900 V Reverse-Blocking GaN-on-Si MOSHEMTs with a Hybrid Tri-anode Schottky Drain

Jun Ma, Minghua Zhu, and Elison Matioli, Member, IEEE

Abstract — In this work we present high-performance GaN-on-Si metal-oxide-semiconductor high electron mobility transistors (MOSHEMTs) with record reverse-blocking (RB) capability. By replacing the conventional ohmic drain with a hybrid tri-anode Schottky drain, a high reverse breakdown voltage (\(V_{BR}\)) of -900 V was achieved (at 1 \(\mu\)A/mm with grounded substrate), along with a small reverse leakage current (\(I_{R}\)) of ~20 nA/mm at -750 V. The devices also presented a small turn-on voltage (\(V_{ON}\)) of 0.58 ± 0.02 V, a small increase in forward voltage (\(\Delta V_F\)) of ~0.8 V, a high ON/OFF ratio over 10\(^{10}\), and a high forward breakdown voltage (\(V_{FB}\)) of 800 V at 20 nA/mm with grounded substrate. These results demonstrate a new milestone for RB GaN transistors, and open enormous opportunities for integrated GaN power devices.

I. INTRODUCTION

Reverse-blocking (RB) transistors are crucial for many topologies of power converters, such as cyclo-converters, matrix converters, current source and multi-level inverters, some resonant converters, and among many others [1], which are highly desirable for applications that require reverse protection or bi-directional transfer of power [2,3].

While GaN-on-Si HEMTs emerge as promising candidates for future power conversion, HEMTs with RB capabilities are still rare up to date. In the few studies on RB-HEMTs [1], [4]-[7], the reverse blocking was typically achieved by integrating a Schottky barrier diode (SBD) into the drain electrode [8]-[11], yet these devices presented small \(V_{BR}\) and large \(I_{R}\) mainly limited by the generally poor reverse-blocking property of GaN SBDs. T. Morita et al. reported bi-directional GaN switches with RB capabilities using two monolithic normally-off gate injection transistors [12], which despite the highly integrated architecture for bidirectional switching, presented a limited \(V_{BR}\) voltage and a relatively large \(V_{ON}\).

Recently we have shown that the poor reverse blocking in lateral AlGaN/GaN SBDs could be addressed by pinning the reverse voltage drop at the Schottky junction (\(V_{SCH}\)) at small levels [13]. This was demonstrated with a hybrid of tri-gate and tri-anode architectures, which allows a precise control over the pinch-off voltage (\(V_P\)) of the tri-gate/tri-anode regions to engineer the \(V_{SCH}\), resulting in GaN-on-Si SBDs with simultaneously small \(V_{ON}\), low \(I_{R}\) and high \(V_{BR}\) [14]. These results paved the path for the development of high-performance RB GaN transistors.

In this work, we demonstrate GaN-on-Si RB-MOSHEMTs with state-of-the-art reverse and forward performances, by replacing the conventional ohmic drain electrode with hybrid tri-anode SBDs. The devices presented a small \(V_{ON}\) of 0.58 ± 0.02 V, a small \(\Delta V_F\) of 0.8 V, a high \(V_{FB}\) of -900 V and \(V_{BR}\) of 800 V, both with grounded substrate, along with a small \(I_{R}\) of ~20 nA/mm at -750 V. These results are comparable to state-of-the-art discrete devices measured with grounded substrates, but achieved in a single integrated device, which reveal the extraordinary potential of the tri-anode Schottky drain to enable RB-MOSHEMTs as uni-directional power switches.

This work was supported in part by the European Research Council under the European Union’s H2020 program/ERC Grant Agreement 679425 and in part by the Swiss National Science Foundation under Assistant Professor (AP) Energy Grant PYAPP2_166901. (Corresponding authors: Jun Ma; Elison Matioli.)

The authors are with the Power and Wide-band-gap Electronics Research Laboratory (POWERlab), École polytechnique fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland. (e-mail: jun.ma@epfl.ch; elison.matioli@epfl.ch).

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Figures 1(a) - (c) show the schematics, equivalent circuit and scanning electron microscopy (SEM) image of the RB-MOSHEMT. The device consists of an ohmic electrode as the source, a MOS structure as the gate and a hybrid tri-anode Schottky diode as the drain. The latter integrates a tri-anode, tri-gate MOS and planar field plate (FP) regions. The sidewall metal in the tri-anode region (Fig. 1(e)) forms a direct Schottky contact to the 2DEG and leads to a small $V_{ON}[15,16]$. In OFF-state, V_{SCB} is pinned at the V_D^I of the tri-anode region, which can be very small due to the elastic relaxation of the AlGaN/GaN nanowires [17], [18] and additional electrostatic control from the sidewall metals [19]-[28], resulting in a small I_D [13]-[14]. The tri-gate region (Fig. 1(d)) works as tri-gated FPs to shield the tri-anode region from high voltages, which along with the planar FP improves the V_D^I [14], [29], [30].

The AlGaN/GaN heterostructure in this work consisted of 2 nm of GaN cap, 24 nm of Al$_{0.25}$Ga$_{0.75}$N barrier, 300 nm of undoped GaN channel and 5 μm of buffer layers. The concentration and mobility of the 2DEG were about 1×10^{13} cm$^{-2}$ and 2000 cm2/V·s, respectively. The device fabrication started with e-beam lithography to define the nanowires, which were etched by inductively coupled plasma with a depth of ~180 nm. The nanowire width (w) and spacing (s) were both 300 nm, corresponding to a filling factor ($FF = w/(w + s)$) of 0.5. The device isolation was done by mesa etching, followed by the formation of the source ohmic contact. The ohmic contact was formed by Ti/Al/Ti/Ni/Au (20/120/40/60/50 nm), annealed at 830 °C under forming gas for 30 sec. Then 10 nm SiO$_2$ and 10 nm Al$_2$O$_3$ were deposited by atomic layer deposition and selectively removed in the tri-anode region. The gate and drain contacts were formed using Ni/Au. The oxides in access/ohmic regions were later removed by wet etching, so the devices were not passivated, which however did not affect the leakage currents according to our observation. MOSHEMTs with the same dimensions but conventional ohmic drain electrodes were fabricated on the same chip as the reference.

All devices in this work had the same gate-to-source distance (L_{SO}), gate length (L_G), gate-to-drain distance (L_{GD}) of 1.5 μm, 2.5 μm and 12.5 μm, respectively. The L_{GD} here refers to the distance between the gate and the tri-anode region. The lengths of the planar FP (L_{FP}) and tri-gate (L_{TGR}) regions were 1.3 μm and 1.2 μm, respectively. All device characteristics, such as drain current (I_D), I_{SS} and OFF-state forward leakage current (I_{FOR}), were normalized by the width of the device footprint, which was 60 μm, and their error bars were determined from measurements on 10 separate devices of the same kind.

RESULTS AND DISCUSSION

Figure 2(a) shows the forward output characteristics of the devices as well as their I_{DS}, revealing excellent performance of the RB-MOSHEMTs as uni-directional transistors. The differential R_{ON} and maximum I_D of the RB-MOSHEMTs were 10.2 Ω mm and 150 mA/mm, respectively. The g_{m} of the MOSHEMTs at 0 V, respectively. The device fabrication

REFERENCES

6. (2016). Title of the Paper. Journal Title, 6(6), 6-60. doi:10.1109/JOURNAL.2016.00006

8. (2014). Title of the Paper. Journal Title, 8(8), 8-80. doi:10.1109/JOURNAL.2014.00008

10. (2012). Title of the Paper. Journal Title, 10(10), 10-100. doi:10.1109/JOURNAL.2012.00010

of these devices was estimated from the SS, according to Ref. [31], which was 1.24×10^{12} cm2·V$^{-1}$.

High temperature characteristics of the device are shown in Figure 3. At 150 °C, the V_{ON} was reduced to 0.53 V and the R_{ON} was increased to 26.4 Ω·mm. The I_{D} was increased by a little over one order of magnitude, from 0.03 μA/mm to 0.57 μA/mm, which was however still below 1 μA/mm, revealing the excellent potential of the RB-MOSHEMTs for high-temperature applications.

Figure 4 shows the forward and reverse breakdown characteristics of the devices, measured with grounded substrate at room temperature. Both devices presented high forward breakdown voltages (V_{BR}^F) of about 800 V at 0.02 μA/mm under a gate voltage (V_G) of -10 V, along with a very small I_{OFF} of about 6 nA/mm at 650 V. While the MOSHEMTs showed no reverse-blocking capability, the reverse breakdown voltage (V_{BR}^R) of the RB-MOSHEMTs was as high as -900 V, along with a small I_{OFF} of about 0.02 μA/mm up to -750 V.

The RB-MOSHEMTs in this work were compared with other RB GaN transistors on various substrates in the literature (Tab. 1), presenting the smallest I_{OFF}, the highest V_{BR}^F, the smallest ΔV_F along with a small V_{ON}. The RB-MOSHEMTs presented the smallest I_{OFF} because their V_{SCH} was pinned at a small bias of ± 2.3 V, determined by the pinch-off of the tri-anode region, regardless of the increase in reverse bias. This makes the I_{OFF} saturate at a small level instead of increasing exponentially with voltage [11]. The high V_{BR}^F obtained in this work is attributed to the better-distributed electric field under reverse biases. In the hybrid tri-anode drain, two field plates, e.g., the planar and the tri-gate regions, are integrated with the tri-anode, by simply engineering their pinch-off voltages with the tri-gate approach, which spread effectively the electric field and improved the V_{BR}^F [29,30].

We benchmarked our devices against state-of-the-art discrete GaN-on-silicon power MOSHEMTs and SBDs in Fig. 5. The RB-MOSHEMTs in this work presented both high V_{BR}^F and V_{BR}^R, comparable to state-of-the-art discrete devices measured with grounded substrates, revealing their extraordinary potential as uni-directional power transistors. More importantly, both the high V_{BR}^F and V_{BR}^R were achieved in a single integrated device in this work, instead of using a discrete transistor in series with an SBD, which can greatly simplify the circuit design, reducing its size, resistance and parasitic components, and improve the efficiency of power converters.

IV. CONCLUSION

In this work we presented GaN-on-Si MOSHEMTs with excellent reverse-blocking capability based on a hybrid tri-anode Schottky drain. The devices exhibited a small V_{ON} of 0.58 ± 0.02 V, a small ΔV_F of 0.8 V, a high ON/OFF ratio over 1010, a record high reverse breakdown voltage of 900 V (at 1 μA/mm with a grounded substrate), and a small I_{OFF} of about 20 nA/mm at -750 V, revealing the significant potential of these devices for future efficient and compact GaN power converters.