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Abstract—Impedance stability methods are suitable for assess-
ing the dynamics of power converters controllers, but also for
ac/dc microgrids system level studies. This work proposes the
combination of impedance modeling and conformal mapping for
the identification of the dominant eigenvalues. The methodology
is derived by linearization of the Cauchy-Riemann equations,
which define the conformal mapping property of the Nyquist
trajectories. The proposed technique is of high practical value,
since it can be performed from frequency-domain data obtained
by small-signal perturbation (i.e., explicit transfer functions are
not needed). A detailed study case, focused on a medium-voltage
dc microgrid, is provided in order to verify the theoretical
approach. The new features and limitations of the proposed
technique are summarized in the conclusions.

Index Terms—ac-dc power conversion, dc power transmission,
power system modeling, power system stability, stability criteria.

I. INTRODUCTION

The controller design problem based on an
impedance/admittance modeling was proposed in classic
references [1], [2]. Firstly, a physical system (of any kind) is
modelled by an input admittance Yi(ω); then, it is connected
to an environment modelled by an output impedance Zo(ω);
finally, the dynamic properties are given by the product
Yi(ω)Zo(ω) [1], [2].

An analytical approach considers the Laplace variable
s = jω. Then, by assuming that Yi(s) and Zo(s) are analytic,

the eigenvalues of the system are given by

1 + Yo(s)Zi(s)︸ ︷︷ ︸
G(s)

= 0 (1)

with G(s) being defined as the minor loop gain. An analogy
with a classical controller scheme is depicted in Fig. 1. This
approach gives an immediate description of system dynamics,
which, by some basic design assumptions, can be employed
for the design of power electronics controllers [3]. In principle,
it is also suitable for an accurate assessment of large power
systems [4]. However, since it requires the use of parametric
transfer functions, which is hardly feasible in a large systems
including power electronics devices (complex controllers, in-

This work is partly funded by the project ”Medium-Voltage Direct-Current
Energy Conversion Technologies and Systems (SI/501259) granted by the
Swiss Federal Office of Energy.

−+
δ(s)

Zo(s)

Yi(s)

Fig. 1. Simplified representation of the impedance control problem [2].
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Fig. 2. Impedance modeling of a generic systems.

tellectual property issues), direct calculation of (1) is hardly
possible in practice [5].

Alternatively, a data-driven approach considers the shapes
of Yi(ω) and Zo(ω) for a finite number of ω values. The
descriptions of Yi(ω) and Zo(ω) can be obtained by small-
signal perturbation, as shown in Fig. 2. Subsequently, stability
is assessed by the Nyquist criterion [5], [6]. This approach has
been considered in different applications: ac/dc microgrids [5],
[6], renewable energies [7]–[10] and traction [11].

The impedance/admittance modeling has recently gained
more and more attention in renewable energy applications,
which are characterized by a high penetration of power elec-
tronics devices [7]–[10]. From a computational point of view,
one main idea behind the impedance/admittance modeling is to
avoid too detailed and complex implementations in platforms
more focused for large power systems analysis. By means
of linearization techniques, Norton/Thevenin equivalents that
closely emulate activelly-controlled power converters in the
range of frequencies at which the harmonic instability prob-
lems are obtained; these linear models can be grouped/lumped
and have a low computational burden [7], [9], [10].

A similar methodology is employed in low-voltage/medium-
voltage dc (LVDC/MVDC) systems [6], [12]. The source/load
dynamic interactions of a possible MVDC electrical distribu-
tion system (see Fig. 3), intended for a large marine vessel
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Fig. 3. A possible MVDC power system for ships [12].

with power levels in the range of tens of megawatts, have been
addressed in [12]. That analysis considers proven and available
industrial technologies that suit the MVDC distribution voltage
and power ratings. More specifically, that study includes the
contribution of generator inductances, dc-bus capacitors, cable
effects, and source/load controllers [e.g., constant power load
(CPL) behavior]. The methodology of [12] closely follows
the IEEE Std. 1709-2010 guidelines, which implies the com-
bination of small-signal perturbation for impedance modelling
with the Nyquist stability criteria in order to provide relative
stability assessments [13].

Despite its simplicity, some weak spots are also associated
to the impedance modelling and assessment, specially when
complex/high-order systems are considered. More specifically,
the criteria based on stability regions defined in the polar
plot (mathematically, defined as the G-plane below) provide
ambiguous interpretations when considering different mod-
elling points (which, in principle, is only a conceptual issue)
[5], [6]. In order to make the most information from the
polar plot (obtained from modelling at any arbitrary point),
this paper proposes a technique that exploits the conformal
mapping property inherent to the Nyquist trajectories [14]–
[16]. As shown in this paper, from a correct interpretation of
the Nyquist diagram, the dominant eigenvalues that define the
closed-loop responses can be identified.

The rest of the paper is organized as follows. Section
II shows the proposed technique to identify the dominant

eigenvalues. It is based on a linear approximation of the
Cauchy-Riemann equations, which define the conformal map-
ping property. Section III provides a study case for a simplified
MVDC power system and validates the accuracy of the pro-
posed technique. Finally, the main findings of the work are
summarized in the conclusions.

II. IDENTIFICATION BY CONFORMAL MAPPING

The Laplace variable s can be re-defined as s = σ + jω
and its G-plane mapping function, i.e., the minor loop gain,
as G(σ, ω) = Gre(σ, ω) + jGim(σ, ω) [14]–[16]. Then, the
Nyquist contour employed to get the G-plane polar plot is a
particular case defined by s = 0 → jω (for positive frequen-
cies) [16]. Absolute stability can be checked by inspection
of the polar plots: the system is stable if the trajectories of
G(σ + jω) that cross −1 correspond to stable eigenvalues, a
condition that mathematically can be expressed as

σ < 0 ∀ G(σ + jω) = −1. (2)

Graphically, this property could be applied for absolute stabil-
ity tests for any analytically defined G(s), without any explicit
consideration on number of −1 encirclements and open-loop
right half plane (RHP) poles, as shown in Fig. 41.

1It should be mentioned that this property is represented for the sake of
clarity: in practice, if G(s) is available, the calculation of eigenvalues by (1)
is straightforward.
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Since G(σ, ω) is defined as an analytical complex function,
it fulfills the Cauchy-Riemann equations [14], given by

∂Gre(σ, ω)

∂σ
=
∂Gim(σ, ω)

∂ω
(3a)

∂Gre(σ, ω)

∂ω
= −∂Gim(σ, ω)

∂σ
. (3b)

These expressions define a conformal mapping property,
which implies that the local angles in the S-plane are preserved
after the G-plane mapping [14]–[16].

An approximation to calculate the eigenvalues of the system
can be made as depicted in Fig. 5. Firstly, the sensitivity peak
η is identified by inspection of the polar plot, which also
identifies the imaginary part of the dominant root ωd [15]–
[18]. Subsequently, by a first order approximation of (3), two
solutions for the corresponding real part of the eigenvalue are
available [one from (3a) and another from (3b)]

σd ≈ ∆ω
Gim(ωd)

Gre(ωd)−Gre(ωd −∆ω)
(4a)

and
σd ≈ −∆ω

Gre(ωd) + 1

Gim(ωd)−Gim(ωd −∆ω)
. (4b)

with ∆ω being the frequency step between two consecutive
data points. Some practical aspects should be considered:
(1) Equations (4a) and (4b) are linear approximations.

By inspection of the trajectory defined by
G(0, ωd)→ G(σd, ωd) in Fig. 5, it is expected that
the linear approximation works better closer to the
evaluation point to −1 + j0; i.e., a higher accuracy is
expected for low η values. This is in correspondence with
references that point to η as a reliable stability margin
for high order systems [9], [17], [18].

(2) More than one sensitivity peaks could be identified in
high order systems (for example, in the design of res-
onance controllers, the Nyquist trajectory can lie close
to the critical point for many different frequencies [17]).
Therefore, in the context of a complex power system, the
approximation given by (4a) or (4b) can be evaluated at
different points of the Nyquist trajectory (i.e., at different
critical frequencies).

(3) In principle, (4a) and (4b) seem redundant in the sense
that both estimate σd. However, from a practical/data-
driven point of view, it should be noted that, implicitly,
there is an accuracy issue related to the finite number of
point. More specifically, the denominators of (4a) and (4b)
include differentiator terms, which implies a frequency
resolution issue. Then, the criterion to choose between
(4a) and (4b) is to use the one which a higher magnitude
in the denominator.

III. SIMULATION RESULTS

Fig. 6 depicts a simple MVDC power system employed
for the analysis, whereas Table I shows its main parameters.
It is inspired by a dc distribution that considers bidirectional
power converters for both source and load sides: the source
converter regulates the bus voltage at the point Pev and the
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Fig. 4. Verification of the Nyquist stability criterion in the G-plane [arbitrary
G(s) are employed in this example]. (a) S-plane mapping: green curves
corresponds to stable solutions (σ < 0); blue curves correspond to the
Nyquist contour (σ = 0) and red curves corresponds to unstable solutions
(σ > 0). (b) G-plane mapping for a stable system without RHP defined as
G(s) =

(s+1)
s(0.0073s+0.459)

(0.1s+1)2

(0.01s+1)2
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point are stable (green). (c) G-plane mapping for a stable system with one
RHP defined by G(s) =
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s(0.0073s−0.459)
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: all the solutions that
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Fig. 5. Proposed estimation method (blue-dashed line). (a) S-plane theoretical
contours: (blue) 0 + jω trajectory, (green) σd + jω trajectory, (blue-dashed)
linear mapping assumption; (b) G-plane mapping (blue) ~G(0, ω), (green)
~G(σd, ω), (blue-dashed) ideal behaviour of the proposed approximation.
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Fig. 6. Illustrative power circuit of a MVDC distribution system.

load inverter acts as a constant power load [19]. A Three-
Level Neutral Point Clamped topology has been considered for
both load and source converters. The controller bandwidths,
which are dependent on the converters switching frequency,
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TABLE I
SIMULATION VALUES

MVDC circuit

Rated Power P = 20 MW

DC voltage reference V ∗
CS

= 10 kV

AC voltage (both sides) vrms
S = vrms

L = 6.6 kV

AC frequency (both sides) ω1 = 2π50 rad/s

AC output impedances ZS = ZL = 0.01 + j0.1 p.u.

DC capacitances ZCS
= ZCL

= −j0.16 p.u.

Distribution impedance (cable effects) ZD = 0.001 + j0.5 p.u.

Control Parameters

Sampling Frequency fs = 2 kHz

Inner loops bandwidth αi = 880 rad/s

Outer loops bandwidth αo = 88 rad/s

have been selected considering commercial devices suitable
for MVDC systems [12]. The distribution line is represented
by an inductive/resistive line ZD(ω), which models long
cable effects. The controller model has been implemented in
Matlab/Simulink and the circuit components using the PLECS
toolbox. Zi(ω) and Yo(ω) data are obtained by programming
a frequency sweep in the perturbation signal [20], for a set of
200 frequencies logarithmically equally spaced from 1 Hz to
2 kHz. In the case of Yo(ω) measurement, the perturbation is
superimposed to the nominal voltage Vdc. Analogously, for the
Zik(ω) measurement, the perturbation current is in parallel to
a constant current consumption (rated value).

The key results for the ideal MVDC system are depicted
in Fig. 7 and summarized in Table II. Fig. 7(a) represents
Zi(ω) and Yo(ω) when ZD(ω) is negligible. The source
impedance Zi(ω) is inductive at the low frequency range and
capacitive in the high frequency range, and presents a wide
and smooth magnitude peak at 5 Hz, which has been found
to be highly dependent on the source converter controller.
In the case of the load admittance, it should be noted that
Yo(ω) is defined by a negative resistive behaviour in the low
frequency range (∠Yo(ω) = 180 deg), as expected from a
CPL [5], [6], [21], [22]. At the high frequency range, where
the control action does not have an effect, Yo(ω) is inductive
and has a low magnitude. Fig. 7(b) shows the corresponding
Nyquist diagram and the conformal mapping evaluation point.
Table II shows the estimation of the dominant eigenvalue. For
the sake of comparison with the frequency-domain results,
Figs. 7(c)-7(d) show different time responses, which have been
obtained by causing different transients in the circuit. These
figures include an estimation of the settling time (within a
2% of the final value), which unfortunately is impaired by the
presence of switching components. The decaying rate of the
dominant eigenvalue is roughly estimated using the expression
σd ≈ 3.9/ts [16]. From the observed σd (time-domain results),
it can be concluded that the conformal mapping predicts the
main response with a good accuracy.

The simulation procedure is repeated with the consideration
of a inductive cable impedance ZD(ω) (see Table I), which
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Fig. 7. Analysis and results for the ideal MVDC system. (a) Zi(ω)
(dashdotted) and Yo(ω) (solid); (b) detail of G(ω) polar plot (Nyquist
diagram); (c) V ∗

dc step change (∆Vdc = 500V ); (d) 200 A ideal current
step change at dc bus.

TABLE II
SUMMARY OF RESULTS FOR THE IDEAL MVDC SYSTEM

Conformal Mapping

pd = −27.01 ± j33.52 rad/s (ηbw = 0.62)

Time-domain simulation

σd ≈ 3.9/ts = −24.37 rad/s, (ωd unobservable)

also splits the total capacitance in two parts and introduces
an LC resonance in the dc circuit. Fig. 8(a) shows both
Zi(ω) and Yo(ω) as measured in Pev. Fig. 8(b) represents
the Nyquist trajectory. Two sensitivity peaks are considered,
i.e., ηbw due to closed loop bandwidth and ηres due to the
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TABLE III
SUMMARY OF RESULTS FOR THE REALISTIC MVDC SYSTEM

Conformal Mapping at Pev

pd = −14.94 ± j32.30 rad/s (ηbw = 0.52)

pres
d = −190.89 ± j400.59 rad/s (ηres = 0.66)

Time-domain simulations

σd little affected by ZD , (ωd unobservable)

σres
d < −1 rad/s , ωres

d ≈ 232 rad/s, attenuated

electric resonance in Yo(ω); it should also be noted that the
resonance also gives rise to a wide excursion of the Nyquist
trajectory. Figs. 8(c)-8(d) show time domain responses in
the presence of transients. Despite the resonance effect, the
identification of the main response remains accurate, since
ZD(ω) effect in the low frequency range is quite negligible.
However, the real part of the eigenvalues associated to ωres

d is
not identified with accuracy. The reason for the discrepancy
is the fact that these eigenvalues are highly attenuated, i.e.,
their residue is much lower than 1. In the frequency domain,
attenuated responses are associated with open loop pole-zero
cancellations in sensitivity transfer functions, and hence with
a reduced observability of such a response [18].

IV. CONCLUSIONS

Impedance stability modeling is a methodology suitable
for assessing the dynamics of ac/dc power systems. As a
contribution to this field, this paper properly provides new
frequency-domain data-driven approach [i.e., Zi(ω) and Yo(ω)
are obtained by small-signal perturbation] for the calculation
of the system main responses. More specifically, analytic
expressions for the calculation of the power system dominant
eigenvalues is derived from an insightful interpretation of
the Nyquist trajectory and its conformal mapping property.
Subsequently, a study case, inspired on a MVDC distribution,
has been developed and discussed. Finally, as a summary of
practical outcomes is provided in the following.
(1) A good estimation of the dominant eigenvalues associated

to load/source closed-loop interactions is achieved. The
source/load interactions are usually in a low frequency
range.

(2) The presence of attenuated oscillatory responses can be
identified by the large excursions of the Nyquist trajecto-
ries. These take place in a relatively high frequency region,
in which the closed-loop action is weak, and are associated
with electrical resonances in the circuit.

(3) Due to a low observability condition (i.e., a zero-pole can-
cellation), a highly accurate estimation of decay rate and
amplitude of responses associated with electric resonances
is infeasible (by data-driven frequency domain methods).
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Fig. 8. Analysis and results for the ideal MVDC system. (a) Zi(ω)
(dashdotted) and Yo(ω) (solid); (b) G(ω) Nyquist diagram; (c) V ∗

dc step
change (∆Vdc = 500V ); (d) 200 A ideal current step change at the load.
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