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Abstract: To achieve approximately parallel projection geometry, traditional optical projection
tomography (OPT) requires the use of low numerical aperture (NA) objectives, which have a
long depth-of-field at the expense of poor lateral resolution. Particularly promising methods
to improve spatial resolution include ad-hoc post-processing filters that limit the effect of the
system’s MTF and focal-plane-scanning OPT (FPS-OPT), an alternative acquisition procedure
that allows the use of higher NA objectives by limiting the effect of their shallow depth of field
yet still assumes parallel projection rays during reconstruction. Here, we provide a detailed
derivation that establishes the existence of a direct inversion formula for FPS-OPT. Based on
this formula, we propose a point spread function-aware algorithm that is similar in form and
complexity to traditional filtered backprojection (FBP). With simulations, we demonstrate that
our point-spread-function aware FBP for FPS-OPT leads to more accurate images than both
traditional OPT with deconvolution and FPS-OPT with naive FBP reconstruction. We further
illustrate the technique on experimental zebrafish data, which shows that our approach reduces
out-of-focus blur compared to a direct FBP reconstruction with FPS-OPT.
© 2017 Optical Society of America

OCIS codes: (100.1830) Deconvolution; (110.6955) Tomographic imaging.

References and links
1. J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical

projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296(5567), 541–545
(2002).

2. R. J. Bryson-Richardson, S. Berger, T. F. Schilling, T. E. Hall, N. J. Cole, A. J. Gibson, J. Sharpe, and P. D. Currie,
“FishNet: an online database of zebrafish anatomy,” BMC Biol. 5(1) (2007).

3. M. Fauver, E. J. Seibel, J. R. Rahn, M. G. Meyer, F. W. Patten, T. Neumann, and A. C. Nelson, “Three-dimensional
imaging of single isolated cell nuclei using optical projection tomography,” Opt. Express 13(11), 4210–4223 (2005).

4. Q. Miao, J. Hayenga, M. G. Meyer, T. Neumann, A. C. Nelson, and E. J. Seibel, “Resolution improvement in optical
projection tomography by the focal scanning method,” Opt. Letters 35(20), 3363–3365 (2010).

5. A. Bassi, B. Schmid, and J. Huisken, “Optical tomography complements light sheet microscopy for in toto imaging
of zebrafish development,” Development 142(5), 1016–1020 (2015).

6. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE 1988).
7. J. R. Walls, J. G. Sled, J. Sharpe, and R. M. Henkelman, “Resolution improvement in emission optical projection

tomography,” Phys. Med. Biol. 52(10), 2775–2790 (2007).
8. L. Chen, J. McGinty, H. B. Taylor, L. Bugeon, J. R. Lamb, M. J. Dallman, and P. M. W. French, “Incorporation

of an experimentally determined MTF for spatial frequency filtering and deconvolution during optical projection
tomography reconstruction,” Opt. Express 20(7), 7323–7337 (2012).

9. J. Guo, Y. Yang, D. Dong, L. Shi, H. Hui, M. Xu, J. Tian, and X. Liu, “A projection selection method to improve
image quality in optical projection tomography,” in International Conference of the IEEE Engineering in Medicine
and Biology Society (IEEE, 2014), pp. 206–209.

10. J. van der Horst and J. Kalkman, “Image resolution and deconvolution in optical tomography,” Opt. Express 24(21),
24460–24472 (2016).

11. U. S. Kamilov, I. N. Papadopoulos, M. H. Shoreh, A. Goy, C. Vonesch, M. Unser, and D. Psaltis, “Optical tomographic
image reconstruction based on beam propagation and sparse regularization,” IEEE Trans. Comput. Imag. 2(1), 59–70
(2016).

12. K. G. Chan and M. Liebling, “A point-spread-function-aware filtered backprojection algorithm for focal-plane-
scanning optical projection tomography,” International Symposium on Biomedical Imaging (IEEE, 2016), pp.
253–256.

13. Z. P. Liang and D. C. Munson Jr., “Partial Radon transforms,” IEEE Trans. Image Process. 6(10), 1467–1469 (1997).



14. S. Horbelt, M. Liebling, andM. Unser, “Discretization of the Radon transform and of its inverse by spline convolution,”
IEEE Trans. Med. Imag. 21(4) 363–376 (2002).

15. M. Born and E. Wolf, Principles of Optics (Cambridge Univ. Press, 2003), Chap. 8.
16. H. Kirshner, F. Aguet, D. Sage, and M. Unser, “3-D PSF fitting for fluorescence microscopy: implementation and

localization application,” J. Microsc. 249(1), 13–25 (2013).
17. S. G. Azevedo, D. J. Schneberk, J. Fitch, and H. E. Martz, “Calculation of the rotational centers in computerized

tomography sinograms,” IEEE Trans. Nucl. Sci. 37(4), 1525–1540 (1990).
18. U. J. Birk, M. Rieckher, N. Konstantinides, A. Darrell, A. Sarasa-Renedo, H. Meyer, N. Tavernarakis, and J. Ripoll,

“Correction for specimen movement and rotation errors for in-vivo Optical Projection Tomography,” Biomed. Opt.
Express 1(1), 87–96 (2010).

19. D. Sage, L. Donati, F. Soulez, D. Fortun, G. Schmit, A. Seitz, R. Guiet, C. Vonesch, andM.Unser, “DeconvolutionLab2:
An open-source software for deconvolution microscopy,” Methods 115, 28–41 (2017).

1. Introduction

Optical projection tomography (OPT) is a 3D microscopy technique for imaging small transparent
animals (up to a few millimeters) using visible light [1,2]. Similar to x-ray computed tomography
(CT), OPT involves the acquisition of multiple 2D projections through a 3D sample, with each
projection taken from a different angle of rotation. However, unlike CT, which uses x-rays
that travel in approximately straight lines, OPT uses visible light and microscope optics that
accept light rays from a range of angles over a cone. In order to apply traditional tomographic
reconstruction techniques to OPT, researchers use low numerical aperture (NA) objectives with
OPT to reduce the acceptance angle of the system and achieve approximately straight-line
projections. However, low NA objectives have worse lateral resolution than high NA objectives,
thus limiting the lateral resolution of OPT systems.
The problem with high NA objectives is that they have a shallow depth of field, making

them unsuitable for traditional OPT imaging of thick samples. With high NA objectives, part
of the sample lying on the focal plane will be in focus, but out-of-focus light from above and
below will also contribute to the resulting image. To adapt OPT for use with high NA objectives,
previous studies have shown that one can scan the focal plane through the entire sample to create
pseudoprojections with an extended depth of field [3, 4]. Another previous study has also shown
that one can achieve high NA OPT imaging with a selective plane illumination microscope using
high-pass filtering and weighted averaging of multiple focal slices to create an extended depth
of field projection [5]. In both cases, these pseudoprojections are then used to reconstruct a 3D
image using filtered backprojection (FBP) [6].
While the image formation process through convolution with an extended PSF (rather than

line integrals) has been acknowledged in OPT and methods have been proposed to mitigate its
effect [7–10], they focus on fixed focal plane OPT, which precludes the use of high NA objectives.
Other methods for fixed focal plane OPT also include a well-defined model of image formation,
but require computationally intensive iterative algorithms for reconstruction [11]. Here, we
instead consider the acquisition procedure in [3,4], which we will refer to as focal-plane-scanning
OPT (FPS-OPT). For focal-plane-scanning OPT, we derive an analytic inversion formula that
fully incorporates the system’s 3D optical point-spread-function. We then show that our inversion
can be implemented computationally inexpensively with a series of 2D deconvolutions followed
by the traditional filtered backprojection algorithm.
This paper extends on our original work in [12]. While our previous work described our

method only in 2D, here we describe our problem formation and reconstruction algorithm for 3D
volumetric data. Furthermore, in this paper, we compare our method to other existing methods for
OPT reconstruction, and we provide software code and an experimental dataset for reproduction.
This paper is organized as follows. In Section 2, we present the image formation process in
optical projection tomography. In Section 3, we present our proposed image acquisition and
reconstruction approach. In Section 4.1, we characterize our method with a 2D phantom and
point-spread-functions of various NAs. In Section 4.2, we demonstrate our method on 3D data



acquired with FPS-OPT of a Tg(fli1a:EGFP) zebrafish embryo.

2. Problem formulation

Assuming minimal optical attenuation and scattering, the ideal image formation process in optical
projection tomography can be described by the X-ray transform (or Radon transform in 2D) of
the underlying object. For a 3D object f (x, y, z), assuming the axis of rotation coincides with the
z-axis, the observed projection at a particular angle θ is the set of line integrals (Fig. 1(a)),

p(u, v, θ) =
∭
R3

f (x, y, z)δ(x cos θ + y sin θ − u, z − v) dx dy dz, (1)

where δ(·, ·) is the 2D Dirac delta function defined as δ(a, b) = δ(a) · δ(b), and p(u, v, θ) is the
2D projection of f (x, y, z) along the direction θ. However, this model is only accurate when
(i) the entire sample is contained in the system’s depth of field, and (ii) the system’s optical
point spread function (PSF) is infinitely narrow in the lateral (x-y) direction. In OPT, this model
is inaccurate, particularly the second condition. The image formation model in OPT is more
accurately described by a single focal plane sampled from the result of the convolution between
the object and a rotated version of the system’s PSF (Fig. 1(b)),

Ĩ(u, v, θ) = ( f ∗ Tθ {h}) (u cos θ, u sin θ, v), (2)

where Tθ {·} is a transformation operator that rotates a function by an angle θ about the z-axis,
h is the point-spread-function of the system, and u and v are distances from the origin (which
we assume to lie on the focal plane). In such a case, the standard filtered backprojection (FBP)
algorithm can no longer be used to accurately recover f (x, y, z).
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Fig. 1. (a) In ideal tomography, acquisitions are assumed to be straight line projections through
the entire object. Here, a projection in the direction parallel to a vector θ̂ = (cos θ, sin θ, 0) is
shown for an OPT system with an axis of rotation parallel to the z-axis. (b) In traditional
OPT, acquisitions are better described as the result of the 3D convolution between the object
and the PSF, sampled on a single focal plane. (c) In FPS-OPT, each acquisition is obtained
by summing up images obtained while scanning through all focal planes.

3. Proposed method

3.1. Increasing the depth of field

To address the first problem when the sample is not completely contained in the system’s depth
of field, we follow the procedure described in [4] to create a pseudoprojection by scanning the
focal plane through the entire sample (FPS-OPT). This can be done either by linearly sweeping
the focal plane through the sample during a single camera integration period, or by acquiring a
focal stack and retrospectively integrating along the projection direction by digitally summing



3D Fourier Transform

Projection to 2D

2D Slice

2D Fourier Transform

* .Point
Spread

Function
Optical

Transfer
Function

Fig. 2. The Fourier transform of an object’s projection is equivalent to a slice from the
underlying object’s Fourier transform. The inclusion of the system’s point spread function
introduces an extra convolution in space, or equivalently, an extra multiplication in the
Fourier domain.

the slices. By scanning the focal plane during imaging, we manually perform an X-ray transform
as in Fig. 1(c),

p̃(u, v, θ) =
∭
R3
( f ∗ Tθ {h})(x, y, z) · δ(x cos θ + y sin θ − u, z − v) dx dy dz. (3)

However, the imaging model still differs from the ideal model in Fig. 1(a), because for each
angle θ, the X-ray transform is taken of a differently blurred underlying image due to the rotated
point-spread-function Tθ {h}.

3.2. Deblurring with PSF-Aware filtered backprojection

Applying a standard filtered backprojection to Equation (3) will not allow us to recover f (x, y, z).
Rather, it will reconstruct a blurred version of f (x, y, z) due to the effect of the optical point-spread-
function h. However, we recall that according to the Fourier slice theorem, the M-dimensional
Fourier transform of a projection (X-ray transform) of an N-dimensional function onto M
dimensions is equivalent to an M-dimensional slice of that function’s N-dimensional Fourier
transform [13],

FM ◦ PN→M
θ = SN→M

θ ◦ FN, (4)

where FM denotes an M-dimensional Fourier transform, PN→M
θ denotes a projection (X-ray

transform) at an angle θ from N dimensions to M dimensions, SN→M
θ denotes an M-dimensional

slice normal to the direction of θ from N dimensions, and FN denotes an N-dimensional Fourier
transform. For consistency with Fig. 1, the remainder of this section considers the case where
M = 2 and N = 3 for 3D OPT with a single component of rotation (θ) about the z-axis. In
this scenario, the projection operator P3→2

θ is a transformation from a three-dimensional x-y-z
coordinate system to a two-dimensional u-v coordinate system.



As the X-ray transform in Equation (3) is a projection operator P3→2
θ , by the Fourier-slice

theorem, its Fourier transform is equivalent to a slice from the Fourier transform of the PSF-blurred
image (as illustrated in Fig. 2),

F2 {p̃(u, v, θ)} = S3→2
θ

{
F3 { f ∗ Tθ {h} (x, y, z)}

}
. (5)

Since the convolution between two functions translates to the product of their Fourier transforms
in the frequency domain, and since the point-wise product can be performed after the slicing
operator, we can write:

F2 {p̃(u, v, θ)} = S3→2
θ

{
F3 { f (x, y, z)}

}
· S3→2

θ

{
F3 {Tθ {h} (x, y)}

}
. (6)

Applying the Fourier-slice theorem once more to the PSF-term in the product allows us to separate
the Fourier-slice of the desired, underlying function via filtering of the observed projection with
the inverse of the PSF’s X-ray transform:

S3→2
θ

{
F3 { f (x, y, z)}

}
=
F2 {p̃(u, v, θ)} · F2∗ {P3→2

θ {Tθ {h} (x, y, z)}
}

|F2
{
P3→2
θ {Tθ {h} (x, y, z)}

}
|2

. (7)

At this point, we recall that the filtered back projection (FBP) algorithm [6] can be used to
invert the X-ray transform in Equation (3) by expressing the reconstructed image as:

f (x, y, z) ≈
K∑
k=1

Qθk (x cos θk + y sin θk, z), (8)

where Qθk (u, v) is the projection at an angle θk after Fourier domain filtering with a ramp filter
W(ωu, ωv) = |ωu |,

F2 {Qθ (u, v)} = S3→2
θ

{
F3 { f (x, y, z)}

}
·W(ωu, ωv). (9)

Substituting (7) in the above, each filtered backprojection can be expressed in terms of the
FPS-OPT-measured blurred projection p̃(u, v, θ). Specifically, we use

F2 {Qθ (u, v)} = F2 {p̃(u, v, θ)} · W̃(ωu, ωv), (10)

where W̃(ωu, ωv) is the product of the ramp filter W(ωu, ωv) and a (regularized) version of the
expression in Equation (7),

W̃(ωu, ωv) = W(ωu, ωv) · Hinv(ωu, ωv), (11)

for

Hinv(ωu, ωv) =
F2∗ {P3→2

θ {Tθ {h} (x, y, z)}
}

|F2 {
P3→2
θ {Tθ {h} (x, y, z)}

}
|2 + λ |F2 {r(u, v)} |2

, (12)

where λ is the regularization weighting parameter and r is a high-pass regularization filter.
This regularization term in the denominator stabilizes the inverse filter and prevents it from
growing large when the optical transfer function is close to zero. We use a 2D Laplacian as the
regularization filter, which can be implemented in practice as a discrete 2D filter utilizing finite
differences. While similar in form to a Wiener filter, this filter does not depend on knowledge of
the signal or noise power spectrum. With this result, we can now apply the modified FBP in (8),
to estimate the underlying image f (x, y, z) from the blurred projections p̃(u, v, θ).
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Fig. 3. In practice, our PSF-aware filtered backprojection algorithm is implemented as
two-step process consisting of an initial PSF inverse filtering followed by traditional filtered
backprojection.

4. Experiments

While the modified filtered backprojection in Equation (10) can be implemented with a single
filter W̃(ωu, ωv), in practice we separate this filter into the traditional ramp filter and the PSF
inverse filter, as shown in Fig. 3. This allows us to take advantage of existing FBP packages that
use traditional ramp filtering. In our experiments, we use the spline-based filtered backprojection
in [14] to implement the inverse X-ray transform.

4.1. Simulations with Shepp-Logan phantom

To evaluate our method, we simulated an optical projection tomography system in Matlab with
a 2D Shepp-Logan phantom as a test image. In this simulation, we acquired 180 uniformly
spaced projections over a total of 180◦ degrees (for an angular spacing of 1◦). To model the
image formation process, we used 2D point-spread-functions obtained by extracting the central
y-z plane from 3D PSFs generated with the Born & Wolf model [15,16]. We compared image
reconstruction quality in terms of peak signal-to-noise ratio, PSNR = 10 log10

(
max( f̃ )2/MSE

)
where f̃ is the reconstructed image, and MSE is the mean squared error between f̃ and the
original ground truth image.

We compared two approaches for data acquisition, traditional fixed-focal-plane OPT and focal-
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Fig. 4. Using point spread functions generated with numerical apertures of (a,f) 0.3 and
(k,p) 0.5, we compared the following reconstruction algorithms: (b,g,l,q) traditional FBP
under fixed-plane OPT, (c,h,m,r) MTF deconvolution [8] under fixed-plane OPT, (d,i,n,s)
traditional FBP under FPS-OPT, and (e,j,o,t) our proposed PSF-aware FBP under FPS-OPT.
(b-e) Reconstructions under the 0.3 NA PSF in (a,f) with a small phantom and no noise. (g-j)
Reconstructions under the 0.3 NA PSF in (a,f) with a phantom larger than the depth-of-field
and no noise. (l-o) Reconstructions under the 0.5 NA PSF in (k,p) with a phantom much
larger than the depth-of-field and no noise. (q-t) Reconstructions under the 0.5 NA PSF in
(k,p) with a phantom much larger than the depth-of-field and with projections corrupted
by shot noise. Specifically, for each observed projection, the measured value y at any given
detector followed a Poisson distribution y ∼ Poisson(x), where x was the deterministic
(noise-free) projection value at that detector, scaled so all deterministic projection values
were in the interval [0, 104].



Table 1. PSNR comparisons between traditional FBP, the MTF deconvolution reconstruction
in [8], and our PSF-aware FBP with different numerical apertures. We computed both the
overall PSNR of the entire image, as well as the PSNR for the Shepp-Logan phantom itself
(excluding the background pixels). We performed all simulations using the full size phantom
as in Fig. 4 (f-o), except where indicated by †, where we used the smaller phantom as in
Fig. 4 (a-e). In addition, we performed all simulations assuming noise-free conditions, except
where indicated by ?, where we assumed the projections were taken with Poisson-distributed
shot noise as in Fig. 4 (q-t). To generate data corrupted by shot noise, we assumed that
the measured value y at any given detector followed a Poisson distribution y ∼ Poisson(x),
where x was the deterministic (noise-free) projection value at that detector, scaled so all
deterministic projection values were in the interval [0, 104].

Overall PSNR (Phantom PSNR) [dB]
Fixed-Plane OPT FPS-OPT

NA FBP MTF [8] FBP PSF-Aware FBP
0.15 13.60 (10.59) 17.16 (17.20) 16.93 (14.59) 23.88 (22.64)
0.2 14.65 (11.67) 17.40 (18.63) 17.48 (15.16) 23.70 (22.50)
†0.3 22.71 (14.93) 13.17 (18.06) 22.34 (14.42) 25.98 (19.23)
0.3 17.61 (15.11) 13.24 (16.66) 18.74 (16.53) 23.84 (22.72)
0.5 16.52 (14.35) 14.55 (15.63) 19.93 (17.77) 25.05 (23.46)
?0.5 16.29 (14.19) 14.26 (15.58) 19.34 (17.28) 23.54 (22.21)

plane-scanning OPT (FPS-OPT). As our baseline, we reconstructed the acquired projections with
the standard filtered backprojection (FBP) algorithm in both scenarios. Next, we reconstructed the
acquired OPT and FPS-OPT projections with algorithms specifically designed for each acquisition
procedure: the MTF deconvolution method [8] for traditional OPT, and our proposed PSF-aware
FBP method for FPS-OPT. For the MTF deconvolution reconstruction, we implemented the
Wiener filter deconvolution as described in [8], with the exception of selecting Su = 0.5, which
was empirically chosen to produce a reconstruction with a high PSNR. For our PSF-aware filtered
backprojection, we performed each simulation with multiple values of λ and selected the λ that
produced the reconstruction with the best PSNR.
We repeated the acquisition and reconstruction procedures in simulated OPT systems with

various numerical apertures and object sizes (one per row of Fig. 4 and Table 1). We used the same
sampling resolution (magnification factor) for each numerical aperture, which we chose to be 100
nm per pixel in both directions. We evaluated our PSF-aware filtered backprojection under this
scenario without noise (Fig. 4(a-o)), and in each case, our method (which assumes focal-plane-
scanning OPT) outperformed standard FBP under both fixed-plane and focal-plane-scanning OPT,
as well as the fixed-plane MTF deconvolution method in [8] (Table 1). When ignoring the circular
background halo artifact, the MTF deconvolution approach outperformed simple FBP when the
phantom was smaller than the PSF’s axial width. However, as the depth-of-field decreases with
increasing NA, this approach is no longer able to produce an accurate reconstruction. In contrast,
our approach, which combines deconvolution with focal-plane-scanning geometry, is able to
produce a good reconstruction in all scenarios. We also repeated this comparison for projections
acquired with Poisson-distributed shot noise (Fig. 4(p-t)). In the presence of noise, our approach
is still able to produce a good reconstruction. However, as the noise variance increases, we must
choose a larger value of the regularization parameter λ to stabilize the inverse filter and avoid
noise amplification, leading to a weaker overall deblurring.

4.2. Application to zebrafish imaging

To demonstrate our approach in practice, we imaged the head of a 62 hpf (hours post-fertilization)
Tg(fli1a:eGFP) zebrafish that expresses green fluorescence in its blood vessels following a



protocol approved by the UCSB Institutional Animal Care and Use Committee. We acquired
1600 projections over 360◦ (with 8 focal slices per projection, over a total depth of 1000 µm)
using a custom-built rotational stage consisting of a stepper motor connected to a fluorinated
ethylene propylene (FEP) tube that has a refractive index close to that of water. We mounted
the larval zebrafish inside the FEP tube in a 1% low melting-point agar solution. We placed this
rotational stage on a Leica DMI6000B inverted widefield microscope and imaged in fluorescence
with a 10×/0.3 dry objective and a Hamamatsu C9100-13 EM-CCD camera. Figure 5 shows a
sketch of the image acquisition setup and rotation orientation.

Focal	Plane

Microscope

Objective

Fig. 5. Diagram of the OPT rotational acquisition procedure for zebrafish. For each projection
angle θ, the focal plane is scanned through the entire zebrafish to create a full projection,
even with a shallow depth-of-field objective.

At each angle, we acquired a scanned projection of the zebrafish fluorescence emission using
FPS-OPT, and we computed the projection’s center of mass to determine the position of its
rotational axis [17]. More advanced methods may also be used to correct for any sample movement
or rotational drifts [18]. However, we found this unnecessary for our experimental data. From
these projections, we reconstructed a 3D volume using both traditional FBP and our PSF-aware
FBP (Fig. 6). Our PSF-aware FBP reconstruction contains significantly less out-of-focus blur
compared to the traditional FBP reconstruction.

5. Discussion and conclusion

For the same magnification factor, a higher NA system allows for better resolution than a lower NA
system due to the fact that the lateral width of the system’s point-spread-function, as defined by
its full width at half maximum (FWHM), is inversely proportional to the system’s NA. However,
since the axial width of a point-spread-function is inversely proportional to the square of the
system’s NA, a high NA system also has a much shallower depth-of-field than a low NA system.
As a result, fixed-plane OPT with a high NA is incompatible with thick samples when the
depth-of-field is shallower than the sample thickness (Fig. 4). When the phantom size is larger
than the PSF’s axial width, such as with an NA of 0.5 in our simulation, fixed-plane OPT is unable
to produce an accurate reconstruction. Also, as the PSF’s lateral width increases with lower NA,
the inverse filter also becomes more numerically unstable, and the reconstructed image contains
more visible ringing artifacts. While we use direct regularized inverse filtering to implement
deconvolution, more advanced iterative methods may produce better results with fewer artifacts,
though at the expense of greater computational complexity and longer processing time [19].



(a) (b)

Fig. 6. We used focal plane scanning OPT (FPS-OPT) to image the head of a Tg(fli1a:eGFP)
zebrafish in 3D fluorescence with a 10×/0.3 NA air objective. Under such conditions,
single-plane OPT would be unable to produce an acceptable reconstruction due to the large
sample thickness and shallow depth-of-field. With FPS-OPT, we compare 3D reconstructions
from (a) standard filtered backprojection (FBP) and (b) our proposed PSF-aware FBP.
Our proposed PSF-aware FBP algorithm reconstructs an image with less out-of-focus blur.
Scalebar is 100 µm.

In conclusion, we have derived a direct inversion algorithm for focal plane scanning optical
projection tomography (FPS-OPT) that can be implemented using a modified filtered backpro-
jection algorithm that incorporates knowledge of the system’s point-spread-function. Through
simulations with a 2D phantom, we showed that our modified filtered backprojection offers
a noticeable improvement in PSNR compared to both traditional FBP as well as the MTF
deconvolution method for single focal-plane OPT [8], especially when the object size is large
relative to the PSF’s depth-of-field. To demonstrate our method in practice, we used fluorescence
FPS-OPT to image the head of a larval zebrafish, and we showed that our PSF-aware FBP
algorithm is able to reconstruct an 3D volume with significantly reduced out-of-focus blur
compared to a traditional FBP reconstruction. To allow reproducibility, we provide both our
FPS-OPT dataset, consisting of 1600 scanned projections of a Tg(fli1a:EGFP) zebrafish head
over 360◦, as well as a Matlab implementation of our reconstruction algorithm (available at
http://sybil.ece.ucsb.edu/pages/fpsopt/).
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