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“At the time we were all convinced that we had to speak, write, and publish as quickly as possible and

as much as possible and that this was necessary for the good of mankind. Thousands of us published

and wrote in an effort to teach others, all the while disclaiming and abusing one another. Without

taking note of the fact that we knew nothing, that we did not know the answer to the simplest question

of life, the question of what is right and what is wrong, we all went on talking without listening to one

another. At times we would indulge and praise each other on the condition that we be indulged and

praised in return; at other times we would irritate and shout at each other exactly as in a madhouse.”

Lev Nikolajevič Tolstoj. A Confession

by Outi Supponen
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Abstract

Various countries and communities are defining or rethinking their energy strategy driven by con-

cerns for climate change and security of energy supply. Energy models, often based on optimization,

can support this decision-making process. In the current energy planning practice, most models are

deterministic, i.e. they do not consider uncertainty and rely on long-term forecasts for important

parameters. However, over the long time horizons of energy planning, forecasts often prove to

be inaccurate, which can lead to overcapacity and underutilization of the installed technologies.

Although this shows the need of considering uncertainty in energy planning, uncertainty is to date

seldom integrated in energy models. The main barriers to a wider penetration of uncertainty are i)

the complexity and computational expense of energy models; ii) the issue of quantifying input un-

certainties and determining their nature; iii) the selection of appropriate methods for incorporating

uncertainties in energy models. To overcome these limitations, this thesis answers the following

research question

How does uncertainty impact strategic energy planning and

how can we facilitate the integration of uncertainty in the energy modeling practice?

with four novel methodological contributions. First, a mixed-integer linear programming modeling

framework for large-scale energy systems is presented. Given the energy demand, the efficiency and

cost of energy conversion technologies, the availability and cost of resources, the model identifies the

optimal investment and operation strategies to meet the demand and minimize the total annual cost

or greenhouse gas emissions. The concise formulation and low computational time make it suitable

for uncertainty applications. Second, a method is introduced to characterize input uncertainties in

energy planning models. Third, the adoption of a two-stage global sensitivity analysis approach is

proposed to deal with the large number of uncertain parameters in energy planning models. Fourth,

a complete robust optimization framework is developed to incorporate uncertainty in optimization-

based energy models, allowing the consideration of uncertainty both in the objective function and

in the other constraints.

To evaluate the impact of uncertainty, the presentation of the methods is systematically associated

to their validation on the real case study of the Swiss energy system. In this context, a novelty is

represented by the consideration of all uncertain parameters in the analysis. The main finding is
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Abstract

that uncertainty dramatically impacts energy planning decisions. The results reveal that uncertainty

levels vary significantly for different parameters, and that the way in which uncertainty is charac-

terized has a strong impact on the results. In the case study, economic parameters, such as the

discount rate and the price of imported resources, are the most impacting inputs; also, parameters

which are commonly considered as fixed assumptions in energy models emerge as critical factors,

which shows that it is crucial to avoid an a priori exclusion of parameters from the analysis. The

energy strategy drastically changes if uncertainty is considered. In particular, it is demonstrated that

robust solutions, characterized by a higher penetration of renewables and of efficient technologies,

can offer more reliability and stability compared to investment plans made without accounting for

uncertainty, at the price of a marginally higher cost.

Keywords

Strategic energy planning; uncertainty; national energy systems; energy modeling; mixed-integer

linear programming; uncertainty characterization; global sensitivity analysis; robust optimization;

Switzerland; geothermal energy.
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Résumé

Divers pays et communautés sont actuellement en train de définir ou repenser leur stratégie éner-

gétique, poussés par des préoccupations liées au changement climatique et à la sécurité d’appro-

visionnement en énergie. Les modèles énergétiques, souvent basés sur l’optimisation, peuvent

soutenir ce processus décisionnel. Dans la pratique actuelle en matière de planification énergétique,

la plupart des modèles sont déterministes, c’est-à-dire qu’ils se basent sur des prévisions à long

terme en ne prenant pas en compte l’incertitude des paramètres. Cependant, sur les longs horizons

temporels liés à la planification énergétique, ces prévisions se révèlent souvent inexactes, ce qui

peut donner lieu à une surcapacité et à une sous-utilisation des technologies installées. Bien que

cela montre la nécessité de considérer l’incertitude dans la planification énergétique, celle-ci est

jusqu’à présent rarement intégrée dans les modèles énergétiques. Les obstacles principaux à une

pénétration majeure de l’incertitude sont i) la complexité et les temps de calcul élevés des modèles

énergétiques; ii) la question de la quantification des incertitudes et de la détermination de leur

nature; iii) la sélection des méthodes appropriées pour intégrer les incertitudes dans les modèles

énergétiques. Pour surmonter ces limitations, cette thèse répond à la question de recherche suivante

Comment l’incertitude affecte-t-elle la planification stratégique en matière d’énergie et

comment pouvons-nous faciliter l’intégration de l’incertitude dans les modèles énergétiques ?

à travers quatre contributions méthodologiques novatrices. Premièrement, un cadre de modélisa-

tion pour les systèmes énergétiques à grande échelle basé sur la programmation linéaire en nombre

entiers est présenté. En considérant la demande en services énergétiques, l’efficacité et le coût des

technologies, la disponibilité et le coût des ressources, le modèle identifie les stratégies optimales

d’investissement et d’exploitation afin de satisfaire la demande et minimiser le coût total annuel ou

les émissions de gaz à effet de serre du système énergétique. La formulation concise et le faible temps

de calcul le rendent approprié pour des applications prenant en compte l’incertitude. Deuxième-

ment, une nouvelle méthode est introduite pour caractériser les incertitudes des données dans les

modèles de planification énergétique. Troisièmement, l’utilisation d’une approche d’analyse de sen-

sibilité globale en deux étapes est proposée pour traiter le grand nombre de paramètres incertains

dans ce type de modèle. Quatrièmement, un cadre complet d’optimisation robuste est développé

pour intégrer l’incertitude dans les modèles énergétiques basés sur l’optimisation, permettant de

considérer l’incertitude à la fois dans la fonction objective et dans les autres contraintes.
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Résumé

Pour évaluer l’impact de l’incertitude, la présentation des méthodes est systématiquement associée

à leur validation par une étude de cas réelle du système énergétique suisse. Dans ce contexte, la prise

en compte de tous les paramètres incertains dans l’analyse présente un caractère novateur. L’incerti-

tude affecte considérablement les décisions de planification énergétique. Les résultats montrent que

les niveaux d’incertitude varient sensiblement selon les différents paramètres et que la manière dont

l’incertitude est caractérisée a un impact important sur les résultats. Dans l’étude de cas, les para-

mètres économiques, tels que le taux d’intérêt et le prix des ressources importées, sont les éléments

les plus influents ; de plus, des paramètres qui sont généralement considérés comme des hypothèses

fixes dans les modèles énergétiques apparaissent comme des facteurs critiques, ce qui montre qu’il

est essentiel d’éviter une exclusion a priori des paramètres de l’analyse. La stratégie énergétique

change radicalement lorsque l’incertitude est prise en compte. En particulier, il est démontré que des

solutions robustes, caractérisées par une plus grande pénétration des énergies renouvelables et des

technologies efficaces, peuvent offrir plus de fiabilité et de stabilité par rapport aux stratégies d’in-

vestissement définies sans tenir compte de l’incertitude, au prix d’un coût marginalement plus élevé.

Mots-clefs

Planification énergétique ; stratégie énergétique ; incertitude ; systèmes énergétiques nationaux ; mo-

délisation énergétique ; programmation linéaire en nombre entiers ; Caractérisation de l’incertitude ;

analyse de sensibilité globale ; optimisation robuste ; Suisse ; géothermie.
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Abstract

Diversi Paesi e comunità locali stanno definendo o ripensando la propria strategia energetica

spinti da preoccupazioni per il cambiamento climatico e per la sicurezza dell’approvvigionamento

energetico. I modelli energetici, sovente basati sull’ottimizzazione, possono supportare questo

processo decisionale. Ad oggi, i modelli energetici comunemente utilizzati per la pianificazione

energetica sono deterministici; ciò significa che non prendono in considerazione l’incertezza dei

parametri in input, e che si basano su previsioni a lungo termine. Tuttavia, queste previsioni

si rivelano spesso inesatte, causando errori decisionali che possono dar luogo a sovraccapacità

e sottoutilizzazione delle tecnologie installate. Benché ciò dimostri la necessità di tener conto

dell’incertezza nella definizione della strategia energetica, questo avviene di rado nella pratica. I

principali fattori che ostacolano una penetrazione maggiore dell’incertezza sono i) la complessità

ed i tempi di calcolo elevati dei modelli energetici; ii) la difficoltà nel quantificare e caratterizzare

l’incertezza; iii) l’identificazione dei metodi più appropriati per integrare l’incertezza nei modelli

energetici. Per contribuire al superamento di questi ostacoli, questa tesi risponde alla seguente

domanda di ricerca

Qual è l’impatto dell’incertezza sulla definizione della strategia energetica

e come possiamo rendere più sistematica la considerazione dell’incertezza nei modelli energetici?

presentando quattro metodi innovativi. Il primo contributo consiste in un approccio basato sulla

programmazione lineare intera per la modellizzazione di sistemi energetici urbani e nazionali. Dati

in input la domanda energetica, l’efficienza ed i costi delle tecnologie, e la disponibilità ed i costi delle

risorse, il modello calcola la strategia energetica ottimale, che soddisfa la domanda minimizzando al

contempo il costo totale del sistema o le emissioni di gas a effetto serra. La formulazione compatta

ed il limitato tempo di calcolo rendono questo modello ideale per l’integrazione dell’incertezza. In

secondo luogo, è presentato un metodo per la caratterizzazione dell’incertezza dei parametri in

input dei modelli energetici. Il terzo contributo consiste nell’utilizzo di un metodo a due stadi per

l’analisi di sensitività globale, che permette di includere nell’analisi l’elevato numero di parametri

che tipicamente caratterizza questo tipo di modelli. Infine, è presentato un metodo per integrare

l’incertezza nei modelli di pianificazione energetica attraverso l’ottimizzazione robusta; il metodo

permette di tener conto dell’incertezza sia nella funzione obiettivo sia negli altri vincoli del problema

ix



Abstract

di ottimizzazione.

Per valutare l’impatto dell’incertezza, la presentazione di questi quattro metodi è sistematicamente

associata alla loro validazione sul caso studio del sistema energetico svizzero. In questo contesto,

uno degli elementi di carattere maggiormente innovativo è la presa in considerazione di tutti i

parametri incerti nell’analisi. Il risultato principale è che l’incertezza ha un impatto determinante

sulla definizione della strategia energetica. I risultati mostrano che vi sono differenze significative

tra i livelli di incertezza dei diversi parametri del modello, e che il modo in cui l’incertezza viene

caratterizzata impatta fortemente l’output. Nel caso studio, i parametri di tipo economico, come

il tasso d’interesse ed il prezzo dei combustibili fossili, emergono come i fattori più impattanti.

Inoltre, alcuni tra i parametri più impattanti sono parametri a cui sono spesso assegnati dei valori

di default nei modelli energetici; ciò dimostra l’importanza di considerare tutti i parametri incerti,

i.e. di non tralasciare ed escludere a priori alcuni di essi dall’analisi. La strategia energetica cambia

radicalmente quando l’incertezza viene presa in considerazione. In particolare, le soluzioni robuste,

caratterizzate da una maggiore penetrazione di energie rinnovabili e tecnologie efficienti, possono

garantire maggiore stabilità ed affidabilità rispetto a strategie energetiche definite senza tener conto

dell’incertezza, al prezzo di un costo totale marginalmente più elevato.

Parole chiave

Pianificazione energetica; strategia energetica; incertezza; sistemi energetici nazionali; modelliz-

zazione energetica; programmazione lineare intera; caratterizzazione dell’incertezza; analisi di

sensitività globale; ottimizzazione robusta; Svizzera; energia geotermica.
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Introduction

“It is difficult to make predictions, especially about the future.”

Danish proverb

Overview

• Why should uncertainty be incorporated in strategic energy planning models?

• State of the art: key barriers to a wider penetration of uncertainty in the energy field.

• Contributions and novelty of this thesis.

• Thesis structure overview.

Every day, we consume energy to satisfy our needs: we consume energy to move, to heat and cool

our houses, to power our laptops and to cook our food, among others. To be precise, the World Bank

estimates that a citizen of an OECD member country consumes every day the equivalent of 11.3 kg of

oil [1]1. This corresponds to fifty-six times the amount of energy needed daily by the human body2.

Today, this energy is mostly provided by the combustion of fossil fuels, which in 2014 accounted for

81.1% of the world primary energy supply [3]. Combustion of such fuels is the primary source of

anthropogenic greenhouse gas (GHG) emissions [4], and thus of climate change.

Extending current energy consumption trends to 2050, the International Energy Agency (IEA)

projects a 70% increase in global energy demand and an associated 60% increase of GHG emissions

against 2011 levels, mainly due to growth of non-OECD countries [5]. To mitigate the associated

catastrophic effects of climate change, the “2DS” scenario, which aims at an 80% chance of limiting

the increase of the global average temperature below 2°C compared to pre-industrial times, requires

a 50% reduction of GHG emissions compared to today’s levels [6]. Thus, various countries and

communities are defining strategic energy plans to increase the share of renewables and efficient

technologies, reducing dependency on fossil fuels while ensuring security of energy supply.

1 Average primary energy consumption in OECD countries in 2015. 41868 kJ/kilogram of oil equivalent (kgoe) [2]
2 Assuming a diet of 2000 kcal/day.
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Strategic energy planning for large-scale energy systems defines investment roadmaps for energy

conversion technologies. In other words, making a strategic energy plan means deciding which

resources and technologies will supply our future energy service needs. Due to the lifetime of these

technologies, energy plans at urban and national scale have a time horizon of 20 to 50 years.

Energy models can support this decision-making process. These models are often based on opti-

mization [7], which means that they aim at identifying optimal investment strategies, e.g. meeting

minimum cost or emission targets. Examples of well known and widely used optimization-based

energy models are the US National Energy Modeling System (NEMS) [8], the MARKet ALlocation

(MARKAL) [9], the MESSAGE [10] and the META*Net [11] models. These models are in origin deter-

ministic [12]. This means that they do not consider uncertainty and rely on long-term forecasts for

important parameters. But, how accurate are these forecasts?

Energy forecasting: learning from the past

Koomey et al. [13], analyzing available retrospectives on long-term energy models, argue that

forecasting models are inevitably inaccurate as they fail to account for pivotal events. Krugman

[14], recently revisiting the pioneering work by Nordhaus [15] on the allocation of energy resources,

comments that “looking back [...] after four decades, what’s striking is how wrong the technical experts

were about future technologies”. Based on the classification proposed by Hodges and Dewar [16],

Craig et al. [17] define energy forecasting model as nonvalidatable, i.e. likely to yield low accuracy

and low precision.

Errors in energy demand forecasts

Forecasting models are usually made to estimate future energy demand and prices. Sohn [18]

analyzes the consumption projections of fossil fuels over a 19-year time horizon based on a global

economic model. Linderoth [19] assesses the IEA’s errors in estimating future energy consumption

of member countries. Bezdek and Wendling [20] analyze major US energy forecast errors in the years

1950-2000. O’Neill and Desai [21] evaluate the accuracy of the US Energy Information Administration

(EIA) energy consumption forecasts in the years 1982-2000. These various studies highlight relevant

errors in energy demand forecasts. Furthermore, Winebrake and Sakva [22] performing similar

analyses found no evidence that energy forecasts for the studied time period were becoming more

accurate over time.

The same conclusion can be drawn from the latest annual retrospective report by the EIA, which

analyzes errors in its own past predictions: Figure 1 illustrates the errors in the energy demand

forecasts published yearly in the EIA Annual Energy Outlook (AEO) in the period 1994-2014 [23].

Each AEO report includes forecasts for the following 15-20 years. The average of errors in absolute

values (full lines) and the minimum/maximum errors (dotted lines) in energy demand forecasts

2
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Figure 1 – Analysis of errors in the yearly US Energy Information Administration (EIA) Annual
Energy Outlook (AEO) energy demand forecasts for the years 1994-2014 [23]. Full lines indicate the
average of errors in absolute values, dotted lines indicate minimum/maximum errors. Errors are
calculated for the different sectors with respect to the forecast time horizon. The time horizon is the
difference between the target year of the forecast and the year of publication of the AEO. A positive
error indicates an overestimation, i.e. the forecast is higher the actual value in a given year. EIA
(www.eia.gov).

are calculated for the different sectors with respect to the forecast time horizon. The time horizon

is the difference between the target year of the forecast and the year of publication of the AEO.

As an example, the 10-year time horizon includes the errors calculated after 10 years from the

publication of the reports (such as the forecast for 2003 published in the 1993 AEO, the forecast for

2004 published in the 1994 AEO, etc.). A positive error indicates an overestimation, i.e. the forecast

is higher the actual value in a given year. Forecast errors are as high as 24.3% for households total

energy demand, 24.7% for services, and 35.5% for industry.

Errors in forecasts of fuel prices

Forecasts on energy prices suffer even higher volatility, as shown by Bezdek and Wendling [20], who

find error factors3 as high as five in long-term oil price forecasts. Oil price fluctuations remain, to

date, extremely difficult to predict [24].

3 If ŷ(t) is the predicted value at time t and y(t) is the actual value, the error factor e(t) of a forecast is defined as
e(t ) = ŷ(t )/y(t ) if ŷ(t ) ≥ y(t ), and e(t ) = y(t )/ŷ(t ) if ŷ(t ) < y(t ).
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Introduction

Wiser and Bolinger [26] show errors in the EIA predictions for wellhead US natural gas (NG) prices

up to the year 2003. Siddiqui and Marnay [27] updated the analysis of Wiser and Bolinger in

2006. In Figure 2, the analysis is extended by comparing the yearly EIA AEO forecasts for the US

NG electric power price4 with the actual prices for the years 1985-2015. Up to the analysis by

Siddiqui and Marnay [27] forecasts were heavily overestimating fuel prices. The figure shows that

the trend was opposite in the following years, as predictions failed to capture the increase in NG

prices. Errors range from the maximum overestimation by a factor of 3.32 in 1995, to the maximum

underestimation by a factor of 2.95 in 2005. Furthermore, there is no strong evidence that forecasts

perform better in the short term compared to the long term.

Considering uncertainty in strategic energy planning

Forecasting errors can dramatically impact strategic energy planning decisions. In particular, they

can lead to overcapacity and underutilization of the installed technologies. This is the case with the

current overcapacity of NG cogeneration of heat and power (CHP) plants in Europe [28], caused by

past expectations of low NG prices. As an extreme example, in the Netherlands newly constructucted

combined cycle gas turbine (CCGT) power plants were shut down in 2014 because non economically

viable to operate [29].

As Craig et al. [17] conclude, “long-run forecasting methods for energy [...] will likely fall prey to the

inherent unpredictability of pivotal events”, i.e. it is unlikely that by investing more time and resources

we will ever be able to accurately predict the future evolution of energy systems. Thus, long time

horizons and forecast unreliability reveal the inevitable pitfalls of the “traditional” - deterministic -

energy modeling approach, and motivate the need for accounting of uncertainty in energy planning.

For example, Hirst and Schweitzer [30] consider uncertainty a “critical element of integrated resource

planning”. Overall, the consideration of uncertainty is an emerging topic in the literature, and

various authors recommend its systematic integration in energy modeling [31, 32, 33].

Nonetheless, uncertainty is to date seldom integrated in energy models. In a recent review of urban

energy system models, Keirstead et al. [34] highlight that only three of the 219 reviewed works

explicitly mentioned uncertainty or sensitivity analysis; Goel and Grossmann [35] point out that

most of the available literature for planning of oil and gas field infrastructures uses a deterministic

approach.

4 The natural gas price to the electric power sector is taken instead of the wellhead price, since starting from 2013 the
wellhead price of natural gas is no longer reported by the EIA.
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State of the art: uncertainty in the energy modeling practice

As reviewed by Grossmann et al. [36] in the field of process system engineering, the main barriers to a

wider penetration of uncertainty are i) the complexity and computational expense of energy models;

ii) the issue of quantifying input uncertainties and determining their nature; iii) the selection

of appropriate methods for incorporating uncertainties in energy models. The state of the art

concerning these challenges is here briefly summarized, while a more detailed review is presented

in the dedicated chapters.

Energy models and uncertainty

Connolly et al. [37] perform an extensive review of existing energy models and tools. Table 1 reports

an extract of their analysis, limited to the models which are at regional/national scale and are based

on optimization. The SMART model [12] is additionally included in the analysis. The models are

compared based on the following criteria: i) is the model freely available or commercial? ii) Does

it optimize the investment and/or the operation strategy of the energy system? iii) Is it a market-

equilibrium model? iv) Computational time. v) Do stochastic versions of the model exist?

The analysis reveals that the most common approach is based on economic modeling, entirely

(as for NEMS and MARKAL) or partially aiming at reaching equilibrium in one or several energy

markets. The main issue with this approach is the difficulty of forecasting the future evolution of

energy markets. Also, models belonging to this category are - at least partly - commercial. A different,

energy-based, modeling approach is adopted in EnergyPlan [38], a freely downloadable tool to

evaluate the future operation of energy systems given the investment strategy as an input. Although

it can be indirectly used to evaluate different investment options, EnergyPlan cannot be considered

a strategic energy planning tool (as defined at the beginning of this chapter) as it does not optimize

the investment strategy.

The main shortcoming of most energy models is that they were originally conceived to be determin-

istic. Thus, adapting them to incorporate uncertainty can be difficult under both the formulation

and the computational points of view. Integrating uncertainty in optimization models, e.g. via

sensitivity analysis or stochastic optimization techniques, leads very quickly to heavy computational

burdens. Siddiqui and Marnay [27] comment that the run time of NEMS limits its use for uncertainty

applications to a few well-designed scenarios. Similarly, Usher and Strachan [39] note that the size of

the MARKAL model limits the maximum number of uncertain parameters to be considered. SMART

is an exception, as it was originally developed as a stochastic model, with a remarkable computa-

tional performance. However, it mostly focuses on the electricity sector. Focusing only on electricity,

and thus neglecting heating and transportation, is quite common in energy decision-making [40]

and it characterizes various other energy planning modeling frameworks, such as [41, 42].

6
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Table 1 – Comparison of existing large-scale energy planning models. Legend: � criterion satisfied;
� criterion partly satisfied; � criterion not satisfied. Adapted from Connolly et al. [37], unless
otherwise specified.

Model Free
Investment & Market

Run time Stochastica
Operation Equilibrium

EnergyPlan [38] � Operation only � Seconds �

MARKAL/TIMES [9] � Investment only � 5-35 min [43] � [44]
MESSAGE [10] �b � � - � [45]
NEMS [8] �b � � 1-12 h [46] �

SMART [12] �c � �d 1-20 he �

a If the model is in origin deterministic, the criterion is considered partly satisfied if stochastic or partially-stochastic
versions of the model exist (indicated as references).

b Model is freely available, while the associated simulation tools need to be purchased.
c Model not available, but documented in the supplementary material of [12].
d The model is a stochastic extension of META*Net [11], which is market equilibrium model.
e For a 4-year time horizon. The lower bound (1h) is the approximate dynamic programming (ADP) version of the

model, the upper bound (20h) is the linear programming (LP) one.

Uncertainty characterization

In order to integrate uncertainties in energy models, the uncertainty of input parameters needs

to be quantified. In the context of strategic energy planning, this is often made difficult by the

scarce quantity and quality of available data, as highlighted by Pye et al. [47] in the context of the UK

energy transition. As an example, looking at the past projections of NG prices in Figure 2, it is indeed

challenging to quantify the uncertainty of the latest available forecasts. The difficulty of defining

probability density functions (PDFs) for uncertain parameters is underlined by various authors [27,

48].

The quantitative definition of input uncertainties is here defined as uncertainty characterization.

The way in which uncertainty is quantified can strongly affect model outputs. Various approaches

have been used in the literature for this purpose, ranging from the definition of PDFs to the use of

qualitative ranges of variation [47, 48, 49, 50, 51, 52, 53]. However, in most of the energy planning

literature, uncertainty characterization is not the main focus; instead, it is often marginally addressed

as an input to other analyses. Also, in most cases it is only applied to a subset of arbitrarily selected

parameters and the data used for uncertainty characterization are rarely fully documented, which

limits reproducibility and use in similar applications.

Sensitivity analysis and optimization under uncertainty

The impact of uncertainty in optimization models can be evaluated via sensitivity analysis; else,

uncertainty can be directly incorporated into the problem formulation using optimization under

7
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uncertainty techniques.

Sensitivity analysis studies “how uncertainty in the output of a model can be apportioned to different

sources of uncertainty in the model input”. It differs from uncertainty analysis, a related practice

focusing on quantifying uncertainty in model output [54]. In both cases, the deterministic optimiza-

tion model is run several times sampling the values of input parameters from distributions.

Sensitivity analysis is seldom applied to energy models [34], and it is often limited to an a priori

selected set of uncertain parameters [55]. A reason of this, along with computational barriers and

the difficulty in characterizing input uncertainties, is the lack of a general framework to carry out

global sensitivity analysis (GSA) studies in energy planning models.

The review works by Zhou et al. [40] and Soroudi and Amraee [56] illustrate a variety of decision-

making under uncertainty methods for energy systems. The classical method to incorporate un-

certainty in optimization problem formulations is stochastic programming [57]. First proposed

by Dantzig [58], it is a scenario-based approach optimizing the expected value over the possible

realizations of the uncertain parameters [36]. Problems with stochastic programming are the need

of defining PDFs for the uncertain parameters, and the fact that it quickly leads to intractable model

sizes [59]. Robust optimization is an alternative approach able to cope with large numbers of un-

certain parameters and scarcity of data to characterize their uncertainty, which are common issues

in strategic energy planning applications. Differently from stochastic programming, it considers

the worst-case realizations of uncertainty in the optimization problem. It was first proposed by

Soyster [60], and more recenlty extended by various contributions [61, 62] aiming at reducing the

over-conservatism of robust solutions.

Although robust optimization methods are well established in the mathematical programming

literature, their application to energy planning problems is, to date, rather limited. Furthermore,

most applications only consider the electricity sector [56] and uncertain parameters - often cost

parameters - in the objective function.

Contributions and outline of the thesis

This thesis contributes to overcoming these limitations, thus enabling a systematic consideration of

uncertainty in energy planning applications. The main research question is:

How does uncertainty impact strategic energy planning and

how can we facilitate the integration of uncertainty in the energy modeling practice?

To answer this question, the thesis proposes the following methodological contributions:

• “Modeling for uncertainty” (Chapter 1): a mixed-integer linear programming (MILP) mod-

eling framework for large-scale energy systems planning is presented. Given the end-use
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energy demand, the efficiency and cost of energy conversion technologies, the availability

and cost of energy resources, the model identifies the optimal investment and operation

strategies to meet the demand and minimize the total annual cost or GHG emissions of the

energy system. It is a simplified, yet complete, representation of an energy system, including

electricity, heating and mobility, with a multiperiod formulation accounting for seasonality

and energy storage. The concise formulation and low computational time make it suitable for

uncertainty applications, and complementary to existing and more complex energy models.

• Uncertainty charaterization (Chapter 2): a novel application-driven uncertainty characteri-

zation method for strategic energy planning problems is introduced. Through a set of criteria,

the method aids the definition of ranges of variation for the uncertain parameters, taking into

account the nature of the uncertainty and how uncertainty develops over the planning time

horizon. The use of ranges instead of PDFs is motivated by the lack of data highlighted in the

literature.

• Global sensitivity analysis (Chapter 3): the adoption of a two-stage GSA method [63] is

proposed to deal with the large number of uncertain parameters in energy planning models.

The application of a two-stage approach and the consideration of all parameters in the analysis

represents a novelty in the energy planning field.

• Robust optimization (Chapter 4): the robust formulation by Bertsimas and Sim [62] is applied

for the first time in the context of strategic energy planning. A general framework is provided,

allowing to consider uncertainty for all parameters, both in the objective function and in the

other constraints, and a decision-support method is proposed. In this context, the original

formulation by Bertsimas and Sim [62] is extended to consider the case of multiplied uncertain

parameters.

To evaluate the impact of uncertainty on strategic energy planning, the presentation of the methods

is systematically associated to their validation on a real case study. The national energy system of

Switzerland is chosen as a representative application. After the decision of the Swiss government to

phase out nuclear power plants at the end of their lifetime [64], the country is defining its future

energy strategy. As most national and urban energy systems present common features, both the

model and the data are fully documented to allow reproducibility and use in similar applications.

Figure 3 illustrates the outline of the thesis. In Chapter 1, the MILP modeling framework is applied

and validated for the case of the Swiss energy system. In Chapter 2, the uncertainty of the main

parameters in the model is characterized. The generated ranges of variation serve as input to the

GSA (Chapter 3), allowing to identify the most impacting parameters in the model and the most

influential model assumptions, and to the robust optimization (Chapter 4). The latter generates

robust investment strategies which are then evaluated and compared through simulation. Finally,

concluding remarks summarize the main findings, provide recommendations and guidance to

integrate uncertainty in energy models, and envision future perspectives.
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Methodology Application & Results

Chapter 1
MILP modeling 

framework for large-scale 
energy systems

Swiss national
energy system model

Chapter 2
Uncertainty 

characterization
method

Uncertainty ranges
for typical parameters in
energy planning models

Chapter 3
Two-stage

global sensivitiy
analysis

Most impacting 
parameters and influential
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Chapter 4
Robust optimization

formulation for
objective and constraints

Evaluation of
robust investment

strategies

Figure 3 – Thesis structure overview.

Appendix A and Appendix B are complementary to Chapter 1 and Chapter 2, respectively: Appendix A

reports the nominal input data for the case study of the Swiss energy system, while Appendix B

documents the sources used for the characterization of their uncertainty. Appendix C is complemen-

tary to Chapter 1, as it proposes a MILP modeling framework for urban energy systems and applies

it to the integration of geothermal and biomass resources. The model structure is conceptually

equivalent to the modeling framework presented in Chapter 1; however, the level of detail is higher,

as the formulation accounts for process integration [65] - and thus for the temperature levels of the

thermal streams - and for the fixed cost of technologies. Appendix D documents the nominal input

data for the urban energy system of Lausanne (Switzerland), which is used as example application

in Appendix C.
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Terminology, conventions and tools

The terminology used in the current work is the terminology commonly used in the optimization

field [66]. Eq. 1 shows the general form of an optimization problem.

min
x∈Rn

f (x,θ) (1)

s.t. h(x,θ) = 0

g (x,θ) ≤ 0

Solving an optimization problem consists in finding the optimal value of the decision variables x,

which minimizes the value of the objective function f subject to equality and inequality constraints.

The input data of the problem θ are called parameters. Outputs of interest (Y ) of an optimization

problem can be the value of the objective or of the decision variables. The model is defined by the

constraints. If no optimization is performed, the model is in the form Y = h(θ).

Throughout the thesis, sets are written in all capital letters (e.g. “SET”), parameters in italic lowercase

(e.g. “parameter”), decision variables in bold lowercase with capitalized first letter (e.g. “Variable”).

The optimization problem formulations are written in AMPL [66], using CPLEX 12.6 or higher as a

solver.
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1 Modeling for uncertainty

“[...] Cui flavam religas comam

simplex munditiis? [...]”

Quintus Horatius Flaccus. Ad Pyrrham. Ode I, 5

Chapter overview

• Presentation of a MILP framework to model urban and national energy systems

• Case study: application to the energy system of Switzerland

Energy demand

Technologies

Fossils and renewables
Investment and O&M cost 

Efficiencies, emissions
Storage

Resources

Cost & emissions
Yearly availability

Energy Strategy

Technology sizing (F) &
operation (Ft)

Centralized vs. decentralized
heat supply (%Dhn)

Public vs. private mobility 
(%Public)

Freight rail vs. road (%Rail)

Optimization

Minimize

subject to:
- mass & energy balance
- storage

mize

Figure 1.1 – Overview of the MILP modeling framework

This chapter is an improved and extended version of Moret et al. [67].
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Chapter 1. Modeling for uncertainty

As briefly reviewed in the Introduction, various optimization-based modeling frameworks have

been proposed in the literature to support strategic energy planning at urban and national level.

The most diffused modeling strategy is the market equilibrium approach, balancing demand and

supply to reach equilibrium in energy markets. According to Powell et al. [12], the application of this

approach to energy systems dates back to the 1970s with the PIES model [68]. More recent examples

are the NEMS [8], which simulates US energy markets and their interactions with the rest of economy,

and the MARKAL/TIMES [9] family of models, minimizing the total discounted cost of the energy

system. META*Net [11] is a LP model combining the features of NEMS and MARKAL. SMART [12]

is a stochastic extension of META*Net, optimizing investment planning as well as operation in the

electricity sector. MESSAGE [10] only partly relies on market equilibrium, as it supports medium-

to long-term planning of energy systems to determine cost-effective climate change mitigation

strategies.

Differently from these examples, other modeling frameworks are not based on seeking equilibrium

in energy markets. These other approaches are here defined as energy-based, to distinguish them

from the economic modeling strategies. As an example, EnergyPlan [38] adopts (partly) optimization

to find the best operating strategies for energy systems, given the investment decisions as an input

and taking one future year as reference.

Energy-based modeling frameworks to support strategic energy planning are often formulated as

MILP problems, as it emerges from the analysis by Koltsaklis et al. [41], who propose a MILP model

for the optimal long-term energy planning of a national power generation system. An alternative

MILP framework for long-term power systems planning is also presented by Wierzbowski et al. [42].

The focus of these latter works is only on the planning of the electricity sector. MILP frameworks are

also used to plan the optimal integration of specific energy resources, such as biomass, in urban

systems [69, 70].

As also shown in Table 1, the different modeling frameworks proposed in the literature feature

one or more of the following limitations: i) not optimizing both the investment and operation

strategy; ii) being commercial, i.e. not freely available; iii) being limited to only one sector (normally

the electricity sector) or to one specific resource. Most importantly, being originally conceived as

deterministic, iv) most existing models are rather complex and computationally demanding. When

incorporating uncertainties, this poses problems both in terms of formulation and of computational

tractability. These limitations impede the direct application of existing modeling frameworks in the

context of this thesis.

Contributions

Thus, a novel energy-based MILP modeling framework for large-scale energy systems is presented

in this chapter. The conceptual structure of the model is illustrated in Figure 1.1: given the end-use
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1.1. MILP modeling framework

energy demand, the efficiency and cost of energy conversion technologies, the availability and

cost of energy resources, the model identifies the optimal investment and operation strategies

to meet the demand and minimize the total annual cost or GHG emissions of the energy system.

It is a simplified, yet complete, representation of an energy system, including electricity, heating

and mobility, with a multiperiod formulation accounting for seasonality and energy storage. The

concise formulation and low computational time make it suitable for uncertainty applications, and

complementary to existing and more complex energy models.

The model is validated on the real energy system of Switzerland today, and then applied to the

strategic energy planning for the country with a 20-year time horizon. Urban and national energy

systems worldwide have similar features. Thus, as an additional contribution, both the MILP

formulation and the data are documented in detail (in the following pages and in Appendix A) and

made publicly available1 to ensure full reproducibility and use in similar applications.

1.1 MILP modeling framework

Adopting the definition by Keirstead et al. [34] for the field of urban systems, an energy model can

be defined as “a formal system that represents the combined processes of acquiring and using energy

to satisfy the energy service demands of a given [...] area”. Thus, the proposed modeling framework is

a simplified representation of an urban or national energy system accounting for the energy flows

within its boundaries. According to the classification proposed by Codina Gironès et al. [71], the

modeling framework belongs to the snapshot category, as it models the energy system in a target

year. This year represents all the years in which the system is operated.

Figure 1.2 illustrates its application to the case study of Switzerland, which is discussed more in

detail later in this chapter (Section 1.2). The energy system is modeled in its entirety. Imported

and indigenous resources can be converted with energy conversion technologies to satisfy end-use

demand in energy services: heat, mobility and electricity. Heating demand is divided between

industrial, centralized and decentralized; mobility is divided into passenger (public and private) and

freight (rail and road). The modeling framework is the MILP equivalent of the sequential modeling

framework by Codina Gironès et al. [71].

1.1.1 Sets, parameters, variables

Figure 1.3 is a visual representation of the sets of the proposed formulation with their relative indices

used throughout the paper; Table 1.1 lists the parameters; Table 1.2 and Table 1.3 list and describe

the independent and dependent decision variables, respectively. Units should be proportionally

scaled based on the specific application.

1 The code is available at https://github.com/stefanomoret
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Resources

Legend

Inputs

Optional
Inputs

Outputs

Natural Gas [GW]

NG (CCS) [GW]

Diesel [GW]

Gasoline [GW]

Electricity [GW]

Coal [GW]

LNG [GW]

Oil [GW]

Uranium [GW]

Hydrogen [GW]

Coal (CCS) [GW]

Public Mobility [Mpkm/h]

Private Mobility [Mpkm/h] 

Freight Road [Mtkm/h]

Freight Rail [Mtkm/h]

Wood [GW]

Waste [GW]

Heat Low T DHN [GW]

Heat Low T Decen [GW]

Heat High T [GW]

Wood

Waste

Uranium

Natural Gas

Coal

Oil

Gasoline

Diesel

Elec import

Hydrogen

Demand

End-use 
energy 

demand

%Dhn

1 - %Dhn

%Public

1 - %Public

%Rail

1 - %Rail

Electricity production

Ultra
Supercritical

IGCC

CCGT

Nuclear

PV

Wind

Hydro Dams

Hydro River

Geothermal

Private Mobility

Gasoline Car

Diesel Car

NG Car

Hybrid

Electric Car

Fuel Cell Car

PHEV

Public Mobility

Diesel Bus

Hybrid Bus

NG Bus

Fuel Cell Bus

Trolley Bus

Train/Metro

Deep Geo

Industrial Heat

Elec. heat

Boiler

CHP

Heat Pump
CHP

Boiler

Heat Pump

CHP

Fuel Cell

Solar Th.

Elec. Heat

Export

TrainTruck

Freight

Gasification
to SNG

Pyrolysis

Electrolysis

Reforming

Gasification

PowerToGas

GasToPower

Other technologies

Hydro Dams LNG

Storage

Decentralized Heat

Centralized Heat (DHN)

Boiler

Figure 1.2 – Application of the MILP modeling framework to the energy system of Switzerland. Abbre-
viations: natural gas (NG), liquified natural gas (LNG), carbon capture and storage (CCS), liquified
natural gas (LNG), synthetic natural gas (SNG), combined cycle gas turbine (CCGT), photovoltaic
(PV), temperature (T), plug-in hybrid electric vehicle (PHEV), cogeneration of heat and power (CHP).
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1.1. MILP modeling framework

Table 1.1 – Parameter list with description. Set indices as in Figure 1.3

Parameter Units Description

endUsesyear(eui , s) [GWh/y]a Annual end-uses in energy services per sector
endUsesInput(eui ) [GWh/y]a Total annual end-uses in energy services
τ(tech) [-] Investment cost annualization factor
irate [-] Real discount rate
%public,min,%public,max [-] Upper and lower limit to %Public

%rail,min,%rail,max [-] Upper and lower limit to %Rail

%dhn,min,%dhn,max [-] Upper and lower limit to %Dhn

top(t ) [h] Time periods duration
%lighting (t ) [-] Yearly share (adding up to 1) of lighting end-uses
%sh(t ) [-] Yearly share (adding up to 1) of SH end-uses

f (res∪ tech \ sto, l ) [GW]b Input from (< 0) or output to (> 0) layers. f (i , j ) = 1
if j is main output layer for technology/resource i

fref(tech) [GW]bc Reference size with respect to main output
cinv(tech) [MCHF/GW]bc Technology specific investment cost
cmaint(tech) [MCHF/GW/y]bc Technology specific yearly O&M cost
gwpconstr(tech) [ktCO2-eq./GW]bc Technology construction specific GHG emissions
n(tech) [y] Technology lifetime
fmin, fmax(tech) [GW]bc Min./max. installed size of the technology
fmin,%, fmax,%(tech) [-] Min./max. relative share of a technology in a layer
avail(res) [GWh/y] Resource yearly total availability
cp,t (tech, t ) [-] Period capacity factor (default 1)
cp (tech) [-] Yearly capacity factor
cop(res, t ) [MCHF/GWh] Specific cost of resources
gwpop(res) [ktCO2-eq./GWh] Specific GHG emissions of resources

ηsto,in,ηsto,out(sto, l ) [-]
Efficiency [0;1] of storage input from/output
to layer. Set to 0 if storage not related to layer.

%loss(eut) [-] Losses [0;1] in the networks (grid and DHN)
%PeakDHN [-] Ratio peak/max. average DHN heat demand

Table 1.2 – Independent decision variable list with description. All variables are continuous and
non-negative, unless otherwise indicated.

Variable Units Description

%Public [-] Ratio [0;1] public mobility over total passenger mobility
%Rail [-] Ratio [0;1] rail transport over total freight transport
%Dhn [-] Ratio [0;1] centralized over total low-temperature heat
F(tech) [GW]bc Installed capacity with respect to main output
Ft(tech∪ res, t ) [GW]bc Operation in each period
Stoin,Stoout(sto, l , t ) [GW] Input to/output from storage units
YSolar(tech) ∈ {0;1} [-] If 1, tech is backup technology for decentralized solar

a [Mpkm] (millions of passenger-km) for passenger, [Mtkm] (millions of ton-km) for freight mobility end-uses
b [Mpkm/h] for passenger, [Mtkm/h] for freight mobility end-uses
c [GWh] if tech ∈ STO
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Chapter 1. Modeling for uncertainty

Table 1.3 – Dependent decision variable list with description. All variables are continuous and
non-negative, unless otherwise indicated.

Variable Units Description

EndUses(l , t ) [GW]a End-uses demand. Set to 0 if l ∉ EUT
N(tech) ∈N [-] Number of installed units of size fref

Ctot [MCHF/y] Total annual cost of the energy system
Cinv(tech) [MCHF] Technology total investment cost
Cmaint(tech) [MCHF/y] Technology yearly O&M cost
Cop(res) [MCHF/y] Total cost of resources
GWPtot [ktCO2-eq./y] Total yearly GHG emissions of the energy system
GWPconstr(tech) [ktCO2-eq.] Technology construction GHG emissions
GWPop(res) [ktCO2-eq./y] Total GHG emissions of resources
Loss(eut, t ) [GW] Losses in the networks (grid and DHN)

a [Mpkm/h] for passenger, [Mtkm/h] for freight mobility end-uses
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Figure 1.3 – Visual representation of the sets and indices of the MILP framework. Abbreviations:
space heating (SH), hot water (HW), temperature (T), mobility (MOB)
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1.1. MILP modeling framework

1.1.2 Constraints

The model formulation is expressed by the equations in Figure 1.4 and Eq. 1.1-1.20.

End-uses demand

In the energy modeling practice, the energy demand is often expressed in terms of final energy

consumption (FEC). FEC is defined as “the energy which reaches the final consumer’s door” [72]. In

other words, the FEC is the amount of input fuel needed to satisfy the end-use demand (EUD) in

energy services. As an example, in the case of decentralized heat production with a NG boiler, the

FEC is the amount of NG consumed by the boiler; the EUD is the amount of heat produced by the

boiler, i.e. the heating service needed by the final user.

The input to the proposed modeling framework is the EUD in energy services, represented as the sum

of three components: electricity, heating and mobility; this also replaces the classical sector-based

representation of energy demand. This modeling choice has two advantages. First, it introduces a

clear distinction between demand and supply. On the one hand, the demand concerns the definition

of the end-uses, i.e. the requirements in energy services (e.g. the mobility needs). On the other

hand, the supply concerns the choice of the energy conversion technologies to supply these services

(e.g. the types of vehicles used to satisfy the mobility needs). Based on the technology choice, the

same EUD can be satisfied with a different FEC, depending on the efficiency of the chosen energy

conversion technology. Second, it facilitates the inclusion in the model of electric technologies for

heating and transportation (such as heat pumps and electric vehicles).
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Figure 1.4 – EndUses calculation starting from yearly demand model input (endUsesInput)
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Chapter 1. Modeling for uncertainty

min Ctot =
∑

j∈TECH
(τ( j )Cinv( j )+Cmaint( j ))+∑

i∈RES
Cop(i ) (1.1)

s.t. τ( j ) = irate(irate +1)n( j )

(irate +1)n( j ) −1
∀ j ∈ TECH (1.2)

Cinv( j ) = cinv( j )F( j ) ∀ j ∈ TECH (1.3)

Cmaint( j ) = cmaint( j )F( j ) ∀ j ∈ TECH (1.4)

GWPconstr( j ) = gwpconstr( j )F( j ) ∀ j ∈ TECH (1.5)

fmin( j ) ≤ F( j ) ≤ fmax( j ) ∀ j ∈ TECH (1.6)

N( j )fref( j ) = F( j ) ∀ j ∈ TECH (1.7)

Ft( j , t ) ≤ F( j )cp,t ( j , t ) ∀ j ∈ TECH ,∀t ∈ T (1.8)∑
t∈T

Ft( j , t )top(t ) ≤ F( j )cp ( j )
∑
t∈T

top(t ) ∀ j ∈ TECH (1.9)

Cop(i ) =∑
t∈T

cop(i , t )Ft(i , t )top(t ) ∀i ∈ RES (1.10)

GWPop(i ) =∑
t∈T

gwpop(i , t )Ft(i , t )top(t ) ∀i ∈ RES (1.11)

∑
t∈T

Ft(i , t )top(t ) ≤ avail(i ) ∀i ∈ RES (1.12)

∑
i∈RES∪TECH\STO

f (i , l )Ft(i , t )+∑
j∈STO

(Stoout( j , l , t )−Stoin( j , l , t ))−EndUses(l , t ) = 0 ∀l ∈ L,∀t ∈ T (1.13)

Ft( j , t ) = Ft( j , t −1)+ top(t )·
(
∑

l∈L|ηsto,in( j ,l )>0
Stoin( j , l , t )ηsto,in( j , l )−∑

l∈L|ηsto,out ( j ,l )>0
Stoout( j , l , t )/ηsto,out( j , l )) ∀ j ∈ STO,∀t ∈ T (1.14)

Stoin( j , l , t )(	ηsto,in( j , l )
−1) = 0 ∀ j ∈ STO,∀l ∈ L,∀t ∈ T (1.15)

Stoout( j , l , t )(	ηsto,out( j , l )
−1) = 0 ∀ j ∈ STO,∀l ∈ L,∀t ∈ T (1.16)
⌈∑

l∈L|ηsto,in( j ,l )>0
Stoin( j , l , t )/m( j , l , t )

⌉+⌈∑
l∈L|ηsto,out ( j ,l )>0

Stoout( j , l , t )/m( j , l , t )
⌉ ∀ j ∈ STO,∀t ∈ T (1.17)

Loss(eut, t ) = (
∑

i∈RES∪TECH\STO| f (i ,eut)>0
f (i ,eut)Ft(i , t ))%loss(eut) ∀eut ∈ EUT,∀t ∈ T (1.18)

Ft( j , t )+Ft(k, t )YSolar( j ) ≥
EndUses(HeatLowTDHN , t )+EndUses(HeatLowTDec, t )

endUsesInput(HeatLowTSH)+endUsesInput(HeatLowTHW )

∑
t∈T

Ft( j , t )top(t )

k = DecSolar,∀ j ∈ TECH OF EUT(HeatLowTDec) \ {k},∀t ∈ T (1.19)
∑

j∈TECH
YSolar( j ) ≤ 1 (1.20)
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1.1. MILP modeling framework

Figure 1.4 shows the constraints relative to the calculation of the EUD in each period t (EndUses)

starting from the projected total yearly demand (endUsesInput, input from demand-side model)

summed across the different energy sectors (households, services, industry, transport).

Electricity end-uses result from the sum of the electricity-only demand, assumed constant through-

out the year, and the demand for lighting, distributed across the periods according to %lighting.

Low-temperature heat demand results from the sum of yearly demand for hot water (HW), evenly

shared across the year, and space heating (SH), distributed across the periods according to %sh. The

percentage repartition between centralized (district heating network (DHN)) and decentralized

heat demand is defined by the variable %Dhn. High temperature process heat and mobility demand

are evenly distributed across the periods. Passenger mobility demand is expressed in passenger-

kilometers (pkms), freight transportation demand is in ton-kilometers (tkms). The variables %Public

and %Rail define the penetration of public transportation in passenger mobility and of train in

freight, respectively.

Total cost and GHG emissions

In the proposed formulation, the objective is the minimization of the total annual cost of the energy

system (Ctot), defined as the sum of the annualized investment and operation and maintenance

(O&M) cost (Cmaint) of technologies, and the operating cost of resources (Cop) (Eq. 1.1). The total

investment cost (Cinv) of each technology results from the multiplication of its specific investment

cost (cinv) and installed size (F), the latter defined with respect to the main end-uses output type

(Eq. 1.3). Cinv is annualized with the factor τ, calculated based on the interest rate (irate) and the

technology lifetime (n) (Eq. 1.2). The total O&M cost is calculated in the same way (Eq. 1.4). Upper

and lower limits to the installed capacity of each technology are set by fmax and fmin, respectively.

The latter allows accounting for old technologies still existing in the target year (Eq. 1.6). Eq. 1.7

forces the number of installed units of a technology to be an integer multiple (N) of the reference size

fref. The total cost of resources is calculated as the sum of the use over different periods multiplied

by the period duration (top) and the specific cost of the resource (cop) (Eq. 1.10).

The global annual GHG emissions are calculated using a life cycle assessment (LCA) approach, i.e.

taking into account emissions of technologies and resources “from cradle to grave”. For climate

change, the natural choice as indicator is the global warming potential (GWP), expressed in ktCO2-

eq./year. In Eq. 1.21 the total yearly emissions of the system (GWPtot) are defined as the sum of

the emissions related to the construction and end-of-life of the energy conversion technologies

(GWPconstr), allocated to one year based on the technology lifetime, and the emissions related to

resources (GWPop).

GWPtot =
∑

j∈TECH

GWPconstr( j )

n( j )
+∑
i∈RES

GWPop(i ) (1.21)
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The total emissions related to the construction of technologies are the product of the specific

emissions (gwpconstr) and the installed size (Eq. 1.5). The total emissions of resources are the

emissions associated to fuels (from cradle to combustion) and imports of electricity. They are

calculated as the sum of the use over different periods multiplied by the period duration and

the specific emissions of the resource (gwpop) (Eq. 1.11). Operating emissions of technologies,

mainly corresponding to auxiliary materials and maintenance, can also be additionally added to

the formulation. As MILP problems have only one objective, GWPtot can be used as objective

instead of Ctot. Alternatively, the two objectives can be combined using the ε-constraint method [73].

This method seeks trade-off solutions by formulating a bi-objective problem in which one of the

objectives is minimized, and the other is constrained by an upper value ε, which is made vary

parametrically.

The conceptual separation between technologies and resources for GWP calculation allows an

easy integration of biofuels and carbon capture and storage (CCS) technologies. As an example,

Figure 1.2 shows that when synthetic natural gas (SNG) is produced it can be input in the NG

layer, thus replacing its fossil equivalent. As a consequence, the total NG emissions are reduced

as the utilization of the fossil natural gas resource is lower. The GHG emission reduction from

CCS technologies can be accounted for by adding “CCS resources”, i.e. resources with lower gwpop,

corresponding to the carbon capture potential of the associated CCS technologies.

Operational constraints: layers and storage

The operation of resources and technologies in each period is determined by the decision variable Ft.

The capacity factor of technologies is conceptually divided into two components: a capacity factor

for each period (cp,t ) depending on resource availability (e.g. renewables) and a yearly capacity

factor (cp ) accounting for technology downtime and maintenance. For a given technology, the

definition of only one capacity factor is needed, the other one being fixed to the default value of 1.

Eqs. 1.8 and 1.9 link the installed size of a technology to its actual use in each period (Ft) via the two

capacity factors, respectively. The total use of resources is limited by the yearly availability (avail)

(Eq. 1.12).

Layers are defined as all the elements in the system that need to be balanced in each period, such as

resources and end-uses demand. The matrix f defines for all technologies and resources outputs to

(positive) and inputs from (negative) layers. Eq. 1.13 expresses the balance for each layer: all outputs

from resources and technologies (including storage) are used to satisfy the EUD or as inputs to other

resources and technologies. Figure 1.5 offers an intuitive representation of the constraint. Each layer

can be conceptually thought of as a pool in which the water level must be the same at the end of

each period. In Figure 1.2 different colors represent different layers. As an example, the electricity

which is imported or produced in the system is used to satisfy the electricity EUD; additionally, it

can be stored in hydroelectric dams or used as input to other energy conversion technologies (such

as heat pumps or electric vehicles) to satisfy other EUD types.

22
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LAYER 

RESOURCES 

TECHNOLOGIES 

END-USE 
DEMAND 

[GW] [GW] 
STORAGE 

[GWh] 

Stoin Stoout 

Figure 1.5 – Conceptual representation of a layer: all outputs from resources and technologies (in-
cluding storage) are used to satisfy end-uses demand or as inputs to other resources and technologies
(Eq. 1.13).

Storage technologies allow storage across different periods and layers. The storage is modeled as

a “tank” whose level (Ft) in period t is equal to the level at the end of the previous period plus

input to the storage (Stoin) minus output (Stoout) in t (Eq. 1.14). The parameters ηsto,in and ηsto,out

define efficiencies for storage inputs and outputs, respectively: if the efficiency is 0 then the storage

technology and the layer are incompatible (Eqs. 1.15-1.16). Eq. 1.17, displayed in a compact non-

linear formulation2, ensures that the storage is not used as a transfer unit within a given period.

In the equation, the parameter m must be big enough to ensure that the arguments of the ceiling

operators are lower or equal than 1. As an example, m( j , l , t ) = max
{

fmax( j )
ηsto,in( j ,l )top(t ) ; ηsto,out( j ,l ) fmax( j )

top(t )

}

satisfies this condition.

Other constraints

Losses (Loss) are considered for the electricity grid and for the DHN. They are calculated as a

percentage (%loss) of the total production and import in the corresponding layers (Eq. 1.18).

Eq. 1.19 (also expressed in a compact non-linear formulation) makes the model more realistic by

defining the operating strategy for decentralized heating: the relative use of each technology in each

period should be constant, except for solar thermal (DecSolar). If solar thermal is installed, then at

maximum one technology is used as backup (Eq. 1.20).

2 All equations expressed in a compact non-linear form in this chapter (Eqs. 1.19, 1.17, 1.27, 1.29) can be easily
linearized.
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Chapter 1. Modeling for uncertainty

1.2 Case study: the Swiss energy system in 2035

As an example application, the MILP framework is applied to the energy system of Switzerland with

a 20-year planning horizon. In 2011, the country decided to phase out its existing nuclear power

plants in the year 2034, at the end of their technical lifetime [64]. As illustrated in Figure 1.6, in that

year nuclear contributed for 42.3% to the total net electricity production, the rest being supplied

by hydroelectricity (51.9%), other thermal (5.5%), and a low share of photovoltaic (PV) and wind

(0.3%). Although close to being autonomous on a yearly balance, the country today already suffers

an electricity deficit during winter months, when electricity production is lower, due to the lower

outputs of run-of-river power plants, and demand is higher, mostly due to the use of electricity for

heating end-uses. The decision of gradually abandoning nuclear power has generated a vibrant

energy debate in the country about the future energy strategy [74].
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Figure 1.6 – Monthly net electricity production vs. demand in Switzerland in the year 2011.

Thus, the long-term planning of the Swiss energy system is chosen as example application in this

thesis with the goal of understanding how uncertainty impacts strategic energy planning decisions.

The presented MILP framework is applied to the energy system of Switzerland with a 20-year time

horizon. It is assumed that the investment decisions are made today considering fuel prices, energy

demand and technology development status corresponding to the last year of the planning horizon.
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1.2. Case study: the Swiss energy system in 2035

In other words, the values of the parameters in the model are the projections for the year 2035, and

the evolution of the system during the planning horizon is not accounted for.

Figure 1.2 illustrates the case study. Wood and waste are the considered limited local resources,

while import of electricity and other fuels is assumed to be unlimited. The resources can be input to

different energy technology options in order to satisfy the demand. As an example, the decentralized

heat demand can be met by boilers, CHP engines, direct electric heating, heat pumps, fuel cells (FCs)

and solar thermal panels. For some of the technologies, such as the boilers, different fuel options

are offered. Technologies already existing today, and which will still be present in 2035, such as the

hydroelectric plants, are considered fixed in the model. The model has a monthly resolution, and

seasonal storage is allowed by hydroelectric dams and power-to-gas systems [75]. All the values

are documented Appendix A. In terms of computational requirements, the resulting MILP problem

features 1633 decision variables (of which 118 binaries and 56 integers) and it is solved to optimality

in approximately 0.25 seconds on a 2.7 GHz 4-core machine.

The use of the presented MILP framework to model the Swiss energy system has found application,

among others, in the work by Codina Gironès et al. [76], comparing different energy conversion

pathways for woody biomass in the context of a national energy system. Also, an earlier sequential

version of the model (not based on optimization), presented in [71], is implemented in the online

platform Swiss-EnergyScope.ch [74]. This shows the possibility of using the proposed MILP frame-

work as a tool to assess and compare different energy strategy options, which can be forced by the

addition of constraints limiting the degrees of freedom of the model.

In the next paragraphs, first the additional constraints needed for the specific case of the Swiss

energy system are introduced. Second, the model is validated via a comparison to the real energy

system of Switzerland in the year 2011.

1.2.1 Additional constraints

Eqs. 1.1-1.20 and Figure 1.4 define the main constraints of the MILP model. Eqs. 1.22-1.29 are added

to simplify the use of the model and adapt it to the specific case study of Switzerland.

Eq. 1.22 is complementary to Eq. 1.6, as it expresses the minimum (fmin,%) and maximum (fmax,%)

yearly output shares of each technology for each type of EUD. In fact, for a given technology,

assigning a relative share (e.g. boilers providing at least a given percent of the total heat demand) is

more intuitive and close to the energy planning practice than limiting its installed size. fmin,% and

fmax,% are fixed to 0 and 1, respectively, unless otherwise indicated. Eq. 1.23 imposes that the share

of the different technologies for mobility be the same in each period. The addition of this constraint

is motivated by the fact that the investment cost of passenger and freight transport technologies

is not accounted for in the model. Eq. 1.24-1.25 regulate the functioning of hydroelectric dams

in Switzerland, which is further detailed in Appendix A.2.1. Increasing the installed power of the
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Chapter 1. Modeling for uncertainty

dams, and thus their yearly production, allows also to have a margin for shifting their electricity

production across the time periods. This possibility is represented in the model by StoHydro, a

“storage” technology (with efficiency equal to 1) allowing to shift the production of hydroelectric

dams across the different months. Eq. 1.24 links linearly the storage capacity to the new installed

power. Eq. 1.25 ensures that the shifted production in a given time period does not exceed the

electricity production by the dams in that period. Eq. 1.26 links the DHN size to the total size of

the installed centralized energy conversion technologies. To avoid underestimating the cost of

centralized heat production, a multiplication factor is introduced to account for peak demand,

defined as a %PeakDHN times the maximum monthly average heat demand (Eq. 1.27). Based on

the data reported in Appendix A.2.4, an additional investment cost of 9.4 billion CHF2015 is linked

proportionally to the deployment of stochastic renewables (Eq. 1.28). The power-to-gas storage

system described in Appendix A.2.3 is implemented in the model with two conversion units and

a liquified natural gas (LNG) storage tank. PowerToGas converts electricity to LNG, GasToPower

converts LNG back to electricity. The investment cost is associated to the PowerToGas unit, whose

size is the maximum size of the two conversion units.

∑
j ′∈TECH OF EUT(eut)

fmin,%( j )
∑
t∈T

Ft( j ′, t )top(t ) ≤∑
t∈T

Ft( j , t )top(t ) ≤∑
j ′∈TECH OF EUT(eut)

fmax,%( j )
∑
t∈T

Ft( j ′, t )top(t )

∀eut ∈ EUT,∀ j ∈ TECH OF EUT(eut) (1.22)

Ft( j , t )
∑
t∈T

top(t ) ≥∑
t∈T

Ft( j , t )top(t )

∀j ∈ TECH OF EUC(MobPass)∪TECH OF EUC(MobFreight),∀t ∈ T (1.23)

F(StoHydro) ≤ fmax(StoHydro)
F(NewHydroDam)− fmin(NewHydroDam)

fmax(NewHydroDam)− fmin(NewHydroDam)
(1.24)

Stoin(StoHydro,Elec, t ) ≤ Ft(HydroDam, t )+Ft(NewHydroDam, t ) ∀t ∈ T (1.25)

F(DHN) ≥∑
j∈TECH OF EUT(HeatLowTDHN)

F( j ) (1.26)

∑
j∈TECH OF EUT(HeatLowTDHN)

F( j ) ≥ %PeakDHN max
t∈T

{
EndUses(HeatLowTDHN, t )

}
(1.27)

F(Grid) ≥ 9400

cinv(Grid)

F(Wind)+F(PV)

fmax(Wind)+ fmax(PV)
(1.28)

F(PowerToGas) = max
{

F(PowerToGas);F(GasToPower)
}

(1.29)
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1.2. Case study: the Swiss energy system in 2035

1.2.2 Model validation

As discussed in the Introduction, long-term energy models are inherently nonvalidatable. For

example, they differ from the model of a physical system, for which inputs can be controlled and

outputs can be measured to validate and improve the model structure. Such validation is not

possible when dealing with a large-scale energy system model, especially when considering future

projections. However, in the availability of past and current data about the studied energy system, it

is possible to verify the degree of accuracy of the model in representing the past or present state of

the system.

Thus, the model is validated on the Swiss energy system in the year 2011. The choice of the reference

year is motivated by the good availability of detailed data, collected during previous work. The

Sankey diagram in Figure 1.7 illustrates the energy flows in the country in 2011 [77, 78, 79, 80, 81,

82]. In that year, fossil fuels accounted for 54.2% of the country’s primary energy consumption,

supplying most of the heating and mobility demand; renewables had a 15.4% share, divided among

hydroelectricity (10.8%), wood (3.2%), and other renewables (1.5%) [77]. The production of heat is

dominated by fuel combustion in boilers and direct electric heating, while heat pumps (HPs) and

CHP plants have a lower share, the latter mostly associated to the incineration of municipal solid

waste (MSW). Low temperature heat demand is mostly decentralized, with a 6.4% share of district

heating, and public mobility has a 20% penetration in the total passenger mobility demand.

The validation is performed as follows. Given as inputs:

• the EUD values estimated based on the FEC data;

• the relative annual production shares of the different technologies for each type of EUD;

• the share of public mobility (%Public), of train in freight (%Rail) and of centralized heat produc-

tion (%Dhn);

• the fuel efficiency of mobility technologies

for the year 2011, the outputs of the MILP model are compared to the actual values reported for that

year (as in Figure 1.7). The difference is assessed based on the following four indicators:

• primary energy consumption, global and per type of fuel;

• global GHG emissions;

• share of production per type of technology (boilers, HPs, CHP plants);

• installed size and number of installed technologies (HPs, CHP plants).
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1.2. Case study: the Swiss energy system in 2035

Table 1.4 – Model validation: MILP model output vs. actual 2011 values for the Swiss energy system.
Values for the Swiss energy system in 2011 are taken from [77, 78, 79, 80, 81, 82] unless otherwise
indicated. More details are provided in Appendix A.7.

Actual 2011 MILP Δ Units

Primary
Energy
Consumption

Gasoline 35.94 37.36 1.42 TWh
Diesel 28.16 26.16 -2.00 TWh
NG 30.05 28.40 -1.65 TWh
Elec. imports 2.59 2.76 0.17 TWh
Coal 1.66 1.43 -0.23 TWh
Solar 0.46 0.48 0.02 TWh
Geothermal 0.03 0.02 -0.01 TWh
Waste 15.41 10.65 -4.76 TWh
Oil 44.34 46.20 1.86 TWh
Wood 10.36 9.32 -1.04 TWh
Total 169.0 162.8 -6.21 TWh

Technologies
Output

Boilers 71.59 72.53 0.94 TWh
CHP 9.06 8.58 -0.48 TWh
HPs 4.02 4.23 0.21 TWh

GHG emissions (fuels) 47.51a 46.92 -0.59 MtCO2-eq.

Installed
Technologies

HPs
Installed units 191.8 160.6 -31.2 kUnits
Total 2.87 1.66 -1.21 GWth

CHPb Installed units 41 51 10 Units
Total 0.96 1.02 0.06 GWth

a Total GHG emissions following the Kyoto protocol [83], removing the direct non-energy related emissions from
industrial processes.

b Large CHP installation (> 1 MW). 2011 Data for HPs and CHP in [77]

The results are reported in Table 1.4. In terms of energy consumption, the MILP offers a good

approximation of the actual 2011 values. The lower values of estimated primary energy consumption

are due to the fact that for electricity, heat and CHP technologies, the conversion efficiencies used for

the year 2035 are also used for the validation. This difference is mostly relevant in the case of waste.

Other differences are due to the fact that the MILP does not account for some minor contributions,

e.g. the use of nuclear waste heat for district heating (DH) or the amount of heat classified as “other

renewables” in the Swiss reports.

The total GHG emissions from fuel combustion in 2011 were 50 MtCO2-eq., which includes 2.49

MtCO2-eq. due to direct non-energy related emissions from industrial processes [83]. This number

is accurately estimated by the model.

The proposed MILP formulation aims at offering a representation of the energy balance of the

country. This means that, especially with a monthly resolution as in the case study, it does not aim

at obtaining an accurate estimate of the installed capacity of the different technologies. However,
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Chapter 1. Modeling for uncertainty

the validation results show that the model is able to capture the order of magnitude of the number

installed units and total capacity of the technologies, especially in the case of large CHP plants.

Overall, the MILP formulation offers an accurate picture of a national energy system for the goal

of strategic decision-making support. In fact, at the time of writing, collecting and harmonizing

the needed data to close the monthly - or, even, annual - energy balance of an urban or national

energy system is still a surprisingly challenging and time-consuming effort. If, on the one hand,

there is a good availability of detailed data for the electricity sector, the modeling process is far more

difficult for heating and mobility end-uses. This suggests that the adopted monthly resolution can

be a reasonable trade-off between time and accuracy, compatible with the level of detail of available

data.
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2 Uncertainty characterization

Chapter overview

• Presentation of a method to characterize input uncertainties in energy planning models

• Case study: uncertainty ranges for typical parameters

Uncertainty 
ranges

Uncertainty  characterization

Parameters

1. Preliminary screening 
and grouping

2. Uncertainty 
characterization

criteria

3. Calculation of 
the uncertainty range

Figure 2.1 – Overview of the proposed uncertainty characterization method

This chapter is an improved and extended version of Moret et al. [84].

In any study involving uncertainty, from sensitivity analysis to optimization, the uncertainty of input

parameters needs to be quantified. In this thesis, the quantitative definition of input uncertainties is

defined as uncertainty characterization.

In the literature, various approaches are adopted for this purpose. Tock and Maréchal [49] use

normal, uniform and beta distributions to specify the uncertainty of economic parameters in two

strategic design problems. Lower and upper bounds are taken from institutional reports and the

distribution parameters are selected in such a way that these bounds are part of the resulting distri-

butions. Dubuis [48] proposes a methodology for energy system design under uncertainty based on

PDFs, which are assumed to be known. While being based on statistical theory, the author notes that
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Chapter 2. Uncertainty characterization

data are often unavailable to define the distribution parameters. Siddiqui and Marnay [27] argue

that PDFs assumed in stochastic models seldom have a solid empirical basis.

Pye et al. [47], highlighting the lack of data for defining future uncertainties in the UK energy transi-

tion pathways, propose the use of triangular distributions to represent uncertainty between upper

and lower bounds estimated from the literature. They consider investments costs, build rates,

resource availability and prices as uncertain parameters. Kim et al. [50] account for technology un-

certainty in the assessment of biomass-to-fuel strategies by assigning technologies different levels of

cost uncertainty (low: 10%, medium: 30%, high: 50%) based on their maturity and complexity. This

results in a range for the total cost of the evaluated alternatives. A similar approach is adopted by Sin

et al. [51] for waste water treatment applications. Expert knowledge is used to assign upper and lower

bounds to all the model parameters and uniform distributions are assumed. Lythcke-Jørgensen et al.

[85] integrate uncertainty in the design of flexible multi-generation systems. They assume ±25%

variations and uniform distributions for investment and operating cost parameters. Majewski et al.

[86] use historical data to define ranges of uncertainty for energy prices and demand; the ranges are

used for the design of a decentralized energy supply system using robust optimization. Lauinger

et al. [87] consider weather data and energy demand uncertainty for the stochastic optimization of a

residential energy system, assuming that the uncertainty of other parameters (cost and efficiencies)

can be mitigated through careful supplier examination. Carpaneto et al. [52] discuss uncertainty

characterization in depth in the context of a cogeneration planning problem. Some parameters

(investment costs, efficiencies) are assumed as not uncertain, while uncertainties are classified into

large-scale and small-scale. Parameters with small-scale uncertainties, such as electricity prices

and energy loads, are assumed to be known at hourly resolution. Small-scale uncertainties lie in

the simplifications introduced by grouping hourly data into representative aggregated time periods.

To characterize them, multivariate normal distributions are used. On the other hand, large-scale

uncertainties, such as energy price evolution, are characterized through a set of plausible scenarios

defined by the decision-maker (DM).

In most of the reviewed literature, uncertainty characterization is not the main focus; instead, it is

often marginally addressed as an input to other analyses. Also, in most cases it is only applied to a

subset of arbitrarily selected parameters, and full documentation of the used data sources is seldom

provided. Furthermore, various authors highlight the difficulty in finding the appropriate quantity

and quality of data needed to define PDFs for the uncertain parameters, and propose simplified

approaches.

Contributions

Thus, a novel application-driven uncertainty characterization method for strategic energy planning

problems is presented. This type of problems is typically characterized by a large number of input

parameters along with scarce availability of data to characterize their uncertainty. The method is
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2.1. Uncertainty characterization method

based on the application of a set of criteria to define ranges of variation for the uncertain parameters.

The use of ranges instead of PDFs is motivated by the lack of data highlighted in the literature. Also,

ranges are a necessary and sufficient input for applications such as robust optimization, as discussed

in Chapter 4.

To obtain a proof of concept, the method is applied to the parameters of the MILP Swiss energy

system case study introduced in Chapter 1. Uncertainty is characterized for the different types of

parameters in the model. As these parameters are typically found in energy planning problems, the

data sources used for the definition of the ranges are reported in Appendix B to allow reproducibility

and use in similar applications. By using relative ranges, it is shown how the method can be

systematically applied to models featuring a large number of input parameters. This avoids the need

of an a priori arbitrary exclusion of some parameters from the analysis.

2.1 Uncertainty characterization method

Figure 2.2 illustrates the proposed uncertainty characterization method. After a preliminary screen-

ing and grouping of the model parameters, five criteria are applied to each uncertain parameter.

Each criterion corresponds to a different method for investigating the uncertainty of a parameter.

For a given parameter, more than one criterion can apply. If a given criterion applies, the corre-

sponding information is collected for the calculation of the uncertainty range. After this, the range

is calculated taking into account both the nature of the uncertainty (epistemic or aleatory) and

how uncertainty develops over the planning time horizon. First, the terminology is defined and a

conceptual distinction is made between the types of uncertainties in the context of strategic energy

planning. Following this, the different steps of the methodology are detailed.

Definitions and terminology

The focus of this work is on the uncertainty of the parameters (θ). Each parameter has a nominal

value (R0), corresponding to its most likely realization. A range of variation is defined by assigning

a lower (Rmin) and an upper (Rmax) bound to the parameter. The total range R is the difference

between the upper and the lower bound (R = Rmax - Rmin). In order to compare ranges of variation

among different parameters, upper and lower bounds can be expressed as percentages relative to

the nominal value, as in Eq. 2.1.

R%,min = Rmin −R0

R0
, R%,max = Rmax −R0

R0
, R% = |R%,max −R%,min|, R0 �= 0 (2.1)

In which Rmin and Rmax are the lower and upper bound in absolute values, respectively. R%,min and

R%,max are the lower and upper bound in relative values, respectively. R% is the relative range, i.e.
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Figure 2.2 – Uncertainty characterization method flowchart.
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the total range relative to the nominal value.

Types of uncertainty

In the literature, various classifications of uncertainty have been proposed, without a common

agreement [32]. Adopting the terminology by Walker et al. [88], uncertainty can be classified ac-

cording to its location (i.e. where the uncertainty manifests itself within the model complex) and

its nature. In terms of location, Morgan et al. [89] distinguish between “uncertainty about the

value of empirical quantities” (parameter uncertainty) and “uncertainty about model functional

form” (model structure uncertainty) in the context of climate modeling. A model is a simplified

representation of reality. Long-term energy planning models are inherently nonvalidatable. This

implies that model uncertainty, i.e. how well a model represents reality, cannot be assessed; thus,

the focus is only on parameter uncertainty.

In terms of nature, parameter uncertainty is further divided into epistemic and aleatory: uncertain-

ties are characterized as epistemic if the modeler sees a possibility to reduce them by gathering

more data or by increasing the level of detail; uncertainties are categorized as aleatory if the modeler

does not foresee the possibility of reducing them. Der Kiureghian and Ditlevsen [90] discuss this

dichotomy in detail concluding that, although relevant, it can become philosophical if treated in

general terms. They recommend to pragmatically adapt this classification to the type of model

under analysis. In the context of strategic energy planning, it is relevant to distinguish between

present and future uncertainties. Present uncertainties can be reduced by increasing the model

detail, further data collection or additional measurements (e.g. the cost of purchasing a car today).

On the other hand, future uncertainties are irreducible as they are inherent to the phenomenon (e.g.

the future price of oil). To be consistent with the literature, in this thesis the term epistemic indicates

present, reducible uncertainties, and the term aleatory indicates future, irreducible uncertainties.

2.1.1 Preliminary screening and grouping

In this first phase, all model parameters are listed. This avoids an a priori arbitrary exclusion from

the analysis. The preliminary screening consists of eliminating the parameters which are certain.

These include parameters which do not present any uncertainty (e.g. the duration of a time period),

which are not related to the output of interest (e.g. emission coefficients in a cost optimization

problem), or parameters whose definition is only needed for the model structure (e.g. a binary

parameter defining allowed exchanges between producers and consumers). A parameter can be

deemed certain enough for the level of detail of the model (e.g. the chemical properties of a fuel in a

strategic planning problem). Some parameters are simply assumed based on expert judgment such

as the upper and lower bounds for a decision variable. In general, these latter parameters should

not be excluded from the analysis, as the GSA can highlight and rank influential assumptions. This
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offers the modeler a priority list for further investigating some of the initial assumptions.

The remaining parameters can be grouped to reduce their number. In the GSA, grouped parameters

vary following the same pattern. As an example, hourly values of solar radiation can be grouped

by defining a yearly multiplication factor. The yearly multiplication factor becomes the uncertain

parameter. When this multiplication factor is varied, all associated hourly parameters change

accordingly. This way of grouping parameters cancels out the effects associated to the interaction

among parameters included in the same group.

2.1.2 Uncertainty characterization criteria

The five criteria (C) shown in Figure 2.3 are applied in parallel to each uncertain parameter:

C1 a) Can the uncertain parameter be modeled? If yes, b) is the developed model included in

the main model? A model of the uncertain parameter can be available or be developed.

Modeling a parameter means defining a mathematical relation h′ such that θ = h′(θ′1, . . . ,θ′k ),

where θ is the investigated uncertain parameter and θ′1, . . . ,θ′k are the k parameters of h′. As a

consequence, θ′1, . . . ,θ′k replace θ as investigated uncertain parameters. h′ can be external or

internal. An external parameter model is not integrated in the main model. As an example, h′

can be a complex thermodynamic model, which is externally simulated to obtain an efficiency

range for a technology. An internal parameter model is integrated in the main model. This

means that h′ becomes part of the main model. The choice whether or not to integrate h′ in

the main model is ultimately made by the modeler and it usually depends on the complexity

of h′.
C2 Is a range already proposed in the literature? Studies in the literature can have already assessed

the uncertainty of the parameter, and consequently proposed a range or a PDF for it.

C3 a) Can a range be obtained from existing forecasts? b) Can information be gathered about

past forecast accuracy? Forecasts can be available for the future values of parameters. Some

forecasts already offer an uncertainty range around the proposed nominal values. Alternatively,

a range can be defined by comparing multiple forecasts. In addition, data can be found about

errors in past forecasts. This information can be obtained from retrospective studies in the

literature or from data analysis (as in Figure 2). Information about errors in past forecasts can

help assessing the reliability of the current ones. This principle is already adopted by some

forecasters [21].

C4 Can (historical) data be used? Current or historical data can be used to define the uncertainty

range. In a strategic energy planning context, the application of this criterion to characterize

the future uncertainty of a parameter value implies that historical or current variations are

representative for the future. As an example, the uncertainty of the average solar radiation in a

future year can be estimated by analyzing variations from historical radiation data.
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Figure 2.3 – Uncertainty characterization: application in parallel of the five criteria to each uncertain
parameter in a model. Each criterion corresponds to a different method for investigating the
uncertainty of a parameter.

C5 a) Does the parameter depend on the DM? Are expert opinions (EOs) available? If it depends on

the DM, b) is it only a DM’s choice? The DM might have an influence on the uncertainty of

some parameters. As an example, if the DM is the government, a policy might be enforced.

Information about the policy should be accounted for in the range definition. The same

applies to expert opinions, offering informed advice about the future. In the case in which the

parameter depends only on the DM and it can be known, then the parameter can be removed

from the list of uncertainties or it could be modeled instead as a decision variable.
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If none of the five criteria applies, then for an initial GSA the parameter can be assigned the same

relative range of a similar parameter or a qualitative range. If one or more criteria apply, the range is

calculated based on the collected data.

2.1.3 Calculation of the uncertainty range

The range is calculated in a conservative way to avoid the risk of underestimating the impact. This

means setting Rmax (Rmin) equal to the highest (lowest) value found in the different sources.

A range is defined symmetrical with reference to the nominal value if Rmax −R0 = R0 −Rmin = R/2.

Symmetrical ranges are not always appropriate descriptions of uncertainty. As an example, there

might be strong evidence that forecasts tend to overestimate or underestimate a given parameter, or

that the construction costs of power plants constantly exceed expected budgets. This information

can be described by asymmetrical ranges around the nominal value. In this work, a symmetrical

range is used when the data sources used to define the nominal value of a parameter are not the same

as the sources used to calculate its uncertainty range, or if there is no strong evidence suggesting the

need of adopting an asymmetrical one.

Epistemic and aleatory uncertainty

A distinction has been previously introduced between present and future uncertainties. However,

in strategic energy planning it is common practice to assume that present data can - partially or

entirely - be used to define the future values of some parameters. If a given parameter is assumed

not to change in the future, its uncertainty is purely epistemic. If it is assumed that present data

can only be partially used for the future, then the parameter presents both epistemic and aleatory

uncertainty. An example is the efficiency of future solar panels. On the one hand, solar panels

available today in the market have different efficiencies, resulting in an observable distribution.

Under the assumption that the shape of this distribution remains the same in the future, it can be

treated as epistemic uncertainty, as data can be collected and uncertainty can be reduced by adding

more types of solar panels in the model. On the other hand, the aleatory uncertainty lies in the

future evolution of the technology, i.e. by how much the efficiency of these panels will increase.

In the uncertainty characterization phase, information about epistemic and aleatory uncertainty is

collected separately. This leads to the definition of two different ranges for the same parameter (Rε

and Rα). The final bounds are defined as in Eq. 2.2.

R%,min =
√

R2
%,min,ε+R2

%,min,α, R%,max =
√

R2
%,max,ε+R2

%,max,α (2.2)

In which ε indicates epistemic uncertainty, α indicates aleatory uncertainty. The equation is inspired

by the sum of independent random variables, whose variance is the sum of the variances of the
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2.1. Uncertainty characterization method

summed variables.

Investment-type and operation-type uncertainty

Strategic energy plans define investment choices for energy technologies. Once a technology is

installed, it can be operated until its end-of-life (usually 20-50 years). Strategic energy planning

models, such as the MILP framework presented in Chapter 1, often analyze the energy system over

one year of operation. This year represents all the years in which the system is operated. As an

example, in an optimization problem having the minimum total annual cost as the objective, the

total annual cost is the sum of the total annualized investment cost and the operating cost of the

system over one year. In this case, a distinction is made between parameters with uncertainty

realized at a specific point in time (investment-type uncertainty) and parameters with uncertainty

spread over the whole planning horizon (operation-type uncertainty). The following categories are

defined:

• Type I - Investment-type uncertainty: it characterizes parameters whose uncertainty realizes at

a specific point in the considered time horizon. As an example, the investment cost uncertainty

is related to the time in which technologies are purchased.

• Type II - Operation-type uncertainty (constant uncertainty over time): it characterizes parame-

ters with uncertainty spread over the operational lifetime of the system. Uncertainty is the

same over time, i.e. these parameters are as uncertain in the near future as they are in the

long-term. As an example, the uncertainty on fuel prices belongs in this category, as discussed

in the next sections.

• Type III - Operation-type uncertainty (uncertainty increasing over time): it also characterizes

parameters whose uncertainty is spread over the years of operation of the system. Uncertainty

increases over time, i.e. these parameters are less uncertain in the near future than in the

long-term. As an example, the uncertainty on energy demand belongs in this category.

Each parameter is assigned to one of these categories. If the ranges are defined for a specific

point in time (usually the last year of the planning horizon), they need to be scaled accordingly

when used in the optimization model. This is shown in Figure 2.4. The ranges for the operation-

type parameters are defined for the last year of the planning horizon (N ). If the N -year planning

horizon is represented by one year in the optimization model, these ranges cannot be directly used,

as they would overestimate the uncertainty. As an example, the range R for the energy demand

expresses the uncertainty of energy demand in N years. Using R as the range for the energy demand

parameter in the one-year optimization model would mean assuming that the uncertainty for

year N is representative for all years in the planning horizon. Thus, a scaling is proposed to avoid

overestimating operation-type uncertainties. As an example, scaling factors are here analytically

derived assuming uniform distributions for the parameters. If uniform distributions cannot be
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Figure 2.4 – Different types of uncertainty over the planning horizon. Investment-type uncertainty
characterizes parameters with uncertainty defined at a given point in time. Operation-type un-
certainty characterizes parameters with uncertainty spread over the operational lifetime of the
system.

assumed, the scaling factor can be calculated via simulation.

For Type I uncertainties ranges do not need to be scaled, as they are calculated for the appropriate

point in time. For Type II uncertainties, a scaling of the range is performed. Uncertainty is con-

stant over the N-year time horizon. This means that there are N instances of the uncertainty of

the parameter (each of them with range [0,R] and weight 1
N ). The value of the parameter in the

optimization model corresponds to the sum of these N instances. This is equivalent to considering

that, assuming a uniform distribution, each of the N instances of the parameter can assume any

value in U [0, R
N ] (the lower bound is shifted to 0 simplify the calculations). The range is scaled as

6 standard deviations (σ) of the Irwin-Hall distribution, obtained from the sum of the N uniform

distributions. Eq. 2.3 shows the calculation of the variance of the sum of N independent random

variables xt uniformly distributed in [0, R
N ].
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σ2(
N∑

t=1
xt ) = Nσ2(U [0,

R

N
]) = N

R2

12N 2 = R2

12N
(2.3)

Thus, the range is scaled as 6σ= 6
√

R2

12N = R
√

3
N . If N = 20 years, then the range of variation for this

class of parameters is multiplied by a factor of approximately 0.3873. A similar procedure is applied

to Type III parameters (e.g. energy demand). Uncertainty increases over the N-year time horizon.

Assuming a linear increase, this corresponds to the sum of N independent random variables xt

uniformly distributed in [0, t R
N 2 ]. This is shown in Eq. 2.4.

σ2(
N∑

t=1
xt ) =

N∑
t=1

t 2R2

12N 4 = R2

12N 4

N∑
t=1

t 2 = R2

12N 4

N (N +1)(2N +1)

6
= R2 (N +1)(2N +1)

72N 3 (2.4)

In this case, the range is scaled as 6σ= R
√

(N+1)(2N+1)
2N 3 . If N = 20 years, then the range of variation

for this class of parameters is multiplied by a factor of approximately 0.2320.
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Figure 2.5 – Application of the scaling procedure for Type I, Type II and Type III parameters, in the
case of a one-year model, and assuming uniform distributions for the uncertain parameters.

Figure 2.5 illustrates the scaling procedure in the case of a one-year model, and assuming uniform

distributions for the uncertain parameters. First, each parameter is classified as Type I, Type II or

Type III. Then, for investment-type (Type I) parameters, the range R is not scaled; for operation-type

(Type II and Type III) parameters, the scaling factors in Eq. 2.3 and Eq. 2.4 are applied, respectively,

to calculate the final range.

Scaling uncertainties by the obtained factors allows a fair comparison of investment- and operation-

type uncertainties over the considered one-year time horizon in the optimization model.
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2.2 Application to the case study

As an example application, the proposed uncertainty characterization method is applied to the

MILP national energy planning model presented in Chapter 1.

2.2.1 Preliminary screening and grouping

Table 1.1 lists the model parameters. In total, the model has 3638 parameters. 3078 parameters are

eliminated in the pre-screening phase as non-uncertain. Most of these excluded parameters are

only needed for the model structure, i.e. they are assigned a default value. The following indexed

parameters are entirely excluded from the analysis at this stage: the duration of the different months

(top), the lower bound of the installed size of the technologies (fmin), the input/output efficiencies of

the storage technologies (ηsto,in, ηsto,out) and the GHG emission coefficients (gwpconstr and gwpop).

The latter are excluded as there is no link between the emissions and the objective function (total

cost). Parameters whose value is assumed by the modeler are excluded from the analysis only if the

modeler does not envision the possibility of changing the assumed value. In the current example, a

conservative approach is chosen: when in doubt, parameters are considered as uncertain and thus

kept in the analysis.

Grouping is performed on the remaining 560 parameters to further reduce their number. The

monthly operating cost of resources (cop) and the monthly capacity factor of technologies (cp,t)

are grouped by defining a yearly multiplication factor. This means that their monthly distribution

is assumed to be certain, and uncertainty is assessed for the average yearly values of these two

parameters.

2.2.2 Uncertainty characterization results

The remaining 417 parameters are individually considered in the GSA; thus, their uncertainty needs

to be quantified. Although possible, in practical applications it is often unaffordable to characterize

the uncertainty of such a large number of inputs. To address the trade-off between time and

accuracy, parameters are organized into different categories based on their similarity. Uncertainty is

characterized for one representative parameter per category, and parameters belonging to the same

category are assigned the same relative range. The results of the uncertainty characterization for the

21 categories of parameters are reported in Table 2.1. First, the five uncertainty characterization

criteria (Section 2.1.2) are applied to each representative parameter. The relative range is then

calculated, accounting for the types of uncertainties and scaling factors defined in Section 2.1.3. The

application of the method is discussed, and detailed source data for each parameter are reported in

Appendix B.

42



2.2. Application to the case study

Table 2.1 – Application of the uncertainty characterization method to the example MILP model.
The 417 uncertain parameters are divided into 21 categories. Uncertainty is characterized for one
representative parameter per category. The data used for the uncertainty characterization are
reported in Appendix B. Abbreviations: photovoltaic (PV), fuel cell (FC), district heating network
(DHN), decentralized (DEC), natural gas (NG).

Category
Representative Criteria (section 2.1.2)

ε/αa Typeb
R%

Parameter C1 C2 C3 C4 C5 min max

irate irate �a � �a α I -46.2% 46.2%

endUsesyear(HH) endUsesyear(HH)c �ab α III -6.9% 4.3%

endUsesyear(S) endUsesyear(S)c �ab α III -7.4% 4.1%

endUsesyear(I) endUsesyear(I)c �ab α III -10.5% 5.9%

endUsesyear(TR) endUsesyear(TR)c �ab �ab α III -3.4% 3.4%

ηmature,standard η(Boilers) � ε I -5.7% 5.7%

ηmature,customized η(GASOLINE CAR) � ε I -20.6% 20.6%

ηnew,standard η(PV) �a � ε+α I -20.8% 20.8%

ηnew,customized η(FC CAR) �a � ε+α I -28.7% 28.7%

avail avail(WOOD) � ε I -32.1% 32.1%

cp cp (NUCLEAR) � α II -2.4% 2.4%

fmax fmax(PV) � ε I -24.1% 24.1%

cinv,mature cinv(DEC NG BOILER) � ε I -21.6% 21.6%

cinv,new cinv(PV) �a � ε+α I -39.6% 39.6%

cinv,other

cinv(NUCLEAR) � ε+α I -21.6% 119.3%

cinv(HYDRO DAM) � ε+α I -21.6% 73.8%

cinv(Thermal plants) � ε+α I -21.6% 25.0%

cinv(WIND) � ε+α I -21.6% 22.9%

cinv(DHN) � α I -39.3% 39.3%

cinv(Geothermal) � � ε+α I -39.7% 62.1%

cmaint cmaint,% �a �a α I -48.2% 35.7%

n n(Boilers) � α I -26.5% 26.5%

cop,local cop(WOOD) �a α III -2.9% 2.9%

cop,import cop(NG) � �ab α II -47.3% 89.9%

cp,t cp,t(PV) �ab � α II -11.1% 11.1%

%loss %loss(Elec) � α III -2.0% 2.0%

a Epistemic (ε): present, reducible uncertainty. Aleatory (α): future, irreducible uncertainty (section 2.1.3)
b I: investment-type, II: operation-type (constant uncertainty over time), III: operation-type (uncertainty increasing

over time) (section 2.1.3)
c ∑

eui∈EUI
endUsesyear(eui,s). Aggregated end-uses demand (eui) in the different sectors s: households (HH), services (S),

industry (I), transportation (TR).
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Discount rate

For the discount rate (irate), the real1 interest rate of the public investor - in this case the Swiss

government - is considered. Interest rate forecasts are subject to relevant errors, even in the short-

term. Goodhart and Lim [91] analyze errors in nominal interest rates forecasts by central banks with

a two-year time horizon, finding errors as high as 31%. In the US, since 1996 long-range private

sector forecasts have exhibited a standard deviation of 2.7 percentage points relative to the nominal

Treasury rate realized 10 years later [92].

Due to a lack of specific data for errors in long-term real interest rates forecasts, comparison of

available long-term forecasts (C3a) and of current market data (C4) is used to define the uncertainty

of the parameter based on EO (C5a). In [92], a model is used to forecast the US real interest rate

in 2025. Different estimates are obtained by running the model with input parameters taken from

various sources, resulting in interest rates ranging from a minimum value of 1.5% to a maximum

value of 3.5%. Based on expert opinion, current Swiss market data can also be used to define the

uncertainty of future interest rates2: a low (1.73%) and a high value (4.7%) are proposed, where the

higher value is based on the official discount rate for energy in Switzerland [93] and the lower value

is the estimated discount rate for Swiss electricity producers. With a conservative approach, the

latter values are taken as they are specific to Switzerland and they offer a wider range than the US

forecasts.

End-use energy demand

The uncertainty of the annual end-use energy demand (endUsesyear) is assessed on an aggregated

level for each sector. This means that, within each sector (households, services, industry, transporta-

tion) the same relative range is applied to the different end-uses (eui). As an example, the electricity,

SH and HW end-use demand in the residential sector are assigned the same level of uncertainty.

For households, services and industry, data are taken from forecasts and errors in forecasts (C3ab),

whereas for transportation an external model is made (C1ab).

For households, services and industry, ranges for end-uses in 2035 can be obtained from the scenar-

ios available in a report commissioned by the Swiss confederation [81]. These ranges are compared

to errors in energy demand forecasts assessed by different sources [94, 22, 21, 95, 19, 20]. The US

EIA regularly publishes a retrospective review on its own energy demand forecasts [23]. As errors in

past forecasts are wider than the range proposed in the Swiss forecasts, the error factors in [23] are

used to define the uncertainty ranges. In [81], asymmetric ranges are proposed. The asymmetry is

maintained in the final ranges as [81] is the same source used for the definition of the nominal values.

This leads to the final ranges for 2035 end-use energy demand: [-26.8%, 21.8%] for households

1Real values are expressed at the net of inflation. They differ from nominal values, which are the actual prices in a
given year, accounting for inflation.

2 Approach recommended from personal communication with Philippe Thalmann (EPFL), July 1st, 2014.
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energy demand, [-27.8%, 21.5%] for services, and [-39.9%, 31.2%] for industry.

For the transportation demand, a simple model is made by decomposing the yearly passenger

mobility demand in 2035, expressed in pkm, as the product of the total population and the yearly

pkm/capita. For both parameters, upper and lower bounds are obtained from forecasts. The range

is calculated by multiplying these extreme values, thus obtaining a range of [-14.5%, 14.5%] for

passenger mobility demand in 2035.

Data show that uncertainty of energy demand is increasing over time (see Figure 1). Thus, the scaling

factor calculated in Eq. 2.4 is applied to the obtained ranges.

Technology efficiency

In the uncertainty characterization phase, technologies are assigned to different categories ac-

cording to two criteria. First, technologies are classified as mature or new based on their stage of

development. Second, they are classified as standard or customized based on the level of customiza-

tion. As an example, boilers are considered mature and standard technologies, as their efficiency

cannot be substantially increased, and they are not customized goods. On the other hand, a FC car

is considered a new and customized technology, as cars are customized goods and FCs are still at an

early stage of commercialization.

The conversion efficiency (η) of mature technologies is assumed to remain constant in the future;

thus, its uncertainty is epistemic, as it could be reduced by adding more types in the model. Epis-

temic uncertainties are typically characterized by collection of current data (C4). For the efficiency

of mature and standard technologies, ranges for boilers are taken from [96]. Gasoline cars are the

representative technologies for mature and customized technologies, and their efficiency ranges are

taken from [97].

Uncertainty of new technologies is characterized as the sum of an epistemic and an aleatory compo-

nent, combined as in Eq. 2.2. On the one hand, it is assumed that the future efficiency distribution

will have the same shape as the one observed in current market data. On the other hand, the future

evolution of technologies is assessed based on forecasts (C3a). For new technologies, PV panels are

taken as representative technologies.

Resources availability and maximum installed capacity of technologies

The availability (avail) of imported resources is considered unlimited in the model. Thus, the

availability of local resources (wood and waste) are the uncertain parameters. The availability of

wood is studied for the definition of the uncertainty range. Under the assumption that the maximum

availability of wood today is representative for the future, data are collected from different sources

(C4) estimating the current availability of wood in Switzerland (Table B.1). The minimum and the

maximum values are used in the definition of the range.

The uncertainty on the maximum installed size of the technologies (fmax) is assessed in a similar
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way. fmax is uncertain only for renewable resources. The maximum potential for solar PV is taken as

the representative parameter for this category.

Capacity factor

In the MILP formulation, the “capacity factor” is conceptually divided into two components: a ca-

pacity factor for each period (cp,t ) depending on resource availability (e.g. seasonal renewables) and

a yearly capacity factor (cp ) accounting for technology downtime and maintenance (Eqs. 1.8-1.9).

For each technology only one capacity factor is used, the other being set to the default value of 1.

cp is used for technologies which are not constrained by seasonality. The unavailability of these

technologies depends only on shutdowns or maintenance, which are normally planned in advance.

cp is considered uncertain for all technologies for which it is defined, with the exception of decen-

tralized ones. Analysis of historical data is used to define the future uncertainty of this parameter

(C4). In particular, data for nuclear power plants in Switzerland are taken as reference due to the

availability of historical data.

On the other hand, cp,t is defined for technologies with seasonal variations (solar, wind and hydro).

The capacity factor of solar is taken as the representative parameter for this category. Under the

assumption that cp,t depends only on solar radiation (C1ab), historical solar radiation data [98] are

used to define the uncertainty range.

The uncertainty of capacity factors is constant over time, thus the scaling factor in Eq. 2.3 is applied

to obtain the final ranges.

Technologies investment cost

The investment cost (cinv) of mature technologies is assumed to remain the same in the future (in

real currency). Thus, present market data for a decentralized gas boiler, chosen as representative

technology, are used to define their uncertainty (C4, epistemic uncertainty). For new technologies,

the future investment cost of residential rooftop PV systems is the representative parameter. Fore-

casts are used to define the future evolution (C3a, aleatory uncertainty). The final range is then

calculated as the sum of an epistemic and an aleatory component, following the same approach as

for the efficiency η.

Based on evidence found in the literature, some technologies are considered as exceptions (category

cinv,other). In a pioneering study published in the late 1970s, Merrow et al. [99] found that capital costs

for advanced technologies were regularly underestimated. Sovacool et al. [100] analyze cost overruns

in the construction of electricity production plants. Their analysis covers a total of 401 projects,

divided among hydro dams, nuclear and thermal plants, wind farms, solar facilities and electricity

grid. For all types of plants, the average cost exceeded the budgeted amount, by an extent ranging

from 1.3% for solar projects to 117.3% for nuclear plants. Thus, the average cost overrun for each

type of plant is accounted for in the definition of the corresponding uncertainty ranges. Lukawski
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2.2. Application to the case study

et al. [101] characterized the uncertainty associated with the cost of drilling and completion of

geothermal wells. Thus, the ranges obtained by the application of their probabilistic approach are

used to define the uncertainty of geothermal power plants (C2). The resulting range is consistent

with values for wells drilled in Switzerland [102]. Finally, the uncertainty of DHN projects is based

on the range between favourable and unfavourable conditions calculated in [103] from analysis of

past projects in Switzerland and Austria. The range for DHNs is applied to all the infrastructure costs

in the model.

Resources cost

To characterize the uncertainty of their specific cost (cop), resources are divided into local and im-

ported. In both cases, forecasts are available (C3a). Wood price is taken as representative parameter

for local resources. Swiss forecasts [81] indicate a range of ±12.7% for wood prices in 2035. This

range is scaled by applying Eq. 2.4, as uncertainty for the cost of local resources is assumed to

increase over time.

NG price is taken as representative parameter for imported resources. In this case, ranges proposed

in long-term price forecasts are compared with ranges proposed in the literature (C2) and with

errors in past forecasts (C3b). In the European Union (EU), NG prices are expected to increase

in the next decades. The relative range in EU forecasts is [-38.0%, 30.5%] for 2035 [104]. The EIA

offers similar ranges for the US market in its latest forecasts ([-37.0%, 33.4%] for 2035 in [105]). In

both cases, the proposed uncertainty ranges increase over time. Based on their analysis of past EIA

forecasts, Wiser and Bolinger [26] recommend the adoption of a minimum uncertainty range of

±2 USD2003/1000ft3
NG (±0.085 USD2013/m3

NG) in future forecasts, corresponding to a ±33.5% range

over the nominal value for 2035 proposed in [105]. Errors in past EIA forecasts have been presented

in Figure 2. Our analysis of past EIA forecasts in the period 1985-2015 highlights error factors as high

as 3.32, corresponding to an uncertainty range of [−69.9%,232%]. Furthermore, there is no evidence

that the accuracy of forecasts is higher in the short term. Thus, the scaling factor in Eq. 2.3 is applied

to the error factor. This leads to the calculation of the range [−47.3%,89.9%], which is chosen as the

final one as it is the most conservative.

Other parameters: technologies O&M cost and lifetime, network losses

Following a common practice in energy modeling, the O&M cost (cmaint) of technologies is assumed

to be a percentage of the initial investment. This means defining a relation of the type cmaint(tech) =
cmaint,% ∗ cinv(tech),∀tech ∈ TECH. The equation is integrated in the model (C1a), and uncertainty

is characterized for the newly defined parameter cmaint,%. This has also the effect of reducing the

number of parameters to 370. The uncertainty of this parameter is based on forecasts (C3a). The IEA

forecasts future investment and O&M costs of energy technologies [106]. The ratio between O&M

and investment costs is calculated for Europe in 2035. Values are in the range [1.5%, 4%], with an
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Chapter 2. Uncertainty characterization

average of 2.95% (taken as nominal value).

The lifetime (n) is assumed to have the same relative level of uncertainty for all technologies. The

lifetime of boilers is taken as representative parameter for this category. The uncertainty range is

calculated based on the data and ranges for lifetime of different boiler types collected in Table B.5.

For the losses in the electricity grid (%loss(Elec)), historical data for Switzerland are used to define the

uncertainty range [107]. Since 1960, losses have been constantly decreasing and had then negligible

variations starting from the early 2000s. The uncertainty range is defined based on data in the years

1985-2015. The range is taken considering the difference between the mean value (7.62%) and the

highest value (8.33% in 1985).

Parameters not belonging in any category, mostly corresponding to upper and lower bounds for the

decision variables, are assigned a qualitative range of ±20%.

Discussion

The application of the proposed uncertainty characterization method to the national energy plan-

ning model (Table 2.1) reveals substantial differences in the uncertainty ranges of the different

parameters. As an example, the cost of imported fossil resources, the investment cost of hydroelec-

tric dams, nuclear and geothermal, and interest rates have a high level of uncertainty; electricity

losses, yearly capacity factors and the cost of local resources feature a low level of uncertainty.

Through the application of a set of criteria, the method aids the definition of uncertainty ranges,

taking into account the nature of the uncertainty (epistemic or aleatory) and how uncertainty devel-

ops over the planning time horizon. Overall, the method offers a simplified description of the input

uncertainties, which is coherent with the scarce quantity and quality of available data in strategic

energy planning. Although uncertainty characterization is very often problem-specific, the parame-

ters characterized in Table 2.1 for the case of Switzerland are commonly found in strategic energy

planning problems. Thus, the source data for the definition of the ranges are duly documented to

allow reproducibility and adaptation to other case studies.
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3 Global sensitivity analysis

Chapter overview

• Two-stage sensitivity analysis approach to deal with large number of uncertain parameters

• Case study: economic parameters have the highest impact on the energy strategy

• The way in which input uncertainties are characterized strongly impacts the results

Legend:

Method/Action

Data/Information

Global Sensitivity Analysis
(GSA)

Factor Fixing

Factor Prioritization

Important model
assumptions

Non-influential
parameters

Parameter
ranking

Fix non-influential
parameters

Verifiy model
assumptions

Figure 3.1 – Overview of the two-stage global sensitivity analysis approach.

This chapter is an improved and extended version of Moret et al. [84].

Sensitivity analysis (SA) and uncertainty analysis (UA) are valuable supports to any modeling effort.

As discussed in the Introduction, in the current energy modeling practice these tools still play a

marginal role [34]. However, in the recent years various authors have integrated these methods in

energy models.
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Table 3.1 reviews applications of sensitivity and uncertainty analysis to energy models. The reviewed

works are classified according to four criteria: i) used methods; ii) considered uncertain parameters;

iii) application and type of optimization problem, if any; iv) outputs of interest.

The analysis reveals that local sensitivity analysis (LSA) methods are widely diffused [108, 109, 110,

50, 41, 111, 112, 115]. LSA methods analyze how a small perturbation on an input parameter affects

the output of interest [117]. In the works classified as LSA in Table 3.1, uncertain input parameters

are varied in a one-at-a-time (OAT) fashion (i.e. letting the other parameters fixed at their nominal

values) or through the definition of scenarios, i.e. combinations of uncertain parameters’ values.

Compared to local methods, global sensitivity analysis (GSA) considers as well the effects associated

to the interaction among different uncertain inputs. According to Zhou et al. [118], “a sensitivity

analysis is considered to be global when all the input factors are varied simultaneously and the

sensitivity is evaluated over the entire range of each input factor”. As an example, Pye et al. [47] use

scatterplots and standardized regression coefficients (SRC) to analyze the impact of uncertainties in

UK energy transition pathways. Fazlollahi [113] uses the Extended Fourier Amplitude Sensitivity Test

(EFAST) [119] in an urban system application. The use of methods based on the Fourier transform

when dealing with optimization models is generally not recommended, as they require continuous

and regular output functions. The EEs method developed by Morris [120], described more in detail

in Section 3.1.1, lies in between local and global methods. It is an efficient way of screening a model

to identify non-influential parameters, as demonstrated by Lythcke-Jørgensen et al. [85] and Mian

[116]. Pernet [114] compares local methods, EEs and variance-based methods in an urban energy

system design context.

The review reveals that the use of GSA methods is still limited in the energy field. Also, although

energy models often feature a large number of input parameters, sensitivity analysis is normally

carried out on a limited subset of parameters selected a priori by the modeler. This is a common but

dangerous practice, as it “impedes, for example, some possible misspecifications to emerge” [55].

Contributions

As a contribution towards a wider penetration of GSA in the energy modeling practice, the adoption

of a two-stage method [63] is proposed. The method, schematically illustrated in Figure 3.1, allows

dealing with the large number of uncertain parameters typically found in energy planning models:

the first stage, using the EEs method, performs an efficient screening of the model, highlighting

non-influential parameters and important assumptions; the second stage, using variance-based

methods [54], offers a ranking of the influential parameters. The application of a two-stage approach

and the consideration of all parameters in the analysis represents a novelty in the energy planning

field.
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Chapter 3. Global sensitivity analysis

To obtain a proof of concept, the presented approach is applied to the Swiss MILP model introduced

in Chapter 1. Additionally, the impact of the uncertainty characterization obtained in Chapter 2

is assessed by comparing it with the assumption of equal levels of uncertainty for all the model

parameters.

3.1 Two-stage GSA method

The idea of using a two-stage GSA method to tackle quantitatively large dimensionality problems

was first proposed by Campolongo et al. [63] in the late 1990s. They proposed the use of the EEs

method in the first stage, and of the EFAST [119] method in the second stage. In this thesis the

methods adopted in both stages are updated to the current state-of-the-art, taking into account

as well the compatibility with the application to optimization models. The methods are selected

following the best practices indicated by Saltelli et al. [54], who also offer a thorough background on

GSA theory and methods.

3.1.1 First stage: factor fixing

The first stage corresponds to the factor fixing GSA setting. It aims at identifying non-influential pa-

rameters, i.e. parameters that can be fixed anywhere in their range of variation without significantly

affecting the output of interest. This is normally done by calculating the total effect sensitivity index

(ST ). Given a model in the form Y = h(θ1,θ2, . . . ,θk ), STi , the total effect of the i -th input, is defined

as the ratio between the expected value (E) of the output variance V (Y ) when only θi is varying (all

other parameters are fixed), and V (Y ) (Eq. 3.1).

STi =
Eθ∼i (Vθi (Y |θ∼i ))

V (Y )
(3.1)

STi = 0 is a necessary and sufficient condition to declare θi as a non-influential parameter. STi

is often computationally expensive to calculate even for relatively low values of k. Thus, the EEs

method (Morris screening) is chosen [120], in its improved version by Sin and Gernaey [121] (as in

[51]). Given a simplified description of the input uncertainties, such as the one obtained with the

uncertainty characterization method proposed in Chapter 2, it allows estimating a proxy for ST in a

computationally efficient way. It is based on a discrete sampling: r trajectories are defined, each

consisting of (k +1) steps. At each step of the trajectory, corresponding to one run of the model, a

different parameter is made to vary (see [54] for details). In this way, all the parameters are varied

once for each trajectory. At each step of the m-th trajectory, the EE of the i -th parameter with respect

to the j -th output of interest is calculated as in Eq. 3.2.
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3.1. Two-stage GSA method

EE m
i j =

δY j

δθi

σθi

σY j

(3.2)

In which δθi is the difference between the value of the input parameter θi at a given step and its

nominal value, δY j is the difference between the value of the output of interest when θi is varied and

the value of the output of interest Y j when all the input parameters are at nominal value. Scaling by

the ratio between the standard deviations of the input (σθi ) and the output (σY j ) is needed when

the input parameters have different orders of magnitude. The scaling also allows the comparison of

the EEs on different model outputs. Once the EEs are calculated for each parameter, output and

trajectory, μ∗
i j is calculated by averaging the absolute EE values of the i -th parameter with respect to

the j -th output over the r trajectories (Eq.3.3). μ∗ is a good proxy for ST .

μ∗
i j =

1

r

r∑
m=1

|EE m
i j | (3.3)

3.1.2 Second stage: factor prioritization

The second stage corresponds to the factor prioritization GSA setting. It aims at ranking the most

influential parameters, i.e. the parameters which, when fixed to their nominal value, lead to the

greatest reduction in the variance of the output. μ∗ offers an efficient yet “qualitative” ranking of the

importance of input parameters. A quantitative appreciation of their influence on the outputs of

interest can be obtained by using variance-based methods. Due to their significant computational

requirements1, these methods can only be applied to a limited number of parameters. Thus, in a

two-stage approach they are applied to the first parameters (normally < 20) in the ranking obtained

in the first stage. Factor prioritization is normally done by calculating Si , the first-order effect of the

i -th input, defined as the ratio between the reduction of the expected value of the output variance

when fixing θi to its nominal value (all other parameters are varying), and V (Y ) (Eq. 3.4).

Si =
Vθi (Eθ∼i (Y |θi ))

V (Y )
(3.4)

Si is in the interval [0;1], and its value is directly proportional to the influence of the parameter.

The calculation of both the first-order (S) and total effect (ST ) sensitivity indices by variance-based

methods offers a good, synthetic characterization of the sensitivity pattern of a model. The best

practices indicated by Saltelli et al. [122] are used in the current work for the calculation of these two

indices.

1 nsample(k +2) model runs needed with nsample ≈ x100÷x1000 and k parameters. The EEs method requires instead
r (k +1) model runs, with r ≈ 15÷100.
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Chapter 3. Global sensitivity analysis

3.2 Application to the case study

The two-stage method is applied to the Swiss MILP case study (Chapter 1) using the uncertainty

ranges calculated in Chapter 2. The outputs of interest (Y j ) are the value of the objective and the

investment decisions. The value of the objective (Y1) is the total annual cost of the energy system

(Ctot). The investment decision corresponds to the value of the decision variable F, indicating the

total installed size of each technology. This decision variable is indexed over the technologies set.

This would lead to a high number of outputs of interest, as many as the number of technologies in

the model (Ytech = F(tech),∀tech ∈ TECH). To limit the number of outputs of interest, an aggregated

indicator (Y2) for the investment decision is defined. As an example, Eq. 3.5 shows how this applies

in the case of the calculation of the sensitivity index μ∗ for the i -th parameter.

μ∗
i Y2

= ∑
tech

μ∗
i Ytech

∀i (3.5)

The sensitivity indices μ∗ are first calculated for each technology and then summed to obtain the

aggregated indicator.

3.2.1 Factor fixing

The EE method is applied to the 370 uncertain parameters with settings r = 100 trajectories, p = 8

levels (see [54] for more details). Results of the analysis are shown in Figure 3.2 for the 22 parameters

having a value higher than 5% of the maximum value of μ∗
i Y1

. As the aggregated indicator μ∗
i Y2

cannot

be directly compared with μ∗
i Y1

, the value of μ∗ for the i -th parameter is expressed as percentage of

the maximum value with respect to j -th output of interest (μ∗
i j /maxi (μ∗

i j ),∀ j ∈ {Y1,Y2}). Parameters

are sorted in descending order from left to right based on the value of μ∗
i Y1

.

Three main observations result from the analysis. First, the screening is effective. In fact, with

respect to Y1, only 22 out of 370 parameters have a value of μ∗
i Y1

higher than 5 % of the maximum,

while 53 parameters are above the 1% threshold. This means that a large number of parameters

has a relatively small influence on the output of interest. Second, the screening is also effective in

highlighting important model assumptions. In fact, in common energy modeling practice, various

parameters emerging as impacting from this analysis are often simply assumed by the modeler. It

is the case, for example, of cmaint,%, and of the upper bounds of decision variables (e.g. %public,max,

%freight,max). This highlights the danger of an a priori arbitrary exclusion of parameters in a GSA

study. Third, some parameters have a strong influence on the objective, but a negligible influence

on the investment decision. In this example, such a behavior is observed for the investment cost of

the electricity grid and of the hydroelectric dams. Although these costs are relevant, they are fixed

and thus they do not impact the investment decision.
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3.2. Application to the case study
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Figure 3.2 – Factor fixing with the EEs method: impact of the input parameters on the total cost
(Y1) and on the investment decision (Y2). The value of μ∗ for the i -th parameter is expressed as
percentage of the maximum value with respect to the j -th output of interest (μ∗

i j /maxi (μ∗
i j ),∀ j ∈

{Y1,Y2}). Only the parameters having a value higher than 5% of the maximum value of μ∗
Y1

are shown.
Parameters are sorted in descending order from left to right based on the value of μ∗

Y1
.

3.2.2 Factor prioritization

The EE method, along with the identification of non-influential model parameters, also offers a

“qualitative” ranking. This ranking can be used to select the candidate parameters for a more refined

and computationally expensive analysis, aiming at ranking the parameters. At this stage, more

information is normally acquired to characterize the uncertainty of the individual input parameters.

As an example, a simplified factor prioritization is performed. First, parameters are ranked based on

μ∗
Y1

and μ∗
Y2

, respectively. Then, assuming equal importance for Y1 and Y2, parameters are sorted in

ascending order based on the sum of their positions in the two rankings. Parameters considered

as modeler’s assumptions are excluded at this stage. Factor prioritization with respect to Y1 is
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Chapter 3. Global sensitivity analysis

performed on the first 10 parameters of the obtained list. Factor prioritization results are shown in

Table 3.2. The first-order sensitivity index Si , defining the parameter ranking, is calculated along

with the total effect index STi for nsample = 10000. STi −Si is a measure of how strongly the i -th

parameter is involved in interactions with the other inputs.

Table 3.2 – Factor prioritization results: Si and STi for the first 10 parameters with respect to the
objective value (Y1). Parameters are selected based on the output of the first stage. Si is used to rank
the impact of parameters in the model

Rank Parameter Si STi STi −Si

1 irate 4.830E-01 4.906E-01 7.604E-03
2 cop(NG) 4.412E-01 4.586E-01 1.740E-02
3 cop(LFO) 1.900E-02 1.914E-02 1.424E-04
4 cop(ELECTRICITY) 1.400E-02 3.398E-02 1.997E-02
5 cinv(NUCLEAR) 5.732E-03 1.871E-02 1.298E-02
6 cop(COAL) 5.487E-03 1.272E-02 7.232E-03
7 cp,t(HYDRO DAM) 2.320E-03 2.137E-03 -1.830E-04
8 avail(WASTE) 1.501E-03 2.026E-03 5.243E-04
9 cinv(DHN) 1.158E-03 1.310E-03 1.522E-04

10 cp,t(HYDRO RIVER) 6.922E-04 1.744E-03 1.052E-03

3.2.3 Does uncertainty characterization matter in energy planning?

The presented methodology allows to answer an additional research question: does uncertainty

characterization matter in energy planning? Characterizing input uncertainties (as in Table 2.1) is a

time-consuming process. In the energy planning practice, this investment of time is justified only if

the obtained characterization has a relevant impact on the output results. To answer this question,

the GSA results are compared with the results which are obtained by assuming an identical level of

uncertainty for all the input parameters. Figure 3.3 shows the results of the comparison. The EEs

method is carried out assuming ±20% uncertainty for all parameters. Parameters are ranked with

respect to the outputs of interest (Y1 and Y2) following the same method as in Section 3.2.2. For

the first 10 parameters in the ranking, the new values of μ∗
Y1

and μ∗
Y2

are compared with the results

presented in the previous section.

The comparison shows that the values of the sensitivity indices are substantially different in the two

cases. Although 5 out of the 10 parameters emerge as impacting in both cases, the ±20% screening

fails in identifying the non-influential parameters. Two observations suggest this conclusion. First,

parameters which were non-influential - such as the energy demand and the efficiency of technolo-

gies - are now in the first positions of the ranking. Second, parameters previously classified among

the most impacting are now classified as non-influential. The latter is a potentially dangerous error

as noted in [63], as it would lead to exclusion of impacting parameters from the analysis. Overall, the
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Figure 3.3 – Comparison of EE method results: input uncertainty characterization as in Table 2.1
(light colors) vs. identical uncertainty of ±20% for all parameters (dark colors). The value of μ∗ for
the i -th parameter is expressed as percentage of the maximum value with respect to the j -th output
of interest (μ∗

i j /maxi (μ∗
i j ),∀ j ∈ {Y1,Y2}). Parameters are sorted in descending order from left to right

based on the results of the ±20% GSA.

characterization of input uncertainties is proven to have a strong impact on the output results.

Discussion

The application of a two-stage approach (as in [63]) and the consideration of all parameters in the

analysis represent a novelty in the energy planning field. To date sensitivity analysis is very seldom

carried out on energy models [34], and normally only an arbitrarily defined subset of parameters is

considered in the analysis.

The GSA results show that, first, the two-stage GSA is an efficient approach, as a large number of
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Chapter 3. Global sensitivity analysis

non-influential parameters can be excluded in the first stage, reducing the problem size for the

more computationally expensive second stage. Second, considering all parameters in the analysis

is crucial. Figure 3.2 shows the risk of an arbitrary exclusion of parameters from the analysis:

parameters which are commonly considered as fixed assumptions in energy models, and whose

uncertainty is therefore seldom investigated, emerge as very impacting. Third, when dealing with

optimization models, the outputs of interest for the GSA should be carefully defined. Selecting the

value of the objective as an output of interest is a natural but often incomplete choice, as some

parameters can have a strong influence on the objective but a negligible influence on other key

decision variables (and vice versa).

Furthermore, the GSA results offer a qualitative ranking of the importance of the different parameter

categories. This is shown in Table 3.3, in which the average of μ∗ is calculated for the different types

of parameters with respect to the two outputs of interest. The economic parameters emerge as the

most impacting. In particular, the cost of resources (cop) is the second most impacting parameter

type with respect to the investment decisions (Y2) and the third most impacting on the objective

value (Y1), after the assumption of the O&M cost of technologies and the interest rate.

Table 3.3 – Results of the EE method: average of μ∗ (μ∗) for the different parameter categories with
respect to the objective value (Y1) and the investment decision (Y2). Parameter categories are ranked
based on μ∗

Y1
.

Rank Category μ∗
Y1

μ∗
Y2

1 cmaint,% 4.749E-01 3.535E+00
2 irate 4.466E-01 3.124E+00
3 cop 1.063E-01 3.421E+00
4 cinv 2.162E-02 4.622E-01
5 avail 1.200E-02 1.185E+00
6 cp,t 9.887E-03 7.040E-01
7 endUsesyear 7.834E-03 4.820E-01
8 n 3.581E-03 2.802E-01
9 η 2.428E-03 3.540E-01

10 Other 1.894E-03 2.984E-01
11 %loss 6.157E-04 3.681E-01
12 fmax 4.953E-04 5.440E-01
13 cp 5.601E-05 1.584E-01
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4 Robust optimization

Chapter overview

• How can we incorporate uncertainty in strategic energy planning optimization models?

• Complete robust optimitzation framework: uncertainty in objective and constraints

• Uncertainty dramatically impacts energy strategy: when uncertainty is accounted for,

shift towards renewables and efficient technologies

• Robust decision-making method identifies reliable and cost-effective energy strategies

• Comparison with stochastic programming

Objective function

Focus on optimality

obj

Robust energy strategy

Technology sizing (F) &
operation (Ft)

Centralized vs. decentralized
heat supply (%Dhn)

Public vs. private mobility 
(%Public)

Freight rail vs. road (%Rail)

Decision-making

Uncertainty in 

objective function &

in constraintsConstraints

Focus on feasibility

con,i

Figure 4.1 – In this chapter, first uncertainties in the objective function and in the other
constraints are separately considered; then, they are put together to support decision-making.

This chapter is an improved and extended version of Moret et al. [123].

Sensitivity and uncertainty analysis offer precious insights to understand the impact of uncertainty

on the output of a model. In these methods, the deterministic model is run several times, each time

with a different combination of input parameters’ values. This means that uncertainty is not directly
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Chapter 4. Robust optimization

incorporated in the model structure; instead, it is accounted for by changing the values of the inputs

at each run. In optimization under uncertainty, instead, uncertainty is integrated in the optimization

model formulation. As Wallace [124] argues, this allows to effectively support decision-making in an

uncertain context.

When dealing with optimization under uncertainty, “a major modeling decision is whether one should

rely on robust optimization, or whether one should use stochastic programming” [36]. Historically,

stochastic programming (SP) is the “traditional” approach [59]. In a nutshell, SP optimizes the

expected value of the objective over all the possible realizations of uncertainty (modeled as a

scenario tree), under the fundamental assumption that the PDFs of the uncertain parameters are

known [57, 125]. First proposed by Dantzig [58] in the mid 1950s, it has found multiple applications

in the contexts of multistage decision-making and long-term planning [36]. Examples of SP in the

energy field are the planning of offshore gas field developments [35], the identification of optimal

process integration investments in industry [126], the optimization of residential energy systems [87]

and the long-term planning of national energy systems [39], among others.

The main limitations of SP are the difficulties in defining PDFs for the uncertain parameters [125],

and thus the scenarios, and the fact that it quickly leads to intractable model sizes [59]. As highlighted

in the previous chapters, strategic energy planning models are characterized by a large number of

uncertain parameters along with scarce quantity and quality of data to characterize their uncertainty.

Thus, in this context, SP applications are often limited to a handful of uncertain inputs [39], and the

associated PDFs seldom have a solid empirical basis [27].

Robust optimization (RO) is an alternative approach to SP. The idea behind RO is to ensure protection

against worst-case realizations of uncertainty. As a consequence, “the main feature of this approach

is that it is does not resort to the calculus of probability, which makes it immune against the curse of

dimensionality and computational intractability" [59]; as previously discussed, this is a desirable

feature when dealing with strategic energy planning models.

The roots of the method are found in the work by Soyster [60] for LP models in the early 1970s. In his

robust formulation, all the uncertain parameters are considered at their worst case value. On the one

hand, this ensures full protection against infeasibility, i.e. the obtained solution is feasible for every

possible value of the uncertain parameters; on the other hand, it has the disadvantage of producing

over-conservative solutions. This issue of over-conservatism was first addressed in the late 1990s

by Ben-Tal and Nemirovski [61][127], whose approach offers less conservative solutions, but with

the drawback of formulating a non-linear robust counterpart for a LP problem. A few years later,

Bertsimas and Sim [62] also addressed the issue of over-conservatism by proposing an alternative

approach, resulting in a linear formulation of the robust counterpart for MILP problems (see Section

4.1.1).
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Chapter 4. Robust optimization

In the last 20 years, after the major contributions by Ben-Tal and Nemirovski and by Bertsimas and

Sim, RO has gained increasing interest, as recently shown by Nicolas [144], and has found application

in various fields, such as inventory and logistics, finance, revenue management, queueing networks,

machine learning, energy systems and the public good [147]. The latest developments focused

on: the consideration of recourse, i.e. the possibility of reactive actions after the realization of the

uncertainty, via linear decision rules (LDR) [148] and adjustable robust optimization (ARO) [149];

making a link between RO and SP [150]; distributionally robust optimization [151], a paradigm

where the uncertain problem data are governed by a probability distribution that is itself subject to

uncertainty; the extension of RO to non-linear problems [145].

Table 4.1 reviews applications of robust optimization to energy models. The reviewed works are

classified according to three criteria: i) used methods; ii) considered uncertain parameters; iii)

application and type of optimization problem.

Among the previously discussed “classical” methods, the approach by Bertsimas and Sim [62] is

the most diffused one, probably due to the linearity of their formulation. However, various authors

also propose robust frameworks, which are alternative to - or combined with - the most established

ones in the literature. Examples are the different scenario-based approaches to RO used in Mulvey

et al. [128], Ribas et al. [130] and Koo et al. [133]; the target oriented RO framework developed by

Sy et al. [142] for the synthesis of polygeneration systems; the two-stage adaptive RO approach for

non-linear problems presented by Gong et al. [145], among others.

In terms of considered uncertain parameters, most applications aim at ensuring feasibility against

uncertain demand, or consider market uncertainty for costs and prices in the objective function.

Applications range from small scale (buildings, specific systems) to districts and industrial processes,

and up to urban and national energy systems, although in the last case the focus is often on the

operation of the electricity sector [128, 133, 135, 137, 139].

It is worth noting that, in the reviewed literature, the word robust is often adopted in contexts not

related to the field of RO, for example in stochastic programming [152] or sensitivity analysis [113]

applications.

The literature review reveals that, despite an increasing trend in the last years, the use of robust opti-

mization methods is still rather limited in the energy field. Furthermore, applications are typically

limited to specific cases or sectors - often the electricity sector - and consider only a subset of the

uncertain parameters. This is often due to the difficulty in incorporating uncertainties in complex

deterministic model formulations, initially developed without accounting for uncertainty.

Overall, the literature shows the need of a stronger link between the fields of mathematical pro-

gramming and of energy systems: if works belonging in the first domain aim at fundamental

methodological contributions and often simply make use of energy applications as illustrative

numerical examples, energy researchers and professionals are interested in applying the developed

methods to support the actual decision-making process. To date, a gap still exists between the two
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worlds.

Contributions

The developments presented in this chapter aim at bridging this gap by proposing a general robust

optimization framework for strategic energy planning models, with the ultimate goal of supporting

decision-making. The novelty compared to the state-of-the-art is declined in five contributions.

First, the robust formulation by Bertsimas and Sim [62] is applied for the first time to the long-term

planning of a large-scale energy system, accounting for electricity, heating and mobility.

Second, the formulation proposed by Kwon et al. [153] to consider the case of multiplied uncertain

parameters in Bertsimas and Sim [62] is further extended to account for the uncertainty in the

annualization factor of the investment cost. This is a methodological contribution, which can find

application in different domains behind energy systems.

Third, the methodology proposed by Babonneau et al. [154] is integrated in the framework to sys-

tematically consider uncertainty in the constraints.

As a consequence of these developments, the proposed framework offers the possibility of consid-

ering all uncertain parameters, both in the objective function and in the other constraints, which

constitutes an additional novelty.

Fifth, the framework is applied to the Swiss case study presented in the previous chapters to show its

potential in the context of a real strategic energy planning problem. Figure 4.2 illustrates the cost

optimal configuration of the Swiss energy system in 2035 in the deterministic case, i.e. with all the

parameters at nominal value. Following the phase out of nuclear power plants [64], energy supply

is dominated by fossil fuels, and in particular by NG (109 TWh/y), burned in CCGT power plants

for electricity production and in boilers for heat supply. The high share of fossils, due to their low

prices, leads to total GHG emissions of 39.9 ktCO2-eq., while renewables and efficient conversion

technologies (such as electrical HPs and CHP) play a marginal role in this scenario,

Thus, this chapter answers the following research question: “How does the energy strategy change if

we consider uncertainty and how can robust optimization aid this decision-making process?”.

Although equivalent in terms of mathematical formulation, considering uncertainty in the objective

function and in the constraints is fundamentally different [59, 147, 125]. According to Gabrel et al.

[147], uncertainty in the constraints is linked to feasibility, i.e. the goal is obtaining “a solution that

will be feasible for any realization taken by the unknown coefficients”; uncertainty in the objective

is linked to optimality, i.e. the goal is obtaining “a solution that performs well for any realization

taken by the unknown coefficients”. Thus, first the formulations and results for the objective function

and constraints are separately discussed. Then, they are considered together to propose a decision-

making method.
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4.1. Uncertainty in the objective function

4.1 Uncertainty in the objective function

In a cost optimization model, most of the uncertain parameters are often found in the objective

function [146]. The objective function of the MILP problem presented in Chapter 1 (Eq. 1.1) can be

rewritten in an extended formulation as in Eq. 4.1.

Ctot =
∑

j∈TECH
Cinv( j )+∑

j∈TECH
Cmaint( j )+ ∑

i∈RES

∑
t∈T

Cop( j , t ) = (4.1)

=
∑

j∈TECH

i rate(i rate +1)n( j )

(i rate +1)n( j ) −1
cinv( j )F( j )

︸ ︷︷ ︸
Obj1: novel formulation (Section 4.1.2)

+∑
j∈TECH

cmaint( j )F( j )+ ∑
i∈RES

∑
t∈T

cop(i , t )Ft(i , t )top(t )

︸ ︷︷ ︸
Obj2: Application of Bertsimas and Sim [62] (Section 4.1.1)

In which the uncertain parameters - the discount rate (irate), the technology lifetime (n), investment

(cinv)1 and O&M (cmaint) costs, and the cost of resources (cop) - are highlighted in red. The GSA

results in Table 3.3 reveal that these parameters are the most impacting on the model output.

As indicated in Eq. 4.1, the formulation by Bertsimas and Sim [62] can be directly applied to obtain

the robust counterpart of the second half of the objective function (Obj2), as there is only one

uncertain parameter multiplying each decision variable. This is discussed in Section 4.1.1. However,

their approach does not allow to individually consider the uncertainty of the multiplied parameters

in the first half of the equation (Obj1). Thus, in Section 4.1.2 novel developments are presented,

extending the formulation by Bertsimas and Sim [62] to this special case.

4.1.1 The robust formulation by Bertsimas and Sim [62]

As previously discussed, in the first robust formulation proposed by Soyster [60], all uncertain

parameters are assumed to take their worst-case values. However, in real applications it is unlikely

that all uncertain parameters are at worst case. To address the over-conservatism of Soyster’s

approach, Bertsimas and Sim [62] proposed a robust formulation under the fundamental idea that

“nature will be restricted in its behavior, in that only a subset of the coefficients will change in order to

adversely affect the solution”.

A general MILP problem can be expressed as in Eqs. 4.2, in which x j are the decision variables

(bounded by l j and u j ) and aij are the coefficients of the constraint matrix A.

1 In the robust optimization, the instance of cinv(Grid) in Eq. 1.28 is not considered uncertain, i.e. the parameter is
fixed to its nominal value.
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Chapter 4. Robust optimization

min
∑

j
c j x j (4.2)

s.t.
∑

j
aij x j ≤ bi ∀i

l j ≤ x j ≤ u j ∀ j

Uncertainty is considered for the coefficients of the constraint matrix A, i.e. for the i -th constraint

aij ∈ [aij−δa,ij, aij+δa,ij], j ∈ Ji . This means that each uncertain parameter can have a ±δa,ij variation

over its nominal value aij. Ji is the uncertainty set of the i -th constraint, containing |Ji | uncertain

parameters. Considering uncertainty for the coefficients of the constraint matrix A does not cause

a loss of generality. In fact, as problem 4.2 is equivalent to min γ, s.t. γ≥∑
j c j x j , the coefficients

c j can be included in A; hence, considering uncertainty in the objective and in the constraints is

mathematically equivalent.

In their formulation of the robust counterpart, a protection parameter Γi ∈ [0, |Ji |] is defined for each

uncertain constraint. This protection parameter controls the number of parameters at worst case.

If Γi = 0 then no parameter is at worst case, i.e. the deterministic solution with all parameters at

their nominal values aij is obtained. If Γi = |Ji | then all parameters are at worst case, i.e. Soyster’s

solution is obtained. As shown by Bertsimas and Sim, the interest is evaluating how the solution of

the optimization problem changes when varying Γi between these two extreme cases.

Bertsimas and Sim show that the linear robust counterpart of the MILP problem in Eqs. 4.2 is

formulated as in Eqs. 4.3, in which p and z are positive variables2, and y j = |x∗j |,∀ j at optimality.

min
∑

j
c j x j (4.3)

s.t.
∑

j
aij x j +ziΓi +

∑
j∈Ji

pij ≤ bi ∀i

zi +pij ≥ δa,ij y j ∀i ,∀ j ∈ Ji

−y j ≤ x j ≤ y j ∀ j

l j ≤ x j ≤ u j ∀ j

pij ≥ 0 ∀i ,∀ j ∈ Ji

y j ≥ 0 ∀ j

zi ≥ 0 ∀i

2 In Bertsimas and Sim [62], p and z are the dual variables of the protection function of the i -th constraint. Details are
provided in their paper. For the application of the method, p and z can be simply seen as newly defined positive variables.
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4.1. Uncertainty in the objective function

As previosuly shown, the same formulation can be applied to consider uncertainty in the objective

function. Thus, in Eqs. 4.4-4.8, the general formulation in Eq. 4.3 is applied to the second half of

the objective function in Eq. 4.1 (Obj2): the original objective function is replaced by its robust

counterpart (Eq. 4.4), and constraints 4.5-4.8 are added.

min Obj1 +
∑

j∈TECH
Cmaint( j )+ ∑

i∈RES

∑
t∈T

Cop( j , t )+z0Γ0 +
∑

j∈TECH
pmaint( j )+ ∑

i∈RES

∑
t∈T

pop( j )( j , t ) (4.4)

s.t. z0 +pmaint( j ) ≥ δmaint( j )ymaint( j ) ∀ j ∈ TECH (4.5)

F( j ) ≤ ymaint( j ) ∀ j ∈ TECH (4.6)

z0 +
∑
t∈T

pop(i , t ) ≥ δop(i )
∑
t∈T

yop(i , t ) ∀i ∈ RES (4.7)

Ft(i , t )top(t ) ≤ yop(i , t ) ∀i ∈ RES,∀t ∈ T (4.8)

z0,yop,pop,ymaint,pmaint ∈R+

4.1.2 Novel robust formulation

If the uncertainty of the different parameters needs to be separately considered, the formulation

by Bertsimas and Sim [62] cannot be directly applied to cases in which more than one uncertain

parameter multiplies the same decision variables. In fact, the direct application of Bertsimas and

Sim [62] to the first half of the objective (Obj1) would imply defining a new parameter m, defined as

in Eq. 4.9.

m( j ) = [m( j )−δm( j ),m( j )+δm( j )] (4.9)

m( j ) = irate(irate +1)n( j )

(irate +1)n( j ) −1
cinv( j ) ∀ j ∈ TECH

δm( j ) = (irate +δirate )(irate +δirate +1)n( j )+δn ( j )

(irate +δirate +1)n( j )+δn ( j ) −1

(
cinv( j )+δinv( j )

) ∀ j ∈ TECH

This means that for each technology, the uncertainty of its lifetime (n), of its investment cost (cinv) of

the interest rate (irate) are accounted for altogether in the robust optimization, which could generate

excessively conservative solutions.

This issue of multiplied uncertain parameters was first addressed by Kwon et al. [153], who consid-

ered a robust shortest path problem in which the cost coefficient is the product of two uncertain

factors. Given a problem such as min
∑

j a j c j x j , with a j = [a j , a j +δa, j ] and c j = [c j ,c j +δc, j ], they

show that its robust counterpart is formulated as in Eqs. 4.10.
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Chapter 4. Robust optimization

min
∑

j
a j c j x j +zuΓu +zvΓv +

∑
j

(
p j +q j

)
(4.10)

s.t. zu −η j +p j ≥ δa, j c j x j ∀ j

zv −π j +q j ≥ δc, j a j x j ∀ j

η j +π j ≥ δa, jδc, j x j ∀ j

x j ,p j ,q j ,π j ,η j ,zu,zv ∈R+

In which the subscripts Γu and Γv are the control parameters of the two uncertain parameters a

and c , respectively; p, q, η, π, z are the dual variables. This formulation by Kwon et al. [153] extends

Bertsimas and Sim [62] as it allows to separately consider the uncertainty of the multiplied uncertain

parameters.

In this section, first it is shown how Obj1 can be approximated by a simpler formulation. Then, a

novel robust formulation is presented, extending Kwon et al. [153] (Eq. 4.10) to obtain the robust

counterpart of the studied problem.

Approximation of the annualization factor

Given a total investment C , the constant annuity At (equal for all t = 1, . . . ,n), discounting the

investment over the n-year lifetime, is calculated by Eq. 4.11, in which NPV indicates the net present

value.

C = N PV (At , irate,n) =
n∑

t=1

At

(1+ irate)t = At

n∑
t=1

1

(1+ irate)t = At
(irate +1)n −1

irate(irate +1)n = At

τ
(4.11)

The obtained formulation of the annualization factor for the investment cost (τ, Eq. 1.2), makes it

difficult to develop its robust counterpart. Thus, a simplified formulation to approximate Eq. 1.2 is

demonstrated.

The annuity At is the sum of two components (Eq. 4.12): M t , related to the amortization of the

capital; I t , related to the payment of the interests. In the case of a constant annuity, as in Eq. 4.11,

M t increases over the time horizon, while I t decreases.

At = Mt + It (4.12)

Under the assumption of constant amortization, the capital cost is equally spread over the n-year
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4.1. Uncertainty in the objective function

time horizon, hence Mt = C /n,∀t . In this case, the capital left at the beginning of each period

is C − (t −1)Mt (Eq. 4.13). Assuming that the payments are made at the end of each period, the

amount of due interests at the end of each period t (It ) is calculated based on the left capital (It

decreases over time). In this way, the total amount of interests paid over the whole time horizon

(Itot) is calculated using Eq. 4.14.

It =
(
C − (t −1)Mt

)
irate ∀t (4.13)

Itot =Cirate + (C −Mt )irate + (C −2Mt )irate +·· ·+ (
C − (n −1)Mt

)
irate (4.14)

=Cirate + n −1

n
Cirate + n −2

n
Cirate +·· ·+ 1

n
Cirate

= 1

n
Cirate

n∑
t=1

t = 1

n
Cirate

n(n +1)

2
= n +1

2
Cirate

If the annuity At is constant, then Itot is also equally distributed over the n years, as in Eq. 4.15.

At = Mt + It = C

n
+ Itot

n
= C

n
+ n +1

2n
Cirate (4.15)

Which, for high values of n, gives:

τ= At

C
= Mt + It

C
≈ irate

2
+ 1

n
(4.16)

Following this simplification, Eq. 4.16 offers an approximation of the annualization factor τ as the

linear sum of its two components. The exact result (without the need of assuming n big) can be

obtained if the payments are made in the middle of each period.

Figure 4.3 compares the exact calculation of the annualization factor τ (Eq. 1.2) with its approxi-

mation calculated with Eq. 4.16. To reduce the margin of error in the approximation, a correction

factor α is proposed in Eq. 4.17. Given N different lifetimes n, Δτ(n) (n = 1, . . . , N ) is the difference

between the annualization factor calculated with equation 4.17 and with Eq. 1.2. α is determined by

imposing
∑

n Δτ(n) = 0 (Eq. 4.18).

τ= τr +τn =α
irate

2
+ 1

n
(4.17)

N∑
n=1

Δτ,n =
N∑

n=1

(
τ(n)[Eq. 4.17]−τ(n)[Eq. 1.2]

)=
N∑

n=1

[
α

irate

2
+ 1

n
− irate(irate +1)n

(irate +1)n −1

]
= 0 (4.18)

=⇒ α= 1

N

N∑
n=1

[ irate(irate +1)n

(irate +1)n −1
− 1

n

] 2

irate

69



Chapter 4. Robust optimization

0.02 

0.04 

0.06 

0.08 

0.10 

0.12 

10 20 30 40 50 60 70 80 

Lifetime (n) [y]  

Eq. 1.2 Eq. 4.16 Eq. 4.17 

Calculation of  τ

Figure 4.3 – Annualization factor of the investmtent cost (τ): comparison between exact calculation
(Eq. 1.2) and two possible approximations (Eqs. 4.16-4.17).

As an example, for the nominal values of irate = 3.215% and considering lifetimes n ∈ [10,80] (typical

values for energy technologies), α= 1.25. The approximation in Eq. 4.17 is added in Figure 4.3, which

reveals a good approximation of the exact calculation of τ. Thus, the formulation in Eq. 4.17 is used

to derive the robust formulation of the studied MILP problem.

Robust formulation

Based on the simplification introduced in Eq. 4.18, the first half of the objective function can be

rewritten as in Eq. 4.19.

Obj1 =
∑

j∈TECH

i rate(i rate +1)n( j )

(i rate +1)n( j ) −1
cinv( j )F( j ) ≈ ∑

j∈TECH

(
α

irate

2
+ 1

n( j )

)
cinv( j )F( j ) (4.19)

Thus, in this case the uncertain parameters are multiplied as in Eq. 4.20, in which a j = [a j , a j +δa, j ],

a′
j = [a′

j , a′
j +δa′, j ] and c j = [c j ,c j +δc, j ], j ∈ J .
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4.1. Uncertainty in the objective function

min
∑

j
(a j +a′

j )c j x j (4.20)

Eq. 4.20 cannot be treated with the robust formulation proposed by Kwon et al. [153] (Eq. 4.10). Thus,

based on the developments in [153], the following theorem is proven.

Theorem The robust counterpart of problem 4.20 is expressed by Eqs. 4.21.

min
∑

j

(
a j +a′

j

)
c j x j +zuΓu +zu′Γu′ +zvΓv +

∑
j

(
p j +p′

j +q j

)
(4.21)

s.t. zu −η j +p j ≥ δa, j c j x j ∀ j

zu′ −η′
j +p′

j ≥ δa′, j c j x j ∀ j

zv −π j −π′
j +q j ≥ δc, j (a j +a′

j )x j ∀ j

η j +π j ≥ δa, jδc, j x j ∀ j

η′
j +π′

j ≥ δa′, jδc, j x j ∀ j

x j ,p j ,p′
j ,q j ,π j ,π′

j ,η j ,η′
j ,zu,zu′ ,zv ∈R+

Proof. Let’s consider the robust optimization problem in Eq. 4.22, where the control parameters Γu ,

Γu′ and Γv , associated to the uncertain parameters a, a′ and c, respectively, are positive integers.

min
x

max
u,u′,v

∑
j

(
a j +δa, j u j +a′

j +δa′, j u′
j

)(
c j +δc, j v j

)
x j (4.22)

u j ,u′
j ,v j ∈ [0,1] ∀ j

∑
j

u j ≤ Γu ,
∑

j
u′

j ≤ Γu′ ,
∑

j
v j ≤ Γv

Assuming w j = u j v j ,∀ j and w′
j = u′

j v j ,∀ j , the maximization problem in u, u’ and v can be rewritten

as in Eqs. 4.23, in which the dual variables are indicated in parentheses.
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Chapter 4. Robust optimization

max
u,u′,v,w,w′

∑
j

(
δa, j c j u j +δa′, j c j u′

j +a jδc, j v j +δa, jδc, j w j +a′
jδc, j v j +δa′, jδc, j w′

j

)
x j (4.23)

s.t. u j −1 ≤ 0 (p j ) ∀ j

u′
j −1 ≤ 0 (p′

j ) ∀ j

v j −1 ≤ 0 (q j ) ∀ j

−u j +w j ≤ 0 (η j ) ∀ j

−v j +w j ≤ 0 (π j ) ∀ j

−u′
j +w′

j ≤ 0 (η′
j ) ∀ j

−v j +w′
j ≤ 0 (π′

j ) ∀ j
∑

j
u j −Γu ≤ 0 (zu)

∑
j

u′
j −Γu′ ≤ 0 (zu′)

∑
j

v j −Γv ≤ 0 (zv)

u,u′,v,w,w′ ∈R+

Problem 4.23 can be written in matrix notation as in Eq. 4.24, in which I|J | is the |J |× |J | identity

matrix, 1|J | is a vector of size |J |×1 with all elements equal to 1, 0|J | is a vector of size |J |×1 with all

elements equal to 0, u = [u1,u2, . . . ,u|J |] (the same applies to u’, v, w, w’), and empty fields are all

zeros.

(Row Group 1)

(Row Group 2)

(Row Group 3)

(Row Group 4)

(Row Group 5)

(Row Group 6)

(Row Group 7)

(Row 8)

(Row 9)

(Row 10)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I|J |
I|J |

I|J |
−I|J | I|J |

−I|J | I|J |
−I|J | I|J |

−I|J | I|J |
1T
|J |

1T
|J |

1T
|J |

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u

u′

v

w

w′

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
≤

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1|J |
1|J |
1|J |
0|J |
0|J |
0|J |
0|J |
Γu

Γu′

Γv

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.24)

The constraint matrix A is totally unimodular, i.e. each subdeterminant of A is 0, +1, or −1. In

fact, total unimodularity is preserved under the following operations: i) taking the transpose; ii)

multiplying a row or column by −1; iii) adding an all-zero row or column, or adding a row or column
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4.1. Uncertainty in the objective function

with one non-zero, being ±1 [155]. Based on iii), row groups 1 to 3 can be eliminated from the

analysis. Focusing on rows 4 to 10, Ghouila-Houri [156] shows that a necessary and sufficient

condition for total unimodularity is that each collection of columns (or rows, based on i)) of A

can be split into two parts so that the sum of the columns (rows) in one part minus the sum of the

columns (rows) in the other part is a vector with entries only 0, +1, and −1. Equivalently, for any

collection of rows, if each row is multiplied by +1 or −1 (based on ii)), then the sum of rows must

have only −1, 0, +1 in each column [153]. For any collection of rows 4-10 of A, this is obtained by

multiplying rows 5, 6 and 9 by −1, and by appropriately multiplying row 10 by ±1. This proves the

total unimodularity of A.

Given an optimization problem as in Eq. 4.2, if the constraint matrix A is totally unimodular and

the coefficients b j are all integers, a solution x j of the problem is integral. Hence, in problem

Eq. 4.23 the decision variables u j , u′
j , v j , w j , w′

j are all binaries at optimality. As a consequence,

at optimality, w j = u j v j ,∀ j and w′
j = u′

j v j ,∀ j . This proves the previously assumed equalities, and

thus the equivalence between formulation 4.23 and the inner problem of Eqs. 4.22.

The dual problem of formulation 4.23 is expressed by Eqs. 4.25.

min zuΓu +zu′Γu′ +zvΓv +
∑

j

(
p j +p′

j +q j

)
(4.25)

s.t. zu −η j +p j ≥ δa, j c j x j ∀ j

zu′ −η′
j +p′

j ≥ δa′, j c j x j ∀ j

zv −π j −π′
j +q j ≥ δc, j (a j +a′

j )x j ∀ j

η j +π j ≥ δa, jδc, j x j ∀ j

η′
j +π′

j ≥ δa′, jδc, j x j ∀ j

x j ,p j ,p′
j ,q j ,π j ,π′

j ,η j ,η′
j ,zu,zu′ ,zv ∈R+

Hence, using strong duality, the robust counterpart of problem 4.20 is expressed by Eqs. 4.21.

Complete formulation for the objective function

The demonstrated novel robust formulation for the first half of the objective function (Obj1) is

linearly combined the robust counterpart of Obj2 (Eqs. 4.4) to obtain the complete formulation of

the robust counterpart of Eqs. 4.1.

73



Chapter 4. Robust optimization

min
∑

j∈TECH

(
τr +τn( j )

)
cinv( j )F( j )+∑

j∈TECH
cmaint( j )F( j )+ ∑

i∈RES

∑
t∈T

cop(i , t )Ft(i , t )top(t ) (4.26)

+zrΓr +znΓn +zinvΓinv +z0Γ0 +
∑

j∈TECH

(
pr( j )+pn( j )+pinv( j )+pmaint( j )

)+ ∑
i∈RES

∑
t∈T

pop( j )( j , t )

s.t. zr +
∑

j∈TECH

(−ηr( j )+pr( j )
)≥ δτr

∑
j∈TECH

(
cinv( j )F( j )

)

zn −ηn( j )+pn( j ) ≥ δτn ( j )cinv( j )F( j ) ∀ j ∈ TECH

zinv −πinv( j )−π′
inv( j )+pinv( j ) ≥ δinv( j )

(
τr +τn( j )

)
F( j ) ∀ j ∈ TECH

ηr( j )+πinv( j ) ≥ δτr δinv( j )F( j ) ∀ j ∈ TECH

ηn( j )+π′
inv( j ) ≥ δτn ( j )δinv( j )F( j ) ∀ j ∈ TECH

z0 +pmaint( j ) ≥ δmaint( j )ymaint( j ) ∀ j ∈ TECH

F( j ) ≤ ymaint( j ) ∀ j ∈ TECH

z0 +
∑
t∈T

pop(i , t ) ≥ δop(i )
∑
t∈T

yop(i , t ) ∀i ∈ RES

Ft(i , t )top(t ) ≤ yop(i , t ) ∀i ∈ RES,∀t ∈ T

zr,zn,zinv,z0,pr,pn,pinv,pmaint,pop,ηr,ηn,πinv,π′
inv,ymaint,yop ∈R+

In which δ is the difference between the upper bound and the nominal value of the uncertain

parameters. In particular, δτr = 1
2

(
irate(α′ −α)+α′δirate

)
, with δirate being the maximum worst case

deviation from the nominal value of the interest rate, α being the correction factor for the nominal

value of the interest rate (Eq. 4.18), and α′ being the correction factor for its worst case value

(Eq. 4.18); δτn ( j ) = δn ( j )
n( j )(n( j )−δn ( j )) , with δn( j ) being the maximum worst case deviation from the

nominal value of the technologies’ lifetime.

4.1.3 Application to the case study

Formulation 4.26 is applied to the example MILP model presented in Chapter 1, with the uncertainty

ranges in Table 2.1. In the objective function there is a total of 160 uncertain inputs, which are

controlled by four different protection parameters: Γr ∈ [0,1] for irate, Γn ∈ [0,51] for n, Γinv ∈ [0,52]

for cinv, Γ0 ∈ [0,56] for cmaint and cop. To evaluate how the energy system configuration evolves

from the deterministic solution (Γk = 0,∀k ∈ K = {r,n, inv,0}) to “Soyster’s” solution (Γk = |Jk |,∀k), a

method is needed to define the order in which the control parameters are made vary.

A first option consists in defining only one control parameter Γobj, defined as Γobj =
∑

k Γk , hence

Γobj ∈ [0,160]. The model is then run according to algorithm 1, in which ΓK is a vector containing

the values of all Γk , and Γ′ indicates a temporary assignment within a loop.
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i ← 0

ΓK ,i ← 0

Run model (ΓK ,i ) & save output (ΓK ,i )

while i < |Jobj| do

i ← i +1

for all k ∈ K do

Γ′
K ,i ← ΓK ,i−1

Γ′
k,i ← Γk,i−1 +1

Ctot(k) = Run model (Γ′
K ,i )

if Ctot(k) ≥ maxk Ctot then

ΓK ,i ← Γ′
K ,i

end if

end for

save output (ΓK ,i )

end while

Algorithm 1 – Procedure followed to vary the control parameters in the objective function

Following the idea of Bertsimas and Sim [62], at each step, corresponding to a unitary increment of

Γobj, the effect of incrementing a different protection parameter Γk is separately evaluated, and the

protection parameter generating the worst case objective is identified. Overall, this option requires

(|Jobj|+1)×|K | model runs.

An alternative and simpler solution consists in additionally defining zobj = zk ,∀k ∈ K , and thus

replacing zobjΓobj = zrΓr +znΓn +zinvΓinv +z0Γ0 in formulation 4.26. This means directly using Γobj

as the control parameter of the objective function, which only requires |Jobj|+1 model runs. On the

one hand, differently from the first option in algorithm 1, this does not ensure the integrality of Γr , Γn

and Γinv, which is a needed assumption to prove the previously presented novel robust formulation.

On the other hand, interestingly, for the studied problem this second option is equivalent from a

practical standpoint to the first option. In fact, numerical tests comparing the two alternatives reveal

that the average deviation in the objective value is 0.01% (σ = 0.03%), and reaches at maximum

0.28%. Thus, in the following, the second option is used.

Two issues are additionally addressed to apply the robust formulation to the considered case study.

First, as discussed in Section 1.1.2, CCS technologies are included in the MILP model (Figure 1.2) via

the definition of “CCS resources”. As an example, a standard CCGT power plant uses the NG resource

as an input, while a CCGT power plant with CCS uses the NG CCS resource as an input. This means

that there are two instances of the same resource (NG in this case) to account for its different use.

When considering cost uncertainty, the cost variation must be identical for the two instances. For

NG, this is imposed by Eq. 4.27, which equivalently applies to the other “CCS resources” included in

75



Chapter 4. Robust optimization

the model.

z0 +
∑
t∈T

(
pop(i , t )+pop(k, t )

)≥ δop(i )
∑
t∈T

(
yop(i , t )+yop(k, t )

)
i = NG,k = NG (CCS) (4.27)

Second, in Eqs. 4.26, it is considered that cop varies equally in the different months of the reference

year, consistently with the parameter grouping in Section 2.2.1. Based on the GSA results (Table

3.3), cop is the most impacting parameter on the investment decision. Thus, in this application,

cop is made vary gradually towards the worst case (cop +δop), i.e. in six sequential steps of size

δop/6. Numerical tests show that this choice allows a more gradual transition towards the worst case,

without altering the trade-offs between the different robust solutions.

Results

Figures 4.4-4.7 illustrate how the optimal configuration of the energy system changes when grad-

ually increasing (at integral steps) the protection parameter Γobj from its lower bound (Γobj = 0,

deterministic solution) to its upper bound (Γobj = |Jobj|, “Soyster’s” solution).

The energy strategy changes dramatically when uncertainty is accounted for. In terms of energy

resources (Figure 4.4), the deterministic solution (Figure 4.2) is dominated by NG. For medium

levels of Γobj, there is a “risk pooling” effect, i.e. the dependency on only one resource is replaced

by a mix of alternatives (coal, renewables and electricity imports) to offer more protection against

worst case. For high levels of Γobj, the solution stabilizes towards a mix of NG (used in more efficient

technologies) and renewables. This tendency, i.e. a diversification for medium uncertainty budgets

and a stabilization on a restricted set of alternatives for very low and very high protection levels, is

rather common in robust optimization. In fact, Bertsimas and Sim [62] and Nicolas [144] observe

similar results in their numerical experiments.

An analysis of the output shows that the first parameter which is “activated” (at Γobj = 1) is irate,

followed by fixed costs (hydro dams, grids, efficiency) and by the operating cost of resources;

investment-related parameters (cinv, cmaint, n) are activated for higher values of Γobj. This trade-off

between operating and investment cost uncertainties pushes the solution in opposite directions, as

showed by the performance indicators in Figure 4.5. The highest reduction of fossil fuel consumption

(-42%) in the system and the lowest emissions (-23%) compared to the deterministic case are

obtained at medium uncertainty budgets (Γobj = 31 and Γobj = 62, respectively), while at higher

protection levels there is again an increase of both indicators. However, the cost of resources emerges

as the most impacting parameter on the energy strategy, and thus robust solutions are in general less

dependent on volatile imported resources. As an example, the fully robust solution ( Γobj = |Jobj|),

features lower emissions (-20%), a lower consumption of fossils (-23%) and more installed capacity

(+8%) compared to the deterministic case.
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Figure 4.4 – Evolution of the energy system configuration vs. protection level Γobj: annual consump-
tion of resources.

In the deterministic solution, the share of electricity production (Figure 4.6) not covered by hydro

is entirely supplied by CCGT, with 3 GWe of installed capacity. Wind is included in the mix at low

protection levels (Γobj ≥ 7), while for medium uncertainty budgets a diversified mix (including

coal, electricity imports, PV, new hydro run-of-river and dams) is chosen; CHP installed capacity

steadily increases when augmenting the protection level. With increasing protection levels, there

is a tendency to shift towards renewables and more efficient technologies, i.e. towards higher

investment-to-operating cost ratios. As an example, coal is first used in standard ultra-supercritical

(U-S) power plants, and then in more efficient integrated gasification combined cycle (IGCC) plants;

NG is initially burned in standard CCGT plants, and then in CHP units. Efficiency thus acts as an

uncertainty damper as, by optimizing the conversion of resources, it reduces the exposure of the

energy system to the volatility of fuel prices.

A similar trend is observed for heat supply (Figure 4.7). The deterministic solutions, mostly relying

on the combustion of fossil fuels in boilers, are gradually replaced by HPs in the case of decentralized

heat, and by CHP for centralized heat (DHN) and industry. The option of centralized heat supply

(%Dhn) is optimal for medium uncertainty budgets.
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Figure 4.5 – Performance indicators (cost, GHG emissions, installed capacity, electricity in the system,
consumption of fossil fuels.) vs. protection level Γobj: ratio vs. deterministic solution (Γobj = 0).
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Overall, the results show the interest of the solutions obtained at medium protection levels, and

thus of the approach by Bertsimas and Sim [62], which allows to identify them. In fact, various

technologies and system configurations appear only at medium uncertainty budgets. In the standard

robust optimization approach by Soyster [60], assuming all parameters at worst case, these solutions

do not emerge.

4.1.4 Evaluation of the robust solutions

When robust optimization aims at ensuring feasibility against constraint violations (e.g. inability to

meet the demand), robust solutions are normally compared based on the value of the objective, i.e.

by measuring the difference in the cost of the robust solutions compared to the nominal case. In

fact, by increasing protection against worst case, constraint violations are reduced at the price of a

higher objective value. Bertsimas and Sim [62] define this trade-off as the price of robustness.

However, when uncertainty is considered for the cost coefficients in the objective, the use of this

metric is discouraged. In fact, as discussed by Gorissen et al. [125], each value of Γobj corresponds

to a different “scenario” for the uncertain parameters. Thus, the objectives at different values of

Γobj are not directly comparable. In this case, they recommend comparing solutions via simulation

studies.

To do this, 15 representative solutions are selected using the k-medoids algorithm [157], which

clusters the obtained energy system configurations based on the total annual output of technologies

and resources. These representative energy system configurations are characterized in Table 4.2.

Two sets of simulations are carried out to evaluate the performance of these configurations. In the

first one, all the decision variables of the MILP problem are fixed to the values obtained in output of

the robust optimization runs. This means that both the investment and the operation strategy of

the system are fixed for all the simulations. The MILP model is run nsample = 10000 times sampling

the values of the uncertain parameters (irate, cinv, cmaint, cop, n) from uniform distributions over the

entire uncertainty range (Table 2.1). For all the simulations, the fixed costs which are constant for all

the solutions and which have a high impact on the objective - such as the investment cost of existing

hydroelectric power plants, of the electricity grid and of energy efficiency measures - are set to zero.

The results of the first set of simulations are displayed by the full lines in Figure 4.8. For all the

representative solutions in Table 4.2, the mean (x), standard deviation (σ) and the maximum value

over the different runs are compared to the same statistics for the deterministic case (Γobj = 0). On

the one hand, robust solutions have a higher average total cost than the nominal case (x0 = 7786

MCHF/y). On the other hand, the standard deviation of robust solutions is significantly lower,

reaching almost half of the deterministic case standard deviation (σ0 = 1694 MCHF/y) for Γobj ∈
{27;30;37}.
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Figure 4.8 – Simulation results for the robust solutions in Table 4.2: mean (x), standard deviation
(σ), maximum value and x +3σ for the objective value. First test (full lines): all decision variables
fixed, uncertain parameters (irate, cinv, cmaint, cop, n) sampled from entire uncertainty range. Second
test (dashed lines): only investment decisions are fixed (free resources), uncertain parameters (cop)
sampled from worst-case part of range.

Looking at the worst-case performance, the maximum objective value for all robust solutions is

lower than in the deterministic case; also, evaluating the likelihood of being 3σ higher than the

mean, it emerges that solutions obtained at medium uncertainty budgets (with a higher penetration

of renewables) offer more stability and protection against unfavorable realizations of uncertainty.

Similarly to the results presented in the previous section, the indicators in Figure 4.8 denote a sharp

deviation away from the deterministic solution for low and medium protection levels, and then a

convergence back in the direction of the deterministic solution for higher values of Γobj. Interest-

ingly, a similar trend for the standard deviation is observed in the portfolio example application in

Bertsimas and Sim [62].

The first set of simulations, in which both the investment and operation decision variables are fixed,

offers precious insights on the behavior of the robust solutions compared with the deterministic

case. However, in real energy systems applications, once the investment strategy is defined, the

operating strategy of the system can be - at least partly - adapted based on the realization of the

uncertain parameters. As Gorissen et al. [125] recommend, simulation “should reflect the real-life

situation” and “the uncertainty set that is used for optimization may be different than the set for
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4.2. Uncertainty in the constraints

evaluation”. Thus, in the second set of simulations, investment-related decision variables (such

as the installed capacity of technologies, F) and parameters (such as irate, cinv, cmaint, n) are fixed,

while operating decision variables (such as Ft) are left free, i.e. determined by the optimization,

and uncertainty is considered only for the cost of resources. Thus, a difference is made in the

simulations between here-and-now (present) uncertainties, which are known once the investment

decision is taken, and wait-and-see (future) uncertainties. Also, to evaluate worst-case performance,

only worst-case realizations of the operating cost are considered, i.e. cop is drawn from a uniform

distribution having as lower bound the nominal value, and as upper bound the maximum cost.

The results of the second set of simulations are displayed by the dashed lines in Figure 4.8. The main

difference with the results obtained with the first set of simulations is that, in this case, most robust

solutions feature both a lower average total cost and a lower standard deviation compared to the

deterministic case (x0 = 9970 MCHF/y, σ0 = 1033 MCHF/y). This means that, in real energy system

applications, robust solutions can even on average perform better than the deterministic solution,

when faced with adverse uncertainty.

Overall, the two sets of simulations further confirm the interest of the presented robust optimization

approach, i.e. of generating solutions at low and medium protection levels. Also, the high standard

deviations reveal that uncertainty strongly impacts the performance of a given solution. In fact,

the coefficient of variation (cv= σ
x ) of the different solutions is between [11%,22%] in the first set of

simulations, and [5%,10%] in the second set. These values are generally higher than the difference

among the average performance of the solutions (Figure 4.8). This suggests that, when accounting

for uncertainty, the difference between the evaluated energy strategies is of the same order of

magnitude of the variability of the individual solutions. Thus, a robust energy strategy with a higher

penetration of renewables might be not significantly more costly than a deterministic, fossil-based,

alternative.

4.2 Uncertainty in the constraints

Robust optimization works constraint-wise, i.e. the robust formulations are applied individually to

the different constraints of an optimization model. In energy system cost minimization problems,

most impacting uncertain parameters are often found in a “special” constraint, i.e. the objective

function. This justifies the focus on uncertainty in the objective in most of the reviewed literature.

However, as revealed by the GSA results in Table 3.3, various impacting parameters - such as

the availability of resources (avail), the capacity factors (cp,t ), the demand (endUsesyear) and the

conversion efficiencies (η) - are also found in the other constraints.

In the reviewed literature, uncertainty in the constraints is seldom addressed. When it is addressed,

uncertainty is normally considered only for an a priori selected subset of parameters, most often

the demand (to ensure that demand is met for any realization of the uncertain parameters). This
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is mainly due to two reasons: i) the fact that the same uncertain parameters appear in multiple

constraints; ii) the fact that most constraints contain very few - and often only one - uncertain

parameters.

The first issue, highlighted by Hajimiragha et al. [132] (“given the limitation of the robust optimization

techniques [...], uncertain parameters [...] which simultaneously appear in multiple constraints and

the objective function cannot be handled by this methodology”), can often be addressed by improving

the model structure, aiming at obtaining concise and compact formulations. This constitutes both

the motivation and the content of the first chapter of this thesis.

The second issue, discussed by Rager et al. [158], can be exemplified by a model with N constraints,

each of them with only one uncertain parameter. Hence, if applying Bertsimas and Sim [62],

Γi ∈ [0,1],∀i = 1, . . . , N . In this case, on the one hand the problem becomes trivial for the i -th

constraint; on the other hand, the problem becomes combinatorial when considering all the N

constraints, as there are N binary protection parameters Γi . Although this second issue can also

be addressed (at least partly) by working on the model formulation, it constitutes nonetheless a

rather typical and intrinsic characteristic of energy system models. Babonneau et al. [154] propose

a method to deal with this problem. Thus, first the method by Babonneau et al. [154] is briefly

introduced, and then it is applied to the MILP case study.

4.2.1 The robust formulation by Babonneau et al. [154]

The idea behind the approach proposed by Babonneau et al. [154] is to ensure global protection for

a set of constraints, instead of protecting each constraint individually. In the context of an energy

security problem, they propose a robust formulation to ensure that energy can be transfered among

different regions through “channels”, which are subject to uncertain availability. In particular they

consider the constraint in Eq. 4.28, in which ACT is the decision variable denoting the quantity of

energy carried through a given channel i = 1, ..., N , AF is the (uncertain) availability of the channel,

and CAP is the channel capacity.

ACT(i )−AF(i )×CAP(i ) ≤ 0 ∀i = 1, . . . , N (4.28)

Instead of protecting each i -th constraint, a new “global” redundant constraint is added to the

model formulation by summing over the constraint indices, as in Eq. 4.29.

N∑
i=1

(
ACT(i )−AF(i )×CAP(i )

)≤ 0 (4.29)

The robust formulation is then applied to Eq. 4.29. Summing over a given set implies that the
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uncertainty budget is “shared” among the different components of the set. Using Bertsimas and Sim

[62], this corresponds to having only one protection parameter Γ ∈ [0, N ], instead of N protection

parameters Γi ∈ [0,1],∀i = 1, . . . , N , which has the advantage of replacing an intractable combinato-

rial problem with an easily manageable uncertainty set. As Babonneau et al. [154] comment, “we are

interested in protecting the total energy supply [...], not that of each channel separately”. This means

that, applying their method, the focus is moved from the individual component to the robustness of

the entire system.

4.2.2 Application to the case study

The method proposed by Babonneau et al. [154] is applied to the MILP case study for the following

parameters: avail, cp,t , endUsesyear, η. The application of the method is not automatic as, although

mathematically possible, in a real situation not all elements of a set can share the same uncertainty

budget. Thus, the implementation is separately discussed for the uncertain parameters of interest,

which offer different representative examples.

Availability of resources

Resource availability (avail) is accounted for in Eq. 1.12, and it is considered limited only for the two

local resources (wood and waste).

∑
t∈T

Ft(i , t )top(t ) ≤ avail(i ) ∀i ∈ RES (1.12)

Applying the method by Babonneau et al. [154], new robust constraints are added to the formulation

as in Eqs. 4.30, in which Γavail ∈ [0,2] is the protection parameter, δavail is the maximum worst-case

deviation from the nominal value of avail, zavail and pavail are the dual variables.

∑
i∈RES

∑
t∈T

Ft(i , t )top(t )+zavailΓavail +
∑

i∈RES

(
pavail(i )−avail(i )

)≤ 0 (4.30)

zavail +pavail(i ) ≥ δavail(i ) ∀i ∈ RES

zavail,pavail ∈R+

Eq. 4.30 implies that the uncertainty budget can be shared between the two uncertain parameters,

i.e. there is a total “unavailability budget” which can be shared between wood and waste. In the case

study (Table A.22), the use of waste is always maximized, as waste is free of charge; wood, instead, has

a high projected cost in 2035, i.e. its use is far from being cost optimal. Thus, changing the value of
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Chapter 4. Robust optimization

the protection parameter Γavail in Eqs. 4.30 has no impact on the solution, as the uncertainty budget

is always entirely attributed to the unused resource (wood). This means that, for this uncertain

parameter, the application of the method by Babonneau et al. [154] brings no advantage over the

standard formulation, which corresponds to separately considering the availability of wood and

waste.

Period capacity factor

The capacity factor for the different periods (cp,t ) defines the maximum output of renewables in

each period based on the installed capacity (Eq. 1.8). The parameter is defined - and uncertain - for

the five modeled seasonal renewable energy technologies (new and existing hydroelectric dams and

run-of-river plants, PV, wind, solar thermal) and for the 12 months, resulting in 60 instances of the

uncertain parameter.

Ft( j , t ) ≤ F( j )cp,t( j , t ) ∀ j ∈ TECH ,∀t ∈ T (1.8)

cp,t is indexed over the set of technologies (TECH) and the set of periods (T ). Summing over TECH,

i.e. sharing the uncertainty budget among the different technologies, can lead to a similar behavior

to the one observed for avail, resulting in an attribution of the entire uncertainty budget to the

most expensive technologies. Summing over T, instead, distributes the uncertainty budget over the

different periods. This is enforced by the addition of Eqs. 4.31, in which Γcp,t ∈ [0,12] is the protection

parameter, δcp,t is the maximum worst-case deviation from the nominal value of cp,t , zcp,t and pcp,t

are the dual variables.

∑
t∈T

(
Ft( j , t )−F( j )cp,t ( j , t )

)+zcp,t ( j )Γcp,t +
∑
t∈T

pcp,t ( j , t ) ≤ 0 ∀ j ∈ TECH (4.31)

zcp,t ( j )+pcp,t ( j , t ) ≥ δcp,t ( j )F( j ) ∀ j ∈ TECH,∀t ∈ T

zcp,t ,pcp,t ∈R+

Formulation 4.31 groups equally the 60 uncertain parameters into 5 constraints, controlled by the

protection parameter Γcp,t . When Γcp,t is increased of a unitary step, for each technology the cp,t of

an additional period assumes its worst-case realization. To ensure a realistic yearly distribution of

cp,t in the uncertain domain, Eq. 4.32 additionally imposes that, if a given technology is installed,

the maximum deviation from the nominal output in a given period be at maximum δcp,t .

Ft( j , t ) ≥ F( j )
(
cp,t ( j , t )−δcp,t ( j )

) ∀ j ∈ TECH ,∀t ∈ T |cp,t ( j , t ) < 1 (4.32)
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4.2. Uncertainty in the constraints

Thus, the application of the method by Babonneau et al. [154] to the period capacity factor is

effective as it offers a more manageable uncertainty set; however, it also highlights the need of

carefully evaluating over which sets the method can be applied.

Efficiencies and energy demand

The conversion efficiency of technologies (η) and the yearly energy demand (endUsesyear) are ac-

counted for in the layer balance equation (Eq. 1.13). In total, 52 uncertain instances of η and 15

uncertain instances of endUsesyear are considered.

∑
i∈RES∪TECH\STO

f (i , l )Ft(i , t )+∑
j∈STO

(Stoout( j , l , t )−Stoin( j , l , t ))−EndUses(l , t )

︸ ︷︷ ︸
LB

= 0 ∀l ∈ L,∀t ∈ T (1.13)

These parameters are present in different constraints: η is linked to the parameter f (see Section B.3),

which enters as well in Eq. 1.18, while endUsesyear is linked to the decision variables EndUses via

the equations in Figure 1.4. However, as all these are equality constraints, Eq. 1.13 can be rewritten

in an extended form as in Eq. 4.33. The equation takes as an example the electricity layer, which

is representative as it includes resources, technologies (producers and consumers), demand and

losses.

∑
i∈RES∪TECH\STO

f(i , l )Ft(i , t )+∑
j∈STO

(Stoout( j , l , t )−Stoin( j , l , t ))−
∑

s∈S endUsesyear(l , s)∑
t∈T top(t )

− %lighting(t )

top(t )

∑
s∈S

endUsesyear(Lighting, s)− (∑
i∈RES∪TECH\STO| f (i ,l )>0

f(i , l )Ft(i , t )
)
%loss(l ) = 0 l = Elec.,∀t ∈ T (4.33)

The possibility of including all the uncertain parameters in a single set of constraints simplifies -

and, in some cases, makes possible - the development of the robust counterpart. To obtain the

robust counterpart, the first step is the relaxation of the equality constraint Eq. 1.13 to an inequality

constraint, i.e. LB ≥ 0. This does not pose problems as it simply implies allowing an excess of

production in the energy system. As a matter of fact, transforming equalities into inequalities is

quite common in robust optimization, “since often [equality] constraints restrict the feasibility region

drastically or even lead to infeasibility” [125], as in this case. Second, the application of the method

by Babonneau et al. [154] is considered by summing over the set L.

As defined in Section 1.1.2, layers are all the elements in the system that need to be balanced in each

period, i.e. resources and end-uses demand. Summing over the set of layers is possible only if the

summed layers are “compatible”, e.g. if an additional demand in one layer can be compensated by
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Chapter 4. Robust optimization

an additional consumption in the other one. This is clearly not always possible, e.g. an additional

transportation demand cannot be satisfied by the import of more uranium. In particular, resource

layers need to remain separate. As a consequence, for resource layers the method by Babonneau

et al. [154] cannot be meaningfully adopted, and thus the classical robust formulation by Bertsimas

and Sim [62] applies (Eqs. 4.34)

LB−zlb(l , t )Γlb −
∑

i∈TECH\STO
pf(i , l , t ) ≥ 0 ∀l ∈ L∩RES,∀t ∈ T (4.34)

zlb(l , t )+pf(i , l , t ) ≥ δ f (i , l )ylb(i , t )

∀i ∈ TECH \ STO,∀l ∈ L∩RES,∀t ∈ T | f (i , l ) < 0∨ f (i , l ) > 0∧ l �= Elec.

zlb(l , t )+pf(i , l , t ) ≥ δ f (i , l )ylb(i , t )(1−%loss(l ))

∀i ∈ TECH \ STO,∀l ∈ L∩RES,∀t ∈ T | f (i , l ) > 0∧ l = Elec.

Ft(i , t ) ≤ ylb(i , t ) ∀i ∈ TECH \ STO,∀t ∈ T

zlb,pf,ylb ∈R+

In Eqs. 4.34 Γlb is the protection parameter, zlb and pf are the dual variables, δ f is the maximum

worst-case deviation from the nominal value of f , calculated as in Eq. 4.35, in which δη is the

maximum worst-case deviation from the nominal efficiencies (η) of energy conversion technologies.

δ f =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

η

δη

η−δη
=− f

δη

η−δη
, if f < 0

δη = f
δη

η
, otherwise

(4.35)

Some types of end-use demand, instead, can be compatible. As an example, an additional mobility

demand can be supplied by either public or private transportation technologies, or an additional low

temperature heat demand can be satisfied by centralized or decentralized technologies. Thus, the

method by Babonneau et al. [154] can be applied to these layers with Eqs. 4.36. The formulation, by

an appropriate set definition, cancels out the decision variables %Dhn, %Public and %Rail, avoiding

possible multiplications among variables which would make the formulation nonlinear.

∑
l∈L|l∈EUT OF EUC(euc)

LB−zlb(l , t )Γlb −
∑

i∈TECH\STO
pf(i ,euc, t )−∑

eui ∈EUI OF EUC(euc)

∑
s∈S

pdem(eui, s, t ) ≥ 0 ∀euc ∈ EUC,∀t ∈ T (4.36)

zlb(euc, t )+pdem(eui, s, t ) ≥ δdem(eui, s)
%lighting(t )

top(t )

∀euc ∈ EUC,∀eui ∈ EUI OF EUC(euc),∀s ∈ S,∀t ∈ T |eui = Lighting
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4.2. Uncertainty in the constraints

zlb(euc, t )+pdem(eui, s, t ) ≥ δdem(eui, s)
%sh(t )

top(t )

∀euc ∈ EUC,∀eui ∈ EUI OF EUC(euc),∀s ∈ S,∀t ∈ T |eui = Heat LowT SH

zlb(euc, t )+pdem(eui, s, t ) ≥ δdem(eui, s)∑
t∈T top(t )

∀euc ∈ EUC,∀eui ∈ EUI OF EUC(euc),∀s ∈ S,∀t ∈ T |eui ∉ {Lighting,Heat LowT SH}

zlb,pdem ∈R+

The sets of equations 4.34-4.36 define the robust counterpart of the layer balance constraint

(Eq. 1.13), in which the protection parameter Γlb controls the uncertainty levels of f and endUsesyear.

By increasing Γlb of a unitary step, for each period an additional uncertain parameter takes its worst

case realization, allowing to account for demand and efficiency uncertainties in the planning of

the energy system. It has to be noted that, as the uncertain parameters are not indexed over T , the

parameter which changes is not necessarily the same for all t .

The application of the method by Babonneau et al. [154] to Eq. 1.13 shows the advantages of concise

model formulations for uncertainty studies. In fact, if the deterministic model is already rather

complex, which is often the case in the energy field, obtaining the robust counterparts can be

difficult - and lead to extremely intricate formulations - or, in some cases, practically impossible, as

highlighted by Hajimiragha et al. [132]. Eq. 1.13 serves as representative example of this. Although

the constraint offers various challenges, such as the presence of different uncertain parameters,

some of them linked to other constraints, its robust counterpart is obtained with the addition of

only two sets of additional constraint. This is made possible by the fact of using a MILP formulation

developed for uncertainty, together with an appropriate definition of sets.

Overall, the application to the case study reveals the interest of the method by Babonneau et al. [154]

for the robust optimization of strategic energy planning models, offering tractable uncertainty sets

in the place of an otherwise intractable combinatorial problem. However, it also shows that the use

of the method is not automatic, but it requires thorough case-by-case evaluation to make sure of its

consistency.

4.2.3 Evaluation of the robust solutions

As previously discussed, uncertainty in the constraints is linked to feasibility: by increasing protec-

tion against worst case, constraint violations are reduced at the price of a higher objective value.

For example, a robust energy system will normally be more expensive, but more likely to satisfy the

demand. This trade-off is measured by the price of robustness (PoR), which is defined as the differ-

ence between the objective (cost) of a given robust solution and the objective of the deterministic
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Chapter 4. Robust optimization

problem. Measuring the PoR “is useful if the objective is certain, since in that case PoR is the amount

that has to be paid for being robust against constraint violations” [125]. Thus, the effect of robustness

in the constraints is evaluated via simulation while keeping the deterministic objective function, i.e.

Γobj = 0. As an example, the focus of the analysis is on the layer balance constraint (Γlb).

Equivalently to the tests performed in Section 4.1.4 for uncertainty in the objective, 10 different

energy system configurations are obtained by gradually increasing the value of Γlb from the de-

terministic case (Γlb = 0) to the fully robust solution (Γlb = |Jlb|). Then, two sets of simulations

are carried out. In the first one, all the decision variables of the MILP problem are fixed to the

values obtained in output of the robust optimization runs. This means that both the investment

and the operation strategy of the system are fixed in all the simulation runs. The MILP model is

run nsample = 10000 times sampling the values of the uncertain parameters ( f , endUsesyear) from

uniform distributions over the entire uncertainty range (Table 2.1). In the second set of simulations,

to better represent the reality of energy systems, only investment-related decision variables (such as

the installed capacity of technologies, F) are fixed, while operating decision variables (such as Ft)

are left free, i.e. determined by the optimization.

The results of both tests are reported in Table 4.3. To measure the magnitude of the constraint

violations, a positive variable ξ is added to the robust constraints and also to the objective function

with a high penalty cost. As expected, by increasing the protection level Γlb, constraint violations

Table 4.3 – Simulation results for uncertainty in the constraints: price of robustness (PoR) against
statistics of constraint violations ξ (x: mean, σ: standard deviation). First test: all decision variables
fixed. Second test: only investment decisions are fixed (free resources). Uncertain parameters are
the efficiencies ( f ) and the end-use demand (endUsesyear), sampled from entire range.

Γlb

Test 1 Test 2
Ctot

a PoR Renewablesb %viol xξ σξ %viol xξ σξ

[MCHF/y] [MCHF/y] [TWh/y] [%] [GW]c [GW]c [%] [GW]c [GW]c

0 13834 0 2.96 99.9% 0.254 0.140 53.3% 0.093 0.078
1 14491 657 7.06 24.9% 0.064 0.061 1.05% 0.041 0.034
2 14633 799 1.42 8.50% 0.067 0.062 0.05% 0.011 0.009
3 14712 878 1.89 2.73% 0.063 0.056 0% - -
4 14769 935 10.97 0.81% 0.048 0.045 0% - -
5 14812 978 13.59 0.31% 0.042 0.033 0% - -
6 14849 1015 12.90 0.04% 0.019 0.009 0% - -
7 14873 1039 16.24 0% - - 0% - -
8 14888 1054 17.49 0.01% 0.009 0.000 0% - -

20 14904 1070 18.00 0% - - 0% - -

a Including fixed costs for existing hydroelectric dams, existing electricity grid and efficiency measures.
b Including PV, wind, new hydro dam and run-of-river plants, deep geothermal, solar thermal
c [Mpkm/h] for passenger, [Mtkm/h] for freight mobility end-uses
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are sharply reduced, both in terms of frequency, and in terms of mean (x) and standard deviation

(σ). The first test shows that constraint violations start to become negligible at low values of

the protection parameter (Γlb ≥ 4). Thus, to obtain good protection levels it is not needed to be

fully robust, which further confirms the interest of the approach by Bertsimas and Sim [62]. The

second test, in which the operation strategy of the system is left free to adapt to the realizations

of the uncertainty, reveals that in a real situation the deterministic solution has still a high risk of

infeasibility, and that this risk disappears as soon as uncertainty is taken into account. Also, similarly

to what observed in the case of uncertainty in the objective, the increase of Γlb is associated to a

higher penetration of renewables in the system.

Overall, the tests reveal that uncertainty in the constraints, which is seldom considered in the

literature, can have a significant impact on the definition of the energy strategy. Also, the proposed

robust formulation can identify appropriate trade-offs between the suboptimality of robust solutions

and the risk of constraint violations. In fact, the results suggest that in real energy system applications,

low levels of protection against uncertainty - and, thus, low additional costs - are sufficient to highly

reduce the risk of infeasibilities (e.g. inability to satisfy the demand).

4.3 Decision-making for energy systems

The formulations and results presented in the previous sections of this chapter offer a complete

framework to apply robust optimization to strategic energy planning models, as well as an insight

on how the energy strategy changes when uncertainty is separately accounted for in the objective

function and in the other constraints. However, these mathematical methods need to be linked

to the energy planning practice. As an example, Grossmann et al. [36], reviewing the use of the

method by Bertsimas and Sim [62] in the field of process system design, comment that “it is not

trivial” for a user to adequately specify the uncertainty budget (Γ). In fact, if probabilistic results -

as the ones presented in Bertsimas and Sim [62] - can help identifying appropriate bounds for the

constraints, in the case of the objective the translation of robust optimization results into energy

planning decisions is not obvious.

Thus, the purpose of this section is to evaluate how the presented methods can support the decision-

making practice in the energy field. To do this, first, a different, target-oriented perspective, is offered

to interpret robust optimization results. Second, a method is proposed to address uncertainty both

in the objective function and in the other constraints. Third, robust energy strategies are compared

with a realistic example, in which future modifications in the investment decisions are allowed as

uncertainty unfolds over time. Fourth, robust solutions are compared to the investment strategy

offered by the more “traditional” stochastic programming approach.
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4.3.1 A target-oriented perspective on robust optimization

A target-oriented approach to robust optimization has been proposed by Sy [159] as a way to translate

robust formulations into a language more familiar to decision-makers. The fundamental idea behind

this approach, in the words of Brown and Sim [160], is that targets “are often very natural for investors

to specify, whereas traditional models based on risk measures or utility functions depend critically on

tolerance parameters, which are often difficult for investors to intuitively grasp and even harder to

appropriately assess.”. In other words, it is easier to ask a decision-maker what is the maximum cost

he/she can accept paying, than asking to quantify his/her aversion to risk in terms of probability

(e.g. asking to define a good value of Γ).

In a target-oriented formulation, the MILP model is modified “such that the objective function [...]

maximizes the robustness index subject to achieving the [...] target” [142]. This means that, consider-

ing uncertainty in the objective, the MILP formulation is rewritten as in Eq. 4.37, in which Ctot(Γobj)

is the robust formulation of the objective function (Eqs. 4.26) and C*
tot is the target maximum cost

defined by the decision-maker.

max Γobj (4.37)

s.t. Ctot(Γobj) ≤ C*
tot

Problem 4.26 can be solved by binary search for any given value of C*
tot [159]. As commented by Sy

[159], “maximizing Γ can be interpreted as maximizing the robustness of the system to uncertainty

with regards to meeting the specified performance requirements”, i.e. the higher the protection level

Γobj, the more likely it is that the total cost of the system will not exceed the corresponding target set

by the decision-maker.

The results of the target-oriented approach applied to the objective function of the MILP case study

are illustrated in Figure 4.9, which is equivalent to Figure 4.4 but with Ctot replacing the protection

level (Γobj) on the x-axis. As also shown by the performance indicators in Figure 4.5, there is a

sharp increase in the total cost for very low values of Γobj. Figure 4.9 reveals that, as this is due

to the “activation” of the fixed costs of existing technologies, the energy strategy does not change.

Interestingly, as soon as solutions start changing, the marginal growth of the protection level against

an increase in total cost (i.e. the derivative of the black line) gets much higher, i.e. a small increase in

the target total cost corresponds to a significant increase in the robustness of the solutions. Also,

most solutions are concentrated in a relatively narrow variation of total cost. For the decision-maker,

this means that shifting towards more renewables and efficient technologies ensures a significantly

higher protection against worst-case at the price of a relatively small increase in the target total cost

of the system.
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Figure 4.9 – Evolution of the energy system configuration vs. objective (Ctot): annual consumption
of resources. The black line indicates the value of Γobj.

Overall, the target-oriented approach to robust optimization does not impact the problem formula-

tion, but it offers a different perspective both in terms of interaction with the energy model, and

of results analysis. This enables a more intuitive understanding of the impact of robustness in the

definition of the energy strategy.

4.3.2 First feasibility, then optimality

Although the target-oriented approach offers an interesting perspective to interpret robust opti-

mization results, simulation remains the most appropriate way of comparing different investment

strategies to support decision-making [125]. In fact, if robust solutions are obtained considering

worst-case realizations of uncertainty, simulation studies can challenge these solutions by using

different uncertainty sets, which can better represent real-life conditions.

In the previous sections, uncertainty in the objective function and in the other constraints has been

separately considered, as the two are fundamentally different: on the one hand, uncertainty in the
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constraints linked to feasibility, and its evaluation (using PoR) is meaningful when the objective is

certain; on the other hand, uncertainty in the objective is linked to optimality. However, energy

planners are interested in solutions that are both feasible and cost-effective, which requires to

simultaneously consider uncertainty in the objective function and in the other constraints. Thus, in

this section, a method is proposed to consider both types of uncertainty, with the final aim of aiding

decision-making.

The fundamental idea behind the proposed method can be summarized as: first feasibility, then

Legend:

Action

Data/Information

Protection parameters
obj = 0; con,i = 0

Feasibility
ok?

y

Increase con,i &
simulate for feasibility

n

obj : Generate & 
cluster solutions 

Feasibility
ok?

Simulate for  feasibility 
and optimality

n

Increase  con,i

y

Results analysis
Robust

energy strategy

Figure 4.10 – Flowchart of the proposed decision-making method: uncertainty is first considered in
the constraints to ensure feasibility, and then in the objective to evaluate optimality.
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optimality. In other words, feasibility (e.g. ability to satisfy the demand) is a condicio sine qua non, i.e.

it makes sense to evaluate optimality only for solutions which satisfy the desired feasibility criteria.

This has also the advantage of limiting the number of solutions to simulate: in fact, if in the case

of the objective it is relevant to evaluate solutions obtained at all protection levels (corresponding

to different cost scenarios), in the case of the other constraints there is no interest in considering

solutions at higher protection levels than the one ensuring the desired degree of feasibility.

The steps of the method are illustrated by the flowchart in Figure 4.10 considering a problem with

uncertainty in the objective function (with protection parameter Γobj) and in N other constraints

(with protection parameters Γcon,i,∀i = 1, . . . , N ). Starting with the deterministic solution (Γobj =
0,Γcon,i = 0), the protection level in the constraints is gradually increased until the desired level of

feasibility is reached (keeping Γobj = 0). Feasibility is evaluated through simulations in which all the

uncertain parameters in the constraints are made to vary. Once feasibility is ensured, the Γcon,i are

kept fixed and different solutions are generated for uncertainty in the objective by varying Γobj. Out

of the generated solutions, a representative set - selected, for example, using k-medoids clustering -

is simulated accounting for uncertainty of all model parameters. Of course, as feasibility is initially

assessed only in the case of Γobj = 0, the new solutions generated by considering uncertainty in

the objective might introduce feasibility issues. In this case, Γcon,i can be further increased. Finally,

statistical analysis on the simulation results leads to the selection of the final robust energy strategy.

The method is applied to the MILP Swiss energy system case study. Based on the developments

presented earlier in this chapter, the model has one protection parameter for the objective (Γobj,

accounting for the uncertainty of the cost-related parameters irate, cinv, cmaint, cop, n) and two

protection parameters for the other constraints: Γcp,t (accounting for the uncertainty of cp,t ) and

Γlb (accounting for the uncertainty of f and endUsesyear). First, uncertainty in the constraints is

evaluated. On the one hand, numerical tests reveal that Γcp,t does not significantly impact feasibility.

On the other hand, the results in Table 4.3 reveal that Γlb has a strong influence: for a real energy

system situation (test 2 in Table 4.3), feasibility is sharply improved already for Γlb = 1.

Thus, Γlb is fixed to 1, and uncertainty in the objective is evaluated. For consistency with the

results presented in Figure 4.8 (in which Γlb = 0), the same values of Γobj are used to select the 15

representative solutions. The representative energy system configurations, listed in the upper part of

Table 4.4, are simulated nsample = 10000 times, sampling the values of the uncertain parameters (all

uncertain parameters) from uniform distributions over the entire uncertainty range. To represent

the reality of energy systems, only investment-related decision variables (such as the installed

capacity of technologies, F) are fixed, while operating decision variables (such as Ft) are left free, i.e.

determined by the optimization.

The results are shown in Figure 4.11, in which the different robust solutions are compared to the

deterministic case (Γobj = 0, Γlb = 0). In terms of optimality, simulation results are in line with

what observed in Figure 4.8: robust solutions are on average more expensive, but feature a lower
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Figure 4.11 – Simulation results for the robust solutions with uncertainty in the objective and in the
constraints: a) mean (x), standard deviation (σ), x +3σ and for the objective value and b) frequency
of constraint violations. Reference (on the y axis) is the deterministic solution (Γobj = 0, Γlb = 0). Full
lines: Γlb = 1. Dashed lines: Γlb = 2. Solutions are simulated on all uncertain parameters (sampled
from entire uncertainty range) and only investment decisions are fixed (free resources).

variability and offer a better protection against worst-case. The main difference is in terms of

feasibility: considering uncertainty in the constraints by fixing Γlb = 1 causes a dramatic reduction

in constraint violations compared to the deterministic solution.

Interestingly, introducing uncertainty in the objective slightly increases the frequency of constraint

violations of some solutions, reaching 2.21% for Γobj = 37. If this is above the feasibility threshold

desired by the decision-maker, the protection level in the constraints can be further increased. As

an example, by fixing Γlb = 2 (lower part of Table 4.4 and dashed lines in Figure 4.11), infeasibility is

reduced to negligible values, while maintaining similar performance in terms of cost.
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Chapter 4. Robust optimization

Thus, by considering uncertainty in both the objective and in the other constraints, the proposed

method can offer solutions which are both feasible and cost-effective. Also, by first ensuring feasibil-

ity in the constraints and then evaluating cost-optimality, it limits the computational requirements

and respects the conceptual difference between the two cases. Interestingly, the results show that

relatively low protection levels in the constraints are sufficient to ensure the reliability of the system,

at the price of a marginal loss in terms of average optimality. This additionally confirms the interest

of a probabilistic approach to robust optimization, as interesting energy system configurations

both in terms of feasibility and cost-effectiveness - and with a high penetration of renewables and

efficient technologies (Table 4.4) - are obtained at medium protection levels both in the objective

and in the other constraints.

4.3.3 Robust investment strategies and overcapacity in the electricity sector

In all the simulation studies performed in this chapter, the investment strategy - corresponding to the

values of the decision variables F - has been fixed to the values in output of the robust optimization

runs (F*), i.e. F( j ) = F*( j ),∀ j ∈ TECH. However, in the reality of national energy systems, it can

happen that if a given technology is too expensive to operate, that technology is shut down and

additional investments are made on other alternatives, thus generating an overcapacity. This is

rather typical in the European electricity sector. For example, as mentioned in the Introduction,

this is the case in the Netherlands, where past expectations of low NG prices led to substantial

investments in new CCGT power plants that were then shut down because non-economically viable

to operate. Another example is the Italian electricity sector, where 23.3 GWe of additional fossil

capacity have been installed in the years 2000-2011. This led to a total installed capacity of 122.3 GWe

in 2011 for a 56.5 GWe peak demand in the same year [161], and to a consequent underutilization of

the newly installed power plants in favor of competing technologies and of electricity imports. Even

when investments are private, overcapacity can constitute a cost for the public if capacity payment

policies are adopted [162]. Thus, this section answers the following research question: Do robust

investment strategies limit the risks of overcapacity in the energy system?

The MILP model presented in Chapter 1 is a one-stage model, which does not consider the possibility

of recourse, i.e. of “reactive actions after the realization of the uncertainty” [36], such as a change in

the investment decision or in the operating strategy. In fact, although recent developments, such as

adjustable robust optimization (ARO) [149] and linear decision rules (LDR) [148], allow to consider

recourse in robust optimization, obtaining robust formulations for multi-stage problems is to date

extremely difficult [59] and restricted to a set of tractable functions.

Thus, a simulation-based approach is used to answer this question, considering the possibility of

modifications in the investment strategy as uncertainty unfolds. To do this, for all the solutions

listed in Table 4.2, it is fixed that F ≥ F* for electricity production technologies. This means that

the investment decision in output of the robust optimization - F*( j ) - becomes the lower bound

98



4.3. Decision-making for energy systems
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Figure 4.12 – Average additional installed capacity and electricity imports for the robust solutions
obtained at different values of Γobj. Results of simulations with uncertain parameters cop and cp,t ,
sampled from uniform distributions over the entire range. Lower bound for size of electricity pro-
duction technologies (F ≥ F*) and for electricity imports is fixed, while use resources and operating
strategy are determined by the optimization.

for the installed capacity of the j -th technology. As a consequence, for each simulated vector of

uncertain parameters, existing technologies can be left unused and be replaced by the installation of

additional capacity. Furthermore, as the choice of relying on electricity imports is part of the energy

strategy, also for electricity imports the lower bound is set to the amount imported in the robust

solutions.

The 15 representative energy system configurations in Table 4.2 are run nsample = 10000 times,

considering uncertainty for the operation-related parameters (cop for fossils and cp,t for renewables)

sampled from uniform distributions over the entire uncertainty range. For each run, the additional

installed capacity in the system and the additional electricity imports are measured.

Figure 4.12 plots the average additional installed capacity and the average additional imports of

electricity for the 15 different energy system configurations over the 10000 simulations. The figure

reveals that the deterministic investment decision (Γobj = 0), made without considering uncertainty,
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Chapter 4. Robust optimization

is the most subject to the risk of overcapacity. As detailed in Table 4.2, this solution heavily relies

on NG for electricity supply, and thus, in case of high NG prices, it is better to invest on other

technologies than to operate the CCGT plants. On average, the additional installed capacity is in

the order of magnitude of three large conventional power plants. Interestingly, this reproduces

the dynamics which led to overcapacity in the previously mentioned European countries. Robust

investment strategies - with a higher share of more efficient technologies, of renewables and a higher

investment-to-operating cost ratio - are instead less likely to require major future modifications.

This example is relevant for energy planners, as it shows that, when considering uncertainty, policies

reducing the dependency on fossil fuels can also limit the risk of overcapacity, which would result in

additional financial as well as environmental costs.

4.3.4 Comparison with stochastic programming

At last, it is relevant to compare robust solutions with the more “traditional” way of incorporating

uncertainties in optimization models, i.e. stochastic programming. The basic idea of stochastic

programming is to optimize the expected value of the objective over all the possible realizations

of uncertainty, which are modeled as a scenario tree. Stochastic models are two- or multi-stage,

meaning that at the nodes of the scenario tree recourse decisions can be made to adapt the solution

as uncertainty unfolds. As commented by Grossmann et al. [36], its multi-stage nature makes

stochastic programming “appropriate for long-term [...] planning [...], since it does not fix all the

decisions at the initial point of the planning horizon as it allows recourse decisions in future times to

adapt in response to how the uncertainties are revealed”.

According to Birge and Louveaux [57], who offer a thorough introduction to stochastic programming,

a two-stage stochastic LP problem with fixed recourse is expressed in its general form by Eq. 4.38, in

which x are the first-stage decision variables; y are the second-stage decision variables; ω ∈Ω are

random events (scenarios) which can realize between the first and the second stage; ψ denotes the

uncertain parameters; q , b and A are the data of the first-stage problem; q , β and T are the data of

the second-stage problem, which are known for a given scenario ω.

min cT x+Eψ[min q(ω)T y(ω)] (4.38)

s.t. Ax = b

T(ω)x+Wy(ω) =β(ω)

x,y(ω) ∈R+

The objective function of Eq. 4.38 contains a deterministic term cT x and the expected value (E) of

the second-stage objective q(ω)T y(ω) taken over all realizations of the scenario ω. The distinction

between the first-stage (here-and-now) and the second-stage (wait-and-see) can be represented the
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4.3. Decision-making for energy systems

example the scenario tree in Figure 4.13.

First stage
here-and-now

x

Second stage
wait-and-see

 y ( )

 ( )

Planning time horizon

Figure 4.13 – Example of scenario tree for a two-stage stochastic programming problem

A stochastic version of the Swiss national MILP model is obtained using DET2STO, a handy software

tool developed by Thénié et al. [163] to automatically generate the deterministic equivalent of

stochastic programming problems. A natural choice is to consider investment-related decisions

(such as F) as first-stage decision variables, and operating decisions (such as Ft, Stoin and Stoout)

as second-stage decision variables. The scenarios are generated by permuting three values (low-

nominal-high) for each uncertain parameter θ, which results in 3θ scenarios. A first observation is

that this exponential growth limits the number of parameters θ to be considered. In fact, the solving

time is above 1h for θ = 5, and over three days for θ = 6 on a 2.4 Ghz 8-core machine, and even the LP

relaxation of the problem overflows the 8 GB available RAM resources for θ ≥ 8. Thus, the scenarios

are generated considering 7 uncertain parameters for the LP relaxation of the problem. In particular,

the discount rate (irate) and the cost of imported resources (cop of NG, electricity imports, light fuel

oil (LFO), coal, gasoline and diesel) are selected based on the GSA results in Table 3.3.

The resulting problem, featuring 2.4 million linear variables, is solved to optimality in 3h. The

obtained solution is reported in Table 4.5: electricity production is supplied by CCGT, wind and new

hydro dams, while heat supply is dominated by fuel boilers.

A simulation study is carried out to compare this stochastic solution to the deterministic one and

to three representative robust solutions. These five energy system configurations (Tables 4.2, 4.4

and Table 4.5) are simulated nsample = 10000 times, sampling the values of the uncertain parameters

(all uncertain parameters) from uniform distributions over the entire uncertainty range. Only

investment-related decision variables are fixed, while operating decision variables are determined

by the optimization.

The results, illustrated in Figure 4.14, reveal that the stochastic solution has an average performance
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Chapter 4. Robust optimization

Table 4.5 – Optimal investment strategy of the stochastic programming problem.

Technology Installed size Units

Electricity
Production

CCGT 0.52 [GWe]
Coal 0 [GWe]
PV 0 [GWe]
Wind 5.30 [GWe]
New Dam 0.44 [GWe]
New River 0 [GWe]

Heat
Production

Boilers 22.0 [GWth]
CHP 1.31 [GWth]
Elec. HPs 2.18 [GWth]
Solar Th. 0 [GWth]
Deep Geo 0.77 [GWth]
%Dhn 0.3 [-]
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Figure 4.14 – Simulation results comparing stochastic vs. representative robust solutions: a) mean (x),
standard deviation (σ), x +3σ and for the objective value and b) frequency of constraint violations.
Reference (on the left y-axis) is the deterministic solution (Table 4.2). Representative robust solutions
are detailed in Table 4.4. Stochastic solution (on the right y-axis) is detailed in Table 4.5. Solutions are
simulated on all uncertain parameters (sampled from entire uncertainty range) and only investment
decisions are fixed (free resources).
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4.3. Decision-making for energy systems

similar to the deterministic solution (+1.3%) and a lower standard deviation (−15%). Robust so-

lutions are on average more expensive (reaching +6.9% compared to the deterministic case), but

offer a better protection against worst-case and against the risk of constraint violations. The latter is

due to the fact that in stochastic programming, due the computational limits, the uncertainty of

parameters linked to feasibility in the constraints is not accounted for.

Overall, the simplified comparison confirms that the advantage of robust optimization over stochas-

tic programming primarily lies in its computational performance. Although the multi-stage nature

of stochastic programming makes it the natural answer to strategic energy planning problems, com-

putational barriers, along with the difficulty in appropriately defining PDFs and scenarios, can limit

its practical applications. In these situations, robust optimization proves to be a good alternative,

offering tractable formulations even when considering uncertainty for hundreds of parameters, and

thus allowing to address issues related to both feasibility and optimality of energy systems.

Discussion

This chapter proposes a complete framework to incorporate uncertainty in strategic energy planning

optimization models using the robust formulation by Bertsimas and Sim [62]. First, uncertainty in

the objective function and in the other constraints is separately considered. On the one hand, for

uncertainty in the objective, a novel robust formulation is proposed and demonstrated, extending

Bertsimas and Sim [62] to consider the the case of multiplied uncertain parameters. On the other

hand, the method proposed by Babonneau et al. [154] is adopted to systematically consider uncer-

tainty in the other constraints; this additionally shows the advantages of using concise formulations

when aiming at incorporating uncertainty in optimization models. Overall, the presented devel-

opments allow to consider uncertainty for all uncertain parameters in strategic energy planning

models, which constitutes a novelty in the literature.

Then, the robust formulations for the constraints (related to feasibility) and for the objective (related

to the optimality) are put together to propose a decision-making method for energy systems, with

the goal of identifying solutions which are both reliable and cost-effective.

To answer the real-world research question posed at the beginning of the chapter, the presented

formulations and methods are applied to the MILP Swiss national energy system model presented

in Chapter 1. The results reveal that the deterministic energy strategy illustrated in Figure 4.2,

heavily relying on fossil fuels, changes dramatically when uncertainty is accounted for. In general,

robust solutions are characterized by a significantly higher penetration of renewables and efficient

technologies. Simulation studies reveal that robust investment strategies are on average marginally

more expensive than the deterministic solution, but offer more reliability (e.g. low risk of not meeting

demand) and stability over time, due to a reduced dependency on highly volatile fossil fuel prices.

The simulations additionally highlight the interest of generating robust solutions at intermediate

103



Chapter 4. Robust optimization

protection levels, which confirms the validity of probabilistic approaches to robust optimization,

such as the one by Bertsimas and Sim [62].

Finally, the proposed approach is compared to stochastic programming, which is the “traditional”

way of incorporating uncertainty in long-term planning problems. The comparison reveals that

robust optimization can be a good alternative to stochastic programming. In fact, strategic energy

planning problems are characterized by a large number of input parameters together with low

availability of data to quantify their PDFs. In this context, the application of stochastic programming

is limited by the curse of dimensionality and by the difficulty in defining scenarios. Robust optimiza-

tion, instead, can handle large numbers of uncertain parameters and does not rely on the definition

of PDFs, and thus can better support energy planners in identifying reliable and cost-effective energy

strategies.
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Conclusions

Overview

• Summary of the main results

• Recommendations and guidance to integrate uncertainty in energy models

• Future perspectives

The research question motivating this thesis covers two dimensions. The first dimension - “how can

we facilitate the integration of uncertainty in the energy modeling practice?” - is methodological, as it

concerns the presentation of methods to facilitate the integration of uncertainty in energy planning.

The answer along this dimension is declined in four main contributions, ranging from energy

modeling to uncertainty characterization, from global sensitivity analysis to robust optimization.

The second dimension - “how does uncertainty impact strategic energy planning ?” - is practical,

as it concerns the application of these methods to a real energy planning problem. To do this, the

presentation of the methods is systematically associated to their validation on the representative

case study of the Swiss energy system. Overall, the thesis offers a complete framework covering all

the phases of strategic energy planning, from the modeling of the energy system to its optimization

under uncertainty. This framework, together with a full documentation of models, methods and

data, can support decision-makers to integrate uncertainty in the energy planning process.

As the methods, contributions and results are detailed in the dedicated chapters, these conclud-

ing remarks summarize the main findings, provide recommendations and guidance to integrate

uncertainty in energy models, and envision future perspectives.

Main results summary

The main finding of this work is that uncertainty dramatically impacts strategic energy planning

decisions. In fact, the deterministic solution, i.e. the energy strategy defined without accounting

for uncertainty, drastically changes as soon as uncertainty is considered. Uncertainty is seldom

considered in the current energy planning practice, which normally relies on long-term forecasts
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for important parameters or in which, as it emerges from discussions with industrial partners,

long-term decisions are in some cases merely based on todays’ data. The results presented in this

thesis show that forecasts, especially of fuel prices, are inevitably inaccurate, and that decisions

made without considering uncertainty are likely to generate overcapacity in the future.

Second, uncertainty characterization matters. In fact, the quantification of input uncertainties in

Chapter 2 reveals that uncertainty levels vary significantly for different parameters, and that the

way in which uncertainty is characterized has a strong impact on the output results. In particular,

economic parameters, such as the discount rate and the price of imported resources, emerge as the

most impacting factors.

An additional result is the importance of considering all uncertain parameters in the analysis.

In fact, the proposed sensitivity analysis and optimization under uncertainty methods allow to

consider a large number of uncertain parameters, which are typically found in strategic energy

planning models, at the price of reasonable computational expenses. This is a novelty compared

to the literature in the field, in which uncertainty is often only considered for a limited subset of a

priori selected parameters. The results of the application to the case study reveal that parameters

which are commonly considered as fixed assumptions in energy models, and whose uncertainty is

therefore seldom investigated, emerge as very impacting.

At last, the presented robust optimization framework allows to systematically integrate uncertainty in

optimization-based energy planning models for decision support. In the case study, robust energy

strategies are characterized by a higher penetration of renewables and efficient technologies,

and thus by a higher investment-to-operating cost ratio compared to the deterministic solution.

Simulation studies reveal that robust investment strategies can offer more reliability (e.g. low risk

of not meeting demand) and stability over time, due to a reduced dependency on highly volatile

fossil fuels, at the price of a marginally higher average cost. Also, due to the large uncertainty of cost

parameters, solutions generally show a high variability (i.e. high standard deviations), which suggests

that a robust energy strategy with a higher penetration of renewables might not be significantly

more costly than a deterministic, fossil-based, alternative.

Recommendations and guidance

Based on the obtained results and the hours dedicated to the research work behind this thesis, some

recommendations and guidance are provided to energy modelers aiming at integrating uncertainty

in optimization models, and summarized in the following points:

• A little uncertainty is better than no uncertainty at all. In this thesis, various structured

methods are presented and applied to consider uncertainty in energy modeling. Although

the natural recommendation is to apply these methods to the case study of interest, a direct
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application in the energy modelling and planning practice might not be possible for a variety

of - often very practical - reasons (e.g. time constraints, project deadlines, etc.). In these cases,

even a very basic consideration of uncertainty, such as a local sensitivity analysis, can already

provide interesting insights on the results of the study.

• Model for uncertainty. Integrating uncertainty in energy planning models can pose diffi-

culties both in terms of problem formulation and of computational burdens. In this thesis,

it is shown that a concise model formulation and an efficient computational performance

facilitate - and often make possible - the integration of uncertainty in energy models. This

should be considered in the development of the deterministic formulations of optimization

models. In fact, if solving the deterministic version of a model already poses computational

challenges, the integration of uncertainty is likely to be practically infeasible, or to result in

trivial applications.

• Keep it simple. Linked to the previous point, modelers have a natural tendency to increase

the level of detail of models, most often in aspects closely related to their own expertise. As an

example, an energy modeler with a strong background in thermodynamics is likely to focus

on the accurate representation of the performance of technologies, and to simply assume a

default value for an economic parameter as the interest rate. The results in this thesis suggest

that sensitivity analysis studies can help defining priorities in modeling. Thus, it is good

practice to begin integrating uncertainty in the early-stage development of a model, for both

computational and time management reasons.

• Challenge your assumptions. The results obtained in this thesis reveal that modelers’ as-

sumptions can be very impacting. However, in the modeling practice, making assumptions

is unavoidable. Considering all parameters means also considering assumed parameters as

uncertain factors, which allows modelers to better evaluate - and, possibly, modify - their

initial assumptions.

• Fully document data sources. A plague of the current scientific literature is the difficulty in

reproducing published results [164]. This is due to the fact that a complete documentation of

models and data is rarely provided, which can as well affect the credibility of the models [165].

Especially when dealing with uncertainty, a meticulous and structured documentation of the

used data sources can facilitate reproducibility of the work, comparisons, and adaptation to

other case studies.

• Optimize for what is certain. In this thesis, cost optimization is used for decision-making as

economics are often the dominant driver in energy planning choices. However, economic

parameters are also the inputs with the highest uncertainty. Other objectives, e.g. the CO2

emissions associated to the combustion of fossil fuels or the energy efficiency, have much

lower levels of uncertainty. Thus, decision-makers can decide to optimize for more “certain”

objectives, and evaluate economic performance a posteriori via uncertainty analysis.

• Uncertainty as a debugging tool. When developing a model, making mistakes is unavoidable.

Simulating the model in the uncertain domain is, in this case, a powerful way of finding errors.
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In fact, by covering all the solution space, uncertainty exposes the model to combinations of

input parameters which often make hidden mistakes come to light.

Future perspectives

Future improvements of the presented work are envisioned along five main research tracks.

First, from the modeling point of view, the comparison with stochastic programming has highlighted

the interest of multi-stage decision-making including recourse. Although the inclusion of recourse

in robust optimization is to date an open challenge, recent developments - such as linear decision

rules (LDR) [148] and adjustable robust optimization (ARO) [149] - make it possible to include

recourse in robust formulations.

Second, robust optimization has been here applied using the - rather successful - formulation by

Bertsimas and Sim [62]. However, after the proposal of their milestone method, robust optimization

has been constantly evolving, with developments proposing tighter bounds, as in the work by Guz-

man et al. [166], or entirely new approaches, such as distributionally robust optimization [151], a

paradigm where the uncertain problem data are governed by a probability distribution that is itself

subject to uncertainty. If information about the distribution of the data is available, this approach

allows to make use of it in the decision process, whereas using the method by Bertsimas and Sim

[62] this additional information would be discarded. Thus, there is an interest in investigating the

application of these latest developments in robust optimization to the MILP formulation presented

in Chapter 1.

Third, there is also an interest in increasing the spatial and temporal granularity of the case study.

In fact, in this work, the Swiss energy system has been modeled in a rather simplified way, which

does not allow to consider daily variations of the energy system, or its spatial dimensions. Spatial

and temporal granularity can have a significant impact, especially with an increasing penetration of

renewables; as an example, a more refined time resolution could capture the short-term intermit-

tence of power generation by wind and solar. The model could as well be extended on the demand

side by including investment options for energy efficiency measures. Of course, a wider resolution

of the model is likely to increase its computational time, which requires the identification of an

appropriate trade-off between computational requirements and model accuracy.

Fourth, due to time constraints, in Chapter 2 parameters have been divided in groups based on their

similarity, and uncertainty has been characterized for one representative parameter per category.

Future work envisions the uncertainty quantification of the individual parameters, which can

increase the accuracy of the obtained results.

Last, but probably most importantly, in this thesis uncertainty has been considered for quantifiable

elements in a model, mainly economic and technical parameters. However, in the reality of energy
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planning there are also other sources of uncertainty, such as the enforcement of policies, the

evolution of neighbouring energy systems, the social acceptance, the behavior of people and markets,

the advent of breakthrough technologies, etc. These parameters are evidently more difficult to

quantify, but at the same time possibly more likely to severely impact the energy strategy, and thus

they should be additionally considered. This could result in decision-support frameworks in which

quantitative methods are complemented by qualitative assessments, as advocated by van der Sluijs

et al. [167].

Uncertainty is seldom considered in the current energy planning practice. This thesis contributes to

a systematic consideration of uncertainty in energy models by identifying the fundamental research

questions and by proposing methods to answer them. As the consideration of uncertainty is an

emerging topic in the literature, the focus of the thesis is intentionally broad, not aiming at providing

definitive answers to the research questions which motivate it. As a consequence, future research is

envisioned along the three main research axes of this thesis, namely i) the development of energy

models suitable for uncertainty, ii) the quantification of input uncertainties, and iii) the definition

of methods to integrate them in decision-making.

As energy modeling is often inevitably problem specific, it is crucial that researchers working in this

area fully document their models and data sources, in order to ensure reproducibility and adaptation

to other case studies, and systematically compare their proposed methods to the state-of-the-art

in the literature. In the long run, this will generate i) a set of available modeling frameworks at

different scales (building, urban, national, etc.) with the appropriate level of detail to allow the

consideration of uncertainty; ii) a structured collection of data to characterize the uncertainty of

each uncertain parameter; iii) a set of specific methods to integrate the different types of uncertainty

in decision-making. This can ultimately allow the translation of the methods presented in the

literature into practical tools in the hands of decision-makers to shape the future of energy systems.
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Overview

The appendix is complementary to Chapter 1 as it details the input data for the application

of the MILP modeling framework to the case study of Switzerland in the years 2035 and 2011,

the latter used for model validation.

The resources and technologies in Figure 1.2 are characterized in terms of energy and mass balances,

cost (operating and investment), and environmental impact (global warming potential (GWP)).

For GHG emissions, LCA data are taken from the Ecoinvent database v3.21 [168] using the “allocation

at the point of substitution” method. GWP is assessed with the “GWP100a - IPCC2013” indicator. For

technologies, the GWP impact accounts for the technology construction; for resources, it accounts

for extraction, transportation and combustion.

For the cost, the reported data are the nominal values for Switzerland in the year 2035. All costs

are expressed in real2 Swiss Francs for the year 2015 (CHF2015). All cost data used in the model

originally expressed in other currencies or referring to another year are converted to CHF2015 to offer

a coherent comparison. The method used for the conversion is illustrated by Eq. A.1.

cinv[CHF2015] = cinv[Cy ] · USDy

Cy
· CEPCI2015 [USD2015]

CEPCIy [USDy ]
· CHF2015

USD2015
(A.1)

Where C and y are the currency and the year in which the original cost data are expressed, respec-

tively, USD is the symbol of American Dollars and the Chemical Engineering’s Plant Cost Index

1 The database is consulted online: http://www.ecoinvent.org
2 Real values are expressed at the net of inflation. They differ from nominal values, which are the actual prices in a

given year, accounting for inflation.
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Table A.1 – CEPCI values [169]

Year CEPCI

1982 285.8
1990 357.6
1991 362.3
1992 367.0
1993 371.7
1994 376.4
1995 381.1
1996 381.7
1997 386.5
1998 389.5
1999 390.6
2000 394.1
2001 394.3
2002 395.6
2003 402.0
2004 444.2
2005 468.2
2006 499.6
2007 525.4
2008 575.4
2009 521.9
2010 550.8
2011 585.7
2012 584.6
2013 567.3
2014 576.1
2015 556.3

(CEPCI) [169] is an index taking into account the evolution of the equipment cost (values reported

in Table A.1). As an example, if the cost data are originally in EUR2010, they are first converted to

USD2010, then brought to USD2015 taking into account the evolution of the equipment cost (by using

the CEPCI), and finally converted to CHF2015. The intermediate conversion to USD is motivated by

the fact that the CEPCI is expressed in nominal USD. Although this conversion method is originally

defined for technology-related costs, in this thesis as a simplification it used also for the cost of

resources.
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A.1 Energy demand

The EUD for heating, electricity and mobility in 2035 is calculated from the data in [81] for the

“Politisches Massnahmenpaket” (“PMF”, Political Measures of the Federal Council) scenario in the

year 2035.

A.1.1 Heating

The EUD for SH in households is calculated as the product of the number of inhabitants in Switzer-

land, the per capita living space and the annual specific heating requirement (Table A.2).

The EUD for HW in households is the only heating requirement which is not calculated based on the

“PMF” scenario. It is calculated assuming a per capita daily HW consumption of 50 L/day/inhabitant

and a temperature increase of 40 °C [170].

Table A.2 – Data for the calculation of the end use energy demand in the households sector.

“PMF” scenario in 2035 [81]

Population [106 people] 8.89
Living space [m2/person] 67
Specific heating requirement [kWh/m2/y] 49.5
HW consumption [L/day/person] 50 [170]
Temperature increase for HW production [°C] 40

Table A.3 reports input data and calculated values for the heating EUD in the different sectors.

The calculation of the end-use heating demand in the industry and services sectors starts from

the FEC data by type of heat usage, available in Table 9-18 and Table 9-23 in [81]. The FEC values

reported in [81] are the sum of the fuel consumption in boilers, the electricity consumption for

direct electric heating and for HPs, and the ambient heat used by the latter. The EUD for heating

in the industry and service sectors accounts for the heat supplied by the HPs (equal to the sum of

the ambient heat and their electricity consumption), the heat produced by direct electric heating

systems (equal to their electricity consumption) and the heat supplied by boilers (which is estimated

assuming a 90% efficiency).

For both sectors, first the FEC is shared among the different technologies, then it is proportionally

divided among space heating, hot water and process heating. The ambient heat consumption is

obtained from tables 9-21 and 9-27 in [81]. The electricity consumed by the heat pumps using the

reported ambient heat is calculated using a coefficient of performance (COP) of 3.7. The COP is

based on the ambient heat and electricity consumption of the heat pumps in the household sector in

2035 (table 9-7 and 9-10 in [81]). The electricity consumption for direct electric heating is computed

as the sum of the electricity consumption for space heating, hot water and process heating (Tables

9-19 and 9-24 in [81]) minus the calculated electricity consumption of the heat pumps. The use
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of direct electric heating systems is divided between space heating, hot water and process heating

proportionally to the FEC of each end-use type. It is assumed that heat pumps are not used for the

high temperature EUD in the industry sector. Thus, the use of heat pumps is shared between space

heating and hot water.

In the model, there is a repartition between low temperature and high temperature heating EUD.

The first one includes EUD for space heating and hot water. The second one is the EUD for process

heating. The services sector has only low temperature heating EUD, while the industry sector has

both.

Table A.3 – FEC and EUD in the household, industry and service sectors.

“PMF” scenario in 2035 [81]

EUD type Technology/Source
Households Industry Services

[GWh/y] [GWh/y] [GWh/y]

FEC
Space heating 5361 15861
Hot water 1389 3556
Process heating 20722 0

FEC

Fuelsa 22211 16361
Ambient heat 244 1750
Elec. heat pumps 92 653
Elec. direct heating 4925 653

FECa

Space heating

Fuels 4133 13365
Ambient heat 194 1430
Elec. heat pumps 73 533
Elec. direct heating 961 533

Hot water

Fuels 1071 2996
Ambient heat 50 320
Elec. heat pumps 19 120
Elec. direct heating 249 120

Process heating

Fuels 17007 0
Ambient heat 0 0
Elec. heat pumps 0 0
Elec. direct heating 3715 0

EUDa
Space heating 29489 4948 14525
Hot water 7538 1282 3256
Process heating 0 19021 0

EUDa Low temperature 37027 6230 17781
High temperature 0 19021 0

a Calculated values.

Process heating and HW demand are considered constant over the year, whereas SH demand is

shared over the year according to %heating (Table A.4).
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Table A.4 – Monthly distribution factors for SH demand (%heating) and electricity demand for lighting
(%lighting).

Yearly share (adding up to 1) of space heating and lighting [-]
Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

%heating
a 0.198 0.165 0.142 0.032 0 0 0 0 0.015 0.090 0.138 0.219

%lighting
b 0.124 0.102 0.092 0.071 0.059 0.044 0.041 0.040 0.068 0.105 0.124 0.132

a Calculated from the heating degree days for Pully, CH, for 2011.
b Data from the “Eclairage 100” curve in figure 5-1 [171].

A.1.2 Electricity

The values in Table A.5 list the electricity demand that is not related to heating for the three sectors

in 2035. The values are taken from tables 9-11, 9-13, 9-15, 9-19 and 9-24 in [81]. Lighting demand

is shared over the year according to %lighting (Table A.4), while the rest of the electricity demand is

considered constant over the different months.

Table A.5 – Electricity demand not related to heating by sector.

“PMF” scenario in 2035 [81]
Lighting Others

[GWh] [GWh]

Households 425 10848
Industry 1264 10444
Services 3805 15026

A.1.3 Mobility

The annual passenger transport demand in Switzerland for 2035 is expected to be 146e09 pkms

[81]. Passenger transport demand is divided between public and private transport. The lower

(%public,min) and upper bounds (%public,max) for the use of public transport are 30% and 50% of the

annual passenger transport demand, respectively.

The annual freight transport demand in Switzerland for 2035 is expected to be 40.0e09 tkms. It

is shared between road (trucks) and rail (train) freight transport [81]. The lower (%rail,min) and

upper bounds (%rail,max) for the use of freight trains are 40% and 60% of the annual freight transport

demand, respectively.
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A.2 Electricity production and storage

A.2.1 Renewables

Table A.6 – Renewable electricity production technologies

fref cinv cmaint gwpconstr Lifetime cp fmin fmax

[GW] [CHF2015/kWe] [CHF2015/kWe/y] [kgCO2-eq./kWe] [y] [%] [GW] [GW]

Solar PV 3.00e-06 1000a 15.9a 2081 [168] 25 [172] 11.3b 0 25c

Wind Turbine 3.00e-03 1466d 23.9d 622.9 [168] 20 [176] 23.0e 0 5.30f

Existing Hydro Dam 8.08 4828 [181] 24.1 [181]
1693 [168] 40 [181] 23.4

8.08 [182] 8.08 [182]

New Hydro Damg 1.00e-3 3437 2.89 0 0.44

Existing Hydro River 3.80 5387 [181] 53.9 [181]
1263 [168] 40 [181] 48.4

3.80 [182] 3.80 [182]

New Hydro Riverg 1.00e-04 5919 76.3 0 0.85

Geothermalh 7.6e-03 11464 465 2.493e01 [168] 30 86 [183] 0 0.70i

a Investment cost based on expert opinion (Christophe Ballif, EPFL, April 2017), O&M cost scaled proportionally based
on IEA data. The IEA [106] indicates a cinv of 1557 CHF2015/kWe and a cmaint of 24.7 CHF2015/kWe for a residential
system in 2035.

b Cumulated PV installed capacity in Switzerland reached about 0.44 GW in 2012, of which 0.226 GW deployed in the
same year. In the same year the overall PV production has been 320.29 GWh [173]. Therefore, assuming a constant growth
rate for the installed capacity, the average capacity factor is 0.113.

c In Switzerland the available/adequate surface for solar panels deployment is estimated to be 140 km2 for roofs and 55
km2 for façades [174]. Assuming that 40% of this surface is used for the installation of PV panels with a 25% [175] electrical
efficiency, then the photovoltaic potential is 25 TWh/y.

d Onshore wind turbines in 2035 [106].
e The actual capacity factor is approximately 0.19 in Switzerland [177]. The IEA states that “turbine design advancement

in ten years allows for significant increase in capacity factors” [178]. The new low wind speed turbines are expected to
have a capacity factor of 0.33 for an average annual wind speed of 5.5 m/s at 50 m height [178]. In Switzerland, there
are several possible locations where average annual wind speed reaches 5.5 m/s [179]. Considering these factors and
adopting a conservative approach, the selected value for 2035 is chosen to be 0.23.

f The maximum electricity production potential is estimated to be 10.7 TWh/y (potential that can be accepted by the
Swiss population) [180].

g See the dedicated section.
h Organic Rankine cycle (ORC) cycle at 6 km depth for electricity production (Appendix D.3.4).
i 4.4 TWh/y are estimated in [81] for the year 2050.

Data for the considered renewable electricity production technologies are listed in Table A.6. As

described in Section 1.1.2, for seasonal renewables (Table A.7) the capacity factor cp,t is defined for

each time period. In Table A.6, the yearly capacity factor (cp ) is reported. For these technologies, the

relation between cp,t and cp is expressed by Eq. A.2.

cp,t =
cp ·365 ·distt

dayst
(A.2)

In which distt is the share of electricity production in period t (summing up to 1) and dayst is the

number of days in month t . The values are reported in Table A.7. For all the other electricity supply
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technologies (renewable and non-renewable) with a uniform monthly distribution, cp,t is equal to

the default value of 1.

Table A.7 – Monthly electricity production share from renewable energy sources.

Monthly electricity production share (distt) [-]
Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Solar PVa 0.040 0.064 0.090 0.111 0.117 0.114 0.123 0.117 0.093 0.066 0.038 0.027
Windb 0.120 0.093 0.104 0.065 0.065 0.050 0.055 0.050 0.058 0.103 0.112 0.125
Hydro Damc 0.091 0.083 0.068 0.056 0.077 0.098 0.097 0.094 0.101 0.077 0.076 0.082
Hyro Riverc 0.053 0.042 0.054 0.074 0.109 0.130 0.135 0.125 0.093 0.066 0.059 0.060

a Production profile for photovoltaic electricity in the Mittenland (Switzerland) [184].
b Data from real installation in Mont-Soleil and Mont-Crosin (Switzerland) [185]
c Average monthly distribution factors in the years 2008-2011 [186]. These profiles are used for both existing and new

hydroelectric plants. Part of the monthly electricity production can be “shifted” to other months if the height of the dams
is increased (see the dedicated section for details).

Hydro power in Switzerland

The projected capacity factors for hydroelectric run-of-river plants and dams are calculated based

on the data in Table A.8. A decrease in the electricity production is expected in the next years due to

the application of the LEaux law [187]. The law defines the minimum flow rates for rivers. In order

to respect them, during some periods of the year it may be necessary to stop the power plants, i.e.

letting the water flow bypassing the turbines. This will have as a consequence a decrease in the

annual electricity production. The decrease in electricity production is estimated to be 1400 GWh/y

[187]. In the model, the LEaux production penalty is shared between run-of-river plans and dams

proportionally to their net yearly electricity production. The net electricity production is the total

electricity production minus the electricity consumed for the pumping in the dams.

Table A.8 – Data for the calculation of the future capacity factors for hydro run-of-river and dams.

Hydro river Hydro dam

Net electricity production (2012) [GWh] [182] 16981 17297
Installed power (2012) [GW] [182] 3.84 8.08
LEaux effect [GWh] [187] -686 -714

cp [%] 48.4 23.4

The Swiss Federal Office of Energy (SFOE) has evaluated the development potential for hydroelec-

tricty [187]. The results of the study are presented in Table A.9.

Forecasts in [81] for the year 2050 are based on the development potential under optimized condi-

tions in Table A.9. This potential is distributed between hydro river and hydro dam (Table A.10).
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Table A.9 – Development potential for hydroelectricity in Switzerland [187].

Additional net electricity production
Current conditions Optimized conditions

[GWh/y] [GWh/y]

New big plants 770 1430
Small hydro 1290 1600
Transformation, extension 870 1530

Total potential 2930 4560

Table A.10 – Development potential for hydroelectricity in Switzerland by 2050 [81].

Additional net electricity production
[GWh/y]

Small hydro 1600
Hydro run-of-river 2000
Hydro dams 900

Total potential 4500

In the model, this additional potential is added to the 2012 net electricity production to obtain the

electricity production potential of Swiss hydroelectric power plants in 2050 (Table A.11). The small

hydro potential is attributed to the hydro run-of-river technology as additional capacity. The values

in Table A.11 for 2050 already include the decrease in production caused by the LEaux law.

Table A.11 – Net hydroelectricity production and installed power in Switzerland in the years 2012
and 2050.

2012 [182] 2050
Production Powera Production Powera

[GWh/y] [GW] [GWh/y] [GW]

Hydro river 16981 3.84 19895 4.69
Hydro dam 17297 8.08 17483 8.52

a The capacity factors in Table A.8 are used to calculate the installed power in 2050.

For the cost calculations, it is necessary to consider the way in which the additional electricity is

produced (new dams, new run-of-river plants, improvement and renovation of existing plants).

Table A.12 estimates this repartition based on data from [81] and [187].

Increasing the heights of existing dam has two consequences: an additional net electricity produc-

tion (Table A.12) and an additional storage capacity of 2400 GWh [188]. Currently in Switzerland

there is an electricity deficit during winter and an electricity surplus during summer months. Hydro-
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Table A.12 – Development potential of hydroelectricity in Switzerland by 2050 [81, 187].

Additional net electricity production
Hydro river Hydro dam

[GWh/y] [GWh/y]

Renovation 677 463
Dams height increase 0 330
New big plants 1324 108
New small plants 1600 0

electric dams help equilibrating the seasonal balance by storing a fraction of the water harvested

during spring and summer, for additional electricity production in winter months. Nonetheless, this

“shifting capacity” is limited, as dams are forced to turbine water during summer months (despite

the excess of electricity production) to avoid the risk of dam overflow [186]. The additional storage

capacity allows to shift electricity production from summer to winter, meaning that 2400 GWh can

be subtracted from the summer production, and be delivered in winter. This modifies the monthly

distribution factors for hydro dams in Table A.7. In the model, this behaviour is represented by the

StoHydro technology, described in Section 1.2.1.

Table A.13 and Table A.14 contain the data used for the calculation of the specific investment and

O&M costs reported in Table A.6. The capacity factors calculated in Table A.8 are used for the

calculation of the installed power.

Table A.13 – Investment cost data for the new hydro power plants in Switzerland.

Hydro river Hydro dam

Power cinv Total Inv. Power cinv Total Inv.

[GW] [CHF2015/kWe] [106 CHF2015] [GW] [CHF2015/kWe] [106 CHF2015]

Renovation 0.16 4278 [189] 683 0.23 2849 [189] 643

Dam height increase - - - 0.16 3807 612a

New big plants [181] 0.31 5387 1681 0.05 4828 254

New small plants 0.38 7054b 2660 - - -

Total 0.85 5919 5023 0.44 3437 1509

a The investment cost for increasing the height of dams is proportional to the amount of extra electricity associated
to the increased potential energy of the water: [0.8, 0.9] CHF2015/kWh [188]. The mean of the interval is used in the
calculations.

b Average between values in Table 2-4 and in Table 2-5 for new small plants in 2035 [189]

119



Appendix A. Swiss energy system data

Table A.14 – O&M cost data for the new hydroelctric power plants in Switzerland.

Hydro river Hydro dam

Power cmaint Total O&M Power cmaint Total O&M

[GW] [CHF2015/kWe/y] [106 CHF2015] [GW] [CHF2015/kWe/y] [106 CHF2015]

Renovation 0.16 - - 0.23 - -

Dam height increase - - - 0.16 - -

New big plants [181] 0.31 54 [181] 16.8 0.05 24 [181] 1.27

New small plants 0.38 127a 47.9 - - -

Total 0.85 76.3 65.7 0.44 2.89 1.27

a Average between values in table 2-4 and in table 2-5 for new small plants in 2035 [189]

A.2.2 Non-renewable electricity supply technologies

Data for the considered fossil electricity production technologies are listed in Table A.15. The

maximum installed capacity (fmax) is set to a value high enough (10 GWe) for each technology to

potentially cover the entire demand. For CCS technologies, a 90% capture rate is assumed.

A.2.3 Seasonal storage

The modeled seasonal storage option consists in the production of synthetic methane from the

excess of electricity. This synthetic methane is then used for producing electricity during periods of

deficit in electricity supply. This procedure is also known as Power-to-NG-to-Power. The seasonal

storage model is based on the liquified CH4-CO2 system (LM-C) presented by Al-musleh et al. [75].

It consists of a reversible FC which is used as electrolyzer to produce hydrogen when there is excess

electricity in the grid. The hydrogen is sent to a methanation reactor where it is mixed with CO2 to

produce methane which is liquified (LNG) previous to storage. When there is a shortage of electricity,

the methane is gasified and oxidized in the FC to produce electricity. The produced CO2 is liquified

and stored for being used as input of the methanation reaction; thus, this system is a carbon closed

loop, as there is no emission of CO2.

The elements considered for the calculation of the investment and O&M costs are the reversible

FC, the liquefaction train and the tanks for storing CH4 and CO2. The data required for the cost

calculation is available in Table A.16. It has been assumed that the O&M cost (cmaint) are 5% of the

initial investment cost, and that the lifetime of the different components is 25 years.

A.2.4 Electricity grid

The replacement cost of the Swiss electricity grid is 58.6 billions CHF2015 [196] and its lifetime is 80

years [197]. The electricity grid will need additional investment depending on the penetration level
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Table A.15 – Non-renewable electricity supply technologies. Abbreviations: combined cycle gas
turbine (CCGT), carbon capture and storage (CCS), ultra-supercritical (U-S), integrated gasification
combined cycle (IGCC)

fref cinv cmaint gwpconstr Lifetime cp ηe

[GW] [CHF2015/kWe] [CHF2015/kWe/y] [kgCO2-eq./kWe] [y] [%] [%]

Nuclear 1 5175a 110 [106] 707.9 [168] 60 [191] 84.9b 37
CCGT 0.5 824 [106] 21.1 [106]

183.8c [168]
25 [192] 85.0 63d

CCGT CCS 0.5 1273 [106] 30.2 [106] 25 [192] 85.0 57e

U-S Coal 0.5 2688f 31.7f

331.6c [168]

35 [192] 86.8 [192] 49g

U-S Coal CCS 0.5 4327h 67.6h 35 [192] 86.8 [192] 42i

IGCC 0.5 3466j 52.3j 35 [192] 85.6 [192] 54k

IGCC CCS 0.5 6045l 73.9l 35 [192] 85.6 [192] 48m

a Investment cost: 3664 CHF2015/kWe [106] + dismantling cost in Switzerland: 1511 CHF2015/kWe [190].
b Data for the year 2012 [173]
c In the lack of specific data, assuming same impact for standard and CCS power plants.
d 0.4-0.5 GWe CCGT in 2035 (realistic optimistic scenario) [192].
e CCGT with post-combustion CCS in 2025 (very optimistic scenario) [192].
f 1.3 GWe advanced pulverized coal power plant [193]. cmaint is fixed cost (31.18 CHF2015/kWe/y) + variable cost (0.54

CHF2015/kWe/y assuming 7600 h/y).
g Pulverized coal in 2025 (realistic optimistic scenario) [192].
h 1.3 GWe advanced pulverized coal power plant with CCS [193]. cmaint is fixed cost (66.43 CHF2015/kWe/y) + variable

cost (1.15 CHF2015/kWe/y assuming 7600 h/y).
i Pulverized coal with post-combustion CCS in 2025 (realistic optimistic scenario) [192].
j 1.2 GWe IGCC power plant [193]. cmaint is fixed cost (51.39 CHF2015/kWe/y) + variable cost (0.88 CHF2015/kWe/y

assuming 7500 h/y).
k IGCC in 2025 (realistic optimistic scenario) [192].
l 0.52 GWe IGCC power plant with CCS [193]. cmaint is fixed cost (72.83 CHF2015/kWe/y) + variable cost (1.03

CHF2015/kWe/y assuming 7500 h/y).
m IGCC with post-combustion CCS in 2025 (realistic optimistic scenario) [192].

Table A.16 – Data for the seasonal storage cost calculation.

Parameter Unit Value

Technical data [75]
Lower Heating Value (LNG)

[MJ/kg] 50
[MJ/m3] 21882

Roundtrip efficiency [%] 56.1a

Storage requirement
[m3

CH4
/GWhe,out] 232

[m3
CO2

/GWhe,out] 264

Specific investment cost (cinv)
Tank [kCHF2015/GWhe,out] 585b

Liquefaction plant [CHF2015/kWLNG] 233c

Reversible FC [CHF2015/kWe] 2934d

a Power-to-LNG efficiency is 79.2% and LNG-to-Power efficiency is 70.8% [75].
b Accounting for the investment of the CO2 and CH4 tanks. Based on the average of the cost interval 94-283 MCHF2015

for a 160000 m3 tank in Hjorteset et al. [194], i.e. 1180 CHF2015/m3.
c Average of the points in [195] (Figure 17), excluding high cost locations.
d Same specific investment as the advanced cogeneration technology (Table A.19).
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of the decentralized and stochastic electricity production technologies. The needed investements

are expected to be 2.5 billions CHF2015 for the high voltage grid and 9.4 billions CHF2015 for the

medium and low voltage grid. These values correspond to the scenario 3 in [196]. The lifetime of

these additional investments is also assumed to be 80 years.

A.3 Heating and cogeneration technologies

Table A.17, Table A.18 and Table A.19 detail the data for the considered industrial, centralized and

decentralized CHP technologies, respectively. In some cases, it is assumed that industrial (Table

A.17) and centralized (Table A.18) technologies are the same.

fmin and fmax for heating and CHP technologies are 0 and 20 GWth, respectively. The latter value is

high enough for each technology to supply the entire heat demand in its layer. Thus, for heating

and cogeneration technologies the maximum and minimum shares are controlled in the model by

fmin,% and fmax,%, respectively.

Table A.17 – Industrial heating and cogeneration technologies.

fref cinv cmaint gwpconstr Lifetime cp ηe ηth fmin,% fmax,%

[MW] [CHF2015/kWth] [CHF2015/kWth/y] [kgCO2-eq./kWth] [y] [%] [%] [%] [%] [%]

CHP NG 20 1504a 98.9b 1024 [168] 20 [192] 85 44c 46c 0 50
CHP Woodd 20 1154 [106] 43.2 [106] 165.3 [168] 25 [198] 85 18 [106] 53 [106] 0 100
CHP Waste 20 3127e 119e 647.8f 25 [198] 85 20 [198] 45 [198] 0 50
Boiler NG 10 62.9g 1.26g 12.3h 17 [199] 95 0 92.7g 0 60
Boiler Wood 10 123g 2.46g 28.9 [168] 17 [199] 90 0 86.4g 0 100
Boiler Oil 10 58.6i 1.26j 12.3 [168] 17 [199] 95 0 87.3g 0 50
Boiler Coal 1 123k 2.46k 48.2 [168] 17 [199] 90 0 82 0 50
Boiler Waste 1 123k 2.46k 28.9l 17 [199] 90 0 82 0 100
Direct Elec. 0.1 355m 1.61m 1.47 [168] 15 95 0 100 0 20

a Calculated as the average of investment costs for 50 kWe and 100 kWe internal combustion engine cogeneration
systems [81].

b Calculated as the average of investment costs for 50 kWe and 100 kWe internal combustion engine cogeneration
systems [189].

c 200 kWe internal combustion engine cogeneration NG system, very optimistic scenario in 2035 [192].
d Biomass cogeneration plant (medium size) in 2030-2035.
e Biomass-waste-incineration CHP, 450 scenario in 2035 [106].
f Impact of MSW incinerator in Appendix D.3.8, using efficiencies reported in the table.
g Appendix D.3.5
h Assuming same impact as industrial oil boiler.
i 925 kWth oil boiler (GTU 530) [200]
j Assumed to be equivalent to a NG boiler.

k Assumed to be equivalent to a wood boiler.
l Assuming same impact as industrial wood boiler.

m Commercial/public small direct electric heating [201].

For the DHN, the investment for the network is also accounted for. The specific investment (cinv)

is 882 CHF2015/kWth. This value is based on the mean value of all points in [103] (Figure 3.19),

assuming a full load hours of 1535 per year (see table 4.25 in [103]). The lifetime of the DHN is
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Table A.18 – District heating technologies.

fref cinv cmaint gwpconstr Lifetime cp ηe ηth fmin,% fmax,%

[MW] [CHF2015/kWth] [CHF2015/kWth/y] [kgCO2-eq./kWth] [y] [%] [%] [%] [%] [%]

HP 1 368a 12.8b 174.8 [168] 25 95 0 400 0 50
CHP NG 20 1340c 40.1c 490.9d 25 [192] 85 50e 40e 0 50
CHP Woodf 20 1154 [106] 43.2 165.3 25 [198] 85 18 [106] 53 [106] 0 100
CHP Wastef 20 3127 119 647.8 25 [198] 85 20 [198] 45 [198] 0 50
Geothermalg 23 1620 60.1 808.8 [168] 30 85 0 100 0 50
Boiler NGf 10 62.9h 1.26h 12.3 17 [199] 95 0 92.7h 20 80
Boiler Woodf 10 123h 2.46h 28.9 17 [199] 90 0 86.4h 0 100
Boiler Oilf 10 58.6 1.26 12.3 17 [199] 95 0 87.3h 0 50

a Calculated with the equation: cinv [EUR2011] = 3737.6∗E 0.9, where E is the electric power (kWe) of the compressor,
assumed to be 2150 kWe. Equation from [202], taking only the cost of the technology (without installation factor).

b Ground-water heat pump with 25 years lifetime [203].
c CCGT with cogeneration [106].
d Impact of NG CHP in Appendix D.3.6, using efficiencies reported in the table.
e ηe and ηth at thermal peak load of a 200-250 MWe CCGT plant, realistic optimistic scenario in 2035 [192].
f Assumed same technology as for industrial heat and CHP (Table A.17)
g Direct use of a geothermal well at 4.2 km depth (Appendix D.3.4).
h Appendix D.3.5

expected to be 60 years. The lower (%dhn,min) and upper bounds (%dhn,max) for the use of DHN are

10% and 30% of the annual low temperature heat demand, respectively.

Table A.20 reports the monthly distribution factors which are used for the calculation of cp,t using

equation A.2. For all the other heat supply technologies (renewable and non-renewable) cp,t is equal

to the default value of 1.

Table A.20 – Monthly heat production share from decentralized solar thermal panels.

Monthly heat production share (distt) [-]

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Solar Thermala 0.048 0.062 0.090 0.089 0.106 0.110 0.121 0.112 0.098 0.076 0.049 0.041

a The calculation of the monthly share for solar thermal is based on the SPF model [208] with radiation data from the
village of Verbier, Switzerland. It has been assumed that the mean temperature of the water inside the panel is 40°C.
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Table A.19 – Decentralized heating and cogeneration technologies.

fref cinv cmaint gwpconstr Lifetime cp ηe ηth fmin,% fmax,%

[MW] [CHF2015/kWth] [CHF2015/kWth/y] [kgCO2-eq./kWth] [y] [%] [%] [%] [%] [%]

HP 0.01 525ab 22.5c 164.9 [168] 18c 28.5d 0 300 0 50
Thermal HP 0.01 337eb 10.1f 381.9 [168] 20 28.5d 0 150 0 20
CHP NGg 0.005 1504 98.9 1024 20 [192] 28.5d 44 46 0 40
CHP Oil 0.01 1394h 87.5i 1024j 20 28.5d 39k 43k 0 40
FC NG 0.01 7734l 155m 2193 [168] 20 [207] 28.5d 58n 22n 0 20
FC H2

o 0.01 7734 155 2193 20 [207] 28.5d 58 22 0 20
Boiler NG 0.01 169p 5.08p 21.1p 17 [199] 28.5d 0 90p 20 80
Boiler Wood 0.01 494 [70] 17.3 [70] 21.1q 17 [199] 28.5d 0 85 [70] 0 100
Boiler Oil 0.01 152 [200] 9.12r 21.1p 17 [199] 28.5d 0 85p 10 50
Solar Th. 0.01 768s 8.64t 221.2 [168] 20 [201] 11.3u 0 - 0 40
Direct Elec. 0.01 42.7v 0.19w 1.47 [168] 15 [201] 28.5d 0 100 0 20

a 10.9 kWth Belaria compact IR heat pump [204].
b Catalog data divided by 2.89. 2.89 is the ratio between Swiss catalog prices and prices found in the literature.

Calculated by dividing the average price of a decentralized NG boiler (489 CHF2015/kWth) in Swiss catalogs [205] by the
price for the equivalent technology found in literature (169 CHF2015/kWth, Appendix D.3.5).

c 6 kWth air-water heat pump [201].
d 2500 h/y of operation (assumption).
e Specific investment cost for a 15.1 kWth absorption heat pump (Vitosorp 200-F) [205]
f 3% of cinv (assumption).
g Assumed same technology as for industrial CHP NG (Table A.17)
h Assumed to be equivalent to a 100 kWe internal combustion engine cogeneration NG system [81].
i Assumed to be equivalent to a 100 kWe internal combustion engine cogeneration NG system [189].
j Assuming same impact as decentralized NG CHP.

k Efficiency data for a 200 kWe diesel engine [168]
l System cost (including markup) for a 5 kWe solid-oxide FC system, assuming an annual production of 50000 units

[206].
m 2% of the investment cost [106].
n Solid-oxide FC coupled with a NG turbine, values for very optimistic scenario in 2025 [207].
o Assumed to be equivalent to FC NG.
p Appendix D.3.5
q Assuming same impact as NG and oil decentralized boilers.
r 6% of cinv, based on ratio between investment and O&M cost of boiler of similar size in [199].
s 504 CHF2015/m2 for the UltraSol Vertical 1V Hoval system [204]. For conversion from CHF2015/m2 to CHF2015/kWth,

it is assumed an annual heat production of 650 kWh/m2 (average for the best oriented roofs in the town of Verbier,
Switzerland [141]).

t 1.1% of the investment cost, based on ratio investment-to-O&M cost in [201].
u The calculation of the capacity factor for solar thermal is based on the SPF model [208] with radiation data from the

village of Verbier, Switzerland. It has been assumed that the mean temperature of the water inside the panel is 40°C.
v Resistance heaters with fan assisted air circulation in [199].

w In the lack of specific data, same investment-to-O&M ratio as for direct electric heating in the industry sector
(Table A.17).
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A.4 Transport

In the model, for transport technologies only the operating cost (fuel consumption) is considered.

Investment, O&M costs and emissions associated to the construction are not accounted for. The

efficiencies for the passenger vehicles in 2035 (Table A.21) are calculated with a linear interpolation

between the 2010 and 2050 values presented in Table 6 in Codina Gironès et al [71]. For private

mobility, the average occupancy assumed in [71] is 1.6 passenger/vehicle (data for the year 2010 in

Switzerland, from [80]).

Table A.21 – Fuel and electricity consumption for transport technologies in 2035 [71], and mini-
mum/maximum shares allowed in the model.

Vehicle type
Fuel Electricity fmin,% fmax,%

[kWh/pkm] [kWh/pkm] [%] [%]

Gasoline car 0.430 20 100
Diesel car 0.387 20 100
NG car 0.483 0 50
Hybrid electric vehicle (HEV)a 0.247 0 30
Plug-in hybrid electric vehicle (PHEV)b 0.176 0.045 0 30
Battery electric vehicle (BEV) 0.107 0 30
FC car 0.179 0 20
Tram and Trolley Bus 0.165 0 30
Diesel Bus and Coach 0.265 0 30
Diesel HEV Bus and Coach 0.183 0 30
NG Bus and Coach 0.306 0 30
FC Bus and Coach 0.225 0 20
Train 0.092 0 80

a Using gasoline as only fuel.
b It is assumed that electricity is used to cover 40% of the total distance and petrol to cover the remaining 60%.

The technologies available for freight transport are trains and trucks. Trains are considered to be

only electric. Their efficiency in 2035 is 0.069 kWh/tkm [71]. The efficiency for freight transport by

truck is 0.51 kWh/tkm based on the weighted average of the efficiencies for the vehicle mix in [71].

A.5 Resources

The availability of all resources, except for wood and MSW, is set to a value high enough to allow

unlimited use in the model. No import of hydrogen or biofuels is accounted for in the implementa-

tion. Wood availability is 12279 GWh/y [209] (“wet wood”, 50% humidity, LHVwb = 8.279 MJ/kgwb,

Table D.3), while MSW is limited to 11142 GWh. For the calculation of the MSW availability it is

considered that the average per capita annual waste production is 730 kg (2014 data for Switzerland,

from [210]), 50% of it is recycled [211] and the lower heating value (LHV) is 12.35 MJ/kg (Table D.3).
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The number of inhabitants in Switzerland in 2035 is expected to be 8.90 millions [81].

Table A.22 details the prices of resources (cop) and the GHG emissions (gwpop) associated to their

production, transportation and combustion. cop for imported biofuels is assumed to be equal to

the price of the respective fossil equivalent. No cost is associated to the MSW, as it is assumed that

it should be collected anyway. Export of electricity are possible, but they are associated to a zero

selling price.

Table A.22 – Price and GHG emissions of resources.

Resources
cop gwpop

[CHF2015/MWhfuel] [kgCO2-eq./MWhfuel]

Electricity Import 90.06a 482b

Gasoline 87.96c 345b

Diesel 85.16d 315b

LFO 60.59e 311.5b

NG 34.82f 267b

Wood 93.24g 11.8b

MSW 0 150b

Coal 30.17h 401 [168]
Uranium 4.140i 3.9 [168]

a Based on average market price in the year 2010 (50 EUR2010/MWh, from [212]). Projected from 2010 to 2035 using a
multiplication factor of 1.36 [81].

b Table D.3
c Based on 1.49 CHF2015/L (average price in 2015 for gasoline 95) [213]. Taxes (0.86 CHF2015/L, [214]) are removed and

the difference is projected from 2015 to 2035 using a multiplication factor of 1.24 [104].
d Based on 1.55 CHF2015/L (average price in 2015) [213]. Taxes (0.87 CHF2015/L, [214]) are removed and the difference

is projected from 2015 to 2035 using a multiplication factor of 1.24 [104].
e Based on 0.705 CHF2015/L (average price in 2015 for consumptions above 20000 L/y) [215]. Taxes (0.22 CHF2015/L,

[214]) are removed and the difference is projected from 2015 to 2035 using a multiplication factor of 1.24 [104].
f Based on 24.95 CHF2015/MWh, average import price in the years 2015-2016 at the Swiss border. Projected from 2015

to 2035 using a multiplication factor of 1.40 [104]. Import price data received by e-mail from the Swiss Federal Office of
Statistics (SFOS) [216], Feb. 2017.

g It is based on 47.58 CHF2015/MWh (Table D.3), and projected from 2015 to 2035 using a multiplication factor of 1.96
[81].

h It is based on 18.06 CHF2011/MWh [217], and projected from 2011 to 2035 using a multiplication factor of 1.46 [104].
i Average of the data points for 2035 in [218], accounting for the efficiency of nuclear power plants (Table A.15).

A.6 Other parameters

Hydrogen production

Three technologies are considered for hydrogen production: electrolysis, NG reforming and biomass

gasification. The last two options include CCS systems for limiting the CO2 emissions. Table A.23

contains the data for the hydrogen production technologies.
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Table A.23 – Hydrogen production technologies.

cinv cmaint Lifetime cp ηH2

[CHF2015/kWH2] [CHF2015/kWH2/y] [y] [-] [%]

Electrolysis [219] 329 32.9a 15 0.9 85
CH4 reforming [220] 728 68.8 25b 0.86 73
Biomass gasification [220] 2697 209 25b 0.86 43

a Assumed to be 10% of cinv, for coherence with the data in [220].
b Assumption.

Biomass to synthetic fuels

Two technology options are considered for the conversion of woody biomass to synthetic fuels:

pyrolysis and gasification. The main product of the pyrolysis process is bio-oil, which is considered

equivalent to fossil LFO. The main product of the gasification process is SNG, which is considered

equivalent to fossil NG. Data for the technologies are reported in Table A.24 (Appendix D.3.3). In the

table, efficiencies are calculated with respect to the wood in input (50% humidity, on a wet basis

LHV) and “fuel” stands for the main synthetic fuel in output.

Table A.24 – Woody biomass to synthetic fuels conversion technologies (Appendix D.3.3).

cinv cmaint Lifetime cp ηfuel ηe ηth

[CHF2015/kWfuel] [CHF2015/kWfuel/y] [y] [-] [%] [%] [%]

Pyrolysis 1435 71.8 25 0.85 66.6 1.58 -
Gasification 2930 149 25 0.85 74 3.15 9.01

Energy demand reduction cost

The energy efficiency cost is a cost difference between the “business as usual” scenario, which has

the highest energy demand, and the “Political measures of the Federal Council” scenario in [81]. The

cost is divided in two categories: private households and industry and services. The values are 806

MCHF2015/y and 1050 MCHF2015/y respectively [221]. As in the model only the “PMF” scenario is

considered for the energy demand (Table A.3), the demand reduction is a fixed cost in the model.

Other

The real discount rate for the public investor irate is fixed to 3.215%, average of the range of values

used to define the corresponding uncertainty range (see Section 2.2.2).

Losses (%loss) in the electricity grid are fixed to 7%. This is the ratio between the losses in the grid

and the total annual electricity production in Switzerland in 2015 [222]. DHN losses are assumed to
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be 5%. %PeakDHN is assumed to be equal to 2.

The input and output efficiency of the storage (ηsto,in and ηsto,out) are defined to allow the connection

between the storage technologies (StoHydro and Power2Gas) and their respective layers (electricity

and LNG, respectively). The efficiency is 1 in all cases as the StoHydro unit represents a “shift” in the

monthly production of the dams, while the LNG storage tank is assumed to have no losses.

A.7 2011 data for model validation

This section details the data of the Swiss energy system in the year 2011 used to validate the MILP

model in Section 1.2.2. The input data for the year 2011 used for the model validation are: i) the

yearly EUD values in the different sectors (endUsesyear); ii) the relative annual production shares

of the different technologies for each type of EUD; iii) the share of public mobility (%Public), of

train in freight (%Rail) and of centralized heat production (%Dhn); iv) the fuel efficiency of mobility

technologies.

The FEC data for Switzerland in the year 2011 are available in [77, 81, 80]. The EUD is calculated

based on the FEC using a similar procedure as the one described in Section A.1.1. The obtained

input data for model validation are reported in Table A.25. %Public, %Rail and %Dhn are reported in

Table A.26 with the corresponding sources.

Table A.25 – End-uses demand in Switzerland (endUsesyear) in 2011, calculated from [77, 81, 80].

Units Households Services Industry Transportation

Electricity (other) [GWh] 10277.8 11166.7 13416.7 0.0
Lighting [GWh] 1583.3 4138.9 1722.2 0.0
Heat high T [GWh] 0.0 1146.4 22020.4 0.0
Heat low T (SH) [GWh] 38861.1 15584.2 4982.7 0.0
Heat low T (HW) [GWh] 8236.1 3153.0 839.9 0.0
Passenger mobility [Mpkm] 0.0 0.0 0.0 121600.0
Freight mobility [Mtkm] 0.0 0.0 0.0 27660.0

Table A.26 – %Public, %Rail and %Dhn for the Swiss energy system in the year 2011.

Share [%]

%Public 20.0% [80]
%Rail 36.8% [81]
%Dhn 6.4% [77, 81]

The annual net electricity production shares for electricity production technologies is taken from [78].

The yearly shares of mobility and heating & CHP technologies per type of EUD (with respect to the
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main output) are reported in Tables A.27-A.31.

For public mobility (Table A.27, [77, 78]), it is assumed that all biofuels and NG are used in public

mobility, and that the electricity not used in freight is shared between trains and trolleybus with

a 60%-40% share, respectively. For private mobility (Table A.28, [77, 80]) the repartition between

the different types of vehicles is estimated based on the number of vehicles in Switzerland in 2012

(77% gasoline, 22% diesel, 1% hybrid) and their fuel efficiencies. For all mobility technologies, 2010

efficiencies from [71] are used in the model validation.

For low and high temperature heat production (Tables A.29, A.30 and A.31, [77, 78, 82, 81]), the

electricity production from CHP plants is taken from [82], Table A.2), while the input fuel and the

heat production are estimated based on the efficiencies assumed for 2035. In Section 1.2.2, for DHN

it is assumed that all waste is used in CHP units, although in reality a share of waste is only used for

electricity production.

Table A.27 – Yearly shares of public mobility technologies for the Swiss energy system in 2011.

Share Mpkm [%]

Tram and Trolley Bus 12.8%
Diesel Bus and Coach 49.7%
Diesel HEV Bus and Coach 0.0%
NG Bus and Coach 3.0%
FC Bus and Coach 0.0%
Train/Metro 34.6%

Table A.28 – Yearly shares of private mobility technologies for the Swiss energy system in 2011.

Share Mpkm [%]

Gasoline car 75.8%
Diesel car 22.5%
NG car 0.0%
HEV 1.7%
PHEV 0.0%
BEV 0.0%
FC car 0.0%
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Table A.29 – Yearly shares of decentralized low temperature heat & CHP technologies for the Swiss
energy system in 2011.

Share heat [%]

HP 6.0%
Thermal HP 0.0%
CHP NG 0.5%
CHP Oil 0.1%
FC NG 0.0%
FC H2 0.0%
Boiler NG 25.7%
Boiler Wood 8.2%
Boiler Oil 49.8%
Solar Th. 0.5%
Direct Elec. 9.2%

Table A.30 – Yearly shares of DHN low temperature heat & CHP technologies for the Swiss energy
system in 2011.

Share heat [%]

HP 4.8%
CHP NG 1.2%
CHP Wood 6.6%
CHP Waste 72.5%
Boiler NG 13.8%
Boiler Wood 0.0%
Boiler Oil 0.6%
Deep Geothermal 0.4%

Table A.31 – Yearly shares of industrial high temperature heat & CHP technologies for the Swiss
energy system in 2011.

Share heat [%]

CHP NG 2.4%
CHP Wood 0.8%
CHP Waste 1.8%
Boiler NG 24.3%
Boiler Wood 7.0%
Boiler Oil 25.6%
Boiler Coal 5.1%
Boiler Waste 5.6%
Direct Elec. 27.5%
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B Uncertainty characterization data

Overview

The appendix is complementary to Section 2.2 as it further details the data used for the

uncertainty characterization of the Swiss MILP model parameters. Additionally, it is shown

how the obtained ranges are applied to the model parameters in cases in which it is not

trivial.

B.1 Discount rate

The errors in forecasts in Goodhart and Lim [91] refer to the two-year time horizon errors for the

New Zealand central bank (Table 8). The different estimates for long-term forecasts in the US are

reported in [92], Table 1.

B.2 End-use energy demand

For households, services, and industry, the main data source for the range definition is a report

commissioned by the Swiss confederation [81]. In this report, three scenarios are available: “BaU”

(Business as Usual), “PMF” (Political Measures of the Federal Council) and “NEP” (New Energy

Policies). In the example MILP model, the PMF scenario is used as source for the nominal values

of the energy demand, whereas the NEP and the BaU can be used to define the lower and upper

bounds, respectively. At an aggregated sector level, the ranges for 2035 end-use energy demand

resulting by comparing the scenarios are [-13.5%, 11.0%] for households, [-12.7%, 9.8%] for services,

and [-11.3%, 8.9%] for industry.

These ranges are compared with the error in past energy demand forecasts. The IEA has been

forecasting energy demand for several decades. One of the first analyses of errors in these forecasts
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was performed by Linderoth [19] in the early 2000s. Errors were found to be as high as 40% over

a 10-12 year time horizon, with higher errors in the industry sector. Liao et al. [94] studied errors

in more recent IEA total energy supply forecasts over a 6-year time horizon, finding smaller errors:

deviations from forecasts were within 2 percentage points for most countries, with the exception

of China (5.68%). Due to good data availability, many works in the literature have focused on the

errors in forecasts for the US. Bezdek and Wendling [20] reviewed 49 long term forecasts covering

the period 1952-2000. Errors in predicting US total energy consumption for the year 2000 were as

high as 50% over a 25-year time horizon. The US EIA publishes regularly a retrospective review on its

own energy demand forecasts. EIA errors in forecasts have been analyzed by O’Neill and Desai [21],

Fischer et al. [95], and at a sector level by Winebrake and Sakva [22]. Figure 1 analyzes the errors in

the energy demand forecasts published yearly in the EIA AEO in the period 1994-2014 [23]. Each AEO

report includes forecasts for the following 15-20 years. The average of errors in absolute values (full

lines) and the minimum/maximum errors (dotted lines) in energy demand forecasts are calculated

for the different sectors with respect to the forecast time horizon. The time horizon is the difference

between the target year of the forecast and the year of publication of the AEO. As an example, the

10-year time horizon includes the errors calculated after 10 years from the publication of the reports

(such as the forecast for 2003 published in the 1993 AEO, the forecast for 2004 published in the 1994

AEO, etc.). A positive error indicates an overestimation, i.e. the forecast is higher the actual value in

a given year.

The figure shows that errors are increasing over time. Also, forecasts of energy demand in the

industry sector show higher average errors, suggesting that the evolution of energy demand in this

sector remains to date more difficult to predict. The maximum forecast errors are of 24.3% for

households total energy demand, 24.7% for services, and 35.5% for industry. These errors are wider

than the ranges proposed in [81]. Thus, for the calculation of the final ranges, R% is taken as twice

the maximum error in each sector, shared asymmetrically over the nominal value proportionally to

the values in [81]. This leads to the final ranges for 2035 end-use energy demand: [-26.8%, 21.8%] for

households, [-27.8%, 21.5%] for services, and [-39.9%, 31.2%] for industry.

For transportation, passenger mobility demand [pkm] is decomposed as the product of population

and average mobility per person. [223] presents scenarios for the evolution of the Swiss population

to 2060, indicating a lower bound of 7.79 million people, and an upper bound of 9.76 millions people.

In the three scenarios in [81], it is estimated that the average mobility need in 2035 will be between

15416 pkm/ca and 16428 pkm/ca. The final range of [-14.5%, 14.5%] is obtained by multiplying the

extreme values.

All the obtained ranges for 2035 are scaled using the factor calculated in Eq. 2.4. This means that a

uniform distribution is assumed within the bounds of the range.
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B.3 Technology efficiency

For mature technologies, uncertainty is characterized based on collection of current market data.

Boilers are taken as representative technologies for the efficiency of mature, standard technologies

(ηmature, standard). [96] offers an overview of the efficiency of today’s state of the art technologies.

Summing up all available measures to increase the energy efficiency of a boiler, a maximum im-

provement of 9% is obtained on average. Efficiency ranges are indicated for different types of boiler:

coal boilers [75%, 85%], oil boilers [72%, 80%], NG boilers [70%, 75%], biomass boilers [60%, 70%].

The average of these ranges (±5.7%) is taken as final range for mature and standard technologies.

Gasoline cars are taken as representative technologies for the efficiency of mature, customized

technologies (ηmature, costumized). The US Department of Energy publishes yearly a report and a

dataset with the fuel efficiencies of the different vehicles in the US market [97]. The dataset is filtered

in order to obtain the fuel efficiency of only front-wheel drive gasoline cars, with a 1.8 L to 2.2 L

engine. The efficiency of these 108 vehicle models is between 22.9 miles-per-gallon (MPG) and 34.6

MPG. This range (± 20.6%) is taken as final range for mature and customized technologies.

PV panels are taken as representative technologies for the efficiency of new technologies. The range

for the future efficiency is taken from the different available forecasts. The IEA forecasts the average

efficiency of typical commercial flat-plate modules to be 25% in 2030. The target efficiencies are

25% for single-crystalline PV, 21% for multi-crystalline [224]. This means that the average modules

available in the market are expected to have the same efficiencies that are reached today with the

best research-cell protoypes (new data are regularly reported in [225]). From the IEA report, a range

can be estimated for efficiencies in 2030. The lower bound for 2030 is a 20% efficiency, whereas the

upper bound is fixed to 30% due to the possible appearance of emerging technologies and novel

concepts. This range (± 20%) is taken as range for new technologies. It is then combined with the

ranges for mature technologies by applying Eq. 2.2 to obtain the final ranges for new, standard

technologies (ηnew, standard) and new, costumized technologies (ηnew, costumized).

Application to the example MILP model

In the example MILP model, technology efficiencies are accounted for in the f parameter, the matrix

defining for all technologies and resources outputs to (positive) and inputs from (negative) layers.

As an example, a 90% efficient NG boiler takes 1.11 kWNG in input from the NG layer for each kWth

output to a heat demand layer. In this case f is the reciprocal of the efficiency η. Thus, Eq. 2.1 cannot

be directly applied, as the uncertain parameter is at the denominator of the equation. Also, when

using relative ranges, care needs to be taken not to violate the thermodynamic limit for efficiencies;

and, in the context of a GSA, the uncertainty of technologies having more than one output (e.g.

cogeneration) needs to be correctly accounted for. To address these three issues, the following rules

are followed:
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• If f < 0 (input to technology), then [Rmin,Rmax] = [ R0
1+R%,min

, R0
1+R%,max

]. Else, if f > 0 (output

from technology), then Eq. 2.1 applies.

• When using relative ranges, it needs to be verified that technology efficiencies do not violate

thermodynamic limits. As an example, electric heaters have a nominal efficiency of 100%.

Values higher than 100% would violate the thermodynamic limit for the technology. In these

cases, the thermodynamic limits are used instead of the bounds deriving from the application

of the relative ranges.

• In the MILP model structure, f (i , j ) = 1 if j is main output layer for technology/resource i .

This unitary value is not uncertain as it is part of the model structure. Thus, if a technology has

only one output, the uncertainty is accounted for in the input. As an example, heat is the only

output for a NG boiler. Thus, the uncertainty is in the amount of NG in input for producing 1

unit of heat. If a technology has more than one output, a different approach is used. This is the

case of cogeneration units, producing both heat (main output) and electricity. Cogeneration

units have an electrical (ηe) and a thermal (ηth) efficiency. This is shown in Figure B.1.

Cogeneration
Unit

e /  th
Electricity

Fuel input

Heat 1

1 / th

Figure B.1 – Implementation of a cogeneration unit in the example MILP model.

As the thermal output is fixed to 1, the uncertain parameters are the fuel input (reciprocal

of ηth) and the electricity output ( ηe

ηth
). In the GSA, these two parameters are considered

independent. To do this, first new values are drawn from distributions for both the fuel input

( 1
ηth

)′ and the electricity output ( ηe

ηth
)′. Then, the fuel input is set to ( 1

ηth
)′ 1+(ηe/ηth)′

1+(ηe/ηth)0
. In this way,

the parameters are varied independently. As an example, the ratio between the efficiencies

can be changed without impacting the total efficiency of the unit.

B.4 Resources availability and maximum capacity of technologies

For the availability of local resources, the maximum yearly potential of wood in Switzerland is

assessed from various sources. The reviewed works are reported in Table B.1. The minimum

(36 PJ/y) and the maximum (70 PJ/y) values are used in the definition of the range.

For the maximum installed size of renewable technologies, data for the potential of solar PV are

134



B.5. Capacity factor

Table B.1 – Maximum yearly potential of woody biomass in Switzerland from different sources.

Source Max. potential [PJ/y]

Oettli et al. [226] 59.1
Steubing et al. [209] 42.3
Thees et al. [227] 36
Thees et al. [228] 53.3
BIOSWEET vision [229] 70

used in the definition of the uncertainty range. In the wiki of the online calculator1 presented in [74]

the maximum potential for electricity production is 25 TWhe/year, assuming to install panels on

40% of the well-oriented roofs and façades and a 25% efficiency. This is taken as the lower bound for

the range. The upper bound is taken from the estimation reported in [230] of 32 TWhe produced in

2050 with a 27.2 % efficiency. This value, scaled to a 25% efficiency, is taken as the upper bound,

obtaining a final range of ± 24.1%.

B.5 Capacity factor

For the definition of the yearly capacity factor, Swiss nuclear power plants are taken as representative

technologies. The Federal Office of Statistics provides historical data for the capacity factor of the 5

nuclear power plants in Switzerland in the period 1990-20142. The data are summarized in Table B.2.

Table B.2 – Analysis of yearly capacity factors (cp ) of Swiss nuclear power plants. 1990-2014 data
from Swiss Federal Office of Statistics. 2015 data and installed capacity from [222].

Power plant
Capacity cp 1990-2015 [%]

[MWe] Average Min Max

Beznau I 365 86.3 19.5 99.3
Beznau II 365 87.6 62.7 99.6
Mülheberg 373 88.8 76.0 94.8
Gösgen 1010 91.3 74.5 96.1
Leibstadt 1220 85.8 56.5 92.5
Total 3333 88.1 76.0 93.7

From the table it emerges that, although on average quite regular, capacity factors can have sub-

stantial drops. As an example, in 2015 the Beznau I and II plants suffered extended periods of

extraordinary maintenance, which brought the global capacity factor of Swiss nuclear plants to the

minimum value in recent history (76%). In the model the nominal value is taken for the year 2012

(84.9%). As in the model the cp is the same for all nuclear power plants, the range is defined based

1 Accessible at http://www.swiss-energyscope.ch
2 Accessible at https://www.pxweb.bfs.admin.ch
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on the minimum (76%) and maximum (93.7%) total values.

Based on the grouping in Section 2.2.1, the distribution over the year of the period capacity factor

(cp,t ) is assumed to be non-uncertain. Thus, for solar technologies the uncertainty is on the yearly

global radiation, which is modeled to be the only factor determining the variation of cp,t . Historical

data of solar radiation for different locations worldwide can be found in [98]3. For certain locations,

maximum deviations of 28.6% are found from the average. Thus, this variation is taken to define the

uncertainty range of the parameter.

The obtained ranges for 2035 are scaled using the factor calculated in Eq. 2.3. This means that a

uniform distribution is assumed within the bounds of the range.

B.6 Technologies investment cost

Table B.3 details the sources and the method used for the calculation of the specific investment cost

uncertainty range. Decentralized NG boilers are considered representative for mature technologies.

In the lack of data about the actual number of NG boilers installed for the different available sizes,

uncertainty is calculated for a 10 kWth boiler. As a simplification, this range is used to define the

epistemic uncertainty of all technologies (with the exception of the DHN). PV panels are taken as

representative for new technologies. The range for future residential rooftop PV investment costs is

taken from the minimum/maximum values from the forecasts reported in Table B.4.

Table B.3 – Technologies specific investment cost: sources for the definition of the uncertainty range.
Epistemic (ε) and aleatory (α) uncertainties are combined as in Eq. 2.2.

Technology R%,ε R%,α R%

Decentralized NG Boiler [-21.6%, 21.6%]a - [-21.6%, 21.6%]

PV [-21.6%, 21.6%] [-33.2%, 33.2%]b [-39.6%, 39.6%]

Nuclear reactors [-21.6%, 21.6%] [0, 117.3%]c [-21.6%, 119.3%]

Hydro Dams [-21.6%, 21.6%] [0, 70.6%]c [-21.6%, 73.8%]

Thermal plants [-21.6%, 21.6%] [0, 12.6%]c [-21.6%, 25.0%]

Wind farms [-21.6%, 21.6%] [0, 7.7%]c [-21.6%, 22.9%]

DHN - [-39.3, 39.3%]d [-39.3, 39.3%]

Geothermal [-21.6%, 21.6%] [-33.3, 58.2%]e [-39.7, 62.1%]

a Range of investment costs a 10 kWth NG boiler from catalog data in Switzerland.
b Range of investment costs for the year 2035 for rooftop PV. Calculated from forecasts (Table B.4). Since the range is

applied to all new technologies, it does not include overrun costs reported in [100], also because they are negligible (1.3%).
c Based on the mean cost overrun of projects calculated in [100].
d Based on range between favourable and unfavourable conditions for a given DHN connection density, estimated

from Figure 3.19 in [103].
e Range calculated using Eq. 4 in [101] for a 4000 m well.

3 Available online at http://bsrn.awi.de. Data quality check performed by Anna Sophia Wallerand (EPFL).
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Table B.4 – Projection for the investment cost of rooftop residential PV systems in 2035 from different
sources.

Source cinv (PV) [CHF2015/kWe]

IEA, 2014 (NPS scenario - Europe) [106] 1748

IEA, 2014 (450 scenario - Europe) [106] 1555

EU “energy roadmap 2050”, 2011 [104] 1952

AES, 2013 [175] 1868

Prognos AG, 2007 [218] 2479

Bloomberg, 2015 [231] [1329, 2019]

ETIP PV, 2011 [172] 1272a

a Forecast for the year 2030.

B.7 Resources cost

The future price of wood is the representative parameter for local resources (cop,local). The lower and

upper bounds of the range are defined based on the values of the BaU and NEP scenarios in [81],

respectively. The range is scaled based on Eq. 2.4, thus assuming uniform distributions with linearly

increasing ranges.

The future price of NG is the representative parameter for imported resources (cop,import). Errors in

past EIA forecasts (analyzed in Figure 2) are studied to define its range. Using US market forecasts

for Switzerland is motivated by the lack of data for past forecasts in the European market. NG price

forecasts for the US electric power sector are published yearly in the AEOs. Forecasts are expressed

in real currency, which differs for each AEO. Thus, to obtain a common basis of comparison, all

forecasts are converted to USD2013 (using the GDP deflator from the U.S. Department of Commerce,

Bureau of Economic Analysis [25]) and compared to the actual NG prices in the different years. In this

way, the error factors e (defined in the Introduction), are calculated. Two indications are obtained

from the analysis: i) there is no evidence that error factors are bigger in the long term than in the

short term, and ii) error factors are symmetrically distributed. In fact, the analyzed data suggest that

it is equally likely to have an overestimation by a given error factor or an underestimation by the

same factor, e.g. it is equally likely that the predicted value for a given year is half of the actual value

or twice the actual value. Of course, this symmetry in error factors leads to asymmetrical relative

ranges. Applying symmetrically the maximum error factor (emax = 3.32) results in a [−69.9%,232%]

range over the nominal value, as -69.9% corresponds to a possible overestimation by a factor

3.32, and +232% to a factor 3.32 underestimation. As uncertainty is constant over time, Eq. 2.3 is

applied. This means assuming that, in each year of the planning horizon, error factors are uniformly

distributed in [−(emax−1),emax−1], where 0 represents a correct forecast, a positive value represents
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an underestimation, a negative value represents an overestimation. The scaled error factor is

e∗ = 1.899, corresponding to a final range of [-47.3%, 89.9%] for the category.

Application to the example MILP model

The first step of the GSA in Chapter 3, using the Morris method, assumes a uniform distribution for

all the parameters within the defined range. The mean of a uniform PDF is the average between its

lower and upper bounds. If the range is asymmetrical, this causes the mean to be different from

the nominal value. This potential distortion is particularly impacting in the case of parameters

belonging to the cop,import category, due to the wide and asymmetric uncertainty range. Thus, in the

GSA, the value of the parameter in the uncertain domain (c ′op,import) is defined as in Eq. B.1.

c ′op,import =
⎧⎨
⎩

cop,import,0 ∗ (1+e), if e ≥ 0
cop,import,0

1−e
, otherwise

(B.1)

Where e is the error factor drawn from the uniform distribution [−(e∗ −1),e∗ −1]. This allows to

sample from a uniform distribution, which is mathematically convenient for the Morris method,

while respecting the symmetry in the error factors emerged from the analysis.

B.8 Other parameters: technologies lifetime

Table B.5 lists the data and ranges for the lifetime of domestic boilers collected from different sources.

Some source already propose ranges: the minimum range is 5 years, the maximum is 9 years. A

range of 9 years over the nominal value (17 years) corresponds to a ±26.5% range.

Table B.5 – Lifetime (n) of boilers from different sources.

Source n(Boilers) [y]

Lutz et al., 2006 [232] [13,19] (NG); [12,19] (Oil)
Gas Research Institute, 1990 [233] [13,22]; [25,30]; [20,25] (NG)a

Kattan and Ruble, 2012 [109] 20 (All fuels)
UK “2050 Calculator” [234]b 15 (All fuels)
NERA & AEA, 2009 [201] 15 (Biomass)
EU Commission, 2008 [199] 17 (All types)
Schulz et al., 2007 [108] 15 (Biomass)
e4tech, 2010 [235] 15

a Comparison of estimates: first range is from first-owner use of product, second range is from ASHRAE 1984 handbook,
third range is the final proposed range.

b Cost assumptions available online at http://2050-calculator-tool-wiki.decc.gov.uk/cost_sources/1
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C Urban energy modeling - Integration

of deep geothermal energy and woody

biomass conversion pathways in cities
Overview

This appendix is complementary to Chapter 1, as it proposes a MILP modeling framework for

urban energy systems and applies it to the integration of geothermal and biomass resources.

This chapter has been published as Moret et al. [236].

Urban systems account for about two-thirds of global primary energy consumption and

energy-related greenhouse gas emissions, with a projected increasing trend. Deep geother-

mal energy and woody biomass can be used for the production of heat, electricity and

biofuels, thus constituting a renewable alternative to fossil fuels for all end-uses in cities:

heating, cooling, electricity and mobility. This chapter presents a methodology to assess the

potential for integrating deep geothermal energy and woody biomass in an urban energy

system. The city is modeled in its entirety as a multiperiod optimization problem with the

total annual cost as an objective, assessing as well the environmental impact with a LCA

approach. For geothermal energy, deep aquifers and enhanced geothermal system (EGS)

are considered for stand-alone production of heat and electricity, and for cogeneration. For

biomass, besides direct combustion and cogeneration, conversion to biofuels by a set of

alternative processes (pyrolysis, Fischer-Tropsch (FT) synthesis and synthetic natural gas

production) is studied. With a scenario-based approach, all pathways are first individually

evaluated. Secondly, all possible combinations between geothermal and biomass options

are systematically compared, taking into account the possibility of hybrid systems. Results

show that integrating these two resources generates configurations featuring both lower costs

and environmental impacts. In particular, synergies are found in innovative hybrid systems

using excess geothermal heat to increase the efficiency of biomass conversion processes. The

application to a case study demonstrates the advantages of using a system approach for the

analysis over a stand-alone comparison between options.
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As discussed in the Introduction, substitution of fossil fuels with renewable energy sources, such as

geothermal and biomass, is one of the key actions to tackle climate change. In 2008, geothermal

energy and bioenergy accounted for 0.1% and 10.2% of global primary energy supply, respectively.

Within bioenergy, woody biomass had the largest share [4]. Based on 2003 data, the worldwide use of

biomass has been estimated to be 38% of the global potential [237]. Bioenergy demand is expected

to increase at least threefold by 2050 [4]. Geothermal energy is projected to cover 3.5% of the global

electricity production and 3.9% of the final energy for heat in the same year [238].

As of 2014, 54% of the world population lived in urban areas, a figure expected to rise to 66% by 2050

[239]. Urban systems account for about two-thirds of global primary energy consumption and for

71 % of global energy-related GHG emissions [240]. Heating, cooling, electricity and mobility are

the four components of urban systems final energy consumption. Deep geothermal energy1 and

woody biomass are widely available renewable resources and represent a promising alternative to

fossil fuels to meet this demand. Although often only considered for electricity production [242],

deep geothermal energy can provide baseload supply in heating dominated urban energy systems

for low temperature heating requirements, which constitute the largest share of heat demand [243],

whereas biomass can be used for higher temperatures and peaks. The high heat density in cities

makes the deployment of DHNs more economically competitive [244]. DHNs are necessary in order

to integrate large-scale renewables (such as deep geothermal wells) and cogeneration systems for

heat supply [245].

In the literature, most studies focus on a stand-alone comparison of energy conversion pathways.

The contextualization of technology assessment within urban energy systems presents the advantage

of defining a reference state of the energy system, taking into account the structure and seasonal

variation of the demand, and the existing and competing technologies. It also allows to capture

the complexity deriving from the interaction between the different energy sectors, such as the

penetration of electric technologies for heating and mobility end-uses [34]. In recent years, some

authors have applied this approach to geothermal energy and biomass. Gerber et al. [246] used

multi-objective optimization for the evaluation of deep geothermal and biomass (direct combustion

and gasification) integration in an urban system taking into account total yearly cost and GWP

with a LCA approach. The urban system is modeled in its entirety (only decentralized heating is

excluded) and one year is broken down into a set of independent periods. It is highlighted that results

strongly depend on the integration within urban systems. Alberg Østergaard et al. [247] applied

the EnergyPLAN model [38] to design a 100% renewable scenario for a Danish city for the year

2050, mostly based on biomass, geothermal and wind power. Low-depth resources combined with

absorption heat pumps are considered for geothermal, whereas the biomass is converted to biogas

and SNG. In these works only a subset of the possible energy conversion pathways is considered,

1“Deep geothermal energy” is here used for resources of depth greater than 1000 m and temperatures exceeding 60 ◦C
[241].
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and no possibility for heat integration between geothermal and biomass technologies is taken into

account. Other studies focus only on one of the two resources. As an example, Sommer et al. [248]

assessed the economics of geothermal district heating for a community in California. Vallios et al.

[249] proposed a methodology for the design of biomass district heating systems, whereas Pantaleo

et al. [70] developed an approach to design optimal biomass supply chains for heat and power

generation in urban areas. The approach was then applied to a generic urban model [111].

Integration and hybridization with geothermal and solar resources have been identified as a strategic

research priority for biomass in Europe [250]. Hybrid geothermal-biomass systems are here defined

as energy conversion systems coupling the two resources. Hybridization has been applied to the

production of electricity in ORCs, with geothermal heat used for biomass drying and preheating,

and biomass supplying the remaining heat requirements at higher temperature. This is the case for

an existing 35.5 MWe installation in California, USA [251]. Borsukiewicz-Gozdur [252] proposed a

hybrid ORC concept using two working fluids. Thain and DiPippo [253] recently explored different

interesting configurations for hybrid geothermal-biomass power plants. These hybridization path-

ways focus on electricity production cycles, showing the possibility of achieving higher efficiencies

by combining the two resources.

Integration of hybrid solutions in urban energy systems has been recently explored. Kilkis [254]

proposed a hybrid lignite-geothermal plant for a district energy system and hydrogen production

facility for a Turkish city. A wider energy system integration has been proposed for the Cornell

University campus (USA) [255]: a hybrid geothermal-natural gas-biomass conversion system in

which geothermal energy is used in combination with biomass for heat production, and excess

geothermal heat is used for electricity production with an ORC during periods of low heating

demand. In these works there is no hybridization at the level of the energy conversion processes,

as the two resources contribute separately to the energy services supply in the district. The case

study at Cornell was recently widened by Beckers et al. [256], including the hybrid option of using

geothermal heat for biomass drying prior to gasification. Malik et al. [257] studied a multi-generation

biomass-geothermal system to produce heating, cooling and electricity for cities, and liquified gas

and drying for industrial processes. In a case study evaluating different options for the integration of

geothermal energy in the urban system of Lausanne (Switzerland), Amblard [258] highlights that the

availability of geothermal heat in summer surpasses the demand. A preliminary case study [259]

has shown the interest of using this excess geothermal heat in summer for biomass drying. In this

preliminary case study only a subset of options was considered and the LCA analysis was limited to

the GWP indicator.

Thus, the main gaps identified in the literature are i) the consideration of only part of the urban

system and ii) of a subset of energy conversion pathways for deep geothermal and biomass. This

specificity implies that iii) optimization of the overall urban system is seldom performed. Fur-

thermore iv) hybrid options are often evaluated stand-alone and not integrated in urban systems,
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and v) LCA analysis is limited to the GWP impact assessment method. Consequently, we present

a methodology for evaluating the potential benefits of deep geothermal and woody biomass in-

tegration in urban energy systems. To achieve this i) a model is developed for the entire urban

energy system with the appropriate level of detail for the analysis. ii) Multiple options are considered

for the resources: deep aquifers and EGS for deep geothermal; drying, combustion in boilers and

cogeneration engines, pyrolysis, gasification, FT for woody biomass. iii) The model is formulated

as a multi-period MILP problem and iv) the use of process integration [65] ensures accounting for

hybridization possibilities. Furthermore, v) The LCA analysis is extended to include human health

impact assessment methods along with global warming potential.

The developed methodology is illustrated by an application case study in the city of Lausanne

(Switzerland, 140,421 inhabitants in 2015). The city has an existing DHN supplying a significant

share of the heating final energy demand. The projected expansion of the DHN offers an opportunity

for the integration of renewable energy. The case study is presented in detail in Section D.1.

First the methodology is presented, with the definition of the urban system MILP model, the

performance indicators and the scenario-based approach (Section C.1). The options for deep

geothermal and biomass are first individually assessed and then systematically combined in order

to explore the possible synergies. Scenario results are analyzed with a particular focus on interesting

synergies between the two renewable resources (Section C.2), with the goal of identifying the most

promising strategies for urban systems planning.

C.1 Methodology

Figure C.1 offers an overview of the scenario-based methodology. First, the MILP urban energy

system model is developed. The model represents the superstructure common to all scenarios, i.e.

it is a general formulation including all the possible investigated pathways. Based on this general

framework, a scenario is defined by a set of additional constraints fixing the use or the size of the

corresponding resources or technologies. For each scenario, the optimal solution in terms of total

cost is identified, and LCA indicators for GWP and human health are calculated.

The methodology is implemented in the OSMOSE calculation platform [260]. Extensive documenta-

tion of the methodology and of the technology models in Appendix D allows reproducibility and

application to different case studies and technologies.

C.1.1 Urban energy system model

An urban energy system model has been defined as “a formal system that represents the combined

processes of acquiring and using energy to satisfy the energy service demands of a given urban area”

[34]. Thus, it is a simplified representation of an urban system accounting for the energy flows within

its boundaries. The urban energy system model developed for this work is depicted in Figure C.2.
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Urban system model

MILP superstructure

for each scenario

Scenario definition
constraints

MILP resolution

min Ctot

s.t. mass/energy balance
      heat cascade

LCA

Results Analysis

GWPtot (Global Warming 
              Potential)

hhtot (Human Health)

Figure C.1 – Overview of the scenario-based methodology

The urban energy system is modeled in its entirety. Imported and indigenous resources can be

converted with energy conversion technologies to satisfy end-use demand in energy services: heat,

mobility (private and public) and electricity. Cooling is not accounted for in this work. Heat pro-

duction is separated into centralized and decentralized. Geothermal and biomass options are

considered for centralized heat production together with existing technologies such as boilers, a

waste-water treatment plant (WWTP) and a MSWI. A DHN delivers the produced heat to the con-

sumers. A multiperiod formulation dividing the year in four periods (winter, mid-season, summer,

peak) is adopted in order to account for seasonality. Storage across periods is allowed for certain

resources. All the unit models and their adaptation to the Lausanne case study are described in

detail in Section D.3.
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Appendix C. Urban energy modeling

Each resource or technology model corresponds to a unit. Each unit has inputs and outputs, which

are associated with two types of layers: resource balance and heat cascade. Each layer of type resource

balance corresponds to a mass flow or power balance in the entire system. As an example, all

the diesel imported or produced by the Fischer-Tropsch units needs to be consumed by the units

having this resource as an input. Thermal streams belong to the heat cascade layers. To simplify

the representation, for units with multiple thermal streams only the net heating requirement or

excess are shown in Figure C.2. Thermal streams can exchange only with other streams belonging

to the same heat cascade layer, while “linking” units can be used to connect different heat cascade

layers. In the case of geothermal, for example, the use of different heat cascades allows the option of

either directly supplying the district heating network or producing electricity with an ORC or Kalina

cogeneration cycle.

C.1.2 MILP model formulation

This section details the constraints of the MILP. The MILP formulation is based on the work by

Maréchal and Kalitventzeff [65], later extended to include time-dependency [261] and mass balances

[246]. The multiperiod storage formulation is a novelty of this work. Sets, parameters and variables

of the MILP model with their relative indexes are reported in Section D.2. The model structure is

conceptually equivalent to the modeling framework presented in Chapter 1; however, the level of

detail is higher, as this formulation accounts for process integration - and thus for the temperature

levels of the thermal streams - and for the fixed costs of technologies.

The objective is the minimization of the total annual cost of the energy system (Ctot), sum of the

total annualized investment (Cinv) and of the yearly operating cost (Cop) of the units (Eq. C.1).

Unit sizing and costing

The binary variable Uset defines the use of a unit in a given period: if Uset(u, t) = 0 the unit u is

not used in t , if Uset(u, t ) = 1 the unit is used. The binary parameter use f can be used to force the

use of a unit in a given period (Eq. C.2). The operation of a unit in a given period is defined by the

variable Multt. Units inputs and outputs are defined for the default size of the unit (Multt(u, t ) = 1)

and are proportionally scaled based on the value of this variable. The parameters fmin and fmax

define the lower and upper bound for the unit operation, respectively (Eq. C.3). A unit is called

process if use f (u, t ) = fmin(u) = fmax(u) = 1, otherwise it is called utility.

The variables Use and Mult are linked to the investment decision. They represent the binary

decision of purchasing the unit (Eq. C.4) and the chosen size (Eq. C.5) with respect to the default

size, respectively. The annualized investment cost of a unit is the sum of a fixed component cinv,fix

related to the unit purchase, and a variable part cinv,var associated to the chosen size (Eq. C.6).
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The hourly operating cost of a unit is the sum of a fixed component cop,fix related to the use of the

unit, and a variable part cop,var associated to its operation. The hourly operating cost is multiplied

by the period duration top(t ) in order to calculate the total operating cost in period t (Eq. C.7).

Heat Cascade

Process integration enforces feasibility of heat exchange according to the second principle of ther-

modynamics. The following equations apply the classical heat cascading constraints following the

process integration terminology [262].

Thermal streams have the same multiplication factor (Mults) of the unit they belong to (Eq. C.8).

They are described by their thermodynamic properties: corrected input/output temperature (T ∗
in,T ∗

out ),

enthalpy (Hin, Hout ) and heat capacity flowrate (cp). Hot streams are streams whose output enthalpy

level is lower than the input one (heat sources), whereas cold streams have output enthalpy higher

than input enthalpy (heat sinks). Streams belong to heat cascade layers. Each heat cascade layer

is divided into temperature intervals defined by their lower temperature Tint . R is the amount of

heat that is transferred from each temperature interval k to the lower ones. It is equal to the heat

cascaded from higher temperature intervals, resulting from the difference of heat provided by hot

streams and heat needed by cold streams, to which the net heat available in k (Eq. C.9) is added.

Tmin and Tmax are the lowest and the highest temperature intervals of each heat cascade, respectively.

Eq. C.10 ensures that no heat is cascaded above Tmax and below Tmin.

Resource Balance

Resource balance constraints ensure mass flow and power balance in the system.

rbin is the default input value from a resource balance layer to a unit, whereas rbout is the default

output from a unit to a resource balance layer. Each unit can have multiple inputs and outputs

associated to different layers, but it can only have one input or output in the same layer. Inputs and

outputs are scaled according to the operation of the unit in order to get the total input (RBin, Eq.

C.11) and output (RBout, Eq. C.12) in each period. Eq. C.13 enforces that each layer is balanced in

each period, i.e. the sum of the outputs of all units in a given layer equals the sum of the inputs.

RBflow defines connections between units belonging to the same resource balance layer. As units can

be only “producers” or “consumers” with respect to a given layer, Eq. C.14 ensures all the resource

output of units is consumed by other units having the same resource as an input. This variable is

needed, for example, if the exchange between specific units needs to be forbidden or restricted.

Storage

Storage units allow storage of resources across periods. Each storage unit can be thought of as a

“tank”. The level of the tank, i.e. the amount of energy or resource stored, is represented by the Multt

148



C.1. Methodology

of this unit.

Each storage unit can have multiple inputs and outputs. In the optimization model each input or

output corresponds to an “auxiliary” unit linked to the main storage. Input units close the balance

of a given layer by storing a certain amount of the resource, increasing in this way the level of the

main storage unit. On the other hand, output units can decrease the level of the storage by inputting

the resource to the corresponding layer. Inputs and outputs to the storage can be associated with an

efficiency η. The level of the storage unit at the end of each period is equal to the level at the end of

the previous period plus inputs minus outputs by the auxiliary units. This circular balance of the

storage unit is ensured by Eq. C.15. Eq. C.16 enforces that no loop exists between output and input

of a given storage unit.

C.1.3 Performance Indicators

Scenarios for biomass and geothermal technologies are evaluated based on economic and environ-

mental performance indicators (PIs).

Total annual cost

The total annual cost of the energy system (Ctot, Eq. C.1) is chosen as objective of the optimization

model under the assumption that for a given pathway the sizing and operation of the energy system

is determined by economic criteria.

The total annual cost results from the sum of the total annualized investment and maintenance cost

of technologies, and the yearly operating cost of resources. For technologies and resources within

the city boundaries (in terms of ownership) investment and O&M costs are accounted for, while a

purchasing price is attributed to all imported resources. As an example, if natural gas is imported

by a public service provider, only the cost paid at the import is accounted for. The profit made by

the public service provider when selling the resource to private consumers is not accounted for in

the total cost as it constitutes just a transfer of money within the system. This global approach to

urban energy systems cost calculation has two main advantages: i) it avoids the need of assuming

prices for produced fuels and exchanges within the urban system boundaries and ii) it allows the

definition of only one indicator representing the global cost for the public.

Technologies investment costs are annualized based on their economic lifetime. In this framework,

annualized investment cost of existing technologies is also accounted for. This is coherent with the

fact that at the end of their lifetime these technologies need to be replaced. In this way, the cost of

technologies is spread over their whole lifetime, whereas financial depreciation would only attribute

this cost to their early years of operation, leaving an upfront investment cost to future generations.

As detailed in Appendix A, a real discount rate is adopted and cost values are expressed in real 2015

currency in order to provide a common basis for comparison.
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LCA environmental impact indicators

As shown in Figure C.1, environmental impact indicators are calculated for each scenario after the

optimization phase. Environmental impact is calculated following a LCA approach, i.e. taking into

account emissions of technologies and resources from cradle to grave. The reference database for

impact assessment is ecoinvent [168]. Data used in the model are reported in Appendix D. The

impact categories of interest in this work are the GWP and the impact on human health, the latter

included in order to account for the impact of biomass combustion. A different calculation approach

is followed for these two categories.

For GWP calculation the “IPCC 2013 - GWP 100a” impact assessment method [263] is selected. The

global annual emissions GWPtot, expressed in ktCO2-eq./year, are calculated with an approach

symmetrical to the one used for the cost calculation (Eq. C.17). They are defined as the sum of the

emissions related to the construction (C) and end-of-life (E) of the energy conversion technologies

(TECH), allocated to one year based on the technology lifetime n, and the emissions related to

resources (RES). The latter are the emissions associated to fuels (from cradle to combustion) and im-

ports of electricity. For resources, the construction phase corresponds to the extraction, processing

and transportation whereas operation (O) corresponds to fuel combustion. Operating emissions of

technologies, mainly corresponding to auxiliary materials and maintenance, are accounted for only

if they are non-negligible.

The conceptual separation between technologies and resources for GWP calculation allows the

integration of biofuels without increasing the model complexity. As an example, Figure C.2 shows

that when SNG is produced it can be input in the natural gas layer, thus replacing its fossil equivalent.

As a consequence, the total GWP emissions are reduced as the utilization of the fossil natural gas

resource is lower. If emissions related to combustion were allocated to technologies, instead, unit

models would need to be duplicated in order to account for the different emissions of fossil resources

and their biogenic alternatives.

GWPtot =
∑

j∈TECH

(GWPC,E( j )

n( j )
+GWPO( j )

)
+∑
i∈RES

GWPC,O(i ) (C.17)

On the other hand, human health emissions are technology-dependent. In this case, combustion

emissions can not be allocated to the resources as the combustion processes vary based on the

technology. Thus, for this category the operating emissions of technologies (human health (hh)O)

include the resource combustion as well. Extraction, processing and transportation remain allocated

to the resources (Eq. C.18).

hhtot =
∑

j∈TECH

(hhC,E( j )

n( j )
+hhO(i)

)
+∑
i∈RES

hhC(i ) (C.18)
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Since there is no consensus on an impact assessment method for the human health indicator,

two methods are chosen to address different aspects. The “impact 2002+” method [264], which

includes an endpoint indicator for the human health, is widely used by the scientific community. It

integrates a wide range of pollutants and health effects, such as respiratory effects, ionizing radiation

or human toxicity. The Swiss Eco-factors 2013 [265], based on the method of the ecological scarcity

(“ecoscarcity 2013”), provide a wide range of midpoint indicators related to specific environmental

issues, and are based on the scientifically supported goals of the Swiss environmental policy. For

this method, the category “main air pollutants and PM” has been chosen as another indicator

representative of the human health. This indicator is more focused on air emissions, which are of

particular concern in the case of wood combustion.

C.1.4 Scenarios

In the scenario definition phase, pathways for geothermal and biomass conversion technologies are

enforced in order to explore the solution space.

Individual scenarios

Table C.1 lists the 20 individual scenarios, i.e. scenarios in which geothermal and biomass options

are separately assessed.

Scenario 0 is the base case reference scenario, with no wood use and no geothermal installation.

Scenarios 1-9 evaluate different options for geothermal alone, i.e. no wood is used in the system.

Each one of the options envisions the drilling of one well at different depths (aquifer at 3.8 km, EGS

at 4.2 km, 5 km and 6 km). In all these scenarios the heat available from the geothermal resource

can directly supply the DHN. In the “direct use” case this is the only possible use of geothermal

heat. In the “ORC” and “Kalina” scenarios the respective electricity production or cogeneration

cycles are also available. The cycles installed capacity is fixed based on the associated resource. As

cycles are designed for this size [266], from the operation point of view they can either be used at

their respective nominal capacity, or be left unused. The latter case would be motivated by a higher

profitability of directly using the heat.

In scenarios 10-20 the different wood conversion pathways are assessed in the absence of geothermal.

The consumption of the total wet wood availability in the urban system (100 kt/y) is common to

all scenarios. “Wet wood” (Φ = 50 %) can be processed in a dryer to obtain “dry wood” (Φ =

15%). In the cases of direct combustion of wood in boilers or cogeneration and of biochemical

conversion with the FT process, wet wood and dry wood are considered as optional inputs. Under the

assumption that the drying process is equivalent for all the modeled biofuel production processes,

the comparison between wet and dry wood input in the FT case is considered representative for the
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Table C.1 – List of individual scenarios

# Biomass Geothermal

0 - -
1 - 3.8 km Direct use
2 - 3.8 km ORC
3 - 4.2 km Direct use
4 - 4.2 km ORC
5 - 5 km Direct use
6 - 5 km ORC
7 - 6 km Direct use
8 - 6 km ORC
9 - 6 km Kalina
10 Wet wood boiler -
11 Dry wood boiler -
12 Wet wood CHP -
13 Dry wood CHP -
14 Pyrolysis boiler -
15 Pyrolysis CHP -
16 Wet Wood FT -
17 Dry Wood FT -
18 SNG in NG -
19 SNG CHP -
20 SNG Mobility -

SNG and pyrolysis cases. In the case of fuel production, all the different uses of the produced biofuels

are accounted for. As an example, the default option for SNG is the replacement of fossil natural gas

(NG) without impacting the technology mix (scenario 18). SNG could be also used in more efficient

ways such as CHP (scenario 19) and in private mobility (scenario 20). As these technologies are

not available in the reference scenario, this causes a change in the technology and fuel mix (e.g.

SNG cars replacing diesel cars in mobility). Thus, these scenarios link the production of SNG to the

deployment of CHP and cars using the biofuel as an input. Without a wider deployment of these

technologies compared to the reference case, biofuels would simply replace their respective fossil

equivalents.

A different approach is adopted for the scenarios involving electricity production technologies. In

these scenarios electricity can be produced by ORC and CHP units. This electricity could be used in

various ways, with significant differences in terms of environmental impact. This is shown in Table

C.2: the impact on GHG is low when replacing a low-carbon electricity mix (such as the Swiss one),

and high when used in heat pumps (replacing NG used in boilers) or electric vehicles (replacing

diesel used in cars). Taking into account separately all these options would lead to an intractable

number of scenarios. Thus, the assumption is that the produced electricity always replaces the
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Table C.2 – Avoided GWP emissions (resources only) associated to the different uses of 1 kWh of
electricity. Based on data as in Appendix D, unless otherwise specified.

Use type
Avoided GWP100aa

[kgCO2-eq./kWhe]

Substitution Swiss el. mix 0.110
Substitution UCTE el. mix 0.482
Heat pumpb 0.961
Electric carc 1.052

a Only accounting for emissions related to resources. Emissions related to the production of the kWh of electricity not
accounted for

b Assuming COP = 3.5 and substitution of DHN NG boilers
c Assuming 0.199 kWhe/km [168] and substitution of diesel cars

current Union for the Co-ordination of Transmission of Electricity (UCTE) European electricity mix,

which is chosen as a representative average between the possible available pathways. This mix has

also a high human health impact. The choice is mainly motivated by the need of keeping the number

of scenarios within a tractable number. The importance of linking the production of biofuels to a

wider deployment of efficient technologies is discussed in [267].

Combined scenarios

The 9 individual scenarios for geothermal and 11 individual scenarios for biomass are systematically

combined in order to investigate the interest of combining the two resources, with a particular focus

on hybrid solutions. The 99 resulting scenarios are called combined scenarios.

C.2 Results

C.2.1 Individual scenarios: geothermal and biomass alone

The 20 individual scenarios listed in Table C.1 are the scenarios for which geothermal and biomass

options are separately assessed. Performance indicators for the individual scenarios are reported in

Figure C.4: the subplots depict hhtot
2 (a) and GWPtot (b) against the total annual cost Ctot, respectively.

The lower the value of the indicators, the better the scenario performance. Geothermal and biomass

options are compared to the reference (scenario 0), which represents the default state of the urban

energy system without any use of wood or geothermal. The reference scenario is characterized by a

total annual cost of 544.6 MCHF, and annual emissions of 777.7 ktCO2-eq. and 62.9 kpts, respectively.

Resources are responsible for 31.9% of the total cost and for 92.0% of the global GHG emissions. In

2 The figure depicts only the “impact2002+” indicator. Results related to the “ecoscarcity 2013” indicator are reported
in Section D.4.
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Figure C.3 – DHN heat supply and demand in the reference scenario (scenario 0).

the reference scenario, the heat provided by the WWTP and MSWI can almost entirely satisfy the

DHN heat demand during the summer period, with a very low share left to natural gas during this

season (Figure C.3).

Geothermal options

Scenarios 1-9 individually assess geothermal solutions at different depths, with the additional op-

tions of electricity production and cogeneration.

All EGS options (at 4.2 km, 5 km and 6 km) allow a reduction of both the total cost and the envi-

ronmental impact indicators compared to the reference scenario. For the total cost, this reduction

is due to the fact that the savings generated by the reduction of natural gas imports for DHN heat

production are greater than the annualized investment cost of the wells. The benefit is even higher

for the environmental impact, as the emissions related to the drilling are substantially lower than

the avoided emissions from fossil fuels combustion.

When direct use of geothermal heat is the only available option, there is an excess of heat in summer

as the DHN heat demand is already almost entirely satisfied by the MSWI and the WWTP. In the

scenarios in which the installation of an ORC or Kalina cycle is forced in the system (scenarios 4, 6, 8,

9), this otherwise “waste” geothermal heat is converted to electricity. Results show that in all these

scenarios the cycles are operated only during the summer period, whereas in the other seasons the

“direct use” of geothermal heat is the optimal solution for the urban system. Thus, when there is a

demand of heat in the system it is better to fully exploit the available geothermal heat to replace
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Figure C.4 – Results of the individual scenarios listed in Table C.1: individual assessment of geother-
mal and biomass options.

natural gas, instead of converting it to electricity at substantially lower efficiencies.

The benefits of EGS solutions increase with the depth of the installation, as the power-to-investment

cost ratio gets higher. The best option for geothermal is therefore the 6 km well with ORC (scenario 8),

which allows yearly savings of 7.83 MCHF, 67.0 ktCO2-eq. and 2.75 kpts compared to the reference

scenario. The ORC is preferred to the Kalina cycle as cogeneration of heat and power is not an

interesting option in summer. In winter the cogeneration option is not optimal due to the high

temperature of the DHN, which strongly limits the share of useful heat that can be recovered from

the cogeneration power plant.

On the other hand, the aquifer option at 3.8 km (scenario 1) is of little interest. Compared to the

EGS alternatives, it features a comparable investment cost but with a much lower expected mass

flow rate. This leads to a higher total cost of the system, as the annualized investment for the well is

higher than the savings in natural gas imports. When the corresponding ORC is added in the system

(scenario 2) it is never economical to use it.
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Biomass options

Scenarios 10-20 individually assess different pathways for the conversion and use of the entire

woody biomass potential (100 kt/y).

The scenarios with direct combustion of wood in boilers or cogeneration power plants (scenarios

10-13) generally perform better in terms of total cost. In scenario 10, involving the combustion

of wet wood in a boiler, the total annual cost of the system is reduced (-1.77 MCHF/y). In fact, in

this scenario the savings generated by the reduced natural gas imports are higher than the cost

of wood harvesting and of wood boiler technologies. The best results in terms of GHG emissions

reduction from direct wood combustion are obtained in the case of wet wood-based cogeneration.

Compared to the boiler case, the lower savings associated with heat production are compensated

by the avoided emissions of electricity imports. For both total costs and GWP, drying the wood

externally prior to combustion is a suboptimal solution (scenarios 11 and 13). Dry wood combustion

is advantageous compared to wet wood combustion as the efficiency is higher and there is less

water in the wood to be evaporated. Nonetheless, as no excess heat is available in these scenarios,

external wood drying requires an additional natural gas consumption in the system. This additional

consumption is higher than the benefits generated by the combustion of dry wood. Thus, in absence

of excess heat in the system, it is more efficient to directly burn wet wood instead of externally

drying it prior to combustion. This is mainly due to the fact that the external drying evaporates

the water contained in the wood at a lower efficiency (52%) compared to the evaporation during

the combustion process. The positive impacts on GHG emissions reduction, due to the lower NG

consumption, are in trade-off with the negative impacts of wood combustion on human health.

These negative impacts are mainly caused by the direct emissions of wood combustion. In the case

of combustion in boilers, this leads to an overall increase of the human health impact compared to

the reference scenario. This is more pronounced in the case of dry wood (+4.58 kpts/y compared to

the reference) due to the electricity and natural gas emissions associated to the external dryer. In

the case of cogeneration, these emissions are compensated by the avoided electricity imports. The

strong reduction is due to the high impact on human health of the UCTE electricity import mix.

Scenarios 14-20 assess the pathways for the chemical conversion of woody biomass to biofuels.

Scenarios 18-20, which assess the conversion of wood to SNG, result in the highest reduction of

GHG emissions, with global values which are comparable to the combustion pathways. This is due

to the high efficiency of the SNG process (74% fuel production with respect to wood input, on a

wet basis). Scenario 18 is the default case, in which SNG replaces fossil NG. Scenario 19 (SNG CHP)

offers the best results in terms of both GWP and human health, with a reduction of 66.0 ktCO2-eq.

and 6.96 kpts/y, respectively. In terms of GHG emissions reduction, wet wood CHP is suboptimal

compared to SNG CHP. The higher electrical efficiency of the latter, in fact, compensates the losses

of the wood-to-SNG conversion. The use of SNG in mobility (scenario 20), linked to a corresponding

deployment of SNG cars, offers the best performance in terms of cost. This is due to the high cost
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of diesel, which is partly substituted by SNG. This scenario has a similar performance in terms

of GWP compared to scenario 18 due to the lower efficiency of SNG cars compared to diesel cars,

which is in trade-off with the higher emissions of diesel compared to natural gas. The pyrolysis

pathways (scenarios 14 and 15) present similar results but are limited with respect to GWP by a lower

conversion efficiency (66.6% fuel production with respect to wood input, on a wet basis), and with

respect to human health by the direct emissions associated to the combustion of pyrolysis oil [268].

On the other hand, they present the advantage of lower initial investment costs. The production of

Fischer-Tropsch fuels to substitute diesel mobility (scenarios 16-17) is the least interesting option,

as it is characterized by a lower conversion efficiency (49.8% fuel production with respect to wet

wood input, on a wet basis) and very high investment costs3, which strongly reduce the high savings

in operating cost due to reduced diesel consumption. Scenario 17 is the scenario with the highest

total cost (+5.53 MCHF/y).

Unlike the case of direct combustion, the comparison between internal and external drying of wood

shows that the two options are basically equivalent for biofuel production processes. This is due

to the fact that when the drying is performed within the process (“FT wet”, scenario 16) using the

available excess heat generated by the process itself, the efficiency is 62%, which is comparable to

the one of the external dryer. Hence, when the drying is performed externally (“FT dry”, scenario

17) the additional natural gas consumption required by the drying process is almost equal to the

reduction of natural gas imports caused by the supply of the excess process heat to the DHN. Thus,

unlike for the case of direct combustion, in the case of biochemical conversion of woody biomass to

biofuels and if no excess heat is available in the system, there is an equivalency between performing

the drying externally or within the process. As mentioned in section C.1.4, the results for the FT case

can be extended to the pyrolysis and SNG processes as the drying process is the same for all these

pathways.

C.2.2 Combined scenarios: combination of biomass and geothermal options

Biomass and geothermal options are systematically combined in order to evaluate possible synergies

offered by the integration of the two resources. 99 additional scenarios are generated by combining

the 9 individual scenarios for geothermal and the 11 individual scenarios for biomass listed in Table

C.1.

The performance of a given scenario with respect to the reference (scenario 0) and to each indicator

is defined as in Eq. C.19:

δPIx = PIx −PI0 (C.19)

3 The FT model is based on [269], in which it is optimized for a bigger size compared to the one considered in this work.
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in which PIx is the value of a performance indicator (Ctot, GWPtot or hhtot) for the scenario x. For

the individual scenarios, x is the scenario number as listed in Table C.1. For the scenarios in which

geothermal and biomass options are combined, x = (i , j ), with i being the scenario option for

geothermal, and j the scenario option for biomass, again numbered as in Table C.1. As an example,

scenario (1,10) is the combination of the 3.8 km aquifer for geothermal (scenario 1) with the wet

wood boiler for biomass (scenario 10). The lower the value of δPIx, the better the performance of

scenario x compared to the reference case (scenario 0).

In order to evaluate the interest of the combined scenarios, a new indicator is defined as in Eq. C.20:

ΔPI (i , j ) = δPI (i , j ) − (δPIi +δPI j ) (C.20)

ΔPI(i,j) compares the performance of a given combined scenario (δPI(i , j )) to the sum of the perfor-

mance of the two corresponding individual scenarios (δPIi + δPIj ). If ΔPI(i,j)= 0, the combination

of the options i and j is equal to the sum of the benefits provided by scenarios i and j alone. If

ΔPI(i,j)< 0, the combination generates a “positive synergy”, i.e. combining options i and j generates

more savings than the sum of the savings provided by scenarios i and j alone. If ΔPI(i,j)> 0 instead,

the combination generates a “negative synergy”, i.e. combining options i and j generates less

savings than the sum of the savings provided by scenarios i and j alone.

Figure C.5 plots the values of ΔCtot and ΔGWPtot for the 99 combined scenarios. The use of symbols

to refer to the scenarios in this figure is consistent with the convention used in Figure C.4. The dotted

red lines highlight the points for which ΔPI(i,j)= 0. Out of the 99 scenarios, 37 lie at the intersection

of these red lines. For these scenarios, both in terms of cost and of GWP, the combination between

geothermal and biomass options has no advantage or disadvantage compared to the sum of the

same options alone. Thus, these scenarios are not further discussed here as their performance is the

sum of the benefits of the corresponding individual scenarios highlighted in Figure C.4.

Combined scenarios: negative synergies

Scenarios presenting negative synergies are shown in the upper right quadrant of Figure C.5, delim-

ited by the dotted red lines. Out of the 35 scenarios showing a non-zero variation in terms of total

cost, 21 show also a non-zero variation in terms of GWP (some points are exactly overlapping in the

graph).
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For the combined scenarios having a negative effect only on the total cost indicator (ΔGWPtot= 0),

the difference derives by the sizing of the biomass energy conversion technologies. Among these

scenarios, the ones combining wet wood based cogeneration with the EGS geothermal options show

the worst performance in this regard. The reason is that in the individual scenario for wet-wood

based cogeneration (scenario 12) the available wood is burned partly in winter and partly during

the mid-season. When the EGS resources are added, it is economically optimal to burn the entire

wood during winter, and therefore a bigger CHP unit is needed. The same applies to the scenarios

combining pyrolysis CHP with the EGS options at 5 km and 6 km. In this case, this happens only

with the geothermal options at higher depth because these two options can satisfy (fully in the case

of the 6 km) the heat requirements of the DHN during the mid-season period.

The 21 scenarios showing a negative synergy also for the GWP indicator are those that include

SNG production, with the exclusion of the ones coupled to 4.2 km and 5 km ORC options. For all

these scenarios, the negative synergy for the GWP indicator is motivated by the slightly increased

consumption of fossil natural gas in the system. In fact, in the individual scenarios involving SNG

production (scenarios 18-20) the extra heat available in the SNG process is sufficient to replace

the natural gas needed during the summer period to satisfy the small DHN heat requirement not

provided by the MSWI and the WWTP. As this advantage of the SNG process is already included

in the individual scenarios, the combined scenarios with the EGS options cannot benefit from

this reduction. This additional natural gas consumption could be avoided by not operating the

SNG process during the summer period, though this would lead to a substantial increase in the

investment costs.

In general, the negative synergies associated to the integration are not significant and motivated by

the choice of the total cost as objective of the MILP problem.

Combined scenarios: positive synergies

Scenarios presenting positive synergies with respect to GWP are shown in the lower part of Figure C.5,

delimited by the horizontal dotted red line. This group of 27 scenarios consists of the combination

of the three scenarios with external drying of wood (scenarios 11, 13 and 17) with all the 9 options

for geothermal. Out of these 27 scenarios, 25 show also a positive synergy in terms of total cost

(lower left quadrant of the figure). As discussed in section C.2.1 in the individual scenarios there

is no interest for external drying of wood, especially in the case of wood combustion, where the

suboptimality of external drying is greater. This is due to the fact that in the absence of excess heat

in the system, external drying requires an additional consumption of fossil natural gas. As the MSWI

and the WWTP supply the quasi-entirety of the heat needed in summer, when geothermal options

are added in the combined scenarios, geothermal heat in summer represents instead an excess in

the system. The positive synergy of these combined scenarios derives from the integration of excess

geothermal heat in the biomass drying process, which leads to a global increase in the conversion
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efficiency.

The six combined scenarios integrating the 3.8 km aquifer resources are of least interest. This is

due to the low thermal output of the aquifer well. On the other hand, the integration of the three

EGS direct use options for dry wood combustion (boilers and CHP) shows the highest improvement

compared to the individual scenarios in terms of GHG emissions. This reduction is motivated by the

substitution of fossil natural gas with geothermal heat for wood drying. In terms of total cost, the

savings in natural gas imports are greater than the increased investment costs for wood boilers, CHP

and storage units. In the case of cogeneration, as highlighted in the previous paragraph, the need of

entirely burning the wood in winter causes higher investment costs for the cogeneration unit.

In the case of direct use of EGS integrated with combustion of dry wood, the maximum synergies

are already obtained with the resource at 4.2 km depth. This is due to the fact that the excess heat in

summer available from the 4.2 km well summed to the heat production from the MSWI is enough to

dry the entire wet wood available, while at the same time satisfying the heat demand of the DHN.

Thus, the 5 km and 6 km EGS options do not offer additional advantages in terms of synergy between

the two resources.

The “FT dry” process has an excess heat available, corresponding to the amount of heat used in the

“FT wet” option for wood drying. This excess heat is used for DHN heat supply. When combined

with the direct use EGS options, differently from the case with dry wood combustion, the best

performance is achieved with the 4.2 km EGS option. The reason is that the options at 5 km and

6 km can satisfy (fully in the 6 km case) the DHN heat requirements in the mid-season, so in this

season the extra heat available from the “FT dry” process is in excess. In the case of integration with

the 4.2 km well, this excess heat is also fully exploited during that period of the year, leading to better

system integration and lower fossil natural gas consumption.

In the “direct use” individual scenarios the excess geothermal heat is almost entirely wasted. In

the ORC and Kalina individual scenarios the cycles already partially exploit the excess geothermal

heat in summer by converting it to electricity. This explains why in this figure the direct use EGS

options show higher reductions than the options with ORC or Kalina cycles at 4.2 km and 5 km. In

other words, a more efficient use of the excess geothermal heat in the individual scenarios reduces

the benefits brought by the integration with the biomass drying processes. This is highlighted in

Figure C.5 for the points in which wood dry options are integrated with ORCs at different depths:

the positive synergy is lower for the 5 km compared to the 4.2 km EGS, as the 5 km option features

a higher production of electricity in the corresponding individual scenario. In these combined

scenarios, the cycles are not operated during summer as the heat is used for wood drying. An

exception is represented by the combination between the dry wood conversion processes and the

EGS options at 6 km with ORCs. In these combined scenarios, it is economically optimal to operate

the cycles during the summer period due to the higher electrical efficiency of the supercritical cycle.

This means that the wood is also partly dried during winter, causing a higher fossil natural gas
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consumption in the system. This increase is more pronounced in the case of dry wood combustion

compared to the FT due to the lower global efficiency of the external wood drying.

In general, the integration between biomass and geothermal options offers opportunities for strong

positive synergies, identifying the interest of hybrid solutions in which the excess geothermal heat

in summer is integrated in the wood drying process.

The ΔPI(i,j) indicator, adopted in Figure C.5, is a relative indicator, ranking geothermal-biomass

combinations relatively to the corresponding individual scenarios. A good performance of a com-

bined scenario (low value of ΔPI(i,j)) can also be due to a suboptimal condition in the corresponding

individual scenarios, and vice-versa. In other words, an efficient (inefficient) use of a resource in

the individual scenarios can decrease (increase) the positive synergy of a combined scenario. An

example is the highlighted negative synergy case of the SNG process, which is due to the fact that

the corresponding individual scenarios are already benefiting from a reduced fossil natural gas

consumption in periods of low DHN heat demand.

C.2.3 Evaluation of hybrid processes

Thus, to complete the analysis performed in the previous section, the 27 hybrid solutions need to be

compared in absolute values. To do this, a new indicator is defined, comparing the corresponding

geothermal-biomass combinations with and without external drying (Eq. C.21):

ΔHybridPI (i ,k) = PI (i , j ) −PI (i , j−1) (C.21)

in which k is a biomass conversion process for which the external drying option is defined (FT, wood

boiler and wood CHP), j is the corresponding individual scenario with external drying ( j = 11,13

and 17, respectively) and j − 1 is the corresponding individual scenario fuelled with wet wood.

The indicator is calculated for all geothermal options i ∈ [0;9]. Individual scenarios are numbered

as in Table C.1. ΔHybridPI is the difference between the biomass conversion process having dry

wood as an input (external drying) and the same process fuelled with wet wood, with respect to a

given performance indicator. As an example, ΔHybridGWPtot,(1,FT) is the difference between the “FT

dry” ( j = 17) and the “FT wet” processes ( j −1 = 16), both integrated with the 3.8 km aquifer for

geothermal (i = 1), with respect to the GWPtot performance indicator.

Results of the analysis are depicted in Figure C.6, plotting the ΔHybrid indicator for the total cost

and the GHG emissions. The dotted red lines indicate the points for which ΔHybridPI(i,k)= 0. For

points lying on these lines the wet process is equivalent to the process with external drying, i.e. no

advantage or disadvantage is associated with the external drying process. If ΔHybridPI(i,k)> 0 then

the wet process performs better than the dry option. In these cases, there is no interest for external
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Figure C.6 – ΔHybridCtot and ΔHybridGWPtot for the hybrid biomass-geothermal processes.

drying. If ΔHybridPI(i,k)< 0 then the option with external drying has a better performance than the

wet wood fuelled option. Thus, the lower left quadrant of the graph highlights and ranks the hybrid

solutions of interest. The lower the ΔHybridPI(i,k), the greater the interest of the geothermal-biomass

hybrid system.

As a reference, the graph shows as well the ΔHybrid indicator for the individual scenarios, in which no

geothermal option is activated. As expected, the individual scenarios are in the upper right quadrant

of the figure. As discussed in section C.2.1, external wood drying is not an interesting option for the

individual scenarios, as it leads to an overall increase of fossil natural gas consumption in the system.

For these options, the wet wood fuelled process is more efficient than the dry wood process with

external drying. The reason lies in the lower efficiency of external drying in evaporating the water

contained in the wood. The suboptimality is greater in the case of processes with wood combustion,

whereas for the biofuel production processes the difference in efficiency is lower. This explains the

lower suboptimality of the FT process highlighted in the graph.

Scenarios with ΔHybridPI(i,k)> 0, in the upper right quadrant of the figure, feature an overall increase
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of NG consumption in the system in the “dry” case compared to the “wet” option. All the biomass

processes combined with the 3.8km aquifer do not show an interest for external drying. In fact, the

heat potential of the aquifer can supply only a small part of the heat needed to dry the entire wood

available. Thus, in these cases the savings of natural gas due to the integration with geothermal

heat in the drying process are lower than the additional natural gas consumption needed to dry the

rest of the wood. The same applies to the combustion of dry wood coupled with the EGS 6 km ORC

option. As previously discussed, operating the ORC cycles during summer has for consequence a

higher NG consumption for wood drying in the other seasons.

Concerning the scenarios with negative ΔHybrid values, the best scenario for both indicator is the

combination of the “FT dry” process with the EGS at 4.2km. As previously discussed, this is due

to the fact that in this scenario the best balance in the system is achieved, allowing to fully exploit

the geothermal heat in summer and the additional heat available from the FT process in the other

seasons. Reaching higher depths for the geothermal wells would lead to lower benefits in terms of

integration with the biomass chemical conversion processes, as there would be an excess of heat in

the mid-season.

The comparison in absolute values of the hybrid geothermal-biomass options allows the identifi-

cation of an optimal solution, maximizing the integration between the two resources. Due to the

equivalence of the drying process, the results obtained for the FT can be extended to the pyrolysis

and SNG processes.

C.2.4 Discussion

The scenario-based methodology offers a systematic evaluation of all the available options for deep

geothermal and woody biomass. Performance indicators are the total annual cost of the energy

system, objective of the MILP, and environmental impact indicators (GWP and human health).

First, geothermal and biomass options are separately evaluated. For geothermal, aquifer and EGS

options are considered. Compared to the reference scenario, which features no wood use and

no geothermal installation, all the EGS options allow a reduction of both the total cost and the

environmental impact indicators. The direct use of geothermal heat in the district heating network

of the city is the best option for geothermal energy. In periods of low heating demand, the MSWI and

WWTP can almost entirely supply the district heating network. Thus, geothermal heat is in excess

during these periods. The conversion of this excess heat to electricity with ORC allows to further

improve the environmental performance indicators. The option of cogeneration is limited by the

high temperature of the DHN.

For woody biomass, the best results are offered by the conversion of wood to SNG. The substitution

of diesel cars with SNG cars offers the best performance in terms of cost, whereas GHG emissions and

human health impacts are minimized by the combustion of SNG in CHP units. Pyrolysis scenarios
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are limited by a lower conversion efficiency and by the impact on human health associated to BioOil

combustion. Wood combustion pathways show good performances in terms of GHG emissions and

have the advantage of lower investment costs. The option of direct combustion of wood is penalized

by a negative impact on human health.

In the individual scenarios for woody biomass, wet (Φ = 50 %) and dry (Φ = 15 %) wood are evaluated

as optional inputs. When no excess heat is available in the system, there is no interest for external

wood drying, as the heat requirement of the dryer leads to an overall increase of fossil natural gas

consumption in the system. On the other hand, when the combination of geothermal and biomass

options is evaluated, the excess geothermal heat in summer can be integrated in the wood drying

process. These hybrid systems can achieve higher savings in terms of total annual costs and GHG

emissions than the corresponding geothermal and biomass options alone. The identification of

hybrid geothermal-biomass processes for wood drying emerges as an efficient way of storing excess

heat in summer in urban energy systems, leading to an increase in the global efficiency.

The chemical biomass conversion pathways benefit more from the hybridization than the wood

combustion processes. This can be considered a general result as it depends on the efficiencies of

the involved processes. On the other hand, the identification of the 4.2 km EGS option as the optimal

one for the hybrid system is determined by the integration in the urban system. The seasonal

variations of the demand in energy services and the constraints given by the presence of other

energy conversion technologies strongly impact the evaluation of the different options

Overall, in this chapter a methodology to model urban energy systems for the integration of deep

geothermal energy and woody biomass resources is developed and demonstrated by an application

case study. A multiperiod MILP formulation for urban energy system modeling is proposed. The

formulation includes process integration in order to account for potential hybrid solutions leading

to positive synergies between the considered resources. The methodology is applied to the urban

system of Lausanne, Switzerland. Results show that integrating these two resources generates

configurations featuring both lower costs and environmental impacts. In particular, synergies

are found in innovative hybrid systems using excess geothermal heat to increase the efficiency of

biomass conversion processes.

In a stand-alone comparison of the technologies, it is often assumed that a demand exists for the

produced energy services. This limit is overcome by contextualizing the comparison within urban

energy systems. The application to the case study shows that taking into account the seasonal

variations of the demand in energy services and the constraints given by the presence other energy

conversion technologies strongly impacts the results.
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D Urban energy modeling - data

Overview

The appendix is complementary to Appendix C as it details the input data for the applica-

tion of the MILP urban energy system modeling framework to the case study of Lausanne

(Switzerland).

This chapter has been published as Supplementary Information of Moret et al. [236].

D.1 Lausanne case study

The European urban system of Lausanne (Switzerland, 140,421 inhabitants in 2015) is taken as an

example case study in this work. Figure D.1 shows the energy flow Sankey diagram of the city for the

year 2012, taken as reference in this study. The final energy consumption is broken down into its

three main components: heating (59.9%, including industry), electricity (22.9%, including industry)

and transportation (17.2%). Cooling is negligible and thus not accounted for in this study. Indurestry

has a small impact on the total final energy consumption (3.7%) of the urban system. Fossil fuels

(oil and natural gas) account for 59.0% of the urban system’s primary energy consumption, covering

the largest share of the demand in the heating and in the transportation sectors.

A DHN, covering 20.6% of heating final energy consumption, is supplied by fossil fuel boilers (mainly

running on natural gas), a WWTP and a MSWI cogeneration power plant. Electricity demand is

mainly satisfied by hydroelectricity (80.9%), followed by nuclear (7.3%), and smaller contributions

from other renewable resources (biomass, solar and wind).
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D.1. Lausanne case study

There is currently no deployment of deep geothermal technologies, while biomass (woody biomass

and dry sludge from waste water) accounts for 2.5% of the primary energy consumption, with 15.4

kt (1 kt = 106 kg) of local woody biomass burned in the MSWI in the year 2012 out of a total potential

estimated in the range of 50-100 kt/y1.

The planned expansion of the DHN as well as the phasing out of nuclear power plants in Switzerland

[64] present opportunities for a wider deployment of these two renewable resources as fossil fuel

substitutes. The share of centralised heat production has a yearly growth rate of about 2%. The DHN

is forecast to satisfy about 45% of the projected total heat demand by the year 2035.

D.1.1 Excess heat from the MSWI

The MSWI of the city (“TRIDEL”) is a cogeneration power plant, burning in 2012 161 kt of MSW

and 15.4 kt of wet wood. In the same year, the total output of the power plant was 85.1 GWhe of

electricity and 261.6 GWhth of heat. Out of the total production, 25.6% of the electricity and 1.2% of

the heat are used to satisfy the internal energy requirements of the power plant [270].

As described in section D.3.8, the waste is burned in a boiler. The produced steam is expanded in

a 20 MWe turbine and then drawn-off (175 °C) for high temperature industrial applications and

district heating. As the waste input is rather constant over the year, the potential heat production

in summer is higher than the urban heat demand. Thus, in summer the steam is expanded until

ambient temperature to increase the electricity output.

A simplified flowsheeting model of the MSWI power plant has been developed by Amblard [258]

assuming constant waste input over the year. The goal of this modeling effort was to reproduce

the seasonal behavior of the power plant, thus evaluating the marginal efficiency of electricity

production in periods of low heating demand. Marginal efficiency is here defined as the ratio

between the increase in electricity production in summer over the reduction in heat supply in the

same period. Results show that the marginal efficiency of electricity production is 14.7%.

The thermal and electrical production of the MSWI are compared in Figure D.2 with the total DHN

demand of Lausanne for the year 2012. The figure shows the mean monthly net power production

compared to the DHN demand (in green). The black dotted line is the net mean thermal power

output in the winter period. The area in red represents the thermal power that could theoretically

be produced in periods of low heating demand if the power plant was operated all the year in the

winter operating configuration, i.e. without expansion down to ambient temperature. This “excess

heat” corresponds to approximately 97 GWhth at a temperature above 175 °C. It is used today in the

second stage of the condensing turbine of the MSWI to produce electricity with a very low efficiency.

This is due to the low heat demand of the DHN in summer.

1 Sustainable potential of wood in the area of Lausanne, personal communication from the Services Industriels de
Lausanne (SiL)
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Figure D.2 – Lausanne MSWI thermal and electricity production compared to the DHN demand in
the year 2012 [258]. The figure shows the high thermal potential available in summer, which is today
converted to electricity at a low marginal efficiency.

In view of the planned future expansion of the DHN this heat could be used to supply the increased

heat demand. Thus, in this work the winter mean operation conditions (38.65 MW thermal and 8.61

MW electric) are assumed for the whole year in the prospective scenarios. The auto consumption of

the MSWI is accounted for in the model and is assumed constant over the year. In [259] it is shown

that this heat would be sufficient to satisfy the projected DHN heat demand in the year 2035. When

this is the case, the integration of geothermal resources generates an excess of heat in summer which

can be integrated in biomass conversion processes.
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D.1.2 Evolution of the energy system to 2035

The energy model used in this work takes the situation in the year 2012 as a reference. Nonetheless,

as the integration of biomass and geothermal technologies represents a long term strategy of the

city linked to the extension of the DHN, the evolution of the energy system to the year 2035 is

considered. Some simplifying assumptions are made about the evolution of the Lausanne energy

system between 2012 and 2035:

• Population growth: a 0.7% yearly rate is assumed for the demographic growth, increasing the

urban system population from 137,000 inhabitants in 2012 to 161,000 in 2035.

• Demand in energy services: the specific demand per capita in energy services for electricity

and transportation is assumed to remain constant, with the share of Mpkm provided by public

transportation increased to 28.5% in 2035 and share repartition as in section D.3.9. The total

heating demand is assumed to remain constant due to the balanced effects of population

growth and building efficiency. The DHN is assumed to cover 45% of the heating end-uses,

with an increased length of 170 km in 2035.

• Electricity production: the installation of a new 31 MWe Kaplan turbine is considered.

• For decentralized boilers, an increased share of the heat demand is satisfied by natural gas

boilers (60 %), with 40 % satisfied by oil boilers.
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D.2 MILP model

Section C.1.2 illustrates the constraints of the optimization model. This section is complementary

to it, as it details the sets, variables and parameters of the model in order to ensure reproducibility.

D.2.1 Sets

Figure D.3 shows the sets and subsets of the MILP formulation. The indices adopted in the figure are

consistently used throughout Appendix C.

CONTENT 
Content description

Time periods (months, 
hours,…)

PERIODS [T]

SET NAME [INDEX]  
(indexed over)

Legend:

LAYER TYPES [LT]

HEAT CASCADE [HC] 
RES. BALANCE [RB]

UNITS [U]
U OF S [US] (s)

U OF L [UL] (l)

Storage Units

STORAGE [STO]

Storage Input Units

STO IN [STOIN] (sto)

STO OUT [STOOUT] (sto)

STO AUX [STOAUX] (sto)

STREAMS [S]
S OF L [SL] (l)

Cold streams: SL (hc) | Hout (s,t) > Hin (s,t)

SCOLD (lhc, t)

TIHC (lhc, t) 

Temperature intervals 
for each HC

RB LINKS [RBlinks]

(lrb, i, j, t) | i,j    UL (lrb), rbout (lrb,i,t), rbin (lrb,j,t)>0 
Links between units in RB layers

Hot streams: SL (hc) | Hout (s,t) < Hin (s,t)

SHOT (lhc,, t)

LAYERS [L]

L OF LT (HC) [LHC] 

L OF LT (RB) [LRB] 

Storage Output Units

∈

Figure D.3 – Sets of the MILP model with the corresponding indices

D.2.2 Parameters

Table D.1 lists the model parameters, specifying their units and description.

D.2.3 Variables

Table D.2 lists the model variables, specifying their units and description.
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Table D.1 – Parameter list with description. Set indices as in Figure D.3

Parameter Units Description
top(t ) [h] Time periods duration
fmin, fmax(u) [-] Min/max Multt (u, t ) if u is used
use f (u, t ) ∈ {0,1} [-] Force use: If 1 then u must be used
cinv,fix(u) [MCHF/y] Unit annualized fixed investment cost
cinv,var(u) [MCHF/y] Unit ann. var. inv. cost if Mult(u) = 1
cop,fix(u) [MCHF/h] Unit fixed operating cost
cop,var(u) [MCHF/h] Unit var. op. cost if Multt (u, t ) = 1
T ∗

in,T ∗
out(s, t )a [K] Streams input/output temperature

Hin, Hout(s, t ) [MW] Streams input/output enthaply
cp(s, t ) [MW/K] Heat capacity flowrate := ΔH/ΔT
Tint(lhc , t , t ihc (lhc , t )) [K] Lower T of each temperature interval
Tmax(lhc , t ) [K] := maxt ihc (lhc ,t )(Tint(lhc , t , t ihc (lhc , t )))
Tmin(lhc , t ) [K] := mint ihc (lhc ,t )(Tint(lhc , t , t ihc (lhc , t )))
δ [K] 1e-5, used in heat cascade constraints
rbin(lrb,ul (lrb), t ) [MW]c RB input for units if Multt (u, t ) = 1
rbout(lrb,ul (lrb), t ) [MW]c RB output for units if Multt (u, t ) = 1
η(stoaux) [-] Efficiency [0;1] of storage input/output

a Corrected temperatures: T∗ = T ±ΔTmin/2 (+ if s ∈ SCOLD, − if s ∈ SHOT )

Table D.2 – Variable list with description. All variables are continuous and non-negative, unless
otherwise indicated.

Variable Units Description
Mult(u) [-] Unit size multiplication factor
Multt(u, t ) [-]b Unit operation in each period
Use(u) ∈ {0,1} [-] Unit use. If 0 unit is not purchased
Uset(u, t ) ∈ {0,1} [-] Unit use in each period
Cop(u, t ) [MCHF] Unit operating cost in each period
Cinv(u) [MCHF/y] Unit annualized investment cost
Mults(s, t ) [-] Stream multiplication factor
R(lhc , t , t ihc (lhc , t )) [MW] Heat cascaded from t i to lower ones
RBin(lrb,ul (lrb), t ) [MW]c Total RB input for units
RBout(lrb,ul (lrb), t ) [MW]c Total RB output for units
RBflow(rblinks) [MW]c Total RB flow between units

b If u ∈ ST O it represents the level of the storage in energy or mass units
c Units as in corresponding layer: [t/h] if layer is in mass, [pkm/h] for mobility
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D.3 Unit models

This section details models and data used in the Lausanne case study. The unit models represented in

Figure C.2 are characterized in terms of energy and mass balances, cost (operating and investment),

and environmental impact (GWP and human health). Repartition of cost and LCA data between

resources and technologies follows the methodology presented in Section C.1.3. For the cost data,

expressed in real CHF2015, and for LCA data, the calculation approach detailed at the beginning of

Appendix A is used. Additionally, the impact on human health is assessed with the “impact2002+

- human health” (expressed in points “pts”) and “ecoscarcity 2013 - main air pollutants and PM”

(expressed in ecopoints “UBP” - Umweltbelastungspunkte) indicators.

Prices of resources and technologies are taken for the year 2015, under the assumption that the

entire energy system is “rebuilt” in this year, and it will be operating in the same conditions in the

future year taken as reference (2035). No future evolution of the investment cost of technologies

and resources is accounted for. In the next sections, the total investment cost of the technologies is

reported. In the MILP model, these investment costs are annualized based on the lifetime of the

technologies by multiplying the total investment by the factor τ, calculated as in Eq. 1.2.

The lifetime of technologies (n) is assumed to be 25 years unless other data are found in the literature.

As for the Swiss national energy system, the discount rate for the public investor is fixed at 3.215%

(see Section A.6).

In this framework, annualized investment cost of existing technologies is also accounted for. This is

coherent with the fact that at the end of their lifetime these technologies need to be replaced. In

this way, the cost of technologies is spread over their whole lifetime, whereas financial depreciation

would only attribute this cost to their early years of operation, leaving an upfront investment cost to

future generations.

Most data reported in this section for the case study of Lausanne are coherent - in terms both of

values and of calculation methodology - with the data reported in Appendix A for the Swiss energy

system. However, there are (few) cases in which they differ, due to the different scales of the two

applications or to the use of different sources. Cross-references are provided and sources are fully

documented to clarify these cases.

D.3.1 Resources

Resources and their properties are listed in Table D.3.

Cost data refer to average values for Switzerland for the year 2015. For imported resources, such

as heating oil, diesel, NG and electricity, the cost is taken at the city border, i.e. profit made by

intermediate public service providers is not taken into consideration. MSW and dry sludge from

waste-water treatment (WWT) are considered free of charge as they would need to be collected
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anyway. The 2015 UCTE production mix LCA data are assumed for the electricity imports.

For GWP, the impact associated to the resources includes the emissions related to their production,

transport and use, under the simplifying assumption that, for fuels, the GWP of use is well repre-

sented by the emissions related to combustion and thus it is independent of the technology used.

For human health and air quality this simplifying assumption is not suitable as these emissions are

technology-dependent. Thus, for this category processing and transportation remain allocated to

the resources, whereas combustion emissions are allocated to the technologies.

Woody biomass

Particular attention is given to the representation of biomass which refers here only to lignocellulosic

biomass in the form of wood chips. The resource is represented by “wet wood” chips (Φ = 50%).

The humidity (Φ), also called moisture content (MC) on a wet basis (wb), corresponds the mass of

water [kgH2O] contained in 1 kg of wood [kgwb]. As an example, 1 kg of wet wood (1 kgwb) at Φ = 50%

contains 0.5 kgH2O and 0.5 kg of oven dry2 wood [kgdb] (Φ = 0%). The reference LHV on a db (Φ = 0%)

is 19 MJ/kg [271], and the corresponding LHV on a wb is calculated using Eq. D.1.

LHVwb = LHVdb · (1−Φ)−ΔHvap ·Φ
[ MJ

kgwb

]
(D.1)

Where ΔHvap is enthalpy of vaporization of water, equal to 2.443 MJ/kg [271]. In this work, when

wood is represented in terms of power or energy equivalent, the wb representation is adopted unless

otherwise stated.

The LHVdb is calculated from the higher heating value (HHV) by subtracting the energy of the water

generated in the combustion reaction, as the LHV takes into account that this water is not condensed

when leaving the system. Thus, the latent heat of condensation is not recovered as useful energy

from the combustion process (Eq. D.2).

LHVdb = HHV − cH

2
·ΔHvap ·MH2O

[ MJ

kgdb

]
(D.2)

Where cH is the mass fraction of hydrogen in the biomass composition, and M is the molar mass.

2 As a simplification, “dry wood” refers to wood at Φ = 15%, “wet wood” to wood at Φ = 50%. Here the term “oven dry”
is adopted to refer to wood at Φ = 0%. “Dry basis (db)” always indicates Φ = 0%.
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D.3.2 Energy demand

The energy demand of the city is divided into heating, electricity and mobility. Cooling demand

is negligible in the studied urban system. Table D.4 shows the values of the end-uses in energy

services assumed for the City of Lausanne in 2035. As described in Section D.1.2, the energy demand

in 2035 is calculated based on the 2012 situation, assuming a constant total demand for heating

and a constant per capita demand for mobility and electricity. For electricity and heating, average

power values are considered for the different periods in order to account for the seasonal variation

in energy demand. Mobility is assumed to be constant over the different periods.

Table D.4 – Characterization of end-uses in energy services for the city of Lausanne in 2035.

Period Duration [h]
Heating [MW] Mobility [Mpkm/y]

Electricity [MW]
DHN Decentralized Public Private

Summer 2928 35.33 43.18

354.9 890.4

69.87

Winter 3624 124.6 152.3 97.57

Mid-season 2208 60.82 74.34 90.64

Peak 1e-04 211.9a 304.5b 146.5c

a Ratio between peak and winter demand as in [258]. Calculated based on DHN hourly production profile.
b Ratio between peak and winter demand assumed to be 2, as in [258].
c Ratio between peak and winter demand assumed to be 1.5, as in [258].

The annual consumption for heating and electricity is calculated based on data provided by the

Services Industriels de Lausanne (SiL), the public energy service provider of the city. The seasonal

repartition of the heating demand, assumed equal for centralized and decentralized heating, is

calculated based on the DHN hourly production profile. The share of the heat demand satisfied by

the DHN is 45%.

Mobility is expressed in pkms. Based on the data from SiL and Transport Lausannois (TL), Amblard

[258] has calculated a specific mobility of 7735 pkm/ca. for the city in 2012, with a 19.5% share of

public mobility. In the year 2035, this share is assumed increased to 28.5%. The specific mobility is

lower than the national value as the latter includes as well walking, biking, trains and flights, which

are not accounted for in this model.
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D.3.3 Biomass technologies

Wood dryer

Dryer
1 MW

0.435 twb/h
(  = 50 %)

17.3 kW

233.5 kW

1.12 MW
0.256 twb/h
(  = 15 %)

25-165 °C

Electricity

Wet wood Dry wood

Figure D.4 – Wood dryer unit model.

The air wood dryer (Figure D.4) has wood at Φ = 50% as an input, and wood at Φ = 15% (LHV =

15.7835 MJ/kgwb) as an output. The flowsheet model is originally developed in Belsim ValiTM by

Gassner and Maréchal [278], while the cost functions are based on data from producers elaborated

by Peduzzi [269]. Cost and emissions data are reported in Table D.5.

In Appendix C the concept of drying “efficiency” is adopted. This is defined as the theoretical heat

needed to evaporate the water contained in the wood (ṁH2O) over the actual heat needed for the

drying process (Q̇+
drying ). Eq. D.3 calculates the efficiency for the dryer as in Figure D.4.

ηdrying = ṁH2O ·ΔHvap

Q̇+
drying

= (ṁwoodin −ṁwoodout ) ·ΔHvap

Q̇+
drying

= 0.52 (D.3)

Where the amount of water evaporated is equal to the weight difference between input and output

wood mass flow rate (kgwb/s). Biomass chemical conversion processes with “wet” wood as an input

(Φ = 50%) are modeled using the same dryer. The higher efficiency in that case (62%) is due to

the fact that, when used in biomass chemical conversion processes, the dryer can reach a higher

temperature (200 °C). In the model the external dryer is limited to 165 °C to achieve better integration

with the available geothermal heat.
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D.3. Unit models

Table D.5 – Wood dryer parameters

Value Units References

Reference size 3-18 MWin

cinv,fix
a 1.710e5 CHF2015 [269]

cinv,var
a 6.457e4 CHF2015/MWin [269]

cop,fix
b 0.976 CHF2015/h

cop,var
b 0.369 CHF2015/MWhin

Lifetime 50 y [168]

GWP100aC,E
c 7.455e3 kgCO2-eq./MWin

Impact2002+C,E
c 3.699 pts/MWin

ES2013C,E
c 7.313e6 UBP/MWin

a Investment cost regression between 2.4 and 18.4 MWin based on the WyssmontTM dryer cost reported in [269]. In the
model, the regression is assumed valid in a larger range as the maximum size of the drying process is 79 MW which is
obtained when all the wood is dried in the summer.

b O&M assumed as 5% of cinv over 8760 hours.
c Calculated according to the size estimate reported by [269], considering steel as a construction material from [168].

Impacts only related to construction of the dryer. Operation impacts are not accounted for.

Fast pyrolysis for bio-oil production

Pyrolysis
1 MW

0.435 twb/h
(  = 50 %)

15.8 kW

666 kW

Electricity

Wet wood

BioOil

Figure D.5 – Pyrolysis unit model.

This model is adapted from the work by Shemfe et al. [279], presenting the performance analysis of a

biomass fast pyrolysis biofuel production unit with electric power generation. In order to report the

data coherently, the data in [279] are scaled under the simplifying assumption that the power input

on a wb at Φ = 25% (LHV = 13.050 MJ/kgwb), as considered in [279], is equivalent to the power input

on a wb at Φ = 50%, as considered in this study. The LHV of the bio-oil is calculated according to

Boie’s correlation [280] and the compositions reported by [281] (mass fraction of carbon, hydrogen

and oxygen on a dry basis (db) of 0.56, 0.06 and 0.38, respectively), yielding 15.247 MJ/kg on a wb.

Cost data are also adapted from the work by Shemfe et al. [279] according to the procedure described

at the beginning of Appendix C, whereas O&M costs are assumed to be 5% of the investment. As

further detailed in Section D.3.5, when bio-oil is used in combustion processes, human health

emissions are considered as an average between LFO and Heavy fuel oil (HFO) (on an energy basis).
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This simplifying assumption is based on the study by Lehto et al. [268]. Cost and emissions data are

reported in Table D.6. The possibility of using char to displace synthetic fertilizers is not considered

in this study as in the model it is considered that the solid char is burnt in a combustion unit.

Table D.6 – Fast pyrolysis parameters

Value Units References

Reference size 10 MWin [279]
cinv,fix - CHF2015

cinv,var 9.559e5 CHF2015/MWin adapted from [279]
cop,fix - CHF2015/h
cop,var

a 5.46 CHF2015/MWhin

Lifetime 25 y
GWP100aC,E

b 1.080e4 kgCO2-eq./MWin

Impact2002+C,E
b 4.089 pts/MWin

ES2013C,E
b 8.084e6 UBP/MWin

a O&M assumed as 5% of cinv over 8760 hours.
b Calculated according to the size estimate reported by [269] for a dryer, considering steel as a construction material

from [168]. Impacts only related to construction of the pyrolysis reactor. Operation impacts are not accounted for.

Fischer-Tropsch synthesis from biomass gasification

25.7 kW Electricity

Fischer-Tropsch
"wet"1 MW

0.435 twb/h
(  = 50 %)

Wet wood
498 kWDiesel

14.5 kW Electricity

Fischer-Tropsch
"dry"1 MW

0.228 twb/h
(  = 15 %)

Dry wood

443.5 kWDiesel

200-150 °C 175 kW

Figure D.6 – Fischer-Tropsch unit models for wet and dry wood input.

The Biomass to liquids (BtL) models considered in this study consist in the synthesis of FT fuels

from lignocellulosic biomass and are described in detail in [269]. The main process considered

in the present study is a base case process using entrained flow gasification. The first step is the

pretreatment where raw biomass (50% or 15% Φ) is dried, torrefied, and ground into fine particles.

The biomass particles are then gasified in a pressurized (30 bar) steam-oxygen blown entrained

flow gasifier. The synthesis gas produced, consisting mainly of H2, CO, CO2 is cooled by a water

quench and cleaned by a scrubber. A water gas shift reactor is used to adjust the H2-to-CO ratio

and CO2 is removed by amine scrubbing in order to satisfy the requirements of the FT synthesis

where the liquid hydrocarbon fuels are produced. Process integration allows heat recovery and the
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co-production of electricity which is used to partly satisfy the requirement of the process. In the

model, it is assumed that the produced FT fuels have the same properties as diesel.

This model is adapted for this study and used to represent two different configurations. The first

process, represented on the left in Figure D.6 and Table D.7, has wet wood (Φ = 50%) as an input.

The second process, represented on the right in Figure D.6 and Table D.7, uses biomass which is

delivered at the conversion facility at Φ = 15% by an external dryer. The amount of heat used for

wood drying in the first process (“FT wet”) is made available to supply the DHN in the second

configuration (“FT dry”).

Table D.7 – Fischer-Tropsch synthesis from biomass gasification parameters

Value
Units ReferencesFT wet FT dry

(Φ = 50%) (Φ = 15%)

Reference size 15-45 MWdb,in

cinv,fix
a 4.143e7 3.997e7 CHF2015 [269]

cinv,var
a 2.360e6 1.955e6 CHF2015/MWin [269]

cop,fix
a 217.8 212.5 CHF2015/h [269]

cop,var
a 15.7 13.5 CHF2015/MWhin [269]

Lifetime 25 y
GWP100aC,E

b 4.016e4 3.581e4 kgCO2-eq./MWin

Impact2002+C,E
b 16.96 15.12 pts/MWin

ES2013C,E
b 3.353e7 2.990e7 UBP/MWin

GWP100aO
c 6.940e-1 kgCO2-eq./MWhdb,in

Impact2002+O
c 1.495e-3 pts/MWhdb,in

ES2013O
c 4.806e3 UBP/MWhdb,in

a Linear regression of cost data in [269], where they are obtained for a 200-400 MWin production plant.
b Emissions associated to technology construction and end-of-life. Due to lack of data for a full LCA, emissions are

assumed equal to the gasification to SNG process.
c Emissions associated to technology operation, excluding combustion for GWP (allocated to the resource). Due to lack

of data for a full LCA, emissions are assumed equal to the gasification to SNG process.

In both cases cost data is obtained by a linear regression of the costs of plants between 15 and 45

MW input of biomass (on a LHVdb). It should be underlined that these processes are very small

compared to similar processes reported in the literature, generally ranging between 200 and 400

MWin and also reaching over 1000 MWin to benefit from economies of scale [282]. The small capacity

is considered here according to the biomass availability for the city of Lausanne to study the interest

of the implementation of a reduced size facility, if such an option will be feasible in the future. As

for the technologies presented in the previous sections, the data is normalized to a biomass input

of 1 MW (LHVwb). The comparison of the two processes shows that the “FT dry” process using

biomass at Φ = 15%, with the same input of 1000 kW (LHVwb) as the “FT wet” process (using Φ = 50%

biomass), is actually processing less biomass in terms of mass on a db. This is the reason why the
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conversion to the FT fuel, on an wb energy basis, is smaller. The conversion on a db is the same. In

the case of the “FT dry” process, the lower electricity requirement is due to the removal of the dryer

unit.

Synthetic Natural Gas production from biomass gasification

Gasification
to

SNG

1 MW
0.435 twb/h
(  = 50 %)

31.5 kW

740 kW

Electricity

Wet wood SNG

110-70 °C 90.1 kW

Figure D.7 – Gasification to SNG unit model.

The model of SNG production from woody biomass gasification (Figure D.7) is adapted from [235].

In this process, biomass is dried and gasified to produce syngas, a gas mixture mostly made of

hydrogen (H2), carbon monoxide (CO), carbon dioxide (CO2), and methane (CH4). The syngas is

cooled and cleaned of tars and other contaminants. This gas is then compressed and catalytically

reacted in a methanation reactor to produce a gas mixture composed primarily of methane and

carbon dioxide. Finally, the gas is purified and the carbon dioxide removed, in order to produce SNG

that matches the requirements for injection into the natural gas (NG) network. Thus, in the model it

is assumed that the produced SNG fuel has the same properties as fossil NG.

In [235] data for two SNG production plants are reported. The size of these installations is 40.5 MWin

(“Gazobois” project) and 135 MWin (input biomass at Φ = 50%), respectively. Mass and energy bal-

ances are taken from these installations. The temperature level of the excess useful heat is assumed

to be high enough to partially supply the city’s DHN. Investment cost data are extrapolated from

with data for a 20MWin size with an exponential relation. Cost and emissions data are reported in

Table D.8.
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Table D.8 – Gasification to SNG parameters

Value Units References

Reference size 20 MWin

cinv,fix - CHF2015

cinv,var
a 2.168e6 CHF2015/MWin [235]

cop,fix - CHF2015/h

cop,var
b 12.62 CHF2015/MWhin [235]

Lifetime 25 y

GWP100aC,E
c 4.016e4 kgCO2-eq./MWin

Impact2002+C,E
c 16.96 pts/MWin

ES2013C,E
c 3.353e7 UBP/MWin

GWP100aO
d 6.940e-1 kgCO2-eq./MWhdb,in [246]

Impact2002+O
d 1.495e-3 pts/MWhdb,in [246]

ES2013O
d 4.806e3 UBP/MWhdb,in [246]

a Exponential extrapolation of cost data in [235].
b O&M are 5.1% of the total investment cost per year, over 8760 h.
c Emissions associated to technology construction and end-of-life. Due to lack of data for a full LCA, assuming sum

of emissions of a dryer unit, a pyrolysis unit for pre-treatment, and a gasifier. Multiplied by a factor 2 to account for
emissions of other parts of equipment (cleaning, methanation, purification).

d Emissions associated to technology operation, excluding combustion for GWP (allocated to the resource). Calculated
using the impact of gasification, plus adding the operation impacts of gas cleaning, methanation and purification (RME,
catalysts (ZnO, Ni, Al2O3), limestone and gypsum) as in [246].
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D.3.4 Geothermal resources and technologies

Geothermal resources

The City of Lausanne does not present particularly favorable geological characteristics in terms

of geothermal resources (Figure D.8). The geothermal gradient in the area is 0.03 °C/m [283]. In

this work, deep aquifers and EGSs are considered. For aquifers, the Muschelkalk aquifer (3.8 km

depth, [284] is considered). The Malm aquifer (2 km depth) is not included in this case study as

its temperature level is too low in comparison to the temperature of the city’s DHN. For EGS three

different depths are considered: 4.2 km (upper limit of the crystalline stratum), 5 km and 6 km.

Table D.10 characterizes the considered resources at different depths in terms of total heat extracted,

pumping power, water expected mass flow rate, well temperature (Twell), total investment cost

(including stimulation, exploration, fluid distribution and drilling), and cost for O&M. Technical pa-

rameters for the wells are average values over the lifetime calculated with the software environment

GEOPHIRES [112], unless otherwise specified. The same software environment is also used for cost

data estimation. The lifetime of the wells is assumed to be 30 years, the reinjection temperature is 70

°C, the pump efficiency is 80% and the capacity factor is 90%. It is assumed that 2 wells are needed

for an aquifer and 3 wells are needed for an EGS.

Emissions related to drilling and operation of the wells are calculated in the post-computation phase

according to the LCA methodology presented in [246] (Table D.9).

Figure D.8 – Geological profile of the city of Lausanne [283].
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Energy conversion cycles

31.403 MW ORC
5 km

Electricity 4.684 MW16-139 °C

2.544 MW ORC
3.8 km

Electricity 335.4 kW16-105 °C

41.870 MW ORC SC
6 km

Electricity 7.572 MW17-160 °C

23.029 MW ORC
4.2 km

Electricity 3.009 MW16-119 °C

41.870 MW Kalina
6 km

Electricity 5.143 MW
29-156 °C

82-18.5 °C 34.332 MW

Figure D.9 – Simplified input-output representation of the geothermal ORC and Kalina cycles models.

The energy conversion cycles associated with the geothermal resources (Figure D.9) are taken from

the optimal configurations presented in [266]. For electricity production, Organic Rankine cycles

(ORCs) are considered for the resources shallower than 5 km with a single-loop configuration,

while a supercritical (SC) cycle is chosen for the 6 km EGS. The high temperature of the city’s DHN

makes cogeneration with geothermal resources an unoptimal solution. For this reason, only a

Kalina cogeneration cycle at 6 km is chosen, being the only one with temperature levels able to

partially satisfy the network demand. ORCs use R134a as working fluid, whereas Kalina cycles use a

H2O/NH3 mixture. The cyles are originally modeled with the flowsheeting software Belsim VALITM

and optimized for each individual geothermal resource. The thermal streams corresponding to the

optimal configurations are included in the MILP model. Figure D.9 offers a simplified input-output

representation of the cycles, taking into account only the net heat requirement/surplus for the

thermal streams. To calculate the efficiency, the power available from the corresponding geothermal

resources is taken as input. ORCs are not used in cogeneration, so the excess low-temperature heat

is rejected to the environment. For the Kalina cycle, the thermal production shown in the figure

corresponds to the condensation stream.

Investment costs are calculated based on a recent report for Switzerland [102], indicating a reference

investment cost of 3000 USD2010/kWe (2891 CHF2015/kWe) for a 13 MWe ORC installation. The

investment cost has been scaled for the different cycles in this work using an exponential relation

with an exponent of 0.9, as indicated in the report. In the lack of better data, the same scaling has

been applied also for the Kalina cycle. Due to the lower electrical efficiency of the latter, this leads to
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D.3. Unit models

higher specific investment cost for this cycle, as reported in [102]. The report indicates a lifetime

of 30 years for the cycles. O&M costs are conservatively assumed to be 5% of the total investment

cost per year, based on [285][106][112]. Emissions related to drilling and operation of the wells are

calculated in the post-computation phase according to the LCA methodology presented in [246]

(Table D.9).

D.3.5 Boilers

Centralized and decentralized NG boilers

DHN
NG Boiler

577.8 kW
NG/SNG

1027-70 °C 422.2 kW

1.079 MW Decentralized
NG Boiler

1027-150 °C 1 MW

1027-1027 °C

NG/SNG1.111 MW

Figure D.10 – Centralized and decentralized NG boiler unit models.

Table D.11 – NG-SNG DHN and decentralized boilers parameters

Value
Units References

DHN Decentralized

Reference size 5-20 0.01-0.03 MWth

cinv,fix - CHF2015

cinv,var
a 6.289e4 1.693e5 CHF2015/MWth [111]

cop,fix - CHF2015/h

cop,var
b 3.145e-1 1.270 CHF2015/MWhth [111]

Lifetime 25 20 y

GWP100aC,E 2.590e3c 2.109e4d kgCO2-eq./MWth

Impact2002+C,E 8.401e-1c 6.625d pts/MWth

ES2013C,E 1.884e6c 1.285e7d UBP/MWth

GWP100aO
e - kgCO2-eq./MWhin

Impact2002+O
e 7.060e-4 pts/MWhin

ES2013O
e 1.835e3 UBP/MWhin

a Based on logarithmic regression on cost data in the range 0.02-10 MWth.
b For DHN O&M are 2% of investment cost, for decentralized 3% of investment cost. 4000 h/y of operation.
c Assumed equal to DHN wood boiler (Table D.13).
d Assumed equal to decentralized oil boiler (Table D.12).
e Operation impacts for a decentralized NG boiler.
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These boiler unit models (Figure D.10) can have both fossil NG and SNG as inputs, which are assumed

to have the same performance in terms of efficiency and the same emissions (GWP combustion

emissions are allocated to the resources). The boilers electricity consumption is neglected. The

DHN boiler is modeled in Belsim VALITM. The ideal efficiency on a LHV basis is 97.6% and 5% losses

are assumed. The fumes reach an output temperature of 70 °C, and a distinction is made between

the radiative and convective component of the heat production. For the decentralized boiler an

overall efficiency of 90% is assumed. In the model, the share of decentralized NG boilers is fixed in

order to supply 60% of the decentralized heat demand. Cost data are taken from [111] by logarithmic

regression in the range 0.02-10 MWth. Cost and emission data are reported in Table D.11.

Centralized and decentralized Oil-BioOil boilers

DHN
Oil Boiler

574.4 kW
Oil/BioOil

1027-70 °C 425.6 kW

1.146 MW Decentralized
Oil Boiler

1027-150 °C 1 MW

1027-1027 °C

Oil1.176 MW

Figure D.11 – Centralized and decentralized Oil-BioOil boiler unit models.

The DHN boiler can have both fossil LFO and BioOil as inputs, which are assumed to have the

same performance in terms of efficiency. The DHN boiler is modeled in Belsim VALITM. The ideal

efficiency on a LHV basis is 96.95% for BioOil assuming the composition as in Section D.3.3, and

10% losses are assumed. The fumes reach an output temperature of 70 °C, and a distinction is made

between the radiative and convective component of the heat production. The decentralized boiler

model has only fossil oil as input. For the decentralized boiler an overall efficiency of 85% is assumed.

The boilers electricity consumption is neglected. Cost data are assumed equal to the NG boilers

(Table D.11). Human health operating emissions are different for fossil oil and BioOil combustion.

For the latter, human health emissions are considered as an average between LFO and HFO (based

on the same input energy basis). This simplifying assumption is based on the study by Lehto et al.

[268]. Cost and emission data are reported in Table D.12.
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Table D.12 – Oil and decentralized boilers parameters

Value

Units ReferencesDHN
Decentralized

LFO BioOil

Reference size 5-20 0.01-0.03 MWth

cinv,fix - - CHF2015

cinv,var
a 6.289e4 1.693e5 CHF2015/MWth [111]

cop,fix - - CHF2015/h

cop,var
a 3.145e-1 1.270 CHF2015/MWhth [111]

Lifetime 25 20 y

GWP100aC,E 2.590e3b 2.109e4c kgCO2-eq./MWth

Impact2002+C,E 8.401e-1b 6.625c pts/MWth

ES2013C,E 1.884e6b 1.285e7c UBP/MWth

GWP100aO - - kgCO2-eq./MWhin

Impact2002+O 3.070e-3d 1.298e-2e 3.592e-3f pts/MWhin

ES2013O 8.262e3d 3.096e4e 9.196e3f UBP/MWhin

a Assumed equal to NG boilers (Table D.11).
b Assumed equal to DHN wood boiler (Table D.13).
c Linear regression between impact data in the range 10-100 kWth from [168].
d Operation impact data for a 100 kWth LFO boiler.
e Average impact between 100 kWth LFO and 1 MWth HFO boilers from [168]. Simplifying assumption based on [268].
f Operation impact data for a 10 kWth LFO boiler.

Centralized wet and dry wood boilers

DHN
wet wood 

Boiler

9.6 kW

1027-70 °C 990.4 kW

1027-1027 °C

1.157 MW
0.503 twb/h
(  = 50 %)

Wet wood
DHN

dry wood 
Boiler

9.6 kW

1027-70 °C 990.4 kW

1027-1027 °C

1.144 MW
0.261 twb/h
(  = 15 %)

Dry woody

Figure D.12 – Centralized wet and dry wood boiler unit models.

The DHN wood boiler (Figure D.12) is modeled to be powered with either wet wood (Φ = 50%) or

dry wood (Φ = 15%). The model, realized with the flowsheeting software Belsim VALITM, is used in

order to calculate the variation of efficiency between the combustion of wet wood and dry wood,

considering a stack temperature of 70 °C. Losses are considered as 10% of the heat output and

the boilers electricity consumption is neglected. A distinction is made between the radiative and
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convective components of the heat production. The ideal efficiency on a LHV wb is 96.05% in the

case of wet wood, and 97.11% in the case of dry wood. Cost data are taken from [111] by logarithmic

regression on cost data in the range 0.02-20 MWth. Operating emission data are taken from [168]

for a state-of-the-art 1 MWth boiler burning wood chips at Φ = 44.4%. Due to lack of emission

data allowing to differentiate between wet and dry wood combustion, the same values on a db are

assumed for the two cases. Cost and emission data are reported in Table D.13.

Table D.13 – Centralized wet and dry wood boilers parameters

Value Units References

Reference size 5-20 MWth

cinv,fix - CHF2015

cinv,var
a 1.230e5 CHF2015/MWth [111]

cop,fix - CHF2015/h

cop,var
b 6.150e-1 CHF2015/MWhth [111]

Lifetime 25 y

GWP100aC,E
c 2.590e3 kgCO2-eq./MWth

Impact2002+C,E
c 8.401e-1 pts/MWth

ES2013C,E
c 1.884e6 UBP/MWth

GWP100aO - kgCO2-eq./MWhdb,in

Impact2002+O 1.615e-2 pts/MWhdb,in

ES2013O 1.848e4 UBP/MWhdb,in

a Based on logarithmic regression on cost data in the range 0.02-20 MWth.
b O&M are 2% of investment cost over 4000 h/y of operation.
c Based on data for 300 kWth and 1 MWth wood chips boilers. Extrapolated by exponential regression.

D.3.6 Electricity production & Cogeneration (CHP)

Hydroelectricity

In 2012, hydroelectricity supplied 79.9% of the total urban system electricity demand. The largest

share of electricity production comes from the run-of-river power plant located in Lavey. It currently

consists of three Kaplan turbines, each with a plate capacity of 31 MWe, producing about 400 GWhe/y.

By 2035, a new unit will be installed and an increase of 75 GWhe/y in production is expected. The

power plant is modeled by Amblard [258] based on the information available in [286], estimating as

well the seasonal variations. In the model it is assumed that hydroelectricity has priority over the

other technologies, therefore the average production is fixed in each period to the values reported in

Table D.14. Cost and emission data are reported in Table D.15.
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Table D.14 – Fixed hydroelectricity power production in each period.

Period Hydroelectricity production [MWe]

Summer 56.82

Winter 45.85

Mid-season 75.33

Peak 124.0a

a Assuming that the new turbine has as well a 31 MWe plate capacity.

Table D.15 – Hydroelectricity parameters

Value Units References

cinv,fix - CHF2015

cinv,var 5.351e6 CHF2015/MWe [181]

cop,fix - CHF2015/h

cop,var
a 6.108 CHF2015/MWhe [181]

Lifetime 40 y [181]

GWP100ab 4.699 kgCO2-eq./MWhe

Impact2002+b 1.070e-3 pts/MWhe

ES2013b 3.486e3 UBP/MWhe

a O&M assumed as 1% of cinv based on [181], over 8760 h.
b Emissions for construction, operation and end-of-life.

Natural Gas CHP

NG
CHP

1 MW
2 MW

Electricity

SNG

200-200 °C 750 kW

Figure D.13 – Natural gas CHP unit model.

The CHP unit (Figure D.13) in the model has SNG as an input, which is assumed equivalent to fossil

NG. It is modeled as a CCGT, a cycle configuration combining a gas turbine with a bottoming steam

cycle to achieve high electrical efficiencies. Efficiency data are taken from [192] for a typical 200-250

MWe installation in 2035. As a simplification, the output temperature level is chosen high enough
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to satisfy the heat demand in the model. As CCGT plants in Switzerland are smaller (34-55 MWe),

cost data are taken from [287] for typical installations in Switzerland. Cost and emission data are

reported in Table D.16.

Table D.16 – Natural Gas CHP parameters.

Value Units References

Reference size 34-55 MWe [287]

cinv,fix - CHF2015

cinv,var 1.453e6 CHF2015/MWe [287]

cop,fix - CHF2015/h

cop,var 9.684 CHF2015/MWhe [287]

Lifetime 25 y [192]

GWP100aC,E 3.927e5 kgCO2-eq./MWe

Impact2002+C,E 79.69 pts/MWe

ES2013C,E 1.519e8 UBP/MWe

GWP100aO - kgCO2-eq./MWhin

Impact2002+O 3.570e-3 pts/MWhin

ES2013O 1.129e4 UBP/MWhin

Oil and BioOil CHP

Oil
CHP

1 MW
2.577 MW

Electricity

BioOil

200-200 °C 1.106 MW

Figure D.14 – BioOil CHP unit model.

The CHP unit in the model has BioOil as an input (Figure D.14). For comparison, also the fossil

oil option is reported here. LFO and BioOil are assumed to have the same performance in terms

of efficiency. Due to lack of specific data for the technology, efficiency data are taken for a typical

200 kWe diesel CHP engine [168]. As a simplification, the output temperature level is chosen high

enough to satisfy the heat demand in the model. Cost data are taken from [192] for a 2 MWe NG

CHP with the same electrical efficiency as the diesel reference model. Coherently with what written

in Section D.3.3, different human health emissions are considered for combustion of fossil LFO and
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BioOil, due to the higher emissions of the latter. Cost and emission data are reported in Table D.17.

Table D.17 – Oil-BioOil CHP parameters

Value
Units References

LFO BioOil

Reference size 0.2-2 MWe

cinv,fix - CHF2015

cinv,var
a 1.107e6 CHF2015/MWe [192]

cop,fix - CHF2015/h

cop,var
a 11.55b CHF2015/MWhe [192]

Lifetime 20 y [192]

GWP100aC,E
c 8.319e5 kgCO2-eq./MWe

Impact2002+C,E
c 1.780e2 pts/MWe

ES2013C,E
c 3.530e8 UBP/MWe

GWP100aO - - kgCO2-eq./MWhin

Impact2002+O 6.619e-3c 1.298e-2d pts/MWhin

ES2013O 2.026e4c 3.096e4d UBP/MWhin

a Data for a 2 MWe NG CHP.
b Assuming 4000 h/y of operation.
c Due to lack of technology-specific data, calculated based on data for 200 kWe diesel CHP engine in [168].
d Due to lack of LCA data for BioOil combustion, operation assumed equal to combustion in boiler (Table D.12).

Wet and dry wood CHP

Wet wood
CHP

1 MWElectricity

Wet wood

200-200 °C 2.4 MW

4 MW
1.739 twb/h
(  = 50 %)

Dry wood
CHP

1 MWElectricity

Dry wood

200-200 °C 2.4 MW

4 MW
0.912 twb/h
(  = 15 %)

Figure D.15 – Wet and dry wood CHP unit model.

The wood CHP unit (Figure D.15) in the model can have wet (Φ = 50%) and dry (Φ = 15%) wood

as inputs. The same performance in terms of wb efficiency is assumed in the two cases. As a

simplification, the output temperature level is chosen high enough to satisfy the heat demand in the

model. Efficiency and cost data are taken from [111] for a 5 MWth (2.08 MWe) biomass CHP-ORC

system. Emission data are taken from [168] for a state-of-the-art 6.67 MWin CHP burning wet

wood (Φ = 52%). Due to lack of emission data allowing to differentiate between wet and dry wood
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combustion, the same values on a db are assumed for the two cases. Cost and emission data are

reported in Table D.18.

Table D.18 – Wet and dry wood CHP parameters

Value Units References

Reference size 2.08 MWe [111]

cinv,fix - CHF2015

cinv,var 4.651e6 CHF2015/MWe [111]

cop,fix - CHF2015/h

cop,var
a 46.51 CHF2015/MWhe [111]

Lifetime 25 y

GWP100aC,E 4.868e5 kgCO2-eq./MWe

Impact2002+C,E 1.014e2 pts/MWe

ES2013C,E 2.084e8 UBP/MWe

GWP100aO - kgCO2-eq./MWhdb,in

Impact2002+O 1.615e-2 pts/MWhdb,in

ES2013O 1.848e4 UBP/MWhdb,in

a O&M costs are 4% of the investment cost over 4000 h/y of operation.

D.3.7 Storage

The modeling of storage is detailed Section C.1.2. Storage units can have multiple inputs and outputs.

This is also exploited in the case study to force scenarios. No LCA analysis is performed for the

storage units.

SNG storage

SNG
Storage

1 MW
1 MW

NG

SNG

1 MWSNG

Figure D.16 – SNG storage unit model.

The SNG storage unit is used in the model to force the replacement of NG with SNG. In the model, in
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fact, it is assumed that SNG is equivalent to fossil NG. Thus, it can be injected into the NG grid. No

cost is associated to this storage unit, as it is assumed that the produced SNG can replace imports of

fossil NG in Switzerland all-year-round using the existing grid infrastructure.

As shown in Figure D.16, the unit has an input (SNG layer) and two outputs (SNG and NG layers).

This allows to force scenarios. On the one hand, when SNG replaces fossil NG in the model, only the

NG output is activated. On the other hand, when SNG is used for CHP or mobility, only the SNG

output is activated together with the corresponding cogeneration and mobility unit models.

Oil and BioOil storage

Oil
Storage

1 MW
1 MW

Oil

Oil

1 MWDHN Oil

BioOil
Storage1 MW BioOil

1 MWDHN Oil

1 MWBioOil

Figure D.17 – Oil and BioOil storage unit models.

In the model it is assumed that BioOil from fast pyrolysis can only be used in DHN technologies

(boiler and CHP). Fossil oil can be used in DHN technologies and also for decentralized heat supply.

As shown in Figure D.17, the BioOil storage unit has an input (BioOil layer) and two outputs (BioOil

and DHN Oil layers). This allows to force scenarios. When the CHP oil unit is used in the system, the

DHN oil output is deactivated in order to ensure that all the BioOil is consumed by the CHP unit.

Cost data are taken from [288], who report an estimate from producers data for a 9375 m3 BioOil stor-

age tank. The data are adapted for fossil oil storage accounting for the different physical properties

of the two fuels. Cost data are summarized in Table D.19.

Table D.19 – Oil and BioOil storage tanks parameters

Value
Units References

LFO BioOila

Reference size 9.419e4 4.765e4 MWhfuel
b

cinv,fix - CHF2015

cinv,var 1.204e1 2.380e1 CHF2015/MWhfuel [288]
cop,fix - CHF2015/h
cop,var

c 5.497e-5 1.087e-4 CHF2015/MWhfuel/h
Lifetime 50 y

a Assuming LHV = 15.247 MJ/kg (Section D.3.3) and density of 1200 kg/m3 as in [288].
b Energy equivalent of the amount of fuel stored.
c Assuming O&M as 4% of investment as for wood storage (Table D.20), over 8760 h.

195



Appendix D. Urban energy modeling - data

Wood storage

4.384 MW
1 twb/h

(  = 15 %)
Dry wood
Storage

Dry wood Dry wood
4.384 MW

1 twb/h
(  = 15 %)

Figure D.18 – Dry wood storage unit model.

The dry biomass storage model (Figure D.18) is based on the “covered storage facility of a pole-frame

structure having a metal roof without any infrastructure for biomass drying” presented in [289]. This

storage has a maximum height of 6 m. [289] indicates that material losses are 0.5%/month. Thus,

the output storage efficiency is set as η(stoout) = 99.5%. Cost data are summarized in Table D.20.

Table D.20 – Dry wood storage parameters

Valuea Units References

Reference size - MWhfuel
b

cinv,fix - CHF2015

cinv,var 2.414e1 CHF2015/MWhfuel [289]
cop,fix - CHF2015/h
cop,var

c 1.102e-4 CHF2015/MWhfuel/h [289]
Lifetime 50 y

a Dry wood density is 235 kg/m3 for wood chips at Φ = 15% [271].
b Energy equivalent of the amount of fuel stored.
c O&M costs are 4% of investment over 8760 h.

D.3.8 Waste treatment and District Heating Network

Municipal Solid Waste Incinerator (MSWI)

6.286 MWElectricity

400-185 °C 38.07 MW

Municipal Solid
Waste Incinerator

(MSWI)
MSW63.04 MW

18.38 twb/h

Figure D.19 – MSWI unit model.
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A general description of the municipal solid waste incinerator (MSWI) of the city of Lausanne

(“TRIDEL”) is offered in Section D.1.1. The MSWI is here represented in a simplified way based on

the work by Amblard [258]. As of 2015, the power plant burns both municipal solid waste (MSW)

and wet wood to produce steam, which is first expanded in a steam turbine down to 175 °C, and

then used for DHN heat supply. In summer, the excess heat is expanded to ambient temperature in

a second turbine.

In the model the winter operating mode is assumed for the whole year and no wet wood is burned

in the plant. The winter efficiency is calculated based on 2012 data [270] and scaled in order to have

only MSW as an input. The waste input is constant all over the year. In the model this is forced by

setting the MSW resource as a process. The first principle efficiency is 74.98%, leading to a total heat

production of 38.65 MWth and a total electricity production of 8.61 MWe. The share of thermal and

electrical production for auto-consumption of the plant are 1.52% and 27%, respectively. Cost and

emission data are reported in Table D.21.

Table D.21 – MSWI parameters

Value Units References

Reference size 20/60 MWe/MWth [270]

cinv,fix 1.394e8/1.324e8a CHF2015 [270]

cinv,var - CHF2015/MW

cop,fix - CHF2015/h

cop,var 5.809b CHF2015/MWh [270]

Lifetime 30/17.5a y [270]

GWP100aC,E
c 1.838e7 kgCO2-eq.

Impact2002+C,E
c 2.866e3 pts

ES2013C,E
c 6.939e9 UBP

GWP100aO
d - kgCO2-eq./MWhin

Impact2002+O 4.295e-3 pts/MWhin

ES2013O 4.810e3 UBP/MWhin

a First value is for the power plant, second value for the electromechanical installation (turbines).
b Includes O&M and salaries. Calculated over the total output, adding thermal and electrical production.
c Total emissions for construction and end-of-life of a typical MSWI in Switzerland.
d GWP impact related to the treatment of MSW in an incineration plant, including auxiliary emissions due to the

operation of the plant, are attributed to the MSW resource (Table D.3).

Waste Water Treatment Plant (WWTP)

In the WWTP of Lausanne (“STEP”), the dry sludge obtained from the treatment of waste water is

burned in a 4 MWth boiler supplying heat to the DHN. Only the boiler is modeled in this work. NG
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1027-150 °C 1.861 MW
NG/SNG562 MW

Waste Water
Treatment Plant

(WWTP)

Waste water
2.782 MW
3.376 t/h

(Dry sludge)

Figure D.20 – WWTP unit model.

Table D.22 – WWTP parameters

Value Units References

Reference size 4 MWth [258]
cinv,fix 9.009e6a CHF2015 [291]
cinv,var - CHF2015/MWth

cop,fix - CHF2015/h
cop,var 4.030e1 CHF2015/MWhth Personal communication, SiL
Lifetime 25 y
GWP100aC,E

b 5.947e7 kgCO2-eq.
Impact2002+C,E

b 1.062e4 pts
ES2013C,E

b 2.374e10 UBP

a Calculated based on the annual amortization value.
b Total emissions for construction and end-of-life of a typical WWTP in Switzerland.

is also needed in the combustion process. The model represented in Figure D.20 is based on data

for the power plant operation in 2012 [290]. In that year, the boiler processed 29.58 kt of dry sludge

and delivered 16.3 GWhth to the DHN as baseload. This is the net heat production, accounting for

the share of heat needed for autoconsumption (4.95%). The global first principle efficiency was

58.6% and the capacity factor 84.7% (309 days of operation). In the work by Amblard [258] seasonal

variations are accounted for in the WWTP model. As these variations are not significant, it is here

assumed for simplicity that the power plant works with a constant input over the whole year. In the

model this is forced by setting the waste water resource as a process. Operating emissions are not

accounted for. Cost and emission data are reported in Table D.22.

District Heating Network (DHN)

The DHN unit in the model is used to transfer the heat produced by the centralized technologies to

the heat demand units. The network is modeled based on the data available for Lausanne for the

year 2012. In that year, the total length of the network was 101 km, delivering 364.7 GWhth/y with

14.4% losses [258]. An increase of 3 km/y is assumed, leading to a total length of 170 km in 2035. As
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detailed in Section D.1.2, it is projected that the share of heat demand supplied by the DHN in 2035

is 45%. The temperature of Lausanne’s DHN is quite high (130-70 °C) and losses are fixed at 15%

all-year-round. Emissions related to construction are based on the impact of needed materials (steel,

foramed poliuretane, cement, concrete, diesel), which are taken from [292]. Operating emissions

are not accounted for. Cost and emission data are reported in Table D.23.

Table D.23 – DHN parameters

Value Units References

Reference size 170 km [258]

cinv,fix 5.100e8 CHF2015 Personal communication, SiL

cinv,var - CHF2015/MW

cop,fix 1.553e2a CHF2015/h Personal communication, SiL

cop,var - CHF2015/MWh

Lifetime 50 y Personal communication, SiL

GWP100aC,E
b 3.994e5 kgCO2-eq. [292]

Impact2002+C,E
b 5.448e1 pts [292]

ES2013C,E
b 1.256e8 UBP [292]

a 8 CHF/m/y, over 8760 h.
b Total emissions for the construction and end-of-life of the network, based on the needed materials (steel, foramed

poliuretane, cement, concrete, diesel) from [292].
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D.3.9 Mobility

This section covers the unit models for private and public mobility. The main difference with the

other models is that the lifetime of the technologies is here expressed in terms of total covered

distance. Thus, investment costs are annualized by fixing this parameter, without the need of

assuming a lifetime in terms of time duration. Mobility demand is defined in Section D.3.2.

Private mobility

Petrol459.0 W Petrol
Car

Mobility 1 pkm/h

Diesel415.4 W Diesel
Car

Mobility 1 pkm/h

Petrol210.0 W Plug-in Hybrid
Electric Vehicle

(PHEV)
Mobility 1 pkm/h

SNG483.3 W NG
Car

Mobility 1 pkm/h

Electricity54.4 W

Figure D.21 – Private mobility unit models.

Figure D.21 shows the four types of vehicles modeled in this work: NG cars, diesel cars, petrol cars,

PHEVs. The conversion efficiencies reported in the figure are taken for “EURO 5” vehicles from

[168], with the exception of the PHEV, which is based on data for a typical 2015 vehicle from [293].

For the PHEV, in the model it is assumed that electricity is used to cover 40 % of the total distance

and petrol to cover the remaining 60 %. If running only on electricity the PHEV consumes 135.9

Wh/pkm, whereas if running only on petrol the consumption is 349.9 Wh/pkm. The lifetime of all

vehicles is 150000 km [294] and the average occupancy is 1.6 passenger/vehicle (data for the year

2010 in Switzerland, from [80]).

In the model it is assumed that 50% of the private mobility demand is supplied by PHEVs, with the

remaining share being supplied by diesel cars. The NG car can have only SNG as an input, assuming

the same perfomance in terms of efficiency, cost and emissions (for GWP emissions related to

combustion are allocated to the resources). In the scenarios in which SNG is used in mobility, NG

cars replace part of the diesel share.

Cost data are estimated from [295] for typical vehicles in Switzerland. The investment cost for a

diesel car is 35000 CHF2015. The petrol car is assumed to be 5% cheaper, while the NG and PHEV car

assumed to be 10% and 20% more expensive than the diesel car, respectively. O&M costs are 0.212

CHF2015/km for all vehicles. Emission data are summarized in Table D.25.
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Public mobility

Electricity188.1 W Trolley
Bus

Mobility 1 pkm/h

Diesel409.9 W Diesel
Bus

Mobility 1 pkm/h

Metro Mobility 1 pkm/h

NG486.5 W NG
Bus

Mobility 1 pkm/h

94.0 WElectricity

Figure D.22 – Public mobility unit models.

Figure D.22 shows the four means of public transport modeled in this work: NG buses, diesel buses,

trolley buses (electric), metro. The conversion efficiencies reported in the figure are calculated from

Amblard [258] based on the energy consumption of the Lausanne fleet in the year 2012 [296]. As

there are no NG buses in Lausanne, the NG bus consumption is determined based on the diesel

bus consumption multiplied by the ratio between the fuel economies of the correspondent private

mobility models.

Data for cost, occupancy and lifetime are reported in Table D.24, together with the share of public

pkm covered by each technology (fixed in the model). Emission data are summarized in Table D.25.

Table D.24 – Public mobility model parameters.

Technology
Share Occupancy cinv,var cop,var Lifetime

[%] [p/v] [CHF2015/v] [CHF2015/km] [km]

Diesel Bus 5 16 [294] 5.250e5 [297] 6.057e-1 [297] 1.00e6 [294]

NG busa 5 16 [294] 5.775e5 6.057e-1 1.00e6

Trolley bus 35 26 [294] 1.171e6 [297] 1.040 [297] 1.42e6 [294]

Metro 55 63 [258]b 4.758e6 [298] 1.040c 1.12e6 [294]d

a Due to lack of data for NG bus, investment cost assumed 10% higher than diesel bus. O&M costs and emissions
assumed equal to diesel bus.

b Based on 2012 data for Lausanne from [296].
c Assumed equal to diesel bus. Does not include the cost for the needed infrastructure.
d Data for a tram.
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Figure D.23 – Results of the individual scenarios listed in Table C.1: individual assessment of
geothermal and biomass options (1 GUPB = 1e9 UBP). The subplots depict hhtot (a) and GWPtot (b)
against the total annual cost Ctot, respectively.
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Table D.26 – δPI calculated for each performance indicator (Eq. C.19). Performance of each with
respect to the reference (scenario 0).

# Biomass Geothermal
δCtot δGWPtot

δhhtot δhhtot

Imp2002+ ES2013

[MCHF/y] [ktCO2-eq./y] [kpts/y] [GUPB/y]

0 - - 0 0 0 0

1 - 3.8 km Direct use 0.31 -5.38 -0.14 -0.32

2 - 3.8 km ORC 0.39 -5.38 -0.14 -0.32

3 - 4.2 km Direct use -3.58 -30.4 -0.08 -1.29

4 - 4.2 km ORC -3.50 -33.2 -0.76 -1.92

5 - 5 km Direct use -5.80 -44.6 -0.52 -2.24

6 - 5 km ORC -5.90 -49.8 -1.60 -3.27

7 - 6 km Direct use -7.40 -57.8 -0.97 -3.15

8 - 6 km ORC -7.83 -67.0 -2.75 -4.87

9 - 6 km Kalina -7.86 -65.0 -2.20 -4.38

10 Wet wood boiler - -1.77 -54.4 4.03 4.96

11 Dry wood boiler - 0.58 -45.0 4.58 5.78

12 Wet wood CHP - 1.04 -64.5 -1.30 -1.72

13 Dry wood CHP - 3.36 -55.4 -1.24 -1.28

14 Pyrolysis boiler - 4.66 -37.5 0.84 2.59

15 Pyrolysis CHP - 4.14 -46.2 -3.38 -0.84

16 Wet Wood FT - 5.19 -30.3 0.21 0.24

17 Dry Wood FT - 5.53 -27.1 0.42 0.54

18 SNG in NG - 5.03 -51.0 -1.26 -1.62

19 SNG CHP - 3.86 -66.0 -6.96 -5.23

20 SNG Mobility - -2.55 -51.2 -3.20 -7.47

(1,10) Wet wood boiler 3.8 km Direct use -1.44 -59.8 3.89 4.64

(2,10) Wet wood boiler 3.8 km ORC -1.37 -59.8 3.89 4.64

(3,10) Wet wood boiler 4.2 km Direct use -5.29 -84.7 3.96 3.67

(4,10) Wet wood boiler 4.2 km ORC -5.22 -87.6 3.28 3.04

(5,10) Wet wood boiler 5 km Direct use -7.50 -99.0 3.51 2.72

(6,10) Wet wood boiler 5 km ORC -7.60 -104.2 2.43 1.69

(7,10) Wet wood boiler 6 km Direct use -9.10 -112.2 3.06 1.81

(8,10) Wet wood boiler 6 km ORC -9.53 -121.4 1.29 0.09

(9,10) Wet wood boiler 6 km Kalina -9.56 -119.4 1.83 0.58

(1,11) Dry wood boiler 3.8 km Direct use 0.70 -51.3 4.41 5.40

(2,11) Dry wood boiler 3.8 km ORC 0.77 -51.3 4.41 5.40

(3,11) Dry wood boiler 4.2 km Direct use -5.85 -90.1 4.04 3.48
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Table D.26 – δPI calculated for each performance indicator (Eq. C.19). Performance of each with
respect to the reference (scenario 0).

# Biomass Geothermal
δCtot δGWPtot

δhhtot δhhtot

Imp2002+ ES2013

[MCHF/y] [ktCO2-eq./y] [kpts/y] [GUPB/y]

(4,11) Dry wood boiler 4.2 km ORC -5.32 -90.1 4.05 3.48

(5,11) Dry wood boiler 5 km Direct use -8.06 -104.4 3.60 2.53

(6,11) Dry wood boiler 5 km ORC -7.28 -104.4 3.60 2.54

(7,11) Dry wood boiler 6 km Direct use -9.72 -117.6 3.15 1.62

(8,11) Dry wood boiler 6 km ORC -8.96 -120.6 1.57 0.33

(9,11) Dry wood boiler 6 km Kalina -9.50 -121.3 2.03 0.63

(1,12) Wet wood CHP 3.8 km Direct use 1.45 -69.9 -1.44 -2.03

(2,12) Wet wood CHP 3.8 km ORC 1.52 -69.9 -1.44 -2.03

(3,12) Wet wood CHP 4.2 km Direct use -1.60 -94.8 -1.37 -2.98

(4,12) Wet wood CHP 4.2 km ORC -1.66 -97.7 -2.05 -3.61

(5,12) Wet wood CHP 5 km Direct use -3.26 -109.0 -1.80 -3.91

(6,12) Wet wood CHP 5 km ORC -3.50 -114.2 -2.88 -4.94

(7,12) Wet wood CHP 6 km Direct use -4.68 -122.2 -2.25 -4.81

(8,12) Wet wood CHP 6 km ORC -5.25 -131.4 -4.03 -6.54

(9,12) Wet wood CHP 6 km Kalina -5.14 -129.5 -3.48 -6.04

(1,13) Dry wood CHP 3.8 km Direct use 3.60 -61.7 -1.41 -1.65

(2,13) Dry wood CHP 3.8 km ORC 3.68 -61.7 -1.41 -1.65

(3,13) Dry wood CHP 4.2 km Direct use -1.48 -100.7 -1.73 -3.51

(4,13) Dry wood CHP 4.2 km ORC -0.95 -100.7 -1.73 -3.50

(5,13) Dry wood CHP 5 km Direct use -3.15 -114.9 -2.17 -4.44

(6,13) Dry wood CHP 5 km ORC -2.37 -114.9 -2.16 -4.43

(7,13) Dry wood CHP 6 km Direct use -4.63 -128.1 -2.62 -5.34

(8,13) Dry wood CHP 6 km ORC -4.21 -128.5 -4.15 -6.51

(9,13) Dry wood CHP 6 km Kalina -4.69 -131.8 -3.75 -6.35

(1,14) Pyrolysis boiler 3.8 km Direct use 4.98 -42.9 0.71 2.27

(2,14) Pyrolysis boiler 3.8 km ORC 5.06 -42.9 0.71 2.27

(3,14) Pyrolysis boiler 4.2 km Direct use 1.11 -67.8 0.77 1.30

(4,14) Pyrolysis boiler 4.2 km ORC 1.18 -70.7 0.09 0.67

(5,14) Pyrolysis boiler 5 km Direct use -1.08 -82.1 0.33 0.35

(6,14) Pyrolysis boiler 5 km ORC -1.19 -87.3 -0.76 -0.68

(7,14) Pyrolysis boiler 6 km Direct use -2.67 -95.3 -0.13 -0.56

(8,14) Pyrolysis boiler 6 km ORC -3.11 -104.5 -1.90 -2.28

(9,14) Pyrolysis boiler 6 km Kalina -3.14 -102.5 -1.36 -1.79
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Table D.26 – δPI calculated for each performance indicator (Eq. C.19). Performance of each with
respect to the reference (scenario 0).

# Biomass Geothermal
δCtot δGWPtot

δhhtot δhhtot

Imp2002+ ES2013

[MCHF/y] [ktCO2-eq./y] [kpts/y] [GUPB/y]

(1,15) Pyrolysis CHP 3.8 km Direct use 4.52 -51.5 -3.51 -1.15

(2,15) Pyrolysis CHP 3.8 km ORC 4.60 -51.5 -3.51 -1.15

(3,15) Pyrolysis CHP 4.2 km Direct use 0.64 -76.5 -3.45 -2.12

(4,15) Pyrolysis CHP 4.2 km ORC 0.65 -79.4 -4.13 -2.76

(5,15) Pyrolysis CHP 5 km Direct use -1.22 -90.6 -3.85 -2.99

(6,15) Pyrolysis CHP 5 km ORC -1.42 -95.8 -4.94 -4.04

(7,15) Pyrolysis CHP 6 km Direct use -2.69 -103.7 -4.29 -3.87

(8,15) Pyrolysis CHP 6 km ORC -3.22 -113.0 -6.07 -5.61

(9,15) Pyrolysis CHP 6 km Kalina -3.16 -110.9 -5.52 -5.10

(1,16) Wet Wood FT 3.8 km Direct use 5.50 -35.6 0.07 -0.08

(2,16) Wet Wood FT 3.8 km ORC 5.58 -35.6 0.07 -0.08

(3,16) Wet Wood FT 4.2 km Direct use 1.61 -60.6 0.13 -1.05

(4,16) Wet Wood FT 4.2 km ORC 1.69 -63.4 -0.55 -1.68

(5,16) Wet Wood FT 5 km Direct use -0.61 -74.9 -0.31 -2.00

(6,16) Wet Wood FT 5 km ORC -0.71 -80.1 -1.39 -3.03

(7,16) Wet Wood FT 6 km Direct use -2.21 -88.1 -0.77 -2.91

(8,16) Wet Wood FT 6 km ORC -2.64 -97.3 -2.54 -4.63

(9,16) Wet Wood FT 6 km Kalina -2.67 -95.3 -2.00 -4.14

(1,17) Dry Wood FT 3.8 km Direct use 5.63 -33.5 0.26 0.16

(2,17) Dry Wood FT 3.8 km ORC 5.70 -33.5 0.26 0.16

(3,17) Dry Wood FT 4.2 km Direct use -0.09 -68.2 0.03 -1.46

(4,17) Dry Wood FT 4.2 km ORC 0.44 -68.2 0.03 -1.45

(5,17) Dry Wood FT 5 km Direct use -2.06 -81.0 -0.37 -2.31

(6,17) Dry Wood FT 5 km ORC -1.28 -81.0 -0.36 -2.30

(7,17) Dry Wood FT 6 km Direct use -3.37 -92.4 -0.77 -3.10

(8,17) Dry Wood FT 6 km ORC -3.63 -101.1 -2.53 -4.79

(9,17) Dry Wood FT 6 km Kalina -3.83 -99.7 -2.00 -4.33

(1,18) SNG in NG 3.8 km Direct use 5.65 -55.0 -1.36 -1.85

(2,18) SNG in NG 3.8 km ORC 5.65 -55.4 -1.44 -1.93

(3,18) SNG in NG 4.2 km Direct use 1.76 -79.9 -1.30 -2.82

(4,18) SNG in NG 4.2 km ORC 1.53 -84.2 -2.02 -3.54

(5,18) SNG in NG 5 km Direct use -0.46 -94.2 -1.74 -3.77

(6,18) SNG in NG 5 km ORC -0.87 -100.8 -2.86 -4.89
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D.4. Additional results

Table D.26 – δPI calculated for each performance indicator (Eq. C.19). Performance of each with
respect to the reference (scenario 0).

# Biomass Geothermal
δCtot δGWPtot

δhhtot δhhtot

Imp2002+ ES2013

[MCHF/y] [ktCO2-eq./y] [kpts/y] [GUPB/y]

(7,18) SNG in NG 6 km Direct use -1.75 -106.0 -2.15 -4.59

(8,18) SNG in NG 6 km ORC -2.49 -116.6 -3.96 -6.40

(9,18) SNG in NG 6 km Kalina -2.21 -113.2 -3.38 -5.82

(1,19) SNG CHP 3.8 km Direct use 4.49 -70.0 -7.05 -5.46

(2,19) SNG CHP 3.8 km ORC 4.48 -70.4 -7.13 -5.53

(3,19) SNG CHP 4.2 km Direct use 0.77 -94.9 -6.99 -6.41

(4,19) SNG CHP 4.2 km ORC 0.54 -99.1 -7.71 -7.13

(5,19) SNG CHP 5 km Direct use -0.93 -109.1 -7.41 -7.32

(6,19) SNG CHP 5 km ORC -1.34 -115.6 -8.53 -8.44

(7,19) SNG CHP 6 km Direct use -2.18 -120.9 -7.82 -8.14

(8,19) SNG CHP 6 km ORC -2.92 -131.5 -9.63 -9.95

(9,19) SNG CHP 6 km Kalina -2.64 -128.1 -9.05 -9.37

(1,20) SNG Mobility 3.8 km Direct use -1.93 -55.2 -3.29 -7.70

(2,20) SNG Mobility 3.8 km ORC -1.94 -55.6 -3.37 -7.78

(3,20) SNG Mobility 4.2 km Direct use -5.82 -80.1 -3.23 -8.67

(4,20) SNG Mobility 4.2 km ORC -6.05 -84.3 -3.95 -9.39

(5,20) SNG Mobility 5 km Direct use -8.04 -94.4 -3.67 -9.62

(6,20) SNG Mobility 5 km ORC -8.45 -101.0 -4.80 -10.74

(7,20) SNG Mobility 6 km Direct use -9.33 -106.2 -4.09 -10.44

(8,20) SNG Mobility 6 km ORC -10.07 -116.8 -5.90 -12.25

(9,20) SNG Mobility 6 km Kalina -9.79 -113.4 -5.32 -11.67
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