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Cognitive Speech Coding
Milos Cernak, Senior Member, IEEE, Afsaneh Asaei, Senior Member, IEEE, Alexandre Hyafil

Abstract—Speech coding is a field where compression
paradigms have not changed in the last 30 years. The
speech signals are most commonly encoded with com-
pression methods that have roots in Linear Predictive
theory dating back to the early 1940s. This paper tries to
bridge this influential theory with recent cognitive studies
applicable in speech communication engineering.

This tutorial article reviews the mechanisms of speech
perception that lead to perceptual speech coding. Then
it focuses on human speech communication and machine
learning, and application of cognitive speech processing in
speech compression that presents a paradigm shift from
perceptual (auditory) speech processing towards cognitive
(auditory plus cortical) speech processing. The objective
of this tutorial is to provide an overview of the impact
of cognitive speech processing on speech compression and
discuss challenges faced in this interdisciplinary speech
processing field. In this context, it covers the traditional
speech coding techniques as well as emerging approaches
facilitated by deep learning computational methods. The
tutorial points out key references on fundamental teachings
of psycholinguistics and speech neuroscience and provides
a valuable background to beginners and practitioners on
the promising directions of incorporating principles of
cognitive speech processing in speech compression.

Index Terms—Speech coding, speech production and
perception, cognition, deep learning

I. INTRODUCTION

Speech coding is an essential technology in informa-
tion transmission and communication systems. Human
cognitive processing operates at about 50 bps (bits per
second), which corresponds roughly to the speech pro-
duction semantics as the rate of phonemic information
in speech (e.g., most languages have approximately 32
phonemes, encoded with 5 bits, and 1 s of speech has
perhaps 10 phonemes), and the sensory system is known
to encode non-redundant structures [1]. Efficient coding
maximizes the amount of information conveyed about
the sensory signal to the rest of the brain. The incoming
acoustic signal is transmitted mechanically to the inner
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ear and undergoes a highly complex transformation
before it is encoded efficiently by spikes at the auditory
nerve. This great efficiency in information representation
has inspired speech engineers to incorporate aspects of
cognitive processing in when developing efficient speech
technologies.

Speech coding is a field where research has slowed
considerably in recent years. This has occurred not
because it has achieved the ultimate in minimizing bit
rate for transparent speech quality, but because recent
improvements have been small and commercial applica-
tions (e.g., cell phones) have been mostly satisfactory for
the general public, and the growth of available bandwidth
has reduced requirements to compress speech even fur-
ther. However, better compression is always welcomed,
e.g. in large archival systems, etc. This article presents
an overview of the basics of speech representation and
speech neuroscience, and outlines cognitively inspired
speech coding that promises higher compression, adapt-
ability and robustness of the next generation of speech
coding technology.

Historically, the mechanisms of speech perception
lead to perceptual speech coding [2], primarily suitable
for digital audio. Substantial progress in this context
incorporates mechanisms to “optimize” coder perfor-
mance for the human ear in the context of sub-band
(transform) coders. On the other hand, the most common
speech coding for medium to low bit rates is based
on models of human speech production, realized as
linear predictive vocoders, and analysis-by-synthesis lin-
ear predictive coders. Unified audio and speech coding
is usually realized with real-time switching according
to the input signal type. For example, the Enhanced
Voice Services (EVS) coder standardized in 2015 by
3GPP offers new features and improvements for low-
delay real-time communication systems, higher quality
for clean/noisy speech, mixed content and music, in-
cluding support for wideband, super-wideband and full-
band content [3]. However, the core speech compression
method is Algebraic Code Excited Linear Prediction
(ACELP) proposed in 1987 by Adoul et al. [4]. The
compression paradigm thus did not change significantly
in the last 30 years, and has its roots in Linear Predictive
theory dating back to the early 1940s [5], [6]. The
significance of this tutorial is in bridging this influential
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theory with cognitive studies highlight applicability to
speech communication engineering.

Research studies during the last decade incorporate
additional aspects of speech processing, namely func-
tional and temporal organization of human speech and
language processing. Figure 1 shows the overall speech
perception process. Speech signal is treated indiscrim-
inately by subcortical structures from other types of
acoustic input. Such processes have now been fairly
well characterized, particularly the cochlea where it is
decomposed into different frequency channels forming,
what has been coined, the auditory spectrogram [7].
Automatic speech processing is much less inspired from
the subsequent stages in the auditory cortex, and in
particularly omits how this continuous representation is
transformed into a discrete representation, i.e., a lexicon.
Such a transformation is particularly difficult because the
different units (phonemes, syllables, etc.) have varying
durations and operate at different time scales.

The cognitive speech processing introduced in this
article, is specifically based on a dual-stream cortical
circuit [8], and it presents a paradigm shift from per-
ceptual (auditory) speech processing towards cognitive
(auditory/peripheral+cortical/central) sparse speech pro-
cessing. Perception is extensively studied in general
auditory and speech processing [9]. Biologically, not
only the cochlea but also the auditory cortex contribute to
speech perception. Auditory sensations reach perception
only if received and processed by a cortical area.

Cognitive speech processing covers in particular the
temporal aspects of speech processing. As shown by
Fig. 1, the auditory cortex must deal with the different
time scales pertaining to speech, and so one prominent
hypothesis is that speech is first parsed into chunks
corresponding to syllables and phonemes and then each
chunk is categorized [10]. It has been shown that,
during speech processing, the brain generates a cortical
oscillation in the θ-range (3-8 Hz) that may correspond
to the syllable rate, and faster γ-range oscillations (25-
40 Hz) that correspond to the more transient acoustic
properties. As a result, the fine (phonetic) structure of
the speech (the energy bursts underlying consonants)
have signal modulation even above 40Hz. Although
psychology and speech engineering already have a long
history of competing theories of speech perception [11],
recent experimental and theoretical developments in neu-
roscience support the idea that this cortical temporal
sampling is thought to play a key role in human speech
processing [12].

The principle of this multi-resolution temporal sam-
pling has been studied in the context of speech compres-
sion. The basic idea is based on packaging information

into units of different temporal granularity, such as
phonemes and syllables, in parallel. As an example, the
incremental phonetic vocoder – cascaded speech recog-
nition and synthesis systems – extended with syllable-
based asynchronous information transmission mecha-
nisms was recently proposed [13]. The principles of
asynchronous processing are fundamental in cortical
perception processing; asynchronicity exists in visual
perception [14], in audiovisual perception [15], and in
asynchronous evolution of various articulatory feature
streams of speech recognition [16].

The objective of this tutorial is to provide an overview
of the impact of cognitive speech processing on speech
compression, and outline challenges faced in this inter-
disciplinary signal processing field. The article relates
to recent findings of speech and language neuroscience
with traditional speech coding techniques in the context
of recent deep learning computational methods. The tuto-
rial points out key references on fundamental teachings
of psycholinguistics and neurolinguistics and provides
a valuable background on the promising directions to
incorporate principles of cognitive speech processing in
speech compression.

Cognition in this article is assumed to be information
processing in the central nervous system, after the pe-
ripheral auditory system. We avoid any broader definition
that relates to abstract concepts such as memory, mean-
ing, mind and intelligence. Although cognition in speech
engineering might be understood as speech perception,
for clarity of our presentation, Section II assumes cog-
nition as the underlying processes (algorithms) existing
in both speech perception and production. Section III
briefly reviews perceptual audio coding and linear pre-
diction speech coding in order to provide association
with cognitive speech processing. The last Section IV
introduces cognitive speech coding and compares its
properties with linear predictive coding, concluding by
outlining the challenges faced in this interdisciplinary
speech compression field.

II. HUMAN COGNITIVE SPEECH PROCESSING

This section reviews the key results of encoding of
sound, and in particular speech sounds, by humans, and
its sparse and cortical representations. It is focused on the
findings that have impact on speech processing systems.

A. Human speech coding

Historically, we learned about the functional anatomy
of speech and language by observing its dysfunction.
In the late 19th century, Wernicke observed that flu-
ent aphasia (patients who utter fluent but meaningless
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Fig. 1. Overall speech perception process carried out by the peripheral (cochlea) and the central auditory (primary auditory cortex) systems.
The green and blue boxes with corresponding vertically-spaced lines represent syllabic and phonetic speech segmentation, respectively.

speech, with impaired comprehension) was associated
with damage in the superior temporal gyrus (STG) [8],
[17]. On the other hand, damage to Broca’s area causes
non-fluent aphasia, which results in intact comprehen-
sion but partial loss of the ability to produce written
and spoken language [18]. The first stages of acoustic
treatment (the peripheral auditory system, the front-end),
before reaching the auditory cortex, have been well
characterized. This process is summarized in a popular
computational model [7], which lists pre-cortical steps
as the following: i) a decomposition of the acoustic
signal into filter banks through wavelet transform in the
cochlea; ii) a high-pass filter, non-linear compression and
low-pass filtering by hair cells in the auditory nerve;
iii) an enhancement of the frequency selectivity (and
rectification) through a lateral inhibitory network in
the cochlear nucleus; an finally, iv) a further low-pass
filtering in the midbrain. Subsequent stages in auditory
perception involving auditory cortex (spreading from
primary auditory cortex, A1 , i.e. the part of auditory
cortex that receives direct input from the thalamus) and
other cortices are the subject of current intense research.
These are the main brain areas where cognitive speech
processing takes place.

Human auditory coding evolved into highly efficient
coding strategies to maximize the information conveyed
to the brain (and between brain areas) while minimizing
the required energy and neural resources [19]. Sparse
coding scheme and hierarchical processing are central
to A1 information extraction and transformation, and
are present from peripheral to central auditory structures

[12], [20], [21]. In turn, the principles of sparse and
hierarchical (deep) structures in representation learning
of sound has led to advancements in speech processing
techniques [22].

Investigations into electrophysiological recordings
show that no more than 5% of neurons of A1 fire
above 20 spikes/s in response to acoustic stimulation.
This observation suggests that the auditory responses are
“sparse” and highly selective [23], which permits more
accurate representations and a better discrimination of
auditory stimuli [24].

1) A Dual-Stream Model: Not only speech (produc-
tion and perception) data but also promising functional
neural data from the brain activity during speech are
increasingly used to devise cognitive models of speech
and language production and perception. Figure 2 shows
one prominent example, the simplified dual-stream cor-
tical circuit linking cortical network architecture with
speech processing, that leads to a different paradigm
in cognitive speech coding. The first cortical stages of
auditory processing take place in the auditory cortex
and more anterior parts of the STG. Spectrotemporal
analysis on the pre-cortical input allows unveiling spec-
trotemporal patterns (formants, place of articulation, etc.)
and decode the associated phonemes [27], and further
phonological-level processing [25]. Damage of this brain
area results for example in speech agnosia, known as an
incapability to comprehend spoken words despite intact
hearing, speech production, and reading ability.

The dual-stream model posits two diverging pathways
emerging from the auditory cortex: along the ventral
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Fig. 2. Simplified functional model of human speech processing. a) The first stages of acoustic treatment – peripheral auditory system. b)
The dual-stream model of human speech and language processing [8]. Auditory sensations are processed by primary auditory cortex in two
processing pathways 1) the dorsal (back or posterior) stream for speech production and 2) the ventral (front or anterior) stream for speech
recognition and understanding. c) Functional decomposition of primary auditory cortex [25]. The processing consists of spectrotemporal and
phonological encoding. We can formalize phonological coding for example by articulatory phonology [26] that aims to unify low- and high-
dimensional description of a single (speech) system.

stream, including ventral regions of the temporal cor-
tex, sounds are mapped to meaning using underlying
phonological representations; along the dorsal stream,
including parieto-temporal as well as premotor areas,
speech sounds are associated with articulatory patterns, a
direct link between perceptual and motor representations
of speech based again on the phonological speech repre-
sentation. The former stream supports speech recognition
and understanding, whereas the latter stream reflects ben-
eficial effects of auditory feedback on speech production.
While the discrete phonological speech representation
plays a fundamental role in both speech perception and
production [28], at the level of the temporal lobe, current
understanding favors a hybrid continuous/discrete nature
of speech cognition that accommodates the relevance of
the continuous aspects of speech for explaining certain
features of speech (e.g., prosody).

2) Temporal Organization of Speech Perception:
Speech remains mostly intelligible when the spectral
content is replaced by noise, and only the envelope –
modulation of signal energy – is preserved, especially
all modulations below 12 Hz [29], [30]. Temporal regu-
larities of the speech signal thus play a key role in speech
processing. Based on psychoacoustics and neuroimaging
studies, researchers proposed that intrinsic neural oscilla-
tions play a special role in segmenting speech along time
scales of distinct granularities [10]. Evidence suggests
that the auditory cortex segregates acoustic information
on at least three discrete time-scales processed in the
auditory cortical hierarchy: (1) “stress” δ frequency (1–
3 Hz), (2) “syllabic” θ frequency (4–8 Hz) and (3)
“phonetic” low γ frequency (25–35 Hz) [31], with a

strong asymmetry between left and right hemispheres
[32].

Functional organization of ventral sensorimotor cor-
tex supports the gestural model developed in articu-
latory phonology. Analysis of spatial patterns of ac-
tivity showed a hierarchy of network states that or-
ganizes phonemes by articulatory-bound phonological
features [33]. Building upon temporal information seg-
regation in auditory cortex, Figure 3 draws a structural
and temporal organization of a bottom-up organization
of human speech perception.

Fig. 3. Different time granularity of speech processing. The phono-
logical and phonetic classes are segmental attributes whereas the
syllable type, stress and accent are linguistic events recognized at
supra-segmental level [32].

3) Top-down control and speech predictions: There is
a long-standing debate about the functional significance
of the massive feedback projections from higher areas
to lower areas in the cortex. Indeed, most cognitive
processes rely on both feedforward (bottom-up) and
feedback (top-down) operations. One possible role for
these projections would be to convey predictions about
the upcoming sensory information. A neural signature of
such syllabic predictions was uncovered using Magneto-
EncephaloGraphy (MEG) [34]. On the computational
side, influential models of speech perception dating
back to the 1970s have proposed strongly opposing
views on whether lexical predictions can bias pre-lexical
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perceptual decisions. More recently, these models have
been recast within a Bayesian framework, whereby the
brain computes posterior probabilities about phonemes,
syllables and/or lexical units (see [35], [36] for recent
overviews). According to the predictive coding theory,
bottom-up signals would only transmit the error between
the predictions and the actual sensory information [37].
This would allow massive reduction in the size of the
information passed on from sensory to higher areas,
especially in the context of speech, which contains many
redundancies at various levels (see next section about
sparse coding).

Speech acquisition and production models such as the
Directions Into Velocities of Articulators (DIVA) [38]
contain auditory feedback and somatosensory (tactile)
feedback, for example, if the tip of the tongue has
touched correctly the alveolar ridge during the [t] sound
production. Another speech production model, the Hi-
erarchical State Feedback Control (HSFC) model that
posits internal error detection and correction processes,
can in addition detect and correct speech production
errors prior to articulation (see [39] for detailed review).

B. Biologically inspired speech representations

Biologically inspired systems have been proposed
to enhance the spectral representations of speech. The
proposed models approximate the peripheral and the
central auditory systems, with high-dimensional short-
time vectors (for example, vectors 3840 long in [40],
and 6766 in [41]). In this section we introduce recent
cortical representations of speech, used for automatic
speech syllabification [42], speech recognition [43] and
voice activity detection [44].

1) Perception of noise intrusiveness: For natural au-
dio signals like speech and environmental sounds, gam-
matone atoms have been derived as expansion functions
that generate a nearly optimal sparse signal model [45].
Furthermore, gammatone functions are established mod-
els for the human auditory filters employed in the
cochlea. Recent advances exploit this property in de-
veloping a sparse gammatone signal model that can
predict the annoyance of background noise in listening
to the speech signals as perceived by humans. This study
demonstrates that the number of gammatones required to
encode the noise is directly correlated with the percep-
tion of noise intrusiveness [46].

2) Spectrotemporal features: Sparse representation is
found useful in learning structures in the spectrogram
representation of sound such as harmonics, formants,
onsets and localized patterns [47]. These sparse acoustic
features resemble neuronal receptive fields reported in

the Inferior Colliculus (IC), as well as auditory thalamus
and cortex, and sparse modeling of neurons exhibits
the same tradeoff in spectrotemporal resolution as has
been observed in IC. This model is able to predict the
receptive fields of neurons in the ascending mammalian
auditory pathway beyond the auditory nerve [47]. Fi-
nally, within the central auditory system, tuning prop-
erties of auditory neurons in A1 are well described
by sparse spectro-temporal filters, again consistent with
sparse encoding of acoustic information [48].

Psychoacoustical and neurophysiological results indi-
cate that spectrotemporal modulations play an important
role in sound perception. Speech signals, in particular,
exhibit distinct spectrotemporal patterns that are well
matched by receptive fields of cortical neurons. Hence,
methods that can capture spectro-temporal modulations
are considered to improve the performance of the speech
recognition systems. Along this line the Gabor shaped
localized spectrotemporal features were extensively de-
ployed by scientists and engineers at Berkeley for ro-
bust speech recognition systems1. The Gabor filters can
model the shape of receptive fields of cortical neurons
in the primary auditory cortex [49], [50]. The localized
features are obtained by 2D convolution of an auditory
(mel) spectrogram with the Gabor filters.

The Gabor filters are defined as the product of a
complex sinusoidal function s(n, k) with n and k de-
noting the time and frequency index, and a short-time
window function w(n, k). Spectrotemporal Gabor fea-
tures may improve recognition results in all acoustic
conditions. For example, automatic speech recognition
in one-speaker conditions with reverberation and noise
resulted in large relative Word Error Rate improvements
of at least 52% [43].

3) Temporal encoding systems: A computational
model [51] of self-generated neural oscillations showed
as a proof-of-concept that: (i) such neural oscillations can
reliably signal syllable boundaries and that (ii) detected
syllable boundaries can improve recognition of linguistic
units in a parallel neural pathway. In such a model,
coupled excitatory and inhibitory neurons intrinsically
synchronize around 6Hz, and automatically lock to
edges in speech amplitude that convey the syllabic flow.

The model is based on an interconnected network of
leaky integrate-and-fire neurons, in essence, the network
of 10 excitatory and 10 inhibitory neurons. Neural os-
cillations automatically lock to speech slow fluctuations
that convey the syllabic rhythm: a putative syllable
boundary is declared for each inhibitory spike burst, that
is whenever there were at least 2 inhibitory spikes oc-

1http://www1.icsi.berkeley.edu/Speech/papers/gabor/
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curring within a window of 15ms grossly corresponding
to the time scale of integration of cortical neurons.

C. Phonological features

Linguistic and neurocognitive studies recognize the
phonological features as the essential and invariant repre-
sentations used in speech temporal organization. Cernak
et al. [52] hypothesized that phonological speech rep-
resentation inferred using a deep learning approach can
form the basis of information flow in the phonological
network of the dual-stream model showed in Fig. 2. The
phonological posterior probabilities estimated by a feed-
forward neural network convey information at multiple
temporal scales directly mapping to the syllabic and
stress information.

Phonological features, known also as distinctive and
phone-attribute features, are considered as a lower-
dimensional – structural – representation of phonetic
features, analogically to an RGB color model in which
red, green and blue light is added together to reproduce
colors. Articulatory phonology aims to unify the low-
(abstract) and high-dimensional (physical) description of
a speech system, in which lower dimensional articulatory
gestures are linguistically relevant. Bouchard et al. [33]
also claim that functional organisation of the ventral sen-
sorimotor cortex supports the gestural model developed
in articulatory phonology.

In the context of speech coding, the short-term speech
representation inferred from the speech signal using
a deep learning approach, a vector of phonological
posterior features, is shown to enable high compress-
ibility [53] and considered to be partially related to
articulatory gestures, and thus to phonological processing
performed in the STG. The hypothesis of the corre-
spondence of the phonological posteriors to the gestural
trajectories is also motivated by the analogy to the
constriction dynamics model [54] that takes gestural
scores as input and generates articulator trajectories
and acoustic output. Alternatively to this constriction
dynamics model, acoustic output can be generated using
a phonological synthesis described in [55].

III. AUDIO AND SPEECH CODING

In this section, we briefly review perceptual audio
coding and linear prediction speech coding in order
to provide association with the previous section. Read-
ers can find excellent complete reviews, for example,
in [56]–[59].

Figure 4 shows machine speech coding as the anal-
ogy to the dual-stream human speech coding model.
The transmitted code consists of short-term filterbank

(Speech) Linear 
Predictive 

Coders 

(Audio) 
Perceptual 

coders 

perception 
model production 

model 

Fig. 4. Underlying models of audio and speech machine coding.
Similarly to human speech coding shown at Figure 2, also two
disctinct pathways (technologies) exist: perceptual-model (audio) and
production-model based (speech) coders.

parameters (in perceptual coding) or linear predictive
parameters (in speech coding), and long-term (prosodic)
parameters. Temporal parameters are not encoded di-
rectly and phonological analysis is not performed at
all. We can also observe two processing (technologi-
cal) pathways, split according to the underlying human
perceptual or production model. There is only a small
overlap in both technological pathways leading to two
distinct classes of speech coding: perceptual for audio
sources and linear predictive coders for speech sources.
There is currently no quest for a joint or universal coding
scheme, instead both coding classes are sophistically
switching in real-time according to the source type.
This hybrid approach currently offers the best audio and
speech coding available [60].

A. Perception-Model Based Compression

The early attempts to incorporate human speech per-
ception into speech compression were in modeling of
auditory masking performed by the inner ear and the
cochlea. Modeling of dynamic masking, associated with
cochlear outer-hair-cell processing [61], resulted in de-
velopment of µ-law and A-law speech compression
algorithms, standardized by the ITU-T G.711 standard
released in 1972. These dynamic range speech compres-
sion algorithms are still popular; for example Google’s
WaveNet, a deep generative model of raw audio wave-
forms [62], compresses the raw audio using the µ-law
algorithm, before further processing by neural networks.

Both µ-law and A-law algorithms perform non-linear
dynamic range compression designed to reduce the num-
ber of bits of information in each sample of a digital
audio signal while preserving the dynamic range of
samples at low amplitudes. Fig. 5 shows compression
of normalized amplitudes of the input samples, which is
approximately linear at low amplitudes and highly non-
linear at high amplitudes.

Later, in 1979, perceptual limitations of the human
ear were used to encode arbitrary signals [63], which
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Fig. 5. Comparison of µ-law and A-law algorithms. The µ-law
algorithm, primarily used in North America and Japan, provides
a slightly larger dynamic range than the A-law, primarily used in
Europe. Typically, a 16-bit digital audio signal is reduced to 8-bits
by µ-law or A-law encoding.

evolved into perceptual audio coding used nowadays,
as exemplified by the MPEG (moving picture ex-
perts group) standards. These coders incorporate several
psychoacoustic principles, including absolute hearing
thresholds, critical band frequency analysis, simultane-
ous masking, the spread of masking along the basilar
membrane, and temporal masking [56]. Imitating the
human auditory system, sub-band coding breaks the
signal into a number of different frequency bands [64].
This coding indeed resembles spectrotemporal feature
organization of A1 discussed in the previous section.
Sub-band adaptive differential pulse code modulation
with a bit rate of 64 kbit/s is standardized as the G.722
codec. It is also a key component of the popular MP3
format. Perceptual coding is also termed open-loop, since
there is no feedback from the output to the input.

In addition, perceptual speech quality assessment is
an established area of speech coding aiming at au-
tomatically (and non-intrusively, without a reference)
evaluating the quality of transmitted speech. For exam-
ple, the recent Perceptual Objective Listening Quality
Assessment POLQA method [65], standardized as ITU-
T Rec. P.863, includes a perceptual model based on both
spectral and temporal masking effects of human hearing,
and cognitive modelling. While the perceptual model
based on a gammatone filterbank determines which
distortions can be perceived by listeners, the cognitive
model predicts the level of those distortions. The output
of the cognitive model is the absolute category rating,
the overall quality score, which reflects the opinion of
an average listener who is used to using commercial
telephony services.

B. Production-Model Based Compression

Perceptual audio coding uses models of human audi-
tory perception, whereas speech coding is traditionally
based on the human vocal tract (speech production)
model. Though the band-limited wired and wireless
communication systems have changed dramatically from
analogue to digital, the paradigm of speech coding has
remained the same, based on the waveform and the linear
prediction model [5]. Linear Prediction Coding (LPC) is
used in the majority of standardised higher bit-rate [3],
[59] and lower bit-rate speech coding [66]–[71].

LPC also uses some models of human auditory percep-
tion, such as perceptual weighting of the residual quan-
tization error and adaptive postfiltering [57], in order to
minimise different types of auditory distortion. LPC is
usually realized as an analysis-by-synthesis system that
selects an excitation signal among a large set of candi-
dates in a closed-loop manner. In other words, speech
coders include decoded feed-back during encoding. As
introduced in Section II-A3, cortical speech processing
mechanisms also include feed-back decoding processes.
Here the similarity with human cortical speech produc-
tion ends. Machine speech compression is rather inspired
by the physiological process of speech production based
on the source-filter theory.

Further connections with human production exist in
sparse representations that contribute significantly to a
low computational complexity. In 1986, sparse excita-
tion was proposed for Code Excited Linear Prediction
(CELP) coding [72] as a complexity reduction method;
the speech source defined as a codebook populated with
pseudo-random white sequences (Gaussian excitation
vectors) was sparse, in terms of the number of nonzero
pulses for voiced speech. In a typical 5-ms frame (or
sub-frame, depending on the CELP variant) period, only
about 10% of the pulses were set to a value other
than zero. Laflamme et al. in 1990 introduced sparse
algebraic codes (with few nonzero components) for fast
searching of the codebooks [73] to get a minimum
variance residual with an analysis-by-synthesis scheme.
Most current standardized speech coders are based on
this Algebraic-CELP coding (ACELP).

Alternatively, a sparse LP residual can be defined
within a compressive sampling framework [74], intro-
duced in Section IV.

C. Switched Audio/Speech Coding

Current hybrid coding approaches offer real-time
switching between perceptual coding for audio sources,
and ACELP coding for speech sources. Two switching
coders are nowadays popular: i) Opus [75], the open
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source codec of the Internet Engineering Task Force that
includes speech coding technology from Skype’s SILK
codec and audio coding technology from CELT codec
(http://celt-codec.org.), and ii) EVS [3], the Enhanced
Voice Services codec of the 3rd Generation Partnership
Project (3GPP). Recent subjective evaluation showed that
the 3GPP EVS codec, compared to Opus, provides the
same quality at about half the bitrate in low bitrates [60].

Although recent speech codecs offer new features and
improvements for low-delay real-time communication
systems, higher quality for clean/noisy speech, mixed
content and music, including support for wideband,
super-wideband and full-band content, the core compres-
sion method is ACELP proposed in 1987 by Adoul et
al. [4]. The compression paradigm thus did not change
significantly in the last 30 years.

IV. MACHINE COGNITIVE SPEECH CODING (CSC)

Human cognitive speech processing involves trans-
forming sensory inputs in both feed-forward (bottom-up)
and feed-back (top-down) processes. LPC also involves
open-loop (feed-forward) processing for calculation of
the gross spectral shape 1/A(z) and closed-loop (feed-
back) processing for calculation of the excitation signal
U(z) that models the fine spectral structures, as the LP
model represents the speech signal S(z) as a linear time-
invariant system with the following transfer function:

S(z) =
U(z)

A(z)
=

U(z)

1−
∑p

i=1 aiz
−i (1)

The input to the system is U(z), and p pairs of
complex-conjugate poles of A(z) represent formant fre-
quencies (the spectral peaks of the sound spectrum).

Table I compares LPC and Cognitive Speech Cod-
ing (CSC). The main differences lie in the underlying
model used: LPC is a linear time-invariant system with
a pre-defined transfer function and codebooks whose
parameters are estimated from the input signal, whereas
CSC is a neural network system with learnt parameters
using a machine learning approach. Concerning temporal
context, LPC has a synchronous (fixed) frame-subframe
structure, a wider frame of 20ms for calculation of
the p LPC coefficients and a narrow frame of 5ms
for estimation of the LPC excitation signal u. On the
contrary, speech communication is known to be an
asynchronous process due to asynchronous evolution of
various articulatory feature streams [16].

A. Target Speech Representation

At present, speech recognition and synthesis are
highly dependent on machine learning tools and big

data, and speech coding can benefit from it, for ex-
ample by learning of better speech representation [76].
However, there is almost no utilization of the overall
code (underlying structure) of spoken language. The
notion of a code implies relations between message
units and signal units [77]. It is known that articulatory
interpretation of auditory spectrograms is a key to its
understanding, however it becomes more elusive when
applied to brain function. We can hypothesize that once
the speech code is deciphered, we could design very
effective speech compression algorithms, approaching
the efficiency of cognitive processing that operates at
about 50 bits/second [1].

The speech code representation is usually studied in
neurolinguistics [78], [79] without necessary technology
transfer to communication engineering. The motor theory
of speech perception [80] and the direct realist theory
of speech perception [79] claim that the same set of
invariants is shared in speech perception and produc-
tion. The existence of invariant speech representation is
greatly debated in motor control, psycholinguistics, neu-
ropsychology and speech neuroscience. Recent findings
suggest that the representation is based on auditory and
somatosensory speech production parameters [81], and
known time-varying articulatory gestures [26], [33], [82],
[83].

There is currently no analytic solution for the speech
code representation. However, neuropsychological and
brain imaging work indicates that language learning pro-
duces dedicated neural networks that code the patterns
of native-language speech [84]. This also led speech
engineers to investigate neural-network based speech
coding.

B. Neural Network Based Speech Coding

Li Deng and others have demonstrated that deep auto-
encoders can discover some good, discrete representa-
tions or “codes” for the entire speech spectrum [85].
The proposed auto-encoder was designed as a deep, five-
layer network, with a middle coding layer, where the
real-valued activations of hidden units are quantized to
be either zero or one with 0.5 as the threshold. These
binary codes are then used to reconstruct the original
spectrogram. The authors showed improvements over a
conventional vector quantization coder with the Linde-
Buzo-Gray algorithm. The binary nature of the code
resembles the binary nature of phonological speech rep-
resentation, which is believed to be key in organization
of the speech sounds in human brains [25].

Phonological features lie on low-dimensional sub-
spaces. These low-dimensions pertain to either physio-
logical structures of the speech production mechanism
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TABLE I
COMPARISON OF LPC AND COGNITIVE SPEECH CODING (CSC).

Condition Linear predictive coding Cognitive speech coding
Speech representation formants and vocal tract excitation articulatory, auditory and somatosensory targets [38]

Models electrical circuits and digital filters deep and spiking neural networks
Temporal context synchronous frame-subframe structure asynchronous streams [13]

Sparsity excitation signal [73] whole speech representation

or the linguistic structures of the supra-segmental in-
formation. At the physiology level, only certain (very
few) combinations of the phonological features can be
realized through human vocalization. This property can
be formalized by constructing a codebook of structured
sparse codes for phonological feature representation.
Likewise, at the linguistic level, only some (very few)
supra-segmental (e.g. syllabic) mapping of the sequence
of phonological features is linguistically permissible.
This property can be exploited for block-wise coding of
these features with a slower (supra-segmental) dynamic.

1) Short-term (physiological) coding: Figure 6 shows
a well-known channel speech coding scheme. Sub-band
coding splits the signal into different frequency bands,
imitating the human auditory system. Similarly, sub-
phonetic coding splits the signal into different phono-
logical classes, imitating phonological processing of the
central auditory system. Each phonological class leaves
an acoustic signature that listeners can track, similarly
as shown in [79]. Parallel feature transmission facilitates
asynchronous streams evolution.

Phonological analysis starts with a short-term analy-
sis of speech, which consists of converting the speech
signal into a sequence of acoustic feature vectors X =
{~x1, . . . , ~xn, . . . , ~xN}. Each ~xn is also known as an
acoustic frame or just frame, and can be composed
by the conventional Mel frequency cepstral coefficients
(MFCC). The Mel scale is a perceptual scale often used
in speech signal processing. N is the number of frames
and the frames are equally spaced in time.

Then, K phonological probabilities zkn are estimated
for each frame. Each probability is computed indepen-
dently using a binary classifier based on deep neural
network (DNN) and trained with one phonological class
versus the rest. Finally, the acoustic feature observa-
tion sequence X is transformed into a sequence of
phonological vectors Z = {~z1, . . . , ~zn, . . . , ~zN}. Each
vector ~zn = [z1n, . . . , z

k
n, . . . , z

K
n ]> consists of phono-

logical class posterior probabilities zkn = p(ck|xn) of
K phonological features (classes) ck. The a posteriori
estimates p(ck|xn) are 0 ≤ p(ck|xn) ≤ 1,∀k, and
max

∑K
k=1 p(ck|xn) = K. The zkn features can be further

quantized or compressed using sparse coding that relies

on the structured sparsity of the phonological features.
Asaei et al. [53] demonstrated that structured sparse

coding of the binary features enables the codec to operate
at 700 bps without imposing any latency or quality loss
with respect to the earlier developed vocoder [55]. By
considering a latency of about 256ms, the bit rate
of about 300 bps is achieved without requirement for
any prior knowledge on supra-segmental (e.g. syllabic)
identities.

Compressive sampling relies on sparse representation
to reconstruct a high-dimensional data using very few
linear non-adaptive observations. A data representation
α ∈ RN is K-sparse if only K � N entries of α have
nonzero values. We call the set of indices corresponding
to the non-zero entries as the support of α. The CS
theory asserts that only M = O(K log(N/K)) linear
measurements, z ∈ RM obtained as

z = Dα (CS coder) (2)

suffice to reconstruct α, where D ∈ RM×N is a compres-
sive measurement matrix which preserves the pairwise
distances of the sparse features α in the compressed code
z.

At the coding step, the choice of compressive mea-
surement matrix D is very important. A sufficient but
not necessary condition on D to guarantee decoding of
the sparse representation coefficients is that all pairwise
distances between K-sparse representations must be well
preserved in the observation space or equivalently all
subsets of K columns taken from the measurement
matrix are nearly orthogonal. This condition on the
compressive measurement matrix is referred to as the
restricted isometry property (RIP). The random matrices
generated by sampling from Gaussian or Bernoulli dis-
tributions are proved to satisfy RIP condition [87]. It was
shown that a choice of Bernoulli matrix is demonstrated
to achieve higher robustness to quantization [53].

Given an observation vector z, and the measurement
matrix D, the sparse representation α is obtained by the
optimization problem stated as

min
α
‖ α ‖0 subject to z = Dα (Sparse decoder)

(3)
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Fig. 6. Channel speech coding. a) Channels in sub-band coding [64] are composed of the critical band filters, inspired by Homer Dudley’s
channel vocoding [86] from 1939. b) Channels in sub-phonetic coding [55] are composed of the neural network based phonological filters
Deep Neural Networks (DNNs). Phonological features are known also as distinctive or phone-attribute features.

where the counting function ‖ . ‖0: RM −→ N
returns the number of non-zero components in its ar-
gument. The non-convex objective ‖ α ‖0 is often
relaxed to ‖ α ‖1=

∑
i |αi| which can be solved in

polynomial time [88]. Recent advances in CS exploits
inter-dependency structure underlying the support of the
sparse coefficients in recovery algorithms to reduce the
number of required observations and to better differenti-
ate the true coefficients from recovery artifacts for higher
quality [89].

2) Long-term (linguistic) coding: Long-term analy-
sis includes analysis of speech information encoded at
“stress” δ (1–3 Hz) and “syllabic” θ (4–8 Hz) time-
scales. An important module that facilitates extraction
of this information is robust syllable boundary detector.

The neuromorphic syllable detector [51] has some
‘desired’ properties that are very suitable for speech
processing systems. Similarly as humans encode speech
incrementally, i.e., not considering future temporal con-
text, the proposed method works incrementally as well.
In addition, it is highly robust to noise. Syllabification
performance at different noise conditions was compared
to the existing Mermelstein and group delay algorithms.
While the performance of the existing methods depend
on the type of noise and signal to noise ratio, the
performance of the proposed method is constant under
all noise conditions.

Figure 7 shows the neural oscillation that automati-
cally lock to speech slow fluctuations that convey the
syllabic rhythm.

3) Composition of short and long-term neural net-
works: A Neural Network (NN) based speech coder can
be realized as a composition of deep and spiking neural
networks [90]. The deep neural networks encode and

Fig. 7. Neuromorphic model output for one examplar sentence
(“Alfafa is healthy for you”). Dark green ticks on top represent ex-
citatory neurons spikes, light green ticks represent inhibitory neuron
spikes. Vertical lines on top of spectrogram represent actual syllable
boundaries.

decode the speech signal based on the binary phonolog-
ical speech representation, and the spiking net based on
neuromorphic syllabification, described above, is used
for prosody encoding. Prosody represents the patterns of
stress and intonation of the speech signal. Figure 8 shows
the training and inference stages of the three different
NNs.

Decoding is realized as a synthesis DNN that learns
the highly-complex mapping of the transmitted sequence,
Z, to the speech parameters. It consists of two compu-
tational steps. The first step is a DNN forward pass that
generates the speech parameters, and the second one is
generation of the speech samples from the speech param-
eters including a decoded pitch signal. The pitch signal
is coded with a codebook that contains the logarithm of
the continuous pitch of all the syllables of the training
data, parametrized with the discrete Legendre orthogonal
polynomials.

Intelligibility evaluation of this NN codec showed
about 10% degradation, when comparing with LPC
(Speex) coding; however, it operates at a bit rate ap-
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Fig. 8. Training and inference stages for an analysis DNN shown
on 8a, a spiking NN shown on 8b, and a synthesis DNN shown
on 8c. Training of the analysis DNN and the spiking NN requires
phonetic and syllabic boundary labels, respectively, whereas training
of the synthesis DNN does not require force-aligned labels. Pitch is
the fundamental frequency of the sound signal.

proximately 6 times lower.

C. Challenges

This sections outlines current challenges in cognitive
speech coding:

1) CSC Model Architecture: What type, size and
composition of neural networks are suitable for CSC?

It was shown that more than 77% of all coding distor-
tion of NN codec comes from the parametric vocoding
used for speech re-synthesis. This challenge can be thus
inspired by recent advancements in end-to-end speech
synthesis research.

Modelling of the long-term context in CSC can be
investigated by adapting spiking or recurrent neural
networks.

2) CSC Speech Parameters: What is an efficient
speech representation for CSC, and how to design its
sparse coding?

CSC speech parameters should be based on cortical
representation introduced in Section II. It includes sparse
short-term (physiological) and long-term (linguistic) rep-
resentations. The parameters have to be efficiently esti-
mated by the CSC model.

3) CSC Adaptability: How to realize computational
sensory feed-back?

The goal is to implement an adaptation of the cortical
speech representation based on sensory feed-back. The
feedback in general consists of articulatory gestural feed-
back and auditory feedback. The latter is broadly related
to auditory targets used in non-intrusive estimation of
speech quality, such as the ITU-T recommendation P.563
that defines a perceptual model of speech. CSC intro-
duces a novel feedback for the speech code constructed
from the auditory and articulatory targets, currently not
used by waveform/LPC coding.

An example is shown for adaptive speech activity
detection [44]. The system employs a 2-D Gabor filter
bank whose parameters are retuned offline to improve the
separability between the feature representation of speech
and nonspeech sounds, and it attempts to minimize the
misclassification risk of mismatched data, with respect
to the original statistical models.

4) CSC Robustness: How to focus an attention of
CSC to increase intelligibility or to decrease cognitive
load?

Cognitive speech coding can benefit from biological
cognitive aspects of speech communication, trying to
design speech codecs that “are aware” of the hidden
structure of the transmitted speech signal (speech code),
and the transmitted code is linguistically relevant. Lin-
guistically relevant transmission code could bring novel
functionality to speech transmission systems, performing
tasks such as automatic dialect correction and pro-
nunciation improvements for people with phonological
and articulatory disorders that might eventually lead to
intelligibility enhancements.

Error minimization can perform error correction as
defined by the DIVA and HSFC models. For example,
let us consider the task of dialect correction. Error
minimization might be implemented as an automatic
accentedness evaluation of non-native speech [91], [92]
in an closed-loop fashion.

Cognitive load, related to the cost of cognitive process-
ing resources and listening effort, is at present studied in
the field of cognitive hearing science and by manufactur-
ers of hearing aids devices. CSC can be inspired by this
ongoing research to apply their results into intelligibility
enhancements of transmitted speech signals.

5) CSC Language Independence: How to make
neural-network based CSC language independent?
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Language independent speech and language technol-
ogy belongs to the main research topics of the speech sig-
nal processing community. One approach is in modeling
all the International Phonetic Alphabet (IPA) symbols.
There are more than 100 the IPA symbols that might be
further extended with more narrow phonetic and prosody
annotations. On the contrary, all the speech sounds share
some attributes, known in linguistics as phonological
features or phone-attributes in the speech community. In
phonology, one example could be the Sound Pattern of
English set consisting of 13 features [93]. In the speech
community, one major effort resulted into Automatic
Speech Attribute Transcription [94], which proposes a
framework for speech understanding based on processing
of cognitive hypotheses created from the acoustic and
auditory cues of the phone-attributes. Recent phonetic
DNN training analysis confirmed that the hidden lay-
ers learn an effective representational basis, the phone-
attributes, for the formation of invariant phonemic cat-
egories [95]. Exploring this phonetic invariance across
the languages is thus a promising direction also for the
multi-lingual CSC technology.

6) CSC speaker recognizability: How to make neural-
network based CSC speaker independent?

Another a very relevant problem is speaker recogniz-
ability. Early work on speaker adaptive phonetic vocod-
ing resulted into variable bit-rate coding [96]. Promis-
ing results have showed recent advances in NN-based
generative models of raw audio, such as WaveNet from
Google Research [62] and Deep Voice 2 from Baidu
Research [97], capable to learn and imitate hundreds of
voices within a single generative model.

7) CSC Complexity: How to minimize computational
complexity of CSC?

Complexity of compressive sampling is about
O(K log(N/K)) for K-sparse (K � N ) N -
dimensional speech representation.

Computational complexity of a DNN is about Nw,
where w is the number of weights of the DNN. The
compositional neural network based codec described
above consisted of 12 analysis DNN, each trained with
2.46million parameters, and one synthesis DNN trained
with 3.31million parameters. Decoding with generative
models of raw audio with based on the advanced NN
architectures, composed of deep convolutional and recur-
rent NNs, might have significantly higher computational
demand, not feasible for current devices.

V. SUMMARY

We have presented a tutorial of the impact of cognitive
speech processing on speech compression. We described
basic concepts of human cognitive speech processing,

and how cognitive speech coding has impacted current
audio and speech coding systems. Properties of cognitive
speech coding were then presented, and compared to
linear predictive coding.

Cognitive speech coding has great potential to further
impact current speech coding standards. Deep learning
and neural basis of speech and language processing have
been tremendously advanced recently, and many of the
findings can be transferred to the field of speech coding.
The tutorial ends by outlining current challenges in CSC,
relying on incorporating phonological posteriors and
temporal models, employing speech production models
and cognitive feedback for enhanced speech compres-
sion.
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