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Recently, relations were established between the coefficients of free and forced amplitude detuning
polynomial expansions. The forced oscillations were considered only in a single plane. In this paper we
extend and generalize previous results by developing analytical equations that transform the free amplitude
detuning function into the amplitude detuning involving forced oscillations in both transverse planes. These
are used to obtain closed approximated formulas for the beam-beam amplitude detuning with forced
oscillations. Formulas are compared to single and multiparticle simulations.
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I. INTRODUCTION

Forced oscillations play a very important role in modern
accelerators. They may be induced by magnets with
imperfect power supplies or by radio frequency noise in
deflecting devices, like crab cavities [1], possibly leading to
instabilities. Forced oscillations have been purposely used
in accelerators to avoid spin resonances with AC dipoles
[2]. Since then, AC dipoles have become key instruments
for the measurement and control of linear and nonlinear
dynamics in hadron colliders [3–15]. Forced oscillations
are also exploited in the study of beam-beam effects
[16–18] and impedances [19]. Beam-beam effects in
HL-LHC will possibly induce β-beating above the toler-
ances from machine protection [20] and forced oscillations
with AC dipoles are promising instruments to measure the
beam-beam β-beating. Experimental studies are ongoing
at the LHC [21,22]. These would allow verifying and
optimizing beam-beam correction schemes [23–27]. For all
the above reasons it is important to gain understanding in
the beam dynamics of forced oscillations.
In [5,7,12] it is studied how the dynamics of forced

oscillations differs from free oscillations. In particular, [12]
shows that amplitude detuning coefficients change between
the two types of motion depending on the multipolar order
responsible of the amplitude detuning.

Section II extends the result in [12] with analytical
equations that transform the free amplitude detuning,
Qx;yðJx; JyÞ, into the amplitude detuning involving forced
oscillations,Qx;yðJx; Jy; Ax; AyÞ. The free and forced actions
are represented by Jx;y and Ax;y, respectively. Note that,
abusing notation, we use the sameQ function for the free and
forced cases asQx;yðJx; JyÞ ¼ Qx;yðJx; Jy; 0; 0Þ. Section III
applies the result in Sec. II to the beam-beam amplitude
detuning and compares analytical formulas to single and
multiparticle simulations.

II. RELATING FREE AND FORCED AMPLITUDE
DETUNING FORMULAS

Similarly as in [12] the average Hamiltonian can be
expressed as

hHi ¼
I

ds
X∞
j;k¼0

hjkhx2jihy2ki; ð1Þ

where x and y are the horizontal and vertical coordinates,
the averaging denoted by hi takes place over all phase
variables. It is important to note that we have assumed that
x and y coordinates are fully independent. The horizontal
amplitude detuning is given by

ΔQx ¼
1

2π

∂hHi
∂Jx ¼ 1

2π

I
ds

X∞
j;k¼0

hjk
∂hx2ji
∂Jx hy2ki: ð2Þ

In the following we assume that the motion is out of any
resonance. For free oscillations, xðsÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

2Jxβx
p

cosϕ, we
have
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hx2ji ¼ 2−j
�
2j
j

�
βjxJ

j
x; ð3Þ

giving the following amplitude detuning,

ΔQx ¼
1

2π

I
ds

X∞
j;k¼0

hjk2−jj

�
2j
j

�
βjxJ

j−1
x hy2ki: ð4Þ

In the presence of forced oscillations the linear eigenm-
odes are a superposition of the two free and forced betatron
oscillations [3,5,7],

xðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2Jxβx

p
cosϕþ

ffiffiffiffiffiffiffiffiffiffiffiffi
2Axβ

0
x

p
cosϕ0;

where Ax is the forced action determined by the strength of
the AC dipole and the distance between the natural and the
driving tunes. β0 and ϕ0 are the forced betatron and
phase advance functions [7], which differ from the free β
andϕ. The hx2ji termwith forced oscillations is expanded as
follows,

hx2ji ¼ 2−j
�
2j
j

�
βjxA

j
x þ 2−j

�
2j

2j − 2

��
2

1

��
2j − 2

j − 1

�
βjxJxA

j−1
x þOðJ2xÞ

¼ 2−j
�
2j
j

�
βjxA

j
x þ 2−jj2

�
2j
j

�
βjxJxA

j−1
x þOðJ2xÞ; ð5Þ

where, as in [12], we have approximated β0 ¼ β for sim-
plicity, which is a good approximation for LHC typical
configurations. The horizontal amplitude detuning with
forced oscillations is given by

ΔQx ¼
1

2π

I
ds

X∞
j;k¼0

hjk2−jj2
�
2j
j

�
βjxA

j−1
x hy2ki þOðJxÞ:

ð6Þ

Note that the remaining terms represented by OðJxÞ vanish
for Jx ¼ 0 and that this equation holds both for free and
forced vertical motion. The coefficients of the monomials of
order j − 1 in Eqs. (4) and (6) differ simply by a factor j. This
factor can be conveniently introduced in Eq. (4) by multi-
plying by Jx and taking the derivative. Therefore the forced
amplitude detuning can be derived from the free detuning as

QxðJy; AxÞ ¼
∂
∂Jx ½JxQxðJx; JyÞ�

����
Jx¼Ax

; ð7Þ

where we have assumed free vertical motion, while in the
case of vertical forced oscillations we get the following,

QxðAx; AyÞ ¼
∂
∂Jx ½JxQxðJx; JyÞ�

����
Jx¼Ax;Jy¼Ay

: ð8Þ

In the above equations we have used a simplified
notation where the missing variables in the function Qx
are defined to be zero, i.e.QxðJy; AxÞ≡Qxð0; Jy; Ax; 0Þ and
QxðAx; AyÞ≡Qxð0; 0; Ax; AyÞ. The equivalent equations for
the vertical detuning are derived simply by exchanging x and
y obtaining the following general equations,

Qx;yðAx; AyÞ ¼
∂

∂Jx;y ½Jx;yQx;yðJx; JyÞ�
����
Jx¼Ax;Jy¼Ay

ð9Þ

Qx;yðJy;x; Ax;yÞ ¼
∂

∂Jx;y ½Jx;yQx;yðJx; JyÞ�
����
Jx;y¼Ax;y

: ð10Þ

A particularly interesting case of the equations above is the
pure cross detuning, which features identical functions for
free and forced oscillations,

Qx;yðAy:xÞ ¼ Qx;yðJy;xÞjJy;x¼Ay;x
: ð11Þ

The results above are limited to only two actions larger
than zero in different planes, i.e. missing Qx;yðJx; AxÞ,
Qx;yðJy; AyÞ and all cases with more than two actions.
However, it is possible to relate free and forced polynomial
terms. As an illustration we consider the one dimensional
case. Let QxðJxÞ and QxðJx; AxÞ have the following
polynomial expansions,

QxðJxÞ ¼
X∞
j¼0

μjJ
j
x; ð12Þ

QxðJx; AxÞ ¼
X∞
j;k¼0

μ0jkJ
j
xAk

x; ð13Þ

then the μj and μ0jk coefficients are related by the following
formula,

μ0jk
μkþj

¼ ðjþ kþ 1Þ!ðjþ kÞ!
ðjþ 1Þ!j!k!2 :

For j ¼ 0 we recover the factor that appeared between
Eqs. (6) and (4). In the following we focus on applying the
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closed analytical formulas in Eqs. (9)–(11) to the amplitude
detuning from beam-beam.

III. BEAM-BEAM

Assuming a round beam at the interaction point the
beam-beam amplitude detuning versus the free actions
is given by the following integral up to first order in the
beam-beam parameter ξ [28,29],

QxðJx; JyÞ ¼ ξ

Z
∞

0

dt
ð1þ tÞ2 e

− JxþJy
2ϵð1þtÞI0

�
Jy

2ϵð1þ tÞ
�

×

�
I0

�
Jx

2ϵð1þ tÞ
�
− I1

�
Jx

2ϵð1þ tÞ
��

; ð14Þ

where ξ is equivalent to the tune shift for a zero amplitude
particle and for the round beam case ξx ¼ ξy ¼ ξ, ϵ is the
beam emittance and InðxÞ is the modified Bessel function
of the first kind. The vertical detuning is obtained by
swapping x and y. This integral can only be solved when
one action is zero, obtaining (for Jy ¼ 0)

QxðJxÞ ¼ ξ
2ϵ

Jx

�
1 − I0

�
Jx
2ϵ

�
e−

Jx
2ϵ

�
; ð15Þ

QyðJxÞ ¼ ξ

�
I0

�
Jx
2ϵ

�
þ I1

�
Jx
2ϵ

��
e−

Jx
2ϵ : ð16Þ

Applying the transformation given in Eqs. (9) and (11) to
Eqs. (15) and (16) and using that

dI0ðxÞ
dx

¼ I1ðxÞ; ð17Þ

the approximations to the horizontal and vertical beam-
beam detuning of forced oscillations are given by

QxðAxÞ ¼ ξ

�
I0

�
Ax

2ϵ

�
− I1

�
Ax

2ϵ

��
e−

Ax
2ϵ : ð18Þ

QyðAxÞ ¼ ξ

�
I0

�
Ax

2ϵ

�
þ I1

�
Ax

2ϵ

��
e−

Ax
2ϵ ; ð19Þ

Figure 1 shows 2-dimensional footprints from free and
forced oscillations numerically computed from Eq. (14)
and its transformation according to Eq. (9), respectively.
Figure 2 shows the relative beam-beam amplitude detuning
for free and forced oscillations in one dimension from the
analytical formulas in Eqs. (15) and (18). Both curves have
same initial and asymptotic values as expected intuitively.
At small amplitudes, forced oscillations detune a factor two
faster than free oscillations as expected. Forced oscillations
approach the asymptote considerably faster.
Single particle tracking simulations have been performed

with MAD-X [30] to verify Eqs. (18) and (19). Figure 3

shows the tune shift versus amplitude for the LHC,
with one head-on encounter, ξ ¼ 0.0074, bare machine
fractional tunes of Qx ¼ 0.31, Qy ¼ 0.32 and driving
horizontal tune of 0.292. The forced oscillation is obtained
by ramping up an AC dipole in 4000 turns.
The equations presented above should also be relevant

when two beams interact in the weak-strong regime and the
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FIG. 1. Beam-beam footprint from free (top) and forced
(bottom) oscillations from Eq. (14) and its transformation
according to Eq. (9), respectively. The radial oscillation ampli-
tude is represented by the color map in units of beam sigma.
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FIG. 2. Beam-beam amplitude detuning for free and forced
oscillations in one dimension, Eqs. (15) and (18). The horizontal
axis represents the oscillation amplitude normalized to the
beam size.
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forced oscillation is applied to the weak beam. The
limitation is that the weak beam features a distribution
in the free actions Jx and Jy which are not present in the
closed analytical equations in Eqs. (18) and (19). We
illustrate the behavior of QðJx; AxÞ via single particle
simulations. The free action corresponds to an initial offset
of the particle. The forced action is computed from the
Fourier amplitude of the spectral line with the forced tune
during the excitation plateau. Particles with larger free
action (Jx) feature a weaker detuning versus the forced
action (Ax) as shown in Fig. 4 with simulations. The

detuning for particles at larger free amplitudes cross the
analytical formula (Jx ¼ 0) between 2σ and 3σ. Therefore
the analytical formula should represent the upper boundary
of the incoherent spectrum of the weak beam motion for
forced oscillations below 2σ and the lower boundary for
forced oscillations above 3σ. Such an effect is not present in
the nonexcited plane and the analytical formula should
represent the upper boundary of the incoherent spectrum.
This can be understood from the shape of the beam-beam
force since its derivative changes sign at about 1.6σ.
A similar behavior is observed when beams collide with
a fixed offset [31,32].
A similar behavior is observed for the detuning in

collisions with fixed beams separation [31].
LHC multiparticle simulations have also been performed

with COMBI [33] in the weak-strong regime to compare to
the single particle analytical formula. Beam distributions
are considered with equal emittances of 2 μm in the
transverse planes for both beams. The intensity ratio is
100 between the strong and the weak beams and a trans-
verse feedback is activated on the strong beam with a
damping time of 20 turns. The beam-beam parameter is
ξ ¼ 0.0061 with one beam-beam interaction. The bare
machine fractional tunes are Qx ¼ 0.31, Qy ¼ 0.32 and
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FIG. 3. Comparison of forced beam-beam amplitude detuning
analytical formulas to simulations. Top: Direct amplitude detun-
ing from Eq. (18). Bottom: Cross amplitude detuning from
Eq. (19).

FIG. 4. Simulated relative amplitude detuning versus forced
oscillation amplitude for particles with increasing free oscillation
amplitudes: 2σ, 4σ and 6σ. Equation (18) is also shown
representing the 0σ particle.

FIG. 5. Simulated frequency spectrograms for the horizontal
(top) and vertical (bottom) planes versus horizontal amplitude of
forced oscillations in the weakly interacting beam. The black
curves correspond to the single particle forced beam-beam
amplitude detuning analytical formulas in Eqs. (18) and Eq. (19).
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the driving horizontal tune is 0.292. The forced oscillation
is obtained by ramping the AC dipole in 2000 turns and the
beams are tracked for 106 turns with 105 macroparticles.
The Fourier transform is computed to the horizontal and
vertical turn-by-turn centroid positions for a fine scan of
forced oscillation amplitudes. Figure 5 shows these Fourier
spectra in color code versus forced oscillation amplitude
together with the analytical formula. These multiparticle
simulations confirm the usefulness of the analytical for-
mulas in the weak-strong regime. In the nonexcited plane
analytical formula represents the upper boundary of the
incoherent spectrum, Fig. 5 bottom. In the excitation plane,
Fig. 5 top, the analytical formula changes between the
upper and lower boundaries in the range of 2σ and 3σ
forced amplitude, as expected from the above single
particle simulations.

IV. CONCLUSIONS

Generalized analytical relations between free and forced
amplitude detuning functions have been derived. These
have been applied to the case of the beam-beam interaction
being the source of amplitude detuning and simulations
with the LHC model have been used to verify the analytical
formula. The applicability of the formulas in the weak-
strong regime has been demonstrated with multiparticle
simulations.
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