dom(Ω)

] <: ∥ω∥B[qx x
x∈dom(Ω)

].
Case LSub-Fun-LL:

S = S1
Ω→ S2 U = U1

Ω→ U2 Ω ⊢ U1 <: S1 Ω ⊢ S2 <: U2

Applying the IH to the premises gives ∥ω∥U1 <: ∥ω∥S1 and ∥ω∥S2 <: ∥ω∥U2.
Applying Sub-Fun then gives ∥ω∥S1 → ∥ω∥S2 <: ∥ω∥U1 → ∥ω∥U2. Since
∥ω∥(S1

Ω→ S2) = ∥ω∥S1 → ∥ω∥S2 and ∥ω∥(U1
Ω→ U2) = ∥ω∥U1 → ∥ω∥U2,

we have by substitution ∥ω∥(S1
Ω→ S2) <: ∥ω∥(U1

Ω→ U2).
Case LSub-Fun-TL:

S = S1 → S2 U = U1
Ω→ U2 Ω ⊢ U1 <: S1 Ω ⊢ S2 <: U2

⊢ S1 → S2

Applying the IH to the premises gives ∥ω∥U1 <: ∥ω∥S1 and ∥ω∥S2 <: ∥ω∥U2.
Hence by Sub-Fun we have ∥ω∥S1 → ∥ω∥S2 <: ∥ω∥U1 → ∥ω∥U2. Inverting
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⊢ S1 → S2 gives ⊢ S1 and ⊢ S2. By Lemma 13 we have ∥ω∥S1 = S1

and ∥ω∥S2 = S2. Then ∥ω∥S1 → S2 = S1 → S1 = ∥ω∥S1 → ∥ω∥S2.
Furthermore, ∥ω∥(U1

Ω→ U2) = ∥ω∥U1 → ∥ω∥U2. By substitution we then
have ∥ω∥(S1 → S2) <: ∥ω∥(U1

Ω→ U2).

Lemma 23 (Terminal Permutation). If Γ ⊢ t : T has a height-n derivation
and ∆ is a permutation of Γ then then ∆ ⊢ t : T has a height-n derivation.

Lemma 24 (Lifted Permutation of Terminal Environment). If Γ;Ω;Φ ⊢
t : T has a height-n derivation and ∆ is a permutation of Γ then then ∆;Ω;Φ ⊢
t : T has a height-n derivation.

Proof. By simultaneous induction on the structure of Γ ⊢ t : T and Γ;Ω;Φ ⊢ t :
T .

Case T-Constant:
t = c T = B ty(c) = B
The premise gives ty(c) = B, so we can apply T-Constant to conclude
∆ ⊢ c : B, which has the same height (1).

Case T-SfConstant:
Similar to the above case.

Case T-Var
t = z z : T ∈ Γ
If z : T ∈ Γ then z : T ∈ ∆, because ∆ is a permutation of Γ. Applying
T-Var gives ∆, x : S ⊢ z : T .

Case T-Fun:
t = (λy : T1.u) ⊢ T1 T = T1 → T2 Γ, y : T1 ⊢ u : T2
Since ∆ is a permutation of Γ, ∆, y : T1 is a permutation of Γ, y : T1.
Applying the IH to the right premise gives gives a same-height derivation of
∆, y : T1 ⊢ u : T2. Applying T-Fun gives a same-height derivation ∆ ⊢ (λy :
T1.u) : T1 → T2.

Case T-SFun:
t = (λ̃(xi : Bi). u) T = (xi : Bi) ⇒ A[Ξ] Γ;xi : Bi;xi : Bi[= xi]

Applying the IH gives a same-height derivation of ∆;xi : Bi;xi : B[= xi] ⊢
t : A[Ξ]. Applying T-SFun gives a same-height derivation of ∆ ⊢ (λ̃(xi : Bi). t) :
T = (xi : Bi) ⇒ A[Ξ].

Case T-App:
t = u s T = U Γ ⊢ u : S → U Γ ⊢ s : S
Applying the IH to the premises gives ∆ ⊢ u : S → U of height n1 and
∆ ⊢ s : S of height n2. Applying T-App gives a same-height derivation of
∆ ⊢ u s : U .

Case T-SfApp:
Apply the IH to the premises and then apply T-SfApp.

Case T-IfThenElse:
Apply the IH to the premises and then apply T-IfThenElse.
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Case T-Sub:
Apply the IH to the left premise and the apply T-Sub.

Case LT-Terminal:
Applying the IH gives a same-height derivation of ∆ ⊢ t : T . Applying
LT-Terminal gives a same-height-derivation of Γ, x : S; Ω; Φ ⊢ t : T .

Case LT-LVar:
t = y y : T ∈ ϕ
Since y : T ∈ Φ, we can apply LT-LVar to conclude ∆;Ω;Φ ⊢ y : T .

Case LT-LFun:
t = (λy : T1.u) T = T1

Ω→ T2 Ω ⊢ T1 Γ;Ω;Φ, y : T1 ⊢ u : T2
Applying the IH to the right premise gives a same-height derivation of
∆;Ω;Φ, y : T1 ⊢ u : T2. Applying LT-LFun gives a same-height deriva-
tion of ∆;Ω;Φ ⊢ (λ̃(y : T1). u) : T1

Ω→ T2.
Case LT-LApp:

t = u s T = T2 Γ;Ω;Φ ⊢ u : T1
Ω→ T2 Γ;Ω;Φ ⊢ s : T1

Apply the IH to the premises and apply LT-LApp to the results.
Case LT-SfApp:

t = u [si
i∈1..n

] T = A[(+n
i=1(Ξ(xi) ◦ Ξi(z))) z

z∈dom(Ω)

] Γ; Ω;Φ ⊢ t :

(xi : Bi) ⇒ A[Ξ] Γ;Ω;Φ ⊢ si : B[Ξ]

Apply the IH to the premises and apply LT-SfApp to the results.
Case LT-IfThenElse:

t = if u1 then u2 else u3 T = U Γ;Ω;Φ ⊢ u1 : Bool Γ;Ω;Φ ⊢
u2 : U Γ;Ω;Φ ⊢ u3 : U

Apply the IH to the premises and apply LT-IfThenElse to the results.
Case LT-Sub:

T = U2 Γ;Ω;Φ ⊢ t : U1 Ω ⊢ U2 Omega ⊢ U1 <: U2

Applying the IH to the left premise yields a same-height derivation of ∆;Ω;Φ ⊢
t : U1. Applying LT-Sub yields ∆;Ω;Φ ⊢ t : U2.

Lemma 25 (Weakening for Terminal Typing). If Γ ⊢ t : T then for all
variables x ̸∈ dom(Γ) which do not occur as bindings in t, and terminally well-
formed types S we have Γ, x : S ⊢ t : T .
Lemma 26 (Weakening of Terminal Type Environment in Lifted Typ-
ing). If Γ;Ω;Φ ⊢ t : T then for all variables x ̸∈ dom(Γ) which do not occur as
bindings in t, and all terminally well-formed types S we have Γ, x : S; Ω; Φ ⊢ t :
T .
Proof. We prove the above two lemmas by simultaneous induction on the struc-
ture of. Γ ⊢ x : T and Γ;Ω;Φ ⊢ t : T .
Case T-Constant:

t = c T = B ty(c) = B
The premise gives ty(c) = B, so we can apply T-Constant to conclude
Γ, x : S ⊢ c : B.
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Case T-SfConstant:
Similar to the above case.

Case T-Var
t = z z : T ∈ Γ
Since z : T ∈ Γ we have z : T ∈ Γ, x : S. Applying T-Var gives Γ, x : S ⊢
z : T .

Case T-Fun:
t = (λy : T1.u) ⊢ T1 T = T1 → T2 Γ, y : T1 ⊢ u : T2
Applying the IH to the right premise gives gives Γ, y : T1, x : S ⊢ u : T2.
Applying the permutation lemma gives Γ, x : S, y : T1 ⊢ u : T2. Applying
T-Fun gives Γ, x : S ⊢ (λy : T1.u).

Case T-SFun:
t = (λ̃(xi : Bi). u) T = (xi : Bi) ⇒ A[Ξ] Γ;xi : Bi;xi : Bi[= xi]
Applying the IH gives Γ, x : S;xi : Bi;xi : B[= xi] ⊢ t : A[Ξ]. Applying
T-SFun gives Γ, x : S ⊢ (λ̃(xi : Bi). t) : T = (xi : Bi) ⇒ A[Ξ].

Case T-App:
t = u s T = U Γ ⊢ u : S → U Γ ⊢ s : S
Applying the IH to the premises gives Γ, x : S ⊢ u : S → U and Γ, x : S ⊢
s : S. Applying T-App gives Γ, x : S ⊢ u s : U .

Case T-SfApp:
Apply the IH to the premises and then apply T-SfApp.

Case T-IfThenElse:
Apply the IH to the premises and then apply T-IfThenElse.

Case T-Sub:
Apply the IH to the left premise and the apply T-Sub.

Case LT-Terminal:
Applying the IH gives Γ, x : S ⊢ t : T . Applying LT-Terminal gives Γ, x :
S; Ω; Φ ⊢ t : T .

Case LT-LVar:
t = y y : T ∈ ϕ
Since y : T ∈ Φ, we can apply LT-LVar to conclude Γ, x : S; Ω; Φ ⊢ y : T .

Case LT-LFun:
t = (λy : T1.u) T = T1

Ω→ T2 Ω ⊢ T1 Γ;Ω;Φ, y : T1 ⊢ u : T2
Applying the IH to the right premise gives Γ, x : S; Ω; Φ, y : T1 ⊢ u : T2.
Applying LT-LFun gives Γ, x : S; Ω; Φ ⊢ (λ̃(y : T1). u) : T1

Ω→ T2
Case LT-LApp:

t = u s T = T2 Γ;Ω;Φ ⊢ u : T1
Ω→ T2 Γ;Ω;Φ ⊢ s : T1

Applying the IH to the premises gives Γ, x : S; Ω; Φ ⊢ u : T1
Ω→ T2. and

Γ, x : S; Ω; Φ ⊢ s : T2. Applying LT-LApp gives Γ, x : S; Ω; Φ ⊢ u s : T2.
Case LT-SfApp:

t = u [si
i∈1..n

] T = A[(+n
i=1(Ξ(xi) ◦ Ξi(z))) z

z∈dom(Ω)

] Γ; Ω;Φ ⊢ t :

(xi : Bi) ⇒ A[Ξ] Γ;Ω;Φ ⊢ si : B[Ξ]

Apply the IH to all premises and then apply LT-SfApp to the results.
Case LT-IfThenElse:

t = if u1 then u2 else u3 T = U Γ;Ω;Φ ⊢ u1 : Bool Γ;Ω;Φ ⊢
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u2 : U Γ;Ω;Φ ⊢ u3 : U

Applying the IH to the premises yields Γ, x : S; Ω; Φ ⊢ u1 : Bool, Γ, x :
S; Ω; Φ ⊢ u2 : U , and Γ, x : S; Ω; Φ ⊢ u3 : U . Applying LT-SfApp yeilds
Γ, x : S; Ω; Φ ⊢ if u1 then u2 else u3 : U

Case LT-Sub:
T = U2 Γ;Ω;Φ ⊢ t : U1 Ω ⊢ U2 Omega ⊢ U1 <: U2

Applying the IH to the left premise yields Γ, x : S; Ω; Φ ⊢ t : U1. Applying
LT-Sub yields Γ, x : S; Ω; Φ ⊢ t : U2.

Theorem 11 (Well-typed Term Projection). Let Γ1,Γ2 denote the con-
catenation of two terminal type environments Γ1 and Γ2. If ⊢ Γ, Ω ⊢ Φ, and
Γ;Ω;Φ ⊢ t : T then for all ω ∈ OJΩK we have Γ, ∥ω∥Φ ⊢ ∥ω∥t : ∥ω∥T .

Proof. By induction on the derivation of Γ;Ω;Φ ⊢ t : T .

Case LT-Terminal:
Γ ⊢ t : T
Since Γ ⊢ t : T , Lemma 17 gives ∥ω∥t = t and Lemma 18 gives ⊢ T . Since
⊢ T , Lemma 13 gives ∥ω∥T = T . Weakening the terminal typing judgment
Γ ⊢ t : T , we get Γ, ∥ω∥Φ ⊢ t : T . Hence Γ, ∥ω∥Φ ⊢ ∥ω∥t : ∥ω∥T .

Case LT-Var:
Since x : T ∈ Φ we have x : ∥ω∥T ∈ ∥ω∥Φ, and so we can apply T-Var to
get Γ, ∥ω∥Φ ⊢ x : ∥ω∥T . Since ∥ω∥x = x, we have Γ, ∥ω∥Φ ⊢ ∥ω∥x : ∥ω∥T .

Case LT-LFun:
t = (λx : S.u) T = S

Ω→ U Ω ⊢ S Γ;Ω;Φ, x : S ⊢ u : U
Applying the IH to Γ;Ω;Φ, x : S ⊢ u : U gives Γ, ∥ω∥Φ, x : ∥ω∥S ⊢ ∥ω∥u :
∥ω∥U . Applying well-formed type projection to Ω ⊢ S gives ⊢ ∥ω∥S.
We can the apply T-Fun to get Γ, ∥ω∥Φ ⊢ (λx : ∥ω∥S.∥ω∥u) : ∥ω∥S →
∥ω∥U . Since ∥ω∥t = ∥ω∥(λx : S.u) = (λx : ∥ω∥S.∥ω∥u) and ∥ω∥T = ∥ω∥S Ω→
U = ∥ω∥S → ∥ω∥U , we have Γ, ∥ω∥Φ ⊢ ∥ω∥t : ∥ω∥T .

Case LT-LApp:
t = u s T = U Γ;Ω;Φ ⊢ u : S

Ω→ U Γ;Ω;Φ ⊢ s : S
Applying the IH to both premises gives Γ, ∥ω∥Φ ⊢ ∥ω∥u : ∥ω∥S → ∥ω∥U and
Γ, ∥ω∥Φ ⊢ ∥ω∥s : ∥ω∥S. Applying T-App then gives Γ, ∥ω∥Φ ⊢ ∥ω∥u ∥ω∥s :
∥ω∥U . Since T = U and ∥ω∥t = ∥ω∥(u s) = ∥ω∥u ∥ω∥s, we have Γ, ∥ω∥Φ ⊢
∥ω∥t : ∥ω∥T .

Case LT-SfApp
t = u [si

i∈1..n

] T = A[(+n
i=1(Ξ(xi) ◦ Ξi(z))) z

z∈dom(Ω)

] Γ; Ω;Φ ⊢ t :

(xi : Bi) ⇒ A[Ξ] Γ;Ω;Φ ⊢ si : B[Ξ]
For i ∈ 1..n, since Γ;Ω;Φ ⊢ si : Bi[Ξi], we know that Ω ⊢ B[Ξi] by
Lemma 19. This must have been proven from ΩWf-Base, the premise of
which is dom(Ω) = domΞ. Hence ∥ω∥Bi[Ξi] = Bi. Obviously, dom(Ω) =

dom((+n
i=1(Ξ(xi) ◦ Ξi(z))) z

z∈dom(Ω)

), and so ∥ω∥T = ∥ω∥A[(+n
i=1(Ξ(xi) ◦ Ξi(z))) z

z∈dom(Ω)

] =
A.
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Applying the IH to the left premises gives Γ, ∥ω∥Φ ⊢ ∥ω∥u : ∥ω∥(xi : Bi) ⇒
A[Ξ]. and hence Γ, ∥ω∥Φ ⊢ ∥ω∥u : (xi : Bi) ⇒ A[Ξ]. Applying the IH to
the premises on the right gives, for i ∈ 1..n, Γ, ∥ω∥Φ ⊢ ∥ω∥si : ∥ω∥Bi[Ξi]
and hence Γ, ∥ω∥Φ ⊢ ∥ω∥si : Bi. We then apply T-SfApp to get Γ, ∥ω∥Ψ ⊢
∥ω∥u [∥ω∥si] : A. Since ∥ω∥t = ∥ω∥(u [si]) = ∥ω∥u [∥ω∥si] and ∥ω∥T = A,
we have Γ, ∥ω∥Ψ ⊢ ∥ω∥t : ∥ω∥T .

Case LT-IfThenElse:
t = if s1 then s2 else s3 T = S Γ;Ω;Φ ⊢ s1 : Bool Γ;Ω;Φ ⊢
s2 : S Γ;Ω;Φ ⊢ s3 : S

Applying the IH to the first premise gives Γ, ∥ω∥Ψ ⊢ ∥ω∥s1 : ∥ω∥Bool; i.e.,
Γ, ∥ω∥Ψ ⊢ ∥ω∥s1 : Bool. Applying the IH to the second and third premises
gives Γ, ∥ω∥Ψ ⊢ ∥ω∥s2 : ∥ω∥S and Γ, ∥ω∥Ψ ⊢ ∥ω∥s2 : ∥ω∥S.
Applying T-IfThenElse then gives Γ, ∥ω∥Ψ ⊢ if ∥ω∥s1 then ∥ω∥s2 else ∥ω∥s3 :
∥ω∥S. Since ∥ω∥t = ∥ω∥if s1 then s2 else s3 = if ∥ω∥s1 then ∥ω∥s2 else ∥ω∥s3
and T = S, we have Γ, ∥ω∥Ψ ⊢ ∥ω∥t : ∥ω∥T .

Case LT-Sub:
T = U Γ;Ω;Φ ⊢ t : S Ω ⊢ U Omega ⊢ S <: U

Applying the IH to Γ;Ω;Φ ⊢ t : S gives Γ, ∥ω∥Φ ⊢ ∥ω∥t : ∥ω∥S. Applying
well-formed type projection to Ω ⊢ U gives ⊢ ∥ω∥U . Applying Lemma 22
Omega ⊢ S <: U gives ∥ω∥S <: ∥ω∥U . With this, we apply T-Sub to get
Γ, ∥ω∥Φ ⊢ ∥ω∥t : ∥ω∥U .
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